prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python """Calculate regionprops of segments. """ import sys import argparse # conda install cython # conda install pytest # conda install pandas # pip install ~/workspace/scikit-image/ # scikit-image==0.16.dev0 import os import re import glob import pickle import numpy as np import pandas as pd from scipy import ndimage as ndi from scipy.spatial import distance from stapl3d import Image, LabelImage, wmeMPI from stapl3d.channels import get_bias_field_block from skimage.measure import regionprops, regionprops_table from skimage.morphology import binary_dilation from skimage.segmentation import find_boundaries from stapl3d.segmentation.segment import extract_segments def main(argv): """Calculate regionprops of segments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( '--seg_paths', nargs='*', help='paths to label volumes (xyz)', ) parser.add_argument( '--seg_names', nargs='*', help='names for (sub)segmentations', ) parser.add_argument( '--data_path', nargs='*', help='paths to data channels', ) parser.add_argument( '--data_names', nargs='*', help='names for channels', ) parser.add_argument( '--aux_data_path', help='path to auxilliary data file (zyxc)', ) parser.add_argument( '--downsample_factors', nargs='*', type=int, default=[], help='the downsample factors applied to the aux_data_path image' ) parser.add_argument( '--csv_path', default='', help='path to output csv file', ) parser.add_argument( '-s', '--blocksize', required=True, nargs='*', type=int, default=[], help='size of the datablock' ) parser.add_argument( '-m', '--blockmargin', nargs='*', type=int, default=[], help='the datablock overlap used' ) parser.add_argument( '--blockrange', nargs=2, type=int, default=[], help='a range of blocks to process' ) parser.add_argument( '--channels', nargs='*', type=int, default=[], help='a list of channel indices to extract intensity features for' ) parser.add_argument( '-f', '--filter_borderlabels', action='store_true', help='save intermediate results' ) parser.add_argument( '--min_labelsize', type=int, default=0, help='minimum labelsize in voxels', ) parser.add_argument( '--split_features', action='store_true', help='save intermediate results' ) parser.add_argument( '--fset_morph', default=['label'], help='morphology feature set', ) parser.add_argument( '--fset_intens', default=['mean_intensity'], help='intensity feature set', ) parser.add_argument( '--fset_addit', default=['com_z', 'com_y', 'com_x'], help='auxilliary feature set', ) args = parser.parse_args() export_regionprops( args.seg_paths, args.seg_names, args.data_path, args.data_names, args.aux_data_path, args.downsample_factors, args.csv_path, args.blocksize, args.blockmargin, args.blockrange, args.channels, args.filter_borderlabels, args.min_labelsize, args.split_features, args.fset_morph, args.fset_intens, args.fset_addit, ) def export_regionprops( seg_paths, seg_names=['full', 'memb', 'nucl'], data_paths=[], data_names=[], aux_data_path=[], downsample_factors=[1, 1, 1], outputstem='', blocksize=[], blockmargin=[], blockrange=[], channels=[], filter_borderlabels=False, min_labelsize=0, split_features=False, fset_morph=['label'], fset_intens=['mean_intensity'], fset_addit=['com_z', 'com_y', 'com_x'], ): # load the segments: ['full'] or ['full', 'memb', 'nucl'] label_ims = {} pfs = seg_names[:len(seg_paths)] for pf, seg_path in zip(pfs, seg_paths): im = LabelImage(seg_path, permission='r') im.load(load_data=False) label_ims[pf] = im comps = label_ims['full'].split_path() # prepare parallel processing mpi_label = wmeMPI(usempi=False) blocksize = blocksize or label_ims['full'].dims mpi_label.set_blocks(label_ims['full'], blocksize, blockmargin, blockrange) mpi_label.scatter_series() # load the data data_ims = {} mpi_data = wmeMPI(usempi=False) for i, data_path in enumerate(data_paths): pf = 'im{:02d}'.format(i) data = Image(data_path, permission='r') data.load(load_data=False) ch_idx = data.axlab.index('c') # FIXME channels for multiple data_paths chs = channels or [ch for ch in range(data.dims[ch_idx])] names = [data_names.pop(0) for _ in range(len(chs))] data_ims[pf] = {'im': data, 'ch': chs, 'names': names} """ TODO try: mpi_data.blocks = [ {'id': split_filename(comps['file'])[0]['postfix'], 'slices': dset_name2slices(comps['file'], axlab=data.axlab, shape=data.dims), 'path': '',}, ] except: """ mpi_data.set_blocks(data, blocksize, blockmargin, blockrange) border_labelset = set([]) # if filter_borderlabels: # outstem = outputstem or label_ims['full'].split_path()['base'] # outstem += '_dataset' # border_labelset |= filter_borders(label_ims['full'], outstem) dfs = [] for i in mpi_label.series: print('processing block {:03d} with id: {}'.format(i, mpi_label.blocks[i]['id'])) dfs.append(process_block( mpi_label.blocks[i], mpi_data.blocks[i], label_ims, split_features, data_ims, min_labelsize, channels, filter_borderlabels, fset_morph, fset_intens, fset_addit, border_labelset, outputstem, aux_data_path, downsample_factors, ) ) return dfs def process_block( block_label, block_data, label_ims, split_features, data_ims, min_labelsize, channels, filter_borderlabels=False, fset_morph=['label'], fset_intens=['mean_intensity'], fset_addit=['com_z', 'com_y', 'com_x'], border_labelset=set([]), outputstem='', aux_data_path='', downsample_factors=[1, 1, 1], ): morph, intens, add = get_feature_set(fset_morph, fset_intens, fset_addit) all_regions = {} for pf, label_im in label_ims.items(): label_im.slices = block_label['slices'][:3] all_regions[pf] = label_im.slice_dataset().astype('int') all_data = {} for dpf, datadict in data_ims.items(): data = datadict['im'] data.slices = block_data['slices'] for ch, name in zip(datadict['ch'], datadict['names']): data.slices[data.axlab.index('c')] = slice(ch, ch + 1, 1) ch_data = data.slice_dataset() all_data[name] = ch_data outstem = outputstem or label_ims['full'].split_path()['base'] outstem += '_{}'.format(block_label['id']) if filter_borderlabels: border_labelset |= filter_borders(label_ims['full'], outstem) if min_labelsize: all_regions = filter_size(all_regions, min_labelsize, outstem) for pf, regions in all_regions.items(): try: rpt = regionprops_table(regions, properties=morph) except IndexError: print('IndexError on MORPH {}: empty labelset'.format(block_label['id'])) df = get_empty_dataframe(morph, add, intens, channels) except ValueError: print('ValueError on MORPH {}'.format(block_label['id'])) df = get_empty_dataframe(morph, add, intens, channels) else: df = pd.DataFrame(rpt) origin = [block_data['slices'][i].start for i in [0, 1, 2]] # in full dataset voxels df = add_features(df, aux_data_path, origin, downsample_factors) for cpf, ch_data in all_data.items(): df_int = get_intensity_df_data(regions, intens, ch_data, cpf) df = pd.concat([df, df_int], axis=1) outstem = outputstem or label_im.split_path()['base'] outstem += '_{}'.format(block_label['id']) csv_path = "{}_features_{}.csv".format(outstem, pf) df.to_csv(csv_path) # TODO: close images return df def filter_borders(label_im, outstem): labelset = find_border_labels(label_im) strpat = 'found {:12d} border labels in {}' print(strpat.format(len(labelset), outstem)) write_labelset(labelset, outstem, pf='borderlabels') return labelset def filter_size(all_regions, min_labelsize, outstem=''): pf = 'nucl' if 'nucl' in all_regions.keys() else 'full' rp = regionprops(all_regions[pf]) small_labels = [prop.label for prop in rp if prop.area < min_labelsize] strpat = 'found {:12d} small labels in {}' print(strpat.format(len(small_labels), outstem)) write_labelset(set(small_labels), outstem, pf='smalllabels') maxlabel = np.amax(all_regions['full']) fw = np.zeros(maxlabel + 1, dtype='bool') fw[small_labels] = True sl_mask = np.array(fw)[all_regions['full']] for pf in all_regions.keys(): all_regions[pf][sl_mask] = 0 return all_regions def write_labelset(labelset, outstem, pf): ppath = "{}_{}.pickle".format(outstem, pf) with open(ppath, 'wb') as f: pickle.dump(labelset, f) def get_nuclearmask(block_label): maskfile_compound = False # FIXME: as argument if maskfile_compound: maskpath = os.path.join(datadir, '{}_bfc_nucl-dapi_mask_sauvola.ims'.format(dataset)) mask_sauvola_im = MaskImage(maskpath_sauvola, permission='r') mask_sauvola_im.load(load_data=False) mask_sauvola_im.slices[:3] = block_label['slices'][:3] mask_sauvola_im.slices[3] = slice(0, 1, None) labelfile_blocks = False # FIXME: as argument from stapl3d import MaskImage #datadir = '/hpc/pmc_rios/Kidney/190910_rl57_fungi_16bit_25x_125um_corr-stitching' datadir = 'G:\\mkleinnijenhuis\\PMCdata\Kidney\\190910_rl57_fungi_16bit_25x_125um_corr-stitching' dataset = '190910_rl57_fungi_16bit_25x_125um_corr-stitching' if labelfile_blocks: block_label['id'] = '02496-03904_12736-14144_00000-00106' #block_label['id'] = '03776-05184_12736-14144_00000-00106' blockdir = os.path.join(datadir, 'blocks_1280') maskpath_sauvola = os.path.join(blockdir, '{}_{}.h5/nucl/dapi_mask_sauvola'.format(dataset, block_label['id'])) mask_sauvola_im = MaskImage(maskpath_sauvola, permission='r') mask_sauvola_im.load(load_data=False) maskpath_absmin = os.path.join(blockdir, '{}_{}.h5/nucl/dapi_mask_absmin'.format(dataset, block_label['id'])) mask_absmin_im = MaskImage(maskpath_absmin, permission='r') mask_absmin_im.load(load_data=False) elif maskfile_compund: maskpath_sauvola = os.path.join(datadir, '{}_bfc_nucl-dapi_mask_sauvola.ims'.format(dataset)) mask_sauvola_im = MaskImage(maskpath_sauvola, permission='r') mask_sauvola_im.load(load_data=False) mask_sauvola_im.slices[:3] = block_label['slices'][:3] mask_sauvola_im.slices[3] = slice(0, 1, None) maskpath_absmin = os.path.join(datadir, '{}_bfc_nucl-dapi_mask_absmin.ims'.format(dataset)) mask_absmin_im = MaskImage(maskpath_absmin, permission='r') mask_absmin_im.load(load_data=False) mask_absmin_im.slices[:3] = block_label['slices'][:3] mask_absmin_im.slices[3] = slice(0, 1, None) mask_sauvola = mask_sauvola_im.slice_dataset().astype('bool') mask_absmin = mask_absmin_im.slice_dataset().astype('bool') mask = mask_absmin & mask_sauvola return mask def add_features(df, image_in='', origin=[0, 0, 0], dsfacs=[1, 16, 16]): if 'centroid-0' in df.columns: cens = ['centroid-{}'.format(i) for i in [0, 1, 2]] coms = ['com_{}'.format(d) for d in 'zyx'] df[coms] = df[cens] + origin if image_in: dt_im = Image(image_in, permission='r') dt_im.load(load_data=False) data = dt_im.slice_dataset() dt_im.close() ds_centroid = np.array(df[coms] / dsfacs, dtype='int') ds_centroid = [data[p[0], p[1], p[2]] for p in ds_centroid] df['dist_to_edge'] = np.array(ds_centroid) if 'inertia_tensor_eigvals-0' in df.columns: ites = ['inertia_tensor_eigvals-{}'.format(i) for i in [0, 1, 2]] eigvals = np.clip(np.array(df[ites]), 0, np.inf) df['fractional_anisotropy'] = fractional_anisotropy(eigvals) df['major_axis_length'] = get_ellips_axis_lengths(eigvals[:, 0]) df['minor_axis_length'] = get_ellips_axis_lengths(eigvals[:, -1]) # TODO: range, variance, ... return df def get_intensity_df_data(regions, rp_props_int, ch_data, cpf): try: rpt = regionprops_table(regions, ch_data, properties=rp_props_int) except ValueError: print('got ValueError on INT {}'.format(cpf)) cols = ['{}_{}'.format(cpf, col) for col in get_column_names(rp_props_int)] df_int = pd.DataFrame(columns=cols) else: df_int = pd.DataFrame(rpt) df_int.columns = ['{}_{}'.format(cpf, col) for col in get_column_names(rp_props_int)] return df_int def get_intensity_df(regions, rp_props_int, data, ch, bf=None): data.slices[data.axlab.index('c')] = slice(ch, ch + 1, 1) ch_data = data.slice_dataset() if bf is not None: bias = get_bias_field_block(bf, data.slices, ch_data.shape) bias = np.reshape(bias, ch_data.shape) ch_data /= bias ch_data = np.nan_to_num(ch_data, copy=False) try: rpt = regionprops_table(regions, ch_data, properties=rp_props_int) except ValueError: print('got ValueError on INT {}'.format(ch)) cols = ['ch{:02d}_{}'.format(ch, col) for col in get_column_names(rp_props_int)] df_int = pd.DataFrame(columns=cols) else: df_int = pd.DataFrame(rpt) df_int.columns = ['ch{:02d}_{}'.format(ch, col) for col in get_column_names(rp_props_int)] return df_int def split_filename(filename, blockoffset=[0, 0, 0]): """Extract the data indices from the filename.""" datadir, tail = os.path.split(filename) fname = os.path.splitext(tail)[0] parts = re.findall('([0-9]{5}-[0-9]{5})', fname) id_string = '_'.join(parts) dset_name = fname.split(id_string)[0][:-1] x = int(parts[-3].split("-")[0]) - blockoffset[0] X = int(parts[-3].split("-")[1]) - blockoffset[0] y = int(parts[-2].split("-")[0]) - blockoffset[1] Y = int(parts[-2].split("-")[1]) - blockoffset[1] z = int(parts[-1].split("-")[0]) - blockoffset[2] Z = int(parts[-1].split("-")[1]) - blockoffset[2] dset_info = {'datadir': datadir, 'base': dset_name, 'nzfills': len(parts[1].split("-")[0]), 'postfix': id_string, 'x': x, 'X': X, 'y': y, 'Y': Y, 'z': z, 'Z': Z} return dset_info, x, X, y, Y, z, Z def dset_name2slices(dset_name, blockoffset=[0, 0, 0], axlab='xyz', shape=[]): """Get slices from data indices in a filename.""" _, x, X, y, Y, z, Z = split_filename(dset_name, blockoffset) slicedict = {'x': slice(x, X, 1), 'y': slice(y, Y, 1), 'z': slice(z, Z, 1)} for dim in ['c', 't']: if dim in axlab: upper = shape[axlab.index(dim)] slicedict[dim] = slice(0, upper, 1) slices = [slicedict[dim] for dim in axlab] return slices def get_column_names(rp_props): cols = [] for i, it in enumerate(rp_props): if 'centroid' in it or 'eigvals' in it: cols += ['{}-{}'.format(it, dim) for dim in [0, 1, 2]] elif 'moments' in it: # FIXME: need only half of the diagonal matrix cols += ['{}-{}-{}-{}'.format(it, dim1, dim2, dim3) for dim1 in [0, 1, 2, 3] for dim2 in [0, 1, 2, 3] for dim3 in [0, 1, 2, 3]] else: cols += [it] return cols def get_empty_dataframe(rp_props_morph, rp_props_add, rp_props_int, channels): cols_morph = get_column_names(rp_props_morph) cols_int = get_column_names(rp_props_int) cols = ['ch{:02d}_{}'.format(ch, col) for ch in channels for col in cols_int] df = pd.DataFrame(columns=cols_morph + rp_props_add + cols) return df def get_feature_set(fset_morph='minimal', fset_intens='minimal', aux_data_path=''): # TODO: self-defined features """ # eccentricity not implemented # orientation not implemented # perimeter not implemented # moments_hu not implemented # weighted_moments_hu not implemented # max_intensity needs aux data volume # mean_intensity needs aux data volume # min_intensity needs aux data volume # weighted_centroid needs aux data volume # weighted_moments needs aux data volume # weighted_moments_central needs aux data volume # weighted_moments_normalized needs aux data volume """ # morphological features # TODO: file bug report on minor/major_axis_length # gives this ValueError: # https://github.com/scikit-image/scikit-image/issues/2625 fsets_morph ={ 'none': ( 'label', ), 'minimal': ( 'label', 'area', 'centroid' ), 'medium': ( 'label', 'area', 'centroid', 'bbox', 'equivalent_diameter', 'extent', 'euler_number', 'inertia_tensor_eigvals', ), 'maximal': ( 'label', 'area', 'bbox', 'centroid', 'equivalent_diameter', 'extent', 'euler_number', # 'convex_area', # 'solidity', 'moments', 'moments_central', 'moments_normalized', # 'orientation', 'inertia_tensor_eigvals', # 'major_axis_length', # 'minor_axis_length', ), } # intensity features fsets_intens ={ 'none': (), 'minimal': ( 'mean_intensity', ), 'medium': ( 'mean_intensity', 'weighted_centroid', ), 'maximal': ( 'min_intensity', 'mean_intensity', 'median_intensity', 'variance_intensity', 'max_intensity', 'weighted_centroid', # FIXME: OverflowError: Python int too large to convert to C long # 'weighted_moments', # 'weighted_moments_central', # 'weighted_moments_normalized', ), } # FIXME: convex hull morph features often fail # FIXME: intensity weighted fail try: morph = fsets_morph[fset_morph] except (KeyError, TypeError): morph = fset_morph try: intens = fsets_intens[fset_intens] except (KeyError, TypeError): intens = fset_intens try: addit = get_additional_columns(aux_data_path, fset_morph) except (KeyError, TypeError): addit = fset_addit return morph, intens, addit def get_additional_columns(aux_data_path='', fset_morph='minimal'): cols_add = ['com_z', 'com_y', 'com_x'] if aux_data_path: cols_add += ['dist_to_edge'] if fset_morph == 'maximal': cols_add += ['fractional_anisotropy', 'major_axis_length', 'minor_axis_length'] return cols_add def find_border_labels(labels): border_labelset = set([]) fullslices = [slc for slc in labels.slices] for dim in [0, 1, 2]: for s in [0, -1]: if s: fullstop = fullslices[dim].stop labels.slices[dim] = slice(fullstop - 1, fullstop, None) else: fullstart = fullslices[dim].start labels.slices[dim] = slice(fullstart, fullstart + 1, None) labeldata = labels.slice_dataset() border_labelset |= set(np.unique(labeldata)) labels.slices = [slc for slc in fullslices] border_labelset -= set([0]) return border_labelset def split_nucl_and_memb_data(labeldata, nuclearmask=None): labeldata_memb = np.copy(labeldata) labeldata_nucl = np.copy(labeldata) memb_mask = find_boundaries(labeldata) for i, slc in enumerate(memb_mask): memb_mask[i, :, :] = binary_dilation(slc) labeldata_memb[~memb_mask] = 0 if nuclearmask is None: nuclearmask = ~memb_mask labeldata_nucl[~nuclearmask] = 0 # print('mask_nucl0_sum', np.sum(~memb_mask)) # print('mask_nucl1_sum', np.sum(nuclearmask)) # print('mask_memb_sum', np.sum(memb_mask)) # print('label_full_sum', np.sum(labeldata.astype('bool'))) # print('label_memb_sum', np.sum(labeldata_memb.astype('bool'))) # print('label_nucl_sum', np.sum(labeldata_nucl.astype('bool'))) return labeldata_memb, labeldata_nucl def split_nucl_and_memb(labels, outpat, nuclearmask=None): labeldata = labels.slice_dataset() labeldata, labeldata_nucl = split_nucl_and_memb_data(labeldata, nuclearmask) pf = '_memb' outpath = outpat.format(pf) im_memb = LabelImage(outpath, **props) im_memb.create() im_memb.write(labeldata) pf = '_nucl' outpath = outpat.format(pf) im_nucl = LabelImage(outpath, **props) im_nucl.create() im_nucl.write(labeldata_nucl) return im_memb, im_nucl def small_label_mask(labeldata, maxlabel, min_labelsize=5): """ NOTE: - need to take out very small labels (<5) for convex hull - even without these labels, convex hull often fails - removed features dependent on convex hull from the feature sets for now """ rp = regionprops(labeldata) small_labels = [prop.label for prop in rp if prop.area < min_labelsize] fw = np.zeros(maxlabel + 1, dtype='bool') fw[small_labels] = True smalllabelmask = np.array(fw)[labeldata] return smalllabelmask def label_selection_mask(labeldata, filestem): import scanpy as sc filename = '{}_adata.h5ad'.format(filestem) adata = sc.read(filename) labelset = set(adata.obs['label'].astype('uint32')) ulabels = np.load('{}_ulabels.npy'.format(filestem)) ulabels = np.delete(ulabels, 0) maxlabel = np.amax(ulabels) fw = np.zeros(maxlabel + 1, dtype='bool') for label in labelset: fw[label] = True mask = np.array(fw)[labeldata] return mask def select_features(dfs, feat_select, min_size=0, split_features=False): df1 = dfs['full'][feat_select['morphs']] key = 'memb' if split_features else 'full' df2 = pd.DataFrame(index=df1.index) df2[feat_select['membrane']] = dfs[key][feat_select['membrane']] key = 'nucl' if split_features else 'full' df3 =
pd.DataFrame(index=df1.index)
pandas.DataFrame
import os import random import numpy as np import pandas as pd import seaborn as sns import sklearn import torch from sklearn.metrics import pairwise_distances from sklearn.model_selection import train_test_split from torch.utils.data import TensorDataset import matplotlib.pyplot as plt from scripts.ssc.evaluation.mldl_copied import CompPerformMetrics from src.datasets.datasets import SwissRoll, SwissRoll_manifold from src.evaluation.eval import Multi_Evaluation from src.models.COREL.eval_engine import get_latentspace_representation from src.models.WitnessComplexAE.wc_ae import WitnessComplexAutoencoder from src.models.autoencoder.autoencoders import Autoencoder_MLP_topoae def update_dict(dict, ks, metric, result): for i, k in enumerate(ks): dict.update({metric+'_k{}'.format(k): result[metric][i]}) return dict def plot_dist_comparison(Z_manifold, Z_latent, labels, path_to_save = None,name = None): print('normalize x,y') Z_manifold[:, 0] = (Z_manifold[:,0]-Z_manifold[:,0].min())/(Z_manifold[:,0].max()-Z_manifold[:,0].min()) Z_manifold[:, 1] = (Z_manifold[:,1]-Z_manifold[:,1].min())/(Z_manifold[:,1].max()-Z_manifold[:,1].min()) Z_latent[:, 0] = (Z_latent[:,0]-Z_latent[:,0].min())/(Z_latent[:,0].max()-Z_latent[:,0].min()) Z_latent[:, 1] = (Z_latent[:,1]-Z_latent[:,1].min())/(Z_latent[:,1].max()-Z_latent[:,1].min()) manifold = pd.DataFrame({'x': Z_manifold[:, 0], 'y': Z_manifold[:, 1],'label': labels}) latents = pd.DataFrame({'x': Z_latent[:, 0], 'y': Z_latent[:, 1],'label': labels}) print('compute distances') pwd_Z = pairwise_distances(Z_eval, Z_eval, n_jobs=2) pwd_Ztrue = pairwise_distances(data_manifold, data_manifold, n_jobs=2) print('normalize distances') #normalize distances pwd_Ztrue = (pwd_Ztrue-pwd_Ztrue.min())/(pwd_Ztrue.max()-pwd_Ztrue.min()) pwd_Z = (pwd_Z-pwd_Z.min())/(pwd_Z.max()-pwd_Z.min()) print('flatten') #flatten pwd_Ztrue = pwd_Ztrue.flatten() pwd_Z = pwd_Z.flatten() ind = random.sample(range(len(pwd_Z)), 2**12) distances = pd.DataFrame({'Distances on $\mathcal{M}$': pwd_Ztrue[ind], 'Distances in $\mathcal{Z}$': pwd_Z[ind]}) print('plot') #plot fig, ax = plt.subplots(1,3, figsize=(3*10, 10)) sns.scatterplot(x = 'Distances on $\mathcal{M}$', y = 'Distances in $\mathcal{Z}$',data = distances, ax = ax[1], edgecolor = None,alpha=0.3) #ax[0].set(xlabel='Distances on $\mathcal{M}$', ylabel='Distances in $\mathcal{Z}$',fontsize=25) ax[1].xaxis.label.set_size(20) ax[1].yaxis.label.set_size(20) ax[1].set_title('Comparison of pairwise distances',fontsize=24,pad=20) sns.scatterplot(y = 'x', x = 'y', hue='label', data = manifold,ax = ax[0],palette=plt.cm.viridis, marker=".", s=80, edgecolor="none", legend=False) ax[0].set_title('True manifold ($\mathcal{M}$)',fontsize=24,pad=20) ax[0].set(xlabel="", ylabel="") ax[0].set_yticks([]) sns.scatterplot(x = 'x', y = 'y',hue='label', data = latents,ax = ax[2],palette=plt.cm.viridis, marker=".", s=80, edgecolor="none", legend=False) ax[2].set_title('Latent space ($\mathcal{Z}$)',fontsize=24,pad=20) ax[2].set(xlabel="", ylabel="") ax[2].set_yticks([]) fig.tight_layout(pad=5) if path_to_save != None and name != None: print('save plot') fig.savefig(os.path.join(path_to_save,'{}_4.pdf'.format(name)),dpi = 100) plt.show() plt.close() return (np.square(pwd_Ztrue - pwd_Z)).mean() def plot_dist_comparison2(Z_manifold, Z_latent, labels, path_to_save = None,name = None): print('normalize x,y') Z_manifold[:, 0] = (Z_manifold[:,0]-Z_manifold[:,0].min())/(Z_manifold[:,0].max()-Z_manifold[:,0].min()) Z_manifold[:, 1] = (Z_manifold[:,1]-Z_manifold[:,1].min())/(Z_manifold[:,1].max()-Z_manifold[:,1].min()) Z_latent[:, 0] = (Z_latent[:,0]-Z_latent[:,0].min())/(Z_latent[:,0].max()-Z_latent[:,0].min()) Z_latent[:, 1] = (Z_latent[:,1]-Z_latent[:,1].min())/(Z_latent[:,1].max()-Z_latent[:,1].min()) manifold = pd.DataFrame({'x': Z_manifold[:, 0], 'y': Z_manifold[:, 1],'label': labels}) latents = pd.DataFrame({'x': Z_latent[:, 0], 'y': Z_latent[:, 1],'label': labels}) print('compute distances') pwd_Z = pairwise_distances(Z_eval, Z_eval, n_jobs=2) pwd_Ztrue = pairwise_distances(data_manifold, data_manifold, n_jobs=2) print('normalize distances') #normalize distances pwd_Ztrue = (pwd_Ztrue-pwd_Ztrue.min())/(pwd_Ztrue.max()-pwd_Ztrue.min()) pwd_Z = (pwd_Z-pwd_Z.min())/(pwd_Z.max()-pwd_Z.min()) print('flatten') #flatten pwd_Ztrue = pwd_Ztrue.flatten() pwd_Z = pwd_Z.flatten() ind = random.sample(range(len(pwd_Z)), 2**12) distances =
pd.DataFrame({'Distances on $\mathcal{M}$': pwd_Ztrue[ind], 'Distances in $\mathcal{Z}$': pwd_Z[ind]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Monday 18 may 2020 All the thesis code, no code excecution! @author: Dainean """ #Prepare the python system import pandas as pd #Dataframes import numpy as np #Numpy # Reading and saving fits files import os #Move around in our OS from astropy.table import Table from astropy.io import fits #Working with fits #Isolation Foreststuffs import eif as iso #Expanded Isolation Forest #Clustering from scipy.sparse import diags # Laplacian scoring from skfeature.utility.construct_W import construct_W # Laplacian scoring from sklearn.cluster import KMeans #Kmeans clustering from sklearn.preprocessing import StandardScaler # For PFA from sklearn.decomposition import PCA from collections import defaultdict from sklearn.metrics.pairwise import euclidean_distances # Plotting import matplotlib.pyplot as plt import seaborn as sns #improved plots #Working directory control cwd = os.getcwd() #Selecting dataset #change dataset here, Alpha, prichi or beta #dataset = "Alpha" #Initial max row dataset #dataset = "prichi" #prichi < 3 filtered dataset, 24999 rows. OBSELETE #dataset = "beta" #prichi < 2 filtered dataset, 13787 rows #dataset = "gamma" #prichi < 2 filtered dataset, (removed photometric)) OBSELETE #dataset = "delta" #updated DB creator, based on GaussFitSimple, 28128 rows #dataset = "epsilon" #trimmed down version of delta, prichi <2, 10941 rows (for easier computation) #dataset = "zeta" # Full Photometric, GaussFitSimple, prichi <2, 10941 rows × 134 columns #dataset = "zeta" # Full Photometric, GaussFitSimple, prichi <2, 10941 rows × 134 columns dataset = "eta" # Full Photometric, GaussFitSimple, all columns detect_path = True #this is for easier working in spyder #Set up directory path, load initial dataframes if detect_path == True: print("Initial working directory is:", cwd) if '31618' in cwd: print("Working at Dora") location = "dora" if 'Dainean' in cwd: print("Working at home, changing to onedrive folder") location = "home" if 'Onedrive' in cwd: print("Working in onedrive folder") location = "home" if 'Dropbox' in cwd: print("Working at home, changing to onedrive folder") location = "home" if location == "home": os.chdir('D:\Onedrive\Thesis\support\%s'%(dataset)) print(os.getcwd()) if location == "dora": os.chdir('C:\Sander\support\%s'%(dataset)) print(os.getcwd()) #Loading dataframes Only part for now phot = pd.read_hdf('Parts_DB.h5', 'Photometric') col = pd.read_hdf('Parts_DB.h5', 'Colour') spec =
pd.read_hdf('Parts_DB.h5', 'Spectral')
pandas.read_hdf
from __future__ import print_function from collections import defaultdict import pandas as pd import re import click codons = {'AAA': 'Lys', 'AAC': 'Asn', 'AAG': 'Lys', 'AAU': 'Asn', 'ACA': 'Thr', 'ACC': 'Thr', 'ACG': 'Thr', 'ACU': 'Thr', 'AGA': 'Arg', 'AGC': 'Ser', 'AGG': 'Arg', 'AGU': 'Ser', 'AUA': 'Ile', 'AUC': 'Ile', 'AUG': 'Met', 'AUU': 'Ile', 'CAA': 'Gln', 'CAC': 'His', 'CAG': 'Gln', 'CAU': 'His', 'CCA': 'Pro', 'CCC': 'Pro', 'CCG': 'Pro', 'CCU': 'Pro', 'CGA': 'Arg', 'CGC': 'Arg', 'CGG': 'Arg', 'CGU': 'Arg', 'CUA': 'Leu', 'CUC': 'Leu', 'CUG': 'Leu', 'CUU': 'Leu', 'GAA': 'Glu', 'GAC': 'Asp', 'GAG': 'Glu', 'GAU': 'Asp', 'GCA': 'Ala', 'GCC': 'Ala', 'GCG': 'Ala', 'GCU': 'Ala', 'GGA': 'Gly', 'GGC': 'Gly', 'GGG': 'Gly', 'GGU': 'Gly', 'GUA': 'Val', 'GUC': 'Val', 'GUG': 'Val', 'GUU': 'Val', 'UAA': 'TER', 'UAC': 'Tyr', 'UAG': 'TER', 'UAU': 'Tyr', 'UCA': 'Ser', 'UCC': 'Ser', 'UCG': 'Ser', 'UCU': 'Ser', 'UGA': 'TER', 'UGC': 'Cys', 'UGG': 'Trp', 'UGU': 'Cys', 'UUA': 'Leu', 'UUC': 'Phe', 'UUG': 'Leu', 'UUU': 'Phe'} @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.argument('codonw-table') @click.option('--output-table', default=None) def codonw_to_table(codonw_table, output_table=None): if not output_table: output_table = "./parsed_codonw.csv" big_dict = defaultdict(lambda:[]) with open(codonw_table) as ih: d = [] for l in ih: if "codons in" in l: orf = "_".join(l.split()[3].split("_")[0:2]) big_dict[orf] += d d = [] else: vec = l.strip().split() for i, v in enumerate(vec): if re.search('[A|T|C|G|U]{3}', v): d.append({'codon': v,'AA':codons[v],'val1':vec[i + 1],'val2':vec[i+2]}) dflist = [] for i in big_dict.keys(): df =
pd.DataFrame(big_dict[i])
pandas.DataFrame
# column deletion using del operator and pop method of pandas dataframe import pandas as pd import numpy as np d={'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([1,2,3,4],index=['a','b','c','d']), 'three':
pd.Series([10,20,30],index=['a','b','c'])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # EXPANDING WINDOW SPLIT # ### LOAD LIBRARIES # In[ ]: import os import gc import warnings import pandas as pd import numpy as np import pickle warnings.filterwarnings("ignore")
pd.set_option("display.max_columns", 500)
pandas.set_option
import os import sys import time import shutil import random import numpy as np import pandas as pd import geopandas as gpd from map2loop.topology import Topology from map2loop import m2l_utils from map2loop import m2l_geometry from map2loop import m2l_interpolation from map2loop import m2l_map_checker from map2loop.m2l_utils import display, enable_quiet_mode, disable_quiet_mode, print from map2loop.m2l_export import export_to_projectfile import map2model import networkx as nx import matplotlib.pyplot as plt import matplotlib.colors as colors import rasterio import shapely class Config(object): """Object that represents a sub-project. It is defined by some source data, a region of interest (bounding box or polygon) and some execution flags. """ def __init__(self, project_path, overwrite, geology_file, fault_file, fold_file, structure_file, mindep_file, bbox_3d, polygon, step_out, dtm_crs, proj_crs, local, quiet, loopFilename, c_l={}, **kwargs): self.project_path = project_path if overwrite is False: print( "WARNING: Overwrite should be a string value {true, in-place} ...") self.check_overwrite() if overwrite is True: print( "WARNING: Overwrite should be a string value {true, in-place} ... converting to true.") overwrite = 'true' if (not os.path.exists(project_path)): # Create proj root dir if doesn't exist os.mkdir(project_path) elif overwrite == "in-place": # Pass if proj root exists and complete overwrite not wanted pass else: # Remove if exists and accept user's direction if overwrite == "true": shutil.rmtree(project_path) while os.path.exists(project_path): pass os.mkdir(project_path) else: self.check_overwrite() self.graph_path = os.path.join(self.project_path, 'graph') self.tmp_path = os.path.join(self.project_path, 'tmp') self.data_path = os.path.join(self.project_path, 'data') self.dtm_path = os.path.join(self.project_path, 'dtm') self.output_path = os.path.join(self.project_path, 'output') self.vtk_path = os.path.join(self.project_path, 'vtk') self.fault_file_csv = os.path.join(self.tmp_path, "faults.csv") self.fault_output_file_csv = os.path.join(self.output_path, "faults.csv") self.structure_file_csv = os.path.join(self.tmp_path, "structure.csv") self.geology_file_csv = os.path.join(self.tmp_path, "geology.csv") self.mindep_file_csv = os.path.join(self.tmp_path, "mindep.csv") self.strat_graph_file = os.path.join(self.graph_path, "graph_strat_NONE.gml") self.dtm_file = os.path.join(self.dtm_path, 'dtm.tif') self.dtm_reproj_file = os.path.join(self.dtm_path, 'dtm_rp.tif') if (not os.path.isdir(self.tmp_path)): os.mkdir(self.tmp_path) if (not os.path.isdir(self.data_path)): os.mkdir(self.data_path) if (not os.path.isdir(self.output_path)): os.mkdir(self.output_path) if (not os.path.isdir(self.dtm_path)): os.mkdir(self.dtm_path) if (not os.path.isdir(self.vtk_path)): os.mkdir(self.vtk_path) if (not os.path.isdir(self.graph_path)): os.mkdir(self.graph_path) self.quiet = quiet if self.quiet == 'all': enable_quiet_mode() self.clut_path = kwargs['clut_path'] self.run_flags = kwargs['run_flags'] self.bbox_3d = bbox_3d self.bbox = tuple([ bbox_3d["minx"], bbox_3d["miny"], bbox_3d["maxx"], bbox_3d["maxy"] ]) self.polygon = polygon self.step_out = step_out self.quiet = quiet self.c_l = c_l self.dtm_crs = dtm_crs self.proj_crs = proj_crs self.loop_projectfile = loopFilename # Check input maps for missing values drift_prefix = kwargs.get('drift_prefix', ['None']) self.local = local # - Check if fold file is always the same as fault or needs to be seperated # TODO: Allow for input as a polygon, not just a bounding box. structure_file, geology_file, fault_file, mindep_file, fold_file, c_l = m2l_map_checker.check_map( structure_file, geology_file, fault_file, mindep_file, fold_file, self.tmp_path, self.bbox, c_l, proj_crs, self.local, drift_prefix) # Process and store workflow params self.geology_file = geology_file self.structure_file = structure_file self.fault_file = fault_file self.fold_file = fold_file self.mindep_file = mindep_file disable_quiet_mode() def check_overwrite(self): allow = input( "Directory \"{}\" exists, overwrite? (y/[n])".format( self.project_path)) if allow == "y": shutil.rmtree(self.project_path) while os.path.exists(self.project_path): pass os.mkdir(self.project_path) else: sys.exit( 'Either set overwrite to true or specify a different output_path.') def preprocess(self): """[summary] :param command: [description], defaults to "" :type command: str, optional """ if self.quiet == 'all': enable_quiet_mode() geology = gpd.read_file(self.geology_file, bbox=self.bbox) geology[self.c_l['g']].fillna(geology[self.c_l['g2']], inplace=True) geology[self.c_l['g']].fillna(geology[self.c_l['c']], inplace=True) faults = gpd.read_file(self.fault_file, bbox=self.bbox) folds = gpd.read_file(self.fold_file, bbox=self.bbox) structures = gpd.read_file(self.structure_file, bbox=self.bbox) mindeps = None try: mindeps = gpd.read_file(self.mindep_file, bbox=self.bbox) mindeps.crs = self.proj_crs except Exception as e: print("Warning: Valid mineral deposit file missing") # Fix crs to project default and overwrite source geology.crs = self.proj_crs faults.crs = self.proj_crs folds.crs = self.proj_crs structures.crs = self.proj_crs self.mindeps = mindeps self.geology = geology self.faults = faults self.structures = structures # Faults self.faults_clip = faults.copy() self.faults_clip.crs = self.proj_crs self.faults_clip_file = os.path.join(self.tmp_path, "faults_clip.shp") self.faults_clip.to_file(self.faults_clip_file) # Geology self.geol_clip = m2l_utils.explode(self.geology) self.geol_clip.crs = self.proj_crs self.geol_clip_file = os.path.join(self.tmp_path, "geol_clip.shp") self.geol_clip.to_file(self.geol_clip_file) # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # Check if bedding data uses the strike convention instead of dip direction if (self.c_l['otype'] == 'strike'): structures['azimuth2'] = structures.apply( lambda row: row[self.c_l['dd']] + 90.0, axis=1) self.c_l['dd'] = 'azimuth2' self.c_l['otype'] = 'dip direction' structures.to_file(self.structure_file) # Structures list1 = [ 'geometry', self.c_l['d'], self.c_l['dd'], self.c_l['sf'], self.c_l['bo'] ] list2 = list(set(list1)) sub_pts = self.structures[list2] structure_code = gpd.sjoin(sub_pts, self.geol_clip, how="left", op="within") minx, miny, maxx, maxy = self.bbox y_point_list = [miny, miny, maxy, maxy, miny] x_point_list = [minx, maxx, maxx, minx, minx] bbox_geom = shapely.geometry.Polygon(zip(x_point_list, y_point_list)) polygo = gpd.GeoDataFrame(index=[0], crs=self.proj_crs, geometry=[bbox_geom]) is_bed = structure_code[self.c_l['sf']].str.contains( self.c_l['bedding'], regex=False) structure_clip = structure_code[is_bed] structure_clip.crs = self.proj_crs if (self.c_l['otype'] == 'strike'): structure_clip['azimuth2'] = structure_clip.apply( lambda row: row[self.c_l['dd']] + 90.0, axis=1) self.c_l['dd'] = 'azimuth2' self.c_l['otype'] = 'dip direction' self.structure_clip = structure_clip[~structure_clip[self.c_l['o']]. isnull()] self.structure_clip_file = os.path.join(self.tmp_path, 'structure_clip.shp') self.structure_clip.to_file(self.structure_clip_file) self.create_cmap() try: fig, ax = plt.subplots() plt.tight_layout() ax.ticklabel_format(axis='both', useOffset=False, style='plain') ax.margins(0.0) fig.set_facecolor("#ffffff00") self.geology_figure = geology.copy().plot( column=self.c_l['c'], ax=ax, figsize=(10, 10), edgecolor='#000000', linewidth=0.2, cmap=self.cmap).get_figure() # self.export_png() fig, ax = plt.subplots() base = geology.plot(column=self.c_l['c'], figsize=(10, 10), ax=ax, edgecolor='#000000', linewidth=0.2, legend=True, cmap=self.cmap) leg = base.get_legend() leg.set_bbox_to_anchor((1.04, 1)) structures.plot(ax=base, color='none', edgecolor='black') faults.plot(ax=base, cmap='rainbow', column=self.c_l['f'], figsize=(10, 10), linewidth=0.4) structures[[ 'geometry', self.c_l['gi'], self.c_l['d'], self.c_l['dd'] ]].plot(ax=base) fig = self.polygon.plot(ax=base, color='none', edgecolor='black').get_figure() fig.savefig(os.path.join(self.tmp_path, "input-data.png")) if self.quiet == 'None': plt.show() return except Exception as e: print(e) disable_quiet_mode() def create_cmap(self): # Make colours consistent from map to model formations = sorted([ formation.replace(" ", "_").replace('-', '_') for formation in list(set(self.geol_clip[self.c_l['c']].to_numpy())) ]) temp_colours = [""] * len(formations) self.colour_dict = dict(zip(formations, temp_colours)) try: # Try to retrieve the clut reference colour_ref = pd.read_csv(self.clut_path) for formation in formations: key = formation colour = None try: colour = colour_ref[colour_ref['UNITNAME'] == key]['colour'].to_numpy()[0] except Exception as e: colour = ('#%02X%02X%02X' % (random.randint(0, 255), random.randint( 0, 255), random.randint(0, 255))) self.colour_dict[key] = colour print(key, colour) except Exception as e: # Otherwise, just append a random set self.clut_path = "" random_colours = [ '#%02X%02X%02X' % (random.randint( 0, 255), random.randint(0, 255), random.randint(0, 255)) for i in range(len(formations)) ] i = 0 for key in self.colour_dict.keys(): self.colour_dict[key] = random_colours[i] self.cmap = colors.ListedColormap(self.colour_dict.values(), name='geol_key') def export_csv(self): # TODO: - Move away from tab seperators entirely (topology and map2model) # Save geology polygons hint_flag = False # use GSWA strat database to provide topology hints sub_geol = self.geology[[ 'geometry', self.c_l['o'], self.c_l['c'], self.c_l['g'], self.c_l['u'], self.c_l['min'], self.c_l['max'], self.c_l['ds'], self.c_l['r1'], self.c_l['r2'] ]] Topology.save_geol_wkt(sub_geol, self.geology_file_csv, self.c_l, hint_flag) # Save mineral deposits if self.mindeps is not None: sub_mindep = self.mindeps[[ 'geometry', self.c_l['msc'], self.c_l['msn'], self.c_l['mst'], self.c_l['mtc'], self.c_l['mscm'], self.c_l['mcom'] ]] Topology.save_mindep_wkt(sub_mindep, self.mindep_file_csv, self.c_l) # Save orientation data sub_pts = self.structures[[ 'geometry', self.c_l['gi'], self.c_l['d'], self.c_l['dd'] ]] Topology.save_structure_wkt(sub_pts, self.structure_file_csv, self.c_l) # Save faults sub_lines = self.faults[['geometry', self.c_l['o'], self.c_l['f']]] Topology.save_faults_wkt(sub_lines, self.fault_file_csv, self.c_l) def update_parfile(self): Topology.save_parfile(self, self.c_l, self.output_path, self.geology_file_csv, self.fault_file_csv, self.structure_file_csv, self.mindep_file_csv, self.bbox[0], self.bbox[1], self.bbox[2], self.bbox[3], 500.0, 'Fe,Cu,Au,NONE') def run_map2model(self, deposits, aus): quiet_m2m = False if self.quiet == 'all': quiet_m2m = True if self.mindeps is not None: run_log = map2model.run(self.graph_path, self.geology_file_csv, self.fault_file_csv, self.mindep_file_csv, self.bbox_3d, self.c_l, quiet_m2m, deposits) else: run_log = map2model.run(self.graph_path, self.geology_file_csv, self.fault_file_csv, "", self.bbox_3d, self.c_l, quiet_m2m, deposits) print(run_log) print("Resolving ambiguities using ASUD...", end='\toutput_dir:') if aus: Topology.use_asud(self.strat_graph_file, self.graph_path) self.strat_graph_file = os.path.join(self.graph_path, 'ASUD_strat.gml') print("Done.") print("Generating topology graph display and unit groups...") self.G = nx.read_gml(self.strat_graph_file, label='id') selected_nodes = [n for n, v in self.G.nodes(data=True) if n >= 0] if self.quiet == 'None': nx.draw_networkx(self.G, pos=nx.kamada_kawai_layout(self.G), arrows=True, nodelist=selected_nodes) nlist = list(self.G.nodes.data('LabelGraphics')) nlist.sort() for node in nlist: if node[0] >= 0: elem = str(node[1]).replace("{'text':", "").replace( ", 'fontSize': 14}", "") # second = elem.split(":").replace("'", "") print(node[0], " ", elem) # plt.savefig(os.path.join(self.tmp_path,"topology-fig.png")) print("Topology figure saved to", os.path.join(self.tmp_path, "topology-fig.png")) # Save groups of stratigraphic units groups, self.glabels, G = Topology.get_series(self.strat_graph_file, 'id') quiet_topology = True if self.quiet == 'None': quiet_topology = False Topology.save_units( G, self.tmp_path, self.glabels, Australia=True, asud_strat_file="https://gist.githubusercontent.com/yohanderose/3b257dc768fafe5aaf70e64ae55e4c42/raw/8598c7563c1eea5c0cd1080f2c418dc975cc5433/ASUD.csv", quiet=quiet_topology) print("Done") def load_dtm(self, source="AU"): # group all Australian states codes under the global country code (ISO 3166 ALPHA-2) polygon_ll = self.polygon.to_crs(self.dtm_crs) minlong = polygon_ll.total_bounds[0] - self.step_out maxlong = polygon_ll.total_bounds[2] + self.step_out minlat = polygon_ll.total_bounds[1] - self.step_out maxlat = polygon_ll.total_bounds[3] + self.step_out print("Fetching DTM... ", end=" bbox:") print(minlong, maxlong, minlat, maxlat) if source in ("WA", "NSW", "VIC", "SA", "QLD", "ACT", "TAS"): source = 'AU' i, done = 0, False while not done: if i >= 10: raise NameError( f'map2loop error: Could not access DTM server after {i} attempts' ) try: print(f'Attempt: {i} ...', end='') if source.upper() in ("AU", "AUSTRALIA"): m2l_utils.get_dtm(self.dtm_file, minlong, maxlong, minlat, maxlat) elif source.upper() in ("T.H", "HAWAII"): # beware, TH is ISO 3166 code for Thailand m2l_utils.get_dtm_hawaii(self.dtm_file, minlong, maxlong, minlat, maxlat) else: # try from opentopography m2l_utils.get_dtm_topography_org( self.dtm_file, minlong, maxlong, minlat, maxlat) print("Succeeded !") done = True except: time.sleep(1) i += 1 print(f' Failed !') elif source.startswith('http'): i, done = 0, False while not done: if i >= 10: raise NameError( f'map2loop error: Could not access DTM server after {i} attempts' ) try: print(f'Attempt: {i} ...', end='') if 'au' in source: m2l_utils.get_dtm(self.dtm_file, minlong, maxlong, minlat, maxlat, url=source) elif 'hawaii' in source: # beware, TH is ISO 3166 code for Thailand m2l_utils.get_dtm_hawaii(self.dtm_file, minlong, maxlong, minlat, maxlat, url=source) else: # try from opentopography m2l_utils.get_dtm_topography_org( self.dtm_file, minlong, maxlong, minlat, maxlat) print("Succeeded !") done = True except: time.sleep(1) i += 1 print(f' Failed !') else: bbox = [ self.bbox_3d["minx"], self.bbox_3d["miny"], self.bbox_3d["maxx"], self.bbox_3d["maxy"] ] m2l_utils.get_local_dtm(self.dtm_file, source, self.dtm_crs, bbox) m2l_utils.reproject_dtm(self.dtm_file, self.dtm_reproj_file, self.dtm_crs, self.proj_crs) self.dtm = rasterio.open(self.dtm_reproj_file) if self.quiet == 'None': plt.imshow(self.dtm.read(1), cmap='terrain', vmin=0, vmax=1000) plt.title('DTM') plt.show() def join_features(self): # Save geology clips quiet_topology = True if self.quiet == "None": quiet_topology = False Topology.save_group(Topology, self.G, self.tmp_path, self.glabels, self.geol_clip, self.c_l, quiet_topology) def calc_depth_grid(self, dtb): dtm = self.dtm if dtb == "": self.dtb = 0 self.dtb_null = 0 print("dtb and dtb_null set to 0") return # TODO: DTB need to be defined, every function call bellow here that has a False boolean is referencing to the workflow['cover_map'] flag # dtb_grid = os.path.join(data_path,'young_cover_grid.tif') #obviously hard-wired for the moment # dtb_null = '-2147483648' #obviously hard-wired for the moment # cover_map_path = os.path.join(data_path,'Young_Cover_FDS_MGA_clean.shp') #obviously hard-wired for the moment # dtb_clip = os.path.join(output_path,'young_cover_grid_clip.tif') #obviously hard-wired for the moment # cover_dip = 10 # dip of cover away from contact # cover_spacing = 5000 # of contact grid in metres dtb_raw = rasterio.open(dtb_grid) cover = gpd.read_file(cover_map_path) with fiona.open(cover_map_path, "r") as shapefile: shapes = [feature["geometry"] for feature in shapefile] with rasterio.open(dtb_grid) as src: out_image, out_transform = rasterio.mask.mask(src, shapes, crop=True) out_meta = src.meta.copy() out_meta.update({ "driver": "GTiff", "height": out_image.shape[1], "width": out_image.shape[2], "transform": out_transform }) with rasterio.open(dtb_clip, "w", **out_meta) as dest: dest.write(out_image) dtb = rasterio.open(dtb_clip) m2l_geometry.process_cover(output_path, dtm, dtb, dtb_null, cover, workflow['cover_map'], cover_dip, bbox, proj_crs, cover_spacing, contact_decimate=3, use_vector=True, use_grid=True) def export_orientations(self, orientation_decimate): m2l_geometry.save_orientations(self.structure_clip, self.output_path, self.c_l, orientation_decimate, self.dtm, self.dtb, self.dtb_null, False) if self.quiet == 'None': m2l_utils.plot_points( os.path.join(self.output_path, 'orientations.csv'), self.geol_clip, 'formation', 'X', 'Y', False, 'alpha') # Create arbitrary points for series without orientation data m2l_geometry.create_orientations(self.tmp_path, self.output_path, self.dtm, self.dtb, self.dtb_null, False, self.geol_clip, self.structure_clip, self.c_l) def export_contacts(self, contact_decimate, intrusion_mode): ls_dict, ls_dict_decimate = m2l_geometry.save_basal_contacts( self.tmp_path, self.dtm, self.dtb, self.dtb_null, False, self.geol_clip, contact_decimate, self.c_l, intrusion_mode) # Remove basal contacts defined by faults, no decimation m2l_geometry.save_basal_no_faults( os.path.join(self.tmp_path, 'basal_contacts.shp'), os.path.join(self.tmp_path, 'faults_clip.shp'), ls_dict, 10, self.c_l, self.proj_crs) # Remove faults from decimated basal contacts then save contacts = gpd.read_file( os.path.join(self.tmp_path, 'basal_contacts.shp')) m2l_geometry.save_basal_contacts_csv(contacts, self.output_path, self.dtm, self.dtb, self.dtb_null, False, contact_decimate, self.c_l) # False in this call was already false and isn't the cover flag if self.quiet == "None": m2l_utils.plot_points( os.path.join(self.output_path, 'contacts4.csv'), self.geol_clip, 'formation', 'X', 'Y', False, 'alpha') # Interpolates a regular grid of orientations from an shapefile of # arbitrarily-located points and saves out four csv files of l, m & n # direction cosines and dip dip direction data def test_interpolation(self, interpolation_spacing, misorientation, interpolation_scheme): geology_file = self.geol_clip_file structure_file = self.structure_clip_file basal_contacts = os.path.join(self.tmp_path, 'basal_contacts.shp') self.spacing = interpolation_spacing # grid spacing in meters # misorientation = misorientation self.scheme = interpolation_scheme orientations = self.structures quiet_interp = True if self.quiet == "None": quiet_interp = False group_girdle = m2l_utils.plot_bedding_stereonets( orientations, self.geology, self.c_l, quiet_interp) super_groups, self.use_gcode3 = Topology.super_groups_and_groups( group_girdle, self.tmp_path, misorientation) # print(super_groups) # print(self.geology['GROUP_'].unique()) bbox = self.bbox orientation_interp, contact_interp, combo_interp = m2l_interpolation.interpolation_grids( geology_file, structure_file, basal_contacts, bbox, self.spacing, self.proj_crs, self.scheme, super_groups, self.c_l) with open(os.path.join(self.tmp_path, 'interpolated_orientations.csv'), 'w') as f: f.write('X, Y, l, m, n, dip, dip_dir\n') for row in orientation_interp: ostr = '{}, {}, {}, {}, {}, {}, {}\n'.format( row[0], row[1], row[2], row[3], row[4], row[5], row[6]) f.write(ostr) with open(os.path.join(self.tmp_path, 'interpolated_contacts.csv'), 'w') as f: f.write('X, Y, l, m, angle\n') for row in contact_interp: ostr = '{}, {}, {}, {}, {}\n'.format(row[0], row[1], row[2], row[3], row[4]) f.write(ostr) with open(os.path.join(self.tmp_path, 'interpolated_combined.csv'), 'w') as f: f.write('X, Y, l, m, n, dip, dip_dir\n') for row in combo_interp: ostr = '{}, {}, {}, {}, {}, {}, {}\n'.format( row[0], row[1], row[2], row[3], row[4], row[5], row[6]) f.write(ostr) if (self.spacing < 0): self.spacing = -(bbox[2] - bbox[0]) / spacing self.x = int((bbox[2] - bbox[0]) / self.spacing) + 1 self.y = int((bbox[3] - bbox[1]) / self.spacing) + 1 x = self.x y = self.y print(x, y) dip_grid = np.ones((y, x)) dip_grid = dip_grid * -999 dip_dir_grid = np.ones((y, x)) dip_dir_grid = dip_dir_grid * -999 contact_grid = np.ones((y, x)) contact_grid = dip_dir_grid * -999 for row in combo_interp: r = int((row[1] - bbox[1]) / self.spacing) c = int((row[0] - bbox[0]) / self.spacing) dip_grid[r, c] = float(row[5]) dip_dir_grid[r, c] = float(row[6]) for row in contact_interp: r = int((row[1] - bbox[1]) / self.spacing) c = int((row[0] - bbox[0]) / self.spacing) contact_grid[r, c] = float(row[4]) self.dip_grid = dip_grid self.dip_dir_grid = dip_dir_grid if self.quiet == 'None': print('interpolated dips') plt.imshow(self.dip_grid, cmap="hsv", origin='lower', vmin=-90, vmax=90) plt.show() print('interpolated dip directions') plt.imshow(self.dip_dir_grid, cmap="hsv", origin='lower', vmin=0, vmax=360) plt.show() print('interpolated contacts') plt.imshow(contact_grid, cmap="hsv", origin='lower', vmin=-360, vmax=360) plt.show() def save_cmap(self): """Create a colourmap for the model using the colour code """ all_sorts = pd.read_csv( os.path.join(self.tmp_path, 'all_sorts_clean.csv')) colours = [] for code in all_sorts['code']: colours.append([self.colour_dict[code]]) data = colours expected_extra_cols = pd.DataFrame(columns=['colour'], data=data) all_sorts =
pd.concat([all_sorts, expected_extra_cols], axis=1)
pandas.concat
import os import numpy as np import pandas as pd from datetime import datetime, timedelta import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform from matplotlib import pyplot from xgboost import plot_importance import xgboost as xgb from sklearn.preprocessing import StandardScaler from hyperopt import fmin, hp, tpe, Trials, space_eval, STATUS_OK from hyperopt.pyll import scope as ho_scope from hyperopt.pyll.stochastic import sample as ho_sample from functools import partial from sklearn.model_selection import train_test_split, GridSearchCV, ShuffleSplit, cross_val_score, StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score, mean_squared_log_error, mean_squared_error from src.functions import loading, get_var, setting_X, setting_y, objetivo #importing loading functions import json file_path = "/home/slimbook/git-repos/eolo-project/data/.raw/GFS_data" csv_path = ("/home/slimbook/git-repos/eolo-project/data/processed/power_data.csv") list_var = ["Vel100m"] print("loading raw data and processing it...") data_dictionary = loading(file_path) # All files and variables loaded as dictionary var_to_test = get_var(data_dictionary, list_var, nz=5) print("Setting X and y data...") meteo = setting_X(var_to_test) power = setting_y(csv_path) train =
pd.concat([power, meteo], axis=1, join="inner")
pandas.concat
from os.path import exists, join import pandas as pd import torch import logging from transformers import AutoModelForSequenceClassification from train_bert import compute_negative_entropy, LMForSequenceClassification from dataset import get_dataset_by_name, TokenizerDataModule from torch.utils.data import DataLoader from tqdm import tqdm import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme() import glob import numpy as np from IPython.display import display import os from os.path import join import re import torch from collections import namedtuple import pdb logging.basicConfig( format="%(levelname)s:%(asctime)s:%(module)s:%(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) class ScoreHandler: """Standardize how scores are saved and loaded for a given model & dataset.""" def __init__(self, dataset: torch.utils.data.Dataset): self.dataset = dataset def save_scores(self, scores, root_dir: str, column_name: str, dataset: str): """Save the scores for a model on a dataset. It uses a single csv file per dataset. Each column refers to the scores of a single dataset. Return: (datafram with scores, epath of the file containing the scores) """ file_name = f"scores_{dataset}.csv" file_path = join(root_dir, file_name) df = pd.read_csv(file_path) if exists(file_path) else self.dataset.data.copy() if column_name in df.columns: logging.info(f"Scores for {column_name} are present. Overriding them...") df[column_name] = scores df.to_csv(file_path, index=False) return df, file_path def load_model_from_folder(model_dir, pattern=None): if pattern: ckpt = glob.glob(join(model_dir, f"*{pattern}*"))[0] else: ckpt = glob.glob(f"{model_dir}/*.ckpt")[0] print("Loading", ckpt) if pattern: model = LMForSequenceClassification.load_from_checkpoint(ckpt) else: model = AutoModelForSequenceClassification.from_pretrained(model_dir) return model def join_subwords(tokens): span_start_idx = -1 spans = list() for i, t in enumerate(tokens): if t.startswith("#") and span_start_idx == -1: span_start_idx = i - 1 continue if not t.startswith("#") and span_start_idx != -1: spans.append((span_start_idx, i)) span_start_idx = -1 #  span open at the end if span_start_idx != -1: spans.append((span_start_idx, len(tokens))) merged_tkns = list() pop_idxs = list() for span in spans: merged = "".join([t.strip("#") for t in tokens[span[0] : span[1]]]) merged_tkns.append(merged) #  indexes to remove in the final sequence for pop_idx in range(span[0] + 1, span[1]): pop_idxs.append(pop_idx) new_tokens = tokens.copy() for i, (span, merged) in enumerate(zip(spans, merged_tkns)): new_tokens[span[0]] = merged #  substitue with whole word mask = np.ones(len(tokens)) mask[pop_idxs] = 0 new_tokens = np.array(new_tokens)[mask == 1] assert len(new_tokens) == len(tokens) - len(pop_idxs) return new_tokens, pop_idxs, spans def average_2d_over_spans(tensor, spans, reduce_fn="mean"): #  print("Spans #", spans) slices = list() last_span = None for span in spans: # first slice if last_span is None: slices.append(tensor[:, : span[0]]) else: slices.append(tensor[:, last_span[1] : span[0]]) # average over the subwords if reduce_fn == "mean": slices.append(tensor[:, span[0] : span[1]].mean(-1).unsqueeze(-1)) else: slices.append(tensor[:, span[0] : span[1]].sum(-1).unsqueeze(-1)) last_span = span #  last slice if spans[-1][1] != tensor.shape[1]: slices.append(tensor[:, last_span[1] :]) res = torch.cat(slices, dim=1) #  print("After average:", res.shape) return res def get_scores(y_true, scores_path): scores = torch.load(scores_path) y_pred = torch.zeros(scores.shape[0]).masked_fill(scores >= 0.5, 1) fp_mask = (y_true == 0) & (y_pred == 1) fp = torch.zeros(scores.shape[0]).masked_fill(fp_mask, 1) fp_indexes = torch.nonzero(fp).squeeze(-1) print(f"Found {fp_indexes.shape[0]} FPs") return {"scores": scores, "y_pred": y_pred, "fp_indexes": fp_indexes} #### VISUALIZATION: ENTROPY #### def show_entropy( models, tokenizer, max_sequence_length, data, names, n_samples=2, idxs=None, regularization="entropy", join=False, layers_mean=False, prompt=None, exp=False, remove_special=False, labelsize=15, titlesize=15, set_figsize=True, set_tightlayout=True, ): def process_text(idx, text): with torch.no_grad(): print(text) encoding = tokenizer( text, add_special_tokens=True, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", ) tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0]) if remove_special: tokens = tokens[1:-1] #  print("Len:", len(tokens), "tokens:", tokens) if join: # join subwords for better visualization new_tokens, pop_idxs, spans = join_subwords(tokens) #  print("Len new tokens", len(new_tokens)) tokens = new_tokens heatmap_list = list() final_entropies = list() y_scores = list() for i, (model, name) in enumerate(zip(models, names)): if regularization == "entropy": output = model(**encoding, output_attentions=True) reg_target = output["attentions"] else: output = model(**encoding, output_norms=True) norms = output["norms"] afx_norms = [t[1] for t in norms] reg_target = afx_norms logits = output["logits"] y_score = logits.softmax(-1)[0, 1] print(y_score) neg_entropy, entropies = compute_negative_entropy( reg_target, encoding["attention_mask"], return_values=True ) #  print("Entropies shape:", entropies[0].shape) #  join_subwords(entropies, tokens) #  print(name, "Final entropy: ", -neg_entropy.item()) entropies = -entropies[0] # take positive entropy entropies = torch.flipud(entropies) #  top layers are placed to the top # average subwords if join and len(spans) > 0: entropies = average_2d_over_spans(entropies, spans) if layers_mean: entropies = entropies.mean(0).unsqueeze(0) if exp: entropies = (1 / entropies).log() if remove_special: entropies = entropies[:, 1:-1] heatmap_list.append(entropies) final_entropies.append(-neg_entropy.item()) y_scores.append(y_score) #### VISUALIZATION #### if layers_mean: figsize = (12, 2 * len(models)) else: figsize = (6 * len(models), 6) if set_figsize: fig = plt.figure(constrained_layout=False, figsize=figsize) else: fig = plt.figure(constrained_layout=False) if regularization == "entropy": fig.suptitle( f"H: Entropy on Attention (a), ID:{idx}" ) # , {data[idx]}") else: fig.suptitle( f"Entropy on Norm (||a*f(zx)||), ID:{idx}" ) # , {data[idx]}") if set_tightlayout: fig.tight_layout() # compute global min and global max heatmap_tensor = torch.stack(heatmap_list) glob_min = heatmap_tensor.min().item() glob_max = heatmap_tensor.max().item() #  print("Glob max:", glob_max, "Glob min", glob_min) for i, name in enumerate(names): if layers_mean: gspec = fig.add_gridspec( len(models), 2, width_ratios=[20, 1], wspace=0.1, hspace=0.1 ) splot = fig.add_subplot(gspec[i, 0]) if i == (len(names) - 1): cbar_ax = fig.add_subplot(gspec[:, 1]) sns.heatmap( heatmap_list[i], ax=splot, cbar=True, cbar_ax=cbar_ax, square=True, vmin=glob_min, vmax=glob_max, ) splot.set_xticks(np.arange(heatmap_list[i].shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar cbar_ax.set_title( "log(1/H)", fontsize=titlesize ) if exp else cbar_ax.set_title("H", fontsize=titlesize) else: sns.heatmap( heatmap_list[i], ax=splot, cbar=False, square=True, vmin=glob_min, vmax=glob_max, ) splot.set_xticklabels([]) splot.set_yticklabels([]) splot.set_title( f"{name}, p(1|x)={y_scores[i]:.3f}, H={final_entropies[i]:.3f}", fontsize=titlesize, ) else: width_ratios = [10] * len(models) width_ratios += [1] gspec = fig.add_gridspec( 1, len(models) + 1, width_ratios=width_ratios, wspace=0.2 ) splot = fig.add_subplot(gspec[0, i]) if i == (len(names) - 1): cbar_ax = fig.add_subplot(gspec[0, -1]) sns.heatmap( heatmap_list[i], ax=splot, cbar=True, cbar_ax=cbar_ax, square=True, vmin=glob_min, vmax=glob_max, ) [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar cbar_ax.set_title( "log(1/H)", fontsize=titlesize ) if exp else cbar_ax.set_title("H", fontsize=titlesize) else: sns.heatmap(heatmap_list[i], ax=splot, cbar=False, square=True) if i == 0: splot.set_ylabel("Layer", fontsize=labelsize) splot.set_yticklabels(np.arange(11, -1, -1), fontsize=labelsize) else: splot.set_yticklabels([]) splot.set_xticks(np.arange(heatmap_list[i].shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) splot.set_title( f"{name}, p(1|x)={y_scores[i]:.3f}, H={final_entropies[i]:.3f}", fontsize=titlesize, ) #  print(len(tokens), len(axes[i].get_xticklabels())) #  print(entropies.shape) #  axes[i].set_xticks(np.arange(heatmap_list[i].shape[-1])) # axes[i].set_xticklabels(tokens, rotation=90) # axes[i].set_title(f"{name}, p(1|x)={y_scores[i]:.3f}, e={final_entropies[i]:.3f}") # axes[i].set_yticklabels([]) return fig if prompt: idx = "custom" text = prompt print("ID: ", idx, text) return process_text(idx, text) if idxs is None: #  pick random samples to show idxs = np.random.randint(len(data), size=n_samples) print(idxs) for idx in idxs: print("ID: ", idx, data[idx]) process_text(idx, data[idx]["text"]) def compare_sentences( model, tokenizer, sentences, max_sequence_length=120, remove_special=True, join=True, show_log=True, labelsize=15, titlesize=15, figsize=(12, 12), ): processed = list() with torch.no_grad(): for text in sentences: encoding = tokenizer( text, add_special_tokens=True, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", ) tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0]) if remove_special: tokens = tokens[1:-1] if join: # join subwords for better visualization new_tokens, pop_idxs, spans = join_subwords(tokens) #  print("Len new tokens", len(new_tokens)) tokens = new_tokens output = model(**encoding, output_attentions=True) logits = output["logits"] y_score = logits.softmax(-1)[0, 1] neg_entropy, entropies = compute_negative_entropy( output["attentions"], encoding["attention_mask"], return_values=True ) #  print("Entropies shape:", entropies[0].shape) #  print(name, "Final entropy: ", -neg_entropy.item()) entropies = -entropies[0] # take positive entropy # average subwords if join and len(spans) > 0: entropies = average_2d_over_spans(entropies, spans) entropies = entropies.mean(0).unsqueeze(0) if show_log: entropies = (1 / entropies).log() if remove_special: entropies = entropies[:, 1:-1] processed.append((tokens, y_score, entropies)) # print(processed) fig = plt.figure(constrained_layout=False, figsize=figsize) gspec = fig.add_gridspec(len(sentences) * 2, 1, hspace=2, wspace=5) vmin = torch.stack([p[2] for p in processed]).min().item() vmax = torch.stack([p[2] for p in processed]).max().item() print(vmin, vmax) for i, (tokens, y_score, entropies) in enumerate(processed): splot = fig.add_subplot(gspec[i, 0]) #  cbar_ax = fig.add_subplot(gspec[:, 1]) sns.heatmap( entropies, ax=splot, cbar=False, # cbar_ax=cbar_ax, square=True, # cmap="Reds", annot=False, vmin=vmin, vmax=vmax, ) splot.set_xticks(np.arange(entropies.shape[-1]) + 0.5) splot.set_xticklabels(tokens, rotation=90, fontsize=labelsize) splot.set_yticklabels([]) splot.set_title( f"p(1|x)={y_score:.3f}", fontsize=titlesize, ) # [t.set_fontsize(labelsize) for t in cbar_ax.get_yticklabels()] # title to colorbar # cbar_ax.set_title( # "log(1/H)", fontsize=titlesize # ) if exp else cbar_ax.set_title("H", fontsize=titlesize) # fig.tight_layout() #### BIAS_ANALYSIS: parsing results and bias analysis def match_pattern_concat(main_dir, pattern, verbose=True): """Find all files that match a patter in main_dir. Then concatenate their content into a pandas df.""" versions = glob.glob(join(main_dir, pattern)) if verbose: print(f"Found {len(versions)} versions") res = list() for version in versions: df = pd.read_csv(version) filename = os.path.basename(version) seed = re.search(r"([0-9]{1})", filename).group(1) # print(filename, seed) df["seed"] = seed res.append(df) return pd.concat(res) def mean_std_across_subgroups(data: pd.DataFrame, metrics): print("Found the following models:", data.model.unique()) model_groups = data.groupby("model") means = list() stds = list() for model, group_df in model_groups: subgroup_groups = group_df.groupby("subgroup").mean() # across seeds for metric in metrics: means.append( { "metric": metric, "model_name": model, "mean_across_subgroups": subgroup_groups[metric].mean(), } ) stds.append( { "metric": metric, "model_name": model, "std_across_subgroups": subgroup_groups[metric].std(), } ) return pd.DataFrame(means),
pd.DataFrame(stds)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt tamano_muestra = 120 #N bandera_paso = False iter = 0 lsupAnterior = -5 linfAnterior = -5 licentAnterior = -5 datos =
pd.read_csv('data.csv', header=None)
pandas.read_csv
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np import random from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_print_temp_data(): target = mock.MagicMock() target.temp={} target.temp['selected'] = ['c1','c2'] target.temp['weights'] = [0.5,0.5] algo = algos.PrintTempData() assert algo( target ) algo = algos.PrintTempData( 'Selected: {selected}') assert algo( target ) def test_print_info(): target = bt.Strategy('s', []) target.temp={} algo = algos.PrintInfo() assert algo( target ) algo = algos.PrintInfo( '{now}: {name}') assert algo( target ) def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts =
pd.date_range('2010-01-01', periods=35)
pandas.date_range
import sys,os import numpy as np import pandas as pd import h5py import math from scipy.stats import entropy from collections import Counter import pickle # Get Euclidean Norm minus One def get_ENMO(x,y,z): enorm = np.sqrt(x*x + y*y + z*z) ENMO = np.maximum(enorm-1.0, 0.0) return ENMO # Get tilt angles def get_tilt_angles(x,y,z): angle_x = np.arctan2(x, np.sqrt(y*y + z*z)) * 180.0/math.pi angle_y = np.arctan2(y, np.sqrt(x*x + z*z)) * 180.0/math.pi angle_z = np.arctan2(z, np.sqrt(x*x + y*y)) * 180.0/math.pi return angle_x, angle_y, angle_z # Get Locomotor Inactivity During Sleep def get_LIDS(timestamp, ENMO): df = pd.concat((timestamp, pd.Series(ENMO)), axis=1) df.columns = ['timestamp','ENMO'] df.set_index('timestamp', inplace=True) df['ENMO_sub'] = np.where(ENMO < 0.02, 0, ENMO-0.02) # assuming ENMO is in g ENMO_sub_smooth = df['ENMO_sub'].rolling('600s').sum() # 10-minute rolling sum df['LIDS_unfiltered'] = 100.0 / (ENMO_sub_smooth + 1.0) LIDS = df['LIDS_unfiltered'].rolling('1800s').mean().values # 30-minute rolling average return LIDS def compute_entropy(df, bins=20): hist, bin_edges = np.histogram(df, bins=bins) p = hist/float(hist.sum()) ent = entropy(p) return ent # Aggregate statistics of features over a given time interval def get_stats(timestamp, feature, token_interval): feat_df = pd.DataFrame(data={'timestamp':timestamp, 'feature':feature}) feat_df.set_index('timestamp', inplace=True) feat_mean = feat_df.resample(str(token_interval)+'S').mean() feat_std = feat_df.resample(str(token_interval)+'S').std() feat_min = feat_df.resample(str(token_interval)+'S').min() feat_max = feat_df.resample(str(token_interval)+'S').max() feat_mad = feat_df.resample(str(token_interval)+'S').apply(pd.DataFrame.mad) feat_ent1 = feat_df.resample(str(token_interval)+'S').apply(compute_entropy, bins=20) feat_ent2 = feat_df.resample(str(token_interval)+'S').apply(compute_entropy, bins=200) stats = np.vstack((feat_mean['feature'], feat_std['feature'], feat_min['feature'], feat_max['feature'], feat_mad['feature'], feat_ent1['feature'], feat_ent2['feature'])).T return stats def get_categ(df, default='NaN'): ctr = Counter(df) for key in ctr: ctr[key] = ctr[key]/float(len(df)) dom_categ = ctr.most_common()[0] if dom_categ[1] >= 0.7: # If a category occurs more than 70% of time interval, mark that as dominant category dom_categ = dom_categ[0] else: dom_categ = default return dom_categ def get_dominant_categ(timestamp, categ, token_interval, default='NaN'): categ_df = pd.DataFrame(data={'timestamp':timestamp, 'category':categ}) categ_df.set_index('timestamp', inplace=True) dom_categ = categ_df.resample(str(token_interval)+'S').apply(get_categ, default=default) return np.array(dom_categ['category']) # Get sequence labels in BIEO format - Beginning, Inside, End, Outside def get_sequential_label(labels, nonwear, states): # Initialize all labels as 'O' seq_labels = ['O'] * len(labels) # Rename first and last labels of the sequence if labels[0] in states: seq_labels[0] = 'B-' + labels[0] if labels[-1] in states: seq_labels[-1] = 'E-' + labels[-1] # Rename all other labels based on their previous and next labels for i in range(1,len(labels)-1): # If nonwear, retain label as 'O' if nonwear[i] is True or labels[i] not in states: continue # Label beginning of state if labels[i] != labels[i-1]: seq_labels[i] = 'B-' + labels[i] else: # Inside a state seq_labels[i] = 'I-' + labels[i] # Label end of state if labels[i] != labels[i+1]: seq_labels[i] = 'E-' + labels[i] return seq_labels def convert2seq(features, labels, n_seq_tokens=10, user=None, position=None, dataset=None): sequences = [] ntokens = len(labels) columns = ['ENMO_mean','ENMO_std','ENMO_min','ENMO_max','ENMO_mad','ENMO_entropy1','ENMO_entropy2', 'angz_mean','angz_std','angz_min','angz_max','angz_mad','angz_entropy1','angz_entropy2', 'LIDS_mean','LIDS_std','LIDS_min','LIDS_max','LIDS_mad','LIDS_entropy1','LIDS_entropy2'] for st_idx in range(0,ntokens,n_seq_tokens): end_idx = min(ntokens, st_idx+n_seq_tokens) if (end_idx-st_idx) < (n_seq_tokens//2): # Discard last sequence if too short continue lbl_ctr = Counter(labels[st_idx:end_idx]).most_common() lbl_ctr = [(lbl,float(val)/n_seq_tokens) for lbl,val in lbl_ctr] # Discard sequences which are atleast 60% or more of 'O' if lbl_ctr[0][0] == 'O' and lbl_ctr[0][1] >= 0.6: continue else: feat_df =
pd.DataFrame(features[st_idx:end_idx], columns=columns)
pandas.DataFrame
''' Starting with Commonwealth_Connect_Service_Requests.csv, meaning the tickets feature. See more info in notebook #2 ''' import pandas as pd import numpy as np from geopy.distance import geodesic def find_nearest_building(df,latI,lonI): minDist = 4000 flag = True for i in range(0,df.shape[0]): lat = df['lat'].iloc[i] lon = df['lon'].iloc[i] dist = geodesic([lat,lon],[latI,lonI]).meters if dist<minDist: minDist = dist nearestBuildingInDf = i if minDist==4000: flag=False nearestBuildingInDf = pd.DataFrame() return nearestBuildingInDf,flag def fixLonLat(df,colName): # extracting the lat/lon info to answer the question of where they are located: extract = df[colName] extract = extract.apply(lambda x: x.split('(',1)[1]) extract = extract.apply(lambda x: x.split(')',1)[0]) df['lat'] = extract.apply(lambda x: x.split(',',1)[0]) df['lon'] = extract.apply(lambda x: x.split(',',1)[1]) print('Range of Latitudes for input coordinates:',df['lat'].min(),df['lat'].max()) print('Range of Longitudes for input coordinates:',df['lon'].min(),df['lon'].max()) df['lat'] = df['lat'].astype('float') df['lon'] = df['lon'].astype('float') return df def minMaxCoords(lat,lon,dlat,dlon): minLat = lat-dlat maxLat = lat+dlat minLon = lon-dlon maxLon = lon+dlon return minLat,maxLat,minLon,maxLon def findIdentifier(tickets,identifierLocation,dlat,dlon): # running over the tickets/complaints, cutting part of the identifierLocation DataaFrame close to each # ticket location, and finding the closest match building wise: tickets_feature = pd.DataFrame() tmp = pd.DataFrame() for i in range(0, tickets.shape[0]): lat = tickets['lat'].iloc[i] lon = tickets['lon'].iloc[i] minLat, maxLat, minLon, maxLon = minMaxCoords(lat, lon, dlat, dlon) df = identifierLocation[identifierLocation['lat'] < maxLat] df = df[df['lat'] > minLat] df = df[df['lon'] < maxLon] df = df[df['lon'] > minLon] # print(df.shape[0]) # df now contains all the buildings withing the given lat/lon circle around the ticket location. # one of these buildings is the one that received the ticket: nearestBuildingIloc,flag = find_nearest_building(df, lat, lon) if flag: tmp = df.iloc[nearestBuildingIloc] tmp['date'] = tickets['date'].iloc[i] tmp['label'] = 1 tickets_feature = tickets_feature.append(tmp) else: print('no closest bldg for record ',i) print(type(tickets_feature)) print(tickets_feature.shape[0]) return tickets_feature,flag def fixDate(df,colName): df[colName] = pd.to_datetime(df[colName],infer_datetime_format=True) df['date'] = df[colName].dt.date print('Input dates:',min(df['date']),'to',max(df['date'])) return df identifierLocation = pd.read_csv('/Users/nbechor/Insight/SlipperySlope/data/processed/BldgID2WeatherIdentifier.csv') ## tickets labels: tickets = pd.read_csv('/Users/nbechor/Insight/SlipperySlope/data/external/Snow_Ice_Sidewalk_Ordinance_Violations.csv') tickets = fixDate(tickets,'OFFENSE DATE') tickets = fixLonLat(tickets,'TICKET LOCATION') lat_radius=abs(tickets['lat'].min()-tickets['lat'].max())/25 lon_radius = abs(tickets['lon'].min()-tickets['lon'].max())/25 #tickets_feature,flag = findIdentifier(tickets,identifierLocation,lat_radius,lon_radius) #tickets_feature.to_csv('/Users/nbechor/Insight/SlipperySlope/data/interim/tickets_label.csv') ## Complaints dataset: complaintsH =
pd.read_csv('/Users/nbechor/Insight/SlipperySlope/data/external/Unshoveled_Icy_Sidewalk_Complaints.csv')
pandas.read_csv
import pandas as pd import numpy as np from adv_finance.multiprocess import mp_pandas_obj def mp_sample_tw(t1, num_co_events, molecule): """ Snippet 4.2 (page 62) Estimating The Average Uniqueness Of A Label :param timestamps: (Series): Used for assigning weight. Larger value, larger weight e.g, log return :param t1: (Series) :param num_co_events: (Series) :param molecule: :return: """ # Derive average uniqueness over the event's lifespan weight = pd.Series(index=molecule) for t_in, t_out in t1.loc[weight.index].iteritems(): weight.loc[t_in] = (1 / num_co_events.loc[t_in:t_out]).mean() return weight.abs() def get_sample_tw(t1, num_co_events, num_threads=1): """ Calculate sampling weight with considering some attributes :param timestamps: :param t1: :param num_co_events: :param num_threads: :return: """ weight = mp_pandas_obj(mp_sample_tw, ('molecule', t1.index), num_threads=num_threads, t1=t1, num_co_events=num_co_events) return weight def mp_sample_w(t1, num_co_events, close, molecule): """ Snippet 4.10 (page 69) Determination Of Sample Weight By Absolute Return Attribution :param t1: :param num_co_events: :param close: :param molecule: :return: """ # Derive sample weight by return attribution ret = np.log(close).diff() # log-returns, so that they are additive wght =
pd.Series(index=molecule)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # ## Compare compressed vs. raw results # # In this notebook, we want to compare mutation status classification results with varying numbers of PCA components as predictors against results with raw features (CpG beta values for methylation data, standardized per-gene expression values for RNA-seq data). # # Notebook parameters: # * SIG_ALPHA (float): significance cutoff after FDR correction # * PLOT_AUROC (bool): if True plot AUROC, else plot AUPR # In[1]: from pathlib import Path import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from adjustText import adjust_text import mpmp.config as cfg import mpmp.utilities.analysis_utilities as au # In[2]: # set results directories results_dir = Path(cfg.results_dirs['mutation'], 'methylation_results', 'gene').resolve() # set significance cutoff after FDR correction SIG_ALPHA = 0.001 # if True, save figures to ./images directory SAVE_FIGS = True # if True, plot AUROC instead of AUPR PLOT_AUROC = False if PLOT_AUROC: plot_metric = 'auroc' images_dir = Path(cfg.images_dirs['mutation'], 'auroc') else: plot_metric = 'aupr' images_dir = Path(cfg.images_dirs['mutation']) # In[3]: # load raw data raw_results_df = au.load_stratified_prediction_results(results_dir, 'gene') print(raw_results_df.shape) print(raw_results_df.seed.unique()) print(raw_results_df.training_data.unique()) raw_results_df.head() # In[4]: # load compressed data compressed_results_df = au.load_compressed_prediction_results(results_dir, 'gene') print(compressed_results_df.shape) print(compressed_results_df.seed.unique()) print(compressed_results_df.n_dims.unique()) print(compressed_results_df.training_data.unique()) compressed_results_df.head() # In[5]: def label_points(x, y, gene, sig, ax): text_labels = [] a =
pd.DataFrame({'x': x, 'y': y, 'gene': gene, 'sig': sig})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 #without the help of my intern, this option data scraper would never exist #thank you, Olivia, much appreciated for the data etl # In[1]: import requests import pandas as pd import os os.chdir('H:/') # In[2]: #scraping function def scrape(url): session=requests.Session() session.headers.update( {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'}) response=session.get(url) return response # In[3]: #get expiration id def get_expiration(jsondata): expiration=pd.DataFrame.from_dict(jsondata).T expiration.reset_index(inplace=True,drop=True) #unpack expiration id var=locals() for i in range(len(expiration)): unpack=expiration.loc[i:i] dictionary=unpack['expirations'].iloc[0] del unpack['expirations'] del unpack['productIds'] del unpack['optionType'] var['a'+str(i)]=pd.DataFrame.from_dict(dictionary).T var['a'+str(i)].columns=var['a'+str(i)].columns.str.replace('label','expiration-label') for j in unpack.columns: var['a'+str(i)][j]=unpack[j].iloc[0] output=pd.concat([var['a'+str(i)] for i in range(len(expiration))]) return output # In[4]: #get group id def get_groupid(jsondata): commoditygroup=pd.DataFrame.from_dict(jsondata['filters']['group']) var=locals() for i in range(len(commoditygroup)): var['a'+str(i)]=
pd.DataFrame.from_dict(commoditygroup['children'].iloc[i])
pandas.DataFrame.from_dict
import math import pandas as pd import csv import pathlib import wx import matplotlib import matplotlib.pylab as pL import matplotlib.pyplot as plt import matplotlib.backends.backend_wxagg as wxagg import re import numpy as np import scipy import scipy.interpolate import sys #from mpl_toolkits.mplot3d import Axes3D #import wx.lib.inspection as wxli class ERTAPP(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, wx.ID_ANY, title='ERT Editing',pos=(100,100),size=(500,500)) #Built from template here: https://wiki.wxpython.org/GridSizerTutorial #Set up Panels def setUpPanels(self): self.topPanel = wx.Panel(self, wx.ID_ANY,size = (1000,10),name='Top Panel') self.infoPanel = wx.Panel(self, wx.ID_ANY,size = (1000,50),name='Info Panel') self.chartPanel = wx.Panel(self, wx.ID_ANY,size = (1000,500),name='Chart Panel') self.bottomPanel= wx.Panel(self, wx.ID_ANY,size = (1000,130),name='Bottom Panel') #need to create more panels, see here: https://stackoverflow.com/questions/31286082/matplotlib-in-wxpython-with-multiple-panels def titleSetup(self): bmp = wx.ArtProvider.GetBitmap(wx.ART_INFORMATION, wx.ART_OTHER, (4, 4)) self.titleIco = wx.StaticBitmap(self.topPanel, wx.ID_ANY, bmp) self.title = wx.StaticText(self.topPanel, wx.ID_ANY, 'Advanced ERT Editing') #Declare inputs for first row def inputSetup(self): bmp = wx.ArtProvider.GetBitmap(wx.ART_TIP, wx.ART_OTHER, (4, 4)) self.inputOneIco = wx.StaticBitmap(self.topPanel, wx.ID_ANY, bmp) self.labelOne = wx.StaticText(self.topPanel, wx.ID_ANY, 'Input ERT Data') self.inputTxtOne = wx.TextCtrl(self.topPanel, wx.ID_ANY, '') self.inputTxtOne.SetHint('Enter data file path here') self.inputBrowseBtn = wx.Button(self.topPanel, wx.ID_ANY, 'Browse') self.Bind(wx.EVT_BUTTON, self.onBrowse, self.inputBrowseBtn) self.readInFileBtn = wx.Button(self.topPanel, wx.ID_ANY, 'Read Data') self.Bind(wx.EVT_BUTTON, self.onReadIn, self.readInFileBtn) self.inputDataType = wx.Choice(self.topPanel, id=wx.ID_ANY,choices=['.DAT (LS)','.TXT (LS)','.DAT (SAS)', '.VTK', '.XYZ'],name='.TXT (LS)') self.Bind(wx.EVT_CHOICE,self.onDataType,self.inputDataType) self.autoShiftBx = wx.CheckBox(self.topPanel,wx.ID_ANY, 'Auto Shift?') self.autoShiftBx.SetValue(True) #Row 3 item(s) self.TxtProfileName = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Profile Name: ') self.TxtProfileRange = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Profile Length: ') self.TxtDataPts = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Data Points: ') self.TxtBlank = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.TxtBlank2 = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.TxtMinElectSpcng = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Min. Electrode Spacing: ') self.TxtProjectName = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Project Name: ') self.TxtArray = wx.StaticText(self.infoPanel, wx.ID_ANY, 'Array: ') self.msgProfileName = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.msgProfileRange = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.msgDataPts = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.msgMinElectSpcng = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.msgProjectName = wx.StaticText(self.infoPanel, wx.ID_ANY, '') self.msgArray = wx.StaticText(self.infoPanel, wx.ID_ANY, '') # DataViz Area item(s) def dataVizSetup(self): self.editSlider = wx.Slider(self.chartPanel, pos=(200,0), id=wx.ID_ANY, style=wx.SL_TOP | wx.SL_AUTOTICKS | wx.SL_LABELS, name='Edit Data') self.Bind(wx.EVT_SCROLL, self.onSliderEditEVENT, self.editSlider) self.dataVizMsg1 = wx.StaticText(self.chartPanel, wx.ID_ANY, '') self.dataVizMsg2 = wx.StaticText(self.chartPanel, wx.ID_ANY, '') self.dataVizInput = wx.TextCtrl(self.chartPanel, wx.ID_ANY, '') self.dataVizInputBtn = wx.Button(self.chartPanel, -1, "Use Value") self.dataVizInputBtn.Bind(wx.EVT_BUTTON, self.ONdataVizInput) self.saveEditsBtn = wx.Button(self.chartPanel, -1, "Save Edits") self.saveEditsBtn.Bind(wx.EVT_BUTTON, self.ONSaveEdits) self.saveEditsBtn.SetBackgroundColour((100,175,100)) self.currentChart = 'Graph' self.editDataChoiceList = ['AppResist','Resistance','Electrode x-Dists','Variance','PctErr','PseudoX','PseudoZ'] self.editDataChoiceBool = [False]*len(self.editDataChoiceList) self.editDataValues = [] for i in self.editDataChoiceList: self.editDataValues.append([0,0]) self.editDataType = wx.Choice(self.chartPanel, id=wx.ID_ANY,choices=self.editDataChoiceList,name='Edit Data') self.editDataType.Bind(wx.EVT_CHOICE, self.onSelectEditDataType) self.setEditToggleBtn = wx.ToggleButton(self.chartPanel,wx.ID_ANY,'Unused',size=(25,30)) self.setEditToggleBtn.Bind(wx.EVT_TOGGLEBUTTON, self.onSetEditToggle) self.labelMinRem = wx.StaticText(self.chartPanel, wx.ID_ANY, 'Min.') self.inputTxtMinRem = wx.TextCtrl(self.chartPanel, wx.ID_ANY,style=wx.TE_PROCESS_ENTER, name='') self.inputTxtMinRem.Bind(wx.EVT_TEXT_ENTER, self.onEditDataValueChangeEvent) self.labelMaxRem = wx.StaticText(self.chartPanel, wx.ID_ANY,'Max.') self.inputTxtMaxRem = wx.TextCtrl(self.chartPanel, wx.ID_ANY,style=wx.TE_PROCESS_ENTER,name= '') self.inputTxtMaxRem.Bind(wx.EVT_TEXT_ENTER, self.onEditDataValueChangeEvent) self.editTypeToggleBtn = wx.ToggleButton(self.chartPanel,wx.ID_ANY,'Remove',size=(25,50)) self.editTypeToggleBtn.Bind(wx.EVT_TOGGLEBUTTON, self.onEditTypeToggle) self.editLogicToggleBtn = wx.ToggleButton(self.chartPanel,wx.ID_ANY,'OR',size=(25,25)) self.editLogicToggleBtn.Bind(wx.EVT_TOGGLEBUTTON, self.onLogicToggle) self.removePtsBtn = wx.Button(self.chartPanel, -1, "Edit Points") self.removePtsBtn.Bind(wx.EVT_BUTTON, self.onRemovePts) self.electrodeToggleBtn = wx.ToggleButton(self.chartPanel,wx.ID_ANY,'On',size=(25,25)) self.electrodeToggleBtn.Bind(wx.EVT_TOGGLEBUTTON, self.ONtoggle) self.GraphEditBtn = wx.Button(self.chartPanel, -1, "Graphic Editor", size=(100, 30)) self.GraphEditBtn.Bind(wx.EVT_BUTTON, self.graphChartEvent) self.StatEditBtn = wx.Button(self.chartPanel, -1, "Statistical Editor", size=(100, 30)) self.Bind(wx.EVT_BUTTON, self.statChartEvent, self.StatEditBtn) self.addGPSBtn = wx.Button(self.chartPanel, -1, "GPS Data", size=(100, 30)) self.addGPSBtn.Bind(wx.EVT_BUTTON, self.GPSChartEvent) self.addTopoBtn = wx.Button(self.chartPanel, -1, "Topography Data", size=(100, 30)) self.addTopoBtn.Bind(wx.EVT_BUTTON, self.topoChartEvent) self.reviewBtn = wx.Button(self.chartPanel, -1, "Review Edits", size=(100, 15)) self.reviewBtn.Bind(wx.EVT_BUTTON, self.reviewEvent) def bottomAreaSetup(self): # Row 4 items self.reverseBx = wx.CheckBox(self.bottomPanel,wx.ID_ANY, 'Reverse Profile') self.labelGPSIN = wx.StaticText(self.bottomPanel, wx.ID_ANY, 'GPS Data') self.inputTxtGPS = wx.TextCtrl(self.bottomPanel, wx.ID_ANY, 'Enter GPS Filepath Here') self.inputGPSBtn = wx.Button(self.bottomPanel, wx.ID_ANY, 'Browse') self.Bind(wx.EVT_BUTTON, self.onGPSBrowse, self.inputGPSBtn) self.Bind(wx.EVT_CHECKBOX, self.onReverse, self.reverseBx) self.dataEditMsg = wx.StaticText(self.bottomPanel, wx.ID_ANY, '') self.labelTopoIN = wx.StaticText(self.bottomPanel, wx.ID_ANY, 'Topo Data') self.inputTxtTopo = wx.TextCtrl(self.bottomPanel, wx.ID_ANY, 'Enter Topo Filepath Here') self.inputTopoBtn = wx.Button(self.bottomPanel, wx.ID_ANY, 'Browse') self.includeTopoBx = wx.CheckBox(self.bottomPanel,wx.ID_ANY, 'Include Topography') self.Bind(wx.EVT_BUTTON, self.onTopoBrowse, self.inputTopoBtn) self.Bind(wx.EVT_CHECKBOX, self.onIncludeTopo, self.includeTopoBx) #Bottom Row items self.saveBtn = wx.Button(self.bottomPanel, wx.ID_ANY, 'Export and Save Data') self.cancelBtn = wx.Button(self.bottomPanel, wx.ID_ANY, 'Cancel') self.Bind(wx.EVT_BUTTON, self.onExport, self.saveBtn) self.Bind(wx.EVT_BUTTON, self.onCancel, self.cancelBtn) self.labelExport = wx.StaticText(self.bottomPanel, wx.ID_ANY, 'Export Data') self.exportTXT = wx.TextCtrl(self.bottomPanel, wx.ID_ANY, 'Enter Export Filepath Here') self.exportDataBtn = wx.Button(self.bottomPanel, wx.ID_ANY, 'Browse') self.Bind(wx.EVT_BUTTON, self.onExportBrowse, self.exportDataBtn) #Set up chart def chartSetup(self): self.chartSizer = wx.BoxSizer(wx.VERTICAL) self.figure = matplotlib.figure.Figure() self.canvas = wxagg.FigureCanvasWxAgg(self.chartPanel, -1, self.figure) self.axes = self.figure.add_subplot(111) self.axes.set_xlabel('X-Distance (m)') self.axes.set_ylabel('Depth (m)') self.toolbar = wxagg.NavigationToolbar2WxAgg(self.canvas) def sizersSetup(self): #Set up sizers self.baseSizer = wx.BoxSizer(wx.VERTICAL) self.topSizer = wx.BoxSizer(wx.VERTICAL) self.titleSizer = wx.BoxSizer(wx.HORIZONTAL) self.inputSizer = wx.BoxSizer(wx.HORIZONTAL) #self.readMsgSizer = wx.BoxSizer(wx.HORIZONTAL) self.profileInfoSizer = wx.BoxSizer(wx.HORIZONTAL) self.profileTxtSizer1 = wx.BoxSizer(wx.VERTICAL) self.profileTxtSizer2 = wx.BoxSizer(wx.VERTICAL) self.profileMsgSizer1 = wx.BoxSizer(wx.VERTICAL) self.profileMsgSizer2 = wx.BoxSizer(wx.VERTICAL) self.profileInfoSizer = wx.BoxSizer(wx.HORIZONTAL) self.ctrlSizer = wx.BoxSizer(wx.VERTICAL) self.chartSizer = wx.BoxSizer(wx.VERTICAL) self.dataVizSizer = wx.BoxSizer(wx.HORIZONTAL) self.vizInfoSizer = wx.BoxSizer(wx.HORIZONTAL) self.dataEditSizer = wx.BoxSizer(wx.HORIZONTAL) self.bottomSizer = wx.BoxSizer(wx.VERTICAL) self.GPSSizer = wx.BoxSizer(wx.HORIZONTAL) self.TopoSizer = wx.BoxSizer(wx.HORIZONTAL) self.botSizer = wx.BoxSizer(wx.HORIZONTAL) def addtoSizers(self): #Add items to sizers self.titleSizer.Add(self.title, 0, wx.ALIGN_CENTER) self.inputSizer.Add(self.labelOne, 1,wx.ALIGN_CENTER,5) self.inputSizer.Add(self.inputTxtOne, 8,wx.EXPAND,5) self.inputSizer.Add(self.inputBrowseBtn,1,wx.ALIGN_CENTER,5) self.inputSizer.Add(self.inputDataType,1,wx.ALIGN_CENTER,5) self.inputSizer.Add(self.readInFileBtn,1,wx.ALIGN_CENTER,5) self.inputSizer.Add(self.autoShiftBx, 1, wx.ALIGN_CENTER, 5) #self.readMsgSizer.Add(self.msgLabelOne, 0, wx.ALL,5) self.profileTxtSizer1.Add(self.TxtProfileName, 0, wx.ALIGN_LEFT,5) self.profileTxtSizer1.Add(self.TxtProfileRange, 0, wx.ALIGN_LEFT,5) self.profileTxtSizer1.Add(self.TxtDataPts, 0, wx.ALIGN_LEFT,5) self.profileTxtSizer2.Add(self.TxtMinElectSpcng, 0, wx.ALIGN_LEFT,5) self.profileTxtSizer2.Add(self.TxtArray, 0, wx.ALIGN_LEFT,5) self.profileTxtSizer2.Add(self.TxtProjectName, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer1.Add(self.msgProfileName, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer1.Add(self.msgProfileRange, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer1.Add(self.msgDataPts, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer2.Add(self.msgMinElectSpcng, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer2.Add(self.msgArray, 0, wx.ALIGN_LEFT,5) self.profileMsgSizer2.Add(self.msgProjectName, 0, wx.ALIGN_LEFT,5) self.profileInfoSizer.Add(self.profileTxtSizer1, 1,wx.ALL,5) self.profileInfoSizer.Add(self.profileMsgSizer1,3,wx.ALL,5) self.profileInfoSizer.Add(self.profileTxtSizer2, 1, wx.ALL, 5) self.profileInfoSizer.Add(self.profileMsgSizer2, 3, wx.ALL, 5) self.topSizer.Add(self.titleSizer,1,wx.ALL,5) self.topSizer.Add(self.inputSizer, 2, wx.ALL, 5) #self.topSizer.Add(self.readMsgSizer, 1, wx.ALL, 5) self.vizInfoSizer.Add(self.dataVizMsg1,16,wx.ALL,5) self.vizInfoSizer.Add(self.dataVizMsg2, 24, wx.ALL, 5) self.vizInfoSizer.Add(self.electrodeToggleBtn,1,wx.ALL,5) self.vizInfoSizer.Add(self.dataVizInput, 1, wx.ALL, 5) self.vizInfoSizer.Add(self.dataVizInputBtn,3,wx.ALL,5) self.vizInfoSizer.Add(self.saveEditsBtn,3,wx.ALL,5) self.ctrlSizer.Add(self.GraphEditBtn, 2, wx.ALL, 5) self.ctrlSizer.Add(self.StatEditBtn, 2, wx.ALL, 5) self.ctrlSizer.Add(self.addGPSBtn, 2, wx.ALL, 5) self.ctrlSizer.Add(self.addTopoBtn, 2, wx.ALL, 5) self.ctrlSizer.Add(self.reviewBtn,1,wx.ALL,5) self.dataEditSizer.Add(self.editDataType,5, wx.ALL, 5) self.dataEditSizer.Add(self.setEditToggleBtn,2,wx.ALL,5) self.dataEditSizer.Add(self.labelMinRem, 2, wx.ALL, 5) self.dataEditSizer.Add(self.inputTxtMinRem, 3, wx.ALL, 5) self.dataEditSizer.Add(self.inputTxtMaxRem, 3, wx.ALL, 5) self.dataEditSizer.Add(self.labelMaxRem, 2, wx.ALL, 5) self.dataEditSizer.Add(self.editTypeToggleBtn,3,wx.ALL,5) self.dataEditSizer.Add(self.editLogicToggleBtn,2,wx.ALL,5) self.dataEditSizer.Add(self.removePtsBtn, 3, wx.ALL, 5) self.chartSizer.Add(self.vizInfoSizer, 1, wx.ALL, 5) self.chartSizer.Add(self.editSlider,1, wx.LEFT | wx.RIGHT | wx.EXPAND,94) self.chartSizer.Add(self.canvas, 12, wx.EXPAND) self.chartSizer.Add(self.toolbar, 1, wx.EXPAND) self.chartSizer.Add(self.dataEditSizer,1,wx.EXPAND) self.dataVizSizer.Add(self.ctrlSizer,1,wx.EXPAND) self.dataVizSizer.Add(self.chartSizer,6,wx.EXPAND) self.GPSSizer.Add(self.dataEditMsg, 2, wx.ALL, 5) self.GPSSizer.Add(self.reverseBx, 1, wx.ALL, 5) self.GPSSizer.Add(self.labelGPSIN, 1, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) self.GPSSizer.Add(self.inputTxtGPS, 8, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) self.GPSSizer.Add(self.inputGPSBtn, 1, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) self.TopoSizer.Add(self.includeTopoBx, 2, wx.ALIGN_CENTER_VERTICAL | wx.ALL, 5) self.TopoSizer.Add(self.labelTopoIN, 1, wx.ALIGN_CENTER_VERTICAL| wx.ALL, 5) self.TopoSizer.Add(self.inputTxtTopo, 8, wx.ALIGN_CENTER_VERTICAL| wx.ALL, 5) self.TopoSizer.Add(self.inputTopoBtn, 1, wx.ALIGN_CENTER_VERTICAL| wx.ALL, 5) self.botSizer.Add(self.labelExport, 1, wx.ALL, 5) self.botSizer.Add(self.exportTXT,6, wx.ALL, 5) self.botSizer.Add(self.exportDataBtn,1, wx.ALL, 5) self.botSizer.Add(self.cancelBtn, 1, wx.ALL, 5) self.botSizer.Add(self.saveBtn, 1, wx.ALL, 5) #btnSizer.Add(saveEditsBtn,0,wx.ALL,5) self.bottomSizer.Add(self.GPSSizer,0, wx.ALIGN_RIGHT | wx.ALL, 5) self.bottomSizer.Add(self.TopoSizer,0, wx.ALIGN_RIGHT | wx.ALL, 5) self.bottomSizer.Add(self.botSizer,0, wx.ALIGN_RIGHT | wx.ALL, 5) def addtoPanels(self): self.topPanel.SetSizer(self.topSizer) self.infoPanel.SetSizer(self.profileInfoSizer) self.chartPanel.SetSizer(self.dataVizSizer) self.bottomPanel.SetSizer(self.bottomSizer) self.topPanel.Layout() self.baseSizer.Add(self.topPanel,1, wx.EXPAND,1) self.baseSizer.Add(self.infoPanel,1,wx.EXPAND,1) self.baseSizer.Add(self.chartPanel, 10, wx.EXPAND | wx.ALL, 5) self.baseSizer.Add(self.bottomPanel, 1, wx.EXPAND | wx.ALL, 1) self.SetSizer(self.baseSizer) self.SetSize(1100,950) def variableInfo(): #To see what the 'global' variables are pass #self.electxDataIN: list of all electrode xdistances #self.xCols: list with numbers of columns with x-values, from initial read-in table. varies with datatype #self.xData: list with all x-values of data points #self.zData: list with all z-values of data points (depth) #self.values: list with all resist. values of data points #self.inputDataExt: extension of file read in, selected from initial drop-down (default = .dat (LS)) #self.xDF : dataframe with only x-dist of electrodes, and all of them #self.dataHeaders: headers from original file read in, used for column names for dataframeIN #self.dataListIN: nested list that will be used to create dataframe, with all read-in data #self.dataframeIN: initial dataframe from data that is read in #self.df: dataframe formatted for editing, but remaining static as initial input data #self.dataframeEDIT: dataframe that is manipulated during editing #self.electrodes: sorted list of all electrode xdistances #self.electrodesShifted: shifted, sorted list of all electrode xdistances #self.electState:list of booleans giving status of electrode (True = in use, False = edited out) #self.electrodeElevs: surface elevation values at each electrode #self.dataLengthIN: number of measurements in file/length of dataframes #self.dataframeEDITColHeaders #self.dataShifted: indicates whether data has been shifted setUpPanels(self) titleSetup(self) inputSetup(self) dataVizSetup(self) bottomAreaSetup(self) chartSetup(self) sizersSetup(self) addtoSizers(self) addtoPanels(self) #wxli.InspectionTool().Show(self) #Initial Plot def nullFunction(self,event): pass def onBrowse(self,event): with wx.FileDialog(self,"Open Data File", style= wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return self.dataPath = pathlib.Path(fileDialog.GetPath()) fName = str(self.dataPath.parent) + '\\' + self.dataPath.name self.inputDataExt = self.dataPath.suffix try: with open(self.dataPath,'r') as datafile: self.inputTxtOne.SetValue(fName) except IOError: wx.LogError("Cannot Open File") if self.inputDataExt.lower() == '.txt': self.inputDataExt = '.TXT (LS)' n = 1 elif self.inputDataExt.lower() == '.dat': if self.dataPath.stem.startswith('lr'): self.inputDataExt = '.DAT (SAS)' n = 2 else: self.inputDataExt = '.DAT (LS)' n = 0 elif self.inputDataExt.lower() == '.vtk': self.inputDataExt = '.VTK' n=3 elif self.inputDataExt.lower() == '.xyz': self.inputDataExt = '.XYZ' n=4 else: wx.LogError("Cannot Open File") if self.inputDataExt == '.DAT (LS)' or self.inputDataExt == '.TXT (LS)': outPath = self.dataPath.stem.split('-')[0] else: outPath = self.dataPath.stem.split('.')