index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
4,529
optbinning.binning.binning_process
_transform
null
def _transform(self, X, metric, metric_special, metric_missing, show_digits, check_input): # Check X dtype if not isinstance(X, (pd.DataFrame, np.ndarray)): raise TypeError("X must be a pandas.DataFrame or numpy.ndarray.") n_samples, n_variables = X.shape mask = self.get_support() if not mask.any(): warn("No variables were selected: either the data is" " too noisy or the selection_criteria too strict.", UserWarning) return np.empty(0).reshape((n_samples, 0)) if isinstance(X, np.ndarray) and len(mask) != n_variables: raise ValueError("X has a different shape that during fitting.") if isinstance(X, pd.DataFrame): selected_variables = self.get_support(names=True) for name in selected_variables: if name not in X.columns: raise ValueError("Selected variable {} must be a column " "in the input dataframe.".format(name)) # Check metric if metric in ("indices", "bins"): if any(isinstance(optb, _OPTBPW_TYPES) for optb in self._binned_variables.values()): raise TypeError("metric {} not supported for piecewise " "optimal binning objects.".format(metric)) indices_selected_variables = self.get_support(indices=True) n_selected_variables = len(indices_selected_variables) # Check if specific binning transform metrics were supplied, and # whether these are compatible. Default base metric is the binning # process transform metric. base_metric = metric if self.binning_transform_params is not None: metrics = set() if metric is not None: metrics.add(metric) for idx in indices_selected_variables: name = self.variable_names[idx] params = self.binning_transform_params.get(name, {}) metrics.add(params.get("metric", metric)) if len(metrics) > 1: # indices and default transform metrics are numeric. If bins # metrics is present the dtypes are incompatible. if "bins" in metrics: raise ValueError( "metric 'bins' cannot be mixed with numeric metrics.") else: base_metric = metrics.pop() if base_metric == "indices": X_transform = np.full( (n_samples, n_selected_variables), -1, dtype=int) elif base_metric == "bins": X_transform = np.full( (n_samples, n_selected_variables), "", dtype=object) else: X_transform = np.zeros((n_samples, n_selected_variables)) for i, idx in enumerate(indices_selected_variables): name = self.variable_names[idx] optb = self._binned_variables[name] if isinstance(X, np.ndarray): x = X[:, idx] else: x = X[name] params = {} if self.binning_transform_params is not None: params = self.binning_transform_params.get(name, {}) metric = params.get("metric", metric) metric_missing = params.get("metric_missing", metric_missing) metric_special = params.get("metric_special", metric_special) tparams = { "x": x, "metric": metric, "metric_special": metric_special, "metric_missing": metric_missing, "check_input": check_input, "show_digits": show_digits } if isinstance(optb, _OPTBPW_TYPES): tparams.pop("show_digits") if metric is None: tparams.pop("metric") X_transform[:, i] = optb.transform(**tparams) if isinstance(X, pd.DataFrame): return pd.DataFrame( X_transform, columns=selected_variables, index=X.index) return X_transform
(self, X, metric, metric_special, metric_missing, show_digits, check_input)
4,530
optbinning.binning.binning_process
_transform_disk
null
def _transform_disk(self, input_path, output_path, chunksize, metric, metric_special, metric_missing, show_digits, **kwargs): # check input_path and output_path extensions input_extension = input_path.split(".")[1] output_extension = output_path.split(".")[1] if input_extension != "csv" or output_extension != "csv": raise ValueError("input_path and output_path must be csv files.") # check chunksize if not isinstance(chunksize, numbers.Integral) or chunksize <= 0: raise ValueError("chunksize must be a positive integer; got {}." .format(chunksize)) # Check metric if metric in ("indices", "bins"): if any(isinstance(optb, _OPTBPW_TYPES) for optb in self._binned_variables.values()): raise TypeError("metric {} not supported for piecewise " "optimal binning objects.".format(metric)) selected_variables = self.get_support(names=True) n_selected_variables = len(selected_variables) # Check if specific binning transform metrics were supplied, and # whether these are compatible. Default base metric is the binning # process transform metric. base_metric = metric if self.binning_transform_params is not None: metrics = set() if metric is not None: metrics.add(metric) for name in selected_variables: params = self.binning_transform_params.get(name, {}) metrics.add(params.get("metric", metric)) if len(metrics) > 1: # indices and default transform metrics are numeric. If bins # metrics is present the dtypes are incompatible. if "bins" in metrics: raise ValueError( "metric 'bins' cannot be mixed with numeric metrics.") else: base_metric = metrics.pop() chunks = pd.read_csv(input_path, engine='c', chunksize=chunksize, usecols=selected_variables, **kwargs) for k, chunk in enumerate(chunks): n_samples, n_variables = chunk.shape if base_metric == "indices": X_transform = np.full( (n_samples, n_selected_variables), -1, dtype=int) elif base_metric == "bins": X_transform = np.full( (n_samples, n_selected_variables), "", dtype=object) else: X_transform = np.zeros((n_samples, n_selected_variables)) for i, name in enumerate(selected_variables): optb = self._binned_variables[name] params = {} if self.binning_transform_params is not None: params = self.binning_transform_params.get(name, {}) metric = params.get("metric", metric) metric_missing = params.get("metric_missing", metric_missing) metric_special = params.get("metric_special", metric_special) tparams = { "x": chunk[name], "metric": metric, "metric_special": metric_special, "metric_missing": metric_missing, "show_digits": show_digits } if isinstance(optb, _OPTBPW_TYPES): tparams.pop("show_digits") if metric is None: tparams.pop("metric") X_transform[:, i] = optb.transform(**tparams) df = pd.DataFrame(X_transform, columns=selected_variables) df.to_csv(output_path, mode='a', index=False, header=(k == 0)) return self
(self, input_path, output_path, chunksize, metric, metric_special, metric_missing, show_digits, **kwargs)
4,531
sklearn.base
_validate_data
Validate input data and set or check the `n_features_in_` attribute. Parameters ---------- X : {array-like, sparse matrix, dataframe} of shape (n_samples, n_features), default='no validation' The input samples. If `'no_validation'`, no validation is performed on `X`. This is useful for meta-estimator which can delegate input validation to their underlying estimator(s). In that case `y` must be passed and the only accepted `check_params` are `multi_output` and `y_numeric`. y : array-like of shape (n_samples,), default='no_validation' The targets. - If `None`, `check_array` is called on `X`. If the estimator's requires_y tag is True, then an error will be raised. - If `'no_validation'`, `check_array` is called on `X` and the estimator's requires_y tag is ignored. This is a default placeholder and is never meant to be explicitly set. In that case `X` must be passed. - Otherwise, only `y` with `_check_y` or both `X` and `y` are checked with either `check_array` or `check_X_y` depending on `validate_separately`. reset : bool, default=True Whether to reset the `n_features_in_` attribute. If False, the input will be checked for consistency with data provided when reset was last True. .. note:: It is recommended to call reset=True in `fit` and in the first call to `partial_fit`. All other methods that validate `X` should set `reset=False`. validate_separately : False or tuple of dicts, default=False Only used if y is not None. If False, call validate_X_y(). Else, it must be a tuple of kwargs to be used for calling check_array() on X and y respectively. `estimator=self` is automatically added to these dicts to generate more informative error message in case of invalid input data. cast_to_ndarray : bool, default=True Cast `X` and `y` to ndarray with checks in `check_params`. If `False`, `X` and `y` are unchanged and only `feature_names_in_` and `n_features_in_` are checked. **check_params : kwargs Parameters passed to :func:`sklearn.utils.check_array` or :func:`sklearn.utils.check_X_y`. Ignored if validate_separately is not False. `estimator=self` is automatically added to these params to generate more informative error message in case of invalid input data. Returns ------- out : {ndarray, sparse matrix} or tuple of these The validated input. A tuple is returned if both `X` and `y` are validated.
def _validate_data( self, X="no_validation", y="no_validation", reset=True, validate_separately=False, cast_to_ndarray=True, **check_params, ): """Validate input data and set or check the `n_features_in_` attribute. Parameters ---------- X : {array-like, sparse matrix, dataframe} of shape \ (n_samples, n_features), default='no validation' The input samples. If `'no_validation'`, no validation is performed on `X`. This is useful for meta-estimator which can delegate input validation to their underlying estimator(s). In that case `y` must be passed and the only accepted `check_params` are `multi_output` and `y_numeric`. y : array-like of shape (n_samples,), default='no_validation' The targets. - If `None`, `check_array` is called on `X`. If the estimator's requires_y tag is True, then an error will be raised. - If `'no_validation'`, `check_array` is called on `X` and the estimator's requires_y tag is ignored. This is a default placeholder and is never meant to be explicitly set. In that case `X` must be passed. - Otherwise, only `y` with `_check_y` or both `X` and `y` are checked with either `check_array` or `check_X_y` depending on `validate_separately`. reset : bool, default=True Whether to reset the `n_features_in_` attribute. If False, the input will be checked for consistency with data provided when reset was last True. .. note:: It is recommended to call reset=True in `fit` and in the first call to `partial_fit`. All other methods that validate `X` should set `reset=False`. validate_separately : False or tuple of dicts, default=False Only used if y is not None. If False, call validate_X_y(). Else, it must be a tuple of kwargs to be used for calling check_array() on X and y respectively. `estimator=self` is automatically added to these dicts to generate more informative error message in case of invalid input data. cast_to_ndarray : bool, default=True Cast `X` and `y` to ndarray with checks in `check_params`. If `False`, `X` and `y` are unchanged and only `feature_names_in_` and `n_features_in_` are checked. **check_params : kwargs Parameters passed to :func:`sklearn.utils.check_array` or :func:`sklearn.utils.check_X_y`. Ignored if validate_separately is not False. `estimator=self` is automatically added to these params to generate more informative error message in case of invalid input data. Returns ------- out : {ndarray, sparse matrix} or tuple of these The validated input. A tuple is returned if both `X` and `y` are validated. """ self._check_feature_names(X, reset=reset) if y is None and self._get_tags()["requires_y"]: raise ValueError( f"This {self.__class__.__name__} estimator " "requires y to be passed, but the target y is None." ) no_val_X = isinstance(X, str) and X == "no_validation" no_val_y = y is None or isinstance(y, str) and y == "no_validation" if no_val_X and no_val_y: raise ValueError("Validation should be done on X, y or both.") default_check_params = {"estimator": self} check_params = {**default_check_params, **check_params} if not cast_to_ndarray: if not no_val_X and no_val_y: out = X elif no_val_X and not no_val_y: out = y else: out = X, y elif not no_val_X and no_val_y: out = check_array(X, input_name="X", **check_params) elif no_val_X and not no_val_y: out = _check_y(y, **check_params) else: if validate_separately: # We need this because some estimators validate X and y # separately, and in general, separately calling check_array() # on X and y isn't equivalent to just calling check_X_y() # :( check_X_params, check_y_params = validate_separately if "estimator" not in check_X_params: check_X_params = {**default_check_params, **check_X_params} X = check_array(X, input_name="X", **check_X_params) if "estimator" not in check_y_params: check_y_params = {**default_check_params, **check_y_params} y = check_array(y, input_name="y", **check_y_params) else: X, y = check_X_y(X, y, **check_params) out = X, y if not no_val_X and check_params.get("ensure_2d", True): self._check_n_features(X, reset=reset) return out
(self, X='no_validation', y='no_validation', reset=True, validate_separately=False, cast_to_ndarray=True, **check_params)
4,532
sklearn.base
_validate_params
Validate types and values of constructor parameters The expected type and values must be defined in the `_parameter_constraints` class attribute, which is a dictionary `param_name: list of constraints`. See the docstring of `validate_parameter_constraints` for a description of the accepted constraints.
def _validate_params(self): """Validate types and values of constructor parameters The expected type and values must be defined in the `_parameter_constraints` class attribute, which is a dictionary `param_name: list of constraints`. See the docstring of `validate_parameter_constraints` for a description of the accepted constraints. """ validate_parameter_constraints( self._parameter_constraints, self.get_params(deep=False), caller_name=self.__class__.__name__, )
(self)
4,533
optbinning.binning.binning_process
fit
Fit the binning process. Fit the optimal binning to all variables according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. .. versionchanged:: 0.4.0 X supports ``numpy.ndarray`` and ``pandas.DataFrame``. y : array-like of shape (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. This option is only available for a binary target. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BinningProcess Fitted binning process.
def fit(self, X, y, sample_weight=None, check_input=False): """Fit the binning process. Fit the optimal binning to all variables according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. .. versionchanged:: 0.4.0 X supports ``numpy.ndarray`` and ``pandas.DataFrame``. y : array-like of shape (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. This option is only available for a binary target. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BinningProcess Fitted binning process. """ return self._fit(X, y, sample_weight, check_input)
(self, X, y, sample_weight=None, check_input=False)
4,534
optbinning.binning.binning_process
fit_disk
Fit the binning process according to the given training data on disk. Parameters ---------- input_path : str Any valid string path to a file with extension .csv or .parquet. target : str Target column. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv`` or ``pandas.read_parquet``. Returns ------- self : BinningProcess Fitted binning process.
def fit_disk(self, input_path, target, **kwargs): """Fit the binning process according to the given training data on disk. Parameters ---------- input_path : str Any valid string path to a file with extension .csv or .parquet. target : str Target column. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv`` or ``pandas.read_parquet``. Returns ------- self : BinningProcess Fitted binning process. """ return self._fit_disk(input_path, target, **kwargs)
(self, input_path, target, **kwargs)
4,535
optbinning.binning.binning_process
fit_from_dict
Fit the binning process from a dict of OptimalBinning objects already fitted. Parameters ---------- dict_optb : dict Dictionary with OptimalBinning objects for binary, continuous or multiclass target. All objects must share the same class. Returns ------- self : BinningProcess Fitted binning process.
def fit_from_dict(self, dict_optb): """Fit the binning process from a dict of OptimalBinning objects already fitted. Parameters ---------- dict_optb : dict Dictionary with OptimalBinning objects for binary, continuous or multiclass target. All objects must share the same class. Returns ------- self : BinningProcess Fitted binning process. """ return self._fit_from_dict(dict_optb)
(self, dict_optb)
4,536
optbinning.binning.binning_process
fit_transform
Fit the binning process according to the given training data, then transform it. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. y : array-like of shape (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. This option is only available for a binary target. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : numpy array, shape = (n_samples, n_features_new) Transformed array.
def fit_transform(self, X, y, sample_weight=None, metric=None, metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the binning process according to the given training data, then transform it. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. y : array-like of shape (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. This option is only available for a binary target. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : numpy array, shape = (n_samples, n_features_new) Transformed array. """ return self.fit(X, y, sample_weight, check_input).transform( X, metric, metric_special, metric_missing, show_digits, check_input)
(self, X, y, sample_weight=None, metric=None, metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,537
optbinning.binning.binning_process
fit_transform_disk
Fit the binning process according to the given training data on disk, then transform it and save to comma-separated values (csv) file. Parameters ---------- input_path : str Any valid string path to a file with extension .csv. output_path : str Any valid string path to a file with extension .csv. target : str Target column. chunksize : Rows to read, transform and write at a time. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv``. Returns ------- self : BinningProcess Fitted binning process.
def fit_transform_disk(self, input_path, output_path, target, chunksize, metric=None, metric_special=0, metric_missing=0, show_digits=2, **kwargs): """Fit the binning process according to the given training data on disk, then transform it and save to comma-separated values (csv) file. Parameters ---------- input_path : str Any valid string path to a file with extension .csv. output_path : str Any valid string path to a file with extension .csv. target : str Target column. chunksize : Rows to read, transform and write at a time. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv``. Returns ------- self : BinningProcess Fitted binning process. """ return self.fit_disk(input_path, target, **kwargs).transform_disk( input_path, output_path, chunksize, metric, metric_special, metric_missing, show_digits, **kwargs)
(self, input_path, output_path, target, chunksize, metric=None, metric_special=0, metric_missing=0, show_digits=2, **kwargs)
4,538
optbinning.binning.binning_process
get_binned_variable
Return optimal binning object for a given variable name. Parameters ---------- name : string The variable name.
def get_binned_variable(self, name): """Return optimal binning object for a given variable name. Parameters ---------- name : string The variable name. """ self._check_is_fitted() if not isinstance(name, str): raise TypeError("name must be a string.") if name in self.variable_names: return self._binned_variables[name] else: raise ValueError("name {} does not match a binned variable." .format(name))
(self, name)
4,539
sklearn.utils._metadata_requests
get_metadata_routing
Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. Returns ------- routing : MetadataRequest A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating routing information.
def get_metadata_routing(self): """Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. Returns ------- routing : MetadataRequest A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating routing information. """ return self._get_metadata_request()
(self)
4,540
sklearn.base
get_params
Get parameters for this estimator. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values.
def get_params(self, deep=True): """ Get parameters for this estimator. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): value = getattr(self, key) if deep and hasattr(value, "get_params") and not isinstance(value, type): deep_items = value.get_params().items() out.update((key + "__" + k, val) for k, val in deep_items) out[key] = value return out
(self, deep=True)
4,541
optbinning.binning.binning_process
get_support
Get a mask, or integer index, or names of the variables selected. Parameters ---------- indices : boolean (default=False) If True, the return value will be an array of integers, rather than a boolean mask. names : boolean (default=False) If True, the return value will be an array of strings, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. If `names` is True, this is an string array of sahpe [# output features], whose values are names of the selected features.
def get_support(self, indices=False, names=False): """Get a mask, or integer index, or names of the variables selected. Parameters ---------- indices : boolean (default=False) If True, the return value will be an array of integers, rather than a boolean mask. names : boolean (default=False) If True, the return value will be an array of strings, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. If `names` is True, this is an string array of sahpe [# output features], whose values are names of the selected features. """ self._check_is_fitted() if indices and names: raise ValueError("Only indices or names can be True.") mask = self._support if indices: return np.where(mask)[0] elif names: return np.asarray(self.variable_names)[mask] else: return mask
(self, indices=False, names=False)
4,542
optbinning.binning.binning_process
information
Print overview information about the options settings and statistics. Parameters ---------- print_level : int (default=1) Level of details.
def information(self, print_level=1): """Print overview information about the options settings and statistics. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_fitted() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) n_numerical = list(self._variable_dtypes.values()).count("numerical") n_categorical = self._n_variables - n_numerical self._n_selected = np.count_nonzero(self._support) dict_user_options = self.get_params() print_binning_process_information( print_level, self._n_samples, self._n_variables, self._target_dtype, n_numerical, n_categorical, self._n_selected, self._time_total, dict_user_options)
(self, print_level=1)
4,543
optbinning.binning.binning_process
save
Save binning process to pickle file. Parameters ---------- path : str Pickle file path.
def save(self, path): """Save binning process to pickle file. Parameters ---------- path : str Pickle file path. """ if not isinstance(path, str): raise TypeError("path must be a string.") with open(path, "wb") as f: pickle.dump(self, f)
(self, path)
4,544
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.binning_process.BinningProcess, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.binning_process.BinningProcess
4,545
sklearn.base
set_params
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as :class:`~sklearn.pipeline.Pipeline`). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance.
def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as :class:`~sklearn.pipeline.Pipeline`). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance. """ if not params: # Simple optimization to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) nested_params = defaultdict(dict) # grouped by prefix for key, value in params.items(): key, delim, sub_key = key.partition("__") if key not in valid_params: local_valid_params = self._get_param_names() raise ValueError( f"Invalid parameter {key!r} for estimator {self}. " f"Valid parameters are: {local_valid_params!r}." ) if delim: nested_params[key][sub_key] = value else: setattr(self, key, value) valid_params[key] = value for key, sub_params in nested_params.items(): valid_params[key].set_params(**sub_params) return self
(self, **params)
4,546
sklearn.utils._metadata_requests
set_transform_request
Request metadata passed to the ``transform`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``transform`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``transform``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``transform``. metric : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric`` parameter in ``transform``. metric_missing : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_missing`` parameter in ``transform``. metric_special : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_special`` parameter in ``transform``. show_digits : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``show_digits`` parameter in ``transform``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.binning_process.BinningProcess, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', metric: Union[bool, NoneType, str] = '$UNCHANGED$', metric_missing: Union[bool, NoneType, str] = '$UNCHANGED$', metric_special: Union[bool, NoneType, str] = '$UNCHANGED$', show_digits: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.binning_process.BinningProcess
4,547
optbinning.binning.binning_process
summary
Binning process summary with main statistics for all binned variables. Parameters ---------- df_summary : pandas.DataFrame Binning process summary.
def summary(self): """Binning process summary with main statistics for all binned variables. Parameters ---------- df_summary : pandas.DataFrame Binning process summary. """ self._check_is_fitted() if self._is_updated: self._binning_selection_criteria() self._is_updated = False df_summary = pd.DataFrame.from_dict(self._variable_stats).T df_summary.reset_index(inplace=True) df_summary.rename(columns={"index": "name"}, inplace=True) df_summary["selected"] = self._support columns = ["name", "dtype", "status", "selected", "n_bins"] columns += _METRICS[self._target_dtype]["metrics"] return df_summary[columns]
(self)
4,548
optbinning.binning.binning_process
transform
Transform given data to metric using bins from each fitted optimal binning. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : numpy array or pandas.DataFrame, shape = (n_samples, n_features_new) Transformed array.
def transform(self, X, metric=None, metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to metric using bins from each fitted optimal binning. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : numpy array or pandas.DataFrame, shape = (n_samples, n_features_new) Transformed array. """ self._check_is_fitted() return self._transform(X, metric, metric_special, metric_missing, show_digits, check_input)
(self, X, metric=None, metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,549
optbinning.binning.binning_process
transform_disk
Transform given data on disk to metric using bins from each fitted optimal binning. Save to comma-separated values (csv) file. Parameters ---------- input_path : str Any valid string path to a file with extension .csv. output_path : str Any valid string path to a file with extension .csv. chunksize : Rows to read, transform and write at a time. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv``. Returns ------- self : BinningProcess Fitted binning process.
