code
stringlengths 12
2.05k
| label
int64 0
1
| programming_language
stringclasses 9
values | cwe_id
stringlengths 6
14
| cwe_name
stringlengths 5
103
⌀ | description
stringlengths 36
1.23k
⌀ | url
stringlengths 36
48
⌀ | label_name
stringclasses 2
values |
---|---|---|---|---|---|---|---|
void UnicodeStringTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char *par)
{
if (exec) logln("TestSuite UnicodeStringTest: ");
TESTCASE_AUTO_BEGIN;
TESTCASE_AUTO_CREATE_CLASS(StringCaseTest);
TESTCASE_AUTO(TestBasicManipulation);
TESTCASE_AUTO(TestCompare);
TESTCASE_AUTO(TestExtract);
TESTCASE_AUTO(TestRemoveReplace);
TESTCASE_AUTO(TestSearching);
TESTCASE_AUTO(TestSpacePadding);
TESTCASE_AUTO(TestPrefixAndSuffix);
TESTCASE_AUTO(TestFindAndReplace);
TESTCASE_AUTO(TestBogus);
TESTCASE_AUTO(TestReverse);
TESTCASE_AUTO(TestMiscellaneous);
TESTCASE_AUTO(TestStackAllocation);
TESTCASE_AUTO(TestUnescape);
TESTCASE_AUTO(TestCountChar32);
TESTCASE_AUTO(TestStringEnumeration);
TESTCASE_AUTO(TestNameSpace);
TESTCASE_AUTO(TestUTF32);
TESTCASE_AUTO(TestUTF8);
TESTCASE_AUTO(TestReadOnlyAlias);
TESTCASE_AUTO(TestAppendable);
TESTCASE_AUTO(TestUnicodeStringImplementsAppendable);
TESTCASE_AUTO(TestSizeofUnicodeString);
TESTCASE_AUTO(TestStartsWithAndEndsWithNulTerminated);
TESTCASE_AUTO(TestMoveSwap);
TESTCASE_AUTO(TestUInt16Pointers);
TESTCASE_AUTO(TestWCharPointers);
TESTCASE_AUTO(TestNullPointers);
TESTCASE_AUTO(TestUnicodeStringInsertAppendToSelf);
TESTCASE_AUTO(TestLargeAppend);
TESTCASE_AUTO_END;
} | 1 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
const TfLiteTensor* size = GetInput(context, node, kSizeTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
// TODO(ahentz): Our current implementations rely on the inputs being 4D.
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1);
TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32);
// ResizeBilinear creates a float tensor even when the input is made of
// integers.
output->type = input->type;
if (!IsConstantTensor(size)) {
SetTensorToDynamic(output);
return kTfLiteOk;
}
// Ensure params are valid.
auto* params =
reinterpret_cast<TfLiteResizeBilinearParams*>(node->builtin_data);
if (params->half_pixel_centers && params->align_corners) {
context->ReportError(
context, "If half_pixel_centers is True, align_corners must be False.");
return kTfLiteError;
}
return ResizeOutputTensor(context, input, size, output);
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static bool is_legal_file(const std::string &filename)
{
DBG_FS << "Looking for '" << filename << "'.\n";
if (filename.empty()) {
LOG_FS << " invalid filename\n";
return false;
}
if (filename.find("..") != std::string::npos) {
ERR_FS << "Illegal path '" << filename << "' (\"..\" not allowed).\n";
return false;
}
if (ends_with(filename, ".pbl")) {
ERR_FS << "Illegal path '" << filename << "' (.pbl files are not allowed)." << std::endl;
return false;
}
return true;
} | 1 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | safe |
Variant HHVM_FUNCTION(mcrypt_create_iv, int size, int source /* = 0 */) {
if (size <= 0 || size >= INT_MAX) {
raise_warning("Can not create an IV with a size of less than 1 or "
"greater than %d", INT_MAX);
return false;
}
int n = 0;
char *iv = (char*)calloc(size + 1, 1);
if (source == RANDOM || source == URANDOM) {
int fd = open(source == RANDOM ? "/dev/random" : "/dev/urandom", O_RDONLY);
if (fd < 0) {
free(iv);
raise_warning("Cannot open source device");
return false;
}
int read_bytes;
for (read_bytes = 0; read_bytes < size && n >= 0; read_bytes += n) {
n = read(fd, iv + read_bytes, size - read_bytes);
}
n = read_bytes;
close(fd);
if (n < size) {
free(iv);
raise_warning("Could not gather sufficient random data");
return false;
}
} else {
n = size;
while (size) {
iv[--size] = (char)(255.0 * rand() / RAND_MAX);
}
}
return String(iv, n, AttachString);
} | 0 | C++ | CWE-310 | Cryptographic Issues | Weaknesses in this category are related to the design and implementation of data confidentiality and integrity. Frequently these deal with the use of encoding techniques, encryption libraries, and hashing algorithms. The weaknesses in this category could lead to a degradation of the quality data if they are not addressed. | https://cwe.mitre.org/data/definitions/310.html | vulnerable |
mptctl_eventreport (MPT_ADAPTER *ioc, unsigned long arg)
{
struct mpt_ioctl_eventreport __user *uarg = (void __user *) arg;
struct mpt_ioctl_eventreport karg;
int numBytes, maxEvents, max;
if (copy_from_user(&karg, uarg, sizeof(struct mpt_ioctl_eventreport))) {
printk(KERN_ERR MYNAM "%s@%d::mptctl_eventreport - "
"Unable to read in mpt_ioctl_eventreport struct @ %p\n",
__FILE__, __LINE__, uarg);
return -EFAULT;
}
dctlprintk(ioc, printk(MYIOC_s_DEBUG_FMT "mptctl_eventreport called.\n",
ioc->name));
numBytes = karg.hdr.maxDataSize - sizeof(mpt_ioctl_header);
maxEvents = numBytes/sizeof(MPT_IOCTL_EVENTS);
max = MPTCTL_EVENT_LOG_SIZE < maxEvents ? MPTCTL_EVENT_LOG_SIZE : maxEvents;
/* If fewer than 1 event is requested, there must have
* been some type of error.
*/
if ((max < 1) || !ioc->events)
return -ENODATA;
/* reset this flag so SIGIO can restart */
ioc->aen_event_read_flag=0;
/* Copy the data from kernel memory to user memory
*/
numBytes = max * sizeof(MPT_IOCTL_EVENTS);
if (copy_to_user(uarg->eventData, ioc->events, numBytes)) {
printk(MYIOC_s_ERR_FMT "%s@%d::mptctl_eventreport - "
"Unable to write out mpt_ioctl_eventreport struct @ %p\n",
ioc->name, __FILE__, __LINE__, ioc->events);
return -EFAULT;
}
return 0;
} | 1 | C++ | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The program contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently. | https://cwe.mitre.org/data/definitions/362.html | safe |
NO_INLINE JsVar *jspeFactorDelete() {
JSP_ASSERT_MATCH(LEX_R_DELETE);
JsVar *parent = 0;
JsVar *a = jspeFactorMember(jspeFactor(), &parent);
JsVar *result = 0;
if (JSP_SHOULD_EXECUTE) {
bool ok = false;
if (jsvIsName(a) && !jsvIsNewChild(a)) {
// if no parent, check in root?
if (!parent && jsvIsChild(execInfo.root, a))
parent = jsvLockAgain(execInfo.root);
#ifdef DEBUG
if (jsvHasChildren(parent)) assert(jsvIsChild(parent, a));
#endif
if (jsvHasChildren(parent) && jsvIsChild(parent, a)) {
// else remove properly.
/* we use jsvIsChild here just in case. delete probably isn't called
that often so it pays to be safe */
if (jsvIsArray(parent)) {
// For arrays, we must make sure we don't change the length
JsVarInt l = jsvGetArrayLength(parent);
jsvRemoveChild(parent, a);
jsvSetArrayLength(parent, l, false);
} else {
jsvRemoveChild(parent, a);
}
ok = true;
}
}
result = jsvNewFromBool(ok);
}
jsvUnLock2(a, parent);
return result;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
double real_multiplier = input->params.scale / output->params.scale;
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
&data->output_shift);
}
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void reposition(int pos) { ptr = start + pos; } | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
bool MemFile::seek(int64_t offset, int whence /* = SEEK_SET */) {
assertx(m_len != -1);
if (whence == SEEK_CUR) {
if (offset > 0 && offset < bufferedLen()) {
setReadPosition(getReadPosition() + offset);
setPosition(getPosition() + offset);
return true;
}
offset += getPosition();
whence = SEEK_SET;
}
// invalidate the current buffer
setWritePosition(0);
setReadPosition(0);
if (whence == SEEK_SET) {
m_cursor = offset;
} else {
assertx(whence == SEEK_END);
m_cursor = m_len + offset;
}
setPosition(m_cursor);
return true;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static bool couldRecur(const Variant& v, const Array& arr) {
return v.isReferenced() ||
arr.get()->kind() == ArrayData::kGlobalsKind ||
arr.get()->kind() == ArrayData::kProxyKind;
} | 1 | C++ | NVD-CWE-Other | Other | NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness type is not covered by that subset. | https://nvd.nist.gov/vuln/categories | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
int num_inputs = NumInputs(node);
TF_LITE_ENSURE(context, num_inputs >= 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
output->type = input1->type;
// Check that all input tensors have the same shape and type.
for (int i = kInputTensor1 + 1; i < num_inputs; ++i) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &input));
TF_LITE_ENSURE(context, HaveSameShapes(input1, input));
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input->type);
}
// Use the first input node's dimension to be the dimension of the output
// node.
TfLiteIntArray* input1_dims = input1->dims;
TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input1_dims);
return context->ResizeTensor(context, output, output_dims);
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
op_format(
oparg_T *oap,
int keep_cursor) // keep cursor on same text char
{
long old_line_count = curbuf->b_ml.ml_line_count;
// Place the cursor where the "gq" or "gw" command was given, so that "u"
// can put it back there.
curwin->w_cursor = oap->cursor_start;
if (u_save((linenr_T)(oap->start.lnum - 1),
(linenr_T)(oap->end.lnum + 1)) == FAIL)
return;
curwin->w_cursor = oap->start;
if (oap->is_VIsual)
// When there is no change: need to remove the Visual selection
redraw_curbuf_later(INVERTED);
if ((cmdmod.cmod_flags & CMOD_LOCKMARKS) == 0)
// Set '[ mark at the start of the formatted area
curbuf->b_op_start = oap->start;
// For "gw" remember the cursor position and put it back below (adjusted
// for joined and split lines).
if (keep_cursor)
saved_cursor = oap->cursor_start;
format_lines(oap->line_count, keep_cursor);
// Leave the cursor at the first non-blank of the last formatted line.
