index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
726,284
penne.delegates
update_client_view
Notify the server of an area of interest for the client
def update_client_view(self, direction: Vec3, angle: float): """Notify the server of an area of interest for the client""" self.client_view(direction, angle)
(self, direction: List[float], angle: float)
726,285
penne.delegates
Entity
Container for other entities, possibly renderable, has associated methods and signals Can reference other entities, geometry, plots, and lights. It can be rendered, if it has a render rep. It may have associated methods and signals. The transform is relative to the parent entity. In other contexts it may be called a node. Attributes: id: ID for the entity name: Name of the entity parent: Parent entity transform: Local transform for the entity text_rep: Text representation for the entity web_rep: Web representation for the entity render_rep: Render representation for the entity lights: List of lights attached to the entity tables: List of tables attached to the entity plots: List of plots attached to the entity tags: List of tags for the entity methods_list: List of methods attached to the entity signals_list: List of signals attached to the entity influence: Bounding box for the entity
class Entity(Delegate): """Container for other entities, possibly renderable, has associated methods and signals Can reference other entities, geometry, plots, and lights. It can be rendered, if it has a render rep. It may have associated methods and signals. The transform is relative to the parent entity. In other contexts it may be called a node. Attributes: id: ID for the entity name: Name of the entity parent: Parent entity transform: Local transform for the entity text_rep: Text representation for the entity web_rep: Web representation for the entity render_rep: Render representation for the entity lights: List of lights attached to the entity tables: List of tables attached to the entity plots: List of plots attached to the entity tags: List of tags for the entity methods_list: List of methods attached to the entity signals_list: List of signals attached to the entity influence: Bounding box for the entity """ id: EntityID name: Optional[str] = "Unnamed Entity Delegate" parent: Optional[EntityID] = None transform: Optional[Mat4] = None null_rep: Optional[Any] = None text_rep: Optional[TextRepresentation] = None web_rep: Optional[WebRepresentation] = None render_rep: Optional[RenderRepresentation] = None lights: Optional[List[LightID]] = None tables: Optional[List[TableID]] = None plots: Optional[List[PlotID]] = None tags: Optional[List[str]] = None methods_list: Optional[List[MethodID]] = None signals_list: Optional[List[SignalID]] = None influence: Optional[BoundingBox] = None # Injected methods set_position: Optional[InjectedMethod] = None set_rotation: Optional[InjectedMethod] = None set_scale: Optional[InjectedMethod] = None activate: Optional[InjectedMethod] = None get_activation_choices: Optional[InjectedMethod] = None get_var_keys: Optional[InjectedMethod] = None get_var_options: Optional[InjectedMethod] = None get_var_value: Optional[InjectedMethod] = None set_var_value: Optional[InjectedMethod] = None select_region: Optional[InjectedMethod] = None select_sphere: Optional[InjectedMethod] = None select_half_plane: Optional[InjectedMethod] = None select_hull: Optional[InjectedMethod] = None probe_at: Optional[InjectedMethod] = None def on_new(self, message: dict): # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list) def on_update(self, message: dict): # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list) def request_set_position(self, position: Vec3): """Request to set the position of the entity Args: position (Vec3): Position to set """ self.set_position(position) def request_set_rotation(self, rotation: Vec4): """Request to set the rotation of the entity Args: rotation (Vec4): Rotation to set """ self.set_rotation(rotation) def request_set_scale(self, scale: Vec3): """Request to set the scale of the entity Args: scale (Vec3): Scale to set """ self.set_scale(scale) def show_methods(self): """Show methods available on the entity""" if self.methods_list is None: message = "No methods available" else: message = f"-- Methods on {self.name} --\n--------------------------------------\n" for method_id in self.methods_list: method = self.client.get_delegate(method_id) message += f">> {method}" print(message) return message
(*, client: object = None, id: penne.delegates.EntityID, name: Optional[str] = 'Unnamed Entity Delegate', signals: Optional[dict] = {}, parent: Optional[penne.delegates.EntityID] = None, transform: Optional[List[float]] = None, null_rep: Optional[Any] = None, text_rep: Optional[penne.delegates.TextRepresentation] = None, web_rep: Optional[penne.delegates.WebRepresentation] = None, render_rep: Optional[penne.delegates.RenderRepresentation] = None, lights: Optional[List[penne.delegates.LightID]] = None, tables: Optional[List[penne.delegates.TableID]] = None, plots: Optional[List[penne.delegates.PlotID]] = None, tags: Optional[List[str]] = None, methods_list: Optional[List[penne.delegates.MethodID]] = None, signals_list: Optional[List[penne.delegates.SignalID]] = None, influence: Optional[penne.delegates.BoundingBox] = None, set_position: Optional[penne.delegates.InjectedMethod] = None, set_rotation: Optional[penne.delegates.InjectedMethod] = None, set_scale: Optional[penne.delegates.InjectedMethod] = None, activate: Optional[penne.delegates.InjectedMethod] = None, get_activation_choices: Optional[penne.delegates.InjectedMethod] = None, get_var_keys: Optional[penne.delegates.InjectedMethod] = None, get_var_options: Optional[penne.delegates.InjectedMethod] = None, get_var_value: Optional[penne.delegates.InjectedMethod] = None, set_var_value: Optional[penne.delegates.InjectedMethod] = None, select_region: Optional[penne.delegates.InjectedMethod] = None, select_sphere: Optional[penne.delegates.InjectedMethod] = None, select_half_plane: Optional[penne.delegates.InjectedMethod] = None, select_hull: Optional[penne.delegates.InjectedMethod] = None, probe_at: Optional[penne.delegates.InjectedMethod] = None, **extra_data: Any) -> None
726,313
penne.delegates
on_new
null
def on_new(self, message: dict): # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list)
(self, message: dict)
726,315
penne.delegates
on_update
null
def on_update(self, message: dict): # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list)
(self, message: dict)
726,316
penne.delegates
request_set_position
Request to set the position of the entity Args: position (Vec3): Position to set
def request_set_position(self, position: Vec3): """Request to set the position of the entity Args: position (Vec3): Position to set """ self.set_position(position)
(self, position: List[float])
726,317
penne.delegates
request_set_rotation
Request to set the rotation of the entity Args: rotation (Vec4): Rotation to set
def request_set_rotation(self, rotation: Vec4): """Request to set the rotation of the entity Args: rotation (Vec4): Rotation to set """ self.set_rotation(rotation)
(self, rotation: List[float])
726,318
penne.delegates
request_set_scale
Request to set the scale of the entity Args: scale (Vec3): Scale to set
def request_set_scale(self, scale: Vec3): """Request to set the scale of the entity Args: scale (Vec3): Scale to set """ self.set_scale(scale)
(self, scale: List[float])
726,319
penne.delegates
show_methods
Show methods available on the entity
def show_methods(self): """Show methods available on the entity""" if self.methods_list is None: message = "No methods available" else: message = f"-- Methods on {self.name} --\n--------------------------------------\n" for method_id in self.methods_list: method = self.client.get_delegate(method_id) message += f">> {method}" print(message) return message
(self)
726,320
penne.delegates
EntityID
ID specific to entities
class EntityID(ID): """ID specific to entities""" pass
(slot: int, gen: int)
726,333
penne.delegates
Format
String indicating format of byte data for an attribute Used in Attribute inside of geometry patch. Takes value of either U8, U16, U32, U8VEC4, U16VEC2, VEC2, VEC3, VEC4, MAT3, or MAT4
class Format(Enum): """String indicating format of byte data for an attribute Used in Attribute inside of geometry patch. Takes value of either U8, U16, U32, U8VEC4, U16VEC2, VEC2, VEC3, VEC4, MAT3, or MAT4 """ u8 = "U8" u16 = "U16" u32 = "U32" u8vec4 = "U8VEC4" u16vec2 = "U16VEC2" vec2 = "VEC2" vec3 = "VEC3" vec4 = "VEC4" mat3 = "MAT3" mat4 = "MAT4"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,334
penne.delegates
Geometry
Represents geometry in the scene and can be used for meshes This is more of a collection of patches, but each patch will contain the geometry information to render a mesh. The patch references buffer views and buffers for each attribute, and a material to use for rendering. Instances are stored in a separate buffer that is referenced at the entity level. Attributes: id: ID for the geometry name: Name of the geometry patches: Patches that make up the geometry
class Geometry(Delegate): """Represents geometry in the scene and can be used for meshes This is more of a collection of patches, but each patch will contain the geometry information to render a mesh. The patch references buffer views and buffers for each attribute, and a material to use for rendering. Instances are stored in a separate buffer that is referenced at the entity level. Attributes: id: ID for the geometry name: Name of the geometry patches: Patches that make up the geometry """ id: GeometryID name: Optional[str] = "Unnamed Geometry Delegate" patches: List[GeometryPatch]
(*, client: object = None, id: penne.delegates.GeometryID, name: Optional[str] = 'Unnamed Geometry Delegate', signals: Optional[dict] = {}, patches: List[penne.delegates.GeometryPatch], **extra_data: Any) -> None
726,365
penne.delegates
GeometryID
ID specific to geometries
class GeometryID(ID): """ID specific to geometries""" pass
(slot: int, gen: int)
726,377
penne.delegates
GeometryPatch
Geometry patch for a mesh Principle object used in geometry delegates. A geometry patch combines vertex data from attributes and index data from indices. Attributes: attributes (List[Attribute]): List of attributes storing vertex data for the mesh vertex_count (int): Number of vertices in the mesh indices (Optional[Index]): Indices for the mesh type (PrimitiveType): Type of primitive to render material (MaterialID): Material to use for rendering
class GeometryPatch(NoodleObject): """Geometry patch for a mesh Principle object used in geometry delegates. A geometry patch combines vertex data from attributes and index data from indices. Attributes: attributes (List[Attribute]): List of attributes storing vertex data for the mesh vertex_count (int): Number of vertices in the mesh indices (Optional[Index]): Indices for the mesh type (PrimitiveType): Type of primitive to render material (MaterialID): Material to use for rendering """ attributes: List[Attribute] vertex_count: int indices: Optional[Index] = None type: PrimitiveType material: MaterialID # Material ID
