prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from datetime import datetime from io import StringIO import itertools import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm class TestDataFrameReshape: def test_stack_unstack(self, float_frame): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("<KEY>") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"'fill_value=d' is not present in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E": Series([1.0, 50.0, 100.0]).astype("float32"), "F": Series([3.0, 4.0, 5.0]).astype("float64"), "G": False, "H": Series([1, 200, 923442], dtype="int8"), } ) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) tm.assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(["state", "index"]) unstack_and_compare(df1, "index") df1 = df.set_index(["state", "some_categories"]) unstack_and_compare(df1, "some_categories") df1 = df.set_index(["F", "C"]) unstack_and_compare(df1, "F") df1 = df.set_index(["G", "B", "state"]) unstack_and_compare(df1, "B") df1 = df.set_index(["E", "A"]) unstack_and_compare(df1, "E") df1 = df.set_index(["state", "index"]) s = df1["A"] unstack_and_compare(s, "index") def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) tm.assert_frame_equal( df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1) ) df_named = df.copy() return_value = df_named.columns.set_names(range(3), inplace=True) assert return_value is None tm.assert_frame_equal( df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1) ) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ["exp", "animal", 1] tm.assert_frame_equal( df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False ) # When mixed types are passed and the ints are not level # names, raise msg = ( "level should contain all level names or all level numbers, not " "a mixture of the two" ) with pytest.raises(ValueError, match=msg): df2.stack(level=["animal", 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ["exp", "animal", 0] tm.assert_frame_equal( df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False ) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=["exp", "animal"]) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) df2 = df.copy() df2.columns.names = [0, 1, 2] tm.assert_frame_equal( df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False ) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] tm.assert_frame_equal( df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False ) def test_unstack_bool(self): df = DataFrame( [False, False], index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]), columns=["col"], ) rs = df.unstack() xp = DataFrame( np.array([[False, np.nan], [np.nan, False]], dtype=object), index=["a", "b"], columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]), ) tm.assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=["first", "second", "third"], ) s = Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=["first", "second"], ) expected = DataFrame( np.array( [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64 ), index=expected_mi, columns=
Index(["a", "b"], name="third")
pandas.Index
#dependencies from sklearn.cross_decomposition import PLSRegression from sklearn.model_selection import cross_validate import pandas as pd import numpy as np from scipy.signal import savgol_filter from sklearn.base import TransformerMixin, RegressorMixin, BaseEstimator from scipy import sparse, signal from BaselineRemoval import BaselineRemoval from sklearn.model_selection import ShuffleSplit from scipy.sparse.linalg import spsolve #Import prep methods import sklearn from sklearn.preprocessing import StandardScaler, MinMaxScaler,MaxAbsScaler, RobustScaler from sklearn.preprocessing import FunctionTransformer, PowerTransformer, QuantileTransformer from sklearn.decomposition import PCA, KernelPCA class SavgolFilter(BaseEstimator,TransformerMixin): def __init__(self,window_length=5,polyorder=2,axis=1): self.__name__='SavgolFilter' self.window_length=window_length self.polyorder=polyorder self.axis=axis self.output=None def fit(self,X,y=None): pass def transform(self,X,y=None): self.output=savgol_filter(X,window_length=self.window_length,polyorder=self.polyorder,axis=self.axis) return self.output def fit_transform(self,X,y=None): self.output=savgol_filter(X,window_length=self.window_length,polyorder=self.polyorder,axis=self.axis) return self.output class BaselineASLS(BaseEstimator,TransformerMixin): #Asymmetric Least Squares def __init__(self, lam=1e5, p=1e-3, niter=10): self.__name__='BaselineAsLS' self.lam=lam self.p=p self.niter=niter self.y=None self.output=None def fit(self,X,y=None): self.y=y def transform(self,X,y=None): y=self.y self.output=np.apply_along_axis(lambda x: self.line_remove(x), 0, X) return self.output def line_remove(self,f): L = len(f) D = sparse.csc_matrix(np.diff(np.eye(L), 2)) w = np.ones(L) z = 0 for i in range(self.niter): W = sparse.spdiags(w, 0, L, L) Z=W + self.lam * D.dot(D.transpose()) z = spsolve(Z, w * f) w = self.p * (f > z) + (1 - self.p) * (f < z) return z def fit_transform(self,X,y=None): self.y=y return self.transform(X,y) class BaselineModpoly(BaseEstimator,TransformerMixin): def __init__(self, degree=2): self.__name__='BaselineModPoly' self.degree=degree def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.ModPoly(self.degree) del MP return X_ def fit_transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.ModPoly(self.degree) del MP return X_ class BaselineZhangFit(BaseEstimator,TransformerMixin): def __init__(self, itermax=50): self.__name__='BaselineZhangFit' self.itermax=itermax def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.ZhangFit(itermax=self.itermax) del MP return X_ def fit_transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.ZhangFit(itermax=self.itermax) del MP return X_ class BaselineIModPoly(BaseEstimator,TransformerMixin): def __init__(self, degree=2): self.__name__='BaselineImprovedModPoly' self.degree=degree def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.IModPoly(self.degree) del MP return X_ def fit_transform(self,X,y=None): try: X=X.to_numpy() except: pass X_=np.zeros_like(X) for i in range(X.shape[0]): MP=BaselineRemoval(X[i,:]) X_[i,:]=MP.IModPoly(self.degree) del MP return X_ class BaselineLinear(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='BaselineLinear' def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=X.to_numpy() except: pass return signal.detrend(X) def fit_transform(self,X,y=None): try: X=X.to_numpy() except: pass return signal.detrend(X) class BaselineSecondOrder(BaseEstimator,TransformerMixin): def __init__(self,degree=2): self.__name__='BaselineSecondOrder' self.degree=degree def fit(self,X,y=None): pass def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass t=np.arange(0,X.shape[1]) X_s= X.apply(lambda x: x- np.polyval(np.polyfit(t,x,self.degree), t),axis=1) return X_s def transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass t=np.arange(0,X.shape[1]) X_s= X.apply(lambda x: x- np.polyval(np.polyfit(t,x,self.degree), t),axis=1) return X_s class MSC(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='MSC' self.mean=None def fit(self,X,y=None): self.mean= np.array(X.mean(axis=0)) def transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass #self.mean= np.array(X.mean(axis=0)) def transformMSC(x,mean): m,b= np.polyfit(mean,x,1) return (x-b)*m return X.apply(transformMSC,args=(self.mean,),axis=1).values def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.mean= np.array(X.mean(axis=0)) def transformMSC(x,mean): m,b= np.polyfit(mean,x,1) return (x-b)*m return X.apply(transformMSC,args=(self.mean,),axis=1).values class FirstDerivative(BaseEstimator,TransformerMixin): def __init__(self,d=2): self.__name__='First Derivative' self.d=d def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass X_=X.diff(self.d,axis=1) drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) return X_ def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass X_=X.diff(self.d,axis=1) drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) return X_ # TO DO: #Piecewise MSC (PMSC) #Extended MSC (2nd order), Inverse MSC, EIMSC #Weighted MSC, Loopy MSC (LMSC) #Norris-Williams #WhittakerSmooth class SecondDerivative(BaseEstimator,TransformerMixin): def __init__(self,d=2): self.__name__='Second Derivative' self.d=d def fit(self,X,y=None): pass def transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass X_=X.diff(self.d,axis=1) drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) X_=X_.diff(self.d,axis=1) #second dev drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) return X_ def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass X_=X.diff(self.d,axis=1) drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) X_=X_.diff(self.d,axis=1) #second dev drop= list(X_.columns)[0:2] X_.drop(columns=drop,inplace=True) return X_ class SNV(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='SNV' self.mean=None self.std=None def fit(self,X): try: X=pd.DataFrame(X) except: pass self.mean=X.mean(axis=0) self.std=X.std(axis=0) def transform(self,X, y=None): try: X=pd.DataFrame(X) except: pass X=X.T R=(X.subtract(self.mean,axis=0)).divide(self.std+np.finfo(float).eps,axis=0) return R.T def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.fit(X) return self.transform(X) class RNV(BaseEstimator,TransformerMixin): def __init__(self,q=0.1): self.__name__='RNV' self.q=q self.quantile=None self.std=None def fit(self,X): try: X=pd.DataFrame(X) except: pass X=X.T self.quantile=X.quantile(q=self.q,axis=1) self.std=X.quantile(q=self.q,axis=1).std() def transform(self,X, y=None): try: X=pd.DataFrame(X) except: pass X=X.T R=(X.subtract(self.quantile,axis=0))/(self.std+np.finfo(float).eps) return R.T def fit_transform(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.fit(X) return self.transform(X) class MeanScaling(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='MeanScaling' self.mean=0 def fit(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.mean=X.mean(axis=0) def transform(self,X, y=None): try: X=pd.DataFrame(X) except: pass return pd.DataFrame(np.divide(np.asarray(X),np.asarray(self.mean))) def fit_transform(self,X,y=None): self.fit(X) return self.transform(X) class MedianScaling(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='MedianScaling' self.median=0 def fit(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.median=X.median(axis=0) def transform(self,X, y=None): try: X=pd.DataFrame(X) except: pass return pd.DataFrame(np.divide(np.asarray(X),np.asarray(self.median))) def fit_transform(self,X,y=None): self.fit(X) return self.transform(X) class MaxScaling(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='MaxScaling' self.max=0 def fit(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.max=X.max(axis=0) def transform(self,X, y=None): try: X=pd.DataFrame(X) except: pass return pd.DataFrame(np.divide(np.asarray(X),np.asarray(self.max))) def fit_transform(self,X,y=None): self.fit(X) return self.transform(X) class MeanCentering(BaseEstimator,TransformerMixin): def __init__(self): self.__name__='MeanCentering' self.mean=0 def fit(self,X,y=None): try: X=pd.DataFrame(X) except: pass self.mean=X.mean(axis=0) def transform(self,X, y=None): try: X=
pd.DataFrame(X)
pandas.DataFrame
## Bu bölümde Frekans , Tfidf , Rowsum , VectorNorm hesapları yapılmaktadır. import pandas as pd import numpy as np from TurkishStemmer import TurkishStemmer ##elasticSearch from math import sqrt kok = TurkishStemmer() count = [] vectorNorm = [] class getFrequency: def __init__(self,spor,saglik,magazin,ekonomi): self.spor = spor self.saglik = saglik self.magazin = magazin self.ekonomi = ekonomi count.clear() ## parça parça gelen dataframler tek tek frekansı hesaplanıp birleştiriliyor. def get(self,features): self.features = features data = self.update(self.ekonomi,self.features) ekonomiFreq = pd.DataFrame(data=data,columns=features) ekonomiFreq["nameOfTxt"] = self.ekonomi.iloc[:,0] ekonomiFreq["classOfTxt"] = "ekonomi" data = self.update(self.saglik,self.features) saglikFreq = pd.DataFrame(data=data,columns=features) saglikFreq["nameOfTxt"] = self.saglik.iloc[:,0] saglikFreq["classOfTxt"] = "saglik" data = self.update(self.spor,self.features) sporFreq = pd.DataFrame(data=data,columns=features) sporFreq["nameOfTxt"] = self.spor.iloc[:,0] sporFreq["classOfTxt"] = "spor" data = self.update(self.magazin,self.features) magazinFreq =
pd.DataFrame(data=data,columns=features)
pandas.DataFrame
# Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities functions to manipulate the data in the colab.""" import datetime import itertools import operator from typing import List, Optional import dataclasses import numpy as np import pandas as pd import pandas.io.formats.style as style from scipy import stats from trimmed_match.design import common_classes TimeWindow = common_classes.TimeWindow FormatOptions = common_classes.FormatOptions _operator_functions = {'>': operator.gt, '<': operator.lt, '<=': operator.le, '>=': operator.ge, '=': operator.eq, '!=': operator.ne} _inverse_op = {'<': '>', '<=': '>=', '>': '<', '>=': '<=', '=': '!='} @dataclasses.dataclass class CalculateMinDetectableIroas: """Class for the calculation of the minimum detectable iROAS. Hypothesis testing for H0: iROAS=0 vs H1: iROAS>=min_detectable_iroas based on one sample X which follows a normal distribution with mean iROAS (unknown) and standard deviation rmse (known). Typical usage example: calc_min_detectable_iroas = CalculateMinDetectableIroas(0.1, 0.9) min_detectable_iroas = calc_min_detectable_iroas.at(2.0) """ # chance of rejecting H0 incorrectly when H0 holds. significance_level: float = 0.1 # chance of rejecting H0 correctly when H1 holds. power_level: float = 0.9 # minimum detectable iroas at rmse=1. rmse_multiplier: float = dataclasses.field(init=False) def __post_init__(self): """Calculates rmse_multiplier. Raises: ValueError: if significance_level or power_level is not in (0, 1). """ if self.significance_level <= 0 or self.significance_level >= 1.0: raise ValueError('significance_level must be in (0, 1), but got ' f'{self.significance_level}.') if self.power_level <= 0 or self.power_level >= 1.0: raise ValueError('power_level must be in (0, 1), but got ' f'{self.power_level}.') self.rmse_multiplier = ( stats.norm.ppf(self.power_level) + stats.norm.ppf(1 - self.significance_level)) def at(self, rmse: float) -> float: """Calculates min_detectable_iroas at the specified rmse.""" return rmse * self.rmse_multiplier def find_days_to_exclude( dates_to_exclude: List[str]) -> List[TimeWindow]: """Returns a list of time windows to exclude from a list of days and weeks. Args: dates_to_exclude: a List of strings with format indicating a single day as '2020/01/01' (YYYY/MM/DD) or an entire time period as '2020/01/01 - 2020/02/01' (indicating start and end date of the time period) Returns: days_exclude: a List of TimeWindows obtained from the list in input. """ days_exclude = [] for x in dates_to_exclude: tmp = x.split('-') if len(tmp) == 1: try: days_exclude.append( TimeWindow(pd.Timestamp(tmp[0]), pd.Timestamp(tmp[0]))) except ValueError: raise ValueError(f'Cannot convert the string {tmp[0]} to a valid date.') elif len(tmp) == 2: try: days_exclude.append( TimeWindow(pd.Timestamp(tmp[0]), pd.Timestamp(tmp[1]))) except ValueError: raise ValueError( f'Cannot convert the strings in {tmp} to a valid date.') else: raise ValueError(f'The input {tmp} cannot be interpreted as a single' + ' day or a time window') return days_exclude def expand_time_windows(periods: List[TimeWindow]) -> List[pd.Timestamp]: """Return a list of days to exclude from a list of TimeWindows. Args: periods: List of time windows (first day, last day). Returns: days_exclude: a List of obtained by expanding the list in input. """ days_exclude = [] for window in periods: days_exclude += pd.date_range(window.first_day, window.last_day, freq='D') return list(set(days_exclude)) def overlap_percent(dates_left: List['datetime.datetime'], dates_right: List['datetime.datetime']) -> float: """Find the size of the intersections of two arrays, relative to the first array. Args: dates_left: List of datetime.datetime dates_right: List of datetime.datetime Returns: percentage: the percentage of elements of dates_right that also appear in dates_left """ intersection = np.intersect1d(dates_left, dates_right) percentage = 100 * len(intersection) / len(dates_right) return percentage def check_time_periods(geox_data: pd.DataFrame, start_date_eval: pd.Timestamp, start_date_aa_test: pd.Timestamp, experiment_duration_weeks: int, frequency: str) -> bool: """Checks that the geox_data contains the data for the two periods. Check that the geox_data contains all observations during the evaluation and AA test periods to guarantee that the experiment lasts exactly a certain number of days/weeks, depending on the frequency of the data (daily/weekly). Args: geox_data: pd.Dataframe with at least the columns (date, geo). start_date_eval: start date of the evaluation period. start_date_aa_test: start date of the aa test period. experiment_duration_weeks: int, length of the experiment in weeks. frequency: str indicating the frequency of the time series. It should be one of 'infer', 'D', 'W'. Returns: bool: a bool, True if the time periods specified pass all the checks Raises: ValueError: if part of the evaluation or AA test period are shorter than experiment_duration (either weeks or days). """ if frequency not in ['infer', 'D', 'W']: raise ValueError( f'frequency should be one of ["infer", "D", "W"], got {frequency}') if frequency == 'infer': tmp = geox_data.copy().set_index(['date', 'geo']) frequency = infer_frequency(tmp, 'date', 'geo') if frequency == 'W': frequency = '7D' number_of_observations = experiment_duration_weeks else: number_of_observations = 7 * experiment_duration_weeks freq_str = 'weeks' if frequency == '7D' else 'days' missing_eval = find_missing_dates(geox_data, start_date_eval, experiment_duration_weeks, number_of_observations, frequency) if missing_eval: raise ValueError( (f'The evaluation period contains the following {freq_str} ' + f'{missing_eval} for which we do not have data.')) missing_aa_test = find_missing_dates(geox_data, start_date_aa_test, experiment_duration_weeks, number_of_observations, frequency) if missing_aa_test: raise ValueError((f'The AA test period contains the following {freq_str} ' + f'{missing_aa_test} for which we do not have data.')) return True def find_missing_dates(geox_data: pd.DataFrame, start_date: pd.Timestamp, period_duration_weeks: int, number_of_observations: int, frequency: str) -> List[str]: """Find missing observations in a time period. Args: geox_data: pd.Dataframe with at least the columns (date, geo). start_date: start date of the evaluation period. period_duration_weeks: int, length of the period in weeks. number_of_observations: expected number of time points. frequency: str or pd.DateOffset indicating the frequency of the time series. Returns: missing: a list of strings, containing the dates for which data are missing in geox_data. """ days = datetime.timedelta(days=7 * period_duration_weeks - 1) period_dates = ((geox_data['date'] >= start_date) & (geox_data['date'] <= start_date + days)) days_in_period = geox_data.loc[ period_dates, 'date'].drop_duplicates().dt.strftime('%Y-%m-%d').to_list() missing = np.array([]) if len(days_in_period) != number_of_observations: expected_observations = list( pd.date_range(start_date, start_date + days, freq=frequency).strftime('%Y-%m-%d')) missing = set(expected_observations) - set(days_in_period) return sorted(missing) def infer_frequency(data: pd.DataFrame, date_index: str, series_index: str) -> str: """Infers frequency of data from pd.DataFrame with multiple indices. Infers frequency of data from pd.DataFrame with two indices, one for the slice name and one for the date-time. Example: df = pd.Dataframe{'date': [2020-10-10, 2020-10-11], 'geo': [1, 1], 'response': [10, 20]} df.set_index(['geo', 'date'], inplace=True) infer_frequency(df, 'date', 'geo') Args: data: a pd.DataFrame for which frequency needs to be inferred. date_index: string containing the name of the time index. series_index: string containing the name of the series index. Returns: A str, either 'D' or 'W' indicating the most likely frequency inferred from the data. Raises: ValueError: if it is not possible to infer frequency of sampling from the provided pd.DataFrame. """ data = data.sort_values(by=[date_index, series_index]) # Infer most likely frequence for each series_index series_names = data.index.get_level_values(series_index).unique().tolist() series_frequencies = [] for series in series_names: observed_times = data.iloc[data.index.get_level_values(series_index) == series].index.get_level_values(date_index) n_steps = len(observed_times) if n_steps > 1: time_diffs = ( observed_times[1:n_steps] - observed_times[0:(n_steps - 1)]).astype('timedelta64[D]').values modal_frequency, _ = np.unique(time_diffs, return_counts=True) series_frequencies.append(modal_frequency[0]) if not series_frequencies: raise ValueError( 'At least one series with more than one observation must be provided.') if series_frequencies.count(series_frequencies[0]) != len(series_frequencies): raise ValueError( 'The provided time series seem to have irregular frequencies.') try: frequency = { 1: 'D', 7: 'W' }[series_frequencies[0]] except KeyError: raise ValueError('Frequency could not be identified. Got %d days.' % series_frequencies[0]) return frequency def human_readable_number(number: float) -> str: """Print a large number in a readable format. Return a readable format for a number, e.g. 123 milions becomes 123M. Args: number: a float to be printed in human readable format. Returns: readable_number: a string containing the formatted number. """ number = float('{:.3g}'.format(number)) magnitude = 0 while abs(number) >= 1000 and magnitude < 4: magnitude += 1 number /= 1000.0 readable_number = '{}{}'.format('{:f}'.format(number).rstrip('0').rstrip('.'), ['', 'K', 'M', 'B', 'tn'][magnitude]) return readable_number def change_background_row(df: pd.DataFrame, value: float, operation: str, column: str): """Colors a row of a table based on the expression in input. Color a row in: - orange if the value of the column satisfies the expression in input - beige if the value of the column satisfies the inverse expression in input - green otherwise For example, if the column has values [1, 2, 3] and we pass 'value' equal to 2, and operation '>', then - 1 is marked in beige (1 < 2, which is the inverse expression) - 2 is marked in green (it's not > and it's not <) - 3 is marked in orange(3 > 2, which is the expression) Args: df: the table of which we want to change the background color. value: term of comparison to be used in the expression. operation: a string to define which operator to use, e.g. '>' or '='. For a full list check _operator_functions. column: name of the column to be used for the comparison Returns: pd.Series """ if _operator_functions[operation](float(df[column]), value): return pd.Series('background-color: orange', df.index) elif _operator_functions[_inverse_op[operation]](float(df[column]), value): return pd.Series('background-color: beige', df.index) else: return pd.Series('background-color: lightgreen', df.index) def flag_percentage_value(val, value: float, operation: str): """Colors a cell in red if its value satisfy the expression in input. Colors a cell in red if the expression is true for that cell, e.g. if the value of the cell is 10, 'value' in input is 5 and operation is '>', then we will color the cell in red as 10 > 5. Args: val: value in a cell of a dataframe. value: term of comparison used to decide the color of the cell. operation: a string to define which operator to use, e.g. '>' or '='. For a full list check _operator_functions. Returns: a str defining the color coding of the cell. """ if _operator_functions[operation](float(val.strip(' %')), value): color = 'red' else: color = 'black' return 'color: %s' % color def create_output_table(results: pd.DataFrame, total_response: float, total_spend: float, geo_treatment: pd.DataFrame, budgets_for_design: List[float], average_order_value: float, num_geos: int, confidence_level: float = 0.9, power_level: float = 0.8) -> pd.DataFrame: """Creates the table with the output designs. Args: results: table with columns (num_pairs_filtered, experiment_response, experiment_spend, spend_response_ratio, budget, iroas, rmse, proportion_cost_in_experiment) containing the generated design, e.g. the first output of the function TrimmedMatchGeoXDesign.report_candidate_design. total_response: total response for all geos (excluded as well) during the evaluation period. total_spend: total spend for all geos (excluded as well) during the evaluation period. geo_treatment: table with columns (geo, response, spend, pair) containing the treatment geos and their overall response and spend during the evaluation period. budgets_for_design: list of budgets to be considered for the designs. average_order_value: factor used to change scale from conversion count to conversion value. num_geos: number of geos available. confidence_level: confidence level for the test H0: iROAS=0 vs H1: iROAS>=minimum_detectable_iroas. power_level: level used for the power analysis. Returns: a pd.DataFrame with the output designs. """ calc_min_detectable_iroas = CalculateMinDetectableIroas( 1 - confidence_level, power_level) designs = [] for budget in budgets_for_design: tmp_result = results[results['budget'] == budget] chosen_design = tmp_result.loc[tmp_result['rmse_cost_adjusted'].idxmin()] baseline = geo_treatment.loc[ geo_treatment['pair'] > chosen_design['num_pairs_filtered'], 'response'].sum() cost_in_experiment = geo_treatment.loc[ geo_treatment['pair'] > chosen_design['num_pairs_filtered'], 'spend'].sum() min_detectable_iroas_raw = calc_min_detectable_iroas.at( chosen_design['rmse']) min_detectable_iroas = average_order_value * min_detectable_iroas_raw min_detectable_lift = budget * 100 * min_detectable_iroas_raw / baseline num_removed_geos = int(2 * chosen_design['num_pairs_filtered']) num_geo_pairs = int((num_geos - num_removed_geos) / 2) treat_control_removed = (f'{num_geo_pairs} / {num_geo_pairs} / ' + f'{num_removed_geos}') revenue_covered = 100 * baseline / total_response proportion_cost_in_experiment = cost_in_experiment / total_spend national_budget = human_readable_number( budget / proportion_cost_in_experiment) designs.append({ 'Budget': human_readable_number(budget), 'Minimum detectable iROAS': f'{min_detectable_iroas:.3}', 'Minimum detectable lift in response': f'{min_detectable_lift:.2f} %', 'Treatment/control/excluded geos': treat_control_removed, 'Revenue covered by treatment group': f'{revenue_covered:.2f} %', 'Cost/baseline response': f'{(budget / baseline * 100):.2f} %', 'Cost if test budget is scaled nationally': national_budget }) designs = pd.DataFrame(designs) designs.index.rename('Design', inplace=True) return designs def format_table( df: pd.DataFrame, formatting_options: List[FormatOptions]) -> style.Styler: """Formats a table with the output designs. Args: df: a table to be formatted. formatting_options: a dictionary indicating for each column (key) what formatting function to be used and its additional args, e.g. formatting_options = {'column_1': {'function': fnc, 'args': {'input1': 1, 'input2': 2}}} Returns: a pandas.io.formats.style.Styler with the table formatted. """ for ind in range(len(formatting_options)): tmp_options = formatting_options[ind] if ind == 0: # if axis is in the args, then the function should be applied on rows/cols if 'axis' in tmp_options.args: formatted_table = df.style.apply(tmp_options.function, **tmp_options.args) # apply the formatting elementwise else: formatted_table = df.style.applymap(tmp_options.function, **tmp_options.args) else: # if axis is in the args, then the function should be applied on rows/cols if 'axis' in tmp_options.args: formatted_table = formatted_table.apply(tmp_options.function, **tmp_options.args) # apply the formatting elementwise else: formatted_table = formatted_table.applymap(tmp_options.function, **tmp_options.args) return formatted_table def format_design_table(designs: pd.DataFrame, minimum_detectable_iroas: float, minimum_lift_in_response_metric: float = 10.0, minimum_revenue_covered_by_treatment: float = 5.0): """Formats a table with the output designs. Args: designs: table with columns (Budget, Minimum detectable iROAS, Minimum Detectable lift in response, Treatment/control/excluded geos, Revenue covered by treatment group, Cost/baseline response, Cost if test budget is scaled nationally) containing the output designs, e.g. the output of the function create_output_table. minimum_detectable_iroas: target minimum detectable iROAS used to define the optimality of a design. minimum_lift_in_response_metric: threshold minimum detectable lift in percentage used to flag designs with higher detectable lift. minimum_revenue_covered_by_treatment: value used to flag any design where the treatment group is too small based on response. Returns: a pandas.io.formats.style.Styler with the table formatted. """ formatting_options = [ FormatOptions( column='Minimum detectable lift in response', function=flag_percentage_value, args={ 'value': minimum_lift_in_response_metric, 'operation': '>' }), FormatOptions( column='Revenue covered by treatment group', function=flag_percentage_value, args={ 'value': minimum_revenue_covered_by_treatment, 'operation': '<' }), FormatOptions( column='Minimum detectable iROAS', function=change_background_row, args={ 'value': minimum_detectable_iroas, 'operation': '>', 'axis': 1 }) ] return format_table(designs, formatting_options) def check_input_data( data: pd.DataFrame, numeric_columns_to_impute: Optional[List[str]] = None) -> pd.DataFrame: """Returns data to be analysed using Trimmed Match with data imputation. Args: data: data frame with columns (date, geo) and any column specified in numeric_columns_to_impute, which should contain at least the columns with response and spend information if they have a different name than 'response' and 'cost', respectively. numeric_columns_to_impute: list of columns for which data imputation must be performed. Returns: data frame with columns (date, geo, response, cost) and imputed missing data. Raises: ValueError: if one of the mandatory columns is missing. """ numeric_columns_to_impute = numeric_columns_to_impute or ['response', 'cost'] mandatory_columns = set(['date', 'geo'] + numeric_columns_to_impute) if not mandatory_columns.issubset(data.columns): raise ValueError('The mandatory columns ' + f'{mandatory_columns - set(data.columns)} are missing ' + 'from the input data.') data['date'] =
pd.to_datetime(data['date'])
pandas.to_datetime
from binance.client import Client import pandas as pd from utils import configure_logging from multiprocessing import Process, freeze_support, Pool, cpu_count import os try: from credentials import API_KEY, API_SECRET except ImportError: API_KEY = API_SECRET = None exit("CAN'T RUN SCRIPT WITHOUT BINANCE API KEY/SECRET") log = configure_logging() class FuturesDataPuller(Process): SYMBOLS = ['BTCUSDT', 'ETHUSDT', 'LTCUSDT', 'LINKUSDT'] # 'BTCUSDT', 'XRPUSDT', 'SXPUSDT', 'ADAUSDT', 'EOSUSDT', 'DOTUSDT', 'VETUSDT', 'ETHUSDT', 'LTCUSDT', 'LINKUSDT' KLINE_INTERVALS = ['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h', '6h', '8h', '12h', '1d', '3d', '1w', '1M'] def __init__(self, client, symbol, *args, **kwargs): super().__init__(*args, **kwargs) self.client = client self.symbol = symbol def run(self): klines = self.get_klines( interval='1m', start_date="15 Feb 2021 00:00:00", end_date="19 Feb 2021 12:00:00", ) funding_rates = self.get_funding_rate(klines=klines) df = self.reformat_data(klines=klines, funding_rates=funding_rates) self.to_csv(df=df) def get_klines(self, interval, start_date, end_date): """ :param interval: str, one of the supported intervals from KLINES_INTERVALS list :param start_date: str, format 'DD MMM YYYY HH:mm:ss' :param end_date: str :return: list of lists with klines[Open_time: int, Open: Decimal, High: Decimal, Low: Decimal, Close: Decimal, Volume: Decimal, Close_time: int, Quote asset volume: Decimal, Number of trades: int, Taker buy base asset volume: Decimal, Taker buy quote asset volume: Decimal, Ignore: Decimal] """ try: data = self.client.get_historical_klines( symbol=self.symbol, interval=interval, start_str=start_date, end_str=end_date, ) except Exception as exc: log.exception(exc) return {'msg': exc} return data def get_funding_rate(self, klines: list): """ Uses first and last kline time to get funding rates for that period :param klines: trade klines :return: list of dicts(symbol=(str), fundingTime=(int), fundingRate=(Decimal)) """ start, bypass_limit, end = klines[0][0], klines[int(len(klines)/2)][0], klines[len(klines) - 1][0] try: data = self.client.futures_funding_rate( symbol=self.symbol, startTime=start, endTime=bypass_limit, ) data_2 = self.client.futures_funding_rate( symbol=self.symbol, startTime=bypass_limit, endTime=end, ) except Exception as exc: log.exception(exc) return {'msg': exc} for instance in data_2: data.append(instance) return data def to_csv(self, df): """ :param df: pd.DataFrame obj. :return: .csv file with data """ file_directory = 'data' file_full_path = os.path.join(file_directory, f'{self.symbol}.csv') if not os.path.exists(file_directory): os.makedirs(name=file_directory) df.to_csv(path_or_buf=file_full_path, sep=',') @staticmethod def reformat_data(klines, funding_rates): """ :return: pd.DataFrame obj. with required_data """ df = pd.DataFrame.from_records(klines) df = df.drop(range(5, 12), axis=1) col_names = ['time', 'open', 'high', 'low', 'close'] df.columns = col_names for col in col_names: df[col] = df[col].astype(float) df['date'] =
pd.to_datetime(df['time'] * 1000000, format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
#%% import os import sys try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass # %% import sys sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/maggot_models/') sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from graspy.plot import gridplot, heatmap from graspy.utils import binarize, pass_to_ranks from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams.update({'font.size': 6}) rm = pymaid.CatmaidInstance(url, token, name, password) mg = load_metagraph("Gad", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg.calculate_degrees(inplace=True) adj = pd.read_csv('VNC_interaction/data/brA1_axon-dendrite.csv', header = 0, index_col = 0) adj.columns = adj.columns.astype(int) #convert column names to int for easier indexing A1 = pymaid.get_skids_by_annotation('mw A1 neurons paired') A1_sens = [val for sublist in list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw A1 sensories').name)) for val in sublist] brain_only = np.setdiff1d(adj.index.values, A1 + A1_sens) adj = adj.loc[brain_only, brain_only] #adj = mg.adj # adjacency matrix from the "mg" object # pull skids of different output types output_order = [1, 0, 2] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] output_names_reordered = [output_names[i] for i in output_order] output_skids_list_reordered = [output_skids_list[i] for i in output_order] def skid_to_index(skid, mg): index_match = np.where(mg.meta.index == skid)[0] if(len(index_match)==1): return(index_match[0]) if(len(index_match)!=1): print('Not one match for skid %i!' %skid) # convert skids to indices output_indices_list = [] for skids in output_skids_list_reordered: indices = [] for skid in skids: index = skid_to_index(skid, mg) indices.append(index) output_indices_list.append(indices) # %% # identify pre-descending types # defined as 50% outputs to a particular descending type # doesn't work well (no neurons with high fraction output to descending neurons) # ** is this normal? perhaps test with random sample of neuron same size as descendings; started at bottom dVNC_mat = pd.DataFrame(adj[:, output_indices_list[0]], index = mg.meta.index, columns = output_skids_list_reordered[0]) dSEZ_mat = pd.DataFrame(adj[:, output_indices_list[1]], index = mg.meta.index, columns = output_skids_list_reordered[1]) RG_mat = pd.DataFrame(adj[:, output_indices_list[2]], index = mg.meta.index, columns = output_skids_list_reordered[2]) # number of outputs per neuron # how many go to output types outputs = pd.read_csv('data/mw_brain_matrix_skeleton_measurements.csv', header=0, index_col=0) dVNC_mat_sum = dVNC_mat.sum(axis = 1) dSEZ_mat_sum = dSEZ_mat.sum(axis = 1) RG_mat_sum = RG_mat.sum(axis = 1) fraction_output_dVNC = [] fraction_output_dSEZ = [] fraction_output_RG = [] # determine fraction of output from each brain neuron to each brain output type for i in range(0, len(dVNC_mat_sum)): output_total = outputs[outputs.Skeleton == dVNC_mat_sum.index[i]]['N outputs'].values[0] if(output_total > 0): fraction_output_dVNC.append(dVNC_mat_sum.iloc[i]/output_total) fraction_output_dSEZ.append(dSEZ_mat_sum.iloc[i]/output_total) fraction_output_RG.append(RG_mat_sum.iloc[i]/output_total) if(output_total == 0): fraction_output_dVNC.append(0) fraction_output_dSEZ.append(0) fraction_output_RG.append(0) # convert to np arrays fraction_output_dVNC = np.array(fraction_output_dVNC) fraction_output_dSEZ = np.array(fraction_output_dSEZ) fraction_output_RG = np.array(fraction_output_RG) fig, ax = plt.subplots(1,1,figsize=(5,5)) sns.distplot(fraction_output_dVNC[fraction_output_dVNC>0], hist = False, ax = ax) sns.distplot(fraction_output_dSEZ[fraction_output_dSEZ>0], hist = False, ax = ax) sns.distplot(fraction_output_RG[fraction_output_RG>0], hist = False, ax = ax) ax.set(xlabel = 'Fraction output to dVNC(blue), dSEZ(orange), or RG(green)') ax.get_yaxis().set_visible(False) plt.savefig('cascades/feedback_through_brain/plots/output_fraction_to_descendings.pdf', format='pdf', bbox_inches='tight') ''' import numpy.random as random rand_mat_list = [] for i in range(0, 2): random.seed(i) random_indices = random.choice(len(dVNC_mat_sum), 183, replace = False) rand_mat = pd.DataFrame(adj[:, random_indices], index = mg.meta.index, columns = random_indices) rand_mat_sum = rand_mat.sum(axis = 1) fraction_rand_mat = [] for j in range(0, len(rand_mat_sum)): output_total = outputs[outputs.Skeleton == rand_mat_sum.index[j]]['N outputs'].values[0] if(output_total > 0): fraction_rand_mat.append(rand_mat_sum.iloc[j]/output_total) if(output_total == 0): fraction_rand_mat.append(0) rand_mat_list.append(np.array(fraction_rand_mat)) ''' # %% # identify pre-descending types # contributing 5% input to a particular descending neuron # old method, using the new one below from connectome_tools.process_matrix import Promat def skid_to_index(skid, mg): index_match = np.where(mg.meta.index == skid)[0] if(len(index_match)==1): return(index_match[0]) if(len(index_match)!=1): print('Not one match for skid %i!' %skid) def index_to_skid(index, mg): return(mg.meta.iloc[index, :].name) # import pairs pairs = pd.read_csv('VNC_interaction/data/pairs-2020-10-26.csv', header = 0) dVNC_pairs = Promat.extract_pairs_from_list(output_skids_list_reordered[0], pairs) dSEZ_pairs = Promat.extract_pairs_from_list(output_skids_list_reordered[1], pairs) RG_pairs = Promat.extract_pairs_from_list(output_skids_list_reordered[2], pairs) brain_skids_pairs = Promat.extract_pairs_from_list(mg.meta.index, pairs) # left_right interlaced order for dVNC pairs dVNC_pair_order = [] for i in range(0, len(dVNC_pairs)): dVNC_pair_order.append(dVNC_pairs.iloc[i].leftid) dVNC_pair_order.append(dVNC_pairs.iloc[i].rightid) dSEZ_pair_order = [] for i in range(0, len(dSEZ_pairs)): dSEZ_pair_order.append(dSEZ_pairs.iloc[i].leftid) dSEZ_pair_order.append(dSEZ_pairs.iloc[i].rightid) RG_pair_order = [] for i in range(0, len(RG_pairs)): RG_pair_order.append(RG_pairs.iloc[i].leftid) RG_pair_order.append(RG_pairs.iloc[i].rightid) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_skids_pairs)): brain_pair_order.append(brain_skids_pairs.iloc[i].leftid) brain_pair_order.append(brain_skids_pairs.iloc[i].rightid) interlaced_dVNC_mat = dVNC_mat.loc[brain_pair_order, dVNC_pair_order] interlaced_dSEZ_mat = dSEZ_mat.loc[brain_pair_order, dSEZ_pair_order] interlaced_RG_mat = RG_mat.loc[brain_pair_order, RG_pair_order] # convert to %input of descendings' dendrite for column in interlaced_dVNC_mat.columns: dendrite_input = mg.meta.loc[column].dendrite_input interlaced_dVNC_mat.loc[:, column] = interlaced_dVNC_mat.loc[:, column]/dendrite_input for column in interlaced_dSEZ_mat.columns: dendrite_input = mg.meta.loc[column].dendrite_input interlaced_dSEZ_mat.loc[:, column] = interlaced_dSEZ_mat.loc[:, column]/dendrite_input for column in interlaced_RG_mat.columns: dendrite_input = mg.meta.loc[column].dendrite_input interlaced_RG_mat.loc[:, column] = interlaced_RG_mat.loc[:, column]/dendrite_input # summed input onto descending between pairs oddCols_dVNC = np.arange(0, len(interlaced_dVNC_mat.columns), 2) oddCols_dSEZ = np.arange(0, len(interlaced_dSEZ_mat.columns), 2) oddCols_RG = np.arange(0, len(interlaced_RG_mat.columns), 2) oddRows = np.arange(0, len(interlaced_dVNC_mat.index), 2) # initializing summed matrices for each descending type sumMat_dVNC = np.zeros(shape=(len(oddRows),len(oddCols_dVNC))) sumMat_dVNC = pd.DataFrame(sumMat_dVNC, columns = interlaced_dVNC_mat.columns[oddCols_dVNC], index = interlaced_dVNC_mat.index[oddRows]) sumMat_dSEZ = np.zeros(shape=(len(oddRows),len(oddCols_dSEZ))) sumMat_dSEZ = pd.DataFrame(sumMat_dVNC, columns = interlaced_dSEZ_mat.columns[oddCols_dSEZ], index = interlaced_dSEZ_mat.index[oddRows]) sumMat_RG = np.zeros(shape=(len(oddRows),len(oddCols_RG))) sumMat_RG = pd.DataFrame(sumMat_RG, columns = interlaced_RG_mat.columns[oddCols_RG], index = interlaced_RG_mat.index[oddRows]) for i_iter, i in enumerate(oddRows): for j_iter, j in enumerate(oddCols_dVNC): summed_pairs = interlaced_dVNC_mat.iat[i, j] + interlaced_dVNC_mat.iat[i+1, j+1] + interlaced_dVNC_mat.iat[i+1, j] + interlaced_dVNC_mat.iat[i, j+1] sumMat_dVNC.iat[i_iter, j_iter] = summed_pairs/2 for i_iter, i in enumerate(oddRows): for j_iter, j in enumerate(oddCols_dSEZ): summed_pairs = interlaced_dSEZ_mat.iat[i, j] + interlaced_dSEZ_mat.iat[i+1, j+1] + interlaced_dSEZ_mat.iat[i+1, j] + interlaced_dSEZ_mat.iat[i, j+1] sumMat_dSEZ.iat[i_iter, j_iter] = summed_pairs/2 for i_iter, i in enumerate(oddRows): for j_iter, j in enumerate(oddCols_RG): summed_pairs = interlaced_RG_mat.iat[i, j] + interlaced_RG_mat.iat[i+1, j+1] + interlaced_RG_mat.iat[i+1, j] + interlaced_RG_mat.iat[i, j+1] sumMat_RG.iat[i_iter, j_iter] = summed_pairs/2 # %% # identifying pre-descendings based on an individual pair of neurons contributing 1% input to descending neuron from connectome_tools.process_matrix import Adjacency_matrix, Promat from datetime import date threshold = 0.01 inputs = pd.read_csv('VNC_interaction/data/brA1_input_counts.csv', index_col = 0) inputs = pd.DataFrame(inputs.values, index = inputs.index, columns = ['axon_input', 'dendrite_input']) dVNC = pymaid.get_skids_by_annotation('mw dVNC') dSEZ = pymaid.get_skids_by_annotation('mw dSEZ') RGN = pymaid.get_skids_by_annotation('mw RGN') brain_adj = Adjacency_matrix(adj, adj.index, pairs, inputs,'axo-dendritic') pre_dVNC, pre_dVNC_edges = brain_adj.upstream(dVNC, threshold, exclude = dVNC) _, pre_dVNC = brain_adj.edge_threshold(pre_dVNC_edges, threshold, direction='upstream') # compare to other cell types MBON = pymaid.get_skids_by_annotation('mw MBON') MBIN = pymaid.get_skids_by_annotation('mw MBIN') LHN = pymaid.get_skids_by_annotation('mw LHN') CN = pymaid.get_skids_by_annotation('mw CN') KC = pymaid.get_skids_by_annotation('mw KC') dSEZ = pymaid.get_skids_by_annotation('mw dSEZ') dVNC = pymaid.get_skids_by_annotation('mw dVNC') uPN = pymaid.get_skids_by_annotation('mw uPN') tPN = pymaid.get_skids_by_annotation('mw tPN') vPN = pymaid.get_skids_by_annotation('mw vPN') mPN = pymaid.get_skids_by_annotation('mw mPN') PN = uPN + tPN + vPN + mPN FBN = pymaid.get_skids_by_annotation('mw FBN') FB2N = pymaid.get_skids_by_annotation('mw FB2N') FBN_all = FBN + FB2N CN = list(np.setdiff1d(CN, LHN + FBN_all)) # 'CN' means exclusive CNs that are not FBN or LHN pre_dVNC2 = list(np.setdiff1d(pre_dVNC, MBON + MBIN + LHN + CN + KC + dSEZ + dVNC + PN + FBN_all)) # 'pre_dVNC' must have no other category assignment #pymaid.add_annotations(pre_dVNC, 'mw pre-dVNC 1%') pre_dSEZ, pre_dSEZ_edges = brain_adj.upstream(dSEZ, threshold, exclude = dSEZ) _, pre_dSEZ = brain_adj.edge_threshold(pre_dSEZ_edges, threshold, direction='upstream') #pymaid.add_annotations(pre_dSEZ, 'mw pre-dSEZ 1%') pre_RGN, pre_RGN_edges = brain_adj.upstream(RGN, threshold, exclude = RGN) _, pre_RGN = brain_adj.edge_threshold(pre_RGN_edges, threshold, direction='upstream') #pymaid.add_annotations(pre_RGN, 'mw pre-RGN 1%') # %% # plotting number of connections to and from descendings ### *****align/bin issues here***** #### ### see upstream_MNs.py for solution ### fig, axs = plt.subplots( 3, 2, figsize=(2.5, 3) ) fig.tight_layout(pad = 2.5) threshold = 0.05 # average 5% input threshold binwidth = 1 x_range = list(range(0, 11)) align = 'left' ax = axs[0, 0] count_per_us_neuron = (sumMat_dVNC.values>threshold).sum(axis=1) data = count_per_us_neuron[count_per_us_neuron>0] ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('Neuron pairs') ax.set_xlabel('Connection(s) to dVNCs') ax.set_xticks(x_range) ax.set(xlim = (0.5, 10)) ax = axs[0, 1] count_per_descending = (sumMat_dVNC.values>threshold).sum(axis=0) data = count_per_descending ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('dVNC pairs') ax.set_xlabel('Connection(s) received') ax.set_xticks(x_range) ax.set(xlim = (-0.5, 7)) ax = axs[1, 0] count_per_us_neuron = (sumMat_dSEZ.values>threshold).sum(axis=1) data = count_per_us_neuron[count_per_us_neuron>0] ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('Neuron pairs') ax.set_xlabel('Connection(s) to dSEZs') ax.set_xticks(x_range) ax.set(xlim = (0.5, 10)) ax = axs[1, 1] count_per_descending = (sumMat_dSEZ.values>threshold).sum(axis=0) data = count_per_descending ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('dSEZ pairs') ax.set_xlabel('Connection(s) received') ax.set_xticks(x_range) ax.set(xlim = (-0.5, 7)) ax = axs[2, 0] count_per_us_neuron = (sumMat_RG.values>threshold).sum(axis=1) data = count_per_us_neuron[count_per_us_neuron>0] ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('Neuron pairs') ax.set_xlabel('Connection(s) to RGNs') ax.set_xticks(x_range) ax.set(xlim = (0.5, 10)) ax = axs[2, 1] count_per_descending = (sumMat_RG.values>threshold).sum(axis=0) data = count_per_descending ax.hist(data, bins=range(min(data), max(data) + binwidth, binwidth), align = align) ax.set_ylabel('RGN pairs') ax.set_xlabel('Connection(s) received') ax.set_xticks(x_range) ax.set(xlim = (-0.5, 7)) plt.savefig('cascades/feedback_through_brain/plots/connections_from_to_descendings_5percent_threshold.pdf', bbox_inches='tight', transparent = True) # %% # export pre-descending neurons pre_dVNC = (sumMat_dVNC.values>threshold).sum(axis=1)>0 pre_dSEZ = (sumMat_dSEZ.values>threshold).sum(axis=1)>0 pre_RGN = (sumMat_RG.values>threshold).sum(axis=1)>0 # identify indices == True, i.e. left skids of pairs that are pre-descendings indices_pre_dVNC = np.where(pre_dVNC)[0] indices_pre_dSEZ = np.where(pre_dSEZ)[0] indices_pre_RGN = np.where(pre_RGN)[0] pre_dVNC_skidleft = [sumMat_dVNC.index[x] for x in indices_pre_dVNC] pre_dSEZ_skidleft = [sumMat_dSEZ.index[x] for x in indices_pre_dSEZ] pre_RGN_skidleft = [sumMat_RG.index[x] for x in indices_pre_RGN] # select pre-descending pair skids brain_skids_pairs.index = brain_skids_pairs.leftid pre_dVNC_skids = brain_skids_pairs.loc[pre_dVNC_skidleft, :] pre_dSEZ_skids = brain_skids_pairs.loc[pre_dSEZ_skidleft, :] pre_RGN_skids = brain_skids_pairs.loc[pre_RGN_skidleft, :] #pre_dVNC_skids.to_csv('cascades/feedback_through_brain/plots/pre_dVNC_skids.csv', index = False) #pre_dSEZ_skids.to_csv('cascades/feedback_through_brain/plots/pre_dSEZ_skids.csv', index = False) #pre_RGN_skids.to_csv('cascades/feedback_through_brain/plots/pre_RGN_skids.csv', index = False) # %% # plot connectivity matrices of pre-output to output from tqdm import tqdm pre_dVNC_dSEZ_RGN = list(np.intersect1d(np.intersect1d(pre_dVNC_skidleft, pre_dSEZ_skidleft), pre_RGN_skidleft)) pre_dVNC_dSEZ = list(np.setdiff1d(np.intersect1d(pre_dVNC_skidleft, pre_dSEZ_skidleft), pre_dVNC_dSEZ_RGN)) pre_dVNC_RGN = list(np.setdiff1d(np.intersect1d(pre_dVNC_skidleft, pre_RGN_skidleft), pre_dVNC_dSEZ_RGN)) pre_dSEZ_RGN = list(np.setdiff1d(np.intersect1d(pre_dSEZ_skidleft, pre_RGN_skidleft), pre_dVNC_dSEZ_RGN)) combos = pre_dVNC_dSEZ_RGN + pre_dVNC_dSEZ + pre_dVNC_RGN + pre_dSEZ_RGN pre_dVNC = list(np.setdiff1d(pre_dVNC_skidleft, combos)) pre_dSEZ = list(np.setdiff1d(pre_dSEZ_skidleft, combos)) pre_RGN = list(np.setdiff1d(pre_RGN_skidleft, combos)) output_mat = pd.concat([sumMat_dVNC, sumMat_dSEZ, sumMat_RG], axis = 1) plt.savefig('cascades/feedback_through_brain/plots/preoutput_to_output.pdf') # full interlaced adj matrix, summed pairs # FUTURE: add colored bars to side of matrix to indicate cell type interlaced_mat = pd.DataFrame(adj, index = mg.meta.index, columns = mg.meta.index) interlaced_mat = interlaced_mat.loc[brain_pair_order, brain_pair_order] # convert to %input for column in interlaced_mat.columns: dendrite_input = mg.meta.loc[column].dendrite_input if(dendrite_input>0): interlaced_mat.loc[:, column] = interlaced_mat.loc[:, column]/dendrite_input if(dendrite_input==0): interlaced_mat.loc[:, column] = 0 oddRows = np.arange(0, len(interlaced_mat.index), 2) oddCols = np.arange(0, len(interlaced_mat.columns), 2) # summing partners sumMat = np.zeros(shape=(len(oddRows),len(oddCols))) sumMat =
pd.DataFrame(sumMat, columns = interlaced_mat.columns[oddCols], index = interlaced_mat.index[oddRows])
pandas.DataFrame
import numpy as np import scipy.sparse import pandas as pd import logging import rpy2.robjects as ro import rpy2.rinterface_lib.callbacks import anndata2ri import scanpy as sc from scIB.utils import checkAdata, checkBatch from .utils import diffusion_conn, diffusion_nn rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR) # Ignore R warning messages def kBET_single( matrix, batch, type_=None, k0=10, knn=None, subsample=0.5, heuristic=True, verbose=False ): """ params: matrix: expression matrix (at the moment: a PCA matrix, so do.pca is set to FALSE batch: series or list of batch assignemnts subsample: fraction to be subsampled. No subsampling if `subsample=None` returns: kBET observed rejection rate """ ro.r("library(kBET)") if verbose: print("importing expression matrix") ro.globalenv['data_mtrx'] = matrix ro.globalenv['batch'] = batch # print(matrix.shape) # print(len(batch)) if verbose: print("kBET estimation") # k0 = len(batch) if len(batch) < 50 else 'NULL' anndata2ri.activate() ro.globalenv['knn_graph'] = knn ro.globalenv['k0'] = k0 ro.r( "batch.estimate <- kBET(" " data_mtrx," " batch," " knn=knn_graph," " k0=k0," " plot=FALSE," " do.pca=FALSE," " heuristic=FALSE," " adapt=FALSE," f" verbose={str(verbose).upper()}" ")" ) anndata2ri.deactivate() try: ro.r("batch.estimate$summary$kBET.observed")[0] except rpy2.rinterface_lib.embedded.RRuntimeError: return np.nan else: return ro.r("batch.estimate$summary$kBET.observed")[0] def kBET( adata, batch_key, label_key, embed='X_pca', type_=None, hvg=False, subsample=0.5, #non-functional heuristic=False, verbose=False ): """ Compare the effect before and after integration params: matrix: matrix from adata to calculate on return: pd.DataFrame with kBET observed rejection rates per cluster for batch """ kBET_scores = {'cluster': [], 'kBET': []} try: ro.r("library(kBET)") except rpy2.rinterface_lib.embedded.RRuntimeError as e: print(e) print("Couldn't compute kBET, returning NaN") return pd.DataFrame.from_dict(kBET_scores) checkAdata(adata) checkBatch(batch_key, adata.obs) checkBatch(label_key, adata.obs) # compute connectivities for non-knn type data integrations # and increase neighborhoods for knn type data integrations if type_ != 'knn': adata_tmp = sc.pp.neighbors(adata, n_neighbors=50, use_rep=embed, copy=True) else: # check if pre-computed neighbours are stored in input file adata_tmp = adata.copy() if 'diffusion_connectivities' not in adata.uns['neighbors']: if verbose: print(f"Compute: Diffusion neighbours.") adata_tmp = diffusion_conn(adata, min_k=50, copy=True) adata_tmp.obsp['connectivities'] = adata_tmp.uns['neighbors']['diffusion_connectivities'] if verbose: print(f"batch: {batch_key}") # set upper bound for k0 size_max = 2 ** 31 - 1 #prepare call of kBET per cluster for clus in adata_tmp.obs[label_key].unique(): adata_sub = adata_tmp[adata_tmp.obs[label_key] == clus, :].copy() # check if neighborhood size too small or only one batch in subset if np.logical_or(adata_sub.n_obs < 10, len(adata_sub.obs[batch_key].cat.categories) == 1): print(f"{clus} consists of a single batch or is too small. Skip.") score = np.nan else: quarter_mean = np.floor(np.mean(adata_sub.obs[batch_key].value_counts()) / 4).astype('int') k0 = np.min([70, np.max([10, quarter_mean])]) # check k0 for reasonability if (k0 * adata_sub.n_obs) >= size_max: k0 = np.floor(size_max / adata_sub.n_obs).astype('int') matrix = np.zeros(shape=(adata_sub.n_obs, k0 + 1)) if verbose: print(f"Use {k0} nearest neighbors.") n_comp, labs = scipy.sparse.csgraph.connected_components(adata_sub.obsp['connectivities'], connection='strong') if n_comp > 1: # check the number of components where kBET can be computed upon comp_size = pd.value_counts(labs) # check which components are small comp_size_thresh = 3 * k0 idx_nonan = np.flatnonzero(np.in1d(labs, comp_size[comp_size >= comp_size_thresh].index)) # check if 75% of all cells can be used for kBET run if len(idx_nonan) / len(labs) >= 0.75: # create another subset of components, assume they are not visited in a diffusion process adata_sub_sub = adata_sub[idx_nonan, :].copy() nn_index_tmp = np.empty(shape=(adata_sub.n_obs, k0)) nn_index_tmp[:] = np.nan nn_index_tmp[idx_nonan] = diffusion_nn(adata_sub_sub, k=k0).astype('float') #call kBET score = kBET_single( matrix=matrix, batch=adata_sub.obs[batch_key], knn=nn_index_tmp + 1, # nn_index in python is 0-based and 1-based in R subsample=subsample, verbose=verbose, heuristic=False, k0=k0, type_=type_ ) else: # if there are too many too small connected components, set kBET score to 1 # (i.e. 100% rejection) score = 1 else: # a single component to compute kBET on nn_index_tmp = diffusion_nn(adata_sub, k=k0).astype('float') #call kBET score = kBET_single( matrix=matrix, batch=adata_sub.obs[batch_key], knn=nn_index_tmp + 1, # nn_index in python is 0-based and 1-based in R subsample=subsample, verbose=verbose, heuristic=False, k0=k0, type_=type_ ) kBET_scores['cluster'].append(clus) kBET_scores['kBET'].append(score) kBET_scores =
pd.DataFrame.from_dict(kBET_scores)
pandas.DataFrame.from_dict
## 1. Count the level of gauges ## 2. Sout the gauges by level ## 3. Automatic bias correction from upstreams to downstreams at monthly scale ## 4. Take each gauge delta Q added to downstreams ## 5. Bias correction for the ungauged river at monthly scale ## 6. Bias scale mapping at daily scle ## Input: fast_connectivity1.csv; Qout_61_18_daily.nc, Qmon.nc, Qbc_61_18_daily.nc, Qbc_month.nc ## gauge_id.csv; Q_obs.csv. ## Output: revised Qbc_month.nc and Qbc_61_18_daily.nc ## writed by <NAME> 2022-05-05 import os import pandas as pd import xarray as xr import numpy as np from UDSBC.Q_pre import Qmonth from UDSBC.Rivers import fast_connectivity,revise,upstream,downstream from UDSBC.util import filter_nan from UDSBC.BC import EQM,SDM ############### input_output_file ############### river_shp = './input/liao.shp' basin_id = './input/basin_id.csv' rapid_Qout = './input/Qout.nc' gauge_file = './input/gauge_id.csv' obs_file = './input/Q_obs.csv' river_connect = './output/fast_connectivity.csv' river_connect1 = './output/fast_connectivity1.csv' Q_daily_file = './output/Qout_61_18_daily.nc' Q_month_file = './output/Qmon.nc' bc_daily_file = './output/Qbc_61_18_daily.nc' bc_monthly_file = './output/Qbc_month.nc' ############### creat_Qfile ############### Qmonth.creat_Q(basin_id,rapid_Qout,Q_daily_file,Q_month_file) sysComm1 = "cdo monmean ./output/Qout_61_18_daily.nc ./output/Qmon.nc" os.system(sysComm1) ############### creat_Qbcfile ############### sysComm2 = "cp ./output/Qout_61_18_daily.nc ./output/Qbc_61_18_daily.nc" sysComm3 = "cp ./output/Qmon.nc ./output/Qbc_month.nc" os.system(sysComm2) os.system(sysComm3) ############### River_connet ############### fast_connectivity.connectivity(river_shp,river_connect) revise.river_revise(river_connect,river_connect1) ############### BC producer ############## Qout_m = xr.open_dataset(Q_month_file).load()['qout'] ##original Rivers = xr.open_dataset(Q_month_file).load()['rivers'] dates = xr.open_dataset(Q_month_file).load()['time'] Qbc_m = xr.open_dataset(Q_month_file).load()['qout'] ##need to BC print('**** Read gauges file *****') gauges =
pd.read_csv(gauge_file)
pandas.read_csv