[0] if outPath.startswith('lr'): outPath = outPath[2:] outPath = outPath +'_pyEdit.dat' if self.includeTopoBx.GetValue(): outPath = outPath[:-4] outPath = outPath + "_topo.dat" self.exportTXT.SetValue(str(self.dataPath.with_name(outPath))) self.inputDataType.SetSelection(n) self.readInFileBtn.SetLabelText('Read Data') def onGPSBrowse(self,event): with wx.FileDialog(self,"Open GPS File", style= wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return self.GPSpath = pathlib.Path(fileDialog.GetPath()) gpsFName = str(self.GPSpath.parent) + '\\' + self.GPSpath.name self.inputTxtGPS.SetValue(gpsFName) self.getGPSVals() def getGPSVals(self): with open(self.GPSpath) as GPSFile: data = csv.reader(GPSFile) self.gpsXData = [] self.gpsYData = [] self.gpsLabels = [] for row in enumerate(data): if row[0] == 0: pass #headerline else: r = re.split('\t+', str(row[1][0])) if row[0] == '': pass else: self.gpsLabels.append(r[2]) self.gpsXData.append(float(r[3])) self.gpsYData.append(float(r[4])) def onTopoBrowse(self,event): with wx.FileDialog(self,"Open Topo File", style= wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return self.topoPath = pathlib.Path(fileDialog.GetPath()) topoFName = str(self.topoPath.parent) + '\\' + self.topoPath.name self.inputTxtTopo.SetValue(topoFName) self.includeTopoBx.SetValue(True) self.getTopoVals() self.topoText() def onIncludeTopo(self,event): self.topoText() def topoText(self): if self.includeTopoBx.GetValue() == True: #print('topo' not in self.exportTXT.GetValue()) if 'topo' not in self.exportTXT.GetValue(): #print("It's Not in") if len(self.exportTXT.GetValue())>0: outPath = self.exportTXT.GetValue() outPath = outPath[:int(len(outPath)-4)] outPath = outPath + "_topo.dat" self.exportTXT.SetValue(outPath) elif self.includeTopoBx.GetValue() == False: if '_topo' in self.exportTXT.GetValue(): outPath = self.exportTXT.GetValue() #print(outPath) strInd = int(outPath.find("_topo")) strInd2 = strInd + 5 outPath = outPath[:strInd]+outPath[strInd2:] self.exportTXT.SetValue(outPath) def onReverse(self,event): self.reverseText() def reverseText(self): if self.reverseBx.GetValue() == True: if '_rev' not in self.exportTXT.GetValue(): if len(self.exportTXT.GetValue())>0: outPath = self.exportTXT.GetValue() outPath = outPath[:int(len(outPath)-4)] outPath = outPath + "_rev.dat" self.exportTXT.SetValue(outPath) elif self.reverseBx.GetValue() == False: if '_rev' in self.exportTXT.GetValue(): outPath = self.exportTXT.GetValue() #print(outPath) strInd = int(outPath.find("_rev")) strInd2 = strInd + 4 outPath = outPath[:strInd]+outPath[strInd2:] self.exportTXT.SetValue(outPath) def getTopoVals(self): with open(self.topoPath) as topoFile: data = csv.reader(topoFile) topoXData = [] topoYData = [] topoLabels = [] for row in enumerate(data): if row[0] == 0: pass else: r = re.split('\t+', str(row[1][0])) if r[0] == '': pass else: topoLabels.append(r[0]) topoXData.append(float(r[1])) topoYData.append(float(r[2])) self.topoDF = pd.DataFrame([topoXData, topoYData]).transpose() self.topoDF.columns = ["xDist", "Elev"] def onDataType(self,event): self.inputDataExt = self.inputDataType.GetString(self.inputDataType.GetSelection()) if self.inputDataExt == '.DAT (LS)': self.headerlines = 8 elif self.inputDataExt == '.DAT (SAS)': self.headerlines = 5 elif self.inputDataExt == '.VTK': self.headerlines = 5 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!! elif self.inputDataExt == '.XYZ': self.header = 5 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!! elif self.inputDataExt =='': self.headerlines = 8 else: if len(self.inputTxtOne.GetValue()) > 0: try: with open(self.dataPath, 'r') as datafile: filereader = csv.reader(datafile) start = 0 for row in enumerate(filereader): if start == 0: if 'N\\tTime' in str(row[1]): start = 1 self.headerlines = row[0] else: continue else: continue except: self.headerlines = -1 wx.LogError('Data File not selected') else: self.headerlines = -1 def onReadIn(self, event): self.onDataType(self) #initialize number of headerlines to use self.dataHeader = [] filepath = pathlib.Path(self.inputTxtOne.GetValue()) self.ext = str(filepath.suffix) filename = str(filepath.stem) self.dataframeEDITColHeaders = ['MeasID','A(x)','A(z)','B(x)','B(z)','M(x)','M(z)','N(x)','N(z)', 'aVal', 'nFac','PseudoX','PseudoZ','Resistance','AppResist','Cycles','Variance','DataLevel','DtLvlMean','PctErr','Keep'] if self.ext.lower() == '.dat': ###############Need to update to fit .txt data format dataLst = [] self.dataLead = [] self.dataTail = [] with open(filepath) as dataFile: data = csv.reader(dataFile) if self.inputDataExt == '.DAT (SAS)': self.dataHeaders = ['M(x)','aVal','nFac','AppResist'] i = 0 dataList=[] for row in enumerate(data): if row[0]>self.headerlines: #Read in actual data if row[0] > self.headerlines + datalength: #Read in data tail self.dataTail.append(row[1]) else: #It sometimes reads the lines differently. Sometimes as a list (as it should) other times as a long string if len(row[1]) < 4: #Entire row is read as string dataList.append(re.split(' +', row[1][0])) else: #Row is read correctly as separate columns dataList.append(row[1]) i+=1 else: if row[0] == 3: #Read in data length datalength = float(row[1][0]) self.dataLead.append(row[1])#Create data lead variable for later use datalengthIN = i self.fileHeaderDict = {} self.dataListIN = dataList #Formatted global nested list is created of data read in project = self.dataLead[0][0] array = self.dataLead[2][0] if float(array) == 3: array = "Dipole-Dipole" msrmtType = 'Apparent Resistivity' self.fileHeaderDict['Filename'] = filename self.fileHeaderDict['Project'] = project self.fileHeaderDict['minElectSpcng'] = round(float(self.dataLead[1][0]),2) self.fileHeaderDict['Array'] = array self.fileHeaderDict["Type of Measurement"] = msrmtType self.fileHeaderDict['DataPts'] = self.dataLead[3][0] self.dataframeIN = pd.DataFrame(self.dataListIN) #Sometimes the data is read in with an extra column at the beginning. This fixes that. if len(self.dataframeIN.columns) > 4: del self.dataframeIN[0] self.dataframeIN.reindex([0, 1, 2, 3], axis='columns') self.dataframeIN = self.dataframeIN.astype(float) self.dataframeIN.columns = self.dataHeaders self.dataframeCols = [-2, -3, -4, -5, -6, 0, -7, -8, -9, 1, 2, -10, -11, -12, 3, -1, -1, -13, -14, -15,-16] # neg val ind. colums that need to be calculated self.dataframeEDIT = pd.DataFrame() dataframelength = len(self.dataframeIN.index) nullList = [] keepList = [] zeroList = [] for i in range(0, dataframelength): nullList.append(-1) zeroList.append(0.0) keepList.append(True) # Create dataframe that will be used in editing process (self.dataframeEDIT) one column at a time for item in enumerate(self.dataframeEDITColHeaders): if self.dataframeCols[ item[0]] > -1: # Columns from dataframeIN that are directly read to dataframeEDIT self.dataframeEDIT[item[1]] = self.dataframeIN.iloc[:, self.dataframeCols[item[0]]] self.dataframeEDIT[item[1]] = self.dataframeEDIT[item[1]].astype(float) elif self.dataframeCols[item[0]] == -1: # Null list (can't calculate) self.dataframeEDIT[item[1]] = nullList elif self.dataframeCols[item[0]] == -2: # Measure ID for i in range(0, dataframelength): self.dataframeEDIT.loc[i, item[1]] = i elif self.dataframeCols[item[0]] == -3: # A(x) self.dataframeIN['A(x)'] = self.dataframeIN['M(x)'] + self.dataframeIN['aVal'] + (self.dataframeIN['aVal']*self.dataframeIN['nFac']) + self.dataframeIN['aVal'] self.dataframeEDIT['A(x)'] = self.dataframeIN['A(x)'] elif self.dataframeCols[item[0]] == -4: # A(z) self.dataframeEDIT[item[1]] = zeroList elif self.dataframeCols[item[0]] == -5: # B(x) self.dataframeIN['B(x)'] = self.dataframeIN['M(x)'] + self.dataframeIN['aVal'] + (self.dataframeIN['aVal']*self.dataframeIN['nFac']) self.dataframeEDIT['B(x)'] = self.dataframeIN['B(x)'] elif self.dataframeCols[item[0]] == -6: # B(z) self.dataframeEDIT[item[1]] = zeroList #elif self.dataframeCols[item[0]] == -6: # M(x) #Reads in directly elif self.dataframeCols[item[0]] == -7: # M(z) self.dataframeEDIT[item[1]] = zeroList elif self.dataframeCols[item[0]] == -8: #N(x) self.dataframeIN['N(x)'] = self.dataframeIN['M(x)'] + self.dataframeIN['aVal'] self.dataframeEDIT['N(x)'] = self.dataframeIN['N(x)'] elif self.dataframeCols[item[0]] == -9: # N(z) self.dataframeEDIT[item[1]] = zeroList elif self.dataframeCols[item[0]] == -10: # PseudoX self.dataframeEDIT['PseudoX'] = (((self.dataframeEDIT['A(x)'] + self.dataframeEDIT[ 'B(x)']) / 2) + ((self.dataframeEDIT['M(x)'] + self.dataframeEDIT['N(x)']) / 2)) / 2 elif self.dataframeCols[item[0]] == -11: # PseudoZ n = self.dataframeEDIT['nFac'] a = self.dataframeEDIT['aVal'] self.dataframeEDIT['PseudoZ'] = round((((n ** 2) * -0.0018) + 0.2752 * n + 0.1483) * a, 1) elif self.dataframeCols[item[0]] == -12: #Resistance PI = math.pi n = self.dataframeEDIT['nFac'] a = self.dataframeEDIT['aVal'] appR = self.dataframeIN['AppResist'] if self.fileHeaderDict['Array'] == 'Dipole-Dipole': self.dataframeEDIT['Resistance'] = appR/(PI * n * (n + 1) * (n + 2) * a) else: print( 'Array is not Dipole-Dipole, but Dipole-Dipole k-factor used to calculate App. Resistivity') elif self.dataframeCols[item[0]] == -13: #DataLevel self.dataframeEDIT['DataLevel'] = nullList uniqueDepths = self.dataframeEDIT['PseudoZ'].unique() uniqueDepths = list(set(uniqueDepths.flatten())) self.dataLevels = len(uniqueDepths) dataLength = len(self.dataframeEDIT['PseudoZ']) for i in range(0, dataLength): self.dataframeEDIT.loc[i, 'DataLevel'] = uniqueDepths.index( self.dataframeEDIT.loc[i, 'PseudoZ']) elif self.dataframeCols[item[0]] == -14: #DtLvlMean for i in uniqueDepths: df = self.dataframeEDIT[self.dataframeEDIT.iloc[:, 12] == i] dtLvlMean = df['AppResist'].mean() indexList = df.index.values.tolist() for ind in indexList: self.dataframeEDIT.loc[ind, 'DtLvlMean'] = dtLvlMean elif self.dataframeCols[item[0]] == -15: #PctErr self.dataframeEDIT['PctErr'] = (abs( self.dataframeEDIT['DtLvlMean'] - self.dataframeEDIT['AppResist'])) / \ self.dataframeEDIT['DtLvlMean'] elif self.dataframeCols[item[0]] == -16: #Keep self.dataframeEDIT[item[1]] = keepList else: self.dataframeEDIT[item[1]] = nullList elif self.inputDataExt == '.DAT (LS)': # If it's .DAT (LS) self.dataHeaders = ["NoElectrodes",'A(x)', 'A(z)', 'B(x)', 'B(z)', 'M(x)', 'M(z)', 'N(x)', 'N(z)', 'Resistance'] datalength=12 dataList = [] for row in enumerate(data): if row[0]>int(self.headerlines) and row[0] <= float(self.headerlines + datalength): strrow = str(row[1]) strrow = strrow[2:-2] splitrow = strrow.split('\\t') if len(splitrow) != 10: newrow = [] for i in splitrow: val = i.strip() newrow.append(val) if len(newrow) < 9: newrow = re.split(' +',newrow[0]) row = [float(i) for i in newrow] dataList.append(row) else: dataList.append(splitrow) elif row[0] <= int(self.headerlines): if isinstance(row[1], list): val = str(row[1])[2:-2] else: val = row[1] self.dataLead.append(val) if row[0] == 6: datalength = float(row[1][0]) else: self.dataTail.append(row[1]) self.dataListIN = dataList self.fileHeaderDict = {} project = self.dataLead[0] dataFrmt = self.dataLead[2] array = int(self.dataLead[3]) if array == 3: array = "Dipole-Dipole" msrmtType = str(self.dataLead[5]) if msrmtType.strip() == '0': msrmtType = "Apparent Resistivity" else: msrmtType = 'Resistance' self.fileHeaderDict['Filename'] = filename self.fileHeaderDict['Project'] = project self.fileHeaderDict['minElectSpcng'] = str(round(float(self.dataLead[1]),2)) self.fileHeaderDict['Array'] = array self.fileHeaderDict["Type of Measurement"] = msrmtType self.fileHeaderDict['DataPts'] = str(self.dataLead[6]) self.fileHeaderDict['DistType'] = str(self.dataLead[7]) self.dataframeIN = pd.DataFrame(self.dataListIN) self.dataframeIN.columns = self.dataHeaders self.dataframeCols = [-2, 1, 2, 3, 4, 5, 6, 7, 8, -3, -4, -5, -6, 9, -7, -1, -1, -8, -9, -10, -11] # neg val ind. colums that need to be calculated self.dataframeEDIT = pd.DataFrame() dataframelength = len(self.dataframeIN.index) nullList = [] keepList = [] for i in range(0, dataframelength): nullList.append(-1) keepList.append(True) # Create dataframe that will be used in editing process (self.dataframeEDIT) one column at a time for item in enumerate(self.dataframeEDITColHeaders): if self.dataframeCols[item[0]] > -1: #Columns from dataframeIN that are directly read to dataframeEDIT self.dataframeEDIT[item[1]] = self.dataframeIN.iloc[:, self.dataframeCols[item[0]]] self.dataframeEDIT[item[1]] = self.dataframeEDIT[item[1]].astype(float) elif self.dataframeCols[item[0]] == -1: #Null list (can't calculate) self.dataframeEDIT[item[1]] = nullList elif self.dataframeCols[item[0]] == -2:#Measure ID for i in range(0,dataframelength): self.dataframeEDIT.loc[i,item[1]] = i elif self.dataframeCols[item[0]] == -3: #A spacing self.dataframeEDIT[item[1]] = abs(self.dataframeEDIT['A(x)'] - self.dataframeEDIT['B(x)']) elif self.dataframeCols[item[0]] == -4: #N-factor self.dataframeEDIT[item[1]] = abs(self.dataframeEDIT['B(x)'] - self.dataframeEDIT['N(x)']) / self.dataframeEDIT['aVal'] elif self.dataframeCols[item[0]] == -5:#PseduoX self.dataframeEDIT['PseudoX'] = (((self.dataframeEDIT['A(x)']+self.dataframeEDIT['B(x)'])/2)+((self.dataframeEDIT['M(x)']+self.dataframeEDIT['N(x)'])/2))/2 elif self.dataframeCols[item[0]] == -6: #PseduoZ n = self.dataframeEDIT['nFac'] a = self.dataframeEDIT['aVal'] self.dataframeEDIT['PseudoZ'] = round((((n**2)*-0.0018)+0.2752*n+0.1483)*a,1) elif self.dataframeCols[item[0]] == -7:#AppResistivity PI = math.pi n = self.dataframeEDIT['nFac'] a = self.dataframeEDIT['aVal'] R = self.dataframeEDIT['Resistance'] if self.fileHeaderDict['Array'] == 'Dipole-Dipole': self.dataframeEDIT['AppResist'] = PI*n*(n+1)*(n+2)*a*R else: print('Array is not Dipole-Dipole, but Dipole-Dipole k-factor used to calculate App. Resistivity') elif self.dataframeCols[item[0]] == -8: #DataLevel self.dataframeEDIT['DataLevel'] = nullList uniqueDepths = self.dataframeEDIT['PseudoZ'].unique() uniqueDepths = list(set(uniqueDepths.flatten())) self.dataLevels = len(uniqueDepths) dataLength = len(self.dataframeEDIT['PseudoZ']) for i in range(0, dataLength): self.dataframeEDIT.loc[i, 'DataLevel'] = uniqueDepths.index(self.dataframeEDIT.loc[i, 'PseudoZ']) elif self.dataframeCols[item[0]] == -9: # DtLvlMean for i in uniqueDepths: df = self.dataframeEDIT[self.dataframeEDIT.iloc[:, 12] == i] dtLvlMean = df['AppResist'].mean() indexList = df.index.values.tolist() for ind in indexList: self.dataframeEDIT.loc[ind, 'DtLvlMean'] = dtLvlMean elif self.dataframeCols[item[0]] == -10: #PctErr self.dataframeEDIT['PctErr'] = (abs( self.dataframeEDIT['DtLvlMean'] - self.dataframeEDIT['AppResist'])) / \ self.dataframeEDIT['DtLvlMean'] elif self.dataframeCols[item[0]] == -11: #Keep self.dataframeEDIT[item[1]] = keepList else: self.dataframeEDIT[item[1]] = nullList self.readInFileBtn.SetLabelText("Reset Data") elif self.ext.lower() == '.txt': with open(filepath, 'r') as datafile: filereader = csv.reader(datafile) start = 0 end = 0 fileHeader = [] data = [] for row in enumerate(filereader): if start == 0: if row[0] <= 13: fileHeader.append(row[1]) fileHeader[row[0]] = fileHeader[row[0]][:] if 'N\\tTime' in str(row[1]): start = 1 self.headerlines = row[0] dataHdrTemp = str(row[1]) self.dataHeaders = dataHdrTemp[2:-2].split('\\t') self.dataHeaders[1] = dataHdrTemp[1].strip() self.fileHeaderDict = {} for item in fileHeader: if len(item) > 0: self.fileHeaderDict[str(item[0]).split(":", 1)[0]] = str(item[0]).split(":", 1)[1].strip() elif start == 1 and end == 0: if len(row[1]) > 0: data.append(str(row[1])[2:-1].split('\\t')) else: end = 1 else: continue self.dataListIN = data self.dataframeIN = pd.DataFrame(self.dataListIN) self.dataframeCols = [0, 6, 8, 9, 11, 12, 14, 15, 17, -2, -3, 18, 20, 26, 28, 29, 27, -4, -5, -6, -7] #neg val ind. colums that need to be calculated self.dataframeEDIT = pd.DataFrame() dataframelength = len(self.dataframeIN.index) nullList = [] keepList = [] for i in range(0, dataframelength): nullList.append(-1) keepList.append(True) # Create dataframe that will be used in editing process (self.dataframeEDIT) one column at a time for item in enumerate(self.dataframeEDITColHeaders): if self.dataframeCols[item[0]] > -1: #print(item[1]) self.dataframeEDIT[item[1]] = self.dataframeIN.iloc[:, self.dataframeCols[item[0]]] self.dataframeEDIT[item[1]] = self.dataframeEDIT[item[1]].astype(float) elif self.dataframeCols[item[0]] == -2: self.dataframeEDIT[item[1]] = abs(self.dataframeEDIT['A(x)'] - self.dataframeEDIT['B(x)']) elif self.dataframeCols[item[0]] == -3: self.dataframeEDIT[item[1]] = abs(self.dataframeEDIT['N(x)'] - self.dataframeEDIT['M(x)']) / self.dataframeEDIT['aVal'] elif self.dataframeCols[item[0]] == -4: self.dataframeEDIT['DataLevel'] = nullList uniqueDepths = self.dataframeEDIT['PseudoZ'].unique() uniqueDepths = list(set(uniqueDepths.flatten())) self.dataLevels = len(uniqueDepths) dataLength = len(self.dataframeEDIT['PseudoZ']) for i in range(0, dataLength): self.dataframeEDIT.loc[i, 'DataLevel'] = uniqueDepths.index(self.dataframeEDIT.loc[i, 'PseudoZ']) elif self.dataframeCols[item[0]] == -5: for i in uniqueDepths: df = self.dataframeEDIT[self.dataframeEDIT.iloc[:, 12] == i] dtLvlMean = df['AppResist'].mean() indexList = df.index.values.tolist() for ind in indexList: self.dataframeEDIT.loc[ind, 'DtLvlMean'] = dtLvlMean elif self.dataframeCols[item[0]] == -6: self.dataframeEDIT['PctErr'] = (abs(self.dataframeEDIT['DtLvlMean'] - self.dataframeEDIT['AppResist'])) / self.dataframeEDIT['DtLvlMean'] elif self.dataframeCols[item[0]] == -7: self.dataframeEDIT[item[1]] = keepList else: self.dataframeEDIT[item[1]] = nullList self.dataHeaders[1] = 'MeasTime' if len(self.dataHeaders) > 37: self.dataHeaders[37] = 'Extra' self.dataTail = [0,0,0,0,0,0,0] self.dataframeIN.columns = self.dataHeaders self.readInFileBtn.SetLabelText("Reset Data") self.fileHeaderDict['Filename'] = filename self.fileHeaderDict['Project'] = self.fileHeaderDict['Project name'] self.fileHeaderDict['Array'] = self.fileHeaderDict['Protocol file'][21:-4] self.fileHeaderDict['minElectSpcng'] = self.fileHeaderDict['Smallest electrode spacing'] self.fileHeaderDict['DataPts'] = len(self.dataframeIN) self.dataLead = [] self.dataLead.append(self.fileHeaderDict['Project name'] + " " + self.fileHeaderDict['Filename']) self.dataLead.append(self.fileHeaderDict['minElectSpcng']) self.dataLead.append('11') #General Array format self.dataLead.append(self.fileHeaderDict['Sub array code']) #tells what kind of array is used self.dataLead.append('Type of measurement (0=app.resistivity,1=resistance)') self.dataLead.append('0') #Col 26 in .txt (col 28 is app. resistivity) self.dataLead.append(self.fileHeaderDict['DataPts']) self.dataLead.append('2') self.dataLead.append('0') elif self.ext.lower() == '.vtk': with open(filepath, 'r') as datafile: filereader = csv.reader(datafile) startLocs = 0 startData = 0 startLocInd = 'POINTS' startDataInd = 'LOOKUP_TABLE' endLocs = 0 endData = 0 endLocInd = [] endDataInd = [] fileLead = [] fileMid = [] fileTail = [] vtkdata = [] vtklocs = [] newrow = [] xLocPts = [] yLocPts = [] zLocPts = [] vPts = [] for row in enumerate(filereader): if startLocs == 0: fileLead.append(row[1]) fileLead[row[0]] = fileLead[row[0]][:] if startLocInd in str(row[1]): startLocs = 1 elif startLocs == 1 and endLocs == 0: if endLocInd == row[1]: endLocs = 1 else: newrow = re.split(' +', str(row[1][0])) newrow = newrow[1:] vtklocs.append(newrow) elif startData == 0: fileMid.append(row[1]) if startDataInd in str(row[1]): startData = 1 elif startData == 1 and endData == 0: if row[1] == endDataInd: endData == 1 else: newrow = re.split(' +', str(row[1][0])) newrow = newrow[1:] vtkdata.append(newrow) else: fileTail.append(row[1]) fileTail[row[0]] = fileTail[row[0]][:] xPtCols = [0,3,6,9] yPtCols = [1,4,7,10] zPtCols = [2,5,8,11] for r in vtklocs: Xs = 0.0 for x in xPtCols: Xs = Xs + float(r[x]) xLocPts.append(Xs/4.0) Ys = 0.0 for y in yPtCols: Ys = Ys + float(r[y]) yLocPts.append(Ys/4.0) Zs = 0.0 for z in zPtCols: Zs = Zs + float(r[z]) zLocPts.append(Zs/4) for d in vtkdata: for i in d: vPts.append(i) self.dataframeIN = pd.DataFrame([xLocPts, yLocPts, zLocPts, vPts]).transpose() self.dataframeIN.columns = ['X','Y','Z','Resistivity'] print(self.dataframeIN) #Format vtk file self.fileHeaderDict = {} self.fileHeaderDict['Filename'] = filename self.fileHeaderDict['Project'] = 'NA' self.fileHeaderDict['Array'] = 'NA' self.fileHeaderDict['minElectSpcng'] = str(round(self.dataframeIN.loc[1,'X'] - self.dataframeIN.loc[0,'X'],1)) self.fileHeaderDict['DataPts'] = len(self.dataframeIN) elif self.ext.lower() == '.xyz':#!!!!!!!!!!!!!!!! with open(filepath, 'r') as datafile: filereader = csv.reader(datafile) start = 0 startIndicator = 'Elevation' end = 0 endIndicator = '/' fileHeader = [] data = [] for row in enumerate(filereader): if start == 0: fileHeader.append(row[1]) fileHeader[row[0]] = fileHeader[row[0]][:] if startIndicator in str(row[1]): start = 1 elif start == 1 and end == 0: if endIndicator in str(row[1]): end = 1 else: data.append(str(row[1])[2:-1].split('\\t')) else: continue ######format xyz input else: self.datVizMsg2.SetLabelText("Filepath Error. Must be .DAT, .TXT, .VTK, or .XYZ file") self.dataLengthIN = len(self.dataframeIN.iloc[:,0]) self.read = 0 self.generateXY() self.generateProfileInfo() self.graphChart() self.read = 1 def generateXY(self): self.xCols = [] aVals = [] nFacs = [] yCols = [] valCols = [] self.xData = [] self.yData = [] self.zData = [] self.values = [] if self.inputDataExt == '.DAT (SAS)' or self.inputDataExt == '.DAT (LS)' or self.inputDataExt == '.TXT (LS)': self.xCols = [11] self.electrodeCols = [1,3,5,7] aVals = 9 nFacs = 10 zCols = 12 valCols = 14 #13 is resistance; 14 is app. resistivity if self.autoShiftBx.GetValue(): startPt = [] for c in self.electrodeCols: startPt.append(float(self.dataframeEDIT.iloc[:,c].min())) startPt = min(startPt) if startPt != 0: self.dataShifted = True for c in self.electrodeCols: for i in enumerate(self.dataframeEDIT.iloc[:,c]): self.dataframeEDIT.iloc[i[0],c] = float(i[1]) - float(startPt) if self.inputDataExt == '.DAT (LS)' or self.inputDataExt == '.TXT (LS)': outPath = self.dataPath.stem.split('-')[0] elif self.inputDataExt == '.DAT (SAS)': outPath = self.dataPath.stem.split('.')[0] if outPath.startswith('lr'): outPath = outPath[2:] outPath = outPath + '_shift_pyEdit.dat' self.exportTXT.SetValue(str(self.dataPath.with_name(outPath))) else: self.dataShifted = False if self.includeTopoBx.GetValue(): outPath = self.exportTXT.GetValue()[:-4] outPath = outPath + "_topo.dat" self.exportTXT.SetValue(outPath) #Get all electrode xDistances self.electxDataIN = [] for c in self.electrodeCols: for row in self.dataframeEDIT.iloc[:,c]: self.electxDataIN.append(round(float(row),0)) xDataIN = self.dataframeEDIT.iloc[:,self.xCols[0]].to_list() for item in xDataIN: self.xData.append(float(item)) zDataIN = self.dataframeEDIT.iloc[:,zCols].to_list() for item in zDataIN: self.zData.append(float(item)) valIN = self.dataframeEDIT.iloc[:,valCols].to_list() for item in valIN: self.values.append(float(item)) xDistCols = ['B(x)', 'A(x)', 'N(x)', 'M(x)'] xDF = pd.DataFrame(self.dataframeIN.loc[:,xDistCols[:]]) xDF.columns = xDistCols xDF = xDF.astype(float) self.xDF = pd.DataFrame() self.xDF['A(x)'] = xDF['A(x)'] self.xDF['B(x)'] = xDF['B(x)'] self.xDF['M(x)'] = xDF['M(x)'] self.xDF['N(x)'] = xDF['N(x)'] xList = [] for item in xDistCols: xDistList = self.dataframeIN.loc[:,item].to_list() for item in xDistList: xList.append(float(item)) #print(self.dataframeIN) minvals = self.xDF.min() self.minXDist = minvals.min() maxvals = self.xDF.max() self.maxXDist = maxvals.max() #self.minXDist = min(self.xData) #self.maxXDist = max(self.xData) self.minDepth = min(self.zData) self.maxDepth = max(self.zData) self.maxResist = max(self.values) elif self.inputDataExt == '.VTK': self.dataframeIN = self.dataframeIN.astype(float) for i in range(0,len(self.dataframeIN)): self.xData.append(self.dataframeIN.loc[i,'X']) self.yData.append(self.dataframeIN.loc[i,'Y']) self.zData.append(self.dataframeIN.loc[i,'Z']) self.values.append(self.dataframeIN.loc[i,"Resistivity"]) self.minXDist = min(self.xData) self.maxXDist = max(self.xData) self.minDepth = min(self.zData) self.maxDepth = max(self.zData) self.maxResist = max(self.values) elif self.inputDataExt == '.XYZ': pass else: pass if self.zData[0] < 0: for i in enumerate(self.zData): self.zData[i[0]] = self.zData[i[0]]*-1 self.maxDepth = max(self.zData) self.minResist = min(self.values) self.maxResist = max(self.values) self.fileHeaderDict['DataPts'] = len(self.dataframeIN) dt = [] dt.append(self.xData) dt.append(self.zData) dt.append(self.values) cols = ['xDist', 'Depth', 'Value'] df = pd.DataFrame(dt) df = df.transpose() df.columns = cols if self.inputDataExt =='.XYZ' or self.inputDataExt == '.VTK': for i in range(0,len(self.dataframeIN)): self.df = df.copy() self.df.loc[i,"DtLvlMean"] = 0.0 self.df.loc[i,'PctErr'] = 0.0 self.df.loc[i,'MeasID'] = i self.electxDataIN = self.xData self.electxDataIN = [float(i) for i in self.electxDataIN] self.electxDataIN = sorted(set(self.electxDataIN)) else: pass xDataINList = [] self.electrodes = [] for i in self.electxDataIN: xDataINList.append(round(i,0)) self.electrodes = sorted(xDataINList) self.electState = [] for i in self.electrodes: self.electState.append(bool(i*0+1)) print(self.electrodes) self.electrodesShifted = [] if self.dataShifted: for e in self.electrodes: self.electrodesShifted.append(e-startPt) self.dataEditMsg.SetLabelText(str(len(self.dataframeEDIT)) + ' data pts') def generateProfileInfo(self): self.msgProfileName.SetLabelText(str(self.fileHeaderDict['Filename'])) self.msgProfileRange.SetLabelText(str(round(self.minXDist,0)) + " - " + str(round(self.maxXDist,0))) self.msgDataPts.SetLabelText(str(self.fileHeaderDict['DataPts'])) self.msgArray.SetLabelText(str(self.fileHeaderDict['Array'])) self.msgProjectName.SetLabelText(str(self.fileHeaderDict['Project'])) self.msgMinElectSpcng.SetLabelText(str(self.fileHeaderDict['minElectSpcng'])) self.electrodeToggleBtn.SetValue(True) self.electrodeToggleBtn.SetBackgroundColour((0, 255, 0)) self.sliderVal = self.editSlider.GetValue() self.dataVizMsg2.SetLabelText('Electrode at ' + str(self.sliderVal) + ' m') def graphChartEvent(self, event): self.graphChart() def graphChart(self): self.editSlider.Show() if self.currentChart != 'Graph': self.editSlider.SetValue(0) self.currentChart = 'Graph' self.dataVizMsg1.SetLabelText('Graphical Editing Interface') self.saveEditsBtn.Hide() self.dataVizInput.Show() self.dataVizInputBtn.Show() self.electrodeToggleBtn.Show() x = [] z = [] v = [] pe = [] n1 = [] n2 = [] KeepList = self.dataframeEDIT['Keep'].to_list() peList = self.dataframeEDIT['PctErr'].to_list() for i in enumerate(KeepList): if i[1]: x.append(self.dataframeEDIT.loc[i[0],'PseudoX']) z.append(self.dataframeEDIT.loc[i[0],'PseudoZ']) v.append(self.dataframeEDIT.loc[i[0],'AppResist']) pe.append(peList[i[0]]) self.axes.clear() if 'scipy.interpolate' in sys.modules: self.makeColormesh(x,z,v, pe,n1,n2) else: ptSize = round(100/self.maxXDist*125,1) self.axes.scatter(x,z, c=v,edgecolors='black',s=ptSize, marker='h') def makeColormesh(self,x,z,v, pe,xOmit,zOmit): for i in enumerate(v): v[i[0]] = abs(float(i[1])) xi, zi = np.linspace(min(x), max(x), 300), np.linspace(min(z), max(z), 300) xi, zi = np.meshgrid(xi, zi) vi = scipy.interpolate.griddata((x, z), v, (xi, zi), method='linear') ptSize = round(100 / self.maxXDist * 35, 1) self.figure.clear() self.axes = self.figure.add_subplot(111) cmap = pL.cm.binary my_cmap = cmap(np.arange(cmap.N)) my_cmap[:,-1] = np.linspace(0,1,cmap.N) #my_cmap = cmap(np.arange(pe)) #my_cmap[:,-1] = np.linspace(0,1,pe) my_cmap = matplotlib.colors.ListedColormap(my_cmap) vmax = np.percentile(v, 98) vmin = np.percentile(v, 2) minx = min(x) maxx = max(x) minz = min(z) maxz = max(z) norm = matplotlib.colors.LogNorm(vmin = vmin, vmax = vmax) #im = self.axes.imshow(vi, vmin=vmin, vmax=vmax, origin='lower', im = self.axes.imshow(vi, origin='lower', extent=[minx, maxx, minz, maxz], aspect='auto', cmap='nipy_spectral', norm = norm, interpolation='bilinear') self.figure.colorbar(im, orientation='horizontal') if self.currentChart == 'Graph': self.axes.scatter(x, z, c=pe, edgecolors=None, s=ptSize, marker='o', cmap=my_cmap) if abs(self.minDepth) < 10 : self.axes.set_ylim(self.maxDepth * 1.15, 0) else: depthrange = abs(self.maxDepth-self.minDepth) self.axes.set_ylim(self.minDepth-(depthrange*0.05), self.maxDepth + (depthrange*0.05)) self.axes.set_xlabel('X-Distance (m)') self.axes.set_ylabel('Depth (m)') self.axes.xaxis.tick_top() self.editSlider.SetMax(int(self.maxXDist)) self.editSlider.SetMin(int(self.minXDist)) self.editSlider.SetTickFreq(5) self.canvas.draw() elif self.currentChart == 'Review': self.axes.scatter(xOmit, zOmit, c='black', s=ptSize/1.5, marker='x') if abs(self.minDepth) < 10 : self.axes.set_ylim(self.maxDepth * 1.15, 0) else: depthrange = abs(self.maxDepth - self.minDepth) self.axes.set_ylim(self.minDepth - (depthrange * 0.05), self.maxDepth + (depthrange * 0.05)) self.axes.set_xlabel('X-Distance (m)') self.axes.set_ylabel('Elev/Depth (m)') self.axes.xaxis.tick_top() self.canvas.draw() #self.axes.scatter(x, z, c=pe, edgecolors='none', s=ptSize, marker='h', alpha=0.5, cmap='binary') def statChartEvent(self,event): self.statChart() def statChart(self): self.dataVizMsg1.SetLabelText('Statistical Editing Interface') self.dataVizMsg2.SetLabelText('Move slider to % err upper limit') self.currentChart = 'Stat' self.saveEditsBtn.Show() self.dataVizInput.Show() self.editSlider.Show() self.dataVizInputBtn.Show() self.electrodeToggleBtn.Hide() peIndex = int(self.dataframeEDIT.columns.get_loc('PctErr')) KeepList = self.dataframeEDIT.loc[:,'Keep'].to_list() peList = self.dataframeEDIT.iloc[:,peIndex].to_list() pctErr = [] for i in enumerate(KeepList): if i[1]: pctErr.append(float(peList[i[0]]) * 100) self.editSlider.SetMin(0) self.editSlider.SetMax(int(max(pctErr))) self.editSlider.SetValue(int(max(pctErr))) self.editSlider.SetTickFreq(1) self.figure.clear() self.axes = self.figure.add_subplot(111) self.axes.hist(pctErr, bins=30) self.axes.set_xlim(0, max(pctErr)*1.1) self.axes.xaxis.tick_bottom() self.canvas.draw() def GPSChartEvent(self,event): self.GPSChart() def GPSChart(self): self.editSlider.Hide() self.electrodeToggleBtn.Hide() self.dataVizInput.Hide() self.dataVizInputBtn.Hide() self.saveEditsBtn.Hide() self.currentChart = 'GPS' self.dataVizMsg1.SetLabelText('GPS Data Viewer') if len(self.GPSpath.stem) < 1: self.GPSpath = '' self.dataVizMsg2.SetLabelText(str(self.GPSpath.stem)) self.getGPSVals() self.figure.clear() self.axes = self.figure.add_subplot(111) xRange = max(self.gpsXData) - min(self.gpsXData) yRange = max(self.gpsYData) - min(self.gpsYData) if xRange!=0: slope = abs(yRange/xRange) else: slope = 1000 if slope < 1: if slope < 0.2: xFact = 0.2 yFact = 5 elif slope < 0.6: xFact = 0.2 yFact = 3 else: xFact = 0.2 yFact = 1 else: if slope > 4: xFact = 5 yFact = 0.2 elif slope > 2: xFact = 3 yFact = 0.2 else: xFact = 1 yFact = 0.2 lowXlim = min(self.gpsXData) - xFact*xRange upXlim = max(self.gpsXData) + xFact*xRange lowYlim = min(self.gpsYData) - yFact*yRange upYlim = max(self.gpsYData) + yFact*yRange tick_spacing = 100 self.axes.scatter(self.gpsXData,self.gpsYData, s=20, marker='h') self.axes.plot(self.gpsXData, self.gpsYData) self.axes.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(tick_spacing)) self.axes.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(tick_spacing)) self.axes.ticklabel_format(axis='both',style='plain') self.axes.grid(which='major', axis='both',color=(0.8,0.8,0.8)) self.axes.set_xlim(lowXlim,upXlim) self.axes.set_ylim(lowYlim,upYlim) self.axes.set_xlabel('UTM Easting') self.axes.set_ylabel('UTM Northing') self.axes.xaxis.tick_bottom() self.canvas.draw() def topoChartEvent(self,event): self.topoChart() def topoChart(self): self.editSlider.Hide() self.electrodeToggleBtn.Hide() self.dataVizInput.Hide() self.dataVizInputBtn.Hide() self.saveEditsBtn.Hide() self.currentChart = 'Topo' self.dataVizMsg1.SetLabelText('Topo Data Viewer') self.dataVizMsg2.SetLabelText(str(self.topoPath.stem)) self.getTopoVals() self.figure.clear() self.axes = self.figure.add_subplot(111) #tick_spacing = 100 self.axes.scatter(self.topoDF['xDist'],self.topoDF['Elev'], s=5, marker='h') self.axes.plot(self.topoDF['xDist'],self.topoDF['Elev']) self.axes.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(100)) #self.axes.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(tick_spacing)) self.axes.ticklabel_format(axis='both',style='plain') self.axes.grid(which='major', axis='both',color=(0.8,0.8,0.8)) self.axes.set_xlim(0-max(self.topoDF['xDist'])*.2,max(self.topoDF['xDist'])*1.2) self.axes.set_ylim(min(self.topoDF['Elev'])*0.8,max(self.topoDF['Elev'])*1.2) self.axes.set_xlabel('X-Distance Along Profile (m)') self.axes.set_ylabel('Elevation Above MSL (m)') self.axes.xaxis.tick_bottom() self.canvas.draw() def onSliderEditEVENT(self,event): self.onSliderEdit() def onSliderEdit(self): self.sliderVal = float(self.editSlider.GetValue()) if self.currentChart == 'Graph': if self.sliderVal in self.electrodes: self.electrodeToggleBtn.Show() toggleState = self.electState[int(self.electrodes.index(self.sliderVal))] self.electrodeToggleBtn.SetValue(toggleState) if toggleState == True: self.dataVizMsg2.SetLabelText("Electrode at " + str(self.sliderVal) + " m is in use") self.electrodeToggleBtn.SetLabelText('On') self.electrodeToggleBtn.SetBackgroundColour((100, 255, 100)) else: self.electrodeToggleBtn.SetLabelText('Off') self.electrodeToggleBtn.SetBackgroundColour((255, 100, 100)) self.dataVizMsg2.SetLabelText("Electrode at " + str(self.sliderVal) + " m is not in use") else: self.dataVizMsg2.SetLabelText('No Electrode at this x-location') self.electrodeToggleBtn.Hide() elif self.currentChart == 'Stat': currData = 0 for i in self.dataframeEDIT["Keep"]: if i: currData = currData + 1 peIndex = self.dataframeEDIT.columns.get_loc('PctErr') dataCut = 0 for r in enumerate(self.dataframeEDIT.iloc[:, peIndex]): if float(r[1]) >= float(self.sliderVal) / 100.0: dataCut += 1 self.dataVizMsg2.SetLabelText(str(self.sliderVal)+'% Err: '+str(dataCut) + ' points will be deleted ('+ str(round(dataCut/currData*100,1))+'% of the current data).') else: self.dataVizMsg2.SetLabelText('Value: ' + str(self.sliderVal)) def onEditTypeToggle(self, event): self.editTypeToggleState = self.editTypeToggleBtn.GetValue() if self.editTypeToggleState == True: self.editTypeToggleBtn.SetLabelText('Keep') elif self.editTypeToggleState == False: self.editTypeToggleBtn.SetLabelText('Remove') def onSelectEditDataType(self,event): choiceListInd = self.editDataType.GetSelection() colNumBase = [14, 13, [1, 3, 5, 7], 16, 19, 11, 12] self.setEditToggleState = self.editDataChoiceBool[choiceListInd] self.setEditToggleBtn.SetValue(self.setEditToggleState) if float(self.editDataValues[choiceListInd][0]) == 0 and float(self.editDataValues[choiceListInd][1]) == 0: #Set min value in box if type(colNumBase[choiceListInd]) is list: minVal = [] for i in colNumBase[choiceListInd]: minVal.append(self.dataframeEDIT[self.dataframeEDITColHeaders[i]].min()) minVal = min(minVal) else: minVal = self.dataframeEDIT[self.editDataChoiceList[choiceListInd]].min() self.inputTxtMinRem.SetValue(str(minVal)) # Set max value in box if type(colNumBase[choiceListInd]) is list: maxVal = [] for i in colNumBase[choiceListInd]: maxVal.append(self.dataframeEDIT[self.dataframeEDITColHeaders[i]].max()) maxVal = max(maxVal) else: maxVal = self.dataframeEDIT[self.editDataChoiceList[choiceListInd]].max() self.inputTxtMaxRem.SetValue(str(maxVal)) else: self.inputTxtMinRem.SetValue(str(self.editDataValues[choiceListInd][0])) self.inputTxtMaxRem.SetValue(str(self.editDataValues[choiceListInd][1])) if self.setEditToggleState: self.setEditToggleBtn.SetLabelText('Used') else: self.setEditToggleBtn.SetLabelText('Not Used') def onSetEditToggle(self,event): self.setEditToggleState = self.setEditToggleBtn.GetValue() choiceListInd = self.editDataType.GetSelection() if self.setEditToggleState == True: if self.editDataType.GetSelection() > -1: self.editDataChoiceBool[choiceListInd] = True self.setEditToggleBtn.SetLabelText('Used') else: self.setEditToggleState = False self.setEditToggleBtn.SetValue(False) elif self.setEditToggleState == False: if self.editDataType.GetSelection() > -1: self.editDataChoiceBool[choiceListInd] = False self.setEditToggleBtn.SetLabelText('Not Used') self.setEditDataValues() def onEditDataValueChangeEvent(self,event): self.setEditDataValues() def setEditDataValues(self): choiceListInd = self.editDataType.GetSelection() colNumBase = [14, 13, [1, 3, 5, 7], 16, 19, 11, 12] #Set Min Value Box if self.inputTxtMinRem.GetValue().isnumeric(): self.editDataValues[choiceListInd][0] = float(self.inputTxtMinRem.GetValue()) elif self.inputTxtMinRem.GetValue().lower() == 'min': if type(colNumBase[choiceListInd]) is list: minVal = [] for i in colNumBase[choiceListInd]: minVal.append(self.dataframeEDIT[self.dataframeEDITColHeaders[i]].min()) minVal = min(minVal) else: minVal = self.dataframeEDIT[self.editDataChoiceList[choiceListInd]].min() self.inputTxtMinRem.SetValue(str(minVal)) self.editDataValues[choiceListInd][0] = float(minVal) else: pass # self.editDataChoiceList = ['AppResist', 'Resistance', 'Electrode x-Dists', 'Variance', 'PctErr', 'PseudoX','PseudoZ'] #Set Max Value Box if self.inputTxtMaxRem.GetValue().isnumeric(): self.editDataValues[choiceListInd][1] = float(self.inputTxtMaxRem.GetValue()) elif self.inputTxtMaxRem.GetValue().lower() == 'max': if type(colNumBase[choiceListInd]) is list: maxVal = [] for i in colNumBase[choiceListInd]: maxVal.append(self.dataframeEDIT[self.dataframeEDITColHeaders[i]].max()) maxVal = max(maxVal) else: maxVal = self.dataframeEDIT[self.editDataChoiceList[choiceListInd]].max() self.inputTxtMaxRem.SetValue(str(maxVal)) self.editDataValues[choiceListInd][1] = float(maxVal) else: pass def onLogicToggle(self, event): self.editLogicToggleState = self.editLogicToggleBtn.GetValue() if self.editLogicToggleState == True: self.editLogicToggleBtn.SetLabelText('AND') elif self.editLogicToggleState == False: self.editLogicToggleBtn.SetLabelText('OR') def onRemovePts(self,event): #self.editDataChoiceList = ['AppResist', 'Resistance', 'Electrode x-Dists', 'Variance', 'PctErr', 'PseudoX','PseudoZ'] self.setEditDataValues() colNumBase = [14,13,[1,3,5,7],16,19,11,12] colNums = [] for i in enumerate(colNumBase): if self.editDataChoiceBool[i[0]]: colNums.append(i[1]) colNames = self.dataframeEDIT.columns if len(colNums) < 1: pass else: if self.editLogicToggleBtn.GetLabelText() == 'AND': #AND # Create list to hold items if they are to be acted on; starts all true, any false value makes false editList = [] for k in range(0, self.dataLengthIN): editList.append(1) index = -1 for dTypeInUse in enumerate(self.editDataChoiceBool): if dTypeInUse[1]: for c in colNums: if type(c) is list: row = -1 for r in range(0, self.dataLengthIN): row = row + 1 listBoolCt = 0 for item in c: if self.dataframeEDIT.iloc[r,c] >= float(self.editDataValues[dTypeInUse[0]][0]) and self.dataframeEDIT.iloc[r,c] <= float(self.editDataValues[dTypeInUse[0]][1]): listBoolCt = listBoolCt + 1 if listBoolCt == 0: editList[row] = 0 else: #if the columns are not a list of columns #Iterate through each row in col c to see if it is in range for r in self.dataframeEDIT[colNames[c]]: index = index + 1 if r < float(self.editDataValues[i2][0]) and r > float(self.editDataValues[i2][1]): editList[index] = 0 elif self.editLogicToggleBtn.GetLabelText() == 'OR': #OR for dTypeInUse in enumerate(self.editDataChoiceBool): if dTypeInUse[1]: for c in colNums: if type(c) is list: #Create editList if multiple columns involved editList = [] for k in range(0, self.dataLengthIN): editList.append(0) for item in c: row = -1 for r in self.dataframeEDIT[colNames[item]]: if r >= float(self.editDataValues[dTypeInUse[0]][0]) and r <= float(self.editDataValues[dTypeInUse[0]][1]): if self.editTypeToggleBtn.GetLabelText() == 'Remove': self.dataframeEDIT.loc[row, 'Keep'] = False elif self.editTypeToggleBtn.GetLabelText() == 'Keep': self.dataframeEDIT.loc[row, 'Keep'] = True else: pass else: if self.editTypeToggleBtn.GetLabelText() == 'Keep': self.dataframeEDIT.loc[row, 'Keep'] = False else: row = -1 for r in self.dataframeEDIT[colNames[c]]: row = row + 1 if r >= float(self.editDataValues[dTypeInUse[0]][0]) and r <= float(self.editDataValues[dTypeInUse[0]][1]): if self.editTypeToggleBtn.GetLabelText() == 'Remove': self.dataframeEDIT.loc[row, 'Keep'] = False elif self.editTypeToggleBtn.GetLabelText() == 'Keep': self.dataframeEDIT.loc[row, 'Keep'] = True else: pass else: if self.editTypeToggleBtn.GetLabelText() == 'Keep': self.dataframeEDIT.loc[row, 'Keep'] = False else: pass self.graphChart() def ONtoggle(self,event): self.ToggleState = self.electrodeToggleBtn.GetValue() self.sliderVal = self.editSlider.GetValue() if self.ToggleState == True: self.dataVizMsg2.SetLabelText("Electrode at "+ str(self.sliderVal) +" m is in use") self.electrodeToggleBtn.SetLabelText('On') self.electrodeToggleBtn.SetBackgroundColour((100,255,100)) xCols = [0,1,2,3] keep=[] for c in xCols: for r in enumerate(self.xDF.iloc[:,c]): if float(r[1]) == float(self.sliderVal): keep.append(r[0]) for i in self.dataframeEDIT.index: if i in keep: self.dataframeEDIT.loc[[i],['Keep']] = True eIndex = int(self.electrodes.index(self.sliderVal)) self.electState[eIndex] = True elif self.ToggleState == False: self.electrodeToggleBtn.SetLabelText('Off') self.electrodeToggleBtn.SetBackgroundColour((255,100,100)) self.dataVizMsg2.SetLabelText("Electrode at " + str(self.sliderVal) + " m is not in use") xCols = [0,1,2,3] lose=[] for c in xCols: for r in enumerate(self.xDF.iloc[:,c]): if float(r[1]) == float(self.sliderVal): lose.append(r[0]) for i in self.dataframeEDIT.index: if i in lose: self.dataframeEDIT.loc[[i],['Keep']] = False #change self.electState to True eIndex = int(self.electrodes.index(self.sliderVal)) self.electState[eIndex] = False else: self.dataVizMsg2.SetLabelText("uhh, this is wierd") dataRetained = 0 for i in self.dataframeEDIT["Keep"]: if i: dataRetained = dataRetained + 1 self.dataEditMsg.SetLabelText(str(dataRetained) + '/' + str(len(self.dataframeEDIT)) + 'pts (' + str(round(dataRetained/len(self.dataframeEDIT)*100,1)) + '%)') self.graphChart() def ONSaveEdits(self,event): if self.currentChart == 'Graph': #do nothing pass elif self.currentChart == 'Stat': #self.sliderVal = float(self.editSlider.GetValue()) peIndex = self.dataframeEDIT.columns.get_loc('PctErr') lose = [] for r in enumerate(self.dataframeEDIT.iloc[:, peIndex]): if float(r[1]) >= float(self.sliderVal)/100.0: lose.append(r[0]) kIndex = int(self.dataframeEDIT.columns.get_loc('Keep')) for i in self.dataframeEDIT.index: if i in lose: self.dataframeEDIT.iloc[i, kIndex] = False dataRetained = 0 for i in self.dataframeEDIT["Keep"]: if i: dataRetained = dataRetained + 1 self.dataEditMsg.SetLabelText(str(dataRetained) + '/' + str(len(self.dataframeEDIT)) + 'pts (' + str( round(dataRetained / len(self.dataframeEDIT) * 100, 1)) + '%)') self.statChart() else: pass def ONdataVizInput(self,event): if self.dataVizInput.GetValue().isnumeric(): if float(self.dataVizInput.GetValue()) < float(self.editSlider.GetMin()) or float(self.dataVizInput.GetValue()) > float(self.editSlider.GetMax()): self.dataVizMsg2.SetValue('Error: Value must integer be between '+ str(self.editSlider.GetMin())+ ' and '+str(self.editSlider.GetMax())) else: self.editSlider.SetValue(int(self.dataVizInput.GetValue())) self.dataVizInput.SetValue('') else: self.dataVizInput.SetValue('Error: Value must be numeric') self.onSliderEdit() def reviewEvent(self,event): self.reviewChart() def reviewChart(self): self.editSlider.Hide() self.currentChart = 'Review' self.dataVizMsg1.SetLabelText('Review Edits') self.saveEditsBtn.Hide() self.electrodeToggleBtn.Hide() self.dataVizInput.Hide() self.dataVizInputBtn.Hide() x = [] z = [] v = [] pe = [] xOmit = [] zOmit = [] self.createExportDF() for i in enumerate(self.dataframeEDIT['Keep']): x.append(self.dataframeEDIT.loc[i[0], 'PseudoX']) z.append(self.dataframeEDIT.loc[i[0], 'PseudoZ']) v.append(self.dataframeEDIT.loc[i[0], 'AppResist']) if i[1]: pass else: xOmit.append(self.dataframeEDIT.loc[i[0],'PseudoX']) zOmit.append(self.dataframeEDIT.loc[i[0],'PseudoZ']) if 'scipy.interpolate' in sys.modules: self.makeColormesh(x,z,v,pe,xOmit,zOmit) else: ptSize = round(100/self.maxXDist*125,1) self.axes.scatter(x,z, c=v,edgecolors='black',s=ptSize, marker='h') #self.axes.scatter(x,z, c=v,s=ptSize, marker='h') #self.axes.scatter(xOmit,zOmit,c='black',s=ptSize-ptSize*0.333,marker = 'x') #minz = min(z) #maxz = max(z) #zspace = (maxz-minz)/10 #self.axes.set_ylim(minz-zspace,maxz+zspace) #self.axes.set_xlabel('X-Distance (m)') #self.axes.set_ylabel('Elev/Depth (m)') #self.axes.xaxis.tick_top() #self.canvas.draw() #pass def getClosestElev(self): if len(self.inputTxtTopo.GetValue())>0 and 'Enter Topo Filepath Here' not in self.inputTxtTopo.GetValue(): if self.topoDF['xDist'].max() > max(self.electrodes) or self.topoDF['xDist'].min() > min(self.electrodes): if self.topoDF['xDist'].max() > max(self.electrodes): wx.LogError("File format error. Maximum topo X-Distance is greater than maximum electrode X-Distance.") else: wx.LogError("File format error. Minimum topo X-Distance is less than minimum electrode X-Distance.") else: self.electrodeElevs = [[] for k in range(len(self.electrodes))]#blank list for x in enumerate(self.electrodes): elecxDist = x[1] elecIndex = x[0] index = np.argmin(np.abs(np.array(self.topoDF['xDist']) - elecxDist))#finds index of closest elevation nearestTopoxDist = self.topoDF.loc[index,'xDist'] nearestTopoElev = self.topoDF.loc[index,'Elev'] if nearestTopoxDist == x[1]: self.electrodeElevs[elecIndex] = nearestTopoElev elif nearestTopoxDist >= x[1]: mapNum = nearestTopoxDist - self.electrodes[elecIndex] mapDenom = nearestTopoxDist - self.topoDF.loc[index-1,'xDist'] mVal = float(mapNum/mapDenom) self.electrodeElevs[elecIndex] = nearestTopoElev - (nearestTopoElev-self.topoDF.loc[index-1,'Elev'])*mVal else: mapNum = self.electrodes[elecIndex] - nearestTopoxDist mapDenom = self.topoDF.loc[index+1,'xDist']-nearestTopoxDist mVal = float(mapNum/mapDenom) self.electrodeElevs[elecIndex] = nearestTopoElev + (nearestTopoElev-self.topoDF.loc[index-1,'Elev'])*mVal blankList = [[] for k in range(len(self.dataframeEDIT['Keep']))] # blank list self.dataframeEDIT['SurfElevs'] = blankList elecXDistColNames = ['A(x)','B(x)','M(x)','N(x)'] elecElevColNames = ['A(z)','B(z)','M(z)','N(z)'] elecXDistColNums = [1,3,5,7] for c in enumerate(elecXDistColNums): for x in enumerate(self.dataframeEDIT[elecElevColNames[c[0]]]): elecxDist = x[1] elecIndex = x[0] index = np.argmin( np.abs(np.array(self.topoDF['xDist']) - elecxDist)) # finds index of closest elevation nearestTopoxDist = self.topoDF.loc[index, 'xDist'] nearestTopoElev = self.topoDF.loc[index, 'Elev'] if nearestTopoxDist == x[1]: self.dataframeEDIT.iloc[elecIndex,c[1]+1] = nearestTopoElev elif nearestTopoxDist >= x[1]: mapNum = nearestTopoxDist - self.dataframeEDIT.iloc[elecIndex,c[1]+1] mapDenom = nearestTopoxDist - self.topoDF.loc[index - 1, 'xDist'] mVal = float(mapNum / mapDenom) self.dataframeEDIT.iloc[elecIndex,c[1]+1] = nearestTopoElev - ( nearestTopoElev - self.topoDF.loc[index - 1, 'Elev']) * mVal else: mapNum = self.dataframeEDIT.iloc[elecIndex,c[1]+1] - nearestTopoxDist mapDenom = self.topoDF.loc[index + 1, 'xDist'] - nearestTopoxDist mVal = float(mapNum / mapDenom) self.dataframeEDIT.iloc[elecIndex,c[1]+1] = nearestTopoElev + ( nearestTopoElev - self.topoDF.loc[index - 1, 'Elev']) * mVal self.dataframeEDIT['PtElev'] = self.dataframeEDIT[elecElevColNames[c[0]]] - self.dataframeEDIT['PseudoZ'] else: pass if self.inputDataExt == '.DAT (LS)': self.electrodeElevs = [] for x in enumerate(self.electrodes): #Checks if there's already elevation data?? found = 0 for xc in self.electrodeCols: if found == 0: for i in enumerate(self.dataframeEDIT.iloc[:,xc]): if round(float(x[1]),2) == round(float(i[1]),2): zc = xc + 1 found = 1 elev = self.dataframeEDIT.iloc[i[0],zc] elif found == 1: self.electrodeElevs.append(float(elev)) else: wx.LogError("No Topography Data Found") def onExportBrowse(self, event): with wx.FileDialog(self, "Select Export Filepath", style=wx.FD_OPEN | wx.FD_FILE_MUST_EXIST) as fileDialog: if fileDialog.ShowModal() == wx.ID_CANCEL: return self.exportPathname = pathlib.Path(fileDialog.GetPath()) try: with open(self.exportPathname, 'r') as exportFile: path = exportFile.name self.exportTXT.SetValue(path) except IOError: wx.LogError("Cannot Open File") def onExport(self, event): dataDF,keepLength = self.createExportDF() dataLeadDF = pd.DataFrame() dataTailDF = pd.DataFrame() #Create Data Lead dataLeadDF[0] = self.dataLead if self.inputDataExt == '.DAT (SAS)': dataLeadList = [] dataLeadList.append(self.dataLead[0][0]) dataLeadList.append(self.dataLead[1][0]) dataLeadList.append(11) dataLeadList.append(self.dataLead[2][0]) dataLeadList.append('Type of measurement (0=app.resistivity,1=resistance)') dataLeadList.append(0) dataLeadList.append(keepLength) dataLeadList.append(2) dataLeadList.append(0) dataLeadDF = pd.DataFrame(dataLeadList) else: dataLeadDF.iloc[4,0] = 'Type of measurement (0=app.resistivity,1=resistance)' dataLeadDF.iloc[6,0] = str(int(keepLength)) for c in range(1, 10): dataLeadDF[int(c)] = [None, None, None, None, None, None, None, None, None] #Create Data Tail for c in range(0, 10): if c < 1: dataTailDF[int(c)] = [0, 0, 0, 0, 0, 0, 0] else: dataTailDF[int(c)] = [None, None, None, None, None, None, None] #print(dataLeadDF) #print(dataDF) #print(dataTailDF) DFList = [dataLeadDF, dataDF, dataTailDF] self.exportDataframe = pd.concat(DFList, ignore_index=True, axis=0) self.exportDataframe.to_csv(self.exportTXT.GetValue(), sep="\t", index=False, header=False) def createExportDF(self): dataDF =
pd.DataFrame(columns=["NoElectrodes",'A(x)', 'A(z)', 'B(x)', 'B(z)', 'M(x)', 'M(z)', 'N(x)', 'N(z)', 'Resistance'])
pandas.DataFrame
# -*- coding: utf-8 -*- import os import logging import pandas as pd import pytz from tzlocal import windows_tz import appdirs import ws LOG = logging.getLogger(__name__) _TYPE_MAP = {'integer': int, 'unicode': str, 'string': str, 'boolean': bool, 'datetime': 'M8[ns]'} def file_name(name, format): return '.'.join((name, format)) def get_file(name, expiration=None): if not os.path.exists(name): return expiration =
pd.core.datetools.to_offset(expiration)
pandas.core.datetools.to_offset
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(
Timedelta(-239, unit='h')
pandas.Timedelta
import csv import snscrape.modules.twitter as sntwitter import pandas as pd import os.path def get_company_twitter_posts(account_df1): # Check if file exist if os.path.isfile("output/twitter_sentiment_companies.csv"): print("File already exist - skipping company data extraction.") return
pd.read_csv("output/twitter_sentiment_companies.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import click import logging from pathlib import Path from dotenv import find_dotenv, load_dotenv from gensim.utils import tokenize from gensim.parsing.preprocessing import remove_stopwords from gensim.test.utils import common_texts from gensim.models.doc2vec import Doc2Vec, TaggedDocument import pandas as pd import numpy as np from textblob import TextBlob import spacy from sklearn.feature_extraction.text import CountVectorizer nlp = spacy.load('en_core_web_sm') from sklearn.model_selection import TimeSeriesSplit from src.data.cleaning import clean_news_headline from src.utils import backend, home def split_train_test(comb): split = TimeSeriesSplit(n_splits=2) for tr_idx, te_idx in split.split(comb): if backend == 'pandas': tr = comb.iloc[tr_idx, :] te = comb.iloc[te_idx, :] else: tr = comb.loc[tr_idx.tolist()] te = comb.iloc[te_idx, :] assert tr.shape[1] == te.shape[1] assert tr.shape[0] + te.shape[0] == comb.shape[0] return tr, te def split_features_target(combined, name, load=False): print('splitting {} into x, y'.format(name)) if load: print('loading from data/interim') corpus = pd.read_csv(home / 'data' / 'interim' / '{}-features.csv'.format(name), index_col=0) target = pd.read_csv(home / 'data' / 'interim' / '{}-target.csv'.format(name), index_col=0) return corpus, target target = combined.loc[:, 'Label'].to_frame() target.columns = ['target'] corpus = combined.drop(['Label'], axis=1) corpus = corpus.agg(' '.join, axis=1) print('cleaning news headlines') corpus = corpus.apply(clean_news_headline) corpus = corpus.to_frame() corpus.columns = ['news'] print('target shape {} distribution - {}'.format(target.shape, np.mean(target.values))) print('saving to data/interim') corpus.to_csv(home / 'data' / 'interim' / '{}-features.csv'.format(name)) target.to_csv(home / 'data' / 'interim' / '{}-target.csv'.format(name)) return corpus, target def gensim_tokenize(docs): tokens = [] for doc in docs: doc = remove_stopwords(doc) tokens.append(list(tokenize(doc, lower=True))) return tokens def get_doc_vecs(docs, model): vecs = [] for sample in docs: vecs.append(model.infer_vector(sample)) return np.array(vecs) def make_document_vectors(x_tr, x_te): tr_tokens = gensim_tokenize(x_tr.loc[:, 'news'].values) te_tokens = gensim_tokenize(x_te.loc[:, 'news'].values) documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(tr_tokens)] model = Doc2Vec(documents, vector_size=32, window=3, min_count=1, workers=4, verbose=1) tr_vecs = get_doc_vecs(tr_tokens, model) te_vecs = get_doc_vecs(te_tokens, model) cols = ['doc2vec-{}'.format(i) for i in range(tr_vecs.shape[1])] tr_vecs = pd.DataFrame(tr_vecs, index=x_tr.index, columns=cols) te_vecs =
pd.DataFrame(te_vecs, index=x_te.index, columns=cols)
pandas.DataFrame
from rest_framework import generics, status, permissions, mixins, views, viewsets from rest_framework.response import Response from rest_framework.parsers import MultiPartParser, FormParser, JSONParser from rest_framework.decorators import permission_classes, action from rest_framework.exceptions import ParseError, ValidationError from django.db.models.query import QuerySet from django.http import FileResponse, Http404, HttpResponseRedirect from django.shortcuts import get_object_or_404, redirect from django.core.files.base import ContentFile from secretsauce.apps.portal.models import * from secretsauce.apps.portal.serializers import * from secretsauce.permissions import IsOwnerOrAdmin, AdminOrReadOnly from secretsauce.utils import UploadVerifier, CostSheetVerifier import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from collections import defaultdict from threading import Thread import os, requests, json, re FILLET = 'https://fillet.azurewebsites.net' class DataBlockList(generics.ListCreateAPIView): """ List all datablocks or create a new datablock. Usage example: create: curl -X POST -F "name=test_file" -F "upload=@<EMAIL>" -F "project=<uuid>" localhost:8000/datablocks/ list: curl localhost:8000/datablocks/ """ queryset = DataBlock.objects.all() serializer_class = DataBlockListSerializer parser_classes = [MultiPartParser, FormParser] permission_classes = [IsOwnerOrAdmin] def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): verifier = UploadVerifier(request.FILES['upload']) item_ids = verifier.get_schema() self.perform_create(serializer, item_ids) return_data = serializer.data return_data['errors'] = verifier.errors return Response(return_data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def perform_create(self, serializer, item_ids): data_block = serializer.save() header_objects = [DataBlockHeader(data_block=data_block, item_id=item_id) for item_id in item_ids] DataBlockHeader.objects.bulk_create(header_objects) def get_queryset(self): assert self.queryset is not None, ( "'%s' should either include a `queryset` attribute, " "or override the `get_queryset()` method." % self.__class__.__name__ ) queryset = self.queryset if isinstance(queryset, QuerySet): # Ensure queryset is re-evaluated on each request. queryset = queryset.all() project = self.request.query_params.get('project') projects = queryset.filter(project=project) for p in projects: self.check_object_permissions(self.request, p) return projects class DataBlockDetail(generics.RetrieveDestroyAPIView): """ Retrieve or delete a datablock instance """ permission_classes = [IsOwnerOrAdmin] queryset = DataBlock.objects.all() serializer_class = DataBlockSingleSerializer class DataBlockPrice(viewsets.ViewSet): @action(methods=['get'], detail=True, permission_classes=[IsOwnerOrAdmin]) def average_prices(self, request, pk): data_block = get_object_or_404(DataBlock.objects.all(), id=pk) self.check_object_permissions(request, data_block) df = pd.read_csv(data_block.upload).drop(['Wk', 'Tier', 'Groups', 'Store', 'Qty_'], axis=1) df = df.groupby(['Item_ID']).mean() output = df.to_dict()['Price_'] return Response(output) class VizDataBlock(viewsets.ViewSet): permission_classes=[IsOwnerOrAdmin] parser_classes = [MultiPartParser] max_query_size = 10 @action(methods=['get'], detail=True, url_path='vizdata/price', url_name='viz-price', ) def price(self, request, pk, *args, **kwargs): data_block = self.get_object(pk) self.check_object_permissions(request, data_block) if 'items' not in request.query_params: raise ParseError(detail="'items' required in query_params", code='invalid_data') items = request.query_params.get('items').split(',') try: items = list(map(int, items)) except ValueError as e: raise ParseError(e) if len(items) > self.max_query_size: raise ParseError(detail=f'Query is too large, maximum of {self.max_query_size} items only', code='query_size_exceeded') body = self.obtain_prices(data_block.upload, items) return Response(body, status=status.HTTP_200_OK) @action(methods=['get'], detail=True, url_path='vizdata/qty', url_name='viz-qty') def qty(self, request, pk, *args, **kwargs): data_block = self.get_object(pk) self.check_object_permissions(request, data_block) if 'items' not in request.query_params: raise ParseError(detail="'items' required in query_params", code='invalid_data') items = request.query_params.get('items').split(',') try: items = list(map(int, items)) except ValueError as e: raise ParseError(e) if len(items) > self.max_query_size: raise ParseError(detail=f'Query is too large, maximum of {self.max_query_size} items only', code='query_size_exceeded') body = self.obtain_quantities(data_block.upload, items) return Response(body, status=status.HTTP_200_OK) def get_object(self, pk): try: return DataBlock.objects.get(id=pk) except DataBlock.DoesNotExist: raise Http404 def obtain_prices(self, file, items): df = pd.read_csv(file, encoding='utf-8') df = df[df['Item_ID'].isin(items)][['Item_ID', 'Price_']] output = defaultdict(list) for idx, row in df.iterrows(): item_id = int(row['Item_ID']) price = row['Price_'] output[item_id].append(price) final_output = sorted([(k, v) for k, v in output.items()], key=lambda x: x[0]) items, datasets = zip(*final_output) final_output = { 'items': items, 'datasets': datasets } return final_output def obtain_quantities(self, file, items): df =
pd.read_csv(file, encoding='utf-8')
pandas.read_csv
# converts warc file into a pandas dataframe type csv: html_and_text_big.csv # each row of dataframe contains url,html,text for a specific html file # also saves a csv of filtered text, containing justext extracted text: text_filtered_big.csv # stripped of non-ascii and filtered for relevance (Parkland shooting) # default text extractor is justext (get_text_js) # can also use beautiful soup for text extractor (get_text_bs) from warcio.archiveiterator import ArchiveIterator from bs4 import BeautifulSoup from justext import justext, get_stoplist from tqdm import tqdm import pandas as pd from pathlib import Path import re global spam spam = ['advertisement', 'getty', 'published', 'javascript', 'updated', 'jpghttps', 'posted', 'read more', 'photo gallery', 'play video', 'caption'] def clean_html(html): soup = BeautifulSoup(html, 'html.parser') if soup.body is None: return None for tag in soup.body.select('script'): tag.decompose() for tag in soup.body.select('style'): tag.decompose() return str(soup) def get_text_bs(html): soup = BeautifulSoup(html, 'html.parser') body = soup.body if body is None: return None for tag in body.select('script'): tag.decompose() for tag in body.select('style'): tag.decompose() text = body.get_text(separator='\n') return text def filter_pages(text): if not isinstance(text,str): print(text) for f in spam: if f in text.lower() and len(text)<100: #print('spam found:',f) return False return True def get_text_jt(html): text = [] paragraphs = justext(html, get_stoplist("English")) for paragraph in paragraphs: if not paragraph.is_boilerplate: if len(paragraph.text) > 15 and filter_pages(paragraph.text): text.append(paragraph.text) #else: # print(len(paragraph.text),' :: ',paragraph.text) text = ' '.join(t for t in text) return text def process_warc(file_path): rows = [] dropped_count = 0 with open(file_path, 'rb') as stream: for record in tqdm(ArchiveIterator(stream)): try: if record.rec_type == 'response': url = record.rec_headers.get_header('WARC-Target-URI') html_raw = record.content_stream().read() html = html_raw.decode('utf-8') html = clean_html(html) text = get_text_jt(html_raw) rows.append([url,html,text]) except: dropped_count += 1 #print(dropped_count,'files dropped so far') continue print(dropped_count,'files dropped due to read errors') df = pd.DataFrame(data=rows,columns=['url','html','text']) return df def filter_text(df): text = df.text.dropna() text = text.apply(lambda x: re.sub('\n+','. ',x)) text = text.apply(lambda x: re.sub('[\r\f\v]','',x)) text = text.apply(lambda x: re.sub('\t+',' ',x)) text = text.apply(lambda x: re.sub('[ ]{2,}',' ',x)) text = text.apply(lambda x: x.encode("ascii", errors="ignore").decode()) text = text.apply(lambda x: ' '.join(word for word in x.split() if word not in spam)) relevant = text.apply(lambda x: ('parkland' in x.lower() or \ '<NAME> douglas' in x.lower()) and \ 'shooting' in x.lower()) nonempty = text.apply(lambda x: len(x)>0) text = text[relevant & nonempty] text = pd.DataFrame(data=text,columns=['text']) return text if __name__ == '__main__': data_path = Path('/Users/ryankingery/Repos/text-summarization/data/') if not data_path.exists(): data_path.mkdir() if not (data_path/'html_and_text_big.csv').exists(): df = process_warc(data_path/'Shooting_Douglas_big.warc') df.to_csv(data_path/'html_and_text_big.csv') if not (data_path/'text_filtered_big.csv').exists(): text = filter_text(df) text.to_csv(data_path/'text_filtered_big.csv') else: df = pd.read_csv(data_path/'html_and_text_big.csv',index_col=0) text =
pd.read_csv(data_path/'text_filtered_big.csv',index_col=0, header=None)
pandas.read_csv
import copy import numpy as np import pandas as pd class CustomGeneticAlgorithm(): def server_present(self, server, time): server_start_time = server[1] server_duration = server[2] server_end_time = server_start_time + server_duration if (time >= server_start_time) and (time < server_end_time): return True return False def deployed_to_hourlyplanning(self, deployed_hourly_cron_capacity): deployed_hourly_cron_capacity_week = [] for day in deployed_hourly_cron_capacity: deployed_hourly_cron_capacity_day = [] for server in day: server_present_hour = [] for time in range(0, 24): server_present_hour.append( self.server_present(server, time)) deployed_hourly_cron_capacity_day.append(server_present_hour) deployed_hourly_cron_capacity_week.append( deployed_hourly_cron_capacity_day) deployed_hourly_cron_capacity_week = np.array( deployed_hourly_cron_capacity_week).sum(axis=1) return deployed_hourly_cron_capacity_week def generate_random_plan(self, n_days, n_racks): period_planning = [] for _ in range(n_days): day_planning = [] for server_id in range(n_racks): start_time = np.random.randint(0, 23) machines = np.random.randint(0, 12) server = [server_id, start_time, machines] day_planning.append(server) period_planning.append(day_planning) return period_planning def generate_initial_population(self, population_size, n_days=7, n_racks=11): population = [] for _ in range(population_size): member = self.generate_random_plan( n_days=n_days, n_racks=n_racks) population.append(member) return population def calculate_fitness(self, deployed_hourly_cron_capacity, required_hourly_cron_capacity): deviation = deployed_hourly_cron_capacity - required_hourly_cron_capacity overcapacity = abs(deviation[deviation > 0].sum()) undercapacity = abs(deviation[deviation < 0].sum()) overcapacity_cost = 0.5 undercapacity_cost = 3 fitness = overcapacity_cost * overcapacity + undercapacity_cost * undercapacity return fitness def crossover(self, population, n_offspring): n_population = len(population) offspring = [] for _ in range(n_offspring): random_one = population[np.random.randint( low=0, high=n_population - 1)] random_two = population[np.random.randint( low=0, high=n_population - 1)] dad_mask = np.random.randint(0, 2, size=np.array(random_one).shape) mom_mask = np.logical_not(dad_mask) child = np.add(np.multiply(random_one, dad_mask), np.multiply(random_two, mom_mask)) offspring.append(child) return offspring def mutate_parent(self, parent, n_mutations): size1 = parent.shape[0] size2 = parent.shape[1] for _ in range(n_mutations): rand1 = np.random.randint(0, size1) rand2 = np.random.randint(0, size2) rand3 = np.random.randint(0, 2) parent[rand1, rand2, rand3] = np.random.randint(0, 12) return parent def mutate_gen(self, population, n_mutations): mutated_population = [] for parent in population: mutated_population.append(self.mutate_parent(parent, n_mutations)) return mutated_population def is_acceptable(self, parent): return np.logical_not((np.array(parent)[:, :, 2:] > 12).any()) def select_acceptable(self, population): population = [ parent for parent in population if self.is_acceptable(parent)] return population def select_best(self, population, required_hourly_cron_capacity, n_best): fitness = [] for idx, deployed_hourly_cron_capacity in enumerate(population): deployed_hourly_cron_capacity = self.deployed_to_hourlyplanning( deployed_hourly_cron_capacity) parent_fitness = self.calculate_fitness(deployed_hourly_cron_capacity, required_hourly_cron_capacity) fitness.append([idx, parent_fitness]) print('Current generation\'s optimal schedule has cost: {}'.format( pd.DataFrame(fitness)[1].min())) fitness_tmp =
pd.DataFrame(fitness)
pandas.DataFrame
import dask.dataframe as dd import pandas as pd import pytest import featuretools as ft from featuretools.entityset import EntitySet, Relationship def test_create_entity_from_dask_df(pd_es): dask_es = EntitySet(id="dask_es") log_dask = dd.from_pandas(pd_es["log"].df, npartitions=2) dask_es = dask_es.entity_from_dataframe( entity_id="log_dask", dataframe=log_dask, index="id", time_index="datetime", variable_types=pd_es["log"].variable_types ) pd.testing.assert_frame_equal(pd_es["log"].df, dask_es["log_dask"].df.compute(), check_like=True) def test_create_entity_with_non_numeric_index(pd_es, dask_es): df = pd.DataFrame({"id": ["A_1", "A_2", "C", "D"], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id", variable_types={"id": ft.variable_types.Id, "values": ft.variable_types.Numeric}) pd.testing.assert_frame_equal(pd_es['new_entity'].df.reset_index(drop=True), dask_es['new_entity'].df.compute()) def test_create_entityset_with_mixed_dataframe_types(pd_es, dask_es): df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27]}) dask_df = dd.from_pandas(df, npartitions=2) # Test error is raised when trying to add Dask entity to entitset with existing pandas entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(dask_df), type(pd_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=dask_df, index="id") # Test error is raised when trying to add pandas entity to entitset with existing dask entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(df), type(dask_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): dask_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") def test_add_last_time_indexes(): pd_es = EntitySet(id="pd_es") dask_es = EntitySet(id="dask_es") sessions = pd.DataFrame({"id": [0, 1, 2, 3], "user": [1, 2, 1, 3], "time": [pd.to_datetime('2019-01-10'), pd.to_datetime('2019-02-03'), pd.to_datetime('2019-01-01'), pd.to_datetime('2017-08-25')], "strings": ["I am a string", "23", "abcdef ghijk", ""]}) sessions_dask = dd.from_pandas(sessions, npartitions=2) sessions_vtypes = { "id": ft.variable_types.Id, "user": ft.variable_types.Id, "time": ft.variable_types.DatetimeTimeIndex, "strings": ft.variable_types.Text } transactions = pd.DataFrame({"id": [0, 1, 2, 3, 4, 5], "session_id": [0, 0, 1, 2, 2, 3], "amount": [1.23, 5.24, 123.52, 67.93, 40.34, 50.13], "time": [pd.to_datetime('2019-01-10 03:53'), pd.to_datetime('2019-01-10 04:12'), pd.to_datetime('2019-02-03 10:34'), pd.to_datetime('2019-01-01 12:35'), pd.to_datetime('2019-01-01 12:49'), pd.to_datetime('2017-08-25 04:53')]}) transactions_dask = dd.from_pandas(transactions, npartitions=2) transactions_vtypes = { "id": ft.variable_types.Id, "session_id": ft.variable_types.Id, "amount": ft.variable_types.Numeric, "time": ft.variable_types.DatetimeTimeIndex, } pd_es.entity_from_dataframe(entity_id="sessions", dataframe=sessions, index="id", time_index="time") dask_es.entity_from_dataframe(entity_id="sessions", dataframe=sessions_dask, index="id", time_index="time", variable_types=sessions_vtypes) pd_es.entity_from_dataframe(entity_id="transactions", dataframe=transactions, index="id", time_index="time") dask_es.entity_from_dataframe(entity_id="transactions", dataframe=transactions_dask, index="id", time_index="time", variable_types=transactions_vtypes) new_rel = Relationship(pd_es["sessions"]["id"], pd_es["transactions"]["session_id"]) dask_rel = Relationship(dask_es["sessions"]["id"], dask_es["transactions"]["session_id"]) pd_es = pd_es.add_relationship(new_rel) dask_es = dask_es.add_relationship(dask_rel) assert pd_es['sessions'].last_time_index is None assert dask_es['sessions'].last_time_index is None pd_es.add_last_time_indexes() dask_es.add_last_time_indexes() pd.testing.assert_series_equal(pd_es['sessions'].last_time_index.sort_index(), dask_es['sessions'].last_time_index.compute(), check_names=False) def test_create_entity_with_make_index(): values = [1, 12, -23, 27] df = pd.DataFrame({"values": values}) dask_df = dd.from_pandas(df, npartitions=2) dask_es = EntitySet(id="dask_es") vtypes = {"values": ft.variable_types.Numeric} dask_es.entity_from_dataframe(entity_id="new_entity", dataframe=dask_df, make_index=True, index="new_index", variable_types=vtypes) expected_df = pd.DataFrame({"new_index": range(len(values)), "values": values}) pd.testing.assert_frame_equal(expected_df, dask_es['new_entity'].df.compute()) def test_single_table_dask_entityset(): primitives_list = ['absolute', 'is_weekend', 'year', 'day', 'num_characters', 'num_words'] dask_es = EntitySet(id="dask_es") df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27], "dates": [pd.to_datetime('2019-01-10'), pd.to_datetime('2019-02-03'), pd.to_datetime('2019-01-01'), pd.to_datetime('2017-08-25')], "strings": ["I am a string", "23", "abcdef ghijk", ""]}) values_dd = dd.from_pandas(df, npartitions=2) vtypes = { "id": ft.variable_types.Id, "values": ft.variable_types.Numeric, "dates": ft.variable_types.Datetime, "strings": ft.variable_types.Text } dask_es.entity_from_dataframe(entity_id="data", dataframe=values_dd, index="id", variable_types=vtypes) dask_fm, _ = ft.dfs(entityset=dask_es, target_entity="data", trans_primitives=primitives_list) pd_es = ft.EntitySet(id="pd_es") pd_es.entity_from_dataframe(entity_id="data", dataframe=df, index="id", variable_types={"strings": ft.variable_types.Text}) fm, _ = ft.dfs(entityset=pd_es, target_entity="data", trans_primitives=primitives_list) # Use the same columns and make sure both indexes are sorted the same dask_computed_fm = dask_fm.compute().set_index('id').loc[fm.index][fm.columns] pd.testing.assert_frame_equal(fm, dask_computed_fm) def test_single_table_dask_entityset_ids_not_sorted(): primitives_list = ['absolute', 'is_weekend', 'year', 'day', 'num_characters', 'num_words'] dask_es = EntitySet(id="dask_es") df = pd.DataFrame({"id": [2, 0, 1, 3], "values": [1, 12, -34, 27], "dates": [
pd.to_datetime('2019-01-10')
pandas.to_datetime
# -*- coding: utf-8 -*- import pandas import numpy import sys import unittest from datetime import datetime from pandas.testing import assert_frame_equal, assert_series_equal import os import copy sys.path.append("..") import warnings import nPYc from nPYc.enumerations import SampleType from nPYc.enumerations import AssayRole from nPYc.enumerations import VariableType from generateTestDataset import generateTestDataset import tempfile from isatools import isatab class test_msdataset_synthetic(unittest.TestCase): """ Test MSDataset object functions with synthetic data """ def setUp(self): self.msData = nPYc.MSDataset('', fileType='empty') self.msData.sampleMetadata = pandas.DataFrame( {'Sample File Name': ['Unittest_file_001', 'Unittest_file_002', 'Unittest_file_003'], 'Sample Base Name': ['Unittest_file_001', 'Unittest_file_002', 'Unittest_file_003'], 'AssayRole': [AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference], 'SampleType': [SampleType.StudySample, SampleType.StudyPool, SampleType.ExternalReference], 'Sample Name': ['Sample1', 'Sample2', 'Sample3'], 'Acqu Date': ['26-May-17', '26-May-17', '26-May-17'], 'Acqu Time': ['16:42:57', '16:58:49', '17:14:41'], 'Vial': ['1:A,1', '1:A,2', '1:A,3'], 'Instrument': ['XEVO-TOF#UnitTest', 'XEVO-TOF#UnitTest', 'XEVO-TOF#UnitTest'], 'Acquired Time': [datetime(2017, 5, 26, 16, 42, 57), datetime(2017, 5, 26, 16, 58, 49), datetime(2017, 5, 26, 17, 14, 41)], 'Run Order': [0, 1, 2], 'Batch': [1, 1, 2], 'Correction Batch': [numpy.nan, 1, 2], 'Matrix': ['U', 'U', 'U'], 'Subject ID': ['subject1', 'subject1', 'subject2'], 'Sample ID': ['sample1', 'sample2', 'sample3'], 'Dilution': [numpy.nan, '60.0', '100.0'],'Exclusion Details': ['','','']}) self.msData.featureMetadata = pandas.DataFrame( {'Feature Name': ['Feature1', 'Feature2', 'Feature3'], 'Retention Time': [6.2449, 2.7565, 5.0564], 'm/z': [249.124281, 381.433191, 471.132083]}) self.msData.featureMetadata['Exclusion Details'] = None self.msData.featureMetadata['User Excluded'] = False self.msData.featureMetadata[['rsdFilter', 'varianceRatioFilter', 'correlationToDilutionFilter', 'blankFilter', 'artifactualFilter']] = pandas.DataFrame([[True, True, True, True, True]], index=self.msData.featureMetadata.index) self.msData.featureMetadata[['rsdSP', 'rsdSS/rsdSP', 'correlationToDilution', 'blankValue']] \ = pandas.DataFrame([[numpy.nan, numpy.nan, numpy.nan, numpy.nan]], index=self.msData.featureMetadata.index) self.msData._intensityData = numpy.array([[10.2, 20.95, 30.37], [10.1, 20.03, 30.74], [3.065, 15.83, 30.16]]) # Attributes self.msData.Attributes['FeatureExtractionSoftware'] = 'UnitTestSoftware' # excluded data self.msData.sampleMetadataExcluded = [] self.msData.intensityDataExcluded = [] self.msData.featureMetadataExcluded = [] self.msData.excludedFlag = [] self.msData.sampleMetadataExcluded.append(self.msData.sampleMetadata[[True, False, False]]) self.msData.intensityDataExcluded.append(self.msData._intensityData[0, :]) self.msData.featureMetadataExcluded.append(self.msData.featureMetadata) self.msData.excludedFlag.append('Samples') self.msData.featureMetadataExcluded.append(self.msData.featureMetadata[[True, False, False]]) self.msData.intensityDataExcluded.append(self.msData._intensityData[:, 0]) self.msData.sampleMetadataExcluded.append(self.msData.sampleMetadata) self.msData.excludedFlag.append('Features') # finish self.msData.VariableType = VariableType.Discrete self.msData.initialiseMasks() def test_rsd_raises(self): msData = nPYc.MSDataset('', fileType='empty') with self.subTest(msg='No reference samples'): msData.sampleMetadata = pandas.DataFrame(None) with self.assertRaises(ValueError): msData.rsdSP with self.subTest(msg='Only one reference sample'): msData.sampleMetadata = pandas.DataFrame([[nPYc.enumerations.AssayRole.PrecisionReference, nPYc.enumerations.SampleType.StudyPool]], columns=['AssayRole', 'SampleType']) with self.assertRaises(ValueError): msData.rsdSP def test_getsamplemetadatafromfilename(self): """ Test we are parsing NPC MS filenames correctly (PCSOP.081). """ # Create an empty object with simple filenames msData = nPYc.MSDataset('', fileType='empty') msData.sampleMetadata['Sample File Name'] = ['Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_LPOS_ToF04_P4W05_LTR', 'Test5_LNEG_ToF05_U5W06_SR', 'Test6_HPOS_ToF06_S4W05_MR', 'Test1_HPOS_ToF01_P1W02_x', 'Test2_RPOS_ToF02_U2W03_b', 'Test3_RNEG_ToF03_S3W04_2', 'Test4_RPOS_ToF04_B1S1_SR_q', 'Test5_LPOS_ToF05_B2E2_SR', 'Test6_LNEG_ToF06_B3SRD01_9', 'Test1_HPOS_ToF06_Blank01', 'Test1_HPOS_ToF06_IC02', 'Test1_HPOS_ToF06_EIC21'] msData._getSampleMetadataFromFilename(msData.Attributes['filenameSpec']) ## # Check basename ## basename = pandas.Series(['Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_LPOS_ToF04_P4W05_LTR', 'Test5_LNEG_ToF05_U5W06_SR', 'Test6_HPOS_ToF06_S4W05_MR', 'Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_RPOS_ToF04_B1S1_SR', 'Test5_LPOS_ToF05_B2E2_SR', 'Test6_LNEG_ToF06_B3SRD01', 'Test1_HPOS_ToF06_Blank01', 'Test1_HPOS_ToF06_IC02', 'Test1_HPOS_ToF06_EIC21'], name='Sample Base Name', dtype='str')
assert_series_equal(msData.sampleMetadata['Sample Base Name'], basename)
pandas.testing.assert_series_equal
# basics from typing import Callable import pandas as pd import os from pandas.core.frame import DataFrame # segnlp from segnlp import utils from segnlp import metrics from segnlp.utils.baselines import MajorityBaseline from segnlp.utils.baselines import RandomBaseline from segnlp.utils.baselines import SentenceMajorityBaseline from segnlp.utils.baselines import SentenceRandomBaseline from segnlp.utils.baselines import SentenceBIOBaseline class Baseline: def __run_baseline( self, baseline, name : str, df:pd.DataFrame, kwargs:dict, metric_f: Callable, task_labels: dict, ): all_metrics = [] for rs in utils.random_ints(self.n_random_seeds): kwargs["random_seed"] = rs #init the baseline model bl = baseline(**kwargs) # run baseline pred_df = bl(df.copy(deep=True)) #evaluate baseline metrics = metric_f( pred_df = pred_df, target_df = df, task_labels = task_labels ) metrics["random_seed"] = rs metrics["baseline"] = name all_metrics.append(metrics) score_df = pd.DataFrame(all_metrics) return score_df def __get_task_labels_ids(self) -> dict: task_labels_ids = {k:list(v.values()) for k,v in self.label_encoder.label2id.items()} for task in self.all_tasks: if task in task_labels_ids: continue task_labels_ids[task] = [] task_labels_ids = {k:v for k,v in task_labels_ids.items() if ("+" not in k and "seg" not in k)} return task_labels_ids def __get_majority_labels(self, task_labels_ids): if self.dataset_name == "PE": majority_labels = {} if "label" in task_labels_ids: majority_labels["label"] = self.label_encoder.label2id["label"]["Premise"] if "link_label" in task_labels_ids: majority_labels["link_label"] = self.label_encoder.label2id["link_label"]["support"] if "link" in task_labels_ids: majority_labels["link"] = None if self.dataset_name == "MTC": majority_labels = None return majority_labels def __load_data(self): df = pd.read_csv(self._path_to_df, index_col = 0) splits = utils.load_pickle_data(self._path_to_splits) val_df = df.loc[splits[0]["val"]] test_df = df.loc[splits[0]["test"]] return val_df, test_df def __get_sentence_baselines_scores(self, df: pd.DataFrame, metric_f: Callable, task_labels_ids : dict, majority_labels : dict ): score_dfs = [] baselines = zip(["majority", "random"],[SentenceMajorityBaseline, SentenceRandomBaseline]) for name, baseline in baselines: score_df = self.__run_baseline( baseline = baseline, name = name, df = df, kwargs = dict( task_labels = majority_labels if name == "majority" else task_labels_ids, p = 1.0 ), metric_f = metric_f, task_labels = self.task_labels ) score_dfs.append(score_df) sdf = pd.concat(score_dfs) sdf.set_index("baseline", inplace = True) return { "random" : sdf.loc["random"].to_dict("list"), "majority" : sdf.loc["majority"].to_dict("list") } def __get__baseline_scores(self, df: pd.DataFrame, metric_f: Callable, task_labels_ids : dict, majority_labels : dict ): score_dfs = [] val_df = df.groupby("seg_id", sort = False).first() baselines = zip(["majority", "random"],[MajorityBaseline, RandomBaseline]) for name, baseline in baselines: score_df = self.__run_baseline( baseline = baseline, name = name, df = val_df, kwargs = dict( task_labels = majority_labels if name == "majority" else task_labels_ids, ), metric_f = metric_f, task_labels = self.task_labels ) score_dfs.append(score_df) sdf =
pd.concat(score_dfs)
pandas.concat
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") self.ragged = DataFrame({"B": range(5)}) self.ragged.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"),
Timestamp("20130101 09:00:02")
pandas.Timestamp
#%% from pymaid_creds import url, name, password, token import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import numpy.random as random import gzip import csv import connectome_tools.celltype as ct import connectome_tools.process_matrix as pm import connectome_tools.process_graph as pg from tqdm import tqdm from joblib import Parallel, delayed import networkx as nx # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' # load pairs pairs = pm.Promat.get_pairs() ipsi_pair_ids = pm.Promat.load_pairs_from_annotation('mw ipsilateral axon', pairs, return_type='all_pair_ids') bilateral_pair_ids = pm.Promat.load_pairs_from_annotation('mw bilateral axon', pairs, return_type='all_pair_ids') contra_pair_ids = pm.Promat.load_pairs_from_annotation('mw contralateral axon', pairs, return_type='all_pair_ids') dVNC_pair_ids = pm.Promat.load_pairs_from_annotation('mw dVNC', pairs, return_type='all_pair_ids') dSEZ_pair_ids = pm.Promat.load_pairs_from_annotation('mw dSEZ', pairs, return_type='all_pair_ids') RGN_pair_ids = pm.Promat.load_pairs_from_annotation('mw RGN', pairs, return_type='all_pair_ids') sensories_pair_ids = [pm.Promat.load_pairs_from_annotation(x, pairs, return_type='all_pair_ids') for x in pymaid.get_annotated('mw brain inputs').name] all_sensories = [x for sublist in sensories_pair_ids for x in sublist] # %% # EXPERIMENT 1: removing edges from contralateral and bilateral neurons -> effect on path length? # load previously generated paths all_edges_combined = pd.read_csv('data/edges_threshold/ad_all-paired-edges.csv', index_col=0) # iterations for random edge removal as control n_init = 40 # excise edges and generate graphs e_contra_contra, e_contra_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(contra_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_bi_contra, e_bi_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_bi_ipsi, e_bi_ipsi_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids, all_sensories), 'ipsilateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) e_all_contra, e_all_contra_control = pg.Prograph.excise_edge_experiment(all_edges_combined, np.setdiff1d(bilateral_pair_ids + contra_pair_ids, all_sensories), 'contralateral', n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) # %% # this chunk is incomplete # write all graphs to graphml # read all graph from graphml graph = pg.Analyze_Nx_G(all_edges_combined, graph_type='directed') shuffled_graphs = Parallel(n_jobs=-1)(delayed(nx.readwrite.graphml.read_graphml)(f'interhemisphere/csv/shuffled_graphs/iteration-{i}.graphml', node_type=int, edge_key_type=str) for i in tqdm(range(n_init))) shuffled_graphs = [pg.Analyze_Nx_G(edges=x.edges, graph=x) for x in shuffled_graphs] # %% # generate and save paths cutoff=5 # generate and save paths for experimental save_path = [f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi', f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra'] experimental = [e_contra_contra, e_bi_contra, e_bi_ipsi, e_all_contra] Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(experimental[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=save_path[i]) for i in tqdm((range(len(experimental))))) # generate and save paths for controls save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_contra_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_bi_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_bi_ipsi_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra_CONTROL-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(e_all_contra_control[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) # %% # analyze paths: total and count per # hops def process_paths(excise_paths, control_paths, edges_removed): excise_count = len(excise_paths) control_counts = [len(x) for x in control_paths] path_counts_data = [] for row in zip(control_counts, [f'control-{edges_removed}']*len(control_counts)): path_counts_data.append(row) path_counts_data.append([excise_count, f'excised-{edges_removed}']) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition']) path_counts_data.to_csv(f'interhemisphere/csv/paths/processed/excised_graph_{edges_removed}.csv') # count per # hops excise_path_counts = [len(x) for x in excise_paths] control_path_counts = [[len(x) for x in path] for path in control_paths] path_counts_length_data = [] for i, path_length in enumerate(control_path_counts): for row in zip(path_length, [f'control-{edges_removed}']*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for row in zip(excise_path_counts, [f'excised-{edges_removed}']*len(excise_path_counts), [0]*len(excise_path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/processed/excised_graph_{edges_removed}_path_lengths.csv') cutoff=5 n_init = 40 excise_Cc_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra.csv.gz') control_Cc_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Cc_paths, control_Cc_paths, edges_removed='Contra-contra') excise_Bc_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra.csv.gz') control_Bc_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Bc_paths, control_Bc_paths, edges_removed='Bilateral-contra') excise_Bi_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi.csv.gz') control_Bi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-bilateral-ipsi_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Bi_paths, control_Bi_paths, edges_removed='Bilateral-ipsi') excise_Ac_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra.csv.gz') control_Ac_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/excised-graph_all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-all-contra_CONTROL-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths(excise_Ac_paths, control_Ac_paths, edges_removed='All-contra') # wildtype paths graph_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/all_paths_sens-to-dVNC_cutoff{cutoff}.csv.gz') excise_count = len(graph_paths) path_counts_data = [] path_counts_data.append([excise_count, f'wildtype']) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition']) path_counts_data.to_csv(f'interhemisphere/csv/paths/processed/wildtype.csv') path_counts_length_data = [] excise_path_counts = [len(x) for x in graph_paths] for row in zip(excise_path_counts, [f'wildtype']*len(excise_path_counts), [0]*len(excise_path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/processed/wildtype_path_lengths.csv') # %% ########## # EXPERIMENT 2: removing random number of ipsi vs contra edges, effect on paths # # load previously generated paths all_edges_combined = pd.read_csv('data/edges_threshold/ad_all-paired-edges.csv', index_col=0) # iterations for random edge removal as control n_init = 8 # excise edges and generate graphs random_ipsi500, random_contra500 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 500, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi1000, random_contra1000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 1000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi2000, random_contra2000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 2000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) random_ipsi4000, random_contra4000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined, 4000, n_init, seed=0, exclude_nodes=(all_sensories+dVNC_pair_ids)) # %% # generate and save paths cutoff=5 # generate and save paths for controls save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-500-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-500-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra500[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-1000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-1000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra1000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-2000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-2000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra2000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-4000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-4000-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra4000[i].G, all_sensories, dVNC_pair_ids, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) # %% # analyze paths: total and count per # hops def process_paths_ipsi_contra(ipsi_paths, contra_paths, count_removed): ipsi_counts = [len(x) for x in ipsi_paths] contra_counts = [len(x) for x in contra_paths] path_counts_data = [] for row in zip(ipsi_counts, [f'ipsi-{count_removed}']*len(ipsi_counts)): path_counts_data.append(row) for row in zip(contra_counts, [f'contra-{count_removed}']*len(contra_counts)): path_counts_data.append(row) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition']) path_counts_data.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges/processed/excised_graph_random-ipsi-contra_{count_removed}-removed.csv') # count per # hops ipsi_path_counts = [[len(x) for x in path] for path in ipsi_paths] contra_path_counts = [[len(x) for x in path] for path in contra_paths] path_counts_length_data = [] for i, path_length in enumerate(ipsi_path_counts): for row in zip(path_length, [f'ipsi-{count_removed}']*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for i, path_length in enumerate(contra_path_counts): for row in zip(path_length, [f'contra-{count_removed}']*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges/processed/excised_graph_random-ipsi-contra_{count_removed}-removed_path-lengths.csv') cutoff=5 n_init = 8 count_removed = 500 random_ipsi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_paths, random_contra_paths, count_removed) count_removed = 1000 random_ipsi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_paths, random_contra_paths, count_removed) count_removed = 2000 random_ipsi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_paths, random_contra_paths, count_removed) count_removed = 4000 random_ipsi_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_paths, random_contra_paths, count_removed) # %% ########## # EXPERIMENT 3: removing random number of ipsi vs contra edges, effect on paths on just one side of brain # # load previously generated paths all_edges_combined_split = pd.read_csv('data/edges_threshold/pairwise-threshold_ad_all-edges.csv', index_col=0) left = pm.Promat.get_hemis('left') right = pm.Promat.get_hemis('right') # iterations for random edge removal as control n_init = 8 dVNC = pymaid.get_skids_by_annotation('mw dVNC') dVNC_left = list(np.intersect1d(dVNC, left)) dVNC_right = list(np.intersect1d(dVNC, right)) all_sensories = ct.Celltype_Analyzer.get_skids_from_meta_meta_annotation('mw brain sensory modalities') all_sensories_left = list(np.intersect1d(all_sensories, left)) all_sensories_right = list(np.intersect1d(all_sensories, right)) # generate wildtype graph split_graph = pg.Analyze_Nx_G(all_edges_combined_split, graph_type='directed', split_pairs=True) # excise edges and generate graphs random_ipsi500_left, random_ipsi500_right, random_contra500 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 500, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi1000_left, random_ipsi1000_right, random_contra1000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 1000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi2000_left, random_ipsi2000_right, random_contra2000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 2000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi4000_left, random_ipsi4000_right, random_contra4000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 4000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi8000_left, random_ipsi8000_right, random_contra8000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 8000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) #random_ipsi8764_left, random_ipsi8764_right, random_contra8764 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 8764, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) # %% # generate and save paths cutoff=5 # generate wildtype paths save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_wildtype' pg.Prograph.generate_save_simple_paths(split_graph.G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=save_path) # generate and save paths count = 500 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra500[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 1000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra1000[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 2000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra2000[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 4000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra4000[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 8000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra8000[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) ''' count = 8764 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_left[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_right[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra8000[i].G, all_sensories_left, dVNC_left, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) ''' # %% # analyze paths: total and count per # hops def process_paths_ipsi_contra(ipsi_left_paths, ipsi_right_paths, contra_paths, count_removed): ipsi_left_counts = [len(x) for x in ipsi_left_paths] ipsi_right_counts = [len(x) for x in ipsi_right_paths] contra_counts = [len(x) for x in contra_paths] path_counts_data = [] for row in zip(ipsi_left_counts, [f'ipsi-left']*len(ipsi_left_counts), [count_removed]*len(ipsi_left_counts)): path_counts_data.append(row) for row in zip(ipsi_right_counts, [f'ipsi-right']*len(ipsi_right_counts), [count_removed]*len(ipsi_right_counts)): path_counts_data.append(row) for row in zip(contra_counts, [f'contra']*len(contra_counts), [count_removed]*len(contra_counts)): path_counts_data.append(row) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition', 'edges_removed']) path_counts_data.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_{count_removed}-removed.csv') # count per # hops ipsi_left_path_counts = [[len(x) for x in path] for path in ipsi_left_paths] ipsi_right_path_counts = [[len(x) for x in path] for path in ipsi_right_paths] contra_path_counts = [[len(x) for x in path] for path in contra_paths] path_counts_length_data = [] for i, path_length in enumerate(ipsi_left_path_counts): for row in zip(path_length, [f'ipsi-left']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for i, path_length in enumerate(ipsi_right_path_counts): for row in zip(path_length, [f'ipsi-right']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for i, path_length in enumerate(contra_path_counts): for row in zip(path_length, [f'contra']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'edges_removed', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'edges_removed', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_{count_removed}-removed_path-lengths.csv') cutoff=5 n_init = 8 count_removed = 500 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 1000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 2000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 4000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 8000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) # wildtype paths graph_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC_cutoff{cutoff}_wildtype.csv.gz') wt_count = len(graph_paths) path_counts_data = [] path_counts_data.append([wt_count, f'wildtype', 0]) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition', 'edges_removed']) path_counts_data.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype.csv') path_counts_length_data = [] path_counts = [len(x) for x in graph_paths] for row in zip(path_counts, [f'wildtype']*len(path_counts), [0]*len(path_counts), [0]*len(path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'edges_removed', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype_path_lengths.csv') # %% # plot total paths per condition from left -> left paths total_paths = pd.concat([pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_500-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_1000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_2000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_4000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_8000-removed.csv', index_col=0)], axis=0) wildtype = pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype.csv', index_col=0) total_paths = pd.concat([total_paths, pd.DataFrame([[wildtype['count'].values[0], 'contra', 0]], columns = total_paths.columns), pd.DataFrame([[wildtype['count'].values[0], 'ipsi-left', 0]], columns = total_paths.columns), pd.DataFrame([[wildtype['count'].values[0], 'ipsi-right', 0]], columns = total_paths.columns)], axis=0) # plot raw number of paths (all lengths), after removing edges of different types fig, ax = plt.subplots(1,1, figsize=(2,2)) sns.lineplot(data = total_paths, x='edges_removed', y='count', hue='condition', err_style='bars', linewidth=0.75, err_kws={'elinewidth':0.75}, ax=ax) ax.set(ylim=(0, 1100000)) plt.savefig('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/path-counts_left-to-left_removing-edge-types.pdf', format='pdf', bbox_inches='tight') # normalized plot of all paths (all lengths), after removing edges of different types max_control_paths = total_paths[total_paths.edges_removed==0].iloc[0, 0] total_paths.loc[:, 'count'] = total_paths.loc[:, 'count']/max_control_paths fig, ax = plt.subplots(1,1, figsize=(2,2)) sns.lineplot(data = total_paths, x='edges_removed', y='count', hue='condition', err_style='bars', linewidth=0.75, err_kws={'elinewidth':0.75}, ax=ax) ax.set(ylim=(0, 1.05)) plt.savefig('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/path-counts_left-to-left_removing-edge-types_normalized.pdf', format='pdf', bbox_inches='tight') # plot total paths per path length from left -> left paths total_paths = pd.concat([pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_500-removed_path-lengths.csv'), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_1000-removed_path-lengths.csv'), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_2000-removed_path-lengths.csv'), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_4000-removed_path-lengths.csv'), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph_random-ipsi-contra_8000-removed_path-lengths.csv')], axis=0) wildtype = pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype_path_lengths.csv') total_paths_normalized = [] for i in range(len(total_paths.index)): length = total_paths.iloc[i].path_length row = [total_paths.iloc[i].condition, total_paths.iloc[i].N, total_paths.iloc[i].edges_removed, total_paths.iloc[i].path_length, total_paths.iloc[i].value/wildtype[wildtype.path_length==length].value.values[0]] # normalized path counts by wildtype total_paths_normalized.append(row) total_paths_normalized = pd.DataFrame(total_paths_normalized, columns = total_paths.columns) for removed in [500, 1000, 2000, 4000, 8000]: fig, ax = plt.subplots(1,1, figsize=(2,2)) sns.lineplot(data=total_paths_normalized[total_paths_normalized.edges_removed==removed], x='path_length', y='value', hue='condition', err_style='bars', linewidth=0.75, err_kws={'elinewidth':0.75}, ax=ax) ax.set(ylim=(0, 1.1)) plt.savefig(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/path-length-counts_left-to-left_removing-{removed}-edge-types.pdf', format='pdf', bbox_inches='tight') # %% # how many nodes are in each type of path? # %% ########## # EXPERIMENT 4: removing random number of ipsi vs contra edges, effect on paths on just one side of brain to opposite side # # load previously generated paths all_edges_combined_split = pd.read_csv('data/edges_threshold/pairwise-threshold_ad_all-edges.csv', index_col=0) left = pm.Promat.get_hemis('left') right = pm.Promat.get_hemis('right') # iterations for random edge removal as control n_init = 8 dVNC = pymaid.get_skids_by_annotation('mw dVNC') dVNC_left = list(np.intersect1d(dVNC, left)) dVNC_right = list(np.intersect1d(dVNC, right)) all_sensories = ct.Celltype_Analyzer.get_skids_from_meta_meta_annotation('mw brain sensory modalities') all_sensories_left = list(np.intersect1d(all_sensories, left)) all_sensories_right = list(np.intersect1d(all_sensories, right)) # generate wildtype graph split_graph = pg.Analyze_Nx_G(all_edges_combined_split, graph_type='directed', split_pairs=True) # excise edges and generate graphs random_ipsi500_left, random_ipsi500_right, random_contra500 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 500, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi1000_left, random_ipsi1000_right, random_contra1000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 1000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi2000_left, random_ipsi2000_right, random_contra2000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 2000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi4000_left, random_ipsi4000_right, random_contra4000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 4000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) random_ipsi8000_left, random_ipsi8000_right, random_contra8000 = pg.Prograph.excise_ipsi_contra_edge_experiment(all_edges_combined_split, 8000, n_init, 0, left, right, exclude_nodes=(all_sensories+dVNC), split_pairs=True) # %% # generate and save paths cutoff=5 # generate wildtype paths save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_wildtype' pg.Prograph.generate_save_simple_paths(split_graph.G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=save_path) # generate and save paths count = 500 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500_left[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi500_right[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra500[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 1000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000_left[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi1000_right[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra1000[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 2000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000_left[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi2000_right[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra2000[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 4000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000_left[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi4000_right[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra4000[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) count = 8000 save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_left[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_ipsi8000_right[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) save_path = f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count}-N' Parallel(n_jobs=-1)(delayed(pg.Prograph.generate_save_simple_paths)(random_contra8000[i].G, all_sensories_left, dVNC_right, cutoff=cutoff, save_path=f'{save_path}{i}') for i in tqdm((range(n_init)))) # %% # analyze paths: total and count per # hops def process_paths_ipsi_contra(ipsi_left_paths, ipsi_right_paths, contra_paths, count_removed): ipsi_left_counts = [len(x) for x in ipsi_left_paths] ipsi_right_counts = [len(x) for x in ipsi_right_paths] contra_counts = [len(x) for x in contra_paths] path_counts_data = [] for row in zip(ipsi_left_counts, [f'ipsi-left']*len(ipsi_left_counts), [count_removed]*len(ipsi_left_counts)): path_counts_data.append(row) for row in zip(ipsi_right_counts, [f'ipsi-right']*len(ipsi_right_counts), [count_removed]*len(ipsi_right_counts)): path_counts_data.append(row) for row in zip(contra_counts, [f'contra']*len(contra_counts), [count_removed]*len(contra_counts)): path_counts_data.append(row) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition', 'edges_removed']) path_counts_data.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_{count_removed}-removed.csv') # count per # hops ipsi_left_path_counts = [[len(x) for x in path] for path in ipsi_left_paths] ipsi_right_path_counts = [[len(x) for x in path] for path in ipsi_right_paths] contra_path_counts = [[len(x) for x in path] for path in contra_paths] path_counts_length_data = [] for i, path_length in enumerate(ipsi_left_path_counts): for row in zip(path_length, [f'ipsi-left']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for i, path_length in enumerate(ipsi_right_path_counts): for row in zip(path_length, [f'ipsi-right']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) for i, path_length in enumerate(contra_path_counts): for row in zip(path_length, [f'contra']*len(path_length), [count_removed]*len(path_length), [i]*len(path_length)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'edges_removed', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'edges_removed', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_{count_removed}-removed_path-lengths.csv') cutoff=5 n_init = 8 count_removed = 500 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 1000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 2000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 4000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) count_removed = 8000 random_ipsi_left_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-left-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_ipsi_right_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-ipsi-right-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) random_contra_paths = Parallel(n_jobs=-1)(delayed(pg.Prograph.open_simple_paths)(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_minus-edges-contra-{count_removed}-N{i}.csv.gz') for i in tqdm(range(n_init))) process_paths_ipsi_contra(random_ipsi_left_paths, random_ipsi_right_paths, random_contra_paths, count_removed) # wildtype paths graph_paths = pg.Prograph.open_simple_paths(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/all-paths-sens-to-dVNC-right_cutoff{cutoff}_wildtype.csv.gz') wt_count = len(graph_paths) path_counts_data = [] path_counts_data.append([wt_count, f'wildtype', 0]) path_counts_data = pd.DataFrame(path_counts_data, columns=['count', 'condition', 'edges_removed']) path_counts_data.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype_to-dVNC-right.csv') path_counts_length_data = [] path_counts = [len(x) for x in graph_paths] for row in zip(path_counts, [f'wildtype']*len(path_counts), [0]*len(path_counts), [0]*len(path_counts)): path_counts_length_data.append(row) path_counts_length_data = pd.DataFrame(path_counts_length_data, columns=['path_length', 'condition', 'edges_removed', 'N']) path_counts_length_data['value'] = [1]*len(path_counts_length_data) # just adding [1] so that groupby has something to count path_counts_length_data_counts = path_counts_length_data.groupby(['condition', 'N', 'path_length']).count() path_counts_length_data_counts.to_csv(f'interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype_path_lengths_to-dVNC-right.csv') # %% # plot total paths per condition from left -> right paths total_paths = pd.concat([pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_500-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_1000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_2000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_4000-removed.csv', index_col=0), pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_8000-removed.csv', index_col=0)], axis=0) wildtype = pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/wildtype_to-dVNC-right.csv', index_col=0) total_paths = pd.concat([total_paths, pd.DataFrame([[wildtype['count'].values[0], 'contra', 0]], columns = total_paths.columns), pd.DataFrame([[wildtype['count'].values[0], 'ipsi-left', 0]], columns = total_paths.columns), pd.DataFrame([[wildtype['count'].values[0], 'ipsi-right', 0]], columns = total_paths.columns)], axis=0) # raw plot of all paths (all lengths), after removing edges of different types fig, ax = plt.subplots(1,1, figsize=(1.5,1.5)) sns.lineplot(data = total_paths, x='edges_removed', y='count', hue='condition', err_style='bars', linewidth=0.5, err_kws={'elinewidth':0.5}, ax=ax) ax.set(ylim=(0, 1100000)) plt.savefig('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/path-counts_left-to-right_removing-edge-types.pdf', format='pdf', bbox_inches='tight') # normalized plot of all paths (all lengths), after removing edges of different types max_control_paths = total_paths[total_paths.edges_removed==0].iloc[0, 0] total_paths.loc[:, 'count'] = total_paths.loc[:, 'count']/max_control_paths fig, ax = plt.subplots(1,1, figsize=(2,2)) sns.lineplot(data = total_paths, x='edges_removed', y='count', hue='condition', err_style='bars', linewidth=0.75, err_kws={'elinewidth':0.75}, ax=ax) ax.set(ylim=(0, 1.05)) plt.savefig('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/path-counts_left-to-right_removing-edge-types_normalized.pdf', format='pdf', bbox_inches='tight') # plot total paths per path length from left -> left paths total_paths = pd.concat([