(*, attributes: List[penne.delegates.Attribute], vertex_count: int, indices: Optional[penne.delegates.Index] = None, type: penne.delegates.PrimitiveType, material: penne.delegates.MaterialID, **extra_data: Any) -> None
726,405
penne.delegates
ID
Base class for all ID's Each ID is composed of a slot and a generation, resulting in a tuple like id ex. (0, 0). Both are positive integers that are filled in increasing order. Slots are taken first, but once the slot is freed, it can be used with a new generation. For example, a method is created -> (0, 0), then another is created -> (1, 0), then method (0, 0) is deleted. Now, the next method created will be (0, 1). Attributes: slot (int): Slot of the ID gen (int): Generation of the ID
class ID(NamedTuple): """Base class for all ID's Each ID is composed of a slot and a generation, resulting in a tuple like id ex. (0, 0). Both are positive integers that are filled in increasing order. Slots are taken first, but once the slot is freed, it can be used with a new generation. For example, a method is created -> (0, 0), then another is created -> (1, 0), then method (0, 0) is deleted. Now, the next method created will be (0, 1). Attributes: slot (int): Slot of the ID gen (int): Generation of the ID """ slot: int gen: int def compact_str(self): return f"|{self.slot}/{self.gen}|" def __str__(self): return f"{type(self).__name__}{self.compact_str()}" def __key(self): return type(self), self.slot, self.gen def __eq__(self, other: object) -> bool: if type(other) is type(self): return self.__key() == other.__key() else: return False def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.__key())
(slot: int, gen: int)
726,417
penne.delegates
Image
An image, can be used for a texture Like a buffer, an image can be stored in a URI to reduce the size of messages. To obtain the bytes, you would have to make an HTTP request to the URI. Attributes: id: ID for the image name: Name of the image buffer_source: Buffer that the image is stored in uri_source: URI for the bytes if they are hosted externally
class Image(Delegate): """An image, can be used for a texture Like a buffer, an image can be stored in a URI to reduce the size of messages. To obtain the bytes, you would have to make an HTTP request to the URI. Attributes: id: ID for the image name: Name of the image buffer_source: Buffer that the image is stored in uri_source: URI for the bytes if they are hosted externally """ id: ImageID name: Optional[str] = "Unnamed Image Delegate" buffer_source: Optional[BufferID] = None uri_source: Optional[str] = None @model_validator(mode="after") def one_of(cls, model): if bool(model.buffer_source) != bool(model.uri_source): return model else: raise ValueError("One plot type must be specified")
(*, client: object = None, id: penne.delegates.ImageID, name: Optional[str] = 'Unnamed Image Delegate', signals: Optional[dict] = {}, buffer_source: Optional[penne.delegates.BufferID] = None, uri_source: Optional[str] = None, **extra_data: Any) -> None
726,448
penne.delegates
ImageID
ID specific to images
class ImageID(ID): """ID specific to images""" pass
(slot: int, gen: int)
726,460
penne.delegates
Index
Index for a geometry patch The index is a view into a buffer that corresponds to the indices of the mesh. The index allows the mesh to connect vertices and render triangles, lines, or points. Attributes: view (BufferViewID): View of the buffer storing the data count (int): Number of indices offset (Optional[int]): Offset into buffer stride (Optional[int]): Distance, in bytes, between data for two elements in the buffer format (IndexFormat): How many bytes per element, how to decode the bytes
class Index(NoodleObject): """Index for a geometry patch The index is a view into a buffer that corresponds to the indices of the mesh. The index allows the mesh to connect vertices and render triangles, lines, or points. Attributes: view (BufferViewID): View of the buffer storing the data count (int): Number of indices offset (Optional[int]): Offset into buffer stride (Optional[int]): Distance, in bytes, between data for two elements in the buffer format (IndexFormat): How many bytes per element, how to decode the bytes """ view: BufferViewID count: int offset: Optional[int] = 0 stride: Optional[int] = 0 format: IndexFormat
(*, view: penne.delegates.BufferViewID, count: int, offset: Optional[int] = 0, stride: Optional[int] = 0, format: penne.delegates.IndexFormat, **extra_data: Any) -> None
726,488
penne.delegates
IndexFormat
String indicating format of byte data for an index Used in Index inside of geometry patch. Takes value of either U8, U16, or U32
class IndexFormat(str, Enum): """String indicating format of byte data for an index Used in Index inside of geometry patch. Takes value of either U8, U16, or U32 """ u8 = "U8" u16 = "U16" u32 = "U32"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,489
penne.delegates
InjectedMethod
Class for representing injected method in delegate The context is automatically set when invoked. This object is callable and is what is actually called when the injected method is called. Attributes: method (Callable): method to be called injected (bool): attribute marking method as injected, useful for clearing out old injected methods
class InjectedMethod(object): """Class for representing injected method in delegate The context is automatically set when invoked. This object is callable and is what is actually called when the injected method is called. Attributes: method (Callable): method to be called injected (bool): attribute marking method as injected, useful for clearing out old injected methods """ def __init__(self, method_obj) -> None: self.method = method_obj self.injected = True def __call__(self, *args, **kwargs): self.method(*args, **kwargs)
(method_obj) -> 'None'
726,490
penne.delegates
__call__
null
def __call__(self, *args, **kwargs): self.method(*args, **kwargs)
(self, *args, **kwargs)
726,491
penne.delegates
__init__
null
def __init__(self, method_obj) -> None: self.method = method_obj self.injected = True
(self, method_obj) -> NoneType
726,492
penne.delegates
InstanceSource
Source of instances for a geometry patch Attributes: view (BufferViewID): View of mat4 stride (int): Stride for buffer, defaults to tightly packed bb (BoundingBox): Bounding box of instances
class InstanceSource(NoodleObject): """Source of instances for a geometry patch Attributes: view (BufferViewID): View of mat4 stride (int): Stride for buffer, defaults to tightly packed bb (BoundingBox): Bounding box of instances """ view: BufferViewID stride: Optional[int] = 0 bb: Optional[BoundingBox] = None
(*, view: penne.delegates.BufferViewID, stride: Optional[int] = 0, bb: Optional[penne.delegates.BoundingBox] = None, **extra_data: Any) -> None
726,520
penne.delegates
Invoke
null
class Invoke(NoodleObject): id: SignalID context: Optional[InvokeIDType] = None # if empty - document signal_data: List[Any]
(*, id: penne.delegates.SignalID, context: Optional[penne.delegates.InvokeIDType] = None, signal_data: List[Any], **extra_data: Any) -> None
726,548
penne.delegates
InvokeIDType
Context for invoking a signal Attributes: entity (Optional[EntityID]): Entity to invoke signal on table (Optional[TableID]): Table to invoke signal on plot (Optional[PlotID]): Plot to invoke signal on
class InvokeIDType(NoodleObject): """Context for invoking a signal Attributes: entity (Optional[EntityID]): Entity to invoke signal on table (Optional[TableID]): Table to invoke signal on plot (Optional[PlotID]): Plot to invoke signal on """ entity: Optional[EntityID] = None table: Optional[TableID] = None plot: Optional[PlotID] = None @model_validator(mode="after") def one_of_three(cls, model): num_set = bool(model.entity) + bool(model.table) + bool(model.plot) if num_set != 1: raise ValueError("Must set exactly one of entity, table, or plot") return model
(*, entity: Optional[penne.delegates.EntityID] = None, table: Optional[penne.delegates.TableID] = None, plot: Optional[penne.delegates.PlotID] = None, **extra_data: Any) -> None
726,576
penne.delegates
Light
Represents a light in the scene For these purposes, a light is just a couple of properties like color, intensity, and light type. The entity that stores the light will dictate position and direction with its transform. The client application is then responsible for using this information to render the light. The light is either a point light, a spotlight, or a directional light. Attributes: id: ID for the light name: Name of the light color: Color of the light intensity: Intensity of the light point: Point light information spot: Spotlight information directional: Directional light information
class Light(Delegate): """Represents a light in the scene For these purposes, a light is just a couple of properties like color, intensity, and light type. The entity that stores the light will dictate position and direction with its transform. The client application is then responsible for using this information to render the light. The light is either a point light, a spotlight, or a directional light. Attributes: id: ID for the light name: Name of the light color: Color of the light intensity: Intensity of the light point: Point light information spot: Spotlight information directional: Directional light information """ id: LightID name: Optional[str] = "Unnamed Light Delegate" color: Optional[Color] = Color('white') intensity: Optional[float] = 1.0 point: Optional[PointLight] = None spot: Optional[SpotLight] = None directional: Optional[DirectionalLight] = None @field_validator("color", mode='before') def check_color_rgb(cls, value): # Raise warning if format is wrong if len(value) != 3: logging.warning(f"Color is not RGB in Light: {value}") return value @model_validator(mode="after") def one_of(cls, model): num_selected = bool(model.point) + bool(model.spot) + bool(model.directional) if num_selected > 1: raise ValueError("Only one light type can be selected") elif num_selected == 0: raise ValueError("No light type selected") else: return model
(*, client: object = None, id: penne.delegates.LightID, name: Optional[str] = 'Unnamed Light Delegate', signals: Optional[dict] = {}, color: Optional[pydantic_extra_types.color.Color] = Color('white', rgb=(255, 255, 255)), intensity: Optional[float] = 1.0, point: Optional[penne.delegates.PointLight] = None, spot: Optional[penne.delegates.SpotLight] = None, directional: Optional[penne.delegates.DirectionalLight] = None, **extra_data: Any) -> None
726,607
penne.delegates
LightID
ID specific to lights
class LightID(ID): """ID specific to lights""" pass
(slot: int, gen: int)
726,619
penne.delegates
LinkedMethod
Class linking target delegate and method's delegate Make a cleaner function call in injected method, it's like setting the context automatically This is what actually gets called for the injected method Attributes: _obj_delegate (Delegate): delegate method is being linked to _method_delegate (MethodDelegate): the method's delegate