#!/usr/bin/env python3 import sys, math, gzip import numpy as np import pandas as pd from time import time # calculate Wen/Stephens shrinkage LD estimate gmapfile = sys.argv[1] # genetic map indfile = sys.argv[2] #list of individuals # NE = 11418.0 NE = float(sys.argv[3]) # CUTOFF = 1e-7 CUTOFF = float(sys.argv[4]) outfile = sys.argv[5] # outfile file inds = pd.read_table(indfile, header=None, squeeze=True).to_list() haps= list() theta = 0 nind = len(inds) s = 0 for i in range(1, 2*nind): s = s+ 1.0/float(i) nind = float(nind) s = 1/s #print "s", s theta = s/(2.0*float(nind)+s) print(theta) pos2gpos = pd.read_table(gmapfile, index_col=0, header=None, sep=" ", squeeze=True) # pos2gpos = pos2gpos.to_dict() print(list(pos2gpos.items())[:5]) print(len(pos2gpos)) df = pd.read_table(sys.stdin, header=None) allpos = df.pop(0) # .tolist() allrs = df.pop(1) # .tolist() haps = df.astype(np.int8) pos2gpos = pos2gpos[allpos] records = [] len_g1 = float(haps.shape[1]) ee_const = NE * 4.0 / (2.0 * nind) for i in range(len(allpos)): # if i == 1: # raise Exception("Hi") # print("-----") # print("i", i, i/len(allpos), len(allpos)) # print(time()) pos1 = allpos[i] # print(pos1) gpos1 = pos2gpos[pos1] # print(" gpos1", gpos1) toofar = False j = i # print(" len(allpos)", len(allpos)) # print("j, len(allpos)") # print(j, len(allpos)) while j < len(allpos) and toofar == False: # whole_start = time() # print(" i", i, "j", j) pos2 = allpos[j] gpos2 = pos2gpos[pos2] # print(" gpos2", gpos2) df = gpos2-gpos1 # print(" df", df) # print(" NE", NE) # print(" inds", len(inds)) ee = math.exp( - df * ee_const) # print(" ee", ee) # print(" CUTOFF", CUTOFF) if ee < CUTOFF: toofar = True j = j+1 continue g1 = haps.iloc[i] # print(" g1", g1) g2 = haps.iloc[j] haps_compare = pd.concat([g1, g2], axis=1) haps_compare.columns = [0, 1] haps_compare = haps_compare.groupby([0, 1]).size().astype(float).to_dict() n11 = haps_compare.get((1, 1), 0) n10 = haps_compare.get((1, 0), 0) n01 = haps_compare.get((0, 1), 0) # end = time() # print("took", end - start) # print(" g1", g1) # for k in range(len(g1)): # # print(" k", k) # if g1[k] == "1" and g2[k] == "1": # n11 = n11+1 # elif g1[k] == "0" and g2[k] == "1": # n01 = n01 +1 # elif g1[k] == "1" and g2[k] == "0": # n10 = n10 +1 f11 = n11/len_g1 f1 = (n11+n10)/len_g1 f2 = (n11+n01)/len_g1 D = f11 - f1*f2 Ds = D*ee Ds2 = (1-theta)*(1-theta)*Ds # whole_end = time() # print("whole took", whole_end - whole_start) if math.fabs(Ds2) < CUTOFF: j = j+1 continue if i == j: Ds2 = Ds2 + (theta/2.0)*(1-theta/2.0) result = (allrs[i], allrs[j], pos1, pos2, gpos1, gpos2, D, Ds2) print(result) records.append(result) # print(" j", j) j = j+1 df =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- """ Created on Mon Dec 17 19:51:21 2018 @author: Bob """ from sklearn.preprocessing import StandardScaler from sklearn.cluster import DBSCAN from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer from nltk.corpus import stopwords from sqlalchemy import create_engine from config import config import pandas as pd import numpy as np import unidecode import psycopg2 import re import click from tqdm import tqdm from mpproj.routefinder.StyleInformation import * def MPAnalyzer(): '''Finishes cleaning routes using formulas that require information about the whole database. The Bayesian rating system, route clustering algorithm and calculation of TFIDF values require information about all routes, and not just one that is of interest. Therefore, this file must be run after all data collection has finished. This function is a handler for six functions: - bayesian_rating: Calculates the weighted quality rating for each route - route_clusters: Groups routes together based on geographic distance - idf: Calculates inverse-document-frequency for words in the route descriptions - tfidf: Calclates term-frequency-inverse-document-frequency for words in route descriptions - normalize: Normalizes vectors for TFIDF values - find_route_styles: Compares routes to the ideal to help categorize Returns: Updated SQL Database ''' print('Connecting to the PostgreSQL database...', end='') engine = create_engine( 'postgresql+psycopg2://postgres:postgres@localhost:5432/routes') params = config.config() conn = psycopg2.connect(**params) cursor = conn.cursor() print('Connected') tqdm.pandas() def tfidf(min_occur=0.001, max_occur=0.9): ''' Calculates Term-Frequency-Inverse-Document-Frequency for a body of documents. Term-Frequency-Inverse-Document-Frequency(TFIDF) is a measure of the importance of words in a body of work measured by how well they help to distinguish documents. Words that appear frequently in documents score high on the Term-Frequency metric, but if they are common across the corpus, they will have low Inverse-Document-Frequency scores. TFIDF can then be used to compare documents to each other, or, in this case, to documents with known topics. TFIDF = TF * IDF TF = Term Frequency IDF = Inverse Document Frequency Args: min_occur(int): The minimum number of documents that a word has to appear in to be counted. Included to ignore words that only appear in a few documents, and are therefore not very useful for categorization. max_occur(int): The maximum number of documents that a word can appear in to be counted. This is included to ignore highly common words that don't help with categorization. Returns: routes(pandas Dataframe): Holds route-document information, including term-frequency, inverse-document-frequency, TFIDF, and normalized TFIDF values Updated SQL Database: Updates the TFIDF table on main DB with the routes dataframe ''' print('Getting number of routes', end=' ', flush=True) cursor.execute('SELECT COUNT(route_id) FROM Routes') num_docs = cursor.fetchone()[0] print(num_docs) print('Getting route text data', flush=True) min_occur *= num_docs max_occur *= num_docs query = 'SELECT route_id, word, tf FROM Words' routes = pd.read_sql(query, con=conn, index_col='route_id') print('Removing non-essential words.', flush=True) routes = routes.groupby('word', group_keys=False) routes = routes.progress_apply( weed_out, min_occur=min_occur, max_occur=max_occur)\ .set_index('route_id') print('Getting IDF', flush=True) routes = routes.groupby('word', group_keys=False) routes = routes.progress_apply( idf, num_docs=num_docs).set_index('route_id') print('Calculating TFIDF', flush=True) routes['tfidf'] = routes['tf'] * routes['idf'] print('Normalizing TFIDF values', flush=True) routes = routes.groupby(routes.index, group_keys=False) routes = routes.progress_apply(lambda x: normalize('tfidf', table=x)) print('Writing TFIDF scores to SQL', flush=True) routes = routes.set_index('route_id') routes = routes[['word', 'idf', 'tfidfn']] # This will take a long time routes.to_sql('TFIDF', con=engine, if_exists='replace', chunksize=1000) def weed_out(table, min_occur, max_occur): '''Removes words that are too common or too rare Args: table(Series): Instances of a word min_occur: Fewest number acceptable max_occur: Greatest number acceptable Returns: table: updated series''' if min_occur < len(table) < max_occur: return table.reset_index() def idf(word, num_docs): ''' Finds inverse document frequency for each word in the selected corpus. Inverse document frequency(IDF) is a measure of how often a word appears in a body of documents. The value is calculated by: IDF = 1 + log(N / dfj) N = Total number of documents in the corpus dfj = Document frequency of a certain word, i.e., the number of documents that the word appears in. Args: word(pandas dataframe): A dataframe composed of all instances of a word in a corpus. num_docs(int): The total number of documents in the corpus Returns: word(pandas dataframe): The same document with the calculated IDF score appended. ''' word['idf'] = 1 + np.log(num_docs / len(word)) return word.reset_index() def normalize(*columns, table, inplace=False): ''' Normalizes vector length. Vector values must be normalized to a unit vector to control for differences in length. This process is done by calculating the length of a vector and dividing each term by that value. The resulting 'unit-vector' will have a length of 1. Args: table(pandas dataframe): Table hosting vector to be normalized *columns(str): Names of columns to be normalized inplace(Boolean, default = False): If inplace=False, adds new columns with normalized values. If inplace=True, replaces the columns. Returns: table(pandas dataframe): Updated dataframe with normalized values. ''' for column in columns: if not inplace: column_name = column + 'n' elif inplace: column_name = column length = np.sqrt(np.sum(table[column] ** 2)) table[column_name] = table[column] / length return table.reset_index() def fill_null_loc(): """Fills empty route location data. Not all routes have latitude and longitude coordinates, so we must use the coordinates of their parent area instead as a rough estimate. This function first grabs all routes with no data, then fills in the data with the lowest level area it can, going up as many areas as needed until it finds one with proper coordinates. Returns: Updated SQL Database """ print('Filling in empty locations', flush=True) # Select a route without location data cursor.execute(''' SELECT route_id, area_id, name FROM Routes WHERE latitude is Null OR longitude is Null LIMIT 1''') route = cursor.fetchone() while route is not None: # Route ID rid = route[0] # From ID fid = route[1] name = route[2] print(f'Finding location information for {name}') # Loops until it finds proper data lat, long = None, None while lat == None or long == None: # Gets latitude and longitude from parent area cursor.execute(f''' SELECT latitude, longitude, from_id FROM Areas WHERE id = {fid} LIMIT 1''') loc = cursor.fetchone() lat, long = loc[0], loc[1] fid = loc[2] # Updates DB cursor.execute(f''' UPDATE Routes SET latitude = {lat}, longitude = {long} WHERE route_id = {rid}''') conn.commit() cursor.execute(''' SELECT route_id, area_id, name FROM Routes WHERE latitude is Null OR longitude is Null LIMIT 1''') route = cursor.fetchone() def route_clusters(routes): ''' Clusters routes into area groups that are close enough to travel between when finding climbing areas. Routes can be sorted into any number of sub-areas below the 'region' parent. By clustering the routes based on latitude and longitude instead of the name of the areas and parent areas, the sorting algorithm will be able to more accurately determine which routes are close together. This function uses SciKit's Density Based Scan clustering algorithm. The algorithm works by grouping points together in space based on upper-limits of distance and minimum numbers of members of a cluster. More generally, the algorithm first finds the epsilon neighborhood of a point. This is the set of all points whose distance from a given point is less than a specified value epsilon. Then, it finds the connected core-points, which are the points that have at least the minimum number of connected points in its neighborhood. Non-core points are ignored here. Finally, the algorithm assigns each non-core point to a nearby cluster if is within epsilon, or assigns it to noise if it is not. The advantages of this is that the scan clusters data of any shape, has a robust response to outliers and noise, and that the epsilon and min points variables can be adjusted. This function returns the label/name for the cluster that a route appears in, as well as the number of other routes in that same cluster. This will allow the sorting algorithm to more heavily weight routes that are clustered near others. Args: routes(pandas df): Pulled from cleaned route SQL DB with columns: - route_id (int, unique): Unique route identifies - latitude (float) - longitude (float) Returns: routes(pandas df): Updated with clustered area group number: - route_id (int, unique): Unique route identifies - area_group (int): Cluster id ''' # Route location lats = routes['latitude'] longs = routes['longitude'] locs = [] for x in range(len(lats)): locs.append((lats.iloc[x], longs.iloc[x])) # Converted into df locs = StandardScaler().fit_transform(locs) # Max distance in latitude epsilon = 0.0007 # Min number of routes in a cluster min_routes = 3 # Distance baced scan db = DBSCAN(eps=epsilon, min_samples=min_routes).fit(locs) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True # Cluster names labels = db.labels_ unique, counts = np.unique(labels, return_counts=True) counts = dict(zip(unique, counts)) # Number of routes in the same cluster as a given route area_counts = [] for label in labels: if label >= 0: # Counts number of routes area_counts.append(counts[label]) # Areas are given a cluster id of -1 if the are not part of a # cluster elif label == -1: # If so, there is only 1 route in their 'cluster' area_counts.append(1) routes['area_group'] = labels routes['area_counts'] = area_counts routes = routes[['area_group', 'area_counts']] return routes def bayesian_rating(routes): ''' Updates route quality with weighted average. The Bayesian average rating system helps to mitigate the effects of user ratings for routes that only have a few reviews. The weighted rating works by first finding the average rating for all routes, and using that to bring low-rated routes up and high-rated routes down. The result - the Bayes rating - is an updated rating weighted by the average number of stars across all routes. The weight decreases according to the number of votes cast. Bayesian rating = (r * v) + (a * 10) / (v + 10) r = Route rating v = Number of votes a = Average rating across all routes Essentially, the function gives each route phantom-users who all give the route the average score. For routes with a high number of ratings the effect of the additional phantom users is minimal, but for routes with only one or two actual user ratings, the effect is large. This keeps 4-star rated routes from dominating the sorting algorithm if they only have a few votes, and helps promote unrated routes that may be of high quality. Args: routes(pandas df): Pulled from cleaned route SQL DB with columns: - route_id (int, unique): Unique route identifiers - stars (float): Raw average rating - votes (int): Number of user ratings Returns: routes(pandas df): Updated dataframe with Bayes rating and columns: - route_id (int, unique): Unique route identifies - bayes (float): Weighted average rating ''' # Average rating of all routes stars = pd.read_sql('SELECT stars FROM Routes', con=conn) avg_stars = np.mean(stars)['stars'] # Weighted Bayesian rating routes['bayes'] = round((((routes['votes'] * routes['stars']) + avg_stars * 10) / (routes['votes'] + 10)), 1) return routes['bayes'].to_frame() def find_route_styles(*styles, path='Descriptions/'): ''' Returns weighted scores that represent a route's likelihood of containing any of a series of features, e.g., a roof, arete, or crack. Route names, descriptions, and user comments can indicate the presence of rock and route features. Term-Frequency-Inverse-Document-Frequency (TFIDF) values for the blocks of text gathered for each route can be compared to 'archetypal' routes to glean insight into these features. This comparison is further clarified using Bayesian statistics to measure the credibility of the comparision, and is then adjusted to reflect that. At present, each route is compared against archetypal routes with the following features: Aretes - A sharp vertical edge of a block, cliff or boulder Chimney - A large vertical crack that a climber can fit in and climb using opposing pressure Crack - Smaller cracks ranging from finger-sized to a few inches wide (off-width) Slab - Low-angle rock faces (less than vertical) Overhang - Roofs, caves or more-than-vertical rock faces More styles or archetypes can be added in the future by creating .txt files and adding them to the 'Descriptions' sub-folder, then adding the style to the *styles argument. Args: *styles(str): The name of the files that each route will be compared against. path(str): Folder location of the Database Returns: Updated SQL Database with weighted route scores ''' def text_splitter(text): '''Splits text into words and removes punctuation. Once the text has been scraped it must be split into individual words for further processing. The text is all put in lowercase, then stripped of punctuation and accented letters. Tokenizing helps to further standardize the text, then converts it to a list of words. Each word is then stemmed using a Porter stemmer. This removes suffixes that make similar words look different, turning, for example, 'walking' or 'walked' into 'walk'. Stop words are also filtered out at this stage. Args: text(str): Single string of text to be handled Returns: text(list): List of processed words.''' # Converts to lowercase text = text.lower() # Strips punctuation and converts accented characters to unaccented text = re.sub(r"[^\w\s]", '', text) text = unidecode.unidecode(text) # Tokenizes words and returns a list text = word_tokenize(text) # Remove stopwords stop_words = set(stopwords.words('english')) # Stems each word in the list ps = PorterStemmer() text = [ps.stem(word) for word in text if word not in stop_words] return text def archetypal_tf(*styles, path): ''' Returns term-frequency data for descriptions of archetypal climbing routes and styles. This will be used later to categorize routes. Term-Frequency = t / L t = Number of appearances for a word in a document L = Number of total words in the document Args: *styles(str): Name of .txt file to parse. Can either be the plain name or have the .txt suffix path(str): Path to folder with route descriptions Returns: tf.csv(CSV File): CSV File of term frequency for each style. This will help determine if TF values are what is expected when adding new styles. archetypes(Pandas Dataframe): Holds words term-frequency values for words in the files.''' # Initializes Dataframe archetypes = pd.DataFrame() for style in styles: # Formats suffix if style.endswith('.txt'): # Opens .txt file try: file = open(path + style) style = style[:-4] # Returns errors except OSError as e: return e else: try: file = open(path + style + '.txt') except OSError as e: return e # Creates single block of text text = '' for line in file: text += line # Splits and processes text text = text_splitter(text) # Length of document in words length = len(text) # Counts appearances of each word text =
pd.DataFrame({'word': text})
pandas.DataFrame
# Copyright © 2019 <NAME> """ Test for the ``preprocess._aggregate_columns._difference`` module. """ from pandas import DataFrame from pandas.util.testing import assert_frame_equal import unittest # Tests for: from ...clean_variables import VariableCleaner class PreprocessConstantDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module. Assert final data frames match expectations. """ @staticmethod def test_clean_difference_ints_0(): """Test subtracting 0 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [1, 2, 3]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_ints_1(): """Test subtracting 1 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [0, 1, 2]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 1}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_0(): """Test subtracting 0.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [1.0, 2.0, 3.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_negative_1(): """Test subtracting -1.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [2.0, 3.0, 4.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": -1.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) class PreprocessVariableDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module with column subtraction. """ @staticmethod def test_clean_difference_int_column(): """Test subtracting the right column from the left.""" _input = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}) _expected = DataFrame({"A": [-1, -1, -1], "B": [2, 3, 4]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_right_string_column(): """Test subtracting the right column from the left. Right column has strings.""" _input = DataFrame({"A": [1, 2, 3], "B": ["2", "3", "4"]}) _expected = DataFrame({"A": [-1.0, -1.0, -1.0], "B": ["2", "3", "4"]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_left_string_column(): """Test subtracting the right column from the left. Left column has strings.""" _input = DataFrame({"A": ["1", "2", "3"], "B": [2, 3, 4]}) _expected = DataFrame({"A": [-1.0, -1.0, -1.0], "B": [2, 3, 4]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_both_string_column(): """Test subtracting the right column from the left. Both left and right have strings.""" _input = DataFrame({"A": ["1", "2", "3"], "B": ["2", "3", "4"]}) _expected = DataFrame({"A": [-1.0, -1.0, -1.0], "B": ["2", "3", "4"]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings)
assert_frame_equal(_expected, _vc.frame)
pandas.util.testing.assert_frame_equal
#! /usr/bin/env python3 from argparse import ArgumentParser from collections import defaultdict from IPython import embed import itertools import json from enum import Enum from math import sqrt from multiprocessing import Pool, cpu_count import pandas as pd import numpy as np from pathlib import Path from pprint import pprint import re import Utils from SpecBench import * from Graph import Grapher from Grapher import Grapher from DataObject import DataObject import pandas as pd pd.set_option('display.float_format', lambda x: '%.3f' % x) #pd.set_option('display.max_rows', None) from Results import * class Report: ''' Aggregrate Results into a unified document. ''' CHECKPOINT_REGEX = re.compile(r'([0-9]+\.[a-zA-Z]+_r)_(.*)_([0-9]+)_check\.cpt.*') def __init__(self, args): ''' Gather the summary files from sim results. ''' if args.simresult_dir is None: raise Exception('Must give valid simresult dir as an argument (not None)!') res_dir = Path(args.simresult_dir) assert res_dir.exists() self.verbatim = args.verbatim self.do_intersection = not args.include_all self.smt = args.smt files = [] present = defaultdict(lambda: defaultdict(dict)) self.summary_data = [] for dirent in Utils.get_directory_entries_by_time(res_dir): if dirent.is_file() and 'summary.json' in dirent.name: if args.bench is not None and not args.bench in dirent.name: continue try: with dirent.open('r') as f: self.summary_data += [json.load(f)] except: print('Could not open {}'.format(str(dirent))) # benchmark -> configs -> dict{ checkpoint -> series } self.sim_series = defaultdict(lambda: defaultdict(dict)) for summary in self.summary_data: if 'checkpoints' not in summary: # Means the run was terminated early continue chk_prefix = '{}_{}'.format(summary['bench'], summary['mode']) result_dirs = {} for c, status in summary['checkpoints'].items(): chk_name = Path(c).name try: num = int(chk_name.split('_')[0]) except: continue if status == 'successful': result_dirs[num] = res_dir / '{}_{}'.format(chk_prefix, chk_name) for checkpoint_num, dirent in result_dirs.items(): if not dirent.exists(): present[benchmark][mode][checkpoint_num] = 0 continue benchmark = summary['bench'] mode = summary['mode'] f = dirent / 'res.json' if f.exists(): files += [f] present[benchmark][mode][checkpoint_num] = 1 try: series = pd.read_json(f, typ='series') self.sim_series[benchmark][mode][checkpoint_num] = series except: present[benchmark][mode][checkpoint_num] = 0 else: present[benchmark][mode][checkpoint_num] = 0 present_list = defaultdict(lambda: defaultdict(list)) for benchmark_name, per_config in present.items(): for config_name, checkpoint_mappings in per_config.items(): checkpoints = sorted(checkpoint_mappings.keys()) num_checkpoints = summary['total_checkpoints'] for i in range(num_checkpoints): present_list[benchmark_name][config_name] += \ [ present[benchmark_name][config_name][i] if i in present[benchmark_name][config_name] else 0 ] if len(files) == 0: raise Exception('No valid result files in given directory!.') self.outfile = args.output_file self.files = files self.present = present_list @staticmethod def _get_file_data(fpath): with fpath.open() as fd: return json.load(fd) def _get_all_results(self): all_res = [] with Pool(cpu_count) as p: all_res = p.map(self._get_file_data, self.files) print('Collected results from {} files.'.format(len(self.files))) res_by_type = defaultdict(lambda: defaultdict(list)) for res in all_res: assert RunType.__name__ in res and 'benchmark' in res t = res[RunType.__name__] b = res['benchmark'] res_by_type[t][b] += [res] return res_by_type def _construct_data_frames(self): ''' I want the following: Per benchmark: stat1 stat2 stat3 config_name: val val val ''' self.sim_data_frames = defaultdict(dict) for benchmark, config_series in self.sim_series.items(): checkpoint_sets = [] for config_name, checkpoint_results in config_series.items(): checkpoint_sets.append(checkpoint_results.keys()) all_checkpoints = set(checkpoint_sets[0]) if self.do_intersection: all_checkpoints.intersection_update(*checkpoint_sets[1:]) print('{} shares {} checkpoints across all configs.'.format( benchmark, len(all_checkpoints))) else: print('For {}...'.format(benchmark)) for config_name, checkpoint_results in config_series.items(): print('\t{} has {} checkpoints.'.format( config_name, len(checkpoint_results))) only_use = list(all_checkpoints) for config_name, checkpoint_results in config_series.items(): if not self.do_intersection: only_use = [k for k in checkpoint_results.keys()] df = pd.DataFrame(checkpoint_results)[only_use].T stat_means = df.mean().rename('mean') stat_stdev = df.std(ddof=0).rename('std') stat_nums = df.count().rename('count') assert stat_nums.min() >= 0 stat_ci = ((1.96 * df.std(ddof=0)) / np.sqrt(stat_nums)).rename('ci') summary_df =
pd.DataFrame([stat_means, stat_stdev, stat_ci, stat_nums])
pandas.DataFrame
# coding: utf-8 # In[1]: import pandas as pd ## biblioteca de estruturação e analise de dados import numpy as np ## biblioteca de algebra linear entre outras utilidades ## --------------------- ## ## plotly/dash libraries ## ## --------------------- ## import dash import plotly.graph_objs as go from dash.dependencies import Input, Output, Event import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt from flask import Flask ## --------------------- ## import datetime ## biblioteca para criar/trabalhar datas ############################# ## load files vendas = pd.read_csv('UauOffice_Vendas.csv') contratos = pd.read_csv('hubspot_Vendas.csv') vendas['agent_id'] = vendas.id_contrato.map(lambda x: int(x[:3])) vendas['data'] = vendas['data'].map(lambda data: pd.to_datetime(data).date()) vendas['valor'] = vendas.valor.map(lambda x: np.round(float(x),2)) agents = np.sort(contratos.id_representante.unique()) ######################## server = Flask(__name__) radio_itens = ['Todos','Selecionados'] app = dash.Dash(name = __name__, server = server, url_base_pathname='/') app.config.supress_callback_exceptions = True app.layout = html.Div( html.Div([ html.H1(u'Dashboard Desafio Pagar.me', style={'textAlign': 'center'}), html.H3(u' ', style={'textAlign': 'center'}), html.H3(u'Data mais recente dos dados: {}'.format(datetime.datetime.today().date()), style={'textAlign': 'center'}), html.Div([ html.Label('Agente', style={'fontsize':20}), dcc.Dropdown( id = 'dropdown_agent', options = [{'label':value, 'value':value} for (value) in agents], multi=True, ), dcc.RadioItems( id='radio_agent', options=[{'label': i, 'value': i} for i in radio_itens], value=radio_itens[1], ), ], style={'width': '20%', 'display': 'inline-block'}), html.Div([ html.Label('Contrato', style={'fontsize':20}), dcc.Dropdown( id = 'dropdown_contracts', options = [{}], multi=True, ), dcc.RadioItems( id='radio_contracts', options=[{'label': i, 'value': i} for i in radio_itens], value=radio_itens[1], ), ], style={'width': '20%', 'display': 'inline-block'}), html.Div([ html.Label('Grafico por', style={'fontsize':20}), dcc.Dropdown( id = 'dropdown_graphtype', options = [{'label': i, 'value': i} for i in ['Agente','Contrato']], value='Agente' ), dcc.RadioItems( id='radio_graphtype', options=[{'label': i, 'value': i} for i in ['Acumulado','Discretizado']], value='Acumulado', ), ], style={'width': '40%', 'display': 'inline-block'}), dcc.Graph(id='graph'), dt.DataTable( rows=[dict(zip([X for X in vendas.columns],['' for X in vendas.columns]))], columns=[X for X in vendas.columns], row_selectable=False, filterable=False, sortable=True, selected_row_indices=[], id='datatable' ), ],)) @app.callback( dash.dependencies.Output('dropdown_contracts', 'options'), [dash.dependencies.Input('dropdown_agent', 'value')]) def update_dropdown_agent (agents): global contratos if agents: dummy = contratos.loc[contratos.id_representante.isin(agents)] contracts = np.sort(dummy.id_contrato.unique()) return [{'label':value, 'value':value} for (value) in contracts] else: return [{}] @app.callback( dash.dependencies.Output('graph', 'figure'), [dash.dependencies.Input('dropdown_agent', 'value'),dash.dependencies.Input('radio_agent', 'value'), dash.dependencies.Input('dropdown_contracts', 'value'),dash.dependencies.Input('radio_contracts', 'value'), dash.dependencies.Input('dropdown_graphtype', 'value'),dash.dependencies.Input('radio_graphtype', 'value'),]) def update_graph(dropdown_agents, radio_agents, dropdown_contracts, radio_contracts, dropdown_graphtype, radio_graphtype): global vendas vendas_copy = vendas.copy() graph_data = [] d0 =
pd.to_datetime('2017-01-01')
pandas.to_datetime
import logging from tools.EventGeneration import convert_date, generate_random_time, generate_random_node_id logger = logging.getLogger(__name__.split('.')[-1]) from features.ResponseTypeFeature import ResponseTypeFeature from features.ReplayTimeSeriesFeature import ReplayTimeSeriesFeature import tools.Cache as Cache import random import pandas as pd import warnings from scipy.sparse import SparseEfficiencyWarning warnings.simplefilter('ignore', SparseEfficiencyWarning) random.seed(1234) class PoissonSimulation: ''' Simple event simulation. Given a replay of base events and probabilities of responses, generate arbitrary single-layer event cascades. Parameters ---------- Parameters here ''' def __init__(self, cfg, generate_replies=None, **kwargs): self.start_date = cfg.get("limits.start_date", type=convert_date) self.end_date = cfg.get("limits.end_date", type=convert_date) self.time_delta = cfg.get("limits.time_delta", type=pd.Timedelta).total_seconds() if generate_replies is None: self.generate_replies = cfg.get("poisson_simulation.generate_replies", True) else: self.generate_replies = generate_replies self.cfg = cfg @Cache.amalia_cache def compute(self, dfs, train_dfs=None): # Retrieve replay time-series feature and response type feature ts = ReplayTimeSeriesFeature(self.cfg).compute(dfs) responses = ResponseTypeFeature(self.cfg).compute(dfs) res = [] platforms = dfs.get_platforms() logger.warning('Very slow for dense data generation. Use ParallelPoissonSimulation to reduce runtime.') for platform in platforms: ts = ts[platform] responses = responses[platform] node_map = dfs.get_node_map(platform) # For all users that have a nonzero row in their ts, generate events logger.info('Generating new events.') nonzero_rows, __ = ts.nonzero() res = res + _generate_base_event(ts, node_map, nonzero_rows, self.start_date, responses, self.generate_replies, platform) # Return a pandas DataFrame sorted by time # Feed into the output module for actual result generation res =
pd.DataFrame(res)
pandas.DataFrame
import tensorflow as tf import numpy as np import os import time from utils import Feeder, normalize, similarity, loss_cal, optim, test_batch from configuration import get_config import sys sys.path.append(os.getcwd()) from tacotron.models.modules import ReferenceEncoder from tacotron.utils import ValueWindow from tensorflow.contrib import rnn import datetime from hparams import hparams import pandas as pd import scikitplot as skplt import matplotlib.pyplot as plt VAL_ITERS = 5 config = get_config() def time_string(): return datetime.datetime.now().strftime('%Y.%m.%d_%H-%M-%S') def triple_lstm(batch): # embedding lstm (3-layer default) with tf.variable_scope("spk_emb_lstm"): lstm_cells = [tf.contrib.rnn.LSTMCell(num_units=config.hidden, num_proj=config.proj) for i in range(config.num_layer)] lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells) # define lstm op and variables outputs, _ = tf.nn.dynamic_rnn(cell=lstm, inputs=batch, dtype=tf.float32, time_major=True) # for TI-VS must use dynamic rnn embedded = outputs[-1] # the last ouput is the embedded d-vector embedded = normalize(embedded) # normalize print("embedded size: ", embedded.shape) return(embedded) def train(path, args): tf.reset_default_graph() # reset graph timestamp = time_string() if args.time_string == None else args.time_string # draw graph feeder = Feeder(args.train_filename, args, hparams) output_classes = max([int(f) for f in feeder.total_emt])+1 if args.model_type in ['emt', 'accent'] else max([int(f) for f in feeder.total_spk])+1 batch = tf.placeholder(shape= [args.N*args.M, None, config.n_mels], dtype=tf.float32) # input batch (time x batch x n_mel) labels = tf.placeholder(shape=[args.N * args.M],dtype=tf.int32) lr = tf.placeholder(dtype= tf.float32) # learning rate global_step = tf.Variable(0, name='global_step', trainable=False) w = tf.get_variable("w", initializer= np.array([10], dtype=np.float32)) b = tf.get_variable("b", initializer= np.array([-5], dtype=np.float32)) # embedded = triple_lstm(batch) print("Training {} Discriminator Model".format(args.model_type)) encoder = ReferenceEncoder(filters=hparams.reference_filters, kernel_size=(3, 3), strides=(2, 2),is_training=True, scope='Tacotron_model/inference/pretrained_ref_enc_{}'.format(args.model_type), depth=hparams.reference_depth) # [N, 128]) embedded = encoder(batch) embedded = normalize(embedded) if args.discriminator: logit = tf.layers.dense(embedded, output_classes, name='Tacotron_model/inference/pretrained_ref_enc_{}_dense'.format(args.model_type)) labels_one_hot = tf.one_hot(tf.to_int32(labels), output_classes) # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit,labels=labels_one_hot)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit,labels=labels_one_hot)) acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels_one_hot, 1),predictions=tf.argmax(logit, 1)) val_acc, val_acc_op = tf.metrics.accuracy(labels=tf.argmax(labels_one_hot, 1), predictions=tf.argmax(logit, 1)) else: # loss sim_matrix = similarity(embedded, w, b, args.N, args.M, P=hparams.reference_depth) print("similarity matrix size: ", sim_matrix.shape) loss = loss_cal(sim_matrix, args.N, args.M, type=config.loss) val_acc_op = tf.constant(1.) # optimizer operation trainable_vars= tf.trainable_variables() # get variable list optimizer= optim(lr) # get optimizer (type is determined by configuration) grads, vars= zip(*optimizer.compute_gradients(loss)) # compute gradients of variables with respect to loss if args.discriminator: grads_rescale = grads else: grads_clip, _ = tf.clip_by_global_norm(grads, 3.0) # l2 norm clipping by 3 grads_rescale= [0.01*grad for grad in grads_clip[:2]] + grads_clip[2:] # smaller gradient scale for w, b train_op= optimizer.apply_gradients(zip(grads_rescale, vars), global_step= global_step) # gradient update operation # check variables memory variable_count = np.sum(np.array([np.prod(np.array(v.get_shape().as_list())) for v in trainable_vars])) print("total variables :", variable_count) # record loss loss_summary = tf.summary.scalar("loss", loss) merged = tf.summary.merge_all() saver = tf.train.Saver(max_to_keep=20) loss_window = ValueWindow(100) acc_window = ValueWindow(100) val_loss_window = ValueWindow(5) val_acc_window = ValueWindow(5) # training session with tf.Session() as sess: tf.local_variables_initializer().run() tf.global_variables_initializer().run() checkpoint_folder = os.path.join(path, "checkpoints",timestamp) logs_folder = os.path.join(path, "logs", timestamp) os.makedirs(checkpoint_folder, exist_ok=True) # make folder to save model os.makedirs(logs_folder, exist_ok=True) # make folder to save log model_name = '{}_disc_model.ckpt'.format(args.model_type) checkpoint_path = os.path.join(checkpoint_folder, model_name) if args.restore: checkpoint_state = tf.train.get_checkpoint_state(checkpoint_folder) if (checkpoint_state and checkpoint_state.model_checkpoint_path): print('Loading checkpoint {}'.format(checkpoint_state.model_checkpoint_path)) saver.restore(sess, checkpoint_state.model_checkpoint_path) else: print('No model to load at {}'.format(checkpoint_folder)) saver.save(sess, checkpoint_path, global_step=global_step) else: print('Starting new training!') saver.save(sess, checkpoint_path, global_step=global_step) writer = tf.summary.FileWriter(logs_folder, sess.graph) lr_factor = 1 # lr decay factor ( 1/2 per 10000 iteration) iterations = 30000 if args.model_type == 'emt' else config.iteration for iter in range(iterations): if args.discriminator: batch_iter, _, labels_iter = feeder.random_batch_disc() else: batch_iter, _, labels_iter = feeder.random_batch() # run forward and backward propagation and update parameters step, _, loss_cur, summary, acc_cur = sess.run([global_step, train_op, loss, merged, acc_op], feed_dict={batch:batch_iter, labels:labels_iter, lr: config.lr*lr_factor}) loss_window.append(loss_cur) acc_window.append(acc_cur) if step % 10 == 0: writer.add_summary(summary, step) # write at tensorboard if (step+1) % 20 == 0: val_loss_cur_batch = 0 val_acc_cur_batch = 0 for iter in range(VAL_ITERS): if args.discriminator: batch_iter, _, labels_iter = feeder.random_batch_disc(TEST=True) else: batch_iter, _, labels_iter = feeder.random_batch(TEST=True) # run forward and backward propagation and update parameters val_loss_cur, val_acc_cur = sess.run([loss, val_acc_op], feed_dict={batch: batch_iter, labels: labels_iter}) val_loss_cur_batch += val_loss_cur val_acc_cur_batch += val_acc_cur val_loss_cur_batch /= VAL_ITERS val_acc_cur_batch /= VAL_ITERS val_loss_window.append(val_loss_cur_batch) val_acc_window.append(val_acc_cur_batch) message = "(iter : %d) loss: %.4f" % ((step+1),loss_window.average) if args.discriminator: message += ', acc: {:.2f}%'.format(acc_window.average) message += ", val_loss: %.4f" % (val_loss_window.average) if args.discriminator: message += ', val_acc: {:.2f}%'.format(val_acc_window.average) print(message) lr_changed=False if args.model_type == 'emt': if step > 6000: lr_changed = True if lr_factor != .01 else False lr_factor = .01 elif step > 4000: lr_changed = True if lr_factor != .1 else False lr_factor = .1 if lr_changed: print("learning rate is decayed! current lr : ", config.lr * lr_factor) elif args.model_type == 'spk': if step > 300:#4000: lr_changed = True if lr_factor != .01 else False lr_factor = .01 elif step > 180:#2500: lr_changed = True if lr_factor != .1 else False lr_factor = .1 if lr_changed: print("learning rate is decayed! current lr : ", config.lr * lr_factor) if step % config.save_checkpoint_iters == 0: saver.save(sess, checkpoint_path, global_step=global_step) def test_disc(path_model, path_meta, path_data, args): #dataset|audio_filename|mel_filename|linear_filename|spk_emb_filename|time_steps|mel_frames|text|emt_label|spk_label|basename|emt_name|emt_file|spk_name|spk_file df = pd.read_csv(path_meta, sep='|') batch_size_np = 100#len(df.index) tf.reset_default_graph() # reset graph # draw graph feeder = Feeder(args.train_filename, args, hparams) output_classes = max([int(f) for f in feeder.total_emt]) + 1 if args.model_type in ['emt', 'accent'] else max( [int(f) for f in feeder.total_spk]) + 1 batch = tf.placeholder(shape=[None, None, config.n_mels], dtype=tf.float32) # input batch (time x batch x n_mel) labels = tf.placeholder(shape=[None], dtype=tf.int32) # embedded = triple_lstm(batch) print("Testing {} Discriminator Model".format(args.model_type)) encoder = ReferenceEncoder(filters=hparams.reference_filters, kernel_size=(3, 3), strides=(2, 2), is_training=True, scope='Tacotron_model/inference/pretrained_ref_enc_{}'.format(args.model_type), depth=hparams.reference_depth) # [N, 128]) embedded = encoder(batch) embedded = normalize(embedded) logit = tf.layers.dense(embedded, output_classes,name='Tacotron_model/inference/pretrained_ref_enc_{}_dense'.format(args.model_type)) logit_sm = tf.nn.softmax(logit) labels_one_hot = tf.one_hot(tf.to_int32(labels), output_classes) # loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit,labels=labels_one_hot)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit, labels=labels_one_hot)) acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels_one_hot, 1), predictions=tf.argmax(logit, 1)) batch_size = tf.shape(labels)[0] #acc_e, acc_op_e = tf.metrics.accuracy(labels=tf.argmax(labels_one_hot[:batch_size], 1), predictions=tf.argmax(logit[:batch_size], 1)) saver = tf.train.Saver() # training session with tf.Session() as sess: tf.local_variables_initializer().run() tf.global_variables_initializer().run() checkpoint_state = tf.train.get_checkpoint_state(path_model) print('Loading checkpoint {}'.format(checkpoint_state.model_checkpoint_path)) saver.restore(sess, checkpoint_state.model_checkpoint_path) emb_full=None loss_avg=0 acc_avg=0 cnt=0 df_results = pd.DataFrame([],columns=['dataset','preds','true']) for start in np.arange(0,len(df.index),batch_size_np): end = start + batch_size_np df_batch = df.iloc[start:end] batch_iter, _, labels_iter = test_batch(path_data, df_batch, args) # run forward and backward propagation and update parameters loss_cur, acc_cur, lbls, log, emb = sess.run( [loss, acc_op, labels, logit_sm, embedded], feed_dict={batch: batch_iter, labels: labels_iter}) print('loss: {:.4f}, acc: {:.2f}%'.format(loss_cur, acc_cur*100)) #print(np.max(log, 1)) #print(np.mean(np.max(log, 1))) emb_full = np.vstack((emb_full, emb)) if emb_full is not None else emb preds = np.argmax(log,1) #print(preds) #print(lbls) df_results_new =
pd.DataFrame([])
pandas.DataFrame
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import codecs import csv from datetime import datetime from io import StringIO import os import platform from tempfile import TemporaryFile from urllib.error import URLError import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas import DataFrame, Index, MultiIndex, Series, compat, concat import pandas._testing as tm from pandas.io.parsers import CParserWrapper, TextFileReader, TextParser def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self): self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_empty_decimal_marker(all_parsers): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = "Only length-1 decimal markers supported" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), decimal="") def test_bad_stream_exception(all_parsers, csv_dir_path): # see gh-13652 # # This test validates that both the Python engine and C engine will # raise UnicodeDecodeError instead of C engine raising ParserError # and swallowing the exception that caused read to fail. path = os.path.join(csv_dir_path, "sauron.SHIFT_JIS.csv") codec = codecs.lookup("utf-8") utf8 = codecs.lookup("utf-8") parser = all_parsers msg = "'utf-8' codec can't decode byte" # Stream must be binary UTF8. with open(path, "rb") as handle, codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter ) as stream: with pytest.raises(UnicodeDecodeError, match=msg): parser.read_csv(stream) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) def test_squeeze(all_parsers): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv(StringIO(data), index_col=0, header=None, squeeze=True) tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view def test_malformed(all_parsers): # see gh-6607 parser = all_parsers data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = "Expected 3 fields in line 4, saw 5" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), header=1, comment="#") @pytest.mark.parametrize("nrows", [5, 3, None]) def test_malformed_chunks(all_parsers, nrows): data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ parser = all_parsers msg = "Expected 3 fields in line 6, saw 5" reader = parser.read_csv( StringIO(data), header=1, comment="#", iterator=True, chunksize=1, skiprows=[2] ) with pytest.raises(ParserError, match=msg): reader.read(nrows) def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame( [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"], ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) def test_read_csv_no_index_name(all_parsers, csv_dir_path): parser = all_parsers csv2 = os.path.join(csv_dir_path, "test2.csv") result = parser.read_csv(csv2, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738, "foo"], [1.047916, -0.041232, -0.16181208307, 0.212549, "bar"], [0.498581, 0.731168, -0.537677223318, 1.346270, "baz"], [1.120202, 1.567621, 0.00364077397681, 0.675253, "qux"], [-0.487094, 0.571455, -1.6116394093, 0.103469, "foo2"], ], columns=["A", "B", "C", "D", "E"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), ] ), ) tm.assert_frame_equal(result, expected) def test_read_csv_wrong_num_columns(all_parsers): # Too few columns. data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ parser = all_parsers msg = "Expected 6 fields in line 3, saw 7" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) def test_read_duplicate_index_explicit(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data), index_col=0) expected = DataFrame( [ [2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], ], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"], name="index"), ) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(all_parsers): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame( [ [2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], ], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"]), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data,kwargs,expected", [ ( "A,B\nTrue,1\nFalse,2\nTrue,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]), ), ( "A,B\nYES,1\nno,2\nyes,3\nNo,3\nYes,3", dict(true_values=["yes", "Yes", "YES"], false_values=["no", "NO", "No"]), DataFrame( [[True, 1], [False, 2], [True, 3], [False, 3], [True, 3]], columns=["A", "B"], ), ), ( "A,B\nTRUE,1\nFALSE,2\nTRUE,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]), ), ( "A,B\nfoo,bar\nbar,foo", dict(true_values=["foo"], false_values=["bar"]), DataFrame([[True, False], [False, True]], columns=["A", "B"]), ), ], ) def test_parse_bool(all_parsers, data, kwargs, expected): parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) def test_int_conversion(all_parsers): data = """A,B 1.0,1 2.0,2 3.0,3 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]], columns=["A", "B"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"], ) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) @pytest.mark.parametrize("index_col", [0, "index"]) def test_read_chunksize_with_index(all_parsers, index_col): parser = all_parsers data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = parser.read_csv(StringIO(data), index_col=0, chunksize=2) expected = DataFrame( [ ["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15], ["qux", 12, 13, 14, 15], ["foo2", 12, 13, 14, 15], ["bar2", 12, 13, 14, 15], ], columns=["index", "A", "B", "C", "D"], ) expected = expected.set_index("index") chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[:2]) tm.assert_frame_equal(chunks[1], expected[2:4]) tm.assert_frame_equal(chunks[2], expected[4:]) @pytest.mark.parametrize("chunksize", [1.3, "foo", 0]) def test_read_chunksize_bad(all_parsers, chunksize): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers msg = r"'chunksize' must be an integer >=1" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), chunksize=chunksize) @pytest.mark.parametrize("chunksize", [2, 8]) def test_read_chunksize_and_nrows(all_parsers, chunksize): # see gh-15755 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=chunksize, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), expected) def test_read_chunksize_and_nrows_changing_size(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=8, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(reader.get_chunk(size=2), expected.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), expected.iloc[2:5]) with pytest.raises(StopIteration, match=""): reader.get_chunk(size=3) def test_get_chunk_passed_chunksize(all_parsers): parser = all_parsers data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" reader = parser.read_csv(StringIO(data), chunksize=2) result = reader.get_chunk() expected = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [dict(), dict(index_col=0)]) def test_read_chunksize_compat(all_parsers, kwargs): # see gh-12185 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers reader = parser.read_csv(StringIO(data), chunksize=2, **kwargs) result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), result) def test_read_chunksize_jagged_names(all_parsers): # see gh-23509 parser = all_parsers data = "\n".join(["0"] * 7 + [",".join(["0"] * 10)]) expected = DataFrame([[0] + [np.nan] * 9] * 7 + [[0] * 10]) reader = parser.read_csv(StringIO(data), names=range(10), chunksize=4) result =
concat(reader)
pandas.concat
"""Functions for downloading data from API.""" import datetime as dt import logging from typing import Dict, Tuple import pandas as pd from constants import URLS, REGION_TO_POPULATION logger = logging.getLogger("data_client") logger.setLevel(logging.INFO) class DataCache: def __init__(self): self.cache: Dict[str, Tuple[dt.datetime, pd.DataFrame]] = {} self.expiry_time = dt.timedelta(hours=6) def will_download(self, dataset_name: str): dataset_dt, dataset = self.cache.get(dataset_name, (None, None)) current_dt = dt.datetime.now() return ( dataset is None or dataset_dt is None or current_dt - dataset_dt > self.expiry_time ) def get_with_timestamp(self, dataset_name: str) -> Tuple[dt.datetime, pd.DataFrame]: if dataset_name.endswith("_per_k"): base_dataset_name = dataset_name.replace("_per_k", "") base_dataset_dt, base_dataset = self.get_with_timestamp(base_dataset_name) per_k_dataset = base_dataset.apply( lambda col: col * 1_000.0 / REGION_TO_POPULATION[col.name] ) return (base_dataset_dt, per_k_dataset) if dataset_name == "casos_nuevos_per_test": dt1, df_casos_nuevos_cumulativo_t = self.get_with_timestamp( "casos_nuevos_cumulativo_t" ) dt2, df_pcr_t = self.get_with_timestamp("pcr_t") ans = (df_casos_nuevos_cumulativo_t / df_pcr_t).loc["2020-04-09":, :] # type: ignore return (min(dt1, dt2), ans) dataset_dt, dataset = self.cache.get(dataset_name, (None, None)) current_dt = dt.datetime.now() if ( dataset is None or dataset_dt is None or current_dt - dataset_dt > self.expiry_time ): logging.warn(f"Cache miss for {dataset_name}: {dataset_dt}") dataset = self._download(dataset_name) self.cache[dataset_name] = (current_dt, dataset) return self.cache[dataset_name] def get(self, dataset_name: str): return self.get_with_timestamp(dataset_name)[1] def __getitem__(self, dataset_name: str): return self.get(dataset_name) def _download(self, dataset_name: str): name_to_func = { "p1_casos_acumulados_comuna": download_p1_casos_acumulados_comuna, "casos_totales_cumulativo_t": download_casos_totales_cumulativo_t, "fallecidos_cumulativo_t": download_fallecidos_cumulativo_t, "fallecidos_etario_t": download_fallecidos_etario_t, "uci_t": download_uci_t, "casos_nuevos_cumulativo_t": download_casos_nuevos_cumulativo_t, "numero_ventiladores_t": download_numero_ventiladores_t, "pcr_t": download_pcr_t, } func = name_to_func[dataset_name] return func() def download_p1_casos_acumulados_comuna(): ans = pd.read_csv(URLS["p1_casos_acumulados_comuna"], index_col="Region") ans.columns = ans.loc["Comuna"] ans = ans.iloc[4:-1] ans = ans.astype(float) return ans def download_casos_totales_cumulativo_t(): ans = pd.read_csv( URLS["casos_totales_cumulativo_t"], index_col="Region", parse_dates=True ) return ans def download_fallecidos_cumulativo_t(): ans = pd.read_csv( URLS["fallecidos_cumulativo_t"], index_col="Region", parse_dates=True ) return ans def download_fallecidos_etario_t(): ans = pd.read_csv(URLS["fallecidos_etario_t"], index_col="Grupo de edad") return ans def download_uci_t(): ans = pd.read_csv(URLS["uci_t"], index_col="Region") ans = ans.loc["2020-04-01":, :] # type: ignore ans.index = pd.to_datetime(ans.index) ans["Total"] = ans.sum(axis=1) return ans def download_casos_nuevos_cumulativo_t(): ans = pd.read_csv( URLS["casos_nuevos_cumulativo_t"], index_col="Region", parse_dates=True ) return ans def download_numero_ventiladores_t(): ans = pd.read_csv( URLS["numero_ventiladores_t"], index_col="Ventiladores", parse_dates=True ) ans = ans.drop(columns=["disponibles"]) return ans def download_pcr_t(): ans = pd.read_csv(URLS["pcr_t"], index_col="Region", na_values="-") ans = ans.loc["2020-04-09":, :] # type: ignore ans.index =
pd.to_datetime(ans.index)
pandas.to_datetime
import pandas as pd import pytest from rdtools.normalization import normalize_with_expected_power @pytest.fixture() def times_15(): return pd.date_range(start='20200101 12:00', end='20200101 13:00', freq='15T') @pytest.fixture() def times_30(): return
pd.date_range(start='20200101 12:00', end='20200101 13:00', freq='30T')
pandas.date_range
"""title https://adventofcode.com/2021/day/19 """ import numpy as np import pandas as pd import itertools import re SMALL_INPUT = open('small_input.txt').read() ORIENTATIONS = """ x, y, z x, z,-y x,-y,-z x,-z, y y,-x, z y, z, x y, x,-z y,-z,-x z, y,-x z,-x,-y z,-y, x z, x, y -x, y,-z -x, z, y -x,-y, z -x,-z,-y -y,-x,-z -y, z,-x -y, x, z -y,-z, x -z, y, x -z,-x, y -z,-y,-x -z, x,-y """ ORIENTATIONS = re.findall(r'(.)(.),(.)(.),(.)(.)', ORIENTATIONS) def parse(data): result = {} scanners = data.strip().split('\n\n') for i, s in enumerate(scanners): coords = [] for row in re.findall(r'(-?\d+),(-?\d+),(-?\d+)', s): coords.append(list(map(int, row))) coords.sort() a = np.array(coords) result[i] = a return result def get_axis(a, sign, axis): axis_index = 'xyz'.find(axis) sign = -1 if sign == '-' else 1 return sign * a[:, axis_index] def get_orientations(scanner): for xsig, xax, ysig, yax, zsig, zax in ORIENTATIONS: b = np.zeros(scanner.shape, scanner.dtype) b[:, 0] = get_axis(scanner, xsig, xax) b[:, 1] = get_axis(scanner, ysig, yax) b[:, 2] = get_axis(scanner, zsig, zax) yield b def match(s1, s2): for origin1 in s1[-10:]: # one of these has to match because they are sorted for origin2 in s2: translation = origin2 - origin1 s2_trans = s2 - translation merged = np.vstack([s1, s2_trans]) uni = np.unique(merged, axis=0) overlap = merged.shape[0] - uni.shape[0] if overlap >= 12: s2_trans = pd.DataFrame(s2_trans).sort_values(by=0).values return translation, s2_trans return None, None def match_pair(s1, s2): for s2 in get_orientations(s2): r, s = match(s1, s2) if r is not None: return r, s return None, None def solve(data): scanners = parse(data) aligned = [0] vectors = [(0, 0, 0)] checked = set() while len(aligned) < len(scanners): print(f'{len(aligned)} / {len(scanners)} scanners matched') merge_found = False for s1, s2 in itertools.product(aligned, scanners): if (s1, s2) in checked or s2 in aligned: continue checked.add((s1, s2)) print(f'comparing {s1} vs {s2}') vec, s2_trans = match_pair(scanners[s1], scanners[s2]) if vec is not None: aligned.append(s2) vectors.append(vec) scanners[s2] = s2_trans print('match found!\n') merge_found = True break if not merge_found: raise Exception("something went wrong") df = pd.DataFrame(scanners[0]) a = np.vstack(list(scanners.values())) a = np.unique(a, axis=0) df = pd.DataFrame(a) df.sort_values(by=0, ascending=True).to_csv('out.csv', index=False) v = pd.DataFrame(vectors) v.to_csv('vectors.csv', index=False) return df.shape[0] def solve2(fn): df =
pd.read_csv(fn)
pandas.read_csv
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 =
Period.now('q')
pandas.tseries.period.Period.now