pd.read_csv('interhemisphere/csv/paths/random-ipsi-contra-edges_left-paths/processed/excised_graph-to-dVNC-right_random-ipsi-contra_500-removed_path-lengths.csv')
pandas.read_csv
""" Code for "How Is Earnings News Transmitted to Stock Prices?" by <NAME> and <NAME>. Python 2 The main function takes the TAS (Time and Sales) file for one exchange on one month and extracts only the trades from daily files, creating trade files. """ from os import listdir import os import pandas as pd from datetime import datetime import gzip import shutil import hashlib import sys outdir = 'M:\\vgregoire\\TRTH_Trades\\' # Checks the md5 has to make sure the raw file is not corrupted def md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() # This function takes the TAS (Time and Sales) file for one exchange on one # month and extracts only the trades from daily files, creating trade files. def process_task(exch, y, m): mdir = 'Y:\\' + exch + '\\TAS\\' + str(y) + '\\' + str(m).zfill(2) + '\\' # List dates in the monthly directory ls = listdir(mdir) ls = [fn for fn in ls if fn[15:23] == 'TAS-Data' and fn.endswith('.gz')] ls_df = pd.DataFrame(ls, columns=['Filename']) ls_df['Date'] = ls_df.Filename.apply(lambda x: datetime.strptime(x[4:14], '%Y-%m-%d')) # Get all files related to each specific date. dates_fn = {datetime.strptime(x[4:14], '%Y-%m-%d'):[] for x in ls} for fn in ls: dates_fn[datetime.strptime(fn[4:14], '%Y-%m-%d')].append(fn) # Process all dates for date in dates_fn: fn = dates_fn[date] trade_cols = ['#RIC', 'Date[G]', 'Time[G]', 'GMT Offset', 'Type', 'Ex/Cntrb.ID', 'Price', 'Volume', 'Market VWAP', 'Qualifiers', 'Seq. No.', 'Exch Time', 'Trd/Qte Date'] str_cols = ['Ex/Cntrb.ID', 'Exch Time', 'Trd/Qte Date'] dtypes = {x: object for x in str_cols} dfs = [] for f in fn: # Validate file md5_f = md5(mdir+f) with open(mdir+f+'.md5sum', 'r') as f_cs: md5_check = f_cs.readline()[:32] if md5_f != md5_check: sys.stderr.write('Wrong checksum for ' + f) continue # Read the file by chunk to limit memory usage, filtering on trades. for chunk in pd.read_csv(mdir + f, chunksize=10000, usecols=trade_cols, dtype=dtypes): df_trades = chunk[chunk.Type=='Trade'].copy() del df_trades['Type'] dfs.append(df_trades) df =
pd.concat(dfs)
pandas.concat
import time import numpy as np import pandas as pd from scipy.io import arff from bitmap_mapper.bitmap_mapper_interface import BitmapMapperInterface from feature_extractor.feature_extractor import FeatureExtractor class CommonData: def __init__(self, feature_extractor: FeatureExtractor, bitmap_mapper: BitmapMapperInterface): self.__extractor = feature_extractor self.__mapper = bitmap_mapper self._class_names = None def classes_str_to_array(self, class_str: str) -> np.ndarray: index = np.where(self._class_names == class_str) res = np.zeros(self.get_class_count(), dtype=np.int64) res[index] = 1 if sum(res) == 0: raise RuntimeError('Unknown class') return res def classes_array_to_str(self, class_arr: np.ndarray) -> str: if len(class_arr) != len(self._class_names): raise RuntimeError('Unknown class') index = np.where(class_arr == 1) res = self._class_names[index] if len(res) == 0: raise RuntimeError('Unknown class') return res def _extract_features_from_path(self, path: str): data = arff.loadarff(path) df = pd.DataFrame(data[0]) classes = np.array([s[0].decode() for s in df.iloc[:, -1:].values]) self._class_names = np.unique(classes) self._class_names.sort() mapped_classes = np.empty((len(classes), self.get_class_count())) for i in range(len(classes)): mapped_classes[i] = self.classes_str_to_array(classes[i]) feature_list = np.empty((len(classes), self.__extractor.feature_count())) self.__mapper.set_bitmap_size(30) i = 0 for row in df.iloc[:, :-1].iterrows(): start = time.process_time_ns() bitmap = self.__mapper.convert_series(row[1].values.tolist()) feature_list[i] = self.__extractor.calculate_features(bitmap) end = time.process_time_ns() print(f"Set {i + 1} converted at {(end - start) / 1e6} ms") i += 1 return feature_list, mapped_classes def _extract_features_from_path_without_classes(self, path: str): data = arff.loadarff(path) df =
pd.DataFrame(data[0])
pandas.DataFrame
# -*- coding: utf-8 -*- import click import logging from pathlib import Path # from dotenv import find_dotenv, load_dotenv import requests from bs4 import BeautifulSoup import numpy as np import pandas as pd import datetime import yfinance as yf from pandas_datareader import data as pdr from flask import current_app from stk_predictor.extensions import db @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') def get_ticker_from_yahoo(ticker, start_date, end_date): yf.pdr_override() try: new_trading_df = pdr.get_data_yahoo( ticker, start_date, end_date, interval='1d') new_trading_df = new_trading_df.drop( ['Open', 'High', 'Low', 'Adj Close'], axis=1) new_trading_df = new_trading_df.dropna('index') new_trading_df = new_trading_df.reset_index() new_trading_df.columns = ['trading_date', 'intraday_close', 'intraday_volumes'] his_trading_df = pd.read_sql('aapl', db.engine, index_col='id') df = pd.concat([his_trading_df, new_trading_df] ).drop_duplicates('trading_date') df = df.sort_values(by='trading_date') df = df.reset_index(drop=True) if len(df) > 0: df.to_sql("aapl", db.engine, if_exists='replace', index_label='id') return df else: # t = pd.read_sql('aapl', db.engine, index_col='id') return None except Exception as ex: raise RuntimeError( "Catch Excetion when retrieve data from Yahoo...", ex) return None def get_news_from_finviz(ticker): """Request news headline from finviz, according to company ticker's name Parameters ----------- ticker: str the stock ticker name Return ---------- df : pd.DataFrame return the latest 2 days news healines. """ current_app.logger.info("Job >> Enter Finviz news scrape step...") base_url = 'https://finviz.com/quote.ashx?t={}'.format(ticker) headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/50.0.2661.102 Safari/537.36' } parsed_news = [] try: res = requests.get(base_url, headers=headers) if res.status_code == 200: texts = res.text soup = BeautifulSoup(texts) news_tables = soup.find(id="news-table") for x in news_tables.findAll('tr'): text = x.a.get_text() date_scrape = x.td.text.split() if len(date_scrape) == 1: time = date_scrape[0] else: date = date_scrape[0] time = date_scrape[1] parsed_news.append([date, time, text]) # filter the recent day news df = pd.DataFrame(parsed_news, columns=['date', 'time', 'texts']) df['date'] = pd.to_datetime(df.date).dt.date one_day_period = (datetime.datetime.today() - datetime.timedelta(days=1)).date() df_sub = df[df.date >= one_day_period] return df_sub else: raise RuntimeError("HTTP response Error {}".format( res.status_code)) from None except Exception as ex: current_app.logger.info("Exception in scrape Finviz.", ex) raise RuntimeError("Exception in scrape Finviz.") from ex def prepare_trading_dataset(df): """Prepare the trading data set. Time series analysis incoporate previous data for future prediction, We need to retrieve historical data to generate features. Parameters ----------- df: DataFrame the stock ticker trading data, including trading-date, close-price, volumes window: int, default = 400 feature engineer windows size. Using at most 400 trading days to construct features. Return ---------- array_lstm : np.array return the array with 3 dimensions shape -> [samples, 1, features] """ if len(df) == 0: raise RuntimeError( "Encounter Error in >>make_dataset.prepare_trading_dataset<<... \ Did not catch any news.") from None else: df['log_ret_1d'] = np.log(df['intraday_close'] / df['intraday_close'].shift(1)) df['log_ret_1w'] = pd.Series(df['log_ret_1d']).rolling(window=5).sum() df['log_ret_2w'] = pd.Series(df['log_ret_1d']).rolling(window=10).sum() df['log_ret_3w'] = pd.Series(df['log_ret_1d']).rolling(window=15).sum() df['log_ret_4w'] = pd.Series(df['log_ret_1d']).rolling(window=20).sum() df['log_ret_8w'] = pd.Series(df['log_ret_1d']).rolling(window=40).sum() df['log_ret_12w'] = pd.Series(df['log_ret_1d']).rolling(window=60).sum() df['log_ret_16w'] = pd.Series(df['log_ret_1d']).rolling(window=80).sum() df['log_ret_20w'] = pd.Series(df['log_ret_1d']).rolling(window=100).sum() df['log_ret_24w'] = pd.Series(df['log_ret_1d']).rolling(window=120).sum() df['log_ret_28w'] = pd.Series(df['log_ret_1d']).rolling(window=140).sum() df['log_ret_32w'] = pd.Series(df['log_ret_1d']).rolling(window=160).sum() df['log_ret_36w'] = pd.Series(df['log_ret_1d']).rolling(window=180).sum() df['log_ret_40w'] = pd.Series(df['log_ret_1d']).rolling(window=200).sum() df['log_ret_44w'] = pd.Series(df['log_ret_1d']).rolling(window=220).sum() df['log_ret_48w'] = pd.Series(df['log_ret_1d']).rolling(window=240).sum() df['log_ret_52w'] = pd.Series(df['log_ret_1d']).rolling(window=260).sum() df['log_ret_56w'] = pd.Series(df['log_ret_1d']).rolling(window=280).sum() df['log_ret_60w'] =
pd.Series(df['log_ret_1d'])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Generate Generative Model Figures # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') get_ipython().run_line_magic('matplotlib', 'inline') import os import glob from collections import OrderedDict import matplotlib.colors as mcolors import matplotlib.pyplot as plt import pandas as pd import plotnine as p9 import seaborn as sns import pdb import scipy.stats as ss # In[2]: def get_dataframes( result_dir, file_path, starting_point=0, ending_point=30, step=5, num_of_points=4 ): """ This function grabs the result tsv files and loads then into a dictionary strucutre [relationship] -> dataframe Args: result_dir - the directory containing all the results file_path - the path to extract the result files starting_point - the point to start each subgraph with in plot_graph function ending_point - the point to end each subgraph with step - the number to increase the middle points with num_of_points - the number of points to plot between the start and end points """ # Build up X axis by gathering relatively evely spaced points query_points = [starting_point] query_points += [1 + step*index for index in range(num_of_points)] query_points += [ending_point] return { # Get the head word of each file that will be parsed os.path.splitext(os.path.basename(file))[0].split("_")[0]: pd.read_csv(file, sep="\t") .query("lf_num in @query_points", engine="python", local_dict={"query_points":query_points}) .assign( lf_num=lambda x:x['lf_num'].map(lambda y: str(y) if y != ending_point else 'All') ) for file in glob.glob(f"{result_dir}/{file_path}") } # In[3]: file_tree = OrderedDict({ "DaG": { "DaG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/GiG/results", "All": "../../../disease_gene/disease_associates_gene/label_sampling_experiment/results/all/results", }, "CtD": { "DaG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/DaG/results", "CtD": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/CtD/results", "CbG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/CbG/results", "GiG": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/GiG/results", "All": "../../../compound_disease/compound_treats_disease/label_sampling_experiment/results/all/results", }, "CbG": { "DaG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/GiG/results", "All": "../../../compound_gene/compound_binds_gene/label_sampling_experiment/results/all/results", }, "GiG": { "DaG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/DaG/results", "CtD": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/CtD/results", "CbG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/CbG/results", "GiG": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/GiG/results", "All": "../../../gene_gene/gene_interacts_gene/label_sampling_experiment/results/all/results", } }) # In[4]: # End total of label functions for each point end_points = { "DaG": 30, "CtD": 22, "CbG": 20, "GiG": 28, "All": 100 } # In[5]: critical_val = ss.norm.ppf(0.975) # In[6]: color_names = { "turquoise": pd.np.array([27, 158, 119, 255])/255, "orange": pd.np.array([217, 95, 2, 255])/255, "purple": pd.np.array([117, 112, 179, 255])/255, "pink": pd.np.array([231, 41, 138, 255])/255, "light-green":
pd.np.array([102, 166, 30, 255])
pandas.np.array
#!/usr/bin/python ''' Tracks colonies through time in a single imaging field ''' import cv2 import numpy as np import glob import os import warnings import pandas as pd from PIL import Image from string import punctuation def _convert_to_number(val_str): ''' Converts val_str to an int or float or logical (in that order) if possible ''' # NEED UNITTEST FOR JUST THIS METHOD? try: output_val = int(val_str) except: try: output_val = float(val_str) except: if val_str.lower() == 'true': output_val = True elif val_str.lower() == 'false': output_val = False else: output_val = val_str return(output_val) def _process_parameter_vals(val_str): ''' Returns val_str split by semicolon into list only if semicolon is present Converts val_str or all elements of resulting list to int if possible ''' # NEED UNITTEST FOR JUST THIS METHOD? if ';' in val_str: split_val_str = val_str.split(';') output_val = [_convert_to_number(val) for val in split_val_str] else: output_val = _convert_to_number(val_str) return(output_val) def _unprocess_parameter_vals(val): ''' Joins any lists with semicolons ''' if isinstance(val, list): val_str = ';'.join([str(x) for x in val]) else: # don't convert to str here or nan will be written as 'nan' # and not as blank val_str = val return(val_str) def _get_global_params_from_phasewise_df(analysis_config_df_phasewise): ''' Returns a pandas series of parameters (rows) that are identical in all columns of analysis_config_df_phasewise, and a df with those rows removed ''' if len(analysis_config_df_phasewise.index)>0: global_param_row_bool_ser = analysis_config_df_phasewise.eq( analysis_config_df_phasewise.iloc[:, 0], axis=0 ).all(axis=1) if any(global_param_row_bool_ser): global_params = \ global_param_row_bool_ser.index[global_param_row_bool_ser] global_param_ser = analysis_config_df_phasewise.loc[ global_params, analysis_config_df_phasewise.columns[0] ] analysis_config_df_phasewise.drop( index = global_params, inplace = True ) else: global_param_ser = pd.Series(name = 'all', dtype = object) else: global_param_ser = pd.Series(name = 'all', dtype = object) return(global_param_ser, analysis_config_df_phasewise) def _separate_global_params(analysis_config_df_prelim): ''' Separate out parameters that apply to all phases into pandas df analysis_config_df_indiv and pandas ser global_param_ser_part ''' # pivot analysis_config_df to have phases as columns analysis_config_df_pivot = analysis_config_df_prelim.pivot( index = 'Parameter', columns = 'PhaseNum', values = 'Value' ) if 'all' in analysis_config_df_pivot.columns: # initialize global param series global_param_ser_part = analysis_config_df_pivot['all'].dropna() # drop 'all' column from analysis_config_df_pivot analysis_config_df_indiv = \ analysis_config_df_pivot.drop( columns = ['all'] ).dropna(axis = 0, how = 'all') else: global_param_ser_part = pd.Series(name = 'all', dtype = object) analysis_config_df_indiv = \ analysis_config_df_pivot # convert column names of analysis_config_df to int and use to # specify phases analysis_config_df_indiv.columns = analysis_config_df_indiv.columns.astype(int) # check that parameters defined as 'all' and parameters defined # by individual phases are mutually exclusive indiv_phase_param_set = set(analysis_config_df_indiv.index) global_param_set = set(global_param_ser_part.index) double_defined_params = \ set.intersection(indiv_phase_param_set, global_param_set) if len(double_defined_params) > 0: raise ValueError(( 'Parameters may be defined either with PhaseNum set to "all" ' 'or set to individual phase number integers; the following ' 'parameters were defined with both: \n{0}' ).format(str(double_defined_params))) # Add all parameters with # identical values across phases to global_param_ser_part, and # remove those parameters from analysis_config_df_indiv new_global_param_ser_part, analysis_config_df_indiv = \ _get_global_params_from_phasewise_df(analysis_config_df_indiv) global_param_ser_part = \ global_param_ser_part.append(new_global_param_ser_part) return(global_param_ser_part, analysis_config_df_indiv) def write_setup_file( setup_file_out_path, global_param_ser, analysis_config_df_indiv, phase_list ): ''' Writes csv file containing all parameters from global_param_ser and analysis_config_df_indiv to setup_file_out_path ''' # make dataframe for global params global_param_df = \ pd.DataFrame(global_param_ser, columns = ['Value']) # convert index to 'Parameter' column global_param_df = global_param_df.reset_index().rename( columns = {'index':'Parameter'} ) # add PhaseNum column global_param_df['PhaseNum'] = 'all' if len(analysis_config_df_indiv.index) > 0: # make dataframe for phase-specific params phasewise_param_df = analysis_config_df_indiv.melt( # value_vars = phase_list, var_name = 'PhaseNum', value_name = 'Value', ignore_index = False ) # drop rows where Value is NA phasewise_param_df.dropna(subset = ['Value'], inplace = True) # convert index to 'Parameter' column phasewise_param_df = phasewise_param_df.reset_index().rename( columns = {'index':'Parameter'} ) # combine global and phasewise dfs combined_df_prelim = pd.concat([global_param_df, phasewise_param_df]) else: combined_df_prelim = global_param_df # add explanation column and reorder columns combined_df = pd.merge(param_description_df,combined_df_prelim) combined_df = \ combined_df[['Parameter', 'Value', 'PhaseNum', 'Explanation']] # convert lists in Parameter to semicolon-joined strings combined_df.Value = combined_df.Value.map( _unprocess_parameter_vals ) combined_df.to_csv(setup_file_out_path, index = False) # load dataframe of parameters and descriptions PIE_package_path = os.path.abspath(os.path.dirname(__file__)) parameter_file = os.path.join( PIE_package_path, 'PIE_data', 'param_descriptions.csv' ) # convert strings to int where possible, and convert values # separated by semicolon to lists param_description_df = pd.read_csv( parameter_file, converters = {'Default': _process_parameter_vals}, na_filter = False ) # list fields that must be specified in analysis config required_fields_general = \ ['fluor_channel_scope_labels', 'fluor_channel_names', 'fluor_channel_thresholds', 'fluor_channel_timepoints', 'timepoint_spacing', 'hole_fill_area', 'cleanup', 'perform_registration', 'max_proportion_exposed_edge', 'cell_intensity_num', 'input_path', 'output_path', 'im_file_extension', 'label_order_list', 'max_xy_position_num', 'first_timepoint', 'max_timepoint_num', 'first_xy_position', 'extended_display_positions', 'timepoint_label_prefix', 'position_label_prefix', 'main_channel_label', 'main_channel_imagetype', 'im_format', 'linked_phase', 'max_area_pixel_decrease', 'max_area_fold_decrease', 'max_area_fold_increase', 'min_colony_area', 'max_colony_area', 'min_correlation', 'min_foldX', 'minimum_growth_time', 'growth_window_timepoints', 'min_neighbor_dist', 'max_colony_num'] required_fields_minimal = \ ['fluor_channel_scope_labels', 'fluor_channel_names', 'fluor_channel_thresholds', 'fluor_channel_timepoints', 'input_path', 'first_xy_position', 'extended_display_positions', 'timepoint_label_prefix', 'output_path', 'im_file_extension', 'label_order_list', 'max_xy_position_num', 'position_label_prefix', 'im_format', 'linked_phase'] class _ImageRetriever(object): ''' Retrieves image for current position, channel, timepoint ''' def get_image(self, timepoint, position, channel_label): ''' Returns single cv2 image for current timepoint, position, and channel_label ''' pass class _IndivImageRetriever(_ImageRetriever): ''' Retrieves image for current position, channel, timepoint for images saved as individual files for every timepoint/color ''' def get_image(self, **kwargs): ''' Returns single cv2 image from current im_filepath (Doesn't use timepoint or channel information passed to it) ''' ### !!! NEEDS UNITTEST image = cv2.imread(kwargs['im_filepath'], cv2.IMREAD_ANYDEPTH) # cv2.imread returns none if im_filepath doesn't exist return(image) class _StackImageRetriever(_ImageRetriever): ''' Retrieves image for current position, channel, timepoint for images saved as stack of images for every timepoint/color ''' #TODO: Integrate micromanager and NIS elements imagestacks - currently can only read data saved as individual tifs def __init__(self, im_path): pass def get_image(self, **kwargs): ''' Returns single cv2 image for current timepoint, position, and channel_label ''' pass class MinimalAnalysisConfig(object): ''' Handles experimental configuration details in for experiments without timepoints or main channel ''' def __init__(self, phase_num, input_path, output_path, im_file_extension, label_order_list, max_xy_position_num, position_label_prefix, fluor_channel_df, im_format, extended_display_positions, timepoint_label_prefix, xy_position_vector): ''' Reads setup_file and creates analysis configuration ''' # max timepoint number self.max_timepoint_num = 1 # specify phase self.phase_num = phase_num # max xy position label self.max_xy_position_num = int(max_xy_position_num) # path of input images self.input_path = input_path # path of output image folder self.output_path = output_path # file extension of input images self.im_file_extension = im_file_extension.strip(punctuation) # labels used for xy position self.position_label_prefix = position_label_prefix # labels used for timepoint number self.timepoint_label_prefix = timepoint_label_prefix self.fluor_channel_df = fluor_channel_df # column names: fluor_channel_label, # fluor_channel_column_name, fluor_threshold # save order in which time, position, channel labels are listed self.label_order_list = label_order_list self._check_label_order_list() # set up folder to save outputs self._create_output_paths() # set up list of possible xy positions self.xy_position_vector = xy_position_vector # find size of images self._find_im_size() # set up image retriever depending on im_format if im_format == 'individual': self.image_retriever = _IndivImageRetriever() else: raise ValueError('image format ' + im_format + ' not recognized') if isinstance(extended_display_positions, list): self.extended_display_positions = extended_display_positions else: self.extended_display_positions = [int(extended_display_positions)] def __eq__(self, other): identical_vars = self.__dict__ == other.__dict__ identical_class = self.__class__ == other.__class__ return(identical_vars and identical_class) def _check_fluor_channel_label_spec(self): ''' Check whether there are fluorescent channels that should have labels in filenames ''' fluor_channel_labels_specified = \ len(self.fluor_channel_df.index)>0 and ( len(self.fluor_channel_df.index)>1 or any(self.fluor_channel_df.fluor_channel_label != '') or any(pd.notnull(self.fluor_channel_df.fluor_channel_label)) ) return(fluor_channel_labels_specified) def _check_label_order_list(self): ''' Check that only elements specified in label_order_list have prefixes (i.e. are expected to be in filenames) ''' if self.timepoint_label_prefix and \ 'timepoint' not in self.label_order_list: raise ValueError( "'timepoint' missing from label_order_list; either include it, " "or set timepoint_label_prefix to a blank value" ) if self.position_label_prefix and \ 'position' not in self.label_order_list: raise ValueError( "'position' missing from label_order_list; either include it, " "or set position_label_prefix to a blank value" ) fluor_channel_labels_specified = self._check_fluor_channel_label_spec() if fluor_channel_labels_specified and \ 'channel' not in self.label_order_list: raise ValueError( "'channel' missing from label_order_list; either include it, " "or don't specify any fluorescent channels with " "fluor_channel_scope_labels" ) def _create_output_paths(self): ''' Creates output paths for phase data, and sets output paths for growth rate and colony property dataframes ''' self._create_phase_output() self.combined_gr_write_path = \ os.path.join(self.output_path, 'growth_rates_combined.csv') self.combined_tracked_properties_write_path = \ os.path.join(self.output_path, 'colony_properties_combined.csv') self.col_properties_output_folder = \ os.path.join(self.output_path, 'positionwise_colony_properties') self.movie_folder = \ os.path.join(self.output_path, 'movies') try: os.makedirs(self.col_properties_output_folder) except: pass def _create_phase_output(self): ''' Creates folder for results of colony properties across phases, as well as within-phase results, if they don't already exist ''' # NEED UNITTEST FOR JUST THIS METHOD? self.phase_output_path = os.path.join(self.output_path, ('phase_' + str(self.phase_num))) try: os.makedirs(self.phase_output_path) except: pass self.phase_col_property_mats_output_folder = \ os.path.join(self.phase_output_path, 'positionwise_colony_property_matrices') try: os.makedirs(self.phase_col_property_mats_output_folder) except: pass # create filename for growth rate output file for current phase self.phase_gr_write_path = \ os.path.join(self.phase_output_path, 'growth_rates.csv') # create filename for filtered colony output file for current # phase self.filtered_colony_file = \ os.path.join(self.phase_output_path, 'filtered_colonies.csv') def _find_im_size(self): ''' Assumes all images are the same size ''' # find image files in self.input_path im_files = [ f for f in os.listdir(self.input_path) if f.endswith(self.im_file_extension) ] # open *some* input image im_to_use = im_files[0] self.size_ref_im = im_to_use # NB: Pillow doesn't open jpegs saved through matlab with weird # bitdepths, i.e. in old matlab PIE code with Image.open(os.path.join(self.input_path,im_to_use)) as im: self.im_width, self.im_height = im.size def _reformat_values(self, int_to_format, max_val_num): ''' Returns int_to_format as string, padded with 0s to match the number of digits in max_val_num If int_to_format is None, returns empty string If int_to_format is special character #, returns a string with '#' repeated the same number of times as digits in max_val_num If int_to_format is special character *, returns a string of a glob expression specifying 0-9 repeated the same number of times as digits in max_val_num ''' ### !!! NEEDS UNITTEST digit_num = np.ceil(np.log10(max_val_num+1)).astype(int) if int_to_format is None: formatted_string = '' elif int_to_format == '#': formatted_string = '#'*digit_num elif int_to_format == '*': formatted_string = '[0-9]'*digit_num else: formatted_string = '{:0>{}d}'.format(int_to_format, digit_num) return(formatted_string) def generate_filename(self, timepoint, position, channel_label): ''' Returns filename for image file given timepoint, position, channel_label, as well as its image label (filename without extension) If timepoint, position, or channel_label is None, they are not included If timepoint or position is special character #, time/position digits are replaced with # repeated the appropriate number of times If timepoint or position is special character *, time/position digits are replaced with a glob expression searching for a digit present the correct number of times ''' ### !!! NEEDS UNITTEST im_label = self.create_file_label(timepoint, position, channel_label) im_filepath = os.path.join(self.input_path, im_label + '.' + self.im_file_extension) return(im_filepath, im_label) def create_file_label(self, timepoint, position, channel_label): ''' Creates label for image filename, concatenating formatted timepoint, xy position, and provided channel label in the correct order If timepoint, position, or channel_label is None, they are not included If timepoint or position is special character #, time/position digits are replaced with # repeated the appropriate number of times If timepoint or position is special character *, time/position digits are replaced with a glob expression searching for a digit present the correct number of times ''' ### !!! NEEDS UNITTEST current_timepoint_str = str(self.timepoint_label_prefix) + \ self._reformat_values(timepoint, self.max_timepoint_num) current_position_str = str(self.position_label_prefix) + \ self._reformat_values(position, self.max_xy_position_num) current_point_label_dict = \ {'timepoint': current_timepoint_str, 'channel': channel_label, 'position': current_position_str} file_label = '' # loop through ordered list of labels and append correct info to # filename one-by-one for label_key in self.label_order_list: current_label = current_point_label_dict[label_key] # current label may be np.nan if channel not specified if isinstance(current_label, str) and current_label != '': file_label = file_label + current_point_label_dict[label_key] return(file_label) def get_image(self, timepoint, channel): ''' Returns an image at current xy position for timepoint and channel, as well as the image's 'image label' (filename without extension) and the time (in seconds) at which it was taken ''' ### !!! NEEDS UNITTEST im_filepath, im_label = \ self.generate_filename(timepoint, self.xy_position_idx, channel) image = self.image_retriever.get_image(im_filepath = im_filepath, timepoint = timepoint, channel = channel) # get image time if image is None or timepoint is None: image_time = None else: # if timepoint dict exists, get time value from there; # otherwise, get it from the file modification date if self.timepoint_dict: image_time = self.timepoint_dict[timepoint] else: image_time = os.path.getmtime(im_filepath) return(image, im_label, image_time) def set_xy_position(self, xy_position_idx): ''' Sets the xy position to be used by the analysis config ''' ### !!! NEEDS UNITTEST if xy_position_idx not in self.xy_position_vector: raise IndexError('Unexpected xy position index ' + str(xy_position_idx) + ' in phase ' + str(self.phase_num)) # current position being imaged self.xy_position_idx = xy_position_idx # determine wether non-essential info (threshold plot outputs, # boundary images, etc) need to be saved for this experiment self.save_extra_info = \ xy_position_idx in self.extended_display_positions # create filename for tracked colony properties output file for # current xy position self.tracked_properties_write_path = \ os.path.join(self.col_properties_output_folder, 'xy_' + str(xy_position_idx) + '_col_props_with_tracking_pos.parquet') class AnalysisConfig(MinimalAnalysisConfig): ''' Handles experimental configuration details ''' def __init__(self, phase_num, hole_fill_area, cleanup, perform_registration, max_proportion_exposed_edge, cell_intensity_num, input_path, output_path, im_file_extension, label_order_list, max_xy_position_num, first_timepoint, max_timepoint_num, timepoint_spacing, timepoint_label_prefix, position_label_prefix, main_channel_label, main_channel_imagetype, fluor_channel_df, im_format, extended_display_positions, xy_position_vector, minimum_growth_time, growth_window_timepoints, max_area_pixel_decrease, max_area_fold_decrease, max_area_fold_increase, min_colony_area, max_colony_area, min_correlation, min_foldX, min_neighbor_dist, max_colony_num): ''' Reads setup_file and creates analysis configuration ''' # set up channel labels self.main_channel_label = main_channel_label super(AnalysisConfig, self).__init__( phase_num, input_path, output_path, im_file_extension, label_order_list, max_xy_position_num, position_label_prefix, fluor_channel_df, im_format, extended_display_positions, timepoint_label_prefix, xy_position_vector ) # max timepoint number self.max_timepoint_num = int(max_timepoint_num) # specify image analysis parameters self.hole_fill_area = float(hole_fill_area) self.cleanup = bool(cleanup) self.perform_registration = bool(perform_registration) self.max_proportion_exposed_edge = float(max_proportion_exposed_edge) self.cell_intensity_num = int(cell_intensity_num) # specify growth rate analysis parameters self.minimum_growth_time = int(minimum_growth_time) growth_window_timepoint_int = int(growth_window_timepoints) if growth_window_timepoint_int == 0: self.growth_window_timepoints = self.max_timepoint_num else: self.growth_window_timepoints = growth_window_timepoint_int self.max_area_pixel_decrease = float(max_area_pixel_decrease) self.max_area_fold_decrease = float(max_area_fold_decrease) self.max_area_fold_increase = float(max_area_fold_increase) self.min_colony_area = float(min_colony_area) self.max_colony_area = float(max_colony_area) self.min_correlation = float(min_correlation) self.min_foldX = float(min_foldX) self.min_neighbor_dist = float(min_neighbor_dist) self.max_colony_num = float(max_colony_num) # set up dictionary of timepoint times self._set_up_timevector(timepoint_spacing, first_timepoint) # find time of first existing file self._find_first_timepoint() # specify type of image ('bright' or 'dark') that is in # the main channel self.main_channel_imagetype = main_channel_imagetype self._run_parameter_tests() def _check_fluor_channel_label_spec(self): ''' Check whether there are fluorescent channels that should have labels in filenames ''' fluor_channel_labels_specified = \ self.main_channel_label or ( len(self.fluor_channel_df.index)>0 and ( len(self.fluor_channel_df.index)>1 or any(self.fluor_channel_df.fluor_channel_label != '') or any(pd.notnull( self.fluor_channel_df.fluor_channel_label )) ) ) return(fluor_channel_labels_specified) def _set_up_timevector(self, timepoint_spacing, first_timepoint): ''' Sets up a dictionary of timepoint times, in seconds, at which images were taken, if such information is provided timepoint spacing can be: a vector of seconds at each timepoint a single number of the elapsed seconds between timepoints None, in which case this information is taken from file modification time Also creates a list of timepoints ''' ### !!! NEEDS UNITTEST self.timepoint_list = \ range(first_timepoint, (self.max_timepoint_num + 1)) if type(timepoint_spacing) is list: self.timepoint_dict = \ dict(zip(self.timepoint_list, timepoint_spacing)) elif type(timepoint_spacing) is int or type(timepoint_spacing) is float: timepoint_spacing_vector = \ list(np.array(self.timepoint_list, dtype = float) * timepoint_spacing) self.timepoint_dict = \ dict(zip(self.timepoint_list, timepoint_spacing_vector)) elif timepoint_spacing is None: self.timepoint_dict = None else: raise TypeError('timepoint_spacing must be either a list of ' + 'numbers of same length as the number of timepoints in the ' + 'experiment, a single integer/float, or None') def _find_first_timepoint(self): ''' Finds and writes the time of the first timepoint of this imaging phase ''' ### !!! NEEDS UNITTEST first_timepoint_file = \ os.path.join(self.phase_output_path, 'first_timepoint_time.txt') try: with open(first_timepoint_file) as f: self.first_timepoint_time = int(f.readline()) except: if self.timepoint_dict is None: # if no timepoint dict, find the modification time of # the first image captured in this phase self.first_timepoint_time = np.inf for current_file in os.listdir(self.input_path): if current_file.endswith(self.im_file_extension): current_time = \ os.path.getmtime(os.path.join(self.input_path, current_file)) self.first_timepoint_time = \ np.min([self.first_timepoint_time, current_time]) else: self.first_timepoint_time = \ self.timepoint_dict[self.timepoint_list[0]] # write to text file with open(first_timepoint_file, 'w') as f: f.write('%d' % self.first_timepoint_time) def _run_parameter_tests(self): ''' Runs tests to ensure certain parameters have correct values ''' if self.min_colony_area < 0: raise ValueError('min_colony_area must be 0 or more') def get_position_colony_data_tracked_df(self, remove_untracked = False): ''' Reads and returns tracked colony properties for the current xy position If remove_untracked is true, removes any rows with missing time_tracking_id (corresponding to colonies that weren't tracked because e.g. they are a minor piece of a broken-up colony) ''' pos_tracked_col_prop_df = \ pd.read_parquet(self.tracked_properties_write_path) if remove_untracked: pos_tracked_col_prop_df = \ pos_tracked_col_prop_df[ pos_tracked_col_prop_df.time_tracking_id.notna()] return(pos_tracked_col_prop_df) def get_colony_data_tracked_df(self, remove_untracked = False, filter_by_phase = True): ''' Reads and returns dataframe of tracked phase colony properties output If remove_untracked is True, removes any rows with missing time_tracking_id (corresponding to colonies that weren't tracked because e.g. they are a minor piece of a broken-up colony) ''' colony_properties_df_total = \ pd.read_csv(self.combined_tracked_properties_write_path) if filter_by_phase: colony_properties_df = colony_properties_df_total[ colony_properties_df_total.phase_num == self.phase_num] else: colony_properties_df = colony_properties_df_total if remove_untracked and not colony_properties_df.empty: colony_properties_df = \ colony_properties_df[ colony_properties_df.time_tracking_id.notna()] return(colony_properties_df) def get_gr_data(self): ''' Reads and returns dataframe of growth rates ''' gr_df = pd.read_csv(self.combined_gr_write_path) return(gr_df) def get_property_mat_path(self, col_property): ''' Gets path to property matrix ''' write_path = os.path.join(self.phase_col_property_mats_output_folder, (col_property + '_property_mat.csv')) return(write_path) class _AnalysisConfigFileProcessor(object): ''' Reads an analysis config csv file and creates a dictionary with an AnalysisConfig object for each phase of the experiment; for each phase, the 0 position in the list stored in the dictionary is the phase analysis config, and the 1 position is the postphase analysis config ''' # TODO: Maybe need some safety checks to see that things you'd # expect to be the same across all phases (e.g. position numbers) # actually are? def __init__(self): # set default parameter values to be used for every phase; any # of these that are different in the setup file will be # modiefied based on that # don't have defaults for 'required' parameters param_default_df = param_description_df.loc[ param_description_df.Type != 'required' ] self._default_param_ser = pd.Series( data = param_default_df.Default.to_list(), index = param_default_df.Parameter.to_list() ) def _set_global_vals(self): ''' Check that parameters in config file related to number of imaging positions, analysis output, and format in which input images are saved apply across all phases, and set them as attributes of self ''' ### !!! NEEDS UNITTEST! required_global_params = \ param_description_df.Parameter[ param_description_df.RequiredGlobal ].to_list() global_param_set = set(self._global_param_ser.index) if not set(required_global_params).issubset(global_param_set): raise ValueError(( 'The following parameters must have PhaseNum set to "all",' ' or be identical across all phases: {0}\nOf these, {1} ' 'differs among phases.').format( ', '.join(required_global_params), ', '.join(list(set.difference( set(required_global_params), global_param_set ))) ) ) self.output_path = self._global_param_ser.output_path self.im_format = self._global_param_ser.im_format self.max_xy_position_num = \ self._global_param_ser.max_xy_position_num # set up list of possible xy positions self.xy_position_vector = \ range(self._global_param_ser.first_xy_position, (self.max_xy_position_num + 1)) if not self._global_param_ser.extended_display_positions: self.extended_display_positions = [] elif isinstance( self._global_param_ser.extended_display_positions, int): self.extended_display_positions = [ self._global_param_ser.extended_display_positions] else: self.extended_display_positions = \ self._global_param_ser.extended_display_positions def _check_phase_numbers(self, analysis_config_df_prelim): ''' Checks that PhaseNum column contains only 'all' or integers, throws warning about dropping any non-blanks If PhaseNum isn't specified at all, sets it to '1' for all rows Removes any columns where PhaseNum or Parameter not specified correctly ''' if not 'PhaseNum' in analysis_config_df_prelim.columns: analysis_config_df_prelim['PhaseNum'] = str(1) phase_num_vals = np.array([ phase.lower().strip() for phase in analysis_config_df_prelim.PhaseNum ]) phase_num_pass_bool = np.array([ phase.isdigit() or phase=='all' for phase in phase_num_vals ]) phase_num_fail_vals = phase_num_vals[~phase_num_pass_bool] if any(phase_num_fail_vals!=''): drop_phases = \ list(np.unique(phase_num_fail_vals[phase_num_fail_vals!=''])) warnings.warn(( "PhaseNum may only be 'all' or an integer; dropping disallowed" " phases {0}" ).format(str(drop_phases)), UserWarning) # only keep rows with allowed phase num drop_indices = analysis_config_df_prelim.index[np.logical_or( ~phase_num_pass_bool, analysis_config_df_prelim.Parameter == '' )] analysis_config_df_prelim.drop(index = drop_indices, inplace = True) return(analysis_config_df_prelim) def _check_req_completeness(self, setup_ser, required_fields): ''' Checks whether all parameters in setup_ser are present in required_fields; if not, raises error ''' missing_fields = \ set.difference(set(required_fields), set(setup_ser.index)) if len(missing_fields) > 0: raise ValueError(( 'Missing required fields {0} in PhaseNum {1}; ' 'if your experiment has multiple phases, check that ' 'you have specified every parameter for every phase (either ' 'individually or my marking "all" under PhaseNum)' ).format(str(missing_fields), str(setup_ser.name)) ) def _check_extra_params(self, setup_ser, required_fields): ''' Checks whether any parameters are in setup_ser that aren't present in required_fields; if there are, raise warning ''' extra_fields = \ set.difference(set(setup_ser.index), set(required_fields)) if len(extra_fields) > 0: warnings.warn( ('Unused parameters: {0}').format(str(extra_fields)), UserWarning ) setup_ser.drop(list(extra_fields), inplace = True) return(setup_ser) def _create_phase_conf_ser( self, template_setup_ser, current_setup_ser, required_fields ): # NEED UNITTEST!!! ''' Generates a pandas series, phase_conf_ser, that inherits parameters from template_setup_ser unless they're also specified in current_setup_ser, in which case the parameters in current_setup_ser are used ''' # take all possible fields from current_setup_ser, get missing # ones from template_setup_ser reqd_template_fields = \ set.difference(set(required_fields), set(current_setup_ser.index)) # create combined series from template fields that are missing # in current_setup_ser, and current_setup_ser template_subset_ser_to_use = \ template_setup_ser[ list( set.intersection( reqd_template_fields, set(template_setup_ser.index) ) ) ] phase_conf_ser = pd.concat( [template_subset_ser_to_use, current_setup_ser] ) return(phase_conf_ser) def _organize_config_df(self, analysis_config_df_prelim): ''' Creates self.analysis_config_df with PhaseNum as columns, and self._global_param_ser that contains values for global params ''' global_param_ser_part, analysis_config_df_indiv = \ _separate_global_params(analysis_config_df_prelim) # define phases indiv_phases = analysis_config_df_indiv.columns.copy().to_list() # create a subset of default parameters for phase-specific # params only default_param_ser_indiv = \ self._default_param_ser.drop(list(set.intersection( set(self._default_param_ser.index), set(global_param_ser_part.index) ))) # for each phase, fill in missing values with defaults analysis_config_dict = dict() # if no linked_phase in any phases, skip over that part if 'linked_phase' in global_param_ser_part.index: if global_param_ser_part.linked_phase == '': self._no_postphase = True elif len(self.analysis_config_df.columns) > 1: raise ValueError( 'If linked_phase is specified for all phases ' + 'simultaneously, it must be left blank') else: self._no_postphase = False for phase in indiv_phases: # get only the parameters specified for the current phase curr_phase_vals_part = analysis_config_df_indiv[phase].dropna() if self._no_postphase or \ (('linked_phase' not in curr_phase_vals_part.index) & (self._default_param_ser.linked_phase in ['', phase])) or \ curr_phase_vals_part.linked_phase in ['', phase]: curr_req_fields = required_fields_general else: curr_req_fields = required_fields_minimal curr_phase_vals_full = self._create_phase_conf_ser( default_param_ser_indiv, curr_phase_vals_part, curr_req_fields ) curr_phase_vals_full = \ self._check_extra_params(curr_phase_vals_full, curr_req_fields) analysis_config_dict[phase] = curr_phase_vals_full analysis_config_df = pd.DataFrame(analysis_config_dict) # again, check for global parameters in analysis_config_df new_global_param_ser_part, self.analysis_config_df = \ _get_global_params_from_phasewise_df(analysis_config_df) # create self._global_param_ser by using default values for any # parameters still missing from both analysis_config_df_indiv # and from global_param_ser_part specified_indiv_phase_default_params = list(set.intersection( set(self.analysis_config_df.index), set(self._default_param_ser.index) )) self._global_param_ser = self._create_phase_conf_ser( self._default_param_ser.drop(specified_indiv_phase_default_params), global_param_ser_part.append(new_global_param_ser_part), required_fields_general ) self._global_param_ser = self._check_extra_params( self._global_param_ser, required_fields_general ) if len(indiv_phases)>0: self.phases = indiv_phases else: self.phases = [1] def _create_fluor_channel_df(self, phase_conf_ser, phase_num): ''' Creates a dataframe from phase_conf_ser with info on every fluorescent channel imaged ''' ### !!! NEED UNITTEST? # create empty df if every fluor property is an empty string list_of_fluor_properties = [phase_conf_ser.fluor_channel_scope_labels, phase_conf_ser.fluor_channel_names, phase_conf_ser.fluor_channel_thresholds, phase_conf_ser.fluor_channel_timepoints] if all([x == '' for x in list_of_fluor_properties]): fluor_channel_df = pd.DataFrame(columns = ['fluor_channel_label', 'fluor_channel_column_name', 'fluor_threshold', 'fluor_timepoint']) else: # create df with a row for every channel # (use np.size here, not len function, to get accurate # lengths for single-string fluor_channel_scope_labels) channel_num = np.size(phase_conf_ser.fluor_channel_scope_labels) fluor_channel_df = \ pd.DataFrame({ 'fluor_channel_label': phase_conf_ser.fluor_channel_scope_labels, 'fluor_channel_column_name': phase_conf_ser.fluor_channel_names, 'fluor_threshold': phase_conf_ser.fluor_channel_thresholds, 'fluor_timepoint': phase_conf_ser.fluor_channel_timepoints}, index = np.arange(0, channel_num)) # raise error if only some fluor properties are empty strings mutually_required_fluor_properties = [ 'fluor_channel_column_name', 'fluor_threshold', 'fluor_timepoint'] for prop in mutually_required_fluor_properties: if '' in fluor_channel_df[prop]: raise ValueError( prop + ' is not set for one of the channels in phase ' + str(phase_num) + '; these values must either all be left blank, or ' 'all filled') # raise error if any non-unique values in columns unique_properties = [ 'fluor_channel_label', 'fluor_channel_column_name'] for prop in unique_properties: if not fluor_channel_df[prop].is_unique: raise ValueError( 'Non-unique values identified in ' + prop + 'for phase ' + str(phase_num) + ': ' + str(fluor_channel_df[prop])) return(fluor_channel_df) def _create_analysis_config(self, phase_num, phase_conf_ser): ''' Creates AnalysisConfig object based on phase_conf_ser, the series corresponding to the Value column of the subset of self.analysis_config_df that applies to the current phase ''' ### NEED UNITTEST FOR JUST THIS METHOD? self._check_req_completeness(phase_conf_ser, required_fields_general) fluor_channel_df = \ self._create_fluor_channel_df(phase_conf_ser, phase_num) # if timepoint spacing tab is empty, set timepoint_spacing to # None (i.e. get info from files) if phase_conf_ser.timepoint_spacing == '': timepoint_spacing = None else: timepoint_spacing = phase_conf_ser.timepoint_spacing # create AnalysisConfig object current_analysis_config = AnalysisConfig( phase_num, phase_conf_ser.hole_fill_area, phase_conf_ser.cleanup, phase_conf_ser.perform_registration, phase_conf_ser.max_proportion_exposed_edge, phase_conf_ser.cell_intensity_num, phase_conf_ser.input_path, phase_conf_ser.output_path, phase_conf_ser.im_file_extension, phase_conf_ser.label_order_list, phase_conf_ser.max_xy_position_num, phase_conf_ser.first_timepoint, phase_conf_ser.max_timepoint_num, timepoint_spacing, phase_conf_ser.timepoint_label_prefix, phase_conf_ser.position_label_prefix, phase_conf_ser.main_channel_label, phase_conf_ser.main_channel_imagetype, fluor_channel_df, phase_conf_ser.im_format, self.extended_display_positions, self.xy_position_vector, phase_conf_ser.minimum_growth_time, phase_conf_ser.growth_window_timepoints, phase_conf_ser.max_area_pixel_decrease, phase_conf_ser.max_area_fold_decrease, phase_conf_ser.max_area_fold_increase, phase_conf_ser.min_colony_area, phase_conf_ser.max_colony_area, phase_conf_ser.min_correlation, phase_conf_ser.min_foldX, phase_conf_ser.min_neighbor_dist, phase_conf_ser.max_colony_num) return(current_analysis_config) def _create_postphase_analysis_config(self, phase_num, phase_conf_ser): ''' Creates MinimalAnalysisConfig object based on phase_conf_ser, the series corresponding to the Value column of the subset of self.analysis_config_df that applies to the current phase ''' ### NEED UNITTEST FOR JUST THIS METHOD? self._check_req_completeness(phase_conf_ser, required_fields_minimal) fluor_channel_df = \ self._create_fluor_channel_df(phase_conf_ser, phase_num) # create MinimalAnalysisConfig object postphase_analysis_config = MinimalAnalysisConfig( phase_num, phase_conf_ser.input_path, phase_conf_ser.output_path, phase_conf_ser.im_file_extension, phase_conf_ser.label_order_list, phase_conf_ser.max_xy_position_num, phase_conf_ser.position_label_prefix, fluor_channel_df, phase_conf_ser.im_format, self.extended_display_positions, phase_conf_ser.timepoint_label_prefix, self.xy_position_vector ) return(postphase_analysis_config) def _create_analysis_config_df(self): ''' Loops through phases and creates a pandas df of AnalysisConfig objects ''' # NEED UNITTEST FOR JUST THIS METHOD? # create a pandas df for storing AnalysisConfig objects analysis_config_obj_df = \ pd.DataFrame({'analysis_config': None, 'postphase_analysis_config': None}, index = self.phases) # create a phase setup series containing the parameters that # apply to all phases for phase_num in self.phases: # get phase setup series containing the parameters that # apply only to the current phase_num # safe to simply concatenate parameter series here because # all defaults should be filled in and all global # parameters separated out if len(self.analysis_config_df.columns)==0 and \ len(self.analysis_config_df.index)==0: # all parameters are global current_phase_setup = self._global_param_ser.copy() else: current_phase_setup = pd.concat([ self._global_param_ser, self.analysis_config_df[phase_num].dropna() ]) current_phase_setup.name = phase_num # set where to store object if self._no_postphase or current_phase_setup.linked_phase in \ ['',phase_num]: storage_phase = phase_num config_type = 'analysis_config' # create AnalysisConfig object from current phase setup ser current_analysis_config = \ self._create_analysis_config( phase_num, current_phase_setup ) elif not ( self.analysis_config_df.at[ 'linked_phase', current_phase_setup.linked_phase ] in ['', current_phase_setup.linked_phase] ): # check that linked_phase doesn't have its own # linked_phase raise ValueError( ( 'Phase {0}\'s linked phase listed as Phase {1}, but ' 'that has its own linked phase.' ).format( str(phase_num),str(current_phase_setup.linked_phase) ) ) else: # treat as postphase storage_phase = current_phase_setup.linked_phase config_type = 'postphase_analysis_config' # create AnalysisConfig object from current phase setup ser current_analysis_config = \ self._create_postphase_analysis_config( phase_num, current_phase_setup ) # store AnalysisConfig object in pandas df analysis_config_obj_df.at[storage_phase, config_type] = \ current_analysis_config # in case any phase rows are empty (because those phases are # child phases of other phases), remove rows with all None analysis_config_obj_df.dropna(0, how = 'all', inplace = True) return(analysis_config_obj_df) def _check_file_existance(self, analysis_config_obj_df): """ Print expected generic input file for each phase and print warning if no expected input files found """ for phase_num, row in analysis_config_obj_df.iterrows(): analysis_config = row.analysis_config generic_file, _ = analysis_config.generate_filename( '#', '#', analysis_config.main_channel_label ) glob_filename, _ = analysis_config.generate_filename( '*', '*', analysis_config.main_channel_label ) file_expect_str = \ "Expected input file location and format for main channel " + \ "(colony recogntion) images from phase {phase_num} is:\n" + \ "{generic_file}" print(file_expect_str.format(phase_num=phase_num,generic_file=generic_file)) curr_files = glob.glob(glob_filename) if len(curr_files)==0: warnings.warn( f"No expected main channel files found for phase {phase_num}" ) def process_analysis_config_file(self, analysis_config_path): ''' Reads csv file in analysis_config_path and creates pandas df of AnalysisConfig objects for each phase ''' # read in config file # convert strings to int where possible, and convert values # separated by semicolon to lists analysis_config_df_prelim = pd.read_csv( analysis_config_path, dtype = {'PhaseNum': str}, converters = {'Value': _process_parameter_vals}, na_filter = False ) # check file format if not {'Parameter','Value'}.issubset( set(analysis_config_df_prelim.columns) ): raise IndexError( 'Could not find columns Parameter and Value in your' ' setup file, ' + analysis_config_path + '; the most common ' 'cause of this is that your file is not correctly saved in ' 'comma-separated mode. You can check this by opening the file ' 'in a text editor (e.g. wordpad). If unable to resolve this ' 'issue, create a new setup file from scratch using PIE\'s ' 'setup wizard' ) # add PhaseNum if it's not specified # drop rows where PhaseNum or Parameter is not specified correctly analysis_config_df_prelim_phase_filt = \ self._check_phase_numbers(analysis_config_df_prelim) # set up global and phase-specific parameter dfs/series self._organize_config_df(analysis_config_df_prelim_phase_filt) # check that phase for global parameters correctly specified, # and set them as attributes self._set_global_vals() # create df of analysis config objects analysis_config_obj_df = self._create_analysis_config_df() # test that expected files exist self._check_file_existance(analysis_config_obj_df) return(analysis_config_obj_df) class _SetupWizard(object): ''' Queries and holds parameter values for creating setup file ''' def __init__(self): self.param_description_df = param_description_df.set_index('Parameter') params_by_type_df = param_description_df[['Parameter','Type']].groupby('Type')['Parameter'].apply(list) self._param_dict_by_type = dict(params_by_type_df) self._type_list_optional = list(self._param_dict_by_type.keys()) self._type_list_optional.remove('required') self._type_list_optional.remove('postphase') self._type_list_optional_postphase = self._type_list_optional.copy() self._type_list_optional_postphase.remove('fluorescence measurements') required_global_params = \ param_description_df.Parameter[ param_description_df.RequiredGlobal ].to_list() self.required_global_param_df = pd.DataFrame( index = required_global_params, columns = ['Value','PhaseNum'] ) self.required_global_param_df.PhaseNum = 'all' def _get_setup_file_path(self): ''' Query full path to setup file Check that path is a .csv file, and no file already exists there If necessary, create directory that setup file will be in ''' while True: setup_file_path = \ input( "\n" "Enter the full path to the setup file you want to create\n" "Note: if your path contains backslash ('\\') characters " "(e.g. on Windows) you will need to use a double backslash " "instead ('\\\\') when specifying the path\n" "Setup file path: " ) setup_file_extension = os.path.splitext(setup_file_path)[1] if setup_file_extension != '.csv': print('\nSetup file must be a .csv file.') elif os.path.exists(setup_file_path): print('\nA file already exists at this location.') else: setup_file_dir = os.path.dirname(setup_file_path) try: os.makedirs(setup_file_dir) except: pass self.setup_file_path = setup_file_path break def _get_num_main_phases(self): ''' Get the number of colony recognition phases in the experiment ''' while True: num_main_phases = \ input( "\nHow many independent phases of colony recognition " "imaging (brightfield/phase contrast) does your experiment include? " ) try: num_main_phases = int(num_main_phases) if num_main_phases > 0: self.num_main_phases = int(num_main_phases) break else: "\nThe number of phases must be greater than 0.\n" continue except ValueError: print("\nThe number of phases entered must be an integer.\n") continue def _query_param(self, param, skip_default): ''' Get user input for param, using param as key to get Explanation from self.param_description_df If skip_default is False, offers user to press Enter for default value ''' explanation = self.param_description_df.at[param, 'Explanation'] default_val = self.param_description_df.at[param, 'Default'] allow_blank = self.param_description_df.at[param, 'AllowBlank'] if allow_blank: leave_blank_statement = "type 'None' or 'NA' to leave blank\n" else: leave_blank_statement = "" while True: if skip_default: param_input = input(( "\n{0}:\n{1}\n{2}Enter {0}: " ).format(param, explanation, leave_blank_statement)) if param_input.strip().lower() in ['na','nan','none','']: if allow_blank: param_val = '' break else: print('\nMust enter non-blank, non-NA value for '+param) continue else: param_val = param_input.strip() break else: param_input = input(( "\n{0}:\n{1}\npress Enter for default value ({2}); " "{3}Enter {0}: " ).format( param, explanation, default_val, leave_blank_statement )) if param_input.strip().lower() == '': param_val = default_val break elif param_input.strip().lower() in ['na','nan','none']: if allow_blank: param_val = '' break else: print('\nMust enter non-blank, non-NA value for '+param) continue else: param_val = param_input.strip() break return(param_val) def _yes_or_no(self, question_string): ''' Asks a yes or no question, returns True if yes, False if no ''' while True: out_string = input(question_string+'\n[yes/no] ') if out_string.strip().lower() in ['y','yes']: out_bool = True break elif out_string.strip().lower() in ['n','no']: out_bool = False break else: print("\nMust enter 'yes' or 'no'") continue return(out_bool) def _order_params(self, param_list): ''' Reorder params by the order they are found in param_description_df.Parameter ''' sorted_params = sorted( param_list, key = param_description_df.Parameter.to_list().index ) return(sorted_params) def _loop_through_param_type( self, param_type, required_fields, phase_intro_text, skip_default = False ): ''' Get parameter values for parameters whose Type in self.param_description_df corresponds to param_type, and which are in required_fields Return dataframe with parameter values ''' # get list of parameters to query all_curr_param_set = \ set.intersection( set(self._param_dict_by_type[param_type]), set(required_fields) ) global_params = self.required_global_param_df.index filled_global_params = self.required_global_param_df.index[ self.required_global_param_df.Value.notnull() ] curr_params = self._order_params( list(all_curr_param_set - set(filled_global_params)) ) # only ask about modifying parameters if they exist and if they # are not required to enter (i.e. skip_default is False) if len(curr_params) > 0 and not skip_default: curr_default_val_df = \ self.param_description_df.loc[ curr_params ][['Default']] modify_param_question = ( "\nDo you want to modify defaults for any {0} " "parameters?\n{1}" # ).format(param_type, ', '.join(curr_params)) ).format(param_type, str(curr_default_val_df)) modify_params = self._yes_or_no(modify_param_question) else: modify_params = False if (modify_params or skip_default) and len(curr_params) > 0: # initialize df with parameter values current_param_df = pd.DataFrame( columns = ['Value'], index = list(set(curr_params)-set(global_params)) ) # query user for each parameter value print(phase_intro_text) for param in curr_params: if param in global_params: self.required_global_param_df.at[param, 'Value'] = \ self._query_param(param, skip_default) else: current_param_df.at[param, 'Value'] = \ self._query_param(param, skip_default) else: current_param_df = pd.DataFrame(columns = ['Value']) return(current_param_df) def _ordinal(self, num): ''' Converts number to ordinal (e.g. 111 to '111th', etc) ''' num_str = str(num) if num > 9: secondToLastDigit = num_str[-2] if secondToLastDigit == '1': return(num_str+'th') lastDigit = num % 10 if (lastDigit == 1): return(num_str+'st') elif (lastDigit == 2): return(num_str+'nd') elif (lastDigit == 3): return(num_str+'rd') else: return(num_str+'th') def _get_global_params(self): ''' Get parameter values that are required to be global ''' phase_preintro_text = 'For ALL imaging phases:' phase_intro_text = ( '\n{0}\n{1}' ).format(phase_preintro_text, '-'*len(phase_preintro_text)) required_fields_global = list(set.intersection( set(required_fields_general), set(self.required_global_param_df.index) )) # don't read output param_df because it should be empty # only self.required_global_param_df should get filled self._loop_through_param_type( 'required', required_fields_global, phase_intro_text, skip_default = True ) for param_type in self._type_list_optional: self._loop_through_param_type( param_type, required_fields_global, phase_intro_text ) def _get_regular_phase_params(self, mainphase_counter_ordinal): ''' Get parameter values for regular experimental phase (with brightfield/phase-contrast images to segment) ''' phase_preintro_text = ( 'For the {0}main imaging phase:' ).format(mainphase_counter_ordinal) phase_intro_text = ( '\n{0}\n{1}' ).format(phase_preintro_text, '-'*len(phase_preintro_text)) param_df_req = \ self._loop_through_param_type( 'required', required_fields_general, phase_intro_text, skip_default = True ) param_df_list = [param_df_req] for param_type in self._type_list_optional: curr_param_df = \ self._loop_through_param_type( param_type, required_fields_general, phase_intro_text ) param_df_list.append(curr_param_df) curr_phase_param_df =
pd.concat(param_df_list)
pandas.concat
import sys import pytz import hashlib import numpy as np import pandas as pd from datetime import datetime def edit_form_link(link_text='Submit edits'): """Return HTML for link to form for edits""" return f'<a href="https://docs.google.com/forms/d/e/1FAIpQLScw8EUGIOtUj994IYEM1W7PfBGV0anXjEmz_YKiKJc4fm-tTg/viewform">{link_text}</a>' def add_google_analytics(input_html): """ Return HTML with Google Analytics block added """ ga_block = """ <!-- Global site tag (gtag.js) - Google Analytics --> <script async src="https://www.googletagmanager.com/gtag/js?id=UA-173043454-1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-173043454-1'); </script> """ output_html = input_html.replace('<!-- replace with google analytics -->', ga_block) return output_html def add_geojson(shape_gdf, field_name, field_value, input_html): """ Add a GeoJSON feature as a Javascript variable to an HTML string This variable will be used to calculate the bounds of the map """ shape_row = shape_gdf[shape_gdf[field_name] == field_value].copy() shape_geo = shape_row.geometry.iloc[0] geo_bounds = shape_geo.boundary[0].xy output_string = '[[' for idx, value in enumerate(geo_bounds[0]): if idx > 0: output_string += ',' output_string += '[' x = geo_bounds[0][idx] output_string += '{}'.format(x) y = geo_bounds[1][idx] output_string += ', {}'.format(y) output_string += ']\n' output_string += ']]' output_html = input_html.replace('REPLACE_WITH_XY', output_string) return output_html def dc_coordinates(): """Return coordinates for a DC-wide map""" dc_longitude = -77.016243706276569 dc_latitude = 38.894858329321485 dc_zoom_level = 10.3 return dc_longitude, dc_latitude, dc_zoom_level def anc_names(anc_id): """ Return formatted ANC names """ ancs = pd.read_csv('data/ancs.csv') anc_upper = 'ANC' + anc_id anc_lower = anc_upper.lower() anc_neighborhoods = ancs[ancs['anc_id'] == anc_id]['neighborhoods'].values[0] return anc_upper, anc_lower, anc_neighborhoods def assemble_divo(): """ Return DataFrame with one row per SMD and various stats about each SMD's ranking divo = district-votes """ results = pd.read_csv('data/results.csv') districts = pd.read_csv('data/districts.csv') votes_per_smd = pd.DataFrame(results.groupby('smd_id').votes.sum()).reset_index() # Calculate number of SMDs in each Ward and ANC smds_per_ward = pd.DataFrame(districts.groupby('ward').size(), columns=['smds_in_ward']).reset_index() smds_per_anc = pd.DataFrame(districts.groupby('anc_id').size(), columns=['smds_in_anc']).reset_index() divo = pd.merge(districts, votes_per_smd, how='inner', on='smd_id') divo = pd.merge(divo, smds_per_ward, how='inner', on='ward') divo = pd.merge(divo, smds_per_anc, how='inner', on='anc_id') divo['smds_in_dc'] = len(districts) # Rank each SMD by the number of votes recorded for ANC races within that SMD # method = min: assigns the lowest rank when multiple rows are tied divo['rank_dc'] = divo['votes'].rank(method='min', ascending=False) divo['rank_ward'] = divo.groupby('ward').votes.rank(method='min', ascending=False) divo['rank_anc'] = divo.groupby('anc_id').votes.rank(method='min', ascending=False) # Create strings showing the ranking of each SMD within its ANC, Ward, and DC-wide divo['string_dc'] = divo.apply( lambda row: f"{make_ordinal(row['rank_dc'])} out of {row['smds_in_dc']} SMDs", axis=1) divo['string_ward'] = divo.apply( lambda row: f"{make_ordinal(row['rank_ward'])} out of {row['smds_in_ward']} SMDs", axis=1) divo['string_anc'] = divo.apply( lambda row: f"{make_ordinal(row['rank_anc'])} out of {row['smds_in_anc']} SMDs", axis=1) average_votes_in_dc = divo.votes.mean() average_votes_by_ward = divo.groupby('ward').votes.mean() average_votes_by_anc = divo.groupby('anc_id').votes.mean() return divo def list_commissioners(status=None, date_point=None): """ Return dataframe with list of commissioners by status Options: status=None (all statuses returned) -- default status='former' status='current' status='future' date_point=None -- all statuses calculated from current DC time (default) date_point=(some other datetime) -- all statuses calculated from that datetime """ commissioners = pd.read_csv('data/commissioners.csv') if not date_point: tz = pytz.timezone('America/New_York') date_point = datetime.now(tz) commissioners['start_date'] = pd.to_datetime(commissioners['start_date']).dt.tz_localize(tz='America/New_York') commissioners['end_date'] = pd.to_datetime(commissioners['end_date']).dt.tz_localize(tz='America/New_York') # Create combined field with start and end dates, showing ambiguity commissioners['start_date_str'] = commissioners['start_date'].dt.strftime('%B %-d, %Y') commissioners['end_date_str'] = commissioners['end_date'].dt.strftime('%B %-d, %Y') # We don't have exact dates when these commissioners started, so show "circa 2019" commissioners.loc[commissioners['start_date_str'] == 'January 2, 2019', 'start_date_str'] = '~2019' # Combine start and end dates into one field commissioners['term_in_office'] = commissioners['start_date_str'] + ' to ' + commissioners['end_date_str'] commissioners['is_former'] = commissioners.end_date < date_point commissioners['is_current'] = (commissioners.start_date < date_point) & (date_point < commissioners.end_date) commissioners['is_future'] = date_point < commissioners.start_date # Test here that there is, at most, one "Current" and one "Future" commissioner per SMD. # Multiple "Former" commissioners is allowed smd_count = commissioners.groupby('smd_id')[['is_former', 'is_current', 'is_future']].sum().astype(int) # smd_count.to_csv('smd_commissioner_count.csv') if smd_count['is_current'].max() > 1 or smd_count['is_future'].max() > 1: raise Exception('Too many commissioners per SMD') if status: commissioner_output = commissioners[commissioners['is_' + status]].copy() else: commissioner_output = commissioners.copy() return commissioner_output def build_results_candidate_people(): """ Return DataFrame containing results, candidates, and people joined """ people = pd.read_csv('data/people.csv') candidates = pd.read_csv('data/candidates.csv') results = pd.read_csv('data/results.csv') results_candidates = pd.merge( results #[['candidate_id', 'person_id', 'smd_id']] , candidates #[['candidate_id']] , how='left' , on=['candidate_id', 'smd_id'] ) rcp = pd.merge(results_candidates, people, how='left', on='person_id') # results-candidates-people # Determine who were incumbent candidates at the time of the election election_date = datetime(2020, 11, 3, tzinfo=pytz.timezone('America/New_York')) commissioners = list_commissioners(status=None) incumbents = commissioners[(commissioners.start_date < election_date) & (election_date < commissioners.end_date)] incumbent_candidates = pd.merge(incumbents, candidates, how='inner', on='person_id') incumbent_candidates['is_incumbent'] = True rcp = pd.merge(rcp, incumbent_candidates[['candidate_id', 'is_incumbent']], how='left', on='candidate_id') rcp['is_incumbent'] = rcp['is_incumbent'].fillna(False) # Sort by SMD ascenting, Votes descending rcp = rcp.sort_values(by=['smd_id', 'votes'], ascending=[True, False]) # Placeholder name for all write-in candidates. # We do not know the combination of name and vote count for write-in candidates # We only know the name of the write-in winners rcp['full_name'] = rcp['full_name'].fillna('Write-ins combined') rcp['write_in_winner_int'] = rcp['write_in_winner'].astype(int) return rcp def build_district_comm_commelect(): """ Build DataFrame showing commissioner and commissioner-elect for every district """ districts = pd.read_csv('data/districts.csv') commissioners = list_commissioners(status=None) people = pd.read_csv('data/people.csv') cp = pd.merge(commissioners, people, how='inner', on='person_id') # left join to both current commissioners and commissioners-elect cp_current = pd.merge(districts, cp.loc[cp['is_current'], ['smd_id', 'person_id', 'full_name']], how='left', on='smd_id') cp_current = cp_current.rename(columns={'full_name': 'current_commissioner', 'person_id': 'current_person_id'}) cp_current_future = pd.merge(cp_current, cp.loc[cp['is_future'], ['smd_id', 'person_id', 'full_name']], how='left', on='smd_id') cp_current_future = cp_current_future.rename(columns={'full_name': 'commissioner_elect', 'person_id': 'future_person_id'}) # If there is not a current commissioner for the SMD, mark the row as "vacant" cp_current_future['current_commissioner'] = cp_current_future['current_commissioner'].fillna('(vacant)') return cp_current_future def build_smd_html_table(list_of_smds, link_path=''): """ Return an HTML table with one row per district for a given list of SMDs Contains current commissioner and all candidates with number of votes """ rcp = build_results_candidate_people() # Bold the winners in this text field # results_field = 'Candidates and Results (Winner in Bold)' # rcp[results_field] = rcp.apply( # lambda row: # '<strong>{} ({:,.0f} votes)</strong>'.format(row['full_name'], row['votes']) # if row['winner'] # else '{} ({:,.0f} votes)'.format(row['full_name'], row['votes']) # , axis=1 # ) results_field = 'Candidates and Results' rcp[results_field] = rcp.apply( lambda row: '{} ({:,.0f} votes)'.format(row['full_name'], row['votes']) , axis=1 ) # Aggregate results by SMD district_results = rcp.groupby('smd_id').agg({ 'votes': sum , results_field: lambda x: ', '.join(x) , 'write_in_winner_int': sum }) total_votes_display_name = 'ANC Votes' district_results[total_votes_display_name] = district_results['votes'] max_votes_for_bar_chart = district_results[total_votes_display_name].max() district_comm_commelect = build_district_comm_commelect() dcp_results = pd.merge(district_comm_commelect, district_results, how='left', on='smd_id') display_df = dcp_results[dcp_results['smd_id'].isin(list_of_smds)].copy() display_df['SMD'] = ( f'<a href="{link_path}' + display_df['smd_id'].str.replace('smd_','').str.lower() + '.html">' + display_df['smd_id'].str.replace('smd_','') + '</a>' ) display_df['Current Commissioner'] = display_df['current_commissioner'] display_df['Commissioner-Elect'] = display_df['commissioner_elect'] # Append "write-in" to Commissioners-Elect who were write-in candidates display_df.loc[display_df['write_in_winner_int'] == 1, 'Commissioner-Elect'] = display_df.loc[display_df['write_in_winner_int'] == 1, 'Commissioner-Elect'] + ' (write-in)' columns_to_html = ['SMD', 'Current Commissioner'] css_uuid = hashlib.sha224(display_df[columns_to_html].to_string().encode()).hexdigest() + '_' html = ( display_df[columns_to_html] .fillna('') .style # .set_properties( # subset=[results_field] # , **{ # 'text-align': 'left' # , 'width': '700px' # , 'height': '45px' # } # ) # .set_properties( # subset=[total_votes_display_name] # , **{'text-align': 'left'} # ) .set_properties( subset=['Current Commissioner'] , **{'width': '230px', 'text-align': 'left'} # 230px fits the longest commissioner name on one row ) # why is the width in pixels so different between these columns? # .format({total_votes_display_name: '{:,.0f}'}) # .bar( # subset=[total_votes_display_name] # , color='#cab2d6' # light purple # , vmin=0 # , vmax=3116 # ) .set_uuid(css_uuid) .hide_index() .render() ) return html def build_smd_html_table_candidates(list_of_smds, link_path=''): """ Return an HTML table with one row per district for a given list of SMDs Contains current commissioner and all candidates by status """ districts = pd.read_csv('data/districts.csv') commissioners = list_commissioners(status='current') people = pd.read_csv('data/people.csv') candidates = pd.read_csv('data/candidates.csv') candidate_statuses = pd.read_csv('data/candidate_statuses.csv') dc = pd.merge(districts, commissioners, how='left', on='smd_id') dcp = pd.merge(dc, people, how='left', on='person_id') cp = pd.merge(candidates, people, how='inner', on='person_id') cpd = pd.merge(cp, districts, how='inner', on='smd_id') cpds = pd.merge(cpd, candidate_statuses, how='inner', on='candidate_status') dcp['Current Commissioner'] = dcp['full_name'].fillna('(vacant)') display_df = dcp[dcp['smd_id'].isin(list_of_smds)].copy() display_df['SMD'] = ( f'<a href="{link_path}' + display_df['smd_id'].str.replace('smd_','').str.lower() + '.html">' + display_df['smd_id'].str.replace('smd_','') + '</a>' ) # Number of candidates in each SMD # todo: make this a function cps = pd.merge(cp, candidate_statuses, how='inner', on='candidate_status') # Only include active candidates district_candidates = pd.merge(districts, cps[cps['count_as_candidate']].copy(), how='left', on='smd_id') candidate_count = pd.DataFrame(district_candidates.groupby('smd_id')['candidate_id'].count()).reset_index() candidate_count.rename(columns={'candidate_id': 'Number of Candidates'}, inplace=True) display_df = pd.merge(display_df, candidate_count, how='inner', on='smd_id') columns_to_html = ['SMD', 'Current Commissioner', 'Number of Candidates'] cpds['order_status'] = cpds['display_order'].astype(str) + ';' + cpds['candidate_status'] candidates_in_smds = cpds[cpds['smd_id'].isin(list_of_smds)].copy() statuses_in_smds = sorted(candidates_in_smds['order_status'].unique()) for status in statuses_in_smds: status_name = status[status.find(';')+1:] columns_to_html += [status_name] cs_df = candidates_in_smds[candidates_in_smds['order_status'] == status][['smd_id', 'full_name']].copy() cs_smd = cs_df.groupby('smd_id').agg({'full_name': list}).reset_index() cs_smd[status_name] = cs_smd['full_name'].apply(lambda row: ', '.join(row)) display_df = pd.merge(display_df, cs_smd, how='left', on='smd_id') html = ( display_df[columns_to_html] .fillna('') .style .set_uuid('smd_') .hide_index() .render() ) return html def build_district_list(smd_id_list=None, level=0): """ Bulleted list of districts and current commmissioners If smd_id_list is None, all districts are returned If smd_id_list is a list, those SMDs are returned link level: 0: homepage 1: ANC page 2: SMD page """ districts =
pd.read_csv('data/districts.csv')
pandas.read_csv
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # QA queries on new CDR row suppression # # Verify all rows identified for suppression in the deid dataset have been set to null. # # (Query results: ThIS query returned no results.) import urllib import pandas as pd pd.options.display.max_rows = 120 # + tags=["parameters"] # Parameters project_id = "" deid_cdr = "" com_cdr ="" # - # df will have a summary in the end df = pd.DataFrame(columns = ['query', 'result']) # # 1 Verify all fields identified for suppression in the OBSERVATION table have been removed from the table in the deid dataset. query = f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE '%SitePairing%' OR observation_source_value LIKE '%ArizonaSpecific%' OR observation_source_value LIKE 'EastSoutheastMichigan%' OR observation_source_value LIKE 'SitePairing_%' ) SELECT SUM(CASE WHEN value_as_string IS NOT NULL THEN 1 ELSE 0 END) AS n_value_as_string_not_null, SUM(CASE WHEN value_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_value_source_value_not_null, SUM(CASE WHEN observation_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_observation_source_value_not_null FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') if df1.loc[0].sum()==0: df = df.append({'query' : 'Query1 three colmns suppression in observation table', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query1 observation', 'result' : ''}, ignore_index = True) df1 # # 2 Verify all fields identified for suppression in the OBSERVATION table have been removed from the table in the deid dataset. # ## error in new cdr query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE 'PIIName_%' OR observation_source_value LIKE 'PIIAddress_%' OR observation_source_value LIKE 'StreetAddress_%' OR observation_source_value LIKE 'ConsentPII_%' OR observation_source_value LIKE 'TheBasics_CountryBornTextBox' OR observation_source_value LIKE 'PIIContactInformation_Phone' OR observation_source_value LIKE 'Language_SpokenWrittenLanguage' OR observation_source_value LIKE 'SocialSecurity_%' ) SELECT SUM(CASE WHEN value_as_string IS NOT NULL THEN 1 ELSE 0 END) AS n_value_as_string_not_null, SUM(CASE WHEN value_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_value_source_value_not_null, SUM(CASE WHEN observation_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_observation_source_value_not_null FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') if df1.loc[0].sum()==0: df = df.append({'query' : 'Query2 observation', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query2 observation', 'result' : ''}, ignore_index = True) df1 # + query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE 'PIIName_%' OR observation_source_value LIKE 'PIIAddress_%' OR observation_source_value LIKE 'StreetAddress_%' OR observation_source_value LIKE 'ConsentPII_%' OR observation_source_value LIKE 'TheBasics_CountryBornTextBox' OR observation_source_value LIKE 'PIIContactInformation_Phone' OR observation_source_value LIKE 'Language_SpokenWrittenLanguage' OR observation_source_value LIKE 'SocialSecurity_%' ) SELECT distinct observation_source_value,value_source_value, value_as_string FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') df1 # - # # 3 Verify all fields identified for suppression in the OBSERVATION table have been removed from the table in the deid dataset. # ## error in new cdr query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE '%_Signature' OR observation_source_value LIKE 'ExtraConsent__%' ) SELECT SUM(CASE WHEN value_as_string IS NOT NULL THEN 1 ELSE 0 END) AS n_value_as_string_not_null, SUM(CASE WHEN value_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_value_source_value_not_null, SUM(CASE WHEN observation_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_observation_source_value_not_null FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') if df1.loc[0].sum()==0: df = df.append({'query' : 'Query3 observation', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query3 observation', 'result' : ''}, ignore_index = True) df1 # + query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE '%_Signature' OR observation_source_value LIKE 'ExtraConsent__%' ) SELECT distinct observation_source_value,value_source_value, value_as_string FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') df1 # - # # 4 Verify all fields identified for suppression in the OBSERVATION table have been removed from the table in the deid dataset. query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE '%Specific' OR observation_source_value LIKE '%NoneOfTheseDescribeMe%' OR observation_source_value LIKE '%RaceEthnicityNoneOfThese_%' OR observation_source_value LIKE 'NoneOfTheseDescribeMe%' OR observation_source_value LIKE 'WhatTribeAffiliation_%' ) SELECT SUM(CASE WHEN value_as_string IS NOT NULL THEN 1 ELSE 0 END) AS n_value_as_string_not_null, SUM(CASE WHEN value_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_value_source_value_not_null, SUM(CASE WHEN observation_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_observation_source_value_not_null FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=pd.read_gbq(query, dialect='standard') if df1.loc[0].sum()==0: df = df.append({'query' : 'Query4 observation', 'result' : 'PASS'}, ignore_index = True) else: df = df.append({'query' : 'Query4 observation', 'result' : ''}, ignore_index = True) df1 # # 5 Verify all fields identified for suppression in the OBSERVATION table have been removed from the table in the deid dataset. # ## error in new cdr query=f''' WITH df1 AS ( SELECT observation_id FROM `{project_id}.{com_cdr}.observation` WHERE observation_source_value LIKE '%Gender%' OR observation_source_value LIKE '%Sexuality%' OR observation_source_value LIKE '%SexAtBirthNoneOfThese_%' ) SELECT SUM(CASE WHEN value_as_string IS NOT NULL THEN 1 ELSE 0 END) AS n_value_as_string_not_null, SUM(CASE WHEN value_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_value_source_value_not_null, SUM(CASE WHEN observation_source_value IS NOT NULL THEN 1 ELSE 0 END) AS n_observation_source_value_not_null FROM `{project_id}.{deid_cdr}.observation` WHERE observation_id IN (SELECT observation_id FROM df1) AND ((observation_source_value IS NOT NULL) OR (value_source_value IS NOT NULL) OR (value_as_string IS NOT NULL)) ''' df1=
pd.read_gbq(query, dialect='standard')
pandas.read_gbq
#preprocessing script to binned and imputed final data to apply on simple baselines.. import pandas as pd import numpy as np import sys def bin_and_impute(data, bin_width=60, variable_start_index=5): result = [] #list of patients dataframes #set of variables to process: variables = np.array(list(data.iloc[:,variable_start_index:])) #create resample parameter string: bin_width = str(bin_width)+'min' #all distinct icustay ids: id_s = data['icustay_id'].unique() # get unique ids #loop over patients: for icustay_id in id_s: print(f'Processing ID: {icustay_id} ....') pat = data.query( "icustay_id == @icustay_id" ) #select subset of dataframe featuring current icustay_id pat_i = pat.set_index('chart_time', inplace=False) #resampling needs datetime or timedelta format, create dummy timestamp from relative hour: #pat_i.index = pd.to_datetime(pat_i.index, unit='D') #unit='s' pat_i.index =
pd.to_timedelta(pat_i.index, unit='h')
pandas.to_timedelta
import pandas as pd from pandas.testing import assert_frame_equal from sklearn.pipeline import make_pipeline import pytest from sklego.preprocessing import ColumnSelector @pytest.fixture() def df(): return pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [10, 9, 8, 7, 6, 5], "c": ["a", "b", "a", "b", "c", "c"], "d": ["b", "a", "a", "b", "a", "b"], "e": [0, 1, 0, 1, 0, 1], } ) def test_select_two(df): result_df = ColumnSelector(["d", "e"]).fit_transform(df) expected_df = pd.DataFrame( {"d": ["b", "a", "a", "b", "a", "b"], "e": [0, 1, 0, 1, 0, 1]} ) assert_frame_equal(result_df, expected_df) def test_select_one(df): result_df = ColumnSelector(["e"]).fit_transform(df) expected_df = pd.DataFrame({"e": [0, 1, 0, 1, 0, 1]}) assert_frame_equal(result_df, expected_df) def test_select_all(df): result_df = ColumnSelector(["a", "b", "c", "d", "e"]).fit_transform(df) assert_frame_equal(result_df, df) def test_select_none(df): with pytest.raises(ValueError): ColumnSelector([]).fit_transform(df) def test_select_not_in_frame(df): with pytest.raises(KeyError): ColumnSelector(["f"]).fit_transform(df) def test_select_one_in_pipeline(df): pipe = make_pipeline(ColumnSelector(["d"])) result_df = pipe.fit_transform(df) expected_df = pd.DataFrame({"d": ["b", "a", "a", "b", "a", "b"]})
assert_frame_equal(result_df, expected_df)
pandas.testing.assert_frame_equal
from pycox.datasets import metabric, nwtco, support, gbsg, flchain from sklearn.preprocessing import KBinsDiscretizer, LabelEncoder, StandardScaler import numpy as np import pandas as pd import pdb from .utils import LabelTransform def load_data(config): '''load data, return updated configuration. ''' data = config['data'] horizons = config['horizons'] assert data in ["metabric", "nwtco", "support", "gbsg", "flchain", "seer",], "Data Not Found!" get_target = lambda df: (df['duration'].values, df['event'].values) if data == "metabric": # data processing, transform all continuous data to discrete df = metabric.read_df() # evaluate the performance at the 25th, 50th and 75th event time quantile times = np.quantile(df["duration"][df["event"]==1.0], horizons).tolist() cols_categorical = ["x4", "x5", "x6", "x7"] cols_standardize = ['x0', 'x1', 'x2', 'x3', 'x8'] df_feat = df.drop(["duration","event"],axis=1) df_feat_standardize = df_feat[cols_standardize] df_feat_standardize_disc = StandardScaler().fit_transform(df_feat_standardize) df_feat_standardize_disc = pd.DataFrame(df_feat_standardize_disc, columns=cols_standardize) # must be categorical feature ahead of numerical features! df_feat = pd.concat([df_feat[cols_categorical], df_feat_standardize_disc], axis=1) vocab_size = 0 for _,feat in enumerate(cols_categorical): df_feat[feat] = LabelEncoder().fit_transform(df_feat[feat]).astype(float) + vocab_size vocab_size = df_feat[feat].max() + 1 # get the largest duraiton time max_duration_idx = df["duration"].argmax() df_test = df_feat.drop(max_duration_idx).sample(frac=0.3) df_train = df_feat.drop(df_test.index) df_val = df_train.drop(max_duration_idx).sample(frac=0.1) df_train = df_train.drop(df_val.index) # assign cuts labtrans = LabelTransform(cuts=np.array([df["duration"].min()]+times+[df["duration"].max()])) labtrans.fit(*get_target(df.loc[df_train.index])) y = labtrans.transform(*get_target(df)) # y = (discrete duration, event indicator) df_y_train = pd.DataFrame({"duration": y[0][df_train.index], "event": y[1][df_train.index], "proportion": y[2][df_train.index]}, index=df_train.index) df_y_val = pd.DataFrame({"duration": y[0][df_val.index], "event": y[1][df_val.index], "proportion": y[2][df_val.index]}, index=df_val.index) # df_y_test = pd.DataFrame({"duration": y[0][df_test.index], "event": y[1][df_test.index], "proportion": y[2][df_test.index]}, index=df_test.index) df_y_test = pd.DataFrame({"duration": df['duration'].loc[df_test.index], "event": df['event'].loc[df_test.index]}) elif data == "support": df = support.read_df() times = np.quantile(df["duration"][df["event"]==1.0], horizons).tolist() cols_categorical = ["x1", "x2", "x3", "x4", "x5", "x6"] cols_standardize = ['x0', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13'] df_feat = df.drop(["duration","event"],axis=1) df_feat_standardize = df_feat[cols_standardize] df_feat_standardize_disc = StandardScaler().fit_transform(df_feat_standardize) df_feat_standardize_disc = pd.DataFrame(df_feat_standardize_disc, columns=cols_standardize) df_feat = pd.concat([df_feat[cols_categorical], df_feat_standardize_disc], axis=1) vocab_size = 0 for i,feat in enumerate(cols_categorical): df_feat[feat] = LabelEncoder().fit_transform(df_feat[feat]).astype(float) + vocab_size vocab_size = df_feat[feat].max() + 1 # get the largest duraiton time max_duration_idx = df["duration"].argmax() df_test = df_feat.drop(max_duration_idx).sample(frac=0.3) df_train = df_feat.drop(df_test.index) df_val = df_train.drop(max_duration_idx).sample(frac=0.1) df_train = df_train.drop(df_val.index) # assign cuts # labtrans = LabTransDiscreteTime(cuts=np.array([0]+times+[df["duration"].max()])) labtrans = LabelTransform(cuts=np.array([0]+times+[df["duration"].max()])) labtrans.fit(*get_target(df.loc[df_train.index])) # y = labtrans.fit_transform(*get_target(df)) # y = (discrete duration, event indicator) y = labtrans.transform(*get_target(df)) # y = (discrete duration, event indicator) df_y_train = pd.DataFrame({"duration": y[0][df_train.index], "event": y[1][df_train.index], "proportion":y[2][df_train.index]}, index=df_train.index) df_y_val = pd.DataFrame({"duration": y[0][df_val.index], "event": y[1][df_val.index], "proportion":y[2][df_val.index]}, index=df_val.index) # df_y_test = pd.DataFrame({"duration": y[0][df_test.index], "event": y[1][df_test.index], "proportion":y[2][df_test.index]}, index=df_test.index) df_y_test = pd.DataFrame({"duration": df['duration'].loc[df_test.index], "event": df['event'].loc[df_test.index]}) elif data == "seer": PATH_DATA = "./data/seer_processed.csv" df = pd.read_csv(PATH_DATA) times = np.quantile(df["duration"][df["event_breast"]==1.0], horizons).tolist() event_list = ["event_breast", "event_heart"] cols_categorical = ["Sex", "Year of diagnosis", "Race recode (W, B, AI, API)", "Histologic Type ICD-O-3", "Laterality", "Sequence number", "ER Status Recode Breast Cancer (1990+)", "PR Status Recode Breast Cancer (1990+)", "Summary stage 2000 (1998-2017)", "RX Summ--Surg Prim Site (1998+)", "Reason no cancer-directed surgery", "First malignant primary indicator", "Diagnostic Confirmation", "Median household income inflation adj to 2019"] cols_standardize = ["Regional nodes examined (1988+)", "CS tumor size (2004-2015)", "Total number of benign/borderline tumors for patient", "Total number of in situ/malignant tumors for patient",] df_feat = df.drop(["duration","event_breast", "event_heart"],axis=1) df_feat_standardize = df_feat[cols_standardize] df_feat_standardize_disc = StandardScaler().fit_transform(df_feat_standardize) df_feat_standardize_disc = pd.DataFrame(df_feat_standardize_disc, columns=cols_standardize) df_feat = pd.concat([df_feat[cols_categorical], df_feat_standardize_disc], axis=1) vocab_size = 0 for i,feat in enumerate(cols_categorical): df_feat[feat] = LabelEncoder().fit_transform(df_feat[feat]).astype(float) + vocab_size vocab_size = df_feat[feat].max() + 1 # get the largest duraiton time max_duration_idx = df["duration"].argmax() df_test = df_feat.drop(max_duration_idx).sample(frac=0.3) df_train = df_feat.drop(df_test.index) df_val = df_train.drop(max_duration_idx).sample(frac=0.1) df_train = df_train.drop(df_val.index) # assign cuts labtrans = LabelTransform(cuts=np.array([0]+times+[df["duration"].max()])) get_target = lambda df,event: (df['duration'].values, df[event].values) # this datasets have two competing events! df_y_train =