class LinkedMethod(object): """Class linking target delegate and method's delegate Make a cleaner function call in injected method, it's like setting the context automatically This is what actually gets called for the injected method Attributes: _obj_delegate (Delegate): delegate method is being linked to _method_delegate (MethodDelegate): the method's delegate """ def __init__(self, object_delegate: Delegate, method_delegate: Method): self._obj_delegate = object_delegate self._method_delegate = method_delegate def __call__(self, *args, **kwargs): callback = kwargs.pop("callback", None) self._method_delegate.invoke(self._obj_delegate, list(args), callback=callback)
(object_delegate: 'Delegate', method_delegate: 'Method')
726,620
penne.delegates
__call__
null
def __call__(self, *args, **kwargs): callback = kwargs.pop("callback", None) self._method_delegate.invoke(self._obj_delegate, list(args), callback=callback)
(self, *args, **kwargs)
726,621
penne.delegates
__init__
null
def __init__(self, object_delegate: Delegate, method_delegate: Method): self._obj_delegate = object_delegate self._method_delegate = method_delegate
(self, object_delegate: penne.delegates.Delegate, method_delegate: penne.delegates.Method)
726,622
penne.delegates
MagFilterTypes
Options for magnification filter type Used in Sampler. Takes value of either NEAREST or LINEAR
class MagFilterTypes(Enum): """Options for magnification filter type Used in Sampler. Takes value of either NEAREST or LINEAR """ nearest = "NEAREST" linear = "LINEAR"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,623
penne.delegates
Material
A material that can be applied to a mesh. The material is a collection of textures and factors that are used to render the mesh. Attributes: id: ID for the material name: Name of the material pbr_info: Information for physically based rendering normal_texture: Texture for normals occlusion_texture: Texture for occlusion occlusion_texture_factor: Factor for occlusion emissive_texture: Texture for emissive emissive_factor: Factor for emissive use_alpha: Whether to use alpha alpha_cutoff: Alpha cutoff double_sided: Whether the material is double-sided
class Material(Delegate): """A material that can be applied to a mesh. The material is a collection of textures and factors that are used to render the mesh. Attributes: id: ID for the material name: Name of the material pbr_info: Information for physically based rendering normal_texture: Texture for normals occlusion_texture: Texture for occlusion occlusion_texture_factor: Factor for occlusion emissive_texture: Texture for emissive emissive_factor: Factor for emissive use_alpha: Whether to use alpha alpha_cutoff: Alpha cutoff double_sided: Whether the material is double-sided """ id: MaterialID name: Optional[str] = "Unnamed Material Delegate" pbr_info: Optional[PBRInfo] = PBRInfo() normal_texture: Optional[TextureRef] = None occlusion_texture: Optional[TextureRef] = None # assumed to be linear, ONLY R used occlusion_texture_factor: Optional[float] = 1.0 emissive_texture: Optional[TextureRef] = None # assumed to be SRGB, ignore A emissive_factor: Optional[Vec3] = [1.0, 1.0, 1.0] use_alpha: Optional[bool] = False alpha_cutoff: Optional[float] = .5 double_sided: Optional[bool] = False
(*, client: object = None, id: penne.delegates.MaterialID, name: Optional[str] = 'Unnamed Material Delegate', signals: Optional[dict] = {}, pbr_info: Optional[penne.delegates.PBRInfo] = PBRInfo(base_color=Color('white', rgb=(255, 255, 255)), base_color_texture=None, metallic=1.0, roughness=1.0, metal_rough_texture=None), normal_texture: Optional[penne.delegates.TextureRef] = None, occlusion_texture: Optional[penne.delegates.TextureRef] = None, occlusion_texture_factor: Optional[float] = 1.0, emissive_texture: Optional[penne.delegates.TextureRef] = None, emissive_factor: Optional[List[float]] = [1.0, 1.0, 1.0], use_alpha: Optional[bool] = False, alpha_cutoff: Optional[float] = 0.5, double_sided: Optional[bool] = False, **extra_data: Any) -> None
726,654
penne.delegates
MaterialID
ID specific to materials
class MaterialID(ID): """ID specific to materials""" pass
(slot: int, gen: int)
726,666
penne.delegates
Method
A method that clients can request the server to call. Attributes: id: ID for the method name: Name of the method doc: Documentation for the method return_doc: Documentation for the return value arg_doc: Documentation for the arguments
class Method(Delegate): """A method that clients can request the server to call. Attributes: id: ID for the method name: Name of the method doc: Documentation for the method return_doc: Documentation for the return value arg_doc: Documentation for the arguments """ id: MethodID name: str doc: Optional[str] = None return_doc: Optional[str] = None arg_doc: List[MethodArg] = [] def invoke(self, on_delegate: Delegate, args=None, callback=None): """Invoke this delegate's method Args: on_delegate (Delegate): delegate method is being invoked on used to get context args (list, optional): args for the method callback (function): function to be called when complete Raises: ValueError: Invalid delegate context """ if isinstance(on_delegate, Table): kind = "table" elif isinstance(on_delegate, Plot): kind = "plot" elif isinstance(on_delegate, Entity): kind = "entity" else: raise ValueError("Invalid delegate context") context = {kind: on_delegate.id} self.client.invoke_method(self.id, args, context=context, callback=callback) def __str__(self) -> str: """Custom string representation for methods""" rep = f"{self.name}:\n\t{self.doc}\n\tReturns: {self.return_doc}\n\tArgs:" for arg in self.arg_doc: rep += f"\n\t\t{arg.name}: {arg.doc}" return rep
(*, client: object = None, id: penne.delegates.MethodID, name: str, signals: Optional[dict] = {}, doc: Optional[str] = None, return_doc: Optional[str] = None, arg_doc: List[penne.delegates.MethodArg] = [], **extra_data: Any) -> None
726,683
penne.delegates
__str__
Custom string representation for methods
def __str__(self) -> str: """Custom string representation for methods""" rep = f"{self.name}:\n\t{self.doc}\n\tReturns: {self.return_doc}\n\tArgs:" for arg in self.arg_doc: rep += f"\n\t\t{arg.name}: {arg.doc}" return rep
(self) -> str
726,689
penne.delegates
invoke
Invoke this delegate's method Args: on_delegate (Delegate): delegate method is being invoked on used to get context args (list, optional): args for the method callback (function): function to be called when complete Raises: ValueError: Invalid delegate context
def invoke(self, on_delegate: Delegate, args=None, callback=None): """Invoke this delegate's method Args: on_delegate (Delegate): delegate method is being invoked on used to get context args (list, optional): args for the method callback (function): function to be called when complete Raises: ValueError: Invalid delegate context """ if isinstance(on_delegate, Table): kind = "table" elif isinstance(on_delegate, Plot): kind = "plot" elif isinstance(on_delegate, Entity): kind = "entity" else: raise ValueError("Invalid delegate context") context = {kind: on_delegate.id} self.client.invoke_method(self.id, args, context=context, callback=callback)
(self, on_delegate: penne.delegates.Delegate, args=None, callback=None)
726,698
penne.delegates
MethodArg
Argument for a method Attributes: name (str): Name of argument doc (str): Documentation for argument editor_hint (str): Hint for editor, refer to message spec for hint options
class MethodArg(NoodleObject): """Argument for a method Attributes: name (str): Name of argument doc (str): Documentation for argument editor_hint (str): Hint for editor, refer to message spec for hint options """ name: str doc: Optional[str] = None editor_hint: Optional[str] = None
(*, name: str, doc: Optional[str] = None, editor_hint: Optional[str] = None, **extra_data: Any) -> None
726,726
penne.delegates
MethodException
Exception raised when invoking a method Will be sent as part of a reply message Attributes: code (int): error code message (str): error message data (Any): data associated with the error
class MethodException(NoodleObject): """Exception raised when invoking a method Will be sent as part of a reply message Attributes: code (int): error code message (str): error message data (Any): data associated with the error """ code: int message: Optional[str] = None data: Optional[Any] = None
(*, code: int, message: Optional[str] = None, data: Optional[Any] = None, **extra_data: Any) -> None
726,754
penne.delegates
MethodID
ID specific to methods
class MethodID(ID): """ID specific to methods""" pass
(slot: int, gen: int)
726,766
penne.delegates
MinFilterTypes
Options for minification filter type Used in Sampler. Takes value of either NEAREST, LINEAR, or LINEAR_MIPMAP_LINEAR
class MinFilterTypes(Enum): """Options for minification filter type Used in Sampler. Takes value of either NEAREST, LINEAR, or LINEAR_MIPMAP_LINEAR """ nearest = "NEAREST" linear = "LINEAR" linear_mipmap_linear = "LINEAR_MIPMAP_LINEAR"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,768
penne.delegates
NoodleObject
Parent Class for all noodle objects
class NoodleObject(BaseModel): """Parent Class for all noodle objects""" model_config = ConfigDict(arbitrary_types_allowed=True, use_enum_values=True, extra="allow", frozen=False)
(**extra_data: Any) -> None
726,796
penne.delegates
PBRInfo
Physically based rendering information for a material Attributes: base_color (Optional[RGBA]): Base color of material base_color_texture (Optional[TextureRef]): Texture to use for base color metallic (Optional[float]): Metallic value of material roughness (Optional[float]): Roughness value of material metal_rough_texture (Optional[TextureRef]): Texture to use for metallic and roughness
class PBRInfo(NoodleObject): """Physically based rendering information for a material Attributes: base_color (Optional[RGBA]): Base color of material base_color_texture (Optional[TextureRef]): Texture to use for base color metallic (Optional[float]): Metallic value of material roughness (Optional[float]): Roughness value of material metal_rough_texture (Optional[TextureRef]): Texture to use for metallic and roughness """ base_color: Optional[Color] = Color('white') base_color_texture: Optional[TextureRef] = None # assume SRGB, no premult alpha metallic: Optional[float] = 1.0 roughness: Optional[float] = 1.0 metal_rough_texture: Optional[TextureRef] = None # assume linear, ONLY RG used @field_validator("base_color", mode='before') def check_color_rgba(cls, value): # Raise warning if format is wrong from server if len(value) != 4: logging.warning(f"Base Color is Wrong Color Format: {value}") return value
(*, base_color: Optional[pydantic_extra_types.color.Color] = Color('white', rgb=(255, 255, 255)), base_color_texture: Optional[penne.delegates.TextureRef] = None, metallic: Optional[float] = 1.0, roughness: Optional[float] = 1.0, metal_rough_texture: Optional[penne.delegates.TextureRef] = None, **extra_data: Any) -> None
726,824
penne.delegates
Plot