""" I/O functions of the aecg package: tools for annotated ECG HL7 XML files This module implements helper functions to parse and read annotated electrocardiogram (ECG) stored in XML files following HL7 specification. See authors, license and disclaimer at the top level directory of this project. """ # Imports ===================================================================== from typing import Dict, Tuple from lxml import etree from aecg import validate_xpath, new_validation_row, VALICOLS, \ TIME_CODES, SEQUENCE_CODES, \ Aecg, AecgLead, AecgAnnotationSet import copy import logging import pandas as pd import re import zipfile # Python logging ============================================================== logger = logging.getLogger(__name__) def parse_annotations(xml_filename: str, zip_filename: str, aecg_doc: etree._ElementTree, aecgannset: AecgAnnotationSet, path_prefix: str, annsset_xmlnode_path: str, valgroup: str = "RHYTHM", log_validation: bool = False) -> Tuple[ AecgAnnotationSet, pd.DataFrame]: """Parses `aecg_doc` XML document and extracts annotations Args: xml_filename (str): Filename of the aECG XML file. zip_filename (str): Filename of zip file containint the aECG XML file. If '', then xml file is not stored in a zip file. aecg_doc (etree._ElementTree): XML document of the aECG XML file. aecgannset (AecgAnnotationSet): Annotation set to which append found annotations. path_prefix (str): Prefix of xml path from which start searching for annotations. annsset_xmlnode_path (str): Path to xml node of the annotation set containing the annotations. valgroup (str, optional): Indicates whether to search annotations in rhythm or derived waveform. Defaults to "RHYTHM". log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Tuple[AecgAnnotationSet, pd.DataFrame]: Annotation set updated with found annotations and dataframe with results of validation. """ anngrpid = 0 # Annotations stored within a beat beatnodes = aecg_doc.xpath(( path_prefix + "/component/annotation/code[@code=\'MDC_ECG_BEAT\']").replace( '/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) beatnum = 0 valpd = pd.DataFrame() if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {len(beatnodes)} annotated beats found') for beatnode in beatnodes: for rel_path in ["../component/annotation/" "code[contains(@code, \"MDC_ECG_\")]"]: annsnodes = beatnode.xpath(rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotation code valrow2 = validate_xpath( annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame( [valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] # Annotations type valrow2 = validate_xpath( annsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path + \ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) subannsnodes = annsnode.xpath( rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] else: subannsnodes += [annsnode] # Exclude annotations reporting interval values only subannsnodes = [ sa for sa in subannsnodes if not sa.get("code").startswith("MDC_ECG_TIME_PD_")] for subannsnode in subannsnodes: # Annotations type valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI rel_path3 = "../support/supportingROI/component/"\ "boundary/value" for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/"\ "boundary/code" roinodes = subannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath( roinode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: # Annotations type valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path +\ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/" \ "boundary/code" roinodes = annsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, ".", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) anngrpid = anngrpid + 1 beatnum = beatnum + 1 if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {beatnum} annotated beats and {anngrpid} ' f'annotations groups found') anngrpid_from_beats = anngrpid # Annotations stored without an associated beat for codetype_path in ["/component/annotation/code[" "(contains(@code, \"MDC_ECG_\") and" " not (@code=\'MDC_ECG_BEAT\'))]"]: annsnodes = aecg_doc.xpath( (path_prefix + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotations code valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] subannsnodes = annsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] for subannsnode in subannsnodes: subsubannsnodes = subannsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) tmpnodes = [subannsnode] if len(subsubannsnodes) > 0: tmpnodes = tmpnodes + subsubannsnodes for subsubannsnode in tmpnodes: ann["wavecomponent"] = "" ann["wavecomponent2"] = "" ann["timecode"] = "" ann["value"] = "" ann["value_unit"] = "" ann["low"] = "" ann["low_unit"] = "" ann["high"] = "" ann["high_unit"] = "" roi_base = "../support/supportingROI/component/boundary" rel_path3 = roi_base + "/value" valrow2 = validate_xpath( subsubannsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/code" if valrow2["VALIOUT"] == "PASSED": if not ann["codetype"].endswith("WAVE"): ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations type valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] # if ann["wavecomponent"] == "": # ann["wavecomponent"] = valrow2["VALUE"] # else: # ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value as attribute valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] else: roi_base = "../component/annotation/support/"\ "supportingROI/component/boundary" # Annotations type valrow2 = validate_xpath(subsubannsnode, "../component/annotation/" "value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + \ "../component/annotation/value" if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotation values if n != "": rp = roi_base + "/value/" + n else: rp = roi_base + "/value" valrow3 = validate_xpath(subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT" "_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used by # value and supporting ROI for rel_path4 in ["../support/supportingROI/component/" "boundary", "../component/annotation/support/" "supportingROI/component/boundary"]: roinodes = subsubannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, "./code", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) anngrpid = anngrpid + 1 logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {anngrpid-anngrpid_from_beats} annotations groups' f' without an associated beat found') return aecgannset, valpd def parse_generalinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts general information This function parses the `aecg_doc` xml document searching for general information that includes in the returned `Aecg`: unique identifier (UUID), ECG date and time of collection (EGDTC), and device information. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # UUID # ======================================= valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "root", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID found: {valrow["VALUE"]}') aecg.UUID = valrow["VALUE"] else: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'UUID not found') valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "extension", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension found: {valrow["VALUE"]}') aecg.UUID += valrow["VALUE"] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID updated to: {aecg.UUID}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension not found') # ======================================= # EGDTC # ======================================= valpd = pd.DataFrame() egdtc_found = False for n in ["low", "center", "high"]: valrow = validate_xpath(aecg_doc, "./*[local-name() = \"effectiveTime\"]/" "*[local-name() = \"" + n + "\"]", "", "value", new_validation_row(aecg.filename, "GENERAL", "EGDTC_" + n), "WARNING") if valrow["VALIOUT"] == "PASSED": egdtc_found = True logger.info( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC {n} found: {valrow["VALUE"]}') aecg.EGDTC[n] = valrow["VALUE"] if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if not egdtc_found: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # DEVICE # ======================================= # DEVICE = {"manufacturer": "", "model": "", "software": ""} valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturerOrganization/name", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_manufacturer"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer found: {tmp}') aecg.DEVICE["manufacturer"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "manufacturerModelName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_model"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model found: {tmp}') aecg.DEVICE["model"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "softwareName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_software"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software found: {tmp}') aecg.DEVICE["software"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_subjectinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for subject information that includes in the returned `Aecg`: subject unique identifier (USUBJID), gender, birthtime, and race. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # USUBJID # ======================================= valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "SUBJECTINFO", "USUBJID_" + n)) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} found: {valrow["VALUE"]}') aecg.USUBJID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if (aecg.USUBJID["root"] == "") and (aecg.USUBJID["extension"] == ""): logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID cannot be established.') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # SEX / GENDER # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/" "administrativeGenderCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "SEX"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX found: {valrow["VALUE"]}') aecg.SEX = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # BIRTHTIME # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/birthTime", "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "SUBJECTINFO", "BIRTHTIME"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME found.') aecg.BIRTHTIME = valrow["VALUE"] # age_in_years = aecg.subject_age_in_years() else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # RACE # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/raceCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "RACE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE found: {valrow["VALUE"]}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE not found') aecg.RACE = valrow["VALUE"] if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_trtainfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for treatment information that includes in the returned `Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/definition/" "treatmentGroupAssignment/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "TRTA"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information found: {valrow["VALUE"]}') aecg.TRTA = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_studyinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts study information This function parses the `aecg_doc` xml document searching for study information that includes in the returned `Aecg`: study unique identifier (STUDYID), and study title. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/componentOf/" "clinicalTrial/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "STUDYID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'STUDYID {n} found: {valrow["VALUE"]}') aecg.STUDYID[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'STUDYID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/componentOf/" "clinicalTrial/title", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "STUDYINFO", "STUDYTITLE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'STUDYTITLE found: {tmp}') aecg.STUDYTITLE = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'STUDYTITLE not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_timepoints(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts timepoints information This function parses the `aecg_doc` xml document searching for timepoints information that includes in the returned `Aecg`: absolute timepoint or study event information (TPT), relative timepoint or study event relative to a reference event (RTPT), and protocol timepoint information (PTPT). Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # TPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/code", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "TPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} found: {valrow["VALUE"]}') aecg.TPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/reasonCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "TPT_reasonCode"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT reasonCode found: {valrow["VALUE"]}') aecg.TPT["reasonCode"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT reasonCode not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/" "effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "STUDYINFO", "TPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} found: {valrow["VALUE"]}') aecg.TPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # RTPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT {n} found: {valrow["VALUE"]}') aecg.RTPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "pauseQuantity", "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_pauseQuantity"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity value found: {valrow["VALUE"]}') aecg.RTPT["pauseQuantity"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity value not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "pauseQuantity", "urn:hl7-org:v3", "unit", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_pauseQuantity_unit"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity unit found: {valrow["VALUE"]}') aecg.RTPT["pauseQuantity_unit"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity unit not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # PTPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/" "componentOf/protocolTimepointEvent/code", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "PTPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT {n} found: {valrow["VALUE"]}') aecg.PTPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "protocolTimepointEvent/component/" "referenceEvent/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "PTPT_referenceEvent"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent code found: {valrow["VALUE"]}') aecg.PTPT["referenceEvent"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent code not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "protocolTimepointEvent/component/" "referenceEvent/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "STUDYINFO", "PTPT_referenceEvent_" "displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent displayName found: ' f'{valrow["VALUE"]}') aecg.PTPT["referenceEvent_displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent displayName not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_rhythm_waveform_info(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts rhythm waveform information This function parses the `aecg_doc` xml document searching for rhythm waveform information that includes in the returned `Aecg`: waveform identifier, code, display name, and date and time of collection. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./component/series/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "RHYTHM", "ID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} found: {valrow["VALUE"]}') aecg.RHYTHMID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "RHYTHM", "CODE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM code found: {valrow["VALUE"]}') aecg.RHYTHMCODE["code"] = valrow["VALUE"] if aecg.RHYTHMCODE["code"] != "RHYTHM": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM unexpected code found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected value found" else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "RHYTHM", "CODE_displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM displayName found: {valrow["VALUE"]}') aecg.RHYTHMCODE["displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM displayName not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./component/series/effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "RHYTHM", "EGDTC_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHMEGDTC {n} found: {valrow["VALUE"]}') aecg.RHYTHMEGDTC[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHMEGDTC {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_derived_waveform_info(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts derived waveform information This function parses the `aecg_doc` xml document searching for derived waveform information that includes in the returned `Aecg`: waveform identifier, code, display name, and date and time of collection. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "DERIVED", "ID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} found: {valrow["VALUE"]}') aecg.DERIVEDID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "DERIVED", "CODE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED code found: {valrow["VALUE"]}') aecg.DERIVEDCODE["code"] = valrow["VALUE"] if aecg.DERIVEDCODE["code"] != "REPRESENTATIVE_BEAT": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED unexpected code found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected value found" else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "DERIVED", "CODE_displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED displayName found: {valrow["VALUE"]}') aecg.DERIVEDCODE["displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED displayName not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "DERIVED", "EGDTC_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVEDEGDTC {n} found: {valrow["VALUE"]}') aecg.DERIVEDEGDTC[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVEDEGDTC {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_rhythm_waveform_timeseries(aecg_doc: etree._ElementTree, aecg: Aecg, include_digits: bool = False, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts rhythm's timeseries This function parses the `aecg_doc` xml document searching for rhythm waveform timeseries (sequences) information that includes in the returned :any:`Aecg`. Each found sequence is stored as an :any:`AecgLead` in the :any:`Aecg.RHYTHMLEADS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update include_digits (bool, optional): Indicates whether to include the digits information in the returned `Aecg`. log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ path_prefix = './component/series/component/sequenceSet/' \ 'component/sequence' seqnodes = aecg_doc.xpath((path_prefix + '/code').replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(seqnodes) > 0: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet(s) found: ' f'{len(seqnodes)} sequenceSet nodes') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet not found') for xmlnode in seqnodes: xmlnode_path = aecg_doc.getpath(xmlnode) valrow = validate_xpath(aecg_doc, xmlnode_path, "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "RHYTHM", "SEQUENCE_CODE"), failcat="WARNING") valpd = pd.DataFrame() if valrow["VALIOUT"] == "PASSED": if not valrow["VALUE"] in SEQUENCE_CODES: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM unexpected sequenceSet code ' f'found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected sequence code found" if valrow["VALUE"] in TIME_CODES: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code found: {valrow["VALUE"]}') aecg.RHYTHMTIME["code"] = valrow["VALUE"] # Retrieve time head info from value node rel_path = "../value/head" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "value", new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_TIME_HEAD"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_HEAD found: {valrow2["VALUE"]}') aecg.RHYTHMTIME["head"] = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_HEAD not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrieve time increment info from value node rel_path = "../value/increment" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_TIME_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_{n} found: ' f'{valrow2["VALUE"]}') if n == "value": aecg.RHYTHMTIME["increment"] = float( valrow2["VALUE"]) else: aecg.RHYTHMTIME[n] = valrow2["VALUE"] if log_validation: valpd = \ valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) else: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code found: ' f'{valrow["VALUE"]}') logger.info( f'{aecg.filename},{aecg.zipContainer},' f'LEADNAME from RHYTHM sequenceSet code: ' f'{valrow["VALUE"]}') # Assume is a lead aecglead = AecgLead() aecglead.leadname = valrow["VALUE"] # Inherit last parsed RHYTHMTIME aecglead.LEADTIME = copy.deepcopy(aecg.RHYTHMTIME) # Retrive lead origin info rel_path = "../value/origin" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_ORIGIN_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_ORIGIN_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.origin = float(valrow2["VALUE"]) except Exception as ex: valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "SEQUENCE_LEAD_"\ "ORIGIN is not a "\ "number" else: aecglead.origin_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_ORIGIN_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrive lead scale info rel_path = "../value/scale" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_SCALE_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.scale = float(valrow2["VALUE"]) except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE ' f'value is not a valid number: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "SEQUENCE_LEAD_"\ "SCALE is not a "\ "number" else: aecglead.scale_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Include digits if requested if include_digits: rel_path = "../value/digits" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "", new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_DIGITS"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": try: # Convert string of digits to list of integers # remove new lines sdigits = valrow2["VALUE"].replace("\n", " ") # remove carriage retruns sdigits = sdigits.replace("\r", " ") # remove tabs sdigits = sdigits.replace("\t", " ") # collapse 2 or more spaces into 1 space char # and remove leading/trailing white spaces sdigits = re.sub("\\s+", " ", sdigits).strip() # Convert string into list of integers aecglead.digits = [int(s) for s in sdigits.split(' ')] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS added to lead' f' {aecglead.leadname} (n: ' f'{len(aecglead.digits)})') except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'Error parsing DIGITS from ' f'string to list of integers: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "Error parsing SEQUENCE_"\ "LEAD_DIGITS from string"\ " to list of integers" else: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS not found for lead {aecglead.leadname}') if log_validation: valpd = valpd.append(
pd.DataFrame([valrow2], columns=VALICOLS)
pandas.DataFrame
# import sys import os import os.path as path import shutil import fnmatch as fm import numpy as np import pandas as pd from scipy.io import loadmat from PyQt4.QtCore import QThread from PyQt4.QtCore import QObject, pyqtSignal class DataProcessor(QObject): print_out = pyqtSignal(str) prog_out = pyqtSignal(int) fin_out = pyqtSignal() prog = 0 def __init__(self): QObject.__init__(self) self.__headDir = None self.__testDir = None self.interrupt = False def setPath(self, hd=None, td=None): self.__headDir = hd self.__testDir = td def printOut(self, strLine): self.print_out.emit(strLine) def progUpt(self, value): self.prog += value self.prog_out.emit(self.prog) def verifyExistDir(self, inDir): # Return the absolute path of inDir absPath = None if path.isdir(inDir): # Given path exists if path.isabs(inDir): absPath = inDir self.printOut('Test data directory %s already exists.' % absPath) else: absPath = path.abspath(inDir) self.printOut('Test data directory %s already exists.' % inDir) else: # Given path do not exist self.printOut('Directory %s do not exist.' % inDir) self.printOut('Please specify a valid directory for the test data.\n') return absPath def scaleTime_csvDat(self, f_dir): self.printOut('\nScaling the Time<ms> to Time<s> of the SMART Terminal Recorded Data.') # Read the file with open(f_dir, 'rb') as f: temp = f.readlines() with open(f_dir, 'wb') as f: for row in temp: if temp[0] == row: f.write(row) else: char = str(chr(row[0])) if char.isdigit() and str(row).find(':') == 4: f.write(row) # Open the file with open(f_dir, 'rb') as f: dat_df = pd.read_csv(f, index_col=False, encoding='iso-8859-1', skipinitialspace=True) # Drop 'System Time' column # dat_df = dat_df.drop('System Time', 1) n_rows = dat_df.shape[0] n_cols = dat_df.shape[1] self.printOut('There are %d rows and %d columns of data in %s.' % (n_rows, n_cols, path.abspath(f_dir))) # Convert milliseconds to seconds dat_df['Time<ms>'] /= 1000.0000 # Change column label dat_df = dat_df.rename(columns={'Time<ms>': 'Time<s>'}) # Write to a file sf_dir = str(f_dir[:-4]) + '_SCALED.csv' dat_df.to_csv(sf_dir, index=False) self.printOut('Finished writing scaled data into %s.' % path.abspath(sf_dir)) def dat2csv(self, testName, datDir, csvDir): self.printOut('\nProcessing Smart Terminal DAT file conversion to CSV file...') datFiles = [f for f in os.listdir(datDir) if f.lower().endswith('.dat')] # Determine the quality of DAT files process n_datFiles = len(datFiles) if n_datFiles == 0: self.printOut('\nThere are no DAT files detected.') self.printOut('Please make sure you have the copy of all the files to be processed.') self.printOut('Conversion aborted!') else: # Prints out the quantity of DAT files to be processed. self.printOut('\nNumber of DAT files to process = %d' % n_datFiles) if n_datFiles > 1: self.printOut('Too many DAT files!') self.printOut('Conversion aborted!') else: # Copy DAT file to CSV folder self.printOut('Converting DAT files...') self.printOut(csvDir) for n in range(0, n_datFiles): shutil.copy((datDir + '\\' + str(datFiles[n])), csvDir) # Remove whitespaces from the file names # nf = csvDir + '\\' + str(datFiles[n]) # os.rename(nf, nf.replace(' ', '_')) # Renaming the copied DAT files - directly converts CSV format dat_csv = [f for f in os.listdir(csvDir) if f.lower().endswith('.dat')] for n in dat_csv: src = csvDir + '\\' + n # dst = csvDir + '\\' + n[:-4] + '.csv' dst = csvDir + '\\' + testName + '__ST_RecordedData' + '.csv' if path.exists(dst): os.remove(dst) self.printOut("Removed old files.") # Copy the converted file to the CSV output folder os.rename(src, dst) self.printOut('Conversion process complete.') # Scale Smart Terminal CSV file Time<ms> to Time<s> self.scaleTime_csvDat(dst) def mat2csv(self, testName, headDir, matDir, csvDir): # Header Files directory headDir += '\\' # Assign header file names headerfile_names = ['APS2600E_header_1.csv', 'APS2600E_header_2.csv', 'APS2600E_header_3.csv', 'APS2600E_header_4.csv'] # DO NOT CHANGE UNLESS NECESSARY # Number of samples per channel in each of the split files max_samples_per_channel = 10000000000 self.printOut('\nProcessing MATLAB files conversion to CSV files...\n') # Check if header files exists before proceeding headers_exist = 1 for h in range(0, len(headerfile_names)): # Get each header file paths headerfile_path = path.abspath(headDir + headerfile_names[h]) if not os.path.isfile(headerfile_path): headers_exist = 0 self.printOut('%s is missing!' % headerfile_names[h]) if headers_exist: # Find MATLAB data folder n_mat_files = 0 if not path.exists(matDir): self.printOut('MATLAB data folder %s is missing!' % matDir) else: # Find MATLAB files mat_files = [f for f in os.listdir(matDir) if f.endswith('.mat')] # Determine the quantity of MATLAB files to process n_mat_files = len(mat_files) if n_mat_files == 0: self.printOut('There are no MAT files detected.') self.printOut('Please make sure you have the copy of all the mat files to be processed.') self.printOut('Conversion aborted!') else: # Prints out the quantity of mat files to be processed. self.printOut('Number of MAT files to process = %d' % n_mat_files) # Generate MATLAB filename variable for mat_ix in range(0, n_mat_files): filename_mat = matDir + '\\' + mat_files[mat_ix] # Load file to be split self.printOut('\nLoading %s' % filename_mat) mat = loadmat(filename_mat) # Python 3 change mat_keys = list(mat.keys()) # Assign 'opvar' data to mat_a mat_a = mat[mat_keys[0]] # Transpose data mat_a = np.transpose(mat_a) # Obtain number of rows of data n_rows = mat_a.shape[1] mat_file_dummy = mat_files[mat_ix] # Load headers filename_number = int(mat_file_dummy[14]) - 1 headerfile_path = path.abspath(headDir + headerfile_names[filename_number]) header_names = np.loadtxt(headerfile_path, delimiter=',', dtype=str) # Obtain number of rows of data n_rows_header = header_names.shape[0] self.printOut('Number of rows in header file = %d' % n_rows_header) self.printOut('Number of rows in MAT file = %d' % n_rows) # Check if the number of rows in header matches that of mat file if n_rows == (n_rows_header + 1): # Generate header string header_string = 'Sim Time' for x in range(1, n_rows): signal_name = str(header_names[x - 1, 1]).strip('b\'') signal_name = str(signal_name).strip('\'') header_string = header_string + ',' + signal_name # Acquire number of samples per channel # Obtain number of rows of data n_samples_per_channel = mat_a.shape[0] self.printOut('Number of samples per channel = %d' % n_samples_per_channel) # Check whether splitting is required if n_samples_per_channel > max_samples_per_channel: self.printOut( 'Number of samples per channel (' + str(n_samples_per_channel) + ') exceeds ' + str( max_samples_per_channel) + '.') self.printOut('Splitting required.') # Calculate number of files needed to be produced after splitting n_files = int(n_samples_per_channel / max_samples_per_channel) self.printOut(filename_mat + ' to be split into ' + str(n_files) + ' files.') # Splitting Algorithm for ix in range(0, n_files): row_start = ix * max_samples_per_channel if ix == n_files: row_end = n_samples_per_channel else: row_end = (ix + 1) * max_samples_per_channel - 1 temp_mat = mat_a[row_start:row_end, 0:65] self.printOut('Writing file ' + str(ix + 1) + ' out of ' + str(n_files) + ': ') # Writing to CSV # Generate CSV filename filename_csv = filename_mat.split('/')[-1] filename_csv = csvDir + '\\' + testName + '__' + filename_csv[:-4] + '.csv' with open(filename_csv, 'wb') as f: # Write header string f.write(header_string) # Skip a line f.write('\n') # Write array data np.savetxt(f, mat_a, fmt='%.4f', delimiter=',') self.printOut(filename_csv + ' has been written.') temp_mat = None self.printOut('Splitting and MAT to CSV conversion of ' + filename_mat + ' complete.') # Splitting not required else: self.printOut( 'Number of samples per channel (' + str(n_samples_per_channel) + ') is less than ' + str(max_samples_per_channel) + '. No splitting required.') self.printOut('Converting ' + filename_mat) # Writing to CSV # Generate CSV filename filename_csv = filename_mat.split('\\')[-1] filename_csv = csvDir + '\\' + testName + '__' + filename_csv[:-4] + '.csv' with open(filename_csv, 'wb') as f: # Write header string f.write(bytes(header_string, 'UTF-8')) # Skip a line f.write(bytes('\n', 'UTF-8')) # Write array data np.savetxt(f, mat_a, fmt='%.4f', delimiter=',') self.printOut(filename_csv + ' has been written.') # mat_a = None else: self.printOut('Number of rows of data does not match number of entries in ' + headerfile_names[filename_number] + '. Conversion aborted. Next file.') # Emit progress bar update self.progUpt(5) self.printOut('\nConversion process completed.') else: self.printOut('Header file(s) cannot be found. Please specify the correct path. Conversion aborted.') def alignData(self, csvDir): os.chdir(csvDir) self.printOut('\nAligning SMART Terminal Recorded Data...\n') csvList = os.listdir(csvDir) # Search the SCALED data file datScaled_f = [f for f in csvList if fm.fnmatch(f, '*_SCALED.csv')] # Search the CSV-converted MAT data file matCsv_f = [f for f in csvList if fm.fnmatch(f, '*_APS2600E_data_*_*.csv')] # Read the CSV-converted scaled DAT file with open(datScaled_f[0], 'rb') as f: scaledDat_df = pd.read_csv(f, index_col=False, encoding='iso-8859-1', skipinitialspace=True) # Read the CSV-converted MAT files with open(matCsv_f[0], 'r') as f: matData_df = pd.read_csv(f, index_col=False, encoding='iso-8859-1', skipinitialspace=True) self.printOut('STOP_CMD is at Column %d of %s.' % (matData_df.columns.get_loc('STOP_CMD'), matCsv_f[0])) self.printOut('Sim Time is at Column %d of %s.\n' % (matData_df.columns.get_loc('Sim Time'), matCsv_f[0])) # Determine the offset of 'STOP_CMD' matOffset = 0 for i in range(1, matData_df.shape[0]): prev = matData_df['STOP_CMD'].loc[i - 1] curr = matData_df['STOP_CMD'].loc[i] if (0 == prev) & (1 == curr): matOffset = i break if 'a429data.stop' not in scaledDat_df.columns: if 'Stop' in scaledDat_df.columns: self.printOut('Stop variable is DETECTED instead of a429data.stop!!!') self.printOut('a429data.stop is at Column %d of %s.\n' % (scaledDat_df.columns.get_loc('Stop'), datScaled_f[0])) self.printOut('Time<sec> is at Column %d of %s.' % (scaledDat_df.columns.get_loc('Time<s>'), datScaled_f[0])) # Determine the offset of 'a429data.stop' datOffset = 0 for i in range(1, scaledDat_df.shape[0]): prev = scaledDat_df['Stop'].loc[i - 1] curr = scaledDat_df['Stop'].loc[i] if (0 == prev) & (1 == curr): datOffset = i break else: self.printOut('The SMART Terminal data variable \'a429data.stop\' was not recorded!') # return else: self.printOut('a429data.stop is at Column %d of %s.\n' % (scaledDat_df.columns.get_loc('a429data.stop'), datScaled_f[0])) self.printOut('Time<sec> is at Column %d of %s.' % (scaledDat_df.columns.get_loc('Time<s>'), datScaled_f[0])) # Determine the offset of 'a429data.stop' datOffset = 0 for i in range(1, scaledDat_df.shape[0]): prev = scaledDat_df['a429data.stop'].loc[i - 1] curr = scaledDat_df['a429data.stop'].loc[i] if (0 == prev) & (1 == curr): datOffset = i break self.printOut('DAT Offset: %d' % datOffset) self.printOut('MAT Offset: %d' % matOffset) # self.printOut('Transition[Previous] %d' % scaledDat_df['a429data.stop'].loc[datOffset - 1]) # self.printOut('Transition[Current] %d' % scaledDat_df['a429data.stop'].loc[datOffset]) # Calculate time difference # Get the 'Time<s>' value at the transition point [DAT] xDat = float(scaledDat_df['Time<s>'].loc[datOffset]) # Get the 'Sim Time' value at the transition point [MAT] xMat = float(matData_df['Sim Time'].loc[matOffset]) timeDiff = xMat - xDat self.printOut('Time Difference: %f seconds' % timeDiff) # Alignment scaledDat_df['Time<s>'] += timeDiff # Write to a file af_dir = str(datScaled_f[0])[:-10] + 'ALIGNED.csv' scaledDat_df.to_csv(af_dir, index=False) self.printOut('\nFinished writing the aligned data file: %s' % af_dir) def mergeData(self, csvDir): os.chdir(csvDir) self.printOut('\nMerging all MATLAB data into a single file...\n') csvList = os.listdir(csvDir) # Search the CSV-converted MAT data file matCsv_f = [f for f in csvList if fm.fnmatch(f, '*_APS2600E_data_*_*.csv')] # Merge files result_df = pd.DataFrame(columns=['Sim Time']) for f in matCsv_f: r_df = pd.read_csv(f, index_col=False, encoding='iso-8859-1', skipinitialspace=True) self.printOut('Merging %s...' % f) result_df = pd.merge(left=result_df, right=r_df, how='right', left_on='Sim Time', right_on='Sim Time') # Emit progress bar update self.progUpt(5) m_dir = (csvDir.split('\\')[-2]) + '__APS2600E_data_MERGED.csv' result_df.to_csv(m_dir, index=False) self.printOut('\nFinished merging all MATLAB data files!') self.printOut('%s' % m_dir) def plotMerge(self, csvDir): os.chdir(csvDir) testName = csvDir.split('\\')[-2] datCsv_f = testName + '__ST_RecordedData_ALIGNED.csv' matCsv_f = testName + '__APS2600E_data_MERGED.csv' dat_df = pd.read_csv(datCsv_f, index_col=False, encoding='iso-8859-1', skipinitialspace=True) mat_df =
pd.read_csv(matCsv_f, index_col=False, encoding='iso-8859-1', skipinitialspace=True)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Sep 9 08:04:31 2020 @author: <NAME> Functions to run the station characterization notebook on exploredata. """ import pandas as pd import matplotlib import matplotlib.pyplot as plt import math import numpy as np from netCDF4 import Dataset import textwrap import datetime as dt import os import six import requests from icoscp.station import station as station_data #for the widgets from IPython.core.display import display, HTML from ipywidgets import Dropdown, SelectMultiple, HBox, VBox, Button, Output, IntText, RadioButtons,IntProgress, GridspecLayout from IPython.display import clear_output, display # import required libraries #%pylab inline import netCDF4 as cdf #import pickle import cartopy.crs as ccrs import cartopy.feature as cfeature import warnings warnings.filterwarnings('ignore') #added - not show the figure that I am saving (different size than the one displayed #for land cover bar graph) matplotlib.pyplot.ioff() #stations that have footprints as well as year and months with footprints. Also altitude. #path to footprints pathFP='/data/stiltweb/stations/' #Earth's radius in km (for calculating distances between the station and cells) R = 6373.8 #saved distances to the 192 000 cells for all the labeled atmospheric stations #if the selected station is not found in this document, the distances are calculated approved_stations_distances = pd.read_csv('approved_stations_distances.csv') #saved degree angles from the stations to all 192 000 cells for all the labeled atmospheric stations approved_stations_degrees = pd.read_csv('approved_stations_degrees.csv') #functions from Ute #function to read and aggregate footprints for given time range def read_aggreg_footprints(station, date_range, timeselect='all'): # loop over all dates and read netcdf files # path to footprint files in new stiltweb directory structure pathFP='/data/stiltweb/stations/' # print ('date range: ',date_range) fp=[] nfp=0 first = True for date in date_range: filename=(pathFP+station+'/'+str(date.year)+'/'+str(date.month).zfill(2)+'/' +str(date.year)+'x'+str(date.month).zfill(2)+'x'+str(date.day).zfill(2)+'x'+str(date.hour).zfill(2)+'/foot') #print (filename) if os.path.isfile(filename): f_fp = cdf.Dataset(filename) if (first): fp=f_fp.variables['foot'][:,:,:] lon=f_fp.variables['lon'][:] lat=f_fp.variables['lat'][:] first = False else: fp=fp+f_fp.variables['foot'][:,:,:] f_fp.close() nfp+=1 #else: #print ('file does not exist: ',filename) if nfp > 0: fp=fp/nfp else: print ('no footprints found') #print (np.shape(fp)) #print (np.max(fp)) title = 'not used' #title = (start_date.strftime('%Y-%m-%d')+' - '+end_date.strftime('%Y-%m-%d')+'\n'+ # 'time selection: '+timeselect) return nfp, fp, lon, lat, title def get_station_class(): # Query the ICOS SPARQL endpoint for a station list # query stationId, class, lng name and country # output is an object "data" containing the results in JSON url = 'https://meta.icos-cp.eu/sparql' query = """ prefix st: <http://meta.icos-cp.eu/ontologies/stationentry/> select distinct ?stationId ?stationClass ?country ?longName from <http://meta.icos-cp.eu/resources/stationentry/> where{ ?s a st:AS . ?s st:hasShortName ?stationId . ?s st:hasStationClass ?stationClass . ?s st:hasCountry ?country . ?s st:hasLongName ?longName . filter (?stationClass = "1" || ?stationClass = "2") } ORDER BY ?stationClass ?stationId """ r = requests.get(url, params = {'format': 'json', 'query': query}) data = r.json() # convert the the result into a table # output is an array, where each row contains # information about the station cols = data['head']['vars'] datatable = [] for row in data['results']['bindings']: item = [] for c in cols: item.append(row.get(c, {}).get('value')) datatable.append(item) # print the table df_datatable = pd.DataFrame(datatable, columns=cols) #df_datatable.head(5) return df_datatable def available_STILT_dictionary(): # store availability of STILT footprints in a dictionary # get all ICOS station IDs by listing subdirectories in stiltweb # extract availability from directory structure #new: pathStations='/data/stiltweb/stations/' #pathStations='/opt/stiltdata/fsicos2/stiltweb/stations/' allStations = os.listdir(pathStations) # empty dictionary available = {} # fill dictionary with station name, years and months for each year for ist in sorted(list(set(allStations))): if os.path.exists(pathStations+'/'+ist): #print ('directory '+pathStations+'/'+ist+' exits') available[ist] = {} years = os.listdir(pathStations+'/'+ist) available[ist]['years'] = years for yy in sorted(available[ist]['years']): available[ist][yy] = {} months = os.listdir(pathStations+'/'+ist+'/'+yy) available[ist][yy]['months'] = months available[ist][yy]['nmonths'] = len(available[ist][yy]['months']) #else: # print ('directory '+pathStations+'/'+ist+' does not exit') # Get list of ICOS class 1 and class 2 stations from Carbon Portal df_datatable = get_station_class() # add information if ICOS class 1 or class 2 site for ist in sorted(available): available[ist]['stationClass'] = np.nan for istICOS in df_datatable['stationId']: ic = int(df_datatable[df_datatable['stationId']==istICOS].index.values) if istICOS in ist: available[ist]['stationClass'] = df_datatable['stationClass'][ic] # print availability #for ist in sorted(available): # print ('station:', ist) # for k in available[ist]: # print (k,':', available[ist][k]) return available def create_STILT_dictionary(): # store all STILT station information in a dictionary # get all ICOS station IDs by listing subdirectories in stiltweb # extract location from filename of link #UPDATE pathStations='/data/stiltweb/stations/' #pathStations='/opt/stiltdata/fsicos2/stiltweb/stations/' allStations = os.listdir(pathStations) # empty dictionary stations = {} # fill dictionary with ICOS station id, latitude, longitude and altitude for ist in sorted(list(set(allStations))): stations[ist] = {} # get filename of link (original stiltweb directory structure) # and extract location information if os.path.exists(pathStations+ist): loc_ident = os.readlink(pathStations+ist) clon = loc_ident[-13:-6] lon = np.float(clon[:-1]) if clon[-1:] == 'W': lon = -lon clat = loc_ident[-20:-14] lat = np.float(clat[:-1]) if clat[-1:] == 'S': lat = -lat alt = np.int(loc_ident[-5:]) stations[ist]['lat']=lat stations[ist]['lon']=lon stations[ist]['alt']=alt stations[ist]['locIdent']=os.path.split(loc_ident)[-1] # add information on station name (and new STILT station id) from stations.csv file used in stiltweb url="https://stilt.icos-cp.eu/viewer/stationinfo" df =
pd.read_csv(url)
pandas.read_csv
import pandas as pd from dateutil import parser from pm4pymdl.objects.mdl.exporter import exporter as mdl_exporter from pm4pymdl.objects.mdl.importer import importer as mdl_importer import os def execute_script(): stream1 = [{"event_id": "1", "event_activity": "A", "event_timestamp": parser.parse("1970-01-01 00:00:00"), "order": ["O1"]}, {"event_id": "2", "event_activity": "B", "event_timestamp": parser.parse("1970-01-01 00:00:00"), "order": ["O1"], "item": ["I1, I2"]}] df =
pd.DataFrame(stream1)
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm class TestDataFrameIsIn: def test_isin(self): # GH#4211 df = DataFrame( { "vals": [1, 2, 3, 4], "ids": ["a", "b", "f", "n"], "ids2": ["a", "n", "c", "n"], }, index=["foo", "bar", "baz", "qux"], ) other = ["a", "b", "c"] result = df.isin(other) expected = DataFrame([df.loc[s].isin(other) for s in df.index]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])]) def test_isin_empty(self, empty): # GH#16991 df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]}) expected = DataFrame(False, df.index, df.columns) result = df.isin(empty) tm.assert_frame_equal(result, expected) def test_isin_dict(self): df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]}) d = {"A": ["a"]} expected = DataFrame(False, df.index, df.columns) expected.loc[0, "A"] = True result = df.isin(d) tm.assert_frame_equal(result, expected) # non unique columns df = DataFrame({"A": ["a", "b", "c"], "B": ["a", "e", "f"]}) df.columns = ["A", "A"] expected = DataFrame(False, df.index, df.columns) expected.loc[0, "A"] = True result = df.isin(d) tm.assert_frame_equal(result, expected) def test_isin_with_string_scalar(self): # GH#4763 df = DataFrame( { "vals": [1, 2, 3, 4], "ids": ["a", "b", "f", "n"], "ids2": ["a", "n", "c", "n"], }, index=["foo", "bar", "baz", "qux"], ) with pytest.raises(TypeError): df.isin("a") with pytest.raises(TypeError): df.isin("aaa") def test_isin_df(self): df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]}) df2 = DataFrame({"A": [0, 2, 12, 4], "B": [2, np.nan, 4, 5]}) expected = DataFrame(False, df1.index, df1.columns) result = df1.isin(df2) expected["A"].loc[[1, 3]] = True expected["B"].loc[[0, 2]] = True tm.assert_frame_equal(result, expected) # partial overlapping columns df2.columns = ["A", "C"] result = df1.isin(df2) expected["B"] = False tm.assert_frame_equal(result, expected) def test_isin_tuples(self): # GH#16394 df = pd.DataFrame({"A": [1, 2, 3], "B": ["a", "b", "f"]}) df["C"] = list(zip(df["A"], df["B"])) result = df["C"].isin([(1, "a")]) tm.assert_series_equal(result, Series([True, False, False], name="C")) def test_isin_df_dupe_values(self): df1 = DataFrame({"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]}) # just cols duped df2 = DataFrame([[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=["B", "B"]) with pytest.raises(ValueError): df1.isin(df2) # just index duped df2 = DataFrame( [[0, 2], [12, 4], [2, np.nan], [4, 5]], columns=["A", "B"], index=[0, 0, 1, 1], ) with pytest.raises(ValueError): df1.isin(df2) # cols and index: df2.columns = ["B", "B"] with pytest.raises(ValueError): df1.isin(df2) def test_isin_dupe_self(self): other = DataFrame({"A": [1, 0, 1, 0], "B": [1, 1, 0, 0]}) df = DataFrame([[1, 1], [1, 0], [0, 0]], columns=["A", "A"]) result = df.isin(other) expected = DataFrame(False, index=df.index, columns=df.columns) expected.loc[0] = True expected.iloc[1, 1] = True tm.assert_frame_equal(result, expected) def test_isin_against_series(self): df = pd.DataFrame( {"A": [1, 2, 3, 4], "B": [2, np.nan, 4, 4]}, index=["a", "b", "c", "d"] ) s = pd.Series([1, 3, 11, 4], index=["a", "b", "c", "d"]) expected = DataFrame(False, index=df.index, columns=df.columns) expected["A"].loc["a"] = True expected.loc["d"] = True result = df.isin(s) tm.assert_frame_equal(result, expected) def test_isin_multiIndex(self): idx = MultiIndex.from_tuples( [ (0, "a", "foo"), (0, "a", "bar"), (0, "b", "bar"), (0, "b", "baz"), (2, "a", "foo"), (2, "a", "bar"), (2, "c", "bar"), (2, "c", "baz"), (1, "b", "foo"), (1, "b", "bar"), (1, "c", "bar"), (1, "c", "baz"), ] ) df1 = DataFrame({"A": np.ones(12), "B": np.zeros(12)}, index=idx) df2 = DataFrame( { "A": [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1], "B": [1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1], } ) # against regular index expected = DataFrame(False, index=df1.index, columns=df1.columns) result = df1.isin(df2) tm.assert_frame_equal(result, expected) df2.index = idx expected = df2.values.astype(np.bool) expected[:, 1] = ~expected[:, 1] expected = DataFrame(expected, columns=["A", "B"], index=idx) result = df1.isin(df2) tm.assert_frame_equal(result, expected) def test_isin_empty_datetimelike(self): # GH#15473 df1_ts = DataFrame({"date": pd.to_datetime(["2014-01-01", "2014-01-02"])}) df1_td = DataFrame({"date": [
pd.Timedelta(1, "s")
pandas.Timedelta
import re import os import string import ipdb import pickle import matplotlib matplotlib.use('Agg') from matplotlib import rcParams import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.model_selection import TimeSeriesSplit from sklearn.metrics import mean_squared_error from sklearn.metrics import accuracy_score from sklearn.preprocessing import normalize from sklearn.preprocessing import RobustScaler from sklearn import linear_model from wordcloud import WordCloud from nltk import pos_tag, word_tokenize import gensim.downloader as api MIN_DF = 10 MAX_DF = 100 WORD_CLOUD_NUMBER = 50 BOW = "bow" TFIDF = "tfidf" WORD2VEC = "word2vec" SKIPTHOUGHT = "skipThought" def select_by_pos_tag(sentence, tags): word_tokens = word_tokenize(sentence) tagged_word_token = pos_tag(word_tokens) selected_words = [word for word, tag in tagged_word_token if tag in tags] return ' '.join(selected_words) def clean_sentence(s): s = re.sub("\n", " ", s) s = re.sub("[" + string.punctuation + "]", " ", s) s = re.sub("\?", " ", s) s = re.sub("[0-9]+", " ", s) s = re.sub(" +", " ", s) return s.strip() def generate_bag_of_words(train, test, feature_args): vectorizer = CountVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() train_bag_of_words = normalize(train_bag_of_words) test_bag_of_words = normalize(test_bag_of_words) word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def generate_tfidf(train, test, feature_args): vectorizer = TfidfVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def average_word2vec(sentence, model): sentence = clean_sentence(sentence) word2vecs = [] for word in sentence.split(" "): word = word.lower() if word in model: word2vecs.append(model[word]) return pd.Series(np.average(word2vecs, axis=0)) def generate_word2vec(train, test, feature_args): path = 'word2vec/' + feature_args['model'] word2vec = pd.read_csv(path) return word2vec[train.index[0]:test.index[-1] + 1], None def generate_skip_thoughts(train, test, feature_args): skip_thoughts = pd.read_csv(feature_args['path']) return skip_thoughts[train.index[0]:test.index[-1] + 1], None def generate_price_features(data): price_feature_name = ['previous_price_{0:d}'.format(d) for d in range(1, 6)] price_features = data[price_feature_name].values return price_features def generate_classification_label(data): y = np.zeros(data.shape[0], np.float) y[data['predicted_price'] > data['price']] = 1.0 return y def generate_regression_label(data): return (data['predicted_price'] - data['price']).values def evaluate_return(open_price, y_hat, y): revenue = 0 index = 0 buy_action = [] for price, predict, actual in zip(open_price, y_hat, y): if predict >= 0.0 * price: revenue += actual buy_action.append(index) index += 1 return revenue, buy_action def run(data, split, feature_args, exp_label): published_time = pd.to_datetime(data['published_time']) y = generate_regression_label(data) y_class = generate_classification_label(data) X_price = data['price'].values record = { 'classification':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'regression':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'pnl':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'buy_actions':{ }, 'feature_size':{ } } feature_list = [BOW, TFIDF, WORD2VEC, SKIPTHOUGHT] feature_functions = { BOW:generate_bag_of_words, TFIDF:generate_tfidf, WORD2VEC:generate_word2vec, SKIPTHOUGHT:generate_skip_thoughts } fold_index = 0 tscv = TimeSeriesSplit(n_splits=split) for train_index, test_index in tscv.split(data.values): fold_index += 1 start_index = data.index[train_index[0]] split_index = data.index[test_index[0]] end_index = data.index[test_index[-1]] + 1 train = data[start_index:split_index] test = data[split_index:end_index] X_list = [] for feature_name in feature_list: if feature_name in feature_args: features, vectorizer = feature_functions[feature_name](train, test, feature_args[feature_name]) X_list.append(features) if len(X_list) > 1: array_list = [features.values for features in X_list] X = np.concatenate(array_list, axis=1) else: X = X_list[0].values feature_size = X.shape[1] print("feature size:", feature_size) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] y_class_train, y_class_test = y_class[train_index], y_class[test_index] X_train_price = X_price[train_index] X_test_price = X_price[test_index] # Normalization and Scaling scaler = RobustScaler() scaler.fit(y_train.reshape(-1, 1)) y_train_t = scaler.transform(y_train.reshape(-1, 1)).reshape(-1, ) x_train_t = X_train x_test_t = X_test # Modeling classifiers_dict = { 'Logistic Regression':LogisticRegression(penalty='l2', C=0.05, verbose=0, max_iter=10000) } regressors_dict = { 'SVR':SVR(kernel='linear', C=1.0, verbose=0), 'Ridge Regression':linear_model.Ridge(alpha=5.0) } train_class_err = {} test_class_err = {} train_regre_err = {} test_regre_err = {} train_pnl_err = {} test_pnl_err = {} test_buy_times = [] for label, clf in classifiers_dict.items(): clf.fit(x_train_t, y_class_train) y_class_train_pred = clf.predict(x_train_t) y_class_test_pred = clf.predict(x_test_t) # classification error train_acc = accuracy_score(y_class_train, y_class_train_pred) test_acc = accuracy_score(y_class_test, y_class_test_pred) train_class_err[label] = train_acc test_class_err[label] = test_acc # PNL error train_return, train_buy_action = evaluate_return(X_train_price, y_class_train_pred, y_train) test_return, test_buy_action = evaluate_return(X_test_price, y_class_test_pred, y_test) train_pnl_err[label] = train_return test_pnl_err[label] = test_return if label not in record['buy_actions']: record['buy_actions'][label] = [] for action_time in test_buy_action: record['buy_actions'][label].append(action_time + len(X_train)) for label, clf in regressors_dict.items(): clf.fit(x_train_t, y_train_t) y_train_pred = clf.predict(x_train_t) y_test_pred = clf.predict(x_test_t) # classification error y_class_train_pred = np.zeros(y_train_pred.shape[0], np.float) y_class_train_pred[y_train_pred >= 0.0] = 1.0 y_class_test_pred = np.zeros(y_test_pred.shape[0], np.float) y_class_test_pred[y_test_pred >= 0.0] = 1.0 train_acc = accuracy_score(y_class_train, y_class_train_pred) test_acc = accuracy_score(y_class_test, y_class_test_pred) train_class_err[label] = train_acc test_class_err[label] = test_acc # regression error y_train_pred = scaler.inverse_transform(y_train_pred.reshape(-1, 1)).reshape(-1, ) y_test_pred = scaler.inverse_transform(y_test_pred.reshape(-1, 1)).reshape(-1, ) train_mse = mean_squared_error(y_train, y_train_pred) test_mse = mean_squared_error(y_test, y_test_pred) train_regre_err[label] = train_mse test_regre_err[label] = test_mse # PNL error train_return, train_buy_action = evaluate_return(X_train_price, y_train_pred, y_train) test_return, test_buy_action = evaluate_return(X_test_price, y_test_pred, y_test) train_pnl_err[label] = train_return test_pnl_err[label] = test_return if label not in record['buy_actions']: record['buy_actions'][label] = [] for action_time in test_buy_action: record['buy_actions'][label].append(action_time + len(X_train)) record['classification']['train'] = record['classification']['train'].append(pd.Series(data=train_class_err), ignore_index=True) record['classification']['test'] = record['classification']['test'].append(pd.Series(data=test_class_err), ignore_index=True) record['regression']['train'] = record['regression']['train'].append(pd.Series(data=train_regre_err), ignore_index=True) record['regression']['test'] = record['regression']['test'].append(pd.Series(data=test_regre_err), ignore_index=True) record['pnl']['train'] = record['pnl']['train'].append(
pd.Series(data=train_pnl_err)
pandas.Series
import os import torch import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm from collections import defaultdict from torchvision.datasets.folder import default_loader from torchvision.datasets.utils import download_url from torch.utils.data import Dataset from torchvision import transforms class CUB200(Dataset): def __init__(self, root, is_train, transform=None, ori_size=False, input_size=224, center_crop=True): self.root = root self.is_train = is_train self.ori_size = ori_size if not ori_size and center_crop: image_size = int(256/224*input_size) #TODO check crop_size = input_size #TODO check shift = (image_size - crop_size) // 2 elif not ori_size and not center_crop: image_size = input_size crop_size = input_size shift = 0 self.data = self._load_data(image_size, crop_size, shift, center_crop) self.transform = transform def _load_data(self, image_size, crop_size, shift, center_crop=True): self._labelmap_path = os.path.join(self.root, 'CUB_200_2011', 'classes.txt') paths = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'images.txt'), sep=' ', names=['id', 'path']) labels = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'image_class_labels.txt'), sep=' ', names=['id', 'label']) splits = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'train_test_split.txt'), sep=' ', names=['id', 'is_train']) orig_image_sizes = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'image_sizes.txt'), sep=' ', names=['id', 'width', 'height']) bboxes = pd.read_csv( os.path.join(self.root, 'CUB_200_2011', 'bounding_boxes.txt'), sep=' ', names=['id', 'x', 'y', 'w', 'h']) if self.ori_size: resized_bboxes = pd.DataFrame({'id': paths.id, 'xmin': bboxes.x, 'ymin': bboxes.y, 'xmax': bboxes.x + bboxes.w, 'ymax': bboxes.y + bboxes.h}) else: if center_crop: resized_xmin = np.maximum( (bboxes.x / orig_image_sizes.width * image_size - shift).astype(int), 0) resized_ymin = np.maximum( (bboxes.y / orig_image_sizes.height * image_size - shift).astype(int), 0) resized_xmax = np.minimum( ((bboxes.x + bboxes.w - 1) / orig_image_sizes.width * image_size - shift).astype(int), crop_size - 1) resized_ymax = np.minimum( ((bboxes.y + bboxes.h - 1) / orig_image_sizes.height * image_size - shift).astype(int), crop_size - 1) else: min_length = pd.concat([orig_image_sizes.width, orig_image_sizes.height], axis=1).min(axis=1) resized_xmin = (bboxes.x / min_length * image_size).astype(int) resized_ymin = (bboxes.y / min_length * image_size).astype(int) resized_xmax = ((bboxes.x + bboxes.w - 1) / min_length * image_size).astype(int) resized_ymax = ((bboxes.y + bboxes.h - 1) / min_length * image_size).astype(int) resized_bboxes = pd.DataFrame({'id': paths.id, 'xmin': resized_xmin.values, 'ymin': resized_ymin.values, 'xmax': resized_xmax.values, 'ymax': resized_ymax.values}) data = paths.merge(labels, on='id')\ .merge(splits, on='id')\ .merge(resized_bboxes, on='id') if self.is_train: data = data[data.is_train == 1] else: data = data[data.is_train == 0] return data def __len__(self): return len(self.data) # def _preprocess_bbox(self, origin_bbox, orig_image_size, center_crop=True): # xmin, ymin, xmax, ymax = origin_bbox # orig_width, orig_height = orig_image_size # if center_crop: # resized_xmin = np.maximum( # (bboxes.x / orig_image_sizes.width * image_size - shift).astype(int), 0) # resized_ymin = np.maximum( # (bboxes.y / orig_image_sizes.height * image_size - shift).astype(int), 0) # resized_xmax = np.minimum( # ((bboxes.x + bboxes.w - 1) / orig_image_sizes.width * image_size - shift).astype(int), # crop_size - 1) # resized_ymax = np.minimum( # ((bboxes.y + bboxes.h - 1) / orig_image_sizes.height * image_size - shift).astype(int), # crop_size - 1) # else: # print(f'width: {orig_image_sizes.width}, height: {orig_image_sizes.height}') # min_length = min(orig_image_sizes.width , orig_image_sizes.height) # resized_xmin = int(bb / min_length * self.image_size) # resized_ymin = int(ymin / min_length * self.image_size) # resized_xmax = int(xmax / min_length * self.image_size) # resized_ymax = int(ymax / min_length * self.image_size) # resized_bboxes = pd.DataFrame({'id': paths.id, # 'xmin': resized_xmin.values, # 'ymin': resized_ymin.values, # 'xmax': resized_xmax.values, # 'ymax': resized_ymax.values}) def __getitem__(self, idx): sample = self.data.iloc[idx] path = os.path.join(self.root, 'CUB_200_2011/images', sample.path) image = Image.open(path).convert('RGB') label = sample.label - 1 # label starts from 1 gt_box = torch.tensor( [sample.xmin, sample.ymin, sample.xmax, sample.ymax]) if self.transform is not None: image = self.transform(image) return (image, label, gt_box) @property def class_id_to_name(self): if hasattr(self, '_class_id_to_name'): return self._class_id_to_name labelmap =
pd.read_csv(self._labelmap_path, sep=' ', names=['label', 'name'])
pandas.read_csv