pd.DataFrame({"duration":df["duration"][df_train.index]})
pandas.DataFrame
import os import locale import codecs import nose import numpy as np from numpy.testing import assert_equal import pandas as pd from pandas import date_range, Index import pandas.util.testing as tm from pandas.tools.util import cartesian_product, to_numeric CURRENT_LOCALE = locale.getlocale() LOCALE_OVERRIDE = os.environ.get('LOCALE_OVERRIDE', None) class TestCartesianProduct(tm.TestCase): def test_simple(self): x, y = list('ABC'), [1, 22] result = cartesian_product([x, y]) expected = [np.array(['A', 'A', 'B', 'B', 'C', 'C']), np.array([1, 22, 1, 22, 1, 22])] assert_equal(result, expected) def test_datetimeindex(self): # regression test for GitHub issue #6439 # make sure that the ordering on datetimeindex is consistent x = date_range('2000-01-01', periods=2) result = [Index(y).day for y in cartesian_product([x, x])] expected = [np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])] assert_equal(result, expected) class TestLocaleUtils(tm.TestCase): @classmethod def setUpClass(cls): super(TestLocaleUtils, cls).setUpClass() cls.locales = tm.get_locales() if not cls.locales: raise nose.SkipTest("No locales found") tm._skip_if_windows() @classmethod def tearDownClass(cls): super(TestLocaleUtils, cls).tearDownClass() del cls.locales def test_get_locales(self): # all systems should have at least a single locale assert len(tm.get_locales()) > 0 def test_get_locales_prefix(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test filtering locale prefixes") first_locale = self.locales[0] assert len(tm.get_locales(prefix=first_locale[:2])) > 0 def test_set_locale(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test setting another locale") if LOCALE_OVERRIDE is not None: lang, enc = LOCALE_OVERRIDE.split('.') else: lang, enc = 'it_CH', 'UTF-8' enc = codecs.lookup(enc).name new_locale = lang, enc if not tm._can_set_locale(new_locale): with tm.assertRaises(locale.Error): with tm.set_locale(new_locale): pass else: with tm.set_locale(new_locale) as normalized_locale: new_lang, new_enc = normalized_locale.split('.') new_enc = codecs.lookup(enc).name normalized_locale = new_lang, new_enc self.assertEqual(normalized_locale, new_locale) current_locale = locale.getlocale() self.assertEqual(current_locale, CURRENT_LOCALE) class TestToNumeric(tm.TestCase): def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) with tm.assertRaises(ValueError): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) with tm.assertRaises(ValueError): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) def test_type_check(self): # GH 11776 df = pd.DataFrame({'a': [1, -3.14, 7], 'b': ['4', '5', '6']}) with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df) for errors in ['ignore', 'raise', 'coerce']: with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df, errors=errors) def test_scalar(self): self.assertEqual(pd.to_numeric(1), 1) self.assertEqual(pd.to_numeric(1.1), 1.1) self.assertEqual(pd.to_numeric('1'), 1) self.assertEqual(pd.to_numeric('1.1'), 1.1) with tm.assertRaises(ValueError): to_numeric('XX', errors='raise') self.assertEqual(to_numeric('XX', errors='ignore'), 'XX') self.assertTrue(np.isnan(to_numeric('XX', errors='coerce'))) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values)
tm.assert_numpy_array_equal(res, exp)
pandas.util.testing.assert_numpy_array_equal
import pandas as pd import os from os.path import join, abspath, dirname, isfile from google_trans_new import google_translator from sklearn.model_selection import train_test_split import nlpaug.augmenter.word as naw import spacy from nltk.stem import SnowballStemmer from utils import downloader, exploration, normalization # from preprocessing import get_stopwords def text_comp19_to_df(): """ Returns a pandas Dataframe object with the data of the TextComplexityDE19 dataset """ # Path to relevant csv file csv_path = join( dirname(dirname(dirname(abspath(__file__)))), "data", "TextComplexityDE19/ratings.csv", ) # read in csv file print("Check for TextComplexityDE19/ratings.csv") if isfile(csv_path): print("Reading in TextComplexityDE19/ratings.csv") corpus = pd.read_csv(csv_path, encoding="windows-1252") else: print("Downloading TextComplexityDE19 Dataset") downloader.download_TextComplexityDE19() print("Reading in TextComplexityDE19/ratings.csv") corpus =
pd.read_csv(csv_path, encoding="windows-1252")
pandas.read_csv
from datetime import datetime import pytest from pandas import DataFrame from evidently import ColumnMapping from evidently.analyzers.data_quality_analyzer import DataQualityAnalyzer from evidently.dashboard.widgets.data_quality_features_widget import DataQualityFeaturesWidget from evidently.options import OptionsProvider def sample_data(feature1, feature2, feature3): return [{'feature1': t[0], 'feature2': t[1], 'feature3': t[2]} for t in zip(feature1, feature2, feature3)] @pytest.mark.parametrize( "reference, current, column_mapping", [ (sample_data([1, 1], [1, 1], [1, 1]), sample_data([1, 1], [1, 1], [1, 1]), ColumnMapping()), (sample_data(["1", "1"], [1, 1], [1, 1]), sample_data(["1", "1"], [1, 1], [1, 1]), ColumnMapping()), (sample_data([True, True], [1, 1], [1, 1]), sample_data([True, True], [1, 1], [1, 1]), ColumnMapping()), ]) def test_data_profile_widget_no_exceptions(reference, current, column_mapping): analyzer = DataQualityAnalyzer() analyzer.options_provider = OptionsProvider() results = analyzer.calculate(DataFrame(reference), DataFrame(current), column_mapping) widget = DataQualityFeaturesWidget("test") widget.options_provider = OptionsProvider() widget.calculate(
DataFrame(reference)
pandas.DataFrame
import os import torch from torch.utils.tensorboard import SummaryWriter import pandas as pd import numpy as np # Timing utility from timeit import default_timer as timer from utils.utilities import parse_args, parse_yaml, make_dir import data_loader as dl from transformations import transforms as trfs from models.model_zoo import get_model #from utils.averager import Averager from metrics.metrics import calculate_image_precision def train_model( train_data_loader, valid_data_loader, model, optimizer, num_epochs, path_save_model, writer, lr_scheduler=None ): """ """ scores_dict_train = get_empty_scores_dict(train_data_loader) scores_dict_valid = get_empty_scores_dict(valid_data_loader) history = [] if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') cpu_device = torch.device('cpu') model.to(device) overall_start = timer() n_train_batches = len(train_data_loader) # Main loop for epoch in range(num_epochs): # Keep track of training loss and validation MAP each epoch train_loss = 0.0 # Set to training model.train() start = timer() for ii, (images, targets, image_ids) in enumerate(train_data_loader): print(f"\nEpoch #{epoch} Train Batch #{ii}/{n_train_batches}") images = list(image.to(device) for image in images) targets = [ {k: v.to(device) for k, v in t.items()} for t in targets ] loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) loss_value = losses.item() # Track train loss by multiplying average loss by number of # examples in batch train_loss += loss_value * len(images) optimizer.zero_grad() losses.backward() optimizer.step() # update the learning rate if lr_scheduler is not None: lr_scheduler.step() print(f"\nEpoch #{epoch}: {timer() - start:.2f} seconds elapsed.") scores_dict_train, train_map = predict_data_set( model, train_data_loader, scores_dict_train, epoch, device, cpu_device, 'Train' ) scores_dict_valid, valid_map = predict_data_set( model, valid_data_loader, scores_dict_valid, epoch, device, cpu_device, 'Validation' ) # Calculate average losses train_loss = train_loss / len(train_data_loader.dataset) writer.add_scalar("Train Loss", train_loss, epoch) writer.add_scalar("Train MAP", train_map, epoch) writer.add_scalar("Valid MAP", valid_map, epoch) history.append([train_loss, train_map, valid_map]) # End of training total_time = timer() - overall_start print( f"{total_time:.2f} total seconds elapsed. " f"{(total_time / num_epochs):.2f} seconds per epoch" ) torch.save(model.state_dict(), path_save_model) df_history = pd.DataFrame( history, columns=['train_loss', 'train_map', 'valid_map'] ) df_scores_train =
pd.DataFrame(scores_dict_train)
pandas.DataFrame
import os from datetime import date from dask.dataframe import DataFrame as DaskDataFrame from numpy import nan, ndarray from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame, Series, Timedelta, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from pymove import ( DaskMoveDataFrame, MoveDataFrame, PandasDiscreteMoveDataFrame, PandasMoveDataFrame, read_csv, ) from pymove.core.grid import Grid from pymove.utils.constants import ( DATE, DATETIME, DAY, DIST_PREV_TO_NEXT, DIST_TO_PREV, HOUR, HOUR_SIN, LATITUDE, LOCAL_LABEL, LONGITUDE, PERIOD, SITUATION, SPEED_PREV_TO_NEXT, TID, TIME_PREV_TO_NEXT, TRAJ_ID, TYPE_DASK, TYPE_PANDAS, UID, WEEK_END, ) list_data = [ [39.984094, 116.319236, '2008-10-23 05:53:05', 1], [39.984198, 116.319322, '2008-10-23 05:53:06', 1], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], ] str_data_default = """ lat,lon,datetime,id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_different = """ latitude,longitude,time,traj_id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_missing = """ 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ def _default_move_df(): return MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) def _default_pandas_df(): return DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) def test_move_data_frame_from_list(): move_df = _default_move_df() assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_file(tmpdir): d = tmpdir.mkdir('core') file_default_columns = d.join('test_read_default.csv') file_default_columns.write(str_data_default) filename_default = os.path.join( file_default_columns.dirname, file_default_columns.basename ) move_df = read_csv(filename_default) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_different_columns = d.join('test_read_different.csv') file_different_columns.write(str_data_different) filename_diferent = os.path.join( file_different_columns.dirname, file_different_columns.basename ) move_df = read_csv( filename_diferent, latitude='latitude', longitude='longitude', datetime='time', traj_id='traj_id', ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_missing_columns = d.join('test_read_missing.csv') file_missing_columns.write(str_data_missing) filename_missing = os.path.join( file_missing_columns.dirname, file_missing_columns.basename ) move_df = read_csv( filename_missing, names=[LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_dict(): dict_data = { LATITUDE: [39.984198, 39.984224, 39.984094], LONGITUDE: [116.319402, 116.319322, 116.319402], DATETIME: [ '2008-10-23 05:53:11', '2008-10-23 05:53:06', '2008-10-23 05:53:06', ], } move_df = MoveDataFrame( data=dict_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_data_frame(): df = _default_pandas_df() move_df = MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_attribute_error_from_data_frame(): df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['laterr', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lonerr', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetimerr', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass def test_lat(): move_df = _default_move_df() lat = move_df.lat srs = Series( data=[39.984094, 39.984198, 39.984224, 39.984224], index=[0, 1, 2, 3], dtype='float64', name='lat', ) assert_series_equal(lat, srs) def test_lon(): move_df = _default_move_df() lon = move_df.lon srs = Series( data=[116.319236, 116.319322, 116.319402, 116.319402], index=[0, 1, 2, 3], dtype='float64', name='lon', ) assert_series_equal(lon, srs) def test_datetime(): move_df = _default_move_df() datetime = move_df.datetime srs = Series( data=[ '2008-10-23 05:53:05', '2008-10-23 05:53:06', '2008-10-23 05:53:11', '2008-10-23 05:53:11', ], index=[0, 1, 2, 3], dtype='datetime64[ns]', name='datetime', ) assert_series_equal(datetime, srs) def test_loc(): move_df = _default_move_df() assert move_df.loc[0, TRAJ_ID] == 1 loc_ = move_df.loc[move_df[LONGITUDE] > 116.319321] expected = DataFrame( data=[ [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[1, 2, 3], ) assert_frame_equal(loc_, expected) def test_iloc(): move_df = _default_move_df() expected = Series( data=[39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=0, ) assert_series_equal(move_df.iloc[0], expected) def test_at(): move_df = _default_move_df() assert move_df.at[0, TRAJ_ID] == 1 def test_values(): move_df = _default_move_df() expected = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ] assert_array_equal(move_df.values, expected) def test_columns(): move_df = _default_move_df() assert_array_equal( move_df.columns, [LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) def test_index(): move_df = _default_move_df() assert_array_equal(move_df.index, [0, 1, 2, 3]) def test_dtypes(): move_df = _default_move_df() expected = Series( data=['float64', 'float64', '<M8[ns]', 'int64'], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=None, ) assert_series_equal(move_df.dtypes, expected) def test_shape(): move_df = _default_move_df() assert move_df.shape == (4, 4) def test_len(): move_df = _default_move_df() assert move_df.len() == 4 def test_unique(): move_df = _default_move_df() assert_array_equal(move_df['id'].unique(), [1, 2]) def test_head(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1], ) assert_frame_equal(move_df.head(2), expected) def test_tail(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984224, 116.319402,
Timestamp('2008-10-23 05:53:11')
pandas.Timestamp
#!/usr/bin/python """functions to create the figures for publication """ import seaborn as sns import math import pyrtools as pt import neuropythy as ny import os.path as op import warnings import torch import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar import pandas as pd import re import itertools from sklearn import linear_model from . import summary_plots from . import analyze_model from . import plotting from . import model from . import utils from . import first_level_analysis from . import style def create_precision_df(paths, summary_func=np.mean, df_filter_string='drop_voxels_with_mean_negative_amplitudes,drop_voxels_near_border'): """Create dataframe summarizing subjects' precision When combining parameter estimates into an 'overall' value, we want to use the precision of each subject's data. To do that, we take the first level summary dfs (using regex to extract the subject, session, and task from the path) and call `summary_func` on the `precision` column. This gives us a single number, which we'll use when performing the precision-weighted mean df_filter_string can be used to filter the voxels we examine, so that we look only at those voxels that the model was fit to Parameters ---------- paths : list list of strings giving the paths to the first level summary dfs. summary_func : callable, optional function we use to summarize the precision. Must take an array as its first input, not require any other inputs, and return a single value df_filter_string : str or None, optional a str specifying how to filter the voxels in the dataset. see the docstrings for sfp.model.FirstLevelDataset and sfp.model.construct_df_filter for more details. If None, we won't filter. Should probably use the default, which is what all models are trained using. Returns ------- df : pd.DataFrame dataframe containing one row per (subject, session) pair, giving the precision for that scanning session. used to weight bootstraps """ regex_names = ['subject', 'session', 'task'] regexes = [r'(sub-[a-z0-9]+)', r'(ses-[a-z0-9]+)', r'(task-[a-z0-9]+)'] df = [] for p in paths: tmp = pd.read_csv(p) if df_filter_string is not None: df_filter = model.construct_df_filter(df_filter_string) tmp = df_filter(tmp).reset_index() val = summary_func(tmp.precision.values) if hasattr(val, '__len__') and len(val) > 1: raise Exception(f"summary_func {summary_func} returned more than one value!") data = {'precision': val} for n, regex in zip(regex_names, regexes): res = re.findall(regex, p) if len(set(res)) != 1: raise Exception(f"Unable to infer {n} from path {p}!") data[n] = res[0] df.append(pd.DataFrame(data, [0])) return pd.concat(df).reset_index(drop=True) def existing_studies_df(): """create df summarizing earlier studies there have been a handful of studies looking into this, so we want to summarize them for ease of reference. Each study is measuring preferred spatial frequency at multiple eccentricities in V1 using fMRI (though how exactly they determine the preferred SF and the stimuli they use vary) This dataframe contains the following columns: - Paper: the reference for this line - Eccentricity: the eccentricity (in degrees) that they measured preferred spatial frequency at - Preferred spatial frequency (cpd): the preferred spatial frequency measured at this eccentricity (in cycles per degree) - Preferred period (deg): the preferred period measured at this eccentricity (in degrees per cycle); this is just the inverse of the preferred spatial frequency The eccentricity / preferred spatial frequency were often not reported in a manner that allowed for easy extraction of the data, so the values should all be taken as approximate, as they involve me attempting to read values off of figures / colormaps. Papers included (and their reference in the df): - Sasaki (2001): <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2001). Local and global attention are mapped retinotopically in human occipital cortex. Proceedings of the National Academy of Sciences, 98(4), 2077–2082. - Henriksson (2008): <NAME>., <NAME>., Hyv\"arinen, Aapo, & <NAME>. (2008). Spatial frequency tuning in human retinotopic visual areas. Journal of Vision, 8(10), 5. http://dx.doi.org/10.1167/8.10.5 - Kay (2011): <NAME>. (2011). Understanding Visual Representation By Developing Receptive-Field Models. Visual Population Codes: Towards a Common Multivariate Framework for Cell Recording and Functional Imaging, (), 133–162. - Hess (dominant eye, 2009): <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2009). Selectivity as well as sensitivity loss characterizes the cortical spatial frequency deficit in amblyopia. Human Brain Mapping, 30(12), 4054–4069. http://dx.doi.org/10.1002/hbm.20829 (this paper reports spatial frequency separately for dominant and non-dominant eyes in amblyopes, only the dominant eye is reported here) - D'Souza (2016): <NAME>., <NAME>., <NAME>., Strasburger, H., & <NAME>. (2016). Dependence of chromatic responses in v1 on visual field eccentricity and spatial frequency: an fmri study. JOSA A, 33(3), 53–64. - Farivar (2017): <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2017). Non-uniform phase sensitivity in spatial frequency maps of the human visual cortex. The Journal of Physiology, 595(4), 1351–1363. http://dx.doi.org/10.1113/jp273206 - Olsson (pilot, model fit): line comes from a model created by <NAME> in the Winawer lab, fit to pilot data collected by <NAME> (so note that this is not data). Never ended up in a paper, but did show in a presentation at VSS 2017: <NAME>, <NAME>, <NAME>, <NAME> (2017) An anatomically-defined template of BOLD response in V1-V3. J. Vis. 17(10):585. DOI:10.1167/17.10.585 Returns ------- df : pd.DataFrame Dataframe containing the optimum spatial frequency at multiple eccentricities from the different papers """ data_dict = { 'Paper': ['Sasaki (2001)',]*7, 'Preferred spatial frequency (cpd)': [1.25, .9, .75, .7, .6, .5, .4], 'Eccentricity': [0, 1, 2, 3, 4, 5, 12] } data_dict['Paper'].extend(['Henriksson (2008)', ]*5) data_dict['Preferred spatial frequency (cpd)'].extend([1.2, .68, .46, .40, .18]) data_dict['Eccentricity'].extend([1.7, 4.7, 6.3, 9, 19]) # This is only a single point, so we don't plot it # data_dict['Paper'].extend(['Kay (2008)']) # data_dict['Preferred spatial frequency (cpd)'].extend([4.5]) # data_dict['Eccentricity'].extend([ 2.9]) data_dict['Paper'].extend(['Kay (2011)']*5) data_dict['Preferred spatial frequency (cpd)'].extend([4, 3, 10, 10, 2]) data_dict['Eccentricity'].extend([2.5, 4, .5, 1.5, 7]) data_dict['Paper'].extend(["Hess (dominant eye, 2009)"]*3) data_dict['Preferred spatial frequency (cpd)'].extend([2.25, 1.9, 1.75]) data_dict['Eccentricity'].extend([2.5, 5, 10]) data_dict['Paper'].extend(["D'Souza (2016)"]*3) data_dict['Preferred spatial frequency (cpd)'].extend([2, .95, .4]) data_dict['Eccentricity'].extend([1.4, 4.6, 9.8]) data_dict['Paper'].extend(['Farivar (2017)']*2) data_dict['Preferred spatial frequency (cpd)'].extend([3, 1.5,]) data_dict['Eccentricity'].extend([.5, 3]) # model fit and never published, so don't include. # data_dict['Paper'].extend(['Olsson (pilot, model fit)']*10) # data_dict['Preferred spatial frequency (cpd)'].extend([2.11, 1.76, 1.47, 2.75, 1.24, 1.06, .88, .77, .66, .60]) # data_dict['Eccentricity'].extend([2, 3, 4, 1, 5, 6, 7, 8, 9, 10]) # these values gotten using web plot digitizer and then rounded to 2 # decimal points data_dict["Paper"].extend(['Aghajari (2020)']*9) data_dict['Preferred spatial frequency (cpd)'].extend([2.24, 1.62, 1.26, 1.09, 0.88, 0.75, 0.78, 0.75, 0.70]) data_dict['Eccentricity'].extend([0.68, 1.78, 2.84, 3.90, 5.00, 6.06, 7.16, 8.22, 9.28]) # Predictions of the scaling hypothesis -- currently unused # ecc = np.linspace(.01, 20, 50) # fovea_cutoff = 0 # # two possibilities here # V1_RF_size = np.concatenate([np.ones(len(ecc[ecc<fovea_cutoff])), # np.linspace(1, 2.5, len(ecc[ecc>=fovea_cutoff]))]) # V1_RF_size = .2 * ecc df = pd.DataFrame(data_dict) df = df.sort_values(['Paper', 'Eccentricity']) df["Preferred period (deg)"] = 1. / df['Preferred spatial frequency (cpd)'] return df def _demean_df(df, y='cv_loss', extra_cols=[]): """demean a column of the dataframe Calculate the mean of `y` across the values in the 'subject' and 'loss_func' columns, then demean `y` and return df with several new columns: - `demeaned_{y}`: each y with `{y}_mean` subtracted off - `{y}_mean`: the average of y per subject per loss_func - `{y}_mean_overall`: the average of `{y}_mean` per loss_func - `remeaned_{y}`: the `demeaned_{y}` with `{y}_mean_overall` added back to it If you use this with the defaults, the overall goal of this is to enable us to look at how the cv_loss varies across models, because the biggest effect is the difference in cv_loss across subjects. Demeaning the cv_loss on a subject-by-subject basis enables us to put all the subjects together so we can look for patterns across models. For example, we can then compute error bars that only capture the variation across models, but not across subjects. Both remeaned or demeaned will capture this, the question is what values to have on the y-axis. If you use demeaned, you'll have negative loss, which might be confusing. If you use remeaned, the y-axis values will be the average across subjects, which might be easier to interpret. Parameters ---------- df : pd.DataFrame dataframe to demean y : str, optional the column to demean extra_cols : list, optionla list of columns to de/remean using the mean from `y`. for example, you might want to de/remean the noise_ceiling using the mean from the cross-validation loss Returns ------- df : pd.DataFrame dataframe with new, demeaned column """ gb_cols = ['subject', 'loss_func'] df = df.set_index(gb_cols) y_mean = df.groupby(gb_cols)[y].mean() df[f'{y}_mean'] = y_mean # here we take the average over the averages. we do this so that we weight # all of the groups the same. For example, if gb_cols=['subject'] and one # subject had twice as many rows (because it had two sessions in df, for # example), then this ensures that subject isn't twice as important when # computing the mean (which would be the case if we used # df[f'{y}_mean'].mean() instead). We do, however, want to do this # separately for each loss function, since they'll probably have different # means df = df.reset_index() df = df.set_index('loss_func') df[f'{y}_mean_overall'] = y_mean.reset_index().groupby('loss_func')[y].mean() df[f'demeaned_{y}'] = df[y] - df[f'{y}_mean'] df[f'remeaned_{y}'] = df[f'demeaned_{y}'] + df[f'{y}_mean_overall'] for col in extra_cols: df[f'demeaned_{col}'] = df[col] - df[f'{y}_mean'] df[f'remeaned_{col}'] = df[f'demeaned_{col}'] + df[f'{y}_mean_overall'] return df.reset_index() def prep_df(df, task, groupaverage=False): """prepare the dataframe by restricting to the appropriate subset The dataframe created by earlier analysis steps contains all scanning sessions and potentially multiple visual areas. for our figures, we just want to grab the relevant scanning sessions and visual areas (V1), so this function helps do that. If df has the 'frequency_type' column (i.e., it's summarizing the 1d tuning curves), we also restrict to the "local_sf_magnitude" rows (rather than "frequency_space") Parameters ---------- df : pd.DataFrame dataframe that will be used for plotting figures. contains some summary of (either 1d or 2d) model information across sessions. task : {'task-sfrescaled', 'task-sfpconstant'} this determines which task we'll grab: task-sfprescaled or task-sfpconstant. task-sfp is also exists, but we consider that a pilot task and so do not allow it for the creation of figures (the stimuli were not contrast-rescaled). groupaverage : bool, optional whether to grab only the groupaverage subjects (if True) or every other subject (if False). Note that we'll grab/drop both i-linear and i-nearest if they're both present Returns ------- df : pd.DataFrame The restricted dataframe. """ if task not in ['task-sfprescaled', 'task-sfpconstant']: raise Exception("Only task-sfprescaled and task-sfpconstant are allowed!") df = df.query("task==@task") if 'frequency_type' in df.columns: df = df.query("frequency_type=='local_sf_magnitude'") if 'varea' in df.columns: df = df.query("varea==1") if 'fit_model_type' in df.columns: df.fit_model_type = df.fit_model_type.map(dict(zip(plotting.MODEL_ORDER, plotting.MODEL_PLOT_ORDER))) if 'subject' in df.columns: df.subject = df.subject.map(dict(zip(plotting.SUBJECT_ORDER, plotting.SUBJECT_PLOT_ORDER))) return df def prep_model_df(df): """prepare models df for plotting For plotting purposes, we want to rename the model parameters from their original values (e.g., sf_ecc_slope, abs_mode_cardinals) to those we use in the equation (e.g., a, p_1). We do that by simply remapping the names from those given at plotting.ORIG_PARAM_ORDER to those in plotting.PLOT_PARAM_ORDER. we additionally add a new column, param_category, which we use to separate out the three types of parameters: sigma, the effect of eccentricity, and the effect of orientation / retinal angle. Parameters ---------- df : pd.DataFrame models dataframe, that is, the dataframe that summarizes the parameter values for a variety of models Returns ------- df : pd.DataFrame The remapped dataframe. """ rename_params = dict((k, v) for k, v in zip(plotting.ORIG_PARAM_ORDER, plotting.PLOT_PARAM_ORDER)) df = df.set_index('model_parameter') df.loc['sigma', 'param_category'] = 'sigma' df.loc[['sf_ecc_slope', 'sf_ecc_intercept'], 'param_category'] = 'eccen' df.loc[['abs_mode_cardinals', 'abs_mode_obliques', 'rel_mode_cardinals', 'rel_mode_obliques', 'abs_amplitude_cardinals', 'abs_amplitude_obliques', 'rel_amplitude_cardinals', 'rel_amplitude_obliques'], 'param_category'] = 'orientation' df = df.reset_index() df['model_parameter'] = df.model_parameter.map(rename_params) return df def append_precision_col(df, col='preferred_period', gb_cols=['subject', 'session', 'varea', 'stimulus_superclass', 'eccen']): """append column giving precision of another column and collapse this function gives the precision of the value found in a single column (across the columns that are NOT grouped-by) and collapses across those columns. The intended use case is to determine the precision of a parameter estimate across bootstraps for each (subject, session) (for the 2d model) or for each (subject, session, stimulus_superclass, eccen) (for the 1d model). precision is the inverse of the variance, so let :math:`c` be the 68% confidence interval of the column value, then precision is :math:`\frac{1}{(c/2)^2}` finally, we collapse across gb_cols, returning the median and precision of col for each combination of values from those columns. Parameters ---------- df : pd.DataFrame the df that contains the values we want the precision for col : str, optional the name of the column that contains the values we want the precision for gb_cols : list, optional list of strs containing the columns we want to groupby. we will compute the precision separately for each combination of values here. Returns ------- df : pd.DataFrame the modified df, containing the median and precision of col (also contains the medians of the other values in the original df, but not their precision) """ gb = df.groupby(gb_cols) df = df.set_index(gb_cols) df[f'{col}_precision'] = gb[col].apply(first_level_analysis._precision_dist) df = df.reset_index() return df.groupby(gb_cols).median().reset_index() def precision_weighted_bootstrap(df, seed, n_bootstraps=100, col='preferred_period', gb_cols=['varea', 'stimulus_superclass', 'eccen'], precision_col='preferred_period_precision'): """calculate the precision-weighted bootstrap of a column to combine across subjects, we want to use a precision-weighted average, rather than a regular average, because we are trying to summarize the true value across the population and our uncertainty in it. Therefore, we down-weight subjects whose estimate is noisier. Similar to append_precision_col(), we groupby over some of the columns to combine info across them (gb_cols here should be a subset of those used for append_precision_col()) You should plot the values here with scatter_ci_dist() or something similar to draw the 68% CI of the distribution here (not sample it to draw the CI) Parameters ---------- df : pd.DataFrame the df that we want to bootstrap (must already have precision column, i.e., this should be the df returned by append_precision_col()) seed : int seed for numpy's RNG n_bootstraps : int, optional the number of independent bootstraps to draw col : str, optional the name of the column that contains the values we want to draw bootstraps for gb_cols : list, optional list of strs containing the columns we want to groupby. we will compute the bootstraps for each combination of values here. precision_col : str, optional name of the column that contains the precision, used in the precision-weighted mean Returns ------- df : pd.DataFrame the df containing the bootstraps of precision-weighted mean. this will only contain the following columns: col, *gb_cols, and bootstrap_num """ np.random.seed(seed) if type(gb_cols) != list: raise Exception("gb_cols must be a list!") bootstraps = [] for n, g in df.groupby(gb_cols): # n needs to be a list of the same length as gb_cols for the # dict(zip()) call to work, but if len(gb_cols) == 1, then it # will be a single str (or int or float or whatever), so we # convert it to a list real quick if len(gb_cols) == 1: n = [n] tmp = dict(zip(gb_cols, n)) for j in range(n_bootstraps): t = g.sample(len(g), replace=True) tmp[col] = np.average(t[col], weights=t[precision_col]) tmp['bootstrap_num'] = j bootstraps.append(pd.DataFrame(tmp, [0])) bootstraps = pd.concat(bootstraps).reset_index(drop=True) if 'subject' in df.columns and 'subject' not in gb_cols: bootstraps['subject'] = 'all' return bootstraps def _summarize_1d(df, reference_frame, y, row, col, height, facetgrid_legend, **kwargs): """helper function for pref_period_1d and bandwidth_1d since they're very similar functions. "eccen" is always plotted on the x-axis, and hue is always "stimulus_type" (unless overwritten with kwargs) Parameters ---------- df : pd.DataFrame pandas DataFrame summarizing all the 1d tuning curves, as created by the summarize_tuning_curves.py script. If you want confidence intervals, this should be the "full" version of that df (i.e., including the fits to each bootstrap). y : str which column of the df to plot on the y-axis reference_frame : {'relative', 'absolute'} whether the data contained here is in the relative or absolute reference frame. this will determine both the palette used and the hue_order row : str which column of the df to facet the plot's rows on col : str which column of the df to facet the plot's column on height : float height of each plot facet kwargs : all passed to summary_plots.main() (most of these then get passed to sns.FacetGrid, see the docstring of summary_plots.main for more info) Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ pal = plotting.stimulus_type_palette(reference_frame) hue_order = plotting.get_order('stimulus_type', reference_frame) col_order, row_order = None, None if col is not None: col_order = plotting.get_order(col, col_unique=df[col].unique()) if row is not None: row_order = plotting.get_order(row, col_unique=df[row].unique()) kwargs.setdefault('xlim', (0, 12)) g = summary_plots.main(df, row=row, col=col, y=y, eccen_range=(0, 11), hue_order=hue_order, height=height, plot_func=[plotting.plot_median_fit, plotting.plot_median_fit, plotting.scatter_ci_dist], # these three end up being kwargs passed to the # functions above, in order x_jitter=[None, None, .2], x_vals=[(0, 10.5), None, None], linestyle=['--', None, None], palette=pal, col_order=col_order, row_order=row_order, facetgrid_legend=facetgrid_legend, **kwargs) g.set_xlabels('Eccentricity (deg)') if facetgrid_legend: g._legend.set_title("Stimulus class") return g def pref_period_1d(df, context='paper', reference_frame='relative', row='session', col='subject', col_wrap=None, **kwargs): """Plot the preferred period of the 1d model fits. Note that we do not restrict the input dataframe in any way, so we will plot all data contained within it. If this is not what you want (e.g., you only want to plot some of the tasks), you'll need to do the restrictions yourself before passing df to this function The only difference between this and the bandwidth_1d function is what we plot on the y-axis, and how we label it. Parameters ---------- df : pd.DataFrame pandas DataFrame summarizing all the 1d tuning curves, as created by the summarize_tuning_curves.py script. If you want confidence intervals, this should be the "full" version of that df (i.e., including the fits to each bootstrap). context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up reference_frame : {'relative', 'absolute'}, optional whether the data contained here is in the relative or absolute reference frame. this will determine both the palette used and the hue_order row : str, optional which column of the df to facet the plot's rows on col : str, optional which column of the df to facet the plot's column on kwargs : passed to sfp.figures._summarize_1d Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ # if we're wrapping columns, then we need this to take up the full width in # order for it to be readable if col_wrap is not None: fig_width = 'full' else: fig_width = 'half' params, fig_width = style.plotting_style(context, figsize=fig_width) if col_wrap is not None: fig_width /= col_wrap # there is, as of seaborn 0.11.0, a bug that interacts with our xtick # label size and height (see # https://github.com/mwaskom/seaborn/issues/2293), which causes an # issue if col_wrap == 3. this manual setting is about the same size # and fixes it if col_wrap == 3: fig_width = 2.23 elif col is not None: fig_width /= df[col].nunique() plt.style.use(params) if context == 'paper': facetgrid_legend = False kwargs.setdefault('xlim', (0, 11.55)) kwargs.setdefault('ylim', (0, 2.1)) else: kwargs.setdefault('ylim', (0, 4)) facetgrid_legend = True g = _summarize_1d(df, reference_frame, 'preferred_period', row, col, fig_width, facetgrid_legend, col_wrap=col_wrap, **kwargs) g.set_ylabels('Preferred period (deg)') yticks = [i for i in range(4) if i <= kwargs['ylim'][1]] g.set(yticks=yticks) if context != 'paper': g.fig.suptitle("Preferred period of 1d tuning curves in each eccentricity band") g.fig.subplots_adjust(top=.85) else: if len(g.axes) == 1: # remove title if there's only one plot (otherwise it tells us which # subject is which) g.axes.flatten()[0].set_title('') for ax in g.axes.flatten(): ax.axhline(color='gray', linestyle='--') ax.axvline(color='gray', linestyle='--') ax.set(xticks=[0, 2, 4, 6, 8, 10]) g.fig.subplots_adjust(wspace=.05, hspace=.15) return g def bandwidth_1d(df, context='paper', reference_frame='relative', row='session', col='subject', units='octaves', **kwargs): """plot the bandwidth of the 1d model fits Note that we do not restrict the input dataframe in any way, so we will plot all data contained within it. If this is not what you want (e.g., you only want to plot some of the tasks), you'll need to do the restrictions yourself before passing df to this function The only difference between this and the pref_period_1d function is what we plot on the y-axis, and how we label it. Parameters ---------- df : pd.DataFrame pandas DataFrame summarizing all the 1d tuning curves, as created by the summarize_tuning_curves.py script. If you want confidence intervals, this should be the "full" version of that df (i.e., including the fits to each bootstrap). units : {'octaves', 'degrees}, optional Whether to plot this data in octaves (in which case we expect it to be flat with eccentricity) or degrees (in which case we expect it to scale with eccentricity) context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up reference_frame : {'relative', 'absolute'}, optional whether the data contained here is in the relative or absolute reference frame. this will determine both the palette used and the hue_order row : str, optional which column of the df to facet the plot's rows on col : str, optional which column of the df to facet the plot's column on kwargs : passed to sfp.figures._summarize_1d Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) if context == 'paper': facetgrid_legend = False kwargs.setdefault('xlim', (0, 11.55)) else: facetgrid_legend = True if units == 'degrees': if 'tuning_curve_bandwidth_degrees' not in df.columns: df['tuning_curve_bandwidth_degrees'] = df.apply(utils._octave_to_degrees, 1) y = 'tuning_curve_bandwidth_degrees' elif units == 'octaves': y = 'tuning_curve_bandwidth' kwargs.setdefault('ylim', (0, 8)) g = _summarize_1d(df, reference_frame, y, row, col, fig_width, facetgrid_legend, **kwargs) g.set_ylabels(f'Tuning curve FWHM ({units})') if context != 'paper': g.fig.suptitle("Full-Width Half-Max of 1d tuning curves in each eccentricity band") g.fig.subplots_adjust(top=.85) elif len(g.axes) == 1: # remove title if there's only one plot (otherwise it tells us which # subject is which) g.axes.flatten()[0].set_title('') return g def existing_studies_figure(df, y="Preferred period (deg)", legend=True, context='paper'): """Plot the results from existing studies See the docstring for figures.existing_studies_df() for more details on the information displayed in this figure. Parameters ---------- df : pd.DataFrame The existing studies df, as returned by the function figures.existing_studies_df(). y : {'Preferred period (deg)', 'Preferred spatial frequency (cpd)'} Whether to plot the preferred period or preferred spatial frequency on the y-axis. If preferred period, the y-axis is linear; if preferred SF, the y-axis is log-scaled (base 2). The ylims will also differ between these two legend : bool, optional Whether to add a legend or not context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- g : sns.FacetGrid The FacetGrid containing the plot """ params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) fig_height = fig_width / 1.2 pal = sns.color_palette('Set2', df.Paper.nunique()) pal = dict(zip(df.Paper.unique(), pal)) if 'Current study' in df.Paper.unique(): pal['Current study'] = (0, 0, 0) g = sns.FacetGrid(df, hue='Paper', height=fig_height, aspect=1.2, palette=pal) if y == "Preferred period (deg)": g.map(plt.plot, 'Eccentricity', y, marker='o') g.ax.set_ylim((0, 6)) elif y == "Preferred spatial frequency (cpd)": g.map(plt.semilogy, 'Eccentricity', y, marker='o', basey=2) g.ax.set_ylim((0, 11)) g.ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(plotting.myLogFormat)) g.ax.set_xlim((0, 20)) if context == 'poster': g.ax.set(xticks=[0, 5, 10, 15, 20]) g.ax.set_title("Summary of human V1 fMRI results") if legend: g.add_legend() # facetgrid doesn't let us set the title fontsize directly, so need to do # this hacky work-around g.fig.legends[0].get_title().set_size(mpl.rcParams['legend.title_fontsize']) g.ax.set_xlabel('Eccentricity of receptive field center (deg)') return g def input_schematic(context='paper', prf_loc=(250, 250), prf_radius=100, stim_freq=(.01, .03)): """Schematic to explain 2d model inputs. This schematic explains the various inputs of our 2d model: eccentricity, retinotopic angle, spatial frequency, and orientation. It does this with a little diagram of a pRF with a local stimulus, with arrows and labels. The location and size of the pRF, as well as the frequency of the stimulus, are all modifiable, and the labels and arrows will update themselves. The arrows should behave appropriately, but it's hard to guarantee that the labels will always look good (their positioning is relative, so it will at least be close). You are restricted to placing the pRF inside the first quadrant, which helps make the possibilities more reasonable. Parameters ---------- context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up prf_loc : tuple, optional 2-tuple of floats, location of the prf. Both numbers must lie between 0 and 500 (i.e., we require this to be in the first quadrant). Max value on both x and y axes is 500. prf_radius : float, optional radius of the prf, in pixels. the local stimulus will have half this radius stim_freq : tuple, optional 2-tuple of floats, the (x_freq, y_freq) of the stimulus, in cycles per pixel Returns ------- fig : plt.Figure Figure containing the schematic """ params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) figsize = (fig_width, fig_width) fig, ax = plt.subplots(1, 1, figsize=figsize) def get_xy(distance, angle, origin=(500, 500)): return [o + distance * func(angle) for o, func in zip(origin, [np.cos, np.sin])] pal = sns.color_palette('deep', 2) if (np.array(prf_loc) > 500).any() or (np.array(prf_loc) < 0).any(): raise Exception("the coordinates of prf_loc must be between 0 and 500, but got " f"value {prf_loc}!") # prf_loc is in coordinates relative to the center, so we convert that here abs_prf_loc = [500 + i for i in prf_loc] mask = utils.create_circle_mask(*abs_prf_loc, prf_radius/2, 1001) mask[mask==0] = np.nan stim = mask * utils.create_sin_cpp(1001, *stim_freq) plotting.im_plot(stim, ax=ax, origin='lower') ax.axhline(500, c='.5') ax.axvline(500, c='.5') ax.set(xlim=(450, 1001), ylim=(450, 1001)) for s in ax.spines.keys(): ax.spines[s].set_visible(False) prf = mpl.patches.Circle(abs_prf_loc, prf_radius, fc='none', ec='k', linewidth=2, linestyle='--', zorder=10) ax.add_artist(prf) prf_ecc = np.sqrt(np.square(prf_loc).sum()) prf_angle = np.arctan2(*prf_loc[::-1]) e_loc = get_xy(prf_ecc/2, prf_angle + np.pi/13) plotting.draw_arrow(ax, (500, 500), abs_prf_loc, arrowprops={'connectionstyle': 'arc3', 'arrowstyle': '<-', 'color': pal[1]}) ax.text(*e_loc, r'$r_v$') ax.text(600, 500 + 100*np.sin(prf_angle/2), r'$\theta_v$') angle = mpl.patches.Arc((500, 500), 200, 200, 0, 0, np.rad2deg(prf_angle), fc='none', ec=pal[1], linestyle='-') ax.add_artist(angle) # so that this is the normal vector, the 7000 is just an arbitrary # scale factor to make the vector a reasonable length normal_len = 7000 * np.sqrt(np.square(stim_freq).sum()) normal_angle = np.arctan2(*stim_freq[::-1]) omega_loc = get_xy(normal_len, normal_angle, abs_prf_loc) plotting.draw_arrow(ax, abs_prf_loc, omega_loc, r'$\omega_l$', {'connectionstyle': 'arc3', 'arrowstyle': '<-', 'color': pal[0]}) angle = mpl.patches.Arc(abs_prf_loc, 1.2*normal_len, 1.2*normal_len, 0, 0, # small adjustment appears to be necessary for some # reason -- but really only for some spatial # frequencies. np.rad2deg(normal_angle)-3, fc='none', ec=pal[0], linestyle='-') ax.add_artist(angle) plotting.draw_arrow(ax, (abs_prf_loc[0] + normal_len, abs_prf_loc[1]), abs_prf_loc, arrowprops={'connectionstyle': 'angle3', 'arrowstyle': '-', 'color': '.5', 'linestyle': ':'}) theta_loc = get_xy(1.3*normal_len/2, normal_angle/2, abs_prf_loc) ax.text(*theta_loc, r'$\theta_l$') return fig def model_schematic(context='paper'): """Create model schematic. In order to better explain the model, its predictions, and the effects of its parameters, we create a model schematic that shows the effects of the different p parameters (those that control the effect of stimulus orientation and retinotopic angle on preferred period). This creates only the polar plots (showing the preferred period contours), and doesn't have a legend; it's intended that you call compose_figures.add_legend to add the graphical one (and a space has been left for it) Parameters ---------- context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- fig : plt.Figure Figure containing the schematic """ params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) figsize = (fig_width, fig_width/3) if context == 'paper': orientation = np.linspace(0, np.pi, 4, endpoint=False) elif context == 'poster': orientation = np.linspace(0, np.pi, 2, endpoint=False) abs_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, abs_mode_cardinals=.4, abs_mode_obliques=.1) rel_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, rel_mode_cardinals=.4, rel_mode_obliques=.1) full_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, abs_mode_cardinals=.4, abs_mode_obliques=.1, rel_mode_cardinals=.4, rel_mode_obliques=.1) # we can't use the plotting.feature_df_plot / feature_df_polar_plot # functions because they use FacetGrids, each of which creates a # separate figure and we want all of this to be on one figure. fig, axes = plt.subplots(1, 3, figsize=figsize, subplot_kw={'projection': 'polar'}) labels = [r'$p_1>p_2>0$', r'$p_3>p_4>0$', # can't have a newline in a raw string, so have to combine them # in the last label here r'$p_1=p_3>$'+'\n'+r'$p_2=p_4>0$'] for i, (m, ax) in enumerate(zip([abs_model, rel_model, full_model], axes)): plotting.model_schematic(m, [ax], [(-.1, 3)], False, orientation=orientation) if i != 0: ax.set(ylabel='') if i != 1: ax.set(xlabel='') else: # want to move this closer ax.set_xlabel(ax.get_xlabel(), labelpad=-10) ax.set_title(labels[i]) ax.set(xticklabels=[], yticklabels=[]) fig.subplots_adjust(wspace=.075) return fig def model_schematic_large(context='paper'): """Create larger version of model schematic. In order to better explain the model, its predictions, and the effects of its parameters, we create a model schematic that shows the effects of the different p parameters (those that control the effect of stimulus orientation and retinotopic angle on preferred period). Note that this includes both linear and polar plots, and will probably be way too large Parameters ---------- context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- fig : plt.Figure Figure containing the schematic """ if context == 'paper': orientation = np.linspace(0, np.pi, 4, endpoint=False) size_scale = 1 elif context == 'poster': size_scale = 1.5 orientation = np.linspace(0, np.pi, 2, endpoint=False) abs_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, abs_mode_cardinals=.4, abs_mode_obliques=.1) rel_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, rel_mode_cardinals=.4, rel_mode_obliques=.1) full_model = model.LogGaussianDonut('full', sf_ecc_slope=.2, sf_ecc_intercept=.2, abs_mode_cardinals=.4, abs_mode_obliques=.1, rel_mode_cardinals=.4, rel_mode_obliques=.1) # we can't use the plotting.feature_df_plot / feature_df_polar_plot # functions because they use FacetGrids, each of which creates a # separate figure and we want all of this to be on one figure. fig = plt.figure(figsize=(size_scale*15, size_scale*15)) gs = mpl.gridspec.GridSpec(figure=fig, ncols=3, nrows=3) projs = ['rectilinear', 'polar'] labels = [r'$p_1>p_2>0$', r'$p_3>p_4>0$', r'$p_1=p_3>p_2=p_4>0$'] axes = [] for i, m in enumerate([abs_model, rel_model, full_model]): model_axes = [fig.add_subplot(gs[i, j], projection=projs[j]) for j in range(2)] if i == 0: title = True else: title = False model_axes = plotting.model_schematic(m, model_axes[:2], [(-.1, 4.2), (-.1, 3)], title, orientation=orientation) if i != 2: [ax.set(xlabel='') for ax in model_axes] model_axes[0].text(size_scale*-.25, .5, labels[i], rotation=90, transform=model_axes[0].transAxes, va='center', fontsize=1.5*mpl.rcParams['font.size']) axes.append(model_axes) # this needs to be created after the model plots so we can grab # their axes legend_axis = fig.add_subplot(gs[1, -1]) legend_axis.legend(*axes[1][1].get_legend_handles_labels(), loc='center left') legend_axis.axis('off') return fig def _catplot(df, x='subject', y='cv_loss', hue='fit_model_type', height=8, aspect=.9, ci=68, plot_kind='strip', x_rotate=False, legend='full', orient='v', **kwargs): """wrapper around seaborn.catplot several figures call seaborn.catplot and are pretty similar, so this function bundles a bunch of the stuff we do: 1. determine the proper order for hue and x 2. determine the proper palette for hue 3. always use np.median as estimator and 'full' legend 4. optionally rotate x-axis labels (and add extra room if so) 5. add a horizontal line at the x-axis if we have both negative and positive values Parameters ---------- df : pd.DataFrame pandas DataFrame x : str, optional which column of the df to plot on the x-axis y : str, optional which column of the df to plot on the y-axis hue : str, optional which column of the df to facet as the hue height : float, optional height of each plot facet aspect : float, optional aspect ratio of each facet ci : int, optional size of the confidence intervals (ignored if plot_kind=='strip') plot_kind : {'point', 'bar', 'strip', 'swarm', 'box', 'violin', or 'boxen'}, optional type of plot to make, i.e., sns.catplot's kind argument. see that functions docstring for more details. only 'point' and 'strip' are expected, might do strange things otherwise x_rotate : bool or int, optional whether to rotate the x-axis labels or not. if True, we rotate by 25 degrees. if an int, we rotate by that many degrees. if False, we don't rotate. If labels are rotated, we'll also shift the bottom of the plot up to avoid cutting off the bottom. legend : str or bool, optional the legend arg to pass through to seaborn.catplot, see its docstrings for more details orient : {'h', 'v'}, optional orientation of plot (horizontal or vertical) kwargs : passed to sns.catplot Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ hue_order = plotting.get_order(hue, col_unique=df[hue].unique()) if 'order' in kwargs.keys(): order = kwargs.pop('order') else: order = plotting.get_order(x, col_unique=df[x].unique()) pal = plotting.get_palette(hue, col_unique=df[hue].unique(), doubleup='doubleup' in x) if plot_kind == 'strip': # want the different hues to be in a consistent order on the # x-axis, which requires this kwargs.update({'jitter': False, 'dodge': True}) if orient == 'h': x_copy = x x = y y = x_copy aspect = 1/aspect kwargs['sharex'] = False else: kwargs['sharey'] = False if 'dodge' not in kwargs.keys(): kwargs['dodge'] = 0 # facetgrid seems to ignore the defaults for these, but we want to use them # so its consistent with other figures gridspec_kws = {k: mpl.rcParams[f'figure.subplot.{k}'] for k in ['top', 'bottom', 'left', 'right']} g = sns.catplot(x, y, hue, data=df, hue_order=hue_order, legend=legend, height=height, kind=plot_kind, aspect=aspect, order=order, palette=pal, ci=ci, estimator=np.median, orient=orient, facet_kws={'gridspec_kws': gridspec_kws}, **kwargs) for ax in g.axes.flatten(): if x_rotate: if x_rotate is True: x_rotate = 25 labels = ax.get_xticklabels() if labels: ax.set_xticklabels(labels, rotation=x_rotate, ha='right') if orient == 'v': if (df[y] < 0).any() and (df[y] > 0).any(): ax.axhline(color='grey', linestyle='dashed') else: if (df[x] < 0).any() and (df[x] > 0).any(): ax.axvline(color='grey', linestyle='dashed') if x_rotate: if x == 'subject': g.fig.subplots_adjust(bottom=.15) else: g.fig.subplots_adjust(bottom=.2) return g def cross_validation_raw(df, seed, noise_ceiling_df=None, orient='v', context='paper'): """plot raw cross-validation loss This does no pre-processing of the df and plots subjects on the x-axis, model type as hue. (NOTE: this means if there are multiple scanning sessions for each subject, the plot will combine them, which is probably NOT what you want) Parameters ---------- df : pd.DataFrame dataframe containing the output of the cross-validation analyses, combined across sessions (i.e., the output of combine_model_cv_summaries snakemake rule) seed : int seed for numpy's RNG noise_ceiling_df : pd.DataFrame dataframe containing the results of the noise ceiling analyses for all subjects (i.e., the output of the noise_ceiling_monte_carlo_overall rule) orient : {'h', 'v'}, optional orientation of plot (horizontal or vertical) context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ np.random.seed(seed) height = 8 aspect = .9 s = 5 if context == 'poster': height *= 2 aspect = 1 s *= 2 if noise_ceiling_df is not None: merge_cols = ['subject', 'mat_type', 'atlas_type', 'session', 'task', 'vareas', 'eccen'] df = pd.merge(df, noise_ceiling_df, 'outer', on=merge_cols, suffixes=['_cv', '_noise']) g = _catplot(df.query('loss_func in ["weighted_normed_loss", "normed_loss", "cosine_distance_scaled"]'), legend=False, height=height, s=s, x_rotate=True, orient=orient, col='loss_func') if noise_ceiling_df is not None: g.map_dataframe(plotting.plot_noise_ceiling, 'subject', 'loss') g.fig.suptitle("Cross-validated loss across subjects") if orient == 'v': g.set(ylabel="Cross-validated loss", xlabel="Subject") elif orient == 'h': g.set(xlabel="Cross-validated loss", ylabel="Subject") g.add_legend() g._legend.set_title("Model type") ylims = [(0, .06), (0, .0022), (0, .0022)] for i, ax in enumerate(g.axes.flatten()): ax.set(ylim=ylims[i]) return g def cross_validation_demeaned(df, seed, remeaned=False, orient='v', context='paper'): """plot demeaned cross-validation loss This function demeans the cross-validation loss on a subject-by-subject basis, then plots subjects on the x-axis, model type as hue. (NOTE: this means if there are multiple scanning sessions for each subject, the plot will combine them, which is probably NOT what you want) Parameters ---------- df : pd.DataFrame dataframe containing the output of the cross-validation analyses, combined across sessions (i.e., the output of combine_model_cv_summaries snakemake rule) seed : int seed for numpy's RNG remeaned : bool, optional whether to use the demeaned cross-validation loss or the remeaned one. Remeaned has the mean across subjects added back to it, so that there won't be any negative y-values. This will only affect the values on the y-axis; the relative placements of the points will all be the same. orient : {'h', 'v'}, optional orientation of plot (horizontal or vertical) context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ np.random.seed(seed) height = 8 aspect = .9 if context == 'poster': height *= 2 aspect = 1 df = _demean_df(df) if remeaned: name = 'remeaned' else: name = 'demeaned' g = _catplot(df, y=f'{name}_cv_loss', height=height, aspect=aspect, x_rotate=True, orient=orient, col='loss_func') g.fig.suptitle(f"{name.capitalize()} cross-validated loss across subjects") if orient == 'v': g.set(ylabel=f"Cross-validated loss ({name} by subject)", xlabel="Subject") elif orient == 'h': g.set(xlabel=f"Cross-validated loss ({name} by subject)", ylabel="Subject") g._legend.set_title("Model type") return g def cross_validation_model(df, seed, plot_kind='strip', remeaned=False, noise_ceiling_df=None, orient='v', sort=False, doubleup=False, context='paper'): """plot demeaned cross-validation loss, as function of model type This function demeans the cross-validation loss on a subject-by-subject basis, then plots model type on the x-axis, subject as hue. (NOTE: this means if there are multiple scanning sessions for each subject, the plot will combine them, which is probably NOT what you want) Parameters ---------- df : pd.DataFrame dataframe containing the output of the cross-validation analyses, combined across sessions (i.e., the output of combine_model_cv_summaries snakemake rule) seed : int seed for numpy's RNG plot_kind : {'strip', 'point'}, optional whether to create a strip plot (each subject as a separate point) or a point plot (combine across subjects, plotting the median and bootstrapped 68% CI) remeaned : bool, optional whether to use the demeaned cross-validation loss or the remeaned one. Remeaned has the mean across subjects added back to it, so that there won't be any negative y-values. This will only affect the values on the y-axis; the relative placements of the points (and the size of the error bars if `plot_kind='point'`) will all be the same. noise_ceiling_df : pd.DataFrame dataframe containing the results of the noise ceiling analyses for all subjects (i.e., the output of the noise_ceiling_monte_carlo_overall rule) orient : {'h', 'v'}, optional orientation of plot (horizontal or vertical) sort : bool, optional whether to sort the models by the median loss of the weighted_normed_loss or show them in numbered order doubleup : bool, optional whether to "double-up" models so that we plot two models on the same row if they're identical except for fitting A3/A4. this then shows the version fitting A3/A4 as a fainter color of the version that doesn't. context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- g : sns.FacetGrid seaborn FacetGrid object containing the plot """ kwargs = {} np.random.seed(seed) params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) if doubleup: height = fig_width * .855 else: height = fig_width aspect = 1 if noise_ceiling_df is not None: merge_cols = ['subject', 'mat_type', 'atlas_type', 'session', 'task', 'vareas', 'eccen'] noise_ceiling_df = noise_ceiling_df.groupby(merge_cols).median().reset_index() df = pd.merge(df, noise_ceiling_df, 'inner', on=merge_cols, suffixes=['_cv', '_noise']) extra_cols = ['loss'] else: extra_cols = [] df = _demean_df(df, extra_cols=extra_cols) if plot_kind == 'strip': hue = 'subject' legend_title = "Subject" legend = 'full' elif plot_kind == 'point': hue = 'fit_model_type' legend = False if remeaned: name = 'remeaned' else: name = 'demeaned' if sort: gb = df.query("loss_func == 'weighted_normed_loss'").groupby('fit_model_type') kwargs['order'] = gb[f'{name}_cv_loss'].median().sort_values(ascending=False).index if doubleup: df['fit_model_doubleup'] = df.fit_model_type.map(dict(zip(plotting.MODEL_PLOT_ORDER, plotting.MODEL_PLOT_ORDER_DOUBLEUP))) x = 'fit_model_doubleup' if noise_ceiling_df is not None: nc_map = {k: k for k in range(1, 8)} nc_map.update({10: 8, 12: 9}) df['fit_model_nc'] = df.fit_model_doubleup.map(nc_map) else: x = 'fit_model_type' if noise_ceiling_df is not None: df['fit_model_nc'] = df.fit_model_type g = _catplot(df, x=x, y=f'{name}_cv_loss', hue=hue, col='loss_func', plot_kind=plot_kind, height=height, aspect=aspect, orient=orient, legend=legend, **kwargs) title = f"{name.capitalize()} cross-validated loss across model types" if noise_ceiling_df is not None: g.map_dataframe(plotting.plot_noise_ceiling, 'fit_model_nc', f'{name}_loss', ci=0, orient=orient) title += "\n Median noise ceiling shown as blue line" if orient == 'v': g.set(ylabel=f"Cross-validated loss ({name} by subject)", xlabel="Model type") elif orient == 'h': g.set(xlabel=f"Cross-validated loss ({name} by subject)", ylabel="") # if plot_kind=='point', then there is no legend, so the following # would cause an error if plot_kind == 'strip': g._legend.set_title(legend_title) # don't want title in the paper version if context != 'paper': g.fig.suptitle(title) else: if orient == 'h': # also want to remove the y axis, since it's duplicating the one from # the other figure for ax in g.axes.flatten(): ax.yaxis.set_visible(False) ax.spines['left'].set_visible(False) if plot_kind == 'point': # this way, the ylims line up whether or not we plotted the # noise ceiling line if doubleup: ax.set_ylim((8.5, -0.5)) else: ax.set_ylim((13.5, -0.5)) return g def model_types(context='paper', palette_type='model', annotate=False, order=None, doubleup=False): """Create plot showing which model fits which parameters. We have 11 different parameters, which might seem like a lot, so we do cross-validation to determine whether they're all necessary. This plot shows which parameters are fit by each model, in a little table. Parameters ---------- context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up palette_type : {'model', 'simple', 'simple_r', seaborn palette name}, optional palette to use for this plot. if 'model', the parameter each model fits is shown in its color (as used in other plots). If 'simple' or 'simple_r', we'll use a white/black colormap with either black (if 'simple') or white (if 'simple_r') showing the parameter is fit. Else, should be a str giving a seaborn palette name, i.e., an arg that can be passed to seaborn.color_palette. annotate : bool, optional whether to annotate the schematic with info on the parameter categories (e.g., period/amplitude, eccentricity/orientation, etc) order : pandas index or None, optional If None, we plot the models in the default order. Else, should be an index object that gives the order to plot them in (from top to bottom). Returns ------- fig : plt.Figure The figure with the plot on it """ params, fig_width = style.plotting_style(context, figsize='half') # these ticks don't add anything and are confusing params['xtick.bottom'] = False params['ytick.left'] = False plt.style.use(params) figsize = (fig_width, fig_width) extra_space = 0 model_names = plotting.MODEL_PLOT_ORDER parameters = plotting.PLOT_PARAM_ORDER model_variants = np.zeros((len(model_names), len(parameters))) if palette_type == 'model': pal = plotting.get_palette('fit_model_type', col_unique=model_names, doubleup=doubleup) try: pal = pal.tolist() except AttributeError: # then it's already a list pass pal = [(1, 1, 1)] + pal fill_vals = dict(zip(range(len(model_names)), range(1, len(model_names)+1))) else: if palette_type.startswith('simple'): black, white = [(0, 0, 0), (1, 1, 1)] if palette_type.endswith('_r'): pal = [black, white] else: pal = [white, black] else: pal = sns.color_palette(palette_type, 2) fill_vals = dict(zip(range(len(model_names)), len(model_names) * [True])) if not doubleup: model_variants[0, [0, 2]] = fill_vals[0] model_variants[1, [0, 1]] = fill_vals[1] model_variants[2, [0, 1, 2]] = fill_vals[2] model_variants[3, [0, 1, 2, 3, 4]] = fill_vals[3] model_variants[4, [0, 1, 2, 5, 6]] = fill_vals[4] model_variants[5, [0, 1, 2, 3, 4, 5, 6]] = fill_vals[5] model_variants[6, [0, 1, 2, 7, 8]] = fill_vals[6] model_variants[7, [0, 1, 2, 9, 10]] = fill_vals[7] model_variants[8, [0, 1, 2, 7, 8, 9, 10]] = fill_vals[8] model_variants[9, [0, 1, 2, 3, 4, 7, 8]] = fill_vals[9] model_variants[10, [0, 1, 2, 5, 6, 9, 10]] = fill_vals[10] model_variants[11, [0, 1, 2, 3, 4, 5, 6, 7, 8]] = fill_vals[11] model_variants[12, [0, 1, 2, 3, 4, 5, 6, 9, 10]] = fill_vals[12] model_variants[13, :] = fill_vals[13] # while in theory, we want square to be True here too, we messed with # all the size in such a way that it works with it set to False square = False else: model_variants[0, [0, 2]] = fill_vals[0] model_variants[1, [0, 1]] = fill_vals[1] model_variants[2, [0, 1, 2]] = fill_vals[2] model_variants[3, [0, 1, 2, 3, 4]] = fill_vals[3] model_variants[4, [0, 1, 2, 5, 6]] = fill_vals[4] model_variants[5, [0, 1, 2, 3, 4, 5, 6]] = fill_vals[5] model_variants[6, [0, 1, 2, 7, 8]] = fill_vals[6] model_variants[2, [9, 10]] = fill_vals[7] model_variants[6, [9, 10]] = fill_vals[8] model_variants[9, [0, 1, 2, 3, 4, 7, 8]] = fill_vals[9] model_variants[4, [9, 10]] = fill_vals[10] model_variants[11, [0, 1, 2, 3, 4, 5, 6, 7, 8]] = fill_vals[11] model_variants[5, [9, 10]] = fill_vals[12] model_variants[11, [9, 10]] = fill_vals[13] # drop the rows that are all 0s model_variants = model_variants[~(model_variants==0).all(1)] warnings.warn("when doubling-up, we just use sequential numbers for models " "(the numbers therefore have a different meaning than for " "non-doubled-up version)") model_names = np.arange(1, model_variants.shape[0]+1) square = True model_variants = pd.DataFrame(model_variants, model_names, parameters) if order is not None: model_variants = model_variants.reindex(order) fig = plt.figure(figsize=figsize) ax = sns.heatmap(model_variants, cmap=pal, cbar=False, square=square) ax.set_yticklabels(model_variants.index, rotation=0) ax.set_ylabel("Model type") # we want the labels on the top here, not the bottom ax.tick_params(labelbottom=False, labeltop=True, pad=-2) if annotate: arrowprops = {'connectionstyle': 'bar', 'arrowstyle': '-', 'color': '0'} text = ['Eccentricity', 'Absolute', 'Relative', 'Absolute', 'Relative'] text = ['Ecc', 'Abs', 'Rel', 'Abs', 'Rel'] for i, pos in enumerate(range(1, 10, 2)): plotting.draw_arrow(ax, ((pos+.5)/11, 1.08+extra_space), ((pos+1.5)/11, 1.08+extra_space), arrowprops=arrowprops, xycoords='axes fraction', textcoords='axes fraction') ax.text((pos+1)/11, 1.11+extra_space, text[i], transform=ax.transAxes, ha='center', va='bottom') arrowprops['connectionstyle'] = f'bar,fraction={.3/5}' plotting.draw_arrow(ax, (1.5/11, 1.17+extra_space), (6.5/11, 1.17+extra_space), arrowprops=arrowprops, xycoords='axes fraction', textcoords='axes fraction') ax.text(4/11, 1.22+extra_space, 'Period', transform=ax.transAxes, ha='center', va='bottom') arrowprops['connectionstyle'] = f'bar,fraction={.3/3}' plotting.draw_arrow(ax, (7.5/11, 1.17+extra_space), (10.5/11, 1.17+extra_space), arrowprops=arrowprops, xycoords='axes fraction', textcoords='axes fraction') ax.text(9/11, 1.22+extra_space, 'Amplitude', transform=ax.transAxes, ha='center', va='bottom') return fig def model_parameters(df, plot_kind='point', visual_field='all', fig=None, add_legend=True, context='paper', **kwargs): """plot model parameter values, across subjects Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. note that this should first have gone through prep_model_df, which renames the values of the model_parameter columns so they're more pleasant to look at on the plot and adds a column, param_category, which enables us to break up the figure into three subplots plot_kind : {'point', 'strip', 'dist'}, optional What type of plot to make. If 'point' or 'strip', it's assumed that df contains only the fits to the median data across bootstraps (thus, one value per subject per parameter); if 'dist', it's assumed that df contains the fits to all bootstraps (thus, 100 values per subject per parameter). this function should run if those are not true, but it will look weird: - 'point': point plot, so show 68% CI across subjects - 'strip': strip plot, so show each subject as a separate point - 'dist': distribution, show each each subject as a separate point with their own 68% CI across bootstraps visual_field : str, optional in addition to fitting the model across the whole visual field, we also fit the model to some portions of it (the left half, right half, etc). this arg allows us to easily modify the title of the plot to make it clear which portion of the visual field we're plotting. If 'all' (the default), we don't modify the title at all, otherwise we append "in {visual_field} visual field" to it. fig : plt.Figure or None, optional the figure to plot on. If None, we create a new figure. Intended use case for this is to plot the data from multiple sessions on the same axes (with different display kwargs), in order to directly compare how parameter values change. add_legend : bool, optional whether to add a legend or not. If True, will add just outside the right-most axis context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up kwargs : Passed directly to the plotting function, which depends on the value of plot_kind Returns ------- fig : plt.Figure Figure containin the plot """ params, fig_width = style.plotting_style(context, figsize='full') plt.style.use(params) # in order to make the distance between the hues appear roughly # equivalent, need to set the ax_xlims in a particular way n_ori_params = df.query("param_category=='orientation'").model_parameter.nunique() ax_xlims = [[-.5, .5], [-.5, 1.5], [-.5, n_ori_params - .5]] yticks = [[0, .5, 1, 1.5, 2, 2.5], [0, .1, .2, .3, .4], [-.03, 0, .03, .06, .09]] axhline = [2] if fig is None: fig, axes = plt.subplots(1, 3, figsize=(fig_width, fig_width/2), gridspec_kw={'width_ratios': [.12, .25, .63], 'wspace': .3}) else: axes = fig.axes order = plotting.get_order('model_parameter', col_unique=df.model_parameter.unique()) if plot_kind == 'point': pal = plotting.get_palette('model_parameter', col_unique=df.model_parameter.unique(), as_dict=True) elif plot_kind == 'strip': # then we're showing this across subjects if 'subject' in df.columns and df.subject.nunique() > 1: hue = 'subject' # this is sub-groupaverage else: hue = 'groupaverage_seed' pal = plotting.get_palette(hue, col_unique=df[hue].unique(), as_dict=True) hue_order = plotting.get_order(hue, col_unique=df[hue].unique()) elif plot_kind == 'dist': # then we're showing this across subjects if 'subject' in df.columns and df.subject.nunique() > 1: pal = plotting.get_palette('subject', col_unique=df.subject.unique(), as_dict=True) hue_order = plotting.get_order('subject', col_unique=df.subject.unique()) gb_col = 'subject' # copied from how seaborn's stripplot handles this, by looking # at lines 368 and 1190 in categorical.py (version 0.9.0) dodge = np.linspace(0, .8 - (.8 / df.subject.nunique()), df.subject.nunique()) dodge -= dodge.mean() yticks = [[0, .5, 1, 1.5, 2, 2.5, 3.0], [-.1, 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1], [-.2, -.1, 0, .1, .2, .3]] ax_xlims = [[-1, 1], [-1, 2], [-.75, n_ori_params-.5]] axhline += [1] # else we've combined across all subjects else: pal = plotting.get_palette('model_parameter', col_unique=df.model_parameter.unique(), as_dict=True) gb_col = 'model_parameter' dodge = np.zeros(df.model_parameter.nunique()) for i, ax in enumerate(axes): cat = ['sigma', 'eccen', 'orientation'][i] tmp = df.query("param_category==@cat") ax_order = [i for i in order if i in tmp.model_parameter.unique()] if plot_kind == 'point': sns.pointplot('model_parameter', 'fit_value', 'model_parameter', data=tmp, estimator=np.median, ax=ax, order=ax_order, palette=pal, ci=68, **kwargs) elif plot_kind == 'strip': # want to make sure that the different hues end up in the # same order everytime, which requires doing this with # jitter and dodge sns.stripplot('model_parameter', 'fit_value', hue, data=tmp, ax=ax, order=ax_order, palette=pal, hue_order=hue_order, jitter=False, dodge=True, **kwargs) elif plot_kind == 'dist': handles, labels = [], [] for j, (n, g) in enumerate(tmp.groupby(gb_col)): dots, _, _ = plotting.scatter_ci_dist('model_parameter', 'fit_value', data=g, label=n, ax=ax, color=pal[n], x_dodge=dodge[j], x_order=ax_order, **kwargs) handles.append(dots) labels.append(n) ax.set(xlim=ax_xlims[i], yticks=yticks[i]) ax.tick_params(pad=0) if ax.legend_: ax.legend_.remove() if i == 2: if add_legend: if plot_kind == 'dist': legend = ax.legend(handles, labels, loc='lower center', ncol=3, borderaxespad=0, frameon=False, bbox_to_anchor=(.49, -.3), bbox_transform=fig.transFigure) else: legend = ax.legend(loc=(1.01, .3), borderaxespad=0, frameon=False) # explicitly adding the legend artist allows us to add a # second legend if we want ax.add_artist(legend) if i in axhline: ax.axhline(color='grey', linestyle='dashed') if i == 0: ax.set(ylabel='Parameter value') fig.text(.5, 0, "Parameter", ha='center') if context != 'paper': # don't want title in paper context suptitle = "Model parameters" if visual_field != 'all': suptitle += f' in {visual_field} visual field' fig.suptitle(suptitle) fig.subplots_adjust(top=.85) return fig def model_parameters_pairplot(df, drop_outlier=False): """plot pairwise distribution of model parameters There's one very obvious outlier (sub-wlsubj007, ses-04, bootstrap 41), where the $a$ parameter (sf_ecc_slope) is less than 0 (other parameters are also weird). If you want to drop that, set drop_outlier=True Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. note that this should first have gone through prep_model_df, which renames the values of the model_parameter columns so they're more pleasant to look at on the plot drop_outlier : bool, optional whether to drop the outlier or not (see above) Returns ------- g : sns.PairGrid the PairGrid containing the plot """ pal = plotting.get_palette('subject', col_unique=df.subject.unique()) pal = dict(zip(df.subject.unique(), pal)) df = pd.pivot_table(df, index=['subject', 'bootstrap_num'], columns='model_parameter', values='fit_value').reset_index() # this is a real outlier: one subject, one bootstrap (see docstring) if drop_outlier: df = df[df.get('$a$') > 0] g = sns.pairplot(df, hue='subject', vars=plotting.PLOT_PARAM_ORDER, palette=pal) for ax in g.axes.flatten(): ax.axhline(color='grey', linestyle='dashed') ax.axvline(color='grey', linestyle='dashed') return g def model_parameters_compare_plot(df, bootstrap_df): """plot comparison of model parameters from bootstrap vs median fits we have two different ways of fitting the data: to all of the bootstraps or just to the median across bootstraps. if we compare the resulting parameter values, they shouldn't be that different, which is what we do here. Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. note that this should first have gone through prep_model_df, which renames the values of the model_parameter columns so they're more pleasant to look at on the plot bootstrap_df : pd.DataFrame dataframe containing all the model parameter values, across subjects and bootstraps. note that this should first have gone through prep_model_df, which renames the values of the model_parameter columns so they're more pleasant to look at on the plot Returns ------- g : sns.FacetGrid the FacetGrid containing the plot """ pal = plotting.get_palette('subject', col_unique=df.subject.unique(), as_dict=True) order = plotting.get_order('subject', col_unique=df.subject.unique()) compare_cols = ['model_parameter', 'subject', 'session', 'task'] compare_df = df[compare_cols + ['fit_value']] tmp = bootstrap_df[compare_cols + ['fit_value']].rename(columns={'fit_value': 'fit_value_bs'}) compare_df = pd.merge(tmp, compare_df, on=compare_cols) compare_df = compare_df.sort_values(compare_cols) g = sns.FacetGrid(compare_df, col='model_parameter', hue='subject', col_wrap=4, sharey=False, aspect=2.5, height=3, col_order=plotting.PLOT_PARAM_ORDER, hue_order=order, palette=pal) g.map_dataframe(plotting.scatter_ci_dist, 'subject', 'fit_value_bs') g.map_dataframe(plt.scatter, 'subject', 'fit_value') for ax in g.axes.flatten(): ax.set_xticklabels(ax.get_xticklabels(), rotation=25, ha='right') return g def training_loss_check(df, hue='test_subset', thresh=.2): """check last epoch training loss in order to check that one of the models didn't get stuck in a local optimum in, e.g., one of the cross-validation folds or bootstraps, we here plot the loss for each subject and model, with median and 68% CI across batches. they should hopefully look basically all the same Parameters ---------- df : pd.DataFrame dataframe with the last epoch loss, as created by `analyze_model.collect_final_loss` hue : str, optional which df column to use as the hue arg for the FacetGrid thresh : float, optional the loss threshold for getting stuck in local optima. we annotate the plot with any training sessions whose median training loss on the last epoch is above this value Returns ------- g : sns.FacetGrid the FacetGrid containing the plot """ # to make sure we show the full dataframe below, from # https://stackoverflow.com/a/42293737 pd.set_option('display.max_columns', None) # from https://stackoverflow.com/a/25352191 pd.set_option('display.max_colwidth', -1) df.fit_model_type = df.fit_model_type.map(dict(zip(plotting.MODEL_ORDER, plotting.MODEL_PLOT_ORDER_FULL))) order = plotting.get_order('fit_model_type', col_unique=df.fit_model_type.unique()) col_order = plotting.get_order('subject', col_unique=df.subject.unique()) g = sns.FacetGrid(df, col='subject', hue=hue, col_wrap=4, sharey=False, aspect=2.5, height=3, col_order=col_order) g.map_dataframe(plotting.scatter_ci_dist, 'fit_model_type', 'loss', x_jitter=True, x_order=order) for ax in g.axes.flatten(): ax.set_xticklabels(ax.get_xticklabels(), rotation=25, ha='right') if ax.get_ylim()[1] > thresh: ax.hlines(thresh, 0, len(df.fit_model_type.unique())-1, 'gray', 'dashed') # find those training sessions with loss above the threshold above_thresh = df.groupby(['subject', 'fit_model_type', hue]).loss.median() above_thresh = above_thresh.reset_index().query('loss > @thresh') if len(above_thresh) > 0: g.fig.text(1.01, .5, ("Probable local optima (median last epoch training loss > " f"{thresh}):\n" + str(above_thresh))) g.fig.suptitle("Last epoch median training loss (with 68% CI across batches) on each CV fold") g.fig.subplots_adjust(top=.92) return g def feature_df_plot(df, avg_across_retinal_angle=False, reference_frame='relative', feature_type='pref-period', visual_field='all', context='paper', col_wrap=None, scatter_ref_pts=False, **kwargs): """plot model predictions based on parameter values This function is used to create plots showing the preferred period as a function of eccentricity, as given by the model. Right now, it always plots each subject separately, and will plot confidence intervals based on bootstraps if possible (i.e., if df contains the column 'bootstrap_num'). You can optionally average over the retinotopic angles or keep them separate, and you can plot the predictions for stimuli in the relative or absolute reference frame. This function converts the model paramter value df into the feature_df by calling analyze_model.create_feature_df. Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. avg_across_retinal_angle : bool, optional whether to average across the different retinotopic angles (True) or plot each of them on separate subplots (False). only relevant if feature_type=='pref-period' (others all plot something as function of retinotopic angle on polar plots) reference_frame : {'relative', 'absolute'}, optional whether the you want to plot the predictions for stimuli in the relative or absolute reference frame (i.e., annuli and pinwheels or constant gratings). feature_type : {'pref-period', 'pref-period-contour', 'iso-pref-period', 'max-amp'} what type of feature to create the plot for: - pref-period: plot preferred period as a function of eccentricity (on a Cartesian plot) - pref-period-contour: plot preferred period as a function of retinotopic angle at several different eccentricities (on a polar plot) - iso-pref-period: plot iso-preferred period lines as a function of retinotopic angle, for several different preferred periods (on a polar plot) - max-amp: plot max amplitude as a function of retinotopic angle (on a polar plot) visual_field : str, optional in addition to fitting the model across the whole visual field, we also fit the model to some portions of it (the left half, right half, etc). this arg allows us to easily modify the title of the plot to make it clear which portion of the visual field we're plotting. If 'all' (the default), we don't modify the title at all, otherwise we append "in {visual_field} visual field" to it. context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up col_wrap : int or None, optional col_wrap argument to pass through to seaborn FacetGrid scatter_ref_pts : bool, optional if True, we plot black points every 45 degrees on the polar plots to serve as a reference (only used in paper context). if False, do nothing. kwargs : Passed to plotting.feature_df_plot Returns ------- g : sns.FacetGrid the FacetGrid containing the plot """ aspect = 1 params, fig_width = style.plotting_style(context, figsize='full') plt.style.use(params) kwargs.setdefault('top', .9) axes_titles = True title_kwargs = {} adjust_kwargs = {} if df.bootstrap_num.nunique() > 1 or 'groupaverage_seed' in df.columns: # then we have each subject's bootstraps or the groupaverage # subject (which has also already been bootstrapped), so we use # scatter_ci_dist to plot across them plot_func = plotting.scatter_ci_dist kwargs.update({'draw_ctr_pts': False, 'ci_mode': 'fill', 'join': True}) else: plot_func = sns.lineplot # in this case, we have the individual fits if 'groupaverage_seed' not in df.columns: gb_cols = ['subject', 'bootstrap_num'] col = 'subject' pre_boot_gb_cols = ['subject', 'reference_frame', 'Stimulus type', 'bootstrap_num', 'Eccentricity (deg)'] # in this case, we have the sub-groupaverage else: gb_cols = ['groupaverage_seed'] col = None pre_boot_gb_cols = ['reference_frame', 'Stimulus type', 'groupaverage_seed', 'Eccentricity (deg)'] # if we're faceting over something, need to separate it out when creating # the feature df if 'hue' in kwargs.keys(): gb_cols += [kwargs['hue']] pre_boot_gb_cols += [kwargs['hue']] if col is None or df.subject.nunique() == 1: facetgrid_legend = False suptitle = False axes_titles = False split_oris = True col = 'orientation_type' ori_map = {k: ['cardinals', 'obliques'][i%2] for i, k in enumerate(np.linspace(0, np.pi, 4, endpoint=False))} pre_boot_gb_cols += [col] if feature_type == 'pref-period': kwargs.setdefault('height', (fig_width/2) / aspect) else: # the polar plots have two subplots, so they're half the height of the # pref-period one in order to get the same width kwargs.setdefault('height', (fig_width/4) / aspect) else: if context != 'paper': facetgrid_legend = True suptitle = True else: facetgrid_legend = False suptitle = False split_oris = False if col_wrap is not None: # there is, as of seaborn 0.11.0, a bug that interacts with our # xtick label size and height (see # https://github.com/mwaskom/seaborn/issues/2293), which causes an # issue if col_wrap == 3. this manual setting is about the same # size and fixes it if col_wrap == 3: kwargs.setdefault('height', 2.23) else: kwargs.setdefault('height', (fig_width / col_wrap) / aspect) if feature_type == 'pref-period': if context == 'poster': aspect = 1.3 else: kwargs.setdefault('ylim', (0, 2.1)) kwargs.setdefault('xlim', (0, 11.55)) if avg_across_retinal_angle: pre_boot_gb_func = 'mean' row = None else: pre_boot_gb_func = None row = 'Retinotopic angle (rad)' if split_oris: orientation = np.linspace(0, np.pi, 2, endpoint=False) else: orientation = np.linspace(0, np.pi, 4, endpoint=False) df = analyze_model.create_feature_df(df, reference_frame=reference_frame, gb_cols=gb_cols, orientation=orientation) if split_oris: df['orientation_type'] = df['Orientation (rad)'].map(ori_map) g = plotting.feature_df_plot(df, col=col, row=row, pre_boot_gb_func=pre_boot_gb_func, plot_func=plot_func, aspect=aspect, pre_boot_gb_cols=pre_boot_gb_cols, col_wrap=col_wrap, facetgrid_legend=facetgrid_legend, **kwargs) else: kwargs.update({'all_tick_labels': ['r'], }) if context == 'paper': orientation = np.linspace(0, np.pi, 4, endpoint=False) kwargs.update({'ylabelpad': 10, 'theta_ticklabels': [], 'wspace': .1, 'hspace': .1}) elif context == 'poster': orientation = np.linspace(0, np.pi, 2, endpoint=False) kwargs.update({'top': .76, 'r_ticks': [.25, .5, .75, 1], 'wspace': .3, 'r_ticklabels': ['', .5, '', 1], 'ylabelpad': 60, 'hspace': .3}) if feature_type == 'pref-period-contour': rticks = np.arange(.25, 1.5, .25) if context == 'paper': rticklabels = ['' for i in rticks] else: rticklabels = [j if j == 1 else '' for i, j in enumerate(rticks)] if not split_oris: # there's a weird interaction where if we set the rticks before # calling scatter (which we do when split_oris is True), it # competely messes up the plot. unsure why. kwargs.update({'r_ticks': rticks, 'r_ticklabels': rticklabels}) df = analyze_model.create_feature_df(df, reference_frame=reference_frame, eccentricity=[5], orientation=orientation, retinotopic_angle=np.linspace(0, 2*np.pi, 49), gb_cols=gb_cols) if split_oris: df['orientation_type'] = df['Orientation (rad)'].map(ori_map) kwargs['ylim'] = (0, 1.25) row = 'Eccentricity (deg)' if df[row].nunique() == 1: row = None r = 'Preferred period (deg)' g = plotting.feature_df_polar_plot(df, col=col, row=row, r=r, plot_func=plot_func, col_wrap=col_wrap, aspect=aspect, pre_boot_gb_cols=pre_boot_gb_cols, facetgrid_legend=facetgrid_legend, **kwargs) if context == 'paper': for axes in g.axes: axes[0].set_ylabel('Preferred\nperiod (deg)') elif feature_type == 'iso-pref-period': if context == 'poster': kwargs.update({'r_ticks': list(range(1, 9)), 'r_ticklabels': [i if i%2==0 else '' for i in range(1, 9)]}) if split_oris: df['orientation_type'] = df['Orientation (rad)'].map(ori_map) df = analyze_model.create_feature_df(df, 'preferred_period_contour', period_target=[1], reference_frame=reference_frame, orientation=orientation, gb_cols=gb_cols) r = 'Eccentricity (deg)' row = 'Preferred period (deg)' if df[row].nunique() == 1: row = None g = plotting.feature_df_polar_plot(df, col=col, r=r, row=row, plot_func=plot_func, aspect=aspect, title='ISO-preferred period contours', pre_boot_gb_cols=pre_boot_gb_cols, col_wrap=col_wrap, facetgrid_legend=facetgrid_legend, **kwargs) elif feature_type == 'max-amp': rticks = np.arange(.25, 1.5, .25) if context == 'paper': rticklabels = ['' for i in rticks] else: rticklabels = [j if j == 1 else '' for i, j in enumerate(rticks)] if not split_oris: # there's a weird interaction where if we set the rticks before # calling scatter (which we do when split_oris is True), it # competely messes up the plot. unsure why. kwargs.update({'r_ticks': rticks, 'r_ticklabels': rticklabels}) df = analyze_model.create_feature_df(df, 'max_amplitude', orientation=orientation, reference_frame=reference_frame, gb_cols=gb_cols) if split_oris: df['orientation_type'] = df['Orientation (rad)'].map(ori_map) kwargs['ylim'] = (0, 1.15) r = 'Max amplitude' g = plotting.feature_df_polar_plot(df, col=col, r=r, aspect=aspect, plot_func=plot_func, title='Relative amplitude', col_wrap=col_wrap, pre_boot_gb_cols=pre_boot_gb_cols, facetgrid_legend=facetgrid_legend, **kwargs) ylabel = 'Relative amplitude' # doesn't look good with multiple rows if context == 'paper' and col_wrap is None: # the location argument here does nothing, since we over-ride # it with the bbox_to_anchor and bbox_transform arguments. the # size and size_vertical values here look weird because they're # in polar units (so size is in theta, size_vertical is in r) asb = AnchoredSizeBar(g.axes[0, 0].transData, 0, '1', 'center', frameon=False, size_vertical=1, bbox_to_anchor=(.52, 1), sep=5, bbox_transform=g.fig.transFigure) g.axes[0, 0].add_artist(asb) ylabel = ylabel.replace(' ', '\n') for axes in g.axes: axes[0].set_ylabel(ylabel) else: raise Exception(f"Don't know what to do with feature_type {feature_type}!") if split_oris: th = np.linspace(0, 2*np.pi, 8, endpoint=False) r_val = 1 # df[r].mean() if scatter_ref_pts: for ax in g.axes.flatten(): ax.scatter(th, len(th)*[r_val], c='k', s=mpl.rcParams['lines.markersize']**2 / 2) # for some reason, can't call the set_rticks until after all # scatters have been called, or they get messed up for ax in g.axes.flatten(): ax.set_yticks(rticks) ax.set_yticklabels(rticklabels) else: adjust_kwargs.update({'wspace': -.1, 'hspace': .15}) if context == 'paper': for ax in g.axes.flatten(): if ax.get_xlabel(): ax.set_xlabel(ax.get_xlabel(), labelpad=-5) # remove the xlabel from one of them and place the remaining one in # between the two subplots, because it's redundant g.axes[0, 0].set_xlabel('') # this can have its xlabel removed, since it will be above another plot which has one if feature_type == 'pref-period-contour': g.axes[0, 1].set_xlabel('') else: g.axes[0, 1].set_xlabel(g.axes.flatten()[1].get_xlabel(), x=-.05, ha='center', labelpad=-5) title_kwargs['pad'] = -13 if visual_field != 'all': g.fig._suptitle.set_text(g.fig._suptitle.get_text() + f' in {visual_field} visual field') if not suptitle: g.fig.suptitle('') if not axes_titles: for ax in g.axes.flatten(): ax.set_title('') else: g.set_titles(col_template="{col_name}", **title_kwargs) g.tight_layout() g.fig.subplots_adjust(**adjust_kwargs) return g def existing_studies_with_current_figure(df, seed=None, precision_df=None, y="Preferred period (deg)", context='paper'): """Plot results from existing studies with our results This is the same plot as `existing_studies_figure()`, with the results from our study plotted as a black line (so see that figure for more details). Note that the `df` argument here is the dataframe containing results from this study, NOT the results from previous studies (we call the `existing_studies_df()` function here) Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. seed : int or None seed for numpy's RNG. can only be None if precision_df is None precision_df : pd.dataFrame or None, optional dataframe containing the precision for each scanning session in df. If None, we won't do any bootstrapping, and so assume this already has only one subject y : {'Preferred period (deg)', 'Preferred spatial frequency (cpd)'} Whether to plot the preferred period or preferred spatial frequency on the y-axis. If preferred period, the y-axis is linear; if preferred SF, the y-axis is log-scaled (base 2). The ylims will also differ between these two context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- g : sns.FacetGrid The FacetGrid containing the plot """ # this gets us the median parameter value for each subject and fit # model type df = df.groupby(['subject', 'model_parameter', 'fit_model_type']).median().reset_index() if precision_df is not None: df = df.merge(precision_df, on=['subject']) df = precision_weighted_bootstrap(df, seed, 100, 'fit_value', ['model_parameter', 'fit_model_type'], 'precision') gb_cols = [c for c in ['subject', 'bootstrap_num'] if c in df.columns] df = analyze_model.create_feature_df(df, reference_frame='relative', gb_cols=gb_cols) df = df.groupby(['subject', 'reference_frame', 'Eccentricity (deg)', 'bootstrap_num']).agg('mean').reset_index() df['Preferred spatial frequency (cpd)'] = 1 / df['Preferred period (deg)'] g = existing_studies_figure(existing_studies_df(), y, False, context) _, line, _ = plotting.scatter_ci_dist('Eccentricity (deg)', y, data=df, color='k', join=True, ax=g.ax, linewidth=1.5*plt.rcParams['lines.linewidth'], ci=68, estimator=np.median, draw_ctr_pts=False, ci_mode='fill'); data = g._legend_data.copy() data['Current study'] = line[0] g.add_legend(data, label_order=g.hue_names + ['Current study']) # facetgrid doesn't let us set the title fontsize directly, so need to do # this hacky work-around g.fig.legends[0].get_title().set_size(mpl.rcParams['legend.title_fontsize']) return g def mtf(mtf_func, df=None, context='paper'): """Plot the MTF as a function of spatial frequencies This plots the function we use to invert the display MTF when constructing our stimuli. We plot a semilogx plot, from 1/512 to 1/2 cycles per pixel, labeled as pixels per period (the reciprocal of spatial frequency), with y-values going from .5 to 1 Parameters ---------- mtf_func : function python function that takes array of spatial frequencies as its only argument and returns the MTF at those spatial frequencies. df : pd.DataFrame or None, optional If not None, the data used to fit this function, which we'll plot as points on the figure. context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up Returns ------- fig : plt.figure Figure containing the MTF plot """ sfs = np.linspace(0, .5) params, fig_width = style.plotting_style(context, figsize='half') plt.style.use(params) fig, ax = plt.subplots(1, 1, figsize=(fig_width, fig_width*.65)) ax.semilogx(sfs, mtf_func(sfs), 'C0', basex=2) if df is not None: ax.semilogx(df.display_freq, df.corrected_contrast, 'C0o', basex=2) ticks = [512, 128, 32, 8, 2] ax.set(xticks=[1/i for i in ticks], xticklabels=ticks, xlabel='Pixels per period', ylabel='Michelson contrast', yticks=[.5, .75, 1]) fig.tight_layout() return fig def sigma_interpretation(df): """Generate string interpreting relative size of a, b, and sigma. This function returns a string (meant to be printed or saved to txt file) that describes the preferred period at 0, the standard deviation, and how many degrees you'd have to move in order to shift your preferred period by a single standard deviation. Parameters ---------- df : pd.DataFrame dataframe containing all the model parameter values, across subjects. note that this should first have gone through prep_model_df, which renames the values of the model_parameter columns. Returns ------- result : str string containing the description discussed above """ # get the median value of the parameters we're interested median_params = df.groupby('model_parameter').fit_value.median() a = median_params['$a$'] b = median_params['$b$'] sigma = median_params['$\sigma$'] n_degrees = (b * (2**sigma - 1)) / a pref_period_there = b + n_degrees * a # as described on the wiki page for FWHM: # https://en.wikipedia.org/wiki/Full_width_at_half_maximum. That's for a # regular Gaussian, but the same calculation works here, just in octave # units (as equivalent to $\log_2(SF_{.5H} / SF_{.5L})$, where those SFs # are the spatial frequency where the curve reaches half-max above and # below the peak, respectively) fwhm = 2*np.sqrt(2*np.log(2)) * sigma result = ( f"Preferred period at 0 degrees is {b:.03f}, with slope {a:.03f}.\n" f"Standard deviation of the log-Gaussian is {sigma:.03f} octaves (equivalent to FWHM of {fwhm:.03f} octaves).\n" f"Therefore, you'd need to move to {n_degrees:.03f} degrees eccentricity to move by a std dev.\n" f"At that eccentricity, preferred period is {pref_period_there:.03f}.\n" "All this is calculated using the median across bootstraps, average across polar angle and orientations." ) return result def compare_cv_models(first_level_df, targets, predictions, model_names, loss_func='normed_loss', df_filter_string='drop_voxels_with_mean_negative_amplitudes,drop_voxels_near_border', context='paper', voxel_n_check=9): """Create plots to help understand differences in model performance. This creates several plots to compare the predictions of different models. We make pairwise comparisons between each of them: 1. Plot pairwise difference in loss as a function of eccentricity (each comparison on a separate row) (1 plot). 