// If the cursor was moved one line back (e.g. with "Q}") go to the next
// line, so "." will do the next lines.
if (oap->end_adjusted && curwin->w_cursor.lnum < curbuf->b_ml.ml_line_count)
++curwin->w_cursor.lnum;
beginline(BL_WHITE | BL_FIX);
old_line_count = curbuf->b_ml.ml_line_count - old_line_count;
msgmore(old_line_count);
if ((cmdmod.cmod_flags & CMOD_LOCKMARKS) == 0)
// put '] mark on the end of the formatted area
curbuf->b_op_end = curwin->w_cursor;
if (keep_cursor)
{
curwin->w_cursor = saved_cursor;
saved_cursor.lnum = 0;
// formatting may have made the cursor position invalid
check_cursor();
}
if (oap->is_VIsual)
{
win_T *wp;
FOR_ALL_WINDOWS(wp)
{
if (wp->w_old_cursor_lnum != 0)
{
// When lines have been inserted or deleted, adjust the end of
// the Visual area to be redrawn.
if (wp->w_old_cursor_lnum > wp->w_old_visual_lnum)
wp->w_old_cursor_lnum += old_line_count;
else
wp->w_old_visual_lnum += old_line_count;
}
}
}
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
int GetS8 (int nPos, bool *pbSuccess)
{
//*pbSuccess = true;
if ( nPos < 0 || nPos >= m_nLen )
{
*pbSuccess = false;
return 0;
}
int nRes = m_sFile[ nPos ];
if ( nRes & 0x80 )
nRes |= ~0xff;
return nRes;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
String preg_quote(const String& str,
const String& delimiter /* = null_string */) {
const char* in_str = str.data();
const char* in_str_end = in_str + str.size();
/* Nothing to do if we got an empty string */
if (in_str == in_str_end) {
return str;
}
char delim_char = 0; /* Delimiter character to be quoted */
bool quote_delim = false; /* Whether to quote additional delim char */
if (!delimiter.empty()) {
delim_char = delimiter.charAt(0);
quote_delim = true;
}
/* Allocate enough memory so that even if each character
is quoted, we won't run out of room */
static_assert(
(StringData::MaxSize * 4 + 1) < std::numeric_limits<int64_t>::max()
);
String ret(4 * str.size() + 1, ReserveString);
char* out_str = ret.mutableData();
/* Go through the string and quote necessary characters */
const char* p;
char* q;
for (p = in_str, q = out_str; p != in_str_end; p++) {
char c = *p;
switch (c) {
case '.': case '\\': case '+': case '*': case '?':
case '[': case '^': case ']': case '$': case '(':
case ')': case '{': case '}': case '=': case '!':
case '>': case '<': case '|': case ':': case '-':
case '#':
*q++ = '\\';
*q++ = c;
break;
case '\0':
*q++ = '\\';
*q++ = '0';
*q++ = '0';
*q++ = '0';
break;
default:
if (quote_delim && c == delim_char)
*q++ = '\\';
*q++ = c;
break;
}
}
*q = '\0';
return ret.setSize(q - out_str);
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
RemoteFsDevice::RemoteFsDevice(MusicLibraryModel *m, const Details &d)
: FsDevice(m, d.name, createUdi(d.name))
, mountToken(0)
, currentMountStatus(false)
, details(d)
, proc(0)
, mounterIface(0)
, messageSent(false)
{
// details.path=Utils::fixPath(details.path);
setup();
icn=MonoIcon::icon(details.isLocalFile()
? FontAwesome::foldero
: constSshfsProtocol==details.url.scheme()
? FontAwesome::linux_os
: FontAwesome::windows, Utils::monoIconColor());
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
void CoreNetwork::putCmd(const QString &cmd, const QList<QList<QByteArray>> ¶ms, const QByteArray &prefix)
{
QListIterator<QList<QByteArray>> i(params);
while (i.hasNext()) {
QList<QByteArray> msg = i.next();
putCmd(cmd, msg, prefix);
}
} | 1 | C++ | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | https://cwe.mitre.org/data/definitions/399.html | safe |
SilenceEntry(uint32_t Flags, const std::string& Mask)
: flags(Flags)
, mask(Mask)
{
} | 1 | C++ | CWE-416 | Use After Free | Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code. | https://cwe.mitre.org/data/definitions/416.html | safe |
LiteralString(const std::string &s, bool ignore_case)
: lit_(s), ignore_case_(ignore_case),
is_word_(false) {} | 0 | C++ | CWE-476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. | https://cwe.mitre.org/data/definitions/476.html | vulnerable |
int32_t CxImage::GetSize()
{
return head.biSize + head.biSizeImage + GetPaletteSize();
}
| 0 | C++ | CWE-770 | Allocation of Resources Without Limits or Throttling | The software allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on the size or number of resources that can be allocated, in violation of the intended security policy for that actor. | https://cwe.mitre.org/data/definitions/770.html | vulnerable |
void runTest() override
{
beginTest ("ZIP");
ZipFile::Builder builder;
StringArray entryNames { "first", "second", "third" };
HashMap<String, MemoryBlock> blocks;
for (auto& entryName : entryNames)
{
auto& block = blocks.getReference (entryName);
MemoryOutputStream mo (block, false);
mo << entryName;
mo.flush();
builder.addEntry (new MemoryInputStream (block, false), 9, entryName, Time::getCurrentTime());
}
MemoryBlock data;
MemoryOutputStream mo (data, false);
builder.writeToStream (mo, nullptr);
MemoryInputStream mi (data, false);
ZipFile zip (mi);
expectEquals (zip.getNumEntries(), entryNames.size());
for (auto& entryName : entryNames)
{
auto* entry = zip.getEntry (entryName);
std::unique_ptr<InputStream> input (zip.createStreamForEntry (*entry));
expectEquals (input->readEntireStreamAsString(), entryName);
}
}
| 0 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
static const int kOutputUniqueTensor = 0;
static const int kOutputIndexTensor = 1;
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output_unique_tensor =
GetOutput(context, node, kOutputUniqueTensor);
TfLiteTensor* output_index_tensor =
GetOutput(context, node, kOutputIndexTensor);
// The op only supports 1D input.
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1);
TfLiteIntArray* output_index_shape = TfLiteIntArrayCopy(input->dims);
// The unique values are determined during evaluation, so we don't know yet
// the size of the output tensor.
SetTensorToDynamic(output_unique_tensor);
return context->ResizeTensor(context, output_index_tensor,
output_index_shape);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
BigInt square_mod_order(const BigInt& x) const
{
return m_mod_order.square(x);
} | 1 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | safe |
static Array HHVM_METHOD(Memcache, getextendedstats,
const String& /*type*/ /* = null_string */,
int /*slabid*/ /* = 0 */, int /*limit*/ /* = 100 */) {
auto data = Native::data<MemcacheData>(this_);
memcached_return_t ret;
memcached_stat_st *stats;
stats = memcached_stat(&data->m_memcache, nullptr, &ret);
if (ret != MEMCACHED_SUCCESS) {
return Array();
}
int server_count = memcached_server_count(&data->m_memcache);
Array return_val;
for (int server_id = 0; server_id < server_count; server_id++) {
memcached_stat_st *stat;
char stats_key[30] = {0};
size_t key_len;
LMCD_SERVER_POSITION_INSTANCE_TYPE instance =
memcached_server_instance_by_position(&data->m_memcache, server_id);
const char *hostname = LMCD_SERVER_HOSTNAME(instance);
in_port_t port = LMCD_SERVER_PORT(instance);
stat = stats + server_id;
Array server_stats = memcache_build_stats(&data->m_memcache, stat, &ret);
if (ret != MEMCACHED_SUCCESS) {
continue;
}
key_len = snprintf(stats_key, sizeof(stats_key), "%s:%d", hostname, port);
return_val.set(String(stats_key, key_len, CopyString), server_stats);
}
free(stats);
return return_val;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static Jsi_RC StringSearchCmd(Jsi_Interp *interp, Jsi_Value *args, Jsi_Value *_this,
Jsi_Value **ret, Jsi_Func *funcPtr)
{
int sLen, bLen;
const char *source_str;
ChkString(_this, funcPtr, source_str, &sLen, &bLen);
char *v = _this->d.obj->d.s.str;
Jsi_Value *seq = Jsi_ValueArrayIndex(interp, args, skip);
if (Jsi_ValueIsString(interp, seq)) {
char *ce, *cp = Jsi_ValueString(interp, seq, NULL);
int n = -1;
if ((ce = Jsi_Strstr(source_str, cp))) {
n = (ce-source_str);
}
Jsi_ValueMakeNumber(interp, ret, n);
return JSI_OK;
}
if (!seq || seq->vt != JSI_VT_OBJECT || seq->d.obj->ot != JSI_OT_REGEXP) {
Jsi_ValueMakeNumber(interp, ret, -1);
return JSI_OK;
}
regex_t *reg = &seq->d.obj->d.robj->reg;
regmatch_t pos[MAX_SUBREGEX] = {};
int r;
if ((r = regexec(reg, v, MAX_SUBREGEX, pos, 0)) != 0) {
if (r == REG_NOMATCH) {
Jsi_ValueMakeNumber(interp, ret, -1.0);
return JSI_OK;
}
if (r >= REG_BADPAT) {
char buf[100];
regerror(r, reg, buf, sizeof(buf));
Jsi_LogError("error while matching pattern: %s", buf);
return JSI_ERROR;
}
}
Jsi_ValueMakeNumber(interp, ret, (Jsi_Number)pos[0].rm_so);
return JSI_OK;
} | 0 | C++ | CWE-120 | Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') | The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. | https://cwe.mitre.org/data/definitions/120.html | vulnerable |
gdImagePtr gdImageCreateTrueColor (int sx, int sy)
{
int i;
gdImagePtr im;
if (overflow2(sx, sy)) {
return NULL;
}
if (overflow2(sizeof(unsigned char *), sy)) {
return NULL;
}
if (overflow2(sizeof(int) + sizeof(unsigned char), sx * sy)) {
return NULL;
}
// Check for OOM before doing a potentially large allocation.
auto allocsz = sizeof(gdImage)
+ sy * (sizeof(int *) + sizeof(unsigned char *))
+ sx * sy * (sizeof(int) + sizeof(unsigned char));
if (UNLIKELY(precheckOOM(allocsz))) {
// Don't throw here because GD might need to do its own cleanup.
return NULL;
}
im = (gdImage *) gdMalloc(sizeof(gdImage));
memset(im, 0, sizeof(gdImage));
im->tpixels = (int **) gdMalloc(sizeof(int *) * sy);
im->AA_opacity = (unsigned char **) gdMalloc(sizeof(unsigned char *) * sy);
im->polyInts = 0;
im->polyAllocated = 0;
im->brush = 0;
im->tile = 0;
im->style = 0;
for (i = 0; i < sy; i++) {
im->tpixels[i] = (int *) gdCalloc(sx, sizeof(int));
im->AA_opacity[i] = (unsigned char *) gdCalloc(sx, sizeof(unsigned char));
}
im->sx = sx;
im->sy = sy;
im->transparent = (-1);
im->interlace = 0;
im->trueColor = 1;
/* 2.0.2: alpha blending is now on by default, and saving of alpha is
* off by default. This allows font antialiasing to work as expected
* on the first try in JPEGs -- quite important -- and also allows
* for smaller PNGs when saving of alpha channel is not really
* desired, which it usually isn't!