def transform_disk(self, input_path, output_path, chunksize, metric=None, metric_special=0, metric_missing=0, show_digits=2, **kwargs): """Transform given data on disk to metric using bins from each fitted optimal binning. Save to comma-separated values (csv) file. Parameters ---------- input_path : str Any valid string path to a file with extension .csv. output_path : str Any valid string path to a file with extension .csv. chunksize : Rows to read, transform and write at a time. metric : str or None, (default=None) The metric used to transform the input vector. If None, the default transformation metric for each target type is applied. For binary target options are: "woe" (default), "event_rate", "indices" and "bins". For continuous target options are: "mean" (default), "indices" and "bins". For multiclass target options are: "mean_woe" (default), "weighted_mean_woe", "indices" and "bins". metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate for a binary target, and any numerical value for other targets. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. **kwargs : keyword arguments Keyword arguments for ``pandas.read_csv``. Returns ------- self : BinningProcess Fitted binning process. """ self._check_is_fitted() return self._transform_disk(input_path, output_path, chunksize, metric, metric_special, metric_missing, show_digits, **kwargs)
(self, input_path, output_path, chunksize, metric=None, metric_special=0, metric_missing=0, show_digits=2, **kwargs)
4,550
optbinning.binning.binning_process
update_binned_variable
Update optimal binning object for a given variable. Parameters ---------- name : string The variable name. optb : object The optimal binning object already fitted.
def update_binned_variable(self, name, optb): """Update optimal binning object for a given variable. Parameters ---------- name : string The variable name. optb : object The optimal binning object already fitted. """ self._check_is_fitted() if not isinstance(name, str): raise TypeError("name must be a string.") if name not in self.variable_names: raise ValueError("name {} does not match a binned variable." .format(name)) optb_types = _OPTB_TYPES + _OPTBPW_TYPES if not isinstance(optb, optb_types): raise TypeError("Object {} must be of type ({}); got {}" .format(name, optb_types, type(optb))) # Check current class if self._target_dtype == "binary": optb_binary = (OptimalBinning, OptimalPWBinning) if not isinstance(optb, optb_binary): raise TypeError("target is binary and Object {} must be of " "type {}.".format(optb, optb_binary)) elif self._target_dtype == "continuous": optb_continuous = (ContinuousOptimalBinning, ContinuousOptimalPWBinning) if not isinstance(optb, optb_continuous): raise TypeError("target is continuous and Object {} must be " "of type {}.".format(optb, optb_continuous)) elif self._target_dtype == "multiclass": if not isinstance(optb, MulticlassOptimalBinning): raise TypeError("target is multiclass and Object {} must be " "of type {}.".format( optb, MulticlassOptimalBinning)) optb_old = self._binned_variables[name] if optb_old.name and optb_old.name != optb.name: raise ValueError("Update object name must match old object name; " "{} != {}.".format(optb_old.name, optb.name)) if optb.name and name != optb.name: raise ValueError("name and object name must coincide.") self._binned_variables[name] = optb self._is_updated = True
(self, name, optb)
4,551
optbinning.binning.distributed.binning_process_sketch
BinningProcessSketch
Binning process over data streams to compute optimal binning of variables with respect to a binary target. Parameters ---------- variable_names : array-like List of variable names. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. selection_criteria : dict or None (default=None) Variable selection criteria. See notes. special_codes : array-like or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. categorical_variables : array-like or None, optional (default=None) List of variables numerical variables to be considered categorical. These are nominal variables. Not applicable when target type is multiclass. binning_fit_params : dict or None, optional (default=None) Dictionary with optimal binning fitting options for specific variables. Example: ``{"variable_1": {"max_n_bins": 4}}``. binning_transform_params : dict or None, optional (default=None) Dictionary with optimal binning transform options for specific variables. Example ``{"variable_1": {"metric": "event_rate"}}``. verbose : bool (default=False) Enable verbose output. Notes ----- Parameter ``selection_criteria`` allows to specify criteria for variable selection. The input is a dictionary as follows .. code:: selection_criteria = { "metric_1": { "min": 0, "max": 1, "strategy": "highest", "top": 0.25 }, "metric_2": { "min": 0.02 } } where several metrics can be combined. For example, above dictionary indicates that top 25% variables with "metric_1" in [0, 1] and "metric_2" greater or equal than 0.02 are selected. Supported key values are: * keys ``min`` and ``max`` support numerical values. * key ``strategy`` supports options "highest" and "lowest". * key ``top`` supports an integer or decimal (percentage). .. warning:: If the binning process instance is going to be saved, do not pass the option ``"solver": "mip"`` via the binning_fit_params parameter.
class BinningProcessSketch(BaseSketch, BaseEstimator, BaseBinningProcess): """Binning process over data streams to compute optimal binning of variables with respect to a binary target. Parameters ---------- variable_names : array-like List of variable names. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. selection_criteria : dict or None (default=None) Variable selection criteria. See notes. special_codes : array-like or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. categorical_variables : array-like or None, optional (default=None) List of variables numerical variables to be considered categorical. These are nominal variables. Not applicable when target type is multiclass. binning_fit_params : dict or None, optional (default=None) Dictionary with optimal binning fitting options for specific variables. Example: ``{"variable_1": {"max_n_bins": 4}}``. binning_transform_params : dict or None, optional (default=None) Dictionary with optimal binning transform options for specific variables. Example ``{"variable_1": {"metric": "event_rate"}}``. verbose : bool (default=False) Enable verbose output. Notes ----- Parameter ``selection_criteria`` allows to specify criteria for variable selection. The input is a dictionary as follows .. code:: selection_criteria = { "metric_1": { "min": 0, "max": 1, "strategy": "highest", "top": 0.25 }, "metric_2": { "min": 0.02 } } where several metrics can be combined. For example, above dictionary indicates that top 25% variables with "metric_1" in [0, 1] and "metric_2" greater or equal than 0.02 are selected. Supported key values are: * keys ``min`` and ``max`` support numerical values. * key ``strategy`` supports options "highest" and "lowest". * key ``top`` supports an integer or decimal (percentage). .. warning:: If the binning process instance is going to be saved, do not pass the option ``"solver": "mip"`` via the binning_fit_params parameter. """ def __init__(self, variable_names, max_n_prebins=20, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, max_pvalue=None, max_pvalue_policy="consecutive", selection_criteria=None, categorical_variables=None, special_codes=None, split_digits=None, binning_fit_params=None, binning_transform_params=None, verbose=False): self.variable_names = variable_names self.max_n_prebins = max_n_prebins self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.selection_criteria = selection_criteria self.binning_fit_params = binning_fit_params self.binning_transform_params = binning_transform_params self.special_codes = special_codes self.split_digits = split_digits self.categorical_variables = categorical_variables self.verbose = verbose # target information to reuse BaseBinningProcess self._target_dtype = "binary" # auxiliary self._n_samples = None self._n_variables = None self._n_numerical = None self._n_categorical = None self._n_selected = None self._binned_variables = {} self._variable_dtypes = {} self._variable_stats = {} self._support = None # streaming stats self._n_add = 0 self._n_solve = 0 # timing self._time_streaming_add = 0 self._time_streaming_solve = 0 # flags self._is_started = False self._is_solved = False # Check parameters _check_parameters(**self.get_params()) def add(self, X, y, check_input=False): """Add new data X, y to the binning sketch of each variable. Parameters ---------- X : pandas.DataFrame, shape (n_samples, n_features) y : array-like of shape (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BinningProcessSketch Binning process with new data. """ if not self._is_started: self._n_samples = 0 self._n_variables = len(self.variable_names) if self.categorical_variables is not None: self._n_categorical = len(self.categorical_variables) else: self._n_categorical = 0 self._n_numerical = self._n_variables - self._n_categorical # Check selection criteria if self.selection_criteria is not None: _check_selection_criteria(self.selection_criteria, self._target_dtype) # Initialize bsketch for each variable. To avoid mixed dtypes # the user must provide a dtype for all variables. This differs # from the BinningProcess, where dtypes are inferred. for name in self.variable_names: if (self.categorical_variables is not None and name in self.categorical_variables): dtype = "categorical" else: dtype = "numerical" optb = OptimalBinningSketch( name=name, dtype=dtype, max_n_prebins=self.max_n_prebins, min_n_bins=self.min_n_bins, max_n_bins=self.max_n_bins, min_bin_size=self.min_bin_size, max_pvalue=self.max_pvalue, max_pvalue_policy=self.max_pvalue_policy, special_codes=self.special_codes, split_digits=self.split_digits) if self.binning_fit_params is not None: params = self.binning_fit_params.get(name, {}) else: params = {} optb.set_params(**params) self._variable_dtypes[name] = dtype self._binned_variables[name] = optb self._is_started = True # Add new data stream time_add = time.perf_counter() # Add data to variables that appear in X. During training the # data columns might change, for example, not all data sources # contain the same variables. for name in X.columns: if name in self.variable_names: if self.verbose: logger.info("Add variable: {}.".format(name)) self._binned_variables[name].add(X[name], y, check_input) # Update count samples and addition operations self._n_samples += X.shape[0] self._n_add += 1 self._time_streaming_add += time.perf_counter() - time_add if self.verbose: logger.info("Sketch: added new data.") return self def information(self, print_level=1): """Print overview information about the options settings and statistics. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_solved() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) self._n_selected = np.count_nonzero(self._support) dict_user_options = self.get_params() print_binning_process_sketch_information( print_level, self._n_samples, self._n_variables, self._target_dtype, self._n_numerical, self._n_categorical, self._n_selected, self._n_add, self._time_streaming_add, self._n_solve, self._time_streaming_solve, dict_user_options) def summary(self): """Binning process summary with main statistics for all binned variables. Parameters ---------- df_summary : pandas.DataFrame Binning process summary. """ self._check_is_solved() df_summary = pd.DataFrame.from_dict(self._variable_stats).T df_summary.reset_index(inplace=True) df_summary.rename(columns={"index": "name"}, inplace=True) df_summary["selected"] = self._support columns = ["name", "dtype", "status", "selected", "n_bins"] columns += _METRICS[self._target_dtype]["metrics"] return df_summary[columns] def merge(self, bpsketch): """Merge current instance with another BinningProcessSketch instance. Parameters ---------- bpsketch : object BinningProcessSketch instance. """ if not self.mergeable(bpsketch): raise Exception("bpsketch does not share signature.") for name in self.variable_names: self._binned_variables[name].merge( bpsketch._binned_variables[name]) if self.verbose: logger.info("Sketch: current sketch was merged.") def mergeable(self, bpsketch): """Check whether two BinningProcessSketch instances can be merged. Parameters ---------- bpsketch : object BinningProcessSketch instance. Returns ------- mergeable : bool """ return self.get_params() == bpsketch.get_params() def solve(self): """Solve optimal binning for all variables using added data. Returns ------- self : BinningProcessSketch Current fitted binning process. """ time_init = time.perf_counter() # Check if data was added if not self._n_add: raise NotDataAddedError( "No data was added. Add data before solving.") for i, name in enumerate(self.variable_names): if self.verbose: logger.info("Binning variable ({} / {}): {}." .format(i, self._n_variables, name)) self._binned_variables[name].solve() if self.verbose: logger.info("Binning process variable selection...") # Compute binning statistics and decide whether a variable is selected self._binning_selection_criteria() self._time_streaming_solve += time.perf_counter() - time_init self._n_solve += 1 # Completed successfully self._is_solved = True return self def transform(self, X, metric="woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to metric using bins from each fitted optimal binning. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. metric : str (default="woe") The metric used to transform the input vector. Supported metrics are "woe" to choose the Weight of Evidence, "event_rate" to choose the event rate, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : pandas.DataFrame, shape = (n_samples, n_features_new) Transformed array. """ self._check_is_solved() # Check X dtype if not isinstance(X, pd.DataFrame): raise TypeError("X must be a pandas.DataFrame.") n_samples, n_variables = X.shape # Check metric if metric not in ("event_rate", "woe"): raise ValueError('Invalid value for metric. Allowed string ' 'values are "event_rate" and "woe".') mask = self.get_support() if not mask.any(): warn("No variables were selected: either the data is" " too noisy or the selection_criteria too strict.", UserWarning) return np.empty(0).reshape((n_samples, 0)) selected_variables = self.get_support(names=True) for name in selected_variables: if name not in X.columns: raise ValueError("Selected variable {} must be a column " "in the input dataframe.".format(name)) n_selected_variables = len(selected_variables) if metric == "indices": X_transform = np.full( (n_samples, n_selected_variables), -1, dtype=int) elif metric == "bins": X_transform = np.full( (n_samples, n_selected_variables), "", dtype=object) else: X_transform = np.zeros((n_samples, n_selected_variables)) for i, name in enumerate(selected_variables): optb = self._binned_variables[name] x = X[name] params = {} if self.binning_transform_params is not None: params = self.binning_transform_params.get(name, {}) metric_missing = params.get("metric_missing", metric_missing) metric_special = params.get("metric_special", metric_special) tparams = { "x": x, "metric": metric, "metric_special": metric_special, "metric_missing": metric_missing, "check_input": check_input, "show_digits": show_digits } if metric is not None: tparams["metric"] = params.get("metric", metric) else: tparams.pop("metric") X_transform[:, i] = optb.transform(**tparams) return pd.DataFrame(X_transform, columns=selected_variables) def get_binned_variable(self, name): """Return optimal binning sketch object for a given variable name. Parameters ---------- name : string The variable name. """ self._check_is_solved() if not isinstance(name, str): raise TypeError("name must be a string.") if name in self.variable_names: return self._binned_variables[name] else: raise ValueError("name {} does not match a binned variable." .format(name)) def get_support(self, indices=False, names=False): """Get a mask, or integer index, or names of the variables selected. Parameters ---------- indices : boolean (default=False) If True, the return value will be an array of integers, rather than a boolean mask. names : boolean (default=False) If True, the return value will be an array of strings, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. If `names` is True, this is an string array of sahpe [# output features], whose values are names of the selected features. """ self._check_is_solved() if indices and names: raise ValueError("Only indices or names can be True.") mask = self._support if indices: return np.where(mask)[0] elif names: return np.asarray(self.variable_names)[mask] else: return mask
(variable_names, max_n_prebins=20, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, max_pvalue=None, max_pvalue_policy='consecutive', selection_criteria=None, categorical_variables=None, special_codes=None, split_digits=None, binning_fit_params=None, binning_transform_params=None, verbose=False)
4,553
optbinning.binning.distributed.binning_process_sketch
__init__
null
def __init__(self, variable_names, max_n_prebins=20, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, max_pvalue=None, max_pvalue_policy="consecutive", selection_criteria=None, categorical_variables=None, special_codes=None, split_digits=None, binning_fit_params=None, binning_transform_params=None, verbose=False): self.variable_names = variable_names self.max_n_prebins = max_n_prebins self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.selection_criteria = selection_criteria self.binning_fit_params = binning_fit_params self.binning_transform_params = binning_transform_params self.special_codes = special_codes self.split_digits = split_digits self.categorical_variables = categorical_variables self.verbose = verbose # target information to reuse BaseBinningProcess self._target_dtype = "binary" # auxiliary self._n_samples = None self._n_variables = None self._n_numerical = None self._n_categorical = None self._n_selected = None self._binned_variables = {} self._variable_dtypes = {} self._variable_stats = {} self._support = None # streaming stats self._n_add = 0 self._n_solve = 0 # timing self._time_streaming_add = 0 self._time_streaming_solve = 0 # flags self._is_started = False self._is_solved = False # Check parameters _check_parameters(**self.get_params())
(self, variable_names, max_n_prebins=20, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, max_pvalue=None, max_pvalue_policy='consecutive', selection_criteria=None, categorical_variables=None, special_codes=None, split_digits=None, binning_fit_params=None, binning_transform_params=None, verbose=False)
4,559
optbinning.binning.distributed.base
_check_is_solved
null
def _check_is_solved(self): if not self._is_solved: raise NotSolvedError("This {} instance is not solved yet. Call " "'solve' with appropriate arguments." .format(self.__class__.__name__))
(self)
4,570
optbinning.binning.distributed.binning_process_sketch
add
Add new data X, y to the binning sketch of each variable. Parameters ---------- X : pandas.DataFrame, shape (n_samples, n_features) y : array-like of shape (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BinningProcessSketch Binning process with new data.
def add(self, X, y, check_input=False): """Add new data X, y to the binning sketch of each variable. Parameters ---------- X : pandas.DataFrame, shape (n_samples, n_features) y : array-like of shape (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BinningProcessSketch Binning process with new data. """ if not self._is_started: self._n_samples = 0 self._n_variables = len(self.variable_names) if self.categorical_variables is not None: self._n_categorical = len(self.categorical_variables) else: self._n_categorical = 0 self._n_numerical = self._n_variables - self._n_categorical # Check selection criteria if self.selection_criteria is not None: _check_selection_criteria(self.selection_criteria, self._target_dtype) # Initialize bsketch for each variable. To avoid mixed dtypes # the user must provide a dtype for all variables. This differs # from the BinningProcess, where dtypes are inferred. for name in self.variable_names: if (self.categorical_variables is not None and name in self.categorical_variables): dtype = "categorical" else: dtype = "numerical" optb = OptimalBinningSketch( name=name, dtype=dtype, max_n_prebins=self.max_n_prebins, min_n_bins=self.min_n_bins, max_n_bins=self.max_n_bins, min_bin_size=self.min_bin_size, max_pvalue=self.max_pvalue, max_pvalue_policy=self.max_pvalue_policy, special_codes=self.special_codes, split_digits=self.split_digits) if self.binning_fit_params is not None: params = self.binning_fit_params.get(name, {}) else: params = {} optb.set_params(**params) self._variable_dtypes[name] = dtype self._binned_variables[name] = optb self._is_started = True # Add new data stream time_add = time.perf_counter() # Add data to variables that appear in X. During training the # data columns might change, for example, not all data sources # contain the same variables. for name in X.columns: if name in self.variable_names: if self.verbose: logger.info("Add variable: {}.".format(name)) self._binned_variables[name].add(X[name], y, check_input) # Update count samples and addition operations self._n_samples += X.shape[0] self._n_add += 1 self._time_streaming_add += time.perf_counter() - time_add if self.verbose: logger.info("Sketch: added new data.") return self
(self, X, y, check_input=False)
4,571
optbinning.binning.distributed.binning_process_sketch
get_binned_variable
Return optimal binning sketch object for a given variable name. Parameters ---------- name : string The variable name.
def get_binned_variable(self, name): """Return optimal binning sketch object for a given variable name. Parameters ---------- name : string The variable name. """ self._check_is_solved() if not isinstance(name, str): raise TypeError("name must be a string.") if name in self.variable_names: return self._binned_variables[name] else: raise ValueError("name {} does not match a binned variable." .format(name))
(self, name)
4,574
optbinning.binning.distributed.binning_process_sketch
get_support
Get a mask, or integer index, or names of the variables selected. Parameters ---------- indices : boolean (default=False) If True, the return value will be an array of integers, rather than a boolean mask. names : boolean (default=False) If True, the return value will be an array of strings, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. If `names` is True, this is an string array of sahpe [# output features], whose values are names of the selected features.
def get_support(self, indices=False, names=False): """Get a mask, or integer index, or names of the variables selected. Parameters ---------- indices : boolean (default=False) If True, the return value will be an array of integers, rather than a boolean mask. names : boolean (default=False) If True, the return value will be an array of strings, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. If `names` is True, this is an string array of sahpe [# output features], whose values are names of the selected features. """ self._check_is_solved() if indices and names: raise ValueError("Only indices or names can be True.") mask = self._support if indices: return np.where(mask)[0] elif names: return np.asarray(self.variable_names)[mask] else: return mask
(self, indices=False, names=False)
4,575
optbinning.binning.distributed.binning_process_sketch
information
Print overview information about the options settings and statistics. Parameters ---------- print_level : int (default=1) Level of details.
def information(self, print_level=1): """Print overview information about the options settings and statistics. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_solved() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) self._n_selected = np.count_nonzero(self._support) dict_user_options = self.get_params() print_binning_process_sketch_information( print_level, self._n_samples, self._n_variables, self._target_dtype, self._n_numerical, self._n_categorical, self._n_selected, self._n_add, self._time_streaming_add, self._n_solve, self._time_streaming_solve, dict_user_options)
(self, print_level=1)
4,576
optbinning.binning.distributed.binning_process_sketch
merge
Merge current instance with another BinningProcessSketch instance. Parameters ---------- bpsketch : object BinningProcessSketch instance.
def merge(self, bpsketch): """Merge current instance with another BinningProcessSketch instance. Parameters ---------- bpsketch : object BinningProcessSketch instance. """ if not self.mergeable(bpsketch): raise Exception("bpsketch does not share signature.") for name in self.variable_names: self._binned_variables[name].merge( bpsketch._binned_variables[name]) if self.verbose: logger.info("Sketch: current sketch was merged.")