2. Plot the `voxel_n_check` voxels that are the best for each model in each pairwise comparison (2 plots per pairwise comparison). We plot the voxel response as a function of spatial frequency, and then curves for each model. This means that we're collapsing across stimulus orientation (variation in those responses just shown as confidence intervals). Because we're only plotting response as a function of spatial frequency (and not of stimulus orientation), this is really only sufficient for comparing models 1 to 3, those models whose responses are isotropic. Modification to this would be necessary to make informative plots for the other models. Parameters ---------- first_level_df : pd.DataFrame DataFrame containing the responses of each voxel to each stimulus. Note that we only use the median response, so the summary dataframe (vs full, which includes separate bootstraps) should be used. targets : torch.tensor tensor containing the targets for the model, i.e., the responses and precision of the voxels-to-fit, as saved out by sfp.analyze_model.calc_cv_error predictions : list list of tensors containing the predictions for each model, as saved out by sfp.analyze_model.calc_cv_error model_names : list list of strings containing the names (for plotting purposes) of each model, in same order as predictions. loss_func : str, optional The loss function to compute. One of: {'weighted_normed_loss', 'crosscorrelation', 'normed_loss', 'explained_variance_score', 'cosine_distance', 'cosine_distance_scaled'}. df_filter_string : str or None, optional a str specifying how to filter the voxels in the dataset. see the docstrings for sfp.model.FirstLevelDataset and sfp.model.construct_df_filter for more details. If None, we won't filter. Should probably use the default, which is what all models are trained using. context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up voxel_n_check : int, optional Number of voxels to plot in second plot type. As you get farther away from default value (9), more likely that plot will look weird. Returns ------- figs : list List containing the created figures """ params, fig_width = style.plotting_style(context, figsize='full') plt.style.use(params) if df_filter_string is not None: df_filter = model.construct_df_filter(df_filter_string) first_level_df = df_filter(first_level_df) voxels = first_level_df.drop_duplicates('voxel') voxels['voxel_new'] = np.arange(len(voxels)) tmp = first_level_df.set_index('voxel') tmp['voxel_new'] = voxels['voxel_new'] first_level_df = tmp.reset_index() for name, pred in zip(model_names, predictions): loss = analyze_model._calc_loss(pred, targets, loss_func, False) voxels[f'{name}_loss'] = loss # this is the number of combinations of the values in model names with # length 2. for some reason, itertools objects don't have len() n_combos = int(math.factorial(len(model_names)) / 2 / math.factorial(len(model_names)-2)) fig, axes = plt.subplots(n_combos, 2, squeeze=False, figsize=(fig_width, n_combos/2*fig_width)) predictions = dict(zip(model_names, predictions)) voxel_comp_figs = [] for i, (name_1, name_2) in enumerate(itertools.combinations(model_names, 2)): loss_name = f'{name_1}_loss - {name_2}_loss' voxels[loss_name] = voxels[f'{name_1}_loss'] - voxels[f'{name_2}_loss'] ymax = voxels[loss_name].max() + voxels[loss_name].max() / 10 ymin = voxels[loss_name].min() + voxels[loss_name].min() / 10 sns.scatterplot(x='eccen', y=loss_name, data=voxels, ax=axes[i, 0]) axes[i, 0].set_ylim(ymin, ymax) sns.regplot(x='eccen', y=loss_name, data=voxels, ax=axes[i, 1], x_estimator=np.median, x_bins=50) axes[i, 1].set(ylabel='') axes[i, 0].hlines(0, voxels.eccen.min(), voxels.eccen.max(), linestyles='dashed') axes[i, 1].hlines(0, voxels.eccen.min(), voxels.eccen.max(), linestyles='dashed') vox_idx = voxels[loss_name].values.argsort() vox_idx = np.concatenate([vox_idx[-voxel_n_check:], vox_idx[:voxel_n_check]]) tmp = first_level_df.query(f"voxel_new in @vox_idx") data = [] for j, v in enumerate(vox_idx): d = {} for name in model_names: pred = predictions[name] val = pred[v] # need to normalize predictions for comparison val = val / val.norm(2, -1, True) d[name] = val.detach() d['voxel_new'] = v d['stimulus_class'] = np.arange(48) d['better_model'] = {True: name_2, False: name_1}[j < voxel_n_check] data.append(pd.DataFrame(d)) t = pd.concat(data) tmp = tmp.merge(t, 'left', on=['voxel_new', 'stimulus_class'], validate='1:1', ) tmp = tmp.rename(columns={'amplitude_estimate_median_normed': 'voxel_response'}) tmp = pd.melt(tmp, ['voxel_new', 'local_sf_magnitude', 'stimulus_class', 'better_model', 'eccen'], value_vars=['voxel_response'] + model_names, var_name='model', value_name='response') for name, other_name in zip([name_1, name_2], [name_2, name_1]): g = sns.relplot(x='local_sf_magnitude', y='response', data=tmp.query(f"better_model=='{name}'"), hue='model', col='voxel_new', kind='line', col_wrap=3, height=fig_width/3) g.fig.suptitle(f'better_model = {name} (vs {other_name})') if voxel_n_check > 6: g.fig.subplots_adjust(top=.9) elif voxel_n_check > 3: g.fig.subplots_adjust(top=.85) else: g.fig.subplots_adjust(top=.75) g.set(xscale='log') for ax in g.axes.flatten(): vox_id = int(re.findall('\d+', ax.get_title())[0]) ax.set_title(ax.get_title() + f",\neccen = {tmp.query('voxel_new==@vox_id').eccen.unique()[0]:.02f}") voxel_comp_figs.append(g.fig) fig.tight_layout() return [fig] + voxel_comp_figs def theory_background_figure(context): """Create figure with some small info on background theory. Parameters ---------- context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up (but only paper has been tested) Returns ------- fig : plt.figure Figure containing this plot """ einstein_path = op.join(op.dirname(op.realpath(__file__)), '..', 'reports', 'figures', 'einstein.pgm') einstein = plt.imread(einstein_path) einstein = einstein / einstein.max() params, fig_width = style.plotting_style(context, figsize='full') params['axes.titlesize'] = '8' params['axes.labelsize'] = '8' params['legend.fontsize'] = '8' warnings.warn("We adjust the font size for axes titles, labels, and legends down to " "8pts (so this will probably look wrong if context is not paper)!") plt.style.use(params) fig = plt.figure(figsize=(fig_width, fig_width/2)) gs = fig.add_gridspec(4, 4, hspace=.65) fig.add_subplot(gs[:2, 0]) fig.add_subplot(gs[2:, 0]) fig.add_subplot(gs[1:3, 1]) fig.add_subplot(gs[1:3, -2]) fig.add_subplot(gs[:2, -1]) fig.add_subplot(gs[2:, -1]) axes = np.array(fig.axes).flatten() for ax in axes[:2]: ax.axis('off') pt.imshow((einstein+.5)/1.5, ax=axes[0], zoom=110/256, title=None, vrange=(0, 1)) pt.imshow((einstein+.5)/1.5, ax=axes[1], zoom=110/256, title=None, vrange=(0, 1)) axes[0].set_title(r'SF preferences $\bf{constant}$'+'\nacross visual field') axes[1].set_title(r'SF preferences $\bf{scale}$'+'\nwith eccentricity') ecc = np.linspace(.01, 20, 50) V1_pRF_size = 0.063485 * ecc constant_hyp = 2*np.ones(len(ecc)) pal = sns.color_palette('Dark2', n_colors=2) for i, ax in enumerate(axes[2:4].flatten()): if i == 0: ax.semilogy(ecc, 1./V1_pRF_size, '-', label='scaling', linewidth=2, basey=2, c=pal[0]) ax.set_ylim((.25, 10)) ax.plot(ecc, constant_hyp, c=pal[1], linewidth=2, label='constant') ax.set(xticks=[], yticks=[], ylabel='Preferred SF (cpd)', xlabel='Eccentricity') elif i == 1: ax.plot(ecc, V1_pRF_size, linewidth=2, label='scaling', c=pal[0]) ax.plot(ecc, 1./constant_hyp, c=pal[1], linewidth=2, label='constant') ax.set(xlabel='Eccentricity', xticks=[], yticks=[], ylabel='Preferred period (deg)') axes[3].legend(frameon=False, bbox_to_anchor=(-.1, -.1), loc='upper center') axes[3].annotate('', xy=(.5, 1), xytext=(-.65, 1), xycoords='axes fraction', arrowprops={'arrowstyle': '<->', 'color': 'k', 'connectionstyle': 'arc3,rad=-.3'}) axes[3].text(-.075, 1.2, r'$\frac{1}{f(x)}$', ha='center', va='bottom', transform=axes[3].transAxes) # from Eero, this is about what it should be V1_RF_size = .2 * ecc V1_pRF_size_slope = 0.063485 V1_pRF_size_offset = 0 V1_pRF_size_error = 0.052780 for i, ax in enumerate(axes[4:].flatten()): ax.fill_between(ecc, (V1_pRF_size_slope - V1_pRF_size_error/2.)*ecc + V1_pRF_size_offset, (V1_pRF_size_slope + V1_pRF_size_error/2.)*ecc + V1_pRF_size_offset, alpha=.1, color=pal[0]) ax.plot(ecc, V1_pRF_size_slope*ecc+V1_pRF_size_offset, linewidth=2, label='scaling', c=pal[0]) if i == 0: for e in [1,5,10,15,20]: ax.plot([0, 20], [V1_pRF_size_slope*e+V1_pRF_size_offset, V1_pRF_size_slope*e+V1_pRF_size_offset], '--', c='k', linewidth=1) ax.set(title="Full-field gratings", xticks=[], yticks=[]) if i == 1: for j in [-1, -.5, 0, .5, 1]: ax.plot(ecc, (V1_pRF_size_slope + j*V1_pRF_size_error/2.)*ecc + V1_pRF_size_offset, linestyle='--', c='k', linewidth=1) ax.set(xlabel='Eccentricity', xticks=[], yticks=[], title='Scaled gratings') ax.set_ylabel("Preferred period (deg)") return fig def voxel_exclusion(df, context='paper'): """Create plot showing how many voxels were excluded from model fitting. WARNING: Currently this is not context-compliant -- the figure ends up much wider than allowed. If we want to use this in paper, will change that. Parameters ---------- df : pd.DataFrame dataframe containing the voxel exclusion info, as created by the snakemake rule voxel_exclusion_df context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up (but only paper has been tested) Returns ------- g : sns.FacetGrid FacetGrid containing the plot """ params, fig_width = style.plotting_style(context, figsize='full') plt.style.use(params) if 'ecc in 1-12,drop_voxels_with_any_negative_amplitudes' in df.columns: arg_str = 'any' elif 'ecc in 1-12,drop_voxels_with_mean_negative_amplitudes' in df.columns: arg_str = 'mean' neg = df['ecc in 1-12'] - df[f'ecc in 1-12,drop_voxels_with_{arg_str}_negative_amplitudes'] border = df['ecc in 1-12'] - df['ecc in 1-12,drop_voxels_near_border'] df[f'ecc in 1-12,drop_voxels_with_{arg_str}_negative_amplitudes,drop_voxels_near_border - independent'] = df['ecc in 1-12'] - (neg + border) neg_prop = dict(zip(df.subject, neg / df['ecc in 1-12'])) neg = dict(zip(df.subject, neg)) map_dict = {'total_voxels': 0, 'ecc in 1-12': 1, f'ecc in 1-12,drop_voxels_with_{arg_str}_negative_amplitudes': 2, 'ecc in 1-12,drop_voxels_near_border': 3, f'ecc in 1-12,drop_voxels_with_{arg_str}_negative_amplitudes,drop_voxels_near_border': 4, f'ecc in 1-12,drop_voxels_with_{arg_str}_negative_amplitudes,drop_voxels_near_border - independent': 5} id_vars = [c for c in df.columns if c not in map_dict.keys()] df = pd.melt(df, id_vars, value_name='number_of_voxels') df['exclusion_criteria'] = df.variable.map(map_dict) col_order = plotting.get_order('subject', col_unique=df.subject.unique()) g = sns.catplot(x='exclusion_criteria', y='number_of_voxels', data=df, col='subject', kind='point', col_wrap=6, aspect=.5, height=(1/.5)*(2*fig_width/6), col_order=col_order) for ijk, data in g.facet_data(): ax = g.axes[ijk[1]] ax.scatter(4, data.query('exclusion_criteria==4').number_of_voxels, c='r', zorder=100) txt = '\n'.join([f'{v}: {k}' for k,v in map_dict.items()]) g.fig.text(1, .75, txt, va='center') txt = '\n'.join([f'{s}: {neg[s]} ({neg_prop[s]:.3f})' for s in col_order]) txt = "Number of voxels dropped because of negative amplitude (proportion on stimuli)\n\n" + txt g.fig.text(1, .25, txt, va='center') return g def _create_model_prediction_df(df, trained_model, voxel_label, for_relative_plot=False, extend_sf=False): """Create df containing model predictions for a single voxel Will contain 48 rows, with the following columns: model_predictions (normed predictions of trained_model to the spatial frequency seen by this voxel), voxel (voxel_label), stimulus_class (0 to 47, giving the stimulus label), peak_sf (if add_peak_sf is True, this gives the preferred spatial frequency of this voxel, at each observed orientation). Parameters ---------- df : pd.DataFrame DataFrame containing the responses of a single voxel to stimuli. Should only have one response per stimulus (thus, the summary df), and must have columns eccen, angle, local_sf_magnitude, and local_sf_xy_direction. trained_model : sfp.model.LogGaussianDonut Trained model whose responses we want to get. voxel_label : str The label for this voxel. for_relative_plot : bool, optional If True, will add a column giving the peak spatial frequency for this voxel at each observed orientation and evaluate the model at 36 frequencies log-spaced from two decades below to two decades above the peak (rather than the presented frequencies), at the four main orientations. extend_sf : bool, optional If True, we instead generate predictions for local spatial frequencies from .01 to 100 cpd (logspaced, 36 samples), for the four main angles. Cannot be True if for_relative_plot is True. Returns ------- data : pd.DataFrame DataFrame containing the above info """ data = {} assert df.eccen.nunique() == 1 and df.angle.nunique() == 1, "_create_model_prediction_df must be called on the df with responses to a single voxel!" sfs = df.drop_duplicates('stimulus_class')[['local_sf_magnitude', 'local_sf_xy_direction']] sfs = torch.tensor(sfs.values) prf_loc = torch.tensor(df[['eccen', 'angle']].values) predictions = trained_model.evaluate(sfs[:, 0], sfs[:, 1], prf_loc[:, 0], prf_loc[:, 1]) predictions_norm = predictions.norm(2, -1, True) if extend_sf: if for_relative_plot: raise Exception("At most one of for_relative_plot and extend_sf can be true, but both were true!") # get the 4 main orientations angles = np.linspace(0, 2*np.pi, 8, endpoint=False) angles = df.query('freq_space_angle in @angles').drop_duplicates('freq_space_angle') angles = angles.local_sf_xy_direction.values n_samps = 36 freqs = [] for a in angles: freqs.extend(np.logspace(-2, 2, n_samps)) sfs = torch.tensor([freqs, np.concatenate([n_samps*[a] for a in angles])]).transpose(0, 1) data['local_sf_magnitude'] = sfs[:, 0].detach().numpy() # we use the same norm as before, in order to make sure things line up correctly predictions = trained_model.evaluate(sfs[:, 0], sfs[:, 1], prf_loc[0, 0], prf_loc[0, 1]) elif for_relative_plot: # get the 4 main orientations angles = np.linspace(0, 2*np.pi, 8, endpoint=False) angles = df.query('freq_space_angle in @angles').drop_duplicates('freq_space_angle') angles = angles.local_sf_xy_direction.values peak_sf = [] freqs = [] n_samps = 36 for a in angles: peak_sf.append(trained_model.preferred_sf(a, prf_loc[0, 0], prf_loc[0, 1]).item()) freqs.extend(np.logspace(np.log10(peak_sf[-1]/100), np.log10(peak_sf[-1]*100), n_samps)) sfs = torch.tensor([freqs, np.concatenate([n_samps*[a] for a in angles])]).transpose(0, 1) peak_sf = np.concatenate([n_samps*[p] for p in peak_sf]) data['peak_sf'] = peak_sf data['local_sf_magnitude'] = sfs[:, 0].detach().numpy() # we use the same norm as before, in order to make sure things line up correctly predictions = trained_model.evaluate(sfs[:, 0], sfs[:, 1], prf_loc[0, 0], prf_loc[0, 1]) else: data['stimulus_class'] = np.arange(48) data['model_predictions'] = (predictions / predictions_norm).detach().squeeze() data['voxel'] = voxel_label return pd.DataFrame(data) def _remap_frequencies(df, freq_mag_col='local_sf_magnitude'): """Create plotting_sf column in df for each voxel, our stimuli have several orientations. ideally, these orientations would all have the exact same spatial frequency, but they don't (the w_r/w_a parameters needed to be integers in order to avoid obvious artifacts at polar angle 0). for plotting purposes, this is confusing, so we map those values such that they are identical, and the binning that gets done later on then makes more sense. This adds a column, plotting_sf, which contains this info. Parameters ---------- df : pd.DataFrame first level DataFrame containing the amplitude responses for a single subject and session. Must be the summary version (only has median across bootstraps). freq_mag_col : str, optional Name of the column with the spatial frequencies to remap. Returns ------- df : pd.DataFrame the dataframe with plotting_sf column added. """ canonical_freqs = [f for f in df.freq_space_distance.unique() if f == int(f)] canonical_freq_mapper = {f: min(canonical_freqs, key=lambda x: abs(x-f)) for f in df.freq_space_distance.unique()} freq_mapper = df.groupby(['voxel', 'freq_space_distance'])[freq_mag_col].median().to_dict() df['plotting_sf'] = df.apply(lambda x: freq_mapper[x.voxel, canonical_freq_mapper[x.freq_space_distance]], axis=1) return df def _merge_model_response_df(df, model_predictions): """Merge dfs with model predictions and voxel responses. Parameters ---------- df : pd.DataFrame first level DataFrame containing the amplitude responses for a single subject and session. Must be the summary version (only has median across bootstraps). model_predictions : pd.DataFrame DataFrame containing the model predictions for each voxel in df. Returns ------- df : pd.Dataframe The merged dataframe """ try: df = df.merge(model_predictions, 'left', on=['voxel', 'stimulus_class'], validate='1:1', ) df = df.rename(columns={'amplitude_estimate_median_normed': 'voxel_response'}) df = pd.melt(df, ['voxel', 'stimulus_class', 'eccen', 'freq_space_angle', 'local_sf_magnitude', 'plotting_sf'], value_vars=['voxel_response', 'model_predictions'], var_name='model', value_name='Response (a.u.)') except KeyError: # in this case, we're combining the relative ones, so model_predictions # doesn't have a stimulus_class column (and they're evaluated at # different frequencies) df = df[['voxel', 'local_sf_magnitude', 'amplitude_estimate_median_normed', 'peak_sf', 'subject']] df['model'] = 'voxel_response' df = df.rename(columns={'amplitude_estimate_median_normed': 'Response (a.u.)'}) model_predictions = model_predictions.rename(columns={'model_predictions': 'Response (a.u.)'}) model_predictions['model'] = 'model_predictions' df = pd.concat([df, model_predictions], sort=False) return df def _voxel_responses_and_predictions(*args, label='', n_bins=10, plot_type='reg', **kwargs): """Plot voxel responses and model predictions. If label=voxel_response, we use sns.regplot (if plot_type=='reg', with n_bins bins on the x axis) or sns.histplot (if plot_type='hist', logscaling the x-axis). Else, we use sns.lineplot """ if label == 'voxel_response': if plot_type == 'reg': # there are 22 unique frequencies (freq_space_distance in the # dataframe), but only 10 "real" ones, the others are just off by a # little bit (because w_a/w_r needed to be whole numbers) return sns.regplot(*args, x_bins=n_bins, fit_reg=False, label=label, scatter_kws={'s': 10}, **kwargs) elif plot_type == 'hist': to_return = sns.histplot(*args, label=label, log_scale=(True, False), # rasterize to decrease size rasterized=True, **kwargs) # set xscale back to linear because apparently sns.histplot sets it # for all axes, and we want the next facet to have linear xscale # for when sns.lineplot is called plt.xscale('linear') return to_return else: return sns.lineplot(*args, label=label, **kwargs, zorder=10) def example_voxels(df, trained_model, voxel_idx=[2310, 2957, 1651], extend_sf=False, context='paper'): """Plot some example voxel data and their model fit. For some voxels and a trained model, plot some comparisons between the measured voxel responses and the model's predictions. Each voxel gets its own column. Nothing is done here to choose the voxels, so that must be done externally. Parameters ---------- df : pd.DataFrame first level DataFrame containing the amplitude responses for a single subject and session. Must be the summary version (only has median across bootstraps). trained_model : sfp.model.LogGaussianDonut Trained model whose responses we want to show. voxel_idx : list, optional List of voxel ids (i.e., values from the 'voxel' column of df) to show. Should be selected somehow in order to make sure they're reasonably nice. The default values are for sub-wlsubj001, ses-04, and are roughly foveal, parafoveal, and peripheral, all reasonably well fit by the full model. Regardless of how many are here, we'll have 3 columns per row. extend_sf : bool, optional If True, we instead generate predictions for local spatial frequencies from .01 to 100 cpd (logspaced, 36 samples), for the four main angles. context : {'paper', 'poster'}, optional plotting context that's being used for this figure (as in seaborn's set_context function). if poster, will scale things up (but only paper has been tested) Returns ------- g : sns.FacetGrid FacetGrid containing the plot """ params, fig_width = style.plotting_style(context, figsize='full') plt.style.use(params) ax_height = (fig_width / 4) / .75 df = df.query("voxel in @voxel_idx") data = [] voxel = df.drop_duplicates('voxel') eccen_order = voxel.sort_values('eccen').voxel.values for i, v in enumerate(voxel_idx): data.append(_create_model_prediction_df(df.query('voxel==@v'), trained_model, v, extend_sf=extend_sf)) data =
pd.concat(data)
pandas.concat
# This code reads a results of WQ samplings from a lake at various time and locations by # several researchers # The code does the following steps# # 1) reads the .csv files # 2) calculates the mean and standard deviations of samples at taken a particular date (by all researcher) # 3) fills the gap between dates to have a consistent data set from the beginning to the end of all samplings # 4) plots a time series of the variables versus water level # This code has been written by <NAME> in 6/1/2019 #---------------------------------------------------- # Import the Pandas and Matplotlib and other packages import pandas as pd import matplotlib.pyplot as plt import scipy as sci import numpy as np from numpy import * from scipy.stats import * import seaborn as sns # Determine the temporal range of your data beginDate = '06-01-1977' endDate = '25-08-2017' idx = pd.date_range(beginDate, endDate) # Define the name of authors who you are using their data as a unique list r=['<NAME>,1986', '<NAME>,1995', 'Alipur,2006', 'Hafezieh, 2016','Asem et al.,2007','Karbasi et al.,2010', 'sima & Tajrishy, 2015', 'EAWB'] # Define the name of water quality parameters (header line of the .csv files) Parameters_list=['water_level','TDS','Na','Mg','SO4','Cl','HCO3','K','Ca'] #read and merge dataframes of ionic composition and TDs dicMean={} dicStd={} df={} #create a blank dictionary for each parameter for n, p in enumerate(Parameters_list): globals()['Mean_%s'%p]={} globals()['Std_%s'%p]={} # Notice that the name of csv files is the first 6 letters of the reference (authors) for i , dr in enumerate(r): dfname=(dr[0:6]) # set the path of your .csv files csv_FilesPath = r'C:\Users\somay\PycharmProjects\PyCodes\ULplots_PNAS\TDS_Ions_Timeseries\WQCSV_InputFiles\\' name = dfname.strip() + '.csv' df = pd.read_csv(csv_FilesPath + name, header=0, sep=',', index_col=0, parse_dates=True, infer_datetime_format=True, low_memory=False) grouped_df = df.groupby('date') df_mean = df.groupby(df.index.date).mean() df_std = df.groupby(df.index.date).std() dicMean[dfname] = df_mean.reindex(idx) dicStd[dfname] = df_std.reindex(idx) # Select desired columns and form a dictionary for each parameter for n, p in enumerate(Parameters_list): globals()['Mean_%s'%p][dr]=dicMean[dfname][p] globals()['Std_%s'% p][dr] = dicStd[dfname][p] # convert the dictionary of each parameter to a data frame named for example df_MeanTDS #print(Meanwater_level) for n, p in enumerate(Parameters_list): # Selecting desired parameters (columns) globals()['df_Mean%s'%p]=pd.DataFrame.from_dict(globals()['Mean_%s'%p]) globals()['df_Std%s' % p] = pd.DataFrame.from_dict(globals()['Std_%s' % p]) ##Arbituary print of the TDS statistics #print(df_MeanTDS.min(),df_MeanTDS.max(),df_MeanTDS.mean(),df_MeanTDS.std()) # Put together all TDS & Volume data as time series regardless of the authors df_MeanTDS_allAuthours=df_MeanTDS.stack() df_Meanlevel_allAuthours=df_Meanwater_level.stack() # concat two series of Level and TDS and sets the columns name of the resulting dataframe L_TDS_Timeseries=pd.concat([df_Meanlevel_allAuthours.rename('water level'), df_MeanTDS_allAuthours.rename('TDS')], axis=1) #Determine the x and y dataset #x_data=water_level , y_data=TDS x_data=array(df_Meanlevel_allAuthours) y_data=array(df_MeanTDS_allAuthours) #mask NaN data from x and y datasets mask = ~np.isnan(x_data)&~np.isnan(y_data) LTDS_df=
pd.DataFrame({"level":x_data[mask],"TDS":y_data[mask]})
pandas.DataFrame
""" Created on Jun 11, 2013 @author: agross """ import pandas as pd import numpy as np def to_date(s): """ Pulls year, month, and day columns from clinical files and formats into proper date-time field. """ try: return pd.datetime(int(s['yearofformcompletion']), int(s['monthofformcompletion']), int(s['dayofformcompletion'])) except: return np.nan def fix_date(df): """ Translate date to date-time, get rid of old columns. """ try: df['form_completion'] = df.apply(to_date, 1) del df['yearofformcompletion'] del df['monthofformcompletion'] del df['dayofformcompletion'] except: pass return df def try_float(s): try: return float(s) except: return np.nan def format_drugs(br): """ Format drug rows in merged clinical file from Firehose. The data consists of one or more drug entries for each patient. Here we use a MultiIndex with Patient Barcode on level 0 and the drug administration on level 1. Input br: clinical DataFrame with patient bar-codes on the columns """ drugs = br.select(lambda s: s.startswith('patient.drugs.drug')) ft = pd.MultiIndex.from_tuples # long Pandas names drug_annot = ft(map(lambda s: tuple(s.split('.')[2:4]), drugs.index)) drugs.index = drug_annot c = drugs.count(1) #dx: here we get rid of duplicates by taking the instance with the # most fields (next 2 lines) drugs = drugs.ix[c.ix[c.argsort()].index] drugs = drugs.groupby(level=[0, 1], axis=0).last() drugs = drugs.stack().unstack(level=1) drugs.index = drugs.index.swaplevel(0, 1) drugs = drugs.sort_index() drugs = fix_date(drugs) return drugs def format_followup(br): """ Format follow-up rows in merged clinical file from Firehose. The data consists of one or more followup entries for each patient. Here we use a MultiIndex with Patient Barcode on level 0 and the follow-up number on level 1. Input br: clinical DataFrame with patient bar-codes on the columns """ row_filter = lambda s: s.startswith('patient.followups.followup') followup = br.select(row_filter) if len(followup) == 0: return ft = pd.MultiIndex.from_tuples # long Pandas names followup.index = ft([(s.split('.')[-1], '.'.join(s.split('.')[:-1])) for s in followup.index]) followup = followup.stack().unstack(level=0) followup.index = followup.index.reorder_levels([1, 0]) followup = followup.sort_index() followup = fix_date(followup) return followup def format_stage(br): row_filter = lambda s: s.startswith('patient.stageevent') stage = br.select(row_filter) stage = stage.dropna(how='all') stage = stage.rename(index=lambda s: s.split('.')[-1]) stage = stage.T return stage def format_radiation(br): """ Format radiation rows in merged clinical file from Firehose. The data consists of one or more entries for each patient. Here we use a MultiIndex with Patient Barcode on level 0 and the treatment number on level 1. Input br: clinical DataFrame with patient bar-codes on the columns """ row_filter = lambda s: s.startswith('patient.radiations.radiation') followup = br.select(row_filter) if len(followup) == 0: return ft = pd.MultiIndex.from_tuples idx = ft([tuple(s.split('.')[2:4]) for s in followup.index]) followup.index = idx followup = followup.stack().unstack(level=1) followup.index = followup.index.reorder_levels([1, 0]) followup = followup.sort_index() followup = fix_date(followup) return followup def format_clinical_var(br): """ Format clinical variables that are not associated with drug, follow-up, or radiation. Input br: clinical DataFrame with patient bar-codes on the columns """ cl = [s for s in br.index if (s.count('.') == 1) and s.startswith('patient')] clinical = br.ix[cl] clinical.index = clinical.index.map(lambda s: s.split('.')[1]) cl = [s for s in br.index if (s.count('.') == 2) and s.startswith('patient.primarypathology')] clinical2 = br.ix[cl] clinical2.index = clinical2.index.map(lambda s: s.split('.')[2]) clinical = clinical.append(clinical2) clinical = clinical.T.dropna(axis=1, how='all') clinical['age'] = clinical.ageatinitialpathologicdiagnosis.astype(float) del clinical['ageatinitialpathologicdiagnosis'] return clinical def format_survival(clin, followup): """ Format survival for downstream analysis. For survival analysis we need to track the time to death/censoring as well as the censoring status (censored or deceased) for each patient. We use a MultiIndex with Patient Barcode on level 0 and ['days','event'] on level 1, where days in the time variable and 'event' is the death indicator. Here we extract the standard survival as well as event free survival from the clinical information as well as the patient followup. Input br: clinical DataFrame with patient bar-codes on the columns Returns: survival: DataFrame consisting of event_free_survival, and survival Series timeline: DataFrame of clinical variables related to patient cancer timelines """ clin2 = clin.copy() clin2.index = pd.MultiIndex.from_tuples([(i, 'surgery', 0) for i in clin2.index]) if type(followup) == pd.DataFrame: f = followup.append(clin2) else: f = clin2 time_vars = ['daystodeath', 'daystolastfollowup', 'daystolastknownalive', 'daystonewtumoreventafterinitialtreatment', 'daystotumorprogression', 'daystotumorrecurrence'] time_cols = list(f.columns.intersection(time_vars)) timeline = f[time_cols].dropna(how='all').astype(float) timeline['days'] = timeline.max(1) timeline = timeline.groupby(level=0).max() deceased = timeline.daystodeath.isnull() == False #days = timeline.days[((timeline.days > 7) | (deceased == False))] #days = days[days > 0] days = timeline.days[timeline.days >= 0] survival = pd.concat([days, deceased], keys=['days', 'event'], axis=1) survival = survival.dropna().stack().astype(float) pfs_var = 'daystonewtumoreventafterinitialtreatment' if (followup is not None) and (pfs_var in followup): new_tumor = followup[pfs_var].dropna().groupby(level=0).min() time_to_progression = pd.concat([new_tumor, timeline.days], 1).min(1) time_to_progression = time_to_progression[time_to_progression > 7] progression = (deceased | pd.Series(1, index=new_tumor.index)) pfs = pd.concat([time_to_progression, progression], keys=['days', 'event'], axis=1) pfs = pfs.dropna().stack().astype(float) else: pfs = survival survival = pd.concat([survival, pfs], keys=['survival', 'event_free_survival'], axis=1) return survival, timeline def get_clinical(cancer, data_path, patients=None, **params): """ Reads in and formats clinical data for a given tumor type. Returns clin: clinical variables drugs: drugs administered, Dataframe with with (patient, treatment_id) on index followup: patient followups, Dataframe with with (patient, follwup_id) on index timeline: patient cancer timeline variables survival: DataFrame consisting of event_free_survival, and survival with (patient, ['days','event']) on index. """ f = '{}stddata/{}/Clinical/{}.clin.merged.txt'.format(data_path, cancer, cancer) tab =
pd.read_table(f, index_col=0, low_memory=False)
pandas.read_table
import plotly.express as px import pandas as pd import datetime as dt from utils.gurobi_model import GRBModel # from configs import output_file_name, days, move_hours, switch_hours from configs import (output_file_name, start_year, start_month, start_day, days, st_from, st_to, mt_from, mt_to) class Writer: def __init__(self): # получение выходных данных self.grbm = GRBModel() self.eps, self.b, self.c, self.ksi = self.get_results() self.processed_suborders = self.get_processed_suborders() self.suborders_of_orders = self.get_suborders_of_orders() self.done_orders_info = self.transform_results() def get_results(self): # получение результатов self.grbm.optimize_model() return self.grbm.eps, self.grbm.b, self.grbm.c, self.grbm.ksi def get_processed_suborders(self): # список обработанных подзаказов return [suborder for (suborder, equip) in self.eps.keys() if self.eps[(suborder, equip)].X > 0] def get_suborders_of_orders(self): # словарь заказ-->обработанные полуфабрикаты suborders_of_orders = {} for order, info in self.grbm.orders.items(): suborders_of_orders[order] = [] for final_suborder in info.keys(): if self.ksi[final_suborder].X > 0 and final_suborder in self.processed_suborders: suborders_of_orders[order].append(final_suborder) for order, suborders in suborders_of_orders.items(): if suborders == list(self.grbm.orders[order].keys()): for subord in suborders: for proc_subord in self.processed_suborders: if proc_subord not in suborders and proc_subord not in self.grbm.final_subord_id and \ subord in self.grbm.order_graph[proc_subord]: suborders.append(proc_subord) return suborders_of_orders def transform_results(self): # преобразование результатов list_of_dicts = [] for (subord, equip) in self.eps.keys(): for order, suborders in self.suborders_of_orders.items(): if len(suborders) > 4 and self.eps[(subord, equip)].X > 0 and subord in suborders: list_of_dicts.append({'Equipment_ID': str(equip), 'start': self.b[subord].X, 'end': self.c[subord].X, 'Order_ID': str(order), 'Suborder_ID': str(subord)}) return pd.DataFrame(list_of_dicts) def create_gantt_chart(self): # построение диаграммы Ганта (+выходной файл excel) self.done_orders_info['Start'] = dt.datetime(start_year, start_month, start_day) +
pd.TimedeltaIndex(self.done_orders_info['start'], unit='m')
pandas.TimedeltaIndex
import pandas as pd import datetime import sasoptpy as so from swat import CAS from collections import namedtuple import os supplier = 'R2R' def prep_data(car_type='diesel'): # Data in this repository is randomly populated, original data is provided by Rome2Rio.com travel_data =
pd.read_csv('../data/all_methods_random.csv')
pandas.read_csv
import filecmp import pandas as pd def merge_col(filepath1: str, filepath2: str) -> pd.DataFrame: df1 = pd.read_table(filepath1, header=None) df2 =
pd.read_table(filepath2, header=None)
pandas.read_table
import sys from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QApplication, QWidget, QTableWidget, QTableWidgetItem, QVBoxLayout from PyQt5 import QtGui import sys import pandas as pd import ast import random true_false_df = pd.read_excel('true_false.xlsx') true_false_df = true_false_df.reset_index(drop = True) w = 0 class true_or_false_window(object): def exporting(self): true_false_df.to_excel(r'true_false_edited.xlsx', index = False) def previous_question(self): try: global w global true_false_df w = w - 1 b = true_false_df[0][w] c = true_false_df[1][w] self.textBrowser.setText(b.capitalize()) self.texteditor.setText(c) options = self.texteditor.toPlainText() print(options) options = self.texteditor.toPlainText() length = len(true_false_df) print(w, length) if w < 0: self.textBrowser.setText('No previous Questions') self.exporting() except: self.textBrowser.setText('No previous Questions') self.texteditor.setText('No previous Questions') self.exporting() def different_sentence(self): try: global w global true_false_df i = 0 for i in range(len(true_false_df)): if true_false_df[0][w] == true_false_df[0][w + 1]: true_false_df.drop(true_false_df.index[w], inplace=True) true_false_df = true_false_df.reset_index(drop = True) else: true_false_df.drop(true_false_df.index[w], inplace=True) true_false_df = true_false_df.reset_index(drop = True) break i = i + 1 b = true_false_df[0][w] c = true_false_df[1][w] self.textBrowser.setText(b.capitalize()) self.texteditor.setText(c) options = self.texteditor.toPlainText() print(options) options = self.texteditor.toPlainText() length = len(true_false_df) print(a, length) if w > length: self.textBrowser.setText('End of List! No More Questions') self.exporting() except: self.textBrowser.setText('End of List! No More Questions') self.exporting() def saving(self): try: global w global true_false_df w = w + 1 b = true_false_df[0][w] c = true_false_df[1][w] self.textBrowser.setText(b.capitalize()) self.texteditor.setText(c) options = self.texteditor.toPlainText() print(options) options = self.texteditor.toPlainText() length = len(true_false_df) print(w, length) if w > length: self.textBrowser.setText('End of List! No More Questions') self.exporting() except: self.textBrowser.setText('End of List! No More Questions') self.exporting() def deleteit1(self): try: global w global true_false_df length = len(true_false_df) print(a, length) true_false_df.drop(true_false_df.index[w], inplace=True) true_false_df = true_false_df.reset_index(drop = True) b = true_false_df[0][w] c = true_false_df[1][w] self.textBrowser.setText(b.capitalize()) self.texteditor.setText(c) options = self.texteditor.toPlainText() print(options) if w > length: self.textBrowser.setText('End of List! No More Questions') self.exporting() except: self.textBrowser.setText('End of List! No More Questions') self.exporting() def setupUi(self, MainWindow): global w global true_false_df MainWindow.setObjectName("MainWindow") MainWindow.setGeometry(600,200,800,500) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.textlabel1 = QtWidgets.QLabel(self.centralwidget) self.textlabel1.setGeometry(QtCore.QRect(50, 25 , 500, 25)) self.textlabel1.setObjectName("textlabel1") self.textlabel1.setText("TRUE SENTENCE") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(50, 50, 700, 100)) self.textBrowser.setStyleSheet("background:rgb(239,239,239);") self.textBrowser.setObjectName("textBrowser") self.textBrowser.setText(true_false_df[0][w]) self.textlabel = QtWidgets.QLabel(self.centralwidget) self.textlabel.setGeometry(QtCore.QRect(50, 175, 500, 25)) self.textlabel.setObjectName("textlabel") self.textlabel.setText("FALSE SENTENCE(Editable)") self.texteditor = QtWidgets.QTextEdit(self.centralwidget) self.texteditor.setGeometry(QtCore.QRect(50, 200, 700, 100)) self.texteditor.setObjectName("texteditor") self.texteditor.setText(true_false_df[1][w]) self.delete_2 = QtWidgets.QPushButton(self.centralwidget) self.delete_2.setGeometry(QtCore.QRect(50, 325, 250, 35)) self.delete_2.setObjectName("delete_2") self.delete_2.clicked.connect(self.deleteit1) self.save = QtWidgets.QPushButton(self.centralwidget) self.save.setGeometry(QtCore.QRect(325, 325, 250, 35)) self.save.setObjectName("save") self.save.clicked.connect(self.saving) self.next_sentence = QtWidgets.QPushButton(self.centralwidget) self.next_sentence.setGeometry(QtCore.QRect(325, 400, 250, 35)) self.next_sentence.setObjectName("next_sentence") self.next_sentence.clicked.connect(self.different_sentence) self.back = QtWidgets.QPushButton(self.centralwidget) self.back.setGeometry(QtCore.QRect(50, 400, 250, 35)) self.back.setObjectName("save") self.back.clicked.connect(self.previous_question) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) # self.cont = False # i = 0 # while(self.cont is not True): # self.textBrowser.setText(a) # print( "Waiting for user to push button 2") # QtCore.QCoreApplication.processEvents() def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "True or False Teacher")) self.delete_2.setText(_translate("MainWindow", "DELETE AND NEXT SENTENCE")) self.save.setText(_translate("MainWindow", "SAVE AND NEXT")) self.back.setText(_translate("MainWindow", "PREVIOUS SENTENCE")) self.next_sentence.setText(_translate("MainWindow", "DELETE AND NEXT QUESTION")) mcq_question_options = pd.read_excel('mcq_.xlsx') mcq_question_options = mcq_question_options.reset_index(drop = True) a = 0 class mcq_window(object): def exporting(self): mcq_question_options.to_excel(r'mcq_edited.xlsx', index = False) mcq_question_options.to_excel(r'mtc_edited.xlsx', index = False) def previous_question(self): try: global a global true_false_df a = a - 1 b = mcq_question_options['Fill and Column'][a] c = mcq_question_options['Keywords'][a] x = mcq_question_options['Options'][a] self.textBrowser.setText("\n\n"+b.capitalize() +"\n\nAnswer -" +c.capitalize()) if type(x) is list: pass else: x = ast.literal_eval(x) options1 = "" for i in x: options1 = options1 + i + " " self.texteditor.setText(options1) options = self.texteditor.toPlainText() print(options) options = self.texteditor.toPlainText() options = self.texteditor.toPlainText() length = len(mcq_question_options) print(a, length) if a < 0: self.textBrowser.setText('No previous Questions') self.exporting() except: self.textBrowser.setText('No previous Questions') self.texteditor.setText('No previous Questions') self.exporting() def saving(self): try: global a global mcq_question_options a = a + 1 b = mcq_question_options['Fill and Column'][a] c = mcq_question_options['Keywords'][a] x = mcq_question_options['Options'][a] self.textBrowser.setText("\n\n"+b.capitalize() +"\n\nAnswer -" +c.capitalize()) if type(x) is list: pass else: x = ast.literal_eval(x) options1 = "" for i in x: options1 = options1 + i + " " self.texteditor.setText(options1) options = self.texteditor.toPlainText() print(options) options = self.texteditor.toPlainText() print(options) options = options.split(" ") options = options[:-1] mcq_question_options['Options'][a] = options length = len(mcq_question_options) print(a, length) if a > length: self.textBrowser.setText('End of List! No More Questions') self.exporting() except Exception as ex: print(mcq_question_options['Options'][a]) self.textBrowser.setText('End of List! No More Questions' + str(ex)) self.exporting() def deleteit1(self): try: global a global mcq_question_options mcq_question_options.drop(mcq_question_options.index[a], inplace=True) mcq_question_options = mcq_question_options.reset_index(drop = True) b = mcq_question_options['Fill and Column'][a] c = mcq_question_options['Keywords'][a] x = mcq_question_options['Options'][a] self.textBrowser.setText("\n\n"+b.capitalize() +"\n\nAnswer -" +c.capitalize()) x = ast.literal_eval(x) options1 = "" for i in x: options1 = options1 + i + ' ' self.texteditor.setText(options1) options = self.texteditor.toPlainText() print(options) length = len(mcq_question_options) print(a, length) if a > length: self.textBrowser.setText('End of List! No More Questions') self.exporting() except: self.textBrowser.setText('End of List! No More Questions') self.exporting() def setupUi(self, MainWindow): global a global mcq_question_options b = mcq_question_options['Fill and Column'][a] c = mcq_question_options['Keywords'][a] x = mcq_question_options['Options'][a] x = ast.literal_eval(x) options1 = "" for i in x: options1 = options1 + i + ' ' MainWindow.setObjectName("MainWindow") MainWindow.setGeometry(600,200,800,500) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.textlabel1 = QtWidgets.QLabel(self.centralwidget) self.textlabel1.setGeometry(QtCore.QRect(50, 25 , 500, 25)) self.textlabel1.setObjectName("textlabel1") self.textlabel1.setText("Questions") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(50, 50, 700, 150)) self.textBrowser.setStyleSheet("background:rgb(239,239,239);") self.textBrowser.setObjectName("textBrowser") self.textBrowser.setText("\n\n"+b.capitalize() +"\n\nAnswer -" +c.capitalize()) self.textlabel = QtWidgets.QLabel(self.centralwidget) self.textlabel.setGeometry(QtCore.QRect(50, 225, 500, 25)) self.textlabel.setObjectName("textlabel") self.textlabel.setText("EDIT or ADD options below.Seperate by space") self.texteditor = QtWidgets.QTextEdit(self.centralwidget) self.texteditor.setGeometry(QtCore.QRect(50, 250, 700, 30)) self.texteditor.setObjectName("texteditor") self.texteditor.setText(options1) self.delete_2 = QtWidgets.QPushButton(self.centralwidget) self.delete_2.setGeometry(QtCore.QRect(50, 375, 250, 35)) self.delete_2.setObjectName("delete_2") self.delete_2.clicked.connect(self.deleteit1) self.back = QtWidgets.QPushButton(self.centralwidget) self.back.setGeometry(QtCore.QRect(50, 325, 250, 35)) self.back.setObjectName("back") self.back.clicked.connect(self.previous_question) self.save = QtWidgets.QPushButton(self.centralwidget) self.save.setGeometry(QtCore.QRect(325, 325, 250, 35)) self.save.setObjectName("save") self.save.clicked.connect(self.saving) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) # self.cont = False # i = 0 # while(self.cont is not True): # self.textBrowser.setText(a) # print( "Waiting for user to push button 2") # QtCore.QCoreApplication.processEvents() def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MCQ Teacher")) self.delete_2.setText(_translate("MainWindow", "DELETE QUESTION")) self.back.setText(_translate("MainWindow", "PREVIOUS QUESTION")) self.save.setText(_translate("MainWindow", "SAVE and NEXT")) class question_type(object): def open_mcq_window(self): self.window = QtWidgets.QMainWindow() self.ui =mcq_window() self.ui.setupUi(self.window) self.window.show() def true_or_false_window(self): self.window = QtWidgets.QMainWindow() self.ui = true_or_false_window() self.ui.setupUi(self.window) self.window.show() def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.setGeometry(600,200,800,500) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.textlabel = QtWidgets.QLabel(self.centralwidget) self.textlabel.setGeometry(QtCore.QRect(325, 100, 500, 50)) self.textlabel.setObjectName("textlabel") self.textlabel.setText("Choose Question Type") self.true_or_false = QtWidgets.QPushButton(self.centralwidget) self.true_or_false.setGeometry(QtCore.QRect(225, 200, 150, 100)) self.true_or_false.setObjectName("true_or_false") self.true_or_false.clicked.connect(self.true_or_false_window) self.mcq = QtWidgets.QPushButton(self.centralwidget) self.mcq.setGeometry(QtCore.QRect(425, 200, 150, 100)) self.mcq.setObjectName("mcq") self.mcq.clicked.connect(self.open_mcq_window) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 26)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) # self.cont = False # i = 0 # while(self.cont is not True): # self.textBrowser.setText(a) # print( "Waiting for user to push button 2") # QtCore.QCoreApplication.processEvents() def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Question Type")) self.mcq.setText(_translate("MainWindow", "MCQ")) self.true_or_false.setText(_translate("MainWindow", "TREUE FALSE")) mcq_answer = pd.read_excel('mcq_edited.xlsx') mcq_answer = mcq_answer.reset_index(drop = True) m = 0 mtc_answer = pd.read_excel('mtc_edited.xlsx') mtc_answer = mtc_answer.reset_index(drop = True) y = 0 true_false_answers = pd.read_excel('true_false_edited.xlsx') true_false_answers = true_false_answers.reset_index(drop = True) z = 0 class student_question_type(object): def open_mcq_window(self): self.window = QtWidgets.QMainWindow() self.ui =student_mcq_window() self.ui.setupUi(self.window) global mcq_answer for z in range(len(mcq_answer)): options = mcq_answer['Options'][z] if type(options) is list: pass else: options = ast.literal_eval(options) keyword = mcq_answer['Keywords'][z] options.append(keyword) random.shuffle(options) mcq_answer['Options'][z] = options print(mcq_answer) mcq_answer = pd.concat([mcq_answer[:1],mcq_answer[1:].sample(frac=1)]).reset_index(drop=True) print(mcq_answer) self.window.show() def open_mct_window(self): self.window = QtWidgets.QMainWindow() self.ui = student_match_the_column_window() self.ui.setupUi(self.window) global mtc_answer print(mtc_answer) mtc_answer = pd.concat([mtc_answer[:4],mtc_answer[4:].sample(frac=1)]).reset_index(drop=True) print(mtc_answer) self.window.show() def true_or_false_window(self): self.window = QtWidgets.QMainWindow() self.ui = student_true_or_false_window() self.ui.setupUi(self.window) global true_false_answers print(true_false_answers) true_df = pd.DataFrame() true_df['Questions'] = true_false_answers[0] true_df['Answers'] = 'True' true_df['True_Sentence'] = true_df['Questions'] false_df =
pd.DataFrame()
pandas.DataFrame
import unittest import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal from pdblp import pdblp import os IP_PORT = 8194 class TestBCon(unittest.TestCase): def setUp(self): self.con = pdblp.BCon(port=IP_PORT, timeout=5000) self.con.start() cdir = os.path.dirname(__file__) self.path = os.path.join(cdir, 'data/') def tearDown(self): pass def pivot_and_assert(self, df, df_exp, with_date=False): # as shown below, since the raw data returned from bbg is an array # with unknown ordering, there is no guruantee that the `position` will # always be the same so pivoting prior to comparison is necessary # # fieldData = { # INDX_MWEIGHT[] = { # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "BON8" # Percentage Weight = 2.410000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "C N8" # Percentage Weight = 6.560000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "CLN8" # Percentage Weight = 7.620000 # } # } # } name_cols = list(df_exp.name.unique()) sort_cols = list(df_exp.name.unique()) index_cols = ["name", "position", "field", "ticker"] if with_date: sort_cols.append("date") index_cols.append("date") df = (df.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) df_exp = (df_exp.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) # deal with mixed types resulting in str from csv read for name in name_cols: try: df_exp.loc[:, name] = df_exp.loc[:, name].astype(float) except ValueError: pass for name in name_cols: try: df.loc[:, name] = df.loc[:, name].astype(float) except ValueError: pass if with_date: df.loc[:, "date"] = pd.to_datetime(df.loc[:, "date"], format="%Y%m%d") df_exp.loc[:, "date"] = pd.to_datetime(df_exp.loc[:, "date"], format="%Y%m%d") assert_frame_equal(df, df_exp) def test_bdh_one_ticker_one_field_pivoted(self): df = self.con.bdh('SPY US Equity', 'PX_LAST', '20150629', '20150630') midx = pd.MultiIndex(levels=[["SPY US Equity"], ["PX_LAST"]], labels=[[0], [0]], names=["ticker", "field"]) df_expect = pd.DataFrame( index=pd.date_range("2015-06-29", "2015-06-30"), columns=midx, data=[205.42, 205.85] ) df_expect.index.names = ["date"] assert_frame_equal(df, df_expect) def test_bdh_one_ticker_one_field_longdata(self): df = self.con.bdh('SPY US Equity', 'PX_LAST', '20150629', '20150630', longdata=True) idx = pd.Index(["date", "ticker", "field", "value"]) data = [["2015-06-29", "2015-06-30"], ["SPY US Equity", "SPY US Equity"], ["PX_LAST", "PX_LAST"], [205.42, 205.85]] df_expect = pd.DataFrame(data=data, index=idx).transpose() df_expect.loc[:, "date"] = pd.to_datetime(df_expect.loc[:, "date"]) df_expect.loc[:, "value"] = np.float64(df_expect.loc[:, "value"]) assert_frame_equal(df, df_expect) def test_bdh_one_ticker_two_field_pivoted(self): cols = ['PX_LAST', 'VOLUME'] df = self.con.bdh('SPY US Equity', cols, '20150629', '20150630') midx = pd.MultiIndex( levels=[["SPY US Equity"], cols], labels=[[0, 0], [0, 1]], names=["ticker", "field"] ) df_expect = pd.DataFrame( index=pd.date_range("2015-06-29", "2015-06-30"), columns=midx, data=[[205.42, 202621332], [205.85, 182925106]] ) df_expect = df_expect.astype(np.float64) df_expect.index.names = ["date"] assert_frame_equal(df, df_expect) def test_bdh_one_ticker_two_field_longdata(self): cols = ['PX_LAST', 'VOLUME'] df = self.con.bdh('SPY US Equity', cols, '20150629', '20150630', longdata=True) idx = pd.Index(["date", "ticker", "field", "value"]) data = [["2015-06-29", "2015-06-29", "2015-06-30", "2015-06-30"], ["SPY US Equity", "SPY US Equity", "SPY US Equity", "SPY US Equity"], # NOQA ["PX_LAST", "VOLUME", "PX_LAST", "VOLUME"], [205.42, 202621332, 205.85, 182925106]] df_expect =
pd.DataFrame(data=data, index=idx)
pandas.DataFrame
# %% import pandas as pd import requests from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor # %% # 메뉴 데이터를 불러옵니다. data = pd.read_csv("All Menu (Various Versions)/국방부메뉴_v2.1.csv", index_col=0) data # %% # 요청해야하는 URL주소를 가져옵니다 (네이버). urls = [] for name in data['메뉴이름']: url = 'https://search.naver.com/search.naver?sm=tab_hty.top&where=nexearch&query=' + str(name) urls.append(url) urls # %% # 병렬로 10개씩 URL주소를 요청합니다. from concurrent.futures import ThreadPoolExecutor def get_url(url): return requests.get(url) with ThreadPoolExecutor(max_workers=10) as pool: response_list = list(pool.map(get_url,urls)) # %% # 모든 요청이 정상적으로 실행되었는지 확인합니다. count = 0 for response in response_list: if response.status_code != 200: count += 1 count # %% # 각 요청(메뉴)마다 메인에 있는 섹션의 개수를 계산합니다. def get_number_of_sections(response_content: str) -> int: soup = BeautifulSoup(response_content, 'lxml') main = soup.find("div", {"class": "main_pack"}) sections = main.find_all("section") return len(sections) # %% # 모든 요청의 섹션 개수를 가져오고 저장합니다. section_num = [] for response in response_list: num = get_number_of_sections(response.content) section_num.append(num) section_num # %% # 섹션의 개수가 기준 맛 점수가 됩니다. data['맛'] = section_num data # %% # 맛 점수를 포함하여 데이터를 저장합니다. data.to_csv("Second Model Data/국방부메뉴_v2.1_맛_점수_포함.csv") # %% # 모든 부대를 불러옵니다. unitNumbers = [1691, 2171, 3296, 3389, 5021, 5322, 6176, 6282, 6335, 7369, 7652, 8623, 8902, 9030] unitNumbers # %% def clean_data(unit: str) -> pd.DataFrame: # 데이터를 불러오고 필요한 열만 남깁니다 data = pd.read_csv("Processed CSV Data Files(Attached Allergy)/제"+ unit +"부대 메뉴정보.csv", index_col=0) data = data[data['메뉴이름'].notna()] data = data.iloc[:, 1:] data = data.drop(columns=data.columns[2:22]) data = data.reset_index(drop=True) # 정규 표현식을 통한 한글 외 문자 제거 data['메뉴이름'] = data['메뉴이름'].str.replace("[^ㄱ-ㅎㅏ-ㅣ가-힣 ]","") return data # %% def get_url(url): return requests.get(url) def get_responses(urls: list) -> list: # 병렬로 10개씩 URL주소를 요청합니다. with ThreadPoolExecutor(max_workers=10) as pool: response_list = list(pool.map(get_url,urls)) # 모든 요청이 정상적으로 실행되었는지 확인합니다. for response in response_list: if response.status_code != 200: print("문제 있음!") break return response_list # %% def get_scores_of_meals(response_list: list) -> list: # 모든 요청의 섹션 개수를 가져오고 저장합니다. section_num = [] for response in response_list: num = get_number_of_sections(response.content) section_num.append(num) return section_num # %% def generate_combination_score(unit: str) -> pd.DataFrame: data = clean_data(unit) # 식사명과 날짜에 맞추어 정렬합니다. sorted_data = data.sort_values(['식사명', '날짜']) sorted_data = pd.DataFrame(sorted_data) # 각 식사명과 날짜마다 몇개의 메뉴가 있는지 계산합니다. number_of_menus = sorted_data.groupby(['식사명', '날짜']).count()['메뉴이름'] number_of_menus = number_of_menus.to_list() # 식사명과 날짜로 군집화하고 한 끼니의 모든 메뉴를 한 값으로 저장합니다. meals = data.groupby(['식사명', '날짜'])['메뉴이름'].apply(lambda x: "%s" % ' '.join(x)) meals = pd.DataFrame(meals) print(unit + ": 군집화 완료") # 요청해야하는 URL주소를 가져옵니다 (네이버). urls = [] for meal in meals['메뉴이름']: url = 'https://search.naver.com/search.naver?sm=tab_hty.top&where=nexearch&query=' + str(meal) urls.append(url) response_list = get_responses(urls) section_num = get_scores_of_meals(response_list) print(unit + ": 페이지 요청 완료") # 한 끼니 종합점수를 새로운 열로 추가합니다. meals['종합점수'] = section_num meals = meals.reset_index() meals.rename(columns = {"메뉴이름": "한끼니"}, inplace = True) # 각 메뉴마다 종합점수를 추가합니다. menu_with_score = pd.merge(sorted_data, meals, on=['식사명', '날짜']) # 각 메뉴마다 다른 메뉴와의 조합점수를 계산합니다. combination_score =
pd.DataFrame(columns=['메뉴이름', '다른메뉴', '조합점수'])
pandas.DataFrame
import sys from transformers.modeling_openai import OpenAIGPTLMHeadAgenModel import numpy as np from transformers import * import torch from torch.utils.data import DataLoader from generate_ivp import sample_sequence_ivp import pandas as pd from utils import * from utils_g import * from utils_ivp import agen_vector import torch.nn.functional as F from torch.nn import CrossEntropyLoss from examples.run_generation import * ps = [0.4] BETA = 5 cats = { 'pos': 0, 'equal': 1, 'neg': 2 } def gen_p(model, test_dataset, descat, cat_head, cats): outlist = [] outp = [] sens = [] for i in ps: for j in range(len(test_dataset)): sen = test_dataset[j] cat = '<' + cats[j] + '>' sen.extend(tokenizer_g.encode(cat)) sen.append(tokenizer_g.bos_token_id) senlen = len(sen) e = torch.FloatTensor(descat[j]).to(device_g) # e [1,3] out = sample_sequence( model=model, context=sen, length=max_sen_len, top_p=i, e=e, cat_head=cat_head, beta=BETA, device=device_g ) out = out[0, senlen:].tolist() text = tokenizer_g.decode(out, clean_up_tokenization_spaces=True, skip_special_tokens=False) sen = tokenizer_g.decode(sen, clean_up_tokenization_spaces=True, skip_special_tokens=False) end_ind = text.find('<') if end_ind >= 0: text = text[0: end_ind] sens.append(sen) outlist.append(text) outp.append(i) return outlist, outp, sens def add_cat(orisen, dataset): resds = [] descat = [] orids = [] es = np.zeros((1, 3)) es[0][0] = 1 descat = ['pos'] * len(dataset) es = np.repeat(es, len(dataset), axis=0) eq = np.zeros((1, 3)) eq[0][1] = 1 tem = ['equal'] * len(dataset) descat.extend(tem) eqs = np.repeat(eq, len(dataset), axis=0) es = np.append(es, eqs, axis=0) en = np.zeros((1, 3)) en[0][2] = 1 tem = ['neg'] * len(dataset) descat.extend(tem) ens = np.repeat(en, len(dataset), axis=0) es = np.append(es, ens, axis=0) for i in range(3): orids.extend(orisen) resds.extend(dataset) return orids, resds, es, descat def gen_roc(model, cat_head): orisen, test_dataset = process_in_g(ROC_DEV_G, train=False) orids, test_dataset, es, descat = add_cat(orisen, test_dataset) outlist, outp, sens = gen_p(model, test_dataset, es, cat_head, descat) df = pd.DataFrame() test_dataset =
pd.Series(data=test_dataset)
pandas.Series
import re from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytest from rdt.transformers import ( CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test__get_intervals(self): # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert result[0] == expected_intervals def test_fit(self): # Setup transformer = CategoricalTransformer() # Run data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer.fit(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.fuzzy = False transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.25 @patch('scipy.stats.norm.rvs') def test__get_value_fuzzy(self, rvs_mock): # setup rvs_mock.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test_reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer.fit(data) result = transformer.reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows Output: - the output of `_transform_by_category` Side effects: - `_transform_by_category` will be called once """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.starts = pd.DataFrame( [4, 3, 2, 1], index=[0., 0.25, 0.5, 0.75], columns=['category']) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer.reverse_transform(transformed) # Assert pd.testing.assert_series_equal(data, reverse) class TestOneHotEncodingTransformer: def test__prepare_data_empty_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[], [], []] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_nested_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[[]]] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_list_of_lists(self): # Setup ohet = OneHotEncodingTransformer() # Run data = [['a'], ['b'], ['c']] out = ohet._prepare_data(data) # Assert expected = np.array(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test__prepare_data_pandas_series(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) out = ohet._prepare_data(data) # Assert expected = pd.Series(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test_fit_no_nans(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be activated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b', 'c']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', 'c']) assert ohet.dummy_encoded assert not ohet.dummy_na def test_fit_no_nans_numeric(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, 3]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2, 3]) np.testing.assert_array_equal(ohet.decoder, [1, 2, 3]) assert not ohet.dummy_encoded assert not ohet.dummy_na def test_fit_nans(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding and NA should be activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', None]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', np.nan]) assert ohet.dummy_encoded assert ohet.dummy_na def test_fit_nans_numeric(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated and NA activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, np.nan]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2]) np.testing.assert_array_equal(ohet.decoder, [1, 2, np.nan]) assert not ohet.dummy_encoded assert ohet.dummy_na def test_fit_single(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'a', 'a']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a']) def test__transform_no_nan(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Input: - Series with values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.num_dummies = 3 # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_no_nan_categorical(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.indexer = [0, 1, 2] ohet.num_dummies = 3 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Null values should be represented by the same encoding. Input: - Series with values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.dummy_na = True ohet.num_dummies = 2 # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans_categorical(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Null values should be represented by the same encoding. Input: - Series with categorical values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.indexer = [0, 1] ohet.dummy_na = True ohet.num_dummies = 2 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_single(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.dummies = ['a'] ohet.num_dummies = 1 # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_categorical(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data =
pd.Series(['a', 'a', 'a'])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu Jan 24 20:03:24 2019 @author: RV """ # Python(R) # Modeules/packageslibraries # OS - submodules/path/join #eg. (os.path.join) # pandas # scipy # onspy #%% Setup import os projFld = "C:/Users/RV/Documents/Teaching/2019_01_Spring/ADEC7430_Spring2019/Lecture02" codeFld = os.path.join(projFld, "PyCode") fnsFld = os.path.join(codeFld, "_Functions") outputFld = os.path.join(projFld, "Output") rawDataFld = os.path.join(projFld, "RawData") savedDataFld = os.path.join(projFld, "SavedData") #%% load some functions fnList = ["fn_logMyInfo"] # this is a list for fn in fnList: exec(open(os.path.join(fnsFld, fn + ".py")).read()) # Explain: name, extension name, read+write # create also a file where we will log some data logf = os.path.join(rawDataFld, "logfile.csv") # test writing to log from _Functions.fn_logMyInfo import fn_logMyInfo fn_logMyInfo("test writing to log", useConsole=True, useFile=logf) # can we enhance what we write? How about we add a timestamp? #%% introduction to datetime import datetime as DT # what time is it now? DT.datetime.now() # do you like the format? # micro-seconds # can we format this more friendly? nowtime = DT.datetime.now() nowtimef = nowtime.strftime(format="%Y-%m-%d %H:%M:%S") # remember this nowtimef type(nowtimef) # so this is a string # let's add microseconds as well nowtimef = nowtime.strftime(format="%Y-%m-%d %H:%M:%S.%f") # remember this nowtimef #%% # do you want to keep writing the long formula above? I'd rather write a function def nowdt(): return(DT.datetime.now().strftime(format="%Y-%m-%d %H:%M:%S.%f")) nowdt() #%% now let's add timestamp to our log output fn_logMyInfo(nowdt() + "," + " second test writing to log", useFile = logf) # open the log file - do you notice anything unpleasant? e.g. the messages are appended # can we try to save to a new line? fn_logMyInfo("\n" + nowdt() + "," + " second test writing to log", useFile = logf) # this is better... but lengthened our logging function quite a lot #@@@@ add here a wrapper for this function, with defaults for: newline, timestamp, using given file # Excel file doesn't show a micro-second digits but a text reader will do. #%% Remember how this function works... #@@@@ how to print the function so we can see how it's put together? #%% #============================================================================== # Exploratory analysis #============================================================================== # Data from Kaggle's Titanic challenge comes already split in Train & Test # See slides - why do we need this split? # point to the files rawTrainFile = os.path.join(rawDataFld, "Lecture2_train.csv") rawTestFile = os.path.join(rawDataFld, "Lecture2_test.csv") #%% Pandas - transformation and data management, package # read them into pandas DataFrame import pandas as pd rawTrain = pd.read_csv(rawTrainFile, sep=',') # ParserWarning: Falling back to the "python" engine b/c the "c" engine doesn't support regex separators (seperators > 1 char and different from '\s+' are interpreted as regax) # So you cannot do sep = ',,' and we don't have to do anything with lines '\n' # If you want to test the warnings you would get when longer separators exist... # let's understand a bit this DataFrame # size rawTrain.shape # how many rows, how many columns? # print top 7 records rawTrain.head(7) # notice the dots? # let's expand the view - need options for pandas printout pd.set_option('display.width', 1000) pd.set_option('max_colwidth', 500) pd.set_option('display.max_columns', 12) rawTrain.head(7) # does it look better? did the dots vanish or are they still there? # What is rawTrain? type(rawTrain) # list all columns rawTrain.columns # list all columns AND their types rawTrain.dtypes # to think... if CSV is a text file, how did pandas figure out the types? # does it make sense to have Age "float64"? (fractional) B/C Age has missing values # int64 doesn't allow for missing values #L Let's force pandas to read everything as a character rawTrain_c = pd.read_csv(rawTrainFile, sep=',', dtype=object) rawTrain_c.dtypes rawTrain_c.head(5) # for numeric variables, try this: rawTrain.describe() # anything interesting here? See Age. # Only numeric data. Missing data in Age b/c less counts than others. # are there missing values? pd.isnull(rawTrain) pd.isnull(rawTrain).astype(int) pd.isnull(rawTrain).astype(int).aggregate(sum) # can we see some records with missing Age valeus? agecond = rawTrain.Age.isnull() agecond agecond.value_counts() # so here are our 177 missing recordss rawTrain.loc[agecond].head(10).drop(columns=['Name', 'Ticket']) # Data.location[which row is missing = True].first 10 rows and drop them and create a new dataframe # how is missing age represented? NaN #%% maybe drop some columns/vars - e.g. Name rTrain = rawTrain # so very dangerous with data.table, which is otherwise a very powerful tool rTrain = rTrain.drop(columns=['Name']) rTrain.shape rawTrain.shape # so changing the copy did not change the original - take a moment to enjoy this # Which, changing copies in R will also change the original #%% save a copy of the data for faster later access rTrainFile = os.path.join(savedDataFld, "rTrain.pkl") rTrain.to_pickle(rTrainFile) rTrain.to_csv(rTrainFile+".csv") # go open the last saved CSV file; what's with the first column? rTrain.to_csv(rTrainFile + ".csv", index=None) # go try again - did that column vanish? #%% distribution of ages? # simple boxplot rTrain.boxplot(column=['Age']) # more complex - Age boxplot by "Survived" rTrain.groupby('Survived').boxplot(column=['Age']) # more complex - Age boxplot by passenger class (Pclass) rTrain.groupby('Pclass').boxplot(column=['Age']) # HW: In 1-2 sentences describe what this boxplot tells you rTrain.groupby('Survived').boxplot(column=['Pclass']) # HW: In 1-2 sentences describe what this boxplot tells you #%% Quantitles rTrain.quantile(.1) rTrain.quantile(.9) rTrain.quantile([0.05*i for i in range(20)]) # Notice the choice of layout between one value and multiple-values for quantile request! #%% Character functions - trim # do we need to trim (?) some names or other character values? # in Python this is called stripping the leading/trailing characters ' left and right '.strip() #%% working with counts # table(rTrain[,Age,by=list(Sex)]) - R version # simple counts by value - in descending order of count/frequency rTrain.Age.value_counts() # ughh, how many passengers of age 62 are there? Hard to see... # same counts but now sort by actual values (index for the DataFrame) rTrain.Age.value_counts().sort_index() # counts/frequency by groups: rTrain.groupby(['Sex']).Age.value_counts() rTrain.groupby(['Sex']).Age.value_counts().sort_index() # sorted by (descending) frenquency # better sorting, but a bit cumbersome to read already... see the left-most index (gender) # in such cases, resetting the (multi)index is the best rTrain.groupby(['Sex']).Age.value_counts().sort_index().reset_index(name='freq') # HW: from left to right, explain what the "chain" of the commands above does #%% Create new variables - grouped age values # table(rTrain[,5*ceiling(Age/5),by=list(Sex)]) # R version, included for reference import numpy as np # nice package/library/module, we'll use it frequently! # We'll use an anonymous or inline or "lambda" function (not quite the same thing, but we'll think about them as such for now) rTrain.groupby(['Sex']).apply(lambda x: 5*np.ceil(x.Age/5)).value_counts().sort_index() # Can you figure out what is happening above? # not quite what we would have liked... where are the groups by Sex in the output? # best to create the variable separately... rTrain['Age5'] = 5*np.ceil(rTrain['Age']/5) rTrain.groupby(['Sex']).Age5.value_counts().sort_index() # more like it... # now clean up the index and sorting as we did above # similar view for Survived by Sex/Gender: # table(rTrain[,Sex, by=list(Survived)]) # R version rTrain.groupby(['Survived']).Sex.value_counts() #%% Plotting / Graphics # Both matplotlib and seaborn are quite powerful import matplotlib.pyplot as plt import seaborn as sns #boxplot(rTrain[,Fare]) sns.distplot(rTrain['Age'], bins=20) # what has happened? is your plot blank as well??? # hunch: this is probably due to missing values; let's try to remove them before plotting AgeCond = rTrain['Age'].isnull() # define missing condition AgeCond.value_counts() # missings vs non-missings sns.distplot(rTrain.loc[~AgeCond, 'Age'], bins=20) # a better view sns.violinplot(rTrain['Age']) # correlation # var(rTrain[,Age], rTrain[,Fare], na.rm = T) # R version # !! careful with over-correlating... http://www.tylervigen.com/spurious-correlations !! #corrplot(cor(rTrain), method='number') sns.pairplot(rTrain) # doesn't really do much, does it? Why? # You guessed it - probably some missing values - by where the plotting stopped, missings are in "Age" # We'll use the age-missing filter created above # But first let's drop a variable, it should not be very relevant (?) rTrain = rTrain.drop(columns=['Cabin']) sns.pairplot(rTrain.loc[~AgeCond]) # aha, a bit better? # note that is works for all columns - both numeric and character! sns.pairplot(rTrain.loc[~AgeCond], kind="scatter", hue="Survived", markers=["o", "s"], palette="Set2") sns.pairplot(rTrain.loc[~AgeCond], kind="scatter", hue="Survived", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5)) #@@ play with these parameters, how to research what is available? think, search # can we drop some (more) variables? rTrain = rTrain.drop(columns=['PassengerId']) sns.pairplot(rTrain.loc[~AgeCond], kind="scatter", hue="Survived", markers=["o", "s"], palette="Set2") #%% Using seaborn for nicer boxplots sns.boxplot(rTrain['Age']) sns.boxenplot(rTrain['Age']) #%% Pairwise & simple regression plotting #plot(Survived ~ Fare + Pclass, data=rTrain) # R version sns.catplot(x='Fare', y='Pclass', hue='Survived', data=rTrain) sns.catplot(x='Fare', y='Pclass', hue='Survived', data=rTrain, kind='violin') # "violin" is not very helpful here, due to the data - but keep it in mind for later... #@@@@ fix catplot sns.lmplot() # linear regression plots - in one plot sns.lmplot(x='Fare', y='Pclass', hue='Survived', data=rTrain) # linear regression plots - in two side-by-side plots sns.lmplot(x='Fare', y='Pclass', col='Survived', data=rTrain) #sns.catplot(rTrain['Fare'], rTrain['Pclass'], hue=rTrain['Survived']) #@@@@ complete this one too x = sns.pairplot(rTrain, hue='Survived', x_vars='Fare', y_vars='Pclass') x.fig # perhaps a bit of jittering would help # We'll try to add random "noise" to the two variables Survived and Pclass howMuchJitter = 0.2 import random #!! Please note the difference between how we modify Pclass and Survived rTrain['Pclass_j'] = rTrain['Pclass'] + random.gauss(0,howMuchJitter) # ... and how we modify Survived rTrain['Survived_j'] = rTrain['Survived'] rTrain['Survived_j'] += [random.gauss(0,howMuchJitter) for i in range(rTrain.shape[0])] sns.pairplot(rTrain[['Survived_j','Pclass_j']]) # a bit too tiny.. let's change some size sns.pairplot(rTrain[['Survived_j', 'Pclass_j']], height=5) # HW: Analyze and describe the distribution of Survived_j and Pclass_j # Hint: use describe(), boxplot, histogram(distplot) # include the code and your conclusions in the online Text submission for the Assignment in Module 3 #%% imputation by mode import scipy agecond = rTrain.Age.isnull() rTrain_Age_Mode = scipy.stats.mode(rTrain.loc[~agecond].Age) rTrain_Age_Mode # we only need the mode, let's extract it rTrain_Age_Mode.mode # almost there, just need the value from inside the array rTrain_Age_Mode.mode[0] # finally... rTrain_Age_Mode = rTrain_Age_Mode.mode[0] # yep, we keep only the relevant value rTrain_Age_Mode # now impute... but let's keep track of where we imputed, eh? rTrain['Age_imputed'] = 0 rTrain.loc[agecond, 'Age_imputed'] = 1 # let's do a cross-tabulation to make sure we flagged exactly the missing Age records pd.crosstab(rTrain['Age_imputed'], agecond) # now we're ready for imputation rTrain.loc[agecond, 'Age'] = rTrain_Age_Mode # check with a histogram sns.distplot(rTrain.Age) #????????? mode(rTrain[,Age]) # not quite what we were expecting, right? see p.123 in DL for a "trick" which is not that good... #%% mode of a list of numbers testList = [1,2,3,4,1,2,3,1,2,1] from collections import Counter tcnts = Counter(testList) tcnts.most_common() tcnts.most_common(1) tcnts.most_common(2) # does this work on strings? testList2 = [str(i) for i in testList] tcnts2 = Counter(testList2) tcnts2.most_common() # seem so # another way: from statistics import mode mode(testList) mode(testList2) from scipy.stats import mode mode(testList) mode(testList2) # try to tease the object above... x = mode(testList) type(x) x.mode # and other ones... # which one do you find more useful? #%% imputation by mode import scipy agecond = rTrain.Age.isnull() rTrain_Age_Mode = scipy.stats.mode(rTrain.loc[~agecond].Age) rTrain_Age_Mode # we only need the mode, let's extract it rTrain_Age_Mode.mode # almost there, just need the value from inside the array rTrain_Age_Mode.mode[0] # finally... rTrain_Age_Mode = rTrain_Age_Mode.mode[0] # yep, we keep only the relevant value rTrain_Age_Mode # now impute... but let's keep track of where we imputed, eh? rTrain['Age_imputed'] = 0 rTrain.loc[agecond, 'Age_imputed'] = 1 # let's do a cross-tabulation to make sure we flagged exactly the missing Age records
pd.crosstab(rTrain['Age_imputed'], agecond)
pandas.crosstab
from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import period as libperiod import pandas as pd from pandas import DatetimeIndex, Period, PeriodIndex, Series, notna, period_range import pandas._testing as tm class TestGetItem: def test_ellipsis(self): # GH#21282 idx = period_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx[...] assert result.equals(idx) assert result is not idx def test_getitem(self): idx1 = pd.period_range("2011-01-01", "2011-01-31", freq="D", name="idx") for idx in [idx1]: result = idx[0] assert result == pd.Period("2011-01-01", freq="D") result = idx[-1] assert result == pd.Period("2011-01-31", freq="D") result = idx[0:5] expected = pd.period_range("2011-01-01", "2011-01-05", freq="D", name="idx") tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[0:10:2] expected = pd.PeriodIndex( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-07", "2011-01-09"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[-20:-5:3] expected = pd.PeriodIndex( ["2011-01-12", "2011-01-15", "2011-01-18", "2011-01-21", "2011-01-24"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" result = idx[4::-1] expected = PeriodIndex( ["2011-01-05", "2011-01-04", "2011-01-03", "2011-01-02", "2011-01-01"], freq="D", name="idx", ) tm.assert_index_equal(result, expected) assert result.freq == expected.freq assert result.freq == "D" def test_getitem_index(self): idx = period_range("2007-01", periods=10, freq="M", name="x") result = idx[[1, 3, 5]] exp = pd.PeriodIndex(["2007-02", "2007-04", "2007-06"], freq="M", name="x") tm.assert_index_equal(result, exp) result = idx[[True, True, False, False, False, True, True, False, False, False]] exp = pd.PeriodIndex( ["2007-01", "2007-02", "2007-06", "2007-07"], freq="M", name="x" ) tm.assert_index_equal(result, exp) def test_getitem_partial(self): rng = period_range("2007-01", periods=50, freq="M") ts = Series(np.random.randn(len(rng)), rng) with pytest.raises(KeyError, match=r"^'2006'$"): ts["2006"] result = ts["2008"] assert (result.index.year == 2008).all() result = ts["2008":"2009"] assert len(result) == 24 result = ts["2008-1":"2009-12"] assert len(result) == 24 result = ts["2008Q1":"2009Q4"] assert len(result) == 24 result = ts[:"2009"] assert len(result) == 36 result = ts["2009":] assert len(result) == 50 - 24 exp = result result = ts[24:] tm.assert_series_equal(exp, result) ts = ts[10:].append(ts[10:]) msg = "left slice bound for non-unique label: '2008'" with pytest.raises(KeyError, match=msg): ts[slice("2008", "2009")] def test_getitem_datetime(self): rng = period_range(start="2012-01-01", periods=10, freq="W-MON") ts = Series(range(len(rng)), index=rng) dt1 = datetime(2011, 10, 2) dt4 = datetime(2012, 4, 20) rs = ts[dt1:dt4] tm.assert_series_equal(rs, ts) def test_getitem_nat(self): idx = pd.PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M") assert idx[0] == pd.Period("2011-01", freq="M") assert idx[1] is pd.NaT s = pd.Series([0, 1, 2], index=idx) assert s[pd.NaT] == 1 s = pd.Series(idx, index=idx) assert s[pd.Period("2011-01", freq="M")] == pd.Period("2011-01", freq="M") assert s[pd.NaT] is pd.NaT def test_getitem_list_periods(self): # GH 7710 rng = period_range(start="2012-01-01", periods=10, freq="D") ts = Series(range(len(rng)), index=rng) exp = ts.iloc[[1]] tm.assert_series_equal(ts[[
Period("2012-01-02", freq="D")
pandas.Period
#!/usr/bin/python import finaExp as fe import os, pandas, urllib from ofxparse import OfxParser as ofp from ofxparse.ofxparse import OfxParserException as ofpe def importOFX(fileName): '''importOFX brings in the OFX transaction objects to be analyzed''' if not(os.path.exists("data")): os.makedirs("data") currentData = fe.unPickleData() transList = [] ofx = ofp.parse(fileName) for t in ofx.account.statement.transactions: transList.append({'id':t.id, 'amount':t.amount, 'checknum':t.checknum, 'date':t.date, 'mcc':t.mcc, 'memo':t.memo, 'payee':t.payee, 'sic':t.sic, 'type':t.type, 'cat':''}) df =
pandas.DataFrame.from_records(transList, columns=['id', 'date', 'payee','cat', 'amount', 'type', 'memo', 'checknum', 'sic'])
pandas.DataFrame.from_records
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95:
pd.Timestamp("2012-08-05 00:00:00")
pandas.Timestamp
import pandas as pd import pytest @pytest.mark.functions def test_convert_matlab_date(): mlab = [ 733_301.0, 729_159.0, 734_471.0, 737_299.563_296_356_5, 737_300.000_000_000_0, ] df =
pd.DataFrame(mlab, columns=["dates"])
pandas.DataFrame
#!/usr/bin/env python3 # # SPDX-License-Identifier: BSD-3-Clause # Copyright 2020-2021, Intel Corporation # # # csv_compare.py -- compare CSV files (EXPERIMENTAL) # # In order to compare all CSV are plotted on the same chart. # XXX include hostname for easier reporting. # import argparse import os import pandas as pd import matplotlib.pyplot as plt from PIL import Image from textwrap import wrap from matplotlib.ticker import ScalarFormatter column_to_label = { 'threads': '# of threads', 'iodepth': 'iodepth', 'bs': 'block size [B]', 'lat': 'latency [usec]', 'bw': 'bandwidth [Gb/s]', 'cpuload': 'CPU load [%]' } column_to_description = { 'threads': 'threads={}', 'iodepth': 'iodepth={}', 'bs': 'block size={}B', } column_default = { 'threads': 1, 'iodepth': 1, 'bs': None, } dimensions = {'threads', 'iodepth', 'bs', 'cpuload'} layouts = { 'lat_avg': { 'nrows': 1, 'ncols': 1, 'x': '<arg_axis>', 'columns': [ 'lat_avg' ], 'xscale': '<arg_xscale>', }, 'lat_pctls': { 'nrows': 1, 'ncols': 2, 'x': '<arg_axis>', 'columns': [ # XXX When 99.999 percentile will be stabilized 99.99 can be # replaced with 99.999. 'lat_pctl_99.9', 'lat_pctl_99.99' ], 'xscale': '<arg_xscale>', }, 'lat_pctls_999': { 'nrows': 1, 'ncols': 2, 'x': 'bs', 'columns': [ 'lat_pctl_99.0', 'lat_pctl_99.9' ], 'xscale': 'log', }, 'lat_pctls_99999': { 'nrows': 1, 'ncols': 2, 'x': 'bs', 'columns': [ 'lat_pctl_99.99', 'lat_pctl_99.999' ], 'xscale': 'log', }, 'lat_pctl_99999': { 'nrows': 1, 'ncols': 1, 'x': 'bs', 'columns': [ 'lat_pctl_99.999' ], 'xscale': 'log', }, 'lat_all': { 'nrows': 4, 'ncols': 2, 'x': '<arg_axis>', 'columns': [ 'lat_avg', 'lat_stdev', 'lat_min', 'lat_max', 'lat_pctl_99.0', 'lat_pctl_99.9', 'lat_pctl_99.99', 'lat_pctl_99.999' ], 'xscale': '<arg_xscale>', }, 'bw': { 'nrows': 1, 'ncols': 1, 'x': '<arg_axis>', 'columns': [ 'bw_avg' ], 'xscale': '<arg_xscale>', }, } empty = {'lat_avg': [0], 'lat_pctl_99.9': [0], 'lat_pctl_99.999': [0], \ 'bs': [1], 'bw_avg': [0], 'threads': [1]} def get_label(column): """Find a text label for an axis describing a provided CSV column. :param column: name of the CSV column :type column: str :return: a label for an axis :rtype: str """ for key, label in column_to_label.items(): if key in column: return label def dfs_filter(dfs, df_names, column_list): """Filter out all pandas.DataFrame without required columns :param dfs: list of pandas.DataFrame objects to draw on the subplot :type dfs: list[pandas.DataFrame] :param df_names: a list of human readable descriptions for dfs :type df_names: list[str] :param column_list: a list of required columns :type column_list: list[str] :return: a list of pandas.DataFrame and their names :rtype: list[pandas.DataFrame], list[str] """ dfs_out = [] df_names_out = [] # loop over all (pandas.DataFrame, str) pairs for df, df_name in zip(dfs, df_names): has_all = True for column in column_list: if column not in df.columns: has_all = False break # if DataFrame does not have all specified columns just skip # the DataFrame if not has_all: continue # append the DataFrame and its name to the outputs dfs_out.append(df) df_names_out.append(df_name) return dfs_out, df_names_out def dfs_all_values(dfs, column): """Find all possible values of a column in the pandas.DataFram list :param dfs: list of pandas.DataFrame objects to draw on the subplot :type dfs: list[pandas.DataFrame] :param column: a columns :type column: str :return: a sorted list of possible values from the column :rtype: list[values] """ values = [] # loop over all (pandas.DataFrame, str) pairs for df in dfs: values.extend(df[column].tolist()) # set() removes duplicates # sorted() converts Set to List and sort the elements return sorted(set(values)) def draw_plot(ax, dfs, legend, x, y, xscale, yaxis_max): """Draw multiple lines y(x) using data from the dfs list on the ax subplot. :param ax: an axes (subplot) :type ax: matplotlib.axes :param dfs: list of pandas.DataFrame objects to draw on the subplot :type dfs: list[pandas.DataFrame] :param legend: a list of human readable descriptions for dfs :type legend: list[str] :param x: a column to be drawn on the x-axis :type x: str :param y: a column to be drawn on the y-axis :type y: str :param xscale: a x-axis scale :type xscale: str """ xticks = dfs_all_values(dfs, x) # loop over all pandas.DataFrame objects for df in dfs: # setting the x-column as an index is required to draw the y-column # as a function of x argument df = df.set_index(x) # plot line on the subplot df[y].plot.line(ax=ax, rot=45, marker='.') if xscale == "linear": ax.set_xscale(xscale) else: ax.set_xscale(xscale, base=2) ax.xaxis.set_major_formatter(ScalarFormatter()) ax.set_xticks(xticks) ax.set_xlabel(get_label(x)) ax.set_ylabel(get_label(y)) ax.set_ylim(bottom=0) if yaxis_max is not None: ax.set_ylim(top=float(yaxis_max)) ax.legend(legend, fontsize=6) ax.grid(True) def draw_table(ax, dfs, legend, x, y): """Draw a table of all data used to chart y(x) :param ax: an axes (subplot) :type ax: matplotlib.axes :param dfs: list of pandas.DataFrame objects to draw on the subplot :type dfs: list[pandas.DataFrame] :param legend: a list of human readable descriptions for dfs :type legend: list[str] :param x: a column to be drawn on the x-axis :type x: str :param y: a column to be drawn on the y-axis :type y: str """ col_labels = dfs_all_values(dfs, x) column_legend = [] cell_text = [] # loop over all pandas.DataFrame objects for df in dfs: # to allow query y(x) easily df = df.set_index(x) df_row = df[y] # build a row with filled blanks '-' row = ["{:.2f}".format(df_row[column]) if column in df_row.index else '-' \ for column in col_labels] cell_text.append(row) ax.axis('tight') ax.axis('off') ax.table(cellText=cell_text, rowLabels=legend, colLabels=col_labels, \ loc='top') def get_content_height(im, ncols): width, height = im.size # pick a vertical line where the content is expected x = width / (ncols + 1) for y in range(height - 1, 0, -1): pixel = im.getpixel((x, y)) if pixel[0] != 255 or pixel[1] != 255 or pixel[2] != 255: return y + 1 return 0 def crop_to_content(file, ncols): # open the file im = Image.open(file) # calculate the crop parameters width, height = im.size left = 0 top = 0 right = width bottom = get_content_height(im, ncols) bottom += 100 # crop and save the output file im = im.crop((left, top, right, bottom)) im.save(file) def split_in_half(input, output, top): # open the file im = Image.open(input) # calculate the crop parameters width, height = im.size left = 0 top = int(top * height) right = width bottom = int(top + 0.5 * height) # crop and save the output file im = im.crop((left, top, right, bottom)) im.save(output) def get_const_param(dfs, column): df = dfs[0] value = column_default[column] if column in df.columns: value = df.at[0, column] return value def main(): parser = argparse.ArgumentParser( description='Compare CSV files (EXPERIMENTAL)') parser.add_argument('csv_files', metavar='CSV_FILE', nargs='+', help='a CSV log file to process') parser.add_argument('--output_file', metavar='OUTPUT_FILE', default='compare.png', help='an output file') parser.add_argument('--output_layout', metavar='OUTPUT_LAYOUT', choices=layouts.keys(), required=True, help='an output file layout') parser.add_argument('--arg_axis', metavar='ARG_AXIS', choices=dimensions, required=False, help='an axis for layouts which requires to pick one') parser.add_argument('--yaxis_max', metavar='YMAX', default=None, help='a y-axis max value') parser.add_argument('--arg_xscale', metavar='XSCALE', choices=['linear', 'log'], required=False, help='an x-axis scale') parser.add_argument('--output_with_tables', action='store_true', help='an output file layout') parser.add_argument('--output_title', metavar='OUTPUT_TITLE', default='title', help='an output title') parser.add_argument('--legend', metavar='SERIES', nargs='+', help='a legend for the data series read from the CSV files') parser.add_argument('--legend_from_file_name_comment', action='store_true', help='generate a legend from the file name comments __COMMENT__') args = parser.parse_args() # generate or validate the legend if args.legend_from_file_name_comment: args.legend = [] for fname in args.csv_files: comment = fname.split('__') if len(comment) != 3 or len(comment[1]) == 0: args.legend.append(fname) args.legend.append(comment[1]) elif args.legend is None: args.legend = args.csv_files elif len(args.legend) != len(args.csv_files): raise Exception( 'The number of legend entries does not match the number of CSV files') # read all CSV files dfs = [] for csv_file in args.csv_files: try: df =
pd.read_csv(csv_file)
pandas.read_csv
"""Collect specific gene ontologies, and additional background/complex information """ import os import re import functools import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sa import statsmodels.formula.api as sfa from GEN_Utils import FileHandling from loguru import logger from scipy import stats import scikit_posthocs as sp from utilities.database_map_and_filter import (go_lineage_tracer,go_term_details, ontology_wordfinder, uniprot_go_genes, create_uniprot_xref, ortholog_map) logger.info('Import OK') clustered_path = f'results/lysate_denaturation/clustering/clustered.xlsx' background_path = f'results/lysate_denaturation/normalised/normalised_summary.xlsx' resource_folder = f'resources/bioinformatics_databases/' output_folder = 'results/lysate_denaturation/gene_ontology_datasets/' if not os.path.exists(output_folder): os.makedirs(output_folder) def add_homolog_id(datasets): for name, data in datasets.items(): data['homologue_id'] = data['Proteins'].map(swiss_to_homologue_id) data.to_csv(f'{output_folder}{name}.csv') datasets.update({name: data}) return datasets # MIG database for homology homology_db = pd.read_table(f'{resource_folder}HOM_MouseHumanSequence.txt') homology_db.dropna(subset=['SWISS_PROT IDs', 'HomoloGene ID'], inplace=True) swiss_to_homologue_id = dict(zip(homology_db['SWISS_PROT IDs'], homology_db['HomoloGene ID'])) # Dataset 1: Any proteins associated with generic "protein complex" GO term GO:0032991 # collect proteins from ontology complex_genes = uniprot_go_genes(tax_id='10090', go_term='GO:0032991', child_terms=True, direct=False, output='list') complex_genes = pd.DataFrame(complex_genes).rename(columns={0: 'Proteins'}) # Dataset 2: Against proteins associated with specific complexes: proteasome # find terms associated with proteasome potential_proteasome_terms = ontology_wordfinder(['proteasome']) # decided on "GO:0000502: proteasome complex" proteasome_genes = uniprot_go_genes(tax_id='10090', go_term='GO:0000502', child_terms=False, direct=True, output='list') proteasome_genes = pd.DataFrame(proteasome_genes).rename(columns={0: 'Proteins'}) # Dataset 3: Against proteins associated with specific complexes: ribosome # find terms associated with proteasome potential_terms = ontology_wordfinder(['ribosome']) # decided on "GO:0003735 structural constituent of ribosome"" ribosome_genes = uniprot_go_genes(tax_id='10090', go_term='GO:0003735', child_terms=False, direct=True, output='list') ribosome_genes = pd.DataFrame(ribosome_genes).rename(columns={0: 'Proteins'}) # Dataset 4: Against proteins associated with specific complexes: DNA repair complex # find terms associated with proteasome potential_terms = ontology_wordfinder(['DNA repair complex']) # decided on "GO:1990391 DNA repair complex"" dna_genes = uniprot_go_genes(tax_id='10090', go_term='GO:1990391', child_terms=False, direct=True, output='list') dna_genes =
pd.DataFrame(dna_genes)
pandas.DataFrame
import csv import httplib2 from apiclient.discovery import build import urllib import json import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import plotly import plotly.plotly as py import plotly.graph_objs as go from plotly.tools import FigureFactory as FF plotly.tools.set_credentials_file(username = 'ediering', api_key='k23nwbsle7') # This API key is provided by google as described in the tutorial API_KEY = '<KEY>' # This is the table id for the fusion table TABLE_ID = '15CnIT8u1snCOSRYjV3lPrEnUR_5qoGZ1ZhwGytAt' try: fp = open("data.json") response = json.load(fp) except IOError: service = build('fusiontables', 'v1', developerKey=API_KEY) query = "SELECT * FROM " + TABLE_ID #+ " WHERE 'Total Energy Cost ($)' > 0 AND 'Total Energy Cost ($)' < 1000000 " response = service.query().sql(sql=query).execute() fp = open("data.json", "w+") json.dump(response, fp) # print len(response['rows']) data_df = pd.DataFrame(response[u'rows'], columns = response[u'columns']) working = data_df[['Site', 'Site ID', 'Year', 'Total Energy (kBtu)', 'Total Energy Cost ($)']] pivot_cost = working.pivot(index='Site ID', columns='Year', values='Total Energy Cost ($)') pivot_energy = working.pivot(index='Site ID', columns='Year', values='Total Energy (kBtu)') def totalcostplot_energy(): pivot_cost = working.pivot(index='Site ID', columns='Year', values='Total Energy Cost ($)') pivot_energy = working.pivot(index='Site ID', columns='Year', values='Total Energy (kBtu)') rows = pivot_cost.index plot = [] for i in xrange(len(rows)): index = rows[i] trace = go.Scatter( x = pivot_cost.columns.values, y = pivot_cost.loc[index], #mode = 'markers' ) plot.append(trace) layout = go.Layout( xaxis=dict( autotick=False), showlegend=False) fig= go.Figure(data=plot, layout=layout) return fig def boxplot(): ten = pd.to_numeric(pivot_cost['2010']).dropna() eleven = pd.to_numeric(pivot_cost['2011']).dropna() twelve = pd.to_numeric(pivot_cost['2012']).dropna() thirteen = pd.to_numeric(pivot_cost['2013']).dropna() fourteen =
pd.to_numeric(pivot_cost['2014'])
pandas.to_numeric
import pandas as pd from pandas.util.testing import assert_frame_equal import numpy as np import os from dataactbroker.helpers import validation_helper from dataactvalidator.app import ValidationManager, ValidationError from dataactvalidator.filestreaming.csvReader import CsvReader from dataactcore.models.validationModels import FileColumn from dataactcore.models.lookups import FIELD_TYPE_DICT FILES_DIR = os.path.join('tests', 'integration', 'data') READ_ERROR = os.path.join(FILES_DIR, 'appropReadError.csv') BLANK_C = os.path.join(FILES_DIR, 'awardFinancialBlank.csv') def test_is_valid_type(): assert validation_helper.is_valid_type(None, 'STRING') is True assert validation_helper.is_valid_type(None, 'STRING') is True assert validation_helper.is_valid_type(None, 'INT') is True assert validation_helper.is_valid_type(None, 'DECIMAL') is True assert validation_helper.is_valid_type(None, 'BOOLEAN') is True assert validation_helper.is_valid_type(None, 'LONG') is True assert validation_helper.is_valid_type('1234Test', 'STRING') is True assert validation_helper.is_valid_type('1234Test', 'INT') is False assert validation_helper.is_valid_type('1234Test', 'DECIMAL') is False assert validation_helper.is_valid_type('1234Test', 'BOOLEAN') is False assert validation_helper.is_valid_type('1234Test', 'LONG') is False assert validation_helper.is_valid_type('', 'STRING') is True assert validation_helper.is_valid_type('', 'INT') is True assert validation_helper.is_valid_type('', 'DECIMAL') is True assert validation_helper.is_valid_type('', 'BOOLEAN') is True assert validation_helper.is_valid_type('', 'LONG') is True assert validation_helper.is_valid_type('01234', 'STRING') is True assert validation_helper.is_valid_type('01234', 'INT') is True assert validation_helper.is_valid_type('01234', 'DECIMAL') is True assert validation_helper.is_valid_type('01234', 'LONG') is True assert validation_helper.is_valid_type('01234', 'BOOLEAN') is False assert validation_helper.is_valid_type('1234.0', 'STRING') is True assert validation_helper.is_valid_type('1234.0', 'INT') is False assert validation_helper.is_valid_type('1234.00', 'DECIMAL') is True assert validation_helper.is_valid_type('1234.0', 'LONG') is False assert validation_helper.is_valid_type('1234.0', 'BOOLEAN') is False def test_clean_col(): # None cases assert validation_helper.clean_col('') is None assert validation_helper.clean_col(' ') is None assert validation_helper.clean_col('\n') is None assert validation_helper.clean_col('\"\"') is None assert validation_helper.clean_col(np.nan) is None assert validation_helper.clean_col(None) is None # clean cases assert validation_helper.clean_col('\nclean me! ') == "clean me!" assert validation_helper.clean_col(0) == '0' assert validation_helper.clean_col(1) == '1' assert validation_helper.clean_col(' \" double quotes\"') == 'double quotes' assert validation_helper.clean_col([]) == '[]' assert validation_helper.clean_col({}) == '{}' def test_clean_frame_vectorized(): df_under_test = pd.DataFrame([ ['""', "", " lspace", '"lquote'], ["''", " ", "rspace ", 'rquote"'], ["'hello'", " ", " surround space ", '"surround quote"'], ['"hello"', "\n\t", None, '" surround quote and space "'], ['"hello you"', "5", np.NaN, ' " surround quote and space "\t'], ], columns=list("ABCD")) df_under_test = validation_helper.clean_frame_vectorized(df_under_test) expected_df = pd.DataFrame([ [None, None, "lspace", '"lquote'], ["''", None, "rspace", 'rquote"'], ["'hello'", None, "surround space", "surround quote"], ["hello", None, None, "surround quote and space"], ["hello you", "5", None, "surround quote and space"], ], columns=list("ABCD")) assert_frame_equal(df_under_test, expected_df) def test_clean_frame_vectorized_mixed_types(): df_under_test = pd.DataFrame([ ['""', "", np.NaN, '"25'], ["''", " ", "NaN", '-10"'], ["'10'", " ", np.int64(12), '"0"'], [77, "\n\t", None, 0.0], ['"11 8"', "5", np.float64(8.2), '99\t'], ], columns=list("ABCD")) df_under_test = validation_helper.clean_frame_vectorized(df_under_test, convert_to_str=True) expected_df = pd.DataFrame([ [None, None, None, '"25'], ["''", None, "NaN", '-10"'], ["'10'", None, "12", "0"], ["77", None, None, "0.0"], ["11 8", "5", "8.2", "99"], ], columns=list("ABCD")) assert_frame_equal(df_under_test, expected_df) def test_clean_numbers(): # Normal cases assert validation_helper.clean_numbers('10') == '10' assert validation_helper.clean_numbers('1,00') == '100' assert validation_helper.clean_numbers('-10,000') == '-10000' assert validation_helper.clean_numbers('0') == '0' # This is originall designed for just strings but we should still account for these assert validation_helper.clean_numbers(10) == '10' assert validation_helper.clean_numbers(-10) == '-10' assert validation_helper.clean_numbers(0) == '0' assert validation_helper.clean_numbers(0) == '0' assert validation_helper.clean_numbers(None) is None assert validation_helper.clean_numbers(['A']) == ['A'] def test_clean_numbers_vectorized_all_strings(): df_under_test = pd.DataFrame([ ["10,003,234", "bad,and", "2242424242", "-10"], ["0", "8", "9.424.2", "-10,000"], ["9.24242", ",2,094", ",01", ",-0,0"], ["1,45", "0055", None, np.NaN] ], columns=list("ABCD")) for col in df_under_test.columns: validation_helper.clean_numbers_vectorized(df_under_test[col]) expected_df = pd.DataFrame([ ["10003234", "bad,and", "2242424242", "-10"], ["0", "8", "9.424.2", "-10000"], ["9.24242", "2094", "01", "-00"], ["145", "0055", None, np.NaN] ], columns=list("ABCD"))
assert_frame_equal(df_under_test, expected_df)
pandas.util.testing.assert_frame_equal
from typing import Dict, List import matplotlib.pyplot as plt import matplotlib.colors as colors import numpy as np import pandas as pd import seaborn as sns from tqdm import tqdm import wandb api = wandb.Api() entity = "proteins" import matplotlib.ticker as ticker class StupidLogFormatter(ticker.LogFormatter): def __init__( self, base: float = 10.0, labelOnlyBase=False, minor_thresholds=None, linthresh=None, ): super().__init__( base=base, labelOnlyBase=labelOnlyBase, minor_thresholds=minor_thresholds, linthresh=linthresh, ) def _num_to_string(self, x, vmin, vmax): if x > 20000: s = "%1.0e" % x elif x < 1: s = "%1.0e" % x else: s = self._pprint_val(x, vmax - vmin) return s def multimsa_pair_plot(df, k1, k2, m="auc"): filtered_df_x = df[df.sweep_name == k1] filtered_df_y = df[df.sweep_name == k2] lsuffix = "_x" rsuffix = "_y" merged_df = pd.merge( filtered_df_x, filtered_df_y, on="pdb_idx", suffixes=(lsuffix, rsuffix) ) print("comparison families: ", len(merged_df)) lseqs = "num_seqs" + lsuffix rseqs = "num_seqs" + rsuffix if lseqs in merged_df.keys(): seqs_column = lseqs elif rseqs in merged_df.keys(): seqs_column = rseqs else: print("no seqs found for ") print(df_x["model"].iloc(0)) print(df_y["model"].iloc(0)) return plt.plot([0, 1], [0, 1], c="k") num_seqs = merged_df[seqs_column] plt.scatter( merged_df[m + lsuffix], merged_df[m + rsuffix], c=num_seqs, s=9, norm=colors.LogNorm(vmin=num_seqs.min(), vmax=num_seqs.max()), cmap="viridis", ) formatter = StupidLogFormatter(base=2.0) cbar = plt.colorbar(format=formatter) # cbar.locator = matplotlib.ticker.LogLocator(base=2) # cbar.update_ticks() plt.xlabel(k1) plt.ylabel(k2) cbar.set_label("\# of MSA sequences") print("spoagef") cbar.set_ticks( ticker.LogLocator(base=2.0), update_ticks=True, ) cbar.minorticks_off() def add_apc_default(df: pd.DataFrame, sweep_name: str) -> pd.DataFrame: # Adds modified sweep whose default metrics are apc'd d = df[df.sweep_name == sweep_name] d.loc[:, "sweep_name"] = sweep_name + "-apc" d.loc[:, "pr_at_L"] = d.loc[:, "pr_at_L_apc"] d.loc[:, "pr_at_L_5"] = d.loc[:, "pr_at_L_5_apc"] d.loc[:, "auc"] = d.loc[:, "auc_apc"] d["apc"] = True return df.append(d) def parse_old_model(df): d = df[ [ "sweep_name", "pdb", "pdb_idx", "len_ref", "num_seqs", "run_state", "Train_Precision_@_l/1", "Train_Precision_apc_@_l/1", "Train_Precision_@_l/5", "Train_Precision_apc_@_l/5", "Train_Auc", "Train_Auc_apc", ] ] d = d.rename( columns={ "Train_Precision_@_l/1": "pr_at_L", "Train_Precision_apc_@_l/1": "pr_at_L_apc", "Train_Precision_@_l/5": "pr_at_L_5", "Train_Precision_apc_@_l/5": "pr_at_L_5_apc", "Train_Auc": "auc", "Train_Auc_apc": "auc_apc", "len_ref": "msa_length", } ) d["log_num_seqs"] = np.log2(d.num_seqs) d["model"] = d["sweep_name"].map(lambda x: x.split("-")[0]) if "use_bias" in df.columns: d["use_bias"] = df.use_bias else: d["use_bias"] = False return d def load_attention_msa_df(sweep_id, sweep_name, model_name, pdb_map): # Loads sweep df for runs from old repo project = "gremlin-contacts" runs = api.runs(f"{entity}/{project}", {"sweep": f"{sweep_id}"}, per_page=1000) print(f"{sweep_id} has {len(runs)} runs") id_list = [] summary_list = [] config_list = [] name_list = [] model_list = [] state_list = [] tags_list = [] num_contacts_list = [] for run in tqdm(runs): tags_list.append(run.tags) state_list.append(run.state) id_list.append(run.id) # run.summary are the output key/values like accuracy. We call ._json_dict to omit large files summary_list.append(run.summary._json_dict) # run.config is the input metrics. We remove special values that start with _. config_list.append( {str(k): v for k, v in run.config.items() if not k.startswith("_")} ) # run.name is the name of the run. name_list.append(run.name) model_list.append(model_name) # currently unused, very slow to download true contact files # num_contacts_list.append(get_num_true_contacts(run)) # num_contacts_df = pd.DataFrame({'num_true_contacts': num_contacts_list}) summary_df = pd.DataFrame.from_records(summary_list) config_df = pd.DataFrame.from_dict(config_list) pdb_id_df = pd.DataFrame({"pdb_idx": list(config_df.pdb.map(pdb_map))}) state_df = pd.DataFrame({"run_state": state_list}) name_df = pd.DataFrame({"name": name_list}) run_id_df =