An abstract plot object. Attributes: id: ID for the plot name: Name of the plot table: Table to plot simple_plot: Simple plot to render url_plot: URL for plot to render methods_list: List of methods attached to the plot signals_list: List of signals attached to the plot
class Plot(Delegate): """An abstract plot object. Attributes: id: ID for the plot name: Name of the plot table: Table to plot simple_plot: Simple plot to render url_plot: URL for plot to render methods_list: List of methods attached to the plot signals_list: List of signals attached to the plot """ id: PlotID name: Optional[str] = "Unnamed Plot Delegate" table: Optional[TableID] = None simple_plot: Optional[str] = None url_plot: Optional[str] = None methods_list: Optional[List[MethodID]] = None signals_list: Optional[List[SignalID]] = None @model_validator(mode="after") def one_of(cls, model): if bool(model.simple_plot) != bool(model.url_plot): return model else: raise ValueError("One plot type must be specified") def show_methods(self): """Show methods available on the entity""" if self.methods_list is None: message = "No methods available" else: message = f"-- Methods on {self.name} --\n--------------------------------------\n" for method_id in self.methods_list: method = self.client.get_delegate(method_id) message += f">> {method}" print(message) return message
(*, client: object = None, id: penne.delegates.PlotID, name: Optional[str] = 'Unnamed Plot Delegate', signals: Optional[dict] = {}, table: Optional[penne.delegates.TableID] = None, simple_plot: Optional[str] = None, url_plot: Optional[str] = None, methods_list: Optional[List[penne.delegates.MethodID]] = None, signals_list: Optional[List[penne.delegates.SignalID]] = None, **extra_data: Any) -> None
726,856
penne.delegates
PlotID
ID specific to plots
class PlotID(ID): """ID specific to plots""" pass
(slot: int, gen: int)
726,868
penne.delegates
PointLight
Point light information for a light delegate Attributes: range (float): Range of light, -1 defaults to infinite
class PointLight(NoodleObject): """Point light information for a light delegate Attributes: range (float): Range of light, -1 defaults to infinite """ range: float = -1.0
(*, range: float = -1.0, **extra_data: Any) -> None
726,896
penne.delegates
PrimitiveType
String indicating type of primitive used in a geometry patch Takes value of either POINTS, LINES, LINE_LOOP, LINE_STRIP, TRIANGLES, or TRIANGLE_STRIP
class PrimitiveType(Enum): """String indicating type of primitive used in a geometry patch Takes value of either POINTS, LINES, LINE_LOOP, LINE_STRIP, TRIANGLES, or TRIANGLE_STRIP """ points = "POINTS" lines = "LINES" line_loop = "LINE_LOOP" line_strip = "LINE_STRIP" triangles = "TRIANGLES" triangle_strip = "TRIANGLE_STRIP"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,897
penne.delegates
RenderRepresentation
Render representation for an entity Attributes: mesh (GeometryID): Mesh to render instances (Optional[InstanceSource]): Source of instances for mesh
class RenderRepresentation(NoodleObject): """Render representation for an entity Attributes: mesh (GeometryID): Mesh to render instances (Optional[InstanceSource]): Source of instances for mesh """ mesh: GeometryID instances: Optional[InstanceSource] = None
(*, mesh: penne.delegates.GeometryID, instances: Optional[penne.delegates.InstanceSource] = None, **extra_data: Any) -> None
726,925
penne.delegates
Reply
Reply message sent from server in response to method invocation Will either contain resulting data, or an exception Attributes: invoke_id (str): id of the invoke message that this is a reply to result (Any): result of the method invocation method_exception (MethodException): exception raised when invoking method
class Reply(NoodleObject): """Reply message sent from server in response to method invocation Will either contain resulting data, or an exception Attributes: invoke_id (str): id of the invoke message that this is a reply to result (Any): result of the method invocation method_exception (MethodException): exception raised when invoking method """ invoke_id: str result: Optional[Any] = None method_exception: Optional[MethodException] = None
(*, invoke_id: str, result: Optional[Any] = None, method_exception: Optional[penne.delegates.MethodException] = None, **extra_data: Any) -> None
726,953
penne.delegates
Sampler
A sampler to use for a texture A sampler specifies how to take portions of an image and apply them to a mesh. Attributes: id: ID for the sampler name: Name of the sampler mag_filter: Magnification filter min_filter: Minification filter wrap_s: Wrap mode for S wrap_t: Wrap mode for T
class Sampler(Delegate): """A sampler to use for a texture A sampler specifies how to take portions of an image and apply them to a mesh. Attributes: id: ID for the sampler name: Name of the sampler mag_filter: Magnification filter min_filter: Minification filter wrap_s: Wrap mode for S wrap_t: Wrap mode for T """ id: SamplerID name: Optional[str] = "Unnamed Sampler Delegate" mag_filter: Optional[MagFilterTypes] = MagFilterTypes.linear min_filter: Optional[MinFilterTypes] = MinFilterTypes.linear_mipmap_linear wrap_s: Optional[SamplerMode] = "REPEAT" wrap_t: Optional[SamplerMode] = "REPEAT"
(*, client: object = None, id: penne.delegates.SamplerID, name: Optional[str] = 'Unnamed Sampler Delegate', signals: Optional[dict] = {}, mag_filter: Optional[penne.delegates.MagFilterTypes] = <MagFilterTypes.linear: 'LINEAR'>, min_filter: Optional[penne.delegates.MinFilterTypes] = <MinFilterTypes.linear_mipmap_linear: 'LINEAR_MIPMAP_LINEAR'>, wrap_s: Optional[penne.delegates.SamplerMode] = 'REPEAT', wrap_t: Optional[penne.delegates.SamplerMode] = 'REPEAT', **extra_data: Any) -> None
726,984
penne.delegates
SamplerID
ID specific to samplers
class SamplerID(ID): """ID specific to samplers""" pass
(slot: int, gen: int)
726,996
penne.delegates
SamplerMode
String options for sampler mode Used in Sampler. Takes value of either CLAMP_TO_EDGE, MIRRORED_REPEAT, or REPEAT
class SamplerMode(Enum): """String options for sampler mode Used in Sampler. Takes value of either CLAMP_TO_EDGE, MIRRORED_REPEAT, or REPEAT """ clamp_to_edge = "CLAMP_TO_EDGE" mirrored_repeat = "MIRRORED_REPEAT" repeat = "REPEAT"
(value, names=None, *, module=None, qualname=None, type=None, start=1)
726,997
penne.delegates
Selection
Selection of rows in a table Attributes: name (str): Name of selection rows (List[int]): List of rows to select row_ranges (List[SelectionRange]): List of ranges of rows to select
class Selection(NoodleObject): """Selection of rows in a table Attributes: name (str): Name of selection rows (List[int]): List of rows to select row_ranges (List[SelectionRange]): List of ranges of rows to select """ name: str rows: Optional[List[int]] = None row_ranges: Optional[List[SelectionRange]] = None
(*, name: str, rows: Optional[List[int]] = None, row_ranges: Optional[List[penne.delegates.SelectionRange]] = None, **extra_data: Any) -> None
727,025
penne.delegates
SelectionRange
Range of rows to select in a table Attributes: key_from_inclusive (int): First row to select key_to_exclusive (int): Where to end selection, exclusive
class SelectionRange(NoodleObject): """Range of rows to select in a table Attributes: key_from_inclusive (int): First row to select key_to_exclusive (int): Where to end selection, exclusive """ key_from_inclusive: int key_to_exclusive: int
(*, key_from_inclusive: int, key_to_exclusive: int, **extra_data: Any) -> None
727,053
penne.delegates
Signal
A signal that the server can send to update clients. Attributes: id: ID for the signal name: Name of the signal doc: Documentation for the signal arg_doc: Documentation for the arguments
class Signal(Delegate): """A signal that the server can send to update clients. Attributes: id: ID for the signal name: Name of the signal doc: Documentation for the signal arg_doc: Documentation for the arguments """ id: SignalID name: str doc: Optional[str] = None arg_doc: List[MethodArg] = []
(*, client: object = None, id: penne.delegates.SignalID, name: str, signals: Optional[dict] = {}, doc: Optional[str] = None, arg_doc: List[penne.delegates.MethodArg] = [], **extra_data: Any) -> None
727,084
penne.delegates
SignalID
ID specific to signals
class SignalID(ID): """ID specific to signals""" pass
(slot: int, gen: int)
727,096
penne.delegates
SpotLight
Spotlight information for a light delegate Attributes: range (float): Range of light, -1 defaults to infinite inner_cone_angle_rad (float): Inner cone angle of light outer_cone_angle_rad (float): Outer cone angle of light
class SpotLight(NoodleObject): """Spotlight information for a light delegate Attributes: range (float): Range of light, -1 defaults to infinite inner_cone_angle_rad (float): Inner cone angle of light outer_cone_angle_rad (float): Outer cone angle of light """ range: float = -1.0 inner_cone_angle_rad: float = 0.0 outer_cone_angle_rad: float = pi/4
(*, range: float = -1.0, inner_cone_angle_rad: float = 0.0, outer_cone_angle_rad: float = 0.7853981633974483, **extra_data: Any) -> None
727,124
penne.delegates
Table
Object to store tabular data. Note that this delegate doesn't store any actual data. Delegates are meant to subclass and add functionality to this class. For the client to receive the actual data, they must subscribe to the table. The client will have access to certain injected methods that allow them to insert, update, delete, and clear the table. This class provides some abstract methods that can be overridden to handle these events. Attributes: id: ID for the table name: Name of the table meta: Metadata for the table methods_list: List of methods for the table signals_list: List of signals for the table tbl_subscribe: Injected method to subscribe to the table tbl_insert: Injected method to insert rows into the table tbl_update: Injected method to update rows in the table tbl_remove: Injected method to remove rows from the table tbl_clear: Injected method to clear the table tbl_update_selection: Injected method to update the selection