""" test date_range, bdate_range construction from the convenience range functions """ from datetime import datetime, time, timedelta import numpy as np import pytest import pytz from pytz import timezone from pandas._libs.tslibs import timezones from pandas._libs.tslibs.offsets import BDay, CDay, DateOffset, MonthEnd, prefix_mapping from pandas.errors import OutOfBoundsDatetime import pandas.util._test_decorators as td import pandas as pd from pandas import DatetimeIndex, Timestamp, bdate_range, date_range, offsets import pandas._testing as tm from pandas.core.arrays.datetimes import generate_range START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestTimestampEquivDateRange: # Older tests in TestTimeSeries constructed their `stamp` objects # using `date_range` instead of the `Timestamp` constructor. # TestTimestampEquivDateRange checks that these are equivalent in the # pertinent cases. def test_date_range_timestamp_equiv(self): rng = date_range("20090415", "20090519", tz="US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_dateutil(self): rng = date_range("20090415", "20090519", tz="dateutil/US/Eastern") stamp = rng[0] ts = Timestamp("20090415", tz="dateutil/US/Eastern", freq="D") assert ts == stamp def test_date_range_timestamp_equiv_explicit_pytz(self): rng = date_range("20090415", "20090519", tz=pytz.timezone("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=pytz.timezone("US/Eastern"), freq="D") assert ts == stamp @td.skip_if_windows_python_3 def test_date_range_timestamp_equiv_explicit_dateutil(self): from pandas._libs.tslibs.timezones import dateutil_gettz as gettz rng = date_range("20090415", "20090519", tz=gettz("US/Eastern")) stamp = rng[0] ts = Timestamp("20090415", tz=gettz("US/Eastern"), freq="D") assert ts == stamp def test_date_range_timestamp_equiv_from_datetime_instance(self): datetime_instance = datetime(2014, 3, 4) # build a timestamp with a frequency, since then it supports # addition/subtraction of integers timestamp_instance = date_range(datetime_instance, periods=1, freq="D")[0] ts = Timestamp(datetime_instance, freq="D") assert ts == timestamp_instance def test_date_range_timestamp_equiv_preserve_frequency(self): timestamp_instance = date_range("2014-03-05", periods=1, freq="D")[0] ts = Timestamp("2014-03-05", freq="D") assert timestamp_instance == ts class TestDateRanges: def test_date_range_nat(self): # GH#11587 msg = "Neither `start` nor `end` can be NaT" with pytest.raises(ValueError, match=msg): date_range(start="2016-01-01", end=pd.NaT, freq="D") with pytest.raises(ValueError, match=msg): date_range(start=pd.NaT, end="2016-01-01", freq="D") def test_date_range_multiplication_overflow(self): # GH#24255 # check that overflows in calculating `addend = periods * stride` # are caught with tm.assert_produces_warning(None): # we should _not_ be seeing a overflow RuntimeWarning dti = date_range(start="1677-09-22", periods=213503, freq="D") assert dti[0] == Timestamp("1677-09-22") assert len(dti) == 213503 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("1969-05-04", periods=200000000, freq="30000D") def test_date_range_unsigned_overflow_handling(self): # GH#24255 # case where `addend = periods * stride` overflows int64 bounds # but not uint64 bounds dti = date_range(start="1677-09-22", end="2262-04-11", freq="D") dti2 = date_range(start=dti[0], periods=len(dti), freq="D") assert dti2.equals(dti) dti3 = date_range(end=dti[-1], periods=len(dti), freq="D") assert dti3.equals(dti) def test_date_range_int64_overflow_non_recoverable(self): # GH#24255 # case with start later than 1970-01-01, overflow int64 but not uint64 msg = "Cannot generate range with" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(start="1970-02-01", periods=106752 * 24, freq="H") # case with end before 1970-01-01, overflow int64 but not uint64 with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1969-11-14", periods=106752 * 24, freq="H") def test_date_range_int64_overflow_stride_endpoint_different_signs(self): # cases where stride * periods overflow int64 and stride/endpoint # have different signs start = Timestamp("2262-02-23") end = Timestamp("1969-11-14") expected = date_range(start=start, end=end, freq="-1H") assert expected[0] == start assert expected[-1] == end dti = date_range(end=end, periods=len(expected), freq="-1H") tm.assert_index_equal(dti, expected) start2 = Timestamp("1970-02-01") end2 = Timestamp("1677-10-22") expected2 = date_range(start=start2, end=end2, freq="-1H") assert expected2[0] == start2 assert expected2[-1] == end2 dti2 = date_range(start=start2, periods=len(expected2), freq="-1H") tm.assert_index_equal(dti2, expected2) def test_date_range_out_of_bounds(self): # GH#14187 msg = "Cannot generate range" with pytest.raises(OutOfBoundsDatetime, match=msg): date_range("2016-01-01", periods=100000, freq="D") with pytest.raises(OutOfBoundsDatetime, match=msg): date_range(end="1763-10-12", periods=100000, freq="D") def test_date_range_gen_error(self): rng = date_range("1/1/2000 00:00", "1/1/2000 00:18", freq="5min") assert len(rng) == 4 @pytest.mark.parametrize("freq", ["AS", "YS"]) def test_begin_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-01-01", "2014-01-01", "2015-01-01", "2016-01-01", "2017-01-01"], freq=freq, ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["A", "Y"]) def test_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-31"], freq=freq ) tm.assert_index_equal(rng, exp) @pytest.mark.parametrize("freq", ["BA", "BY"]) def test_business_end_year_alias(self, freq): # see gh-9313 rng = date_range("1/1/2013", "7/1/2017", freq=freq) exp = DatetimeIndex( ["2013-12-31", "2014-12-31", "2015-12-31", "2016-12-30"], freq=freq ) tm.assert_index_equal(rng, exp) def test_date_range_negative_freq(self): # GH 11018 rng = date_range("2011-12-31", freq="-2A", periods=3) exp = DatetimeIndex(["2011-12-31", "2009-12-31", "2007-12-31"], freq="-2A") tm.assert_index_equal(rng, exp) assert rng.freq == "-2A" rng = date_range("2011-01-31", freq="-2M", periods=3) exp = DatetimeIndex(["2011-01-31", "2010-11-30", "2010-09-30"], freq="-2M") tm.assert_index_equal(rng, exp) assert rng.freq == "-2M" def test_date_range_bms_bug(self): # #1645 rng = date_range("1/1/2000", periods=10, freq="BMS") ex_first = Timestamp("2000-01-03") assert rng[0] == ex_first def test_date_range_normalize(self): snap = datetime.today() n = 50 rng = date_range(snap, periods=n, normalize=False, freq="2D") offset = timedelta(2) values = DatetimeIndex([snap + i * offset for i in range(n)], freq=offset) tm.assert_index_equal(rng, values) rng = date_range("1/1/2000 08:15", periods=n, normalize=False, freq="B") the_time = time(8, 15) for val in rng: assert val.time() == the_time def test_date_range_fy5252(self): dr = date_range( start="2013-01-01", periods=2, freq=offsets.FY5253(startingMonth=1, weekday=3, variation="nearest"), ) assert dr[0] == Timestamp("2013-01-31") assert dr[1] == Timestamp("2014-01-30") def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) msg = ( "Of the four parameters: start, end, periods, and " "freq, exactly three must be specified" ) with pytest.raises(ValueError, match=msg): date_range(start, end, periods=10, freq="s") def test_date_range_convenience_periods(self): # GH 20808 result = date_range("2018-04-24", "2018-04-27", periods=3) expected = DatetimeIndex( ["2018-04-24 00:00:00", "2018-04-25 12:00:00", "2018-04-27 00:00:00"], freq=None, ) tm.assert_index_equal(result, expected) # Test if spacing remains linear if tz changes to dst in range result = date_range( "2018-04-01 01:00:00", "2018-04-01 04:00:00", tz="Australia/Sydney", periods=3, ) expected = DatetimeIndex( [ Timestamp("2018-04-01 01:00:00+1100", tz="Australia/Sydney"), Timestamp("2018-04-01 02:00:00+1000", tz="Australia/Sydney"), Timestamp("2018-04-01 04:00:00+1000", tz="Australia/Sydney"), ] ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "start,end,result_tz", [ ["20180101", "20180103", "US/Eastern"], [datetime(2018, 1, 1), datetime(2018, 1, 3), "US/Eastern"], [Timestamp("20180101"), Timestamp("20180103"), "US/Eastern"], [ Timestamp("20180101", tz="US/Eastern"),
Timestamp("20180103", tz="US/Eastern")
pandas.Timestamp
import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas._libs.tslibs.period import IncompatibleFrequency import pandas as pd import pandas._testing as tm from pandas.core.arrays import PeriodArray, period_array @pytest.mark.parametrize( "data, freq, expected", [ ([pd.Period("2017", "D")], None, [17167]), ([pd.Period("2017", "D")], "D", [17167]), ([2017], "D", [17167]), (["2017"], "D", [17167]), ([pd.Period("2017", "D")],
pd.tseries.offsets.Day()
pandas.tseries.offsets.Day
import parms import pandas as pd def do(pd_series, sheet_title, default): description = str(pd_series[parms.COLUMN_DESCRIPTION()]) if sheet_title == "Example": return description elif sheet_title == "Example2": description = adopt_text(pd_series["Next Location"]) else: return default return description def adopt_text(text): return str.encode(text).replace(b'\015', b'\n').decode(errors='strict') if __name__ == "__main__": d = {parms.COLUMN_TITLE: ["Item"], parms.COLUMN_DESCRIPTION: ["Example Item"]} print(do(
pd.Series(["Description Example"], index=["Description"])
pandas.Series
import argparse import logging import logging.config import os from os.path import dirname, exists, join import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, roc_auc_score, f1_score from sklearn.preprocessing import StandardScaler from qac.simq import simq_features from qac.evaluation import evaluation from qac.experiments import preprocessing logger = logging.getLogger(__name__) # pylint: disable=locally-disabled, invalid-name DEBUG = False THRESHOLDS = np.linspace(0, 1, num=1000) class ThresholdClassifier(): def __init__(self, T): self.T = T def predict(self, X): return np.where(X >= self.T, 0, 1) def decision_function(self, X): y = self.predict(X) return np.where(y == 0, self.T - X, X - self.T) def _scaled_scores(scores, feat, train_ids, val_ids, test_ids): X_train = scores[feat].loc[train_ids].values.reshape(-1, 1) X_val = scores[feat].loc[val_ids].values.reshape(-1, 1) X_test = scores[feat].loc[test_ids].values.reshape(-1, 1) scaler = StandardScaler().fit(X_train) X_val = scaler.transform(X_val)[:, 0] X_test = scaler.transform(X_test)[:, 0] return X_val, X_test def make_predictions(args): community = preprocessing.load_community(args.community, preprocess=False, with_dev=True) train_ids, val_ids, test_ids = community.train_ids, community.val_ids, community.test_ids y_val = community.y_val feature_handler = simq_features.FeatureHandler(args.community, run=args.simq_run) feat = args.feature scores = feature_handler.read(feature_name=feat) X_val, X_test = _scaled_scores(scores, args.feature, train_ids, val_ids, test_ids) best_t = evaluate_thresholds(THRESHOLDS, X_val, y_val) clf = ThresholdClassifier(best_t) y_pred = clf.predict(X_test) y_pred_proba = clf.decision_function(X_test) return np.stack([test_ids, y_pred, y_pred_proba], axis=1) def evaluate_thresholds(thresholds, X_val, y_val): logger.info('Start threshold search...') scores = [] for T in thresholds: clf = ThresholdClassifier(T) y_pred = clf.predict(X_val) y_pred_proba = clf.decision_function(X_val) acc_score = accuracy_score(y_val, y_pred) auc_score = roc_auc_score(y_val, y_pred_proba) f1 = f1_score(y_val, y_pred) if DEBUG: logger.info('Acc - %.4f AUC - %.4f F1 - %.4f', acc_score, auc_score, f1) scores.append(auc_score) i = np.argmax(scores) logger.info('Best threshold = %s', str(thresholds[i])) logger.info('Best score = %.4f', scores[i]) return thresholds[i] def save_predictions(pred, out_dir, run_id): os.makedirs(out_dir, exist_ok=True) y_pred = pred[:, 1].astype(int) y_pred = preprocessing.LABEL_ENCODER.inverse_transform(y_pred)
pd.DataFrame.from_dict({'id': pred[:, 0], 'y_pred': y_pred, 'y_pred_proba': pred[:, 2]})
pandas.DataFrame.from_dict
from __future__ import absolute_import, division, print_function import matplotlib.pylab as plt import tensorflow as tf import tensorflow_hub as hub from tensorflow.python.keras import layers import numpy as np import os tf.VERSION import cv2 import sys import json import pandas as pd from sklearn.metrics import precision_recall_fscore_support, classification_report from imageTransformFunctions import recenterImageOnEyes from createValidationVideoWithNewZZversion import createValidationVideoWithNewZZversion # import pdb def detectRolloverFramesWithNewZZversion(videoName, path, medianRollingMean, recenterImageWindow, comparePredictedResultsToManual, validationVideo, pathToInitialVideo): if (medianRollingMean % 2 == 0): sys.exit("medianRollingMean must be an odd number") ### Loading the classifier classifier_url = "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/2" feature_extractor_url = "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/2" def classifier(x): classifier_module = hub.Module(classifier_url) return classifier_module(x) IMAGE_SIZE = hub.get_expected_image_size(hub.Module(classifier_url)) classifier_layer = layers.Lambda(classifier, input_shape = IMAGE_SIZE+[3]) classifier_model = tf.keras.Sequential([classifier_layer]) classifier_model.summary() from tensorflow.python.keras import backend as K sess = K.get_session() init = tf.global_variables_initializer() sess.run(init) #### def feature_extractor(x): feature_extractor_module = hub.Module(feature_extractor_url) return feature_extractor_module(x) IMAGE_SIZE = hub.get_expected_image_size(hub.Module(feature_extractor_url)) features_extractor_layer = layers.Lambda(feature_extractor, input_shape=IMAGE_SIZE+[3]) features_extractor_layer.trainable = False model = tf.keras.Sequential([ features_extractor_layer, layers.Dense(2, activation='softmax') ]) model.summary() init = tf.global_variables_initializer() sess.run(init) ### model.compile( optimizer=tf.train.AdamOptimizer(), loss='categorical_crossentropy', metrics=['accuracy']) checkpoint_path = "model/cp.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) model.load_weights(checkpoint_path) ### Loading the images and applying the classifier on them videoPath = os.path.join(os.path.join(path, videoName), 'results_' + videoName + '.txt') if (os.path.isfile(videoPath)): # Applying rollover classifier to each frame and saving the results in a txt file file = open(videoPath, 'r') j = json.loads(file.read()) wellPoissMouv = j['wellPoissMouv'] wellPositions = j['wellPositions'] nbWell = len(wellPositions) rolloversAllWells = [] rolloversMedFiltAllWells = [] rolloverPercentageAllWells = [] # going through each well in super structure for i in range(0,nbWell): xwell = wellPositions[i]['topLeftX'] ywell = wellPositions[i]['topLeftY'] if xwell < 0: xwell = 0 if ywell < 0: ywell = 0 videoPath2 = pathToInitialVideo if (len(wellPoissMouv[i])): if (len(wellPoissMouv[i][0])): cap = cv2.VideoCapture(videoPath2) videoLength = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) rollovers = np.zeros((videoLength)) rolloverPercentage = np.zeros((videoLength)) frames = [] framesNumber = [] nbMouv = len(wellPoissMouv[i][0]) # going through each movement for the well for j in range(0,nbMouv): if (len(wellPoissMouv[i][0][j])): item = wellPoissMouv[i][0][j] BoutStart = item['BoutStart'] BoutEnd = item['BoutEnd'] k = BoutStart cap.set(cv2.CAP_PROP_POS_FRAMES,BoutStart) while (k <= BoutEnd): ret, frame = cap.read() yStart = int(ywell+item['HeadY'][k-BoutStart]-30) yEnd = int(ywell+item['HeadY'][k-BoutStart]+30) xStart = int(xwell+item['HeadX'][k-BoutStart]-30) xEnd = int(xwell+item['HeadX'][k-BoutStart]+30) frame = frame[yStart:yEnd, xStart:xEnd] if ret == True: if recenterImageWindow: frame = recenterImageOnEyes(frame,recenterImageWindow) rows = len(frame) cols = len(frame[0]) scaleD = int(cols/6) frame = frame[scaleD:(rows-scaleD), scaleD:(rows-scaleD)] frame = cv2.resize(frame,(224,224)) frame = np.array(frame, dtype=np.float32) / 255.0 frames.append(frame) framesNumber.append(k) else: break k = k + 1 frames = np.array(frames) resultRaw = model.predict(frames) result = np.argmax(resultRaw, axis=-1) rollovers[framesNumber] = result rolloverPercentage[framesNumber] = resultRaw[:,1] rolloversMedFiltSeries = (
pd.Series(rollovers)
pandas.Series
import csv from collections import defaultdict, Counter import hashlib import tempfile import os from os.path import join import subprocess import shutil import logging import socket from traceback import format_exc import sys import click import numpy.random import numpy import biom import skbio.io from pandas import DataFrame, Series from qiime2 import Artifact from qiime2.plugins import clawback from mpiutils import dispatcher, mpi_logging @click.command() @click.option('--biom-file', required=True, type=click.Path(exists=True), help='Sample table with SVs for observation ids (biom)') @click.option('--missed-sample-file', required=True, type=click.Path(exists=True), help='Basenames of the sample files that failed generation') @click.option('--sv-to-ref-seq-file', required=True, type=click.Path(exists=True), help='BLAST mapping from SVs to ref seq labels (tsv)') @click.option('--ref-taxa', required=True, type=click.Path(exists=True), help='Greengenes reference taxa (tsv)') @click.option('--ref-seqs', required=True, type=click.Path(exists=True), help='Greengenes reference sequences (fasta)') @click.option('--expected-dir', required=True, type=click.Path(exists=True), help='Output directory for expected taxa Artifacts') @click.option('--abundances-dir', required=True, type=click.Path(exists=True), help='Output directory for expected taxa frequency Artifacts') @click.option('--sequences-dir', required=True, type=click.Path(exists=True), help='Output directory for the simulated SV Artifacts') @click.option('--tmp-dir', type=click.Path(exists=False), help='Temp dir (gets left behind on simulation exception)') @click.option('--log-file', type=click.Path(), help='Log file') @click.option('--log-level', type=click.Choice('DEBUG INFO WARNING ERROR CRITICAL'.split()), default='WARNING', help='Log level') def simulate_missed_samples(biom_file, missed_sample_file, sv_to_ref_seq_file, ref_taxa, ref_seqs, expected_dir, abundances_dir, sequences_dir, tmp_dir=None, log_file=None, log_level='DEBUG'): setup_logging(log_level, log_file) if dispatcher.am_dispatcher(): logging.info(locals()) all_samples = biom.load_table(biom_file) missed_samples = load_missed_samples(missed_sample_file) def process_sample(basename_sample): basename, sample = basename_sample try: exp_filename = join(expected_dir, basename) abund_filename = join(abundances_dir, basename) seqs_filename = join(sequences_dir, basename) generate_triple( basename[:-4], sample, sv_to_ref_seq_file, ref_taxa, ref_seqs, exp_filename, abund_filename, seqs_filename, tmp_dir) logging.info('Done ' + basename) except (KeyboardInterrupt, SystemExit): raise except Exception: logging.warning('Skipping ' + basename + ':\n' + format_exc()) def sample_generator(): for fold, sample_id in missed_samples: basename = sample_id + '-fold-' + str(fold) + '.qza' yield basename, extract_sample([sample_id], all_samples) result = dispatcher.farm(process_sample, sample_generator()) if result: list(result) def load_missed_samples(missed_sample_file): with open(missed_sample_file) as ms_fh: missed_samples = [] for line in ms_fh: line = line.strip() if line.endswith('.qza'): line = line[:-4] fold = int(line.rsplit('-', 1)[-1]) sample_id = line.rsplit('-', 2)[0] missed_samples.append((fold, sample_id)) return missed_samples @click.command() @click.option('--biom-file', required=True, type=click.Path(exists=True), help='Sample table with SVs for observation ids (biom)') @click.option('--sv-to-ref-seq-file', required=True, type=click.Path(exists=True), help='BLAST mapping from SVs to ref seq labels (tsv)') @click.option('--sv-to-ref-tax-file', required=True, type=click.Path(exists=True), help='Naive Bayes mapping from SVs to ref seq taxa (qza)') @click.option('--ref-taxa', required=True, type=click.Path(exists=True), help='Greengenes reference taxa (tsv)') @click.option('--ref-seqs', required=True, type=click.Path(exists=True), help='Greengenes reference sequences (fasta)') @click.option('--weights-dir', required=True, type=click.Path(exists=True), help='Output directory for fold weights Artifacts') @click.option('--expected-dir', required=True, type=click.Path(exists=True), help='Output directory for expected taxa Artifacts') @click.option('--abundances-dir', required=True, type=click.Path(exists=True), help='Output directory for expected taxa frequency Artifacts') @click.option('--sequences-dir', required=True, type=click.Path(exists=True), help='Output directory for the simulated SV Artifacts') @click.option('--k', type=int, default=10, help='Number of folds for cross validation (default 10)') @click.option('--tmp-dir', type=click.Path(exists=False), help='Temp dir (gets left behind on simulation exception)') @click.option('--log-file', type=click.Path(), help='Log file') @click.option('--log-level', type=click.Choice('DEBUG INFO WARNING ERROR CRITICAL'.split()), default='WARNING', help='Log level') def simulate_all_samples(biom_file, sv_to_ref_seq_file, sv_to_ref_tax_file, ref_taxa, ref_seqs, weights_dir, expected_dir, abundances_dir, sequences_dir, k=10, tmp_dir=None, log_file=None, log_level='DEBUG'): setup_logging(log_level, log_file) if dispatcher.am_dispatcher(): logging.info(locals()) all_samples = biom.load_table(biom_file) # shuffle the sample ids, assign folds, and generate weights sample_ids = numpy.array(all_samples.ids()) logging.info('Found ' + str(len(sample_ids)) + ' samples') numpy.random.shuffle(sample_ids) folds = numpy.array([i % k for i in range(len(sample_ids))]) reference_taxonomy = Artifact.import_data( 'FeatureData[Taxonomy]', ref_taxa, view_type='HeaderlessTSVTaxonomyFormat') reference_sequences = Artifact.import_data( 'FeatureData[Sequence]', ref_seqs) taxonomy_classification = Artifact.load(sv_to_ref_tax_file) for fold in range(k): training_set = extract_sample( sample_ids[folds != fold], all_samples) table = Artifact.import_data( 'FeatureTable[Frequency]', training_set) unobserved_weight = 1e-6 normalise = False weights = clawback.methods.generate_class_weights( reference_taxonomy, reference_sequences, table, taxonomy_classification) weights = weights.class_weight weights_filename = \ 'weights-normalise-%s-unobserved-weight-%g-fold-%d.qza' %\ (normalise, unobserved_weight, fold) weights.save(join(weights_dir, weights_filename)) def process_sample(basename_sample): basename, sample = basename_sample try: exp_filename = join(expected_dir, basename) abund_filename = join(abundances_dir, basename) seqs_filename = join(sequences_dir, basename) generate_triple( basename[:-4], sample, sv_to_ref_seq_file, ref_taxa, ref_seqs, exp_filename, abund_filename, seqs_filename, tmp_dir) logging.info('Done ' + basename) except (KeyboardInterrupt, SystemExit): raise except Exception: logging.warning('Skipping ' + basename + ':\n' + format_exc()) def sample_generator(): for fold, sample_id in zip(folds, sample_ids): basename = sample_id + '-fold-' + str(fold) + '.qza' yield basename, extract_sample([sample_id], all_samples) result = dispatcher.farm(process_sample, sample_generator()) if result: list(result) def setup_logging(log_level=None, log_file=None): try: if log_file: log_dir = os.path.dirname(log_file) dispatcher.checkmakedirs(log_dir) handler = mpi_logging.MPIFileHandler(log_file) else: handler = logging.StreamHandler() log_level = getattr(logging, log_level.upper()) handler.setLevel(log_level) hostpid = '' if dispatcher.USING_MPI: hostpid = socket.gethostname()+':'+str(os.getpid())+':' formatter = logging.Formatter('%(asctime)s:' + hostpid + '%(levelname)s:%(message)s') handler.setFormatter(formatter) logging.root.addHandler(handler) logging.root.setLevel(log_level) except Exception: sys.stderr.write(' Unable to set up logging:\n'+format_exc()) dispatcher.exit(1) def extract_sample(sample_ids, samples): subsample = samples.filter(sample_ids, inplace=False) subsample.filter( lambda v, _, __: v.sum() > 1e-9, axis='observation', inplace=True) return subsample def load_sv_map(sv_to_ref_seq_file): with open(sv_to_ref_seq_file) as blast_results: blast_reader = csv.reader(blast_results, csv.excel_tab) sv_map = {sv: ref_seq for sv, ref_seq in blast_reader} return sv_map def load_ref_seqs_map(ref_seqs): with open(ref_seqs) as ref_fh: fasta_reader = skbio.io.read(ref_fh, 'fasta') ref_seqs = {s.metadata['id']: str(s) for s in fasta_reader} return ref_seqs def generate_triple(sample_id, sample, sv_to_ref_seq_file, ref_taxa, ref_seqs, exp_filename, abund_filename, seqs_filename, tmp_dir): sv_map = load_sv_map(sv_to_ref_seq_file) ref_seqs_map = load_ref_seqs_map(ref_seqs) tax_map = load_taxonomy_map(ref_taxa) with tempfile.TemporaryDirectory() as tmpdir: try: dada_in_dirs = simulate(sample, tmpdir, sv_map, ref_seqs_map) dada_out_dirs, dada_tmp_dirs = denoise(tmpdir, dada_in_dirs) result = traceback(dada_out_dirs, dada_tmp_dirs, tax_map) save_result( sample_id, result, exp_filename, abund_filename, seqs_filename) except Exception: if tmp_dir is not None and not os.path.exists(tmp_dir): shutil.copytree(tmpdir, tmp_dir) raise def load_taxonomy_map(ref_taxa): with open(ref_taxa) as tax_fh: tax_map = {r[0].encode('utf-8'): r[1] for r in csv.reader(tax_fh, csv.excel_tab)} return tax_map def simulate(sample, tmpdir, sv_map, ref_seqs): 'add some noise to the reference sequences' # output the amplicon sequences to fasta, labelled by greengenes sequence # label, with abundance that `vsearch --rereplicate` will understand abundance_filename = join(tmpdir, 'abundance.fasta') with open(abundance_filename, 'w') as a_fh: for row in sample.iter(axis='observation'): abundance, sv, _ = row abundance = int(abundance[0]) if sv in sv_map: label = sv_map[sv] a_fh.write('>' + label + ';size=' + str(abundance) + '\n') a_fh.write(ref_seqs[sv_map[sv]] + '\n') # repreplicate according to abundance and run ART to simulate amplicons prior_art_filename = join(tmpdir, 'prior_art.fasta') cmd = ('vsearch', '--rereplicate', abundance_filename, '--output', prior_art_filename) subprocess.run(cmd, check=True) post_art_filename = join(tmpdir, 'post_art') cmd = ('art_illumina -ss MSv1 -amp -i ' + prior_art_filename + ' -l 250 -o ' + post_art_filename + ' -c 1 -na -p').split() subprocess.run(cmd, check=True) dada_in_dirs = [] for i in ('1', '2'): cmd = 'gzip', post_art_filename + i + '.fq' subprocess.run(cmd, check=True) dada_in_dir = join(tmpdir, 'dada_in' + i) os.mkdir(dada_in_dir) dst = join(dada_in_dir, 'post_art' + i + '.fastq.gz') shutil.move(post_art_filename + i + '.fq.gz', dst) dada_in_dirs.append(dada_in_dir) return dada_in_dirs def denoise(tmpdir, dada_in_dirs): 'take the nose away, in a way that horribly mangles the sample provenance' post_dada_filename = join(tmpdir, 'post_dada.tsv') dada_tmp_dirs = [join(tmpdir, 'dada_tmp' + i) for i in ('1', '2')] dada_out_dirs = [join(tmpdir, 'dada_out' + i) for i in ('1', '2')] list(map(os.mkdir, dada_tmp_dirs + dada_out_dirs)) cmd = 'run_traceable_dada_paired.R'.split() +\ dada_in_dirs + [post_dada_filename] + dada_tmp_dirs +\ '250 250 0 0 Inf 0 none 1 1 1000000'.split() + dada_out_dirs subprocess.run(cmd, check=True) return dada_out_dirs, dada_tmp_dirs def traceback(dada_out_dirs, dada_tmp_dirs, tax_map): 'reconstruct the taxa to which each denoised sequence corresponds' unique_maps = [] for i, dada_out_dir in enumerate(dada_out_dirs, 1): with open(join(dada_out_dir, 'post_art%d.merge.map' % i)) as merg_fh: reader = csv.reader(merg_fh, csv.excel_tab) merg_map = {dada_sv: merg_sv for dada_sv, merg_sv in reader} with open(join(dada_out_dir, 'post_art%d.dada.map' % i)) as dada_fh: reader = csv.reader(dada_fh, csv.excel_tab) unique_map = defaultdict(list) for unique, dada_sv in reader: if dada_sv in merg_map: unique_map[unique].append(merg_map[dada_sv]) unique_maps.append(unique_map) # this is where the magic happens filtered_taxa = [] single_maps = [] for i, dada_tmp_dir in enumerate(dada_tmp_dirs, 1): single_map = defaultdict(set) taxa = [] fastq_filename = join(dada_tmp_dir, 'post_art%d.fastq.gz' % i) with skbio.io.open(fastq_filename) as pa_fh: fastq_reader = skbio.io.read(pa_fh, 'fastq', phred_offset=33) for j, seq in enumerate(fastq_reader): taxa.append(tax_map[seq.metadata['id'][:-4].encode('utf-8')]) for sv in unique_maps[i-1][str(seq)]: single_map[sv].add(j) single_maps.append(single_map) filtered_taxa.append(taxa) assert filtered_taxa[0] == filtered_taxa[1] filtered_taxa = filtered_taxa[0] merged_map = {sv: single_maps[0][sv].intersection(single_maps[1][sv]) for sv in single_maps[0]} merged_map = {sv: Counter(filtered_taxa[i] for i in tlist) for sv, tlist in merged_map.items()} result = [(s, t, c) for s in merged_map for t, c in merged_map[s].items()] return result def save_result( sample_id, result, exp_filename, abund_filename, seqs_filename): 'save the results in three Artifacts' svs, taxa, abundances = zip(*result) hashes = [hashlib.md5((s+t).encode('utf-8')).hexdigest() for s, t, c in result] expected = DataFrame({'Taxon': taxa}, index=hashes, columns=['Taxon']) expected.index.name = 'Feature ID' expected = Artifact.import_data('FeatureData[Taxonomy]', expected) expected.save(exp_filename) abundanced = DataFrame({h: a for h, a in zip(hashes, abundances)}, index=[sample_id], columns=hashes) abundanced = Artifact.import_data('FeatureTable[Frequency]', abundanced) abundanced.save(abund_filename) sequences =
Series(svs, index=hashes)
pandas.Series
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Module houses `TextFileDispatcher` class. `TextFileDispatcher` contains utils for text formats files, inherits util functions for files from `FileDispatcher` class and can be used as base class for dipatchers of SQL queries. """ import warnings import os import io import codecs from typing import Union, Sequence, Optional, Tuple, Callable from csv import QUOTE_NONE import numpy as np import pandas import pandas._libs.lib as lib from pandas.core.dtypes.common import is_list_like from modin.core.io.file_dispatcher import FileDispatcher, OpenFile from modin.core.storage_formats.pandas.utils import compute_chunksize from modin.utils import _inherit_docstrings from modin.core.io.text.utils import CustomNewlineIterator from modin.config import NPartitions from modin.error_message import ErrorMessage ColumnNamesTypes = Tuple[Union[pandas.Index, pandas.MultiIndex]] IndexColType = Union[int, str, bool, Sequence[int], Sequence[str], None] class TextFileDispatcher(FileDispatcher): """Class handles utils for reading text formats files.""" # The variable allows to set a function with which one partition will be read; # Used in dispatchers and parsers read_callback = None @classmethod def get_path_or_buffer(cls, filepath_or_buffer): """ Extract path from `filepath_or_buffer`. Parameters ---------- filepath_or_buffer : str, path object or file-like object `filepath_or_buffer` parameter of `read_csv` function. Returns ------- str or path object verified `filepath_or_buffer` parameter. Notes ----- Given a buffer, try and extract the filepath from it so that we can use it without having to fall back to pandas and share file objects between workers. Given a filepath, return it immediately. """ if hasattr(filepath_or_buffer, "name"): buffer_filepath = filepath_or_buffer.name if cls.file_exists(buffer_filepath): warnings.warn( "For performance reasons, the filepath will be " + "used in place of the file handle passed in " + "to load the data" ) return cls.get_path(buffer_filepath) return filepath_or_buffer @classmethod def build_partition(cls, partition_ids, row_lengths, column_widths): """ Build array with partitions of `cls.frame_partition_cls` class. Parameters ---------- partition_ids : list Array with references to the partitions data. row_lengths : list Partitions rows lengths. column_widths : list Number of columns in each partition. Returns ------- np.ndarray array with shape equals to the shape of `partition_ids` and filed with partitions objects. """ return np.array( [ [ cls.frame_partition_cls( partition_ids[i][j], length=row_lengths[i], width=column_widths[j], ) for j in range(len(partition_ids[i])) ] for i in range(len(partition_ids)) ] ) @classmethod def pathlib_or_pypath(cls, filepath_or_buffer): """ Check if `filepath_or_buffer` is instance of `py.path.local` or `pathlib.Path`. Parameters ---------- filepath_or_buffer : str, path object or file-like object `filepath_or_buffer` parameter of `read_csv` function. Returns ------- bool Whether or not `filepath_or_buffer` is instance of `py.path.local` or `pathlib.Path`. """ try: import py if isinstance(filepath_or_buffer, py.path.local): return True except ImportError: # pragma: no cover pass try: import pathlib if isinstance(filepath_or_buffer, pathlib.Path): return True except ImportError: # pragma: no cover pass return False @classmethod def offset( cls, f, offset_size: int, quotechar: bytes = b'"', is_quoting: bool = True, encoding: str = None, newline: bytes = None, ): """ Move the file offset at the specified amount of bytes. Parameters ---------- f : file-like object File handle that should be used for offset movement. offset_size : int Number of bytes to read and ignore. quotechar : bytes, default: b'"' Indicate quote in a file. is_quoting : bool, default: True Whether or not to consider quotes. encoding : str, optional Encoding of `f`. newline : bytes, optional Byte or sequence of bytes indicating line endings. Returns ------- bool If file pointer reached the end of the file, but did not find closing quote returns `False`. `True` in any other case. """ if is_quoting: chunk = f.read(offset_size) outside_quotes = not chunk.count(quotechar) % 2 else: f.seek(offset_size, os.SEEK_CUR) outside_quotes = True # after we read `offset_size` bytes, we most likely break the line but # the modin implementation doesn't work correctly in the case, so we must # make sure that the line is read completely to the lineterminator, # which is what the `_read_rows` does outside_quotes, _ = cls._read_rows( f, nrows=1, quotechar=quotechar, is_quoting=is_quoting, outside_quotes=outside_quotes, encoding=encoding, newline=newline, ) return outside_quotes @classmethod def partitioned_file( cls, f, num_partitions: int = None, nrows: int = None, skiprows: int = None, quotechar: bytes = b'"', is_quoting: bool = True, encoding: str = None, newline: bytes = None, header_size: int = 0, pre_reading: int = 0, ): """ Compute chunk sizes in bytes for every partition. Parameters ---------- f : file-like object File handle of file to be partitioned. num_partitions : int, optional For what number of partitions split a file. If not specified grabs the value from `modin.config.NPartitions.get()`. nrows : int, optional Number of rows of file to read. skiprows : int, optional Specifies rows to skip. quotechar : bytes, default: b'"' Indicate quote in a file. is_quoting : bool, default: True Whether or not to consider quotes. encoding : str, optional Encoding of `f`. newline : bytes, optional Byte or sequence of bytes indicating line endings. header_size : int, default: 0 Number of rows, that occupied by header. pre_reading : int, default: 0 Number of rows between header and skipped rows, that should be read. Returns ------- list List with the next elements: int : partition start read byte int : partition end read byte """ read_rows_counter = 0 outside_quotes = True if num_partitions is None: num_partitions = NPartitions.get() - 1 if pre_reading else NPartitions.get() rows_skipper = cls.rows_skipper_builder( f, quotechar, is_quoting=is_quoting, encoding=encoding, newline=newline ) result = [] file_size = cls.file_size(f) rows_skipper(header_size) if pre_reading: pre_reading_start = f.tell() outside_quotes, read_rows = cls._read_rows( f, nrows=pre_reading, quotechar=quotechar, is_quoting=is_quoting, outside_quotes=outside_quotes, encoding=encoding, newline=newline, ) read_rows_counter += read_rows result.append((pre_reading_start, f.tell())) # add outside_quotes if is_quoting and not outside_quotes: warnings.warn("File has mismatched quotes") rows_skipper(skiprows) start = f.tell() if nrows: partition_size = max(1, num_partitions, nrows // num_partitions) while f.tell() < file_size and read_rows_counter < nrows: if read_rows_counter + partition_size > nrows: # it's possible only if is_quoting==True partition_size = nrows - read_rows_counter outside_quotes, read_rows = cls._read_rows( f, nrows=partition_size, quotechar=quotechar, is_quoting=is_quoting, encoding=encoding, newline=newline, ) result.append((start, f.tell())) start = f.tell() read_rows_counter += read_rows # add outside_quotes if is_quoting and not outside_quotes: warnings.warn("File has mismatched quotes") else: partition_size = max(1, num_partitions, file_size // num_partitions) while f.tell() < file_size: outside_quotes = cls.offset( f, offset_size=partition_size, quotechar=quotechar, is_quoting=is_quoting, encoding=encoding, newline=newline, ) result.append((start, f.tell())) start = f.tell() # add outside_quotes if is_quoting and not outside_quotes: warnings.warn("File has mismatched quotes") return result @classmethod def _read_rows( cls, f, nrows: int, quotechar: bytes = b'"', is_quoting: bool = True, outside_quotes: bool = True, encoding: str = None, newline: bytes = None, ): """ Move the file offset at the specified amount of rows. Parameters ---------- f : file-like object File handle that should be used for offset movement. nrows : int Number of rows to read. quotechar : bytes, default: b'"' Indicate quote in a file. is_quoting : bool, default: True Whether or not to consider quotes. outside_quotes : bool, default: True Whether the file pointer is within quotes or not at the time this function is called. encoding : str, optional Encoding of `f`. newline : bytes, optional Byte or sequence of bytes indicating line endings. Returns ------- bool If file pointer reached the end of the file, but did not find closing quote returns `False`. `True` in any other case. int Number of rows that were read. """ if nrows is not None and nrows <= 0: return True, 0 rows_read = 0 if encoding and ( "utf" in encoding and "8" not in encoding or encoding == "unicode_escape" or encoding.replace("-", "_") == "utf_8_sig" ): iterator = CustomNewlineIterator(f, newline) else: iterator = f for line in iterator: if is_quoting and line.count(quotechar) % 2: outside_quotes = not outside_quotes if outside_quotes: rows_read += 1 if rows_read >= nrows: break if isinstance(iterator, CustomNewlineIterator): iterator.seek() # case when EOF if not outside_quotes: rows_read += 1 return outside_quotes, rows_read @classmethod def compute_newline(cls, file_like, encoding, quotechar): """ Compute byte or sequence of bytes indicating line endings. Parameters ---------- file_like : file-like object File handle that should be used for line endings computing. encoding : str Encoding of `file_like`. quotechar : str Quotechar used for parsing `file-like`. Returns ------- bytes line endings """ newline = None if encoding is None: return newline, quotechar.encode("UTF-8") quotechar = quotechar.encode(encoding) encoding = encoding.replace("-", "_") if ( "utf" in encoding and "8" not in encoding or encoding == "unicode_escape" or encoding == "utf_8_sig" ): # trigger for computing f.newlines file_like.readline() # in bytes newline = file_like.newlines.encode(encoding) boms = () if encoding == "utf_8_sig": boms = (codecs.BOM_UTF8,) elif "16" in encoding: boms = (codecs.BOM_UTF16_BE, codecs.BOM_UTF16_LE) elif "32" in encoding: boms = (codecs.BOM_UTF32_BE, codecs.BOM_UTF32_LE) for bom in boms: if newline.startswith(bom): bom_len = len(bom) newline = newline[bom_len:] quotechar = quotechar[bom_len:] break return newline, quotechar # _read helper functions @classmethod def rows_skipper_builder( cls, f, quotechar, is_quoting, encoding=None, newline=None ): """ Build object for skipping passed number of lines. Parameters ---------- f : file-like object File handle that should be used for offset movement. quotechar : bytes Indicate quote in a file. is_quoting : bool Whether or not to consider quotes. encoding : str, optional Encoding of `f`. newline : bytes, optional Byte or sequence of bytes indicating line endings. Returns ------- object skipper object. """ def skipper(n): if n == 0 or n is None: return 0 else: return cls._read_rows( f, quotechar=quotechar, is_quoting=is_quoting, nrows=n, encoding=encoding, newline=newline, )[1] return skipper @classmethod def _define_header_size( cls, header: Union[int, Sequence[int], str, None] = "infer", names: Optional[Sequence] = lib.no_default, ) -> int: """ Define the number of rows that are used by header. Parameters ---------- header : int, list of int or str, default: "infer" Original `header` parameter of `read_csv` function. names : array-like, optional Original names parameter of `read_csv` function. Returns ------- header_size : int The number of rows that are used by header. """ header_size = 0 if header == "infer" and names in [lib.no_default, None]: header_size += 1 elif isinstance(header, int): header_size += header + 1 elif hasattr(header, "__iter__") and not isinstance(header, str): header_size += max(header) + 1 return header_size @classmethod def _define_metadata( cls, df: pandas.DataFrame, column_names: ColumnNamesTypes, ) -> Tuple[list, int]: """ Define partitioning metadata. Parameters ---------- df : pandas.DataFrame The DataFrame to split. column_names : ColumnNamesTypes Column names of df. Returns ------- column_widths : list Column width to use during new frame creation (number of columns for each partition). num_splits : int The maximum number of splits to separate the DataFrame into. """ # This is the number of splits for the columns num_splits = min(len(column_names) or 1, NPartitions.get()) column_chunksize = compute_chunksize(df.shape[1], num_splits) if column_chunksize > len(column_names): column_widths = [len(column_names)] # This prevents us from unnecessarily serializing a bunch of empty # objects. num_splits = 1 else: # split columns into chunks with maximal size column_chunksize, for example # if num_splits == 4, len(column_names) == 80 and column_chunksize == 32, # column_widths will be [32, 32, 16, 0] column_widths = [ column_chunksize if len(column_names) > (column_chunksize * (i + 1)) else 0 if len(column_names) < (column_chunksize * i) else len(column_names) - (column_chunksize * i) for i in range(num_splits) ] return column_widths, num_splits @classmethod def _launch_tasks(cls, splits: list, **partition_kwargs) -> Tuple[list, list, list]: """ Launch tasks to read partitions. Parameters ---------- splits : list List of tuples with partitions data, which defines parser task (start/end read bytes and etc.). **partition_kwargs : dict `kwargs` that should be passed to the parser function. Returns ------- partition_ids : list array with references to the partitions data. index_ids : list array with references to the partitions index objects. dtypes_ids : list array with references to the partitions dtypes objects. """ partition_ids = [None] * len(splits) index_ids = [None] * len(splits) dtypes_ids = [None] * len(splits) for idx, (start, end) in enumerate(splits): partition_kwargs.update({"start": start, "end": end}) *partition_ids[idx], index_ids[idx], dtypes_ids[idx] = cls.deploy( cls.parse, num_returns=partition_kwargs.get("num_splits") + 2, **partition_kwargs, ) return partition_ids, index_ids, dtypes_ids @classmethod def check_parameters_support( cls, filepath_or_buffer, read_kwargs: dict, skiprows_md: Union[Sequence, callable, int], header_size: int, ) -> bool: """ Check support of only general parameters of `read_*` function. Parameters ---------- filepath_or_buffer : str, path object or file-like object `filepath_or_buffer` parameter of `read_*` function. read_kwargs : dict Parameters of `read_*` function. skiprows_md : int, array or callable `skiprows` parameter modified for easier handling by Modin. header_size : int Number of rows that are used by header. Returns ------- bool Whether passed parameters are supported or not. """ skiprows = read_kwargs.get("skiprows") if isinstance(filepath_or_buffer, str): if not cls.file_exists(filepath_or_buffer): return False elif not cls.pathlib_or_pypath(filepath_or_buffer): return False if read_kwargs["chunksize"] is not None: return False skiprows_supported = True if is_list_like(skiprows_md) and skiprows_md[0] < header_size: skiprows_supported = False elif callable(skiprows): # check if `skiprows` callable gives True for any of header indices is_intersection = any( cls._get_skip_mask(pandas.RangeIndex(header_size), skiprows) ) if is_intersection: skiprows_supported = False if not skiprows_supported: ErrorMessage.single_warning( "Values of `header` and `skiprows` parameters have intersections. " + "This case is unsupported by Modin, so pandas implementation will be used" ) return False return True @classmethod @_inherit_docstrings(pandas.io.parsers.base_parser.ParserBase._validate_usecols_arg) def _validate_usecols_arg(cls, usecols): msg = ( "'usecols' must either be list-like of all strings, all unicode, " + "all integers or a callable." ) if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None @classmethod def _manage_skiprows_parameter( cls, skiprows: Union[int, Sequence[int], Callable, None] = None, header_size: int = 0, ) -> Tuple[Union[int, Sequence, Callable], bool, int]: """ Manage `skiprows` parameter of read_csv and read_fwf functions. Change `skiprows` parameter in the way Modin could more optimally process it. `csv_dispatcher` and `fwf_dispatcher` have two mechanisms of rows skipping: 1) During file partitioning (setting of file limits that should be read by each partition) exact rows can be excluded from partitioning scope, thus they won't be read at all and can be considered as skipped. This is the most effective way of rows skipping (since it doesn't require any actual data reading and postprocessing), but in this case `skiprows` parameter can be an integer only. When it possible Modin always uses this approach by setting of `skiprows_partitioning` return value. 2) Rows for skipping can be dropped after full dataset import. This is more expensive way since it requires extra IO work and postprocessing afterwards, but `skiprows` parameter can be of any non-integer type supported by any pandas read function. These rows is specified by setting of `skiprows_md` return value. In some cases, if `skiprows` is uniformly distributed array (e.g. [1,2,3]), `skiprows` can be "squashed" and represented as integer to make a fastpath. If there is a gap between the first row for skipping and the last line of the header (that will be skipped too), then assign to read this gap first (assign the first partition to read these rows be setting of `pre_reading` return value). See `Examples` section for details. Parameters ---------- skiprows : int, array or callable, optional Original `skiprows` parameter of any pandas read function. header_size : int, default: 0 Number of rows that are used by header. Returns ------- skiprows_md : int, array or callable Updated skiprows parameter. If `skiprows` is an array, this array will be sorted. Also parameter will be aligned to actual data in the `query_compiler` (which, for example, doesn't contain header rows) pre_reading : int The number of rows that should be read before data file splitting for further reading (the number of rows for the first partition). skiprows_partitioning : int The number of rows that should be skipped virtually (skipped during data file partitioning). Examples -------- Let's consider case when `header`="infer" and `skiprows`=[3,4,5]. In this specific case fastpath can be done since `skiprows` is uniformly distributed array, so we can "squash" it to integer and set `skiprows_partitioning`=3. But if no additional action will be done, these three rows will be skipped right after header line, that corresponds to `skiprows`=[1,2,3]. Now, to avoid this discrepancy, we need to assign the first partition to read data between header line and the first row for skipping by setting of `pre_reading` parameter, so setting `pre_reading`=2. During data file partitiong, these lines will be assigned for reading for the first partition, and then file position will be set at the beginning of rows that should be skipped by `skiprows_partitioning`. After skipping of these rows, the rest data will be divided between the rest of partitions, see rows assignement below: 0 - header line (skip during partitioning) 1 - pre_reading (assign to read by the first partition) 2 - pre_reading (assign to read by the first partition) 3 - skiprows_partitioning (skip during partitioning) 4 - skiprows_partitioning (skip during partitioning) 5 - skiprows_partitioning (skip during partitioning) 6 - data to partition (divide between the rest of partitions) 7 - data to partition (divide between the rest of partitions) """ pre_reading = skiprows_partitioning = skiprows_md = 0 if isinstance(skiprows, int): skiprows_partitioning = skiprows elif is_list_like(skiprows): skiprows_md = np.sort(skiprows) if np.all(np.diff(skiprows_md) == 1): # `skiprows` is uniformly distributed array. pre_reading = ( skiprows_md[0] - header_size if skiprows_md[0] > header_size else 0 ) skiprows_partitioning = len(skiprows_md) skiprows_md = 0 elif skiprows_md[0] > header_size: skiprows_md = skiprows_md - header_size elif callable(skiprows): def skiprows_func(x): return skiprows(x + header_size) skiprows_md = skiprows_func return skiprows_md, pre_reading, skiprows_partitioning @classmethod def _define_index( cls, index_ids: list, index_name: str, ) -> Tuple[IndexColType, list]: """ Compute the resulting DataFrame index and index lengths for each of partitions. Parameters ---------- index_ids : list Array with references to the partitions index objects. index_name : str Name that should be assigned to the index if `index_col` is not provided. Returns ------- new_index : IndexColType Index that should be passed to the new_frame constructor. row_lengths : list Partitions rows lengths. """ index_objs = cls.materialize(index_ids) if len(index_objs) == 0 or isinstance(index_objs[0], int): row_lengths = index_objs new_index = pandas.RangeIndex(sum(index_objs)) else: row_lengths = [len(o) for o in index_objs] new_index = index_objs[0].append(index_objs[1:]) new_index.name = index_name return new_index, row_lengths @classmethod def _get_new_qc( cls, partition_ids: list, index_ids: list, dtypes_ids: list, index_col: IndexColType, index_name: str, column_widths: list, column_names: ColumnNamesTypes, skiprows_md: Union[Sequence, callable, None] = None, header_size: int = None, **kwargs, ): """ Get new query compiler from data received from workers. Parameters ---------- partition_ids : list Array with references to the partitions data. index_ids : list Array with references to the partitions index objects. dtypes_ids : list Array with references to the partitions dtypes objects. index_col : IndexColType `index_col` parameter of `read_csv` function. index_name : str Name that should be assigned to the index if `index_col` is not provided. column_widths : list Number of columns in each partition. column_names : ColumnNamesTypes Array with columns names. skiprows_md : array-like or callable, optional Specifies rows to skip. header_size : int, default: 0 Number of rows, that occupied by header. **kwargs : dict Parameters of `read_csv` function needed for postprocessing. Returns ------- new_query_compiler : BaseQueryCompiler New query compiler, created from `new_frame`. """ new_index, row_lengths = cls._define_index(index_ids, index_name) # Compute dtypes by collecting and combining all of the partition dtypes. The # reported dtypes from differing rows can be different based on the inference in # the limited data seen by each worker. We use pandas to compute the exact dtype # over the whole column for each column. The index is set below. dtypes = cls.get_dtypes(dtypes_ids) if len(dtypes_ids) > 0 else None # Compose modin partitions from `partition_ids` partition_ids = cls.build_partition(partition_ids, row_lengths, column_widths) # Set the index for the dtypes to the column names if isinstance(dtypes, pandas.Series): dtypes.index = column_names else: dtypes = pandas.Series(dtypes, index=column_names) new_frame = cls.frame_cls( partition_ids, new_index, column_names, row_lengths, column_widths, dtypes=dtypes, ) new_query_compiler = cls.query_compiler_cls(new_frame) skipfooter = kwargs.get("skipfooter", None) if skipfooter: new_query_compiler = new_query_compiler.drop( new_query_compiler.index[-skipfooter:] ) if skiprows_md is not None: # skip rows that passed as array or callable nrows = kwargs.get("nrows", None) index_range = pandas.RangeIndex(len(new_query_compiler.index)) if is_list_like(skiprows_md): new_query_compiler = new_query_compiler.view( index=index_range.delete(skiprows_md) ) elif callable(skiprows_md): skip_mask = cls._get_skip_mask(index_range, skiprows_md) if not isinstance(skip_mask, np.ndarray): skip_mask = skip_mask.to_numpy("bool") view_idx = index_range[~skip_mask] new_query_compiler = new_query_compiler.view(index=view_idx) else: raise TypeError( f"Not acceptable type of `skiprows` parameter: {type(skiprows_md)}" ) if not isinstance(new_query_compiler.index, pandas.MultiIndex): new_query_compiler = new_query_compiler.reset_index(drop=True) if nrows: new_query_compiler = new_query_compiler.view( pandas.RangeIndex(len(new_query_compiler.index))[:nrows] ) if index_col is None: new_query_compiler._modin_frame.synchronize_labels(axis=0) return new_query_compiler @classmethod def _read(cls, filepath_or_buffer, **kwargs): """ Read data from `filepath_or_buffer` according to `kwargs` parameters. Used in `read_csv` and `read_fwf` Modin implementations. Parameters ---------- filepath_or_buffer : str, path object or file-like object `filepath_or_buffer` parameter of read functions. **kwargs : dict Parameters of read functions. Returns ------- new_query_compiler : BaseQueryCompiler Query compiler with imported data for further processing. """ filepath_or_buffer_md = ( cls.get_path(filepath_or_buffer) if isinstance(filepath_or_buffer, str) else cls.get_path_or_buffer(filepath_or_buffer) ) compression_infered = cls.infer_compression( filepath_or_buffer, kwargs["compression"] ) # Getting frequently used kwargs; # They should be defined in higher level names = kwargs["names"] index_col = kwargs["index_col"] encoding = kwargs["encoding"] skiprows = kwargs["skiprows"] header = kwargs["header"] # Define header size for further skipping (Header can be skipped because header # information will be obtained further from empty_df, so no need to handle it # by workers) header_size = cls._define_header_size( header, names, ) ( skiprows_md, pre_reading, skiprows_partitioning, ) = cls._manage_skiprows_parameter(skiprows, header_size) should_handle_skiprows = skiprows_md is not None and not isinstance( skiprows_md, int ) use_modin_impl = cls.check_parameters_support( filepath_or_buffer, kwargs, skiprows_md, header_size, ) if not use_modin_impl: return cls.single_worker_read( filepath_or_buffer, callback=cls.read_callback, **kwargs ) is_quoting = kwargs["quoting"] != QUOTE_NONE # In these cases we should pass additional metadata # to the workers to match pandas output pass_names = names in [None, lib.no_default] and ( skiprows is not None or kwargs["skipfooter"] != 0 ) pd_df_metadata = cls.read_callback( filepath_or_buffer, **dict(kwargs, nrows=1, skipfooter=0, index_col=index_col), ) column_names = pd_df_metadata.columns column_widths, num_splits = cls._define_metadata(pd_df_metadata, column_names) # kwargs that will be passed to the workers partition_kwargs = dict( kwargs, fname=filepath_or_buffer_md, num_splits=num_splits, header_size=header_size if not pass_names else 0, names=names if not pass_names else column_names, header=header if not pass_names else "infer", skipfooter=0, skiprows=None, nrows=None, compression=compression_infered, ) with OpenFile(filepath_or_buffer_md, "rb", compression_infered) as f: old_pos = f.tell() fio = io.TextIOWrapper(f, encoding=encoding, newline="") newline, quotechar = cls.compute_newline( fio, encoding, kwargs.get("quotechar", '"') ) f.seek(old_pos) splits = cls.partitioned_file( f, num_partitions=NPartitions.get(), nrows=kwargs["nrows"] if not should_handle_skiprows else None, skiprows=skiprows_partitioning, quotechar=quotechar, is_quoting=is_quoting, encoding=encoding, newline=newline, header_size=header_size, pre_reading=pre_reading, ) partition_ids, index_ids, dtypes_ids = cls._launch_tasks( splits, callback=cls.read_callback, **partition_kwargs ) new_query_compiler = cls._get_new_qc( partition_ids=partition_ids, index_ids=index_ids, dtypes_ids=dtypes_ids, index_col=index_col, index_name=pd_df_metadata.index.name, column_widths=column_widths, column_names=column_names, skiprows_md=skiprows_md if should_handle_skiprows else None, header_size=header_size, skipfooter=kwargs["skipfooter"], parse_dates=kwargs["parse_dates"], nrows=kwargs["nrows"] if should_handle_skiprows else None, ) return new_query_compiler @classmethod def _get_skip_mask(cls, rows_index: pandas.Index, skiprows: Callable): """ Get mask of skipped by callable `skiprows` rows. Parameters ---------- rows_index : pandas.Index Rows index to get mask for. skiprows : Callable Callable to check whether row index should be skipped. Returns ------- pandas.Index """ try: # direct `skiprows` call is more efficient than using of # map method, but in some cases it can work incorrectly, e.g. # when `skiprows` contains `in` operator mask = skiprows(rows_index) assert
is_list_like(mask)
pandas.core.dtypes.common.is_list_like