pd.DataFrame({"run_id": id_list})
pandas.DataFrame
import datetime from unittest import TestCase import numpy as np import pandas as pd from mlnext import pipeline class TestColumnSelector(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_select_columns(self): t = pipeline.ColumnSelector(keys=['a']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnDropper(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_drop_columns(self): t = pipeline.ColumnDropper(columns=['b']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop_columns_verbose(self): t = pipeline.ColumnDropper(columns=['b'], verbose=True) expected = self.df.loc[:, ['a']] result = t.transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop__missing_columns(self): t = pipeline.ColumnDropper(columns=['c']) with self.assertWarns(Warning): t.transform(self.df) class TestColumnRename(TestCase): def test_rename_columns(self): t = pipeline.ColumnRename(lambda x: x.split('.')[-1]) df = pd.DataFrame(columns=['a.b.c', 'd.e.f']) expected = pd.DataFrame(columns=['c', 'f']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestNaDropper(TestCase): def test_drop_na(self): t = pipeline.NaDropper() df = pd.DataFrame([1, 0, pd.NA]) expected = pd.DataFrame([1, 0], dtype=object) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestClip(TestCase): def test_clip(self): t = pipeline.Clip(lower=0.5, upper=1.5) df = pd.DataFrame([[0.1, 0.4, 0.6, 0.8, 1.2, 1.5]]) expected = pd.DataFrame([[0.5, 0.5, 0.6, 0.8, 1.2, 1.5]]) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestDatetimeTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_datetime(self): t = pipeline.DatetimeTransformer(columns=['time']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) expected = pd.DataFrame([[datetime.datetime(2021, 1, 4, 14, 12, 31)]], columns=['time']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_datetime_missing_cols(self): t = pipeline.DatetimeTransformer(columns=['t']) df = pd.DataFrame([['2021-01-04 14:12:31']], columns=['time']) with self.assertRaises(ValueError): t.fit_transform(df) class TestNumericTransformer(TestCase): # FIXME: fails in gitlab pipeline but succeeds locally def test_numeric(self): t = pipeline.NumericTransformer(columns=['1']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) expected = pd.DataFrame([0, 1], columns=['1'], dtype=np.int64) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) def test_numeric_missing_column(self): t = pipeline.NumericTransformer(columns=['2']) df = pd.DataFrame([0, 1], columns=['1'], dtype=object) with self.assertRaises(ValueError): t.fit_transform(df) def test_numeric_additional_column(self): t = pipeline.NumericTransformer(columns=['2']) df =
pd.DataFrame([[0, 1]], columns=['1', '2'], dtype=object)
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) class TestPeriodIndexSeriesMethods(object): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx') tm.assert_index_equal(result, exp) def test_pi_ops_errors(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') s = pd.Series(idx) msg = r"unsupported operand type\(s\)" for obj in [idx, s]: for ng in ["str", 1.5]: with tm.assert_raises_regex(TypeError, msg): obj + ng with pytest.raises(TypeError): # error message differs between PY2 and 3 ng + obj with tm.assert_raises_regex(TypeError, msg): obj - ng with pytest.raises(TypeError): np.add(obj, ng) if _np_version_under1p10: assert np.add(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.add(ng, obj) with pytest.raises(TypeError): np.subtract(obj, ng) if _np_version_under1p10: assert np.subtract(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.subtract(ng, obj) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='2M', name='idx') expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'], freq='2M', name='idx') self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') f = lambda x: x + pd.offsets.Day() exp = PeriodIndex(['2011-01-02', '2011-02-02', '2011-03-02', '2011-04-02'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x + pd.offsets.Day(2) exp = PeriodIndex(['2011-01-03', '2011-02-03', '2011-03-03', '2011-04-03'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x - pd.offsets.Day(2) exp = PeriodIndex(['2010-12-30', '2011-01-30', '2011-02-27', '2011-03-30'], freq='D', name='idx') self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') s = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period msg_idx = r"Input has different freq from PeriodIndex\(freq=D\)" msg_s = r"Input cannot be converted to Period\(freq=D\)" for obj, msg in [(idx, msg_idx), (s, msg_s)]: with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj + pd.offsets.Hour(2) with tm.assert_raises_regex( period.IncompatibleFrequency, msg): pd.offsets.Hour(2) + obj with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj - pd.offsets.Hour(2) def test_pi_sub_period(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, -11, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period('2012-01', freq='M')) tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, 11, 10, 9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(pd.Period('2012-01', freq='M'), idx) if _np_version_under1p10: assert result is NotImplemented else: tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx - pd.Period('NaT', freq='M'), exp) tm.assert_index_equal(pd.Period('NaT', freq='M') - idx, exp) def test_pi_sub_pdnat(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') exp = pd.TimedeltaIndex([pd.NaT] * 4, name='idx') tm.assert_index_equal(pd.NaT - idx, exp) tm.assert_index_equal(idx - pd.NaT, exp) def test_pi_sub_period_nat(self): # GH 13071 idx = PeriodIndex(['2011-01', 'NaT', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, np.nan, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, np.nan, 10, 9], name='idx') tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx -
pd.Period('NaT', freq='M')
pandas.Period
import mysql.connector import datetime import pandas as pd def is_empty(df): if df.empty: print('Empty table') db_user = input('Enter database user : ') db_password = input('Enter database password : ') connection = mysql.connector.connect(host='localhost', user = db_user, password = db_password, db='twitter') cursor = connection.cursor() print("") print("Welcome to my Twitter application") print("In each page there will be guidlines") print("Please choose the desired option and enter data") print(',' * 50) while True: print("1-Log in") print("2-Sign up") option = int(input()) if option == 1: arguments = [] print('Enter userName') userName = input() arguments.append(userName) print('Enter password') password = input() arguments.append(password) cursor.callproc('login', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] if 'invalid'not in result: print(result) connection.commit() break else: print(result) input() connection.rollback() elif option == 2: arguments = [] print('Enter userName(20 character long):') userName = input() arguments.append(userName) print('Enter first name(20 character long):') firstname = input() arguments.append(firstname) print('Enter last name(20 character long):') lastname = input() arguments.append(lastname) flag = False print('Enter date of birth(YYYY-MM-DD):') while not flag: try: birthdate = input() birthdate = datetime.datetime.strptime(birthdate, '%Y-%m-%d') flag = True except: print('Please enter date of birth in valid format:') arguments.append(birthdate) print('Enter bio(if you dont want to have bio, enter \"none\"):') bio = input() if bio == 'none': bio = None arguments.append(bio) print('Enter password(<PASSWORD> character long ):') password = input() arguments.append(password) cursor.callproc('create_account', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] if result != 'Sorry, this username is already taken.': print(result) connection.commit() break else: print(result) connection.rollback() input() else: print('INVALID INPUT!') print('') print('Welcome to your twitter page') while True: print('0-Quit') print('1-Send a new tweet') print('2-Get personal tweets') print('3-Get personal tweets and replies') print('4-Follow') print('5-Unfollow') print('6-Block') print('7-Unblock') print('8-Get following activities') print('9-Get a specific user activities') print('10-Add a new comment') print('11-Get comments of specific tweet') print('12-Gets tweets consist of specific hashtag') print('13-Like') print('14-Get like numbers of specific tweet') print('15-List of liking of specific tweet') print('16-Popular tweets') print('17-Send a text message in direct') print('18-Send a tweet in direct') print('19-Receive a list of messages received from the specific user') print('20-Get a list of message senders') print('21-get login records') option = int(input()) if option == 0: break elif option == 1: arguments = [] print('Enter your tweet content(Maximum 256 character long):') tweet_content = input() arguments.append(tweet_content) cursor.callproc('send_tweet', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 2: cursor.callproc('get_own_tweets') result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 3: cursor.callproc('get_own_tweets_and_replies') result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 4: arguments = [] print('Enter the username of the person you want to follow:') username = input() arguments.append(username) cursor.callproc('follow', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 5: arguments = [] print('Enter the username of the person you want to unfollow:') username = input() arguments.append(username) cursor.callproc('stop_follow', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 6: arguments = [] print('Enter the username of the person you want to block:') username = input() arguments.append(username) cursor.callproc('block', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 7: arguments = [] print('Enter the username of the person you want to unblock:') username = input() arguments.append(username) cursor.callproc('stop_block', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 8: cursor.callproc('get_following_activity') result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 9: arguments = [] print('Enter the username of the person whose activities you want to see:') username = input() arguments.append(username) cursor.callproc('get_user_activity', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 10: arguments = [] print('Enter the tweet ID you want to comment on:') tweet_id = int(input()) arguments.append(tweet_id) print('Enter your comment content:') comment_content = input() arguments.append(comment_content) cursor.callproc('comment', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 11: arguments = [] print('Enter the tweet ID you want to see it\'s comments:') tweet_id = int(input()) arguments.append(tweet_id) cursor.callproc('get_comments_of_tweet', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 12: arguments = [] print('Enter the hashtag you want to see its tweets') hashtag = input() arguments.append(hashtag) cursor.callproc('hashtag_tweets', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 13: arguments = [] print('Enter the tweet ID you want to like it:') tweet_id = int(input()) arguments.append(tweet_id) cursor.callproc('liking', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 14: arguments = [] print('Enter the tweet ID you want to see it\'s number of likes:') tweet_id = int(input()) arguments.append(tweet_id) cursor.callproc('number_of_likes', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 15: arguments = [] print('Enter the tweet ID you want to see it\'s List of likings :') tweet_id = int(input()) arguments.append(tweet_id) cursor.callproc('list_of_liking', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 16: cursor.callproc('get_popular_tweets') result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 17: arguments = [] print('Enter the username to which you want to send a text message:') username = input() arguments.append(username) print('Enter your text message:') message = input() arguments.append(message) cursor.callproc('direct_text_message', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 18: arguments = [] print('Enter the username to which you want to send a tweet:') username = input() arguments.append(username) print('Enter the tweet ID you want to send it:') tweet_id = int(input()) arguments.append(tweet_id) cursor.callproc('direct_tweet_message', arguments) result = '' for i in cursor.stored_results(): result = i.fetchone()[0] print(result) connection.commit() input() elif option == 19: arguments = [] print('Enter the username whose messages you want to view:') username = input() arguments.append(username) cursor.callproc('get_a_user_messages', arguments) result = '' for i in cursor.stored_results(): result = i.fetchall() df = pd.DataFrame(result) is_empty(df) print(df.to_markdown()) input() elif option == 20: cursor.callproc('list_of_message_sender') result = '' for i in cursor.stored_results(): result = i.fetchall() df =
pd.DataFrame(result)
pandas.DataFrame
import os, csv import numpy as np import pandas as pd from pathlib import Path from sklearn.model_selection import train_test_split from scipy import signal class ProcessSignalData(object): def __init__(self): # path to video data from signal_output.py self.dir = './processed_new/videos' self.full_path = '' self.dataframe = pd.DataFrame() self.real_data = pd.DataFrame() self.fake_data = pd.DataFrame() self.dataset = pd.DataFrame() self.real_data_mean = {} self.fake_data_mean = {} self.real_data_var = {} self.fake_data_var = {} self.real_data_std = {} self.fake_data_std = {} self.real_data_psd = {} self.fake_data_psd = {} self.real_data_csd = {} self.fake_data_csd = {} self.real_data_f1 = {} self.fake_data_f1 = {} self.real_data_test = {} self.fake_data_test = {} self.real_data_RCCE = {} self.real_data_LCCE = {} self.real_data_LCRC = {} self.fake_data_RCCE = {} self.fake_data_LCCE = {} self.fake_data_LCRC = {} self.real_count = 0 self.fake_count = 0 self.vid_count = 0 self.data_path_lcce = './lcce250.csv' self.data_path_lcrc = './lcrc250.csv' self.data_path_rcce = './rcce250.csv' self.data_path_m = './mean_data16.csv' self.data_path_v = './new_chrom/var_data16.csv' self.data_path_s = './new_chrom/std_data16.csv' self.data_path_p = './new_chrom/psd_data16.csv' self.data_path_c = './new_chrom/csd_data_128.csv' self.data_path_c = './f1_data_128.csv' self.log_path = './process_log.csv' self.test_data_lcce_path = './new_chrom/test_lcce.csv' self.test_data_lcrc_path = './new_chrom/test_lcrc.csv' self.test_data_rcce_path = './new_chrom/test_rcce.csv' self.train_data_lcce_path = './new_chrom/train_lcce.csv' self.train_data_lcrc_path = './new_chrom/train_lcrc.csv' self.train_data_rcce_path = './new_chrom/train_rcce.csv' self.test_data_v_path = './new_chrom/train_data_v32c.csv' self.train_data_v_path = './new_chrom/test_data_v32c.csv' self.test_data_m_path = './new_chrom/train_data_m32c.csv' self.train_data_m_path = './new_chrom/test_data_m32c.csv' self.test_data_s_path = './new_chrom/train_data_s32c.csv' self.train_data_s_path = './new_chrom/test_data_s32c.csv' self.test_data_p_path = './new_chrom/train_data_p128c.csv' self.train_data_p_path = './new_chrom/test_data_p128c.csv' self.test_data_c_path = './train_data_c128c.csv' self.train_data_c_path = './test_data_c128c.csv' self.test_data_f1_path = './train_data_f1-128c.csv' self.train_data_f1_path = './test_data_f1-128c.csv' self.test_data_test_path = './train_data_test.csv' self.train_data_test_path = './test_data_test.csv' self.main() def new_chrom(self, red, green, blue): # calculation of new X and Y Xcomp = 3 * red - 2 * green Ycomp = (1.5 * red) + green - (1.5 * blue) # standard deviations sX = np.std(Xcomp) sY = np.std(Ycomp) alpha = sX / sY # -- rPPG signal bvp = Xcomp - alpha * Ycomp return bvp def main(self): # length of video in frames to process sample_length = 250 # interval for mean, var, std group_size = 32 #window for psd psd_size = 128 for paths, subdir, files in os.walk(self.dir): for file in files: if file.endswith('.csv'): self.full_path = os.path.join(paths, file) if 'rejected' in self.full_path.lower() or '.txt' in self.full_path.lower() or 'imposter' in self.full_path.lower(): pass else: print(self.full_path) self.dataset = pd.read_csv(self.full_path) right_R = self.dataset['RC-R'].iloc[:sample_length] left_R = self.dataset['LC-R'].iloc[:sample_length] chin_R = self.dataset['C-R'].iloc[:sample_length] forehead_R = self.dataset['F-R'].iloc[:sample_length] outerR_R = self.dataset['OR-R'].iloc[:sample_length] outerL_R = self.dataset['OL-R'].iloc[:sample_length] center_R = self.dataset['CE-R'].iloc[:sample_length] right_G = self.dataset['RC-G'].iloc[:sample_length] left_G = self.dataset['LC-G'].iloc[:sample_length] chin_G = self.dataset['C-G'].iloc[:sample_length] forehead_G = self.dataset['F-G'].iloc[:sample_length] outerR_G = self.dataset['OR-G'].iloc[:sample_length] outerL_G = self.dataset['OL-G'].iloc[:sample_length] center_G = self.dataset['CE-G'].iloc[:sample_length] right_B = self.dataset['RC-B'].iloc[:sample_length] left_B = self.dataset['LC-B'].iloc[:sample_length] chin_B = self.dataset['C-B'].iloc[:sample_length] forehead_B = self.dataset['F-B'].iloc[:sample_length] outerR_B = self.dataset['OR-B'].iloc[:sample_length] outerL_B = self.dataset['OL-B'].iloc[:sample_length] center_B = self.dataset['CE-B'].iloc[:sample_length] right_C = self.dataset['RC-chrom'].iloc[:sample_length] left_C = self.dataset['LC-Chrom'].iloc[:sample_length] chin_C = self.dataset['C-chrom'].iloc[:sample_length] forehead_C = self.dataset['F-chrom'].iloc[:sample_length] outerR_C = self.dataset['OR-chrom'].iloc[:sample_length] outerL_C = self.dataset['OL-chrom'].iloc[:sample_length] center_C = self.dataset['CE-chrom'].iloc[:sample_length] chrom_R = right_C chrom_L = left_C chrom_CE = center_C chrom_OL = outerL_C chrom_OR = outerR_C #chrom_R = self.new_chrom(right_R, right_G, right_B) #chrom_L = self.new_chrom(left_R, left_G, left_B) chrom_C = self.new_chrom(chin_R, chin_G, chin_B) chrom_F = self.new_chrom(forehead_R, forehead_G, forehead_B) #chrom_OR = self.new_chrom(outerR_R, outerR_G, outerR_B) #chrom_OL = self.new_chrom(outerL_R, outerL_G, outerL_B) #chrom_CE = self.new_chrom(center_R, center_G, center_B) difg_LCRC = (self.dataset['RC-G'].iloc[:sample_length] - self.dataset['LC-G'].iloc[:sample_length]).abs() difc_LCRC = (self.dataset['RC-chrom'].iloc[:sample_length] - self.dataset['LC-Chrom'].iloc[:sample_length]).abs() difg_o1 = (self.dataset['C-G'].iloc[:sample_length] - self.dataset['F-G'].iloc[:sample_length]).abs() difc_o1 = (self.dataset['C-chrom'].iloc[:sample_length] - self.dataset['F-chrom'].iloc[:sample_length]).abs() difg_o2 = (self.dataset['OR-G'].iloc[:sample_length] - self.dataset['OL-G'].iloc[:sample_length]).abs() difc_o2 = (self.dataset['OR-chrom'].iloc[:sample_length] - self.dataset['OL-chrom'].iloc[:sample_length]).abs() difc_LCCe = (self.dataset['LC-Chrom'].iloc[:sample_length] - self.dataset['CE-chrom'].iloc[ :sample_length]).abs() difc_RCCe = (self.dataset['RC-chrom'].iloc[:sample_length] - self.dataset['CE-chrom'].iloc[ :sample_length]).abs() difc_LCRC = (chrom_R.iloc[:sample_length] - chrom_L.iloc[:sample_length]).abs() difc_LCCe = (chrom_L.iloc[:sample_length] - chrom_CE.iloc[:sample_length]).abs() difc_RCCe = (chrom_R.iloc[:sample_length] - chrom_CE.iloc[:sample_length]).abs() difc_LCOL = (chrom_L.iloc[:sample_length] - chrom_OL.iloc[:sample_length]).abs() difc_RCOR = (chrom_R.iloc[:sample_length] - chrom_OR.iloc[:sample_length]).abs() difg_LCOL = (self.dataset['LC-G'].iloc[:sample_length] - self.dataset['OL-G'].iloc[:sample_length]).abs() difg_RCOR = (self.dataset['RC-G'].iloc[:sample_length] - self.dataset['OR-G'].iloc[:sample_length]).abs() # green channel features # right cheek - left cheek difg_LCRC_lst = [difg_LCRC.iloc[i:i + group_size] for i in range(0, len(difg_LCRC) - group_size + 1, group_size)] # forehead - chin difg_o1_lst = [difg_o1.iloc[i:i + group_size] for i in range(0, len(difg_o1) - group_size + 1, group_size)] # outer right - outer left difg_o2_lst = [difg_o2.iloc[i:i + group_size] for i in range(0, len(difg_o2) - group_size + 1, group_size)] # chrominance features # right cheek - left cheek difc_LCRC_lst = [difc_LCRC.iloc[i:i + group_size] for i in range(0, len(difc_LCRC) - group_size + 1, group_size)] # forehead - chin difc_o1_lst = [difc_o1.iloc[i:i + group_size] for i in range(0, len(difc_o1) - group_size + 1, group_size)] # outer right - outer left difc_o2_lst = [difc_o2.iloc[i:i + group_size] for i in range(0, len(difc_o2) - group_size + 1, group_size)] # mean difg_LCRC_mean = np.array([difg_LCRC_lst[i].mean() for i in range(len(difg_LCRC_lst))]) difc_LCRC_mean = np.array([difc_LCRC_lst[i].mean() for i in range(len(difc_LCRC_lst))]) print("MEAN") print(difc_LCRC_mean) difg_o1_mean = np.array([difg_o1_lst[i].mean() for i in range(len(difg_o1_lst))]) difc_o1_mean = np.array([difc_o1_lst[i].mean() for i in range(len(difc_o1_lst))]) difg_o2_mean = np.array([difg_o2_lst[i].mean() for i in range(len(difg_o2_lst))]) difc_o2_mean = np.array([difc_o2_lst[i].mean() for i in range(len(difc_o2_lst))]) # variance difg_LCRC_var = np.array([difg_LCRC_lst[i].var() for i in range(len(difg_LCRC_lst))]) difc_LCRC_var = np.array([difc_LCRC_lst[i].var() for i in range(len(difc_LCRC_lst))]) print("VAR") print(difc_LCRC_var) difg_o1_var = np.array([difg_o1_lst[i].var() for i in range(len(difg_o1_lst))]) difc_o1_var = np.array([difc_o1_lst[i].var() for i in range(len(difc_o1_lst))]) difg_o2_var = np.array([difg_o2_lst[i].var() for i in range(len(difg_o2_lst))]) difc_o2_var = np.array([difc_o2_lst[i].var() for i in range(len(difc_o2_lst))]) # standard deviation difg_LCRC_std = np.array([difg_LCRC_lst[i].std() for i in range(len(difg_LCRC_lst))]) difc_LCRC_std = np.array([difc_LCRC_lst[i].std() for i in range(len(difc_LCRC_lst))]) print("STD") print(difc_LCRC_std) difg_o1_std = np.array([difg_o1_lst[i].std() for i in range(len(difg_o1_lst))]) difc_o1_std = np.array([difc_o1_lst[i].std() for i in range(len(difc_o1_lst))]) difg_o2_std = np.array([difg_o2_lst[i].std() for i in range(len(difg_o2_lst))]) difc_o2_std = np.array([difc_o2_lst[i].std() for i in range(len(difc_o2_lst))]) # power spectral density f, difg_LCRC_psd = signal.welch(difg_LCRC, nperseg=psd_size) f, difc_LCCe_psd = signal.welch(difc_LCCe, nperseg=psd_size) f, difc_RCCe_psd = signal.welch(difc_RCCe, nperseg=psd_size) f, difc_LCRC_psd = signal.welch(difc_LCRC, nperseg=psd_size) print("PSD") print(difc_LCRC_psd) f, difg_o1_psd = signal.welch(difg_o1, nperseg=psd_size) f, difc_o1_psd = signal.welch(difc_o1, nperseg=psd_size) f, difg_o2_psd = signal.welch(difg_o2, nperseg=psd_size) f, difc_o2_psd = signal.welch(difc_o2, nperseg=psd_size) # cross power spectral density left_C.fillna(0, inplace=True) center_C.fillna(0, inplace=True) right_C.fillna(0, inplace=True) outerL_C.fillna(0, inplace=True) outerR_C.fillna(0, inplace=True) f, difc_LCCe_v_csd = signal.csd(left_C, center_C, nperseg=128) f, difc_LCRC_v_csd = signal.csd(left_C, right_C, nperseg=128) f, difc_RCCe_v_csd = signal.csd(right_C, center_C, nperseg=128) f, difc_LCOL_v_csd = signal.csd(left_C, outerL_C, nperseg=128) f, difc_RCOR_v_csd =signal.csd(right_C, outerR_C, nperseg=128) difc_LCCe_csd_0 = [] difc_LCRC_csd_0 = [] difc_RCCe_csd_0 = [] difc_LCOL_csd_0 = [] difc_RCOR_csd_0 = [] difc_LCCe_csd_1 = [] difc_LCRC_csd_1 = [] difc_RCCe_csd_1 = [] difc_LCOL_csd_1 = [] difc_RCOR_csd_1 = [] for i in range(len(difc_LCCe_v_csd)): difc_LCCe_csd_0.append(difc_LCCe_v_csd[i].real) difc_LCCe_csd_1.append(difc_LCCe_v_csd[i].imag) for i in range(len(difc_LCRC_v_csd)): difc_LCRC_csd_0.append(difc_LCRC_v_csd[i].real) difc_LCRC_csd_1.append(difc_LCRC_v_csd[i].imag) for i in range(len(difc_RCCe_v_csd)): difc_RCCe_csd_0.append(difc_RCCe_v_csd[i].real) difc_RCCe_csd_1.append(difc_RCCe_v_csd[i].imag) for i in range(len(difc_LCOL_v_csd)): difc_LCOL_csd_0.append(difc_LCOL_v_csd[i].real) difc_LCOL_csd_1.append(difc_LCOL_v_csd[i].imag) for i in range(len(difc_RCOR_v_csd)): difc_RCOR_csd_0.append(difc_RCOR_v_csd[i].real) difc_RCOR_csd_1.append(difc_RCOR_v_csd[i].imag) csd2_LCCe = [] csd2_LCRC = [] csd2_RCCe = [] for i in range(len(difc_RCCe_csd_0)): csd2_LCCe.append((difc_LCCe_csd_0[i], difc_LCCe_csd_1[i])) csd2_LCRC.append((difc_LCRC_csd_0[i], difc_LCRC_csd_1[i])) csd2_RCCe.append((difc_RCCe_csd_0[i], difc_RCCe_csd_1[i])) # f1 feature t = np.abs(difc_LCCe_v_csd) j = np.argmax(t) max_cLCCe = (difc_LCCe_csd_0[j], difc_LCCe_csd_1[j]) mean_cLCCe = [np.mean(np.asarray(difc_LCCe_csd_0)), np.mean(np.asarray(difc_LCCe_csd_1))] f1LCCe = np.array([max_cLCCe[0], max_cLCCe[1], mean_cLCCe[0], mean_cLCCe[1]]) t = np.abs(difc_LCRC_v_csd) j = np.argmax(t) max_cLCRC = (difc_LCRC_csd_0[j], difc_LCRC_csd_1[j]) mean_cLCRC = [np.mean(np.asarray(difc_LCRC_csd_0)), np.mean(np.asarray(difc_LCRC_csd_1))] f1LCRC = np.array([max_cLCRC[0], max_cLCRC[1], mean_cLCRC[0], mean_cLCRC[1]]) t = np.abs(difc_RCCe_v_csd) j = np.argmax(t) max_cRCCe = (difc_RCCe_csd_0[j], difc_RCCe_csd_1[j]) mean_cRCCe = [np.mean(np.asarray(difc_RCCe_csd_0)), np.mean(np.asarray(difc_RCCe_csd_1))] f1RCCe = np.array([max_cRCCe[0], max_cRCCe[1], mean_cRCCe[0], mean_cRCCe[1]]) t = np.abs(difc_LCOL_v_csd) j = np.argmax(t) max_cLCOL = (difc_LCOL_csd_0[j], difc_LCOL_csd_1[j]) mean_cLCOL = [np.mean(np.asarray(difc_LCOL_csd_0)), np.mean(np.asarray(difc_LCOL_csd_1))] f1LCOL = np.array([max_cLCOL[0], max_cLCOL[1], mean_cLCOL[0], mean_cLCOL[1]]) t = np.abs(difc_RCOR_v_csd) j = np.argmax(t) max_cRCOR = (difc_RCOR_csd_0[j], difc_RCOR_csd_1[j]) mean_cRCOR = [np.mean(np.asarray(difc_RCOR_csd_0)), np.mean(np.asarray(difc_RCOR_csd_1))] f1RCOR = np.array([max_cRCOR[0], max_cRCOR[1], mean_cRCOR[0], mean_cRCOR[1]]) derived_data_mean = np.concatenate([difg_LCRC_mean, difc_LCRC_mean, difg_o1_mean, difc_o1_mean, difg_o2_mean, difc_o2_mean]) derived_data_var = np.concatenate([difg_LCRC_var, difc_LCRC_var, difg_o1_var, difc_o1_var, difg_o2_var, difc_o2_var]) derived_data_std = np.concatenate([difg_LCRC_std, difc_LCRC_std, difg_o1_std, difc_o1_std, difg_o2_std, difc_o2_std]) derived_data_psd = np.concatenate([difc_LCCe_psd, difc_LCRC_psd, difc_RCCe_psd]) derived_data_csd = np.concatenate([difc_LCCe_csd_0, difc_LCCe_csd_1, difc_LCRC_csd_0, difc_LCRC_csd_1, difc_RCCe_csd_0, difc_RCCe_csd_1]) derived_data_rcsd = np.concatenate([difc_LCCe_csd_0, difc_LCRC_csd_0, difc_RCCe_csd_0]) derived_data_f1 = np.concatenate([f1LCCe, f1LCRC, f1RCCe]) derived_data_test = np.concatenate([f1LCCe, f1LCRC, f1RCCe, f1LCOL, f1RCOR, difc_LCRC_std, difc_LCRC_var, difc_LCRC_psd, difc_LCRC_mean]) chrom_data = self.dataset['RC-chrom'].iloc[50] - self.dataset['C-chrom'].iloc[50] if 'fake' in self.full_path.lower(): self.fake_data_LCCE[self.fake_count] = difc_LCCe self.fake_data_LCRC[self.fake_count] = difc_LCRC self.fake_data_RCCE[self.fake_count] = difc_RCCe self.fake_data_mean[self.fake_count] = derived_data_mean self.fake_data_var[self.fake_count] = derived_data_var self.fake_data_std[self.fake_count] = derived_data_std self.fake_data_psd[self.fake_count] = derived_data_psd self.fake_data_csd[self.fake_count] = derived_data_csd self.fake_data_f1[self.fake_count] = derived_data_f1 self.fake_data_test[self.fake_count] = derived_data_test self.fake_count += 1 else: self.real_data_LCCE[self.real_count] = difc_LCCe self.real_data_LCRC[self.real_count] = difc_LCRC self.real_data_RCCE[self.real_count] = difc_RCCe self.real_data_mean[self.real_count] = derived_data_mean self.real_data_var[self.real_count] = derived_data_var self.real_data_std[self.real_count] = derived_data_std self.real_data_psd[self.real_count] = derived_data_psd self.real_data_csd[self.real_count] = derived_data_csd self.real_data_f1[self.real_count] = derived_data_f1 self.real_data_test[self.real_count] = derived_data_test self.real_count += 1 self.vid_count += 1 self.real_df_LCCE = pd.DataFrame(self.real_data_LCCE) self.real_df_LCRC = pd.DataFrame(self.real_data_LCRC) self.real_df_RCCE = pd.DataFrame(self.real_data_RCCE) self.fake_df_LCCE = pd.DataFrame(self.fake_data_LCCE) self.fake_df_LCRC = pd.DataFrame(self.fake_data_LCRC) self.fake_df_RCCE = pd.DataFrame(self.fake_data_RCCE) self.real_df_m = pd.DataFrame(self.real_data_mean) self.fake_df_m = pd.DataFrame(self.fake_data_mean) self.real_df_v = pd.DataFrame(self.real_data_var) self.fake_df_v = pd.DataFrame(self.fake_data_var) self.real_df_s = pd.DataFrame(self.real_data_std) self.fake_df_s =
pd.DataFrame(self.fake_data_std)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Module for model evaluation """ # Built-in from copy import deepcopy from typing import Any, Iterable, List, Tuple # Other from joblib import delayed, Parallel import numpy as np import pandas as pd def rmse(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculates root mean squared error RMSE Args: y_true (np.ndarray): Actual values Y y_pred (np.ndarray): Predicted values Y Returns: [float]: rmse """ error = y_true - y_pred return np.sqrt((error ** 2).mean()) def smape(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculates symmetric mean absolute percentage error SMAPE Args: y_true (np.ndarray): Actual values Y y_pred (np.ndarray): Predicted values Y Returns: [float]: smape """ error = np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred)) return 100 * np.mean(error) def time_series_cross_val_scores( model: Any, X: pd.DataFrame, Y: pd.DataFrame, responses: List[str], k: int = 10, h_list: List[int] = [1, 3, 5, 7, 14, 21], min_train_size: int = 100, n_jobs: int = 1, ) -> dict: """ Calculate cross validation scores for time series by sampling k split points without replacement to split into train/test sets. For each response specified and it will calculate the 1 step cross val forecast error, 5 step cross val forecast error, etc... based on h_list values. Args: model (Any): Model class with fit and forecast methods. Forecasts should include columns with name response_pred. X (pd.DataFrame): Dataframe of predictors Y (pd.DataFrame): Dataframe of responses responses (List[str]): List of responses which should be included as column in Y and as columns of model.forecast(X) as response_pred k (int, optional): Number of cross validation splits to perform. Defaults to 10. h_list (List[str], optional): List of h step forecasts to calculate cross validation error. Defaults to [1, 3, 5, 7, 14, 21]. min_train_size (int, optional): Minimum size of a training set. Defaults to 50. n_jobs (int, optional): Number of jobs to run in parallel, -1 for all processors. Defaults to 1. Returns: dict: Dictionary of with keys 'all' for all cross validation results and 'summarised' for the summarised rmse results per h and response. """ n = X.shape[0] max_h = max(h_list) end = n - max_h # Sample split points without replacement from the bounds (min_train_size, total points - maximum h forecast) split_values = np.arange(start=min_train_size, stop=end + 1) split_points = np.random.choice(split_values, size=k, replace=False) # Run model for each split point and get scores parallel = Parallel(n_jobs=n_jobs) results = parallel( delayed(fit_and_score)( model, X, Y, split_point=split_point, responses=responses, h_list=h_list, ) for split_point in split_points ) cv_scores_all = pd.concat(results) # Aggregate to get rmse and smape grouped by h and response cv_scores_groupby = cv_scores_all.groupby(by=["h", "response"]) rmse_scores = ( cv_scores_groupby.apply(lambda x: rmse(x["actual"], x["forecast"])) .to_frame("rmse") .reset_index() ) smape_scores = ( cv_scores_groupby.apply(lambda x: smape(x["actual"], x["forecast"])) .to_frame("smape") .reset_index() ) cv_scores_summarised = pd.merge(rmse_scores, smape_scores) cv_scores = {"all": cv_scores_all, "summarised": cv_scores_summarised} return cv_scores def fit_and_score( model: Any, X: pd.DataFrame, Y: pd.DataFrame, split_point: int, responses: List[str], h_list: List[int] = [1, 3, 5, 7, 14, 21], ) -> pd.DataFrame: """ Split data into train/test sets using the split_point and then fits the model on the training and calculates scores on the test set. Args: model (Any): Model class with fit and forecast methods. Forecasts should include columns with name response_pred. X (pd.DataFrame): Dataframe of predictors Y (pd.DataFrame): Dataframe of responses split_point (int): Split point to separate train and test sets responses (List[str]): List of responses which should be included as column in Y and as columns of model.forecast(X) as response_pred h_list (List[str], optional): List of h step forecasts to calculate cross validation error. Defaults to [1, 3, 5, 7, 14, 21]. Returns: [pd.DataFrame]: Dataframe containing the result scores for the model """ max_h = max(h_list) model = deepcopy(model) # Split into train/test sets X_train, Y_train = X.iloc[:split_point], Y.iloc[:split_point] Y_test = Y.iloc[split_point : (split_point + max_h)] model.fit(X_train, Y_train) # Get forecasts for last max_h values forecasts = model.forecast(h=max_h) forecasts = forecasts.iloc[-max_h:] # Get result for each h forecast and response cv_scores = [] for h in h_list: for response in responses: forecast = forecasts.iloc[h - 1][response + "_pred"] actual = Y_test.iloc[h - 1][response] error = forecast - actual cv_scores.append( { "split_point": split_point, "h": h, "response": response, "forecast": forecast, "actual": actual, "error": error, } ) cv_scores =
pd.DataFrame(cv_scores)
pandas.DataFrame
############################### LightBGM Voting ####################################### import numpy as np import pandas as pd import logging #from sklearn.externals import joblib import joblib np.warnings.filterwarnings('ignore') from sklearn.model_selection import KFold from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve,auc from sklearn.preprocessing import OneHotEncoder from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s" DATE_FORMAT = "%m/%d/%Y %H:%M:%S %p" logging.basicConfig(filename='train.log', level=logging.INFO, format=LOG_FORMAT, datefmt=DATE_FORMAT) # load data set train_df = pd.read_csv('./train_set.csv', sep='\t') test_df =
pd.read_csv('./test_a.csv', sep='\t', nrows=None)
pandas.read_csv
# -*- coding: utf-8 -*- import chainer # v0.7.0 で動作確認 import chainerrl from chainerrl import replay_buffer from chainerrl import experiments from chainerrl import links from chainerrl import explorers from chainerrl.q_functions import DistributionalDuelingDQN import gym import random import cv2 import datetime as dt import plotly import plotly.graph_objs as go import plotly.io as pio import pandas as pd import numpy as np import sqlite3 as lite import pandas.io.sql as psql from sklearn.model_selection import train_test_split import logging import sys import os logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='') # from chainerrl_visualizer import launch_visualizer plotly.io.orca.ensure_server() # gym の atri の画像サイズ RAW_IMAGE_HEIGHT = 210 RAW_IMAGE_WIDTH = 160 # ChainerRL標準のサイズ OBSERVATION_IMAGE_HEIGHT = 84 OBSERVATION_IMAGE_WIDTH = 84 MAX_TIME = 45 IMAGE_TIME_STEPS = 45 TEST_STEP = 500 STEPS = 30000 PER_FRAME = 4 # gymの仕様の4フレームを環境にする GPU_DEVICE = -1 # 利用しない場合は -1 WRITE_OBSERVATION_IMAGE = True WRITE_RAW_IMAGE = True cols = ['date', 'open', 'high', 'low', 'close', 'volume'] trade_cols = ['buy_sell', 'open_price', 'close_price', 'reward', 'holding_count'] episode_cols = ['time', 'train_profit', 'train_win_rate', 'test_profit', 'test_win_rate'] class Position: def __init__(self, buy_sell, open_price): # 買いか売りか self.buy_sell = buy_sell # 取得価格 self.open_price = open_price # 目標価格 self.target_price = self._target_price() # ロスカット価格 self.loss_cut_price = self._loss_cut_price() # 決済価格 self.close_price = None self.reward = None self.holding_times = 0 def cal_reward(self, close_price): self.close_price = close_price if (self.buy_sell == 'Buy'): diff = self.close_price - self.target_price if (self.buy_sell == 'Sell'): diff = self.target_price - self.close_price if (diff > 0): self.reward = 1 else: self.reward = -1 def count_up(self): self.holding_times += 1 def to_pd(self): return pd.DataFrame( [[ self.buy_sell, self.open_price, self.close_price, self.reward, self.holding_times ]], columns=trade_cols) def _target_price(self): # BitMEXのスプレッドが0.5ドルで固定 # 手数料はTaker手数料 0.075% Maker手数料 0.05% # 目標は 0.1% if (self.buy_sell == 'Buy'): return self.open_price * 1.001 if (self.buy_sell == 'Sell'): return self.open_price * 0.999 def _loss_cut_price(self): # 0.2% 分予想から外れたらロスカット if (self.buy_sell == 'Buy'): return self.open_price * 0.998 if (self.buy_sell == 'Sell'): return self.open_price * 1.002 def is_over_loss(self, price): if (self.buy_sell == 'Buy'): return self.loss_cut_price > price if (self.buy_sell == 'Sell'): return self.loss_cut_price < price class Trade(gym.core.Env): def __init__(self, df, test=False): self.test = test self.df = df.reset_index(drop=True) self.df_row = len(self.df) self.position = None self.start_time = self._start_time() self.time = 0 self.before_action = None self.consecutive_times = 0 # 0: buy, 1: sell, 2: close, 3: wait self.action_space = gym.spaces.Discrete(4) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(OBSERVATION_IMAGE_HEIGHT, OBSERVATION_IMAGE_WIDTH), dtype=np.uint8) if (self.test): # テスト時には取引を記録してCSVで出力する self.trades_df = pd.DataFrame([], columns=trade_cols) def step(self, action): reward = 0 done = False current_price = self.current_df().iloc[-1]['close'] if (action == self.before_action): self.consecutive_times += 1 else: self.consecutive_times = 0 if (self.position is None): if (action == 0): self.position = Position('Buy', current_price) if (action == 1): self.position = Position('Sell', current_price) if (self.position is not None): self.position.count_up() if (action == 2): self.position.cal_reward(current_price) reward += self.position.reward if (self.test): self.trades_df = self.trades_df.append( self.position.to_pd(), ignore_index=True ) else: done = True self.position = None if (reward > 0): print('win:', self.time) else: print('lose:', self.time) else: if (self.position.is_over_loss(current_price)): reward += -2 if (not self.test): done = True self.position = None print('loss cut:', self.time) observation = self._observation() info = {} self.time += 1 if (self.test): if (self.time == TEST_STEP): done = True self.trades_df.to_csv( 'csv/trades' + dt.datetime.now().strftime("%Y%m%d%H%M%S") + '.csv') self.trades_df =
pd.DataFrame([], columns=trade_cols)
pandas.DataFrame
from functools import reduce import re import numpy as np import pandas as pd from avaml import _NONE from avaml.aggregatedata.__init__ import DatasetMissingLabel from avaml.score.overlap import calc_overlap __author__ = 'arwi' VECTOR_WETNESS_LOOSE = { _NONE: (0, 0), "new-loose": (0, 1), "wet-loose": (1, 1), "new-slab": (0, 0.4), "drift-slab": (0, 0.2), "pwl-slab": (0, 0), "wet-slab": (1, 0), "glide": (0.8, 0), } VECTOR_FREQ = { "dsize": { _NONE: 0, '0': 0, '1': 0.2, '2': 0.4, '3': 0.6, '4': 0.8, '5': 1, }, "dist": { _NONE: 0, '0': 0, '1': 0.25, '2': 0.5, '3': 0.75, '4': 1, }, "trig": { _NONE: 0, '0': 0, '10': 1 / 3, '21': 2 / 3, '22': 1, }, "prob": { _NONE: 0, '0': 0, '2': 1 / 3, '3': 2 / 3, '5': 1, }, } class Score: def __init__(self, labeled_data): def to_vec(df): level_2 = ["wet", "loose", "freq", "lev_max", "lev_min", "lev_fill", "aspect"] columns =
pd.MultiIndex.from_product([["global"], ["danger_level", "emergency_warning"]])
pandas.MultiIndex.from_product
# -*- coding:utf-8 -*- import pandas as pd import math import csv import random import numpy as np from sklearn.model_selection import cross_val_score from sklearn.linear_model import LogisticRegression base_elo = 1600 team_elos = {} team_stats = {} X = [] y = [] folder = 'data' # calculate elo values for each team def calc_elo(win_team, lose_team): winner_rank = get_elo(win_team) loser_rank = get_elo(lose_team) rank_diff = winner_rank - loser_rank exp = (rank_diff * -1) / 400 odds = 1 / (1 + math.pow(10, exp)) # modify K value according to rank level if winner_rank < 2100: k = 32 elif winner_rank >= 2100 and winner_rank < 2400: k = 24 else: k = 16 new_winner_rank = round(winner_rank + (k * (1 - odds))) new_rank_diff = new_winner_rank - winner_rank new_loser_rank = loser_rank - new_rank_diff return new_winner_rank, new_loser_rank # Initialize team stats data file according to Miscellaneous Opponent of each team def initialize_data(Mstat, Ostat, Tstat): new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1) new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1) new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1) team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team') team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team') print (team_stats1.info()) return team_stats1.set_index('Team', inplace=False, drop=True) def get_elo(team): try: return team_elos[team] except: # give team a base_elo if that team does not have an elo team_elos[team] = base_elo return team_elos[team] def build_dataSet(all_data): print("Building data set..") for index, row in all_data.iterrows(): Wteam = row['WTeam'] Lteam = row['LTeam'] # get initial elo or each team's initail elo value team1_elo = get_elo(Wteam) team2_elo = get_elo(Lteam) # add 100 elo to home team if row['WLoc'] == 'H': team1_elo += 100 else: team2_elo += 100 # use elo as a feature value to evaluate a team team1_features = [team1_elo] team2_features = [team2_elo] # add stats we got from website for each team for key, value in team_stats.loc[Wteam].iteritems(): team1_features.append(value) for key, value in team_stats.loc[Lteam].iteritems(): team2_features.append(value) # distribute two team's feature value to two sides randomly # accordingly give 0/1 to y if random.random() > 0.5: X.append(team1_features + team2_features) y.append(0) else: X.append(team2_features + team1_features) y.append(1) # update elo value according to match result new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam) team_elos[Wteam] = new_winner_rank team_elos[Lteam] = new_loser_rank return np.nan_to_num(X), np.array(y) def predict_winner(team_1, team_2, model): features = [] # team 1,away features.append(get_elo(team_1)) for key, value in team_stats.loc[team_1].iteritems(): features.append(value) # team 2,home features.append(get_elo(team_2) + 100) for key, value in team_stats.loc[team_2].iteritems(): features.append(value) features = np.nan_to_num(features) return model.predict_proba([features]) if __name__ == '__main__': Mstat =
pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv')
pandas.read_csv
## Basketball Reference Game Log Scraping #################################################################################### # Georgia Tech: Daily Fantasy Sports Project # authors: <NAME> & <NAME> #### Process Outline ######################################################################################################### # Import historical results # Import archives (so entire process doesn't have to re-run) # Filter game-logs to day before contest # Run prediction/optimization for top 10 line-ups (and save). # Find player results within game-logs and calculate total line-up score # if a player has < 10 (? 5?) points, add to "players to remove" lsiting, re-run optimization and resave top-10 line-ups # Produce DF that stores each line-up, its result, entry cost, win/lose cash, percentile and rough estimate from percentile --> $ won # Produce report on total $ won/lost, ROI # (maybe run some cross-validation to see right # of line-ups to use nightly? see if we can start filtering the data for predictions from full season --> last x games and cross-validate?) ############################################################################################################################## ##### Questions ###### ## TO DOs ## # run on everyone # test / confirm # ##### Notes ###### # complete run time: ~ 4 minutes per day of results ############################################################################################################################## # Package Import # import numpy as np import pandas as pd from time_analysis import analysis_timeSeries # to delete in init from optimization import DFS_Optimization # to delete in init from datetime import date, datetime from dateutil import rrule # Functions # def import_hist_results(path): dt = pd.read_csv(path) dt.Date = pd.to_datetime(dt.Date) return dt def identify_new_dates(hist_dt, imported_final_dt): result_dates = hist_dt.Date.dt.date.drop_duplicates().tolist() analysis_dates = imported_final_dt.Date.dt.date.drop_duplicates().tolist() filter_dates = list(set(result_dates) - set(analysis_dates)) filter_dates.sort() filter_dates = [date.strftime('%Y-%m-%d') for date in filter_dates] return filter_dates def prep_historic_data_opt(fd_hist_plyr_results, filt_date): fd_hist_plyr_results = fd_hist_plyr_results[(fd_hist_plyr_results.Date == filt_date)] fd_hist_plyr_results = fd_hist_plyr_results[(fd_hist_plyr_results['FD Points'] >= 10)] fd_hist_slrs = fd_hist_plyr_results[['Position','Player Name','Salary']].copy() fd_hist_slrs = fd_hist_slrs.rename(columns={'Player Name': 'Nickname'}).reset_index(drop=True) fd_hist_slrs = fd_hist_slrs.sort_values('Salary', ascending=False) return fd_hist_plyr_results, fd_hist_slrs def merge_optim_histPlayer(pred_df, fd_hist_results): rslts_df = pd.merge(pred_df, fd_hist_results, left_on=['Date','Player'], right_on=['Date','Player Name'], how='inner') rslts_df = rslts_df.groupby(['Optimization_No','Date','Predicted_Score'])['FD Points'].agg(FD_Points='sum',Player_Count='count').reset_index() rslts_df = rslts_df[['Optimization_No','Date','Predicted_Score','FD_Points','Player_Count']] rslts_df.Date = pd.to_datetime(rslts_df.Date) return rslts_df def merge_model_contest(rslts_df, hst_rslts): rslts_df = pd.merge(rslts_df, hst_rslts, left_on=['Date'], right_on=['Date'], how='inner') rslts_df['Cash'] = np.where(rslts_df['FD_Points'] > rslts_df['Min Cash Score'],'Y','N') rslts_df['Percentile'] = (rslts_df['FD_Points'] - rslts_df['Min Cash Score']) / (rslts_df['1st Place Score'] - rslts_df['Min Cash Score']) rslts_df = rslts_df[['Optimization_No','Date','Predicted_Score','Cost','Player_Count','FD_Points','Cash','Percentile']] return rslts_df def percentile_conversion(rslts_df, prcnt_conv_dict): conversion_df = pd.DataFrame.from_dict(prcnt_conv_dict, orient='index').reset_index() conversion_df.columns = ['Percentile','multiplier'] rslts_df = rslts_df.sort_values('Percentile') conversion_df = conversion_df.sort_values('Percentile') rslts_df =
pd.merge_asof(rslts_df, conversion_df, on='Percentile', direction='nearest')
pandas.merge_asof
""" This file contains several helper functions to calculate spectral power from 1D and 2D EEG data. """ import mne import logging import numpy as np import pandas as pd from scipy import signal from scipy.integrate import simps from scipy.interpolate import RectBivariateSpline logger = logging.getLogger('yasa') __all__ = ['bandpower', 'bandpower_from_psd', 'bandpower_from_psd_ndarray', 'irasa', 'stft_power'] def bandpower(data, sf=None, ch_names=None, hypno=None, include=(2, 3), win_sec=4, relative=True, bandpass=False, bands=[(0.5, 4, 'Delta'), (4, 8, 'Theta'), (8, 12, 'Alpha'), (12, 16, 'Sigma'), (16, 30, 'Beta'), (30, 40, 'Gamma')], kwargs_welch=dict(average='median', window='hamming')): """ Calculate the Welch bandpower for each channel and, if specified, for each sleep stage. .. versionadded:: 0.1.6 Parameters ---------- data : np.array_like or :py:class:`mne.io.BaseRaw` 1D or 2D EEG data. Can also be a :py:class:`mne.io.BaseRaw`, in which case ``data``, ``sf``, and ``ch_names`` will be automatically extracted, and ``data`` will also be converted from Volts (MNE default) to micro-Volts (YASA). sf : float The sampling frequency of data AND the hypnogram. Can be omitted if ``data`` is a :py:class:`mne.io.BaseRaw`. ch_names : list List of channel names, e.g. ['Cz', 'F3', 'F4', ...]. If None, channels will be labelled ['CHAN000', 'CHAN001', ...]. Can be omitted if ``data`` is a :py:class:`mne.io.BaseRaw`. hypno : array_like Sleep stage (hypnogram). If the hypnogram is loaded, the bandpower will be extracted for each sleep stage defined in ``include``. The hypnogram must have the exact same number of samples as ``data``. To upsample your hypnogram, please refer to :py:func:`yasa.hypno_upsample_to_data`. .. note:: The default hypnogram format in YASA is a 1D integer vector where: - -2 = Unscored - -1 = Artefact / Movement - 0 = Wake - 1 = N1 sleep - 2 = N2 sleep - 3 = N3 sleep - 4 = REM sleep include : tuple, list or int Values in ``hypno`` that will be included in the mask. The default is (2, 3), meaning that the bandpower are sequentially calculated for N2 and N3 sleep. This has no effect when ``hypno`` is None. win_sec : int or float The length of the sliding window, in seconds, used for the Welch PSD calculation. Ideally, this should be at least two times the inverse of the lower frequency of interest (e.g. for a lower frequency of interest of 0.5 Hz, the window length should be at least 2 * 1 / 0.5 = 4 seconds). relative : boolean If True, bandpower is divided by the total power between the min and max frequencies defined in ``band``. bandpass : boolean If True, apply a standard FIR bandpass filter using the minimum and maximum frequencies in ``bands``. Fore more details, refer to :py:func:`mne.filter.filter_data`. bands : list of tuples List of frequency bands of interests. Each tuple must contain the lower and upper frequencies, as well as the band name (e.g. (0.5, 4, 'Delta')). kwargs_welch : dict Optional keywords arguments that are passed to the :py:func:`scipy.signal.welch` function. Returns ------- bandpowers : :py:class:`pandas.DataFrame` Bandpower dataframe, in which each row is a channel and each column a spectral band. Notes ----- For an example of how to use this function, please refer to https://github.com/raphaelvallat/yasa/blob/master/notebooks/08_bandpower.ipynb """ # Type checks assert isinstance(bands, list), 'bands must be a list of tuple(s)' assert isinstance(relative, bool), 'relative must be a boolean' assert isinstance(bandpass, bool), 'bandpass must be a boolean' # Check if input data is a MNE Raw object if isinstance(data, mne.io.BaseRaw): sf = data.info['sfreq'] # Extract sampling frequency ch_names = data.ch_names # Extract channel names data = data.get_data() * 1e6 # Convert from V to uV _, npts = data.shape else: # Safety checks assert isinstance(data, np.ndarray), 'Data must be a numpy array.' data = np.atleast_2d(data) assert data.ndim == 2, 'Data must be of shape (nchan, n_samples).' nchan, npts = data.shape # assert nchan < npts, 'Data must be of shape (nchan, n_samples).' assert sf is not None, 'sf must be specified if passing a numpy array.' assert isinstance(sf, (int, float)) if ch_names is None: ch_names = ['CHAN' + str(i).zfill(3) for i in range(nchan)] else: ch_names = np.atleast_1d(np.asarray(ch_names, dtype=str)) assert ch_names.ndim == 1, 'ch_names must be 1D.' assert len(ch_names) == nchan, 'ch_names must match data.shape[0].' if bandpass: # Apply FIR bandpass filter all_freqs = np.hstack([[b[0], b[1]] for b in bands]) fmin, fmax = min(all_freqs), max(all_freqs) data = mne.filter.filter_data(data.astype('float64'), sf, fmin, fmax, verbose=0) win = int(win_sec * sf) # nperseg if hypno is None: # Calculate the PSD over the whole data freqs, psd = signal.welch(data, sf, nperseg=win, **kwargs_welch) return bandpower_from_psd(psd, freqs, ch_names, bands=bands, relative=relative).set_index('Chan') else: # Per each sleep stage defined in ``include``. hypno = np.asarray(hypno) assert include is not None, 'include cannot be None if hypno is given' include = np.atleast_1d(np.asarray(include)) assert hypno.ndim == 1, 'Hypno must be a 1D array.' assert hypno.size == npts, 'Hypno must have same size as data.shape[1]' assert include.size >= 1, '`include` must have at least one element.' assert hypno.dtype.kind == include.dtype.kind, ('hypno and include ' 'must have same dtype') assert np.in1d(hypno, include).any(), ('None of the stages ' 'specified in `include` ' 'are present in hypno.') # Initialize empty dataframe and loop over stages df_bp = pd.DataFrame([]) for stage in include: if stage not in hypno: continue data_stage = data[:, hypno == stage] freqs, psd = signal.welch(data_stage, sf, nperseg=win, **kwargs_welch) bp_stage = bandpower_from_psd(psd, freqs, ch_names, bands=bands, relative=relative) bp_stage['Stage'] = stage df_bp = df_bp.append(bp_stage) return df_bp.set_index(['Stage', 'Chan']) def bandpower_from_psd(psd, freqs, ch_names=None, bands=[(0.5, 4, 'Delta'), (4, 8, 'Theta'), (8, 12, 'Alpha'), (12, 16, 'Sigma'), (16, 30, 'Beta'), (30, 40, 'Gamma')], relative=True): """Compute the average power of the EEG in specified frequency band(s) given a pre-computed PSD. .. versionadded:: 0.1.5 Parameters ---------- psd : array_like Power spectral density of data, in uV^2/Hz. Must be of shape (n_channels, n_freqs). See :py:func:`scipy.signal.welch` for more details. freqs : array_like Array of frequencies. ch_names : list List of channel names, e.g. ['Cz', 'F3', 'F4', ...]. If None, channels will be labelled ['CHAN000', 'CHAN001', ...]. bands : list of tuples List of frequency bands of interests. Each tuple must contain the lower and upper frequencies, as well as the band name (e.g. (0.5, 4, 'Delta')). relative : boolean If True, bandpower is divided by the total power between the min and max frequencies defined in ``band`` (default 0.5 to 40 Hz). Returns ------- bandpowers : :py:class:`pandas.DataFrame` Bandpower dataframe, in which each row is a channel and each column a spectral band. """ # Type checks assert isinstance(bands, list), 'bands must be a list of tuple(s)' assert isinstance(relative, bool), 'relative must be a boolean' # Safety checks freqs = np.asarray(freqs) assert freqs.ndim == 1 psd = np.atleast_2d(psd) assert psd.ndim == 2, 'PSD must be of shape (n_channels, n_freqs).' all_freqs = np.hstack([[b[0], b[1]] for b in bands]) fmin, fmax = min(all_freqs), max(all_freqs) idx_good_freq = np.logical_and(freqs >= fmin, freqs <= fmax) freqs = freqs[idx_good_freq] res = freqs[1] - freqs[0] nchan = psd.shape[0] assert nchan < psd.shape[1], 'PSD must be of shape (n_channels, n_freqs).' if ch_names is not None: ch_names = np.atleast_1d(np.asarray(ch_names, dtype=str)) assert ch_names.ndim == 1, 'ch_names must be 1D.' assert len(ch_names) == nchan, 'ch_names must match psd.shape[0].' else: ch_names = ['CHAN' + str(i).zfill(3) for i in range(nchan)] bp = np.zeros((nchan, len(bands)), dtype=np.float) psd = psd[:, idx_good_freq] total_power = simps(psd, dx=res) total_power = total_power[..., np.newaxis] # Check if there are negative values in PSD if (psd < 0).any(): msg = ( "There are negative values in PSD. This will result in incorrect " "bandpower values. We highly recommend working with an " "all-positive PSD. For more details, please refer to: " "https://github.com/raphaelvallat/yasa/issues/29") logger.warning(msg) # Enumerate over the frequency bands labels = [] for i, band in enumerate(bands): b0, b1, la = band labels.append(la) idx_band = np.logical_and(freqs >= b0, freqs <= b1) bp[:, i] = simps(psd[:, idx_band], dx=res) if relative: bp /= total_power # Convert to DataFrame bp =
pd.DataFrame(bp, columns=labels)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- import os import re import ipaddress import codecs import time import pandas as pd import urllib3 from urllib3 import util from classifier4gyoithon.GyoiClassifier import DeepClassifier from classifier4gyoithon.GyoiExploit import Metasploit from classifier4gyoithon.GyoiReport import CreateReport from util import Utilty # Type of printing. OK = 'ok' # [*] NOTE = 'note' # [+] FAIL = 'fail' # [-] WARNING = 'warn' # [!] NONE = 'none' # No label. # Identify product name using signature. def identify_product(categoy, target_url, response, utility): product_list = [] reason_list = [] full_path = os.path.dirname(os.path.abspath(__file__)) file_name = 'signature_' + categoy + '.txt' try: with codecs.open(os.path.join(full_path + '/signatures/', file_name), 'r', 'utf-8') as fin: matching_patterns = fin.readlines() for pattern in matching_patterns: items = pattern.replace('\r', '').replace('\n', '').split('@') keyword_list = [] product = items[0] signature = items[1] list_match = re.findall(signature, response, flags=re.IGNORECASE) if len(list_match) != 0: # Output result (header) keyword_list.append(list_match) utility.print_message(OK, 'category : {}'.format(categoy)) utility.print_message(OK, 'product : {}'.format(product)) utility.print_message(OK, 'reason : {}'.format(keyword_list)) utility.print_message(OK, 'target url : {}'.format(target_url)) utility.print_message(NONE, '-' * 42) product_list.append(product) reason_list.append(keyword_list) except Exception as err: utility.print_exception(err, '{}'.format(err)) return product_list, reason_list # Classifier product name using signatures. def classifier_signature(ip_addr, port, target_url, response, log_file, utility): utility.print_message(NOTE, 'Analyzing gathered HTTP response using Signature.') ip_list = [] port_list = [] vhost_list = [] judge_list = [] version_list = [] reason_list = [] scan_type_list = [] ua_list = [] http_ver_list = [] ssl_list = [] sni_list = [] url_list = [] log_list = [] product_list = [] for category in ['os', 'web', 'framework', 'cms']: products, keywords = identify_product(category, target_url, response, utility) for product, keyword in zip(products, keywords): ip_list.append(ip_addr) port_list.append(port) vhost_list.append(ip_addr) judge_list.append(category + ':' + str(product)) version_list.append('-') reason_list.append(keyword) scan_type_list.append('[ip]') ua_list.append('-') http_ver_list.append('HTTP/1.1') ssl_list.append('-') sni_list.append('-') url_list.append(target_url) log_list.append(log_file) product_list.append(product) if len(product_list) == 0: utility.print_message(WARNING, 'Product Not Found.') return [] # logging. series_ip = pd.Series(ip_list) series_port = pd.Series(port_list) series_vhost = pd.Series(vhost_list) series_judge = pd.Series(judge_list) series_version = pd.Series(version_list) series_reason = pd.Series(reason_list) series_scan_type = pd.Series(scan_type_list) series_ua = pd.Series(ua_list) series_http_ver = pd.Series(http_ver_list) series_ssl = pd.Series(ssl_list) series_sni = pd.Series(sni_list) series_url = pd.Series(url_list) series_log = pd.Series(log_list) df = pd.DataFrame({'ip': series_ip, 'port': series_port, 'vhost': series_vhost, 'judge': series_judge, 'judge_version': series_version, 'reason': series_reason, 'scantype': series_scan_type, 'ua': series_ua, 'version': series_http_ver, 'ssl': series_ssl, 'sni': series_sni, 'url': series_url, 'log': series_log}, columns=['ip', 'port', 'vhost', 'judge', 'judge_version', 'reason', 'scantype', 'ua', 'version', 'ssl', 'sni', 'url', 'log']) saved_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'gyoithon') df.sort_values(by='port', ascending=False).to_csv(os.path.join(saved_path, 'webconf.csv'), mode='a', header=False, index=False) return product_list # Create webconf.csv def create_webconf(ip_addr, port, log_file): utility.print_message(NOTE, 'Create "webconf.csv".') series_ip = pd.Series([ip_addr]) series_port = pd.Series([str(port)]) series_vhost = pd.Series([ip_addr]) series_judge = pd.Series(['-']) series_version =
pd.Series(['-'])
pandas.Series
"""Store the data in a nice big dataframe""" import sys from datetime import datetime, timedelta import pandas as pd import geopandas as gpd import numpy as np class Combine: """Combine defined countries together""" THE_EU = [ 'Austria', 'Italy', 'Belgium', 'Latvia', 'Bulgaria', 'Lithuania', 'Croatia', 'Luxembourg', 'Cyprus', 'Malta', 'Czechia', 'Netherlands', 'Denmark', 'Poland', 'Estonia', 'Portugal', 'Finland', 'Romania', 'France', 'Slovakia', 'Germany', 'Slovenia', 'Greece', 'Spain', 'Hungary', 'Sweden', 'Ireland' ] def __init__(self, options): """Init""" self.options = options self.timeseries = [] self.countries = None self.description = None self.merged = None self.cc = None self.populations = [] self.national_populations = None self.get_populations() self.countries_long = {'nl': 'The Netherlands', 'sco': 'Scotland', 'eng': 'England', 'wal': 'Wales', 'ni': 'Northern Ireland'} self.jhu = JHU(self) def judat(self): """Dumb helper for another library""" self.timeseries.append(NLTimeseries(False).national(False)) self.combine_national(False) #self.merged['Week'] = self.merged.index.strftime('%U') #self.merged = self.merged.groupby(['Week']) \ #.agg({'Aantal': 'sum'}) print(self.merged) def process(self): """Do it""" cumulative = False if self.options.pivot: cumulative = True for nation in self.cc: usejhu = True if self.options.nation: print(f'Processing National data {nation}') if nation in ['wal', 'sco', 'eng']: self.timeseries.append(UKTimeseries(False).national(nation,cumulative)) usejhu = False #if nation == 'nl': #self.timeseries.append(NLTimeseries(False).national(cumulative)) #usejhu = False if usejhu: self.timeseries.append(XXTimeseries(False, {nation: self.countries_long[nation]}).national(cumulative)) else: print(f'Processing combined data {nation}') if nation in ['wal', 'sco', 'eng']: self.timeseries.append(UKTimeseries(True).get_data()) usejhu = False if nation == 'nl': self.timeseries.append(NLTimeseries(True).get_data()) usejhu = False if usejhu: self.timeseries.append(XXTimeseries(True).get_data()) if len(self.timeseries) == 0: print('No country Data to process') sys.exit() if self.options.pivot: self.combine_pivot() return if self.options.nation: self.combine_national() return self.get_combined_data() def combine_pivot(self): """Pivot data for pandas_alive""" print('Pivotting data') self.merged = pd.concat(self.timeseries) self.merged['Datum'] = pd.to_datetime(self.merged['Datum']) # So we can add it as an option later column = 'Overleden' #column = 'Aantal' # Convert to 100K instead of millions for country in self.cc: self.merged.loc[(self.merged.country == country), 'population'] \ = self.national_populations[country] * 10 # Per-Capita self.merged[column] = self.merged[column] / self.merged['population'] self.merged = self.merged.pivot(index='Datum', columns='country', values=column).fillna(0) self.trim_data() print(self.merged) def combine_national(self, trim=True): """Combine national totals""" self.merged = pd.concat(self.timeseries) self.merged['Datum'] = pd.to_datetime(self.merged['Datum']) self.merged = self.merged.set_index('Datum') self.merged.sort_index(inplace=True) for country in self.cc: self.merged.loc[(self.merged.country == country), 'population'] \ = self.national_populations[country] * 10 self.merged.loc[(self.merged.country == country), 'cname'] \ = self.countries_long[country] for column in ['Aantal', 'Ziekenhuisopname', 'Overleden']: if column not in self.merged.columns: continue pgpd = f"{column}-gpd" radaily = f"{column}-radaily" raweekly = f"{column}-raweekly" ranonpc = f"{column}-ranonpc" self.merged[pgpd] = self.merged[column] / self.merged['population'] self.merged[radaily] = self.merged.groupby('country', sort=False)[pgpd] \ .transform(lambda x: x.rolling(7, 1).mean()) self.merged[raweekly] = self.merged.groupby('country', sort=False)[pgpd] \ .transform(lambda x: x.rolling(7).sum()) self.merged[ranonpc] = self.merged.groupby('country', sort=False)[column] \ .transform(lambda x: x.rolling(7).sum()) if(trim): self.trim_data() def trim_data(self): if self.options.startdate is not None: self.merged = self.merged.query(f'{self.options.startdate} <= Datum') if self.options.enddate is not None: self.merged = self.merged.query(f'Datum <= {self.options.enddate}') def get(self): """Return the data set""" return self.merged def get_populations(self): """National populations for the calculations that need it""" self.national_populations = pd.read_csv('data/populations.csv', delimiter=',', index_col=0, header=None, squeeze=True).to_dict() def get_max(self, column): """Max value in df""" return self.merged[column].max() def get_combined_data(self): """Get a single dataframe containing all countries we deal with I did this so I could draw combined chorpleths but that has Proven to be somewhat more challenging than I originally thought """ print('Calculating combined data') dataframe = pd.concat(self.timeseries) dataframe = dataframe.set_index('Datum') dataframe = dataframe.sort_index() dataframe['pop_pc'] = dataframe['population'] / 1e5 # Filter out countries we do not want for country in self.countries: dataframe = dataframe[~dataframe['country'].isin([country])] # Finally create smoothed columns dataframe['radaily'] = dataframe.groupby('Gemeentecode', sort=False)['Aantal'] \ .transform(lambda x: x.rolling(7, 1).mean()) dataframe['weekly'] = dataframe.groupby('Gemeentecode', sort=False)['Aantal'] \ .transform(lambda x: x.rolling(7).sum()) dataframe['radaily_pc'] = dataframe['radaily'] / dataframe['pop_pc'] dataframe['weekly_pc'] = dataframe['weekly'] / dataframe['pop_pc'] if self.options.startdate is not None: dataframe = dataframe.query(f'{self.options.startdate} <= Datum') if self.options.enddate is not None: dataframe = dataframe.query(f'Datum <= {self.options.enddate}') print('Finished calculating combined data') self.merged = dataframe def parse_countries(self, country_str): """Sort out country data""" ret = [] if country_str is None: country_list = self.countries_long.keys() else: country_list = country_str.split(',') if 'eu' in country_list: country_list.remove('eu') country_list += self.THE_EU print('Setting EU') for country in country_list: country = country.lower() count = None #if 'nether' in country: #count = 'nl' if 'scot' in country: count = 'sco' if 'eng' in country: count = 'eng' if 'wal' in country: count = 'wal' #if 'ni' in country: # count = 'ni' if count is not None: ret.append(count) else: retcountry = self.jhu.get_country(country) if retcountry: ret.append(retcountry) self.cc = ret self.countries = list(set(self.countries_long.keys()) - set(ret)) self.description = '_'.join(ret) def project_for_date(self, date): """Project infections per Gemeente and make league table""" if date is None: date = self.merged.index.max().strftime('%Y%m%d') datemax = datetime.datetime.strptime(date, '%Y%m%d') datemin = (datemax - timedelta(days=4)).strftime('%Y%m%d') self.merged = self.merged.query(f'{datemin} <= Datum <= {date}') self.merged = self.merged.groupby(['Gemeentecode']) \ .agg({'Aantal': 'sum', 'Gemeentenaam': 'first', 'pop_pc': 'first', 'population': 'first', 'country': 'first'}) self.merged['percapita'] = self.merged['Aantal'] / self.merged['pop_pc'] self.merged.sort_values(by=['percapita'], ascending=False, inplace=True) class Timeseries: """Abstract class for timeseries""" def __init__(self, process=True): self.merged = None self.cumulative = False if process: self.get_pop() self.get_map() self.get_source_data() def get_data(self): """Pass back the data series""" return self.merged def get_source_data(self): """Placeholder""" def get_pop(self): """Placeholder""" def get_map(self): """Placeholder""" def set_cumulative(self, value): """Daily or cumulative""" self.cumulative = value class JHU: """Get data from <NAME>""" JHD = '../COVID-19/csse_covid_19_data' def __init__(self, combined): """Init""" self.dataframe = None self.combined = combined self.load() def get_country(self, country): """Check Country is in JHU data""" row = self.dataframe.loc[self.dataframe['Combined_Key'] == country] if len(row) == 0: return False self.combined.countries_long[row['iso2'].values[0].lower()] = country self.combined.national_populations[row['iso2'].values[0].lower()] \ = row['Population'].values[0] return row['iso2'].values[0].lower() def load(self): """Load JHU lookup table""" dataframe = pd.read_csv(f'{self.JHD}/UID_ISO_FIPS_LookUp_Table.csv', delimiter=',') dataframe['Combined_Key'] = dataframe['Combined_Key'].str.lower() dataframe['Population'] = dataframe['Population'] / 1e6 self.dataframe = dataframe class XXTimeseries(Timeseries): """Generic JHU Data class""" # TODO: Duplicated code JHD = '../COVID-19/csse_covid_19_data' def __init__(self, process=True, country=None): """Init""" Timeseries.__init__(self, process) print(country.keys()) self.countrycode = list(country.keys())[0] self.country = country[self.countrycode] self.cumullative = False def national(self, cumulative): self.set_cumulative(cumulative) """Get columns""" timeseries = 'csse_covid_19_time_series/time_series_covid19_deaths_global.csv' overleden = self.calculate(timeseries, 'Overleden') timeseries = 'csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' aantal = self.calculate(timeseries, 'Aantal') aantal['Overleden'] = overleden['Overleden'] return aantal.assign(country=self.countrycode) def calculate(self, timeseries, column): """Get national totals""" file = f'{self.JHD}/{timeseries}' dataframe = pd.read_csv(file, delimiter=',') dataframe['Country/Region'] = dataframe['Country/Region'].str.lower() row = dataframe.loc[dataframe['Country/Region'] == self.country] row = row.loc[row['Province/State'].isnull()] row = row.reset_index(drop=True) row.drop(columns=['Province/State', 'Lat', 'Long'], inplace=True) row.set_index('Country/Region', inplace=True) dataframe = row.T if not self.cumulative: dataframe[column] = dataframe[self.country] - dataframe[self.country].shift(1) else: dataframe[column] = dataframe[self.country] dataframe.drop(columns=[self.country], inplace=True) dataframe.dropna(inplace=True) dataframe = dataframe.reset_index() dataframe.rename(columns={'index': 'Datum'}, inplace=True) return dataframe class BETimeseries(Timeseries): """Belgium data""" def __init__(self, process=True): """Init""" Timeseries.__init__(self, process) def national(self, cumulative): """Get national totals""" self.set_cumulative(cumulative) dataframe = pd.read_csv('data/belgiumt.csv', delimiter=',') dataframe.dropna(inplace=True) dataframe.rename(columns={'CASES': 'Aantal', 'DATE': 'Datum'}, inplace=True) dataframe = dataframe.groupby(['Datum']).agg({'Aantal': 'sum'}) dataframe = dataframe.reset_index() dataframe = dataframe.assign(country='be') return dataframe def get_source_data(self): """Get BE source data for infections""" dataframe = pd.read_csv('data/belgium.csv', delimiter=',') dataframe.dropna(inplace=True) dataframe['CASES'] = dataframe['CASES'].replace(['<5'], '0') dataframe.rename(columns={'CASES': 'Aantal', 'NIS5': 'Gemeentecode', 'DATE': 'Datum', 'TX_DESCR_NL': 'Gemeentenaam'}, inplace=True) dataframe.drop(columns=['TX_DESCR_FR', 'TX_ADM_DSTR_DESCR_NL', 'TX_ADM_DSTR_DESCR_FR', 'PROVINCE', 'REGION'], inplace=True) dataframe['Datum'] = pd.to_datetime(dataframe['Datum']) dataframe = self.resample(dataframe) dataframe = dataframe.set_index('Gemeentecode').dropna() merged = dataframe.join(self.pop) merged.index = merged.index.astype('int') # merged.reset_index(inplace=True) merged = merged.join(self.map) merged.reset_index(inplace=True) merged.rename(columns={'index': 'Gemeentecode'}, inplace=True) merged = merged.assign(country='be') self.merged = merged def resample(self, dataframe): """Timeseries is incomplete, fill it in""" # Normally you would just resample but we have 1500 od gemeentes each needs a # completed dataseries or chorpleths will look very odd idx = pd.date_range(min(dataframe.Datum), max(dataframe.Datum)) gems = list(set(dataframe['Gemeentecode'].values)) newdata = [] for gem in gems: gemdf = dataframe[dataframe['Gemeentecode'] == gem] #gemdf.set_index(gemdf.Datum, inplace=True) default = self.get_row(gemdf.loc[gemdf['Gemeentecode'] == gem]) gemdf['strdate'] = gemdf['Datum'].dt.strftime('%Y-%m-%d') for date in idx: fdate = date.strftime('%Y-%m-%d') if fdate not in gemdf['strdate'].values: newdata.append({'Datum': date, 'Gemeentecode': default['Gemeentecode'], 'Gemeentenaam': default['Gemeentenaam'], 'Aantal': default['Aantal'] }) else: row = gemdf.loc[gemdf['Datum'] == date] newdata.append({'Datum': date, 'Gemeentecode': row['Gemeentecode'].values[0], 'Gemeentenaam': row['Gemeentenaam'].values[0], 'Aantal': int(row['Aantal'].values[0]) }) return pd.DataFrame(newdata) def get_row(self, series): """Return one row""" return {'Datum': series['Datum'].values[0], 'Gemeentecode': series['Gemeentecode'].values[0], 'Gemeentenaam': series['Gemeentenaam'].values[0], 'Aantal': series['Aantal'].values[0] } def get_pop(self): """Fetch the Population figures for BE""" pop = pd.read_csv('data/bepop.csv', delimiter=',') pop = pop.set_index('Gemeentecode') self.pop = pop def get_map(self): """Get BE map data""" map_df = gpd.read_file('maps/BELGIUM_-_Municipalities.shp') map_df.rename(columns={'CODE_INS': 'Gemeentecode', 'ADMUNADU': 'Gemeentenaam'}, inplace=True) map_df['Gemeentecode'] = map_df['Gemeentecode'].astype('int') map_df.drop(columns=['Gemeentenaam'], inplace=True) map_df = map_df.set_index('Gemeentecode') self.map = map_df class NLTimeseries(Timeseries): """Dutch Timeseries""" def __init__(self, process=True): """Init""" Timeseries.__init__(self, process) def national(self, cumulative): """Get national totals""" self.set_cumulative(cumulative) df1 = self.get_subtotal('Totaal', rename=False, cumulative=self.cumulative) df2 = self.get_subtotal('Overleden', rename=True, cumulative=self.cumulative) df3 = self.get_subtotal('Ziekenhuisopname', rename=True, cumulative=self.cumulative) dataframe = df1.merge(df2, on='Datum') dataframe = dataframe.merge(df3, on='Datum') dataframe = dataframe.assign(country='nl') #dataframe = pd.concat([df1,df2,df3]) return dataframe def get_subtotal(self, typ, rename=True, cumulative=True): """Get national totals""" dataframe = pd.read_csv('../CoronaWatchNL/data/rivm_NL_covid19_national.csv', delimiter=',') dataframe = dataframe[dataframe['Type'] == typ] dataframe.drop(columns=['Type'], inplace=True) if not cumulative: print('Cumulative') dataframe['Aantal'] = dataframe['Aantal'] - dataframe['Aantal'].shift(1) if rename: dataframe.rename(columns={"Aantal": typ}, inplace=True) dataframe = dataframe.fillna(0) dataframe['Datum'] = pd.to_datetime(dataframe['Datum']) return dataframe def get_pop(self): """Fetch the Population figures for NL""" dataframe = pd.read_csv( 'data/Regionale_kerncijfers_Nederland_31082020_181423.csv', delimiter=';') dataframe = dataframe.set_index("Regio") dataframe.rename(columns={"aantal": "population"}, inplace=True) self.pop = dataframe[dataframe.columns[dataframe.columns.isin(['population'])]] def get_source_data(self): """Get NL source data for infections""" dataframe = pd.read_csv('../CoronaWatchNL/data-geo/data-municipal/RIVM_NL_municipal.csv', delimiter=',') dataframe = dataframe[dataframe['Type'] == 'Totaal'] dataframe['Datum'] = pd.to_datetime(dataframe['Datum']) dataframe.drop(columns=['Type', 'Provincienaam', 'Provinciecode'], inplace=True) dataframe.dropna(inplace=True) dataframe = dataframe.set_index('Gemeentenaam').dropna() nlmerged = dataframe.join(self.pop) nlmerged.reset_index(inplace=True) nlmerged.rename(columns={'index': 'Gemeentenaam'}, inplace=True) nlmerged = nlmerged.set_index('Gemeentecode') nlmerged = nlmerged.join(self.map) nlmerged.reset_index(inplace=True) nlmerged = nlmerged.assign(country='nl') self.merged = nlmerged def get_map(self): """Get NL map data""" map_df = gpd.read_file('maps/gemeente-2019.geojson') #map_df = map_df.reset_index(inplace=True) map_df.rename(columns={'Gemeenten_': 'Gemeentecode'}, inplace=True) map_df = map_df.set_index("Gemeentecode") map_df.drop(columns=['Gemnr', 'Shape_Leng', 'Shape_Area'], inplace=True) self.map = map_df class UKTimeseries(Timeseries): """UK Timeseries""" def __init__(self, process=True): """Init""" Timeseries.__init__(self, process) def national(self, country, cumulative): """Use national totals""" self.set_cumulative(cumulative) dataframe = pd.read_csv('data/ukt.csv') if cumulative: dataframe.rename(columns={"cumCasesBySpecimenDate": "Aantal", 'date': 'Datum', 'areaCode': 'Gemeentecode', 'cumDeaths28DaysByPublishDate': 'Overleden'}, inplace=True) else: dataframe.rename(columns={"newCasesBySpecimenDate": "Aantal", 'date': 'Datum', 'areaCode': 'Gemeentecode', 'newDeaths28DaysByPublishDate': 'Overleden'}, inplace=True) dataframe.loc[(dataframe.Gemeentecode.astype(str).str.startswith('S')), 'country'] = 'sco' dataframe.loc[(dataframe.Gemeentecode.astype(str).str.startswith('W')), 'country'] = 'wal' dataframe.loc[(dataframe.Gemeentecode.astype(str).str.startswith('E')), 'country'] = 'eng' dataframe.loc[(dataframe.Gemeentecode.astype(str).str.startswith('N')), 'country'] = 'ni' dataframe = dataframe[dataframe['country'] == country] return dataframe def get_pop(self): """Fetch the population figures for the UK""" dataframe = pd.read_csv('data/ukpop4.csv') dataframe = dataframe.set_index("ladcode20") dataframe = dataframe.groupby(['ladcode20']).agg(sum) dataframe.rename(columns={"population_2019": "population"}, inplace=True) self.pop = dataframe[dataframe.columns[dataframe.columns.isin(['population'])]] def get_source_data(self): """Get UK source data for infections""" dataframe = pd.read_csv('data/uk.csv', delimiter=',') dataframe['date'] = pd.to_datetime(dataframe['date']) columns = {'date': 'Datum', 'areaName': 'Gemeentenaam', 'areaCode': 'Gemeentecode', 'newCasesBySpecimenDate': 'Aantal', 'cumCasesBySpecimenDate': 'AantalCumulatief' } dataframe.rename(columns=columns, inplace=True) dataframe = dataframe.set_index('Gemeentecode').dropna() ukmerged = dataframe.join(self.pop) ukmerged = ukmerged.join(self.map) ukmerged.reset_index(inplace=True) ukmerged.rename(columns={'index': 'Gemeentecode'}, inplace=True) # <ark the countries for later filtering ukmerged.loc[(ukmerged.Gemeentecode.astype(str).str.startswith('S')), 'country'] = 'sco' ukmerged.loc[(ukmerged.Gemeentecode.astype(str).str.startswith('W')), 'country'] = 'wal' ukmerged.loc[(ukmerged.Gemeentecode.astype(str).str.startswith('E')), 'country'] = 'eng' ukmerged.loc[(ukmerged.Gemeentecode.astype(str).str.startswith('N')), 'country'] = 'ni' self.merged = ukmerged def get_map(self): """Get UK Map Data""" map_df = gpd.read_file('maps/uk_counties_2020.geojson') # Scotland # map_df = map_df[~map_df['lad19cd'].astype(str).str.startswith('S')] # Northern Ireland # map_df = map_df[~map_df['lad19cd'].astype(str).str.startswith('N')] map_df.rename(columns={'lad19cd': 'Gemeentecode'}, inplace=True) map_df.drop(columns=['lad19nm', 'lad19nmw', 'st_areashape', 'st_lengthshape', 'bng_e', 'bng_n', 'long', 'lat'], inplace=True) map_df = map_df.set_index("Gemeentecode") self.map = map_df class DETimeseries(Timeseries): """DE Timeseries""" def __init__(self, process=True): """Init""" Timeseries.__init__(self, process) def get_pop(self): """Fetch the population figures for the DE""" dataframe = pd.read_csv('data/depop.csv') dataframe = dataframe.set_index("Gemeentenaam") self.pop = dataframe def get_source_data(self): """Get DE source data for infections""" dataframe = pd.read_excel( 'data/germany.xlsx', sheet_name='BL_7-Tage-Fallzahlen', skiprows=[0, 1]) # Rename columns dataframe.rename(columns={'Unnamed: 0': 'Gemeentenaam'}, inplace=True) dataframe = dataframe.set_index('Gemeentenaam') dataframe = dataframe.T transform = [] for index, row in dataframe.iterrows(): for region in row.keys(): transform.append({'Datum': row.name, 'Aantal': row[region], 'Gemeentenaam': region}) dataframe =
pd.DataFrame(transform)
pandas.DataFrame
import requests import deeptrade import pandas as pd class StockPrice(): def __init__(self): self.head = {'Authorization': "Token %s" %deeptrade.api_key} def by_date(self,date,dataframe=False): """ :parameters: - date: a day date in the format %YYYY-%MM-%DD - dataframe: whehter result in json (False) or pandas dataframe :returns: json or pandas dataframe with all the tickers of the day date and their corresponding stock price (OHLC) """ endpoint = deeptrade.api_base+"stock_date/"+date g = requests.get(endpoint, headers=self.head).json() if dataframe: df = pd.DataFrame(g) return df else: return g def by_ticker(self,ticker,dataframe=False): """ :parameters: - ticker: a ticker such as 'AMZN' - dataframe: whehter result in json (False) or pandas dataframe :returns: json or pandas dataframe with all the hist. OHLC information of the ticker """ endpoint = deeptrade.api_base+"stocks/"+ticker g = requests.get(endpoint, headers=self.head).json() if dataframe: df = pd.DataFrame(g) return df else: return g def stock_by_date_ticker(self, date, ticker, dataframe=False): """ :parameters: - ticker: a day date in the format %YYYY-%MM-%DD - dataframe: whehter result in json (False) or pandas dataframe :returns: json or pandas dataframe with all the hist. OHLC & stock information for the particular date """ endpoint = deeptrade.api_base+"stockdate/"+ticker+'/'+date g = requests.get(endpoint, headers=self.head).json() if dataframe: df =
pd.DataFrame(g)
pandas.DataFrame
import os import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def sqlite_db() -> str: conn = os.environ["SQLITE_URL"] return conn def test_read_sql_without_partition(sqlite_db: str) -> None: query = "SELECT test_int, test_nullint, test_str, test_float, test_bool, test_date, test_time, test_datetime FROM test_table" df = read_sql(sqlite_db, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "こんにちは", "b", "Ha好ち😁ðy̆", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), "test_date": pd.Series( [ np.datetime64("1996-03-13"), np.datetime64("1996-01-30"), np.datetime64("1996-02-28"), np.datetime64("2020-01-12"), np.datetime64("1996-04-20"), None ], dtype="datetime64[ns]" ), "test_time": pd.Series( ["08:12:40", "10:03:00", "23:00:10", "23:00:10", "18:30:00", "18:30:00"], dtype="object" ), "test_datetime": pd.Series( [ np.datetime64("2007-01-01T10:00:19"), np.datetime64("2005-01-01T22:03:00"), None, np.datetime64("1987-01-01T11:00:00"), None, np.datetime64("2007-10-01T10:32:00") ], dtype="datetime64[ns]" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition(sqlite_db: str) -> None: query = "SELECT test_int, test_nullint, test_str, test_float, test_bool, test_date, test_time, test_datetime FROM test_table" df = read_sql( sqlite_db, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "こんにちは", "b", "Ha好ち😁ðy̆", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), "test_date": pd.Series( [ np.datetime64("1996-03-13"), np.datetime64("1996-01-30"), np.datetime64("1996-02-28"), np.datetime64("2020-01-12"), np.datetime64("1996-04-20"), None ], dtype="datetime64[ns]" ), "test_time": pd.Series( ["08:12:40", "10:03:00", "23:00:10", "23:00:10", "18:30:00", "18:30:00"], dtype="object" ), "test_datetime": pd.Series( [ np.datetime64("2007-01-01T10:00:19"), np.datetime64("2005-01-01T22:03:00"), None, np.datetime64("1987-01-01T11:00:00"), None, np.datetime64("2007-10-01T10:32:00") ], dtype="datetime64[ns]" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(sqlite_db: str) -> None: queries = [ "SELECT test_int, test_nullint, test_str, test_float, test_bool, test_date, test_time, test_datetime FROM test_table WHERE test_int < 2", "SELECT test_int, test_nullint, test_str, test_float, test_bool, test_date, test_time, test_datetime FROM test_table WHERE test_int >= 2", ] df = read_sql(sqlite_db, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 0, 2, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, 5, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "こんにちは", "str2", "b", "Ha好ち😁ðy̆", None], dtype="object" ), "test_float": pd.Series([None, 3.1, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, None, False, False, None, True], dtype="boolean" ), "test_date": pd.Series( [ np.datetime64("1996-03-13"), np.datetime64("1996-02-28"), np.datetime64("1996-01-30"), np.datetime64("2020-01-12"), np.datetime64("1996-04-20"), None ], dtype="datetime64[ns]" ), "test_time": pd.Series( ["08:12:40", "23:00:10", "10:03:00", "23:00:10", "18:30:00", "18:30:00"], dtype="object" ), "test_datetime": pd.Series( [ np.datetime64("2007-01-01T10:00:19"), None, np.datetime64("2005-01-01T22:03:00"), np.datetime64("1987-01-01T11:00:00"), None, np.datetime64("2007-10-01T10:32:00") ], dtype="datetime64[ns]" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_without_partition_and_spa(sqlite_db: str) -> None: query = """ SELECT test_bool, AVG(test_float) AS avg, SUM(test_int) AS sum FROM test_table WHERE test_nullint IS NOT NULL GROUP BY test_bool ORDER BY sum """ df = read_sql(sqlite_db, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([False, None, True], dtype="boolean"), "avg": pd.Series([3.00, 5.45, -10.00], dtype="float64"), "sum": pd.Series([3, 4, 1315], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_spa(sqlite_db: str) -> None: query = """ SELECT test_bool, AVG(test_float) AS avg, SUM(test_int) AS sum FROM test_table WHERE test_nullint IS NOT NULL GROUP BY test_bool ORDER BY sum """ df = read_sql(sqlite_db, query, partition_on="sum", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([False, None, True], dtype="boolean"), "avg": pd.Series([3.00, 5.45, -10.00], dtype="float64"), "sum": pd.Series([3, 4, 1315], dtype="Int64"), }, ) df = df.sort_values("sum").reset_index(drop=True) assert_frame_equal(df, expected, check_names=True) def test_empty_result(sqlite_db: str) -> None: query = "SELECT * FROM test_table where test_int < -100" df = read_sql(sqlite_db, query) expected = pd.DataFrame( data={ "test_int": pd.Series([], dtype="object"), "test_nullint": pd.Series([], dtype="object"), "test_str": pd.Series([], dtype="object"), "test_float":
pd.Series([], dtype="object")
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Sep 20 14:08:35 2019 @author: Team BTC - <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ #sorry the code isnt very efficient. because of time constraints and the number of people working on the project, we couldnt do all the automatizations we would have liked to do. #Code in block comment should not be run as it will make change to the cloud database # %% Importing libraries # You may need to install dnspython in order to work with cloud server import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) import json import pandas as pd import numpy as np from tqdm import tqdm from datetime import datetime as dt import os import time import re import copy from textblob import TextBlob from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from datetime import timedelta from pymongo import MongoClient import statsmodels.formula.api as smf import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt from statsmodels.tsa.api import VAR #os.chdir('H:/Documents/Alternance/Project/') # %% Function to scrap data from Stocktwit and add to the cloud server # The function have 2 inputs: # - Symbol of the asset in string # - Rate limit: number of requests per execution, in integer def get_stwits_data(symbol,rate_limit): client = MongoClient('mongodb+srv://Group_fintech:[email protected]/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] exist=0 for q in db['{}'.format(symbol)].aggregate([ { "$group": { "_id": None, "min": { "$min": "$ID" } }} ]): exist=1 min_prev_id=q['min'] http = urllib3.PoolManager() mid=[] duplicates=0 for j in tqdm(range(rate_limit)): if exist==0: url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json".format(symbol) elif exist!=0 and len(mid)==0: url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json?max={}".format(symbol,min_prev_id) else: min_ID=min(mid) url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json?max={}".format(symbol,min_ID) r = http.request('GET', url) try: data = json.loads(r.data) except: print('Decode error, retry again') continue if duplicates==1: print('\nThere are duplicates in the result. Other people are maybe running. \nPlease try again later.') break if data["response"]["status"] != 200: print("\nYour request was denied, retry in 1 hour") time.sleep(3600) continue # insert_element=[] # break for element in data["messages"]: mid.append(element["id"]) symbol_list=[] for s in element['symbols']: symbol_list.append(s['symbol']) try: insert_element = {"ID": element["id"], "TimeStamp": element["created_at"], "User": element["user"]["username"], "Content": element["body"],"Sentiment": (element["entities"]["sentiment"]["basic"]=="Bullish")*2-1,'Symbols':symbol_list} except: insert_element = {"ID": element["id"], "TimeStamp": element["created_at"], "User": element["user"]["username"], "Content": element["body"],"Sentiment": 0,'Symbols':symbol_list} try: result = db['{}'.format(symbol)].insert_one(insert_element) except: duplicates=1 break return insert_element # %% Execution of the function symbol='BTC.X' rate_limit=2000 last_ele=get_stwits_data(symbol,rate_limit) # %% #Creating custom lexicon #%% Finding the time interval of the database client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] #Getting the minimum id for q in db['BTC.X'].aggregate([ { "$group": { "_id": None, "min": { "$min": "$ID" } }} ]): minID=q['min'] #Getting the timestamp from the min ID for post in db['BTC.X'].find({'ID':minID}): start_time=post['TimeStamp'] #Getting the max id for q in db['BTC.X'].aggregate([ { "$group": { "_id": None, "max": { "$max": "$ID" } }} ]): maxID=q['max'] #Getting the timestamp from the max ID for post in db['BTC.X'].find({'ID':maxID}): end_time=post['TimeStamp'] start_time=dt.strptime(start_time,'%Y-%m-%dT%H:%M:%SZ') end_time=dt.strptime(end_time,'%Y-%m-%dT%H:%M:%SZ') period=np.arange(dt(start_time.year,start_time.month,start_time.day),dt(end_time.year,end_time.month,end_time.day),timedelta(days=1)) #%% Creating dictionary #Creating function to find words in positive and negative function def create_positive_dictionary_by_day(day): dictionary=pd.DataFrame(columns=['Word','Frequency']) client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] sentimental=1 for documents in db['BTC.X'].find({'Sentiment':sentimental,"TimeStamp":{"$regex": u"{}-{:02d}-{:02d}".format(day.astype(object).year,day.astype(object).month,day.astype(object).day)}}): word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in dictionary['Word'].tolist(): frq=copy.copy(dictionary.iloc[dictionary.index[dictionary['Word']==word].tolist()[0]][1])+1 dictionary.at[dictionary.index[dictionary['Word']==word].tolist()[0],'Frequency']=frq else: dictionary=dictionary.append({'Word': word ,'Frequency':1}, ignore_index=True) return dictionary def create_negative_dictionary_by_day(day): dictionary=pd.DataFrame(columns=['Word','Frequency']) client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] sentimental=-1 for documents in db['BTC.X'].find({'Sentiment':sentimental,"TimeStamp":{"$regex": u"{}-{:02d}-{:02d}".format(day.astype(object).year,day.astype(object).month,day.astype(object).day)}}): word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in dictionary['Word'].tolist(): frq=copy.copy(dictionary.iloc[dictionary.index[dictionary['Word']==word].tolist()[0]][1])+1 dictionary.at[dictionary.index[dictionary['Word']==word].tolist()[0],'Frequency']=frq else: dictionary=dictionary.append({'Word': word ,'Frequency':1}, ignore_index=True) return dictionary from multiprocessing import Pool pool = Pool() #creating positive dictionary df=list(tqdm(pool.imap(create_positive_dictionary_by_day, period), total=len(period))) positive_dictionary=df[0].set_index('Word') for i in tqdm(range(1,len(df))): positive_dictionary=positive_dictionary.add(df[i].set_index('Word'), fill_value=0) #creating negative dictionary df=list(tqdm(pool.imap(create_negative_dictionary_by_day, period), total=len(period))) negative_dictionary=df[0].set_index('Word') for i in tqdm(range(1,len(df))): negative_dictionary=negative_dictionary.add(df[i].set_index('Word'), fill_value=0) negative_dictionary=negative_dictionary.sort_values('Frequency',ascending=False) positive_dictionary=positive_dictionary.sort_values('Frequency',ascending=False) positive_dictionary.columns=['Positive Freq'] negative_dictionary.columns=['Negative Freq'] positive_dictionary=positive_dictionary/db['BTC.X'].count_documents({'Sentiment':1}) negative_dictionary=negative_dictionary/db['BTC.X'].count_documents({'Sentiment':-1}) #Combining both dictionary final_dict=positive_dictionary.add(negative_dictionary, fill_value=0).sort_values('Positive Freq',ascending=False) final_dict['Pos over Neg']=final_dict['Positive Freq']/final_dict['Negative Freq'] #Removing stopwords from the dictionary nltk.download('stopwords') stop_words = set(stopwords.words('english')) final_dict=final_dict.reset_index() for i in final_dict['Word']: if i in stop_words: final_dict=final_dict[final_dict['Word']!=i] #Removing words below the threshold final_dic=final_dict.fillna(value=0) final_dict=final_dict[(final_dict['Negative Freq']>0.0005) | (final_dict['Positive Freq']>0.0005)] final_dict.fillna(value=0).sort_values('Pos over Neg',ascending=False).to_csv('Simple_Dictionary2.csv') #%% Creating positive and negative word list from the lexicon os.chdir('H:/Documents/Alternance/Project/') lexicon=pd.read_csv('Simple_Dictionary2.csv') lexicon=lexicon[['Word','Classification']] neg_list=list(lexicon[lexicon['Classification']==-1]['Word']) pos_list=list(lexicon[lexicon['Classification']==1]['Word']) # Update lexicon result to the database import nltk porter = nltk.PorterStemmer() import re import copy client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] for i in range(32): for documents in tqdm(db['BTC.X'].find({'Custom_Lexicon_Sentiment':{ "$exists" : False }},limit=10000)): if documents['Sentiment']==0: score=0 word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in neg_list: score+=-1 if word in pos_list: score+=1 if score >0: senti=1 elif score <0: senti=-1 else: senti=0 db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Custom_Lexicon_Sentiment':senti}}) else: db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Custom_Lexicon_Sentiment':documents['Sentiment']}}) #%% Creating positive and negative word list from the teacher lexicon os.chdir('H:/Documents/Alternance/Project/') lexicon=
pd.read_csv('l2_lexicon.csv',sep=';')
pandas.read_csv