class Table(Delegate): """Object to store tabular data. Note that this delegate doesn't store any actual data. Delegates are meant to subclass and add functionality to this class. For the client to receive the actual data, they must subscribe to the table. The client will have access to certain injected methods that allow them to insert, update, delete, and clear the table. This class provides some abstract methods that can be overridden to handle these events. Attributes: id: ID for the table name: Name of the table meta: Metadata for the table methods_list: List of methods for the table signals_list: List of signals for the table tbl_subscribe: Injected method to subscribe to the table tbl_insert: Injected method to insert rows into the table tbl_update: Injected method to update rows in the table tbl_remove: Injected method to remove rows from the table tbl_clear: Injected method to clear the table tbl_update_selection: Injected method to update the selection """ id: TableID name: Optional[str] = f"Unnamed Table Delegate" meta: Optional[str] = None methods_list: Optional[List[MethodID]] = None signals_list: Optional[List[SignalID]] = None tbl_subscribe: Optional[InjectedMethod] = None tbl_insert: Optional[InjectedMethod] = None tbl_update: Optional[InjectedMethod] = None tbl_remove: Optional[InjectedMethod] = None tbl_clear: Optional[InjectedMethod] = None tbl_update_selection: Optional[InjectedMethod] = None def __init__(self, **kwargs): """Override init to link default values with methods""" super().__init__(**kwargs) self.signals = { "noo::tbl_reset": self._reset_table, "noo::tbl_rows_removed": self._remove_rows, "noo::tbl_updated": self._update_rows, "noo::tbl_selection_updated": self._update_selection } def _on_table_init(self, init_info: dict, callback=None): """Creates table from server response info Args: init_info (Message Obj): Server response to subscribe which has columns, keys, data, and possibly selections """ init = TableInitData(**init_info) logging.info(f"Table Initialized with cols: {init.columns} and row data: {init.data}") if callback: callback() def _reset_table(self, init_info: dict = None): """Reset dataframe and selections to blank objects Method is linked to 'tbl_reset' signal """ self.selections = {} if init_info: init = TableInitData(**init_info) logging.info(f"Table Reset and Initialized with cols: {init.columns} and row data: {init.data}") def _remove_rows(self, keys: List[int]): """Removes rows from table Method is linked to 'tbl_rows_removed' signal Args: keys (list): list of keys corresponding to rows to be removed """ logging.info(f"Removed Rows: {keys}...\n") def _update_rows(self, keys: List[int], rows: list): """Update rows in table Method is linked to 'tbl_updated' signal Args: keys (list): list of keys to update rows (list): list of rows containing the values for each new row """ logging.info(f"Updated Rows...{keys}\n") def _update_selection(self, selection: dict): """Change selection in delegate's state to new selection object Method is linked to 'tbl_selection_updated' signal Args: selection (Selection): obj with new selections to replace obj with same name """ self.selections.setdefault(selection["name"], selection) logging.info(f"Made selection {selection['name']} = {selection}") def relink_signals(self): """Relink the signals for built-in methods Injecting signals adds them as keys which map to None. The signals must be relinked after injecting. These should always be linked, along with whatever is injected. """ self.signals["noo::tbl_reset"] = self._reset_table self.signals["noo::tbl_rows_removed"] = self._remove_rows self.signals["noo::tbl_updated"] = self._update_rows self.signals["noo::tbl_selection_updated"] = self._update_selection def on_new(self, message: dict): """Handler when create message is received Args: message (Message): create message with the table's info """ # Check contents methods = self.methods_list signals = self.signals_list # Inject methods and signals if applicable if methods: inject_methods(self, methods) if signals: inject_signals(self, signals) # Reset self._reset_table() self.relink_signals() def on_update(self, message: dict): """Handler when update message is received Args: message (Message): update message with the new table's info """ # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list) self.relink_signals() def subscribe(self, callback: Callable = None): """Subscribe to this delegate's table Calls on_table_init as callback Args: callback (Callable): function to be called after table is subscribed to and initialized Raises: Exception: Could not subscribe to table """ try: # Allow for callback after table init self.tbl_subscribe(callback=lambda data: self._on_table_init(data, callback)) except Exception as e: raise Exception(f"Could not subscribe to table {self.id}...{e}") def request_insert(self, row_list: List[List[int]], callback=None): """Add rows to end of table User endpoint for interacting with table and invoking method For input, row list is list of rows. Also note that tables have nine columns by default (x, y, z, r, g, b, sx, sy, sz). x, y, z -> coordinates r, g, b -> color values [0, 1] sx, sy, sz -> scaling factors, default size is 1 meter Row_list: [[1, 2, 3, 4, 5, 6, 7, 8, 9]] Args: row_list (list, optional): add rows using list of rows callback (function, optional): callback function """ self.tbl_insert(row_list, callback=callback) def request_update(self, keys: List[int], rows: List[List[int]], callback=None): """Update the table using a DataFrame User endpoint for interacting with table and invoking method Args: keys (list[int]): list of keys to update rows (list[list[int]]): list of new rows to update with callback (function, optional): callback function called when complete """ self.tbl_update(keys, rows, callback=callback) def request_remove(self, keys: List[int], callback=None): """Remove rows from table by their keys User endpoint for interacting with table and invoking method Args: keys (list): list of keys for rows to be removed callback (function, optional): callback function called when complete """ self.tbl_remove(keys, callback=callback) def request_clear(self, callback=None): """Clear the table User endpoint for interacting with table and invoking method Args: callback (function, optional): callback function called when complete """ self.tbl_clear(callback=callback) def request_update_selection(self, name: str, keys: List[int], callback=None): """Update a selection object in the table User endpoint for interacting with table and invoking method Args: name (str): name of the selection object to be updated keys (list): list of keys to be in new selection callback (function, optional): callback function called when complete """ selection = Selection(name=name, rows=keys) self.tbl_update_selection(selection.model_dump(), callback=callback) def show_methods(self): """Show methods available on the table""" if self.methods_list is None: message = "No methods available" else: message = f"-- Methods on {self.name} --\n--------------------------------------\n" for method_id in self.methods_list: method = self.client.get_delegate(method_id) message += f">> {method}" print(message) return message
(*, client: object = None, id: penne.delegates.TableID, name: Optional[str] = 'Unnamed Table Delegate', signals: Optional[dict] = {}, meta: Optional[str] = None, methods_list: Optional[List[penne.delegates.MethodID]] = None, signals_list: Optional[List[penne.delegates.SignalID]] = None, tbl_subscribe: Optional[penne.delegates.InjectedMethod] = None, tbl_insert: Optional[penne.delegates.InjectedMethod] = None, tbl_update: Optional[penne.delegates.InjectedMethod] = None, tbl_remove: Optional[penne.delegates.InjectedMethod] = None, tbl_clear: Optional[penne.delegates.InjectedMethod] = None, tbl_update_selection: Optional[penne.delegates.InjectedMethod] = None, **kwargs) -> None
727,131
penne.delegates
__init__
Override init to link default values with methods
def __init__(self, **kwargs): """Override init to link default values with methods""" super().__init__(**kwargs) self.signals = { "noo::tbl_reset": self._reset_table, "noo::tbl_rows_removed": self._remove_rows, "noo::tbl_updated": self._update_rows, "noo::tbl_selection_updated": self._update_selection }
(self, **kwargs)
727,145
penne.delegates
_on_table_init
Creates table from server response info Args: init_info (Message Obj): Server response to subscribe which has columns, keys, data, and possibly selections
def _on_table_init(self, init_info: dict, callback=None): """Creates table from server response info Args: init_info (Message Obj): Server response to subscribe which has columns, keys, data, and possibly selections """ init = TableInitData(**init_info) logging.info(f"Table Initialized with cols: {init.columns} and row data: {init.data}") if callback: callback()
(self, init_info: dict, callback=None)
727,146
penne.delegates
_remove_rows
Removes rows from table Method is linked to 'tbl_rows_removed' signal Args: keys (list): list of keys corresponding to rows to be removed
def _remove_rows(self, keys: List[int]): """Removes rows from table Method is linked to 'tbl_rows_removed' signal Args: keys (list): list of keys corresponding to rows to be removed """ logging.info(f"Removed Rows: {keys}...\n")
(self, keys: List[int])
727,147
penne.delegates
_reset_table
Reset dataframe and selections to blank objects Method is linked to 'tbl_reset' signal
def _reset_table(self, init_info: dict = None): """Reset dataframe and selections to blank objects Method is linked to 'tbl_reset' signal """ self.selections = {} if init_info: init = TableInitData(**init_info) logging.info(f"Table Reset and Initialized with cols: {init.columns} and row data: {init.data}")
(self, init_info: Optional[dict] = None)
727,148
penne.delegates
_update_rows
Update rows in table Method is linked to 'tbl_updated' signal Args: keys (list): list of keys to update rows (list): list of rows containing the values for each new row
def _update_rows(self, keys: List[int], rows: list): """Update rows in table Method is linked to 'tbl_updated' signal Args: keys (list): list of keys to update rows (list): list of rows containing the values for each new row """ logging.info(f"Updated Rows...{keys}\n")
(self, keys: List[int], rows: list)
727,149
penne.delegates
_update_selection
Change selection in delegate's state to new selection object Method is linked to 'tbl_selection_updated' signal Args: selection (Selection): obj with new selections to replace obj with same name
def _update_selection(self, selection: dict): """Change selection in delegate's state to new selection object Method is linked to 'tbl_selection_updated' signal Args: selection (Selection): obj with new selections to replace obj with same name """ self.selections.setdefault(selection["name"], selection) logging.info(f"Made selection {selection['name']} = {selection}")
(self, selection: dict)
727,157
penne.delegates
on_new
Handler when create message is received Args: message (Message): create message with the table's info
def on_new(self, message: dict): """Handler when create message is received Args: message (Message): create message with the table's info """ # Check contents methods = self.methods_list signals = self.signals_list # Inject methods and signals if applicable if methods: inject_methods(self, methods) if signals: inject_signals(self, signals) # Reset self._reset_table() self.relink_signals()
(self, message: dict)
727,159
penne.delegates
on_update
Handler when update message is received Args: message (Message): update message with the new table's info
def on_update(self, message: dict): """Handler when update message is received Args: message (Message): update message with the new table's info """ # Inject methods and signals if applicable if self.methods_list: inject_methods(self, self.methods_list) if self.signals_list: inject_signals(self, self.signals_list) self.relink_signals()
(self, message: dict)
727,160
penne.delegates
relink_signals
Relink the signals for built-in methods Injecting signals adds them as keys which map to None. The signals must be relinked after injecting. These should always be linked, along with whatever is injected.