(self, bpsketch)
4,577
optbinning.binning.distributed.binning_process_sketch
mergeable
Check whether two BinningProcessSketch instances can be merged. Parameters ---------- bpsketch : object BinningProcessSketch instance. Returns ------- mergeable : bool
def mergeable(self, bpsketch): """Check whether two BinningProcessSketch instances can be merged. Parameters ---------- bpsketch : object BinningProcessSketch instance. Returns ------- mergeable : bool """ return self.get_params() == bpsketch.get_params()
(self, bpsketch)
4,581
optbinning.binning.distributed.binning_process_sketch
solve
Solve optimal binning for all variables using added data. Returns ------- self : BinningProcessSketch Current fitted binning process.
def solve(self): """Solve optimal binning for all variables using added data. Returns ------- self : BinningProcessSketch Current fitted binning process. """ time_init = time.perf_counter() # Check if data was added if not self._n_add: raise NotDataAddedError( "No data was added. Add data before solving.") for i, name in enumerate(self.variable_names): if self.verbose: logger.info("Binning variable ({} / {}): {}." .format(i, self._n_variables, name)) self._binned_variables[name].solve() if self.verbose: logger.info("Binning process variable selection...") # Compute binning statistics and decide whether a variable is selected self._binning_selection_criteria() self._time_streaming_solve += time.perf_counter() - time_init self._n_solve += 1 # Completed successfully self._is_solved = True return self
(self)
4,582
optbinning.binning.distributed.binning_process_sketch
summary
Binning process summary with main statistics for all binned variables. Parameters ---------- df_summary : pandas.DataFrame Binning process summary.
def summary(self): """Binning process summary with main statistics for all binned variables. Parameters ---------- df_summary : pandas.DataFrame Binning process summary. """ self._check_is_solved() df_summary = pd.DataFrame.from_dict(self._variable_stats).T df_summary.reset_index(inplace=True) df_summary.rename(columns={"index": "name"}, inplace=True) df_summary["selected"] = self._support columns = ["name", "dtype", "status", "selected", "n_bins"] columns += _METRICS[self._target_dtype]["metrics"] return df_summary[columns]
(self)
4,583
optbinning.binning.distributed.binning_process_sketch
transform
Transform given data to metric using bins from each fitted optimal binning. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. metric : str (default="woe") The metric used to transform the input vector. Supported metrics are "woe" to choose the Weight of Evidence, "event_rate" to choose the event rate, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : pandas.DataFrame, shape = (n_samples, n_features_new) Transformed array.
def transform(self, X, metric="woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to metric using bins from each fitted optimal binning. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vector, where n_samples is the number of samples. metric : str (default="woe") The metric used to transform the input vector. Supported metrics are "woe" to choose the Weight of Evidence, "event_rate" to choose the event rate, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- X_new : pandas.DataFrame, shape = (n_samples, n_features_new) Transformed array. """ self._check_is_solved() # Check X dtype if not isinstance(X, pd.DataFrame): raise TypeError("X must be a pandas.DataFrame.") n_samples, n_variables = X.shape # Check metric if metric not in ("event_rate", "woe"): raise ValueError('Invalid value for metric. Allowed string ' 'values are "event_rate" and "woe".') mask = self.get_support() if not mask.any(): warn("No variables were selected: either the data is" " too noisy or the selection_criteria too strict.", UserWarning) return np.empty(0).reshape((n_samples, 0)) selected_variables = self.get_support(names=True) for name in selected_variables: if name not in X.columns: raise ValueError("Selected variable {} must be a column " "in the input dataframe.".format(name)) n_selected_variables = len(selected_variables) if metric == "indices": X_transform = np.full( (n_samples, n_selected_variables), -1, dtype=int) elif metric == "bins": X_transform = np.full( (n_samples, n_selected_variables), "", dtype=object) else: X_transform = np.zeros((n_samples, n_selected_variables)) for i, name in enumerate(selected_variables): optb = self._binned_variables[name] x = X[name] params = {} if self.binning_transform_params is not None: params = self.binning_transform_params.get(name, {}) metric_missing = params.get("metric_missing", metric_missing) metric_special = params.get("metric_special", metric_special) tparams = { "x": x, "metric": metric, "metric_special": metric_special, "metric_missing": metric_missing, "check_input": check_input, "show_digits": show_digits } if metric is not None: tparams["metric"] = params.get("metric", metric) else: tparams.pop("metric") X_transform[:, i] = optb.transform(**tparams) return pd.DataFrame(X_transform, columns=selected_variables)
(self, X, metric='woe', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,584
optbinning.binning.continuous_binning
ContinuousOptimalBinning
Optimal binning of a numerical or categorical variable with respect to a continuous target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The **mean** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend minimize the L1-norm using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins> 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_mean_diff : float, optional (default=0) The minimum mean difference between consecutives bins. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The T-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. .. versionadded:: 0.14.0 outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method, "zcore" to use the modified Z-score method or "yquantile" to use the y-axis detector over quantiles. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". cat_unknown : float, str or None (default=None) The assigned value to the unobserved categories in training but occurring during transform. If None, the assigned value to an unknown category follows this rule: - if transform metric == 'mean' then mean target - if transform metric == 'indices' then -1 - if transform metric == 'bins' then 'unknown' .. versionadded:: 0.17.1 user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The pre-binning refinement phase guarantee that no prebin has zero number of records by merging those pure prebins. Pure bins produce infinity mean.
class ContinuousOptimalBinning(OptimalBinning): """Optimal binning of a numerical or categorical variable with respect to a continuous target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The **mean** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend minimize the L1-norm using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins> 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_mean_diff : float, optional (default=0) The minimum mean difference between consecutives bins. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The T-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. .. versionadded:: 0.14.0 outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method, "zcore" to use the modified Z-score method or "yquantile" to use the y-axis detector over quantiles. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". cat_unknown : float, str or None (default=None) The assigned value to the unobserved categories in training but occurring during transform. If None, the assigned value to an unknown category follows this rule: - if transform metric == 'mean' then mean target - if transform metric == 'indices' then -1 - if transform metric == 'bins' then 'unknown' .. versionadded:: 0.17.1 user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The pre-binning refinement phase guarantee that no prebin has zero number of records by merging those pure prebins. Pure bins produce infinity mean. """ def __init__(self, name="", dtype="numerical", prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_mean_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", gamma=0, outlier_detector=None, outlier_params=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = "cp" self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_mean_diff = min_mean_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.gamma = gamma self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.cat_cutoff = cat_cutoff self.cat_unknown = cat_unknown self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._categories = None self._cat_others = None self._n_records = None self._sums = None self._stds = None self._min_target = None self._max_target = None self._n_zeros = None self._n_records_cat_others = None self._n_records_missing = None self._n_records_special = None self._sum_cat_others = None self._sum_special = None self._sum_missing = None self._std_cat_others = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._min_target_others = None self._max_target_missing = None self._max_target_special = None self._max_target_others = None self._n_zeros_missing = None self._n_zeros_special = None self._n_zeros_others = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, sample_weight=None, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning Fitted optimal binning. """ return self._fit(x, y, sample_weight, check_input) def fit_transform(self, x, y, sample_weight=None, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, sample_weight, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero mean. """ self._check_is_fitted() return transform_continuous_target(self._splits_optimal, self.dtype, x, self._n_records, self._sums, self.special_codes, self._categories, self._cat_others, self.cat_unknown, metric, metric_special, metric_missing, self.user_splits, show_digits, check_input) def _fit(self, x, y, sample_weight, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, sw_clean, sw_missing, sw_special, sw_others] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params, None, None, None, sample_weight) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: {}" .format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories others: {}" .format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_records = np.array([]) sums = np.array([]) stds = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] else: [categories, user_splits, x_clean, y_clean, y_others, cat_others, sw_clean, sw_others, sorted_idx ] = preprocessing_user_splits_categorical( self.user_splits, x_clean, y_clean, sw_clean) if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others) else: [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, y_others, None, sw_clean, sw_missing, sw_special, sw_others) self._n_prebins = len(n_records) self._categories = categories self._cat_others = cat_others self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_records, sums, ssums, stds) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): n_records = np.sum(sw_clean) sw_y_clean = sw_clean * y_clean sums = np.sum(sw_y_clean) ssums = np.sum(sw_y_clean ** 2) n_zeros = np.count_nonzero(sw_y_clean == 0) stds = np.std(sw_y_clean) min_t = np.min(sw_y_clean) max_t = np.max(sw_y_clean) [self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros] = continuous_bin_info( self._solution, n_records, sums, ssums, stds, min_t, max_t, n_zeros, self._n_records_missing, self._sum_missing, self._std_missing, self._min_target_missing, self._max_target_missing, self._n_zeros_missing, self._n_records_special, self._sum_special, self._std_special, self._min_target_special, self._max_target_special, self._n_zeros_special, self._n_records_cat_others, self._sum_cat_others, self._std_cat_others, self._min_target_others, self._max_target_others, self._n_zeros_others, self._cat_others) if self.dtype == "numerical": min_x = x_clean.min() max_x = x_clean.max() else: min_x = None max_x = None self._binning_table = ContinuousBinningTable( self.name, self.dtype, self.special_codes, self._splits_optimal, self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros, min_x, max_x, self._categories, self._cat_others, self.user_splits) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self def _fit_optimizer(self, splits, n_records, sums, ssums, stds): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if len(n_records) <= 1: self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits)).astype(bool) if self.verbose: logger.warning("Optimizer: {} bins after pre-binning." .format(len(n_records))) logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Monotonic trend trend_change = None if self.dtype == "numerical": auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = auto_monotonic_continuous( n_records, sums, self.monotonic_trend) if self.monotonic_trend == "auto_heuristic": if monotonic in ("peak", "valley"): if monotonic == "peak": monotonic = "peak_heuristic" else: monotonic = "valley_heuristic" mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(monotonic)) else: monotonic = self.monotonic_trend if monotonic in ("peak_heuristic", "valley_heuristic"): mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) else: monotonic = self.monotonic_trend if monotonic is not None: monotonic = "ascending" if self.verbose: if monotonic is None: logger.info( "Optimizer: monotonic trend not set.") else: logger.info("Optimizer: monotonic trend set to {}." .format(monotonic)) optimizer = ContinuousBinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_mean_diff, self.max_pvalue, self.max_pvalue_policy, self.gamma, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_records, sums, ssums, trend_change) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status if self.dtype == "categorical" and self.user_splits is not None: self._splits_optimal = splits[solution] else: self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others): # Compute n_records, sum and std for special, missing and others [self._n_records_special, self._sum_special, self._n_zeros_special, self._std_special, self._min_target_special, self._max_target_special] = target_info_special_continuous( self.special_codes, x_special, y_special, sw_special) if len(sw_missing): y_missing = y_missing * sw_missing self._n_records_missing = np.sum(sw_missing) self._sum_missing = np.sum(y_missing) self._n_zeros_missing = np.count_nonzero(y_missing == 0) if len(y_missing): self._std_missing = np.std(y_missing) self._min_target_missing = np.min(y_missing) self._max_target_missing = np.max(y_missing) if len(y_others): if len(sw_others): print(y_others.dtype, sw_others.dtype) y_others = y_others * sw_others self._n_records_cat_others = np.sum(sw_others) self._sum_cat_others = np.sum(y_others) self._std_cat_others = np.std(y_others) self._min_target_others = np.min(y_others) self._max_target_others = np.max(y_others) self._n_zeros_others = np.count_nonzero(y_others == 0) n_splits = len(splits_prebinning) if not n_splits: return (splits_prebinning, np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), np.array([])) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) = self._compute_prebins(splits_prebinning, x, y, sw_clean) return (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) def _compute_prebins(self, splits_prebinning, x, y, sw): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.dtype == "categorical" and self.user_splits is not None: indices = np.digitize(x, splits_prebinning, right=True) n_bins = n_splits else: indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_records = np.empty(n_bins, dtype=np.int64) sums = np.empty(n_bins) ssums = np.empty(n_bins) stds = np.zeros(n_bins) n_zeros = np.empty(n_bins, dtype=np.int64) min_t = np.full(n_bins, -np.inf) max_t = np.full(n_bins, np.inf) # Compute prebin information for i in range(n_bins): mask = (indices == i) n_records[i] = np.sum(sw[mask]) ymask = sw[mask] * y[mask] sums[i] = np.sum(ymask) ssums[i] = np.sum(ymask ** 2) n_zeros[i] = np.count_nonzero(ymask == 0) if len(ymask): stds[i] = np.std(ymask) min_t[i] = np.min(ymask) max_t[i] = np.max(ymask) mask_remove = (n_records == 0) if np.any(mask_remove): self._n_refinements += 1 if (self.dtype == "categorical" and self.user_splits is not None): mask_splits = mask_remove else: mask_splits = np.concatenate([ mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError( "Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) = self._compute_prebins(splits, x, y, sw) return (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) @property def binning_table(self): """Return an instantiated binning table. Please refer to :ref:`Binning table: continuous target`. Returns ------- binning_table : ContinuousBinningTable. """ self._check_is_fitted() return self._binning_table def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file.') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['dtype'] = table.dtype opt_bin_dict['special_codes'] = table.special_codes if table.dtype == 'numerical': opt_bin_dict['splits'] = table.splits.tolist() elif table.dtype == 'categorical': opt_bin_dict['splits'] = [split.tolist() for split in table.splits] opt_bin_dict['n_records'] = table.n_records.tolist() opt_bin_dict['sums'] = table.sums.tolist() opt_bin_dict['stds'] = table.stds.tolist() opt_bin_dict['min_target'] = table.min_target.tolist() opt_bin_dict['max_target'] = table.max_target.tolist() opt_bin_dict['n_zeros'] = table.n_zeros.tolist() opt_bin_dict['min_x'] = table.min_x opt_bin_dict['max_x'] = table.max_x opt_bin_dict['categories'] = table.categories opt_bin_dict['cat_others'] = table.cat_others opt_bin_dict['user_splits'] = table.user_splits with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file) def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ if path is None: raise ValueError('Specify the path for the json file.') self._is_fitted = True with open(path, "r") as read_file: cont_table_attr = json.load(read_file) for key in cont_table_attr.keys(): if isinstance(cont_table_attr[key], list): cont_table_attr[key] = np.array(cont_table_attr[key]) self._binning_table = ContinuousBinningTable(**cont_table_attr)
(name='', dtype='numerical', prebinning_method='cart', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', min_mean_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', gamma=0, outlier_detector=None, outlier_params=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs)
4,586
optbinning.binning.continuous_binning
__init__
null
def __init__(self, name="", dtype="numerical", prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_mean_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", gamma=0, outlier_detector=None, outlier_params=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = "cp" self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_mean_diff = min_mean_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.gamma = gamma self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.cat_cutoff = cat_cutoff self.cat_unknown = cat_unknown self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._categories = None self._cat_others = None self._n_records = None self._sums = None self._stds = None self._min_target = None self._max_target = None self._n_zeros = None self._n_records_cat_others = None self._n_records_missing = None self._n_records_special = None self._sum_cat_others = None self._sum_special = None self._sum_missing = None self._std_cat_others = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._min_target_others = None self._max_target_missing = None self._max_target_special = None self._max_target_others = None self._n_zeros_missing = None self._n_zeros_special = None self._n_zeros_others = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False
(self, name='', dtype='numerical', prebinning_method='cart', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', min_mean_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', gamma=0, outlier_detector=None, outlier_params=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, time_limit=100, verbose=False, **prebinning_kwargs)
4,593
optbinning.binning.continuous_binning
_compute_prebins
null
def _compute_prebins(self, splits_prebinning, x, y, sw): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.dtype == "categorical" and self.user_splits is not None: indices = np.digitize(x, splits_prebinning, right=True) n_bins = n_splits else: indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_records = np.empty(n_bins, dtype=np.int64) sums = np.empty(n_bins) ssums = np.empty(n_bins) stds = np.zeros(n_bins) n_zeros = np.empty(n_bins, dtype=np.int64) min_t = np.full(n_bins, -np.inf) max_t = np.full(n_bins, np.inf) # Compute prebin information for i in range(n_bins): mask = (indices == i) n_records[i] = np.sum(sw[mask]) ymask = sw[mask] * y[mask] sums[i] = np.sum(ymask) ssums[i] = np.sum(ymask ** 2) n_zeros[i] = np.count_nonzero(ymask == 0) if len(ymask): stds[i] = np.std(ymask) min_t[i] = np.min(ymask) max_t[i] = np.max(ymask) mask_remove = (n_records == 0) if np.any(mask_remove): self._n_refinements += 1 if (self.dtype == "categorical" and self.user_splits is not None): mask_splits = mask_remove else: mask_splits = np.concatenate([ mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError( "Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) = self._compute_prebins(splits, x, y, sw) return (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros)
(self, splits_prebinning, x, y, sw)
4,594
optbinning.binning.continuous_binning
_fit
null
def _fit(self, x, y, sample_weight, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, sw_clean, sw_missing, sw_special, sw_others] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params, None, None, None, sample_weight) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: {}" .format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories others: {}" .format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_records = np.array([]) sums = np.array([]) stds = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] else: [categories, user_splits, x_clean, y_clean, y_others, cat_others, sw_clean, sw_others, sorted_idx ] = preprocessing_user_splits_categorical( self.user_splits, x_clean, y_clean, sw_clean) if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others) else: [splits, n_records, sums, ssums, stds, min_t, max_t, n_zeros] = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, y_others, None, sw_clean, sw_missing, sw_special, sw_others) self._n_prebins = len(n_records) self._categories = categories self._cat_others = cat_others self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_records, sums, ssums, stds) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): n_records = np.sum(sw_clean) sw_y_clean = sw_clean * y_clean sums = np.sum(sw_y_clean) ssums = np.sum(sw_y_clean ** 2) n_zeros = np.count_nonzero(sw_y_clean == 0) stds = np.std(sw_y_clean) min_t = np.min(sw_y_clean) max_t = np.max(sw_y_clean) [self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros] = continuous_bin_info( self._solution, n_records, sums, ssums, stds, min_t, max_t, n_zeros, self._n_records_missing, self._sum_missing, self._std_missing, self._min_target_missing, self._max_target_missing, self._n_zeros_missing, self._n_records_special, self._sum_special, self._std_special, self._min_target_special, self._max_target_special, self._n_zeros_special, self._n_records_cat_others, self._sum_cat_others, self._std_cat_others, self._min_target_others, self._max_target_others, self._n_zeros_others, self._cat_others) if self.dtype == "numerical": min_x = x_clean.min() max_x = x_clean.max() else: min_x = None max_x = None self._binning_table = ContinuousBinningTable( self.name, self.dtype, self.special_codes, self._splits_optimal, self._n_records, self._sums, self._stds, self._min_target, self._max_target, self._n_zeros, min_x, max_x, self._categories, self._cat_others, self.user_splits) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(self, x, y, sample_weight, check_input)
4,595
optbinning.binning.continuous_binning
_fit_optimizer
null
def _fit_optimizer(self, splits, n_records, sums, ssums, stds): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if len(n_records) <= 1: self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits)).astype(bool) if self.verbose: logger.warning("Optimizer: {} bins after pre-binning." .format(len(n_records))) logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Monotonic trend trend_change = None if self.dtype == "numerical": auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = auto_monotonic_continuous( n_records, sums, self.monotonic_trend) if self.monotonic_trend == "auto_heuristic": if monotonic in ("peak", "valley"): if monotonic == "peak": monotonic = "peak_heuristic" else: monotonic = "valley_heuristic" mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(monotonic)) else: monotonic = self.monotonic_trend if monotonic in ("peak_heuristic", "valley_heuristic"): mean = sums / n_records trend_change = peak_valley_trend_change_heuristic( mean, monotonic) else: monotonic = self.monotonic_trend if monotonic is not None: monotonic = "ascending" if self.verbose: if monotonic is None: logger.info( "Optimizer: monotonic trend not set.") else: logger.info("Optimizer: monotonic trend set to {}." .format(monotonic)) optimizer = ContinuousBinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_mean_diff, self.max_pvalue, self.max_pvalue_policy, self.gamma, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_records, sums, ssums, trend_change) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status if self.dtype == "categorical" and self.user_splits is not None: self._splits_optimal = splits[solution] else: self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver))
(self, splits, n_records, sums, ssums, stds)
4,596
optbinning.binning.binning
_fit_prebinning
null
def _fit_prebinning(self, x, y, y_missing, x_special, y_special, y_others, class_weight=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None): min_bin_size = int(np.ceil(self.min_prebin_size * self._n_samples)) prebinning = PreBinning(method=self.prebinning_method, n_bins=self.max_n_prebins, min_bin_size=min_bin_size, problem_type=self._problem_type, class_weight=class_weight, **self.prebinning_kwargs ).fit(x, y, sw_clean) return self._prebinning_refinement(prebinning.splits, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others)
(self, x, y, y_missing, x_special, y_special, y_others, class_weight=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None)
4,601
optbinning.binning.continuous_binning
_prebinning_refinement
null
def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others): # Compute n_records, sum and std for special, missing and others [self._n_records_special, self._sum_special, self._n_zeros_special, self._std_special, self._min_target_special, self._max_target_special] = target_info_special_continuous( self.special_codes, x_special, y_special, sw_special) if len(sw_missing): y_missing = y_missing * sw_missing self._n_records_missing = np.sum(sw_missing) self._sum_missing = np.sum(y_missing) self._n_zeros_missing = np.count_nonzero(y_missing == 0) if len(y_missing): self._std_missing = np.std(y_missing) self._min_target_missing = np.min(y_missing) self._max_target_missing = np.max(y_missing) if len(y_others): if len(sw_others): print(y_others.dtype, sw_others.dtype) y_others = y_others * sw_others self._n_records_cat_others = np.sum(sw_others) self._sum_cat_others = np.sum(y_others) self._std_cat_others = np.std(y_others) self._min_target_others = np.min(y_others) self._max_target_others = np.max(y_others) self._n_zeros_others = np.count_nonzero(y_others == 0) n_splits = len(splits_prebinning) if not n_splits: return (splits_prebinning, np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), np.array([])) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros) = self._compute_prebins(splits_prebinning, x, y, sw_clean) return (splits_prebinning, n_records, sums, ssums, stds, min_t, max_t, n_zeros)
(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others)
4,606
optbinning.binning.continuous_binning
fit
Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning Fitted optimal binning.
def fit(self, x, y, sample_weight=None, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning Fitted optimal binning. """ return self._fit(x, y, sample_weight, check_input)
(self, x, y, sample_weight=None, check_input=False)
4,607
optbinning.binning.continuous_binning
fit_transform
Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array.
def fit_transform(self, x, y, sample_weight=None, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, sample_weight, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input)
(self, x, y, sample_weight=None, metric='mean', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,610
optbinning.binning.binning
information
Print overview information about the options settings, problem statistics, and the solution of the computation. Parameters ---------- print_level : int (default=1) Level of details.
def information(self, print_level=1): """Print overview information about the options settings, problem statistics, and the solution of the computation. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_fitted() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) binning_type = self.__class__.__name__.lower() if self._optimizer is not None: solver = self._optimizer time_solver = self._time_solver else: solver = None time_solver = 0 dict_user_options = self.get_params() print_binning_information(binning_type, print_level, self.name, self._status, self.solver, solver, self._time_total, self._time_preprocessing, self._time_prebinning, time_solver, self._time_optimizer, self._time_postprocessing, self._n_prebins, self._n_refinements, dict_user_options)
(self, print_level=1)
4,611
optbinning.binning.continuous_binning
read_json
Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file.
def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ if path is None: raise ValueError('Specify the path for the json file.') self._is_fitted = True with open(path, "r") as read_file: cont_table_attr = json.load(read_file) for key in cont_table_attr.keys(): if isinstance(cont_table_attr[key], list): cont_table_attr[key] = np.array(cont_table_attr[key]) self._binning_table = ContinuousBinningTable(**cont_table_attr)
(self, path)
4,612
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``sample_weight`` parameter in ``fit``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.continuous_binning.ContinuousOptimalBinning, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', sample_weight: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.continuous_binning.ContinuousOptimalBinning
4,614
sklearn.utils._metadata_requests
set_transform_request
Request metadata passed to the ``transform`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``transform`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``transform``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``transform``. metric : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric`` parameter in ``transform``. metric_missing : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_missing`` parameter in ``transform``. metric_special : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_special`` parameter in ``transform``. show_digits : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``show_digits`` parameter in ``transform``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``transform``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.continuous_binning.ContinuousOptimalBinning, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', metric: Union[bool, NoneType, str] = '$UNCHANGED$', metric_missing: Union[bool, NoneType, str] = '$UNCHANGED$', metric_special: Union[bool, NoneType, str] = '$UNCHANGED$', show_digits: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.continuous_binning.ContinuousOptimalBinning
4,615
optbinning.binning.continuous_binning
to_json
Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved.