import utils from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from tqdm import tqdm import numpy as np import pandas as pd from itertools import combinations, permutations import heapq # Here we created a class in order to store the index of a search engine class index: def __init__(self, name): self.name = name self.index = dict() # The following class contains methods used to create the search engine itself class search_engine: def __init__(self, name = 'movie search engine'): self.name = name self.trained = False self.vocabulary = dict() self.search_engines = [index(name = 'Search Engine ' + str(i)) for i in range(1,3)] self.vectorizer = CountVectorizer(tokenizer = utils.text_cleaner) self.transformer = TfidfTransformer(smooth_idf=False) # This method takes as input a dataframe containing the information about the movies obtained by parsing the html files. # The returned output is the index for each search engine. def create_engine(self, dataframe): # storing the itro and plot in a list for search engine 1 & 2 words_list = [] for i in tqdm(range(len(dataframe))): words_list.append(str(dataframe.loc[i]['Plot']) + ' ' + str(dataframe.loc[i]['Intro'])) print('word list is made') print('word frequency is running...') # computing the word frequency for each document words_freq = self.vectorizer.fit_transform(words_list) words_freq = words_freq.toarray() corpus_words = self.vectorizer.get_feature_names() print('index initiating...') # creating the vocabulary and initiating the index for i,word in enumerate(corpus_words): self.vocabulary[word] = i self.search_engines[0].index[i]=set() self.search_engines[1].index[i]=set() # updating the index for search engine 1 # keep a list of documents IDs docs_id = np.array(range(words_freq.shape[0])) # Pick the column of the work frequency related to each term. The positive values means the term appears in the document for j in tqdm(range(words_freq.shape[1])): term_freq = words_freq[:,j] > 0 doc_id = docs_id[term_freq] # Updating the index related to each term for documents ID that contains the term for i in range(doc_id.shape[0]): self.search_engines[0].index[j].update({doc_id[i]}) # updating the index for search engines 2 # transforming the word frequency to tf-idf score tfidf = self.transformer.fit_transform(words_freq) tfidf = tfidf.toarray() # Pick the column of the tf-idf related to each term. The positive values means the term appears in the document for j in tqdm(range(words_freq.shape[1])): term_freq = words_freq[:,j] > 0 term_tfidf = tfidf[term_freq,j] doc_id = docs_id[term_freq] # Updating the index (doc_id, tfidf) related to each term for documents ID that contains the term for i in range(term_tfidf.shape[0]): self.search_engines[1].index[j].update({(doc_id[i],term_tfidf[i])}) # set the search engine to trained in order to avoid retraning and check the posibility of fetching query self.trained = True # The method below takes as input the search engine ID, a query and the dataframe and returns in output the results yielded by running the search engine. # Provide suggestion to the user to enhance the query def query(self, search_engine, q, dataframe): # check whether the engine is trained or not if self.trained: # parsing the query into text_cleaner in order to match the words (tokenized and stemmed) we have for making index query_words = utils.text_cleaner(q) if search_engine == 1: # check if the whole terms appear in document and output the result for 'Title', 'Intro' and 'URL' return pd.DataFrame([dataframe.loc[j][['Title','Intro','Url']] for j in set.intersection(*[self.search_engines[search_engine -1].index[i] for i in [self.vocabulary[t] for t in query_words if t in self.vocabulary.keys()]])]) if search_engine in [2, 3]: # pick the document that at least one of the word in the query appears in doc_ids = [self.search_engines[1].index[t] for t in [self.vocabulary[w] for w in query_words if w in self.vocabulary.keys()]] mat = [] for v in doc_ids: d = dict() for i in v: d[i[0]]=i[1] mat.append(d) # make a pandas dataframe (matrix) which element is a tfidf of the term (column) in the document (row) Results = pd.DataFrame(mat).transpose() # Fill zero for those terms with NaN tfidf (when the term doesn't appear in the document) Results.fillna(0, inplace = True) # Drop the rows that do not satisfy the conjunctive query Results = Results.loc[[all(Results.loc[i] > 0) for i in Results.index]] # computing the cosine similarity for search engine 2 Results['Score'] = Results.apply(utils.cosine_similarity_se2, axis = 1) Results['Doc_ID'] = Results.index # store the result in tuple like (value, key) in order to heapify the output hp = [(Results.loc[row]['Score'], Results.loc[row]['Doc_ID']) for row in Results.index] heapq.heapify(hp) # Output the result of the first top-50 scores hp_res = heapq.nlargest(50, hp) # output 'Title', 'Intro' and 'URL' for top-50 Results =
pd.DataFrame([dataframe.loc[j][['Title','Intro','Url']] for j in [a[1] for a in hp_res]])
pandas.DataFrame
## Analysis of Study ################################################################################ ### Setup -- Data Loading and Cleaning ################################################################################ ############### ### Imports ############### # Warning Supression import warnings warnings.simplefilter("ignore") # Standard import pandas as pd import numpy as np import os, sys # Statistical Modeling/Curve Fitting import statsmodels.api as sm import statsmodels.formula.api as smf from scipy import stats from scipy.optimize import curve_fit # Plotting import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import FuncFormatter from matplotlib import rcParams # Helpers from scripts.libraries.helpers import load_pickle ############### ### Plot Helpers ############### ## Plotting Variables standard_fig = (6.5, 4.2) plot_dir = "./plots/" stats_plots = plot_dir + "analysis/" # rcParams['font.family'] = 'sans-serif' # rcParams['font.sans-serif'] = ['Helvetica'] rcParams["errorbar.capsize"] = 5 FIGURE_FMT = ".pdf" ## Plot subdirectories for d in [plot_dir, stats_plots]: if not os.path.exists(d): os.mkdir(d) ############### ### General Helpers ############### ## Create Equal Percentiles create_percentiles = lambda n_bins: np.linspace(0,100, n_bins+1) ## Using Percentiles, Estimate Equal Bin Ranges on a set of Values create_equal_bins = lambda values, n_bins: np.percentile(values, create_percentiles(n_bins)) ## Standard Error def std_error(vals): return np.std(vals) / np.sqrt(len(vals) - 1) ## Assign Value to a Bin assign_bin = lambda val, bin_array: np.max([b for b in range(len(bin_array)) if val >= bin_array[b]]) create_bin_strings = lambda values, bins: ["[%d,%d)" % (np.ceil(x),np.ceil(y)) for x,y in list(zip(bins[:-1], bins[1:]))]+ ["[%d,%d]" % (bins[-1], max(values))] ## Flatten a List of Lists flatten = lambda l: [item for sublist in l for item in sublist] ## Holm-Bonferroni Correction def apply_bonferroni_correction(df, pval_col, alpha = 0.05): """ Apply Holm-Bonferroni correction to Wald Test statistics (https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method) """ comparisons = [a for a in df.index.values if a not in ["Intercept", "groups RE"]] df = df.replace("",np.nan).dropna() pvals = df.loc[comparisons][[pval_col,"df_constraint"]].astype(float) n_comparisons = pvals.df_constraint.sum() pvals = pvals.sort_values(pval_col,ascending=True) pvals["bonferroni_max"] = (alpha / (n_comparisons + 1 - pvals["df_constraint"].cumsum())) pvals["k"] = np.arange(len(pvals)) k_argmin = pvals.loc[pvals[pval_col] > pvals["bonferroni_max"]].k.min() pvals["significant"] = np.nan pvals.loc[pvals["k"] < k_argmin,"significant"] = "*" df = pd.merge(df, pvals[["significant"]], how = "left", left_index=True, right_index=True) df["significant"] = df["significant"].fillna("") return df ## Mixed LM Model Summary def summarize_lm_model(model, alpha = 0.05): ## Model Params model_fit = model.summary().tables[0] model_fit.columns = [""] * 4 ## Model Statistics model_summary = model.summary().tables[1] wald_test = apply_bonferroni_correction(model.wald_test_terms().table, "pvalue", alpha) wald_test.rename(columns = {"statistic":"chi_squared"},inplace=True) ## Display return model_summary, wald_test ## Wald Significant Values def print_significant(model, wald_stats): """ Print out significant effects """ sample_size = int(model.summary().tables[0].set_index(0).loc["No. Groups:", 1]) sig_effects = wald_stats.loc[wald_stats.significant == "*"].copy() for factor in sig_effects.index: chi2 = wald_stats.loc[factor]["chi_squared"] p = wald_stats.loc[factor]["pvalue"].item() df = wald_stats.loc[factor]["df_constraint"] outstring = "- {} chi^2({}, N = {}) = {:.5f}, p = {:.5f}".format(factor, df, sample_size, chi2, p ) print(outstring) ## Bootstrapped Confidence Interval def bootstrap_ci(values, alpha = 0.05, func = np.mean, sample_percent = 20, samples = 1000): """ Bootstraped Confidence Interval """ processed_vals = [] values = np.array(values) for sample in range(samples): sample_vals = np.random.choice(values, int(values.shape[0] * sample_percent/100.), replace = True) processed_vals.append(func(sample_vals)) return np.percentile(processed_vals, [alpha*100/2, 50, 100. - (alpha*100/2)]) ############### ### Global Variables ############### # qvc Variables qvc_sync_metrics = ["met_qvc_last5"] qvc_cont_metrics = ["nomet_qvc_last5"] qvc_metrics = qvc_sync_metrics + qvc_cont_metrics # Error Variables error_sync_metrics = ["met_sync_error_last5", "met_sync_error_last5_rel"] error_cont_metrics = ["nomet_sync_error_last5", "nomet_sync_error_last5_rel"] error_metrics = error_sync_metrics + error_cont_metrics # Drift Variables drift_metrics = ["nomet_drift", "nomet_drift_rel", "nomet_drift_regression"] # Variable Types factor_variables = ["trial", "speed_occurrence", "trial_speed", "gender", "musical_experience", "sport_experience"] continuous_variabless = ["preferred_period", "age"] all_variables = factor_variables + continuous_variabless # Fixed Primary Variables primary_variables = ["age", "gender", "trial", "speed_occurrence", "trial_speed", "musical_experience", "sport_experience"] ############### ### Load and Filter Data ############### # Load Results (file generated by `extract_tap_metrics.py`) results = pd.read_csv("./data/processed_results.csv") # Drop Rows with Null Primary Metrics results = results.loc[results[qvc_metrics + error_metrics + drift_metrics + primary_variables].isnull().sum(axis = 1) == 0] # Drop Subjects without 6 Trials results = results.loc[results.subject.isin(set(results.subject.value_counts().loc[results.subject.value_counts() == 6].index.values))].copy() # Add Age Bins (Explict Choice to Align with "Pitchers" study) age_bins = [5,10,13,20,30,50,69] # Boundaries age_bin_points = [7.5, 11.0, 16, 26, 40, 59] # Space on x-axis for plotting the bin age_bin_strings = ["5-9","10-12","13-19","20-29","30-49","50+"] # Named Age Bins results["age_bin"] = results["age"].map(lambda val: assign_bin(val, age_bins)) # Apply ############### ### Add Disorder Flag ############### ## Specify Disorders to Flag disorder_filters = ["BROKEN WRIST", "CARPAL TUNNEL", "ACUTE ARTHRITIS", "BROKEN WRIST (2 YEARS AGO)", "AUTISM","ADHD","TENDONITIS", "BROKEN ARMS, BACK, ANKLE", "ARTHRITIS", "COMPLEX REGIONAL PAIN SYNDROME", "TICK DISORDER", "FIBROMYALGIA", "CARPAL TUNNEL (BILATERAL)", "SLIGHT GRIP PAIN (NONE DURING EXPERIMENT)", "AGENESIS OF THE CORPUS COLLOSUM", "CONNECTIVE TISSUE DISORDER", "CERVICAL FUSION (NECK)", "MALLET FINGER"] ## Remove Disordered Subjects results["healthy"] = np.logical_not(results.specify_disorder.isin(disorder_filters)) ############### ### Preferred Period Filtering ############### """ Notes on Threshold Selection: - "The Time of Our Lives: Life Span Development of Timing and Event Tracking" (see xlsx in /literature/) found a standard error in preferred period that averaged around 6.5% (for consistent subjects). The range across groups was anywhere from 3% to 12%. - "Preferred rates of repetitive tapping and categorical time production" found a mean semiinterquartile range in preferred inter-tap-interval of 3.3%. Note...Only 16 subjects. Conclude that 10% threshold is reasonable given the variance. Should main effects highlighted in the paper remained consistent before/after filtering and can note special cases where this wasn't true. We can also include the relative difference as a parameter in each model to control for differences. """ ## Filter Params apply_preferred_period_filter = True filter_by_threshold = True threshold = 10 ## Load file created in scripts/evaluate_preferred_period_calculations.py pp_filter_file = "./data/preferred_period_filtering_map.csv" pp_filter = pd.read_csv(pp_filter_file) ## Merge Preferred Period Calculation Analysis Results results = pd.merge(results, pp_filter, on = "subject", how = "left") ## Drop Subjects with Miscalculated Preferred Periods if apply_preferred_period_filter: if filter_by_threshold: pp_keepers = set(pp_filter.loc[pp_filter.absolute_rel_difference <= threshold].subject) else: pp_keepers = set(pp_filter.loc[pp_filter.online_in_range].subject) results["proper_preferred_period_calculation"] = results.subject.isin(pp_keepers) ## Alert User of Additional Removal subjects_filtered = results.drop_duplicates(["subject"])["proper_preferred_period_calculation"].value_counts() print("Applying Preferred Period Online Calculation Filter.") print("Filtered {} more subjects. Started at {}. Now at {}".format(subjects_filtered[False], len(results.subject.unique()), subjects_filtered[True])) ## Apply Filter results = results.loc[results.proper_preferred_period_calculation].reset_index(drop=True).copy() results.drop("proper_preferred_period_calculation", axis=1, inplace=True) ############### ### Absolute Values ############### # Absolute Synchronization Error (For when we don't care about directional differences, just absolute) for error in error_metrics + drift_metrics: results["abs_%s" % error] = np.abs(results[error]) # Update Variable Groups error_metrics = error_metrics + ["abs_{}".format(met) for met in error_metrics] drift_metrics = drift_metrics + ["abs_{}".format(met) for met in drift_metrics] ############### ### Account for Trial/Block Effects ############### ## Average Metrics Across Both Trials for a Given Trial Speed metrics_to_average = error_metrics + qvc_metrics + drift_metrics mean_results = pd.pivot_table(index = ["subject","trial_speed"], values = metrics_to_average, aggfunc = np.mean, data = results).reset_index() merge_vars = ["subject", "age", "age_bin", "gender", "musical_experience", "musical_experience_yrs", "sport_experience", "sport_experience_yrs", "preferred_period", "healthy", "rel_difference", "absolute_rel_difference", "online_in_range"] mean_results = pd.merge(mean_results, results.drop_duplicates("subject")[merge_vars], left_on = "subject", right_on = "subject") ################################################################################ ### Independent Variable Distributions ################################################################################ ## De-duplicate the data set based on subject (only want unique characteristics) subject_deduped = results.drop_duplicates("subject") ############### ### Preferred Period ############### ## Preferred Period Distribution mean_pp, std_pp = subject_deduped.preferred_period.mean(), subject_deduped.preferred_period.std() counts, bins = np.histogram(subject_deduped["preferred_period"], 20) fig, ax = plt.subplots(1,1, figsize = standard_fig, sharey = False, sharex = False) b = ax.hist(subject_deduped["preferred_period"], bins = bins, normed = False, color = "navy", edgecolor = "navy", alpha = .3, label = "") ax.set_xlabel("Preferred Period (ms)", fontsize = 18, fontweight = "bold") ax.set_ylabel("Subjects", fontsize = 18, fontweight = "bold") ax.axvline(mean_pp, color = "navy", linestyle = "--", linewidth = 3, label = "Mean = {:,.0f} ms".format(mean_pp)) ax.axvline(mean_pp - std_pp, color = "navy", linestyle = ":", linewidth = 3, label = "SD = {:,.0f} ms".format(std_pp)) ax.axvline(mean_pp + std_pp, color = "navy", linestyle = ":", linewidth = 3, label = "") ax.legend(loc = "upper right", ncol = 1, fontsize = 16, frameon=True, handlelength=2, borderpad=0.25) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(labelsize=16) fig.tight_layout() plt.savefig(stats_plots + "preferred_period" + FIGURE_FMT) plt.savefig(stats_plots + "preferred_period" + ".png") plt.close() ## No linear correlation between age and preferred period fig, ax = plt.subplots(1,1, figsize = standard_fig, sharey = False, sharex = False) ax.scatter(subject_deduped["age"], subject_deduped["preferred_period"], color = "darkblue", edgecolor="darkblue", alpha = .5, s = 50) ax.set_xlabel("Age (yrs.)", fontsize = 18, fontweight = "bold") ax.set_ylabel("Preferred Period (ms)", fontsize = 18, fontweight = "bold") ax.tick_params(labelsize=16) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) fig.tight_layout() plt.savefig(stats_plots + "age_preferred_period" + FIGURE_FMT) plt.savefig(stats_plots + "age_preferred_period" + ".png") plt.close() ## Preferred Period Effects pp_form = "preferred_period ~ age + C(gender) + C(musical_experience)" pp_model = smf.ols(pp_form, subject_deduped).fit() pp_stats, pp_sig = summarize_lm_model(pp_model) ## Preferred Period ~ Musical Experience pp_ci = lambda vals: tuple(bootstrap_ci(vals, sample_percent = 30, samples = 1000)) me_pp_avg = subject_deduped.groupby(["musical_experience"]).agg({"preferred_period":[pp_ci,np.mean,np.std,std_error]})["preferred_period"] for i in range(3): me_pp_avg[i] = me_pp_avg["<lambda_0>"].map(lambda j: j[i]) fig, ax = plt.subplots(figsize = standard_fig) ax.bar([0, 1], me_pp_avg["mean"].values, yerr = me_pp_avg["std_error"].values, color = "navy", edgecolor = "navy", alpha = .5) ax.set_xticks([0,1]) ax.set_xticklabels(["No","Yes"]) ax.set_xlabel("Musical Experience", fontsize = 18, fontweight = "bold") ax.set_ylabel("Preferred Period (ms)", fontsize = 18, fontweight = "bold") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(labelsize = 16) fig.tight_layout() fig.savefig(stats_plots + "musical_experience_preferred_period" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "musical_experience_preferred_period" + ".png", dpi=300) plt.close() ## Categorical Relationship between age and preferred Period age_pp_aggs = {"preferred_period":[np.mean, std_error, pp_ci]} age_bin_pp_avg = subject_deduped.groupby(["age_bin"]).agg(age_pp_aggs)["preferred_period"] for i in range(3): age_bin_pp_avg[i] = age_bin_pp_avg["<lambda_0>"].map(lambda j: j[i]) fig, ax = plt.subplots(figsize = standard_fig) ax.fill_between([age_bin_points[0]-1] + age_bin_points[1:-1] + [age_bin_points[-1]+1+1], age_bin_pp_avg[0].values, age_bin_pp_avg[2].values, color = "navy", alpha = .3) ax.errorbar(age_bin_points, age_bin_pp_avg["mean"].values, yerr = age_bin_pp_avg["std_error"].values, color="navy", linewidth=2) ax.set_xticks(age_bin_points) ticks = ax.set_xticklabels(age_bin_strings, rotation = 45, ha = "right") ax.set_xlabel("Age (yrs.)", fontsize = 18, fontweight = "bold") ax.set_ylabel("Preferred Period", fontsize = 18, fontweight = "bold") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(labelsize = 16) fig.tight_layout() fig.savefig(stats_plots + "age_bin_preferred_period" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "age_bin_preferred_period" + ".png", dpi=300) plt.close() ############### ### Age & Gender ############### ## Replace Binary Gender Forms results["gender"] = results["gender"].map(lambda g: "Female" if g == 1 else "Male") subject_deduped["gender"] = subject_deduped["gender"].map(lambda g: "Female" if g == 1 else "Male") ## Plot Age + Gender Distribution fig, ax = plt.subplots(figsize = standard_fig) max_count = 0 for a, age in enumerate(sorted(subject_deduped.age_bin.unique())): for g, gender in enumerate(["Female","Male"]): demo_count = len(subject_deduped.loc[(subject_deduped.age_bin == age)&(subject_deduped.gender==gender)]) ax.bar(0.025 + g*0.45 + a, demo_count, color = {"Male":"teal","Female":"orangered"}[gender], alpha = .5, align = "edge", width = .45, label = gender if a == 0 else "", edgecolor = {"Male":"darkslategray","Female":"crimson"}[gender]) if demo_count > 0: ax.text(0.25 + g*0.45 + a, demo_count + 1, demo_count, ha = "center", fontsize = 18) max_count = demo_count if demo_count > max_count else max_count ax.legend(loc = "upper left", frameon = True, fontsize = 16, handlelength=2, borderpad = 0.25, edgecolor="gray") ax.set_xticks(np.arange(a+1)+.5) ticks = ax.set_xticklabels(age_bin_strings, rotation = 0) ax.set_xlabel("Age (yrs.)", fontsize = 18, fontweight = "bold") ax.set_ylabel("Subjects", fontsize = 18, fontweight = "bold") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) lim = ax.set_ylim(0, max_count+5) ax.tick_params(labelsize = 16) fig.tight_layout() fig.savefig(stats_plots + "demographics" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "demographics" + ".png", dpi=300) plt.close() ## Age + Gender + Musical Experience fig, ax = plt.subplots(figsize = standard_fig) for a, age in enumerate(sorted(subject_deduped.age_bin.unique())): for g, gender in enumerate(["Female","Male"]): bottom = 0 for e, experience in enumerate([1,0]): demo_count = len(subject_deduped.loc[(subject_deduped.age_bin == age)& (subject_deduped.gender==gender)& (subject_deduped.musical_experience==experience)]) ax.bar(0.025 + g*0.45 + a, demo_count, bottom = bottom, color = {"Male":"teal","Female":"orangered"}[gender], alpha = 0.25 if e == 1 else .6, align = "edge", width = .45, label = "{} ({})".format(gender, {1:"w/ M.E.",0:"w/o M.E."}[experience]) if a == 0 else "", edgecolor = {"Male":"darkslategray","Female":"crimson"}[gender]) bottom += demo_count ax.legend(loc = "upper left", frameon = True, fontsize = 12, handlelength = 2, borderpad = 0.25, edgecolor = "gray") ax.set_xticks(np.arange(a+1)+.5) ticks = ax.set_xticklabels(age_bin_strings, rotation = 0) ax.set_xlabel("Age (yrs.)", fontsize = 18, fontweight = "bold") ax.set_ylabel("Subjects", fontsize = 18, fontweight = 'bold') ax.tick_params(labelsize = 16) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) fig.tight_layout() fig.savefig(stats_plots + "demographics_musicalexperience" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "demographics_musicalexperience" + ".png", dpi=300) plt.close() ############### ### Musical Experience ############### ## Musical Experience Distribution musical_experience_check = lambda row: "No" if row["musical_experience"] == 0 else \ "Yes\n(Specified)" if row["musical_experience_yrs"] >= 1 else \ "Yes\n(Unspecified)" subject_deduped["musical_experience_specified"] = subject_deduped.apply(musical_experience_check, axis = 1) musical_experience_dist = subject_deduped.musical_experience_specified.value_counts() music_exp_subset = subject_deduped.loc[subject_deduped.musical_experience_yrs >= 1] fig, ax = plt.subplots(1,2, figsize = standard_fig) musical_experience_dist.plot.barh(ax = ax[0], color = "navy", edgecolor = "navy", alpha = .5) ax[0].set_yticks(np.arange(3)) ax[0].set_yticklabels(musical_experience_dist.index.values, multialignment = "center") ax[1].scatter(music_exp_subset["age"], music_exp_subset["musical_experience_yrs"], color = "navy", edgecolor = "navy", s = 50, alpha = .5) ax[1].plot([0, music_exp_subset.age.max()], [0, music_exp_subset.age.max()], linestyle = "--", color = "navy", alpha = .5) ax[0].set_xlabel("Subjects", fontsize=18, fontweight = "bold") ax[1].set_xlabel("Age (yrs.)", fontsize=18, fontweight = "bold") ax[0].set_ylabel("Experience (Response)", labelpad = 10, fontsize=18, fontweight = "bold") ax[1].set_ylabel("Experience (yrs.)", labelpad = 10, fontsize=18, fontweight = "bold") ax[1].set_xlim(left=0) ax[1].set_ylim(bottom=0) for a in ax: a.tick_params(labelsize = 16) a.spines['right'].set_visible(False) a.spines['top'].set_visible(False) fig.tight_layout() fig.subplots_adjust(wspace = .6) plt.savefig(stats_plots + "musical_experience" + FIGURE_FMT) plt.savefig(stats_plots + "musical_experience" + ".png") plt.close() ## Musical Experience with Age/Gender max_gender_count = 0 max_age_count = 0 fig, ax = plt.subplots(1,2, figsize = standard_fig) for x, experience in enumerate([0,1]): for g, gender in enumerate(["Female","Male"]): demo_counts = len(subject_deduped.loc[(subject_deduped.musical_experience==experience)& (subject_deduped.gender==gender)]) ax[0].bar(0.025 + x*.45 + g, demo_counts, color = "teal" if g == 1 else "orangered", alpha = {0:.4,1:.8}[experience], label = {1:"Yes",0:"No"}[experience] if g == 0 else "", width = .45, align = "edge", edgecolor = "darkslategray" if g == 1 else "crimson") max_gender_count = demo_counts if demo_counts > max_gender_count else max_gender_count for a, age in enumerate(subject_deduped.age_bin.unique()): demo_counts = len(subject_deduped.loc[(subject_deduped.musical_experience==experience)& (subject_deduped.age_bin==age)]) ax[1].bar(0.025 + x*.45 + a, demo_counts, color = "navy", alpha = {0:.4,1:.8}[experience], label = {1:"Yes",0:"No"}[experience] if a == 0 else "", width = .45, align = "edge", edgecolor = "navy") max_age_count = demo_counts if demo_counts > max_age_count else max_age_count ax[0].set_ylim(0, max_gender_count+5) ax[1].set_ylim(0, max_age_count + 5) ax[0].set_xticks(np.arange(2)+.5) ax[0].set_xticklabels(["Female","Male"], rotation = 45, ha = "right") ax[1].set_xticks(np.arange(a+1)+.5) ax[1].set_xticklabels(age_bin_strings, rotation = 45, ha="right") handles, labels = ax[1].get_legend_handles_labels() leg = ax[1].legend(handles, labels, loc='upper right', ncol = 1, fontsize = 12, frameon = True, title="Musical\nExperience", edgecolor="gray", borderpad = 0.25, handlelength = 2) plt.setp(leg.get_title(), fontsize=12, multialignment="center") for a in ax: a.set_ylabel("Subjects", fontsize = 18, fontweight = "bold") a.tick_params(labelsize = 14) a.spines['right'].set_visible(False) a.spines['top'].set_visible(False) fig.text(0.3, 0.04, "Gender", fontsize=18, ha="center", va="center", fontweight="bold") fig.text(0.8, 0.04, "Age", fontsize=18, ha="center", va="center", fontweight="bold") fig.tight_layout() fig.subplots_adjust(bottom=0.25) plt.savefig(stats_plots + "musical_experience_demographics" + FIGURE_FMT) plt.savefig(stats_plots + "musical_experience_demographics" + ".png") plt.close() ############### ### Make Amenable to Condition Modeling ############### ## Choose Metrics sync_error = "abs_met_sync_error_last5_rel" cont_error = "abs_nomet_sync_error_last5_rel" sync_qvc_metric = "met_qvc_last5" cont_qvc_metric = "nomet_qvc_last5" drift_metric = "nomet_drift_rel" ## Separate Columns standard_cols = ["subject", "trial_speed", "age", "age_bin", "gender", "musical_experience", "musical_experience_yrs", "sport_experience", "sport_experience_yrs", "preferred_period", "healthy", "rel_difference", "absolute_rel_difference", "online_in_range"] met_cols = [sync_error, sync_qvc_metric] nomet_cols = [cont_error, cont_qvc_metric, drift_metric] ## Separate DataFrames met_df = mean_results[standard_cols + met_cols].rename(columns = {sync_error:"error", sync_qvc_metric:"qvc"}).copy() nomet_df = mean_results[standard_cols + nomet_cols].rename(columns = {cont_error:"error", cont_qvc_metric:"qvc", drift_metric:"drift"}).copy() ## Add Condition Columns met_df["condition"] = "paced" nomet_df["condition"] = "unpaced" ## Concatenate DataFrames merged_results_df = pd.concat([met_df, nomet_df]).reset_index(drop=True) ## Dump Merged Results for Inter-task Analysis merged_results_df.to_csv("./data/merged_processed_results.csv",index=False) ################################################################################ ### Error Analysis ################################################################################ ## Fit Mixed LM Model error_model_formula = "error ~ C(gender) + age + preferred_period + trial_speed + C(musical_experience) + C(condition) + rel_difference" error_model = smf.mixedlm(error_model_formula, data = merged_results_df, groups = merged_results_df["subject"]).fit(reml=True) error_summary, error_wald = summarize_lm_model(error_model) print("Error Effects:"); print_significant(error_model, error_wald) """ Error Effects (No Preferred Period Filtering): - trial_speed chi^2(2, N = 303) = 12.05179, p = 0.00242 - C(musical_experience) chi^2(1, N = 303) = 11.96633, p = 0.00054 - C(condition) chi^2(1, N = 303) = 651.62292, p = 0.00000 - age chi^2(1, N = 303) = 9.48560, p = 0.00207 - preferred_period chi^2(1, N = 303) = 9.26603, p = 0.00233 Error Effects (With Uncertainty Filtering): - C(condition) chi^2(1, N = 267) = 599.39117, p = 0.00000 Error Effects (With 5% Threshold Filtering) - C(musical_experience) chi^2(1, N = 277) = 7.50678, p = 0.00615 - C(condition) chi^2(1, N = 277) = 629.22545, p = 0.00000 Error Effects (With 10% Threshold Filtering) - C(musical_experience) chi^2(1, N = 282) = 7.70023, p = 0.00552 - C(condition) chi^2(1, N = 282) = 639.63177, p = 0.00000 """ ## Plot Musical Experience musical_experience_avg = merged_results_df.groupby(["condition","trial_speed","musical_experience"]).agg({"error":[np.mean,std_error]}).reset_index() bar_width = .95 / 2 fig, ax = plt.subplots(1,2, figsize = standard_fig, sharey = True) for c, cond in enumerate(["paced","unpaced"]): for s, speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for e, experience in enumerate([0,1]): data_to_plot = musical_experience_avg.loc[(musical_experience_avg.condition == cond)& (musical_experience_avg.trial_speed==speed)& (musical_experience_avg.musical_experience==experience)] ax[c].bar(0.025 + s + bar_width*e, data_to_plot["error"]["mean"], yerr=data_to_plot["error"]["std_error"], color = "blue" if c == 0 else "green", edgecolor = "blue" if c == 0 else "green", align = "edge", width = bar_width, label = "" if s != 0 else "No" if e == 0 else "Yes", alpha = .4 if e == 0 else .8) for a in ax: a.set_xticks(np.arange(3)+.5) a.set_xticklabels(["20%\nSlower","Preferred","20%\nFaster"]) a.tick_params(labelsize = 14) a.spines['right'].set_visible(False) a.spines['top'].set_visible(False) ax[0].set_ylabel("Absolute Timing Error", fontsize = 16, multialignment = "center", labelpad = 15, fontweight = "bold") ax[0].yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax[0].set_title("Synchronization", fontsize = 14, fontweight = "bold", fontstyle="italic") ax[1].set_title("Continuation", fontsize = 14, fontweight = "bold", fontstyle="italic") leg = ax[0].legend(loc = "upper left", fontsize = 12, frameon = True, title="Musical\nExperience", borderpad=0.25, edgecolor = "gray", handlelength=2) plt.setp(leg.get_title(),fontsize=16,multialignment="center") fig.tight_layout() fig.subplots_adjust(wspace = .1, bottom = .2) fig.text(0.55, 0.02, 'Metronome Condition', ha='center', fontsize = 14, fontweight = "bold") fig.savefig(stats_plots + "error_musical_experience" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "error_musical_experience" + ".png", dpi=300) plt.close() ## Plot Age error_aggs = lambda vals: tuple(bootstrap_ci(vals, sample_percent = 30, samples = 1000)) age_bin_ci = merged_results_df.groupby(["condition","age_bin"]).agg(error_aggs).reset_index() age_bin_sem = merged_results_df.groupby(["condition","age_bin"]).agg({"error":std_error}).reset_index() for i in range(3): age_bin_ci[i] = age_bin_ci["error"].map(lambda j: j[i]) fig, ax = plt.subplots(1,1, figsize = standard_fig, sharey = True) for c, cond in enumerate(["paced","unpaced"]): ci_data_to_plot = age_bin_ci.loc[age_bin_ci.condition == cond] se_data_to_plot = age_bin_sem.loc[age_bin_sem.condition == cond] ax.errorbar(age_bin_points, ci_data_to_plot[1].values, yerr = se_data_to_plot["error"].values, color = "blue" if c == 0 else "green", linewidth = 2, alpha = .5) ax.fill_between([age_bin_points[0]-1] + age_bin_points[1:-1] + [age_bin_points[-1]+1], ci_data_to_plot[0].values, ci_data_to_plot[2].values, color = "blue" if c == 0 else "green", alpha = .2, label = "Synchronization" if c == 0 else "Continuation") ax.set_ylim(bottom = 0, top = 15) ax.set_xlabel("Age (yrs.)", fontsize = 16, labelpad = 10, fontweight = "bold") ax.tick_params(labelsize = 14) ax.set_xticks(age_bin_points) ax.set_xticklabels(age_bin_strings, rotation=45, ha="right") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel("Absolute Timing Error", fontsize = 16, labelpad = 10, fontweight = "bold") ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax.legend(loc = "upper right", frameon = True, facecolor = "white", fontsize = 12, edgecolor = "gray", handlelength = 2, borderpad = 0.25) fig.tight_layout() fig.savefig(stats_plots + "error_age" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "error_age" + ".png", dpi=300) plt.close() ## Plot Age + Gender error_aggs = lambda vals: tuple(bootstrap_ci(vals, sample_percent = 30, samples = 1000)) age_bin_ci = merged_results_df.groupby(["gender","age_bin"]).agg(error_aggs).reset_index() age_bin_sem = merged_results_df.groupby(["gender","age_bin"]).agg({"error":std_error}).reset_index() for i in range(3): age_bin_ci[i] = age_bin_ci["error"].map(lambda j: j[i]) fig, ax = plt.subplots(1,1, figsize = standard_fig, sharey = True) for c, gend in enumerate([0,1]): ci_data_to_plot = age_bin_ci.loc[age_bin_ci.gender == gend] se_data_to_plot = age_bin_sem.loc[age_bin_sem.gender == gend] ax.errorbar(age_bin_points, ci_data_to_plot[1].values, yerr = se_data_to_plot["error"].values, color = "teal" if c == 0 else "orangered", linewidth = 2, alpha = .8) ax.fill_between([age_bin_points[0]-1] + age_bin_points[1:-1] + [age_bin_points[-1]+1], ci_data_to_plot[0].values, ci_data_to_plot[2].values, color = "teal" if c == 0 else "orangered", alpha = .2, label = "Male" if c == 0 else "Female") ax.set_ylim(bottom = 0, top = 15) ax.set_xlabel("Age (yrs.)", fontsize = 16, labelpad = 10, fontweight = "bold") ax.tick_params(labelsize = 14) ax.set_xticks(age_bin_points) ax.set_xticklabels(age_bin_strings, rotation=45, ha="right") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel("Absolute Timing Error", fontsize = 16, labelpad = 10, fontweight = "bold") ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax.legend(loc = "upper right", frameon = True, facecolor = "white", fontsize = 16, edgecolor = "gray", handlelength = 2, borderpad = 0.25) fig.tight_layout() fig.savefig(stats_plots + "error_age_gender" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "error_age_gender" + ".png", dpi=300) plt.close() ################################################################################ ### Drift Analysis (Directional) ################################################################################ ## Fit Mixed LM Model drift_model_formula = "drift ~ C(gender) + age + preferred_period + trial_speed + C(musical_experience) + rel_difference" drift_model = smf.mixedlm(drift_model_formula, data = nomet_df, groups = nomet_df["subject"]).fit(reml=True) drift_summary, drift_wald = summarize_lm_model(drift_model) print("Drift Effects:"); print_significant(drift_model, drift_wald) """ Drift Effects (No Preferred Period Filtering): - trial_speed chi^2(2, N = 303) = 49.25982, p = 0.00000 Drift Effects (With Uncertainty Filtering): - trial_speed chi^2(2, N = 267) = 41.40586, p = 0.00000 - age chi^2(1, N = 267) = 7.88963, p = 0.00497 - preferred_period chi^2(1, N = 267) = 7.23700, p = 0.00714 Drift Effects (With 5% Threshold Filtering) - trial_speed chi^2(2, N = 277) = 39.86926, p = 0.00000 - age chi^2(1, N = 277) = 6.98763, p = 0.00821 - preferred_period chi^2(1, N = 277) = 6.90328, p = 0.00860 Drift Effects (With 10% Threshold Filtering): - trial_speed chi^2(2, N = 282) = 40.90040, p = 0.00000 - age chi^2(1, N = 282) = 6.43390, p = 0.01120 - preferred_period chi^2(1, N = 282) = 6.78579, p = 0.00919 """ ## T-Tests against no drift slowed_t = sm.stats.ttest_ind(np.zeros(int(len(nomet_df)/3)), nomet_df.loc[nomet_df.trial_speed == "SlowedDown"]["drift"].values) constant_t = sm.stats.ttest_ind(np.zeros(int(len(nomet_df)/3)), nomet_df.loc[nomet_df.trial_speed == "NoChange"]["drift"].values) sped_t = sm.stats.ttest_ind(np.zeros(int(len(nomet_df)/3)), nomet_df.loc[nomet_df.trial_speed == "SpedUp"]["drift"].values) print_str = """T-Tests - slowed_t -> {} - sped_t -> {} - constant_t -> {}""".format(slowed_t, sped_t, constant_t) print(print_str) """ T-Tests (No Preferred Period Filtering) - slowed_t -> (1.3275567940880735, 0.1848260950433708, 604.0) - sped_t -> (-6.277113722042848, 6.58859685068371e-10, 604.0) - constant_t -> (-2.1877377970784138, 0.029071224825391283, 604.0) T-Tests (With Uncertainty Filtering) - slowed_t -> (1.2720342240521, 0.20391669981027244, 532.0) - sped_t -> (-5.701114563875354, 1.9749739164792474e-08, 532.0) - constant_t -> (-1.6790128619505613, 0.09373672281069394, 532.0) T-Tests (With 5% Threshold Filtering) - slowed_t -> (1.2128057811917325, 0.22572285345057283, 552.0) - sped_t -> (-5.625754382347419, 2.9390848986489808e-08, 552.0) - constant_t -> (-1.9857100905171938, 0.04755980608810191, 552.0) T-Tests (With 10% Threshold Filtering) - slowed_t -> (1.0597393018947532, 0.28971845251315237, 562.0) - sped_t -> (-5.848257479367463, 8.433969643966803e-09, 562.0) - constant_t -> (-2.1305779018290023, 0.0335574728678482, 562.0) """ ## Standard Bar Plot of Drift vs. Trial Speed drift_by_trial_speed_avg = nomet_df.groupby(["trial_speed"]).agg({"drift":[np.mean, std_error]}) fig, ax = plt.subplots(1, 1, figsize = standard_fig, sharex = True, sharey = True) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): data_to_plot = drift_by_trial_speed_avg.loc[trial_speed] ax.bar(t, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .5, edgecolor = "navy") ax.axhline(0, color = "navy", linewidth = 1) ax.set_xticks(np.arange(3)) ax.set_xticklabels(["20% Slower","Preferred","20% Faster"]) ax.set_xlabel("Metronome Condition", fontsize = 16, labelpad = 15, fontweight = "bold") ax.tick_params(labelsize = 14) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel("Drift (ITI Percent Change)", fontsize = 16, fontweight = "bold") ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax.set_ylim(-1.2,3.2) fig.tight_layout() fig.savefig(stats_plots + "drift_trialspeed_bar" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "drift_trialspeed_bar" + ".png", dpi=300) plt.close() ## Standard Bar of Drift vs. Trial Speed, broken down by musicianship drift_by_trial_speed_me_avg = nomet_df.groupby(["trial_speed","musical_experience"]).agg({"drift": [np.mean, std_error]}) bar_width = .95/2 fig, ax = plt.subplots(1, 1, figsize = standard_fig, sharex = True, sharey = True) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for m in [0, 1]: data_to_plot = drift_by_trial_speed_me_avg.loc[trial_speed, m] ax.bar(0.025 + t + m*bar_width, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .4 if m == 0 else .8, edgecolor = "navy", label = {0:"No",1:"Yes"}[m] if t == 0 else "", width = bar_width, align = "edge") ax.axhline(0, color = "black", linewidth = 1, linestyle=":") ax.set_xticks(np.arange(3)+.5) ax.set_xticklabels(["20% Slower","Preferred","20% Faster"]) ax.set_xlabel("Metronome Condition", fontsize = 16, labelpad = 15, fontweight = "bold") ax.tick_params(labelsize = 14) ax.set_ylabel("Drift (ITI Percent Change)", fontsize = 16, fontweight = "bold") leg = ax.legend(loc = "upper left", fontsize = 12, frameon = True, facecolor = "white", title = "Musical\nExperience", borderpad=0.25, handlelength=2, edgecolor = "gray") plt.setp(leg.get_title(),fontsize=12, multialignment="center") ax.set_ylim(-2.2,3.2) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) fig.tight_layout() fig.savefig(stats_plots + "drift_trialspeed_musicalexperience_bar" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "drift_trialspeed_musicalexperience_bar" + ".png", dpi=300) plt.close() ## Standard Bar of Drift vs. Trial Speed, broken down by gender drift_by_trial_speed_gender_avg = nomet_df.groupby(["trial_speed","gender"]).agg({"drift": [np.mean, std_error]}) bar_width = .95/2 fig, ax = plt.subplots(1, 1, figsize = standard_fig, sharex = True, sharey = True) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for m in [0, 1]: data_to_plot = drift_by_trial_speed_gender_avg.loc[trial_speed, m] ax.bar(0.025 + t + m*bar_width, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "teal" if m == 0 else "orangered", alpha = .5, edgecolor = "darkslategray" if m == 0 else "crimson", label = {0:"Male",1:"Female"}[m] if t == 0 else "", width = bar_width, align = "edge") ax.axhline(0, color = "black", linewidth = 1, linestyle=":") ax.set_xticks(np.arange(3)+.5) ax.set_xticklabels(["20% Slower","Preferred","20% Faster"]) ax.set_xlabel("Metronome Condition", fontsize = 16, labelpad = 15, fontweight = "bold") ax.tick_params(labelsize = 14) ax.set_ylabel("Drift (ITI Percent Change)", fontsize = 16, fontweight = "bold") ax.legend(loc = "upper left", fontsize = 12, frameon = True, facecolor = "white", borderpad=0.25, handlelength=2, edgecolor = "gray") ax.set_ylim(-1.9,3.7) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) fig.tight_layout() fig.savefig(stats_plots + "drift_trialspeed_gender_bar" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "drift_trialspeed_gender_bar" + ".png", dpi=300) plt.close() ## Combined Standard Drift + Gender + Musical Experience fig, ax = plt.subplots(1, 3, figsize = standard_fig, sharex = False, sharey = True) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): data_to_plot = drift_by_trial_speed_avg.loc[trial_speed] ax[0].bar(t, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .5, edgecolor = "navy") ax[0].set_xticks(np.arange(3)) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for m in [0, 1]: data_to_plot = drift_by_trial_speed_gender_avg.loc[trial_speed, m] ax[1].bar(0.025 + t + m*bar_width, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "teal" if m == 0 else "orangered", alpha = .5, edgecolor = "darkslategray" if m == 0 else "crimson", label = {0:"Male",1:"Female"}[m] if t == 0 else "", width = bar_width, align = "edge") ax[1].set_xticks(np.arange(3)+.5) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for m in [0, 1]: data_to_plot = drift_by_trial_speed_me_avg.loc[trial_speed, m] ax[2].bar(0.025 + t + m*bar_width, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .4 if m == 0 else .8, edgecolor = "navy", label = {0:"No",1:"Yes"}[m] if t == 0 else "", width = bar_width, align = "edge") ax[2].set_xticks(np.arange(3)+.5) ax[1].legend(loc = "upper left", fontsize = 12, frameon = True, facecolor = "white", borderpad=0.25, handletextpad=0.25, handlelength=1) leg = ax[2].legend(loc = "upper left", fontsize = 12, frameon = True, facecolor = "white", handletextpad=0.25, borderpad=0.25, handlelength=1) plt.setp(leg.get_title(),fontsize=12,multialignment="center") for i in range(3): ax[i].axhline(0, color = "black", linewidth = 1, linestyle = ":") ax[i].set_xticklabels(["20% Slower","Preferred","20% Faster"], rotation=45, ha="right") ax[i].tick_params(labelsize = 14) if i == 1: ax[i].set_xlabel("Metronome Condition", fontsize = 16, labelpad = 15, fontweight = "bold") ax[i].spines['right'].set_visible(False) ax[i].spines['top'].set_visible(False) ax[i].yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax[0].set_ylabel("Drift\n(ITI Percent Change)", fontsize = 16, fontweight = "bold") ax[0].set_title("General", fontweight="bold", fontstyle="italic", loc="center", fontsize=14) ax[1].set_title("Sex", fontweight="bold", fontstyle="italic", loc="center", fontsize=14) ax[2].set_title("Musical\nExperience", fontweight="bold", fontstyle="italic", loc="center", fontsize=14) fig.tight_layout() fig.subplots_adjust(wspace = 0.1) fig.savefig(stats_plots + "combined_drift_standard_and_gender_and_musicalexperience" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "combined_drift_standard_and_gender_and_musicalexperience" + ".png", dpi=300) plt.close() ## Combined Standard Drift + Musical Experience fig, ax = plt.subplots(1, 2, figsize = standard_fig, sharex = False, sharey = True) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): data_to_plot = drift_by_trial_speed_avg.loc[trial_speed] ax[0].bar(t, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .5, edgecolor = "navy") ax[0].set_xticks(np.arange(3)) for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): for m in [0, 1]: data_to_plot = drift_by_trial_speed_me_avg.loc[trial_speed, m] ax[1].bar(0.025 + t + m*bar_width, data_to_plot["drift"]["mean"], yerr = data_to_plot["drift"]["std_error"], color = "navy", alpha = .4 if m == 0 else .8, edgecolor = "navy", label = {0:"No",1:"Yes"}[m] if t == 0 else "", width = bar_width, align = "edge") ax[1].set_xticks(np.arange(3)+.5) leg = ax[1].legend(loc = "upper left", fontsize = 12, frameon = True, facecolor = "white", borderpad = 0.25, handlelength = 2, edgecolor = "gray") plt.setp(leg.get_title(), fontsize=12, multialignment="center") for i in range(2): ax[i].axhline(0, color = "black", linewidth = 1, linestyle = ":") ax[i].set_xticklabels(["20%\nSlower","Preferred","20%\nFaster"]) ax[i].tick_params(labelsize = 14) ax[i].spines['right'].set_visible(False) ax[i].spines['top'].set_visible(False) ax[i].yaxis.set_major_formatter(FuncFormatter(lambda x, pos: "{:.0f}%".format(x))) ax[0].set_ylabel("Drift\n(ITI Percent Change)", fontsize = 16, fontweight = "bold") ax[0].set_title("General", fontweight="bold", fontstyle="italic", loc="center", fontsize=14) ax[1].set_title("Musical Experience", fontweight="bold", fontstyle="italic", loc="center", fontsize=14) fig.text(0.55, 0.03, "Metronome Condition", fontweight="bold", fontsize=16, ha="center", va="center") fig.tight_layout() fig.subplots_adjust(wspace = 0.1, bottom=.2) fig.savefig(stats_plots + "combined_drift_standard_and_musicalexperience" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "combined_drift_standard_and_musicalexperience" + ".png", dpi=300) plt.close() ## Within-Subject drift_pivot = pd.merge(pd.pivot_table(nomet_df, index = ["subject"], columns=["trial_speed"], values = ["drift"]), nomet_df.drop_duplicates("subject")[merge_vars], left_index=True, right_on="subject") drift_pivot["slowed_change"] = drift_pivot[("drift","SlowedDown")]-drift_pivot[("drift","NoChange")] # Want this negative drift_pivot["sped_change"] = drift_pivot[("drift","SpedUp")]-drift_pivot[("drift","NoChange")] # Want this positive drift_pivot_melted = pd.melt(drift_pivot, id_vars = merge_vars, value_vars = ["slowed_change","sped_change"]).sort_values(["subject","variable"]) ## T-Tests slowed_t = sm.stats.ttest_ind(np.zeros(int(len(drift_pivot_melted)/2)), drift_pivot_melted.loc[drift_pivot_melted.variable == "slowed_change"]["value"].values) sped_t = sm.stats.ttest_ind(np.zeros(int(len(drift_pivot_melted)/2)), drift_pivot_melted.loc[drift_pivot_melted.variable == "sped_change"]["value"].values) print_str = """T-Tests Slowed condition -> {} Sped condition -> {}""".format(slowed_t, sped_t) print(print_str) """ T-Tests (Without Preferred Period Filtering) Slowed condition -> (3.765554497783035, 0.00018242710331818079, 604.0) Sped condition -> (-3.7575886298128562, 0.0001881935490058379, 604.0) T-Tests (With Uncertainty Filtering) Slowed condition -> (3.284008542404658, 0.0010907327906088734, 532.0) Sped condition -> (-3.6105751669668, 0.00033442385427766996, 532.0) T-Tests (With 5% Threshold Filtering) Slowed condition -> (3.4548741526679922, 0.0005928601070529876, 552.0) Sped condition -> (-3.2970312997267928, 0.0010399597933973249, 552.0) T-Tests (With 10% Threshold Filtering) Slowed condition -> (3.419234468420245, 0.0006735150021045216, 562.0) Sped condition -> (-3.4026003343820297, 0.000714988922207088, 562.0) """ ## Mixed LM Model rel_model_test_form = "value ~ C(gender) + age + preferred_period + variable + C(musical_experience) + rel_difference" rel_model = smf.mixedlm(rel_model_test_form, data = drift_pivot_melted, groups = drift_pivot_melted["subject"]).fit() rel_summary, rel_wald = summarize_lm_model(rel_model) print("Within-Subject Drift Effects:"); print_significant(rel_model, rel_wald) """ Within-Subject Drift Effects (Without Preferred Period Filtering): - variable chi^2(1, N = 303) = 39.12849, p = 0.00000 Within-Subject Drift Effects (With Uncertainty Filtering): - variable chi^2(1, N = 267) = 32.58766, p = 0.00000 Within-Subject Drift Effects (With 5% Threshold Filtering): - variable chi^2(1, N = 277) = 31.96015, p = 0.00000 Within-Subject Drift Effects (With 10% Threshold Filtering): - variable chi^2(1, N = 282) = 32.94272, p = 0.00000 """ ## Plot Within-Subject Drift rel_drift_by_cond = drift_pivot_melted.groupby(["variable"]).agg({"value":[np.mean, std_error]}).reset_index() fig, ax = plt.subplots(figsize = standard_fig) for j, var in enumerate(["slowed_change","sped_change"]): data_to_plot = rel_drift_by_cond.loc[rel_drift_by_cond.variable == var] ax.bar(j, data_to_plot["value"]["mean"], yerr = data_to_plot["value"]["std_error"], color = "navy", edgecolor = "navy", alpha = .5, width = .8) ax.axhline(0, color = "black", linestyle = ":") ax.set_xticks([0,1]) ax.set_xticklabels(["20% Slower","20% Faster"]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xlabel("Metronome Condition", fontsize = 14, labelpad = 20, fontweight = "bold") ax.set_ylabel("Drift Difference from\nPreferred Period Trials", ha = "center", va = "center", multialignment="center", labelpad = 20, fontsize = 14, fontweight = "bold") ax.tick_params(labelsize = 14) fig.tight_layout() fig.savefig(stats_plots + "within_subject_drift" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "within_subject_drift" + ".png", dpi=300) plt.close() ################################################################################ ### Variability Analysis ################################################################################ ## Fit Mixed LM Model qvc_model_form = "qvc ~ C(gender) + age + preferred_period + trial_speed + C(musical_experience) + C(condition) + rel_difference" qvc_model = smf.mixedlm(qvc_model_form, data = merged_results_df, groups = merged_results_df["subject"]).fit(reml=True) qvc_model_summary, qvc_wald = summarize_lm_model(qvc_model) print("Variability Effects:"); print_significant(qvc_model, qvc_wald) """ Variability Effects (Without Preferred Period Filtering): - trial_speed chi^2(2, N = 303) = 9.79005, p = 0.00748 - C(musical_experience) chi^2(1, N = 303) = 15.79788, p = 0.00007 - C(condition) chi^2(1, N = 303) = 31.87567, p = 0.00000 - age chi^2(1, N = 303) = 69.37659, p = 0.00000 - preferred_period chi^2(1, N = 303) = 10.92312, p = 0.00095 Variability Effects (With Uncertainty Filtering): - C(musical_experience) chi^2(1, N = 267) = 13.94576, p = 0.00019 - C(condition) chi^2(1, N = 267) = 30.36104, p = 0.00000 - age chi^2(1, N = 267) = 60.06554, p = 0.00000 - preferred_period chi^2(1, N = 267) = 11.96657, p = 0.00054 Variability Effects (With 5% Threshold Filtering): - C(musical_experience) chi^2(1, N = 277) = 14.49736, p = 0.00014 - C(condition) chi^2(1, N = 277) = 29.75238, p = 0.00000 - age chi^2(1, N = 277) = 61.33191, p = 0.00000 - preferred_period chi^2(1, N = 277) = 10.96464, p = 0.00093 Variability Effects (With 10% Threshold Filtering): - C(musical_experience) chi^2(1, N = 282) = 14.66073, p = 0.00013 - C(condition) chi^2(1, N = 282) = 30.89055, p = 0.00000 - age chi^2(1, N = 282) = 63.64658, p = 0.00000 - preferred_period chi^2(1, N = 282) = 11.42360, p = 0.00073 """ ## Age Effects qvc_aggs = {"qvc": lambda values: tuple(bootstrap_ci(values, sample_percent = 30))} age_bin_var_sem = merged_results_df.groupby(["condition","age_bin"]).agg({"qvc":std_error}).reset_index() age_bin_var_ci = merged_results_df.groupby(["condition","age_bin"]).agg(qvc_aggs).reset_index() for i in range(3): age_bin_var_ci[i] = age_bin_var_ci["qvc"].map(lambda j: j[i]) fig, ax = plt.subplots(1, 1, figsize = standard_fig) for c, cond in enumerate(["paced","unpaced"]): avg_data_to_plot = age_bin_var_sem.loc[age_bin_var_sem.condition == cond] ci_data_to_plot = age_bin_var_ci.loc[age_bin_var_ci.condition == cond] ax.errorbar(age_bin_points, ci_data_to_plot[1].values, yerr = avg_data_to_plot["qvc"].values, color = "blue" if c == 0 else "green", linewidth = 2, alpha = .5) ax.fill_between([age_bin_points[0]-1] + age_bin_points[1:-1] + [age_bin_points[-1]+1], ci_data_to_plot[0].values, ci_data_to_plot[2].values, color = "blue" if c == 0 else "green", alpha = .2, label = "Synchronization" if c == 0 else "Continuation") ax.set_xlabel("Age (yrs.)", fontsize = 16, labelpad = 10, fontweight = "bold") ax.set_xticks(age_bin_points) ax.set_xticklabels(age_bin_strings, rotation=45, ha="right") ax.tick_params(labelsize = 14) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel("Quartile Variation\nCoefficient", fontsize = 16, labelpad = 10, fontweight = "bold") ax.legend(loc = "upper right", frameon = True, facecolor = "white", fontsize = 14, handlelength = 2, borderpad = 0.25, edgecolor = "gray") fig.tight_layout() fig.savefig(stats_plots + "variability_age" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "variability_age" + ".png", dpi=300) plt.close() ## Age + Gender Effects qvc_aggs = {"qvc": lambda values: tuple(bootstrap_ci(values, sample_percent = 30))} age_bin_var_sem = merged_results_df.groupby(["gender","age_bin"]).agg({"qvc":std_error}).reset_index() age_bin_var_ci = merged_results_df.groupby(["gender","age_bin"]).agg(qvc_aggs).reset_index() for i in range(3): age_bin_var_ci[i] = age_bin_var_ci["qvc"].map(lambda j: j[i]) fig, ax = plt.subplots(1, 1, figsize = standard_fig) for c, gend in enumerate([0,1]): avg_data_to_plot = age_bin_var_sem.loc[age_bin_var_sem.gender == gend] ci_data_to_plot = age_bin_var_ci.loc[age_bin_var_ci.gender == gend] ax.errorbar(age_bin_points, ci_data_to_plot[1].values, yerr = avg_data_to_plot["qvc"].values, color = "teal" if c == 0 else "orangered", linewidth = 2, alpha = .5) ax.fill_between([age_bin_points[0]-1] + age_bin_points[1:-1] + [age_bin_points[-1]+1], ci_data_to_plot[0].values, ci_data_to_plot[2].values, color = "teal" if c == 0 else "orangered", alpha = .2, label = "Male" if c == 0 else "Female") ax.set_xlabel("Age (yrs.)", fontsize = 16, labelpad = 10, fontweight = "bold") ax.set_xticks(age_bin_points) ax.set_xticklabels(age_bin_strings, rotation=45, ha="right") ax.tick_params(labelsize = 14) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel("Quartile Variation\nCoefficient", fontsize = 16, labelpad = 10, fontweight = "bold") ax.legend(loc = "upper right", frameon = True, facecolor = "white", fontsize = 14, borderpad = 0.25, edgecolor = "gray", handlelength = 2) fig.tight_layout() fig.savefig(stats_plots + "variability_age_gender" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "variability_age_gender" + ".png", dpi=300) plt.close() ## Trial Speed speed_var_avg = merged_results_df.groupby(["condition","trial_speed"]).agg({"qvc":[np.mean, std_error]}).reset_index() bar_width = .95/2 fig, ax = plt.subplots(figsize = standard_fig) for c, cond in enumerate(["paced","unpaced"]): for t, trial_speed in enumerate(["SlowedDown","NoChange","SpedUp"]): data_to_plot = speed_var_avg.loc[(speed_var_avg.condition==cond)& (speed_var_avg.trial_speed==trial_speed)] ax.bar(0.025 + t + bar_width*c, data_to_plot["qvc"]["mean"], yerr = data_to_plot["qvc"]["std_error"], align = "edge", width = bar_width, color = "blue" if c == 0 else "green", edgecolor = "navy" if c == 0 else "darkgreen", label = {0:"Synchronization",1:"Continuation"}[c] if t == 0 else "", alpha = .2) ax.set_xticks(np.arange(3)+.5) ax.set_xticklabels(["20% Slower","Preferred","20% Faster"]) ax.set_xlabel("Metronome Condition", fontsize = 16, labelpad = 15, fontweight = "bold") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(labelsize = 14) ax.set_ylabel("Quartile Variation\nCoefficient", fontsize = 16, labelpad = 15, fontweight = "bold") ax.legend(loc = "lower right", frameon = True, facecolor = "white", fontsize = 16, borderpad = 0.25, handlelength = 2, edgecolor = "gray") fig.tight_layout() fig.savefig(stats_plots + "variability_trialspeed" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "variability_trialspeed" + ".png", dpi=300) plt.close() ## Musical Experience + Variability qvc_music_avg = merged_results_df.groupby(["condition","trial_speed","musical_experience"]).agg({"qvc":[np.mean, std_error]}).reset_index() fig, ax = plt.subplots(1, 2, figsize = standard_fig, sharey = True, sharex = True) for c, cond in enumerate(["paced","unpaced"]): for me in range(2): data_to_plot = qvc_music_avg.set_index(["condition","musical_experience"]).loc[cond, me] data_to_plot = data_to_plot.set_index("trial_speed").loc[["SlowedDown","NoChange","SpedUp"]] ax[c].bar(0.025 + np.arange(3) + .95/2*me, data_to_plot["qvc"]["mean"].values, yerr = data_to_plot["qvc"]["std_error"].values, color = "blue" if c == 0 else "green", edgecolor = "blue" if c == 0 else "green", width = .95/2, alpha = .4 if me == 0 else .8, align = "edge", label = "Yes" if me == 1 else "No") ax[c].spines['right'].set_visible(False) ax[c].spines['top'].set_visible(False) ax[c].set_xticks(np.arange(3) + .5) ax[c].tick_params(labelsize = 14) ax[c].set_xticklabels(["20% Slower","Preferred","20% Faster"], rotation=45, ha="right") ax[0].set_title("Synchronization", fontsize = 16, fontweight = "bold", fontstyle = "italic") ax[1].set_title("Continuation", fontsize = 16, fontweight = "bold", fontstyle = "italic") ax[0].set_ylabel("Quartile Variation\nCoefficient", fontsize = 16, labelpad = 15, fontweight = "bold") leg = ax[1].legend(loc = "lower right", fontsize = 12, frameon = True, facecolor = "white", framealpha = 1, title = "Musical\nExperience", borderpad = 0.25, edgecolor = "gray") plt.setp(leg.get_title(),fontsize=12, multialignment="center") fig.text(0.55, 0.02, 'Metronome Condition', ha='center', fontsize = 14, fontweight = "bold") fig.tight_layout() fig.subplots_adjust(top = .9, bottom = .35, wspace = .12) fig.savefig(stats_plots + "variability_musicalexperience_trialspeed" + FIGURE_FMT, dpi=300) fig.savefig(stats_plots + "variability_musicalexperience_trialspeed" + ".png", dpi=300) plt.close() ################################################################################ ### Subject Filtering ################################################################################ ## Want to understand which subjects were thrown out (and why) ## Read in Survey Data survey_data_full = pd.read_csv("./data/survey.csv") survey_data_full["Subject"] = survey_data_full.Subject.map(int) ################ ### Stage 1 ################ ## Load Results stage_1_results = load_pickle("./data/manual_inspection.pickle") ## Format Results stage_1_results = pd.Series(stage_1_results).reset_index().rename(columns = {"index":"file",0:"pass"}) stage_1_results["subject"] = stage_1_results["file"].map(lambda i: i.split("/")[-1].replace(".mat","")).map(int) ## Extract Non-Passing + Merge Demos stage_1_nonpassing = stage_1_results.loc[stage_1_results["pass"] != "pass"].copy() stage_1_nonpassing = pd.merge(stage_1_nonpassing, survey_data_full[["Subject","Age","Gender"]], left_on = "subject", right_on = "Subject", how = "left") """ 12 subjects removed due to sensor issue 3 subjects removed due to forgetting to tap (2x10yrs, 1x5yrs) 2 subject removed due to tapping style (1x6yrs, 1x14yrs) 1 subject removed due to missing survey data """ s1_filtered_subjects = stage_1_nonpassing.subject.unique() ################ ### Stage 2 ################ ## Load Results stage_2_results = load_pickle("./data/stage_2_processed.pickle") ## Identify Failures stage_2_failures =
pd.DataFrame(stage_2_results)
pandas.DataFrame
from data_get import * from baseline_functions import * from calendar_date import * import global_vars global_vars.init() if global_vars.GRAPHFLAG > 0: from graph_functions import * from error_graphs import * import mysql.connector import pandas as pd import datetime import time # main() # This function goes through each SAID in the SAID_TABLE sql table, retrieves its data and runs baselinining methods on them def main(): # Connect to table that connects SAIDs cnx = mysql.connector.connect(user=global_vars.DATABASE_USERNAME, password=global_vars.DATABASE_PASSWORD, host=global_vars.DATABASE_IP_RO, database=global_vars.DATABASE_NAME) cursor = cnx.cursor() # return if global_vars.INTERVALFLAG == 0: query = "SELECT * FROM SAID_TABLE_DR_15 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) interval = 15 dbnm = 'MIN15' elif global_vars.INTERVALFLAG == 1: query = "SELECT * FROM SAID_TABLE_DR_60 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) interval = 60 dbnm = 'MIN60' elif global_vars.INTERVALFLAG == 2: query = "SELECT * FROM SAID_TABLE_NONDR_15 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) elif global_vars.INTERVALFLAG == 3: query = "SELECT * FROM SAID_TABLE_NONDR_60 LIMIT %i OFFSET %i" %(global_vars.SAID_LIMIT, global_vars.SAID_OFFSET) cursor.execute(query) said_counter = 0 tic = time.time() said_packet = [] said_pack_count = 0 PACK_SIZE = 25 storage_df_columns = global_vars.storage_df_columns pack_bank = [] # Go through each SAID for row in cursor: SAID = str(row[0]).zfill(10) said_packet.append(SAID) said_pack_count += 1 if said_pack_count%PACK_SIZE != 0: continue pack_bank.append(said_packet) said_packet = [] if len(pack_bank)*PACK_SIZE > 1000: # print(pack_bank) break else: continue said_pack_count = 0 for said_packet in pack_bank: said_pack_count += PACK_SIZE tic_packet = time.time() print("packet",said_packet) packet_string = '('+str(said_packet)[1:-1]+')' try: cnx = mysql.connector.connect(user=global_vars.DATABASE_USERNAME, password=global_vars.DATABASE_PASSWORD, host=global_vars.DATABASE_IP_RO, database=global_vars.DATABASE_NAME) tic_query = time.time() query = "SELECT * FROM %s WHERE SA in %s" %(dbnm, packet_string) all_interval_df = pd.read_sql_query(query,cnx) all_interval_df['DATE'] = pd.to_datetime(all_interval_df['DATE']) toc_query = time.time() print("All interval df shape:", all_interval_df.shape, "- time:", toc_query-tic_query) except: print("Interval_df error") said_packet = [] continue # storage_df = pd.DataFrame(columns=storage_df_columns) nonres_storage_df = pd.DataFrame(columns=storage_df_columns) pdp_storage_df = pd.DataFrame(columns=storage_df_columns) cbp_storage_df = pd.DataFrame(columns=storage_df_columns) bip_storage_df = pd.DataFrame(columns=storage_df_columns) amp_storage_df = pd.DataFrame(columns=storage_df_columns) res_storage_df = pd.DataFrame(columns=storage_df_columns) smartrate_storage_df = pd.DataFrame(columns=storage_df_columns) smartac_storage_df =
pd.DataFrame(columns=storage_df_columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Dec 1 15:28:19 2021 @author: ashum """ from skimage import io import pandas as pd import os #get a list of files from file path pathforall= r'C:\Users\ashum\OneDrive\Desktop\Leukemia\archive\C-NMC_Leukemia\training_data\fold_0\all' dir_list=os.listdir(pathforall) pathforhem= r'C:\Users\ashum\OneDrive\Desktop\Leukemia\archive\C-NMC_Leukemia\training_data\fold_0\hem' dir_list2=os.listdir(pathforhem) #initiate empty data frame df = pd.DataFrame() #loop images into the dataframe and label them with the class ALL (leukemia) (stopped at 300 to reduce processing time for test runs) for i in dir_list[:300]: img=io.imread(pathforall + "\\" + i) my_df = pd.DataFrame(img.flatten()).transpose() my_df['Class'] = 'ALL' #my_df=my_df[["mean","std"]] my_df=my_df.head(n=1) df = df.append(my_df, ignore_index=True) #df.hist(bins=10) #plt.show() #loop images into the dataframe and label them with the class HEM (non-leukemia) (stopped at 300 to reduce processing time for test runs) df2 = pd.DataFrame() for i in dir_list2[:300]: img2=io.imread(pathforhem + "\\" + i) my_df2 = pd.DataFrame(img2.flatten()).transpose() #my_df2["mean"]=my_df2.loc[:,0].mean() #my_df2["std"]=my_df2.iloc[:,-1].std() my_df2['Class'] = 'Not ALL' #my_df2=my_df2[["mean","std",]] my_df2=my_df2.head(n=1) df2 = df2.append(my_df2, ignore_index=True) #df2.hist(bins=10) #plt.show() #union the two dataframes created df_stack =
pd.concat([df, df2])
pandas.concat
from datetime import datetime, timedelta import logging import re import pandas as pd from scheduler.impala_api_client import ImpalaApiResource from scheduler.constants import NativeQueryInfoColumn, FormativeQueryInfoColumn from scheduler.global_utils import convert_mem_unit, spend_time MEM_LIMIT_REGEX = re.compile(r"MEM_LIMIT=(\d+)") HOSTS_REGEX = re.compile(r"hosts=(\d+)") LOGGER = logging.getLogger(__name__) class ClouderaManager(object): """ The ClouderaManager class that provides methods for get the query information, the configuration of impala cluster and update the configuration of impala cluster. """ def __init__(self, server_url, api_version, cluster_name, username, password): """ Creates a ClouderaManager object that provides methods to get and update the query information and the configuration of impala cluster. :param server_url: (str) The Server url. :param api_version: (str) The api version. :param cluster_name: (str) The cluster name. :param username: (str) The username for login cloudera manager. :param password: (str) The password for login clo<PASSWORD>. """ self.__api = ImpalaApiResource(server_url, api_version, cluster_name, username, password) @classmethod def __add_timedelta(cls, gmt): """ Add timedelta on the Greenwich mean time. :param gmt: (str) Greenwich mean time. :return: (datetime) A datetime object that add 8 hours at greenwich mean time. """ return datetime.strptime(gmt, "%Y-%m-%dT%H:%M:%S.%fZ") + timedelta(hours=8) @classmethod def __find_mem_limit(cls, content): """ Search MEM_LIMIT in the given content by regex. :param content: (str) The content to be searched. :return: (int) A integer value of MEM_LIMIT. """ matcher = MEM_LIMIT_REGEX.search(content) return int(matcher.group(1)) if matcher else 0 @classmethod def __find_max_hosts(cls, content): """ Search max hosts in the given content by regex. :param content: (str) The content to be searched. :return: (int) A integer value of max hosts. """ str_hosts = HOSTS_REGEX.findall(content) return max(int(str_host) for str_host in str_hosts) if str_hosts else 0 def __parse_requires_from_details(self, query_id): """ Parse mem limit and max hosts from query details by query_id. :param query_id: (str) The query id. :return: (tuple) A tuple object that contains mem limit and max hosts. """ mem_limit, max_hosts = 0, 0 try: query_details_response = self.get_query_details(query_id) query_details = query_details_response[NativeQueryInfoColumn.DETAILS] mem_limit = ClouderaManager.__find_mem_limit(query_details) max_hosts = ClouderaManager.__find_max_hosts(query_details) except Exception as e: LOGGER.warning(e, "query_id", query_id) return convert_mem_unit(mem_limit, "B", "MB"), max_hosts def fetch_page_impala_query_info(self, start_time, end_time, filter_str=""): """ Get filtered impala query information by page from the end_time to the start_time. :param start_time: (datetime) The start time to fetching query information. :param end_time: (datetime) The end time to fetching query information. :param filter_str: (str) The filter string to fetch query information. :return: (DataFrame) A DataFrame object of fetched query information. """ LOGGER.info("fetching impala query info page data, start_time: %s, end_time: %s" % (start_time, end_time)) impala_query_response = self.get_impala_queries(start_time, end_time, filter_str) queries = impala_query_response[NativeQueryInfoColumn.QUERIES] LOGGER.info("impala query info page data size: %d" % len(queries)) if not queries: return None df_queries = pd.DataFrame(impala_query_response[NativeQueryInfoColumn.QUERIES]) sr_query_ids = df_queries[NativeQueryInfoColumn.QUERY_ID] sr_start_times = df_queries[NativeQueryInfoColumn.START_TIME].apply(ClouderaManager.__add_timedelta) sr_duration_mills = df_queries[NativeQueryInfoColumn.DURATION_MILLIS] sr_pools = [x[NativeQueryInfoColumn.POOL] for x in df_queries[NativeQueryInfoColumn.ATTRIBUTES]] sr_admission_waits = [x[NativeQueryInfoColumn.ADMISSION_WAIT] for x in df_queries[NativeQueryInfoColumn.ATTRIBUTES]] df_base = pd.DataFrame(data={FormativeQueryInfoColumn.QUERY_ID: sr_query_ids, FormativeQueryInfoColumn.START_TIME: sr_start_times, FormativeQueryInfoColumn.DURATION_MILLIS: sr_duration_mills, FormativeQueryInfoColumn.POOL: sr_pools, FormativeQueryInfoColumn.ADMISSION_WAIT: sr_admission_waits}) sr_details = sr_query_ids.apply(self.__parse_requires_from_details) df_details = pd.DataFrame(data=(x for x in sr_details), columns=[FormativeQueryInfoColumn.MEM_LIMIT, FormativeQueryInfoColumn.MAX_HOST]) LOGGER.info("finish fetch impala query info page data, start_time: %s, end_time: %s" % (start_time, end_time)) return df_base.join(df_details) def fetch_impala_query_info(self, start_time, end_time, filter_str): """ Get total filtered impala query information between end_time and start_time. :param start_time: (datetime) The start time to fetching query information. :param end_time: (datetime) The end time to fetching query information. :param filter_str: (str) The filter string to fetch query information. :return: (DataFrame) A DataFrame object of total fetched query information. """ LOGGER.info("start fetch impala query info data, start_time: %s, end_time: %s" % (start_time, end_time)) data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Jul 10 10:56:14 2019 @author: Wignand """ from scipy import stats import pandas as pd import numpy as np import seaborn as sns import matplotlib.pylab as plt import matplotlib as mpl import matplotlib.cm as cm from matplotlib.backends.backend_agg import FigureCanvasAgg import matplotlib.image as mplimg import matplotlib.ticker as ticker import pylab as pl import importlib from autoprot import venn import logomaker import colorsys import matplotlib.patches as patches import colorsys from itertools import chain from datetime import date from wordcloud import WordCloud from wordcloud import STOPWORDS from pdfminer3.layout import LAParams, LTTextBox from pdfminer3.pdfpage import PDFPage from pdfminer3.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer3.converter import PDFPageAggregator, TextConverter import io from PIL import Image import plotly import plotly.express as px import plotly.graph_objects as go plt.rcParams['pdf.fonttype'] = 42 from io import BytesIO from scipy.stats import ttest_1samp def correlogram(df, columns=None, file="proteinGroups",log=True,saveDir = None, saveType="pdf", saveName="pairPlot", lowerTriang="scatter", sampleFrac=None, bins=100): """ function plots a pair plot of the dataframe intensity columns in order to assess the reproducibility :params df: dataframe from MaxQuant file :params columns: the columns to be visualized if None all intensity columns will be analyzed :params pattern: the regex pattern that will be applied to filter the intensity columns :sampleFrac: float; fraction between 0 and 1 to indicate fraction of entries to be shown in scatter might be useful for large correlograms in order to make it possible to work with those in illustrator """ def getColor(r): colors = { 0.8: "#d67677", 0.81: "#d7767c", 0.82: "#d87681", 0.83: "#da778c", 0.84: "#dd7796", 0.85: "#df78a1", 0.86: "#e179ad", 0.87: "#e379b8", 0.88: "#e57ac4", 0.89: "#e77ad0", 0.90: "#ea7bdd", 0.91 : "#ec7bea", 0.92 : "#e57cee", 0.93 : "#dc7cf0", 0.94 : "#d27df2", 0.95 : "#c87df4", 0.96 : "#be7df6", 0.97 : "#b47ef9", 0.98 : "#a97efb", 0.99 : "#9e7ffd", 1 : "#927fff" } if r <= 0.8: return "#D63D40" else: return colors[np.round(r,2)] def corrfunc(x, y, **kws): df = pd.DataFrame({"x":x, "y":y}) df = df.dropna() x = df["x"].values y = df["y"].values r, _ = stats.pearsonr(x, y) ax = plt.gca() ax.annotate("r = {:.2f}".format(r), xy=(.1, .9), xycoords=ax.transAxes) def heatmap(x,y,**kws): df = pd.DataFrame({"x":x, "y":y}) df = df.replace(-np.inf, np.nan).dropna() x = df["x"].values y = df["y"].values r, _ = stats.pearsonr(x,y) ax = plt.gca() ax.add_patch(mpl.patches.Rectangle((0,0),5,5, color=getColor(r), transform=ax.transAxes)) ax.tick_params(axis = "both", which = "both", length=0) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) def lowerScatter(x,y,**kws): data = pd.DataFrame({"x":x, "y":y}) if sampleFrac is not None: data = data.sample(int(data.shape[0]*sampleFrac)) ax = plt.gca() ax.scatter(data['x'],data['y'], linewidth=0) def lowerHexBin(x,y,**kws): plt.hexbin(x,y, cmap="Blues", bins=bins, gridsize=50) def lowerhist2D(x,y,**kws): df =
pd.DataFrame({"x":x, "y":y})
pandas.DataFrame
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import statistics from os import mkdir from os.path import exists, isdir from os.path import join as pjoin import matplotlib.pyplot as plt import matplotlib.image as mpimg import nltk import numpy as np import pandas as pd import plotly import plotly.express as px import plotly.figure_factory as ff import plotly.graph_objects as go import pyarrow.feather as feather import seaborn as sns import torch from datasets import load_from_disk from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer from .dataset_utils import (CNT, DEDUP_TOT, EMBEDDING_FIELD, LENGTH_FIELD, OUR_LABEL_FIELD, OUR_TEXT_FIELD, PROP, TEXT_NAN_CNT, TOKENIZED_FIELD, TOT_OPEN_WORDS, TOT_WORDS, TXT_LEN, VOCAB, WORD, extract_field, load_truncated_dataset) from .embeddings import Embeddings from .npmi import nPMI from .zipf import Zipf pd.options.display.float_format = "{:,.3f}".format logs = logging.getLogger(__name__) logs.setLevel(logging.WARNING) logs.propagate = False if not logs.handlers: # Logging info to log file file = logging.FileHandler("./log_files/dataset_statistics.log") fileformat = logging.Formatter("%(asctime)s:%(message)s") file.setLevel(logging.INFO) file.setFormatter(fileformat) # Logging debug messages to stream stream = logging.StreamHandler() streamformat = logging.Formatter("[data_measurements_tool] %(message)s") stream.setLevel(logging.WARNING) stream.setFormatter(streamformat) logs.addHandler(file) logs.addHandler(stream) # TODO: Read this in depending on chosen language / expand beyond english nltk.download("stopwords") _CLOSED_CLASS = ( stopwords.words("english") + [ "t", "n", "ll", "d", "wasn", "weren", "won", "aren", "wouldn", "shouldn", "didn", "don", "hasn", "ain", "couldn", "doesn", "hadn", "haven", "isn", "mightn", "mustn", "needn", "shan", "would", "could", "dont", "u", ] + [str(i) for i in range(0, 21)] ) _IDENTITY_TERMS = [ "man", "woman", "non-binary", "gay", "lesbian", "queer", "trans", "straight", "cis", "she", "her", "hers", "he", "him", "his", "they", "them", "their", "theirs", "himself", "herself", ] # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) _MIN_VOCAB_COUNT = 10 _TREE_DEPTH = 12 _TREE_MIN_NODES = 250 # as long as we're using sklearn - already pushing the resources _MAX_CLUSTER_EXAMPLES = 5000 _NUM_VOCAB_BATCHES = 2000 _TOP_N = 100 _CVEC = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=True) class DatasetStatisticsCacheClass: def __init__( self, cache_dir, dset_name, dset_config, split_name, text_field, label_field, label_names, calculation=None, use_cache=False, ): # This is only used for standalone runs for each kind of measurement. self.calculation = calculation self.our_text_field = OUR_TEXT_FIELD self.our_length_field = LENGTH_FIELD self.our_label_field = OUR_LABEL_FIELD self.our_tokenized_field = TOKENIZED_FIELD self.our_embedding_field = EMBEDDING_FIELD self.cache_dir = cache_dir # Use stored data if there; otherwise calculate afresh self.use_cache = use_cache ### What are we analyzing? # name of the Hugging Face dataset self.dset_name = dset_name # name of the dataset config self.dset_config = dset_config # name of the split to analyze self.split_name = split_name # TODO: Chould this be "feature" ? # which text fields are we analysing? self.text_field = text_field # which label fields are we analysing? self.label_field = label_field # what are the names of the classes? self.label_names = label_names ## Hugging Face dataset objects self.dset = None # original dataset # HF dataset with all of the self.text_field instances in self.dset self.text_dset = None self.dset_peek = None # HF dataset with text embeddings in the same order as self.text_dset self.embeddings_dset = None # HF dataset with all of the self.label_field instances in self.dset self.label_dset = None ## Data frames # Tokenized text self.tokenized_df = None # save sentence length histogram in the class so it doesn't ge re-computed self.length_df = None self.fig_tok_length = None # Data Frame version of self.label_dset self.label_df = None # save label pie chart in the class so it doesn't ge re-computed self.fig_labels = None # Vocabulary with word counts in the dataset self.vocab_counts_df = None # Vocabulary filtered to remove stopwords self.vocab_counts_filtered_df = None self.sorted_top_vocab_df = None ## General statistics and duplicates self.total_words = 0 self.total_open_words = 0 # Number of NaN values (NOT empty strings) self.text_nan_count = 0 # Number of text items that appear more than once in the dataset self.dedup_total = 0 # Duplicated text items along with their number of occurences ("count") self.dup_counts_df = None self.avg_length = None self.std_length = None self.general_stats_dict = None self.num_uniq_lengths = 0 # clustering text by embeddings # the hierarchical clustering tree is represented as a list of nodes, # the first is the root self.node_list = [] # save tree figure in the class so it doesn't ge re-computed self.fig_tree = None # keep Embeddings object around to explore clusters self.embeddings = None # nPMI # Holds a nPMIStatisticsCacheClass object self.npmi_stats = None # TODO: Have lowercase be an option for a user to set. self.to_lowercase = True # The minimum amount of times a word should occur to be included in # word-count-based calculations (currently just relevant to nPMI) self.min_vocab_count = _MIN_VOCAB_COUNT # zipf self.z = None self.zipf_fig = None self.cvec = _CVEC # File definitions # path to the directory used for caching if not isinstance(text_field, str): text_field = "-".join(text_field) # if isinstance(label_field, str): # label_field = label_field # else: # label_field = "-".join(label_field) self.cache_path = pjoin( self.cache_dir, f"{dset_name}_{dset_config}_{split_name}_{text_field}", # {label_field}, ) # Cache files not needed for UI self.dset_fid = pjoin(self.cache_path, "base_dset") self.tokenized_df_fid = pjoin(self.cache_path, "tokenized_df.feather") self.label_dset_fid = pjoin(self.cache_path, "label_dset") # Needed for UI -- embeddings self.text_dset_fid = pjoin(self.cache_path, "text_dset") # Needed for UI self.dset_peek_json_fid = pjoin(self.cache_path, "dset_peek.json") ## Label cache files. # Needed for UI self.fig_labels_json_fid = pjoin(self.cache_path, "fig_labels.json") ## Length cache files # Needed for UI self.length_df_fid = pjoin(self.cache_path, "length_df.feather") # Needed for UI self.length_stats_json_fid = pjoin(self.cache_path, "length_stats.json") self.vocab_counts_df_fid = pjoin(self.cache_path, "vocab_counts.feather") # Needed for UI self.dup_counts_df_fid = pjoin(self.cache_path, "dup_counts_df.feather") # Needed for UI self.fig_tok_length_fid = pjoin(self.cache_path, "fig_tok_length.png") ## General text stats # Needed for UI self.general_stats_json_fid = pjoin(self.cache_path, "general_stats_dict.json") # Needed for UI self.sorted_top_vocab_df_fid = pjoin( self.cache_path, "sorted_top_vocab.feather" ) ## Zipf cache files # Needed for UI self.zipf_fid = pjoin(self.cache_path, "zipf_basic_stats.json") # Needed for UI self.zipf_fig_fid = pjoin(self.cache_path, "zipf_fig.json") ## Embeddings cache files # Needed for UI self.node_list_fid = pjoin(self.cache_path, "node_list.th") # Needed for UI self.fig_tree_json_fid = pjoin(self.cache_path, "fig_tree.json") self.live = False def set_deployment(self, live=True): """ Function that we can hit when we deploy, so that cache files are not written out/recalculated, but instead that part of the UI can be punted. """ self.live = live def check_cache_dir(self): """ First function to call to create the cache directory. If in deployment mode and cache directory does not already exist, return False. """ if self.live: return isdir(self.cache_path) else: if not isdir(self.cache_path): logs.warning("Creating cache directory %s." % self.cache_path) mkdir(self.cache_path) return isdir(self.cache_path) def get_base_dataset(self): """Gets a pointer to the truncated base dataset object.""" if not self.dset: self.dset = load_truncated_dataset( self.dset_name, self.dset_config, self.split_name, cache_name=self.dset_fid, use_cache=True, use_streaming=True, ) def load_or_prepare_general_stats(self, save=True): """ Content for expander_general_stats widget. Provides statistics for total words, total open words, the sorted top vocab, the NaN count, and the duplicate count. Args: Returns: """ # General statistics if ( self.use_cache and exists(self.general_stats_json_fid) and exists(self.dup_counts_df_fid) and exists(self.sorted_top_vocab_df_fid) ): logs.info("Loading cached general stats") self.load_general_stats() else: if not self.live: logs.info("Preparing general stats") self.prepare_general_stats() if save: write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid) write_df(self.dup_counts_df, self.dup_counts_df_fid) write_json(self.general_stats_dict, self.general_stats_json_fid) def load_or_prepare_text_lengths(self, save=True): """ The text length widget relies on this function, which provides a figure of the text lengths, some text length statistics, and a text length dataframe to peruse. Args: save: Returns: """ # Text length figure if self.use_cache and exists(self.fig_tok_length_fid): self.fig_tok_length_png = mpimg.imread(self.fig_tok_length_fid) else: if not self.live: self.prepare_fig_text_lengths() if save: self.fig_tok_length.savefig(self.fig_tok_length_fid) # Text length dataframe if self.use_cache and exists(self.length_df_fid): self.length_df = feather.read_feather(self.length_df_fid) else: if not self.live: self.prepare_length_df() if save: write_df(self.length_df, self.length_df_fid) # Text length stats. if self.use_cache and exists(self.length_stats_json_fid): with open(self.length_stats_json_fid, "r") as f: self.length_stats_dict = json.load(f) self.avg_length = self.length_stats_dict["avg length"] self.std_length = self.length_stats_dict["std length"] self.num_uniq_lengths = self.length_stats_dict["num lengths"] else: if not self.live: self.prepare_text_length_stats() if save: write_json(self.length_stats_dict, self.length_stats_json_fid) def prepare_length_df(self): if not self.live: if self.tokenized_df is None: self.tokenized_df = self.do_tokenization() self.tokenized_df[LENGTH_FIELD] = self.tokenized_df[TOKENIZED_FIELD].apply( len ) self.length_df = self.tokenized_df[ [LENGTH_FIELD, OUR_TEXT_FIELD] ].sort_values(by=[LENGTH_FIELD], ascending=True) def prepare_text_length_stats(self): if not self.live: if ( self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns or self.length_df is None ): self.prepare_length_df() avg_length = sum(self.tokenized_df[LENGTH_FIELD]) / len( self.tokenized_df[LENGTH_FIELD] ) self.avg_length = round(avg_length, 1) std_length = statistics.stdev(self.tokenized_df[LENGTH_FIELD]) self.std_length = round(std_length, 1) self.num_uniq_lengths = len(self.length_df["length"].unique()) self.length_stats_dict = { "avg length": self.avg_length, "std length": self.std_length, "num lengths": self.num_uniq_lengths, } def prepare_fig_text_lengths(self): if not self.live: if ( self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns ): self.prepare_length_df() self.fig_tok_length = make_fig_lengths(self.tokenized_df, LENGTH_FIELD) def load_or_prepare_embeddings(self): self.embeddings = Embeddings(self, use_cache=self.use_cache) self.embeddings.make_hierarchical_clustering() self.node_list = self.embeddings.node_list self.fig_tree = self.embeddings.fig_tree # get vocab with word counts def load_or_prepare_vocab(self, save=True): """ Calculates the vocabulary count from the tokenized text. The resulting dataframes may be used in nPMI calculations, zipf, etc. :param :return: """ if self.use_cache and exists(self.vocab_counts_df_fid): logs.info("Reading vocab from cache") self.load_vocab() self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df) else: logs.info("Calculating vocab afresh") if self.tokenized_df is None: self.tokenized_df = self.do_tokenization() if save: logs.info("Writing out.") write_df(self.tokenized_df, self.tokenized_df_fid) word_count_df = count_vocab_frequencies(self.tokenized_df) logs.info("Making dfs with proportion.") self.vocab_counts_df = calc_p_word(word_count_df) self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df) if save: logs.info("Writing out.") write_df(self.vocab_counts_df, self.vocab_counts_df_fid) logs.info("unfiltered vocab") logs.info(self.vocab_counts_df) logs.info("filtered vocab") logs.info(self.vocab_counts_filtered_df) def load_vocab(self): with open(self.vocab_counts_df_fid, "rb") as f: self.vocab_counts_df = feather.read_feather(f) # Handling for changes in how the index is saved. self.vocab_counts_df = self._set_idx_col_names(self.vocab_counts_df) def load_or_prepare_text_duplicates(self, save=True): if self.use_cache and exists(self.dup_counts_df_fid): with open(self.dup_counts_df_fid, "rb") as f: self.dup_counts_df = feather.read_feather(f) elif self.dup_counts_df is None: if not self.live: self.prepare_text_duplicates() if save: write_df(self.dup_counts_df, self.dup_counts_df_fid) else: if not self.live: # This happens when self.dup_counts_df is already defined; # This happens when general_statistics were calculated first, # since general statistics requires the number of duplicates if save: write_df(self.dup_counts_df, self.dup_counts_df_fid) def load_general_stats(self): self.general_stats_dict = json.load( open(self.general_stats_json_fid, encoding="utf-8") ) with open(self.sorted_top_vocab_df_fid, "rb") as f: self.sorted_top_vocab_df = feather.read_feather(f) self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT] self.dedup_total = self.general_stats_dict[DEDUP_TOT] self.total_words = self.general_stats_dict[TOT_WORDS] self.total_open_words = self.general_stats_dict[TOT_OPEN_WORDS] def prepare_general_stats(self): if not self.live: if self.tokenized_df is None: logs.warning("Tokenized dataset not yet loaded; doing so.") self.load_or_prepare_tokenized_df() if self.vocab_counts_df is None: logs.warning("Vocab not yet loaded; doing so.") self.load_or_prepare_vocab() self.sorted_top_vocab_df = self.vocab_counts_filtered_df.sort_values( "count", ascending=False ).head(_TOP_N) self.total_words = len(self.vocab_counts_df) self.total_open_words = len(self.vocab_counts_filtered_df) self.text_nan_count = int(self.tokenized_df.isnull().sum().sum()) self.prepare_text_duplicates() self.dedup_total = sum(self.dup_counts_df[CNT]) self.general_stats_dict = { TOT_WORDS: self.total_words, TOT_OPEN_WORDS: self.total_open_words, TEXT_NAN_CNT: self.text_nan_count, DEDUP_TOT: self.dedup_total, } def prepare_text_duplicates(self): if not self.live: if self.tokenized_df is None: self.load_or_prepare_tokenized_df() dup_df = self.tokenized_df[self.tokenized_df.duplicated([OUR_TEXT_FIELD])] self.dup_counts_df = pd.DataFrame( dup_df.pivot_table( columns=[OUR_TEXT_FIELD], aggfunc="size" ).sort_values(ascending=False), columns=[CNT], ) self.dup_counts_df[OUR_TEXT_FIELD] = self.dup_counts_df.index.copy() def load_or_prepare_dataset(self, save=True): """ Prepares the HF datasets and data frames containing the untokenized and tokenized text as well as the label values. self.tokenized_df is used further for calculating text lengths, word counts, etc. Args: save: Store the calculated data to disk. Returns: """ logs.info("Doing text dset.") self.load_or_prepare_text_dset(save) #logs.info("Doing tokenized dataframe") #self.load_or_prepare_tokenized_df(save) logs.info("Doing dataset peek") self.load_or_prepare_dset_peek(save) def load_or_prepare_dset_peek(self, save=True): if self.use_cache and exists(self.dset_peek_json_fid): with open(self.dset_peek_json_fid, "r") as f: self.dset_peek = json.load(f)["dset peek"] else: if not self.live: if self.dset is None: self.get_base_dataset() self.dset_peek = self.dset[:100] if save: write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid) def load_or_prepare_tokenized_df(self, save=True): if self.use_cache and exists(self.tokenized_df_fid): self.tokenized_df = feather.read_feather(self.tokenized_df_fid) else: if not self.live: # tokenize all text instances self.tokenized_df = self.do_tokenization() if save: logs.warning("Saving tokenized dataset to disk") # save tokenized text write_df(self.tokenized_df, self.tokenized_df_fid) def load_or_prepare_text_dset(self, save=True): if self.use_cache and exists(self.text_dset_fid): # load extracted text self.text_dset = load_from_disk(self.text_dset_fid) logs.warning("Loaded dataset from disk") logs.info(self.text_dset) # ...Or load it from the server and store it anew else: if not self.live: self.prepare_text_dset() if save: # save extracted text instances logs.warning("Saving dataset to disk") self.text_dset.save_to_disk(self.text_dset_fid) def prepare_text_dset(self): if not self.live: self.get_base_dataset() # extract all text instances self.text_dset = self.dset.map( lambda examples: extract_field( examples, self.text_field, OUR_TEXT_FIELD ), batched=True, remove_columns=list(self.dset.features), ) def do_tokenization(self): """ Tokenizes the dataset :return: """ if self.text_dset is None: self.load_or_prepare_text_dset() sent_tokenizer = self.cvec.build_tokenizer() def tokenize_batch(examples): # TODO: lowercase should be an option res = { TOKENIZED_FIELD: [ tuple(sent_tokenizer(text.lower())) for text in examples[OUR_TEXT_FIELD] ] } res[LENGTH_FIELD] = [len(tok_text) for tok_text in res[TOKENIZED_FIELD]] return res tokenized_dset = self.text_dset.map( tokenize_batch, batched=True, # remove_columns=[OUR_TEXT_FIELD], keep around to print ) tokenized_df = pd.DataFrame(tokenized_dset) return tokenized_df def set_label_field(self, label_field="label"): """ Setter for label_field. Used in the CLI when a user asks for information about labels, but does not specify the field; 'label' is assumed as a default. """ self.label_field = label_field def load_or_prepare_labels(self, save=True): # TODO: This is in a transitory state for creating fig cache. # Clean up to be caching and reading everything correctly. """ Extracts labels from the Dataset :return: """ # extracted labels if len(self.label_field) > 0: if self.use_cache and exists(self.fig_labels_json_fid): self.fig_labels = read_plotly(self.fig_labels_json_fid) elif self.use_cache and exists(self.label_dset_fid): # load extracted labels self.label_dset = load_from_disk(self.label_dset_fid) self.label_df = self.label_dset.to_pandas() self.fig_labels = make_fig_labels( self.label_df, self.label_names, OUR_LABEL_FIELD ) if save: write_plotly(self.fig_labels, self.fig_labels_json_fid) else: if not self.live: self.prepare_labels() if save: # save extracted label instances self.label_dset.save_to_disk(self.label_dset_fid) write_plotly(self.fig_labels, self.fig_labels_json_fid) def prepare_labels(self): if not self.live: self.get_base_dataset() self.label_dset = self.dset.map( lambda examples: extract_field( examples, self.label_field, OUR_LABEL_FIELD ), batched=True, remove_columns=list(self.dset.features), ) self.label_df = self.label_dset.to_pandas() self.fig_labels = make_fig_labels( self.label_df, self.label_names, OUR_LABEL_FIELD ) def load_or_prepare_npmi(self): self.npmi_stats = nPMIStatisticsCacheClass(self, use_cache=self.use_cache) self.npmi_stats.load_or_prepare_npmi_terms() def load_or_prepare_zipf(self, save=True): # TODO: Current UI only uses the fig, meaning the self.z here is irrelevant # when only reading from cache. Either the UI should use it, or it should # be removed when reading in cache if self.use_cache and exists(self.zipf_fig_fid) and exists(self.zipf_fid): with open(self.zipf_fid, "r") as f: zipf_dict = json.load(f) self.z = Zipf() self.z.load(zipf_dict) self.zipf_fig = read_plotly(self.zipf_fig_fid) elif self.use_cache and exists(self.zipf_fid): # TODO: Read zipf data so that the vocab is there. with open(self.zipf_fid, "r") as f: zipf_dict = json.load(f) self.z = Zipf() self.z.load(zipf_dict) self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z) if save: write_plotly(self.zipf_fig, self.zipf_fig_fid) else: self.z = Zipf(self.vocab_counts_df) self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z) if save: write_zipf_data(self.z, self.zipf_fid) write_plotly(self.zipf_fig, self.zipf_fig_fid) def _set_idx_col_names(self, input_vocab_df): if input_vocab_df.index.name != VOCAB and VOCAB in input_vocab_df.columns: input_vocab_df = input_vocab_df.set_index([VOCAB]) input_vocab_df[VOCAB] = input_vocab_df.index return input_vocab_df class nPMIStatisticsCacheClass: """ "Class to interface between the app and the nPMI class by calling the nPMI class with the user's selections.""" def __init__(self, dataset_stats, use_cache=False): self.live = dataset_stats.live self.dstats = dataset_stats self.pmi_cache_path = pjoin(self.dstats.cache_path, "pmi_files") if not isdir(self.pmi_cache_path): logs.warning("Creating pmi cache directory %s." % self.pmi_cache_path) # We need to preprocess everything. mkdir(self.pmi_cache_path) self.joint_npmi_df_dict = {} # TODO: Users ideally can type in whatever words they want. self.termlist = _IDENTITY_TERMS # termlist terms that are available more than _MIN_VOCAB_COUNT times self.available_terms = _IDENTITY_TERMS logs.info(self.termlist) self.use_cache = use_cache # TODO: Let users specify self.open_class_only = True self.min_vocab_count = self.dstats.min_vocab_count self.subgroup_files = {} self.npmi_terms_fid = pjoin(self.dstats.cache_path, "npmi_terms.json") def load_or_prepare_npmi_terms(self): """ Figures out what identity terms the user can select, based on whether they occur more than self.min_vocab_count times :return: Identity terms occurring at least self.min_vocab_count times. """ # TODO: Add the user's ability to select subgroups. # TODO: Make min_vocab_count here value selectable by the user. if ( self.use_cache and exists(self.npmi_terms_fid) and json.load(open(self.npmi_terms_fid))["available terms"] != [] ): available_terms = json.load(open(self.npmi_terms_fid))["available terms"] else: true_false = [ term in self.dstats.vocab_counts_df.index for term in self.termlist ] word_list_tmp = [x for x, y in zip(self.termlist, true_false) if y] true_false_counts = [ self.dstats.vocab_counts_df.loc[word, CNT] >= self.min_vocab_count for word in word_list_tmp ] available_terms = [ word for word, y in zip(word_list_tmp, true_false_counts) if y ] logs.info(available_terms) with open(self.npmi_terms_fid, "w+") as f: json.dump({"available terms": available_terms}, f) self.available_terms = available_terms return available_terms def load_or_prepare_joint_npmi(self, subgroup_pair): """ Run on-the fly, while the app is already open, as it depends on the subgroup terms that the user chooses :param subgroup_pair: :return: """ # Canonical ordering for subgroup_list subgroup_pair = sorted(subgroup_pair) subgroup1 = subgroup_pair[0] subgroup2 = subgroup_pair[1] subgroups_str = "-".join(subgroup_pair) if not isdir(self.pmi_cache_path): logs.warning("Creating cache") # We need to preprocess everything. # This should eventually all go into a prepare_dataset CLI mkdir(self.pmi_cache_path) joint_npmi_fid = pjoin(self.pmi_cache_path, subgroups_str + "_npmi.csv") subgroup_files = define_subgroup_files(subgroup_pair, self.pmi_cache_path) # Defines the filenames for the cache files from the selected subgroups. # Get as much precomputed data as we can. if self.use_cache and exists(joint_npmi_fid): # When everything is already computed for the selected subgroups. logs.info("Loading cached joint npmi") joint_npmi_df = self.load_joint_npmi_df(joint_npmi_fid) npmi_display_cols = [ "npmi-bias", subgroup1 + "-npmi", subgroup2 + "-npmi", subgroup1 + "-count", subgroup2 + "-count", ] joint_npmi_df = joint_npmi_df[npmi_display_cols] # When maybe some things have been computed for the selected subgroups. else: if not self.live: logs.info("Preparing new joint npmi") joint_npmi_df, subgroup_dict = self.prepare_joint_npmi_df( subgroup_pair, subgroup_files ) # Cache new results logs.info("Writing out.") for subgroup in subgroup_pair: write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files) with open(joint_npmi_fid, "w+") as f: joint_npmi_df.to_csv(f) else: joint_npmi_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python import pandas as pd import numpy as np from typing import List TRAIN_DATA_PATH = "train.csv" TEST_DATA_PATH = "test.csv" def substrings_in_string(big_string: str, substrings: List[str]): for substring in substrings: if big_string.find(substring) != -1: return substring # print(big_string) return np.nan def replace_missing_fare_to_class_mean(df): df["Fare"] = df["Fare"].map(lambda x: np.nan if x == 0 else x) classmeans = pd.pivot_table(df, index='Pclass', values='Fare', aggfunc='mean') df['Fare'] = df.apply( lambda x: classmeans['Fare'][x['Pclass']] if pd.isnull(x['Fare']) else x['Fare'], axis=1 ) def fill_cabin_embarked_to_na_unknown_mode(df): df['Cabin'] = df['Cabin'].fillna('Unknown') from scipy.stats import mode modeEmbarked = mode(df['Embarked'])[0][0] df['Embarked'] = df['Embarked'].fillna(modeEmbarked) def replace_titles_to_4_class(df): title_list = [ 'Mrs', 'Mr', 'Master', 'Miss', 'Major', 'Rev', 'Dr', 'Ms', 'Mlle', 'Col', 'Capt', 'Mme', 'Countess', 'Don', 'Jonkheer' ] df['Title'] = df['Name'].map(lambda x: substrings_in_string(x, title_list)) def replace_titles(x): title = x['Title'] if title in ['Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']: return 'Mr' elif title in ['Countess', 'Mme']: return 'Mrs' elif title in ['Mlle', 'Ms']: return 'Miss' elif title == 'Dr': if x['Sex'] == 'Male': return 'Mr' else: return 'Mrs' else: return title df['Title'] = df.apply(replace_titles, axis=1) def turning_cabin_number_into_deck(df): cabin_list = ['A', 'B', 'C', 'D', 'E', 'F', 'T', 'G', 'Unknown'] df['Deck'] = df['Cabin'].map(lambda x: substrings_in_string(str(x), cabin_list)) def turning_fare_per_pclass(df): df['Fare_per_pclass'] = df.apply(lambda x: x['Fare'] / (4 - x['Pclass']), axis=1) if __name__ == "__main__": path = TRAIN_DATA_PATH df =
pd.read_csv(path)
pandas.read_csv