def relink_signals(self): """Relink the signals for built-in methods Injecting signals adds them as keys which map to None. The signals must be relinked after injecting. These should always be linked, along with whatever is injected. """ self.signals["noo::tbl_reset"] = self._reset_table self.signals["noo::tbl_rows_removed"] = self._remove_rows self.signals["noo::tbl_updated"] = self._update_rows self.signals["noo::tbl_selection_updated"] = self._update_selection
(self)
727,161
penne.delegates
request_clear
Clear the table User endpoint for interacting with table and invoking method Args: callback (function, optional): callback function called when complete
def request_clear(self, callback=None): """Clear the table User endpoint for interacting with table and invoking method Args: callback (function, optional): callback function called when complete """ self.tbl_clear(callback=callback)
(self, callback=None)
727,162
penne.delegates
request_insert
Add rows to end of table User endpoint for interacting with table and invoking method For input, row list is list of rows. Also note that tables have nine columns by default (x, y, z, r, g, b, sx, sy, sz). x, y, z -> coordinates r, g, b -> color values [0, 1] sx, sy, sz -> scaling factors, default size is 1 meter Row_list: [[1, 2, 3, 4, 5, 6, 7, 8, 9]] Args: row_list (list, optional): add rows using list of rows callback (function, optional): callback function
def request_insert(self, row_list: List[List[int]], callback=None): """Add rows to end of table User endpoint for interacting with table and invoking method For input, row list is list of rows. Also note that tables have nine columns by default (x, y, z, r, g, b, sx, sy, sz). x, y, z -> coordinates r, g, b -> color values [0, 1] sx, sy, sz -> scaling factors, default size is 1 meter Row_list: [[1, 2, 3, 4, 5, 6, 7, 8, 9]] Args: row_list (list, optional): add rows using list of rows callback (function, optional): callback function """ self.tbl_insert(row_list, callback=callback)
(self, row_list: List[List[int]], callback=None)
727,163
penne.delegates
request_remove
Remove rows from table by their keys User endpoint for interacting with table and invoking method Args: keys (list): list of keys for rows to be removed callback (function, optional): callback function called when complete
def request_remove(self, keys: List[int], callback=None): """Remove rows from table by their keys User endpoint for interacting with table and invoking method Args: keys (list): list of keys for rows to be removed callback (function, optional): callback function called when complete """ self.tbl_remove(keys, callback=callback)
(self, keys: List[int], callback=None)
727,164
penne.delegates
request_update
Update the table using a DataFrame User endpoint for interacting with table and invoking method Args: keys (list[int]): list of keys to update rows (list[list[int]]): list of new rows to update with callback (function, optional): callback function called when complete
def request_update(self, keys: List[int], rows: List[List[int]], callback=None): """Update the table using a DataFrame User endpoint for interacting with table and invoking method Args: keys (list[int]): list of keys to update rows (list[list[int]]): list of new rows to update with callback (function, optional): callback function called when complete """ self.tbl_update(keys, rows, callback=callback)
(self, keys: List[int], rows: List[List[int]], callback=None)
727,165
penne.delegates
request_update_selection
Update a selection object in the table User endpoint for interacting with table and invoking method Args: name (str): name of the selection object to be updated keys (list): list of keys to be in new selection callback (function, optional): callback function called when complete
def request_update_selection(self, name: str, keys: List[int], callback=None): """Update a selection object in the table User endpoint for interacting with table and invoking method Args: name (str): name of the selection object to be updated keys (list): list of keys to be in new selection callback (function, optional): callback function called when complete """ selection = Selection(name=name, rows=keys) self.tbl_update_selection(selection.model_dump(), callback=callback)
(self, name: str, keys: List[int], callback=None)
727,166
penne.delegates
show_methods
Show methods available on the table
def show_methods(self): """Show methods available on the table""" if self.methods_list is None: message = "No methods available" else: message = f"-- Methods on {self.name} --\n--------------------------------------\n" for method_id in self.methods_list: method = self.client.get_delegate(method_id) message += f">> {method}" print(message) return message
(self)
727,167
penne.delegates
subscribe
Subscribe to this delegate's table Calls on_table_init as callback Args: callback (Callable): function to be called after table is subscribed to and initialized Raises: Exception: Could not subscribe to table
def subscribe(self, callback: Callable = None): """Subscribe to this delegate's table Calls on_table_init as callback Args: callback (Callable): function to be called after table is subscribed to and initialized Raises: Exception: Could not subscribe to table """ try: # Allow for callback after table init self.tbl_subscribe(callback=lambda data: self._on_table_init(data, callback)) except Exception as e: raise Exception(f"Could not subscribe to table {self.id}...{e}")
(self, callback: Optional[Callable] = None)
727,168
penne.delegates
TableColumnInfo
Information about a column in a table Attributes: name (str): Name of column type (ColumnType): Type data in the column
class TableColumnInfo(NoodleObject): """Information about a column in a table Attributes: name (str): Name of column type (ColumnType): Type data in the column """ name: str type: ColumnType
(*, name: str, type: penne.delegates.ColumnType, **extra_data: Any) -> None
727,196
penne.delegates
TableID
ID specific to tables
class TableID(ID): """ID specific to tables""" pass
(slot: int, gen: int)
727,208
penne.delegates
TableInitData
Init data to create a table Attributes: columns (List[TableColumnInfo]): List of column information keys (List[int]): List of column indices that are keys data (List[List[Any]]): List of rows of data selections (Optional[List[Selection]]): List of selections to apply to table
class TableInitData(NoodleObject): """Init data to create a table Attributes: columns (List[TableColumnInfo]): List of column information keys (List[int]): List of column indices that are keys data (List[List[Any]]): List of rows of data selections (Optional[List[Selection]]): List of selections to apply to table """ columns: List[TableColumnInfo] keys: List[int] data: List[List[Any]] # Originally tried union, but currently order is used to coerce by pydantic selections: Optional[List[Selection]] = None # too much overhead? - strict mode @model_validator(mode="after") def types_match(cls, model): for row in model.data: for col, i in zip(model.columns, range(len(row))): text_mismatch = isinstance(row[i], str) and col.type != "TEXT" real_mismatch = isinstance(row[i], float) and col.type != "REAL" int_mismatch = isinstance(row[i], int) and col.type != "INTEGER" if text_mismatch or real_mismatch or int_mismatch: raise ValueError(f"Column Info doesn't match type in data: {col, row[i]}") return model
(*, columns: List[penne.delegates.TableColumnInfo], keys: List[int], data: List[List[Any]], selections: Optional[List[penne.delegates.Selection]] = None, **extra_data: Any) -> None
727,236
penne.delegates
TextRepresentation
Text representation for an entity Attributes: txt (str): Text to display font (str): Font to use height (Optional[float]): Height of text width (Optional[float]): Width of text
class TextRepresentation(NoodleObject): """Text representation for an entity Attributes: txt (str): Text to display font (str): Font to use height (Optional[float]): Height of text width (Optional[float]): Width of text """ txt: str font: Optional[str] = "Arial" height: Optional[float] = .25 width: Optional[float] = -1.0
(*, txt: str, font: Optional[str] = 'Arial', height: Optional[float] = 0.25, width: Optional[float] = -1.0, **extra_data: Any) -> None
727,264
penne.delegates
Texture
A texture, can be used for a material This is like a wrapping paper that is applied to a mesh. The image specifies the pattern, and the sampler specifies which part of the image should be applied to each part of the mesh. Attributes: id: ID for the texture name: Name of the texture image: Image to use for the texture sampler: Sampler to use for the texture
class Texture(Delegate): """A texture, can be used for a material This is like a wrapping paper that is applied to a mesh. The image specifies the pattern, and the sampler specifies which part of the image should be applied to each part of the mesh. Attributes: id: ID for the texture name: Name of the texture image: Image to use for the texture sampler: Sampler to use for the texture """ id: TextureID name: Optional[str] = "Unnamed Texture Delegate" image: ImageID sampler: Optional[SamplerID] = None
(*, client: object = None, id: penne.delegates.TextureID, name: Optional[str] = 'Unnamed Texture Delegate', signals: Optional[dict] = {}, image: penne.delegates.ImageID, sampler: Optional[penne.delegates.SamplerID] = None, **extra_data: Any) -> None
727,295
penne.delegates
TextureID
ID specific to textures
class TextureID(ID): """ID specific to textures""" pass
(slot: int, gen: int)
727,307
penne.delegates
TextureRef
Reference to a texture Attributes: texture (TextureID): Texture to reference transform (Optional[Mat3]): Transform to apply to texture texture_coord_slot (Optional[int]): Texture coordinate slot to use
class TextureRef(NoodleObject): """Reference to a texture Attributes: texture (TextureID): Texture to reference transform (Optional[Mat3]): Transform to apply to texture texture_coord_slot (Optional[int]): Texture coordinate slot to use """ texture: TextureID transform: Optional[Mat3] = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] texture_coord_slot: Optional[int] = 0.0
(*, texture: penne.delegates.TextureID, transform: Optional[List[float]] = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0], texture_coord_slot: Optional[int] = 0.0, **extra_data: Any) -> None
727,335
penne.delegates
WebRepresentation
Web page with a given URL rendered as a plane Attributes: source (str): URL for entity height (Optional[float]): Height of plane width (Optional[float]): Width of plane
class WebRepresentation(NoodleObject): """Web page with a given URL rendered as a plane Attributes: source (str): URL for entity height (Optional[float]): Height of plane width (Optional[float]): Width of plane """ source: str height: Optional[float] = .5 width: Optional[float] = .5
(*, source: str, height: Optional[float] = 0.5, width: Optional[float] = 0.5, **extra_data: Any) -> None
727,365
pydantic.functional_validators
field_validator
Usage docs: https://docs.pydantic.dev/dev-v2/usage/validators/#field-validators Decorate methods on the class indicating that they should be used to validate fields. Args: __field: The first field the `field_validator` should be called on; this is separate from `fields` to ensure an error is raised if you don't pass at least one. *fields: Additional field(s) the `field_validator` should be called on. mode: Specifies whether to validate the fields before or after validation. check_fields: Whether to check that the fields actually exist on the model. Returns: A decorator that can be used to decorate a function to be used as a field_validator. Raises: PydanticUserError: - If `@field_validator` is used bare (with no fields). - If the args passed to `@field_validator` as fields are not strings. - If `@field_validator` applied to instance methods.