def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file.') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['dtype'] = table.dtype opt_bin_dict['special_codes'] = table.special_codes if table.dtype == 'numerical': opt_bin_dict['splits'] = table.splits.tolist() elif table.dtype == 'categorical': opt_bin_dict['splits'] = [split.tolist() for split in table.splits] opt_bin_dict['n_records'] = table.n_records.tolist() opt_bin_dict['sums'] = table.sums.tolist() opt_bin_dict['stds'] = table.stds.tolist() opt_bin_dict['min_target'] = table.min_target.tolist() opt_bin_dict['max_target'] = table.max_target.tolist() opt_bin_dict['n_zeros'] = table.n_zeros.tolist() opt_bin_dict['min_x'] = table.min_x opt_bin_dict['max_x'] = table.max_x opt_bin_dict['categories'] = table.categories opt_bin_dict['cat_others'] = table.cat_others opt_bin_dict['user_splits'] = table.user_splits with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file)
(self, path)
4,616
optbinning.binning.continuous_binning
transform
Transform given data to mean using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero mean.
def transform(self, x, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="mean"): The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero mean. """ self._check_is_fitted() return transform_continuous_target(self._splits_optimal, self.dtype, x, self._n_records, self._sums, self.special_codes, self._categories, self._cat_others, self.cat_unknown, metric, metric_special, metric_missing, self.user_splits, show_digits, check_input)
(self, x, metric='mean', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,617
optbinning.binning.multidimensional.continuous_binning_2d
ContinuousOptimalBinning2D
Optimal binning of two numerical variables with respect to a continuous target. Parameters ---------- name_x : str, optional (default="") The name of variable x. name_y : str, optional (default="") The name of variable y. dtype_x : str, optional (default="numerical") The data type of variable x. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. dtype_y : str, optional (default="numerical") The data type of variable y. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "mdlp" for Minimum Description Length Principle (MDLP), "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. strategy: str, optional (default="grid") The strategy used to create the initial prebinning 2D after computing prebinning splits on the x and y axis. The strategy "grid" creates a prebinning 2D with n_prebins_x times n_prebins_y elements. The strategy "cart" (experimental) reduces the number of elements by pruning. The latter is recommended when the number of prebins is large. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver, and "cp" to choose a constrained programming solver. divergence : str, optional (default="iv") The divergence measure in the objective function to be maximized. Supported divergences are "iv" (Information Value or Jeffrey's divergence), "js" (Jensen-Shannon), "hellinger" (Hellinger divergence) and "triangular" (triangular discrimination). max_n_prebins_x : int (default=5) The maximum number of bins on variable x after pre-binning (prebins). max_n_prebins_y : int (default=5) The maximum number of bins on variable y after pre-binning (prebins). min_prebin_size_x : float (default=0.05) The fraction of mininum number of records for each prebin on variable x. min_prebin_size_y : float (default=0.05) The fraction of mininum number of records for each prebin on variable y. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend_x : str or None, optional (default=None) The **mean** monotonic trend on the x axis. Supported trends are “ascending”, and "descending". If None, then the monotonic constraint is disabled. monotonic_trend_y : str or None, optional (default=None) The **mean** monotonic trend on the y axis. Supported trends are “ascending”, and "descending". If None, then the monotonic constraint is disabled. min_mean_diff_x : float, optional (default=0) The minimum mean difference between consecutives bins on the x axis. min_mean_diff_y : float, optional (default=0) The minimum mean difference between consecutives bins on the y axis. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. special_codes_x : array-like or None, optional (default=None) List of special codes for the variable x. Use special codes to specify the data values that must be treated separately. special_codes_y : array-like or None, optional (default=None) List of special codes for the variable y. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. n_jobs : int or None, optional (default=None) Number of cores to run in parallel while binning variables. ``None`` means 1 core. ``-1`` means using all processors. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output.
class ContinuousOptimalBinning2D(OptimalBinning2D): """Optimal binning of two numerical variables with respect to a continuous target. Parameters ---------- name_x : str, optional (default="") The name of variable x. name_y : str, optional (default="") The name of variable y. dtype_x : str, optional (default="numerical") The data type of variable x. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. dtype_y : str, optional (default="numerical") The data type of variable y. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "mdlp" for Minimum Description Length Principle (MDLP), "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeRegressor <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeRegressor.html>`_. strategy: str, optional (default="grid") The strategy used to create the initial prebinning 2D after computing prebinning splits on the x and y axis. The strategy "grid" creates a prebinning 2D with n_prebins_x times n_prebins_y elements. The strategy "cart" (experimental) reduces the number of elements by pruning. The latter is recommended when the number of prebins is large. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver, and "cp" to choose a constrained programming solver. divergence : str, optional (default="iv") The divergence measure in the objective function to be maximized. Supported divergences are "iv" (Information Value or Jeffrey's divergence), "js" (Jensen-Shannon), "hellinger" (Hellinger divergence) and "triangular" (triangular discrimination). max_n_prebins_x : int (default=5) The maximum number of bins on variable x after pre-binning (prebins). max_n_prebins_y : int (default=5) The maximum number of bins on variable y after pre-binning (prebins). min_prebin_size_x : float (default=0.05) The fraction of mininum number of records for each prebin on variable x. min_prebin_size_y : float (default=0.05) The fraction of mininum number of records for each prebin on variable y. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend_x : str or None, optional (default=None) The **mean** monotonic trend on the x axis. Supported trends are “ascending”, and "descending". If None, then the monotonic constraint is disabled. monotonic_trend_y : str or None, optional (default=None) The **mean** monotonic trend on the y axis. Supported trends are “ascending”, and "descending". If None, then the monotonic constraint is disabled. min_mean_diff_x : float, optional (default=0) The minimum mean difference between consecutives bins on the x axis. min_mean_diff_y : float, optional (default=0) The minimum mean difference between consecutives bins on the y axis. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. special_codes_x : array-like or None, optional (default=None) List of special codes for the variable x. Use special codes to specify the data values that must be treated separately. special_codes_y : array-like or None, optional (default=None) List of special codes for the variable y. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. n_jobs : int or None, optional (default=None) Number of cores to run in parallel while binning variables. ``None`` means 1 core. ``-1`` means using all processors. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. """ def __init__(self, name_x="", name_y="", dtype_x="numerical", dtype_y="numerical", prebinning_method="cart", strategy="grid", solver="cp", max_n_prebins_x=5, max_n_prebins_y=5, min_prebin_size_x=0.05, min_prebin_size_y=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend_x=None, monotonic_trend_y=None, min_mean_diff_x=0, min_mean_diff_y=0, gamma=0, special_codes_x=None, special_codes_y=None, split_digits=None, n_jobs=1, time_limit=100, verbose=False): self.name_x = name_x self.name_y = name_y self.dtype_x = dtype_x self.dtype_y = dtype_y self.prebinning_method = prebinning_method self.strategy = strategy self.solver = solver self.max_n_prebins_x = max_n_prebins_x self.max_n_prebins_y = max_n_prebins_y self.min_prebin_size_x = min_prebin_size_x self.min_prebin_size_y = min_prebin_size_y self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend_x = monotonic_trend_x self.monotonic_trend_y = monotonic_trend_y self.min_mean_diff_x = min_mean_diff_x self.min_mean_diff_y = min_mean_diff_y self.gamma = gamma self.special_codes_x = special_codes_x self.special_codes_y = special_codes_y self.split_digits = split_digits self.n_jobs = n_jobs self.time_limit = time_limit self.verbose = verbose # auxiliary self._categories_x = None self._categories_y = None self._n_records_special = None self._n_records_missing = None self._sum_special = None self._sum_missing = None self._std_special = None self._std_missing = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._solution = None self._splits_x_optimal = None self._splits_y_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, z, check_input=False): """Fit the optimal binning 2D according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning2D Fitted optimal binning 2D. """ return self._fit(x, y, z, check_input) def fit_transform(self, x, y, z, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning 2D according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, z, check_input).transform( x, y, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, y, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning 2D. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_continuous_target( self.dtype_x, self.dtype_y, self._splits_x_optimal, self._splits_y_optimal, x, y, self._n_records, self._sums, self.special_codes_x, self.special_codes_y, self._categories_x, self._categories_y, metric, metric_special, metric_missing, show_digits, check_input) def _fit(self, x, y, z, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special, categories_x, categories_y] = split_data_2d( self.dtype_x, self.dtype_y, x, y, z, self.special_codes_x, self.special_codes_y, check_input) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.dtype_x == "categorical": logger.info("Pre-processing: number of categories in x: {}" .format(len(categories_x))) if self.dtype_y == "categorical": logger.info("Pre-processing: number of categories in y: {}" .format(len(categories_y))) if self.verbose: logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() splits_x = self._fit_prebinning(self.dtype_x, x_clean, z_clean, self.max_n_prebins_x, self.min_prebin_size_x) splits_y = self._fit_prebinning(self.dtype_y, y_clean, z_clean, self.max_n_prebins_y, self.min_prebin_size_y) R, S, SS = self._prebinning_matrices( splits_x, splits_y, x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special) if self.strategy == "cart": if self.verbose: logger.info("Prebinning: applying strategy cart...") n_splits_x = len(splits_x) n_splits_y = len(splits_y) clf_nodes = n_splits_x * n_splits_y indices_x = np.digitize(x_clean, splits_x, right=False) n_bins_x = n_splits_x + 1 indices_y = np.digitize(y_clean, splits_y, right=False) n_bins_y = n_splits_y + 1 xt = np.empty(len(x_clean), dtype=int) yt = np.empty(len(y_clean), dtype=int) for i in range(n_bins_x): xt[(indices_x == i)] = i for i in range(n_bins_y): yt[(indices_y == i)] = i xyt = np.c_[xt, yt] min_prebin_size = min(self.min_prebin_size_x, self.min_prebin_size_y) * 0.25 clf = DecisionTreeRegressor(min_samples_leaf=min_prebin_size, max_leaf_nodes=clf_nodes) clf.fit(xyt, z_clean) self._clf = clf self._categories_x = categories_x self._categories_y = categories_y self._time_prebinning = time.perf_counter() - time_prebinning self._n_prebins = R.size if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization rows, n_records, sums, stds = self._fit_optimizer( splits_x, splits_y, R, S, SS) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() # Refinements m, n = R.shape self._n_refinements = (m * n * (m + 1) * (n + 1)) // 4 - len(rows) # solution matrices D = np.empty(m * n, dtype=float) P = np.empty(m * n, dtype=int) selected_rows = np.array(rows, dtype=object)[self._solution] self._selected_rows = selected_rows self._m, self._n = m, n n_selected_rows = selected_rows.shape[0] + 2 opt_sums = np.empty(n_selected_rows, dtype=float) opt_n_records = np.empty(n_selected_rows, dtype=int) opt_stds = np.zeros(n_selected_rows, dtype=float) for i, r in enumerate(selected_rows): _n_records = n_records[self._solution][i] _sums = sums[self._solution][i] _mean = _sums / _n_records _stds = stds[self._solution][i] P[r] = i D[r] = _mean opt_sums[i] = _sums opt_n_records[i] = _n_records opt_stds[i] = _stds opt_n_records[-2] = self._n_records_special opt_sums[-2] = self._sum_special opt_stds[-2] = self._std_special opt_n_records[-1] = self._n_records_missing opt_sums[-1] = self._sum_missing opt_stds[-1] = self._std_missing self._sums = opt_sums self._n_records = opt_n_records D = D.reshape((m, n)) P = P.reshape((m, n)) # optimal bins splits_x_optimal, splits_y_optimal = self._splits_xy_optimal( selected_rows, splits_x, splits_y, P) self._splits_x_optimal = splits_x_optimal self._splits_y_optimal = splits_y_optimal # instatiate binning table self._binning_table = ContinuousBinningTable2D( self.name_x, self.name_y, self.dtype_x, self.dtype_y, splits_x_optimal, splits_y_optimal, m, n, opt_n_records, opt_sums, opt_stds, D, P, self._categories_x, self._categories_y) self.name = "-".join((self.name_x, self.name_y)) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self def _prebinning_matrices(self, splits_x, splits_y, x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special): self._n_records_missing = len(z_missing) self._n_records_special = len(z_special) self._sum_missing = np.sum(z_missing) self._sum_special = np.sum(z_special) if len(z_missing): self._std_missing = np.std(z_missing) else: self._std_missing = 0 if len(z_special): self._std_special = np.std(z_special) else: self._std_special = 0 n_splits_x = len(splits_x) n_splits_y = len(splits_y) indices_x = np.digitize(x_clean, splits_x, right=False) n_bins_x = n_splits_x + 1 indices_y = np.digitize(y_clean, splits_y, right=False) n_bins_y = n_splits_y + 1 R = np.empty((n_bins_y, n_bins_x), dtype=float) S = np.empty((n_bins_y, n_bins_x), dtype=float) SS = np.empty((n_bins_y, n_bins_x), dtype=float) for i in range(n_bins_y): mask_y = (indices_y == i) for j in range(n_bins_x): mask_x = (indices_x == j) mask = mask_x & mask_y zmask = z_clean[mask] R[i, j] = np.count_nonzero(mask) S[i, j] = np.sum(zmask) SS[i, j] = np.sum(zmask ** 2) return R, S, SS def _fit_optimizer(self, splits_x, splits_y, R, S, SS): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() # Min/max number of bins (bin size) if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Number of threads n_jobs = effective_n_jobs(self.n_jobs) if self.verbose: logger.info("Optimizer: {} jobs.".format(n_jobs)) if self.monotonic_trend_x is None: logger.info( "Optimizer: monotonic trend x not set.") else: logger.info("Optimizer: monotonic trend x set to {}." .format(self.monotonic_trend_x)) if self.monotonic_trend_y is None: logger.info( "Optimizer: monotonic trend y not set.") else: logger.info("Optimizer: monotonic trend y set to {}." .format(self.monotonic_trend_x)) if self.solver == "cp": scale = int(1e6) optimizer = Binning2DCP( self.monotonic_trend_x, self.monotonic_trend_y, self.min_n_bins, self.max_n_bins, self.min_mean_diff_x, self.min_mean_diff_y, self.gamma, n_jobs, self.time_limit) elif self.solver == "mip": scale = None optimizer = Binning2DMIP( self.monotonic_trend_x, self.monotonic_trend_y, self.min_n_bins, self.max_n_bins, self.min_mean_diff_x, self.min_mean_diff_y, self.gamma, n_jobs, self.time_limit) if self.verbose: logger.info("Optimizer: model data...") time_model_data = time.perf_counter() if self.strategy == "cart": [n_grid, n_rectangles, rows, cols, c, d_connected_x, d_connected_y, mean, n_records, sums, stds] = continuous_model_data_cart( self._clf, R, S, SS, self.monotonic_trend_x, self.monotonic_trend_y, scale, min_bin_size, max_bin_size) else: [n_grid, n_rectangles, rows, cols, c, d_connected_x, d_connected_y, mean, n_records, sums, stds] = continuous_model_data( R, S, SS, self.monotonic_trend_x, self.monotonic_trend_y, scale, min_bin_size, max_bin_size) self._time_model_data = time.perf_counter() - time_model_data if self.verbose: logger.info("Optimizer: model data terminated. Time {:.4f}s" .format(self._time_model_data)) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_grid, n_rectangles, cols, c, d_connected_x, d_connected_y, mean, n_records) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) self._cols = cols self._rows = rows self._c = c return rows, n_records, sums, stds
(name_x='', name_y='', dtype_x='numerical', dtype_y='numerical', prebinning_method='cart', strategy='grid', solver='cp', max_n_prebins_x=5, max_n_prebins_y=5, min_prebin_size_x=0.05, min_prebin_size_y=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend_x=None, monotonic_trend_y=None, min_mean_diff_x=0, min_mean_diff_y=0, gamma=0, special_codes_x=None, special_codes_y=None, split_digits=None, n_jobs=1, time_limit=100, verbose=False)
4,619
optbinning.binning.multidimensional.continuous_binning_2d
__init__
null
def __init__(self, name_x="", name_y="", dtype_x="numerical", dtype_y="numerical", prebinning_method="cart", strategy="grid", solver="cp", max_n_prebins_x=5, max_n_prebins_y=5, min_prebin_size_x=0.05, min_prebin_size_y=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend_x=None, monotonic_trend_y=None, min_mean_diff_x=0, min_mean_diff_y=0, gamma=0, special_codes_x=None, special_codes_y=None, split_digits=None, n_jobs=1, time_limit=100, verbose=False): self.name_x = name_x self.name_y = name_y self.dtype_x = dtype_x self.dtype_y = dtype_y self.prebinning_method = prebinning_method self.strategy = strategy self.solver = solver self.max_n_prebins_x = max_n_prebins_x self.max_n_prebins_y = max_n_prebins_y self.min_prebin_size_x = min_prebin_size_x self.min_prebin_size_y = min_prebin_size_y self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend_x = monotonic_trend_x self.monotonic_trend_y = monotonic_trend_y self.min_mean_diff_x = min_mean_diff_x self.min_mean_diff_y = min_mean_diff_y self.gamma = gamma self.special_codes_x = special_codes_x self.special_codes_y = special_codes_y self.split_digits = split_digits self.n_jobs = n_jobs self.time_limit = time_limit self.verbose = verbose # auxiliary self._categories_x = None self._categories_y = None self._n_records_special = None self._n_records_missing = None self._sum_special = None self._sum_missing = None self._std_special = None self._std_missing = None self._problem_type = "regression" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._solution = None self._splits_x_optimal = None self._splits_y_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False
(self, name_x='', name_y='', dtype_x='numerical', dtype_y='numerical', prebinning_method='cart', strategy='grid', solver='cp', max_n_prebins_x=5, max_n_prebins_y=5, min_prebin_size_x=0.05, min_prebin_size_y=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend_x=None, monotonic_trend_y=None, min_mean_diff_x=0, min_mean_diff_y=0, gamma=0, special_codes_x=None, special_codes_y=None, split_digits=None, n_jobs=1, time_limit=100, verbose=False)
4,626
optbinning.binning.binning
_compute_prebins
null
def _compute_prebins(self, splits_prebinning, x, y0, y1, sw): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.dtype == "categorical" and self.user_splits is not None: indices = np.digitize(x, splits_prebinning, right=True) n_bins = n_splits else: indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_nonevent = np.empty(n_bins, dtype=np.int64) n_event = np.empty(n_bins, dtype=np.int64) for i in range(n_bins): mask = (indices == i) n_nonevent[i] = np.sum(sw[y0 & mask]) n_event[i] = np.sum(sw[y1 & mask]) mask_remove = (n_nonevent == 0) | (n_event == 0) if np.any(mask_remove): if self.divergence in ("hellinger", "triangular"): self._flag_min_n_event_nonevent = True else: self._n_refinements += 1 if (self.dtype == "categorical" and self.user_splits is not None): mask_splits = mask_remove else: mask_splits = np.concatenate([ mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError( "Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) [splits_prebinning, n_nonevent, n_event] = self._compute_prebins(splits, x, y0, y1, sw) return splits_prebinning, n_nonevent, n_event
(self, splits_prebinning, x, y0, y1, sw)
4,627
optbinning.binning.multidimensional.continuous_binning_2d
_fit
null
def _fit(self, x, y, z, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special, categories_x, categories_y] = split_data_2d( self.dtype_x, self.dtype_y, x, y, z, self.special_codes_x, self.special_codes_y, check_input) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.dtype_x == "categorical": logger.info("Pre-processing: number of categories in x: {}" .format(len(categories_x))) if self.dtype_y == "categorical": logger.info("Pre-processing: number of categories in y: {}" .format(len(categories_y))) if self.verbose: logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() splits_x = self._fit_prebinning(self.dtype_x, x_clean, z_clean, self.max_n_prebins_x, self.min_prebin_size_x) splits_y = self._fit_prebinning(self.dtype_y, y_clean, z_clean, self.max_n_prebins_y, self.min_prebin_size_y) R, S, SS = self._prebinning_matrices( splits_x, splits_y, x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special) if self.strategy == "cart": if self.verbose: logger.info("Prebinning: applying strategy cart...") n_splits_x = len(splits_x) n_splits_y = len(splits_y) clf_nodes = n_splits_x * n_splits_y indices_x = np.digitize(x_clean, splits_x, right=False) n_bins_x = n_splits_x + 1 indices_y = np.digitize(y_clean, splits_y, right=False) n_bins_y = n_splits_y + 1 xt = np.empty(len(x_clean), dtype=int) yt = np.empty(len(y_clean), dtype=int) for i in range(n_bins_x): xt[(indices_x == i)] = i for i in range(n_bins_y): yt[(indices_y == i)] = i xyt = np.c_[xt, yt] min_prebin_size = min(self.min_prebin_size_x, self.min_prebin_size_y) * 0.25 clf = DecisionTreeRegressor(min_samples_leaf=min_prebin_size, max_leaf_nodes=clf_nodes) clf.fit(xyt, z_clean) self._clf = clf self._categories_x = categories_x self._categories_y = categories_y self._time_prebinning = time.perf_counter() - time_prebinning self._n_prebins = R.size if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization rows, n_records, sums, stds = self._fit_optimizer( splits_x, splits_y, R, S, SS) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() # Refinements m, n = R.shape self._n_refinements = (m * n * (m + 1) * (n + 1)) // 4 - len(rows) # solution matrices D = np.empty(m * n, dtype=float) P = np.empty(m * n, dtype=int) selected_rows = np.array(rows, dtype=object)[self._solution] self._selected_rows = selected_rows self._m, self._n = m, n n_selected_rows = selected_rows.shape[0] + 2 opt_sums = np.empty(n_selected_rows, dtype=float) opt_n_records = np.empty(n_selected_rows, dtype=int) opt_stds = np.zeros(n_selected_rows, dtype=float) for i, r in enumerate(selected_rows): _n_records = n_records[self._solution][i] _sums = sums[self._solution][i] _mean = _sums / _n_records _stds = stds[self._solution][i] P[r] = i D[r] = _mean opt_sums[i] = _sums opt_n_records[i] = _n_records opt_stds[i] = _stds opt_n_records[-2] = self._n_records_special opt_sums[-2] = self._sum_special opt_stds[-2] = self._std_special opt_n_records[-1] = self._n_records_missing opt_sums[-1] = self._sum_missing opt_stds[-1] = self._std_missing self._sums = opt_sums self._n_records = opt_n_records D = D.reshape((m, n)) P = P.reshape((m, n)) # optimal bins splits_x_optimal, splits_y_optimal = self._splits_xy_optimal( selected_rows, splits_x, splits_y, P) self._splits_x_optimal = splits_x_optimal self._splits_y_optimal = splits_y_optimal # instatiate binning table self._binning_table = ContinuousBinningTable2D( self.name_x, self.name_y, self.dtype_x, self.dtype_y, splits_x_optimal, splits_y_optimal, m, n, opt_n_records, opt_sums, opt_stds, D, P, self._categories_x, self._categories_y) self.name = "-".join((self.name_x, self.name_y)) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(self, x, y, z, check_input)
4,628
optbinning.binning.multidimensional.continuous_binning_2d
_fit_optimizer
null
def _fit_optimizer(self, splits_x, splits_y, R, S, SS): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() # Min/max number of bins (bin size) if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Number of threads n_jobs = effective_n_jobs(self.n_jobs) if self.verbose: logger.info("Optimizer: {} jobs.".format(n_jobs)) if self.monotonic_trend_x is None: logger.info( "Optimizer: monotonic trend x not set.") else: logger.info("Optimizer: monotonic trend x set to {}." .format(self.monotonic_trend_x)) if self.monotonic_trend_y is None: logger.info( "Optimizer: monotonic trend y not set.") else: logger.info("Optimizer: monotonic trend y set to {}." .format(self.monotonic_trend_x)) if self.solver == "cp": scale = int(1e6) optimizer = Binning2DCP( self.monotonic_trend_x, self.monotonic_trend_y, self.min_n_bins, self.max_n_bins, self.min_mean_diff_x, self.min_mean_diff_y, self.gamma, n_jobs, self.time_limit) elif self.solver == "mip": scale = None optimizer = Binning2DMIP( self.monotonic_trend_x, self.monotonic_trend_y, self.min_n_bins, self.max_n_bins, self.min_mean_diff_x, self.min_mean_diff_y, self.gamma, n_jobs, self.time_limit) if self.verbose: logger.info("Optimizer: model data...") time_model_data = time.perf_counter() if self.strategy == "cart": [n_grid, n_rectangles, rows, cols, c, d_connected_x, d_connected_y, mean, n_records, sums, stds] = continuous_model_data_cart( self._clf, R, S, SS, self.monotonic_trend_x, self.monotonic_trend_y, scale, min_bin_size, max_bin_size) else: [n_grid, n_rectangles, rows, cols, c, d_connected_x, d_connected_y, mean, n_records, sums, stds] = continuous_model_data( R, S, SS, self.monotonic_trend_x, self.monotonic_trend_y, scale, min_bin_size, max_bin_size) self._time_model_data = time.perf_counter() - time_model_data if self.verbose: logger.info("Optimizer: model data terminated. Time {:.4f}s" .format(self._time_model_data)) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_grid, n_rectangles, cols, c, d_connected_x, d_connected_y, mean, n_records) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) self._cols = cols self._rows = rows self._c = c return rows, n_records, sums, stds
(self, splits_x, splits_y, R, S, SS)
4,629
optbinning.binning.multidimensional.binning_2d
_fit_prebinning
null
def _fit_prebinning(self, dtype, x, z, max_n_prebins, min_prebin_size): # Pre-binning algorithm min_bin_size = int(np.ceil(min_prebin_size * self._n_samples)) prebinning = PreBinning(method=self.prebinning_method, n_bins=max_n_prebins, min_bin_size=min_bin_size, problem_type=self._problem_type).fit(x, z) return prebinning.splits
(self, dtype, x, z, max_n_prebins, min_prebin_size)
4,634
optbinning.binning.multidimensional.continuous_binning_2d
_prebinning_matrices
null
def _prebinning_matrices(self, splits_x, splits_y, x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special): self._n_records_missing = len(z_missing) self._n_records_special = len(z_special) self._sum_missing = np.sum(z_missing) self._sum_special = np.sum(z_special) if len(z_missing): self._std_missing = np.std(z_missing) else: self._std_missing = 0 if len(z_special): self._std_special = np.std(z_special) else: self._std_special = 0 n_splits_x = len(splits_x) n_splits_y = len(splits_y) indices_x = np.digitize(x_clean, splits_x, right=False) n_bins_x = n_splits_x + 1 indices_y = np.digitize(y_clean, splits_y, right=False) n_bins_y = n_splits_y + 1 R = np.empty((n_bins_y, n_bins_x), dtype=float) S = np.empty((n_bins_y, n_bins_x), dtype=float) SS = np.empty((n_bins_y, n_bins_x), dtype=float) for i in range(n_bins_y): mask_y = (indices_y == i) for j in range(n_bins_x): mask_x = (indices_x == j) mask = mask_x & mask_y zmask = z_clean[mask] R[i, j] = np.count_nonzero(mask) S[i, j] = np.sum(zmask) SS[i, j] = np.sum(zmask ** 2) return R, S, SS
(self, splits_x, splits_y, x_clean, y_clean, z_clean, x_missing, y_missing, z_missing, x_special, y_special, z_special)
4,635
optbinning.binning.binning
_prebinning_refinement
null
def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others): y0 = (y == 0) y1 = ~y0 # Compute n_nonevent and n_event for special, missing and others. self._n_nonevent_special, self._n_event_special = target_info_special( self.special_codes, x_special, y_special, sw_special) self._n_nonevent_missing, self._n_event_missing = target_info_samples( y_missing, sw_missing) if len(y_others): (self._n_nonevent_cat_others, self._n_event_cat_others) = target_info_samples( y_others, sw_others) n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) splits_prebinning, n_nonevent, n_event = self._compute_prebins( splits_prebinning, x, y0, y1, sw_clean) return splits_prebinning, n_nonevent, n_event
(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others)
4,638
optbinning.binning.multidimensional.binning_2d
_splits_xy_optimal
null
def _splits_xy_optimal(self, selected_rows, splits_x, splits_y, P): bins_x = np.concatenate([[-np.inf], splits_x, [np.inf]]) bins_y = np.concatenate([[-np.inf], splits_y, [np.inf]]) bins_str_x = np.array([[bins_x[i], bins_x[i+1]] for i in range(len(bins_x) - 1)]) bins_str_y = np.array([[bins_y[i], bins_y[i+1]] for i in range(len(bins_y) - 1)]) splits_x_optimal = [] splits_y_optimal = [] for i in range(len(selected_rows)): pos_y, pos_x = np.where(P == i) mask_x = np.arange(pos_x.min(), pos_x.max() + 1) mask_y = np.arange(pos_y.min(), pos_y.max() + 1) bin_x = bins_str_x[mask_x] bin_y = bins_str_y[mask_y] splits_x_optimal.append([bin_x[0][0], bin_x[-1][1]]) splits_y_optimal.append([bin_y[0][0], bin_y[-1][1]]) return splits_x_optimal, splits_y_optimal
(self, selected_rows, splits_x, splits_y, P)
4,641
optbinning.binning.multidimensional.continuous_binning_2d
fit
Fit the optimal binning 2D according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning2D Fitted optimal binning 2D.