import os import pandas as pd import geopandas as gpd import numpy as np import sys wd = '/disk/bulkw/karger/census_bulk/citylonglat/' os.chdir(wd) sys.path.append(wd + 'programs/02_geocode') import matching_functions as mf # define dictionary with townvariables by decade here: townvars_dict = {1790: ['township'], 1800: ['township'], 1810: ['township'], 1820: ['township'], 1830: ['general_township_orig'], 1840: ['locality'], 1850: ['stdcity', 'us1850c_0043', 'us1850c_0053', 'us1850c_0054', 'us1850c_0042'], 1860: ['us1860c_0040', 'us1860c_0042', 'us1860c_0036'], 1870: ['us1870c_0040', 'us1870c_0042', 'us1870c_0043', 'us1870c_0044', 'us1870c_0035', 'us1870c_0036'], 1880: ['mcdstr', 'us1880e_0071', 'us1880e_0069', 'us1880e_0072', 'us1880e_0070'], 1900: ['stdcity', 'us1900m_0045', 'us1900m_0052'], 1910: ['stdcity', 'us1910m_0052', 'us1910m_0053', 'us1910m_0063'], 1920: ['stdmcd', 'stdcity', 'us1920c_0057', 'us1920c_0058', 'us1920c_0068', 'us1920c_0069'], 1930: ['stdmcd', 'stdcity'], 1940: ['stdcity', 'us1940b_0073', 'us1940b_0074']} # define dictionary with county and state types here: county_state_types_dict = {1790: ('name', 'name'), 1800: ('name', 'name'), 1810: ('name', 'name'), 1820: ('name', 'name'), 1830: ('name', 'name'), 1840: ('name', 'name'), 1850: ('fips', 'icp'), 1860: ('fips', 'fips'), 1870: ('fips', 'fips'), 1880: ('fips', 'icp'), 1900: ('fips', 'fips'), 1910: ('fips', 'fips'), 1920: ('fips', 'fips'), 1930: ('fips', 'fips'), 1940: ('fips', 'fips')} already_done = {} first_round = True while True: # enumeration district step for decade in np.arange(1850, 1950, 10): if decade == 1890: continue if decade == 1850 or decade >= 1880: if first_round: census_cities = pd.read_csv( 'intermediate/census_gnis_coords_gmaps_pre1910_' + str(decade) + '.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') else: census_cities = pd.read_csv('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') census_cities.columns = [column.lower() for column in census_cities.columns] town_variables = townvars_dict[decade] census_cities['enumdist'] = census_cities['enumdist'].astype(int) census_cities = mf.assign_cities_by_enumdist(census_cities, town_variables) census_cities.to_csv('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv', index=False) first_round = False # fill in the gaps tagged_cities_dict = {} # step 1: build the dictionary for decade in np.arange(1790, 1950, 10): if decade == 1890: continue if os.path.exists('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv'): census_cities = pd.read_csv('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') else: census_cities = pd.read_csv('intermediate/census_gnis_coords_gmaps_pre1910_' + str(decade) + '.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') town_variables = townvars_dict[decade] for townvar in town_variables: temp_df = census_cities[(census_cities[townvar].notnull()) & (census_cities['state_abb'].notnull()) & (census_cities['lat'].notnull())] tagged_cities_dict.update(dict(zip(list(temp_df[townvar] + ',' + temp_df['state_abb']), list(temp_df['lat'].astype(str) + ',' + temp_df['long'].astype(str))))) # step 2: assign lat, longs across decades nchanges = 0 for decade in np.arange(1790, 1950, 10): if decade == 1890: continue if os.path.exists('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv'): census_cities = pd.read_csv('intermediate/census_gnis_coords_' + str(decade) + '_temp.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') else: census_cities = pd.read_csv('intermediate/census_gnis_coords_gmaps_pre1910_' + str(decade) + '.csv') if 'index' in census_cities.columns: census_cities = census_cities.drop(columns='index') town_variables = townvars_dict[decade] # determine city-variable order share_unique = [] for townvar in town_variables: share_unique.append( len(census_cities.loc[(census_cities[townvar].notnull()) & (census_cities[townvar] != '')] .drop_duplicates(['state', 'county', townvar], keep='first')) / len(census_cities.loc[(census_cities[townvar].notnull()) & (census_cities[townvar] != ''), townvar])) county_type, state_type = county_state_types_dict[decade] county_gdf = mf.load_county_shape('shape_files/US_county_' + str(decade) + '_conflated.shp', county_type) if county_type == 'fips': county_gdf['NHGISST'] = county_gdf['NHGISST'].astype(int) / 10 county_gdf['ICPSRFIP'] = county_gdf['NHGISST'].astype(int).astype(str) + \ county_gdf['ICPSRCTYI'].astype(int).astype(str).str.zfill(4) county_gdf['ICPSRFIP'] = county_gdf['ICPSRFIP'].astype(int) for townvar in list(np.array(town_variables)[np.argsort(share_unique)[::-1]]): for i in range(len(census_cities)): row = census_cities.iloc[i] if
pd.notnull(row['lat'])
pandas.notnull
import pandas as pd # Data Import url = 'https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv' df = pd.read_csv(url) # Data selection df = df[['iso_code', 'continent', 'location', 'date', 'total_cases', 'new_cases', 'total_deaths', 'new_deaths', 'total_cases_per_million', 'new_cases_per_million', 'total_deaths_per_million', 'new_deaths_per_million', 'icu_patients', 'icu_patients_per_million', 'hosp_patients', 'hosp_patients_per_million', 'new_tests', 'total_tests', 'total_tests_per_thousand', 'new_tests_per_thousand', 'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated', 'new_vaccinations', 'stringency_index', 'population']] # NA Data Drop df = df.dropna(subset=[ 'date' , 'continent' , 'location' ]) # Data Transform df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
# ----------------------------------------------------------- # <NAME> # ----------------------------------------------------------- import streamlit as st import pandas as pd import numpy as np from sodapy import Socrata import pydeck as pdk import plotly.express as px import requests # from IPython.display import Image with open("style.css") as f: st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True) @st.cache(persist=True) def giphy_path(): path = "https://media.giphy.com/media/rS9tqucvXWwuY/giphy.gif" return path path = giphy_path() points_table_data_url = 'https://www.iplt20.com/points-table/2020' html = requests.get(points_table_data_url).content df_list_points_table = pd.read_html(html) df_points_table = df_list_points_table[-1] # print(df) # df = pd.DataFrame(df) st.markdown("<h1 style='text-align: center; color: #9C021B;'><strong>🏏 <u>IPL 2020 Dashboard</u> 🏏</strong></h1>", unsafe_allow_html=True) st.markdown("_________________________________________________________________________________") # st.markdown("<h4 style='text-align: center; color: #9C021B;'><hr></h4>", unsafe_allow_html=True) st.markdown("<h4 style='text-align: center; color: #E07811;'>You can check latest Status of IPL 2020 along with stats of top Players</h4>", unsafe_allow_html=True) # st.markdown("You can check latest Status of **IPL 2020** along with stats of top Players 🏏") st.markdown("&nbsp") # st.markdown("&nbsp") @st.cache(persist=True) def load_data_point_table(): data = pd.DataFrame(df_points_table) data.rename(columns={'Unnamed: 0': 'Position', 'Pld': 'Match Played', 'Pts': 'Points', 'Form':'Status of Past Matches'}, inplace=True) data = data.replace(np.nan, 'Not Played yet') return data data_point_table = load_data_point_table() # st.header("Points Table of IPL 2020") st.markdown("<h2 style='text-align: center; color: blue;'><strong><u>Points Table of IPL 2020</u></strong></h2>", unsafe_allow_html=True) st.write(data_point_table) st.markdown("_________________________________________________________________________________") # Batting & Bowling stats of all team batting_stats_data_url = 'https://www.iplt20.com/stats/2020/most-runs' # most_run_data_url = 'https://www.iplt20.com/stats/2020/most-runs' html = requests.get(batting_stats_data_url).content df_list_batting_stat = pd.read_html(html) df_batting_stat = df_list_batting_stat[-1] # print(df) # st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Check Top Performers of Ongoing IPL Season") st.markdown("<h2 style='text-align: center; color: green;'><strong><u>Check Top Performers of Ongoing IPL Season</u></strong></h2>", unsafe_allow_html=True) select_bat_bowl = st.selectbox('Which stats you want to check?', ['--Select--', 'Batting stats', 'Bowling stats']) if select_bat_bowl == 'Batting stats': @st.cache(persist=True) def load_data_batting_table(): data = pd.DataFrame(df_batting_stat) data.rename(columns={'POS':'Position.', 'PLAYER': 'Player', 'Mat': 'Matches','Inns': 'Innings', 'NO':'Not Outs','HS': 'Highest Score', 'Avg': 'Average', 'BF': 'Ball Faced', 'SR': 'Strike Rate' }, inplace=True) # data = data.replace(np.nan, 'Not Played yet') return data data_batting_stats = load_data_batting_table() if st.checkbox("Show Top 20 Batsman List (in terms of Total Runs Scored)", False): # st.header("Batting Stats of top Players") st.markdown("<h3 style='text-align: center; color: #4BC401;'><strong>Batting Stats of top Players</strong></h3>", unsafe_allow_html=True) st.write(data_batting_stats.head(20)) st.markdown("_________________________________________________________________________________") # st.subheader("Check Top 3 Best Batsman in Selective categories") st.markdown("<h3 style='text-align: center; color: orangered;'><strong>Check Top 3 Best Batsman in Selective categories</strong></h3>", unsafe_allow_html=True) select_category = st.selectbox('Choose the Performance category', ['--Select--', 'Top Run Scorer', 'Highest Strike Rate', 'Best Average']) if select_category == 'Top Run Scorer': df_bat_total_score = data_batting_stats.sort_values(by=['Runs'], ascending=False).head(3) x = np.arange(1, 4) df_bat_total_score['Position'] = x data_batting_stats_new = df_bat_total_score[['Position', 'Player', 'Runs']].head(3) fig = px.bar(data_batting_stats_new, x='Player', y='Runs',text='Runs', hover_data=['Position','Player', 'Runs'], color='Player') fig.update_traces(texttemplate='%{text:.s}', textposition='inside') fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig.update_layout(xaxis_title="Batsman", yaxis_title="Total Runs Scored", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig.update_layout(title={'text': "Top 3 Most run scorer Batsman", 'y':0.95, 'x':0.43, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig) st.markdown("_________________________________________________________________________________") elif select_category == 'Highest Strike Rate': df_bat_sr = data_batting_stats.sort_values(by=['Strike Rate'], ascending=False).head(3) x = np.arange(1, 4) df_bat_sr['Position'] = x data_batting_stats_sr = df_bat_sr[['Position', 'Player', 'Strike Rate']].head(3) fig2 = px.bar(data_batting_stats_sr, x='Player', y='Strike Rate',text='Strike Rate', hover_data=['Position','Player', 'Strike Rate'], color='Player') fig2.update_traces(texttemplate='%{text:.4s}', textposition='inside') fig2.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig2.update_layout(xaxis_title="Batsman", yaxis_title="Strike Rate", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig2.update_layout(title={'text': "Top 3 Batsman with Highest Strike Rate)", 'y':0.95, 'x':0.43, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig2) st.markdown("🤔💡 * **Batting Strike rate** is measure of runs per ball. It is calculated in **%** *") st.markdown("_________________________________________________________________________________") elif select_category == 'Best Average': best_avg_data_url = 'https://www.iplt20.com/stats/2020/best-batting-average' # most_run_data_url = 'https://www.iplt20.com/stats/2020/most-runs' html = requests.get(best_avg_data_url).content df_list_avg = pd.read_html(html) df_batting_stat_best_avg = df_list_avg[-1] @st.cache(persist=True) def load_data_batting_table(): data = pd.DataFrame(df_batting_stat_best_avg) data.rename(columns={'PLAYER':'Player', 'Avg': 'Average'}, inplace=True) # data = data.replace(np.nan, 'Not Played yet') return data data_best_avg_stats = load_data_batting_table() df_bat_bestavg = data_best_avg_stats.sort_values(by=['Average'], ascending=False).head(3) x = np.arange(1, 4) df_bat_bestavg['Position'] = x data_batting_stats_bestavg = df_bat_bestavg[['Position', 'Player', 'Average']].head(3) fig2 = px.bar(data_batting_stats_bestavg, x='Player', y='Average',text='Average', hover_data=['Position','Player', 'Average'], color='Player') fig2.update_traces(texttemplate='%{text:.4s}', textposition='inside') fig2.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig2.update_layout(xaxis_title="Batsman", yaxis_title="Best Average", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig2.update_layout(title={'text': "Top 3 Batsman with Best Average", 'y':0.95, 'x':0.42, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig2) st.markdown("🤔💡 * **Batting average** is the **total number of runs** a batsman have scored divided by the **number of times** they have been out*") st.markdown("_________________________________________________________________________________") ############################################################################################################################## ##################### Bowling bowling_stats_data_url = 'https://www.iplt20.com/stats/2020/most-wickets' # most_run_data_url = 'https://www.iplt20.com/stats/2020/most-runs' html = requests.get(bowling_stats_data_url).content df_list_bowling_stat = pd.read_html(html) df_bowling_stat = df_list_bowling_stat[-1] if select_bat_bowl == 'Bowling stats': @st.cache(persist=True) def load_data_bowling_table(): data = pd.DataFrame(df_bowling_stat) data.rename(columns={'POS':'Position.', 'PLAYER': 'Player', 'Mat': 'Matches','Inns': 'Innings', 'Ov':'Overs','Wkts': 'Wickets taken', 'BBI': 'Best Bowling in a Inns', 'Avg': 'Average', 'Econ': 'Economy Rate', 'SR': 'Strike Rate' }, inplace=True) # data = data.replace(np.nan, 'Not Played yet') return data data_bowling_stats = load_data_bowling_table() if st.checkbox("Show Top 20 Bowlers List (in terms of Total number of wickets taken)", False): # st.header("Bowling Stats of top Players") st.markdown("<h3 style='text-align: center; color: #4BC401;'><strong>Bowling Stats of top Players</strong></h3>", unsafe_allow_html=True) st.write(data_bowling_stats.head(20)) st.markdown("_________________________________________________________________________________") # st.subheader("Check Top 3 Best Bowlers in Selective categories") st.markdown("<h3 style='text-align: center; color: purple;'><strong>Check Top 3 Best Bowlers in Selective categories</strong></h3>", unsafe_allow_html=True) select_category = st.selectbox('Choose the Performance category', ['--Select--', 'Top Wicket Taker', 'Best Economy Rate', 'Best Bowling Average']) ######################################### !st category if select_category == 'Top Wicket Taker': df_bowl_top_wicket = data_bowling_stats.sort_values(by=['Wickets taken'], ascending=False).head(3) x = np.arange(1, 4) df_bowl_top_wicket['Position'] = x data_bowl_stats_top_wkt = df_bowl_top_wicket[['Position', 'Player', 'Wickets taken']].head(3) fig = px.bar(data_bowl_stats_top_wkt, x='Player', y='Wickets taken',text='Wickets taken', hover_data=['Position','Player', 'Wickets taken'], color='Player') fig.update_traces(texttemplate='%{text:.s}', textposition='inside') fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig.update_layout(xaxis_title="Bowlers", yaxis_title="Wickets taken so far", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig.update_layout(title={'text': "Top 3 Most Wicket taker", 'y':0.95, 'x':0.42, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig) st.markdown("_________________________________________________________________________________") elif select_category == 'Best Economy Rate': df_bowl_best_er = data_bowling_stats.sort_values(by=['Economy Rate'], ascending=True).head(3) x = np.arange(1, 4) df_bowl_best_er['Position'] = x data_bowl_stats_best_er = df_bowl_best_er[['Position', 'Player', 'Economy Rate']].head(3) fig = px.bar(data_bowl_stats_best_er, x='Player', y='Economy Rate', text='Economy Rate', hover_data=['Position','Player', 'Economy Rate'], color='Player') fig.update_traces(texttemplate='%{text:.4s}', textposition='inside') fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig.update_layout(xaxis_title="Bowlers", yaxis_title="Economy Rate", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig.update_layout(title={'text': "Top 3 Bowlers with Best Economy rate", 'y':0.95, 'x':0.40, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig) st.markdown("🤔💡 * **Economy rate** is the number of runs a bowler have conceded per over bowled. The **lower** the economy rate is, the **better** the bowler is performing.*") st.markdown("_________________________________________________________________________________") elif select_category == 'Best Bowling Average': data_bowling_stats = data_bowling_stats[data_bowling_stats.Average != '-'] df_bowl_best_avg = data_bowling_stats.sort_values(by=['Average'], ascending=True).head(3) x = np.arange(1, 4) df_bowl_best_avg['Position'] = x data_bowl_stats_best_avg = df_bowl_best_avg[['Position', 'Player', 'Average']].head(3) fig = px.bar(data_bowl_stats_best_avg, x='Player', y='Average',text='Average', hover_data=['Position','Player', 'Average'], color='Player', width=750) fig.update_traces(texttemplate='%{text:.4s}', textposition='inside') fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide') fig.update_layout(xaxis_title="Bowlers", yaxis_title="Average", legend_title="Players", font=dict( family="Arial", size=16, color="RebeccaPurple" )) fig.update_layout(title={'text': "Top 3 Bowlers with Best Bowling Average", 'y':0.95, 'x':0.40, 'xanchor': 'center', 'yanchor': 'top'}) st.write(fig) st.markdown("🤔💡 * **Bowling average** is the number of runs a bowler have conceded per wicket taken. The **lower** the bowling average is, the **better** the bowler is performing*") st.markdown("_________________________________________________________________________________") ######################################################################################################################################### ######################################################################################################################################### # st.sidebar.title("Schedule of IPL 2020") st.sidebar.markdown("<h1 style='text-align: center; color: #F34600;'><u><strong>Schedule of IPL 2020</strong></u></h1>", unsafe_allow_html=True) # st.sidebar.markdown("You can check the scheduled matches of IPL 2020, along with various other details like timing, Venue etc.") st.sidebar.markdown("<h4 style='text-align: center; '>You can check all the scheduled matches of IPL 2020, along with various other details like timing, Venue etc.</h4>", unsafe_allow_html=True) st.sidebar.markdown("_________________________________________________________________________________") # st.sidebar.markdown("&nbsp") # st.sidebar.markdown("&nbsp") # st.sidebar.subheader("Want to check all scheduled Matches?") st.sidebar.markdown("<h2 style='text-align: center; color: #BD08D3;'><strong>Want to check all scheduled Matches?</strong></h2>", unsafe_allow_html=True) if st.sidebar.checkbox("Show IPL 2020 scheduled matches", False): st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("IPL 2020 Scheduled Matches") st.markdown("<h2 style='text-align: center; color: #BD08D3;'><strong><u>All Scheduled matches of IPL 2020</u></strong></h2>", unsafe_allow_html=True) # st.header("Bowling Stats of top Players") all_match = st.slider("Adjust the slider if you want to check more Scheduled Matches?", 20, 60) st.markdown("<h4 style='text-align: center;'><i>You can view in fullscreen for better visibility of Schedule</i></h4>", unsafe_allow_html=True) # st.markdown("You can expand the view for better visibility of Time table") image = pd.read_csv('ipl_schedule.csv') # st.image(image, use_column_width=True) imag= image[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] # imag = imag.style.hide_index() # imag.set_index('column', inplace=True) st.write(image.head(all_match)) st.markdown("_________________________________________________________________________________") # st.table(imag.assign(hack='').set_index('hack').head(all_match)) # st.sidebar.markdown("&nbsp") # st.sidebar.markdown("&nbsp") # st.sidebar.subheader("Want to check scheduled Matches of your favourite team?") st.sidebar.markdown("_________________________________________________________________________________") st.sidebar.markdown("<h2 style='text-align: center; color: #5A2553;'><strong>Want to check scheduled Matches of your favourite team?</strong></h2>", unsafe_allow_html=True) favourite_team = st.sidebar.selectbox("Which's your favourite team?", ['--Select--', 'Chennai Super Kings (CSK)', 'Mumbai Indians (MI)', 'Royal Challengers Benglore (RCB)', 'Sunrisers Hyderabad (SRH)', 'Delhi Capitals (DC)', 'Kings Eleven Punjab (KXIP)', 'Rajasthan Royals (RR)', 'Kolkata knight Riders (KKR)']) if favourite_team == 'Chennai Super Kings (CSK)': # @st.cache(persist=True) csk = pd.read_csv('csk_schedule.csv') # st.image(image, use_column_width=True) csk= csk[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] # imag = imag.style.hide_index() # imag.set_index('column', inplace=True) # st.write(csk) st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Chennai Super Kings full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #DBB000;'><strong><u>Chennai Super Kings full Schedule of Matches</strong></h2>", unsafe_allow_html=True) st.table(csk.assign(hack='').set_index('hack')) # st.markdown("_________________________*****___________________________") st.markdown("<h2 style='text-align: center; color: #DBB000;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) # elif favourite_team == 'Mumbai Indians (MI)': mi = pd.read_csv('mi_schedule.csv') mi= mi[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Mumbai Indians full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #006EC9;'><strong><u>Mumbai Indians full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(mi.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #006EC9;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Royal Challengers Benglore (RCB)': rcb = pd.read_csv('rcb_schedule.csv') rcb= rcb[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Royal Challengers Benglore full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #F30922;'><strong><u>Royal Challengers Benglore full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(rcb.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #F30922;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Sunrisers Hyderabad (SRH)': srh = pd.read_csv('srh_schedule.csv') srh= srh[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Sunrisers Hyderabad full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #F32C09;'><strong><u>Sunrisers Hyderabad full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(srh.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #F32C09;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Delhi Capitals (DC)': dc = pd.read_csv('dc_schedule.csv') dc= dc[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Delhi Capitals full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #4403E3;'><strong><u>Delhi Capitals full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(dc.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #4403E3;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Kings Eleven Punjab (KXIP)': punjab = pd.read_csv('punjab_schedule.csv') punjab= punjab[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("RKings Eleven Punjab full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #E10000;'><strong><u>Kings Eleven Punjab full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(punjab.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #E10000;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Rajasthan Royals (RR)': rr = pd.read_csv('rajasthan_schedule.csv') rr= rr[['Match No', 'Match Center', 'Date', 'Day', 'Time India (IST)', 'Venuue']] st.markdown("&nbsp") # st.markdown("&nbsp") # st.header("Rajasthan Royals full Schedule of Matches") st.markdown("<h2 style='text-align: center; color: #F519AC;'><strong><u>Rajasthan Royals full Schedule of Matches</u></strong></h2>", unsafe_allow_html=True) st.table(rr.assign(hack='').set_index('hack')) st.markdown("<h2 style='text-align: center; color: #F519AC;'><strong><u>_____________________*****_____________________</strong></h2>", unsafe_allow_html=True) elif favourite_team == 'Kolkata knight Riders (KKR)': kkr =
pd.read_csv('kkr_schedule.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import decimal import json import multiprocessing as mp from collections import OrderedDict from datetime import date, datetime, time, timedelta import numpy as np import numpy.testing as npt import pandas as pd import pandas.util.testing as tm import pytest import pyarrow as pa import pyarrow.types as patypes from pyarrow.compat import PY2 from .pandas_examples import dataframe_with_arrays, dataframe_with_lists def _alltypes_example(size=100): return pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Pandas only support ns resolution, Arrow supports s, ms, # us, ns 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) def _check_pandas_roundtrip(df, expected=None, use_threads=True, expected_schema=None, check_dtype=True, schema=None, preserve_index=False, as_batch=False): klass = pa.RecordBatch if as_batch else pa.Table table = klass.from_pandas(df, schema=schema, preserve_index=preserve_index, nthreads=2 if use_threads else 1) result = table.to_pandas(use_threads=use_threads) if expected_schema: # all occurences of _check_pandas_roundtrip passes expected_schema # without the pandas generated key-value metadata, so we need to # add it before checking schema equality expected_schema = expected_schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) if expected is None: expected = df tm.assert_frame_equal(result, expected, check_dtype=check_dtype, check_index_type=('equiv' if preserve_index else False)) def _check_series_roundtrip(s, type_=None, expected_pa_type=None): arr = pa.array(s, from_pandas=True, type=type_) if type_ is not None and expected_pa_type is None: expected_pa_type = type_ if expected_pa_type is not None: assert arr.type == expected_pa_type result = pd.Series(arr.to_pandas(), name=s.name) if patypes.is_timestamp(arr.type) and arr.type.tz is not None: result = (result.dt.tz_localize('utc') .dt.tz_convert(arr.type.tz)) tm.assert_series_equal(s, result) def _check_array_roundtrip(values, expected=None, mask=None, type=None): arr = pa.array(values, from_pandas=True, mask=mask, type=type) result = arr.to_pandas() values_nulls = pd.isnull(values) if mask is None: assert arr.null_count == values_nulls.sum() else: assert arr.null_count == (mask | values_nulls).sum() if mask is None: tm.assert_series_equal(pd.Series(result), pd.Series(values), check_names=False) else: expected = pd.Series(np.ma.masked_array(values, mask=mask)) tm.assert_series_equal(pd.Series(result), expected, check_names=False) def _check_array_from_pandas_roundtrip(np_array, type=None): arr = pa.array(np_array, from_pandas=True, type=type) result = arr.to_pandas() npt.assert_array_equal(result, np_array) class TestConvertMetadata(object): """ Conversion tests for Pandas metadata & indices. """ def test_non_string_columns(self): df = pd.DataFrame({0: [1, 2, 3]}) table = pa.Table.from_pandas(df) assert table.column(0).name == '0' def test_from_pandas_with_columns(self): df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]}) table = pa.Table.from_pandas(df, columns=[0, 1]) expected = pa.Table.from_pandas(df[[0, 1]]) assert expected.equals(table) record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1]) record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]]) assert record_batch_expected.equals(record_batch_table) def test_column_index_names_are_preserved(self): df = pd.DataFrame({'data': [1, 2, 3]}) df.columns.names = ['a'] _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns(self): columns = pd.MultiIndex.from_arrays([ ['one', 'two'], ['X', 'Y'] ]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_with_dtypes(self): columns = pd.MultiIndex.from_arrays( [ ['one', 'two'], pd.DatetimeIndex(['2017-08-01', '2017-08-02']), ], names=['level_1', 'level_2'], ) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_unicode(self): columns = pd.MultiIndex.from_arrays([[u'あ', u'い'], ['X', 'Y']]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_integer_index_column(self): df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')]) _check_pandas_roundtrip(df, preserve_index=True) def test_index_metadata_field_name(self): # test None case, and strangely named non-index columns df = pd.DataFrame( [(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)], index=pd.MultiIndex.from_arrays( [['c', 'b', 'a'], [3, 2, 1]], names=[None, 'foo'] ), columns=['a', None, '__index_level_0__'], ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) col1, col2, col3, idx0, foo = js['columns'] assert col1['name'] == 'a' assert col1['name'] == col1['field_name'] assert col2['name'] is None assert col2['field_name'] == 'None' assert col3['name'] == '__index_level_0__' assert col3['name'] == col3['field_name'] idx0_name, foo_name = js['index_columns'] assert idx0_name == '__index_level_0__' assert idx0['field_name'] == idx0_name assert idx0['name'] is None assert foo_name == 'foo' assert foo['field_name'] == foo_name assert foo['name'] == foo_name def test_categorical_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), dtype='category') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'categorical' assert column_indexes['numpy_type'] == 'int8' md = column_indexes['metadata'] assert md['num_categories'] == 3 assert md['ordered'] is False def test_string_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), name='stringz') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] == 'stringz' assert column_indexes['name'] == column_indexes['field_name'] assert column_indexes['pandas_type'] == ('bytes' if PY2 else 'unicode') assert column_indexes['numpy_type'] == 'object' md = column_indexes['metadata'] if not PY2: assert len(md) == 1 assert md['encoding'] == 'UTF-8' else: assert md is None or 'encoding' not in md def test_datetimetz_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'datetimetz' assert column_indexes['numpy_type'] == 'datetime64[ns]' md = column_indexes['metadata'] assert md['timezone'] == 'America/New_York' def test_datetimetz_row_index(self): df = pd.DataFrame({ 'a': pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) }) df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_categorical_row_index(self): df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) df['a'] = df.a.astype('category') df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_duplicate_column_names_does_not_crash(self): df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa')) with pytest.raises(ValueError): pa.Table.from_pandas(df) def test_dictionary_indices_boundscheck(self): # ARROW-1658. No validation of indices leads to segfaults in pandas indices = [[0, 1], [0, -1]] for inds in indices: arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False) batch = pa.RecordBatch.from_arrays([arr], ['foo']) table = pa.Table.from_batches([batch, batch, batch]) with pytest.raises(pa.ArrowInvalid): arr.to_pandas() with pytest.raises(pa.ArrowInvalid): table.to_pandas() def test_unicode_with_unicode_column_and_index(self): df = pd.DataFrame({u'あ': [u'い']}, index=[u'う']) _check_pandas_roundtrip(df, preserve_index=True) def test_mixed_unicode_column_names(self): df = pd.DataFrame({u'あ': [u'い'], b'a': 1}, index=[u'う']) # TODO(phillipc): Should this raise? with pytest.raises(AssertionError): _check_pandas_roundtrip(df, preserve_index=True) def test_binary_column_name(self): column_data = [u'い'] key = u'あ'.encode('utf8') data = {key: column_data} df = pd.DataFrame(data) # we can't use _check_pandas_roundtrip here because our metdata # is always decoded as utf8: even if binary goes in, utf8 comes out t = pa.Table.from_pandas(df, preserve_index=True) df2 = t.to_pandas() assert df.values[0] == df2.values[0] assert df.index.values[0] == df2.index.values[0] assert df.columns[0] == key def test_multiindex_duplicate_values(self): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) result_df = table.to_pandas() tm.assert_frame_equal(result_df, df) def test_metadata_with_mixed_types(self): df = pd.DataFrame({'data': [b'some_bytes', u'some_unicode']}) table = pa.Table.from_pandas(df) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'bytes' assert data_column['numpy_type'] == 'object' def test_list_metadata(self): df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]}) schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))]) table = pa.Table.from_pandas(df, schema=schema) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'list[int64]' assert data_column['numpy_type'] == 'object' def test_decimal_metadata(self): expected = pd.DataFrame({ 'decimals': [ decimal.Decimal('394092382910493.12341234678'), -decimal.Decimal('314292388910493.12343437128'), ] }) table = pa.Table.from_pandas(expected) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'decimal' assert data_column['numpy_type'] == 'object' assert data_column['metadata'] == {'precision': 26, 'scale': 11} def test_table_column_subset_metadata(self): # ARROW-1883 df = pd.DataFrame({ 'a': [1, 2, 3], 'b': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']]) # non-default index for index in [ pd.Index(['a', 'b', 'c'], name='index'), pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]: df = pd.DataFrame({'a': [1, 2, 3], 'b': [.1, .2, .3]}, index=index) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']].reset_index(drop=True)) def test_empty_list_metadata(self): # Create table with array of empty lists, forced to have type # list(string) in pyarrow c1 = [["test"], ["a", "b"], None] c2 = [[], [], []] arrays = OrderedDict([ ('c1', pa.array(c1, type=pa.list_(pa.string()))), ('c2', pa.array(c2, type=pa.list_(pa.string()))), ]) rb = pa.RecordBatch.from_arrays( list(arrays.values()), list(arrays.keys()) ) tbl = pa.Table.from_batches([rb]) # First roundtrip changes schema, because pandas cannot preserve the # type of empty lists df = tbl.to_pandas() tbl2 = pa.Table.from_pandas(df, preserve_index=True) md2 = json.loads(tbl2.schema.metadata[b'pandas'].decode('utf8')) # Second roundtrip df2 = tbl2.to_pandas() expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)])) tm.assert_frame_equal(df2, expected) assert md2['columns'] == [ { 'name': 'c1', 'field_name': 'c1', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[unicode]', }, { 'name': 'c2', 'field_name': 'c2', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[empty]', }, { 'name': None, 'field_name': '__index_level_0__', 'metadata': None, 'numpy_type': 'int64', 'pandas_type': 'int64', } ] class TestConvertPrimitiveTypes(object): """ Conversion tests for primitive (e.g. numeric) types. """ def test_float_no_nulls(self): data = {} fields = [] dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] num_values = 100 for numpy_dtype, arrow_dtype in dtypes: values = np.random.randn(num_values) data[numpy_dtype] = values.astype(numpy_dtype) fields.append(pa.field(numpy_dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_float_nulls(self): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] names = ['f2', 'f4', 'f8'] expected_cols = [] arrays = [] fields = [] for name, arrow_dtype in dtypes: values = np.random.randn(num_values).astype(name) arr = pa.array(values, from_pandas=True, mask=null_mask) arrays.append(arr) fields.append(pa.field(name, arrow_dtype)) values[null_mask] = np.nan expected_cols.append(values) ex_frame = pd.DataFrame(dict(zip(names, expected_cols)), columns=names) table = pa.Table.from_arrays(arrays, names) assert table.schema.equals(pa.schema(fields)) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_nulls_to_ints(self): # ARROW-2135 df = pd.DataFrame({"a": [1.0, 2.0, pd.np.NaN]}) schema = pa.schema([pa.field("a", pa.int16(), nullable=True)]) table = pa.Table.from_pandas(df, schema=schema, safe=False) assert table[0].to_pylist() == [1, 2, None] tm.assert_frame_equal(df, table.to_pandas()) def test_integer_no_nulls(self): data = OrderedDict() fields = [] numpy_dtypes = [ ('i1', pa.int8()), ('i2', pa.int16()), ('i4', pa.int32()), ('i8', pa.int64()), ('u1', pa.uint8()), ('u2', pa.uint16()), ('u4', pa.uint32()), ('u8', pa.uint64()), ('longlong', pa.int64()), ('ulonglong', pa.uint64()) ] num_values = 100 for dtype, arrow_dtype in numpy_dtypes: info = np.iinfo(dtype) values = np.random.randint(max(info.min, np.iinfo(np.int_).min), min(info.max, np.iinfo(np.int_).max), size=num_values) data[dtype] = values.astype(dtype) fields.append(pa.field(dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_integer_types(self): # Test all Numpy integer aliases data = OrderedDict() numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'byte', 'ubyte', 'short', 'ushort', 'intc', 'uintc', 'int_', 'uint', 'longlong', 'ulonglong'] for dtype in numpy_dtypes: data[dtype] = np.arange(12, dtype=dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df) # Do the same with pa.array() # (for some reason, it doesn't use the same code paths at all) for np_arr in data.values(): arr = pa.array(np_arr) assert arr.to_pylist() == np_arr.tolist() def test_integer_with_nulls(self): # pandas requires upcast to float dtype int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] arrays = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) arr = pa.array(values, mask=null_mask) arrays.append(arr) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) table = pa.Table.from_arrays(arrays, int_dtypes) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_array_from_pandas_type_cast(self): arr = np.arange(10, dtype='int64') target_type = pa.int8() result = pa.array(arr, type=target_type) expected = pa.array(arr.astype('int8')) assert result.equals(expected) def test_boolean_no_nulls(self): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_boolean_nulls(self): # pandas requires upcast to object dtype num_values = 100 np.random.seed(0) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 arr = pa.array(values, mask=mask) expected = values.astype(object) expected[mask] = None field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) ex_frame = pd.DataFrame({'bools': expected}) table = pa.Table.from_arrays([arr], ['bools']) assert table.schema.equals(schema) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_object_nulls(self): arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object) df = pd.DataFrame({'floats': arr}) expected = pd.DataFrame({'floats': pd.to_numeric(arr)}) field = pa.field('floats', pa.float64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_int_object_nulls(self): arr = np.array([None, 1, np.int64(3)] * 5, dtype=object) df = pd.DataFrame({'ints': arr}) expected = pd.DataFrame({'ints': pd.to_numeric(arr)}) field = pa.field('ints', pa.int64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_boolean_object_nulls(self): arr = np.array([False, None, True] * 100, dtype=object) df = pd.DataFrame({'bools': arr}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_nulls_cast_numeric(self): arr = np.array([None], dtype=object) def _check_type(t): a2 = pa.array(arr, type=t) assert a2.type == t assert a2[0].as_py() is None _check_type(pa.int32()) _check_type(pa.float64()) def test_half_floats_from_numpy(self): arr = np.array([1.5, np.nan], dtype=np.float16) a = pa.array(arr, type=pa.float16()) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert isinstance(y, np.float16) assert np.isnan(y) a = pa.array(arr, type=pa.float16(), from_pandas=True) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert y is None @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_array_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values result = array.to_pandas(integer_object_nulls=True) np.testing.assert_equal(result, expected) @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_table_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values expected = pd.DataFrame({dtype: expected}) table = pa.Table.from_arrays([array], [dtype]) result = table.to_pandas(integer_object_nulls=True) tm.assert_frame_equal(result, expected) class TestConvertDateTimeLikeTypes(object): """ Conversion tests for datetime- and timestamp-like types (date64, etc.). """ def test_timestamps_notimezone_no_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_notimezone_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_with_timezone(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123', '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) _check_series_roundtrip(df['datetime64']) # drop-in a null and ns instead of ms df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) def test_python_datetime(self): # ARROW-2106 date_array = [datetime.today() + timedelta(days=x) for x in range(10)] df = pd.DataFrame({ 'datetime': pd.Series(date_array, dtype=object) }) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({ 'datetime': date_array }) tm.assert_frame_equal(expected_df, result) def test_python_datetime_subclass(self): class MyDatetime(datetime): # see https://github.com/pandas-dev/pandas/issues/21142 nanosecond = 0.0 date_array = [MyDatetime(2000, 1, 1, 1, 1, 1)] df = pd.DataFrame({"datetime": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({"datetime": date_array}) # https://github.com/pandas-dev/pandas/issues/21142 expected_df["datetime"] = pd.to_datetime(expected_df["datetime"]) tm.assert_frame_equal(expected_df, result) def test_python_date_subclass(self): class MyDate(date): pass date_array = [MyDate(2000, 1, 1)] df = pd.DataFrame({"date": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.Date32Array) result = table.to_pandas() expected_df = pd.DataFrame( {"date": np.array(["2000-01-01"], dtype="datetime64[ns]")} ) tm.assert_frame_equal(expected_df, result) def test_datetime64_to_date32(self): # ARROW-1718 arr = pa.array([date(2017, 10, 23), None]) c = pa.Column.from_array("d", arr) s = c.to_pandas() arr2 = pa.Array.from_pandas(s, type=pa.date32()) assert arr2.equals(arr.cast('date32')) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]), ]) def test_pandas_datetime_to_date64(self, mask): s = pd.to_datetime([ '2018-05-10T00:00:00', '2018-05-11T00:00:00', '2018-05-12T00:00:00', ]) arr = pa.Array.from_pandas(s, type=pa.date64(), mask=mask) data = np.array([ date(2018, 5, 10), date(2018, 5, 11), date(2018, 5, 12) ]) expected = pa.array(data, mask=mask, type=pa.date64()) assert arr.equals(expected) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]) ]) def test_pandas_datetime_to_date64_failures(self, mask): s = pd.to_datetime([ '2018-05-10T10:24:01', '2018-05-11T10:24:01', '2018-05-12T10:24:01', ]) expected_msg = 'Timestamp value had non-zero intraday milliseconds' with pytest.raises(pa.ArrowInvalid, match=expected_msg): pa.Array.from_pandas(s, type=pa.date64(), mask=mask) def test_array_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) assert arr.equals(pa.array(expected)) result = arr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(arr.to_pandas(), expected) result = arr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_chunked_array_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') carr = pa.chunked_array([data]) result = carr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(carr.to_pandas(), expected) result = carr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_column_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) column = pa.column('date', arr) result = column.to_pandas() npt.assert_array_equal(column.to_pandas(), expected) result = column.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_table_convert_date_as_object(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) df_datetime = table.to_pandas() df_object = table.to_pandas(date_as_object=True) tm.assert_frame_equal(df.astype('datetime64[ns]'), df_datetime, check_dtype=True) tm.assert_frame_equal(df, df_object, check_dtype=True) def test_date_infer(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) field = pa.field('date', pa.date32()) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) result = table.to_pandas() expected = df.copy() expected['date'] = pd.to_datetime(df['date']) tm.assert_frame_equal(result, expected) def test_date_mask(self): arr = np.array([date(2017, 4, 3), date(2017, 4, 4)], dtype='datetime64[D]') mask = [True, False] result = pa.array(arr, mask=np.array(mask)) expected = np.array([None, date(2017, 4, 4)], dtype='datetime64[D]') expected = pa.array(expected, from_pandas=True) assert expected.equals(result) def test_date_objects_typed(self): arr = np.array([ date(2017, 4, 3), None, date(2017, 4, 4), date(2017, 4, 5)], dtype=object) arr_i4 = np.array([17259, -1, 17260, 17261], dtype='int32') arr_i8 = arr_i4.astype('int64') * 86400000 mask = np.array([False, True, False, False]) t32 = pa.date32() t64 = pa.date64() a32 = pa.array(arr, type=t32) a64 = pa.array(arr, type=t64) a32_expected = pa.array(arr_i4, mask=mask, type=t32) a64_expected = pa.array(arr_i8, mask=mask, type=t64) assert a32.equals(a32_expected) assert a64.equals(a64_expected) # Test converting back to pandas colnames = ['date32', 'date64'] table = pa.Table.from_arrays([a32, a64], colnames) table_pandas = table.to_pandas() ex_values = (np.array(['2017-04-03', '2017-04-04', '2017-04-04', '2017-04-05'], dtype='datetime64[D]') .astype('datetime64[ns]')) ex_values[1] = pd.NaT.value expected_pandas = pd.DataFrame({'date32': ex_values, 'date64': ex_values}, columns=colnames) tm.assert_frame_equal(table_pandas, expected_pandas) def test_dates_from_integers(self): t1 = pa.date32() t2 = pa.date64() arr = np.array([17259, 17260, 17261], dtype='int32') arr2 = arr.astype('int64') * 86400000 a1 = pa.array(arr, type=t1) a2 = pa.array(arr2, type=t2) expected = date(2017, 4, 3) assert a1[0].as_py() == expected assert a2[0].as_py() == expected @pytest.mark.xfail(reason="not supported ATM", raises=NotImplementedError) def test_timedelta(self): # TODO(jreback): Pandas only support ns resolution # Arrow supports ??? for resolution df = pd.DataFrame({ 'timedelta': np.arange(start=0, stop=3 * 86400000, step=86400000, dtype='timedelta64[ms]') }) pa.Table.from_pandas(df) def test_pytime_from_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356)] # microseconds t1 = pa.time64('us') aobjs = np.array(pytimes + [None], dtype=object) parr = pa.array(aobjs) assert parr.type == t1 assert parr[0].as_py() == pytimes[0] assert parr[1].as_py() == pytimes[1] assert parr[2] is pa.NA # DataFrame df = pd.DataFrame({'times': aobjs}) batch = pa.RecordBatch.from_pandas(df) assert batch[0].equals(parr) # Test ndarray of int64 values arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') a1 = pa.array(arr, type=pa.time64('us')) assert a1[0].as_py() == pytimes[0] a2 = pa.array(arr * 1000, type=pa.time64('ns')) assert a2[0].as_py() == pytimes[0] a3 = pa.array((arr / 1000).astype('i4'), type=pa.time32('ms')) assert a3[0].as_py() == pytimes[0].replace(microsecond=1000) a4 = pa.array((arr / 1000000).astype('i4'), type=pa.time32('s')) assert a4[0].as_py() == pytimes[0].replace(microsecond=0) def test_arrow_time_to_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356), time(0, 0, 0)] expected = np.array(pytimes[:2] + [None]) expected_ms = np.array([x.replace(microsecond=1000) for x in pytimes[:2]] + [None]) expected_s = np.array([x.replace(microsecond=0) for x in pytimes[:2]] + [None]) arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') null_mask = np.array([False, False, True], dtype=bool) a1 = pa.array(arr, mask=null_mask, type=pa.time64('us')) a2 = pa.array(arr * 1000, mask=null_mask, type=pa.time64('ns')) a3 = pa.array((arr / 1000).astype('i4'), mask=null_mask, type=pa.time32('ms')) a4 = pa.array((arr / 1000000).astype('i4'), mask=null_mask, type=pa.time32('s')) names = ['time64[us]', 'time64[ns]', 'time32[ms]', 'time32[s]'] batch = pa.RecordBatch.from_arrays([a1, a2, a3, a4], names) arr = a1.to_pandas() assert (arr == expected).all() arr = a2.to_pandas() assert (arr == expected).all() arr = a3.to_pandas() assert (arr == expected_ms).all() arr = a4.to_pandas() assert (arr == expected_s).all() df = batch.to_pandas() expected_df = pd.DataFrame({'time64[us]': expected, 'time64[ns]': expected, 'time32[ms]': expected_ms, 'time32[s]': expected_s}, columns=names) tm.assert_frame_equal(df, expected_df) def test_numpy_datetime64_columns(self): datetime64_ns = np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') _check_array_from_pandas_roundtrip(datetime64_ns) datetime64_us = np.array([ '2007-07-13T01:23:34.123456', None, '2006-01-13T12:34:56.432539', '2010-08-13T05:46:57.437699'], dtype='datetime64[us]') _check_array_from_pandas_roundtrip(datetime64_us) datetime64_ms = np.array([ '2007-07-13T01:23:34.123', None, '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') _check_array_from_pandas_roundtrip(datetime64_ms) datetime64_s = np.array([ '2007-07-13T01:23:34', None, '2006-01-13T12:34:56', '2010-08-13T05:46:57'], dtype='datetime64[s]') _check_array_from_pandas_roundtrip(datetime64_s) @pytest.mark.parametrize('dtype', [pa.date32(), pa.date64()]) def test_numpy_datetime64_day_unit(self, dtype): datetime64_d = np.array([ '2007-07-13', None, '2006-01-15', '2010-08-19'], dtype='datetime64[D]') _check_array_from_pandas_roundtrip(datetime64_d, type=dtype) def test_array_from_pandas_date_with_mask(self): m = np.array([True, False, True]) data = pd.Series([ date(1990, 1, 1), date(1991, 1, 1), date(1992, 1, 1) ]) result = pa.Array.from_pandas(data, mask=m) expected = pd.Series([None, date(1991, 1, 1), None]) assert pa.Array.from_pandas(expected).equals(result) def test_fixed_offset_timezone(self): df = pd.DataFrame({ 'a': [ pd.Timestamp('2012-11-11 00:00:00+01:00'), pd.NaT ] }) _check_pandas_roundtrip(df) _check_serialize_components_roundtrip(df) # ---------------------------------------------------------------------- # Conversion tests for string and binary types. class TestConvertStringLikeTypes(object): def test_pandas_unicode(self): repeats = 1000 values = [u'foo', None, u'bar', u'mañana', np.nan] df = pd.DataFrame({'strings': values * repeats}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_bytes_to_binary(self): values = [u'qux', b'foo', None, bytearray(b'barz'), 'qux', np.nan] df = pd.DataFrame({'strings': values}) table = pa.Table.from_pandas(df) assert table[0].type == pa.binary() values2 = [b'qux', b'foo', None, b'barz', b'qux', np.nan] expected = pd.DataFrame({'strings': values2}) _check_pandas_roundtrip(df, expected) @pytest.mark.large_memory def test_bytes_exceed_2gb(self): v1 = b'x' * 100000000 v2 = b'x' * 147483646 # ARROW-2227, hit exactly 2GB on the nose df = pd.DataFrame({ 'strings': [v1] * 20 + [v2] + ['x'] * 20 }) arr = pa.array(df['strings']) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 arr = None table = pa.Table.from_pandas(df) assert table[0].data.num_chunks == 2 def test_fixed_size_bytes(self): values = [b'foo', None, bytearray(b'bar'), None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) table = pa.Table.from_pandas(df, schema=schema) assert table.schema[0].type == schema[0].type assert table.schema[0].name == schema[0].name result = table.to_pandas() tm.assert_frame_equal(result, df) def test_fixed_size_bytes_does_not_accept_varying_lengths(self): values = [b'foo', None, b'ba', None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) with pytest.raises(pa.ArrowInvalid): pa.Table.from_pandas(df, schema=schema) def test_variable_size_bytes(self): s = pd.Series([b'123', b'', b'a', None]) _check_series_roundtrip(s, type_=pa.binary()) def test_binary_from_bytearray(self): s = pd.Series([bytearray(b'123'), bytearray(b''), bytearray(b'a'), None]) # Explicitly set type _check_series_roundtrip(s, type_=pa.binary()) # Infer type from bytearrays _check_series_roundtrip(s, expected_pa_type=pa.binary()) def test_table_empty_str(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result1 = table.to_pandas(strings_to_categorical=False) expected1 = pd.DataFrame({'strings': values}) tm.assert_frame_equal(result1, expected1, check_dtype=True) result2 = table.to_pandas(strings_to_categorical=True) expected2 = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result2, expected2, check_dtype=True) def test_selective_categoricals(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) expected_str = pd.DataFrame({'strings': values}) expected_cat = pd.DataFrame({'strings': pd.Categorical(values)}) result1 = table.to_pandas(categories=['strings']) tm.assert_frame_equal(result1, expected_cat, check_dtype=True) result2 = table.to_pandas(categories=[]) tm.assert_frame_equal(result2, expected_str, check_dtype=True) result3 = table.to_pandas(categories=('strings',)) tm.assert_frame_equal(result3, expected_cat, check_dtype=True) result4 = table.to_pandas(categories=tuple()) tm.assert_frame_equal(result4, expected_str, check_dtype=True) def test_table_str_to_categorical_without_na(self): values = ['a', 'a', 'b', 'b', 'c'] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) def test_table_str_to_categorical_with_na(self): values = [None, 'a', 'b', np.nan] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) # Regression test for ARROW-2101 def test_array_of_bytes_to_strings(self): converted = pa.array(np.array([b'x'], dtype=object), pa.string()) assert converted.type == pa.string() # Make sure that if an ndarray of bytes is passed to the array # constructor and the type is string, it will fail if those bytes # cannot be converted to utf-8 def test_array_of_bytes_to_strings_bad_data(self): with pytest.raises( pa.lib.ArrowInvalid, match="was not a utf8 string"): pa.array(np.array([b'\x80\x81'], dtype=object), pa.string()) def test_numpy_string_array_to_fixed_size_binary(self): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') converted = pa.array(arr, type=pa.binary(3)) expected = pa.array(list(arr), type=pa.binary(3)) assert converted.equals(expected) mask = np.array([True, False, True]) converted = pa.array(arr, type=pa.binary(3), mask=mask) expected = pa.array([b'foo', None, b'baz'], type=pa.binary(3)) assert converted.equals(expected) with pytest.raises(pa.lib.ArrowInvalid, match=r'Got bytestring of length 3 \(expected 4\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') pa.array(arr, type=pa.binary(4)) with pytest.raises( pa.lib.ArrowInvalid, match=r'Got bytestring of length 12 \(expected 3\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|U3') pa.array(arr, type=pa.binary(3)) class TestConvertDecimalTypes(object): """ Conversion test for decimal types. """ decimal32 = [ decimal.Decimal('-1234.123'), decimal.Decimal('1234.439') ] decimal64 = [ decimal.Decimal('-129934.123331'), decimal.Decimal('129534.123731') ] decimal128 = [ decimal.Decimal('394092382910493.12341234678'), decimal.Decimal('-314292388910493.12343437128') ] @pytest.mark.parametrize(('values', 'expected_type'), [ pytest.param(decimal32, pa.decimal128(7, 3), id='decimal32'), pytest.param(decimal64, pa.decimal128(12, 6), id='decimal64'), pytest.param(decimal128, pa.decimal128(26, 11), id='decimal128') ]) def test_decimal_from_pandas(self, values, expected_type): expected = pd.DataFrame({'decimals': values}) table = pa.Table.from_pandas(expected, preserve_index=False) field = pa.field('decimals', expected_type) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) @pytest.mark.parametrize('values', [ pytest.param(decimal32, id='decimal32'), pytest.param(decimal64, id='decimal64'), pytest.param(decimal128, id='decimal128') ]) def test_decimal_to_pandas(self, values): expected = pd.DataFrame({'decimals': values}) converted = pa.Table.from_pandas(expected) df = converted.to_pandas() tm.assert_frame_equal(df, expected) def test_decimal_fails_with_truncation(self): data1 = [decimal.Decimal('1.234')] type1 = pa.decimal128(10, 2) with pytest.raises(pa.ArrowInvalid): pa.array(data1, type=type1) data2 = [decimal.Decimal('1.2345')] type2 = pa.decimal128(10, 3) with pytest.raises(pa.ArrowInvalid): pa.array(data2, type=type2) def test_decimal_with_different_precisions(self): data = [ decimal.Decimal('0.01'), decimal.Decimal('0.001'), ] series = pd.Series(data) array = pa.array(series) assert array.to_pylist() == data assert array.type == pa.decimal128(3, 3) array = pa.array(data, type=pa.decimal128(12, 5)) expected = [decimal.Decimal('0.01000'), decimal.Decimal('0.00100')] assert array.to_pylist() == expected def test_decimal_with_None_explicit_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) # Test that having all None values still produces decimal array series = pd.Series([None] * 2) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) def test_decimal_with_None_infer_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, expected_pa_type=pa.decimal128(3, 2)) def test_strided_objects(self, tmpdir): # see ARROW-3053 data = { 'a': {0: 'a'}, 'b': {0: decimal.Decimal('0.0')} } # This yields strided objects df = pd.DataFrame.from_dict(data) _check_pandas_roundtrip(df) class TestListTypes(object): """ Conversion tests for list<> types. """ def test_column_of_arrays(self): df, schema = dataframe_with_arrays() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_arrays_to_py(self): # Test regression in ARROW-1199 not caught in above test dtype = 'i1' arr = np.array([ np.arange(10, dtype=dtype), np.arange(5, dtype=dtype), None, np.arange(1, dtype=dtype) ]) type_ = pa.list_(pa.int8()) parr = pa.array(arr, type=type_) assert parr[0].as_py() == list(range(10)) assert parr[1].as_py() == list(range(5)) assert parr[2].as_py() is None assert parr[3].as_py() == [0] def test_column_of_lists(self): df, schema = dataframe_with_lists() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_lists_first_empty(self): # ARROW-2124 num_lists = [[], [2, 3, 4], [3, 6, 7, 8], [], [2]] series = pd.Series([np.array(s, dtype=float) for s in num_lists]) arr = pa.array(series) result = pd.Series(arr.to_pandas()) tm.assert_series_equal(result, series) def test_column_of_lists_chunked(self): # ARROW-1357 df = pd.DataFrame({ 'lists': np.array([ [1, 2], None, [2, 3], [4, 5], [6, 7], [8, 9] ], dtype=object) }) schema = pa.schema([ pa.field('lists', pa.list_(pa.int64())) ]) t1 = pa.Table.from_pandas(df[:2], schema=schema) t2 = pa.Table.from_pandas(df[2:], schema=schema) table = pa.concat_tables([t1, t2]) result = table.to_pandas() tm.assert_frame_equal(result, df) def test_column_of_lists_chunked2(self): data1 = [[0, 1], [2, 3], [4, 5], [6, 7], [10, 11], [12, 13], [14, 15], [16, 17]] data2 = [[8, 9], [18, 19]] a1 = pa.array(data1) a2 = pa.array(data2) t1 = pa.Table.from_arrays([a1], names=['a']) t2 = pa.Table.from_arrays([a2], names=['a']) concatenated = pa.concat_tables([t1, t2]) result = concatenated.to_pandas() expected = pd.DataFrame({'a': data1 + data2}) tm.assert_frame_equal(result, expected) def test_column_of_lists_strided(self): df, schema = dataframe_with_lists() df = pd.concat([df] * 6, ignore_index=True) arr = df['int64'].values[::3] assert arr.strides[0] != 8 _check_array_roundtrip(arr) def test_nested_lists_all_none(self): data = np.array([[None, None], None], dtype=object) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.null()) data2 = np.array([None, None, [None, None], np.array([None, None], dtype=object)], dtype=object) arr = pa.array(data2) expected = pa.array([None, None, [None, None], [None, None]]) assert arr.equals(expected) def test_nested_lists_all_empty(self): # ARROW-2128 data = pd.Series([[], [], []]) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.null()) def test_nested_list_first_empty(self): # ARROW-2711 data = pd.Series([[], [u"a"]]) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.string()) def test_nested_smaller_ints(self): # ARROW-1345, ARROW-2008, there were some type inference bugs happening # before data = pd.Series([np.array([1, 2, 3], dtype='i1'), None]) result = pa.array(data) result2 = pa.array(data.values) expected = pa.array([[1, 2, 3], None], type=pa.list_(pa.int8())) assert result.equals(expected) assert result2.equals(expected) data3 = pd.Series([np.array([1, 2, 3], dtype='f4'), None]) result3 = pa.array(data3) expected3 = pa.array([[1, 2, 3], None], type=pa.list_(pa.float32())) assert result3.equals(expected3) def test_infer_lists(self): data = OrderedDict([ ('nan_ints', [[None, 1], [2, 3]]), ('ints', [[0, 1], [2, 3]]), ('strs', [[None, u'b'], [u'c', u'd']]), ('nested_strs', [[[None, u'b'], [u'c', u'd']], None]) ]) df = pd.DataFrame(data) expected_schema = pa.schema([ pa.field('nan_ints', pa.list_(pa.int64())), pa.field('ints', pa.list_(pa.int64())), pa.field('strs', pa.list_(pa.string())), pa.field('nested_strs', pa.list_(pa.list_(pa.string()))) ]) _check_pandas_roundtrip(df, expected_schema=expected_schema) def test_infer_numpy_array(self): data = OrderedDict([ ('ints', [ np.array([0, 1], dtype=np.int64), np.array([2, 3], dtype=np.int64) ]) ]) df = pd.DataFrame(data) expected_schema = pa.schema([ pa.field('ints', pa.list_(pa.int64())) ]) _check_pandas_roundtrip(df, expected_schema=expected_schema) @pytest.mark.parametrize('t,data,expected', [ ( pa.int64, [[1, 2], [3], None], [None, [3], None] ), ( pa.string, [[u'aaa', u'bb'], [u'c'], None], [None, [u'c'], None] ), ( pa.null, [[None, None], [None], None], [None, [None], None] ) ]) def test_array_from_pandas_typed_array_with_mask(self, t, data, expected): m = np.array([True, False, True]) s = pd.Series(data) result = pa.Array.from_pandas(s, mask=m, type=pa.list_(t())) assert pa.Array.from_pandas(expected, type=pa.list_(t())).equals(result) def test_empty_list_roundtrip(self): empty_list_array = np.empty((3,), dtype=object) empty_list_array.fill([]) df = pd.DataFrame({'a': np.array(['1', '2', '3']), 'b': empty_list_array}) tbl = pa.Table.from_pandas(df) result = tbl.to_pandas() tm.assert_frame_equal(result, df) def test_array_from_nested_arrays(self): df, schema = dataframe_with_arrays() for field in schema: arr = df[field.name].values expected = pa.array(list(arr), type=field.type) result = pa.array(arr) assert result.type == field.type # == list<scalar> assert result.equals(expected) class TestConvertStructTypes(object): """ Conversion tests for struct types. """ def test_to_pandas(self): ints = pa.array([None, 2, 3], type=pa.int64()) strs = pa.array([u'a', None, u'c'], type=pa.string()) bools = pa.array([True, False, None], type=pa.bool_()) arr = pa.StructArray.from_arrays( [ints, strs, bools], ['ints', 'strs', 'bools']) expected = pd.Series([ {'ints': None, 'strs': u'a', 'bools': True}, {'ints': 2, 'strs': None, 'bools': False}, {'ints': 3, 'strs': u'c', 'bools': None}, ]) series = pd.Series(arr.to_pandas()) tm.assert_series_equal(series, expected) def test_from_numpy(self): dt = np.dtype([('x', np.int32), (('y_title', 'y'), np.bool_)]) ty = pa.struct([pa.field('x', pa.int32()), pa.field('y', pa.bool_())]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([(42, True), (43, False)], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{'x': 42, 'y': True}, {'x': 43, 'y': False}] # With mask arr = pa.array(data, mask=np.bool_([False, True]), type=ty) assert arr.to_pylist() == [{'x': 42, 'y': True}, None] # Trivial struct type dt = np.dtype([]) ty = pa.struct([]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([(), ()], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{}, {}] def test_from_numpy_nested(self): dt = np.dtype([('x', np.dtype([('xx', np.int8), ('yy', np.bool_)])), ('y', np.int16)]) ty = pa.struct([pa.field('x', pa.struct([pa.field('xx', pa.int8()), pa.field('yy', pa.bool_())])), pa.field('y', pa.int16())]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([((1, True), 2), ((3, False), 4)], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{'x': {'xx': 1, 'yy': True}, 'y': 2}, {'x': {'xx': 3, 'yy': False}, 'y': 4}] @pytest.mark.large_memory def test_from_numpy_large(self): # Exercise rechunking + nulls target_size = 3 * 1024**3 # 4GB dt = np.dtype([('x', np.float64), ('y', 'object')]) bs = 65536 - dt.itemsize block = b'.' * bs n = target_size // (bs + dt.itemsize) data = np.zeros(n, dtype=dt) data['x'] = np.random.random_sample(n) data['y'] = block # Add implicit nulls data['x'][data['x'] < 0.2] = np.nan ty = pa.struct([pa.field('x', pa.float64()), pa.field('y', pa.binary(bs))]) arr = pa.array(data, type=ty, from_pandas=True) assert arr.num_chunks == 2 def iter_chunked_array(arr): for chunk in arr.iterchunks(): for item in chunk: yield item def check(arr, data, mask=None): assert len(arr) == len(data) xs = data['x'] ys = data['y'] for i, obj in enumerate(iter_chunked_array(arr)): try: d = obj.as_py() if mask is not None and mask[i]: assert d is None else: x = xs[i] if np.isnan(x): assert d['x'] is None else: assert d['x'] == x assert d['y'] == ys[i] except Exception: print("Failed at index", i) raise check(arr, data) del arr # Now with explicit mask mask = np.random.random_sample(n) < 0.2 arr = pa.array(data, type=ty, mask=mask, from_pandas=True) assert arr.num_chunks == 2 check(arr, data, mask) del arr def test_from_numpy_bad_input(self): ty = pa.struct([pa.field('x', pa.int32()), pa.field('y', pa.bool_())]) dt = np.dtype([('x', np.int32), ('z', np.bool_)]) data = np.array([], dtype=dt) with pytest.raises(TypeError, match="Missing field 'y'"): pa.array(data, type=ty) data = np.int32([]) with pytest.raises(TypeError, match="Expected struct array"): pa.array(data, type=ty) class TestZeroCopyConversion(object): """ Tests that zero-copy conversion works with some types. """ def test_zero_copy_success(self): result = pa.array([0, 1, 2]).to_pandas(zero_copy_only=True) npt.assert_array_equal(result, [0, 1, 2]) def test_zero_copy_dictionaries(self): arr = pa.DictionaryArray.from_arrays( np.array([0, 0]), np.array([5])) result = arr.to_pandas(zero_copy_only=True) values =
pd.Categorical([5, 5])
pandas.Categorical
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] self.assertRaises(ValueError, f) # these are coerced to float unavoidably (as its a list-like to begin) df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx =
Index([1, 2, 3], dtype='int64', name='idx')
pandas.core.api.Index
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import random import time import warnings warnings.filterwarnings('ignore') sns.set(style='darkgrid', palette='deep') #Analysing dataset with padas profiling #from pandas_profiling import ProfileReport #profile = ProfileReport(df, title='Medical Cost Personal Datasets', html={'style':{'full_width':True}}) #Importing Dataset df_raw = pd.read_excel('titanic3.xls') new_columns = ['class','survival', 'name', 'sex', 'age', 'siblings/spouses', 'parents/children', 'ticket', 'fare', 'cabin', 'embarked', 'lifeboat', 'body number', 'home/destination'] df_raw.info() #Feature Engineering df = pd.DataFrame(df_raw.values, columns= new_columns ) df_user = pd.DataFrame(np.arange(0, len(df)), columns=['passanger']) df = pd.concat([df_user, df], axis=1) df['family'] = df['siblings/spouses'] + df['parents/children'] + 1 df = df.drop(['siblings/spouses','parents/children'], axis=1) df['embarked'].value_counts() df['embarked'].replace(['S', 'C', 'Q'], ['southampton', 'cherbourg', 'quennstone'], inplace= True ) df.info() df.columns df[['class', 'survival', 'age', 'fare', 'body number', 'family']] = df[['class', 'survival', 'age', 'fare', 'body number', 'family']].apply(pd.to_numeric) #Converting columns to Datatime df['Timestamp'] = pd.to_datetime(df['Timestamp']) time_new = df['Timestamp'].iloc[0] df['Hour'] = df['Timestamp'].apply(lambda time_new: time_new.hour) df['Month'] = df['Timestamp'].apply(lambda time_new: time_new.month) df['Day'] = df['Timestamp'].apply(lambda time_new: time_new.dayofweek) df["hour"] = df.hour.str.slice(1, 3).astype(int) #Visualising Dataset bins = range(0,100,10) ax = sns.distplot(df.age[df.y=='yes'], color='red', kde=False, bins=bins, label='Have Subscribed') sns.distplot(df.age[df.y=='no'], ax=ax, # Overplots on first plot color='blue', kde=False, bins=bins, label="Haven't Subscribed") plt.legend() plt.show() g = pd.crosstab(df.sex, df.survival).plot(kind='bar', figsize=(10,5)) ax = g.axes for p in ax.patches: ax.annotate(f"{p.get_height() * 100 / df.shape[0]:.2f}%", (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', fontsize=11, color='gray', rotation=0, xytext=(0, 10), textcoords='offset points') plt.grid(b=True, which='major', linestyle='--') plt.title('Survival Frequency for Genre') plt.legend(['Not Survived', 'Survived']) plt.xlabel('Genre') plt.ylabel('Quantity') plt.show() df.groupby(pd.cut(df.age, bins))['age'].count().plot(kind='bar', figsize=(10,10)) plt.grid(b=True, which='major', linestyle='--') plt.title('Frequency of Age') plt.grid(b=True, which='major', linestyle='--') plt.xlabel('Age') plt.ylabel('Quantity') plt.show() pd.crosstab(pd.cut(df.age, bins), df.survival).plot(kind='bar', figsize=(10,10)) plt.grid(b=True, which='major', linestyle='--') plt.title('Survival Frequency for Age') plt.legend(['Not Survival', 'Survival']) plt.yticks(np.arange(0,250,50)) plt.xlabel('Age') plt.ylabel('Quantity') plt.show() age_notsurvival = (df.groupby(pd.cut(df.age, bins))['age'].count()/ len(df[df.survival==0]))*100 age_survival = (df.groupby(pd.cut(df.age, bins))['age'].count()/ len(df[df.survival==1]))*100 age_notsurvival.plot(kind='bar', figsize=(10,10)) plt.grid(b=True, which='major', linestyle='--') plt.title('Percentage of Age for Passanger Not Survived') plt.yticks(np.arange(0,110,10)) plt.xlabel('Age') plt.ylabel('Percentage') plt.show() age_survival.plot(kind='bar', figsize=(10,10)) plt.grid(b=True, which='major', linestyle='--') plt.title('Percentage of Age for Passanger Survived') plt.yticks(np.arange(0,110,10)) plt.xlabel('Age') plt.ylabel('Percentage') plt.show() fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, sharey=True, figsize=(10,10)) plt.subplots_adjust(hspace=0) plt.suptitle('Age Frequency') ax1 = sns.countplot(pd.cut(df.age, bins), data= df, color='darkblue', ax=axes[0], saturation=0.5) ax2 = sns.countplot(
pd.cut(df.age, bins)
pandas.cut
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 16:14:12 2019 @author: <NAME> """ import pandas as pd import numpy as np import matplotlib.pyplot as plt #import graphviz import os import seaborn as sns from scipy.stats import chi2_contingency os.chdir("E:\PYTHON NOTES\projects\cab fare prediction") dataset_train=pd.read_csv("train_cab.csv") dataset_test=pd.read_csv("test.csv") dataset_train.describe() # dimension of data # dimension of data dataset_train.shape # Number of rows dataset_train.shape[0] # number of columns dataset_train.shape[1] # name of columns list(dataset_train) # data detailat dataset_train.info() dataset_train.isnull().sum() dataset_test.isnull().sum() sns.heatmap(dataset_train.isnull(),yticklabels=False,cbar=False, cmap='coolwarm') #datetime change into reqired format data=[dataset_train,dataset_test] for i in data: i["pickup_datetime"]=pd.to_datetime(i["pickup_datetime"],errors="coerce") dataset_train.info() dataset_test.info() dataset_train.isnull().sum() dataset_test.isna().sum() dataset_train=dataset_train.dropna(subset=["pickup_datetime"],how="all") dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) np.where(dataset_train["fare_amount"]=="430-") dataset_train["fare_amount"].loc[1123]=430 dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) #we will convery passanger count in to catogorical varibale ,cause passangor caount is not contineous varibale dataset_obj=["passenger_count"] dataset_int=["fare_amount","pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] # data visulization import seaborn as sns import matplotlib.pyplot as plt #$stting up the sns for plots sns.set(style="darkgrid",palette="Set1") #some histogram plot from seaborn lib plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.distplot(dataset_train["fare_amount"],bins=50) plt.subplot(322) _=sns.distplot(dataset_train["pickup_longitude"],bins=50) plt.subplot(323) _=sns.distplot(dataset_train["pickup_latitude"],bins=50) plt.subplot(324) _ = sns.distplot(dataset_train['dropoff_longitude'],bins=50) plt.subplot(325) _ = sns.distplot(dataset_train['dropoff_latitude'],bins=50) plt.show() plt.savefig('hist.png') import scipy.stats as stats #Some Bee Swarmplots # plt.title('Cab Fare w.r.t passenger_count') plt.figure(figsize=(25,25)) #_=sns.swarmplot(x="passenger_count",y="fare_amount",data=dataset_train) #Jointplots for Bivariate Analysis. #Here Scatter plot has regression line between 2 variables along with separate Bar plots of both variables. #Also its annotated with pearson correlation coefficient and p value. _=sns.jointplot(x="fare_amount",y="pickup_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) #plt.savefig("jointfplo.png") plt.show() _=sns.jointplot(x="fare_amount",y="pickup_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) # some violineplots to see spread d variable plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.violinplot(y="fare_amount",data=dataset_train) plt.subplot(322) _=sns.violinplot(y="pickup_longitude",data=dataset_train) plt.subplot(323) _ = sns.violinplot(y='pickup_latitude',data=dataset_train) plt.subplot(324) _ = sns.violinplot(y='dropoff_longitude',data=dataset_train) plt.subplot(325) _ = sns.violinplot(y='dropoff_latitude',data=dataset_train) plt.savefig("violine.png") plt.show() #pairplot for all numeric varibale _=sns.pairplot(dataset_train.loc[:,dataset_int],kind="scatter",dropna=True) _.fig.suptitle("pairwise plot all numeric varibale") #plt.savefig("pairwise.png") plt.show() #removing values which are not within the desired range outlier depanding upon basic understanding of dataset #1.Fare amount has a negative value, which doesn't make sense. A price amount cannot be -ve and also cannot be 0. So we will remove these fields. sum(dataset_train["fare_amount"]<1) dataset_train[dataset_train["fare_amount"]<1] dataset_train=dataset_train.drop(dataset_train[dataset_train["fare_amount"]<1].index,axis=0) #dataset_train.loc[dataset_train["fare_amount"]<1,"fare_amount"]=np.nan #2. passanger count varibale /// passanger count cound not increse more than 6 sum(dataset_train["passenger_count"]>6) for i in range (4,11): print("passanger_count_above"+ str(i)+ "={}".format(sum(dataset_train["passenger_count"]>i))) # so 20 observations of passenger_count is consistenly above from 6,7,8,9,10 passenger_counts, let's check them. dataset_train[dataset_train["passenger_count"]>6] #Also we need to see if there are any passenger_count<1 dataset_train[dataset_train["passenger_count"]<1] len(dataset_train[dataset_train["passenger_count"]<1]) dataset_test["passenger_count"].unique() # We will remove 20 observation which are above 6 value because a cab cannot hold these number of passengers. dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]<1].index,axis=0) dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]>6].index,axis=0) #dataset_train.loc[dataset_train["passenger_count"]<1,"passenger_count"]=np.nan #dataset_train.loc[dataset_train["passenger_count"]>6,"passenger_count"]=np.nan sum(dataset_train["passenger_count"]<1) #3.Latitudes range from -90 to 90.Longitudes range from -180 to 180. Removing which does not satisfy these ranges print("pickup_longitude above 180 ={}".format(sum(dataset_train["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_train["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_train["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_train["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_train['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_train['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_train['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_train['dropoff_latitude']>90))) #for test data print("pickup_longitude above 180 ={}".format(sum(dataset_test["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_test["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_test["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_test["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_test['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_test['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_test['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_test['dropoff_latitude']>90))) #There's only one outlier which is in variable pickup_latitude.So we will remove it with nan. #Also we will see if there are any values equal to 0. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_train[i]==0))) #for test data for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_test[i]==0))) #there are values which are equal to 0. we will remove them. # There's only one outlier which is in variable pickup_latitude.So we will remove it with nan dataset_train=dataset_train.drop(dataset_train[dataset_train["pickup_latitude"]>90].index,axis=0) #there are values which are equal to 0. we will remove them. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: dataset_train=dataset_train.drop(dataset_train[dataset_train[i]==0].index,axis=0) # for i in ['pickup_longitude','pickup_latitude','dropoff_longitude','dropoff_latitude']: # train.loc[train[i]==0,i] = np.nan # train.loc[train['pickup_latitude']>90,'pickup_latitude'] = np.nan dataset_train.shape #Missing Value Analysis missing_value=dataset_train.isnull().sum() missing_value = missing_value.reset_index() missing_value = missing_value.rename(columns = {'index': 'Variables', 0: 'Missing_percentage'}) missing_value #find out percentage of null value missing_value['Missing_percentage'] = (missing_value['Missing_percentage']/len(dataset_train))*100 missing_value = missing_value.sort_values('Missing_percentage', ascending = False).reset_index(drop = True) dataset_train.info() dataset_train["fare_amount"]=dataset_train["fare_amount"].fillna(dataset_train["fare_amount"].median()) dataset_train["passenger_count"]=dataset_train["passenger_count"].fillna(dataset_train["passenger_count"].mode()[0]) dataset_train.isnull().sum() dataset_train["passenger_count"]=dataset_train["passenger_count"].round().astype(object) dataset_train["passenger_count"].unique() #outliers analysis by box plot plt.figure(figsize=(20,5)) plt.xlim(0,100) sns.boxplot(x=dataset_train["fare_amount"],data=dataset_train,orient="h") # sum(dataset_train['fare_amount']<22.5)/len(dataset_train['fare_amount'])*100 #Bivariate Boxplots: Boxplot for Numerical Variable Vs Categorical Variable. plt.figure(figsize=(20,10)) plt.xlim(0,100) _=sns.boxplot(x=dataset_train["fare_amount"],y=dataset_train["passenger_count"],data=dataset_train,orient="h") def outlier_detect(df): for i in df.describe().columns: q1=df.describe().at["25%",i] q3=df.describe().at["75%",i] IQR=(q3-q1) ltv=(q1-1.5*IQR) utv=(q3+1.5*IQR) x=np.array(df[i]) p=[] for j in x: if j<ltv: p.append(ltv) elif j>utv: p.append(utv) else: p.append(j) df[i]=p return (df) dataset_int1=outlier_detect(dataset_train.loc[:,dataset_int]) dataset_test_obj=["passenger_count"] dataset_test_int=["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] dataset_test1=outlier_detect(dataset_test.loc[:,dataset_test_int]) dataset_test1=pd.concat([dataset_test1,dataset_test["passenger_count"]],axis=1) dataset_test=pd.concat([dataset_test1,dataset_test["pickup_datetime"]],axis=1) #determine corr corr=dataset_int1.corr() f,ax=plt.subplots(figsize=(7,5)) sns.heatmap(corr,mask=np.zeros_like(corr,dtype=np.bool),cmap=sns.diverging_palette(220,10,as_cmap=True),square=True,ax=ax) # """feature engineering""" #1.we will derive new features from pickup_datetime variable #new features will be year,month,day_of_week,hour dataset_train1=pd.concat([dataset_int1,dataset_train["passenger_count"]],axis=1) dataset_train2=pd.concat([dataset_train1,dataset_train["pickup_datetime"]],axis=1) #dataset_train2.isna().sum() data=[dataset_train2,dataset_test] for i in data: i["year"]=i["pickup_datetime"].apply(lambda row:row.year) i["month"]=i["pickup_datetime"].apply(lambda row:row.month) i["day_of_week"] = i["pickup_datetime"].apply(lambda row: row.dayofweek) i["hour"] = i["pickup_datetime"].apply(lambda row: row.hour) # train2_nodummies=dataset_train2.copy() # dataset_train2=train2_nodummies.copy() plt.figure(figsize=(20,10)) sns.countplot(dataset_train2["year"]) # plt.savefig('year.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['month']) # plt.savefig('month.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['day_of_week']) # plt.savefig('day_of_week.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['hour']) # plt.savefig('hour.png') plt.show #Now we will use month,day_of_week,hour to derive new features like sessions in a day,seasons in a year,week:weekend/weekday # for sessions in a day using hour columns def f(x): if(x>=5) and (x<=11): return "morning" elif (x>=12) and (x<=16): return "afternoon" elif (x>=17) and (x<=20): return "evening" elif (x>=21) and (x<=23): return "night pm" elif (x>=0) and (x<=4): return "night am" dataset_train2["sessions"]=dataset_train2["hour"].apply(f) dataset_test['session'] = dataset_test['hour'].apply(f) #for seasons in a year using month column def g(x): if (x>=3) and (x<=5): return "spring" elif (x>=6) and (x<=8): return "summer" elif (x>=9) and (x<=11): return "fall" else : return "winter" dataset_train2['seasons'] = dataset_train2['month'].apply(g) dataset_test['seasons'] = dataset_test['month'].apply(g) #for week / weekend in a day of week columns def h(x): if (x>=0) and (x<=4): return "weekday" elif (x>=5) and (x<=6): return "weekend" dataset_train2['week'] = dataset_train2['day_of_week'].apply(h) dataset_test['week'] = dataset_test['day_of_week'].apply(h) dataset_train2['passenger_count'].describe() dataset_train2.isnull().sum() dataset_test.isna().sum() #creating dummy varibale temp=pd.get_dummies(dataset_train2["passenger_count"],prefix="passenger_count") dataset_train2=dataset_train2.join(temp) temp = pd.get_dummies(dataset_test['passenger_count'], prefix = 'passenger_count') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_test['seasons'], prefix = 'seasons') dataset_test = dataset_test.join(temp) temp=pd.get_dummies(dataset_train2["seasons"],prefix = "season" ) dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_train2['week'], prefix = 'week') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['week'], prefix = 'week') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_train2['sessions'], prefix = 'sessions') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['session'], prefix = 'session') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_train2['year'], prefix = 'year') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['year'], prefix = 'year') dataset_test = dataset_test.join(temp) #we will drop one column from each one-hot-encoded variables dataset_train2.columns dataset_test.columns dataset_train2.info() dataset_train2=dataset_train2.drop(['passenger_count_1.0','season_fall','week_weekday','sessions_afternoon','year_2009'],axis=1) dataset_test=dataset_test.drop(['passenger_count_1','seasons_fall','week_weekday','session_afternoon','year_2009'],axis=1) #3.Feature Engineering for latitude and longitude variable #As we have latitude and longitude data for pickup and dropoff, we will find the distance the cab travelled from pickup and dropoff location. #def haversine(coord1,coord2): # data=[dataset_train2,dataset_test] # for i in data: # lon1,lat1=coord1 # lon2,lat2=coord2 # r=6371000 #randius of earth in meters # phi_1=np.radians(i[lat1]) # phi_2=np.radians(i[lat2]) # delta_phi=np.radians(i[lat2]-i[lat1]) # delta_lambda=np.radians(i[lon2]-i[lon1]) # a=np.sin(delta_phi/2.0)**2+np.cos(phi_1)*np.cos(phi_2)*np.sin(delta_lambda/2.0)**2 # c=2*np.arctan2(np.sqrt(a),np.sqrt(1-a)) # meters=c*r #output distance in meter # km=meters/1000.0 # miles=round(km,3)/1.609344 # i["distance"]=miles # print(f"distance:{miles} miles") # return miles # #haversine(['pickup_longitude','pickup_latitude'],['dropoff_longitude','dropoff_latitude']) #As Vincenty is more accurate than haversine. Also vincenty is prefered for short distances. #Therefore we will drop great_circle. we will drop them together with other variables which were used to feature engineer. from geopy.distance import geodesic from geopy.distance import great_circle #from sklearn.externals import joblib data=[dataset_train2,dataset_test] for i in data: i["great_circle"]=i.apply(lambda x : great_circle((x["pickup_latitude"],x["pickup_longitude"]),(x["dropoff_latitude"],x["dropoff_longitude"])).miles,axis=1) i["geodesic"]=i.apply(lambda x: geodesic((x["pickup_latitude"],x["pickup_longitude"]),(x["dropoff_latitude"],x["dropoff_longitude"])).miles,axis=1) #We will remove the variables which were used to feature engineer new variable dataset_train2=dataset_train2.drop(['pickup_datetime','pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day_of_week', 'hour', 'sessions', 'seasons', 'week','great_circle'],axis=1) dataset_test=dataset_test.drop(['pickup_datetime','pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day_of_week', 'hour', 'session', 'seasons', 'week','great_circle'],axis=1) plt.figure(figsize=(20,5)) sns.boxplot(x=dataset_train2["geodesic"],data=dataset_train2,orient="h") plt.figure(figsize=(20,5)) plt.xlim(0,100) sns.boxplot(x=dataset_train2['geodesic'],data=dataset_train2,orient='h') plt.title('Boxplot of geodesic ') # plt.savefig('bp geodesic.png') plt.show() dataset_train2.isnull().sum() #outlier in geodesic def outlier_detect(df): for i in df.describe().columns: q1=df.describe().at["25%",i] q3=df.describe().at["75%",i] IQR=(q3-q1) ltv=(q1-1.5*IQR) utv=(q3+1.5*IQR) x=np.array(df[i]) p=[] for j in x: if j<ltv: p.append(ltv) elif j>utv: p.append(utv) else: p.append(j) df[i]=p return (df) dataset_train11=pd.DataFrame(dataset_train2["geodesic"]) dataset_11=outlier_detect(dataset_train11) dataset_train2=dataset_train2.drop(["geodesic"],axis=1) dataset_train2=pd.concat([dataset_train2,dataset_11],axis=1) dataset_train2.info() #***************************************************** #for test data dataset_test1=pd.DataFrame(dataset_test["geodesic"]) dataset_test11=outlier_detect(dataset_test1) dataset_test2=dataset_test.drop(["geodesic"],axis=1) dataset_test=pd.concat([dataset_test2,dataset_test11],axis=1) #************************************************************** plt.boxplot(dataset_test["geodesic"]) dataset_train_num=["fare_amount","geodesic"] dataset_train_obj=["passenger_count_2.0","passenger_count_3.0","passenger_count_4.0","passenger_count_5.0","passenger_count_6.0","season_spring","season_summer","season_winter","week_weekend","sessions_evening","sessions_morning","sessions_night am","sessions_night pm","year_2010","year_2011","year_2012","year_2013","year_2014","year_2015"] len(dataset_train_obj) dataset_train2[dataset_train_obj]=dataset_train2[dataset_train_obj].apply(lambda x: x.astype("category")) dataset_test.info() dataset_test_obj=["passenger_count_2","passenger_count_3","passenger_count_4","passenger_count_5","passenger_count_6","seasons_spring","seasons_summer","seasons_winter","week_weekend","session_evening","session_morning","session_night am","session_night pm","year_2010","year_2011","year_2012","year_2013","year_2014","year_2015"] dataset_test[dataset_test_obj]=dataset_test[dataset_test_obj].apply(lambda x: x.astype("category")) dataset_test.columns #correlation plt.figure(figsize=(15,15)) _=sns.heatmap(dataset_train2[dataset_train_num].corr(),square=True,cmap="RdYlGn",linewidth=0.5,linecolor="w",annot=True) plt.savefig('correlation.png')# plt.savefig('correlation.png') #As we can see from above correlation plot fare_amount and geodesic is correlated to each other. #Jointplots for Bivariate Analysis. #Here Scatter plot has regression line between 2 variables along with separate Bar plots of both variables. #Also its annotated with pearson correlation coefficient and p value. _=sns.jointplot(x="fare_amount",y="geodesic",data=dataset_train2,kind="reg") _.annotate(stats.pearsonr) plt.savefig('jointct.png') #Chi-square test of Independence for Categorical Variables/Features #Hypothesis testing : #Null Hypothesis: 2 variables are independent. #Alternate Hypothesis: 2 variables are not independent. #If p-value is less than 0.05 then we reject the null hypothesis saying that 2 variables are dependent. #And if p-value is greater than 0.05 then we accept the null hypothesis saying that 2 variables are independent. #There should be no dependencies between Independent variables. #So we will remove that variable whose p-value with other variable is low than 0.05. #And we will keep that variable whose p-value with other variable is high than 0.05 #loop for chi2 test for i in dataset_train_obj: for j in dataset_train_obj: if (i!=j): chi2,p,dof,ex=chi2_contingency(pd.crosstab(dataset_train2[i],dataset_train2[j])) if(p<0.05): print(i, "and ",j ,"are depandent to eath other",p,"---remove") else: print(i,"and",j,"are indepandent",p,"----keep") #Analysis of Variance(Anova) Test #it is carried out to comapre between each group in a categorical varibale #ANOVA only lets us know the means for different groups are same or not. It doesn’t help us identify which mean is different. #Hypothesis testing : #Null Hypothesis: mean of all categories in a variable are same. #Alternate Hypothesis: mean of at least one category in a variable is different. #If p-value is less than 0.05 then we reject the null hypothesis. #And if p-value is greater than 0.05 then we accept the null hypothesis. from statsmodels.formula.api import ols dataset_train2.columns=["fare_amount","passenger_count_2","passenger_count_3","passenger_count_4","passenger_count_5","passenger_count_6","seasons_spring","seasons_summer","seasons_winter","week_weekend","session_evening","session_morning","session_night_am","session_night_pm","year_2010","year_2011","year_2012","year_2013","year_2014","year_2015","geodesic"] import statsmodels.api as sm model=ols("fare_amount ~ C(passenger_count_2)+C(passenger_count_3)+C(passenger_count_4)+C(passenger_count_5)+C(passenger_count_6)+C(seasons_spring)+C(seasons_summer)+C(seasons_winter)+C(week_weekend)+C(session_evening)+C(session_morning)+C(session_night_am)+C(session_night_pm)+C(year_2010)+C(year_2011)+C(year_2012)+C(year_2013)+C(year_2014)+C(year_2015)",data=dataset_train2).fit() anova_table=sm.stats.anova_lm(model) #Multicollinearity Test #VIF is always greater or equal to 1. #if VIF is 1 --- Not correlated to any of the variables. #if VIF is between 1-5 --- Moderately correlated. #if VIF is above 5 --- Highly correlated. #If there are multiple variables with VIF greater than 5, only remove the variable with the highest VIF. from patsy import dmatrices from statsmodels.stats.outliers_influence import variance_inflation_factor outcome,predictors=dmatrices("fare_amount ~ geodesic+passenger_count_2+passenger_count_3+passenger_count_4+passenger_count_5+passenger_count_6+seasons_spring+seasons_summer+seasons_winter+week_weekend+session_evening+session_morning+session_night_am+session_night_pm+year_2010+year_2011+year_2012+year_2013+year_2014+year_2015",dataset_train2,return_type="dataframe") vif=
pd.DataFrame()
pandas.DataFrame
from sympy import * import pandas as pd from random import random def random_optimization(xl, xu, n, function): x = Symbol('x') f = parse_expr(function) iteration = 0 data = pd.DataFrame(columns=['iteration','xl','xu','x','f(x)','max_x','max_f(x)']) max_f = -1E9 for i in range(n): r = random() x0 = xl + (xu - xl)*r df = f.diff(x) fx = f.subs(x, x0) dfx = df.subs(x, x0) if fx > max_f: max_f = fx max_x = x0 data = data.append(pd.DataFrame({'iteration':[iteration], 'xl':[xl], 'xu':[xu], 'x':[x0], 'f(x)':[fx], 'max_x':[max_x], 'max_f(x)':[max_f], 'error':[dfx]}), ignore_index = True) iteration += 1 return data def multivariable_random_optimization(xl, xu, yl, yu, n, function): x = Symbol('x') y = Symbol('y') f = parse_expr(function) iteration = 0 data = pd.DataFrame(columns=['iteration','xl','xu','x','yl','yu','y','f(x,y)','max_x','max_y','max_f(x,y)']) max_f = -1E9 for i in range(n): r = random() x0 = xl + (xu - xl)*r r = random() y0 = yl + (yu - yl)*r df = f.diff(x) fx = f.subs(x, x0) fxy = fx.subs(y, y0) if fxy > max_f: max_f = fxy max_x = x0 max_y = y0 data = data.append(
pd.DataFrame({'iteration':[iteration], 'xl':[xl], 'xu':[xu], 'x':[x0], 'yl':[yl], 'yu':[yu], 'y':[y0], 'f(x,y)':[fxy], 'max_x':[max_x], 'max_y':[max_y], 'max_f(x,y)':[max_f]})
pandas.DataFrame
# <NAME> # 5/12/20 import pandas as pd def save_files(outputfolder, merged): """ :param outputfolder: The folder where all of the merged files will be saved :param merged: The merged dictionaries :return: None """ keys = list(merged.keys()) for i in range(len(keys)): df =
pd.DataFrame(merged[keys[i]])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Tests that quoting specifications are properly handled during parsing for all of the parsers defined in parsers.py """ import csv import pytest from pandas.compat import PY3, StringIO, u from pandas.errors import ParserError from pandas import DataFrame import pandas.util.testing as tm class QuotingTests(object): def test_bad_quote_char(self): data = '1,2,3' # Python 2.x: "...must be an 1-character..." # Python 3.x: "...must be a 1-character..." msg = '"quotechar" must be a(n)? 1-character string' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quotechar='foo') msg = 'quotechar must be set if quoting enabled' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quotechar=None, quoting=csv.QUOTE_MINIMAL) msg = '"quotechar" must be string, not int' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quotechar=2) def test_bad_quoting(self): data = '1,2,3' msg = '"quoting" must be an integer' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quoting='foo') # quoting must in the range [0, 3] msg = 'bad "quoting" value' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quoting=5) def test_quote_char_basic(self): data = 'a,b,c\n1,2,"cat"' expected = DataFrame([[1, 2, 'cat']], columns=['a', 'b', 'c']) result = self.read_csv(StringIO(data), quotechar='"') tm.assert_frame_equal(result, expected) def test_quote_char_various(self): data = 'a,b,c\n1,2,"cat"' expected = DataFrame([[1, 2, 'cat']], columns=['a', 'b', 'c']) quote_chars = ['~', '*', '%', '$', '@', 'P'] for quote_char in quote_chars: new_data = data.replace('"', quote_char) result = self.read_csv(StringIO(new_data), quotechar=quote_char) tm.assert_frame_equal(result, expected) def test_null_quote_char(self): data = 'a,b,c\n1,2,3' # sanity checks msg = 'quotechar must be set if quoting enabled' with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quotechar=None, quoting=csv.QUOTE_MINIMAL) with pytest.raises(TypeError, match=msg): self.read_csv(StringIO(data), quotechar='', quoting=csv.QUOTE_MINIMAL) # no errors should be raised if quoting is None expected = DataFrame([[1, 2, 3]], columns=['a', 'b', 'c']) result = self.read_csv(StringIO(data), quotechar=None, quoting=csv.QUOTE_NONE) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), quotechar='', quoting=csv.QUOTE_NONE) tm.assert_frame_equal(result, expected) def test_quoting_various(self): data = '1,2,"foo"' cols = ['a', 'b', 'c'] # QUOTE_MINIMAL and QUOTE_ALL apply only to # the CSV writer, so they should have no # special effect for the CSV reader expected = DataFrame([[1, 2, 'foo']], columns=cols) # test default (afterwards, arguments are all explicit) result = self.read_csv(StringIO(data), names=cols) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), quotechar='"', quoting=csv.QUOTE_MINIMAL, names=cols)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"])) b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"])) result = pd.concat([a, b], ignore_index=True) expected = Series( Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]) ) tm.assert_series_equal(result, expected) def test_concat_categorical_coercion(self): # GH 13524 # category + not-category => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2]) exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # result shouldn't be affected by 1st elem dtype exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # all values are not in category => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1]) exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([2, 1, 3, 2]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # completely different categories => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([1, 3, 2]) exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # different dtype => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series(["a", "b", "c"]) exp = Series([10, 11, np.nan, "a", "b", "c"]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(["a", "b", "c", 10, 11, np.nan]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # if normal series only contains NaN-likes => not-category s1 = Series([10, 11], dtype="category") s2 = Series([np.nan, np.nan, np.nan]) exp = Series([10, 11, np.nan, np.nan, np.nan]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([np.nan, np.nan, np.nan, 10, 11]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) def test_concat_categorical_3elem_coercion(self): # GH 13524 # mixed dtypes => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") s3 = Series([1, 2, 1, 2, np.nan]) exp = Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan], dtype="float") tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2], dtype="float") tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([1, 3, 4]) exp = Series([4, 5, 6, 1, 2, 3, 1, 3, 4]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 3, 4, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([10, 11, 12]) exp = Series([4, 5, 6, 1, 2, 3, 10, 11, 12]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([10, 11, 12, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) def test_concat_categorical_multi_coercion(self): # GH 13524 s1 = Series([1, 3], dtype="category") s2 = Series([3, 4], dtype="category") s3 = Series([2, 3]) s4 = Series([2, 2], dtype="category") s5 = Series([1, np.nan]) s6 = Series([1, 3, 2], dtype="category") # mixed dtype, values are all in categories => not-category exp = Series([1, 3, 3, 4, 2, 3, 2, 2, 1, np.nan, 1, 3, 2]) res = pd.concat([s1, s2, s3, s4, s5, s6], ignore_index=True) tm.assert_series_equal(res, exp) res = s1._append([s2, s3, s4, s5, s6], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series([1, 3, 2, 1, np.nan, 2, 2, 2, 3, 3, 4, 1, 3]) res = pd.concat([s6, s5, s4, s3, s2, s1], ignore_index=True) tm.assert_series_equal(res, exp) res = s6._append([s5, s4, s3, s2, s1], ignore_index=True) tm.assert_series_equal(res, exp) def test_concat_categorical_ordered(self): # GH 13524 s1 = Series(Categorical([1, 2, np.nan], ordered=True)) s2 = Series(Categorical([2, 1, 2], ordered=True)) exp = Series(Categorical([1, 2, np.nan, 2, 1, 2], ordered=True)) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(Categorical([1, 2, np.nan, 2, 1, 2, 1, 2, np.nan], ordered=True)) tm.assert_series_equal(pd.concat([s1, s2, s1], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s1], ignore_index=True), exp) def test_concat_categorical_coercion_nan(self): # GH 13524 # some edge cases # category + not-category => not category s1 = Series(np.array([np.nan, np.nan], dtype=np.float64), dtype="category") s2 = Series([np.nan, 1]) exp = Series([np.nan, np.nan, np.nan, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) s1 = Series([1, np.nan], dtype="category") s2 = Series([np.nan, np.nan]) exp = Series([1, np.nan, np.nan, np.nan], dtype="float") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # mixed dtype, all nan-likes => not-category s1 = Series([np.nan, np.nan], dtype="category") s2 = Series([np.nan, np.nan]) exp = Series([np.nan, np.nan, np.nan, np.nan]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # all category nan-likes => category s1 = Series([np.nan, np.nan], dtype="category") s2 =
Series([np.nan, np.nan], dtype="category")
pandas.Series