*/
im->saveAlphaFlag = 0;
im->alphaBlendingFlag = 1;
im->thick = 1;
im->AA = 0;
im->AA_polygon = 0;
im->cx1 = 0;
im->cy1 = 0;
im->cx2 = im->sx - 1;
im->cy2 = im->sy - 1;
im->interpolation = NULL;
im->interpolation_id = GD_BILINEAR_FIXED;
return im;
} | 0 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | vulnerable |
void SetDashSize(double dashsize,double phase) {
if ( dashsize ) outpos += sprintf(outpos," [%12.3f] %12.3f d",dashsize,phase);
else outpos += sprintf(outpos," [] 0 d");
} | 0 | C++ | NVD-CWE-noinfo | null | null | null | vulnerable |
static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
{
struct fxregs_state fx_state;
int rc;
rc = check_fxsr(ctxt);
if (rc != X86EMUL_CONTINUE)
return rc;
rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, 512);
if (rc != X86EMUL_CONTINUE)
return rc;
if (fx_state.mxcsr >> 16)
return emulate_gp(ctxt, 0);
ctxt->ops->get_fpu(ctxt);
if (ctxt->mode < X86EMUL_MODE_PROT64)
rc = fxrstor_fixup(ctxt, &fx_state);
if (rc == X86EMUL_CONTINUE)
rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
ctxt->ops->put_fpu(ctxt);
return rc;
} | 1 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | safe |
TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
const ReluOpData* data = reinterpret_cast<ReluOpData*>(node->user_data);
switch (input->type) {
case kTfLiteFloat32: {
optimized_ops::Relu(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
} break;
// TODO(renjieliu): We may revisit the quantization calculation logic,
// the unbounded upper limit is actually hard to quantize.
case kTfLiteUInt8: {
QuantizedReluX<uint8_t>(0.0f, std::numeric_limits<float>::infinity(),
input, output, data);
} break;
case kTfLiteInt8: {
QuantizedReluX<int8_t>(0.0f, std::numeric_limits<float>::infinity(),
input, output, data);
} break;
default:
TF_LITE_KERNEL_LOG(
context, "Only float32 & int8/uint8 is supported currently, got %s.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
PreluParams* params = static_cast<PreluParams*>(node->user_data);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE(context, input != nullptr);
const TfLiteTensor* alpha = GetInput(context, node, 1);
TF_LITE_ENSURE(context, alpha != nullptr);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE(context, output != nullptr);
return CalculatePreluParams(input, alpha, output, params);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
void writeBytes(const void* data, int length) {
const U8* dataPtr = (const U8*)data;
const U8* dataEnd = dataPtr + length;
while (dataPtr < dataEnd) {
int n = check(1, dataEnd - dataPtr);
memcpy(ptr, dataPtr, n);
ptr += n;
dataPtr += n;
}
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node,
int index) {
if (index >= 0 && index < node->outputs->size) {
const int tensor_index = node->outputs->data[index];
if (tensor_index != kTfLiteOptionalTensor) {
if (context->tensors != nullptr) {
return &context->tensors[tensor_index];
} else {
return context->GetTensor(context, tensor_index);
}
}
}
return nullptr;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
void jas_matrix_divpow2(jas_matrix_t *matrix, int n)
{
jas_matind_t i;
jas_matind_t j;
jas_seqent_t *rowstart;
jas_matind_t rowstep;
jas_seqent_t *data;
if (jas_matrix_numrows(matrix) > 0 && jas_matrix_numcols(matrix) > 0) {
assert(matrix->rows_);
rowstep = jas_matrix_rowstep(matrix);
for (i = matrix->numrows_, rowstart = matrix->rows_[0]; i > 0; --i,
rowstart += rowstep) {
for (j = matrix->numcols_, data = rowstart; j > 0; --j,
++data) {
*data = (*data >= 0) ? ((*data) >> n) :
(-((-(*data)) >> n));
}
}
}
} | 1 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | safe |
void AveragePool(const float* input_data, const Dims<4>& input_dims, int stride,
int pad_width, int pad_height, int filter_width,
int filter_height, float* output_data,
const Dims<4>& output_dims) {
AveragePool<Ac>(input_data, input_dims, stride, stride, pad_width, pad_height,
filter_width, filter_height, output_data, output_dims);
} | 0 | C++ | CWE-835 | Loop with Unreachable Exit Condition ('Infinite Loop') | The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an infinite loop. | https://cwe.mitre.org/data/definitions/835.html | vulnerable |
mptctl_eventenable (MPT_ADAPTER *ioc, unsigned long arg)
{
struct mpt_ioctl_eventenable __user *uarg = (void __user *) arg;
struct mpt_ioctl_eventenable karg;
if (copy_from_user(&karg, uarg, sizeof(struct mpt_ioctl_eventenable))) {
printk(KERN_ERR MYNAM "%s@%d::mptctl_eventenable - "
"Unable to read in mpt_ioctl_eventenable struct @ %p\n",
__FILE__, __LINE__, uarg);
return -EFAULT;
}
dctlprintk(ioc, printk(MYIOC_s_DEBUG_FMT "mptctl_eventenable called.\n",
ioc->name));
if (ioc->events == NULL) {
/* Have not yet allocated memory - do so now.
*/
int sz = MPTCTL_EVENT_LOG_SIZE * sizeof(MPT_IOCTL_EVENTS);
ioc->events = kzalloc(sz, GFP_KERNEL);
if (!ioc->events) {
printk(MYIOC_s_ERR_FMT
": ERROR - Insufficient memory to add adapter!\n",
ioc->name);
return -ENOMEM;
}
ioc->alloc_total += sz;
ioc->eventContext = 0;
}
/* Update the IOC event logging flag.
*/
ioc->eventTypes = karg.eventTypes;
return 0;
} | 1 | C++ | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The program contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently. | https://cwe.mitre.org/data/definitions/362.html | safe |
explicit SparseCrossOp(OpKernelConstruction* context) : OpKernel(context) {
OP_REQUIRES_OK(context, context->GetAttr("num_buckets", &num_buckets_));
// Read signed_hash_key_ as int64 since uint64 attributes are not
// supported by REGISTER_OP.
int64 signed_hash_key_;
OP_REQUIRES_OK(context, context->GetAttr("hash_key", &signed_hash_key_));
hash_key_ = static_cast<uint64>(signed_hash_key_);
OP_REQUIRES_OK(context, context->GetAttr("internal_type", &internal_type_));
} | 1 | C++ | CWE-843 | Access of Resource Using Incompatible Type ('Type Confusion') | The program allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type. | https://cwe.mitre.org/data/definitions/843.html | safe |
R_API RBinJavaAttrInfo *r_bin_java_source_debug_attr_new(RBinJavaObj *bin, ut8 *buffer, ut64 sz, ut64 buf_offset) {
ut64 offset = 6;
if (sz < 8) {
return NULL;
}
RBinJavaAttrInfo *attr = r_bin_java_default_attr_new (bin, buffer, sz, buf_offset);
if (!attr) {
return NULL;
}
attr->type = R_BIN_JAVA_ATTR_TYPE_SOURCE_DEBUG_EXTENTSION_ATTR;
if (attr->length == 0) {
eprintf ("r_bin_java_source_debug_attr_new: Attempting to allocate 0 bytes for debug_extension.\n");
attr->info.debug_extensions.debug_extension = NULL;
return attr;
} else if ((attr->length + offset) > sz) {
eprintf ("r_bin_java_source_debug_attr_new: Expected %d byte(s) got %"
PFMT64d " bytes for debug_extension.\n", attr->length, (offset + sz));
}
attr->info.debug_extensions.debug_extension = (ut8 *) malloc (attr->length);
if (attr->info.debug_extensions.debug_extension && (attr->length > (sz - offset))) {
memcpy (attr->info.debug_extensions.debug_extension, buffer + offset, sz - offset);
} else if (attr->info.debug_extensions.debug_extension) {
memcpy (attr->info.debug_extensions.debug_extension, buffer + offset, attr->length);
} else {
eprintf ("r_bin_java_source_debug_attr_new: Unable to allocate the data for the debug_extension.\n");
}
offset += attr->length;
attr->size = offset;
return attr;
} | 1 | C++ | CWE-788 | Access of Memory Location After End of Buffer | The software reads or writes to a buffer using an index or pointer that references a memory location after the end of the buffer. | https://cwe.mitre.org/data/definitions/788.html | safe |
void BinaryParameter::setParam(const void* v, int len) {
LOCK_CONFIG;
if (immutable) return;
vlog.debug("set %s(Binary)", getName());
delete [] value; value = 0;
if (len) {
value = new char[len];
length = len;
memcpy(value, v, len);
}
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
v8::Local<v8::Object> CreateNativeEvent(
v8::Isolate* isolate,
v8::Local<v8::Object> sender,
content::RenderFrameHost* frame,
electron::mojom::ElectronBrowser::MessageSyncCallback callback) {
v8::Local<v8::Object> event;
if (frame && callback) {
gin::Handle<Event> native_event = Event::Create(isolate);
native_event->SetCallback(std::move(callback));
event = v8::Local<v8::Object>::Cast(native_event.ToV8());
} else {
// No need to create native event if we do not need to send reply.
event = CreateEvent(isolate);
}
Dictionary dict(isolate, event);
dict.Set("sender", sender);
// Should always set frameId even when callback is null.
if (frame)
dict.Set("frameId", frame->GetRoutingID());
return event;
} | 0 | C++ | CWE-668 | Exposure of Resource to Wrong Sphere | The product exposes a resource to the wrong control sphere, providing unintended actors with inappropriate access to the resource. | https://cwe.mitre.org/data/definitions/668.html | vulnerable |
TfLiteStatus EvalImpl(TfLiteContext* context, const TfLiteTensor* input,
TfLiteNode* node) {
// Map from value, to index in the unique elements vector.