def fit(self, x, y, z, check_input=False): """Fit the optimal binning 2D according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : ContinuousOptimalBinning2D Fitted optimal binning 2D. """ return self._fit(x, y, z, check_input)
(self, x, y, z, check_input=False)
4,642
optbinning.binning.multidimensional.continuous_binning_2d
fit_transform
Fit the optimal binning 2D according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array.
def fit_transform(self, x, y, z, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning 2D according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. z : array-like, shape = (n_samples,) Target vector relative to x and y. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, z, check_input).transform( x, y, metric, metric_special, metric_missing, show_digits, check_input)
(self, x, y, z, metric='mean', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,646
optbinning.binning.binning
read_json
Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file.
def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ self._is_fitted = True with open(path, "r") as read_file: bin_table_attr = json.load(read_file) for key in bin_table_attr.keys(): if isinstance(bin_table_attr[key], list): bin_table_attr[key] = np.array(bin_table_attr[key]) self._binning_table = BinningTable(**bin_table_attr)
(self, path)
4,647
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``fit``. z : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``z`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.multidimensional.continuous_binning_2d.ContinuousOptimalBinning2D, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$', z: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.multidimensional.continuous_binning_2d.ContinuousOptimalBinning2D
4,650
optbinning.binning.binning
to_json
Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved.
def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['dtype'] = table.dtype opt_bin_dict['special_codes'] = table.special_codes if table.dtype == 'numerical': opt_bin_dict['splits'] = table.splits.tolist() elif table.dtype == 'categorical': opt_bin_dict['splits'] = [split.tolist() for split in table.splits] opt_bin_dict['n_nonevent'] = table.n_nonevent.tolist() opt_bin_dict['n_event'] = table.n_event.tolist() opt_bin_dict['min_x'] = table.min_x opt_bin_dict['max_x'] = table.max_x opt_bin_dict['categories'] = table.categories opt_bin_dict['cat_others'] = table.cat_others opt_bin_dict['user_splits'] = table.user_splits with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file)
(self, path)
4,651
optbinning.binning.multidimensional.continuous_binning_2d
transform
Transform given data to mean using bins from the fitted optimal binning 2D. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array.
def transform(self, x, y, metric="mean", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean using bins from the fitted optimal binning 2D. Parameters ---------- x : array-like, shape = (n_samples,) Training vector x, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Training vector y, where n_samples is the number of samples. metric : str (default="mean") The metric used to transform the input vector. Supported metrics are "mean" to choose the mean, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- z_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_continuous_target( self.dtype_x, self.dtype_y, self._splits_x_optimal, self._splits_y_optimal, x, y, self._n_records, self._sums, self.special_codes_x, self.special_codes_y, self._categories_x, self._categories_y, metric, metric_special, metric_missing, show_digits, check_input)
(self, x, y, metric='mean', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,652
optbinning.binning.piecewise.continuous_binning
ContinuousOptimalPWBinning
Optimal Piecewise binning of a numerical variable with respect to a binary target. Parameters ---------- name : str, optional (default="") The variable name. objective : str, optional (default="l2") The objective function. Supported objectives are "l2", "l1", "huber" and "quantile". Note that "l1", "huber" and "quantile" are robust objective functions. degree : int (default=1) The degree of the polynomials. * degree = 0: piecewise constant functions. * degree = 1: piecewise linear functions. * degree > 1: piecewise polynomial functions. continuous : bool (default=True) Whether to fit a continuous or discontinuous piecewise regression. continuous_deriv : bool (default=True) Whether to fit a polynomial with continuous derivatives. This option fits a smooth degree d-polynomial with d-1 continuity in derivatives (splines). prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecistionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins > 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. n_subsamples : int or None (default=None) Number of subsamples to fit the piecewise regression algorithm. If None, all values are considered. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. Option supported by solvers "cp" and "mip". max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method, "zcore" to use the modified Z-score method or "yquantile" to use the y-axis detector over quantiles. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. solver : str, optional (default="auto") The optimizer to solve the underlying mathematical optimization problem. Supported solvers are `"ecos" <https://github.com/embotech/ecos>`_, `"osqp" <https://github.com/oxfordcontrol/osqp>`_, "direct", to choose the direct solver, and "auto", to choose the most appropriate solver for the problem. Version 0.16.1 added support to solvers `"scs" <https://github.com/cvxgrp/scs>`_ and `"highs" <https://github.com/ERGO-Code/HiGHS>`_. h_epsilon: float (default=1.35) The parameter h_epsilon used when ``objective="huber"``, controls the number of samples that should be classified as outliers. quantile : float (default=0.5) The parameter quantile is the q-th quantile to be used when ``objective="quantile"``. regularization: str or None (default=None) Type of regularization. Supported regularization are "l1" (Lasso) and "l2" (Ridge). If None, no regularization is applied. reg_l1 : float (default=1.0) L1 regularization term. Increasing this value will smooth the regression model. Only applicable if ``regularization="l1"``. reg_l2 : float (default=1.0) L2 regularization term. Increasing this value will smooth the regression model. Only applicable if ``regularization="l2"``. random_state : int, RandomState instance or None, (default=None) If ``n_subsamples < n_samples``, controls the shuffling applied to the data before applying the split. verbose : bool (default=False) Enable verbose output.
class ContinuousOptimalPWBinning(BasePWBinning): """Optimal Piecewise binning of a numerical variable with respect to a binary target. Parameters ---------- name : str, optional (default="") The variable name. objective : str, optional (default="l2") The objective function. Supported objectives are "l2", "l1", "huber" and "quantile". Note that "l1", "huber" and "quantile" are robust objective functions. degree : int (default=1) The degree of the polynomials. * degree = 0: piecewise constant functions. * degree = 1: piecewise linear functions. * degree > 1: piecewise polynomial functions. continuous : bool (default=True) Whether to fit a continuous or discontinuous piecewise regression. continuous_deriv : bool (default=True) Whether to fit a polynomial with continuous derivatives. This option fits a smooth degree d-polynomial with d-1 continuity in derivatives (splines). prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecistionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str or None, optional (default="auto") The monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins > 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. n_subsamples : int or None (default=None) Number of subsamples to fit the piecewise regression algorithm. If None, all values are considered. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. Option supported by solvers "cp" and "mip". max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method, "zcore" to use the modified Z-score method or "yquantile" to use the y-axis detector over quantiles. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. solver : str, optional (default="auto") The optimizer to solve the underlying mathematical optimization problem. Supported solvers are `"ecos" <https://github.com/embotech/ecos>`_, `"osqp" <https://github.com/oxfordcontrol/osqp>`_, "direct", to choose the direct solver, and "auto", to choose the most appropriate solver for the problem. Version 0.16.1 added support to solvers `"scs" <https://github.com/cvxgrp/scs>`_ and `"highs" <https://github.com/ERGO-Code/HiGHS>`_. h_epsilon: float (default=1.35) The parameter h_epsilon used when ``objective="huber"``, controls the number of samples that should be classified as outliers. quantile : float (default=0.5) The parameter quantile is the q-th quantile to be used when ``objective="quantile"``. regularization: str or None (default=None) Type of regularization. Supported regularization are "l1" (Lasso) and "l2" (Ridge). If None, no regularization is applied. reg_l1 : float (default=1.0) L1 regularization term. Increasing this value will smooth the regression model. Only applicable if ``regularization="l1"``. reg_l2 : float (default=1.0) L2 regularization term. Increasing this value will smooth the regression model. Only applicable if ``regularization="l2"``. random_state : int, RandomState instance or None, (default=None) If ``n_subsamples < n_samples``, controls the shuffling applied to the data before applying the split. verbose : bool (default=False) Enable verbose output. """ def __init__(self, name="", objective="l2", degree=1, continuous=True, continuous_deriv=True, prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", n_subsamples=None, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, solver="auto", h_epsilon=1.35, quantile=0.5, regularization=None, reg_l1=1.0, reg_l2=1.0, random_state=None, verbose=False): super().__init__(name, None, objective, degree, continuous, continuous_deriv, prebinning_method, max_n_prebins, min_prebin_size, min_n_bins, max_n_bins, min_bin_size, max_bin_size, monotonic_trend, n_subsamples, max_pvalue, max_pvalue_policy, outlier_detector, outlier_params, user_splits, user_splits_fixed, special_codes, split_digits, solver, h_epsilon, quantile, regularization, reg_l1, reg_l2, random_state, verbose) self._problem_type = "regression" self._n_records_missing = None self._n_records_special = None self._sum_special = None self._sum_missing = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._max_target_missing = None self._max_target_special = None self._n_zeros_missing = None self._n_zeros_special = None def fit_transform(self, x, y, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False): """Fit the optimal piecewise binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric_special, metric_missing, lb, ub, check_input) def transform(self, x, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False): """Transform given data using bins from the fitted optimal piecewise binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_continuous_target( self._optb.splits, x, self._c, lb, ub, self._n_records_special, self._sum_special, self._n_records_missing, self._sum_missing, self.special_codes, metric_special, metric_missing, check_input) def _fit(self, x, y, lb, ub, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal piecewise binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params(deep=False), estimator=None, problem_type=self._problem_type) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, _, _, _, _, _, sw_special, _] = self._fit_preprocessing( x, y, check_input) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning self._time_estimator = 0 # Fit optimal binning algorithm for continuous target. Use optimal # split points to compute optimal piecewise functions self._fit_binning(x_clean, y_clean, y_clean, lb, ub) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() [self._n_records_special, self._sum_special, self._n_zeros_special, self._std_special, self._min_target_special, self._max_target_special] = target_info_special_continuous( self.special_codes, x_special, y_special, sw_special) self._n_records_missing = len(y_missing) self._sum_missing = np.sum(y_missing) self._n_zeros_missing = np.count_nonzero(y_missing == 0) if len(y_missing): self._std_missing = np.std(y_missing) self._min_target_missing = np.min(y_missing) self._max_target_missing = np.max(y_missing) bt = self._optb.binning_table.build(add_totals=False) n_records = bt["Count"].values[:-2] sums = bt["Sum"].values[:-2] stds = bt["Std"].values[:-2] min_target = bt["Min"].values[:-2] max_target = bt["Max"].values[:-2] n_zeros = bt["Zeros count"].values[:-2] n_records = np.r_[n_records, self._n_records_special] sums = np.r_[sums, self._sum_special] stds = np.r_[stds, self._std_special] min_target = np.r_[min_target, self._min_target_special] max_target = np.r_[max_target, self._max_target_special] n_zeros = np.r_[n_zeros, self._n_zeros_special] n_records = np.r_[n_records, self._n_records_missing] sums = np.r_[sums, self._sum_missing] stds = np.r_[stds, self._std_missing] min_target = np.r_[min_target, self._min_target_missing] max_target = np.r_[max_target, self._max_target_missing] n_zeros = np.r_[n_zeros, self._n_zeros_missing] # Compute metrics if self.verbose: logger.info("Post-processing: compute performance metrics.") d_metrics = continuous_metrics( x_clean, y_clean, self._optb.splits, self._c, lb, ub, self._n_records_special, self._sum_special, self._n_records_missing, self._sum_missing, self.special_codes) # Binning table self._binning_table = PWContinuousBinningTable( self.name, self.special_codes, self._optb.splits, self._c, n_records, sums, stds, min_target, max_target, n_zeros, lb, ub, x_clean.min(), x_clean.max(), d_metrics) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal piecewise binning terminated. Status: {}. " "Time: {:.4f}s".format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(name='', objective='l2', degree=1, continuous=True, continuous_deriv=True, prebinning_method='cart', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', n_subsamples=None, max_pvalue=None, max_pvalue_policy='consecutive', outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, solver='auto', h_epsilon=1.35, quantile=0.5, regularization=None, reg_l1=1.0, reg_l2=1.0, random_state=None, verbose=False)
4,654
optbinning.binning.piecewise.continuous_binning
__init__
null
def __init__(self, name="", objective="l2", degree=1, continuous=True, continuous_deriv=True, prebinning_method="cart", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", n_subsamples=None, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, solver="auto", h_epsilon=1.35, quantile=0.5, regularization=None, reg_l1=1.0, reg_l2=1.0, random_state=None, verbose=False): super().__init__(name, None, objective, degree, continuous, continuous_deriv, prebinning_method, max_n_prebins, min_prebin_size, min_n_bins, max_n_bins, min_bin_size, max_bin_size, monotonic_trend, n_subsamples, max_pvalue, max_pvalue_policy, outlier_detector, outlier_params, user_splits, user_splits_fixed, special_codes, split_digits, solver, h_epsilon, quantile, regularization, reg_l1, reg_l2, random_state, verbose) self._problem_type = "regression" self._n_records_missing = None self._n_records_special = None self._sum_special = None self._sum_missing = None self._std_special = None self._std_missing = None self._min_target_missing = None self._min_target_special = None self._max_target_missing = None self._max_target_special = None self._n_zeros_missing = None self._n_zeros_special = None
(self, name='', objective='l2', degree=1, continuous=True, continuous_deriv=True, prebinning_method='cart', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', n_subsamples=None, max_pvalue=None, max_pvalue_policy='consecutive', outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, solver='auto', h_epsilon=1.35, quantile=0.5, regularization=None, reg_l1=1.0, reg_l2=1.0, random_state=None, verbose=False)
4,661
optbinning.binning.piecewise.continuous_binning
_fit
null
def _fit(self, x, y, lb, ub, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal piecewise binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params(deep=False), estimator=None, problem_type=self._problem_type) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, _, _, _, _, _, sw_special, _] = self._fit_preprocessing( x, y, check_input) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning self._time_estimator = 0 # Fit optimal binning algorithm for continuous target. Use optimal # split points to compute optimal piecewise functions self._fit_binning(x_clean, y_clean, y_clean, lb, ub) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() [self._n_records_special, self._sum_special, self._n_zeros_special, self._std_special, self._min_target_special, self._max_target_special] = target_info_special_continuous( self.special_codes, x_special, y_special, sw_special) self._n_records_missing = len(y_missing) self._sum_missing = np.sum(y_missing) self._n_zeros_missing = np.count_nonzero(y_missing == 0) if len(y_missing): self._std_missing = np.std(y_missing) self._min_target_missing = np.min(y_missing) self._max_target_missing = np.max(y_missing) bt = self._optb.binning_table.build(add_totals=False) n_records = bt["Count"].values[:-2] sums = bt["Sum"].values[:-2] stds = bt["Std"].values[:-2] min_target = bt["Min"].values[:-2] max_target = bt["Max"].values[:-2] n_zeros = bt["Zeros count"].values[:-2] n_records = np.r_[n_records, self._n_records_special] sums = np.r_[sums, self._sum_special] stds = np.r_[stds, self._std_special] min_target = np.r_[min_target, self._min_target_special] max_target = np.r_[max_target, self._max_target_special] n_zeros = np.r_[n_zeros, self._n_zeros_special] n_records = np.r_[n_records, self._n_records_missing] sums = np.r_[sums, self._sum_missing] stds = np.r_[stds, self._std_missing] min_target = np.r_[min_target, self._min_target_missing] max_target = np.r_[max_target, self._max_target_missing] n_zeros = np.r_[n_zeros, self._n_zeros_missing] # Compute metrics if self.verbose: logger.info("Post-processing: compute performance metrics.") d_metrics = continuous_metrics( x_clean, y_clean, self._optb.splits, self._c, lb, ub, self._n_records_special, self._sum_special, self._n_records_missing, self._sum_missing, self.special_codes) # Binning table self._binning_table = PWContinuousBinningTable( self.name, self.special_codes, self._optb.splits, self._c, n_records, sums, stds, min_target, max_target, n_zeros, lb, ub, x_clean.min(), x_clean.max(), d_metrics) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal piecewise binning terminated. Status: {}. " "Time: {:.4f}s".format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(self, x, y, lb, ub, check_input)
4,662
optbinning.binning.piecewise.base
_fit_binning
null
def _fit_binning(self, x, y, prediction, lb, ub): if self.verbose: logger.info("Pre-binning: optimal binning started.") time_prebinning = time.perf_counter() # Determine optimal split points monotonic_trend = self.monotonic_trend if self.monotonic_trend in ("concave", "convex"): monotonic_trend = "auto" if self._problem_type == "regression": self._optb = ContinuousOptimalBinning( name=self.name, dtype="numerical", prebinning_method=self.prebinning_method, max_n_prebins=self.max_n_prebins, min_prebin_size=self.min_prebin_size, min_n_bins=self.min_n_bins, max_n_bins=self.max_n_bins, min_bin_size=self.min_bin_size, max_bin_size=self.max_bin_size, monotonic_trend=monotonic_trend, max_pvalue=self.max_pvalue, max_pvalue_policy=self.max_pvalue_policy, outlier_detector=self.outlier_detector, outlier_params=self.outlier_params, user_splits=self.user_splits, user_splits_fixed=self.user_splits_fixed, split_digits=self.split_digits) elif self._problem_type == "classification": self._optb = OptimalBinning( name=self.name, dtype="numerical", prebinning_method=self.prebinning_method, max_n_prebins=self.max_n_prebins, min_prebin_size=self.min_prebin_size, min_n_bins=self.min_n_bins, max_n_bins=self.max_n_bins, min_bin_size=self.min_bin_size, max_bin_size=self.max_bin_size, monotonic_trend=monotonic_trend, max_pvalue=self.max_pvalue, max_pvalue_policy=self.max_pvalue_policy, outlier_detector=self.outlier_detector, outlier_params=self.outlier_params, user_splits=self.user_splits, user_splits_fixed=self.user_splits_fixed, split_digits=self.split_digits) self._optb.fit(x, y) splits = self._optb.splits n_splits = len(splits) if self.verbose: logger.info("Pre-binning: number of splits: {}." .format(n_splits)) # Prepare optimization model data n_bins = n_splits + 1 self._n_bins = n_bins if self.n_subsamples is None or self.n_subsamples > len(x): x_subsamples = x pred_subsamples = prediction if self.verbose: logger.info("Pre-binning: no need for subsamples.") else: indices = np.digitize(x, splits, right=False) [_, x_subsamples, _, pred_subsamples, _, _, _, _] = train_test_split( x, prediction, y, indices, test_size=self.n_subsamples, random_state=self.random_state) if self.verbose: logger.info("Pre-binning: number of subsamples: {}." .format(self.n_subsamples)) self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: optimal binning terminated. Time {:.4}s." .format(self._time_prebinning)) # LP problem if self.verbose: logger.info("Optimizer started.") if self.monotonic_trend == "auto": indices = np.digitize(x, splits, right=False) mean = np.array([y[indices == i].mean() for i in range(n_bins)]) monotonic = type_of_monotonic_trend(mean) if monotonic in ("undefined", "no monotonic"): monotonic = None elif "peak" in monotonic: monotonic = "peak" elif "valley" in monotonic: monotonic = "valley" if self.verbose: logger.info("Optimizer: {} monotonic trend." .format(monotonic)) else: monotonic = self.monotonic_trend time_solver = time.perf_counter() optimizer = RobustPWRegression( objective=self.objective, degree=self.degree, continuous=self.continuous, continuous_deriv=self.continuous_deriv, monotonic_trend=monotonic, solver=self.solver, h_epsilon=self.h_epsilon, quantile=self.quantile, regularization=self.regularization, reg_l1=self.reg_l1, reg_l2=self.reg_l2, extrapolation="continue", verbose=self.verbose) optimizer.fit(x_subsamples, pred_subsamples, splits, lb=lb, ub=ub) self._c = optimizer.coef_ self._optimizer = optimizer self._status = retrieve_status(optimizer.status) self._splits_optimal = splits self._time_solver = time.perf_counter() - time_solver if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver))
(self, x, y, prediction, lb, ub)
4,663
optbinning.binning.piecewise.base
_fit_preprocessing
null
def _fit_preprocessing(self, x, y, check_input): return split_data(dtype="numerical", x=x, y=y, special_codes=self.special_codes, user_splits=self.user_splits, check_input=check_input, outlier_detector=self.outlier_detector, outlier_params=self.outlier_params)
(self, x, y, check_input)
4,672
optbinning.binning.piecewise.base
fit
Fit the optimal piecewise binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BasePWBinning Fitted optimal piecewise binning.