#!/usr/bin/env python # coding: utf-8 from numbers import Number from typing import Dict from typing import Callable from typing import Optional from typing import Union from dataclasses import dataclass, fields import numpy as np import pandas as pd from scipy.stats import chi2_contingency from evidently import ColumnMapping from evidently.analyzers.base_analyzer import Analyzer from evidently.analyzers.base_analyzer import BaseAnalyzerResult from evidently.analyzers.utils import DatasetColumns from evidently.analyzers.utils import process_columns @dataclass class FeatureQualityStats: """Class for all features data quality metrics store. A type of the feature is stored in `feature_type` field. Concrete stat kit depends on the feature type. Is a metric is not applicable - leave `None` value for it. Metrics for all feature types: - feature type - cat for category, num for numeric, datetime for datetime features - count - quantity of a meaningful values (do not take into account NaN values) - missing_count - quantity of meaningless (NaN) values - missing_percentage - the percentage of the missed values - unique_count - quantity of unique values - unique_percentage - the percentage of the unique values - max - maximum value (not applicable for category features) - min - minimum value (not applicable for category features) - most_common_value - the most common value in the feature values - most_common_value_percentage - the percentage of the most common value - most_common_not_null_value - if `most_common_value` equals NaN - the next most common value. Otherwise - None - most_common_not_null_value_percentage - the percentage of `most_common_not_null_value` if it is defined. If `most_common_not_null_value` is not defined, equals None too. Metrics for numeric features only: - infinite_count - quantity infinite values (for numeric features only) - infinite_percentage - the percentage of infinite values (for numeric features only) - percentile_25 - 25% percentile for meaningful values - percentile_50 - 50% percentile for meaningful values - percentile_75 - 75% percentile for meaningful values - mean - the sum of the meaningful values divided by the number of the meaningful values - std - standard deviation of the values Metrics for category features only: - new_in_current_values_count - quantity of new values in the current dataset after the reference Defined for reference dataset only. - new_in_current_values_count - quantity of values in the reference dataset that not presented in the current Defined for reference dataset only. """ # feature type - cat for category, num for numeric, datetime for datetime features feature_type: str # quantity on count: int = 0 infinite_count: Optional[int] = None infinite_percentage: Optional[float] = None missing_count: Optional[int] = None missing_percentage: Optional[float] = None unique_count: Optional[int] = None unique_percentage: Optional[float] = None percentile_25: Optional[float] = None percentile_50: Optional[float] = None percentile_75: Optional[float] = None max: Optional[Union[Number, str]] = None min: Optional[Union[Number, str]] = None mean: Optional[float] = None most_common_value: Optional[Union[Number, str]] = None most_common_value_percentage: Optional[float] = None std: Optional[float] = None most_common_not_null_value: Optional[Union[Number, str]] = None most_common_not_null_value_percentage: Optional[float] = None new_in_current_values_count: Optional[int] = None unused_in_current_values_count: Optional[int] = None def is_datetime(self): """Checks that the object store stats for a datetime feature""" return self.feature_type == "datetime" def is_numeric(self): """Checks that the object store stats for a numeric feature""" return self.feature_type == "num" def is_category(self): """Checks that the object store stats for a category feature""" return self.feature_type == "cat" def as_dict(self): return {field.name: getattr(self, field.name) for field in fields(FeatureQualityStats)} def __eq__(self, other): for field in fields(FeatureQualityStats): other_field_value = getattr(other, field.name) self_field_value = getattr(self, field.name) if pd.isnull(other_field_value) and pd.isnull(self_field_value): continue if not other_field_value == self_field_value: return False return True @dataclass class DataQualityStats: num_features_stats: Optional[Dict[str, FeatureQualityStats]] = None cat_features_stats: Optional[Dict[str, FeatureQualityStats]] = None datetime_features_stats: Optional[Dict[str, FeatureQualityStats]] = None target_stats: Optional[Dict[str, FeatureQualityStats]] = None def get_all_features(self) -> Dict[str, FeatureQualityStats]: result = {} for features in ( self.target_stats, self.datetime_features_stats, self.cat_features_stats, self.num_features_stats, ): if features is not None: result.update(features) return result def __getitem__(self, item) -> FeatureQualityStats: for features in ( self.target_stats, self.datetime_features_stats, self.cat_features_stats, self.num_features_stats, ): if features is not None and item in features: return features[item] raise KeyError(item) @dataclass class DataQualityAnalyzerResults(BaseAnalyzerResult): """Class for all results of data quality calculations""" reference_features_stats: DataQualityStats reference_correlations: Dict[str, pd.DataFrame] current_features_stats: Optional[DataQualityStats] = None current_correlations: Optional[Dict[str, pd.DataFrame]] = None class DataQualityAnalyzer(Analyzer): """Data quality analyzer provides detailed feature statistics and feature behavior overview """ @staticmethod def get_results(analyzer_results) -> DataQualityAnalyzerResults: return analyzer_results[DataQualityAnalyzer] def _calculate_stats(self, dataset: pd.DataFrame, columns: DatasetColumns, task: Optional[str]) -> DataQualityStats: result = DataQualityStats() result.num_features_stats = { feature_name: self._get_features_stats(dataset[feature_name], feature_type="num") for feature_name in columns.num_feature_names } result.cat_features_stats = { feature_name: self._get_features_stats(dataset[feature_name], feature_type="cat") for feature_name in columns.cat_feature_names } if columns.utility_columns.date: date_list = columns.datetime_feature_names + [columns.utility_columns.date] else: date_list = columns.datetime_feature_names result.datetime_features_stats = { feature_name: self._get_features_stats(dataset[feature_name], feature_type="datetime") for feature_name in date_list } target_name = columns.utility_columns.target if target_name is not None and target_name in dataset: result.target_stats = {} if task == "classification": result.target_stats[target_name] = self._get_features_stats(dataset[target_name], feature_type="cat") else: result.target_stats[target_name] = self._get_features_stats(dataset[target_name], feature_type="num") return result @staticmethod def _recognize_task(target_name: str, reference_data: pd.DataFrame) -> str: """Try to guess about the target type: if the target has a numeric type and number of unique values > 5: task == ‘regression’ in all other cases task == ‘classification’. Args: target_name: name of target column. reference_data: usually the data which you used in training. Returns: Task parameter. """ if
pd.api.types.is_numeric_dtype(reference_data[target_name])
pandas.api.types.is_numeric_dtype
import os import pandas as pd from datetime import datetime, timedelta from embrace import get_date_from_garmin import collections folders = ['01-09-TR1', '10-20-TR2', '21-30-TR3'] def timestamp2datetime2minutes(file_path): df =
pd.read_csv(file_path, header=1)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # =========================================================================== # # Project : ML Studio # # Version : 0.1.14 # # File : test_objectives.py # # Python : 3.8.3 # # -------------------------------------------------------------------------- # # Author : <NAME> # # Company : DecisionScients # # Email : <EMAIL> # # URL : https://github.com/decisionscients/MLStudio # # -------------------------------------------------------------------------- # # Created : Monday, June 15th 2020, 3:45:31 pm # # Last Modified : Monday, June 15th 2020, 3:45:31 pm # # Modified By : <NAME> (<EMAIL>) # # -------------------------------------------------------------------------- # # License : BSD # # Copyright (c) 2020 DecisionScients # # =========================================================================== # #%% import math import os from pathlib import Path import sys import glob import numpy as np import pandas as pd import pytest from pytest import mark from scipy.special import softmax from sklearn.metrics import mean_squared_error from sklearn.datasets import make_regression, make_classification from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import LabelBinarizer homedir = str(Path(__file__).parents[2]) datadir = os.path.join(homedir, "tests\\test_data") sys.path.append(homedir) sys.path.append(datadir) from mlstudio.utils.data_manager import StandardScaler from mlstudio.supervised.algorithms.optimization.services.loss import Quadratic, CrossEntropy from mlstudio.supervised.algorithms.optimization.services.loss import CategoricalCrossEntropy from mlstudio.supervised.algorithms.optimization.services.regularizers import L1, L2, L1_L2 # -------------------------------------------------------------------------- # def create_regression_prediction(y=None, X=None, theta=None): """Creates vector of predictions based upon target plus random noise.""" noise = np.random.normal(0,1, size=y.shape) y_pred = np.add(y,noise) return y_pred def create_classification_prediction(y=None, X=None, theta=None): """Creates classification prediction as probability [0,1]""" return np.random.uniform(0,1, size=y.shape) def create_multiclass_prediction(y=None, X=None, theta=None): """Creates multiclassification prediction.""" z = X.dot(theta) return softmax(z, axis=1) def make_regression_data(): X, y = make_regression(n_samples=100, n_features=5, random_state=5) scaler = StandardScaler() X = scaler.fit_transform(X) return X, y def make_classification_data(): X, y, = make_classification(n_samples=100, n_features=5, random_state=5) scaler = StandardScaler() X = scaler.fit_transform(X) return X, y def make_multiclass_data(): X, y, = make_classification(n_samples=100, n_features=5, n_classes=4, n_informative=3, random_state=5) enc = LabelBinarizer() y = enc.fit_transform(y) scaler = StandardScaler() X = scaler.fit_transform(X) print(X.shape) print(y.shape) return X, y def create_data(): # Designate filenames and create filepaths mse_filename = "test_objective_cost_functions_mse.xlsx" xe_filename = "test_objective_cost_functions_xe.xlsx" cxe_filename = "test_objective_cost_functions_cxe.xlsx" mse_filepath = os.path.join(datadir, mse_filename) xe_filepath = os.path.join(datadir, xe_filename) cxe_filepath = os.path.join(datadir, cxe_filename) # Obtain data X_reg, y_reg = make_regression_data() X_bin, y_bin = make_classification_data() X_multi, y_multi = make_multiclass_data() # Create parameters regression_theta = np.random.default_rng().uniform(low=0, high=1, size=X_reg.shape[1]) classification_theta = np.random.default_rng().uniform(low=0, high=1, size=X_bin.shape[1]) multiclass_theta = np.random.default_rng().uniform(low=0, high=1, size=(X_multi.shape[1],y_multi.shape[1])) # Create packages regression_pack = {'locked': True, 'filepath': mse_filepath, 'X':X_reg, 'y': y_reg, 'theta': regression_theta, 'predict': create_regression_prediction} classification_pack = {'locked': True, 'filepath': xe_filepath, 'X':X_bin, 'y': y_bin, 'theta': classification_theta, 'predict': create_classification_prediction} multiclass_pack = {'locked': True, 'filepath': cxe_filepath, 'X':X_multi, 'y': y_multi, 'theta': multiclass_theta, 'predict': create_multiclass_prediction} data_packs = [regression_pack, classification_pack, multiclass_pack] # Write to files for data in data_packs: if data['locked']: pass else: X =
pd.DataFrame(data=data['X'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: oustry """ from FDFDRadiowaveSimulator import FDFDRadiowaveSimulator from pandas import DataFrame,read_csv import time def FirstExample(): """ First example of use of the FDFDRadiowaveSimulator class. Generate a .png file Returns ------- None. """ mapname = "MAP4" sim = FDFDRadiowaveSimulator(mapname) #Reading map parameters param = read_csv("sources/"+mapname+".csv") sim.set_parameters(float(param["dx"]),0.5*float(param["lambda"]),float(param["opt_ind_walls"]),float(param["alpha_walls"])) #Generates a bitmap in the output folder describing the field Psi = sim.solve(350,125,True) def Generate_Gain_Matrix(mapname,nodes_index,wavelength,wlindex): """ Generates the gain matrix associated to a map and a set of sources Parameters ---------- mapname : string The map name. nodes_index : int File index of the nodes positions. wavelength: float, in meters Returns ------- None. """ #Simulator sim = FDFDRadiowaveSimulator(mapname) #Reading map parameters in the corresponding files (in the "sources" folder) param = read_csv("sources/"+mapname+".csv") sim.set_parameters(float(param["dx"]),wavelength,float(param["opt_ind_walls"]),float(param["alpha_walls"])) #Reading clients and candidates positions in the corresponding files (in the "sources" folder) dataframe_candidates,dataframe_clients = read_csv("sources/"+mapname+"_CA_"+str(nodes_index)+".csv"),read_csv("sources/"+mapname+"_CL_"+str(nodes_index)+".csv") list_candidates = [(dataframe_candidates['X'][i],dataframe_candidates['Y'][i]) for i in range(len(dataframe_candidates))] list_clients = [(dataframe_clients['X'][i],dataframe_clients['Y'][i]) for i in range(len(dataframe_clients))] floor = [dataframe_clients['Floor'][i] for i in range(len(dataframe_clients))] + [dataframe_candidates['Floor'][i] for i in range(len(dataframe_candidates))] #Computing 2D gain matrix t0 = time.time() gain = sim.gain_matrix(list_clients + list_candidates) total_sim_time = time.time()-t0 print("\n Total simulation time = {0}s".format(total_sim_time)) sim.export_stats() #Applying floor attenuation factor (2.5D method) t0 = time.time() att_gain = float(param["g"]) for i in range(len(gain)): for j in range(len(gain)): d=abs(floor[i]-floor[j]) gain[i,j] = gain[i,j]*(att_gain**d) total_proj_time = time.time()-t0 print("\n Total projection time = {0}s".format(total_proj_time)) #Storing the gain matrix G =
DataFrame(gain)
pandas.DataFrame
__author__ = '<NAME>' __email__ = '<EMAIL>' # todo: Clean this up! Make it into a real module import os, sys, itertools import networkx as nx import pandas as pd from statsmodels.tsa.stattools import ccf import matplotlib.pyplot as plt import numpy as np from collections import Counter import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['font.sans-serif'] = 'Arial' from scipy.stats import pearsonr from sklearn.metrics.cluster import entropy from sklearn.metrics.cluster import expected_mutual_information from sklearn.utils.validation import check_array from math import log from Swing.util.Evaluator import Evaluator def get_experiment_list(filename, timepoints=None, perturbs=None, time_col='Time'): # load files timecourse = pd.read_csv(filename, sep="\t") if timepoints is None: timepoints = len(set(timecourse[time_col])) if perturbs is None: perturbs = len(timecourse)/timepoints if perturbs.is_integer(): perturbs = int(perturbs) else: raise ValueError("Uneven number of timepoints between perturbation experiments") # divide into list of dataframes experiments = [] for i in range(0, timepoints * perturbs - timepoints + 1, timepoints): experiments.append(timecourse.ix[i:i + timepoints - 1]) # reformat for idx, exp in enumerate(experiments): exp = exp.set_index(time_col) experiments[idx] = exp return experiments def xcorr_experiments(experiments, gene_axis=1): """ Cross correlate the g :param experiments: list list of dataframes :param gene_axis: int axis corresponding to each gene. 0 for rows, 1 for columns :return: """ return np.array([cc_experiment(experiment.values.T) if gene_axis == 1 else cc_experiment(experiment.values) for experiment in experiments]) def cc_experiment(experiment): """ For one experiment. x should be n rows (genes) by m columns (timepoints) :param experiment: :return: """ ccf_array = np.zeros((experiment.shape[0], experiment.shape[0], experiment.shape[1])) for ii, static in enumerate(experiment): for jj, moving in enumerate(experiment): if ii == jj: unbiased = True else: unbiased = False ccf_array[ii][jj] = ccf(static, moving, unbiased=unbiased) return ccf_array def get_xcorr_indices(diff_ts, lag, tolerance): pair_list = [] # get all pairs targets = np.array(np.where((diff_ts >= lag-tolerance ) & (diff_ts <= lag+tolerance))) n_ind = targets.shape[1] pair_list = [tuple(targets[:,x]) for x in range(n_ind)] # only keep tuples where the parent index is greater than the child if lag != 0: pair_list = [ x for x in pair_list if x[1] < x[2]] p_pair_list = [(x[0],x[1]) for x in pair_list] c_pair_list = [(x[0],x[2]) for x in pair_list] return(p_pair_list,c_pair_list) def get_pairwise_xcorr(parent,child,experiment,time_map,lag,tolerance,rc): ts_shape = time_map.shape[1]-1 ts = time_map.iloc[:,:ts_shape] ts = ts.values all_ps_values = np.zeros(rc) all_cs_values = np.zeros(rc) # make an array of differences diff_ts = np.abs(ts[:,:,None] - ts[:,None,:]) # get all indices with the same difference ps_values = np.zeros(rc) cs_values = np.zeros(rc) ps = [x[parent].values for x in experiment] cs = [x[child].values for x in experiment] all_ps_values = np.vstack(ps) all_cs_values = np.vstack(cs) p_idx,c_idx = get_xcorr_indices(diff_ts, lag, tolerance) ps_values = [all_ps_values[x] for x in p_idx] cs_values = [all_cs_values[x] for x in c_idx] rsq, pval = pearsonr(ps_values,cs_values) #c_xy = np.histogram2d(ps_values, cs_values, 10)[0] #n_samples = len(ps_values) #mi = my_mutual_info_score(n_samples, x_val = ps_values, y_val = cs_values, labels_true=None, labels_pred=None, contingency=c_xy) #print(mi, parent, child, lag) return(rsq,pval) def my_mutual_info_score(n_samples, x_val, y_val, labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings. The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Read more in the :ref:`User Guide <mutual_info_score>`. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency : {None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi : float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred, sparse=True) else: contingency = check_array(contingency, accept_sparse=['csr', 'csc', 'coo'], dtype=[int, np.int32, np.int64]) if isinstance(contingency, np.ndarray): # For an array nzx, nzy = np.nonzero(contingency) nz_val = contingency[nzx, nzy] elif sp.issparse(contingency): # For a sparse matrix nzx, nzy, nz_val = sp.find(contingency) else: raise ValueError("Unsupported type for 'contingency': %s" % type(contingency)) contingency_sum = contingency.sum() pi = np.ravel(contingency.sum(axis=1)) pj = np.ravel(contingency.sum(axis=0)) log_contingency_nm = np.log(nz_val) contingency_nm = nz_val / contingency_sum # Don't need to calculate the full outer product, just for non-zeroes outer = pi.take(nzx) * pj.take(nzy) log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) mi = mi.sum() emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(x_val), entropy(y_val) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def calc_edge_lag2(experiments,genes, signed_edge_list=None, tolerance = 8, rc = (23,6), mode=None): # load the interval file edges = signed_edge_list['regulator-target'] #initialize dataframe to return col, row = np.meshgrid(range(len(genes)), range(len(genes))) edge_lag = pd.DataFrame() edge_lag['parent'] = np.array(genes)[row.flatten()] edge_lag['child'] = np.array(genes)[col.flatten()] edge_lag['Edge'] = list(zip(edge_lag['parent'], edge_lag['child'])) lag_results = [] if mode is 'marbach': time_map = pd.read_csv('../../data/invitro/marbach_timesteps.tsv', sep='\t') rc = (23,6) lags = [0,5,10,20,30,40] tolerance = 3 else: time_map = pd.read_csv('../../data/invitro/omranian_timesteps.tsv', sep='\t') lags = [0,10,20,30,60,90] time_steps = time_map['Timestep'].tolist() for edge in edges: # Ignore self edges if edge[0] == edge[1]: continue tolerance = 8 c_list = [] for lag in lags: r,p = get_pairwise_xcorr(edge[0],edge[1],experiments,time_map,lag,tolerance,rc) c_list.append((lag,r,p)) sign = signed_edge_list[signed_edge_list['regulator-target'] == edge]['signs'].tolist() best_lag = min(c_list, key = lambda x: x[2]) if best_lag[2] > 0.05/len(edges): true_lag = np.nan else: true_lag = best_lag[0] lag_results.append({'Edge':edge, 'Lag':true_lag, 'Sign': sign, 'Lag_list': c_list}) lag_results = pd.DataFrame(lag_results) edge_lag = pd.merge(edge_lag, lag_results, how='outer', on='Edge') lag_results['parent'] = [x[0] for x in lag_results['Edge'].tolist()] lag_results['child'] = [x[1] for x in lag_results['Edge'].tolist()] return(lag_results, edge_lag) def calc_edge_lag(xcorr, genes, sc_frac=0.1, min_ccf=0.5, timestep=1, signed_edge_list=None, flat=True, return_raw=False): """ :param xcorr: 4d array 4 axes in order: experiments, parent, child, time :param genes: list :param sc_frac: float related filtering. see filter_ccfs :param min_ccf: float minimum cross correlation needed to call a lag :param timestep: int :param signed: dataframe can be a list of signed edges or none (default) maximize either negative or positive correlation depending on prior information :param flat: boolean true: return the mean lag for each edge false: return the list of all lags (for each exp) for each edge :return: """ e, p, c, t = xcorr.shape if signed_edge_list is not None: edges = signed_edge_list['regulator-target'] else: edges = itertools.product(genes, genes) lag_estimate = np.zeros((p,c)) sc_thresh = sc_frac * t #initialize dataframe to return col, row = np.meshgrid(range(len(genes)), range(len(genes))) edge_lag = pd.DataFrame() edge_lag['Parent'] = np.array(genes)[row.flatten()] edge_lag['Child'] = np.array(genes)[col.flatten()] edge_lag['Edge'] = list(zip(edge_lag['Parent'], edge_lag['Child'])) lag_results = [] for edge in edges: # Ignore self edges if edge[0] == edge[1]: continue p_idx = genes.index(edge[0]) c_idx = genes.index(edge[1]) if signed_edge_list is not None: sign = signed_edge_list[signed_edge_list['regulator-target'] == edge]['signs'].tolist()[0] # The ccf keeps the parent static and moves the child. Therefore the reversed xcorr would show the true lag reverse = xcorr[:, c_idx, p_idx] filtered = filter_ccfs(reverse, sc_thresh, min_ccf) if filtered.shape[0] > 0: # f, axarr = plt.subplots(1,2) # axarr[0].plot(reverse.T) # axarr[1].plot(filtered.T) # plt.show() # default setting if flat: if signed_edge_list is None: lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(np.abs(filtered), axis=1)))*timestep elif sign == '+': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(filtered, axis=1)))*timestep elif sign == '-': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmin(filtered, axis=1)))*timestep elif sign == '+-': lag_estimate[p_idx, c_idx] = float(np.mean(np.argmax(np.abs(filtered), axis=1)))*timestep edge_lag['Lag'] = lag_estimate.flatten() elif not flat: if sign == '+': lag = [float(x) for x in np.argmax(filtered, axis=1)]*timestep elif sign == '-': lag = [float(x) for x in np.argmin(filtered, axis=1)]*timestep elif sign == '+-': lag = [float(x) for x in np.argmax(np.abs(filtered), axis=1)]*timestep lag_results.append({'Edge':edge, 'Lag':lag, 'Raw_CCF': lag}) if not flat: lag_results = pd.DataFrame(lag_results) edge_lag =
pd.merge(edge_lag, lag_results, how='outer', on='Edge')
pandas.merge
# coding: utf-8 # In[1]: import pandas as pd import os import matplotlib.pyplot as plt import re import numpy as np import pandas as pd from scipy.stats import mode from nltk import skipgrams from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import itertools import lightgbm as lgb from lightgbm import LGBMClassifier from sklearn.model_selection import cross_val_score, RandomizedSearchCV from sklearn.metrics import accuracy_score from sklearn import model_selection, preprocessing, linear_model, naive_bayes, metrics, svm from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn import decomposition, ensemble from sklearn.pipeline import Pipeline from sklearn.multiclass import OneVsRestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.neighbors import KNeighborsClassifier from xgboost import XGBClassifier from rgf.sklearn import FastRGFClassifier from sklearn.model_selection import GridSearchCV from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) SEED = 42 join = os.path.join # In[68]: data =
pd.read_csv('Devex_train.csv', encoding="latin-1")
pandas.read_csv
"""Estimate direct damages to physical assets exposed to hazards """ import sys import os import pandas as pd import geopandas as gpd from shapely import wkb import numpy as np from analysis_utils import * from tqdm import tqdm tqdm.pandas() def main(config): incoming_data_path = config['paths']['incoming_data'] processed_data_path = config['paths']['data'] results_data_path = config['paths']['results'] country_attributes = [ { 'country': 'kenya', }, { 'country': 'tanzania', }, { 'country': 'uganda', }, { 'country': 'zambia', }, ] damage_data_path = os.path.join(processed_data_path, "damage_estimation_processing") asset_data_details = pd.read_csv(os.path.join(damage_data_path, "network_layers_hazard_intersections_details.csv")) for country in country_attributes: param_values = pd.read_csv(os.path.join(damage_data_path, f"{country['country']}_parameter_combinations.txt"), sep=" ") direct_damages_results = os.path.join(results_data_path, country["country"], "direct_damages") for asset_info in asset_data_details.itertuples(): asset_damages_results = os.path.join( results_data_path, country["country"], "direct_damages", f"{asset_info.asset_gpkg}_{asset_info.asset_layer}" ) for param in param_values.itertuples(): damage_file = os.path.join( asset_damages_results, f"{asset_info.asset_gpkg}_{asset_info.asset_layer}_direct_damages_parameter_set_{param.parameter_set}.csv" ) if os.path.isfile(damage_file) is True: expected_damages = [] df =
pd.read_csv(damage_file)
pandas.read_csv
"""Compare different GNSS SPV Where datasets Description: ------------ A dictionary with datasets is used as input for this writer. The keys of the dictionary are station names. Example: -------- from where import data from where import writers # Read a dataset dset = data.Dataset(rundate=rundate, tech=tech, stage=stage, dataset_name=name, dataset_id=dataset_id) # Write dataset writers.write_one('gnss_spv_comparison_report', dset=dset, do_report=False) """ # Standard library imports from typing import Any, Dict # External library imports import matplotlib.pyplot as plt import numpy as np import pandas as pd # Midgard imports from midgard.dev import plugins from midgard.plot.matplotlib_extension import plot # Where imports import where from where.lib import config from where.lib import log from where.writers._report import Report FIGURE_FORMAT = "png" FILE_NAME = __name__.split(".")[-1] @plugins.register def gnss_spv_comparison_report(dset: Dict[str, "Dataset"]) -> None: """Compare GNSS SPV datasets Args: dset: Dictionary with station name as keys and the belonging Dataset as value """ dset_first = dset[list(dset.keys())[0]] dset_first.vars["solution"] = config.tech.gnss_spv_comparison_report.solution.str.lower() # Generate figure directory to save figures generated for GNSS report figure_dir = config.files.path( "output_gnss_spv_comparison_report_figure", file_vars={**dset_first.vars, **dset_first.analysis} ) figure_dir.mkdir(parents=True, exist_ok=True) # Generate plots _, dfs_day, dfs_month = _generate_dataframes(dset) _plot_velocity_error(dfs_day, dfs_month, figure_dir, dset_first.vars) # Generate GNSS comparison report path = config.files.path("output_gnss_spv_comparison_report", file_vars={**dset_first.vars, **dset_first.analysis}) with config.files.open_path(path, create_dirs=True, mode="wt") as fid: rpt = Report( fid, rundate=dset_first.analysis["rundate"], path=path, description="Comparison of GNSS SPV analyses" ) rpt.title_page() _add_to_report(rpt, figure_dir, dfs_day, dfs_month, dset_first.vars) rpt.markdown_to_pdf() def _add_to_report( rpt: "Report", figure_dir: "pathlib.PosixPath", dfs_day: Dict[str, pd.core.frame.DataFrame], dfs_month: Dict[str, pd.core.frame.DataFrame], file_vars: Dict[str, Any], ) -> None: """Add figures and tables to report Args: rpt: Report object. figure_dir: Figure directory. dfs_day: Dictionary with fields as keys (e.g. 2d_vel, 3d_vel) and the belonging dataframe as value with DAILY samples of 95th percentile and stations as columns. dfs_month: Dictionary with fields as keys (e.g. 2d_vel, 3d_vel) and the belonging dataframe as value with MONTHLY samples of 95th percentile and stations as columns. file_vars: File variables used for file and plot title naming. """ for sample_name in ["Daily", "Monthly"]: rpt.add_text(f"\n# {sample_name} 95th percentile 2D and 3D solutions\n\n") if sample_name == "Daily": for field in dfs_day.keys(): dfs_day[field].index = dfs_day[field].index.strftime("%d-%m-%Y") rpt.add_text("Daily 95th percentile 2D velocity results in meter/second:") rpt.write_dataframe_to_markdown(dfs_day["2d_vel"], format="6.3f", statistic=True) rpt.add_text("Daily 95th percentile 3D velocity in meter/second:") rpt.write_dataframe_to_markdown(dfs_day["3d_vel"], format="6.3f", statistic=True) elif sample_name == "Monthly": rpt.add_text("Monthly 95th percentile 2D velocity results in meter/second:") rpt.write_dataframe_to_markdown(dfs_month["2d_vel"], format="6.3f") rpt.add_text("Monthly 95th percentile 3D velocity results in meter/second:") rpt.write_dataframe_to_markdown(dfs_month["3d_vel"], format="6.3f") # Add 2D and 3D velocity plots rpt.add_figure( f"{figure_dir}/plot_2d_vel_{sample_name.lower()}_{file_vars['date']}_{file_vars['solution'].lower()}.{FIGURE_FORMAT}", caption="95th percentile for 2D velocity.", clearpage=True, ) rpt.add_figure( f"{figure_dir}/plot_3d_vel_{sample_name.lower()}_{file_vars['date']}_{file_vars['solution'].lower()}.{FIGURE_FORMAT}", caption="95th percentile for 3D velocity.", clearpage=True, ) def _generate_dataframes(dset: Dict[str, "Dataset"]) -> Dict[str, pd.core.frame.DataFrame]: """Generate dataframe based on station datasets The dataframe for each station in dictionary "dfs" has following columns: east: East-coordinate in topocentric system north: North-coordinate in topocentric system up: Up-coordinate in topocentric system hpe: horizontal position error vpe: vertical position error Example for "dfs" dictionary: 'hons': time.gps 2d_vel 3d_vel 0 2019-03-01 00:00:00 0.301738 0.057244 1 2019-03-01 00:00:00 0.301738 0.057244 'krss': time.gps 2d_vel 3d_vel 0 2019-03-01 00:00:00 0.710014 0.186791 1 2019-03-01 00:00:00 0.710014 0.186791 Example for "dfs_day" dictionary: '2d_vel': nabf vegs hons krss time.gps 2019-03-01 1.368875 0.935687 1.136763 0.828754 2019-03-02 0.924839 0.728280 0.911677 0.854832 '3d_vel': nabf vegs hons krss time.gps 2019-03-01 1.715893 1.147265 1.600330 0.976541 2019-03-02 1.533437 1.307373 1.476295 1.136991 Example for "dfs_month" dictionary: '2d_vel': nabf vegs hons krss Mar-2019 1.186240 0.861718 1.095827 1.021354 Apr-2019 0.891947 0.850343 0.977908 0.971099 '3d_vel': nabf vegs hons krss Mar-2019 1.854684 1.291406 1.450466 1.225467 Apr-2019 1.964404 1.706507 1.687994 1.500742 Args: dset: Dictionary with station name as keys and the belonging Dataset as value Returns: Tuple with following entries: | Element | Description | |----------------------|--------------------------------------------------------------------------------------| | dfs | Dictionary with station name as keys and the belonging dataframe as value with | | | following dataframe columns: 2d_vel, 3d_vel | | dfs_day | Dictionary with fields as keys (e.g. 2d_vel, 3d_vel) and the belonging dataframe as | | | value with DAILY samples of 95th percentile and stations as columns. | | dfs_month | Dictionary with fields as keys (e.g. 2d_vel, 3d_vel) and the belonging dataframe as | | | value with MONTHLY samples of 95th percentile and stations as columns. | """ dsets = dset dfs = {} dfs_day = {"2d_vel": pd.DataFrame(), "3d_vel": pd.DataFrame()} dfs_month = {"2d_vel": pd.DataFrame(), "3d_vel": pd.DataFrame()} for station, dset in dsets.items(): if dset.num_obs == 0: log.warn(f"Dataset '{station}' is empty.") continue # Determine dataframe with 2d_vel and 3d_vel columns # TODO: How to ensure that GPS time scale is used? fields=["time.gps", ...] does not work longer. df = dset.as_dataframe(fields=["time", "2d_vel", "3d_vel"]) if df.empty: continue else: # Save data in dictionaries dfs.update({station: df}) # TODO This does not work anymore for Pandas version 1.0: df_day = df.set_index("time").resample("D", how=lambda x: np.nanpercentile(x, q=95)) df_day = df.set_index("time").resample("D").apply(lambda x: np.nanpercentile(x, q=95)) for field in dfs_day.keys(): if dfs_day[field].empty: dfs_day[field][station] = df_day[field] else: dfs_day[field] =
pd.concat([dfs_day[field], df_day[field]], axis=1)
pandas.concat
import os import json import pickle import sys import traceback import datetime as dt import numpy as np import pandas as pd import mlflow import mlflow.pytorch import torch from torch.utils.data import Dataset from MultVAE_Dataset import BasicHotelDataset from scipy import sparse import src.modules.letor_metrics as lm import argparse parser = argparse.ArgumentParser(description='Use MultVAE model to predict on validation set.') parser.add_argument('-m', '--model_folder', type = str, required=True, help='model_folder. should be a dir. Needs to be MultVAE class.', ) parser.add_argument('-n', '--model_run_id', type = str, required=True, help='model_run_id. should be the run_id of all the models in the model_folder', ) parser.add_argument('-e', '--max_epoch', type = int, required=True, help='max epoch, the last epoch that you want to validate towards', ) parser.add_argument('-d', '--dataset_pkl', nargs = '?', type = str, help='dataset pkl. Should be a user_to_queries.pkl. Check preprocessing.py for info on that structure', default ='/scratch/work/js11133/sad_data/processed/full/val/user_to_queries.pkl' ) parser.add_argument('-i', '--hotel_hash', nargs = '?', type = str, help='hotel_hash.json. Check make_hashes.py for info on the hash', default ='/scratch/work/js11133/sad_data/processed/hotel_hash.json') parser.add_argument('-u', '--user_hash', nargs = '?', type = str, help='user_hash.json. Check make_hashes.py for info on the hash', default ='/scratch/work/js11133/sad_data/processed/user_hash.json') parser.add_argument('-o', '--output_dir', nargs = '?', type = str, help='output directory where predictions will go', ) args = parser.parse_args() def get_single_query_interaction_vec(user_id_to_query_struct_dict,user_id,sr_id): return user_id_to_query_struct_dict[user_id][0][sr_id] def get_user_entire_interaction_vec(user_id_to_query_struct_dict,user_id): return user_id_to_query_struct_dict[user_id][1] def densify_sparse_vec(user_interaction_dict, hotel_length): sparse_dok = sparse.dok_matrix((1,hotel_length),dtype=np.float32) sparse_obs = sparse.dok_matrix((1,hotel_length),dtype=np.float32) for j in user_interaction_dict.keys(): sparse_dok[0,j] = user_interaction_dict[j] sparse_obs[0,j] = 1 return torch.tensor(sparse_dok.toarray()),torch.tensor(sparse_obs.toarray()) def val_metrics(model_folder, model_run_id, max_epoch, dataset_pkl_path , hotel_hash , user_hash , output_dir ): print('IN MAIN') #Check for CUDA if torch.cuda.is_available(): # Tell PyTorch to use the GPU. device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('We will use the GPU:', torch.cuda.get_device_name(0)) else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") # Load user to query_struct with open(dataset_pkl_path,'rb') as f: user_to_query_struct = pickle.load(f) #Put the dataset into the dataloader dataset = BasicHotelDataset(data_path = dataset_pkl_path, dict_path = hotel_hash) #Create sr_id_to_user_id dictionary sr_id_to_user_id_hashed = {} for user_id_hashed in user_to_query_struct.keys(): sr_ids = user_to_query_struct[user_id_hashed][0].keys() for sr_id in sr_ids: sr_id_to_user_id_hashed[sr_id] = user_id_hashed # Load hotel_id to index dictionary with open(hotel_hash, 'r') as fp: hotel_id_indexed = json.load(fp) # Load user_id to index dictionary with open(user_hash, 'r') as fp: user_id_indexed = json.load(fp) #invert the maps so we can go back to hotel_id and user_id user_idx_to_user_id = {v: k for k, v in user_id_indexed.items()} hotel_idx_to_hotel_id = {v: k for k, v in hotel_id_indexed.items()} # Get user_idx to/from user_id mappings dlkeys_to_user_id = dataset.idx_to_dataset_keys_dict user_id_to_dlkeys = {v: k for k, v in dlkeys_to_user_id.items()} #Make model_path_list model_path_list =[] for epoch in range(max_epoch): model_name = 'multvae_{0}_epoch_{1}.uri'.format(model_run_id,str(int(640+epoch))) model_path = os.path.join(model_folder,model_name) model_path_list.append(model_path) #Now loop over each model we need to eval on ndcg_list = [] for model_path in model_path_list: # Load our multVAE model model = mlflow.pytorch.load_model(model_path) print('Loaded model from ',model_path) model.to(device) print('loading done') # generate predictions df_list = [] for sr_id in sr_id_to_user_id_hashed.keys(): user_id = sr_id_to_user_id_hashed[sr_id] user_id_unhashed = user_idx_to_user_id[user_id] # GET SINGLE QUERY, OR ENTIRE interaction? user_interaction_vec = get_single_query_interaction_vec(user_to_query_struct,user_id,sr_id) x, observed_vec = densify_sparse_vec(user_interaction_vec,dataset.hotel_length) label = x #print(x.shape) x = x.to(device) x_preds, mu, logvar = model(x.unsqueeze(dim=0)) model.eval() x_preds = pd.DataFrame({'score':x_preds.cpu().detach().squeeze().numpy(), 'observed':observed_vec.cpu().detach().squeeze().numpy(), 'label':label.cpu().detach().squeeze().numpy()} ) x_preds = x_preds[x_preds['observed']==1] x_preds['hotel_id'] = x_preds.index.map(hotel_idx_to_hotel_id.get) x_preds['search_request_id'] = sr_id x_preds['user_id'] = user_id_unhashed df_list.append(x_preds) print('end for loop') pred_array = pd.concat(df_list) print('concat ended') pred_array['rank'] = pred_array\ .groupby('search_request_id')\ ['score']\ .rank(ascending=False) #Now that we have preds, calculate NDCG ndcg_model = lm.ndcg( pred_array, groupby='search_request_id', ranker='score') ndcg_score = ndcg_model.mean() print(ndcg_score) ndcg_list.append(ndcg_score) print(ndcg_list) ndcg_df =
pd.DataFrame({'ndcg_score':ndcg_list})
pandas.DataFrame
import operator from enum import Enum from typing import Union, Any, Optional, Hashable import numpy as np import pandas as pd import pandas_flavor as pf from pandas.core.construction import extract_array from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_dtype, is_dtype_equal, is_extension_array_dtype, is_numeric_dtype, is_string_dtype, ) from pandas.core.reshape.merge import _MergeOperation from janitor.utils import check, check_column @pf.register_dataframe_method def conditional_join( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], *conditions, how: str = "inner", sort_by_appearance: bool = False, df_columns: Optional[Any] = None, right_columns: Optional[Any] = None, ) -> pd.DataFrame: """ This is a convenience function that operates similarly to `pd.merge`, but allows joins on inequality operators, or a combination of equi and non-equi joins. Join solely on equality are not supported. If the join is solely on equality, `pd.merge` function covers that; if you are interested in nearest joins, or rolling joins, or the first match (lowest or highest) - `pd.merge_asof` covers that. There is also the IntervalIndex, which is usually more efficient for range joins, especially if the intervals do not overlap. Column selection in `df_columns` and `right_columns` is possible using the [`select_columns`][janitor.functions.select_columns.select_columns] syntax. This function returns rows, if any, where values from `df` meet the condition(s) for values from `right`. The conditions are passed in as a variable argument of tuples, where the tuple is of the form `(left_on, right_on, op)`; `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. A binary search is used to get the relevant rows for non-equi joins; this avoids a cartesian join, and makes the process less memory intensive. For equi-joins, Pandas internal merge function is used. The join is done only on the columns. MultiIndex columns are not supported. For non-equi joins, only numeric and date columns are supported. Only `inner`, `left`, and `right` joins are supported. If the columns from `df` and `right` have nothing in common, a single index column is returned; else, a MultiIndex column is returned. Example: >>> import pandas as pd >>> import janitor >>> df1 = pd.DataFrame({"value_1": [2, 5, 7, 1, 3, 4]}) >>> df2 = pd.DataFrame({"value_2A": [0, 3, 7, 12, 0, 2, 3, 1], ... "value_2B": [1, 5, 9, 15, 1, 4, 6, 3], ... }) >>> df1 value_1 0 2 1 5 2 7 3 1 4 3 5 4 >>> df2 value_2A value_2B 0 0 1 1 3 5 2 7 9 3 12 15 4 0 1 5 2 4 6 3 6 7 1 3 >>> df1.conditional_join( ... df2, ... ("value_1", "value_2A", ">="), ... ("value_1", "value_2B", "<=") ... ) value_1 value_2A value_2B 0 2 1 3 1 2 2 4 2 5 3 5 3 5 3 6 4 7 7 9 5 1 0 1 6 1 0 1 7 1 1 3 8 3 1 3 9 3 2 4 10 3 3 5 11 3 3 6 12 4 2 4 13 4 3 5 14 4 3 6 :param df: A pandas DataFrame. :param right: Named Series or DataFrame to join to. :param conditions: Variable argument of tuple(s) of the form `(left_on, right_on, op)`, where `left_on` is the column label from `df`, `right_on` is the column label from `right`, while `op` is the operator. The operator can be any of `==`, `!=`, `<=`, `<`, `>=`, `>`. For multiple conditions, the and(`&`) operator is used to combine the results of the individual conditions. :param how: Indicates the type of join to be performed. It can be one of `inner`, `left`, `right`. Full join is not supported. Defaults to `inner`. :param sort_by_appearance: Default is `False`. This is useful for strictly non-equi joins, where the user wants the original order maintained. If True, values from `df` and `right` that meet the join condition will be returned in the final dataframe in the same order that they were before the join. :param df_columns: Columns to select from `df`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :param right_columns: Columns to select from `right`. It can be a single column or a list of columns. It is also possible to rename the output columns via a dictionary. :returns: A pandas DataFrame of the two merged Pandas objects. """ return _conditional_join_compute( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) class _JoinOperator(Enum): """ List of operators used in conditional_join. """ GREATER_THAN = ">" LESS_THAN = "<" GREATER_THAN_OR_EQUAL = ">=" LESS_THAN_OR_EQUAL = "<=" STRICTLY_EQUAL = "==" NOT_EQUAL = "!=" class _JoinTypes(Enum): """ List of join types for conditional_join. """ INNER = "inner" LEFT = "left" RIGHT = "right" operator_map = { _JoinOperator.STRICTLY_EQUAL.value: operator.eq, _JoinOperator.LESS_THAN.value: operator.lt, _JoinOperator.LESS_THAN_OR_EQUAL.value: operator.le, _JoinOperator.GREATER_THAN.value: operator.gt, _JoinOperator.GREATER_THAN_OR_EQUAL.value: operator.ge, _JoinOperator.NOT_EQUAL.value: operator.ne, } less_than_join_types = { _JoinOperator.LESS_THAN.value, _JoinOperator.LESS_THAN_OR_EQUAL.value, } greater_than_join_types = { _JoinOperator.GREATER_THAN.value, _JoinOperator.GREATER_THAN_OR_EQUAL.value, } def _check_operator(op: str): """ Check that operator is one of `>`, `>=`, `==`, `!=`, `<`, `<=`. Used in `conditional_join`. """ sequence_of_operators = {op.value for op in _JoinOperator} if op not in sequence_of_operators: raise ValueError( "The conditional join operator " f"should be one of {sequence_of_operators}" ) def _conditional_join_preliminary_checks( df: pd.DataFrame, right: Union[pd.DataFrame, pd.Series], conditions: tuple, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> tuple: """ Preliminary checks for conditional_join are conducted here. Checks include differences in number of column levels, length of conditions, existence of columns in dataframe, etc. """ check("right", right, [pd.DataFrame, pd.Series]) df = df.copy() right = right.copy() if isinstance(right, pd.Series): if not right.name: raise ValueError( "Unnamed Series are not supported for conditional_join." ) right = right.to_frame() if df.columns.nlevels != right.columns.nlevels: raise ValueError( "The number of column levels " "from the left and right frames must match. " "The number of column levels from the left dataframe " f"is {df.columns.nlevels}, while the number of column levels " f"from the right dataframe is {right.columns.nlevels}." ) if not conditions: raise ValueError("Kindly provide at least one join condition.") for condition in conditions: check("condition", condition, [tuple]) len_condition = len(condition) if len_condition != 3: raise ValueError( "condition should have only three elements; " f"{condition} however is of length {len_condition}." ) for left_on, right_on, op in conditions: check("left_on", left_on, [Hashable]) check("right_on", right_on, [Hashable]) check("operator", op, [str]) check_column(df, [left_on]) check_column(right, [right_on]) _check_operator(op) if all( (op == _JoinOperator.STRICTLY_EQUAL.value for *_, op in conditions) ): raise ValueError("Equality only joins are not supported.") check("how", how, [str]) checker = {jointype.value for jointype in _JoinTypes} if how not in checker: raise ValueError(f"'how' should be one of {checker}.") check("sort_by_appearance", sort_by_appearance, [bool]) if (df.columns.nlevels > 1) and ( isinstance(df_columns, dict) or isinstance(right_columns, dict) ): raise ValueError( "Column renaming with a dictionary is not supported " "for MultiIndex columns." ) return ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) def _conditional_join_type_check( left_column: pd.Series, right_column: pd.Series, op: str ) -> None: """ Raise error if column type is not any of numeric or datetime or string. """ permitted_types = { is_datetime64_dtype, is_numeric_dtype, is_string_dtype, is_categorical_dtype, } for func in permitted_types: if func(left_column): break else: raise ValueError( "conditional_join only supports " "string, category, numeric, or date dtypes (without timezone) - " f"'{left_column.name} is of type {left_column.dtype}." ) lk_is_cat = is_categorical_dtype(left_column) rk_is_cat = is_categorical_dtype(right_column) if lk_is_cat & rk_is_cat: if not left_column.array._categories_match_up_to_permutation( right_column.array ): raise ValueError( f"'{left_column.name}' and '{right_column.name}' " "should have the same categories, and the same order." ) elif not is_dtype_equal(left_column, right_column): raise ValueError( f"Both columns should have the same type - " f"'{left_column.name}' has {left_column.dtype} type;" f"'{right_column.name}' has {right_column.dtype} type." ) if (op in less_than_join_types.union(greater_than_join_types)) & ( (is_string_dtype(left_column) | is_categorical_dtype(left_column)) ): raise ValueError( "non-equi joins are supported " "only for datetime and numeric dtypes. " f"{left_column.name} in condition " f"({left_column.name}, {right_column.name}, {op}) " f"has a dtype {left_column.dtype}." ) return None def _conditional_join_compute( df: pd.DataFrame, right: pd.DataFrame, conditions: list, how: str, sort_by_appearance: bool, df_columns: Any, right_columns: Any, ) -> pd.DataFrame: """ This is where the actual computation for the conditional join takes place. A pandas DataFrame is returned. """ ( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) = _conditional_join_preliminary_checks( df, right, conditions, how, sort_by_appearance, df_columns, right_columns, ) eq_check = False le_lt_check = False for condition in conditions: left_on, right_on, op = condition _conditional_join_type_check(df[left_on], right[right_on], op) if op == _JoinOperator.STRICTLY_EQUAL.value: eq_check = True elif op in less_than_join_types.union(greater_than_join_types): le_lt_check = True df.index = range(len(df)) right.index = range(len(right)) multiple_conditions = len(conditions) > 1 if not multiple_conditions: left_on, right_on, op = conditions[0] result = _generic_func_cond_join( df[left_on], right[right_on], op, multiple_conditions ) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns, ) if eq_check: result = _multiple_conditional_join_eq(df, right, conditions) elif le_lt_check: result = _multiple_conditional_join_le_lt(df, right, conditions) else: result = _multiple_conditional_join_ne(df, right, conditions) if result is None: return _create_conditional_join_empty_frame( df, right, how, df_columns, right_columns ) return _create_conditional_join_frame( df, right, *result, how, sort_by_appearance, df_columns, right_columns ) def _less_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, ) -> tuple: """ Use binary search to get indices where left_c is less than or equal to right_c. If strict is True, then only indices where `left_c` is less than (but not equal to) `right_c` are returned. A tuple of integer indexes for left_c and right_c is returned. """ # no point going through all the hassle if left_c.min() > right_c.max(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c = extract_array(left_c, extract_numpy=True) right_index = right_c.index.to_numpy(dtype=int, copy=False) right_c = extract_array(right_c, extract_numpy=True) search_indices = right_c.searchsorted(left_c, side="left") # if any of the positions in `search_indices` # is equal to the length of `right_keys` # that means the respective position in `left_c` # has no values from `right_c` that are less than # or equal, and should therefore be discarded len_right = right_c.size rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] # the idea here is that if there are any equal values # shift to the right to the immediate next position # that is not equal if strict: rows_equal = right_c[search_indices] rows_equal = left_c == rows_equal # replace positions where rows are equal # with positions from searchsorted('right') # positions from searchsorted('right') will never # be equal and will be the furthermost in terms of position # example : right_c -> [2, 2, 2, 3], and we need # positions where values are not equal for 2; # the furthermost will be 3, and searchsorted('right') # will return position 3. if rows_equal.any(): replacements = right_c.searchsorted(left_c, side="right") # now we can safely replace values # with strictly less than positions search_indices = np.where(rows_equal, replacements, search_indices) # check again if any of the values # have become equal to length of right_c # and get rid of them rows_equal = search_indices == len_right if rows_equal.any(): left_c = left_c[~rows_equal] left_index = left_index[~rows_equal] search_indices = search_indices[~rows_equal] if not search_indices.size: return None right_c = [right_index[ind:len_right] for ind in search_indices] right_c = np.concatenate(right_c) left_c = np.repeat(left_index, len_right - search_indices) return left_c, right_c def _greater_than_indices( left_c: pd.Series, right_c: pd.Series, strict: bool, multiple_conditions: bool, ) -> tuple: """ Use binary search to get indices where left_c is greater than or equal to right_c. If strict is True, then only indices where `left_c` is greater than (but not equal to) `right_c` are returned. if multiple_conditions is False, a tuple of integer indexes for left_c and right_c is returned; else a tuple of the index for left_c, right_c, as well as the positions of left_c in right_c is returned. """ # quick break, avoiding the hassle if left_c.max() < right_c.min(): return None any_nulls = pd.isna(right_c) if any_nulls.any(): right_c = right_c[~any_nulls] if right_c.empty: return None any_nulls = pd.isna(left_c) if any_nulls.any(): left_c = left_c[~any_nulls] if left_c.empty: return None any_nulls = None if not right_c.is_monotonic_increasing: right_c = right_c.sort_values(kind="stable") left_index = left_c.index.to_numpy(dtype=int, copy=False) left_c =
extract_array(left_c, extract_numpy=True)
pandas.core.construction.extract_array
import numpy as np arr = np.arange(0,11) print(arr) print("----------------------------") import pandas df =