// Note that we prefer to use map than unordered_map as it showed less
// increase in the binary size.
std::map<T, int> unique_values;
TfLiteTensor* output_indexes = GetOutput(context, node, 1);
std::vector<T> output_values;
I* indexes = GetTensorData<I>(output_indexes);
const T* data = GetTensorData<T>(input);
const int num_elements = NumElements(input);
for (int i = 0; i < num_elements; ++i) {
const auto element_it = unique_values.find(data[i]);
if (element_it != unique_values.end()) {
indexes[i] = element_it->second;
} else {
const int unique_index = unique_values.size();
unique_values[data[i]] = unique_index;
indexes[i] = unique_index;
output_values.push_back(data[i]);
}
}
// Allocate output tensor.
TfLiteTensor* unique_output = GetOutput(context, node, 0);
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape(
TfLiteIntArrayCreate(NumDimensions(input)), TfLiteIntArrayFree);
shape->data[0] = unique_values.size();
TF_LITE_ENSURE_STATUS(
context->ResizeTensor(context, unique_output, shape.release()));
// Set the values in the output tensor.
T* output_unique_values = GetTensorData<T>(unique_output);
for (int i = 0; i < output_values.size(); ++i) {
output_unique_values[i] = output_values[i];
}
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
// Check that the inputs and outputs have the right sizes and types.
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output_values = GetOutput(context, node, kOutputValues);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output_values->type);
const TfLiteTensor* top_k = GetInput(context, node, kInputTopK);
TF_LITE_ENSURE_TYPES_EQ(context, top_k->type, kTfLiteInt32);
// Set output dynamic if the input is not const.
if (IsConstantTensor(top_k)) {
TF_LITE_ENSURE_OK(context, ResizeOutput(context, node));
} else {
TfLiteTensor* output_indexes = GetOutput(context, node, kOutputIndexes);
TfLiteTensor* output_values = GetOutput(context, node, kOutputValues);
SetTensorToDynamic(output_indexes);
SetTensorToDynamic(output_values);
}
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* lookup;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &lookup));
TF_LITE_ENSURE_EQ(context, NumDimensions(lookup), 1);
TF_LITE_ENSURE_EQ(context, lookup->type, kTfLiteInt32);
const TfLiteTensor* value;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &value));
TF_LITE_ENSURE(context, NumDimensions(value) >= 2);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
TfLiteIntArray* outputSize = TfLiteIntArrayCreate(NumDimensions(value));
outputSize->data[0] = SizeOfDimension(lookup, 0);
outputSize->data[1] = SizeOfDimension(value, 1);
for (int i = 2; i < NumDimensions(value); i++) {
outputSize->data[i] = SizeOfDimension(value, i);
}
return context->ResizeTensor(context, output, outputSize);
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
static void exif_process_APP12(image_info_type *ImageInfo,
char *buffer, size_t length) {
size_t l1, l2=0;
if ((l1 = php_strnlen(buffer+2, length-2)) > 0) {
exif_iif_add_tag(ImageInfo, SECTION_APP12, "Company",
TAG_NONE, TAG_FMT_STRING, l1, buffer+2);
if (length > 2+l1+1) {
l2 = php_strnlen(buffer+2+l1+1, length-2-l1-1);
exif_iif_add_tag(ImageInfo, SECTION_APP12, "Info",
TAG_NONE, TAG_FMT_STRING, l2, buffer+2+l1+1);
}
}
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
ALWAYS_INLINE String serialize_impl(const Variant& value,
const SerializeOptions& opts) {
switch (value.getType()) {
case KindOfClass:
case KindOfLazyClass:
case KindOfPersistentString:
case KindOfString: {
auto const str =
isStringType(value.getType()) ? value.getStringData() :
isClassType(value.getType()) ? classToStringHelper(value.toClassVal()) :
lazyClassToStringHelper(value.toLazyClassVal());
auto const size = str->size();
if (size >= RuntimeOption::MaxSerializedStringSize) {
throw Exception("Size of serialized string (%ld) exceeds max", size);
}
StringBuffer sb;
sb.append("s:");
sb.append(size);
sb.append(":\"");
sb.append(str->data(), size);
sb.append("\";");
return sb.detach();
}
case KindOfResource:
return s_Res;
case KindOfUninit:
case KindOfNull:
case KindOfBoolean:
case KindOfInt64:
case KindOfFunc:
case KindOfPersistentVec:
case KindOfVec:
case KindOfPersistentDict:
case KindOfDict:
case KindOfPersistentKeyset:
case KindOfKeyset:
case KindOfPersistentDArray:
case KindOfDArray:
case KindOfPersistentVArray:
case KindOfVArray:
case KindOfDouble:
case KindOfObject:
case KindOfClsMeth:
case KindOfRClsMeth:
case KindOfRFunc:
case KindOfRecord:
break;
}
VariableSerializer vs(VariableSerializer::Type::Serialize);
if (opts.keepDVArrays) vs.keepDVArrays();
if (opts.forcePHPArrays) vs.setForcePHPArrays();
if (opts.warnOnHackArrays) vs.setHackWarn();
if (opts.warnOnPHPArrays) vs.setPHPWarn();
if (opts.ignoreLateInit) vs.setIgnoreLateInit();
if (opts.serializeProvenanceAndLegacy) vs.setSerializeProvenanceAndLegacy();
// Keep the count so recursive calls to serialize() embed references properly.
return vs.serialize(value, true, true);
} | 1 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | safe |
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
Comparison<float, reference_ops::LessEqualFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt32:
Comparison<int32_t, reference_ops::LessEqualFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt64:
Comparison<int64_t, reference_ops::LessEqualFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteUInt8:
ComparisonQuantized<uint8_t, reference_ops::LessEqualFn>(
input1, input2, output, requires_broadcast);
break;
case kTfLiteInt8:
ComparisonQuantized<int8_t, reference_ops::LessEqualFn>(
input1, input2, output, requires_broadcast);
break;
default:
context->ReportError(context,
"Does not support type %d, requires float|int|uint8",
input1->type);
return kTfLiteError;
}
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
jas_seq2d_t *jas_seq2d_copy(jas_seq2d_t *x)
{
jas_matrix_t *y;
jas_matind_t i;
jas_matind_t j;
y = jas_seq2d_create(jas_seq2d_xstart(x), jas_seq2d_ystart(x),
jas_seq2d_xend(x), jas_seq2d_yend(x));
assert(y);
for (i = 0; i < x->numrows_; ++i) {
for (j = 0; j < x->numcols_; ++j) {
*jas_matrix_getref(y, i, j) = jas_matrix_get(x, i, j);
}
}
return y;
} | 1 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | safe |
bool f_libxml_disable_entity_loader(bool disable /* = true */) {
bool old = s_libxml_errors->m_entity_loader_disabled;
s_libxml_errors->m_entity_loader_disabled = disable;
return old;
} | 1 | C++ | NVD-CWE-Other | Other | NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness type is not covered by that subset. | https://nvd.nist.gov/vuln/categories | safe |
void CLASS panasonic_load_raw()
{
int row, col, i, j, sh = 0, pred[2], nonz[2];
pana_bits(0);
for (row = 0; row < raw_height; row++)
{
#ifdef LIBRAW_LIBRARY_BUILD
checkCancel();
#endif
for (col = 0; col < raw_width; col++)
{
if ((i = col % 14) == 0)
pred[0] = pred[1] = nonz[0] = nonz[1] = 0;
if (i % 3 == 2)
sh = 4 >> (3 - pana_bits(2));
if (nonz[i & 1])
{
if ((j = pana_bits(8)))
{
if ((pred[i & 1] -= 0x80 << sh) < 0 || sh == 4)
pred[i & 1] &= ~((~0u) << sh);
pred[i & 1] += j << sh;
}
}
else if ((nonz[i & 1] = pana_bits(8)) || i > 11)
pred[i & 1] = nonz[i & 1] << 4 | pana_bits(4);
if ((RAW(row, col) = pred[col & 1]) > 4098 && col < width && row < height)
derror();
}
}
} | 1 | C++ | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer. | https://cwe.mitre.org/data/definitions/119.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
OpData* data = static_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
// TODO(b/128934713): Add support for fixed-point per-channel quantization.
// Currently this only support affine per-layer quantization.
TF_LITE_ENSURE_EQ(context, output->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(output->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->scale->size == 1);
if (input->type == kTfLiteFloat32) {
// Quantize use case.