def fit(self, x, y, lb=None, ub=None, check_input=False): """Fit the optimal piecewise binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : BasePWBinning Fitted optimal piecewise binning. """ return self._fit(x, y, lb, ub, check_input)
(self, x, y, lb=None, ub=None, check_input=False)
4,673
optbinning.binning.piecewise.continuous_binning
fit_transform
Fit the optimal piecewise binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array.
def fit_transform(self, x, y, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False): """Fit the optimal piecewise binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric_special, metric_missing, lb, ub, check_input)
(self, x, y, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False)
4,676
optbinning.binning.piecewise.base
information
Print overview information about the options settings, problem statistics, and the solution of the computation. Parameters ---------- print_level : int (default=1) Level of details.
def information(self, print_level=1): """Print overview information about the options settings, problem statistics, and the solution of the computation. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_fitted() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) if self._optimizer is not None: solver = self._optimizer time_solver = self._time_solver else: solver = None time_solver = 0 dict_user_options = self.get_params() if self._problem_type == "regression": dict_user_options["estimator"] = None print_binning_information(print_level, self.name, self._status, self.solver, solver, self._time_total, self._time_preprocessing, self._time_estimator, self._time_prebinning, time_solver, self._time_postprocessing, self._n_bins, dict_user_options)
(self, print_level=1)
4,677
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. lb : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``lb`` parameter in ``fit``. ub : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``ub`` parameter in ``fit``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.piecewise.continuous_binning.ContinuousOptimalPWBinning, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', lb: Union[bool, NoneType, str] = '$UNCHANGED$', ub: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.piecewise.continuous_binning.ContinuousOptimalPWBinning
4,679
sklearn.utils._metadata_requests
set_transform_request
Request metadata passed to the ``transform`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``transform`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``transform``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``transform``. lb : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``lb`` parameter in ``transform``. metric_missing : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_missing`` parameter in ``transform``. metric_special : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``metric_special`` parameter in ``transform``. ub : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``ub`` parameter in ``transform``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``transform``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.piecewise.continuous_binning.ContinuousOptimalPWBinning, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', lb: Union[bool, NoneType, str] = '$UNCHANGED$', metric_missing: Union[bool, NoneType, str] = '$UNCHANGED$', metric_special: Union[bool, NoneType, str] = '$UNCHANGED$', ub: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.piecewise.continuous_binning.ContinuousOptimalPWBinning
4,680
optbinning.binning.piecewise.continuous_binning
transform
Transform given data using bins from the fitted optimal piecewise binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array.
def transform(self, x, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False): """Transform given data using bins from the fitted optimal piecewise binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean and any numerical value. lb : float or None (default=None) Avoid values below the lower bound lb. ub : float or None (default=None) Avoid values above the upper bound ub. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_continuous_target( self._optb.splits, x, self._c, lb, ub, self._n_records_special, self._sum_special, self._n_records_missing, self._sum_missing, self.special_codes, metric_special, metric_missing, check_input)
(self, x, metric_special=0, metric_missing=0, lb=None, ub=None, check_input=False)
4,681
optbinning.binning.mdlp
MDLP
Minimum Description Length Principle (MDLP) discretization algorithm. Parameters ---------- min_samples_split : int (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int (default=2) The minimum number of samples required to be at a leaf node. max_candidates : int (default=32) The maximum number of split points to evaluate at each partition. Notes ----- Implementation of the discretization algorithm in [FI93]. A dynamic split strategy based on binning the number of candidate splits [CMR2001] is implemented to increase efficiency. For large size datasets, it is recommended to use a smaller ``max_candidates`` (e.g. 16) to get a significant speed up. References ---------- .. [FI93] U. M. Fayyad and K. B. Irani. "Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning". International Joint Conferences on Artificial Intelligence, 13:1022–1027, 1993. .. [CMR2001] D. M. Chickering, C. Meek and R. Rounthwaite. "Efficient Determination of Dynamic Split Points in a Decision Tree". In Proceedings of the 2001 IEEE International Conference on Data Mining, 91-98, 2001.
class MDLP(BaseEstimator): """ Minimum Description Length Principle (MDLP) discretization algorithm. Parameters ---------- min_samples_split : int (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int (default=2) The minimum number of samples required to be at a leaf node. max_candidates : int (default=32) The maximum number of split points to evaluate at each partition. Notes ----- Implementation of the discretization algorithm in [FI93]. A dynamic split strategy based on binning the number of candidate splits [CMR2001] is implemented to increase efficiency. For large size datasets, it is recommended to use a smaller ``max_candidates`` (e.g. 16) to get a significant speed up. References ---------- .. [FI93] U. M. Fayyad and K. B. Irani. "Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning". International Joint Conferences on Artificial Intelligence, 13:1022–1027, 1993. .. [CMR2001] D. M. Chickering, C. Meek and R. Rounthwaite. "Efficient Determination of Dynamic Split Points in a Decision Tree". In Proceedings of the 2001 IEEE International Conference on Data Mining, 91-98, 2001. """ def __init__(self, min_samples_split=2, min_samples_leaf=2, max_candidates=32): self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.max_candidates = max_candidates # auxiliary self._splits = [] self._is_fitted = None def fit(self, x, y): """Fit MDLP discretization algorithm. Parameters ---------- x : array-like, shape = (n_samples) Data samples, where n_samples is the number of samples. y : array-like, shape = (n_samples) Target vector relative to x. Returns ------- self : MDLP """ return self._fit(x, y) def _fit(self, x, y): _check_parameters(**self.get_params()) x = check_array(x, ensure_2d=False, force_all_finite=True) y = check_array(y, ensure_2d=False, force_all_finite=True) idx = np.argsort(x) x = x[idx] y = y[idx] self._recurse(x, y, 0) self._is_fitted = True return self def _recurse(self, x, y, id): u_x = np.unique(x) n_x = len(u_x) n_y = len(np.bincount(y)) split = self._find_split(u_x, x, y) if split is not None: self._splits.append(split) t = np.searchsorted(x, split, side="right") if not self._terminate(n_x, n_y, y, y[:t], y[t:]): self._recurse(x[:t], y[:t], id + 1) self._recurse(x[t:], y[t:], id + 2) def _find_split(self, u_x, x, y): n_x = len(x) u_x = np.unique(0.5 * (x[1:] + x[:-1])[(y[1:] - y[:-1]) != 0]) if len(u_x) > self.max_candidates: percentiles = np.linspace(1, 100, self.max_candidates) splits = np.percentile(u_x, percentiles) else: splits = u_x max_entropy_gain = 0 best_split = None tt = np.searchsorted(x, splits, side="right") for i, t in enumerate(tt): samples_l = t >= self.min_samples_leaf samples_r = n_x - t >= self.min_samples_leaf if samples_l and samples_r: entropy_gain = self._entropy_gain(y, y[:t], y[t:]) if entropy_gain > max_entropy_gain: max_entropy_gain = entropy_gain best_split = splits[i] return best_split def _entropy(self, x): n = len(x) ns1 = np.sum(x) ns0 = n - ns1 p = np.array([ns0, ns1]) / n return -special.xlogy(p, p).sum() def _entropy_gain(self, y, y1, y2): n = len(y) n1 = len(y1) n2 = n - n1 ent_y = self._entropy(y) ent_y1 = self._entropy(y1) ent_y2 = self._entropy(y2) return ent_y - (n1 * ent_y1 + n2 * ent_y2) / n def _terminate(self, n_x, n_y, y, y1, y2): splittable = (n_x >= self.min_samples_split) and (n_y >= 2) n = len(y) n1 = len(y1) n2 = n - n1 ent_y = self._entropy(y) ent_y1 = self._entropy(y1) ent_y2 = self._entropy(y2) gain = ent_y - (n1 * ent_y1 + n2 * ent_y2) / n k = len(np.bincount(y)) k1 = len(np.bincount(y1)) k2 = len(np.bincount(y2)) t0 = np.log(3**k - 2) t1 = k * ent_y t2 = k1 * ent_y1 t3 = k2 * ent_y2 delta = t0 - (t1 - t2 - t3) return gain <= (np.log(n - 1) + delta) / n or not splittable @property def splits(self): """List of split points Returns ------- splits : numpy.ndarray """ if not self._is_fitted: raise NotFittedError("This {} instance is not fitted yet. Call " "'fit' with appropriate arguments." .format(self.__class__.__name__)) return np.sort(self._splits)
(min_samples_split=2, min_samples_leaf=2, max_candidates=32)
4,683
optbinning.binning.mdlp
__init__
null
def __init__(self, min_samples_split=2, min_samples_leaf=2, max_candidates=32): self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.max_candidates = max_candidates # auxiliary self._splits = [] self._is_fitted = None
(self, min_samples_split=2, min_samples_leaf=2, max_candidates=32)
4,689
optbinning.binning.mdlp
_entropy
null
def _entropy(self, x): n = len(x) ns1 = np.sum(x) ns0 = n - ns1 p = np.array([ns0, ns1]) / n return -special.xlogy(p, p).sum()
(self, x)
4,690
optbinning.binning.mdlp
_entropy_gain
null
def _entropy_gain(self, y, y1, y2): n = len(y) n1 = len(y1) n2 = n - n1 ent_y = self._entropy(y) ent_y1 = self._entropy(y1) ent_y2 = self._entropy(y2) return ent_y - (n1 * ent_y1 + n2 * ent_y2) / n
(self, y, y1, y2)
4,691
optbinning.binning.mdlp
_find_split
null
def _find_split(self, u_x, x, y): n_x = len(x) u_x = np.unique(0.5 * (x[1:] + x[:-1])[(y[1:] - y[:-1]) != 0]) if len(u_x) > self.max_candidates: percentiles = np.linspace(1, 100, self.max_candidates) splits = np.percentile(u_x, percentiles) else: splits = u_x max_entropy_gain = 0 best_split = None tt = np.searchsorted(x, splits, side="right") for i, t in enumerate(tt): samples_l = t >= self.min_samples_leaf samples_r = n_x - t >= self.min_samples_leaf if samples_l and samples_r: entropy_gain = self._entropy_gain(y, y[:t], y[t:]) if entropy_gain > max_entropy_gain: max_entropy_gain = entropy_gain best_split = splits[i] return best_split
(self, u_x, x, y)
4,692
optbinning.binning.mdlp
_fit
null
def _fit(self, x, y): _check_parameters(**self.get_params()) x = check_array(x, ensure_2d=False, force_all_finite=True) y = check_array(y, ensure_2d=False, force_all_finite=True) idx = np.argsort(x) x = x[idx] y = y[idx] self._recurse(x, y, 0) self._is_fitted = True return self
(self, x, y)
4,697
optbinning.binning.mdlp
_recurse
null
def _recurse(self, x, y, id): u_x = np.unique(x) n_x = len(u_x) n_y = len(np.bincount(y)) split = self._find_split(u_x, x, y) if split is not None: self._splits.append(split) t = np.searchsorted(x, split, side="right") if not self._terminate(n_x, n_y, y, y[:t], y[t:]): self._recurse(x[:t], y[:t], id + 1) self._recurse(x[t:], y[t:], id + 2)
(self, x, y, id)
4,700
optbinning.binning.mdlp
_terminate
null
def _terminate(self, n_x, n_y, y, y1, y2): splittable = (n_x >= self.min_samples_split) and (n_y >= 2) n = len(y) n1 = len(y1) n2 = n - n1 ent_y = self._entropy(y) ent_y1 = self._entropy(y1) ent_y2 = self._entropy(y2) gain = ent_y - (n1 * ent_y1 + n2 * ent_y2) / n k = len(np.bincount(y)) k1 = len(np.bincount(y1)) k2 = len(np.bincount(y2)) t0 = np.log(3**k - 2) t1 = k * ent_y t2 = k1 * ent_y1 t3 = k2 * ent_y2 delta = t0 - (t1 - t2 - t3) return gain <= (np.log(n - 1) + delta) / n or not splittable
(self, n_x, n_y, y, y1, y2)
4,703
optbinning.binning.mdlp
fit
Fit MDLP discretization algorithm. Parameters ---------- x : array-like, shape = (n_samples) Data samples, where n_samples is the number of samples. y : array-like, shape = (n_samples) Target vector relative to x. Returns ------- self : MDLP
def fit(self, x, y): """Fit MDLP discretization algorithm. Parameters ---------- x : array-like, shape = (n_samples) Data samples, where n_samples is the number of samples. y : array-like, shape = (n_samples) Target vector relative to x. Returns ------- self : MDLP """ return self._fit(x, y)
(self, x, y)
4,706
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.mdlp.MDLP, *, x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.mdlp.MDLP
4,708
optbinning.binning.multiclass_binning
MulticlassOptimalBinning
Optimal binning of a numerical variable with respect to a multiclass or multilabel target. **Note that the maximum number of classes is set to 100**. To ease visualization of the binning table, a set of 100 maximally distinct colors is generated using the library `glasbey <https://github.com/taketwo/glasbey>`_. Parameters ---------- name : str, optional (default="") The variable name. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecistionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver or "cp" to choose a constrained programming solver. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str, array-like or None, optional (default="auto") The **event rate** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, a list of monotonic trends combining "auto", "auto_heuristic", "auto_asc_desc", "ascending", "descending", "concave", "convex", "peak", "valley", "peak_heuristic", "valley_heuristic" and None, one for each class. If None, then the monotonic constraint is disabled. min_event_rate_diff : float, optional (default=0) The minimum event rate difference between consecutives bins. .. versionadded:: 0.17.0 max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. user_splits : array-like or None, optional (default=None) The list of pre-binning split points. user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. mip_solver : str, optional (default="bop") The mixed-integer programming solver. Supported solvers are "bop" to choose the Google OR-Tools binary optimizer or "cbc" to choose the COIN-OR Branch-and-Cut solver CBC. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The pre-binning refinement phase guarantee that no prebin has either zero counts of non-events or events by merging those pure prebins. Pure bins produce infinity WoE and event rates.