def field_validator( __field: str, *fields: str, mode: FieldValidatorModes = 'after', check_fields: bool | None = None, ) -> Callable[[Any], Any]: """Usage docs: https://docs.pydantic.dev/dev-v2/usage/validators/#field-validators Decorate methods on the class indicating that they should be used to validate fields. Args: __field: The first field the `field_validator` should be called on; this is separate from `fields` to ensure an error is raised if you don't pass at least one. *fields: Additional field(s) the `field_validator` should be called on. mode: Specifies whether to validate the fields before or after validation. check_fields: Whether to check that the fields actually exist on the model. Returns: A decorator that can be used to decorate a function to be used as a field_validator. Raises: PydanticUserError: - If `@field_validator` is used bare (with no fields). - If the args passed to `@field_validator` as fields are not strings. - If `@field_validator` applied to instance methods. """ if isinstance(__field, FunctionType): raise PydanticUserError( '`@field_validator` should be used with fields and keyword arguments, not bare. ' "E.g. usage should be `@validator('<field_name>', ...)`", code='validator-no-fields', ) fields = __field, *fields if not all(isinstance(field, str) for field in fields): # type: ignore raise PydanticUserError( '`@field_validator` fields should be passed as separate string args. ' "E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`", code='validator-invalid-fields', ) def dec( f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any] ) -> _decorators.PydanticDescriptorProxy[Any]: if _decorators.is_instance_method_from_sig(f): raise PydanticUserError( '`@field_validator` cannot be applied to instance methods', code='validator-instance-method' ) # auto apply the @classmethod decorator f = _decorators.ensure_classmethod_based_on_signature(f) dec_info = _decorators.FieldValidatorDecoratorInfo(fields=fields, mode=mode, check_fields=check_fields) return _decorators.PydanticDescriptorProxy(f, dec_info) return dec
(__field: str, *fields: str, mode: Literal['before', 'after', 'wrap', 'plain'] = 'after', check_fields: Optional[bool] = None) -> Callable[[Any], Any]
727,366
penne.delegates
get_context
Helper to get context from delegate Args: delegate (Delegate): delegate to get context for, can be Entity, Table, or Plot Returns: context (dict): context for delegate, None if not found indicating document
def get_context(delegate: Delegate): """Helper to get context from delegate Args: delegate (Delegate): delegate to get context for, can be Entity, Table, or Plot Returns: context (dict): context for delegate, None if not found indicating document """ if isinstance(delegate, Entity): return {"entity": delegate.id} elif isinstance(delegate, Table): return {"table": delegate.id} elif isinstance(delegate, Plot): return {"plot": delegate.id} else: return None
(delegate: penne.delegates.Delegate)
727,368
penne.delegates
inject_methods
Inject methods into a delegate class Idea is to inject a method that is from the server to put into a delegate. Now it looks like the delegate has an instance method that actually calls what is on the server. Context, is automatically taken care of. This should mostly be called on_new or on_update for delegates that have methods. This method clears out any old injected methods if present. Args: delegate (Delegate): identifier for delegate to be modified methods (list): list of method id's to inject
def inject_methods(delegate: Delegate, methods: List[MethodID]): """Inject methods into a delegate class Idea is to inject a method that is from the server to put into a delegate. Now it looks like the delegate has an instance method that actually calls what is on the server. Context, is automatically taken care of. This should mostly be called on_new or on_update for delegates that have methods. This method clears out any old injected methods if present. Args: delegate (Delegate): identifier for delegate to be modified methods (list): list of method id's to inject """ # Clear out old injected methods to_remove = [] for field, value in delegate: if hasattr(value, "injected"): logging.debug(f"Deleting: {field} in inject methods") to_remove.append(field) for field in to_remove: delattr(delegate, field) for method_id in methods: # Get method delegate and manipulate name to exclude noo:: method = delegate.client.get_delegate(method_id) if "noo::" in method.name: name = method.name[5:] else: name = method.name # Create injected by linking delegates, and creating call method linked = LinkedMethod(delegate, method) injected = InjectedMethod(linked.__call__) setattr(delegate, name, injected)
(delegate: penne.delegates.Delegate, methods: List[penne.delegates.MethodID])
727,369
penne.delegates
inject_signals
Method to inject signals into delegate Idea is to inject a signal that is from the server to put into a delegate. These signals are stored in a dict that can be used to map the signal name to a callable response that handles the signal and its args. Args: delegate (Delegate): delegate object to be injected signals (list): list of signal id's to be injected
def inject_signals(delegate: Delegate, signals: List[SignalID]): """Method to inject signals into delegate Idea is to inject a signal that is from the server to put into a delegate. These signals are stored in a dict that can be used to map the signal name to a callable response that handles the signal and its args. Args: delegate (Delegate): delegate object to be injected signals (list): list of signal id's to be injected """ for signal_id in signals: signal = delegate.client.state[signal_id] # refactored state delegate.signals[signal.name] = None
(delegate: penne.delegates.Delegate, signals: List[penne.delegates.SignalID])
727,371
pydantic.functional_validators
model_validator
Decorate model methods for validation purposes. Args: mode: A required string literal that specifies the validation mode. It can be one of the following: 'wrap', 'before', or 'after'. Returns: A decorator that can be used to decorate a function to be used as a model validator.
def model_validator( *, mode: Literal['wrap', 'before', 'after'], ) -> Any: """Decorate model methods for validation purposes. Args: mode: A required string literal that specifies the validation mode. It can be one of the following: 'wrap', 'before', or 'after'. Returns: A decorator that can be used to decorate a function to be used as a model validator. """ def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]: # auto apply the @classmethod decorator f = _decorators.ensure_classmethod_based_on_signature(f) dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode) return _decorators.PydanticDescriptorProxy(f, dec_info) return dec
(*, mode: Literal['wrap', 'before', 'after']) -> Any
727,376
openunmix
umx
Open Unmix 2-channel/stereo BiLSTM Model trained on MUSDB18 Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment.
def umx( targets=None, residual=False, niter=1, device="cpu", pretrained=True, wiener_win_len=300, filterbank="torch", ): """ Open Unmix 2-channel/stereo BiLSTM Model trained on MUSDB18 Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. """ from .model import Separator target_models = umx_spec(targets=targets, device=device, pretrained=pretrained) separator = Separator( target_models=target_models, niter=niter, residual=residual, n_fft=4096, n_hop=1024, nb_channels=2, sample_rate=44100.0, wiener_win_len=wiener_win_len, filterbank=filterbank, ).to(device) return separator
(targets=None, residual=False, niter=1, device='cpu', pretrained=True, wiener_win_len=300, filterbank='torch')
727,377
openunmix
umx_spec
null
def umx_spec(targets=None, device="cpu", pretrained=True): from .model import OpenUnmix # set urls for weights target_urls = { "bass": "https://zenodo.org/records/3370486/files/bass-646024d3.pth", "drums": "https://zenodo.org/records/3370486/files/drums-5a48008b.pth", "other": "https://zenodo.org/records/3370486/files/other-f8e132cc.pth", "vocals": "https://zenodo.org/records/3370486/files/vocals-c8df74a5.pth", } if targets is None: targets = ["vocals", "drums", "bass", "other"] # determine the maximum bin count for a 16khz bandwidth model max_bin = utils.bandwidth_to_max_bin(rate=44100.0, n_fft=4096, bandwidth=16000) target_models = {} for target in targets: # load open unmix model target_unmix = OpenUnmix(nb_bins=4096 // 2 + 1, nb_channels=2, hidden_size=512, max_bin=max_bin) # enable centering of stft to minimize reconstruction error if pretrained: state_dict = torch.hub.load_state_dict_from_url(target_urls[target], map_location=device) target_unmix.load_state_dict(state_dict, strict=False) target_unmix.eval() target_unmix.to(device) target_models[target] = target_unmix return target_models
(targets=None, device='cpu', pretrained=True)
727,378
openunmix
umxhq
Open Unmix 2-channel/stereo BiLSTM Model trained on MUSDB18-HQ Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment.