TF_LITE_ENSURE(context, output->type == kTfLiteUInt8 ||
output->type == kTfLiteInt8 ||
output->type == kTfLiteInt16);
} else {
// Requantize use case.
if (input->type == kTfLiteInt16) {
TF_LITE_ENSURE(
context, output->type == kTfLiteInt8 || output->type == kTfLiteInt16);
} else {
TF_LITE_ENSURE(context,
input->type == kTfLiteInt8 || input->type == kTfLiteUInt8);
TF_LITE_ENSURE(
context, output->type == kTfLiteUInt8 || output->type == kTfLiteInt8);
}
const double effective_output_scale =
static_cast<double>(input->params.scale) /
static_cast<double>(output->params.scale);
QuantizeMultiplier(effective_output_scale, &data->output_multiplier,
&data->output_shift);
}
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
ECDSA_PrivateKey::create_signature_op(RandomNumberGenerator& /*rng*/,
const std::string& params,
const std::string& provider) const
{
#if defined(BOTAN_HAS_BEARSSL)
if(provider == "bearssl" || provider.empty())
{
try
{
return make_bearssl_ecdsa_sig_op(*this, params);
}
catch(Lookup_Error& e)
{
if(provider == "bearssl")
throw;
}
}
#endif
#if defined(BOTAN_HAS_OPENSSL)
if(provider == "openssl" || provider.empty())
{
try
{
return make_openssl_ecdsa_sig_op(*this, params);
}
catch(Lookup_Error& e)
{
if(provider == "openssl")
throw;
}
}
#endif
if(provider == "base" || provider.empty())
return std::unique_ptr<PK_Ops::Signature>(new ECDSA_Signature_Operation(*this, params));
throw Provider_Not_Found(algo_name(), provider);
} | 0 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | vulnerable |
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
const TfLiteTensor* input2;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor2, &input2));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
bool requires_broadcast = !HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
Comparison<float, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt32:
Comparison<int32_t, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt64:
Comparison<int64_t, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteUInt8:
ComparisonQuantized<uint8_t, reference_ops::GreaterFn>(
input1, input2, output, requires_broadcast);
break;
case kTfLiteInt8:
ComparisonQuantized<int8_t, reference_ops::GreaterFn>(
input1, input2, output, requires_broadcast);
break;
default:
context->ReportError(context,
"Does not support type %d, requires float|int|uint8",
input1->type);
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
ssize_t oe_recvfrom(
int sockfd,
void* buf,
size_t len,
int flags,
const struct oe_sockaddr* src_addr,
oe_socklen_t* addrlen)
{
ssize_t ret = -1;
oe_fd_t* sock;
if (!(sock = oe_fdtable_get(sockfd, OE_FD_TYPE_SOCKET)))
OE_RAISE_ERRNO(oe_errno);
ret = sock->ops.socket.recvfrom(sock, buf, len, flags, src_addr, addrlen);
done:
return ret;
} | 0 | C++ | NVD-CWE-Other | Other | NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness type is not covered by that subset. | https://nvd.nist.gov/vuln/categories | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
output->type = input->type;
TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims);
return context->ResizeTensor(context, output, output_size);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE(context, input != nullptr);
TF_LITE_ENSURE(context, output != nullptr);
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[0]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[0]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[1]);
TF_LITE_ENSURE_EQ(context, 1, output->dims->data[2]);
TF_LITE_ENSURE_EQ(context, 1, input->dims->data[2]);
TF_LITE_ENSURE_EQ(context, output->dims->data[3], input->dims->data[3]);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
// The circular buffer custom operator currently only supports int8_t.
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
// TODO(b/132070898): Use statically slotted OpData structures until a
// scratch memory API is ready.
TFLITE_DCHECK_LE(op_data_counter, kMaxOpDataSize);
OpData* op_data = &op_data_array[op_data_counter++];
// The last circular buffer layer (length 5) simply accumulates outputs, and
// does not run periodically.
// TODO(b/150001379): Move this special case logic to the tflite flatbuffer.
if (output->dims->data[1] == 5) {
op_data->cycles_max = 1;
} else {
op_data->cycles_max = 2;
}
op_data->cycles_until_run = op_data->cycles_max;
node->user_data = op_data;
return kTfLiteOk;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
RemoteFsDevice::RemoteFsDevice(MusicLibraryModel *m, const Details &d)
: FsDevice(m, d.name, createUdi(d.name))
, mountToken(0)
, currentMountStatus(false)
, details(d)
, proc(0)
, mounterIface(0)
, messageSent(false)
{
// details.path=Utils::fixPath(details.path);
setup();
icn=MonoIcon::icon(details.isLocalFile()
? FontAwesome::foldero
: constSshfsProtocol==details.url.scheme()
? FontAwesome::linux_os
: FontAwesome::windows, Utils::monoIconColor());
} | 0 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | vulnerable |
Variant HHVM_FUNCTION(mcrypt_generic_init, const Resource& td,
const String& key,
const String& iv) {
auto pm = get_valid_mcrypt_resource(td);
if (!pm) {
return false;
}
int max_key_size = mcrypt_enc_get_key_size(pm->m_td);
int iv_size = mcrypt_enc_get_iv_size(pm->m_td);
if (key.empty()) {
raise_warning("Key size is 0");
}
unsigned char *key_s = (unsigned char *)malloc(key.size());
memset(key_s, 0, key.size());
unsigned char *iv_s = (unsigned char *)malloc(iv_size + 1);
memset(iv_s, 0, iv_size + 1);
int key_size;
if (key.size() > max_key_size) {
raise_warning("Key size too large; supplied length: %ld, max: %d",
key.size(), max_key_size);
key_size = max_key_size;
} else {
key_size = key.size();
}
memcpy(key_s, key.data(), key.size());
if (iv.size() != iv_size) {
raise_warning("Iv size incorrect; supplied length: %ld, needed: %d",
iv.size(), iv_size);
}
memcpy(iv_s, iv.data(), std::min<int64_t>(iv_size, iv.size()));
mcrypt_generic_deinit(pm->m_td);
int result = mcrypt_generic_init(pm->m_td, key_s, key_size, iv_s);
/* If this function fails, close the mcrypt module to prevent crashes
* when further functions want to access this resource */
if (result < 0) {
pm->close();
switch (result) {
case -3:
raise_warning("Key length incorrect");
break;
case -4:
raise_warning("Memory allocation error");
break;
case -1:
default:
raise_warning("Unknown error");
break;
}
} else {
pm->m_init = true;
}
free(iv_s);
free(key_s);
return result;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
int DummyOutStream::overrun(int itemSize, int nItems)
{
flush();
if (itemSize * nItems > end - ptr)
nItems = (end - ptr) / itemSize;
return nItems;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteRegistration GetPassthroughOpRegistration() {
TfLiteRegistration reg = {nullptr, nullptr, nullptr, nullptr};
reg.init = [](TfLiteContext* context, const char*, size_t) -> void* {
auto* first_new_tensor = new int;
context->AddTensors(context, 2, first_new_tensor);
return first_new_tensor;
};
reg.free = [](TfLiteContext* context, void* buffer) {
delete static_cast<int*>(buffer);
};
reg.prepare = [](TfLiteContext* context, TfLiteNode* node) {
auto* first_new_tensor = static_cast<int*>(node->user_data);
const TfLiteTensor* tensor0 = GetInput(context, node, 0);
TfLiteTensor* tensor1 = GetOutput(context, node, 0);
TfLiteIntArray* newSize = TfLiteIntArrayCopy(tensor0->dims);
TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, tensor1, newSize));
TfLiteIntArrayFree(node->temporaries);
node->temporaries = TfLiteIntArrayCreate(2);
for (int i = 0; i < 2; ++i) {
node->temporaries->data[i] = *(first_new_tensor) + i;
}
auto setup_temporary = [&](int id) {
TfLiteTensor* tmp = &context->tensors[id];
tmp->type = kTfLiteFloat32;
tmp->allocation_type = kTfLiteArenaRw;
return context->ResizeTensor(context, tmp,
TfLiteIntArrayCopy(tensor0->dims));
};
TF_LITE_ENSURE_STATUS(setup_temporary(node->temporaries->data[0]));
TF_LITE_ENSURE_STATUS(setup_temporary(node->temporaries->data[1]));
return kTfLiteOk;
};
reg.invoke = [](TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* a0 = GetInput(context, node, 0);
auto populate = [&](int id) {
TfLiteTensor* t = &context->tensors[id];
int num = a0->dims->data[0];
for (int i = 0; i < num; i++) {
t->data.f[i] = a0->data.f[i];
}
};
populate(node->outputs->data[0]);
populate(node->temporaries->data[0]);
populate(node->temporaries->data[1]);
return kTfLiteOk;
};
return reg;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus AverageEvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input, TfLiteTensor* output) {
float activation_min, activation_max;
CalculateActivationRange(params->activation, &activation_min,
&activation_max);
#define TF_LITE_AVERAGE_POOL(type) \
tflite::PoolParams op_params; \
op_params.stride_height = params->stride_height; \
op_params.stride_width = params->stride_width; \
op_params.filter_height = params->filter_height; \
op_params.filter_width = params->filter_width; \
op_params.padding_values.height = data->padding.height; \
op_params.padding_values.width = data->padding.width; \
op_params.float_activation_min = activation_min; \
op_params.float_activation_max = activation_max; \
TF_LITE_ENSURE(context, type::AveragePool(op_params, GetTensorShape(input), \
GetTensorData<float>(input), \
GetTensorShape(output), \
GetTensorData<float>(output)))
if (kernel_type == kReference) {
TF_LITE_AVERAGE_POOL(reference_ops);
} else {
TF_LITE_AVERAGE_POOL(optimized_ops);
}
#undef TF_LITE_AVERAGE_POOL
return kTfLiteOk;
} | 1 | C++ | CWE-835 | Loop with Unreachable Exit Condition ('Infinite Loop') | The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an infinite loop. | https://cwe.mitre.org/data/definitions/835.html | safe |
TEST_F(AllowMissingInAndOfOrListTest, GoodAndBadJwts) {
EXPECT_CALL(mock_cb_, onComplete(Status::Ok));
// Use the token with example.com issuer for x-other.
auto headers =
Http::TestRequestHeaderMapImpl{{kExampleHeader, GoodToken}, {kOtherHeader, GoodToken}};
context_ = Verifier::createContext(headers, parent_span_, &mock_cb_);
verifier_->verify(context_);
EXPECT_THAT(headers, JwtOutputSuccess(kExampleHeader));
EXPECT_THAT(headers, JwtOutputFailedOrIgnore(kOtherHeader));
} | 0 | C++ | CWE-287 | Improper Authentication | When an actor claims to have a given identity, the software does not prove or insufficiently proves that the claim is correct. | https://cwe.mitre.org/data/definitions/287.html | vulnerable |
TfLiteStatus AverageEvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input,
TfLiteTensor* output) {
int32_t activation_min;
int32_t activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
#define TF_LITE_AVERAGE_POOL(type) \
tflite::PoolParams op_params; \
op_params.stride_height = params->stride_height; \
op_params.stride_width = params->stride_width; \
op_params.filter_height = params->filter_height; \
op_params.filter_width = params->filter_width; \
op_params.padding_values.height = data->padding.height; \
op_params.padding_values.width = data->padding.width; \
op_params.quantized_activation_min = activation_min; \
op_params.quantized_activation_max = activation_max; \
TF_LITE_ENSURE(context, type::AveragePool(op_params, GetTensorShape(input), \
GetTensorData<int8_t>(input), \
GetTensorShape(output), \
GetTensorData<int8_t>(output)))
if (kernel_type == kReference) {
TF_LITE_AVERAGE_POOL(reference_integer_ops);
} else {
TF_LITE_AVERAGE_POOL(optimized_integer_ops);
}
#undef TF_LITE_AVERAGE_POOL
return kTfLiteOk;
} | 1 | C++ | CWE-835 | Loop with Unreachable Exit Condition ('Infinite Loop') | The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an infinite loop. | https://cwe.mitre.org/data/definitions/835.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// TODO(ahentz): these two checks would make the new implementation
// incompatible with some existing models, where params is not specified. It
// is OK not to have them because toco would have set input and output types
// to match the parameters.