class MulticlassOptimalBinning(OptimalBinning): """Optimal binning of a numerical variable with respect to a multiclass or multilabel target. **Note that the maximum number of classes is set to 100**. To ease visualization of the binning table, a set of 100 maximally distinct colors is generated using the library `glasbey <https://github.com/taketwo/glasbey>`_. Parameters ---------- name : str, optional (default="") The variable name. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecistionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver or "cp" to choose a constrained programming solver. max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. monotonic_trend : str, array-like or None, optional (default="auto") The **event rate** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, a list of monotonic trends combining "auto", "auto_heuristic", "auto_asc_desc", "ascending", "descending", "concave", "convex", "peak", "valley", "peak_heuristic", "valley_heuristic" and None, one for each class. If None, then the monotonic constraint is disabled. min_event_rate_diff : float, optional (default=0) The minimum event rate difference between consecutives bins. .. versionadded:: 0.17.0 max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. user_splits : array-like or None, optional (default=None) The list of pre-binning split points. user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. mip_solver : str, optional (default="bop") The mixed-integer programming solver. Supported solvers are "bop" to choose the Google OR-Tools binary optimizer or "cbc" to choose the COIN-OR Branch-and-Cut solver CBC. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keywrord arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. The pre-binning refinement phase guarantee that no prebin has either zero counts of non-events or events by merging those pure prebins. Pure bins produce infinity WoE and event rates. """ def __init__(self, name="", prebinning_method="cart", solver="cp", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver="bop", time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = "numerical" self.prebinning_method = prebinning_method self.solver = solver self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_event_rate_diff = min_event_rate_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.mip_solver = mip_solver self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._n_event = None self._n_event_missing = None self._n_event_special = None self._problem_type = "classification" # info self._binning_table = None self._classes = None self._n_classes = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : MulticlassOptimalBinning Fitted optimal binning. """ return self._fit(x, y, check_input) def fit_transform(self, x, y, metric="mean_woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, metric="mean_woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean Weight of Evidence (WoE) or weighted mean WoE using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_multiclass_target(self._splits_optimal, x, self._n_event, self.special_codes, metric, metric_special, metric_missing, show_digits, check_input) def _fit(self, x, y, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, _, _, _, _, _, _, _] = split_data( self.dtype, x, y, special_codes=self.special_codes, check_input=check_input, outlier_detector=self.outlier_detector, outlier_params=self.outlier_params) # Check that x_clean is numerical if x_clean.dtype == np.dtype("object"): raise ValueError("x array after removing special codes and " "missing values must be numerical.") self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) user_splits = check_array(self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] splits, n_nonevent, n_event = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, None) else: splits, n_nonevent, n_event = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, None) self._n_prebins = len(n_nonevent) self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning: number of refinements: {}" .format(self._n_refinements)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_nonevent, n_event) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): n_event = np.empty(self._n_classes, dtype=np.int64) for i, cl in enumerate(self._classes): n_event[i] = target_info(y_clean, cl)[0] self._n_event = multiclass_bin_info( self._solution, self._n_classes, n_event, self._n_event_missing, self._n_event_special) self._binning_table = MulticlassBinningTable( self.name, self.special_codes, self._splits_optimal, self._n_event, self._classes) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None): self._classes = np.unique(y) self._n_classes = len(self._classes) if self._n_classes > 100: raise ValueError("Maximum number of classes exceeded; got {}." .format(self._n_classes)) self._n_event_special = target_info_special_multiclass( self.special_codes, x_special, y_special, self._classes) self._n_event_missing = [target_info(y_missing, cl)[0] for cl in self._classes] n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) splits_prebinning, n_nonevent, n_event = self._compute_prebins( splits_prebinning, x, y) return splits_prebinning, n_nonevent, n_event def _fit_optimizer(self, splits, n_nonevent, n_event): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if not len(n_nonevent): self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits), dtype=bool) if self.verbose: logger.warning("Optimizer: no bins after pre-binning.") logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Monotonic trend trend_changes = [None] * self._n_classes auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = [auto_monotonic(n_nonevent[:, i], n_event[:, i], self.monotonic_trend) for i in range(len(self._classes))] if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trends.".format(monotonic)) elif isinstance(self.monotonic_trend, list): if len(self.monotonic_trend) != self._n_classes: raise ValueError("List of monotonic trends must be of size " "n_classes.") monotonic = [] for i, m_trend in enumerate(self.monotonic_trend): if m_trend in auto_monotonic_modes: trend = auto_monotonic(n_nonevent[:, i], n_event[:, i], m_trend) if m_trend == "auto_heuristic": if trend in ("peak", "valley"): if trend == "peak": trend = "peak_heuristic" else: trend = "valley_heuristic" event_rate = n_event[:, i] / (n_nonevent[:, i] + n_event[:, i]) trend_change = peak_valley_trend_change_heuristic( event_rate, trend) trend_changes[i] = trend_change monotonic.append(trend) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(trend)) else: monotonic.append(m_trend) elif self.monotonic_trend is None: monotonic = [None] * self._n_classes if self.verbose: logger.info("Optimizer: monotonic trend not set.") if self.solver == "cp": optimizer = MulticlassBinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.user_splits_fixed, self.time_limit) else: optimizer = MulticlassBinningMIP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.mip_solver, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_nonevent, n_event, trend_changes) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) def _compute_prebins(self, splits_prebinning, x, y): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_nonevent = np.empty((n_bins, self._n_classes), dtype=np.int64) n_event = np.empty((n_bins, self._n_classes), dtype=np.int64) mask_remove = np.zeros(n_bins, dtype=bool) for idx, cl in enumerate(self._classes): y1 = (y == cl) y0 = ~y1 for i in range(n_bins): mask = (indices == i) n_nonevent[i, idx] = np.count_nonzero(y0 & mask) n_event[i, idx] = np.count_nonzero(y1 & mask) mask_remove |= (n_nonevent[:, idx] == 0) | (n_event[:, idx] == 0) if np.any(mask_remove): self._n_refinements += 1 mask_splits = np.concatenate( [mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError("Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) [splits_prebinning, n_nonevent, n_event] = self._compute_prebins( splits, x, y) return splits_prebinning, n_nonevent, n_event @property def binning_table(self): """Return an instantiated binning table. Please refer to :ref:`Binning table: multiclass target`. Returns ------- binning_table : MulticlassBinningTable. """ self._check_is_fitted() return self._binning_table @property def classes(self): """List of classes. Returns ------- classes : numpy.ndarray """ self._check_is_fitted() return self._classes @property def splits(self): """List of optimal split points. Returns ------- splits : numpy.ndarray """ self._check_is_fitted() return self._splits_optimal def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file.') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['special_codes'] = table.special_codes opt_bin_dict['splits'] = table.splits.tolist() opt_bin_dict['n_event'] = table.n_event.tolist() opt_bin_dict['classes'] = table.classes.tolist() with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file) def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ if path is None: raise ValueError('Specify the path for the json file.') self._is_fitted = True with open(path, "r") as read_file: multi_table_attr = json.load(read_file) for key in multi_table_attr.keys(): if isinstance(multi_table_attr[key], list): multi_table_attr[key] = np.array(multi_table_attr[key]) self._binning_table = MulticlassBinningTable(**multi_table_attr)
(name='', prebinning_method='cart', solver='cp', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver='bop', time_limit=100, verbose=False, **prebinning_kwargs)
4,710
optbinning.binning.multiclass_binning
__init__
null
def __init__(self, name="", prebinning_method="cart", solver="cp", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend="auto", min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver="bop", time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = "numerical" self.prebinning_method = prebinning_method self.solver = solver self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.monotonic_trend = monotonic_trend self.min_event_rate_diff = min_event_rate_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.mip_solver = mip_solver self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._n_event = None self._n_event_missing = None self._n_event_special = None self._problem_type = "classification" # info self._binning_table = None self._classes = None self._n_classes = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False
(self, name='', prebinning_method='cart', solver='cp', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, monotonic_trend='auto', min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', outlier_detector=None, outlier_params=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver='bop', time_limit=100, verbose=False, **prebinning_kwargs)
4,717
optbinning.binning.multiclass_binning
_compute_prebins
null
def _compute_prebins(self, splits_prebinning, x, y): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_nonevent = np.empty((n_bins, self._n_classes), dtype=np.int64) n_event = np.empty((n_bins, self._n_classes), dtype=np.int64) mask_remove = np.zeros(n_bins, dtype=bool) for idx, cl in enumerate(self._classes): y1 = (y == cl) y0 = ~y1 for i in range(n_bins): mask = (indices == i) n_nonevent[i, idx] = np.count_nonzero(y0 & mask) n_event[i, idx] = np.count_nonzero(y1 & mask) mask_remove |= (n_nonevent[:, idx] == 0) | (n_event[:, idx] == 0) if np.any(mask_remove): self._n_refinements += 1 mask_splits = np.concatenate( [mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError("Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) [splits_prebinning, n_nonevent, n_event] = self._compute_prebins( splits, x, y) return splits_prebinning, n_nonevent, n_event
(self, splits_prebinning, x, y)
4,718
optbinning.binning.multiclass_binning
_fit
null
def _fit(self, x, y, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, _, _, _, _, _, _, _] = split_data( self.dtype, x, y, special_codes=self.special_codes, check_input=check_input, outlier_detector=self.outlier_detector, outlier_params=self.outlier_params) # Check that x_clean is numerical if x_clean.dtype == np.dtype("object"): raise ValueError("x array after removing special codes and " "missing values must be numerical.") self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: {}" .format(n_outlier)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) user_splits = check_array(self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] splits, n_nonevent, n_event = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, None) else: splits, n_nonevent, n_event = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, None) self._n_prebins = len(n_nonevent) self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning: number of refinements: {}" .format(self._n_refinements)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_nonevent, n_event) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): n_event = np.empty(self._n_classes, dtype=np.int64) for i, cl in enumerate(self._classes): n_event[i] = target_info(y_clean, cl)[0] self._n_event = multiclass_bin_info( self._solution, self._n_classes, n_event, self._n_event_missing, self._n_event_special) self._binning_table = MulticlassBinningTable( self.name, self.special_codes, self._splits_optimal, self._n_event, self._classes) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(self, x, y, check_input)
4,719
optbinning.binning.multiclass_binning
_fit_optimizer
null
def _fit_optimizer(self, splits, n_nonevent, n_event): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if not len(n_nonevent): self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits), dtype=bool) if self.verbose: logger.warning("Optimizer: no bins after pre-binning.") logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Monotonic trend trend_changes = [None] * self._n_classes auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = [auto_monotonic(n_nonevent[:, i], n_event[:, i], self.monotonic_trend) for i in range(len(self._classes))] if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trends.".format(monotonic)) elif isinstance(self.monotonic_trend, list): if len(self.monotonic_trend) != self._n_classes: raise ValueError("List of monotonic trends must be of size " "n_classes.") monotonic = [] for i, m_trend in enumerate(self.monotonic_trend): if m_trend in auto_monotonic_modes: trend = auto_monotonic(n_nonevent[:, i], n_event[:, i], m_trend) if m_trend == "auto_heuristic": if trend in ("peak", "valley"): if trend == "peak": trend = "peak_heuristic" else: trend = "valley_heuristic" event_rate = n_event[:, i] / (n_nonevent[:, i] + n_event[:, i]) trend_change = peak_valley_trend_change_heuristic( event_rate, trend) trend_changes[i] = trend_change monotonic.append(trend) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(trend)) else: monotonic.append(m_trend) elif self.monotonic_trend is None: monotonic = [None] * self._n_classes if self.verbose: logger.info("Optimizer: monotonic trend not set.") if self.solver == "cp": optimizer = MulticlassBinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.user_splits_fixed, self.time_limit) else: optimizer = MulticlassBinningMIP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.mip_solver, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(n_nonevent, n_event, trend_changes) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver))
(self, splits, n_nonevent, n_event)
4,725
optbinning.binning.multiclass_binning
_prebinning_refinement
null
def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None): self._classes = np.unique(y) self._n_classes = len(self._classes) if self._n_classes > 100: raise ValueError("Maximum number of classes exceeded; got {}." .format(self._n_classes)) self._n_event_special = target_info_special_multiclass( self.special_codes, x_special, y_special, self._classes) self._n_event_missing = [target_info(y_missing, cl)[0] for cl in self._classes] n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) splits_prebinning, n_nonevent, n_event = self._compute_prebins( splits_prebinning, x, y) return splits_prebinning, n_nonevent, n_event
(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None)
4,730
optbinning.binning.multiclass_binning
fit
Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : MulticlassOptimalBinning Fitted optimal binning.
def fit(self, x, y, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : MulticlassOptimalBinning Fitted optimal binning. """ return self._fit(x, y, check_input)
(self, x, y, check_input=False)
4,731
optbinning.binning.multiclass_binning
fit_transform
Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array.
def fit_transform(self, x, y, metric="mean_woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input)
(self, x, y, metric='mean_woe', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,735
optbinning.binning.multiclass_binning
read_json
Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file.
def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ if path is None: raise ValueError('Specify the path for the json file.') self._is_fitted = True with open(path, "r") as read_file: multi_table_attr = json.load(read_file) for key in multi_table_attr.keys(): if isinstance(multi_table_attr[key], list): multi_table_attr[key] = np.array(multi_table_attr[key]) self._binning_table = MulticlassBinningTable(**multi_table_attr)
(self, path)
4,736
sklearn.utils._metadata_requests
set_fit_request
Request metadata passed to the ``fit`` method. Note that this method is only relevant if ``enable_metadata_routing=True`` (see :func:`sklearn.set_config`). Please see :ref:`User Guide <metadata_routing>` on how the routing mechanism works. The options for each parameter are: - ``True``: metadata is requested, and passed to ``fit`` if provided. The request is ignored if metadata is not provided. - ``False``: metadata is not requested and the meta-estimator will not pass it to ``fit``. - ``None``: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - ``str``: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (``sklearn.utils.metadata_routing.UNCHANGED``) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:`~sklearn.pipeline.Pipeline`. Otherwise it has no effect. Parameters ---------- check_input : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``check_input`` parameter in ``fit``. x : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED Metadata routing for ``x`` parameter in ``fit``. Returns ------- self : object The updated object.
def __get__(self, instance, owner): # we would want to have a method which accepts only the expected args def func(**kw): """Updates the request for provided parameters This docstring is overwritten below. See REQUESTER_DOC for expected functionality """ if not _routing_enabled(): raise RuntimeError( "This method is only available when metadata routing is enabled." " You can enable it using" " sklearn.set_config(enable_metadata_routing=True)." ) if self.validate_keys and (set(kw) - set(self.keys)): raise TypeError( f"Unexpected args: {set(kw) - set(self.keys)}. Accepted arguments" f" are: {set(self.keys)}" ) requests = instance._get_metadata_request() method_metadata_request = getattr(requests, self.name) for prop, alias in kw.items(): if alias is not UNCHANGED: method_metadata_request.add_request(param=prop, alias=alias) instance._metadata_request = requests return instance # Now we set the relevant attributes of the function so that it seems # like a normal method to the end user, with known expected arguments. func.__name__ = f"set_{self.name}_request" params = [ inspect.Parameter( name="self", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=owner, ) ] params.extend( [ inspect.Parameter( k, inspect.Parameter.KEYWORD_ONLY, default=UNCHANGED, annotation=Optional[Union[bool, None, str]], ) for k in self.keys ] ) func.__signature__ = inspect.Signature( params, return_annotation=owner, ) doc = REQUESTER_DOC.format(method=self.name) for metadata in self.keys: doc += REQUESTER_DOC_PARAM.format(metadata=metadata, method=self.name) doc += REQUESTER_DOC_RETURN func.__doc__ = doc return func
(self: optbinning.binning.multiclass_binning.MulticlassOptimalBinning, *, check_input: Union[bool, NoneType, str] = '$UNCHANGED$', x: Union[bool, NoneType, str] = '$UNCHANGED$') -> optbinning.binning.multiclass_binning.MulticlassOptimalBinning
4,739
optbinning.binning.multiclass_binning
to_json
Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved.
def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file.') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['special_codes'] = table.special_codes opt_bin_dict['splits'] = table.splits.tolist() opt_bin_dict['n_event'] = table.n_event.tolist() opt_bin_dict['classes'] = table.classes.tolist() with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file)
(self, path)
4,740
optbinning.binning.multiclass_binning
transform
Transform given data to mean Weight of Evidence (WoE) or weighted mean WoE using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array.
def transform(self, x, metric="mean_woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to mean Weight of Evidence (WoE) or weighted mean WoE using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str, optional (default="mean_woe") The metric used to transform the input vector. Supported metrics are "mean_woe" to choose the mean of Weight of Evidence (WoE), "weighted_mean_woe" to choose weighted mean of WoE using the number of records per class as weights, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical mean WoE or weighted mean WoE, and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ self._check_is_fitted() return transform_multiclass_target(self._splits_optimal, x, self._n_event, self.special_codes, metric, metric_special, metric_missing, show_digits, check_input)
(self, x, metric='mean_woe', metric_special=0, metric_missing=0, show_digits=2, check_input=False)
4,741
optbinning.binning.binning
OptimalBinning
Optimal binning of a numerical or categorical variable with respect to a binary target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "mdlp" for Minimum Description Length Principle (MDLP), "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver, "cp" to choose a constrained programming solver or "ls" to choose `LocalSolver <https://www.localsolver.com/>`_. divergence : str, optional (default="iv") The divergence measure in the objective function to be maximized. Supported divergences are "iv" (Information Value or Jeffrey's divergence), "js" (Jensen-Shannon), "hellinger" (Hellinger divergence) and "triangular" (triangular discrimination). .. versionadded:: 0.7.0 max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. min_bin_n_nonevent : int or None, optional (default=None) The minimum number of non-event records for each bin. If None, ``min_bin_n_nonevent = 1``. max_bin_n_nonevent : int or None, optional (default=None) The maximum number of non-event records for each bin. If None, then an unlimited number of non-event records for each bin. min_bin_n_event : int or None, optional (default=None) The minimum number of event records for each bin. If None, ``min_bin_n_event = 1``. max_bin_n_event : int or None, optional (default=None) The maximum number of event records for each bin. If None, then an unlimited number of event records for each bin. monotonic_trend : str or None, optional (default="auto") The **event rate** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins > 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_event_rate_diff : float, optional (default=0) The minimum event rate difference between consecutives bins. For solver "ls", this option currently only applies when monotonic_trend is “ascending”, “descending”, “peak_heuristic” or “valley_heuristic”. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. Option supported by solvers "cp" and "mip". max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. Option supported by solvers "cp" and "mip". .. versionadded:: 0.3.0 outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. class_weight : dict, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If None, all classes are supposed to have weight one. Check `sklearn.tree.DecisionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". cat_unknown : float, str or None (default=None) The assigned value to the unobserved categories in training but occurring during transform. If None, the assigned value to an unknown category follows this rule: - if transform metric == 'woe' then woe(mean event rate) = 0 - if transform metric == 'event_rate' then mean event rate - if transform metric == 'indices' then -1 - if transform metric == 'bins' then 'unknown' .. versionadded:: 0.17.1 user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. .. versionadded:: 0.5.0 special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. mip_solver : str, optional (default="bop") The mixed-integer programming solver. Supported solvers are "bop" to choose the Google OR-Tools binary optimizer or "cbc" to choose the COIN-OR Branch-and-Cut solver CBC. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keyword arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. A parameter value ``max_n_prebins`` greater than 100 is only recommended if ``solver="ls"``. The pre-binning refinement phase guarantee that no prebin has either zero counts of non-events or events by merging those pure prebins. Pure bins produce infinity WoE and IV measures. The mathematical formulation when ``solver="ls"`` does **not** currently support the ``max_pvalue`` constraint.
