Datasets:
File size: 7,819 Bytes
ccd1d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# This is a script for Molecule3D dataset preprocessing
# 1. Load modules
import pandas as pd
import numpy as np
import urllib.request
import tqdm
import rdkit
from rdkit import Chem
import os
import molvs
import csv
import json
standardizer = molvs.Standardizer()
fragment_remover = molvs.fragment.FragmentRemover()
# 2. Download the original dataset
# Original data
# Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
# Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng Deng, Maho Nakata, Shuiwang Ji
# Please download the files from the link below:
# https://drive.google.com/drive/u/2/folders/1y-EyoDYMvWZwClc2uvXrM4_hQBtM85BI
# Suppose the files have been downloaded and unzipped
# 3. This part adds SMILES in addition to SDF and save CSV files
# List of file ranges and corresponding SDF/CSV filenames
file_ranges = [
(0, 1000000),
(1000001, 2000000),
(2000001, 3000000),
(3000001, 3899647)
]
# Base directory for input and output files
base_dir = '/YOUR LOCAL DIRECTORY/' # Please change this part
for start, end in file_ranges:
sdf_file = os.path.join(base_dir, f'combined_mols_{start}_to_{end}.sdf')
output_csv = os.path.join(base_dir, f'smiles_{start}_{end}.csv')
# Read the SDF file
suppl = Chem.SDMolSupplier(sdf_file)
# Write to CSV file with SMILES
with open(output_csv, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['index', 'SMILES'])
for idx, mol in enumerate(suppl):
if mol is None:
continue
smiles = Chem.MolToSmiles(mol)
writer.writerow([f'{idx + start + 1}', smiles])
''' These files are expected to be stored:
smiles_sdf_0_1000000.csv
smiles_sdf_1000001_2000000.csv
smiles_sdf_2000001_3000000.csv
smiles_sdf_3000001_3899647.csv'''
# 4. Check if there are any missing SMILES or sdf
df1 = pd.read_csv(f'{base_dir}/smiles_sdf_0_1000000.csv') # Suppose that you have already change the 'base_dir' above
df2 = pd.read_csv(f'{base_dir}/smiles_sdf_1000001_2000000.csv')
df3 = pd.read_csv(f'{base_dir}/smiles_sdf_2000001_3000000.csv')
df4 = pd.read_csv(f'{base_dir}/smiles_sdf_3000001_3899647.csv')
missing_1 = df1[df1.isna().any(axis = 1)]
missing_2 = df2[df2.isna().any(axis = 1)]
missing_3 = df3[df3.isna().any(axis = 1)]
missing_4 = df4[df4.isna().any(axis = 1)]
print('For smiles_sdf_0_1000000.csv file : ', missing_1)
print('For smiles_sdf_1000001_2000000.csv file : ', missing_2)
print('For smiles_sdf_2000001_3000000.csv file : ', missing_3)
print('For smiles_sdf_3000001_3899647.csv file : ', missing_4)
# 5. Sanitize the molecules with MolVS
# This part would take a few hours
df1['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df1['SMILES']]
problems = []
for index, row in tqdm.tqdm(df1.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df1.to_csv('smiles_sdf_0_1000000_sanitized.csv')
df2['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df2['SMILES']]
problems = []
for index, row in tqdm.tqdm(df2.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df2.to_csv('smiles_sdf_1000001_2000000_sanitized.csv')
df3['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df3['SMILES']]
problems = []
for index, row in tqdm.tqdm(df3.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df3.to_csv('smiles_sdf_2000001_3000000_sanitized.csv')
df4['X'] = [ \
rdkit.Chem.MolToSmiles(
fragment_remover.remove(
standardizer.standardize(
rdkit.Chem.MolFromSmiles(
smiles))))
for smiles in df4['SMILES']]
problems = []
for index, row in tqdm.tqdm(df4.iterrows()):
result = molvs.validate_smiles(row['X'])
if len(result) == 0:
continue
problems.append( (row['X'], result) )
# Most are because it includes the salt form and/or it is not neutralized
for result, alert in problems:
print(f"SMILES: {result}, problem: {alert[0]}")
df4.to_csv('smiles_sdf_3000001_3899647_sanitized.csv')
# 6. Concatenate four sanitized files to one long file
sanitized1 = pd.read_csv('smiles_sdf_0_1000000_sanitized.csv')
sanitized2 = pd.read_csv('smiles_sdf_1000001_2000000_sanitized.csv')
sanitized3 = pd.read_csv('smiles_sdf_2000001_3000000_sanitized.csv')
sanitized4 = pd.read_csv('smiles_sdf_3000001_3899647_sanitized.csv')
smiles_sdf_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)
smiles_sdf_concatenated.to_csv('smiles_sdf_concatenated.csv', index = False)
# 7. Combine the properties file to the smiles_sdf_concatenated.csv
smiles_sdf_concatenated = pd.read_csv('smiles_sdf_concatenated.csv')
properties = pd.read_csv('properties.csv') # This file is also from the link provided above
smiles_sdf_properties_concatenated = pd.concat([smiles_sdf_concatenated, properties], axis=1)
smiles_sdf_properties_concatenated.to_csv('smiles_sdf_properties.csv', index = False)
# 8. Rename the columns
columns_selected = smiles_sdf_properties_concatenated[['Unnamed: 0', 'X', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'homolumogap', 'scf energy']]
columns_selected.rename(columns={'Unnamed: 0': 'index', 'X': 'SMILES', 'homolumogap':'Y'}, inplace=True)
columns_selected.to_csv('Molecule3D_final.csv', index=False)
# 9. Split the dataset by using radom split and scaffold split
Molecule3D_final = pd.read_csv('Molecule3D_final.csv')
# Random split
with open('random_split_inds.json', 'r') as f: # random or scaffold
split_data = json.load(f)
random_train = Molecule3D_final[Molecule3D_final['index'].isin(split_data['train'])]
random_test = Molecule3D_final[Molecule3D_final['index'].isin(split_data['test'])]
random_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_data['valid'])]
random_train.to_parquet('Molecule3D_random_train.parquet', index=False)
random_test.to_parquet('Molecule3D_random_test.parquet', index=False)
random_valid.to_parquet('Molecule3D_random_validation.parquet', index=False)
# Scaffold split
with open('scaffold_split_inds.json', 'r') as f: # random or scaffold
split_scaffold = json.load(f)
scaffold_train = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['train'])]
scaffold_test = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['test'])]
scaffold_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['valid'])]
scaffold_train.to_parquet('Molecule3D_scaffold_train.parquet', index=False)
scaffold_test.to_parquet('Molecule3D_scaffold_test.parquet', index=False)
scaffold_valid.to_parquet('Molecule3D_scaffold_validation.parquet', index=False)
|