Molecule3D / Molecule3D_preprocessing.py
haneulpark's picture
Upload Molecule3D_preprocessing.py
ccd1d8e verified
# This is a script for Molecule3D dataset preprocessing
# 1. Load modules
import pandas as pd
import numpy as np
import urllib.request
import tqdm
import rdkit
from rdkit import Chem
import os
import molvs
import csv
import json
standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()
# 2. Download the original dataset
# Original data
# Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
# Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng Deng, Maho Nakata, Shuiwang Ji
# Please download the files from the link below:
# https://drive.google.com/drive/u/2/folders/1y-EyoDYMvWZwClc2uvXrM4_hQBtM85BI
# Suppose the files have been downloaded and unzipped
# 3. This part adds SMILES in addition to SDF and save CSV files
# List of file ranges and corresponding SDF/CSV filenames
file_ranges = [
(0, 1000000),
(1000001, 2000000),
(2000001, 3000000),
(3000001, 3899647)
]
# Base directory for input and output files
base_dir = '/YOUR LOCAL DIRECTORY/' # Please change this part
for start, end in file_ranges:
sdf_file = os.path.join(base_dir, f'combined_mols_{start}_to_{end}.sdf')
output_csv = os.path.join(base_dir, f'smiles_{start}_{end}.csv')
# Read the SDF file
suppl = Chem.SDMolSupplier(sdf_file)
# Write to CSV file with SMILES
with open(output_csv, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['index', 'SMILES'])
for idx, mol in enumerate(suppl):
if mol is None:
continue
smiles = Chem.MolToSmiles(mol)
writer.writerow([f'{idx + start + 1}', smiles])
''' These files are expected to be stored:
smiles_sdf_0_1000000.csv
smiles_sdf_1000001_2000000.csv
smiles_sdf_2000001_3000000.csv
smiles_sdf_3000001_3899647.csv'''
# 4. Check if there are any missing SMILES or sdf
df1 = pd.read_csv(f'{base_dir}/smiles_sdf_0_1000000.csv') # Suppose that you have already change the 'base_dir' above
df2 = pd.read_csv(f'{base_dir}/smiles_sdf_1000001_2000000.csv')
df3 = pd.read_csv(f'{base_dir}/smiles_sdf_2000001_3000000.csv')
df4 = pd.read_csv(f'{base_dir}/smiles_sdf_3000001_3899647.csv')
missing_1 = df1[df1.isna().any(axis = 1)]
missing_2 = df2[df2.isna().any(axis = 1)]
missing_3 = df3[df3.isna().any(axis = 1)]
missing_4 = df4[df4.isna().any(axis = 1)]
print('For smiles_sdf_0_1000000.csv file : ', missing_1)
print('For smiles_sdf_1000001_2000000.csv file : ', missing_2)
print('For smiles_sdf_2000001_3000000.csv file : ', missing_3)
print('For smiles_sdf_3000001_3899647.csv file : ', missing_4)
# 5. Sanitize the molecules with MolVS
# This part would take a few hours
df1['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df1['SMILES']]
problems = []
for index, row in tqdm.tqdm(df1.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df1.to_csv('smiles_sdf_0_1000000_sanitized.csv')
df2['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df2['SMILES']]
problems = []
for index, row in tqdm.tqdm(df2.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df2.to_csv('smiles_sdf_1000001_2000000_sanitized.csv')
df3['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df3['SMILES']]
problems = []
for index, row in tqdm.tqdm(df3.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df3.to_csv('smiles_sdf_2000001_3000000_sanitized.csv')
df4['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df4['SMILES']]
problems = []
for index, row in tqdm.tqdm(df4.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df4.to_csv('smiles_sdf_3000001_3899647_sanitized.csv')
# 6. Concatenate four sanitized files to one long file
sanitized1 = pd.read_csv('smiles_sdf_0_1000000_sanitized.csv')
sanitized2 = pd.read_csv('smiles_sdf_1000001_2000000_sanitized.csv')
sanitized3 = pd.read_csv('smiles_sdf_2000001_3000000_sanitized.csv')
sanitized4 = pd.read_csv('smiles_sdf_3000001_3899647_sanitized.csv')
smiles_sdf_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)
smiles_sdf_concatenated.to_csv('smiles_sdf_concatenated.csv', index = False)
# 7. Combine the properties file to the smiles_sdf_concatenated.csv
smiles_sdf_concatenated = pd.read_csv('smiles_sdf_concatenated.csv')
properties = pd.read_csv('properties.csv') # This file is also from the link provided above
smiles_sdf_properties_concatenated = pd.concat([smiles_sdf_concatenated, properties], axis=1)
smiles_sdf_properties_concatenated.to_csv('smiles_sdf_properties.csv', index = False)
# 8. Rename the columns
columns_selected = smiles_sdf_properties_concatenated[['Unnamed: 0', 'X', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'homolumogap', 'scf energy']]
columns_selected.rename(columns={'Unnamed: 0': 'index', 'X': 'SMILES', 'homolumogap':'Y'}, inplace=True)
columns_selected.to_csv('Molecule3D_final.csv', index=False)
# 9. Split the dataset by using radom split and scaffold split
Molecule3D_final = pd.read_csv('Molecule3D_final.csv')
# Random split
with open('random_split_inds.json', 'r') as f: # random or scaffold
split_data = json.load(f)
random_train = Molecule3D_final[Molecule3D_final['index'].isin(split_data['train'])]
random_test = Molecule3D_final[Molecule3D_final['index'].isin(split_data['test'])]
random_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_data['valid'])]
random_train.to_parquet('Molecule3D_random_train.parquet', index=False)
random_test.to_parquet('Molecule3D_random_test.parquet', index=False)
random_valid.to_parquet('Molecule3D_random_validation.parquet', index=False)
# Scaffold split
with open('scaffold_split_inds.json', 'r') as f: # random or scaffold
split_scaffold = json.load(f)
scaffold_train = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['train'])]
scaffold_test = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['test'])]
scaffold_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['valid'])]
scaffold_train.to_parquet('Molecule3D_scaffold_train.parquet', index=False)
scaffold_test.to_parquet('Molecule3D_scaffold_test.parquet', index=False)
scaffold_valid.to_parquet('Molecule3D_scaffold_validation.parquet', index=False)