class OptimalBinning(BaseOptimalBinning): """Optimal binning of a numerical or categorical variable with respect to a binary target. Parameters ---------- name : str, optional (default="") The variable name. dtype : str, optional (default="numerical") The variable data type. Supported data types are "numerical" for continuous and ordinal variables and "categorical" for categorical and nominal variables. prebinning_method : str, optional (default="cart") The pre-binning method. Supported methods are "cart" for a CART decision tree, "mdlp" for Minimum Description Length Principle (MDLP), "quantile" to generate prebins with approximately same frequency and "uniform" to generate prebins with equal width. Method "cart" uses `sklearn.tree.DecisionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. solver : str, optional (default="cp") The optimizer to solve the optimal binning problem. Supported solvers are "mip" to choose a mixed-integer programming solver, "cp" to choose a constrained programming solver or "ls" to choose `LocalSolver <https://www.localsolver.com/>`_. divergence : str, optional (default="iv") The divergence measure in the objective function to be maximized. Supported divergences are "iv" (Information Value or Jeffrey's divergence), "js" (Jensen-Shannon), "hellinger" (Hellinger divergence) and "triangular" (triangular discrimination). .. versionadded:: 0.7.0 max_n_prebins : int (default=20) The maximum number of bins after pre-binning (prebins). min_prebin_size : float (default=0.05) The fraction of mininum number of records for each prebin. min_n_bins : int or None, optional (default=None) The minimum number of bins. If None, then ``min_n_bins`` is a value in ``[0, max_n_prebins]``. max_n_bins : int or None, optional (default=None) The maximum number of bins. If None, then ``max_n_bins`` is a value in ``[0, max_n_prebins]``. min_bin_size : float or None, optional (default=None) The fraction of minimum number of records for each bin. If None, ``min_bin_size = min_prebin_size``. max_bin_size : float or None, optional (default=None) The fraction of maximum number of records for each bin. If None, ``max_bin_size = 1.0``. min_bin_n_nonevent : int or None, optional (default=None) The minimum number of non-event records for each bin. If None, ``min_bin_n_nonevent = 1``. max_bin_n_nonevent : int or None, optional (default=None) The maximum number of non-event records for each bin. If None, then an unlimited number of non-event records for each bin. min_bin_n_event : int or None, optional (default=None) The minimum number of event records for each bin. If None, ``min_bin_n_event = 1``. max_bin_n_event : int or None, optional (default=None) The maximum number of event records for each bin. If None, then an unlimited number of event records for each bin. monotonic_trend : str or None, optional (default="auto") The **event rate** monotonic trend. Supported trends are “auto”, "auto_heuristic" and "auto_asc_desc" to automatically determine the trend maximizing IV using a machine learning classifier, "ascending", "descending", "concave", "convex", "peak" and "peak_heuristic" to allow a peak change point, and "valley" and "valley_heuristic" to allow a valley change point. Trends "auto_heuristic", "peak_heuristic" and "valley_heuristic" use a heuristic to determine the change point, and are significantly faster for large size instances (``max_n_prebins > 20``). Trend "auto_asc_desc" is used to automatically select the best monotonic trend between "ascending" and "descending". If None, then the monotonic constraint is disabled. min_event_rate_diff : float, optional (default=0) The minimum event rate difference between consecutives bins. For solver "ls", this option currently only applies when monotonic_trend is “ascending”, “descending”, “peak_heuristic” or “valley_heuristic”. max_pvalue : float or None, optional (default=None) The maximum p-value among bins. The Z-test is used to detect bins not satisfying the p-value constraint. Option supported by solvers "cp" and "mip". max_pvalue_policy : str, optional (default="consecutive") The method to determine bins not satisfying the p-value constraint. Supported methods are "consecutive" to compare consecutive bins and "all" to compare all bins. gamma : float, optional (default=0) Regularization strength to reduce the number of dominating bins. Larger values specify stronger regularization. Option supported by solvers "cp" and "mip". .. versionadded:: 0.3.0 outlier_detector : str or None, optional (default=None) The outlier detection method. Supported methods are "range" to use the interquartile range based method or "zcore" to use the modified Z-score method. outlier_params : dict or None, optional (default=None) Dictionary of parameters to pass to the outlier detection method. class_weight : dict, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If None, all classes are supposed to have weight one. Check `sklearn.tree.DecisionTreeClassifier <https://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html>`_. cat_cutoff : float or None, optional (default=None) Generate bin others with categories in which the fraction of occurrences is below the ``cat_cutoff`` value. This option is available when ``dtype`` is "categorical". cat_unknown : float, str or None (default=None) The assigned value to the unobserved categories in training but occurring during transform. If None, the assigned value to an unknown category follows this rule: - if transform metric == 'woe' then woe(mean event rate) = 0 - if transform metric == 'event_rate' then mean event rate - if transform metric == 'indices' then -1 - if transform metric == 'bins' then 'unknown' .. versionadded:: 0.17.1 user_splits : array-like or None, optional (default=None) The list of pre-binning split points when ``dtype`` is "numerical" or the list of prebins when ``dtype`` is "categorical". user_splits_fixed : array-like or None (default=None) The list of pre-binning split points that must be fixed. .. versionadded:: 0.5.0 special_codes : array-like, dict or None, optional (default=None) List of special codes. Use special codes to specify the data values that must be treated separately. split_digits : int or None, optional (default=None) The significant digits of the split points. If ``split_digits`` is set to 0, the split points are integers. If None, then all significant digits in the split points are considered. mip_solver : str, optional (default="bop") The mixed-integer programming solver. Supported solvers are "bop" to choose the Google OR-Tools binary optimizer or "cbc" to choose the COIN-OR Branch-and-Cut solver CBC. time_limit : int (default=100) The maximum time in seconds to run the optimization solver. verbose : bool (default=False) Enable verbose output. **prebinning_kwargs : keyword arguments The pre-binning keyword arguments. .. versionadded:: 0.6.1 Notes ----- The parameter values ``max_n_prebins`` and ``min_prebin_size`` control complexity and memory usage. The default values generally produce quality results, however, some improvement can be achieved by increasing ``max_n_prebins`` and/or decreasing ``min_prebin_size``. A parameter value ``max_n_prebins`` greater than 100 is only recommended if ``solver="ls"``. The pre-binning refinement phase guarantee that no prebin has either zero counts of non-events or events by merging those pure prebins. Pure bins produce infinity WoE and IV measures. The mathematical formulation when ``solver="ls"`` does **not** currently support the ``max_pvalue`` constraint. """ def __init__(self, name="", dtype="numerical", prebinning_method="cart", solver="cp", divergence="iv", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, min_bin_n_nonevent=None, max_bin_n_nonevent=None, min_bin_n_event=None, max_bin_n_event=None, monotonic_trend="auto", min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", gamma=0, outlier_detector=None, outlier_params=None, class_weight=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver="bop", time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = solver self.divergence = divergence self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.min_bin_n_event = min_bin_n_event self.max_bin_n_event = max_bin_n_event self.min_bin_n_nonevent = min_bin_n_nonevent self.max_bin_n_nonevent = max_bin_n_nonevent self.monotonic_trend = monotonic_trend self.min_event_rate_diff = min_event_rate_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.gamma = gamma self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.class_weight = class_weight self.cat_cutoff = cat_cutoff self.cat_unknown = cat_unknown self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.mip_solver = mip_solver self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._flag_min_n_event_nonevent = False self._categories = None self._cat_others = None self._n_event = None self._n_nonevent = None self._n_nonevent_missing = None self._n_event_missing = None self._n_nonevent_special = None self._n_event_special = None self._n_nonevent_cat_others = None self._n_event_cat_others = None self._problem_type = "classification" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._solution = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False def fit(self, x, y, sample_weight=None, check_input=False): """Fit the optimal binning according to the given training data. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- self : OptimalBinning Fitted optimal binning. """ return self._fit(x, y, sample_weight, check_input) def fit_transform(self, x, y, sample_weight=None, metric="woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Fit the optimal binning according to the given training data, then transform it. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. y : array-like, shape = (n_samples,) Target vector relative to x. sample_weight : array-like of shape (n_samples,) (default=None) Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Only applied if ``prebinning_method="cart"``. metric : str (default="woe") The metric used to transform the input vector. Supported metrics are "woe" to choose the Weight of Evidence, "event_rate" to choose the event rate, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate, and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. """ return self.fit(x, y, sample_weight, check_input).transform( x, metric, metric_special, metric_missing, show_digits, check_input) def transform(self, x, metric="woe", metric_special=0, metric_missing=0, show_digits=2, check_input=False): """Transform given data to Weight of Evidence (WoE) or event rate using bins from the fitted optimal binning. Parameters ---------- x : array-like, shape = (n_samples,) Training vector, where n_samples is the number of samples. metric : str (default="woe") The metric used to transform the input vector. Supported metrics are "woe" to choose the Weight of Evidence, "event_rate" to choose the event rate, "indices" to assign the corresponding indices of the bins and "bins" to assign the corresponding bin interval. metric_special : float or str (default=0) The metric value to transform special codes in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. metric_missing : float or str (default=0) The metric value to transform missing values in the input vector. Supported metrics are "empirical" to use the empirical WoE or event rate and any numerical value. show_digits : int, optional (default=2) The number of significant digits of the bin column. Applies when ``metric="bins"``. check_input : bool (default=False) Whether to check input arrays. Returns ------- x_new : numpy array, shape = (n_samples,) Transformed array. Notes ----- Transformation of data including categories not present during training return zero WoE or event rate. """ self._check_is_fitted() return transform_binary_target(self._splits_optimal, self.dtype, x, self._n_nonevent, self._n_event, self.special_codes, self._categories, self._cat_others, self.cat_unknown, metric, metric_special, metric_missing, self.user_splits, show_digits, check_input) def information(self, print_level=1): """Print overview information about the options settings, problem statistics, and the solution of the computation. Parameters ---------- print_level : int (default=1) Level of details. """ self._check_is_fitted() if not isinstance(print_level, numbers.Integral) or print_level < 0: raise ValueError("print_level must be an integer >= 0; got {}." .format(print_level)) binning_type = self.__class__.__name__.lower() if self._optimizer is not None: solver = self._optimizer time_solver = self._time_solver else: solver = None time_solver = 0 dict_user_options = self.get_params() print_binning_information(binning_type, print_level, self.name, self._status, self.solver, solver, self._time_total, self._time_preprocessing, self._time_prebinning, time_solver, self._time_optimizer, self._time_postprocessing, self._n_prebins, self._n_refinements, dict_user_options) def _fit(self, x, y, sample_weight, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, sw_clean, sw_missing, sw_special, sw_others] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params, None, None, self.class_weight, sample_weight) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: " "{}".format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: " "{}".format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories " "others: {}".format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_nonevent = np.array([]) n_event = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] else: [categories, user_splits, x_clean, y_clean, y_others, cat_others, sw_clean, sw_others, sorted_idx, ] = preprocessing_user_splits_categorical( self.user_splits, x_clean, y_clean, sw_clean) if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] splits, n_nonevent, n_event = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others) else: splits, n_nonevent, n_event = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, y_others, self.class_weight, sw_clean, sw_missing, sw_special, sw_others) self._n_prebins = len(n_nonevent) self._categories = categories self._cat_others = cat_others self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning: number of refinements: {}" .format(self._n_refinements)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_nonevent, n_event) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): t_info = target_info_samples(y_clean, sw_clean) n_nonevent = np.array([t_info[0]]) n_event = np.array([t_info[1]]) self._n_nonevent, self._n_event = bin_info( self._solution, n_nonevent, n_event, self._n_nonevent_missing, self._n_event_missing, self._n_nonevent_special, self._n_event_special, self._n_nonevent_cat_others, self._n_event_cat_others, cat_others) if self.dtype == "numerical": min_x = x_clean.min() max_x = x_clean.max() else: min_x = None max_x = None self._binning_table = BinningTable( self.name, self.dtype, self.special_codes, self._splits_optimal, self._n_nonevent, self._n_event, min_x, max_x, self._categories, self._cat_others, self.user_splits) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self def _fit_prebinning(self, x, y, y_missing, x_special, y_special, y_others, class_weight=None, sw_clean=None, sw_missing=None, sw_special=None, sw_others=None): min_bin_size = int(np.ceil(self.min_prebin_size * self._n_samples)) prebinning = PreBinning(method=self.prebinning_method, n_bins=self.max_n_prebins, min_bin_size=min_bin_size, problem_type=self._problem_type, class_weight=class_weight, **self.prebinning_kwargs ).fit(x, y, sw_clean) return self._prebinning_refinement(prebinning.splits, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others) def _fit_optimizer(self, splits, n_nonevent, n_event): if self.verbose: logger.info("Optimizer started.") time_init = time.perf_counter() if len(n_nonevent) <= 1: self._status = "OPTIMAL" self._splits_optimal = splits self._solution = np.zeros(len(splits), dtype=bool) if self.verbose: logger.warning("Optimizer: {} bins after pre-binning." .format(len(n_nonevent))) logger.warning("Optimizer: solver not run.") logger.info("Optimizer terminated. Time: 0s") return # Min/max number of bins if self.min_bin_size is not None: min_bin_size = int(np.ceil(self.min_bin_size * self._n_samples)) else: min_bin_size = self.min_bin_size if self.max_bin_size is not None: max_bin_size = int(np.ceil(self.max_bin_size * self._n_samples)) else: max_bin_size = self.max_bin_size # Min number of event and nonevent per bin if (self.divergence in ("hellinger", "triangular") and self._flag_min_n_event_nonevent): if self.min_bin_n_nonevent is None: min_bin_n_nonevent = 1 else: min_bin_n_nonevent = max(self.min_bin_n_nonevent, 1) if self.min_bin_n_event is None: min_bin_n_event = 1 else: min_bin_n_event = max(self.min_bin_n_event, 1) else: min_bin_n_nonevent = self.min_bin_n_nonevent min_bin_n_event = self.min_bin_n_event # Monotonic trend trend_change = None if self.dtype == "numerical": auto_monotonic_modes = ("auto", "auto_heuristic", "auto_asc_desc") if self.monotonic_trend in auto_monotonic_modes: monotonic = auto_monotonic(n_nonevent, n_event, self.monotonic_trend) if self.monotonic_trend == "auto_heuristic": if monotonic in ("peak", "valley"): if monotonic == "peak": monotonic = "peak_heuristic" else: monotonic = "valley_heuristic" event_rate = n_event / (n_nonevent + n_event) trend_change = peak_valley_trend_change_heuristic( event_rate, monotonic) if self.verbose: logger.info("Optimizer: classifier predicts {} " "monotonic trend.".format(monotonic)) else: monotonic = self.monotonic_trend if monotonic in ("peak_heuristic", "valley_heuristic"): event_rate = n_event / (n_nonevent + n_event) trend_change = peak_valley_trend_change_heuristic( event_rate, monotonic) if self.verbose: logger.info("Optimizer: trend change position {}." .format(trend_change)) else: monotonic = self.monotonic_trend if monotonic is not None: monotonic = "ascending" if self.verbose: if monotonic is None: logger.info("Optimizer: monotonic trend not set.") else: logger.info("Optimizer: monotonic trend set to {}." .format(monotonic)) if self.solver == "cp": optimizer = BinningCP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, min_bin_n_event, self.max_bin_n_event, min_bin_n_nonevent, self.max_bin_n_nonevent, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.gamma, self.user_splits_fixed, self.time_limit) elif self.solver == "mip": optimizer = BinningMIP(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, min_bin_n_event, self.max_bin_n_event, min_bin_n_nonevent, self.max_bin_n_nonevent, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.gamma, self.user_splits_fixed, self.mip_solver, self.time_limit) elif self.solver == "ls": optimizer = BinningLS(monotonic, self.min_n_bins, self.max_n_bins, min_bin_size, max_bin_size, min_bin_n_event, self.max_bin_n_event, min_bin_n_nonevent, self.max_bin_n_nonevent, self.min_event_rate_diff, self.max_pvalue, self.max_pvalue_policy, self.user_splits_fixed, self.time_limit) if self.verbose: logger.info("Optimizer: build model...") optimizer.build_model(self.divergence, n_nonevent, n_event, trend_change) if self.verbose: logger.info("Optimizer: solve...") status, solution = optimizer.solve() self._solution = solution self._optimizer, self._time_optimizer = solver_statistics( self.solver, optimizer.solver_) self._status = status if self.dtype == "categorical" and self.user_splits is not None: self._splits_optimal = splits[solution] else: self._splits_optimal = splits[solution[:-1]] self._time_solver = time.perf_counter() - time_init if self.verbose: logger.info("Optimizer terminated. Time: {:.4f}s" .format(self._time_solver)) def _prebinning_refinement(self, splits_prebinning, x, y, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others): y0 = (y == 0) y1 = ~y0 # Compute n_nonevent and n_event for special, missing and others. self._n_nonevent_special, self._n_event_special = target_info_special( self.special_codes, x_special, y_special, sw_special) self._n_nonevent_missing, self._n_event_missing = target_info_samples( y_missing, sw_missing) if len(y_others): (self._n_nonevent_cat_others, self._n_event_cat_others) = target_info_samples( y_others, sw_others) n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.split_digits is not None: splits_prebinning = np.round(splits_prebinning, self.split_digits) splits_prebinning, n_nonevent, n_event = self._compute_prebins( splits_prebinning, x, y0, y1, sw_clean) return splits_prebinning, n_nonevent, n_event def _compute_prebins(self, splits_prebinning, x, y0, y1, sw): n_splits = len(splits_prebinning) if not n_splits: return splits_prebinning, np.array([]), np.array([]) if self.dtype == "categorical" and self.user_splits is not None: indices = np.digitize(x, splits_prebinning, right=True) n_bins = n_splits else: indices = np.digitize(x, splits_prebinning, right=False) n_bins = n_splits + 1 n_nonevent = np.empty(n_bins, dtype=np.int64) n_event = np.empty(n_bins, dtype=np.int64) for i in range(n_bins): mask = (indices == i) n_nonevent[i] = np.sum(sw[y0 & mask]) n_event[i] = np.sum(sw[y1 & mask]) mask_remove = (n_nonevent == 0) | (n_event == 0) if np.any(mask_remove): if self.divergence in ("hellinger", "triangular"): self._flag_min_n_event_nonevent = True else: self._n_refinements += 1 if (self.dtype == "categorical" and self.user_splits is not None): mask_splits = mask_remove else: mask_splits = np.concatenate([ mask_remove[:-2], [mask_remove[-2] | mask_remove[-1]]]) if self.user_splits_fixed is not None: user_splits_fixed = np.asarray(self.user_splits_fixed) user_splits = np.asarray(self.user_splits) fixed_remove = user_splits_fixed & mask_splits if any(fixed_remove): raise ValueError( "Fixed user_splits {} are removed " "because produce pure prebins. Provide " "different splits to be fixed." .format(user_splits[fixed_remove])) # Update boolean array of fixed user splits. self.user_splits_fixed = user_splits_fixed[~mask_splits] self.user_splits = user_splits[~mask_splits] splits = splits_prebinning[~mask_splits] if self.verbose: logger.info("Pre-binning: number prebins removed: {}" .format(np.count_nonzero(mask_remove))) [splits_prebinning, n_nonevent, n_event] = self._compute_prebins(splits, x, y0, y1, sw) return splits_prebinning, n_nonevent, n_event @property def binning_table(self): """Return an instantiated binning table. Please refer to :ref:`Binning table: binary target`. Returns ------- binning_table : BinningTable """ self._check_is_fitted() return self._binning_table @property def splits(self): """List of optimal split points when ``dtype`` is set to "numerical" or list of optimal bins when ``dtype`` is set to "categorical". Returns ------- splits : numpy.ndarray """ self._check_is_fitted() if self.dtype == "numerical": return self._splits_optimal else: return bin_categorical(self._splits_optimal, self._categories, self._cat_others, self.user_splits) @property def status(self): """The status of the underlying optimization solver. Returns ------- status : str """ self._check_is_fitted() return self._status def to_json(self, path): """ Save optimal bins and/or splits points and transformation depending on the target type. Parameters ---------- path: The path where the json is going to be saved. """ if path is None: raise ValueError('Specify the path for the json file') table = self.binning_table opt_bin_dict = dict() opt_bin_dict['name'] = table.name opt_bin_dict['dtype'] = table.dtype opt_bin_dict['special_codes'] = table.special_codes if table.dtype == 'numerical': opt_bin_dict['splits'] = table.splits.tolist() elif table.dtype == 'categorical': opt_bin_dict['splits'] = [split.tolist() for split in table.splits] opt_bin_dict['n_nonevent'] = table.n_nonevent.tolist() opt_bin_dict['n_event'] = table.n_event.tolist() opt_bin_dict['min_x'] = table.min_x opt_bin_dict['max_x'] = table.max_x opt_bin_dict['categories'] = table.categories opt_bin_dict['cat_others'] = table.cat_others opt_bin_dict['user_splits'] = table.user_splits with open(path, "w") as write_file: json.dump(opt_bin_dict, write_file) def read_json(self, path): """ Read json file containing split points and set them as the new split points. Parameters ---------- path: The path of the json file. """ self._is_fitted = True with open(path, "r") as read_file: bin_table_attr = json.load(read_file) for key in bin_table_attr.keys(): if isinstance(bin_table_attr[key], list): bin_table_attr[key] = np.array(bin_table_attr[key]) self._binning_table = BinningTable(**bin_table_attr)
(name='', dtype='numerical', prebinning_method='cart', solver='cp', divergence='iv', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, min_bin_n_nonevent=None, max_bin_n_nonevent=None, min_bin_n_event=None, max_bin_n_event=None, monotonic_trend='auto', min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', gamma=0, outlier_detector=None, outlier_params=None, class_weight=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver='bop', time_limit=100, verbose=False, **prebinning_kwargs)
4,743
optbinning.binning.binning
__init__
null
def __init__(self, name="", dtype="numerical", prebinning_method="cart", solver="cp", divergence="iv", max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, min_bin_n_nonevent=None, max_bin_n_nonevent=None, min_bin_n_event=None, max_bin_n_event=None, monotonic_trend="auto", min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy="consecutive", gamma=0, outlier_detector=None, outlier_params=None, class_weight=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver="bop", time_limit=100, verbose=False, **prebinning_kwargs): self.name = name self.dtype = dtype self.prebinning_method = prebinning_method self.solver = solver self.divergence = divergence self.max_n_prebins = max_n_prebins self.min_prebin_size = min_prebin_size self.min_n_bins = min_n_bins self.max_n_bins = max_n_bins self.min_bin_size = min_bin_size self.max_bin_size = max_bin_size self.min_bin_n_event = min_bin_n_event self.max_bin_n_event = max_bin_n_event self.min_bin_n_nonevent = min_bin_n_nonevent self.max_bin_n_nonevent = max_bin_n_nonevent self.monotonic_trend = monotonic_trend self.min_event_rate_diff = min_event_rate_diff self.max_pvalue = max_pvalue self.max_pvalue_policy = max_pvalue_policy self.gamma = gamma self.outlier_detector = outlier_detector self.outlier_params = outlier_params self.class_weight = class_weight self.cat_cutoff = cat_cutoff self.cat_unknown = cat_unknown self.user_splits = user_splits self.user_splits_fixed = user_splits_fixed self.special_codes = special_codes self.split_digits = split_digits self.mip_solver = mip_solver self.time_limit = time_limit self.verbose = verbose self.prebinning_kwargs = prebinning_kwargs # auxiliary self._flag_min_n_event_nonevent = False self._categories = None self._cat_others = None self._n_event = None self._n_nonevent = None self._n_nonevent_missing = None self._n_event_missing = None self._n_nonevent_special = None self._n_event_special = None self._n_nonevent_cat_others = None self._n_event_cat_others = None self._problem_type = "classification" # info self._binning_table = None self._n_prebins = None self._n_refinements = 0 self._n_samples = None self._optimizer = None self._solution = None self._splits_optimal = None self._status = None # timing self._time_total = None self._time_preprocessing = None self._time_prebinning = None self._time_solver = None self._time_optimizer = None self._time_postprocessing = None self._is_fitted = False
(self, name='', dtype='numerical', prebinning_method='cart', solver='cp', divergence='iv', max_n_prebins=20, min_prebin_size=0.05, min_n_bins=None, max_n_bins=None, min_bin_size=None, max_bin_size=None, min_bin_n_nonevent=None, max_bin_n_nonevent=None, min_bin_n_event=None, max_bin_n_event=None, monotonic_trend='auto', min_event_rate_diff=0, max_pvalue=None, max_pvalue_policy='consecutive', gamma=0, outlier_detector=None, outlier_params=None, class_weight=None, cat_cutoff=None, cat_unknown=None, user_splits=None, user_splits_fixed=None, special_codes=None, split_digits=None, mip_solver='bop', time_limit=100, verbose=False, **prebinning_kwargs)
4,751
optbinning.binning.binning
_fit
null
def _fit(self, x, y, sample_weight, check_input): time_init = time.perf_counter() if self.verbose: logger.info("Optimal binning started.") logger.info("Options: check parameters.") _check_parameters(**self.get_params()) # Pre-processing if self.verbose: logger.info("Pre-processing started.") self._n_samples = len(x) if self.verbose: logger.info("Pre-processing: number of samples: {}" .format(self._n_samples)) time_preprocessing = time.perf_counter() [x_clean, y_clean, x_missing, y_missing, x_special, y_special, y_others, categories, cat_others, sw_clean, sw_missing, sw_special, sw_others] = split_data( self.dtype, x, y, self.special_codes, self.cat_cutoff, self.user_splits, check_input, self.outlier_detector, self.outlier_params, None, None, self.class_weight, sample_weight) self._time_preprocessing = time.perf_counter() - time_preprocessing if self.verbose: n_clean = len(x_clean) n_missing = len(x_missing) n_special = len(x_special) logger.info("Pre-processing: number of clean samples: {}" .format(n_clean)) logger.info("Pre-processing: number of missing samples: {}" .format(n_missing)) logger.info("Pre-processing: number of special samples: {}" .format(n_special)) if self.outlier_detector is not None: n_outlier = self._n_samples-(n_clean + n_missing + n_special) logger.info("Pre-processing: number of outlier samples: " "{}".format(n_outlier)) if self.dtype == "categorical": n_categories = len(categories) n_categories_others = len(cat_others) n_others = len(y_others) logger.info("Pre-processing: number of others samples: " "{}".format(n_others)) logger.info("Pre-processing: number of categories: {}" .format(n_categories)) logger.info("Pre-processing: number of categories " "others: {}".format(n_categories_others)) logger.info("Pre-processing terminated. Time: {:.4f}s" .format(self._time_preprocessing)) # Pre-binning if self.verbose: logger.info("Pre-binning started.") time_prebinning = time.perf_counter() if self.user_splits is not None: n_splits = len(self.user_splits) if self.verbose: logger.info("Pre-binning: user splits supplied: {}" .format(n_splits)) if not n_splits: splits = self.user_splits n_nonevent = np.array([]) n_event = np.array([]) else: if self.dtype == "numerical": user_splits = check_array( self.user_splits, ensure_2d=False, dtype=None, force_all_finite=True) if len(set(user_splits)) != len(user_splits): raise ValueError("User splits are not unique.") sorted_idx = np.argsort(user_splits) user_splits = user_splits[sorted_idx] else: [categories, user_splits, x_clean, y_clean, y_others, cat_others, sw_clean, sw_others, sorted_idx, ] = preprocessing_user_splits_categorical( self.user_splits, x_clean, y_clean, sw_clean) if self.user_splits_fixed is not None: self.user_splits_fixed = np.asarray( self.user_splits_fixed)[sorted_idx] splits, n_nonevent, n_event = self._prebinning_refinement( user_splits, x_clean, y_clean, y_missing, x_special, y_special, y_others, sw_clean, sw_missing, sw_special, sw_others) else: splits, n_nonevent, n_event = self._fit_prebinning( x_clean, y_clean, y_missing, x_special, y_special, y_others, self.class_weight, sw_clean, sw_missing, sw_special, sw_others) self._n_prebins = len(n_nonevent) self._categories = categories self._cat_others = cat_others self._time_prebinning = time.perf_counter() - time_prebinning if self.verbose: logger.info("Pre-binning: number of prebins: {}" .format(self._n_prebins)) logger.info("Pre-binning: number of refinements: {}" .format(self._n_refinements)) logger.info("Pre-binning terminated. Time: {:.4f}s" .format(self._time_prebinning)) # Optimization self._fit_optimizer(splits, n_nonevent, n_event) # Post-processing if self.verbose: logger.info("Post-processing started.") logger.info("Post-processing: compute binning information.") time_postprocessing = time.perf_counter() if not len(splits): t_info = target_info_samples(y_clean, sw_clean) n_nonevent = np.array([t_info[0]]) n_event = np.array([t_info[1]]) self._n_nonevent, self._n_event = bin_info( self._solution, n_nonevent, n_event, self._n_nonevent_missing, self._n_event_missing, self._n_nonevent_special, self._n_event_special, self._n_nonevent_cat_others, self._n_event_cat_others, cat_others) if self.dtype == "numerical": min_x = x_clean.min() max_x = x_clean.max() else: min_x = None max_x = None self._binning_table = BinningTable( self.name, self.dtype, self.special_codes, self._splits_optimal, self._n_nonevent, self._n_event, min_x, max_x, self._categories, self._cat_others, self.user_splits) self._time_postprocessing = time.perf_counter() - time_postprocessing if self.verbose: logger.info("Post-processing terminated. Time: {:.4f}s" .format(self._time_postprocessing)) self._time_total = time.perf_counter() - time_init if self.verbose: logger.info("Optimal binning terminated. Status: {}. Time: {:.4f}s" .format(self._status, self._time_total)) # Completed successfully self._is_fitted = True return self
(self, x, y, sample_weight, check_input)