pandas.DataFrame([[1,2,3,4]], columns = ["A", "B", "C", "D"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 11:41:44 2018 @author: MichaelEK """ import os import argparse import types import pandas as pd import numpy as np from pdsql import mssql from datetime import datetime import yaml import itertools import lowflows as lf import util pd.options.display.max_columns = 10 run_time_start = datetime.today().strftime('%Y-%m-%d %H:%M:%S') print(run_time_start) try: ##################################### ### Read parameters file base_dir = os.path.realpath(os.path.dirname(__file__)) with open(os.path.join(base_dir, 'parameters-test.yml')) as param: param = yaml.safe_load(param) # parser = argparse.ArgumentParser() # parser.add_argument('yaml_path') # args = parser.parse_args() # # with open(args.yaml_path) as param: # param = yaml.safe_load(param) ## Integrety checks use_types_check = np.in1d(list(param['misc']['use_types_codes'].keys()), param['misc']['use_types_priorities']).all() if not use_types_check: raise ValueError('use_type_priorities parameter does not encompass all of the use type categories. Please fix the parameters file.') ##################################### ### Read the hydro log # max_date_stmt = "select max(RunTimeStart) from " + param.log_table + " where HydroTable='" + param.process_name + "' and RunResult='pass' and ExtSystem='" + param.ext_system + "'" # # last_date1 = mssql.rd_sql(server=param.hydro_server, database=param.hydro_database, stmt=max_date_stmt).loc[0][0] # # if last_date1 is None: # last_date1 = '1900-01-01' # else: # last_date1 = str(last_date1.date()) # # print('Last sucessful date is ' + last_date1) ####################################### ### Read in source data and update accela tables in ConsentsReporting db print('--Reading in source data...') ## Make object to contain the source data db = types.SimpleNamespace() for i, p in param['source data'].items(): setattr(db, i, mssql.rd_sql(p['server'], p['database'], p['table'], p['col_names'], rename_cols=p['rename_cols'], username=p['username'], password=p['password'])) if (p['database'] == 'Accela') & (not (p['table'] in ['Ecan.vAct_Water_AssociatedPermits', 'Ecan.vQA_Relationship_Actuals'])): table1 = 'Accela.' + p['table'].split('Ecan.')[1] print(table1) t1 = getattr(db, i).copy().dropna(subset=p['pk']) t1.drop_duplicates(p['pk'], inplace=True) print('update in db') new_ones, _ = mssql.update_from_difference(t1, param['output']['server'], param['output']['database'], table1, on=p['pk'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) ###################################### ### Populate base tables print('--Update base tables') ## HydroGroup hf1 = pd.DataFrame(param['misc']['HydroGroup']) hf1['ModifiedDate'] = run_time_start hf0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) hf_diff1 = hf1[~hf1.HydroGroup.isin(hf0.HydroGroup)] if not hf_diff1.empty: mssql.to_mssql(hf_diff1, param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) hf0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) ## Activity act1 = param['misc']['Activities']['ActivityType'] act2 = pd.DataFrame(list(itertools.product(act1, hf0.HydroGroupID.tolist())), columns=['ActivityType', 'HydroGroupID']) act2['ModifiedDate'] = run_time_start act0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) act_diff1 = act2[~act2[['ActivityType', 'HydroGroupID']].isin(act0[['ActivityType', 'HydroGroupID']]).any(axis=1)] if not act_diff1.empty: mssql.to_mssql(act_diff1, param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) act0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) # Combine activity and hydro features act_types1 = pd.merge(act0[['ActivityID', 'ActivityType', 'HydroGroupID']], hf0[['HydroGroupID', 'HydroGroup']], on='HydroGroupID') act_types1['ActivityName'] = act_types1['ActivityType'] + ' ' + act_types1['HydroGroup'] ## AlloBlock ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) sw_blocks1 = pd.Series(db.wap_allo['sw_allo_block'].unique()) gw_blocks1 = pd.Series(db.allocated_volume['allo_block'].unique()) # Fixes wap_allo1 = db.wap_allo.copy() wap_allo1['sw_allo_block'] = wap_allo1['sw_allo_block'].str.strip() wap_allo1.loc[wap_allo1.sw_allo_block == 'Migration: Not Classified', 'sw_allo_block'] = 'A' allo_vol1 = db.allocated_volume.copy() allo_vol1['allo_block'] = allo_vol1['allo_block'].str.strip() allo_vol1.loc[allo_vol1.allo_block == 'Migration: Not Classified', 'allo_block'] = 'A' # Determine blocks and what needs to be added sw_blocks1 = set(wap_allo1['sw_allo_block'].unique()) gw_blocks1 = set(allo_vol1['allo_block'].unique()) blocks1 = sw_blocks1.union(gw_blocks1) ab1 = pd.DataFrame(list(itertools.product(blocks1, hf0.HydroGroupID.tolist())), columns=['AllocationBlock', 'HydroGroupID']) ab1['ModifiedDate'] = run_time_start ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) ab_diff1 = ab1[~ab1[['AllocationBlock', 'HydroGroupID']].isin(ab0[['AllocationBlock', 'HydroGroupID']]).any(axis=1)] if not ab_diff1.empty: mssql.to_mssql(ab_diff1, param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) # Combine alloblock and hydro features ab_types1 = pd.merge(ab0[['AlloBlockID', 'AllocationBlock', 'HydroGroupID']], hf0[['HydroGroupID', 'HydroGroup']], on='HydroGroupID').drop('HydroGroupID', axis=1) ## Attributes att1 = pd.DataFrame(param['misc']['Attributes']) att1['ModifiedDate'] = run_time_start att0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) att_diff1 = att1[~att1.Attribute.isin(att0.Attribute)] if not att_diff1.empty: mssql.to_mssql(att_diff1, param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) att0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) ################################################## ### Sites and streamdepletion print('--Update sites tables') ## takes wap_allo1['WAP'] = wap_allo1['WAP'].str.strip().str.upper() wap_allo1.loc[~wap_allo1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan wap1 = wap_allo1['WAP'].unique() wap1 = wap1[~pd.isnull(wap1)] ## Diverts div1 = db.divert.copy() div1['WAP'] = div1['WAP'].str.strip().str.upper() div1.loc[~div1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan wap2 = div1['WAP'].unique() wap2 = wap2[~pd.isnull(wap2)] ## Combo waps = np.concatenate((wap1, wap2), axis=None) ## Check that all WAPs exist in the USM sites table usm_waps1 = db.sites[db.sites.ExtSiteID.isin(waps)].copy() usm_waps1[['NZTMX', 'NZTMY']] = usm_waps1[['NZTMX', 'NZTMY']].astype(int) if len(wap1) != len(usm_waps1): miss_waps = set(wap1).difference(set(usm_waps1.ExtSiteID)) print('Missing {} WAPs in USM'.format(len(miss_waps))) wap_allo1 = wap_allo1[~wap_allo1.WAP.isin(miss_waps)].copy() ## Update ConsentsSites table cs1 = usm_waps1[['ExtSiteID', 'SiteName']].copy() # cs1['SiteType'] = 'WAP' new_sites, _ = mssql.update_from_difference(cs1, param['output']['server'], param['output']['database'], 'ConsentsSites', on='ExtSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentsSites', 'pass', '{} sites updated'.format(len(new_sites)), username=param['output']['username'], password=param['output']['password']) cs0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'ConsentsSites', ['SiteID', 'ExtSiteID'], username=param['output']['username'], password=param['output']['password']) cs_waps2 = pd.merge(cs0, usm_waps1.drop('SiteName', axis=1), on='ExtSiteID') cs_waps3 = pd.merge(cs_waps2, db.wap_sd, on='ExtSiteID').drop('ExtSiteID', axis=1).round() new_waps, _ = mssql.update_from_difference(cs_waps3, param['output']['server'], param['output']['database'], 'SiteStreamDepletion', on='SiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'WAP', 'pass', '{} sites updated'.format(len(new_waps)), username=param['output']['username'], password=param['output']['password']) ## Read db table # wap0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'SiteStreamDepletion') ## Make linked WAP-SiteID table wap_site = cs0.rename(columns={'ExtSiteID': 'WAP'}) ################################################## ### Permit table print('--Update Permit table') ## Clean data permits1 = db.permit.copy() permits1['RecordNumber'] = permits1['RecordNumber'].str.strip().str.upper() permits1['ConsentStatus'] = permits1['ConsentStatus'].str.strip() permits1['EcanID'] = permits1['EcanID'].str.strip().str.upper() permits1['FromDate'] = pd.to_datetime(permits1['FromDate'], infer_datetime_format=True, errors='coerce') permits1['ToDate'] = pd.to_datetime(permits1['ToDate'], infer_datetime_format=True, errors='coerce') permits1.loc[permits1['ConsentStatus'] == 'Issued - s124 Continuance', 'ToDate'] = permits1.loc[permits1['ConsentStatus'] == 'Issued - s124 Continuance', 'FromDate'] + pd.DateOffset(years=30) permits1[['NZTMX', 'NZTMY']] = permits1[['NZTMX', 'NZTMY']].round() permits1.loc[(permits1['FromDate'] < '1950-01-01'), 'FromDate'] = np.nan permits1.loc[(permits1['ToDate'] < '1950-01-01'), 'ToDate'] = np.nan ## Filter data permits2 = permits1.drop_duplicates('RecordNumber') permits2 = permits2[permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull() & permits2['EcanID'].notnull()].copy() # permits2 = permits2[(permits2['FromDate'] > '1950-01-01') & (permits2['ToDate'] > '1950-01-01') & (permits2['ToDate'] > permits2['FromDate']) & permits2.NZTMX.notnull() & permits2.NZTMY.notnull() & permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull() & permits2['EcanID'].notnull()].copy() ## Convert datetimes to date permits2['FromDate'] = permits2['FromDate'].dt.date permits2['ToDate'] = permits2['ToDate'].dt.date permits2.loc[permits2['FromDate'].isnull(), 'FromDate'] = '1900-01-01' permits2.loc[permits2['ToDate'].isnull(), 'ToDate'] = '1900-01-01' ## Save results new_permits, _ = mssql.update_from_difference(permits2, param['output']['server'], param['output']['database'], 'Permit', on='RecordNumber', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'Permit', 'pass', '{} rows updated'.format(len(new_permits)), username=param['output']['username'], password=param['output']['password']) ## Read db table permits0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Permit', username=param['output']['username'], password=param['output']['password']) ################################################## ### Parent-Child print('--Update Parent-child table') ## Clean data pc1 = db.parent_child.copy() pc1['ParentRecordNumber'] = pc1['ParentRecordNumber'].str.strip().str.upper() pc1['ChildRecordNumber'] = pc1['ChildRecordNumber'].str.strip().str.upper() pc1['ParentCategory'] = pc1['ParentCategory'].str.strip() pc1['ChildCategory'] = pc1['ChildCategory'].str.strip() ## Filter data pc1 = pc1.drop_duplicates() pc1 = pc1[pc1['ParentRecordNumber'].notnull() & pc1['ChildRecordNumber'].notnull()] ## Check foreign keys crc1 = permits0.RecordNumber.unique() pc2 = pc1[pc1.ParentRecordNumber.isin(crc1) & pc1.ChildRecordNumber.isin(crc1)].copy() ## Save results new_pc, _ = mssql.update_from_difference(pc2, param['output']['server'], param['output']['database'], 'ParentChild', on=['ParentRecordNumber', 'ChildRecordNumber'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ParentChild', 'pass', '{} rows updated'.format(len(new_pc)), username=param['output']['username'], password=param['output']['password']) ## Read db table pc0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'ParentChild', username=param['output']['username'], password=param['output']['password']) ################################################# ### AllocatedRatesVolumes print('--Update Allocation tables') attr1 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', ['AttributeID', 'Attribute'], username=param['output']['username'], password=param['output']['password']) ## Rates # Clean data wa1 = wap_allo1.copy() wa1['RecordNumber'] = wa1['RecordNumber'].str.strip().str.upper() wa1['take_type'] = wa1['take_type'].str.strip().str.title() wa1['FromMonth'] = wa1['FromMonth'].str.strip().str.title() wa1['ToMonth'] = wa1['ToMonth'].str.strip().str.title() wa1['IncludeInSwAllocation'] = wa1['IncludeInSwAllocation'].str.strip().str.title() wa1['AllocatedRate'] = pd.to_numeric(wa1['AllocatedRate'], errors='coerce').round(2) wa1['WapRate'] = pd.to_numeric(wa1['WapRate'], errors='coerce').round(2) wa1['VolumeDaily'] = pd.to_numeric(wa1['VolumeDaily'], errors='coerce').astype(int) wa1['VolumeWeekly'] = pd.to_numeric(wa1['VolumeWeekly'], errors='coerce').astype(int) wa1['Volume150Day'] = pd.to_numeric(wa1['Volume150Day'], errors='coerce').astype(int) wa1.loc[wa1['FromMonth'] == 'Migration: Not Classified', 'FromMonth'] = 'Jul' wa1.loc[wa1['ToMonth'] == 'Migration: Not Classified', 'ToMonth'] = 'Jun' mon_mapping = {'Jan': 7, 'Feb': 8, 'Mar': 9, 'Apr': 10, 'May': 11, 'Jun': 12, 'Jul': 1, 'Aug': 2, 'Sep': 3, 'Oct': 4, 'Nov': 5, 'Dec': 6} wa1.replace({'FromMonth': mon_mapping, 'ToMonth': mon_mapping}, inplace=True) wa1.loc[wa1['IncludeInSwAllocation'] == 'No', 'IncludeInSwAllocation'] = False wa1.loc[wa1['IncludeInSwAllocation'] == 'Yes', 'IncludeInSwAllocation'] = True wa1.replace({'sw_allo_block': {'In Waitaki': 'A'}}, inplace=True) # Check foreign keys wa4 = wa1[wa1.RecordNumber.isin(crc1)].copy() # Filters # wa4 = wa2[(wa2.AllocatedRate > 0)].copy() # wa3.loc[~wa3['IncludeInSwAllocation'], ['AllocatedRate', 'SD1', 'SD2']] = 0 # wa4 = wa3.drop('IncludeInSwAllocation', axis=1).copy() # Find the missing WAPs per consent crc_wap_mis1 = wa4.loc[wa4.WAP.isnull(), 'RecordNumber'].unique() crc_wap4 = wa4[['RecordNumber', 'WAP']].drop_duplicates() for i in crc_wap_mis1: crc2 = pc0[np.in1d(pc0.ParentRecordNumber, i)].ChildRecordNumber.values wap1 = [] while (len(crc2) > 0) & (len(wap1) == 0): wap1 = crc_wap4.loc[np.in1d(crc_wap4.RecordNumber, crc2), 'WAP'].values crc2 = pc0[np.in1d(pc0.ParentRecordNumber, crc2)].ChildRecordNumber.values if len(wap1) > 0: wa4.loc[wa4.RecordNumber == i, 'WAP'] = wap1[0] wa4 = wa4[wa4.WAP.notnull()].copy() wa4.rename(columns={'sw_allo_block': 'AllocationBlock'}, inplace=True) # Distribute the months cols1 = wa4.columns.tolist() from_mon_pos = cols1.index('FromMonth') to_mon_pos = cols1.index('ToMonth') allo_rates_list = [] # c1 = 0 for val in wa4.itertuples(False, None): from_month = int(val[from_mon_pos]) to_month = int(val[to_mon_pos]) if from_month > to_month: mons = list(range(1, to_month + 1)) # c1 = c1 + 1 else: mons = range(from_month, to_month + 1) d1 = [val + (i,) for i in mons] allo_rates_list.extend(d1) col_names1 = wa4.columns.tolist() col_names1.extend(['Month']) wa5 = pd.DataFrame(allo_rates_list, columns=col_names1).drop(['FromMonth', 'ToMonth'], axis=1) # Mean of all months grp1 = wa5.groupby(['RecordNumber', 'take_type', 'AllocationBlock', 'WAP']) mean1 = grp1[['WapRate', 'AllocatedRate', 'VolumeDaily', 'VolumeWeekly', 'Volume30Day', 'Volume150Day', 'SD1', 'SD2']].mean().round(2) include1 = grp1['IncludeInSwAllocation'].first() mon_min = grp1['Month'].min() mon_min.name = 'FromMonth' mon_max = grp1['Month'].max() mon_max.name = 'ToMonth' wa6 = pd.concat([mean1, mon_min, mon_max, include1], axis=1).reset_index() # wa6['HydroGroup'] = 'Surface Water' ## Allocated Volume av1 = allo_vol1.copy() # clean data av1['RecordNumber'] = av1['RecordNumber'].str.strip().str.upper() av1['take_type'] = av1['take_type'].str.strip().str.title() av1['IncludeInGwAllocation'] = av1['IncludeInGwAllocation'].str.strip().str.title() av1.loc[av1['IncludeInGwAllocation'] == 'No', 'IncludeInGwAllocation'] = False av1.loc[av1['IncludeInGwAllocation'] == 'Yes', 'IncludeInGwAllocation'] = True av1['IncludeInGwAllocation'] = av1['IncludeInGwAllocation'].astype(bool) # av1['AllocatedAnnualVolume'] = pd.to_numeric(av1['AllocatedAnnualVolume'], errors='coerce').astype(int) av1['FullAnnualVolume'] = pd.to_numeric(av1['FullAnnualVolume'], errors='coerce').astype(int) # av1.loc[av1['AllocatedAnnualVolume'] <= 0, 'AllocatedAnnualVolume'] = 0 # av1 = av1.loc[av1['AllocatedAnnualVolume'] > 0] av1.rename(columns={'allo_block': 'AllocationBlock'}, inplace=True) av1.drop('AllocatedAnnualVolume', axis=1, inplace=True) av1.replace({'AllocationBlock': {'In Waitaki': 'A'}}, inplace=True) av1.drop_duplicates(subset=['RecordNumber', 'take_type', 'AllocationBlock'], inplace=True) ## Combine volumes with rates wa7 = pd.merge(av1, wa6, on=['RecordNumber', 'take_type', 'AllocationBlock']) ## Distribute the volumes by WapRate wa8 = wa7.copy() grp3 = wa8.groupby(['RecordNumber', 'take_type', 'AllocationBlock']) wa8['WapRateAgg'] = grp3['WapRate'].transform('sum') wa8['ratio'] = wa8['WapRate'] / wa8['WapRateAgg'] wa8.loc[wa8['ratio'].isnull(), 'ratio'] = 1 wa8['FullAnnualVolume'] = (wa8['FullAnnualVolume'] * wa8['ratio']).round() wa8.drop(['WapRateAgg', 'ratio', 'VolumeDaily', 'VolumeWeekly', 'Volume30Day', 'Volume150Day', 'SD2', 'WapRate'], axis=1, inplace=True) wa8 = wa8[wa8.FullAnnualVolume >= 0].copy() ## Add in stream depletion # wa9 = pd.merge(wa8, db.wap_sd.rename(columns={'ExtSiteID': 'WAP'}), on='WAP').drop(['SD1_NZTMX', 'SD1_NZTMY', 'SD1_30Day', 'SD2_NZTMX', 'SD2_NZTMY', 'SD2_7Day', 'SD2_30Day', 'SD2_150Day', 'SD1', 'SD2'], axis=1) # # wa9['SD1_7Day'] = pd.to_numeric(wa9['SD1_7Day'], errors='coerce').round(0) # wa9['SD1_150Day'] = pd.to_numeric(wa9['SD1_150Day'], errors='coerce').round(0) ## Combine with aquifer test storativity # aq1 = db.wap_aquifer_test.dropna(subset=['storativity']).copy() # aq1.rename(columns={'ExtSiteID': 'WAP'}, inplace=True) # aq2 = aq1.groupby('WAP')['storativity'].mean().dropna().reset_index() # aq2.storativity = True # # wa9 = pd.merge(wa9, aq2, on='WAP', how='left') # wa9.loc[wa9.storativity.isnull(), 'storativity'] = False ## Distribute the rates and volumes by allocation hydro group wa8['sw_rate'] = 0 wa8['gw_rate'] = 0 wa8['sw_vol'] = 0 wa8['gw_vol'] = 0 wa8.loc[wa8.take_type == 'Take Surface Water', 'sw_rate'] = wa8.loc[wa8.take_type == 'Take Surface Water', 'AllocatedRate'] wa8.loc[wa8.take_type == 'Take Groundwater', 'sw_rate'] = wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1'] wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_rate'] = wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate'] - wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1'] wa8.loc[wa8.take_type == 'Take Surface Water', 'sw_vol'] = wa8.loc[wa8.take_type == 'Take Surface Water', 'FullAnnualVolume'] wa8.loc[wa8.take_type == 'Take Groundwater', 'sw_vol'] = (wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1']/wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate']) * wa8.loc[wa8.take_type == 'Take Groundwater', 'FullAnnualVolume'] wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_vol'] = (wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_rate']/wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate']) * wa8.loc[wa8.take_type == 'Take Groundwater', 'FullAnnualVolume'] allo_list = [] for k, row in wa8.iterrows(): # print(k) if row['IncludeInSwAllocation']: sw1 = row[['RecordNumber', 'AllocationBlock', 'WAP', 'FromMonth', 'ToMonth', 'sw_rate', 'sw_vol']].rename({'sw_rate': 'AllocatedRate', 'sw_vol': 'AllocatedAnnualVolume'}) sw1['HydroGroup'] = 'Surface Water' allo_list.append(sw1.to_frame().T) if row['IncludeInGwAllocation']: gw1 = row[['RecordNumber', 'AllocationBlock', 'WAP', 'FromMonth', 'ToMonth', 'gw_rate', 'gw_vol']].rename({'gw_rate': 'AllocatedRate', 'gw_vol': 'AllocatedAnnualVolume'}) gw1['HydroGroup'] = 'Groundwater' allo_list.append(gw1.to_frame().T) rv1 = pd.concat(allo_list) rv1['AllocatedAnnualVolume'] = pd.to_numeric(rv1['AllocatedAnnualVolume']) rv1['AllocatedRate'] = pd.to_numeric(rv1['AllocatedRate']) rv1['FromMonth'] = pd.to_numeric(rv1['FromMonth'], downcast='integer') rv1['ToMonth'] = pd.to_numeric(rv1['ToMonth'], downcast='integer') rv1.loc[rv1['AllocatedAnnualVolume'].isnull(), 'AllocatedAnnualVolume'] = 0 rv1.loc[rv1['AllocatedAnnualVolume'] == np.inf, 'AllocatedAnnualVolume'] = 0 rv1.loc[rv1['AllocatedRate'].isnull(), 'AllocatedRate'] = 0 rv1.loc[rv1['AllocatedRate'] == np.inf, 'AllocatedRate'] = 0 # Cut out the fat rv4 = rv1[(rv1['AllocatedAnnualVolume'] > 0) | (rv1['AllocatedRate'] > 0)].copy() ## Calculate missing volumes and rates ann_bool = rv4.AllocatedAnnualVolume == 0 rv4.loc[ann_bool, 'AllocatedAnnualVolume'] = (rv4.loc[ann_bool, 'AllocatedRate'] * 0.001*60*60*24*30.42* (rv4.loc[ann_bool, 'ToMonth'] - rv4.loc[ann_bool, 'FromMonth'] + 1)) rate_bool = rv4.AllocatedRate == 0 rv4.loc[rate_bool, 'AllocatedRate'] = (rv4.loc[rate_bool, 'AllocatedAnnualVolume'] / 60/60/24/30.42/ (rv4.loc[rate_bool, 'ToMonth'] - rv4.loc[rate_bool, 'FromMonth'] + 1) * 1000) ## Convert the rates and volumes to integers rv4['AllocatedAnnualVolume'] = rv4['AllocatedAnnualVolume'].round().astype(int) rv4['AllocatedRate'] = rv4['AllocatedRate'].round().astype(int) ## Merge tables for IDs avr5 = pd.merge(rv4, ab_types1, on=['AllocationBlock', 'HydroGroup']).drop(['AllocationBlock', 'HydroGroup'], axis=1).copy() avr6 = pd.merge(avr5, wap_site, on='WAP').drop('WAP', axis=1) ## Update CrcAlloSite table crc_allo = avr6[['RecordNumber', 'AlloBlockID', 'SiteID']].copy() crc_allo['SiteAllo'] = True crc_allo['SiteType'] = 'WAP' ## Determine which rows should be updated # old_crc_allo = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', where_in={'SiteAllo': [1], 'SiteType': ['WAP']}) # # diff_dict = mssql.compare_dfs(old_crc_allo.drop(['CrcAlloSiteID', 'ModifiedDate'], axis=1), crc_allo, on=['RecordNumber', 'AlloBlockID', 'SiteID']) # # both1 = pd.concat([diff_dict['new'], diff_dict['diff']]) # # rem1 = diff_dict['remove'] # Save results new_crc_allo, rem_crc_allo = mssql.update_from_difference(crc_allo, param['output']['server'], param['output']['database'], 'CrcAlloSite', on=['RecordNumber', 'AlloBlockID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcAlloSite', 'pass', '{} rows updated'.format(len(new_crc_allo)), username=param['output']['username'], password=param['output']['password']) # Read db table allo_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', ['CrcAlloSiteID', 'RecordNumber', 'AlloBlockID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) # Remove old data if needed if not rem_crc_allo.empty: rem_crc_allo1 = pd.merge(allo_site0, rem_crc_allo, on=['RecordNumber', 'AlloBlockID', 'SiteID']).drop(['RecordNumber', 'AlloBlockID', 'SiteID'], axis=1) mssql.del_table_rows(param['output']['server'], param['output']['database'], 'AllocatedRateVolume', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'TSLowFlowRestr', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'LowFlowConditions', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'CrcAlloSite', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) allo_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', ['CrcAlloSiteID', 'RecordNumber', 'AlloBlockID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## Update AllocatedRateVolume table avr7 = pd.merge(allo_site0, avr6, on=['RecordNumber', 'AlloBlockID', 'SiteID']).drop(['RecordNumber', 'AlloBlockID', 'SiteID'], axis=1).drop_duplicates('CrcAlloSiteID') # Save results new_avr, _ = mssql.update_from_difference(avr7, param['output']['server'], param['output']['database'], 'AllocatedRateVolume', on='CrcAlloSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'AllocatedRateVolume', 'pass', '{} rows updated'.format(len(new_avr)), username=param['output']['username'], password=param['output']['password']) ################################################# ### ConsentedRateVolume print('--Update Consent tables') ## Clean data crv1 = db.consented_takes.copy() crv1['RecordNumber'] = crv1['RecordNumber'].str.strip().str.upper() crv1['take_type'] = crv1['take_type'].str.strip().str.title() crv1['LowflowCondition'] = crv1['LowflowCondition'].str.strip().str.upper() crv1['ConsentedAnnualVolume'] = pd.to_numeric(crv1['ConsentedAnnualVolume'], errors='coerce').round() crv1['ConsentedMultiDayVolume'] = pd.to_numeric(crv1['ConsentedMultiDayVolume'], errors='coerce').round() crv1['ConsentedMultiDayPeriod'] = pd.to_numeric(crv1['ConsentedMultiDayPeriod'], errors='coerce').round() crv1['ConsentedRate'] = pd.to_numeric(crv1['ConsentedRate'], errors='coerce') crv1.loc[crv1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan crv1.loc[crv1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan crv1.loc[crv1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan crv1.loc[crv1['ConsentedAnnualVolume'] <= 0, 'ConsentedAnnualVolume'] = np.nan crv1.loc[crv1['LowflowCondition'].isnull(), 'LowflowCondition'] = 'NO' crv1.loc[(crv1['LowflowCondition'] == 'COMPLEX'), 'LowflowCondition'] = 'YES' crv1.loc[crv1['LowflowCondition'] == 'NO', 'LowflowCondition'] = False crv1.loc[crv1['LowflowCondition'] == 'YES', 'LowflowCondition'] = True ## Filter data crv2 = crv1[crv1.ConsentedRate.notnull()] ## Check foreign keys crv2 = crv2[crv2.RecordNumber.isin(crc1)].copy() ## Aggregate take types for counts and min/max month grp4 = wa4.groupby(['RecordNumber', 'take_type', 'WAP']) mon_min = grp4['FromMonth'].min() mon_min.name = 'FromMonth' mon_max = grp4['ToMonth'].max() mon_max.name = 'ToMonth' mon_min_max = pd.concat([mon_min, mon_max], axis=1) mon_min_max1 = mon_min_max.reset_index() grp5 = mon_min_max1.groupby(['RecordNumber', 'take_type']) mon_min_max1['wap_count'] = grp5['WAP'].transform('count') ## Distribute WAPs to consents crv3 = pd.merge(crv2, mon_min_max1, on=['RecordNumber', 'take_type']) crv3[['ConsentedAnnualVolume', 'ConsentedMultiDayVolume']] = crv3[['ConsentedAnnualVolume', 'ConsentedMultiDayVolume']].divide(crv3['wap_count'], 0).round() crv3['ConsentedRate'] = crv3['ConsentedRate'].divide(crv3['wap_count'], 0).round(2) ## Convert take types to ActivityID take_types1 = act_types1[act_types1.ActivityType == 'Take'].copy() crv4 = pd.merge(crv3.drop('wap_count', axis=1), take_types1[['ActivityID', 'ActivityName']], left_on='take_type', right_on='ActivityName').drop(['take_type', 'ActivityName'], axis=1) ## Convert WAPs to SiteIDs crv5 = pd.merge(crv4, wap_site, on='WAP').drop('WAP', axis=1) ## Create CrcActSite table crc_act = crv5[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act['SiteActivity'] = True crc_act['SiteType'] = 'WAP' # Save results new_crc_act, rem_crc_act = mssql.update_from_difference(crc_act, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['RecordNumber', 'ActivityID', 'SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crc_act)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) # Remove old data if needed if not rem_crc_act.empty: rem_crc_act1 = pd.merge(act_site0, rem_crc_act, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID'], axis=1) del_stmt = "delete from {table} where {col} in ({val})" # del_stmt1 = del_stmt.format(table='ConsentedAttributes', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt1, username=param['output']['username'], password=param['output']['password']) # # del_stmt2a = del_stmt.format(table='LinkedPermits', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt2a, username=param['output']['username'], password=param['output']['password']) # # del_stmt2b = del_stmt.format(table='LinkedPermits', col='OtherCrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt2b, username=param['output']['username'], password=param['output']['password']) del_stmt3 = del_stmt.format(table='ConsentedRateVolume', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt3, username=param['output']['username'], password=param['output']['password']) # del_stmt4 = del_stmt.format(table='CrcActSite', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt4, username=param['output']['username'], password=param['output']['password']) act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## Create ConsentedRateVolume table crv6 = pd.merge(crv5, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID', 'LowflowCondition'], axis=1) # Save results new_crv, _ = mssql.update_from_difference(crv6, param['output']['server'], param['output']['database'], 'ConsentedRateVolume', on='CrcActSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedRateVolume', 'pass', '{} rows updated'.format(len(new_crv)), username=param['output']['username'], password=param['output']['password']) ########################################### ### Diverts ## Clean div1 = db.divert.copy() div1['RecordNumber'] = div1['RecordNumber'].str.strip().str.upper() div1['DivertType'] = div1['DivertType'].str.strip().str.title() div1['LowflowCondition'] = div1['LowflowCondition'].str.strip().str.upper() div1['ConsentedMultiDayVolume'] = pd.to_numeric(div1['ConsentedMultiDayVolume'], errors='coerce').round() div1['ConsentedMultiDayPeriod'] = pd.to_numeric(div1['ConsentedMultiDayPeriod'], errors='coerce').round() div1['ConsentedRate'] = pd.to_numeric(div1['ConsentedRate'], errors='coerce').round(2) div1.loc[div1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan div1.loc[div1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan div1.loc[div1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan div1.loc[div1['LowflowCondition'].isnull(), 'LowflowCondition'] = 'NO' div1.loc[(~div1['LowflowCondition'].isin(['NO', 'YES'])), 'LowflowCondition'] = 'YES' div1.loc[div1['LowflowCondition'] == 'NO', 'LowflowCondition'] = False div1.loc[div1['LowflowCondition'] == 'YES', 'LowflowCondition'] = True div1['WAP'] = div1['WAP'].str.strip().str.upper() div1.loc[~div1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan ## Filter div2 = div1[div1.WAP.notnull()] ## Check foreign keys div2 = div2[div2.RecordNumber.isin(crc1)].copy() ## Check primary keys div2 = div2.drop_duplicates(['RecordNumber', 'WAP']) ## Join to get the IDs and filter WAPs div3 = pd.merge(div2, act_types1[['ActivityID', 'ActivityName']], left_on='DivertType', right_on='ActivityName').drop(['DivertType', 'ActivityName'], axis=1) div3 = pd.merge(div3, wap_site, on='WAP').drop('WAP', axis=1) ## CrcActSite crc_act_div = div3[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act_div['SiteActivity'] = True crc_act_div['SiteType'] = 'WAP' # Save results new_crc_div, rem_crc_div = mssql.update_from_difference(crc_act_div, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['RecordNumber', 'ActivityID', 'SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crc_div)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## ConsentedRateVolume crc_div = pd.merge(div3, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID', 'LowflowCondition'], axis=1).dropna(subset=['ConsentedRate', 'ConsentedMultiDayVolume'], how='all') crc_div['FromMonth'] = 1 crc_div['ToMonth'] = 12 # Save results new_crc_div, _ = mssql.update_from_difference(crc_div, param['output']['server'], param['output']['database'], 'ConsentedRateVolume', on='CrcActSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedRateVolume', 'pass', '{} rows updated'.format(len(new_crc_div)), username=param['output']['username'], password=param['output']['password']) ########################################### ### Water use types wu1 = db.water_use.copy() ## Clean wu1['RecordNumber'] = wu1['RecordNumber'].str.strip().str.upper() wu1['UseType'] = wu1['UseType'].str.strip().str.title() wu1['ConsentedMultiDayVolume'] = pd.to_numeric(wu1['ConsentedMultiDayVolume'], errors='coerce').round() wu1['ConsentedMultiDayPeriod'] = pd.to_numeric(wu1['ConsentedMultiDayPeriod'], errors='coerce').round() wu1['ConsentedRate'] = pd.to_numeric(wu1['ConsentedRate'], errors='coerce').round(2) wu1.loc[wu1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan wu1.loc[wu1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan wu1.loc[wu1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan spaces_bool = wu1['UseType'].str[3:5] == ' ' wu1.loc[spaces_bool, 'UseType'] = wu1.loc[spaces_bool, 'UseType'].str[:3] + wu1.loc[spaces_bool, 'UseType'].str[4:] ## Check foreign keys wu2 = wu1[wu1.RecordNumber.isin(crc1)].copy() ## Split into WAPs by take type equivelant wu3 = wu2.copy() wu3['take_type'] = wu3['UseType'].str.replace('Use', 'Take') wu4 = pd.merge(wu3, mon_min_max1, on=['RecordNumber', 'take_type']) wu4['ConsentedMultiDayVolume'] = wu4['ConsentedMultiDayVolume'].divide(wu4['wap_count'], 0).round() wu4['ConsentedRate'] = wu4['ConsentedRate'].divide(wu4['wap_count'], 0).round(2) wu4.drop(['wap_count', 'take_type'], axis=1, inplace=True) ## Convert Use types to broader categories types_cat = {} for key, value in param['misc']['use_types_codes'].items(): for string in value: types_cat[string] = key types_check = np.in1d(wu4.WaterUse.unique(), list(types_cat.keys())).all() if not types_check: raise ValueError('Some use types are missing in the parameters file. Check the use type table and the parameters file.') wu4.WaterUse.replace(types_cat, inplace=True) wu4['WaterUse'] = wu4['WaterUse'].astype('category') ## Join to get the IDs and filter WAPs wu5 = pd.merge(wu4, act_types1[['ActivityID', 'ActivityName']], left_on='UseType', right_on='ActivityName').drop(['UseType', 'ActivityName'], axis=1) wu5 = pd.merge(wu5, wap_site, on='WAP').drop('WAP', axis=1) ## Drop duplicate uses wu5.WaterUse.cat.set_categories(param['misc']['use_types_priorities'], True, inplace=True) wu5 = wu5.sort_values('WaterUse') wu6 = wu5.drop_duplicates(['RecordNumber', 'ActivityID', 'SiteID']).copy() ## CrcActSite crc_act_wu = wu6[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act_wu['SiteActivity'] = True crc_act_wu['SiteType'] = 'WAP' # Save results new_crv_wu, _ = mssql.update_from_difference(crc_act_wu, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crv_wu)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## ConsentedRateVolume crv_wu = pd.merge(wu6, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID'])[['CrcActSiteID', 'ConsentedRate', 'ConsentedMultiDayVolume', 'ConsentedMultiDayPeriod']].dropna(subset=['ConsentedRate', 'ConsentedMultiDayVolume'], how='all') crv_wu['FromMonth'] = 1 crv_wu['ToMonth'] = 12 # Save results new_crv_wu, _ = mssql.update_from_difference(crv_wu, param['output']['server'], param['output']['database'], 'ConsentedRateVolume', on='CrcActSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedRateVolume', 'pass', '{} rows updated'.format(len(new_crv_wu)), username=param['output']['username'], password=param['output']['password']) ## Attributes cols1 = ['RecordNumber', 'ActivityID', 'SiteID'] attr_cols = attr1.Attribute[attr1.Attribute.isin(wu6.columns)].tolist() cols1.extend(attr_cols) wua1 = wu6.loc[:, wu6.columns.isin(cols1)].set_index(['RecordNumber', 'ActivityID', 'SiteID']) wua2 = wua1.stack() wua2.name = 'Value' wua2 = wua2.reset_index() wua2.rename(columns={'level_3': 'Attribute'}, inplace=True) wua3 = pd.merge(wua2, attr1, on='Attribute').drop('Attribute', axis=1) wua4 = pd.merge(wua3, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID'], axis=1) # Save results new_wua, _ = mssql.update_from_difference(wua4, param['output']['server'], param['output']['database'], 'ConsentedAttributes', on=['CrcActSiteID', 'AttributeID'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedAttributes', 'pass', '{} rows updated'.format(len(new_wua)), username=param['output']['username'], password=param['output']['password']) ################################################# ### Linked Consents print('--Update LinkConsent table') ## Clean data lc1 = db.linked_permits.copy() lc1['RecordNumber'] = lc1['RecordNumber'].str.strip().str.upper() lc1['OtherRecordNumber'] = lc1['OtherRecordNumber'].str.strip().str.upper() lc1['Relationship'] = lc1['Relationship'].str.strip() lc1['LinkedStatus'] = lc1['LinkedStatus'].str.strip() lc1['CombinedAnnualVolume'] =
pd.to_numeric(lc1['CombinedAnnualVolume'], errors='coerce')
pandas.to_numeric
""" Fetch GPU load data from a remote server using SSH. """ import argparse import configparser import io from fabric import Connection import pandas as pd import invoke def get_username(pid, hostname, user): """Get the corresponding username for a PID""" SSH_CMD = 'ps -o user= {}'.format(pid) # sometimes zombies occur... try: result = Connection(hostname, user=user).run(SSH_CMD, hide=True).stdout result = str.strip(result) except invoke.exceptions.UnexpectedExit: result = None return result def get_gpu_processes(hostname, user): SSH_CMD = 'nvidia-smi --query-compute-apps=pid,gpu_uuid --format=csv' result = Connection(hostname, user=user).run(SSH_CMD, hide=True).stdout # does return a CSV csv = io.StringIO(result) # temporary string stream csv = pd.read_csv(csv) # parse as csv csv['username'] = '' csv = csv.rename(columns={' gpu_uuid': 'gpu_uuid'}) for cur_idx, cur_row in csv.iterrows(): username = get_username(cur_row['pid'], hostname, user) if username is None: username = 'Zombie' csv.loc[cur_idx, 'username'] = username return csv def get_load_data(hostname, user): """Get the output from `nvidia-smi` and parse it.""" SSH_CMD = 'nvidia-smi --query-gpu=utilization.gpu,utilization.memory,index,gpu_name,gpu_uuid --format=csv' result = Connection(hostname, user=user).run(SSH_CMD, hide=True).stdout # does return a CSV csv = io.StringIO(result) # temporary string stream csv =
pd.read_csv(csv)
pandas.read_csv
''' Created on: 14/12/2016 @author: <NAME> @description: Extract the O/D weight matrix from a network diagram ''' import argparse as arg import os import sys import math from lxml import etree import numpy as np import pandas as pd from collections import defaultdict # -------------------------------------------------------------- def printBanner(): # Take here the banner: http://patorjk.com/software/taag/#p=display&f=Doom&t=mutraff%20odgen # Font: Doom print(" _ __ __ _ ") print(" | | / _|/ _| | | ") print(" _ __ ___ _ _| |_ _ __ __ _| |_| |_ ___ __| | __ _ ___ _ __ ") print("| '_ ` _ \| | | | __| '__/ _` | _| _| / _ \ / _` |/ _` |/ _ \ '_ \ ") print("| | | | | | |_| | |_| | | (_| | | | | | (_) | (_| | (_| | __/ | | |") print("|_| |_| |_|\__,_|\__|_| \__,_|_| |_| \___/ \__,_|\__, |\___|_| |_|") print(" __/ | ") print(" |___/ \n") print(" MUTRAFF O/D Matrix generator") print(" <EMAIL>") print("") # -------------------------------------------------------------- opts = {} edge_types_speeds = defaultdict(dict) od_trips = defaultdict(dict) od_grouped_trips = defaultdict(dict) od_nodes = defaultdict(dict) od_edgeIds = defaultdict(dict) od_edges = defaultdict(dict) od_types = defaultdict(dict) od_speeds = defaultdict(dict) od_weights = defaultdict(dict) od_lengths = defaultdict(dict) od_names = defaultdict(dict) od_priorities = defaultdict(dict) od_tazs = defaultdict(dict) od_taz_nodes = defaultdict(dict) # -------------------------------------------------------------- def error(code,msg): print('ERROR: '+msg) exit(code) # -------------------------------------------------------------- def getConfig(): parser = arg.ArgumentParser( prog="mutraff_odgen", formatter_class=arg.RawDescriptionHelpFormatter, description='''\ MuTRAFF Origin/Destination Demand Matrices generator. Generates different kinds of O/D matrices from the SUMO simulation files: network and trip files. Examples: * Generate all matrices: python mutraff_odgen.py -n alcalahenares.net.xml -d alcalahenares_L_Bastra_uni1x8_timeALL_fulltraffic_logit50.trip.xml -A -x alcalahenares.nod.xml * Generate time-filtered trip counters: python mutraff_odgen.py -fti 1 -fte 2 -n alcalahenares.net.xml -C -d alcalahenares_L_Bastra_uni1x8_timeALL_fulltraffic_logit50.trip.xml -x alcalahenares.nod.xml ''') # REQUIRED OPTS parser.add_argument( "-n","--in-net", help='Input. SUMOs XML net description file', default="mutraff.net.xml", required=True) parser.add_argument( "-x","--in-nodes", help='Input. SUMOs XML nodes description file', default="mutraff.nod.xml", required=True) # NON-REQUIRED OPTS parser.add_argument( "-d","--in-demand", help='Input. SUMOs trip file', required=False) parser.add_argument( "-v","--verbose", help='Verbose output', default=False, action='store_true') parser.add_argument( "-p","--out-prefix", help='Output. prefix for O/D generated files', default="mutraff", required=False) parser.add_argument( "-O","--out-dir", help='Output. Directory for generated files', default=".", required=False) parser.add_argument( "-A","--out-all", help='Output. Generate all the O/D matrices', default=False, action='store_true') parser.add_argument( "-I","--out-edge-ids", help='Output. Generate O/D matrix with edge ids', default=False, action='store_true') parser.add_argument( "-T","--out-edge-types", help='Output. Generate O/D matrix with edge types', default=False, action='store_true') parser.add_argument( "-P","--out-edge-priorities", help='Output. Generate O/D matrix with edge priorities',default=False, action='store_true') parser.add_argument( "-W","--out-fftt", help='Output. Generate O/D matrix with edge weights as FREE-FLOW TRAVEL TIMES', default=False, action='store_true') parser.add_argument( "-L","--out-lengths", help='Output. Generate O/D matrix with edge lengths', default=False, action='store_true') parser.add_argument( "-S","--out-speeds", help='Output. Generate O/D matrix with edge speeds', default=False, action='store_true') parser.add_argument( "-C","--out-trip-counters", help='Output. Generate O/D matrix with timeless trip counters. Requires -d option enabled', default=False, action='store_true') parser.add_argument( "-G","--out-group-trip-counters", help='Output. Generate O/D matrix with timeless GROUPED trip counters. Requires -d option enabled', default=False, action='store_true') parser.add_argument( "-N","--out-names", help='Output. Generate O/D matrix with street names', default=False, action='store_true') parser.add_argument( "-W2","--out-edge-weights", help='Output. Dump default edge weights', default=False, action='store_true') parser.add_argument( "-X","--out-nodes", help='Output. Dump CSV nodes listing with GPS coordinates', default=False, action='store_true') # filters parser.add_argument( "-fti","--filter-time-ini", help='Filter. Dump trips from specified time', default=False ) parser.add_argument( "-fte","--filter-time-end", help='Filter. Dump trips up to specified time', default=False ) options = vars(parser.parse_args()) if( options['out_all'] ): options['out_edge_ids'] = True options['out_edge_types'] = True options['out_edge_priorities'] = True options['out_speeds'] = True options['out_fftt'] = True options['out_lengths'] = True options['out_trip_counters'] = True options['out_group_trip_counters'] = True options['out_names'] = True options['out_nodes'] = True options['out_edge_weigths'] = True if( options['out_trip_counters'] and not options['in_demand'] ): parser.error('-C/--out-trip-counters requires -d/--in-demand setting enabled') error(1,'Bad config') if( options['out_group_trip_counters'] and not options['in_demand'] ): parser.error('-C/--out-group-trip-counters requires -d/--in-demand setting enabled') error(1,'Bad config') if( options['filter_time_ini'] ): options['filter_time_ini'] = float(options['filter_time_ini']) if( options['filter_time_end'] ): options['filter_time_end'] = float(options['filter_time_end']) if( options['verbose'] ): print(options) return options # -------------------------------------------------------------- # http://stackoverflow.com/questions/15736995/how-can-i-quickly-estimate-the-distance-between-two-latitude-longitude-points # -------------------------------------------------------------- def distance(lat1, lng1, lat2, lng2): #return distance as meter if you want km distance, remove "* 1000" radius = 6371.0 * 1000.0 dLat = (lat2-lat1) * math.pi / 180 dLng = (lng2-lng1) * math.pi / 180 lat1 = lat1 * math.pi / 180 lat2 = lat2 * math.pi / 180 ang = 0 try: val = math.sin(dLat/2) * math.sin(dLat/2) + math.sin(dLng/2) * math.sin(dLng/2) * math.cos(lat1) * math.cos(lat2) ang = 2 * math.atan2(math.sqrt(val), math.sqrt(1-val)) except: error(2,"Calculating distance. Exception: "+str(sys.exc_info()) ) return radius * ang # -------------------------------------------------------------- def parseNodes(opts): global edge_types_speeds global od_edgeIds global od_edges global od_types global od_speeds global od_weights global od_lengths global od_names global od_priorities global od_nodes global od_trips print( "Start parsing nodes file" ) root = {} nodesfile=opts['in_nodes'] try: tree=etree.parse(nodesfile) root=tree.getroot() except: error(2,"Parsing "+nodesfile+" file. Exception: "+str(sys.exc_info()) ) x_min = x_max = y_min = y_max = 0 for elem in root: # print(elem) try: if( elem.tag ): if( elem.tag == 'node' ): id=elem.attrib['id'] x= float(elem.attrib['x']) y= float(elem.attrib['y']) od_nodes[id]['x'] = x od_nodes[id]['y'] = y od_nodes[id]['taz'] = '' x_min = x if x < x_min else x_min x_max = x if x > x_max else x_max y_min = y if y < y_min else y_min y_min = y if y > y_max else y_max #print( "Pushed node:{}".format(id) ) except: error(3,"Error parsing XML tree. Exception: "+sys.exc_info()) print( "End parsing nodes file" ) print( "Initializing O/D matrices") for x in od_nodes: #print "--> {}".format(x) for y in od_nodes: od_edgeIds[x][y] = '' od_types[x][y] = '' od_speeds[x][y] = 0 od_weights[x][y] = 0 od_lengths[x][y] = 0 od_names[x][y] = 0 od_priorities[x][y] = 0 od_trips[x][y] = 0 od_grouped_trips[x][y] = 0 # -------------------------------------------------------------- def parseNet(opts): global edge_types_speeds global od_edgeIds global od_edges global od_types global od_speeds global od_weights global od_lengths global od_names global od_priorities global od_nodes global od_tazs global od_taz_nodes flag_debug=False print( "Start parsing netfile" ); od_taz_nodes['from']={} od_taz_nodes['to']={} root = {} netfile=opts['in_net'] try: tree=etree.parse(netfile) root=tree.getroot() except: error(2,"Parsing "+netfile+" file. Exception: "+str(sys.exc_info()) ) # -- Weight format -- # {'priority': '1', 'width': '2.00', 'allow': 'pedestrian', 'oneway': '1', 'numLanes': '1', 'speed': '2.78', 'id': 'highway.bridleway'} for elem in root: if flag_debug: print(elem) try: if( elem.tag ): # ---------------------------------------------- if( elem.tag == 'type' ): edge_types_speeds[elem.attrib['id']] = elem.attrib['speed'] # ---------------------------------------------- if( elem.tag == 'edge' ): if( not ('function' in elem.attrib and elem.attrib['function'] == 'internal' )): edge_id = elem.attrib['id'] #print('edge['+vfrom+','+vto+']='+edge_id) #print(elem.attrib) vfrom = elem.attrib['from'] vto = elem.attrib['to'] # ----------------- od_edgeIds[vfrom][vto] = edge_id # ----------------- od_edges[edge_id]['from'] = vfrom od_edges[edge_id]['to'] = vto # ----------------- vtype = elem.attrib['type'] od_types[vfrom][vto] = vtype # ----------------- speed = 0 if vtype in edge_types_speeds: speed = float(edge_types_speeds[vtype]) od_speeds[vfrom][vto] = speed # ----------------- od_edges[edge_id]['speed'] = speed lat1 = od_nodes[vfrom]['y'] lon1 = od_nodes[vfrom]['x'] lat2 = od_nodes[vto]['y'] lon2 = od_nodes[vto]['x'] linear_distance = distance(lat1, lon1, lat2, lon2) # Length = true path length # Distance = linear distance between origen and destiantion coordinates od_edges[edge_id]['length'] = linear_distance od_edges[edge_id]['distance'] = linear_distance weight = 999 if speed > 0: weight = linear_distance/speed od_edges[edge_id]['weight'] = weight od_weights[vfrom][vto] = weight od_lengths[vfrom][vto] = linear_distance if flag_debug: print("EDGE({}: {}->{}): lindist={}, speed={}, FFTT={}".format( edge_id, vfrom, vto, linear_distance, speed, weight )) # ----------------- od_names[vfrom][vto] = elem.attrib['name'] if 'name' in elem.attrib else '' # ----------------- od_priorities[vfrom][vto] = elem.attrib['priority'] if 'priority' in elem.attrib else 0 # ---------------------------------------------- # edge_id, vfromm, vto --> coming from previous edge xml-tag for elem2 in elem.iter("lane"): if( elem2.tag == 'lane' ): #print("lane:{}".format( elem2.attrib)) lane_id = elem2.attrib['id'] lane_speed = float(elem2.attrib['speed']) lane_length = float(elem2.attrib['length']) lane_weight = 999 if lane_speed > 0: lane_weight = lane_length/lane_speed od_weights[vfrom][vto] = lane_weight od_lengths[vfrom][vto] = lane_length od_speeds[vfrom][vto] = lane_speed od_edges[edge_id]['weight'] = lane_weight od_edges[edge_id]['speed'] = lane_speed od_edges[edge_id]['length'] = lane_length if flag_debug: print(" LANE({}: {}->{}): length={}, speed={}, FFTT={}".format( edge_id, vfrom, vto, lane_length, lane_speed, lane_weight )) # ---------------------------------------------- if( elem.tag == 'tazs' ): for e2 in elem: try: # --- ADD A NEW TAZ ------------------------ if( e2.tag and e2.tag == 'taz' ): # print("TAZ: {}".format(e2.attrib['edges'])) taz_id = e2.attrib['id'] #print("Adding taz {}".format(taz_id)) od_tazs[taz_id]['edges'] = e2.attrib['edges'].split(' ') od_tazs[taz_id]['nodes'] = {} od_tazs[taz_id]['nodes']['from'] = [] od_tazs[taz_id]['nodes']['to'] = [] od_tazs[taz_id]['nodes']['leader_from']=None od_tazs[taz_id]['nodes']['leader_to']=None # -- Create nodes list --------------- for e in od_tazs[taz_id]['edges']: try: vfrom = od_edges[e]['from'] except: print("Warning: TAZ parsing: found edge from-node {} out of the map".format(e)) continue try: vto = od_edges[e]['to'] except: print("Warning: TAZ parsing: found edge to-node {} out of the map".format(e)) continue od_tazs[taz_id]['nodes']['from'].append(vfrom) od_tazs[taz_id]['nodes']['to'].append(vto) if not vfrom in od_taz_nodes['from']: od_taz_nodes['from'][vfrom]=[] od_taz_nodes['from'][vfrom].append(taz_id) if not vto in od_taz_nodes['from']: od_taz_nodes['from'][vto]=[] od_taz_nodes['from'][vto].append(taz_id) od_nodes[vfrom]['taz'] = taz_id od_nodes[vto]['taz'] = taz_id # -- Calculate TAZ centroids --------------- x = y = 0 for node in od_tazs[taz_id]['nodes']['from']: #print("--> {},{}".format( od_nodes[node]['x'], od_nodes[node]['y'] )) #print("<-- {},{}".format( float(od_nodes[node]['x']), float(od_nodes[node]['y']) )) x += od_nodes[node]['x'] y += od_nodes[node]['y'] x = x/len(od_tazs[taz_id]['nodes']['from']) y = y/len(od_tazs[taz_id]['nodes']['from']) od_tazs[taz_id]['nodes']['centroid']={ 'x': x, 'y':y } except: error(4,"Error parsing XML tree in TAZ. Exception: "+str(sys.exc_info())) # if( elem.tag == 'tlLogic' or elem.tag == 'junction' ): # print("End parsing") # return except: error(3,"Error parsing XML tree. Exception: "+str(sys.exc_info())) print( "End parsing netfile" ); # -------------------------------------------------------------- def calc_distance( x1, y1, x2, y2 ): return math.sqrt( math.pow(x1-x2,2)+math.pow(y1-y2,2) ) # -------------------------------------------------------------- def calculate_taz_leaders(opts): global od_tazs global od_taz_nodes print("Selecting distance leader nodes") num_tazs = len(od_tazs) for taz in od_tazs: # Calculate centroid from centroids of rest of tazs cen_x = cen_y = 0 for t in od_tazs: if not taz == t: cen_x += od_tazs[taz]['nodes']['centroid']['x'] cen_y += od_tazs[taz]['nodes']['centroid']['y'] cen_x = cen_x/(num_tazs-1) cen_y = cen_y/(num_tazs-1) #print("TAZ[{}] --> Distance Centroid:{} , {}".format(taz,cen_x,cen_y) ) # Obtain the most far node from taz to the taz centroids d = 0 leader = '' for n in od_tazs[taz]['nodes']['from']: d1 = calc_distance( cen_x, cen_y, od_nodes[n]['x'], od_nodes[n]['y'] ) #print("n:{} --> Taz[{}] --> far node:{}".format(n,taz,leader)) if d1 > d: d=d1 leader=n print(" Taz[{}] --> distance leader node:{}".format(taz,leader)) od_tazs[taz]['nodes']['leader']=leader # -------------------------------------------------------------- def dump_taz_nodes(opts): global od_tazs global od_taz_nodes print("=== DUMPING TAZ NODES ==================") for taz in od_tazs: print("NODES.FROM.TAZ[{}]: {}".format(taz,od_tazs[taz]['nodes']['from'])) print("CENTROID.FROM.TAZ[{}]: {}".format(taz,od_tazs[taz]['nodes']['centroid'])) print("========================================") # -------------------------------------------------------------- def count_individual_trips(vfrom,vto): global od_trips if( vfrom in od_trips and vto in od_trips[vfrom] ): od_trips[vfrom][vto] += 1 else: od_trips[vfrom][vto] = 1 # -------------------------------------------------------------- def count_group_trips(vfrom,vto): global od_grouped_trips global od_taz_nodes global od_tazs # get vfrom and vto equivalences if vfrom in od_taz_nodes['from'] and len(od_taz_nodes['from'][vfrom]) > 0: taz = od_taz_nodes['from'][vfrom][0] eqfrom = od_tazs[taz]['nodes']['leader'] #print(" --> FOUND TAZ leader equivalence for FROM:{}".format( vfrom) ) else: print(" --> Not found TAZ leader equivalence for FROM:{}".format( vfrom) ) eqfrom = vfrom if vto in od_taz_nodes['from'] and len(od_taz_nodes['from'][vto]) > 0: taz = od_taz_nodes['from'][vto][0] eqto = od_tazs[taz]['nodes']['leader'] #print(" --> FOUND TAZ leader equivalence for TO:{}".format( vfrom) ) else: print(" --> Not found TAZ leader equivalence for TO:{}".format( vto) ) eqto = vto if( eqfrom in od_grouped_trips and eqto in od_grouped_trips[eqfrom] ): od_grouped_trips[eqfrom][eqto] += 1 else: od_grouped_trips[eqfrom][eqto] = 1 # -------------------------------------------------------------- def parseDemand(opts): global od_grouped_trips global od_edgeIds global od_edges global od_nodes tot_trips = 0 count_trips = 0 print( "Start parsing demand file" ); # Read Demand file root = {} demandfile=opts['in_demand'] try: tree=etree.parse(demandfile) root=tree.getroot() except: error(2,"Parsing "+demandfile+" file. Exception: "+ str(sys.exc_info()) ) # -- Trip format -- # from and to fields are ***edges*** not nodes. It is necessary to change them. # <trip id="9100" depart="0.14" from="4616750#0" to="23858590#3" fromTaz="4" toTaz="99" departLane="best" departSpeed="0"/> for elem in root: try: if( elem.tag ): if( elem.tag == 'trip' ): tot_trips += 1 # print(elem.attrib) edgeFrom = elem.attrib['from'] edgeTo = elem.attrib['to'] depart = float(elem.attrib['depart']) consider = True if( opts['filter_time_ini'] and depart < opts['filter_time_ini'] ): consider = False if( opts['filter_time_end'] and depart > opts['filter_time_end'] ): consider = False if( consider ): vfrom = od_edges[edgeFrom]['from'] vto = od_edges[edgeTo]['to'] count_trips += 1 # Count individual trips count_individual_trips(vfrom,vto) # Count leader trips count_group_trips( vfrom, vto ); except: error(3,"Error setting value. Exception: "+str(sys.exc_info())) print( "End parsing demand file" ); print("Counted trips: "+str(count_trips)+"/"+str(tot_trips) ) # -------------------------------------------------------------- def dumpODmatrices(): global od_edgeIds global od_types global od_speeds global od_weights global od_lengths global od_names global od_priorities global od_trips global od_grouped_trips global od_nodes if not os.path.exists(opts['out_dir']): print( "Creating directory "+opts['out_dir']) os.makedirs(opts['out_dir']) if( 'out_fftt' in opts) & (opts['out_fftt']) : print("Generating od matrix for edge weights") df = pd.DataFrame(od_weights).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_weights.csv" ) if( 'out_speeds' in opts) & (opts['out_speeds']) : print("Generating od matrix for edge speeds") df = pd.DataFrame(od_speeds).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_speeds.csv" ) if( 'out_lengths' in opts) & (opts['out_lengths']) : print("Generating od matrix for edge lengths") df = pd.DataFrame(od_lengths).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_lengths.csv" ) if( 'out_edge_types' in opts) & (opts['out_edge_types']) : print("Generating od matrix for edge types") df = pd.DataFrame(od_types).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_types.csv" ) if( 'out_edge_ids' in opts) & (opts['out_edge_ids']) : print("Generating od matrix for edge ids") df = pd.DataFrame(od_edgeIds).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_edgeids.csv" ) if( 'out_names' in opts) & (opts['out_names']) : print("Generating od matrix for edge names") df = pd.DataFrame(od_names).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_names.csv", encoding='utf-8' ) if( 'out_edge_priorities' in opts) & (opts['out_edge_priorities']) : print("Generating od matrix for edge priorities") df = pd.DataFrame(od_priorities).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_priorities.csv" ) if( 'out_trip_counters' in opts) & (opts['out_trip_counters']) : print("Generating od matrix for trip counters") df = pd.DataFrame(od_trips).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_trips.csv" ) if( 'out_group_trip_counters' in opts) & (opts['out_group_trip_counters']) : print("Generating od matrix for grouped trip counters") df = pd.DataFrame(od_grouped_trips).T.fillna(0) df.to_csv( opts['out_dir']+'/'+opts['out_prefix']+"_od_group_trips.csv" ) if( 'out_nodes' in opts) & (opts['out_nodes']) : print("Generating od matrix for nodes") df =
pd.DataFrame(od_nodes)
pandas.DataFrame
# Import Libraries, some are uncessary right now import configparser import pandas as pd import numpy as np import sys import os import random import copy import math import scanpy as sc from matplotlib import pyplot as plt import matplotlib as mpl import seaborn as sns # null distribution fitting from scipy.stats import norm # bonferroni correction from statsmodels.stats.multitest import multipletests #CountsFile = sys.argv[1] np.seterr(all = 'warn') cfgFile = sys.argv[1] # '../switchy/SS2.ini' # Helper functions # Load the data a get filter into a usable form def prepareData(CountsFile, datatype, highly_variable, n_highly_variable, onlyClones, remove_immune_receptors, normalize, filterCells): """ Accepts: H5ad file where the adata.obs has a column "CLONE" denoting the clonal membership of the cell dataype: "scaled" or anything else would make it return log Returns: adata after filtering""" adata = sc.read_h5ad(CountsFile) adata, df = preprocessWScanpy(adata, datatype, highly_variable, n_highly_variable, remove_immune_receptors, normalize, filterCells) # After filtering select only cells which are clones if onlyClones == True: # Logic for dropping non-clones from the klein dataset #adata.obs.CLONE.fillna('None', inplace = True) adata = adata[adata.obs.CLONE != 'NaN' ,:] # Select only clones (applies to my dataset mostly) selector = adata.obs.CLONE.value_counts() > 1 selector = selector[selector == True] adata = adata[adata.obs.CLONE.isin(selector.index), :] df = df[df.index.isin(adata.obs.index)] return adata, df def readConfig(cfgFile): config = configparser.ConfigParser() config.read(cfgFile) stat_parameters = config['stat_parameters'] io = config['IO'] CountsFile = io['CountsFile'] out_dir = io['out_dir'] return stat_parameters, io, config # Filter Genes and Cells to get a manageable datafram def preprocessWScanpy(adata, datatype, highly_variable, n_highly_variable, remove_immune_receptors, normalize, filterCells): # TODO: make this into an argument # What is the best way to control parameters, probably a yaml file? #sc.pp.calculate_qc_metrics(adata, inplace=True) if remove_immune_receptors == True: immune_receptors = pd.read_csv('/home/mswift/B_cells/CSR/sc_RNAseq/data_tables/metadata/immune_receptor_genes_keepConstantRegion.csv', index_col=0) immune_receptors.columns = ['genes'] print("removing variable immune receptor genes which may drive clustering") adata = adata[:, ~adata.var.index.isin(immune_receptors.genes)] if filterCells == True: # Filter Cells and Genes sc.pp.filter_cells(adata, min_genes=800, inplace = True) sc.pp.filter_cells(adata, min_counts=100000, inplace = True) # always filter out the lowest expressed genes for computation time sc.pp.filter_genes(adata, min_cells=4, inplace = True) sc.pp.filter_genes(adata, min_counts=200, inplace = True) print(adata.obs.shape, adata.var.shape, "shape of adata after filtering ") # Make parameter in cfg if normalize == True: sc.pp.normalize_total(adata, target_sum=1e6) sc.pp.log1p(adata, base = 10) adata.raw = adata sc.pp.highly_variable_genes(adata, n_top_genes=n_highly_variable) # datatype logic if datatype == 'scaled': sc.pp.scale(adata) else: pass #Subset to highly variable gene if highly_variable == True: adata = adata[:,adata.var['highly_variable'] == True] highly_variable_genes = adata.var.index[adata.var["highly_variable"] == True] df = convertSparsetoDataFrame(adata) return adata, df def convertSparsetoDataFrame(adata): """ Input: anndata object with sparse matrix as .X attribute Returns: Pandas dataframe with rows as cells and columns as genes My take: This is inefficient but convenient, I wrote the code based on this, which is in hindsight a bad idea, but it it more readable possibly?""" # Get the gene expression values for each cell x gene columns = adata.var.index.to_list() index = adata.obs.index.to_list() try: denseArray = adata.X.toarray() except: denseArray = adata.X df = pd.DataFrame(data = denseArray, index = index , columns = columns ) return df def plotWaterfall(df, adata_obs, gene, label): LabelsTesting = adata_obs.copy() # Implementing the Hodgkin Protocol fig, ax1 = plt.subplots(1,1) LabelsTesting.loc[:,gene] = df[gene] order = LabelsTesting.groupby(label)[gene].mean().sort_values(ascending = False).index g = sns.stripplot(ax=ax1, data = LabelsTesting, x = LabelsTesting[label], y = gene, order = order, color = None) #save_figure(fig, '{}_{}'.format(label, str(gene))) return g def plotCI(df, adata_obs, num_shuffles, gene, label, alpha): # This is expensive to do twice, like this because I really am only plotting a subset of hits LabelsTesting =
pd.merge(adata.obs[label], df[gene], left_index=True, right_index=True)
pandas.merge
import re import gensim import torch import transformers import pandas as pd import numpy as np from os.path import dirname from pathlib import Path from tqdm.auto import tqdm from collections import Counter import os import sys CURRENT_DIR = os.getcwd() sys.path.append(CURRENT_DIR) MODULE_PATH = Path(dirname(__file__)) from umigame.nlp import labelling from umigame.nlp.preprocess import Preprocessor from umigame.datasets import fetch_crypto class SimpleTextDataset(torch.utils.data.Dataset): def __init__(self, ids, targets): self.ids = ids self.targets = targets def __len__(self): return len(self.targets) def __getitem__(self, item): id_ = torch.tensor(self.ids[item], dtype=torch.long) target = torch.tensor(self.targets[item], dtype=torch.float) return id_, target class NewsBertDataset(torch.utils.data.Dataset): """ Vocab size: 30522 """ def __init__(self, state="train", max_length=16): file_path = os.path.join(MODULE_PATH, "..", "datasets", "text", "news.csv") news_df = pd.read_csv(file_path) news_df["text"] = news_df["text"].apply(lambda x: x.lower()) # news_df = self._remain_rows_contain_keywords(news_df, "text", ["btc", "blockchain"]) news_df.set_index("date", inplace=True, drop=True) news_df.index =
pd.to_datetime(news_df.index)
pandas.to_datetime