// auto* params = reinterpret_cast<TfLiteCastParams*>(node->builtin_data);
// TF_LITE_ENSURE_EQ(context, input->type, params->in_data_type);
// TF_LITE_ENSURE_EQ(context, output->type, params->out_data_type);
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* size;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kSizeTensor, &size));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// TODO(ahentz): Our current implementations rely on the input being 4D,
// and the size being 1D tensor with exactly 2 elements.
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1);
TF_LITE_ENSURE_TYPES_EQ(context, size->type, kTfLiteInt32);
TF_LITE_ENSURE_EQ(context, size->dims->data[0], 2);
output->type = input->type;
if (!IsConstantTensor(size)) {
SetTensorToDynamic(output);
return kTfLiteOk;
}
return ResizeOutputTensor(context, input, size, output);
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
static bool php_mb_parse_encoding(const Variant& encoding,
mbfl_encoding ***return_list,
int *return_size, bool persistent) {
bool ret;
if (encoding.isArray()) {
ret = php_mb_parse_encoding_array(encoding.toArray(),
return_list, return_size,
persistent ? 1 : 0);
} else {
String enc = encoding.toString();
ret = php_mb_parse_encoding_list(enc.data(), enc.size(),
return_list, return_size,
persistent ? 1 : 0);
}
if (!ret) {
if (return_list && *return_list) {
req::free(*return_list);
*return_list = nullptr;
}
return_size = 0;
}
return ret;
} | 1 | C++ | CWE-763 | Release of Invalid Pointer or Reference | The application attempts to return a memory resource to the system, but calls the wrong release function or calls the appropriate release function incorrectly. | https://cwe.mitre.org/data/definitions/763.html | safe |
Status OpLevelCostEstimator::PredictFusedBatchNormGrad(
const OpContext& op_context, NodeCosts* node_costs) const {
bool found_unknown_shapes = false;
const auto& op_info = op_context.op_info;
// y_backprop: op_info.inputs(0)
// x: op_info.inputs(1)
// scale: op_info.inputs(2)
// mean: op_info.inputs(3)
// variance or inverse of variance: op_info.inputs(4)
ConvolutionDimensions dims = OpDimensionsFromInputs(
op_info.inputs(1).shape(), op_info, &found_unknown_shapes);
int64_t ops = 0;
const auto rsqrt_cost = Eigen::internal::functor_traits<
Eigen::internal::scalar_rsqrt_op<float>>::Cost;
ops = dims.iz * (dims.batch * dims.ix * dims.iy * 11 + 5 + rsqrt_cost);
node_costs->num_compute_ops = ops;
const int64_t size_nhwc =
CalculateTensorSize(op_info.inputs(1), &found_unknown_shapes);
const int64_t size_c =
CalculateTensorSize(op_info.inputs(2), &found_unknown_shapes);
// TODO(dyoon): fix missing memory cost for variance input (size_c) and
// yet another read of y_backprop (size_nhwc) internally.
node_costs->num_input_bytes_accessed = {size_nhwc, size_nhwc, size_c, size_c};
node_costs->num_output_bytes_accessed = {size_nhwc, size_c, size_c};
// FusedBatchNormGrad has to read y_backprop internally.
node_costs->internal_read_bytes = size_nhwc;
node_costs->max_memory = node_costs->num_total_output_bytes();
if (found_unknown_shapes) {
node_costs->inaccurate = true;
node_costs->num_nodes_with_unknown_shapes = 1;
}
return Status::OK();
} | 0 | C++ | CWE-369 | Divide By Zero | The product divides a value by zero. | https://cwe.mitre.org/data/definitions/369.html | vulnerable |
Pl_ASCII85Decoder::flush()
{
if (this->pos == 0)
{
QTC::TC("libtests", "Pl_ASCII85Decoder no-op flush");
return;
}
unsigned long lval = 0;
for (int i = 0; i < 5; ++i)
{
lval *= 85;
lval += (this->inbuf[i] - 33U);
}
unsigned char outbuf[4];
memset(outbuf, 0, 4);
for (int i = 3; i >= 0; --i)
{
outbuf[i] = lval & 0xff;
lval >>= 8;
}
QTC::TC("libtests", "Pl_ASCII85Decoder partial flush",
(this->pos == 5) ? 0 : 1);
// Reset before calling getNext()->write in case that throws an
// exception.
auto t = this->pos - 1;
this->pos = 0;
memset(this->inbuf, 117, 5);
getNext()->write(outbuf, t);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
const int num_elements = NumElements(input);
TF_LITE_ENSURE_EQ(context, num_elements, NumElements(output));
switch (input->type) {
case kTfLiteInt64:
return copyToTensor(context, input->data.i64, output, num_elements);
case kTfLiteInt32:
return copyToTensor(context, input->data.i32, output, num_elements);
case kTfLiteUInt8:
return copyToTensor(context, input->data.uint8, output, num_elements);
case kTfLiteFloat32:
return copyToTensor(context, GetTensorData<float>(input), output,
num_elements);
case kTfLiteBool:
return copyToTensor(context, input->data.b, output, num_elements);
case kTfLiteComplex64:
return copyToTensor(
context, reinterpret_cast<std::complex<float>*>(input->data.c64),
output, num_elements);
default:
// Unsupported type.
TF_LITE_UNSUPPORTED_TYPE(context, input->type, "Cast");
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void jas_seq2d_bindsub(jas_matrix_t *s, jas_matrix_t *s1, int xstart,
int ystart, int xend, int yend)
{
jas_matrix_bindsub(s, s1, ystart - s1->ystart_, xstart - s1->xstart_,
yend - s1->ystart_ - 1, xend - s1->xstart_ - 1);
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
friend H AbslHashValue(H h, const TensorKey& k) {
const uint8* d = static_cast<uint8*>(k.data());
size_t s = k.AllocatedBytes();
std::vector<uint8> vec;
vec.reserve(s);
for (int i = 0; i < s; i++) {
vec.push_back(d[i]);
}
return H::combine(std::move(h), s);
} | 0 | C++ | CWE-122 | Heap-based Buffer Overflow | A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc(). | https://cwe.mitre.org/data/definitions/122.html | vulnerable |
static MagickBooleanType SkipDXTMipmaps(Image *image,DDSInfo *dds_info,
int texel_size,ExceptionInfo *exception)
{
MagickOffsetType
offset;
register ssize_t
i;
size_t
h,
w;
/*
Only skip mipmaps for textures and cube maps
*/
if (EOFBlob(image) != MagickFalse)
{
ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
image->filename);
return(MagickFalse);
}
if (dds_info->ddscaps1 & DDSCAPS_MIPMAP
&& (dds_info->ddscaps1 & DDSCAPS_TEXTURE
|| dds_info->ddscaps2 & DDSCAPS2_CUBEMAP))
{
w = DIV2(dds_info->width);
h = DIV2(dds_info->height);
/*
Mipmapcount includes the main image, so start from one
*/
for (i = 1; (i < (ssize_t) dds_info->mipmapcount) && w && h; i++)
{
offset = (MagickOffsetType) ((w + 3) / 4) * ((h + 3) / 4) * texel_size;
if (SeekBlob(image, offset, SEEK_CUR) < 0)
break;
w = DIV2(w);
h = DIV2(h);
}
}
return(MagickTrue);
} | 1 | C++ | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | https://cwe.mitre.org/data/definitions/399.html | safe |
void Compute(OpKernelContext* ctx) override {
const Tensor& sorted_inputs_t = ctx->input(0);
const Tensor& values_t = ctx->input(1);
// inputs must be at least a matrix
OP_REQUIRES(
ctx, sorted_inputs_t.shape().dims() >= 2,
errors::InvalidArgument("sorted input argument must be a matrix"));
// must have same batch dim_size for both
OP_REQUIRES(ctx, sorted_inputs_t.dim_size(0) == values_t.dim_size(0),
Status(error::INVALID_ARGUMENT,
"Leading dim_size of both tensors must match."));
// this is required because we do indexing in int32 on the GPU
OP_REQUIRES(ctx, values_t.NumElements() < std::numeric_limits<int>::max(),
Status(error::INVALID_ARGUMENT,
"values tensor size must less than INT_MAX"));
Tensor* output_t;
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, values_t.shape(), &output_t));
if (output_t->dtype() == DT_INT32) {
OP_REQUIRES(ctx,
FastBoundsCheck(sorted_inputs_t.dim_size(1),
std::numeric_limits<int>::max()),
errors::InvalidArgument("trailing dim_size must less than "
"INT_MAX for int32 output type, was ",
sorted_inputs_t.dim_size(1)));
}
auto output = output_t->template flat<OutType>();
const auto sorted_inputs = sorted_inputs_t.template flat<T>();
const auto values = values_t.template flat<T>();
OP_REQUIRES_OK(
ctx, functor::UpperBoundFunctor<Device, T, OutType>::Compute(
ctx, sorted_inputs, values, sorted_inputs_t.dim_size(0),
sorted_inputs_t.dim_size(1), values_t.dim_size(1), &output));
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TEST_F(ZNCTest, AwayNotify) {
auto znc = Run();
auto ircd = ConnectIRCd();
auto client = ConnectClient();
client.Write("CAP LS");
client.Write("PASS :hunter2");
client.Write("NICK nick");
client.Write("USER user/test x x :x");
QByteArray cap_ls;
client.ReadUntilAndGet(" LS :", cap_ls);
ASSERT_THAT(cap_ls.toStdString(),
AllOf(HasSubstr("cap-notify"), Not(HasSubstr("away-notify"))));
client.Write("CAP REQ :cap-notify");
client.ReadUntil("ACK :cap-notify");
client.Write("CAP END");