def umxhq( targets=None, residual=False, niter=1, device="cpu", pretrained=True, wiener_win_len=300, filterbank="torch", ): """ Open Unmix 2-channel/stereo BiLSTM Model trained on MUSDB18-HQ Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. """ from .model import Separator target_models = umxhq_spec(targets=targets, device=device, pretrained=pretrained) separator = Separator( target_models=target_models, niter=niter, residual=residual, n_fft=4096, n_hop=1024, nb_channels=2, sample_rate=44100.0, wiener_win_len=wiener_win_len, filterbank=filterbank, ).to(device) return separator
(targets=None, residual=False, niter=1, device='cpu', pretrained=True, wiener_win_len=300, filterbank='torch')
727,379
openunmix
umxhq_spec
null
def umxhq_spec(targets=None, device="cpu", pretrained=True): from .model import OpenUnmix # set urls for weights target_urls = { "bass": "https://zenodo.org/records/3370489/files/bass-8d85a5bd.pth", "drums": "https://zenodo.org/records/3370489/files/drums-9619578f.pth", "other": "https://zenodo.org/records/3370489/files/other-b52fbbf7.pth", "vocals": "https://zenodo.org/records/3370489/files/vocals-b62c91ce.pth", } if targets is None: targets = ["vocals", "drums", "bass", "other"] # determine the maximum bin count for a 16khz bandwidth model max_bin = utils.bandwidth_to_max_bin(rate=44100.0, n_fft=4096, bandwidth=16000) target_models = {} for target in targets: # load open unmix model target_unmix = OpenUnmix(nb_bins=4096 // 2 + 1, nb_channels=2, hidden_size=512, max_bin=max_bin) # enable centering of stft to minimize reconstruction error if pretrained: state_dict = torch.hub.load_state_dict_from_url(target_urls[target], map_location=device) target_unmix.load_state_dict(state_dict, strict=False) target_unmix.eval() target_unmix.to(device) target_models[target] = target_unmix return target_models
(targets=None, device='cpu', pretrained=True)
727,380
openunmix
umxl
Open Unmix Extra (UMX-L), 2-channel/stereo BLSTM Model trained on a private dataset of ~400h of multi-track audio. Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment.
def umxl( targets=None, residual=False, niter=1, device="cpu", pretrained=True, wiener_win_len=300, filterbank="torch", ): """ Open Unmix Extra (UMX-L), 2-channel/stereo BLSTM Model trained on a private dataset of ~400h of multi-track audio. Args: targets (str): select the targets for the source to be separated. a list including: ['vocals', 'drums', 'bass', 'other']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. """ from .model import Separator target_models = umxl_spec(targets=targets, device=device, pretrained=pretrained) separator = Separator( target_models=target_models, niter=niter, residual=residual, n_fft=4096, n_hop=1024, nb_channels=2, sample_rate=44100.0, wiener_win_len=wiener_win_len, filterbank=filterbank, ).to(device) return separator
(targets=None, residual=False, niter=1, device='cpu', pretrained=True, wiener_win_len=300, filterbank='torch')
727,381
openunmix
umxl_spec
null
def umxl_spec(targets=None, device="cpu", pretrained=True): from .model import OpenUnmix # set urls for weights target_urls = { "bass": "https://zenodo.org/records/5069601/files/bass-2ca1ce51.pth", "drums": "https://zenodo.org/records/5069601/files/drums-69e0ebd4.pth", "other": "https://zenodo.org/records/5069601/files/other-c8c5b3e6.pth", "vocals": "https://zenodo.org/records/5069601/files/vocals-bccbd9aa.pth", } if targets is None: targets = ["vocals", "drums", "bass", "other"] # determine the maximum bin count for a 16khz bandwidth model max_bin = utils.bandwidth_to_max_bin(rate=44100.0, n_fft=4096, bandwidth=16000) target_models = {} for target in targets: # load open unmix model target_unmix = OpenUnmix(nb_bins=4096 // 2 + 1, nb_channels=2, hidden_size=1024, max_bin=max_bin) # enable centering of stft to minimize reconstruction error if pretrained: state_dict = torch.hub.load_state_dict_from_url(target_urls[target], map_location=device) target_unmix.load_state_dict(state_dict, strict=False) target_unmix.eval() target_unmix.to(device) target_models[target] = target_unmix return target_models
(targets=None, device='cpu', pretrained=True)
727,382
openunmix
umxse
Open Unmix Speech Enhancemennt 1-channel BiLSTM Model trained on the 28-speaker version of Voicebank+Demand (Sampling rate: 16kHz) Args: targets (str): select the targets for the source to be separated. a list including: ['speech', 'noise']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. Reference: Uhlich, Stefan, & Mitsufuji, Yuki. (2020). Open-Unmix for Speech Enhancement (UMX SE). Zenodo. http://doi.org/10.5281/zenodo.3786908
def umxse(targets=None, residual=False, niter=1, device="cpu", pretrained=True, filterbank="torch", wiener_win_len=300): """ Open Unmix Speech Enhancemennt 1-channel BiLSTM Model trained on the 28-speaker version of Voicebank+Demand (Sampling rate: 16kHz) Args: targets (str): select the targets for the source to be separated. a list including: ['speech', 'noise']. If you don't pick them all, you probably want to activate the `residual=True` option. Defaults to all available targets per model. pretrained (bool): If True, returns a model pre-trained on MUSDB18-HQ residual (bool): if True, a "garbage" target is created niter (int): the number of post-processingiterations, defaults to 0 device (str): selects device to be used for inference wiener_win_len (int or None): The size of the excerpts (number of frames) on which to apply filtering independently. This means assuming time varying stereo models and localization of sources. None means not batching but using the whole signal. It comes at the price of a much larger memory usage. filterbank (str): filterbank implementation method. Supported are `['torch', 'asteroid']`. `torch` is about 30% faster compared to `asteroid` on large FFT sizes such as 4096. However, asteroids stft can be exported to onnx, which makes is practical for deployment. Reference: Uhlich, Stefan, & Mitsufuji, Yuki. (2020). Open-Unmix for Speech Enhancement (UMX SE). Zenodo. http://doi.org/10.5281/zenodo.3786908 """ from .model import Separator target_models = umxse_spec(targets=targets, device=device, pretrained=pretrained) separator = Separator( target_models=target_models, niter=niter, residual=residual, n_fft=1024, n_hop=512, nb_channels=1, sample_rate=16000.0, wiener_win_len=wiener_win_len, filterbank=filterbank, ).to(device) return separator
(targets=None, residual=False, niter=1, device='cpu', pretrained=True, filterbank='torch', wiener_win_len=300)
727,383
openunmix
umxse_spec
null
def umxse_spec(targets=None, device="cpu", pretrained=True): target_urls = { "speech": "https://zenodo.org/records/3786908/files/speech_f5e0d9f9.pth", "noise": "https://zenodo.org/records/3786908/files/noise_04a6fc2d.pth", } from .model import OpenUnmix if targets is None: targets = ["speech", "noise"] # determine the maximum bin count for a 16khz bandwidth model max_bin = utils.bandwidth_to_max_bin(rate=16000.0, n_fft=1024, bandwidth=16000) # load open unmix models speech enhancement models target_models = {} for target in targets: target_unmix = OpenUnmix(nb_bins=1024 // 2 + 1, nb_channels=1, hidden_size=256, max_bin=max_bin) # enable centering of stft to minimize reconstruction error if pretrained: state_dict = torch.hub.load_state_dict_from_url(target_urls[target], map_location=device) target_unmix.load_state_dict(state_dict, strict=False) target_unmix.eval() target_unmix.to(device) target_models[target] = target_unmix return target_models
(targets=None, device='cpu', pretrained=True)
727,414
d8s_lists.iterables
cycle
Cycle through the iterable as much as needed.
def cycle(iterable: Iterable[Any], length: Optional[int] = None) -> Iterator[Any]: """Cycle through the iterable as much as needed.""" full_cycle = itertools.cycle(iterable) if length: for index, item in enumerate(full_cycle): yield item if index == length - 1: break else: return full_cycle
(iterable: Iterable[Any], length: Optional[int] = None) -> Iterator[Any]
727,418
d8s_lists.iterables
duplicates
Find duplicates in the given iterable.
def duplicates(iterable: Sequence) -> Iterator[Sequence]: """Find duplicates in the given iterable.""" for item in iterable: if iterable.count(item) > 1: yield item
(iterable: Sequence) -> Iterator[Sequence]
727,419
d8s_lists.iterables
flatten
Flatten all items in the iterable so that they are all items in the same list.
def flatten(iterable: Iterable[Any], level: int = None, **kwargs) -> Iterator[Any]: """Flatten all items in the iterable so that they are all items in the same list.""" import more_itertools return more_itertools.collapse(iterable, levels=level, **kwargs)
(iterable: Iterable[Any], level: Optional[int] = None, **kwargs) -> Iterator[Any]
727,421
d8s_lists.iterables
iterable_all_items_of_types
Return True if all items in the iterable are of a type given in item_types. Otherwise, return False.
def iterable_all_items_of_types(iterable: Iterable[Any], item_types: Iterable[type]) -> bool: """Return True if all items in the iterable are of a type given in item_types. Otherwise, return False.""" for i in iterable: if type(i) not in item_types: return False return True
(iterable: Iterable[Any], item_types: Iterable[type]) -> bool
727,422
d8s_lists.iterables
iterable_count
Count each item in the iterable.
def iterable_count(iterable: Iterable[Any]) -> Dict[Any, int]: """Count each item in the iterable.""" counter: Counter = Counter() counter.update(iterable) count = dict_sort_by_values(counter) return count
(iterable: Iterable[Any]) -> Dict[Any, int]
727,423
d8s_lists.iterables
iterable_has_all_items_of_type
Return whether or not all iterable in iterable are of the type specified by the type_arg.
def iterable_has_all_items_of_type(iterable: Iterable[Any], type_arg: type) -> bool: """Return whether or not all iterable in iterable are of the type specified by the type_arg.""" for i in iterable: if type(i) != type_arg: return False return True
(iterable: Iterable[Any], type_arg: type) -> bool
727,424
d8s_lists.iterables
iterable_has_mixed_types
Return whether or not the iterable has items with two or more types.
def iterable_has_mixed_types(iterable: Iterable[Any]) -> bool: """Return whether or not the iterable has items with two or more types.""" return len(tuple(deduplicate(types(iterable)))) >= 2
(iterable: Iterable[Any]) -> bool