from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt import csv import json from app.models import Dataset, Record, Attribute from api.models import Result, ExecutionLog from sklearn.cluster import KMeans from sklearn import metrics from scipy.spatial.distance import cdist import numpy as np import matplotlib.pyplot as plt from api.helpers import switcher, buildDatasetMatrix, buildDataFrame from api.pre_processing import pre_processing import pandas as pd from sklearn.decomposition import PCA import time from django.template.loader import render_to_string from django.conf import settings as djangoSettings import os import zipfile from io import BytesIO # upload & validate dataset @csrf_exempt def upload_dataset(request): start_time = time.time() result = {} executionStatus = True try: csvfile = request.FILES['dataset'] datasetName = request.POST.get('dataset_name') datasetDescription = request.POST.get('dataset_description') if request.POST.get( 'dataset_description') != None else '' allowMissinValues = request.POST.get('Allow_missing_values') # link : https://www.kaggle.com/smohubal/market-customer-segmentation-clustering/notebook try: if allowMissinValues == 'false': tmpCsvfile = pd.read_csv(csvfile) datasetInstance = pre_processing(tmpCsvfile) visual, data = datasetInstance.missing_percent() executionTime = "{:.4f}".format(time.time() - start_time) execLog = ExecutionLog(method='Dataset Uploading', dataset_id=None, exec_time=executionTime, status=False) execLog.save() result['data'] = data result['visual'] = visual result['status'] = False return JsonResponse(result) else: csvfile.seek(0) except Exception as e: csvfile.seek(0) decoded_file = csvfile.read().decode('utf-8').splitlines() reader = csv.reader(decoded_file, delimiter=',') attributes = {} attributes = next(reader) reader = csv.DictReader(decoded_file, delimiter=',') records = [] for row in reader: records.append(row) # create the dataset dataset = Dataset(title=datasetName, description=datasetDescription) dataset.save() # save the attributes for attributeName in attributes: try: attributeInstance = Attribute.objects.get(name=attributeName) except Attribute.DoesNotExist: attributeInstance = Attribute( name=attributeName, label=attributeName) attributeInstance.save() dataset.attributes.add(attributeInstance) # save the records for data in records: record = Record(data=data) record.save() dataset.records.add(record) result['attributes'] = attributes result['records_count'] = len(records) except Exception as e: executionStatus = False result['message'] = str(e) pass executionTime = "{:.4f}".format(time.time() - start_time) execLog = ExecutionLog(method='Dataset Uploading', dataset_id=(dataset.id if executionStatus else None), error=('' if executionStatus else result['message']), exec_time=executionTime, status=executionStatus) execLog.save() result['status'] = executionStatus return JsonResponse(result) @csrf_exempt def clone_dataset(request): start_time = time.time() result = {} executionStatus = True try: datasetId = request.POST.get('datasetId') datasetName = request.POST.get('dataset_name') datasetDescription = request.POST.get('dataset_description') if request.POST.get( 'dataset_description') != None else '' allowMissinValues = request.POST.get('Allow_missing_values') # create the dataset dataset = Dataset(title=datasetName, description=datasetDescription) dataset.save() # save the attributes for attributeName in attributes: try: attributeInstance = Attribute.objects.get(name=attributeName) except Attribute.DoesNotExist: attributeInstance = Attribute( name=attributeName, label=attributeName) attributeInstance.save() dataset.attributes.add(attributeInstance) # save the records for data in records: record = Record(data=data) record.save() dataset.records.add(record) result['attributes'] = attributes result['records_count'] = len(records) except Exception as e: executionStatus = False result['message'] = str(e) pass executionTime = "{:.4f}".format(time.time() - start_time) execLog = ExecutionLog(method='Dataset Uploading', dataset_id=(dataset.id if executionStatus else None), error=('' if executionStatus else result['message']), exec_time=executionTime, status=executionStatus) execLog.save() result['status'] = executionStatus return JsonResponse(result) @csrf_exempt def donwload_clusters_zip(request): path = djangoSettings.STATIC_ROOT + '/clusters' filenames = os.listdir(path) zip_buffer = BytesIO() with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file: for file in filenames: f = open(path + '/' + file) zip_file.writestr(file, f.read()) f.close() zip_buffer.seek(0) resp = HttpResponse(zip_buffer, content_type='application/zip') resp['Content-Disposition'] = 'attachment; filename = clusters.zip' return resp # optimum_clusters_number @csrf_exempt def optimum_clusters_number(request): start_time = time.time() result = {} executionStatus = True try: datasetId = request.POST.get('datasetId') method = request.POST.get('method') maxIterationsNumeber = request.POST.get('maxIterationsNumeber') pcaComponents = request.POST.get('pcaComponents') dataset = Dataset.objects.get(id=datasetId) datasetMatrix = buildDatasetMatrix(dataset=dataset) if pcaComponents != "" and pcaComponents != 0: pca = PCA(n_components=float(pcaComponents) if float( pcaComponents) < 1 else int(pcaComponents)) datasetMatrix = pca.fit_transform(datasetMatrix) result = switcher(method=method, args={ 'datasetMatrix': datasetMatrix, 'maxIterationsNumeber': maxIterationsNumeber}) pass except Exception as e: executionStatus = False result['message'] = str(e) pass executionTime = "{:.4f}".format(time.time() - start_time) execLog = ExecutionLog(method=method, dataset_id=datasetId, error=('' if executionStatus else result['message']), exec_time=executionTime, status=executionStatus) execLog.save() result['status'] = executionStatus return JsonResponse(result) # clustering @csrf_exempt def clustering(request): start_time = time.time() result = {} executionStatus = True contributions = False try: datasetId = request.POST.get('datasetId') method = request.POST.get('method') clustersNumber = request.POST.get('clustersNumber') samplingPoints = request.POST.get('samplingPoints') linkageMethod = request.POST.get('linkageMethod') pcaComponents = request.POST.get('pcaComponents') dataset = Dataset.objects.get(id=datasetId) datasetDf = buildDataFrame(dataset=dataset) if pcaComponents == '': pcaComponents = 0 nPca = float(pcaComponents) if float( pcaComponents) < 1 else int(pcaComponents) if pcaComponents != "" and pcaComponents != 0 and (nPca > 2 or nPca < 1): print('========= PCA Applied =========') pca = PCA(n_components=float(pcaComponents) if float( pcaComponents) < 1 else int(pcaComponents)) datasetDf = pca.fit_transform(datasetDf) contributions = pca.components_ columns = ['PC'+str(i) for i in range(datasetDf.shape[1])] datasetDf =
pd.DataFrame(datasetDf, columns=columns)
pandas.DataFrame
import os import tensorflow as tf import pandas as pd from addressnet.predict import predict_one, predict def get_gnaf_dataset_labels(): labels_list = [ 'building_name', # 1 'level_number_prefix', # 2 'level_number', # 3 'level_number_suffix', # 4 'level_type', # 5 'flat_number_prefix', # 6 'flat_number', # 7 'flat_number_suffix', # 8 'flat_type', # 9 'number_first_prefix', # 10 'number_first', # 11 'number_first_suffix', # 12 'number_last_prefix', # 13 'number_last', # 14 'number_last_suffix', # 15 'street_name', # 16 'street_suffix', # 17 'street_type', # 18 'locality_name', # 19 'state', # 20 'postcode' # 21 ] return labels_list if __name__ == "__main__": print(tf.__version__) print(predict_one("casa del gelato, 10A 24-26 high street road mount waverley vic 3183")) # load CSV df_in = pd.read_csv(os.path.join(os.getcwd(), 'data/full_address.csv'), header=0) print(df_in.shape) # get a list of addresses to parse addresses_to_parse = df_in['FullAddress'].tolist() # make predictions print('Parsing addresses...') parsed_addresses = predict(addresses_to_parse) # save predictions into a dataframe df_out =
pd.DataFrame()
pandas.DataFrame
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import NoSuchElementException from selenium.common.exceptions import StaleElementReferenceException from selenium.common.exceptions import TimeoutException from sheet_scraper import ScraleScraper import pandas as pd import time def bestellen_maar(datafreempje, driver): # maak frame df_gemist =
pd.DataFrame(data=None, columns=datafreempje.columns)
pandas.DataFrame
""" The ``python_function`` model flavor serves as a default model interface for MLflow Python models. Any MLflow Python model is expected to be loadable as a ``python_function`` model. In addition, the ``mlflow.pyfunc`` module defines a generic :ref:`filesystem format <pyfunc-filesystem-format>` for Python models and provides utilities for saving to and loading from this format. The format is self contained in the sense that it includes all necessary information for anyone to load it and use it. Dependencies are either stored directly with the model or referenced via a Conda environment. The ``mlflow.pyfunc`` module also defines utilities for creating custom ``pyfunc`` models using frameworks and inference logic that may not be natively included in MLflow. See :ref:`pyfunc-create-custom`. .. _pyfunc-inference-api: ************* Inference API ************* Python function models are loaded as an instance of :py:class:`PyFuncModel <mlflow.pyfunc.PyFuncModel>`, which is an MLflow wrapper around the model implementation and model metadata (MLmodel file). You can score the model by calling the :py:func:`predict() <mlflow.pyfunc.PyFuncModel.predict>` method, which has the following signature:: predict(model_input: pandas.DataFrame) -> [numpy.ndarray | pandas.(Series | DataFrame)] .. _pyfunc-filesystem-format: ***************** Filesystem format ***************** The Pyfunc format is defined as a directory structure containing all required data, code, and configuration:: ./dst-path/ ./MLmodel: configuration <code>: code packaged with the model (specified in the MLmodel file) <data>: data packaged with the model (specified in the MLmodel file) <env>: Conda environment definition (specified in the MLmodel file) The directory structure may contain additional contents that can be referenced by the ``MLmodel`` configuration. .. _pyfunc-model-config: MLModel configuration ##################### A Python model contains an ``MLmodel`` file in **python_function** format in its root with the following parameters: - loader_module [required]: Python module that can load the model. Expected as module identifier e.g. ``mlflow.sklearn``, it will be imported using ``importlib.import_module``. The imported module must contain a function with the following signature:: _load_pyfunc(path: string) -> <pyfunc model implementation> The path argument is specified by the ``data`` parameter and may refer to a file or directory. The model implementation is expected to be an object with a ``predict`` method with the following signature:: predict(model_input: pandas.DataFrame) -> [numpy.ndarray | pandas.(Series | DataFrame)] - code [optional]: Relative path to a directory containing the code packaged with this model. All files and directories inside this directory are added to the Python path prior to importing the model loader. - data [optional]: Relative path to a file or directory containing model data. The path is passed to the model loader. - env [optional]: Relative path to an exported Conda environment. If present this environment should be activated prior to running the model. - Optionally, any additional parameters necessary for interpreting the serialized model in ``pyfunc`` format. .. rubric:: Example :: tree example/sklearn_iris/mlruns/run1/outputs/linear-lr :: ├── MLmodel ├── code │   ├── sklearn_iris.py │ ├── data │   └── model.pkl └── mlflow_env.yml :: cat example/sklearn_iris/mlruns/run1/outputs/linear-lr/MLmodel :: python_function: code: code data: data/model.pkl loader_module: mlflow.sklearn env: mlflow_env.yml main: sklearn_iris .. _pyfunc-create-custom: ****************************** Creating custom Pyfunc models ****************************** MLflow's persistence modules provide convenience functions for creating models with the ``pyfunc`` flavor in a variety of machine learning frameworks (scikit-learn, Keras, Pytorch, and more); however, they do not cover every use case. For example, you may want to create an MLflow model with the ``pyfunc`` flavor using a framework that MLflow does not natively support. Alternatively, you may want to build an MLflow model that executes custom logic when evaluating queries, such as preprocessing and postprocessing routines. Therefore, ``mlflow.pyfunc`` provides utilities for creating ``pyfunc`` models from arbitrary code and model data. The :meth:`save_model()` and :meth:`log_model()` methods are designed to support multiple workflows for creating custom ``pyfunc`` models that incorporate custom inference logic and artifacts that the logic may require. An `artifact` is a file or directory, such as a serialized model or a CSV. For example, a serialized TensorFlow graph is an artifact. An MLflow model directory is also an artifact. .. _pyfunc-create-custom-workflows: Workflows ######### :meth:`save_model()` and :meth:`log_model()` support the following workflows: 1. Programmatically defining a new MLflow model, including its attributes and artifacts. Given a set of artifact URIs, :meth:`save_model()` and :meth:`log_model()` can automatically download artifacts from their URIs and create an MLflow model directory. In this case, you must define a Python class which inherits from :class:`~PythonModel`, defining ``predict()`` and, optionally, ``load_context()``. An instance of this class is specified via the ``python_model`` parameter; it is automatically serialized and deserialized as a Python class, including all of its attributes. 2. Interpreting pre-existing data as an MLflow model. If you already have a directory containing model data, :meth:`save_model()` and :meth:`log_model()` can import the data as an MLflow model. The ``data_path`` parameter specifies the local filesystem path to the directory containing model data. In this case, you must provide a Python module, called a `loader module`. The loader module defines a ``_load_pyfunc()`` method that performs the following tasks: - Load data from the specified ``data_path``. For example, this process may include deserializing pickled Python objects or models or parsing CSV files. - Construct and return a pyfunc-compatible model wrapper. As in the first use case, this wrapper must define a ``predict()`` method that is used to evaluate queries. ``predict()`` must adhere to the :ref:`pyfunc-inference-api`. The ``loader_module`` parameter specifies the name of your loader module. For an example loader module implementation, refer to the `loader module implementation in mlflow.keras <https://github.com/mlflow/mlflow/blob/ 74d75109aaf2975f5026104d6125bb30f4e3f744/mlflow/keras.py#L157-L187>`_. .. _pyfunc-create-custom-selecting-workflow: Which workflow is right for my use case? ######################################## We consider the first workflow to be more user-friendly and generally recommend it for the following reasons: - It automatically resolves and collects specified model artifacts. - It automatically serializes and deserializes the ``python_model`` instance and all of its attributes, reducing the amount of user logic that is required to load the model - You can create Models using logic that is defined in the ``__main__`` scope. This allows custom models to be constructed in interactive environments, such as notebooks and the Python REPL. You may prefer the second, lower-level workflow for the following reasons: - Inference logic is always persisted as code, rather than a Python object. This makes logic easier to inspect and modify later. - If you have already collected all of your model data in a single location, the second workflow allows it to be saved in MLflow format directly, without enumerating constituent artifacts. """ import importlib import numpy as np import os import pandas import yaml from copy import deepcopy import logging from typing import Any, Union, List, Dict import mlflow import mlflow.pyfunc.model import mlflow.pyfunc.utils from mlflow.models import Model, ModelSignature, ModelInputExample from mlflow.models.model import MLMODEL_FILE_NAME from mlflow.models.utils import _save_example from mlflow.pyfunc.model import PythonModel, PythonModelContext # pylint: disable=unused-import from mlflow.pyfunc.model import get_default_conda_env from mlflow.tracking.artifact_utils import _download_artifact_from_uri from mlflow.types import DataType, Schema from mlflow.utils import PYTHON_VERSION, get_major_minor_py_version from mlflow.utils.annotations import deprecated from mlflow.utils.file_utils import TempDir, _copy_file_or_tree from mlflow.utils.model_utils import _get_flavor_configuration from mlflow.exceptions import MlflowException from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS from mlflow.protos.databricks_pb2 import ( INVALID_PARAMETER_VALUE, RESOURCE_ALREADY_EXISTS, RESOURCE_DOES_NOT_EXIST, ) FLAVOR_NAME = "python_function" MAIN = "loader_module" CODE = "code" DATA = "data" ENV = "env" PY_VERSION = "python_version" _logger = logging.getLogger(__name__) PyFuncInput = Union[pandas.DataFrame, np.ndarray, List[Any], Dict[str, Any]] PyFuncOutput = Union[pandas.DataFrame, pandas.Series, np.ndarray, list] def add_to_model(model, loader_module, data=None, code=None, env=None, **kwargs): """ Add a ``pyfunc`` spec to the model configuration. Defines ``pyfunc`` configuration schema. Caller can use this to create a valid ``pyfunc`` model flavor out of an existing directory structure. For example, other model flavors can use this to specify how to use their output as a ``pyfunc``. NOTE: All paths are relative to the exported model root directory. :param model: Existing model. :param loader_module: The module to be used to load the model. :param data: Path to the model data. :param code: Path to the code dependencies. :param env: Conda environment. :param kwargs: Additional key-value pairs to include in the ``pyfunc`` flavor specification. Values must be YAML-serializable. :return: Updated model configuration. """ parms = deepcopy(kwargs) parms[MAIN] = loader_module parms[PY_VERSION] = PYTHON_VERSION if code: parms[CODE] = code if data: parms[DATA] = data if env: parms[ENV] = env return model.add_flavor(FLAVOR_NAME, **parms) def _load_model_env(path): """ Get ENV file string from a model configuration stored in Python Function format. Returned value is a model-relative path to a Conda Environment file, or None if none was specified at model save time """ return _get_flavor_configuration(model_path=path, flavor_name=FLAVOR_NAME).get(ENV, None) def _enforce_type(name, values: pandas.Series, t: DataType): """ Enforce the input column type matches the declared in model input schema. The following type conversions are allowed: 1. np.object -> string 2. int -> long (upcast) 3. float -> double (upcast) 4. int -> double (safe conversion) Any other type mismatch will raise error. """ if values.dtype == np.object and t not in (DataType.binary, DataType.string): values = values.infer_objects() if t == DataType.string and values.dtype == np.object: # NB: strings are by default parsed and inferred as objects, but it is # recommended to use StringDtype extension type if available. See # # `https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html` # # for more detail. try: return values.astype(t.to_pandas(), errors="raise") except ValueError: raise MlflowException( "Failed to convert column {0} from type {1} to {2}.".format(name, values.dtype, t) ) # NB: Comparison of pandas and numpy data type fails when numpy data type is on the left hand # side of the comparison operator. It works, however, if pandas type is on the left hand side. # That is because pandas is aware of numpy. if t.to_pandas() == values.dtype or t.to_numpy() == values.dtype: # The types are already compatible => conversion is not necessary. return values if t == DataType.binary and values.dtype.kind == t.binary.to_numpy().kind: # NB: bytes in numpy have variable itemsize depending on the length of the longest # element in the array (column). Since MLflow binary type is length agnostic, we ignore # itemsize when matching binary columns. return values numpy_type = t.to_numpy() if values.dtype.kind == numpy_type.kind: is_upcast = values.dtype.itemsize <= numpy_type.itemsize elif values.dtype.kind == "u" and numpy_type.kind == "i": is_upcast = values.dtype.itemsize < numpy_type.itemsize elif values.dtype.kind in ("i", "u") and numpy_type == np.float64: # allow (u)int => double conversion is_upcast = values.dtype.itemsize <= 6 else: is_upcast = False if is_upcast: return values.astype(numpy_type, errors="raise") else: # NB: conversion between incompatible types (e.g. floats -> ints or # double -> float) are not allowed. While supported by pandas and numpy, # these conversions alter the values significantly. def all_ints(xs): return all([pandas.isnull(x) or int(x) == x for x in xs]) hint = "" if ( values.dtype == np.float64 and numpy_type.kind in ("i", "u") and values.hasnans and all_ints(values) ): hint = ( " Hint: the type mismatch is likely caused by missing values. " "Integer columns in python can not represent missing values and are therefore " "encoded as floats. The best way to avoid this problem is to infer the model " "schema based on a realistic data sample (training dataset) that includes missing " "values. Alternatively, you can declare integer columns as doubles (float64) " "whenever these columns may have missing values. See `Handling Integers With " "Missing Values <https://www.mlflow.org/docs/latest/models.html#" "handling-integers-with-missing-values>`_ for more details." ) raise MlflowException( "Incompatible input types for column {0}. " "Can not safely convert {1} to {2}.{3}".format(name, values.dtype, numpy_type, hint) ) def _enforce_schema(pdf: PyFuncInput, input_schema: Schema): """ Enforce column names and types match the input schema. For column names, we check there are no missing columns and reorder the columns to match the ordering declared in schema if necessary. Any extra columns are ignored. For column types, we make sure the types match schema or can be safely converted to match the input schema. """ if isinstance(pdf, (list, np.ndarray, dict)): try: pdf =
pandas.DataFrame(pdf)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout from keras.layers.advanced_activations import PReLU from keras.models import Sequential from keras.utils import np_utils from hep_ml.losses import BinFlatnessLossFunction from hep_ml.gradientboosting import UGradientBoostingClassifier from sklearn.preprocessing import StandardScaler trainingFilePath = 'training.csv' testFilePath = 'test.csv' def get_training_data(): filter_out = ['id', 'min_ANNmuon', 'production', 'mass', 'signal', 'SPDhits', 'IP', 'IPSig', 'isolationc'] f = open(trainingFilePath) data = [] y = [] ids = [] for i, l in enumerate(f): if i == 0: labels = l.rstrip().split(',') label_indices = dict((l, i) for i, l in enumerate(labels)) continue values = l.rstrip().split(',') filtered = [] for v, l in zip(values, labels): if l not in filter_out: filtered.append(float(v)) label = values[label_indices['signal']] ID = values[0] data.append(filtered) y.append(float(label)) ids.append(ID) return ids, np.array(data), np.array(y) def get_test_data(): filter_out = ['id', 'min_ANNmuon', 'production', 'mass', 'signal', 'SPDhits', 'IP', 'IPSig', 'isolationc'] f = open(testFilePath) data = [] ids = [] for i, l in enumerate(f): if i == 0: labels = l.rstrip().split(',') continue values = l.rstrip().split(',') filtered = [] for v, l in zip(values, labels): if l not in filter_out: filtered.append(float(v)) ID = values[0] data.append(filtered) ids.append(ID) return ids, np.array(data) def preprocess_data(X, scaler=None): if not scaler: scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) return X, scaler # get training data ids, X, y = get_training_data() print('Data shape:', X.shape) # shuffle the data np.random.seed(248) np.random.shuffle(X) np.random.seed(248) np.random.shuffle(y) print('Signal ratio:', np.sum(y) / y.shape[0]) # preprocess the data X, scaler = preprocess_data(X) y = np_utils.to_categorical(y) # split into training / evaluation data nb_train_sample = int(len(y) * 0.97) X_train = X[:nb_train_sample] X_eval = X[nb_train_sample:] y_train = y[:nb_train_sample] y_eval = y[nb_train_sample:] print('Train on:', X_train.shape[0]) print('Eval on:', X_eval.shape[0]) # deep pyramidal MLP, narrowing with depth model = Sequential() model.add(Dropout(0.15)) model.add(Dense(X_train.shape[1],200)) model.add(PReLU((200,))) model.add(Dropout(0.13)) model.add(Dense(200, 150)) model.add(PReLU((150,))) model.add(Dropout(0.12)) model.add(Dense(150,100)) model.add(PReLU((100,))) model.add(Dropout(0.11)) model.add(Dense(100, 50)) model.add(PReLU((50,))) model.add(Dropout(0.09)) model.add(Dense(50, 30)) model.add(PReLU((30,))) model.add(Dropout(0.07)) model.add(Dense(30, 25)) model.add(PReLU((25,))) model.add(Dense(25, 2)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # train model model.fit(X_train, y_train, batch_size=128, nb_epoch=75, validation_data=(X_eval, y_eval), verbose=2, show_accuracy=True) # generate submission ids, X = get_test_data() print('Data shape:', X.shape) X, scaler = preprocess_data(X, scaler) predskeras = model.predict(X, batch_size=256)[:, 1] print("Load the training/test data using pandas") train = pd.read_csv(trainingFilePath) test =
pd.read_csv(testFilePath)
pandas.read_csv
from dataapi import SGS from bloomberg import BBG import numpy as np import pandas as pd from sklearn import preprocessing getdata = SGS() bbg = BBG() start_date = pd.to_datetime("01-01-2001") end_date = pd.to_datetime("07-01-2019") #fetching Brazil FGV Consumer Confidence Index SA Sep 2005=100 Original Date: '30-sep-2005' df = bbg.fetch_series(securities=['BZFGCCSA Index'], fields=['PX_LAST'], startdate=start_date, enddate=end_date) consbr = pd.DataFrame(data=df) consbr = consbr.droplevel(0) consbr = consbr.reset_index() consbr = consbr.set_index('TRADE_DATE') consbr = consbr.resample('Q').mean() # Normalized series Consumer Confidence x = np.array(consbr['BZFGCCSA Index']) x = x.reshape(-1,1) min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) confnorm = consbr confnorm['BZFGCCSA Normalized'] = '' confnorm['BZFGCCSA Normalized'] = x_scaled confnorm = confnorm.drop('BZFGCCSA Index', axis=1) #fetching GDP Growth in R$ df_gr = pd.DataFrame(getdata.fetch("1207",start_date, end_date)) #for GDP in dollars, change the string to 7324 df_gr = df_gr['1207'].resample('Q').mean() df_gr = df_gr.pct_change(4) df_gr = df_gr.dropna() #normalizing GDP x = df_gr.values x = x.reshape(-1,1) min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) df_gr_norm =
pd.DataFrame(x_scaled, index=df_gr.index, columns=['GDP Growth Normalized'])
pandas.DataFrame
import argparse import datetime import logging import os import synapseclient import genie import pandas as pd logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def get_center_data_completion(center, df): ''' Get center data completion. Calulates the percentile of how complete a clinical data element is: Number of not blank/Unknown/NA divded by total number of patients or samples Args: center: GENIE center df: sample or patient dataframe Returns: Dataframe: Center data ''' centerdf = df[df['CENTER'] == center] total = len(centerdf) center_data = pd.DataFrame() skip_cols = ['CENTER', 'PATIENT_ID', 'SAMPLE_ID', 'SAMPLE_TYPE_DETAILED', 'SECONDARY_RACE', 'TERTIARY_RACE'] for col in centerdf: if col not in skip_cols: not_missing = [not pd.isnull(value) and value != 'Not Collected' for value in centerdf[col]] completeness = float(sum(not_missing)) / int(total) returned = pd.DataFrame([[col, center, total, completeness]]) center_data = center_data.append(returned) return(center_data) def update_samples_in_release_table(syn, file_mapping, release, samples_in_release_synid): ''' Convenience function that updates the sample in release table This tracks the samples of each release. 1 means it exists, and 0 means it doesn't Args: syn: synapse object file_mapping: file mapping generated from file mapping function release: GENIE release number (ie. 5.3-consortium) samples_in_release_synid: Synapse Id of 'samples in release' Table ''' clinical_ent = syn.get(file_mapping['clinical'], followLink=True) clinicaldf = pd.read_csv(clinical_ent.path, sep="\t", comment="#") cols = [i['name'] for i in list(syn.getTableColumns(samples_in_release_synid))] if release not in cols: schema = syn.get(samples_in_release_synid) syn_col = synapseclient.Column( name=release, columnType='INTEGER', defaultValue=0) new_column = syn.store(syn_col) schema.addColumn(new_column) schema = syn.store(schema) # Columns of samples in release samples_per_release = syn.tableQuery( 'SELECT SAMPLE_ID, "%s" FROM %s' % (release, samples_in_release_synid)) samples_per_releasedf = samples_per_release.asDataFrame() new_samples = clinicaldf[['SAMPLE_ID']][ ~clinicaldf.SAMPLE_ID.isin(samples_per_releasedf.SAMPLE_ID)] new_samples[release] = 1 old_samples = clinicaldf[['SAMPLE_ID']][ clinicaldf.SAMPLE_ID.isin(samples_per_releasedf.SAMPLE_ID)] old_samples[release] = 1 samples_in_releasedf = new_samples.append(old_samples) genie.process_functions.updateDatabase( syn, samples_per_releasedf, samples_in_releasedf, samples_in_release_synid, ["SAMPLE_ID"]) def update_cumulative_sample_table(syn, file_mapping, release, cumulative_sample_count_synid): ''' Consortium release sample count table update function This gets the cumulative sample count of each file type in each release Args: syn: synapse object file_mapping: file mapping generated from file mapping function release: GENIE release number (ie. 5.3-consortium) cumulative_sample_count_synid: Synapse Id of 'Cumulative sample count' Table ''' sample_count_per_round = syn.tableQuery( 'SELECT * FROM %s' % cumulative_sample_count_synid) sample_count_per_rounddf = sample_count_per_round.asDataFrame() clinical_ent = syn.get(file_mapping['clinical'], followLink=True) clinicaldf = pd.read_csv(clinical_ent.path, sep="\t", comment="#") clinicaldf.columns = [i.upper() for i in clinicaldf.columns] if clinicaldf.get("CENTER") is None: clinicaldf['CENTER'] = \ [sample.split("-")[1] for sample in clinicaldf.SAMPLE_ID] clinical_counts = clinicaldf['CENTER'].value_counts() clinical_counts['Total'] = sum(clinical_counts) clinical_counts.name = "Clinical" fusion_ent = syn.get(file_mapping['fusion'], followLink=True) fusiondf = pd.read_csv(fusion_ent.path, sep="\t", comment="#") fusiondf.columns = [i.upper() for i in fusiondf.columns] fusion_counts = fusiondf['CENTER'][ ~fusiondf['TUMOR_SAMPLE_BARCODE'].duplicated()].value_counts() fusion_counts['Total'] = sum(fusion_counts) cna_ent = syn.get(file_mapping['cna'], followLink=True) cnadf = pd.read_csv(cna_ent.path, sep="\t", comment="#") cna_counts = pd.Series( [i.split("-")[1] for i in cnadf.columns[1:]]).value_counts() cna_counts['Total'] = sum(cna_counts) seg_ent = syn.get(file_mapping['seg'], followLink=True) segdf = pd.read_csv(seg_ent.path, sep="\t", comment="#") segdf.columns = [i.upper() for i in segdf.columns] segdf['CENTER'] = [i.split("-")[1] for i in segdf['ID']] seg_counts = segdf['CENTER'][~segdf['ID'].duplicated()].value_counts() seg_counts['Total'] = sum(seg_counts) total_counts = pd.DataFrame(clinical_counts) total_counts['Fusions'] = fusion_counts total_counts['CNV'] = cna_counts total_counts['Mutation'] = clinical_counts total_counts['SEG'] = seg_counts total_counts = total_counts.fillna(0) total_counts = total_counts.applymap(int) total_counts['Center'] = total_counts.index total_counts['Release'] = release genie.process_functions.updateDatabase( syn, sample_count_per_rounddf, total_counts, cumulative_sample_count_synid, ["Center", "Release"]) def get_file_mapping(syn, release_folder_synid): """ Get file mapping between important files needed for dashboard and their synapse ids Args: syn: synapse object release_folder_synid: synapse id of release """ files = syn.getChildren(release_folder_synid) file_mapping = dict() for metadata in files: filename = metadata['name'] synid = metadata['id'] if not filename.startswith("meta"): if filename.startswith("data_clinical_sample"): file_mapping['clinical'] = synid elif filename.endswith("fusions.txt"): file_mapping['fusion'] = synid elif filename.endswith("CNA.txt"): file_mapping['cna'] = synid elif filename.endswith(".seg"): file_mapping['seg'] = synid return(file_mapping) def update_release_numbers(syn, database_mappingdf, release=None): ''' Function that updates all release dashboard numbers or specific release number Args: syn: synapse object database_mappingdf: mapping between synapse ids and database release: GENIE release (ie. 5.3-consortium). Defaults to None ''' # Update release table with current release or all releases samples_in_release_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'samplesInRelease'].values[0] cumulative_sample_count_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'cumulativeSampleCount'].values[0] release_folder_fileview_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'releaseFolder'].values[0] release_folder = syn.tableQuery( "select id,name from %s" % release_folder_fileview_synid + " where name not like 'Release%' and name <> 'case_lists' and " + "name not like '%.0.%'") release_folderdf = release_folder.asDataFrame() for rel_synid, rel_name in zip(release_folderdf.id, release_folderdf.name): file_mapping = get_file_mapping(syn, rel_synid) # If release is specified, only process on that, # otherwise process for all if release is None or release == rel_name: update_samples_in_release_table( syn, file_mapping, rel_name, samples_in_release_synid) update_cumulative_sample_table( syn, file_mapping, rel_name, cumulative_sample_count_synid) else: pass def update_database_numbers(syn, database_mappingdf): ''' Updates database cumulative numbers (Only called when not staging) Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' cumulative_sample_count_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'cumulativeSampleCount'].values[0] # Database database_count = syn.tableQuery( "SELECT * FROM %s where Release = 'Database'" % cumulative_sample_count_synid) database_countdf = database_count.asDataFrame() clinical = syn.tableQuery('select CENTER from syn7517674') clinicaldf = clinical.asDataFrame() clinincal_counts = clinicaldf['CENTER'].value_counts() clinincal_counts['Total'] = sum(clinincal_counts) clinincal_counts.name = "Clinical" fusion = syn.tableQuery('select * from syn7893268') fusiondf = fusion.asDataFrame() fusion_counts = fusiondf['CENTER'][ ~fusiondf['TUMOR_SAMPLE_BARCODE'].duplicated()].value_counts() fusion_counts['Total'] = sum(fusion_counts) center_flat_files = syn.getChildren("syn12278118") cna_file_paths = [syn.get(file['id']).path for file in center_flat_files if file['name'].startswith("data_CNA")] cna_numbers = {} for cna_file in cna_file_paths: center = os.path.basename(cna_file).replace(".txt", "").split("_")[2] with open(cna_file, 'r') as cna: header = cna.readline() samples = header.split("\t") # Minus one because of Hugo_Symbol cna_numbers[center] = len(samples) - 1 cna_counts = pd.Series(cna_numbers) cna_counts['Total'] = sum(cna_counts) seg = syn.tableQuery('select * from syn7893341') segdf = seg.asDataFrame() seg_counts = segdf['CENTER'][~segdf['ID'].duplicated()].value_counts() seg_counts['Total'] = sum(seg_counts) db_counts = pd.DataFrame(clinincal_counts) db_counts['Fusions'] = fusion_counts db_counts['CNV'] = cna_counts db_counts['Mutation'] = clinincal_counts db_counts['SEG'] = seg_counts db_counts = db_counts.fillna(0) db_counts = db_counts.applymap(int) db_counts['Center'] = db_counts.index db_counts['Release'] = "Database" genie.process_functions.updateDatabase( syn, database_countdf, db_counts, cumulative_sample_count_synid, ["Center", "Release"]) today = datetime.date.today() if today.month in [1, 4, 8, 12]: db_count_tracker = db_counts[['Clinical', 'Center', 'Release']] db_count_tracker.rename( columns={'Clinical': 'sample_count', 'Center': 'center', 'Release': 'date'}, inplace=True) db_count_tracker['date'] = today.strftime("%b-%Y") # Hard coded syn id syn.store(synapseclient.Table("syn18404852", db_count_tracker)) def update_oncotree_code_tables(syn, database_mappingdf): ''' Function that updates database statistics of oncotree codes and primary onocotree codes Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' oncotree_distribution_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'oncotree'].values[0] clinical = syn.tableQuery('select * from syn7517674') clinicaldf = clinical.asDataFrame() # DISTRIBUTION OF ONCOTREE CODE TABLE UPDATE oncotree_code_distributiondf = pd.DataFrame( columns=set(clinicaldf['CENTER']), index=set(clinicaldf['ONCOTREE_CODE'])) for center in oncotree_code_distributiondf.columns: onc_counts = clinicaldf['ONCOTREE_CODE'][ clinicaldf['CENTER'] == center].value_counts() oncotree_code_distributiondf[center] = onc_counts oncotree_code_distributiondf = oncotree_code_distributiondf.fillna(0) oncotree_code_distributiondf = oncotree_code_distributiondf.applymap(int) oncotree_code_distributiondf['Total'] = \ oncotree_code_distributiondf.apply(sum, axis=1) oncotree_code_distributiondf['Oncotree_Code'] = \ oncotree_code_distributiondf.index oncotree_distribution_db = syn.tableQuery( 'SELECT %s FROM %s' % ("Oncotree_Code," + ",".join(clinicaldf['CENTER'].unique()) + ",Total", oncotree_distribution_synid)) oncotree_distribution_dbdf = oncotree_distribution_db.asDataFrame() genie.process_functions.updateDatabase( syn, oncotree_distribution_dbdf, oncotree_code_distributiondf, oncotree_distribution_synid, ["Oncotree_Code"], to_delete=True) # DISTRIBUTION OF PRIMARY CODE TABLE UPDATE oncotree_link_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'oncotreeLink'].values[0] primary_code_synId = database_mappingdf['Id'][ database_mappingdf['Database'] == 'primaryCode'].values[0] ''' Can also use most up to date oncotree code, because these tables are updated from the database ''' oncotree_link_ent = syn.get(oncotree_link_synid) oncotree_link = oncotree_link_ent.externalURL oncotree_mapping = \ genie.process_functions.get_oncotree_code_mappings(oncotree_link) clinicaldf['PRIMARY_CODES'] = \ [oncotree_mapping[i.upper()]['ONCOTREE_PRIMARY_NODE'] if i.upper() in oncotree_mapping.keys() else 'DEPRECATED_CODE' for i in clinicaldf.ONCOTREE_CODE] # ### DISTRIBUTION OF PRIMARY ONCOTREE CODE TABLE UPDATE primary_code_distributiondf = pd.DataFrame( columns=set(clinicaldf['CENTER']), index=set(clinicaldf['PRIMARY_CODES'])) for center in primary_code_distributiondf.columns: onc_counts = clinicaldf['PRIMARY_CODES'][ clinicaldf['CENTER'] == center].value_counts() primary_code_distributiondf[center] = onc_counts primary_code_distributiondf = primary_code_distributiondf.fillna(0) primary_code_distributiondf = primary_code_distributiondf.applymap(int) primary_code_distributiondf['Total'] = \ primary_code_distributiondf.apply(sum, axis=1) primary_code_distributiondf['Oncotree_Code'] = \ primary_code_distributiondf.index primary_code_dist_db = syn.tableQuery( 'SELECT %s FROM %s' % ("Oncotree_Code," + ",".join(clinicaldf['CENTER'].unique()) + ",Total", primary_code_synId)) primary_code_dist_dbdf = primary_code_dist_db.asDataFrame() genie.process_functions.updateDatabase( syn, primary_code_dist_dbdf, primary_code_distributiondf, primary_code_synId, ["Oncotree_Code"], to_delete=True) def update_sample_difference_table(syn, database_mappingdf): ''' Function that updates sample difference table between consortium releases Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' cumulative_sample_count_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'cumulativeSampleCount'].values[0] sample_diff_count_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'sampleDiffCount'].values[0] # UPDATE DIFF TABLE sample_count_per_round = syn.tableQuery( "SELECT * FROM %s where Center <> 'Total' and Release <> 'Database'" % cumulative_sample_count_synid) sample_count_per_rounddf = sample_count_per_round.asDataFrame() releases = list(sample_count_per_rounddf['Release'].unique()) # sort the releases and remove public releases releases.sort() consortium_releases = [ release for release in releases if "public" not in release and ".0." not in release] diff_between_releasesdf = sample_count_per_rounddf[ sample_count_per_rounddf['Release'] == consortium_releases[0]] for index, release_name in enumerate(consortium_releases[1:]): prior_release = sample_count_per_rounddf[ sample_count_per_rounddf['Release'] == consortium_releases[index]] current_release = sample_count_per_rounddf[ sample_count_per_rounddf['Release'] == release_name] prior_release.index = prior_release['Center'] current_release.index = current_release['Center'] del prior_release['Center'] del prior_release['Release'] del current_release['Center'] del current_release['Release'] # Append new rows of centers that are new and # just added to the releases new_centers = current_release.index[ ~current_release.index.isin(prior_release.index)] if not new_centers.empty: prior_release = prior_release.append( pd.DataFrame(index=new_centers)) prior_release = prior_release.fillna(0) difference = current_release - prior_release difference['Center'] = difference.index difference['Release'] = release_name diff_between_releasesdf = diff_between_releasesdf.append(difference) difftable_db = syn.tableQuery('SELECT * FROM %s' % sample_diff_count_synid) difftable_dbdf = difftable_db.asDataFrame() difftable_dbdf = difftable_dbdf.fillna(0) new_values = diff_between_releasesdf[[ 'Clinical', 'Mutation', 'CNV', 'SEG', 'Fusions']].fillna(0).applymap(int) diff_between_releasesdf[ ['Clinical', 'Mutation', 'CNV', 'SEG', 'Fusions']] = new_values genie.process_functions.updateDatabase( syn, difftable_dbdf, diff_between_releasesdf, sample_diff_count_synid, ["Center", "Release"], to_delete=True) def update_data_completeness_table(syn, database_mappingdf): ''' Function that updates the data completeness of the database Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' data_completion_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'dataCompletion'].values[0] sample = syn.tableQuery('select * from syn7517674') sampledf = sample.asDataFrame() patient = syn.tableQuery('select * from syn7517669') patientdf = patient.asDataFrame() data_completenessdf = pd.DataFrame() center_infos = sampledf.CENTER.drop_duplicates().apply( lambda center: get_center_data_completion(center, sampledf)) for center_info in center_infos: data_completenessdf = data_completenessdf.append(center_info) center_infos = patientdf.CENTER.drop_duplicates().apply( lambda center: get_center_data_completion(center, patientdf)) for center_info in center_infos: data_completenessdf = data_completenessdf.append(center_info) data_completeness_db = syn.tableQuery( 'select * from %s' % data_completion_synid) data_completeness_dbdf = data_completeness_db.asDataFrame() data_completenessdf.columns = data_completeness_dbdf.columns genie.process_functions.updateDatabase( syn, data_completeness_dbdf, data_completenessdf, data_completion_synid, ["FIELD", "CENTER"], to_delete=True) def update_wiki(syn, database_mappingdf): ''' Updates the GENIE project dashboard wiki timestamp Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' # Updates to query and date dashboard was updated cumulative_sample_count_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'cumulativeSampleCount'].values[0] primary_code_synId = database_mappingdf['Id'][ database_mappingdf['Database'] == 'primaryCode'].values[0] centers = syn.tableQuery( 'select distinct(CENTER) as CENTER from syn7517674') centersdf = centers.asDataFrame() now = datetime.datetime.now() markdown = \ ["_Updated {month}/{day}/{year}_\n\n".format( month=now.month, day=now.day, year=now.year), "##Count of Clinical Samples\n", "${synapsetable?query=SELECT Center%2C Clinical%2C Release FROM " + cumulative_sample_count_synid + "}\n\n", "\n\n##Primary Oncotree Codes\n\n", "${synapsetable?query=SELECT Oncotree%5FCode%2C " + "%2C ".join(centersdf['CENTER'].unique()) + "%2C Total FROM " + primary_code_synId + " ORDER BY Total DESC&limit=15}\n\n"] wikiPage = syn.getWiki("syn3380222", 235803) wikiPage.markdown = "".join(markdown) syn.store(wikiPage) def string_to_unix_epoch_time_milliseconds(string_time): ''' This function takes dates in this format: 2018-10-25T20:16:07.959Z and turns it into unix epoch time in milliseconds Args: string_time: string in this format: 2018-10-25T20:16:07.959Z ''' datetime_obj = datetime.datetime.strptime( string_time.split(".")[0], "%Y-%m-%dT%H:%M:%S") return(synapseclient.utils.to_unix_epoch_time(datetime_obj)) def update_data_release_file_table(syn, database_mappingdf): release_folder_fileview_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'releaseFolder'].values[0] release_folder = syn.tableQuery( "select id,name from %s" % release_folder_fileview_synid + " where name not like 'Release%' and name <> 'case_lists' " + "and name not like '0.%'") release_folderdf = release_folder.asDataFrame() data_release_table_synid = "syn16804261" data_release_table = syn.tableQuery( "select * from %s" % data_release_table_synid) data_release_tabledf = data_release_table.asDataFrame() not_in_release_tabledf = release_folderdf[ ~release_folderdf.name.isin(data_release_tabledf.release)] for synid, name in \ zip(not_in_release_tabledf.id, not_in_release_tabledf.name): release_files = syn.getChildren(synid) append_rows = [ [release_file['name'], release_file['id'], name, string_to_unix_epoch_time_milliseconds( release_file['modifiedOn']), synid] for release_file in release_files if release_file['name'] != "case_lists"] syn.store(synapseclient.Table(data_release_table_synid, append_rows)) def check_column_decreases(currentdf, olderdf): """ Check entity decreases Args: current_ent: Current entity dataframe old_ent: Older entity dataframe """ diff_map = dict() for col in currentdf: new_counts = currentdf[col].value_counts() if olderdf.get(col) is not None: old_counts = olderdf[col].value_counts() # Make sure any values that exist in the new get added # to the old to show the decrease new_keys = pd.Series(index=new_counts.keys()[ ~new_counts.keys().isin(old_counts.keys())]) old_counts = old_counts.add(new_keys, fill_value=0) old_counts.fillna(0, inplace=True) # Make sure any values that don't exist in the old get added # to show the decrease new_keys = pd.Series(index=old_counts.keys()[ ~old_counts.keys().isin(new_counts.keys())]) new_counts = new_counts.add(new_keys, fill_value=0) new_counts.fillna(0, inplace=True) if any(new_counts - old_counts < 0): logger.info("\tDECREASE IN COLUMN: %s" % col) # diff = new_counts[new_counts - old_counts < 0] diffs = new_counts-old_counts diffstext = diffs[diffs < 0].to_csv().replace("\n", "; ") logger.info("\t" + diffstext) diff_map[col] = True else: diff_map[col] = False return(diff_map) def print_clinical_values_difference_table(syn, database_mappingdf): ''' Function that checks for a decrease in values in the clinical file from last consortium release to most recent consortium release Args: syn: synapse object database_mappingdf: mapping between synapse ids and database ''' release_folder_fileview_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'releaseFolder'].values[0] clinical_key_decrease_synid = database_mappingdf['Id'][ database_mappingdf['Database'] == 'clinicalKeyDecrease'].values[0] release_folder = syn.tableQuery( "select id,name from %s" % release_folder_fileview_synid + " where name not like 'Release%' and name <> 'case_lists' " + "and name not like '%.0.%' and name not like '%-public'") release_folderdf = release_folder.asDataFrame() release_folderdf.sort_values("name", ascending=False, inplace=True) current_release = release_folderdf['id'][0] older_release = release_folderdf['id'][1] current_release_files = syn.getChildren(current_release) current_clinical_synids = { file['name']: file['id'] for file in current_release_files if file['name'] in ['data_clinical_sample.txt', 'data_clinical_patient.txt']} older_release_files = syn.getChildren(older_release) older_clinical_synids = { file['name']: file['id'] for file in older_release_files if file['name'] in ['data_clinical_sample.txt', 'data_clinical_patient.txt']} current_sample_ent = syn.get( current_clinical_synids['data_clinical_sample.txt'], followLink=True) older_sample_ent = syn.get( older_clinical_synids['data_clinical_sample.txt'], followLink=True) current_sampledf = pd.read_csv( current_sample_ent.path, sep="\t", comment="#") current_sampledf['CENTER'] = [ patient.split("-")[1] for patient in current_sampledf['PATIENT_ID']] older_sampledf = pd.read_csv(older_sample_ent.path, sep="\t", comment="#") older_sampledf['CENTER'] = [ patient.split("-")[1] for patient in older_sampledf['PATIENT_ID']] # Rather than take the CENTER, must take the SAMPLE_ID to compare current_sampledf = current_sampledf[current_sampledf['SAMPLE_ID'].isin( older_sampledf['SAMPLE_ID'].unique())] logger.info("SAMPLE CLINICAL VALUE DECREASES") center_decrease_mapping = dict() for center in older_sampledf['CENTER'].unique(): current_center_sampledf = current_sampledf[ current_sampledf['CENTER'] == center] older_center_sampledf = older_sampledf[ older_sampledf['CENTER'] == center] logger.info(center) decrease_map = check_column_decreases( current_center_sampledf, older_center_sampledf) center_decrease_mapping[center] = decrease_map current_patient_ent = syn.get( current_clinical_synids['data_clinical_patient.txt'], followLink=True) older_patient_ent = syn.get( older_clinical_synids['data_clinical_patient.txt'], followLink=True) current_patientdf = pd.read_csv( current_patient_ent.path, sep="\t", comment="#") older_patientdf = pd.read_csv( older_patient_ent.path, sep="\t", comment="#") # Rather than take the CENTER, must take the PATIENT_ID to compare current_patientdf = current_patientdf[current_patientdf['PATIENT_ID'].isin( older_patientdf['PATIENT_ID'].unique())] logger.info("PATIENT CLINICAL VALUE DECREASES") for center in older_patientdf['CENTER'].unique(): current_center_patientdf = current_patientdf[ current_patientdf['CENTER'] == center] older_center_patientdf = older_patientdf[ older_patientdf['CENTER'] == center] logger.info(center) patient_decrease_map = check_column_decreases( current_center_patientdf, older_center_patientdf) center_decrease_mapping[center].update(patient_decrease_map) center_decrease_mapping =
pd.DataFrame(center_decrease_mapping)
pandas.DataFrame
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 tm.assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int tm.assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float tm.assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] tm.assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! msg = ( "cannot do positional indexing on Float64Index with " r"these indexers \[1.0\] of type float" ) with pytest.raises(TypeError, match=msg): df.iloc[1.0:5] result = df.iloc[4:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() with pytest.raises(TypeError, match=_slice_msg): cp.iloc[1.0:5] = 0 with pytest.raises(TypeError, match=msg): result = cp.iloc[1.0:5] == 0 assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df tm.assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed_datetime(self): df = DataFrame( np.random.randn(5, 3), index=["a", "b", "c", "d", "e"], columns=["foo", "bar", "baz"], ) df["timestamp"] = Timestamp("20010102") # check our dtypes result = df.dtypes expected = Series( [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")], index=["foo", "bar", "baz", "timestamp"], ) tm.assert_series_equal(result, expected) # GH#16674 iNaT is treated as an integer when given by the user df.loc["b", "timestamp"] = iNaT assert not isna(df.loc["b", "timestamp"]) assert df["timestamp"].dtype == np.object_ assert df.loc["b", "timestamp"] == iNaT # allow this syntax (as of GH#3216) df.loc["c", "timestamp"] = np.nan assert isna(df.loc["c", "timestamp"]) # allow this syntax df.loc["d", :] = np.nan assert not isna(df.loc["c", :]).all() def test_setitem_mixed_datetime(self): # GH 9336 expected = DataFrame( { "a": [0, 0, 0, 0, 13, 14], "b": [ datetime(2012, 1, 1), 1, "x", "y", datetime(2013, 1, 1), datetime(2014, 1, 1), ], } ) df = DataFrame(0, columns=list("ab"), index=range(6)) df["b"] = pd.NaT df.loc[0, "b"] = datetime(2012, 1, 1) df.loc[1, "b"] = 1 df.loc[[2, 3], "b"] = "x", "y" A = np.array( [ [13, np.datetime64("2013-01-01T00:00:00")], [14, np.datetime64("2014-01-01T00:00:00")], ] ) df.loc[[4, 5], ["a", "b"]] = A tm.assert_frame_equal(df, expected) def test_setitem_frame_float(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_setitem_frame_mixed(self, float_string_frame): # GH 3216 # already aligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"] ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_rows_unaligned(self, float_string_frame): # GH#3216 rows unaligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], index=list(f.index[0:2]) + ["foo", "bar"], columns=["A", "B"], ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal( f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2] ) def test_setitem_frame_mixed_key_unaligned(self, float_string_frame): # GH#3216 key is unaligned with values f = float_string_frame.copy() piece = f.loc[f.index[:2], ["A"]] piece.index = f.index[-2:] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece piece["B"] = np.nan tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_ndarray(self, float_string_frame): # GH#3216 ndarray f = float_string_frame.copy() piece = float_string_frame.loc[f.index[:2], ["A", "B"]] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece.values tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_upcast(self): # needs upcasting df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"]) df2 = df.copy() df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5 expected = df.reindex(columns=["A", "B"]) expected += 0.5 expected["C"] = df["C"] tm.assert_frame_equal(df2, expected) def test_setitem_frame_align(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] piece.index = float_frame.index[-2:] piece.columns = ["A", "B"] float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc["foo"] expected = df[:2] tm.assert_frame_equal(result, expected) result = df.loc["bar"] expected = df.iloc[[2, 4]] tm.assert_frame_equal(result, expected) result = df.loc["baz"] expected = df.iloc[3] tm.assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc[["bar"]] exp = df.iloc[[2, 4]] tm.assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] tm.assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("bool_value", [True, False]) def test_getitem_setitem_ix_bool_keyerror(self, bool_value): # #2199 df = DataFrame({"a": [1, 2, 3]}) message = f"{bool_value}: boolean label can not be used without a boolean index" with pytest.raises(KeyError, match=message): df.loc[bool_value] msg = "cannot use a single bool to index into setitem" with pytest.raises(KeyError, match=msg): df.loc[bool_value] = 0 # TODO: rename? remove? def test_single_element_ix_dont_upcast(self, float_frame): float_frame["E"] = 1 assert issubclass(float_frame["E"].dtype.type, (int, np.integer)) result = float_frame.loc[float_frame.index[5], "E"] assert is_integer(result) # GH 11617 df = DataFrame({"a": [1.23]}) df["b"] = 666 result = df.loc[0, "b"] assert is_integer(result) expected = Series([666], [0], name="b") result = df.loc[[0], "b"] tm.assert_series_equal(result, expected) def test_iloc_row(self): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) result = df.iloc[1] exp = df.loc[2] tm.assert_series_equal(result, exp) result = df.iloc[2] exp = df.loc[4] tm.assert_series_equal(result, exp) # slice result = df.iloc[slice(4, 8)] expected = df.loc[8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[1, 2, 4, 6]] expected = df.reindex(df.index[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_row_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) original = df.copy() # verify slice is view # setting it makes it raise/warn subset = df.iloc[slice(4, 8)] assert np.shares_memory(df[2], subset[2]) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 2] = 0.0 exp_col = original[2].copy() # TODO(ArrayManager) verify it is expected that the original didn't change if not using_array_manager: exp_col[4:8] = 0.0 tm.assert_series_equal(df[2], exp_col) def test_iloc_col(self): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) result = df.iloc[:, 1] exp = df.loc[:, 2] tm.assert_series_equal(result, exp) result = df.iloc[:, 2] exp = df.loc[:, 4] tm.assert_series_equal(result, exp) # slice result = df.iloc[:, slice(4, 8)] expected = df.loc[:, 8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[:, [1, 2, 4, 6]] expected = df.reindex(columns=df.columns[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_col_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) original = df.copy() subset = df.iloc[:, slice(4, 8)] if not using_array_manager: # verify slice is view assert np.shares_memory(df[8]._values, subset[8]._values) # and that we are setting a copy msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 8] = 0.0 assert (df[8] == 0).all() else: # TODO(ArrayManager) verify this is the desired behaviour subset[8] = 0.0 # subset changed assert (subset[8] == 0).all() # but df itself did not change (setitem replaces full column) tm.assert_frame_equal(df, original) def test_loc_duplicates(self): # gh-17105 # insert a duplicate element to the index trange = date_range( start=Timestamp(year=2017, month=1, day=1), end=Timestamp(year=2017, month=1, day=5), ) trange = trange.insert(loc=5, item=Timestamp(year=2017, month=1, day=5)) df = DataFrame(0, index=trange, columns=["A", "B"]) bool_idx = np.array([False, False, False, False, False, True]) # assignment df.loc[trange[bool_idx], "A"] = 6 expected = DataFrame( {"A": [0, 0, 0, 0, 6, 6], "B": [0, 0, 0, 0, 0, 0]}, index=trange ) tm.assert_frame_equal(df, expected) # in-place df = DataFrame(0, index=trange, columns=["A", "B"]) df.loc[trange[bool_idx], "A"] += 6 tm.assert_frame_equal(df, expected) def test_setitem_with_unaligned_tz_aware_datetime_column(self): # GH 12981 # Assignment of unaligned offset-aware datetime series. # Make sure timezone isn't lost column = Series(date_range("2015-01-01", periods=3, tz="utc"), name="dates") df = DataFrame({"dates": column}) df["dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) df = DataFrame({"dates": column}) df.loc[[0, 1, 2], "dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) def test_loc_setitem_datetimelike_with_inference(self): # GH 7592 # assignment of timedeltas with NaT one_hour = timedelta(hours=1) df = DataFrame(index=date_range("20130101", periods=4)) df["A"] = np.array([1 * one_hour] * 4, dtype="m8[ns]") df.loc[:, "B"] = np.array([2 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "C"] = np.array([3 * one_hour] * 3, dtype="m8[ns]") df.loc[:, "D"] = np.array([4 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "E"] = np.array([5 * one_hour] * 3, dtype="m8[ns]") df["F"] = np.timedelta64("NaT") df.loc[df.index[:-1], "F"] = np.array([6 * one_hour] * 3, dtype="m8[ns]") df.loc[df.index[-3] :, "G"] = date_range("20130101", periods=3) df["H"] = np.datetime64("NaT") result = df.dtypes expected = Series( [np.dtype("timedelta64[ns]")] * 6 + [np.dtype("datetime64[ns]")] * 2, index=list("ABCDEFGH"), ) tm.assert_series_equal(result, expected) def test_getitem_boolean_indexing_mixed(self): df = DataFrame( { 0: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 1: { 35: np.nan, 40: 0.32632316859446198, 43: np.nan, 49: 0.32632316859446198, 50: 0.39114724480578139, }, 2: { 35: np.nan, 40: np.nan, 43: 0.29012581014105987, 49: np.nan, 50: np.nan, }, 3: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 4: { 35: 0.34215328467153283, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan, }, "y": {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}, } ) # mixed int/float ok df2 = df.copy() df2[df2 > 0.3] = 1 expected = df.copy() expected.loc[40, 1] = 1 expected.loc[49, 1] = 1 expected.loc[50, 1] = 1 expected.loc[35, 4] = 1 tm.assert_frame_equal(df2, expected) df["foo"] = "test" msg = "not supported between instances|unorderable types" with pytest.raises(TypeError, match=msg): df[df > 0.3] = 1 def test_type_error_multiindex(self): # See gh-12218 mi = MultiIndex.from_product([["x", "y"], [0, 1]], names=[None, "c"]) dg = DataFrame( [[1, 1, 2, 2], [3, 3, 4, 4]], columns=mi, index=Index([0, 1], name="i") ) with pytest.raises(InvalidIndexError, match="slice"): dg[:, 0] index = Index(range(2), name="i") columns = MultiIndex( levels=[["x", "y"], [0, 1]], codes=[[0, 1], [0, 0]], names=[None, "c"] ) expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index) result = dg.loc[:, (slice(None), 0)] tm.assert_frame_equal(result, expected) name = ("x", 0) index = Index(range(2), name="i") expected = Series([1, 3], index=index, name=name) result = dg["x", 0] tm.assert_series_equal(result, expected) def test_getitem_interval_index_partial_indexing(self): # GH#36490 df = DataFrame( np.ones((3, 4)), columns=pd.IntervalIndex.from_breaks(np.arange(5)) ) expected = df.iloc[:, 0] res = df[0.5] tm.assert_series_equal(res, expected) res = df.loc[:, 0.5] tm.assert_series_equal(res, expected) def test_setitem_array_as_cell_value(self): # GH#43422 df = DataFrame(columns=["a", "b"], dtype=object) df.loc[0] = {"a": np.zeros((2,)), "b": np.zeros((2, 2))} expected = DataFrame({"a": [np.zeros((2,))], "b": [np.zeros((2, 2))]}) tm.assert_frame_equal(df, expected) # with AM goes through split-path, loses dtype @td.skip_array_manager_not_yet_implemented def test_iloc_setitem_nullable_2d_values(self): df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") orig = df.copy() df.loc[:] = df.values[:, ::-1] tm.assert_frame_equal(df, orig) df.loc[:] = pd.core.arrays.PandasArray(df.values[:, ::-1]) tm.assert_frame_equal(df, orig) df.iloc[:] = df.iloc[:, :] tm.assert_frame_equal(df, orig) @pytest.mark.parametrize( "null", [pd.NaT, pd.NaT.to_numpy("M8[ns]"), pd.NaT.to_numpy("m8[ns]")] ) def test_setting_mismatched_na_into_nullable_fails( self, null, any_numeric_ea_dtype ): # GH#44514 don't cast mismatched nulls to pd.NA df = DataFrame({"A": [1, 2, 3]}, dtype=any_numeric_ea_dtype) ser = df["A"] arr = ser._values msg = "|".join( [ r"int\(\) argument must be a string, a bytes-like object or a " "(real )?number, not 'NaTType'", r"timedelta64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", r"datetime64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", "object cannot be converted to a FloatingDtype", "'values' contains non-numeric NA", ] ) with pytest.raises(TypeError, match=msg): arr[0] = null with pytest.raises(TypeError, match=msg): arr[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser[0] = null with pytest.raises(TypeError, match=msg): ser[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser.iloc[0] = null with pytest.raises(TypeError, match=msg): ser.iloc[:2] = [null, null] with pytest.raises(TypeError, match=msg): df.