client.ReadUntil(" 001 ");
ircd.ReadUntil("USER");
ircd.Write("CAP user LS :away-notify");
ircd.ReadUntil("CAP REQ :away-notify");
ircd.Write("CAP user ACK :away-notify");
ircd.ReadUntil("CAP END");
ircd.Write(":server 001 user :welcome");
client.ReadUntil("CAP user NEW :away-notify");
client.Write("CAP REQ :away-notify");
client.ReadUntil("ACK :away-notify");
ircd.Write(":x!y@z AWAY :reason");
client.ReadUntil(":x!y@z AWAY :reason");
ircd.Close();
client.ReadUntil("DEL :away-notify");
} | 1 | C++ | CWE-476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. | https://cwe.mitre.org/data/definitions/476.html | safe |
void setSocket(AsyncSocket* s) {
s_ = s;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void jslGetTokenString(char *str, size_t len) {
if (lex->tk == LEX_ID) {
espruino_snprintf(str, len, "ID:%s", jslGetTokenValueAsString());
} else if (lex->tk == LEX_STR) {
espruino_snprintf(str, len, "String:'%s'", jslGetTokenValueAsString());
} else
jslTokenAsString(lex->tk, str, len);
} | 1 | C++ | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The software performs operations on a memory buffer, but it can read from or write to a memory location that is outside of the intended boundary of the buffer. | https://cwe.mitre.org/data/definitions/119.html | safe |
static INLINE BOOL ntlm_av_pair_get_len(const NTLM_AV_PAIR* pAvPair, size_t size, size_t* pAvLen)
{
UINT16 AvLen;
if (!pAvPair)
return FALSE;
if (size < sizeof(NTLM_AV_PAIR))
return FALSE;
Data_Read_UINT16(&pAvPair->AvLen, AvLen);
*pAvLen = AvLen;
return TRUE;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
static const char *jsi_evalprint(Jsi_Value *v)
{
static char buf[100];
if (!v)
return "nil";
if (v->vt == JSI_VT_NUMBER) {
snprintf(buf, 100, "NUM:%" JSI_NUMGFMT " ", v->d.num);
} else if (v->vt == JSI_VT_BOOL) {
snprintf(buf, 100, "BOO:%d", v->d.val);
} else if (v->vt == JSI_VT_STRING) {
snprintf(buf, 100, "STR:'%s'", v->d.s.str);
} else if (v->vt == JSI_VT_VARIABLE) {
snprintf(buf, 100, "VAR:%p", v->d.lval);
} else if (v->vt == JSI_VT_NULL) {
snprintf(buf, 100, "NULL");
} else if (v->vt == JSI_VT_OBJECT) {
snprintf(buf, 100, "OBJ:%p", v->d.obj);
} else if (v->vt == JSI_VT_UNDEF) {
snprintf(buf, 100, "UNDEFINED");
}
return buf;
} | 0 | C++ | CWE-120 | Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') | The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. | https://cwe.mitre.org/data/definitions/120.html | vulnerable |
void setSanMatchers(std::vector<envoy::type::matcher::v3::StringMatcher> san_matchers) {
san_matchers_ = san_matchers;
}; | 0 | C++ | CWE-295 | Improper Certificate Validation | The software does not validate, or incorrectly validates, a certificate. | https://cwe.mitre.org/data/definitions/295.html | vulnerable |
bool chopOff(string &domain)
{
if(domain.empty())
return false;
bool escaped = false;
const string::size_type domainLen = domain.length();
for (size_t fdot = 0; fdot < domainLen; fdot++)
{
if (domain[fdot] == '.' && !escaped) {
string::size_type remain = domainLen - (fdot + 1);
char tmp[remain];
memcpy(tmp, domain.c_str()+fdot+1, remain);
domain.assign(tmp, remain); // don't dare to do this w/o tmp holder :-)
return true;
}
else if (domain[fdot] == '\\' && !escaped) {
escaped = true;
}
else {
escaped = false;
}
}
domain = "";
return true;
} | 1 | C++ | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | https://cwe.mitre.org/data/definitions/399.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
output->type = input->type;
TfLiteIntArray* output_size = TfLiteIntArrayCopy(input->dims);
return context->ResizeTensor(context, output, output_size);
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void jas_matrix_asr(jas_matrix_t *matrix, int n)
{
int i;
int j;
jas_seqent_t *rowstart;
int rowstep;
jas_seqent_t *data;
assert(n >= 0);
if (jas_matrix_numrows(matrix) > 0 && jas_matrix_numcols(matrix) > 0) {
assert(matrix->rows_);
rowstep = jas_matrix_rowstep(matrix);
for (i = matrix->numrows_, rowstart = matrix->rows_[0]; i > 0; --i,
rowstart += rowstep) {
for (j = matrix->numcols_, data = rowstart; j > 0; --j,
++data) {
//*data >>= n;
*data = jas_seqent_asr(*data, n);
}
}
}
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TfLiteTensor* output = GetOutput(context, node, 0);
const TfLiteTensor* input = GetInput(context, node, 0);
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
int batches = input->dims->data[0];
int height = input->dims->data[1];
int width = input->dims->data[2];
int channels_out = input->dims->data[3];
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params->padding;
int out_width, out_height;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width, 1, 1, height, width,
params->filter_height, params->filter_width, padding, &out_height,
&out_width);
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
if (pool_type == kAverage || pool_type == kMax) {
TFLITE_DCHECK_LE(std::abs(input->params.scale - output->params.scale),
1.0e-6);
TFLITE_DCHECK_EQ(input->params.zero_point, output->params.zero_point);
}
if (pool_type == kL2) {
// We currently don't have a quantized implementation of L2Pool
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
}
}
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
output_size->data[0] = batches;
output_size->data[1] = out_height;
output_size->data[2] = out_width;
output_size->data[3] = channels_out;
return context->ResizeTensor(context, output, output_size);
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static int32_t gcd(int a, int b)
{
if (a == 0 && b == 0) {
return 1;
}
if (a == 0) return b;
if (b == 0) return a;
int32_t h;
do {
h = a % b;
a = b;
b = h;
} while (b != 0);
return a;
} | 0 | C++ | NVD-CWE-noinfo | null | null | null | vulnerable |
void RemoteDevicePropertiesWidget::update(const RemoteFsDevice::Details &d, bool create, bool isConnected)
{
int t=d.isLocalFile() ? Type_File : Type_SshFs;
setEnabled(d.isLocalFile() || !isConnected);
infoLabel->setVisible(create);
orig=d;
name->setText(d.name);
sshPort->setValue(22);
connectionNote->setVisible(!d.isLocalFile() && isConnected);
sshFolder->setText(QString());
sshHost->setText(QString());
sshUser->setText(QString());
fileFolder->setText(QString());
switch (t) {
case Type_SshFs: {
sshFolder->setText(d.url.path());
if (0!=d.url.port()) {
sshPort->setValue(d.url.port());
}
sshHost->setText(d.url.host());
sshUser->setText(d.url.userName());
sshExtra->setText(d.extraOptions);
break;
}
case Type_File:
fileFolder->setText(d.url.path());
break;
}
name->setEnabled(d.isLocalFile() || !isConnected);
connect(type, SIGNAL(currentIndexChanged(int)), this, SLOT(setType()));
for (int i=1; i<type->count(); ++i) {
if (type->itemData(i).toInt()==t) {
type->setCurrentIndex(i);
stackedWidget->setCurrentIndex(i);
break;
}
}
connect(name, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
connect(sshHost, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
connect(sshUser, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
connect(sshFolder, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
connect(sshPort, SIGNAL(valueChanged(int)), this, SLOT(checkSaveable()));
connect(sshExtra, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
connect(fileFolder, SIGNAL(textChanged(const QString &)), this, SLOT(checkSaveable()));
modified=false;
setType();
checkSaveable();
} | 1 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | safe |
inline int StringData::size() const { return m_len; } | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
void (*get)(struct x86_emulate_ctxt *ctxt,
struct desc_ptr *ptr))
{
struct desc_ptr desc_ptr;
if (ctxt->mode == X86EMUL_MODE_PROT64)
ctxt->op_bytes = 8;
get(ctxt, &desc_ptr);
if (ctxt->op_bytes == 2) {
ctxt->op_bytes = 4;
desc_ptr.address &= 0x00ffffff;
}
/* Disable writeback. */
ctxt->dst.type = OP_NONE;
return segmented_write(ctxt, ctxt->dst.addr.mem,
&desc_ptr, 2 + ctxt->op_bytes);
} | 0 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | vulnerable |
static void php_array_merge_recursive(PointerSet &seen, bool check,
Array &arr1, const Array& arr2) {
if (check && !seen.insert((void*)arr1.get()).second) {
raise_warning("array_merge_recursive(): recursion detected");
return;
}
for (ArrayIter iter(arr2); iter; ++iter) {
Variant key(iter.first());
const Variant& value(iter.secondRef());
if (key.isNumeric()) {
arr1.appendWithRef(value);
} else if (arr1.exists(key, true)) {
// There is no need to do toKey() conversion, for a key that is already
// in the array.
Variant &v = arr1.lvalAt(key, AccessFlags::Key);
auto subarr1 = v.toArray().copy();
php_array_merge_recursive(seen,
couldRecur(v, subarr1),
subarr1,
value.toArray());
v.unset(); // avoid contamination of the value that was strongly bound
v = subarr1;
} else {
arr1.setWithRef(key, value, true);
}
}
if (check) {
seen.erase((void*)arr1.get());
}
} | 0 | C++ | NVD-CWE-Other | Other | NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness type is not covered by that subset. | https://nvd.nist.gov/vuln/categories | vulnerable |
void APE::Properties::analyzeCurrent()
{
// Read the descriptor
d->file->seek(2, File::Current);
ByteVector descriptor = d->file->readBlock(44);
uint descriptorBytes = descriptor.mid(0,4).toUInt(false);
if ((descriptorBytes - 52) > 0)
d->file->seek(descriptorBytes - 52, File::Current);
// Read the header
ByteVector header = d->file->readBlock(24);
// Get the APE info
d->channels = header.mid(18, 2).toShort(false);
d->sampleRate = header.mid(20, 4).toUInt(false);
d->bitsPerSample = header.mid(16, 2).toShort(false);
//d->compressionLevel =
uint totalFrames = header.mid(12, 4).toUInt(false);
uint blocksPerFrame = header.mid(4, 4).toUInt(false);
uint finalFrameBlocks = header.mid(8, 4).toUInt(false);
uint totalBlocks = totalFrames > 0 ? (totalFrames - 1) * blocksPerFrame + finalFrameBlocks : 0;
d->length = totalBlocks / d->sampleRate;
d->bitrate = d->length > 0 ? ((d->streamLength * 8L) / d->length) / 1000 : 0;
} | 0 | C++ | NVD-CWE-noinfo | null | null | null | vulnerable |
TfLiteStatus UseDynamicOutputTensors(TfLiteContext* context, TfLiteNode* node) {
for (int i = 0; i < NumOutputs(node); ++i) {
SetTensorToDynamic(GetOutput(context, node, i));
}
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
inline bool ShapeIsVector(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* shape = GetInput(context, node, kShapeTensor);
return (shape != nullptr && shape->dims->size == 1 &&
shape->type == kTfLiteInt32);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TEST_F(AllowMissingInAndOfOrListTest, GoodAndBadJwts) {
EXPECT_CALL(mock_cb_, onComplete(Status::Ok));
// Use the token with example.com issuer for x-other.
auto headers =
Http::TestRequestHeaderMapImpl{{kExampleHeader, GoodToken}, {kOtherHeader, GoodToken}};
context_ = Verifier::createContext(headers, parent_span_, &mock_cb_);
verifier_->verify(context_);
EXPECT_THAT(headers, JwtOutputSuccess(kExampleHeader));
EXPECT_THAT(headers, JwtOutputFailedOrIgnore(kOtherHeader));
} | 0 | C++ | CWE-303 | Incorrect Implementation of Authentication Algorithm | The requirements for the software dictate the use of an established authentication algorithm, but the implementation of the algorithm is incorrect. | https://cwe.mitre.org/data/definitions/303.html | vulnerable |
TfLiteStatus MockCustom::Invoke(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = tflite::GetInput(context, node, 0);
const int32_t* input_data = input->data.i32;
const TfLiteTensor* weight = tflite::GetInput(context, node, 1);
const uint8_t* weight_data = weight->data.uint8;
TfLiteTensor* output = GetOutput(context, node, 0);
int32_t* output_data = output->data.i32;
output_data[0] =
0; // Catch output tensor sharing memory with an input tensor
output_data[0] = input_data[0] + weight_data[0];
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
return EvalImpl<kernel_type, kTfLiteFloat32>(context, node);
case kTfLiteUInt8:
return EvalImpl<kernel_type, kTfLiteUInt8>(context, node);
case kTfLiteInt8:
return EvalImpl<kernel_type, kTfLiteInt8>(context, node);
case kTfLiteInt16:
return EvalImpl<kernel_type, kTfLiteInt16>(context, node);
default:
context->ReportError(context, "Type %d not currently supported.",
input->type);
return kTfLiteError;
}
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
// TODO(b/137042749): TFLite infrastructure (converter, delegate) doesn't
// fully support 0-output ops yet. Currently it works if we manually crfat
// a TFLite graph that contains variable ops. Note:
// * The TFLite Converter need to be changed to be able to produce an op
// with 0 output.
// * The delegation code need to be changed to handle 0 output ops. However
// everything still works fine when variable ops aren't used.
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0);
const TfLiteTensor* input_resource_id_tensor =
GetInput(context, node, kInputVariableId);
TF_LITE_ENSURE_EQ(context, input_resource_id_tensor->type, kTfLiteInt32);
TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor), 1);
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
Status CalculateOutputIndex(OpKernelContext* context, int dimension,
const vector<INDEX_TYPE>& parent_output_index,
INDEX_TYPE output_index_multiplier,
INDEX_TYPE output_size,
vector<INDEX_TYPE>* result) {
const RowPartitionTensor row_partition_tensor =
GetRowPartitionTensor(context, dimension);
auto partition_type = GetRowPartitionTypeByDimension(dimension);
switch (partition_type) {
case RowPartitionType::VALUE_ROWIDS:
CalculateOutputIndexValueRowID(
row_partition_tensor, parent_output_index, output_index_multiplier,
output_size, result);
return tensorflow::Status::OK();
case RowPartitionType::ROW_SPLITS:
CalculateOutputIndexRowSplit(row_partition_tensor, parent_output_index,
output_index_multiplier, output_size,
result);
return tensorflow::Status::OK();
default:
return errors::InvalidArgument(
"Unsupported partition type:",
RowPartitionTypeToString(partition_type));
}
} | 0 | C++ | CWE-131 | Incorrect Calculation of Buffer Size | The software does not correctly calculate the size to be used when allocating a buffer, which could lead to a buffer overflow. | https://cwe.mitre.org/data/definitions/131.html | vulnerable |
bool WideToCharMap(const wchar *Src,char *Dest,size_t DestSize,bool &Success)
{
// String with inconvertible characters mapped to private use Unicode area
// must have the mark code somewhere.
if (wcschr(Src,(wchar)MappedStringMark)==NULL)
return false;
Success=true;
uint SrcPos=0,DestPos=0;
while (Src[SrcPos]!=0 && DestPos<DestSize-MB_CUR_MAX)
{
if (uint(Src[SrcPos])==MappedStringMark)
{
SrcPos++;
continue;
}
// For security reasons do not restore low ASCII codes, so mapping cannot
// be used to hide control codes like path separators.
if (uint(Src[SrcPos])>=MapAreaStart+0x80 && uint(Src[SrcPos])<MapAreaStart+0x100)
Dest[DestPos++]=char(uint(Src[SrcPos++])-MapAreaStart);
else
{
mbstate_t ps;
memset(&ps,0,sizeof(ps));
if (wcrtomb(Dest+DestPos,Src[SrcPos],&ps)==(size_t)-1)
{
Dest[DestPos]='_';
Success=false;
}
SrcPos++;
memset(&ps,0,sizeof(ps));
int Length=mbrlen(Dest+DestPos,MB_CUR_MAX,&ps);
DestPos+=Max(Length,1);
}
}
Dest[Min(DestPos,DestSize-1)]=0;
return true;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
inline typename V::SetType FBUnserializer<V>::unserializeSet() {
p_ += CODE_SIZE;
// the set size is written so we can reserve it in the set
// in future. Skip past it for now.
unserializeInt64();
typename V::SetType ret = V::createSet();
size_t code = nextCode();
while (code != FB_SERIALIZE_STOP) {
V::setAppend(ret, unserializeThing());
code = nextCode();
}
p_ += CODE_SIZE;
return ret;
} | 0 | C++ | CWE-674 | Uncontrolled Recursion | The product does not properly control the amount of recursion which takes place, consuming excessive resources, such as allocated memory or the program stack. | https://cwe.mitre.org/data/definitions/674.html | vulnerable |
inline TfLiteTensor* GetMutableInput(const TfLiteContext* context,
const TfLiteNode* node, int index) {
if (index >= 0 && index < node->inputs->size) {
const int tensor_index = node->inputs->data[index];
if (tensor_index != kTfLiteOptionalTensor) {
if (context->tensors != nullptr) {
return &context->tensors[tensor_index];
} else {
return context->GetTensor(context, tensor_index);
}
}
}
return nullptr;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
TfLiteTensor* hits;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 1, &hits));
const TfLiteTensor* lookup;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &lookup));
const TfLiteTensor* key;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &key));
const TfLiteTensor* value;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &value));
const int num_rows = SizeOfDimension(value, 0);
const int row_bytes = value->bytes / num_rows;
void* pointer = nullptr;
DynamicBuffer buf;
for (int i = 0; i < SizeOfDimension(lookup, 0); i++) {
int idx = -1;
pointer = bsearch(&(lookup->data.i32[i]), key->data.i32, num_rows,
sizeof(int32_t), greater);
if (pointer != nullptr) {
idx = (reinterpret_cast<char*>(pointer) - (key->data.raw)) /
sizeof(int32_t);
}
if (idx >= num_rows || idx < 0) {
if (output->type == kTfLiteString) {
buf.AddString(nullptr, 0);
} else {
memset(output->data.raw + i * row_bytes, 0, row_bytes);
}
hits->data.uint8[i] = 0;
} else {
if (output->type == kTfLiteString) {
buf.AddString(GetString(value, idx));
} else {
memcpy(output->data.raw + i * row_bytes,
value->data.raw + idx * row_bytes, row_bytes);
}
hits->data.uint8[i] = 1;
}
}
if (output->type == kTfLiteString) {
buf.WriteToTensorAsVector(output);
}
return kTfLiteOk;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
ModResult OnUserPreInvite(User* source, User* dest, Channel* channel, time_t timeout) CXX11_OVERRIDE
{
return CanReceiveMessage(source, dest, SilenceEntry::SF_INVITE) ? MOD_RES_PASSTHRU : MOD_RES_DENY;
} | 1 | C++ | CWE-416 | Use After Free | Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code. | https://cwe.mitre.org/data/definitions/416.html | safe |
int DummyOutStream::length()
{
flush();
return offset;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
unsigned char *base64decode(const char *buf, size_t *size)
{
if (!buf || !size) return NULL;
size_t len = (*size > 0) ? *size : strlen(buf);
if (len <= 0) return NULL;
unsigned char *outbuf = (unsigned char*)malloc((len/4)*3+3);
const char *ptr = buf;
int p = 0;
int wv, w1, w2, w3, w4;
int tmpval[4];
int tmpcnt = 0;
do {
while (ptr < buf+len && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n' || *ptr == '\r')) {
ptr++;
}
if (*ptr == '\0' || ptr >= buf+len) {
break;
}
if ((wv = base64_table[(int)(unsigned char)*ptr++]) == -1) {
continue;
}
tmpval[tmpcnt++] = wv;
if (tmpcnt == 4) {
tmpcnt = 0;
w1 = tmpval[0];
w2 = tmpval[1];
w3 = tmpval[2];
w4 = tmpval[3];
if (w2 >= 0) {
outbuf[p++] = (unsigned char)(((w1 << 2) + (w2 >> 4)) & 0xFF);
}
if (w3 >= 0) {
outbuf[p++] = (unsigned char)(((w2 << 4) + (w3 >> 2)) & 0xFF);
}
if (w4 >= 0) {
outbuf[p++] = (unsigned char)(((w3 << 6) + w4) & 0xFF);
}
}
} while (1);
outbuf[p] = 0;
*size = p;
return outbuf;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.