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df.iloc[:2, 0] = [null, null] # Multi-Block df2 = df.copy() df2["B"] = ser.copy() with pytest.raises(TypeError, match=msg): df2.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df2.iloc[:2, 0] = [null, null] def test_loc_expand_empty_frame_keep_index_name(self): # GH#45621 df = DataFrame(columns=["b"], index=Index([], name="a")) df.loc[0] = 1 expected = DataFrame({"b": [1]}, index=Index([0], name="a")) tm.assert_frame_equal(df, expected) def test_loc_expand_empty_frame_keep_midx_names(self): # GH#46317 df = DataFrame( columns=["d"], index=MultiIndex.from_tuples([], names=["a", "b", "c"]) ) df.loc[(1, 2, 3)] = "foo" expected = DataFrame( {"d": ["foo"]}, index=MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]), ) tm.assert_frame_equal(df, expected) class TestDataFrameIndexingUInt64: def test_setitem(self, uint64_frame): df = uint64_frame idx = df["A"].rename("foo") # setitem assert "C" not in df.columns df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) assert "D" not in df.columns df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # With NaN: because uint64 has no NaN element, # the column should be cast to object. df2 = df.copy() df2.iloc[1, 1] = pd.NaT df2.iloc[1, 2] = pd.NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal( df2.dtypes, Series( [np.dtype("uint64"), np.dtype("O"), np.dtype("O")], index=["A", "B", "C"], ), ) def test_object_casting_indexing_wraps_datetimelike(using_array_manager): # GH#31649, check the indexing methods all the way down the stack df = DataFrame( { "A": [1, 2], "B": date_range("2000", periods=2), "C": pd.timedelta_range("1 Day", periods=2), } ) ser = df.loc[0] assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) ser = df.iloc[0] assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) ser = df.xs(0, axis=0) assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) if using_array_manager: # remainder of the test checking BlockManager internals return mgr = df._mgr mgr._rebuild_blknos_and_blklocs() arr = mgr.fast_xs(0) assert isinstance(arr[1], Timestamp) assert isinstance(arr[2], pd.Timedelta) blk = mgr.blocks[mgr.blknos[1]] assert blk.dtype == "M8[ns]" # we got the right block val = blk.iget((0, 0)) assert isinstance(val, Timestamp) blk = mgr.blocks[mgr.blknos[2]] assert blk.dtype == "m8[ns]" # we got the right block val = blk.iget((0, 0)) assert isinstance(val, pd.Timedelta) msg1 = r"Cannot setitem on a Categorical with a new category( \(.*\))?, set the" msg2 = "Cannot set a Categorical with another, without identical categories" class TestLocILocDataFrameCategorical: @pytest.fixture def orig(self): cats = Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig = DataFrame({"cats": cats, "values": values}, index=idx) return orig @pytest.fixture def exp_single_row(self): # The expected values if we change a single row cats1 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx1 = Index(["h", "i", "j", "k", "l", "m", "n"]) values1 = [1, 1, 2, 1, 1, 1, 1] exp_single_row = DataFrame({"cats": cats1, "values": values1}, index=idx1) return exp_single_row @pytest.fixture def exp_multi_row(self): # assign multiple rows (mixed values) (-> array) -> exp_multi_row # changed multiple rows cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx2 = Index(["h", "i", "j", "k", "l", "m", "n"]) values2 = [1, 1, 2, 2, 1, 1, 1] exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2) return exp_multi_row @pytest.fixture def exp_parts_cats_col(self): # changed part of the cats column cats3 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"]) idx3 = Index(["h", "i", "j", "k", "l", "m", "n"]) values3 = [1, 1, 1, 1, 1, 1, 1] exp_parts_cats_col = DataFrame({"cats": cats3, "values": values3}, index=idx3) return exp_parts_cats_col @pytest.fixture def exp_single_cats_value(self): # changed single value in cats col cats4 = Categorical(["a", "a", "b", "a", "a", "a", "a"], categories=["a", "b"]) idx4 = Index(["h", "i", "j", "k", "l", "m", "n"]) values4 = [1, 1, 1, 1, 1, 1, 1] exp_single_cats_value = DataFrame( {"cats": cats4, "values": values4}, index=idx4 ) return exp_single_cats_value @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_loc_iloc_setitem_list_of_lists(self, orig, exp_multi_row, indexer): # - assign multiple rows (mixed values) -> exp_multi_row df = orig.copy() key = slice(2, 4) if indexer is tm.loc: key = slice("j", "k") indexer(df)[key, :] = [["b", 2], ["b", 2]] tm.assert_frame_equal(df, exp_multi_row) df = orig.copy() with pytest.raises(TypeError, match=msg1): indexer(df)[key, :] = [["c", 2], ["c", 2]] @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc, tm.at, tm.iat]) def test_loc_iloc_at_iat_setitem_single_value_in_categories( self, orig, exp_single_cats_value, indexer ): # - assign a single value -> exp_single_cats_value df = orig.copy() key = (2, 0) if indexer in [tm.loc, tm.at]: key = (df.index[2], df.columns[0]) # "b" is among the categories for df["cat"}] indexer(df)[key] = "b" tm.assert_frame_equal(df, exp_single_cats_value) # "c" is not among the categories for df["cat"] with pytest.raises(TypeError, match=msg1): indexer(df)[key] = "c" @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_loc_iloc_setitem_mask_single_value_in_categories( self, orig, exp_single_cats_value, indexer ): # mask with single True df = orig.copy() mask = df.index == "j" key = 0 if indexer is tm.loc: key = df.columns[key] indexer(df)[mask, key] = "b" tm.assert_frame_equal(df, exp_single_cats_value) @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_loc_iloc_setitem_full_row_non_categorical_rhs( self, orig, exp_single_row, indexer ): # - assign a complete row (mixed values) -> exp_single_row df = orig.copy() key = 2 if indexer is tm.loc: key = df.index[2] # not categorical dtype, but "b" _is_ among the categories for df["cat"] indexer(df)[key, :] = ["b", 2] tm.assert_frame_equal(df, exp_single_row) # "c" is not among the categories for df["cat"] with pytest.raises(TypeError, match=msg1): indexer(df)[key, :] = ["c", 2] @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_loc_iloc_setitem_partial_col_categorical_rhs( self, orig, exp_parts_cats_col, indexer ): # assign a part of a column with dtype == categorical -> # exp_parts_cats_col df = orig.copy() key = (slice(2, 4), 0) if indexer is tm.loc: key = (slice("j", "k"), df.columns[0]) # same categories as we currently have in df["cats"] compat = Categorical(["b", "b"], categories=["a", "b"]) indexer(df)[key] = compat tm.assert_frame_equal(df, exp_parts_cats_col) # categories do not match df["cat"]'s, but "b" is among them semi_compat = Categorical(list("bb"), categories=list("abc")) with pytest.raises(TypeError, match=msg2): # different categories but holdable values # -> not sure if this should fail or pass indexer(df)[key] = semi_compat # categories do not match df["cat"]'s, and "c" is not among them incompat = Categorical(list("cc"), categories=list("abc")) with pytest.raises(TypeError, match=msg2): # different values indexer(df)[key] = incompat @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_loc_iloc_setitem_non_categorical_rhs( self, orig, exp_parts_cats_col, indexer ): # assign a part of a column with dtype != categorical -> exp_parts_cats_col df = orig.copy() key = (slice(2, 4), 0) if indexer is tm.loc: key = (slice("j", "k"), df.columns[0]) # "b" is among the categories for df["cat"] indexer(df)[key] = ["b", "b"] tm.assert_frame_equal(df, exp_parts_cats_col) # "c" not part of the categories with pytest.raises(TypeError, match=msg1): indexer(df)[key] = ["c", "c"] def test_loc_on_multiindex_one_level(self): # GH#45779 df = DataFrame( data=[[0], [1]], index=MultiIndex.from_tuples([("a",), ("b",)], names=["first"]), ) expected = DataFrame( data=[[0]], index=MultiIndex.from_tuples([("a",)], names=["first"]) ) result = df.loc["a"] tm.assert_frame_equal(result, expected) class TestDepreactedIndexers: @pytest.mark.parametrize( "key", [{1}, {1: 1}, ({1}, "a"), ({1: 1}, "a"), (1, {"a"}), (1, {"a": "a"})] ) def test_getitem_dict_and_set_deprecated(self, key): # GH#42825 df =
DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
pandas.DataFrame
""" Extracts and plots data from an hdf5 file containing peridynamic node information. The hdf5 (h5) fields are assumed to be formatted as numpy arrays with dimensions of [timestep, node], with higher-dimensional data having additional array dimensions. The available datasets and how to access them are defined in OUTPUT_DICT. The default plot properties are defined by the dictionaries VIEWPOINT and WINDOW. These properties are altered according to the command line arguments in apply_plot_options(). The available command line arguments are defined in PARSER_DICT. Additional command line arguments can be created by adding to PARSER_DICT, following the existing format. The values in OUTPUT_DICT are lists of the arguments used by the parser to activate the options. Requires: mayavi optparse os sys """ from argparse import ArgumentParser from pathlib import Path import numpy as np import pandas as pd from gooey import Gooey, GooeyParser from mayavi import mlab ######################################################################################### # PARAMETERS # ######################################################################################### DEBUG = True # fmt: off PARSER_DICT = { # Label Command line inputs Dest Type Action Default Help "filename": ["filename", None, None, str, "store", "simulation.h5", "Path and name of the h5 file to be visualized."], "extents": ["-e", "--extents", "extents", str, "store", None, "Spatial extents of included points [-x, +x, -y, +y, -z, +z]. Write 'inf' to specify infinity."], "selection": ["-s", "--show", "selection", str, "store", "dmg", "Dataset selected for viewing, chosen from the labels in OUTPUT_DICT."], "grid_spacing": ["-d", "--grid_spacing", "gs", float, "store", 0.5, "Grid spacing of dataset. Sets size of datapoints."], "write_image": ["-i", "--write", "write_image", None, "store_true", None, "Whether plot will be saved to file. If so, the plot will not appear on screen."], "min_plot": ["-m", "--min_plot", "min_plot", float, "store", None, "Minimum displayed output value. Any datapoints below this are omitted."], "max_plot": ["-M", "--max_plot", "max_plot", float, "store", None, "Maximum displayed output value. Any datapoints above this are omitted."], "min_legend": ["-l", "--min_legend", "min_legend", float, "store", None, "Minimum color scale value. Datapoints below this are the same color."], "max_legend": ["-L", "--max_legend", "max_legend", float, "store", None, "Maximum color scale value. Datapoints above this are the same color."], "exaggeration": ["-x", "--exag", "exag", float, "store", 0.0, "Displacement exaggeration factor. 0.0 plots reference configuration."], "timestep": ["-t", "--timestep", "timestep_output", int, "store", 1, "Timestep number to be viewed."], "greyscale": ["-g", "--greyscale", "greyscale", None, "store_true", None, "Whether colorscale is greyscale (`Greys`), instead of blue-red"], "view": ["-v", "--view", "view", str, "store", None, "[unusable] View angle, one of (x+, x-, y+, y-, z+, z-, iso)"], "scalebar": ["-b", "--scalebar", "scalebar", None, "store_false",None, "Whether to enable the scalebar (scalebar enabled by default)"], "list": ["-p", "--print", "print", None, "store_true", None, "Print information about the data available in the specified file and exit."] } # fmt: on # VIEWS_DICT = { # 'x+': mlab.gcf().scene.x_plus_view, # 'x-': mlab.gcf().scene.x_minus_view, # 'y+': mlab.gcf().scene.y_plus_view, # 'y-': mlab.gcf().scene.y_minus_view, # 'z+': mlab.gcf().scene.z_plus_view, # 'z-': mlab.gcf().scene.z_minus_view, # 'iso': mlab.gcf().scene.isometric_view, # 'def': mlab.gcf().scene.isometric_view # Default for incorrect input # } VIEWPOINT = { # Viewpoint properties "view": None, "azimuth": 0, "elevation": 0, "roll": None, "distance": None, "focalpoint": (0, 0, 0), "parallel_projection": True, "parallel_scale": 3.8, } WINDOW = { # Window properties "offscreen": False, "size": (1400, 600), "bgcolor": (1, 1, 1), "fgcolor": (0, 0, 0), "show_axes": True, "colormap": "blue-red", } ######################################################################################### # FUNCTIONS # ######################################################################################### @Gooey(use_cmd_args=True, show_success_modal=False, header_height=20) def parse_options(parser_dict): """Define and parse command line options according to dictionary containing option data. Args: parser_dict (dict): Dictionary containing necessary option parser information Returns: options (dict): Dictionary containing parsed or default option values """ parser = GooeyParser() for option in parser_dict.values(): if not option[0].startswith("-"): parser.add_argument( option[0], type=option[3], action=option[4], default=option[5], help=option[6], widget="FileChooser", ) elif option[4] not in ["store_true", "store_false"]: parser.add_argument( option[0], option[1], dest=option[2], type=option[3], action=option[4], default=option[5], help=option[6], ) else: parser.add_argument( option[0], option[1], dest=option[2], action=option[4], help=option[6], ) args = parser.parse_args() return args.__dict__ def options_convert_extents(options): """Convert extents string from input to list. If options has a field 'extents' and 'extents' is not nothing, convert it to a list Args: options (dict): Dictionary containing extent field to be converted (if it exists) Return: options (dict): Dictionary containing converted extent field (if it exists) """ if options["extents"]: options["extents"] = eval(options["extents"]) else: options["extents"] = [-np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf] return options def open_h5(filename): """Open h5 file and return root directory structure Args: filename (str): name of h5 file to be read Returns: (h5py File): h5 data structure with fields accessible [by dot notation] TODO """ return pd.read_hdf(filename, key="data", mode="r") def set_limits(output, plot_limits=[None, None], legend_limits=[None, None]): """Set plot and legend limits according to inputs. If limits are input and valid, return them. Otherwise, set them to the according limit in the data. If limits are input and out of order, reverse them. Args: output (np array, nx1): output dataset being plotted plot_limits (float, 2x1 list, optional): [min, max] limits of values that will be displayed in plot legend_limits (float, 2x1 list, optional): [min, max] limits of colorbar scale Returns: plot_limits (float, 2x1 list): [min, max] limits of plotted values legend_limits (float, 2x1 list): [min, max] limits of colorbar scale """ if all(plot_limits) and plot_limits[0] > plot_limits[1]: plot_limits.reverse() if all(legend_limits) and legend_limits[0] > legend_limits[1]: legend_limits.reverse() if plot_limits[0] is None: plot_limits[0] = min(output) if plot_limits[1] is None: plot_limits[1] = max(output) if legend_limits[0] is None: legend_limits[0] = min(output) if legend_limits[1] is None: legend_limits[1] = max(output) return plot_limits, legend_limits def apply_plot_options(options, viewpoint, window): """Adjust viewpoint and window properties according to input options. Args: options (dict): Dictionary containing parsed or default option values viewpoint (dict): dictionary containing viewpoint properties (orientation, scale) window (dict): dictionary containing window properties (visibility, size, color) Returns: viewpoint (dict): dictionary containing viewpoint properties after changes window (dict): dictionary containing window properties after changes """ if options["write_image"]: window["offscreen"] = True if options["greyscale"]: window["colormap"] = "Greys" # if options['view'] is not None: # if DEBUG: print('DEBUG: Storing view as', options['view']) # viewpoint['view'] = VIEWS_DICT.get(options['view'], 'def') # if DEBUG: print('DEBUG: View stored as', type(viewpoint['view']), viewpoint['view']) return viewpoint, window def set_image_filename(h5_filename, timestep_output, selection, exag): """Set the filename of the saved image based on h5 name, timestep, and output selection. Args: h5_filename (str): name of h5 file timestep (int/float): timestep being viewed selection (str): selected output dataset exag (float): exaggeration factor Returns: image_filename (str): name of image to be saved """ h5path = Path(h5_filename) primer_path = h5path.parent case_name = h5path.stem folder_name = primer_path / f"{selection}_{exag}" folder_name.mkdir(exist_ok=True) return folder_name / f"{case_name}_{timestep_output:06d}.png" def plot_data(datapoints, plot_options, viewpoint, window, image_filename="image.png"): """Plot the processed data. Given the data in "datapoints", plot it in the window defined by the properties in "window", viewing the data as defined in "viewpoint". If specified, save the plot with the specified (or default) filename. Args: datapoints (dict): dictionary containing the datapoint coordinates, values, and scale, and the colorbar limits viewpoint (dict): dictionary containing viewpoint properties (orientation, scale) window (dict): dictionary containing window properties (visibility, size, color) image_filename (str, optional): name of saved plot image """ mlab.options.offscreen = window["offscreen"] # Set on- or off-screen visibility mlab.figure( size=window["size"], # Open figure with size and colors bgcolor=window["bgcolor"], # fgcolor=window["fgcolor"], ) # mlab.gcf().scene.parallel_projection = viewpoint[ "parallel_projection" ] # Set parallel projection state high = mlab.points3d( datapoints["x1"] + datapoints["u1"] * plot_options["exag"], datapoints["x2"] + datapoints["u2"] * plot_options["exag"], datapoints["x3"] + datapoints["u3"] * plot_options["exag"], datapoints[plot_options["data_name"]], scale_factor=plot_options["scale"], vmin=plot_options["legend_limits"][0], vmax=plot_options["legend_limits"][1], scale_mode="none", mode="cube", reset_zoom=False, resolution=5, colormap=window["colormap"], ) if viewpoint["view"] is not None: if DEBUG: print("DEBUG: Setting view by preset") # viewpoint['view']() elif viewpoint["azimuth"] is not None: if DEBUG: print("DEBUG: Setting view by angles") mlab.view( azimuth=viewpoint["azimuth"], # Set camera location elevation=viewpoint["elevation"], # roll=viewpoint["roll"], # distance=viewpoint["distance"], # focalpoint=viewpoint["focalpoint"], ) # if options["scalebar"]: mlab.scalarbar(orientation="vertical") # Enable scalebar (vertical) mlab.gcf().scene.camera.parallel_scale = viewpoint[ "parallel_scale" ] # Set view scale if not window["offscreen"]: high.scene.show_axes = window["show_axes"] # Set axes triad visibility mlab.show() else: mlab.savefig(image_filename) print("Saved", image_filename) mlab.close() def list_h5_data(h5: pd.DataFrame) -> None: print(f"Max node number: {h5.index.max()[1]}") print(f"Available time steps: \n\t{list(h5.index.levels[0])}") print(f"Available data fields: \n\t{list(h5.columns)}") ######################################################################################### # EXECUTION # ######################################################################################### # Read and condition command line arguments options = parse_options(PARSER_DICT) options = options_convert_extents(options) h5_filename = options["filename"] # Read data from h5 file data = open_h5(h5_filename) if options["print"]: list_h5_data(data) exit(0) # Extract desired datasets coords = data.loc[options["timestep_output"], ("x1", "x2", "x3")] disp = data.loc[options["timestep_output"], ("u1", "u2", "u3")] output = data.loc[options["timestep_output"], options["selection"]] extents = options["extents"] extent_mask = ( (coords["x1"] >= extents[0]) & (coords["x1"] <= extents[1]) & (coords["x2"] >= extents[2]) & (coords["x2"] <= extents[3]) & (coords["x3"] >= extents[4]) & (coords["x3"] <= extents[5]) ) plot_limits, legend_limits = set_limits( output, [options["min_plot"], options["max_plot"]], [options["min_legend"], options["max_legend"]], ) value_mask = (output >= plot_limits[0]) & (output <= plot_limits[1]) datapoints =
pd.concat([coords, disp, output], axis=1)
pandas.concat
from datetime import datetime, time, date from functools import partial from dateutil import relativedelta import calendar from pandas import DateOffset, datetools, DataFrame, Series, Panel from pandas.tseries.index import DatetimeIndex from pandas.tseries.resample import _get_range_edges from pandas.core.groupby import DataFrameGroupBy, PanelGroupBy, BinGrouper from pandas.tseries.resample import TimeGrouper from pandas.tseries.offsets import Tick from pandas.tseries.frequencies import _offset_map, to_offset import pandas.lib as lib import numpy as np from trtools.monkey import patch, patch_prop def _is_tick(offset): return isinstance(offset, Tick) ## TODO See if I still need this. All this stuff was pre resample def first_day(year, month, bday=True): """ Return first day of month. Default to business days """ weekday, days_in_month = calendar.monthrange(year, month) if not bday: return 1 if weekday <= 4: return 1 else: return 7-weekday+1 class MonthStart(DateOffset): """ Really the point of this is for DateRange, creating a range where the month is anchored on day=1 and not the end """ def apply(self, other): first = first_day(other.year, other.month) if other.day == first: result = other + relativedelta.relativedelta(months=1) result = result.replace(day=first_day(result.year, result.month)) else: result = other.replace(day=first) return datetime(result.year, result.month, result.day) def onOffset(self, someDate): return someDate.day == first_day(someDate.year, someDate.month) def daily_group(df): daterange_func = partial(DatetimeIndex, freq=datetools.day) return down_sample(df, daterange_func) def weekly_group(df): daterange_func = partial(DatetimeIndex, freq="W@MON") return down_sample(df, daterange_func) def monthly_group(df): daterange_func = partial(DatetimeIndex, freq=MonthStart()) return down_sample(df, daterange_func) def down_sample(obj, daterange_func): if isinstance(obj, Panel): index = obj.major_axis else: index = obj.index start = datetime.combine(index[0].date(), time(0)) end = datetime.combine(index[-1].date(), time(0)) range = daterange_func(start=start, end=end) grouped = obj.groupby(range.asof) grouped._range = range return grouped # END TODO def cols(self, *args): return self.xs(list(args), axis=1) def dropna_get(x, pos): try: return x.dropna().iget(pos) except: return None def aggregate_picker(grouped, grouped_indices, col=None): """ In [276]: g.agg(np.argmax).high Out[276]: key_0 2007-04-27 281 2007-04-30 0 2007-05-01 5 2007-05-02 294 2007-05-03 3 2007-05-04 53 Should take something in that form and return a DataFrame with the proper date indexes and values... """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = grouped_indices[key] index.append(group.index[sub_index]) values.append(group.iget_value(sub_index)) return {'index':index, 'values':values} # old version def _kv_agg(grouped, func, col=None): """ Works like agg but returns index label and value for each hit """ if col: sub_indices = grouped.agg({col: func})[col] else: sub_indices = grouped.agg(func) data = aggregate_picker(grouped, sub_indices, col=col) return TimeSeries(data['values'], index=data['index']) def kv_agg(grouped, func, col=None): """ Simpler version that is a bit faster. Really, I don't use aggregate_picker, which makes it slightly faster. """ index = [] values = [] for key, group in grouped: if col: group = group[col] sub_index = func(group) val = group.iget_value(sub_index) values.append(val) index.append(group.index[sub_index]) return TimeSeries(values, index=index) def set_time(arr, hour, minute): """ Given a list of datetimes, set the time on all of them """ results = [] t = time(hour, minute) for date in arr: d = datetime.combine(date.date(), t) results.append(d) return results def reset_time(df, hour, minute): if isinstance(df, (DataFrame, Series)): df.index = set_time(df.index, hour, minute) if isinstance(df, Panel): df.major_axis = set_time(df.major_axis, hour, minute) return df def max_groupby(grouped, col=None): df = kv_agg(grouped, np.argmax, col) return df def trading_hours(df): # assuming timestamp marks end of bar inds = df.index.indexer_between_time(time(9,30), time(16), include_start=False) return df.take(inds) times = np.vectorize(lambda x: x.time()) hours = np.vectorize(lambda x: x.time().hour) minutes = np.vectorize(lambda x: x.time().minute) def time_slice(series, hour=None, minute=None): """ Will vectorize a function taht returns a boolean array if value matches the hour and/or minute """ bh = hour is not None bm = minute is not None if bh and bm: t = time(hour, minute) vec = np.vectorize(lambda x: x.time() == t) if bh and not bm: vec = np.vectorize(lambda x: x.time().hour == hour) if not bh and bm: vec = np.vectorize(lambda x: x.time().minute == minute) return vec(series.index) def end_asof(index, label): """ Like index.asof but places the timestamp to the end of the bar """ if label not in index: loc = index.searchsorted(label, side='left') if loc > 0: return index[loc] else: return np.nan return label # TODO Forget where I was using this. I think pandas does this now. class TimeIndex(object): """ Kind of like a DatetimeIndex, except it only cares about the time component of a Datetime object. """ def __init__(self, times): self.times = times def asof(self, date): """ Follows price is right rules. Will return the closest time that is equal or below. If time is after the last date, it will just return the date. """ testtime = date.time() last = None for time in self.times: if testtime == time: return date if testtime < time: # found spot break last = time # TODO should I anchor this to the last time? if last is None: return date new_date = datetime.combine(date.date(), last) return new_date def get_time_index(freq, start=None, end=None): if start is None: start = "1/1/2012 9:30AM" if end is None: end = "1/1/2012 4:00PM" ideal = DatetimeIndex(start=start, end=end, freq=freq) times = [date.time() for date in ideal] return TimeIndex(times) def get_anchor_index(index, freq): ideal = get_time_index(freq) start = index[0] start = ideal.asof(start) end = index[-1] start, end = _get_range_edges(index, offset=freq, closed='right') ind =
DatetimeIndex(start=start, end=end, freq=freq)
pandas.tseries.index.DatetimeIndex
# -*- coding: utf-8 -*- # Version 1.0 # Date: Jan 2 2020 from bokeh.plotting import figure, curdoc from bokeh.models import ColumnDataSource, HoverTool, ColorBar, LinearColorMapper, Legend, BasicTickFormatter, \ LegendItem, Span, BasicTicker, LabelSet, Panel, Tabs from bokeh.models.widgets import DataTable, Select, TableColumn, Slider, MultiSelect, RadioButtonGroup, Div, Button, \ CheckboxGroup, PreText, Paragraph, FileInput, TextAreaInput, HTMLTemplateFormatter from bokeh.layouts import column, row, widgetbox from bokeh.palettes import Spectral6, Set1, Category20, RdBu, RdBu3, Oranges, Blues from bokeh.transform import linear_cmap, transform from bokeh.models.ranges import FactorRange from bokeh.transform import factor_cmap from bokeh.models.tickers import FixedTicker, SingleIntervalTicker from bokeh import events from bokeh.models.callbacks import CustomJS from math import pi from collections import OrderedDict import pandas as pd import numpy as np from code.clustering import get_elbow_plot, get_tsne, clustering_data from code.regression import get_corr_plot, get_regression_plot, get_colors from code.logistic_regression import get_logreg_output from code.classification import get_classify_output from code.data_sources import load_data_sources import warnings import os import io warnings.filterwarnings("ignore", category=DeprecationWarning) """ CODE """ class plot_attributes(object): """[summary] Arguments: object {figure} -- Unformatted plot Returns: [figure] -- Formatted plot """ def plot_format(self, plot): plot.background_fill_color = self.background_fill_color plot.border_fill_color = self.border_fill_color plot.xaxis.formatter = self.x_axis_format plot.yaxis.formatter = self.y_axis_format plot.title.align = self.title_align plot.title.text_font = self.text_font plot.axis.axis_label_text_font = self.axis_label_text_font plot.axis.axis_label_text_font_size = self.axis_label_text_font_size plot.title.text_font_size = self.text_font_size return plot class landing_page(): def __init__(self): self.note = None def landing_note(self): self.note = Div(text="""<br><br> Machine Learning Tool: <br> This is a tool to get hands-on experience with Machine Learning concepts like Regression, Classification, Clustering. </br></br> <li>The tool was built to make it as a medium to get hands-on visual experience to different aspect of data science like exploring/visualizing different data types, building models to make predictions, evaluating the models.</li> </br> <li>At this point, model optimization/selection is not an option since datasets are pre-built. This could be implemented as a future update.</li> <br><br></br></br> <b>Disclaimer:</b> As a data scientist, this is not the <i>only</i> way to learn/practice data science concepts. For someone with relatively less experience in coding/data-science concepts, this is a method to facilitate interest and give a brief idea about the concepts. </br></br></br>""", style={'font-size': '14pt', 'color': 'black',"font":'Font Awesome\ 5 Free'}, width=1200, sizing_mode='stretch_both', css_classes=['div_landing']) self.alert_loading = Div(text='', css_classes=['hidden'], visible=False) self.alert_loading.js_on_change('text', self.callback_notification) tab_landing = Panel(child=column(self.note), title="Home") return tab_landing class eda_plots(plot_attributes): def __init__(self): self.active_df = None self.table_eda = None self.explore_data_select = None self.button_eda_plot = None self.slider_bins = None self.log_x_cb = None self.log_y_cb = None self.log_hist_cb = None self.button_hist_plot = None self.plots = None self.hover_scatter = None self.eda_df = None self.button_count_plot = None self.plot_count_plot = None self.reset_data_eda() def reset_data_eda(self): self.source_scatter.data = dict(x=[], y=[], color=[]) self.source_histogram.data = dict(top=[], left=[], right=[]) self.source_count_plot.data = dict(x=[], y=[]) self.source_eda.data = {} self.table_eda.columns = [] self.select_x_axis.options = ["None"] self.select_y_axis.options = ["None"] self.select_color.options = ['None'] self.select_hist.options = ["None"] self.select_count_plot.options = ["None"] self.select_x_axis.value = "None" self.select_y_axis.value = "None" self.select_color.value = 'None' self.select_hist.value = "None" self.select_count_plot.value = "None" self.plot_scatter.xaxis.axis_label = '' self.plot_scatter.yaxis.axis_label = '' self.plot_hist.xaxis.axis_label = '' self.plot_hist.yaxis.axis_label = '' self.plot_count_plot.xaxis.axis_label = '' self.plot_count_plot.yaxis.axis_label = '' self.data_source_eda.text = "" def create_eda_figure(self): active_df = self.explore_data_select.value select_x_axis = self.select_x_axis.value select_y_axis = self.select_y_axis.value if active_df != "Select dataset": ticker_x_dict, ticker_y_dict = {}, {} xs, ys = [], [] if select_x_axis != "None" and select_y_axis != "None": if self.log_x_cb.active: if self.log_x_cb.active[0] == 0: xs = np.log(self.eda_df[select_x_axis].values + 1) else: xs = self.eda_df[select_x_axis].values if self.log_y_cb.active: if self.log_y_cb.active[0] == 0: ys = np.log(self.eda_df[select_y_axis].values + 1) else: ys = self.eda_df[select_y_axis].values self.plot_scatter.xaxis.axis_label = select_x_axis self.plot_scatter.yaxis.axis_label = select_y_axis color_dict = {} select_color = self.select_color.value if select_color != "None": color_factors = self.eda_df[select_color].unique().tolist() for i in range(0, len(color_factors)): color_dict[str(color_factors[i])] = Category20[20][i] scat_color = pd.Series( self.eda_df[select_color].astype(str)).map(color_dict) self.source_scatter.data = dict(x=xs, y=ys, color=scat_color) else: scat_color = ['dodgerblue'] * len(xs) self.source_scatter.data = dict(x=xs, y=ys, color=scat_color) def create_hist_figure(self): active_df = self.explore_data_select.value if active_df != "Select dataset": hist, edges = [], [] if self.select_hist.value != 'None': self.plot_hist.xaxis.axis_label = self.select_hist.value self.plot_hist.yaxis.axis_label = 'Count' if self.log_hist_cb.active: if self.log_hist_cb.active[0] == 0: log_hist = np.log( self.eda_df[self.select_hist.value].values + 1) else: log_hist = self.eda_df[self.select_hist.value].values hist, edges = np.histogram( log_hist, bins=self.slider_bins.value) self.source_histogram.data = dict( top=hist, left=edges[:-1], right=edges[1:]) def create_count_figure(self): active_df = self.explore_data_select.value if active_df != "Select dataset": count_column, count_value = [], [] if self.select_count_plot.value != 'None': self.plot_count_plot.xaxis.axis_label = self.select_count_plot.value self.plot_count_plot.yaxis.axis_label = 'Count' count_df = self.eda_df[self.select_count_plot.value].value_counts( ).to_frame() count_column, count_value = count_df.index.tolist( ), count_df[self.select_count_plot.value].values.tolist() count_column = [str(i) for i in count_column] self.plot_count_plot.x_range.factors = list(count_column) self.source_count_plot.data = dict( x=list(count_column), y=list(count_value)) def eda_table(self, attr, old, new): active_df = self.explore_data_select.value data_source_text = load_data_sources() if active_df != "Select dataset": self.reset_data_eda() self.file_path = str(self.cwd + self.data_path + str(self.eda_data_source.get(active_df))) self.eda_df = pd.read_csv(self.file_path) self.eda_df = self.eda_df.fillna(self.eda_df.mean()) self.eda_df.columns = [x.upper() for x in self.eda_df.columns] self.source_eda.data = dict(self.eda_df) self.table_eda.columns = [TableColumn( field=cols, title=cols, width=90) for cols in self.eda_df.columns] filter_objects = {} filter_numeric = {} likely_cat = {} for var in self.eda_df.columns: filter_objects[var] = self.eda_df[var].dtype == np.float64 or self.eda_df[var].dtype == np.int64 filter_numeric[var] = str(self.eda_df[var].dtype) == 'object' or self.eda_df[var].nunique() <= 20 likely_cat[var] = self.eda_df[var].nunique() <= 20 filter_objects = [ k for k, v in filter_objects.items() if v is True] self.select_x_axis.options = ["None"] + filter_objects self.select_y_axis.options = ["None"] + filter_objects self.select_hist.options = ["None"] + filter_objects likely_cat = [k for k, v in likely_cat.items() if v is True] self.select_color.options = ['None'] + likely_cat filter_numeric = [ k for k, v in filter_numeric.items() if v is True] self.select_count_plot.options = ["None"] + filter_numeric data_source_df = data_source_text[data_source_text['Name'] == active_df] data_text = "<center>Data Source</center>\n\n<b>Title:</b> "+data_source_df['Dataset'].tolist()[0] + "<br><br>" + \ "<b>Source Link:</b> <a href="+ data_source_df['Link'].tolist()[0] +""" target="_blank">"""+data_source_df['Link'].tolist()[0]+"</a><br>" + \ "<b>Description:</b>" + data_source_df['Description'].tolist()[0] + "<br><br>" self.data_source_eda.text = data_text else: self.reset_data_eda() def eda_button_enable(self, attr, old, new): if (self.select_x_axis.value != 'None') and (self.select_y_axis.value != "None"): self.button_eda_plot.disabled = False else: self.button_eda_plot.disabled = True if self.select_hist.value != "None": self.button_hist_plot.disabled = False else: self.button_hist_plot.disabled = True if self.select_count_plot.value != "None": self.button_count_plot.disabled = False else: self.button_count_plot.disabled = True def exploration_plots(self): df_exploration = pd.DataFrame() self.source_eda = ColumnDataSource(data=dict(df_exploration)) eda_columns = [TableColumn(field=cols, title=cols) for cols in df_exploration.columns] self.table_eda = DataTable(source=self.source_eda, columns=eda_columns, width=1200, height=300, fit_columns=True) x_scat, y_scat, scat_color = [], [], [] self.source_scatter = ColumnDataSource( data=dict(x=x_scat, y=y_scat, color=scat_color)) self.hover_scatter = HoverTool( tooltips=[("X", "@x{1.11}"), ("Y", "@y{1.11}")]) self.plot_scatter = figure(title="Scatter Plot", plot_height=600, plot_width=800, tools=['pan,box_zoom,reset'] + [self.hover_scatter]) self.plot_scatter.scatter(x='x', y='y', size=10, line_color="white", alpha=0.6, hover_color='white', hover_alpha=0.5, source=self.source_scatter, fill_color='color') self.plot_scatter = self.plot_format(self.plot_scatter) self.plot_scatter.min_border_left = 75 self.plot_scatter.min_border_bottom = 75 hist, edges = [], [] self.source_histogram = ColumnDataSource( data=dict(top=hist, left=edges[:-1], right=edges[1:])) hover_hist = HoverTool( tooltips=[("X", "@left{1.11} ~ @right{1.11}"), ("Count", "@top{int}")]) self.plot_hist = figure(title='Histogram', plot_height=600, plot_width=800, tools=['pan,box_zoom,reset'] + [hover_hist]) self.plot_hist.quad(top='top', bottom=0, left='left', right='right', source=self.source_histogram, fill_color='dodgerblue', line_color="white", fill_alpha=0.8) self.plot_hist = self.plot_format(self.plot_hist) self.plot_hist.min_border_left = 50 self.plot_hist.min_border_bottom = 50 count_column, count_value = [], [] self.source_count_plot = ColumnDataSource( data=dict(x=count_column, y=count_value)) hover_count_plot = HoverTool(tooltips=[("Category:", "@x"), ("Count:", "@y{int}")]) self.plot_count_plot = figure(title="Count Plot", plot_height=600, plot_width=800, tools=['pan,box_zoom,reset']+[hover_count_plot], x_range=[]) self.plot_count_plot.vbar(x='x', top='y', width=0.9, source=self.source_count_plot, fill_color='dodgerblue', line_color="white", fill_alpha=0.8) self.plot_count_plot.background_fill_color = self.background_fill_color self.plot_count_plot.border_fill_color = self.border_fill_color self.plot_count_plot.title.align = self.title_align self.plot_count_plot.title.text_font = self.text_font self.plot_count_plot.axis.axis_label_text_font = self.axis_label_text_font self.plot_count_plot.axis.axis_label_text_font_size = self.axis_label_text_font_size self.plot_count_plot.title.text_font_size = self.text_font_size self.plot_count_plot.min_border_top = 50 self.plot_count_plot.min_border_bottom = 75 self.plot_count_plot.xaxis.major_label_orientation = pi / 4 self.explore_data_select = Select(title="Dataset:", value="Select dataset", options=["Select dataset"] + list(self.eda_data_source.keys())) self.select_x_axis = Select( title="X-Axis:", value="None", options=["None"]) self.select_y_axis = Select( title="Y-Axis:", value="None", options=["None"]) self.select_color = Select( title="Color:", value="None", options=["None"]) self.button_eda_plot = Button(label="Draw Plot") self.button_eda_plot.disabled = True self.select_hist = Select( title="Histogram Value:", value="None", options=["None"]) self.slider_bins = Slider(title="Histogram Bins", value=20, start=5.0, end=50, step=1, callback_policy='mouseup', css_classes=['custom_slider']) self.log_x_cb = CheckboxGroup( labels=["Log transform: x-axis"], active=[]) self.log_y_cb = CheckboxGroup( labels=["Log transform: y-axis"], active=[]) self.log_hist_cb = CheckboxGroup( labels=["Log transform axis"], active=[]) self.button_hist_plot = Button(label="Draw Histogram") self.button_hist_plot.disabled = True self.select_count_plot = Select( title="Count Plot Value:", value="None", options=["None"]) self.button_count_plot = Button(label="Draw Count Plot") self.button_count_plot.disabled = True self.select_x_axis.on_change('value', self.eda_button_enable) self.select_y_axis.on_change('value', self.eda_button_enable) self.select_hist.on_change('value', self.eda_button_enable) self.select_count_plot.on_change('value', self.eda_button_enable) self.explore_data_select.on_change("value", self.eda_table) self.button_eda_plot.on_click(self.create_eda_figure) self.button_hist_plot.on_click(self.create_hist_figure) self.button_count_plot.on_click(self.create_count_figure) self.data_source_eda = Div(text='', width = 800, height = 200, css_classes=['itemconfiguration']) tab_eda = Panel(child=column(row(self.explore_data_select, self.data_source_eda), self.table_eda, row(column(self.select_x_axis, self.log_x_cb, self.select_y_axis, self.log_y_cb, self.select_color, self.button_eda_plot), self.plot_scatter), row(column(self.select_hist, self.log_hist_cb, self.slider_bins, self.button_hist_plot), self.plot_hist), row(column(self.select_count_plot, self.button_count_plot), self.plot_count_plot)), title="Data Exploration") return tab_eda class linear_regression(plot_attributes): """ Linear Regression Tab """ def __init__(self): self.color_bar = None self.plot_hist_resid = None self.reg_target_ms = None self.source_corr = None self.plot_corr = None self.table_reg = None self.button_reg = None self.hline = None self.hover_corr = None self.hover_reg = None self.hover_resid = None self.hover_resid_hist = None self.legend_reg = None self.plot_reg = None self.plot_resid = None self.reg_data_select = None self.reg_features_ms = None self.reg_scatter = None self.active_df = None self.reg_df = None self.normalize_linreg = None self.reset_data_reg() def reset_data_reg(self): self.source_reg.data = {} self.source_reg_scat.data = dict(actual=[], predict=[]) self.source_reg_resid.data = dict(predict=[], residual=[]) self.source_hist_resid.data = dict(top=[], bottom=[], right=[]) self.legend_reg.items = [] self.table_reg.columns = [] self.color_bar_reg.scale_alpha = 0 self.color_bar_reg.major_label_text_alpha = 0 self.reg_features_ms.options = ["ALL"] self.reg_features_ms.value = ["ALL"] self.reg_target_ms.options = ['SELECT TARGET'] self.reg_target_ms.value = 'SELECT TARGET' self.button_logreg.disabled = True top, bottom, left, right, labels, nlabels, color_list, corr = get_corr_plot( pd.DataFrame()) self.corr_plot(top, bottom, left, right, labels, nlabels, color_list, corr) def corr_plot(self, top, bottom, left, right, labels, nlabels, color_list, corr): self.source_corr.data = dict( top=top, bottom=bottom, left=left, right=right, color=color_list, corr=corr) self.plot_corr.x_range.start, self.plot_corr.x_range.end = 0, nlabels self.plot_corr.y_range.start, self.plot_corr.y_range.end = 0, nlabels ticks = [tick + 0.5 for tick in list(range(nlabels))] tick_dict = OrderedDict([[tick, labels[ii]] for ii, tick in enumerate(ticks)]) self.color_bar_reg.scale_alpha = 1 self.color_bar_reg.major_label_text_alpha = 1 self.plot_corr.xaxis.ticker = ticks self.plot_corr.yaxis.ticker = ticks self.plot_corr.xaxis.major_label_overrides = tick_dict self.plot_corr.yaxis.major_label_overrides = tick_dict def reg_plot(self): features = self.reg_features_ms.value label = self.reg_target_ms.value active_norm = self.normalize_linreg.active if label != "SELECT TARGET": if 'ALL' in features: df_columns = self.reg_df.columns.values.tolist() df_columns.remove(label) features_df = self.reg_df.loc[:, df_columns] else: if label in features: features.remove(label) features_df = self.reg_df.loc[:, features] else: features_df = self.reg_df.loc[:, features] target_df = self.reg_df.loc[:, label] actual_reg, predict_reg, text, MAE, RMSE, residual, \ slope, intercept = get_regression_plot( features_df, target_df, active_norm) self.plot_reg.x_range.start, self.plot_reg.x_range.end = actual_reg.min(), actual_reg.max() self.plot_reg.y_range.start, self.plot_reg.y_range.end = predict_reg.min(), predict_reg.max() self.plot_resid.x_range.start, self.plot_resid.x_range.end = predict_reg.min(), predict_reg.max() self.plot_resid.y_range.start, self.plot_resid.y_range.end = residual.min(), residual.max() self.source_reg_scat.data = dict( actual=list(actual_reg), predict=list(predict_reg)) self.source_reg_resid.data = dict( predict=list(predict_reg), residual=list(residual)) self.legend_reg.items = [LegendItem(label=text[0], renderers=[self.reg_scatter]), LegendItem(label="MAE - " + str(MAE), renderers=[self.reg_scatter]), LegendItem(label="RMSE - " + str(RMSE), renderers=[self.reg_scatter])] vhist, vedges = np.histogram(residual, bins=50) vmax = max(vhist) * 1.1 self.plot_hist_resid.x_range.start, self.plot_hist_resid.x_range.end = 0, vmax self.plot_hist_resid.y_range.start, self.plot_hist_resid.y_range.end = residual.min(), residual.max() self.hline.line_alpha = 0.5 self.source_hist_resid.data = dict( top=vedges[1:], bottom=vedges[:-1], right=vhist) self.error_count += 1 self.alert_reg.text = str(self.error_count)+" Regression Completed" def create_figure_reg(self, attr, old, new): self.active_df = self.reg_data_select.value if self.active_df != "Select dataset": self.reset_data_reg() self.file_path = str( self.cwd + self.data_path + str(self.regression_data_source.get(self.active_df))) self.reg_df = pd.read_csv(self.file_path) self.reg_df = self.reg_df.fillna(self.reg_df.mean()) self.reg_df.columns = [x.upper() for x in self.reg_df.columns] self.source_reg.data = dict(self.reg_df) self.table_reg.columns = [TableColumn( field=cols, title=cols, width=90) for cols in self.reg_df.columns] self.reg_features_ms.options = ['ALL'] + list(self.reg_df.columns) likely_target = {} for var in self.reg_df.columns: likely_target[var] = self.reg_df[var].nunique() > self.reg_df.shape[0]*0.1 likely_target = [k for k, v in likely_target.items() if v is True] self.reg_target_ms.options = [ 'SELECT TARGET'] + list(likely_target) top, bottom, left, right, labels, nlabels, color_list, corr = get_corr_plot(self.reg_df) self.corr_plot(top, bottom, left, right, labels, nlabels, color_list, corr) self.button_reg.disabled = True else: self.reset_data_reg() def button_enable(self, attr, old, new): if self.reg_target_ms.value != 'SELECT TARGET': self.button_reg.disabled = False else: self.button_reg.disabled = True def lin_reg(self): df_reg = pd.DataFrame() self.source_reg = ColumnDataSource(data=dict(df_reg)) reg_columns = [TableColumn(field=cols, title=cols) for cols in df_reg.columns] self.table_reg = DataTable(source=self.source_reg, columns=reg_columns, width=1200, height=300, fit_columns=True) top, bottom, left, right, color, corr = [], [], [], [], [], [] self.source_corr = ColumnDataSource(data=dict(top=top, bottom=bottom, left=left, right=right, color=color, corr=corr)) self.hover_corr = HoverTool(tooltips=[("Correlation", "@corr{1.11}")]) self.plot_corr = figure(plot_width=750, plot_height=650, title="Correlation Matrix", toolbar_location='left', tools=[self.hover_corr]) self.plot_corr.quad(top='top', bottom='bottom', left='left', right='right', color='color', line_color='white', source=self.source_corr) self.plot_corr = self.plot_format(self.plot_corr) self.plot_corr.xgrid.grid_line_color = None self.plot_corr.ygrid.grid_line_color = None self.plot_corr.xaxis.major_label_orientation = pi / 4 self.plot_corr.min_border_left = 110 self.plot_corr.min_border_bottom = 110 self.plot_corr.y_range.flipped = True corr_colors = list(reversed(RdBu[9])) self.reg_mapper = LinearColorMapper( palette=corr_colors, low=-1, high=1) self.color_bar_reg = ColorBar(color_mapper=self.reg_mapper, location=(0, 0), ticker=BasicTicker( desired_num_ticks=len(corr_colors)), scale_alpha=0, major_label_text_alpha=0) self.plot_corr.add_layout(self.color_bar_reg, 'right') self.color_bar_reg.background_fill_color = 'whitesmoke' actual_reg, predict_reg = [], [] self.source_reg_scat = ColumnDataSource( data=dict(actual=actual_reg, predict=predict_reg)) self.hover_reg = HoverTool(tooltips=[("Actual", "@actual{int}"), ("Predicted", "@predict{int}")]) self.plot_reg = figure(plot_height=500, plot_width=900, tools=['pan,box_zoom,reset,wheel_zoom'] + [self.hover_reg]) self.reg_scatter = self.plot_reg.scatter(x='actual', y='predict', size=7, line_color="white", alpha=0.6, hover_color='white', hover_alpha=0.5, source=self.source_reg_scat, fill_color='dodgerblue', ) self.legend_reg = Legend(items=[LegendItem(label="", renderers=[ self.reg_scatter])], location='bottom_right') self.plot_reg.add_layout(self.legend_reg) self.plot_reg = self.plot_format(self.plot_reg) self.plot_reg.xaxis.axis_label = "Actual Value" self.plot_reg.yaxis.axis_label = "Predicted Value" residual, predict_reg = [], [] self.source_reg_resid = ColumnDataSource( data=dict(predict=predict_reg, residual=residual)) self.hover_resid = HoverTool(tooltips=[("Predicted", "@predict{int}"), ("Residual", "@residual{int}")], names=['resid']) self.plot_resid = figure(plot_height=500, plot_width=700, tools=['pan,box_zoom,reset,wheel_zoom'] + [self.hover_resid]) self.hline = Span(location=0, dimension='width', line_color='black', line_width=3, line_alpha=0, line_dash="dashed") self.plot_resid.renderers.extend([self.hline]) self.plot_resid.scatter(x='predict', y='residual', size=7, line_color="white", alpha=0.6, hover_color='white', hover_alpha=0.5, source=self.source_reg_resid, fill_color='dodgerblue', name='resid') self.plot_resid = self.plot_format(self.plot_resid) self.plot_resid.xaxis.axis_label = "Predicted Value" self.plot_resid.yaxis.axis_label = "Residual Value" vhist, vedges = [], [] self.source_hist_resid = ColumnDataSource( data=dict(top=vedges[1:], bottom=vedges[:-1], right=vhist)) self.hover_resid_hist = HoverTool(tooltips=[("Count", "@right{int}")]) self.plot_hist_resid = figure(toolbar_location=None, plot_width=200, plot_height=self.plot_resid.plot_height, y_range=self.plot_resid.y_range, min_border=10, y_axis_location="right", tools=[self.hover_resid_hist] + ['pan']) self.plot_hist_resid.quad(left=0, bottom='bottom', top='top', right='right', color="dodgerblue", line_color="white", source=self.source_hist_resid) self.plot_hist_resid.ygrid.grid_line_color = None self.plot_hist_resid.xaxis.major_label_orientation = np.pi / 4 self.plot_hist_resid = self.plot_format(self.plot_hist_resid) self.reg_data_select = Select(title="Dataset:", value="Select dataset", options=["Select dataset"] + list(self.regression_data_source.keys())) self.reg_features_ms = MultiSelect( title="Select features:", value=["ALL"], options=["ALL"]) self.normalize_linreg = RadioButtonGroup( labels=["Actual Data", "Normalize Data"], active=0) self.reg_target_ms = Select(title="Select target for regression:", value="SELECT TARGET", options=["SELECT TARGET"]) self.button_reg = Button(label="Calculate regression") self.button_reg.disabled = True self.reg_data_select.on_change("value", self.create_figure_reg) self.reg_target_ms.on_change('value', self.button_enable) self.button_reg.on_click(self.reg_plot) self.div_whitespace = Div(text="""""", height=100) self.alert_reg = Div(text='', css_classes=['hidden'], visible=False) self.alert_reg.js_on_change('text', self.callback_notification) tab_reg = Panel(child=column(self.reg_data_select, self.table_reg, self.plot_corr, row(column(self.reg_features_ms, self.normalize_linreg, self.reg_target_ms, self.button_reg), column(self.plot_reg, row(self.plot_resid, self.plot_hist_resid), self.alert_reg, self.div_whitespace))), title="Linear Regression") return tab_reg class logistic_regression(plot_attributes): """ Tab for Logistic Regression """ def __init__(self): self.active_df = None self.logreg_df = None self.legend_roc = None self.roc_line = None self.hover_logreg_cm = None self.color_bar_logreg_cm = None self.table_class_rep = None self.button_logreg = None self.hover_logreg_roc = None self.labels_logreg_cm = None self.logreg_roc_plot = None self.normalize_logreg = None self.div_report_title = None self.reset_data_logreg() def reset_data_logreg(self): self.source_logreg.data = {} self.source_class_rep_logreg.data = {} self.source_logreg_cm.data = dict(Actual=[], Prediction=[], value=[]) self.source_logreg_roc.data = dict(fpr_roc=[], tpr_roc=[]) self.source_logreg_const_roc.data = dict( const_roc_x=[], const_roc_y=[]) self.table_logreg.columns = [] self.table_class_rep_logreg.columns = [] self.legend_roc.items = [] self.color_bar_logreg_cm.scale_alpha = 0 self.color_bar_logreg_cm.major_label_text_alpha = 0 self.logreg_features_ms.options = ["ALL"] self.logreg_features_ms.value = ["ALL"] self.logreg_target_ms.options = ['SELECT TARGET'] self.logreg_target_ms.value = 'SELECT TARGET' self.button_logreg.disabled = True def logreg_button_enable(self, attr, old, new): if self.logreg_target_ms.value != 'SELECT TARGET': self.button_logreg.disabled = False else: self.button_logreg.disabled = True def create_figure_logreg(self, attr, old, new): self.active_df = self.logreg_data_select.value if self.active_df != "Select dataset": self.reset_data_logreg() self.file_path = str(self.cwd + self.data_path + str(self.logreg_data_source.get(self.active_df))) logreg_df = pd.read_csv(self.file_path) logreg_df = logreg_df.fillna(logreg_df.mean()) logreg_df.columns = [x.upper() for x in logreg_df.columns] self.logreg_df = logreg_df self.source_logreg.data = dict(logreg_df) self.table_logreg.columns = [TableColumn(field=cols, title=cols, width=90) for cols in self.logreg_df.columns] self.logreg_features_ms.options = [ "ALL"] + logreg_df.columns.values.tolist() likely_cat = {} for var in logreg_df.columns: likely_cat[var] = logreg_df[var].nunique() == 2 and set( logreg_df[var].unique()) == set([0, 1]) likely_cat = [k for k, v in likely_cat.items() if v is True] self.logreg_target_ms.options = ['SELECT TARGET'] + likely_cat self.button_logreg.disabled = True else: self.reset_data_logreg() def logreg_plot(self): features = self.logreg_features_ms.value label = self.logreg_target_ms.value logreg_df = self.logreg_df active_norm = self.normalize_logreg.active if label != "SELECT TARGET": if 'ALL' in features: df_columns = logreg_df.columns.values.tolist() df_columns.remove(label) features_df = logreg_df.loc[:, df_columns] else: if label in features: features.remove(label) features_df = logreg_df.loc[:, features] else: features_df = logreg_df.loc[:, features] target_df = logreg_df.loc[:, label] accuracy_score, class_report_df, confusion_df, \ logit_roc_auc, fpr, tpr, thresholds = get_logreg_output( features_df, target_df, active_norm) self.source_class_rep_logreg.data = dict(class_report_df) self.table_class_rep_logreg.columns = [TableColumn(field=cols, title=cols, width=90) for cols in class_report_df.columns] self.table_class_rep_logreg.index_position = None self.logreg_cm_mapper.low, self.logreg_cm_mapper.high = confusion_df.value.values.min( ), confusion_df.value.values.max() self.color_bar_logreg_cm.scale_alpha = 1 self.color_bar_logreg_cm.major_label_text_alpha = 1 self.logreg_cm_plot.x_range.start, self.logreg_cm_plot.x_range.end = confusion_df.Actual.min(), \ confusion_df.Actual.max() self.logreg_cm_plot.y_range.start, self.logreg_cm_plot.y_range.end = confusion_df.Prediction.min(), \ confusion_df.Prediction.max() self.logreg_cm_plot.xaxis.ticker = sorted(target_df.unique()) self.logreg_cm_plot.yaxis.ticker = sorted(target_df.unique()) self.logreg_cm_plot.xaxis.axis_label = "Actual" self.logreg_cm_plot.yaxis.axis_label = "Predicted" self.source_logreg_cm.data = confusion_df self.source_logreg_roc.data = dict(fpr_roc=fpr, tpr_roc=tpr) self.logreg_roc_plot.xaxis.axis_label = "False Positive Rate" self.logreg_roc_plot.yaxis.axis_label = "True Positive Rate" self.legend_roc.items = [LegendItem(label="Logistic Regression (area = " + str(logit_roc_auc) + ")", renderers=[self.roc_line])] self.source_logreg_const_roc.data = dict( const_roc_x=[0, 1], const_roc_y=[0, 1]) self.error_count += 1 self.alert_logreg.text = str( self.error_count)+" Logistic Regression Completed" def logreg(self): df_logreg = pd.DataFrame() self.source_logreg = ColumnDataSource(data=dict(df_logreg)) logreg_columns = [TableColumn(field=cols, title=cols) for cols in df_logreg.columns] self.table_logreg = DataTable(source=self.source_logreg, columns=logreg_columns, width=1200, height=300, fit_columns=True) df_class_report = pd.DataFrame() self.source_class_rep_logreg = ColumnDataSource( data=dict(df_class_report)) class_rep_columns_logreg = [TableColumn( field=cols, title=cols) for cols in df_class_report.columns] self.table_class_rep_logreg = DataTable(source=self.source_class_rep_logreg, columns=class_rep_columns_logreg, width=600, height=200, fit_columns=True) logreg_cm_colors = list(reversed(Blues[9])) actual_cm, predicted_cm, value_cm = [], [], [] self.source_logreg_cm = ColumnDataSource( data=dict(Actual=actual_cm, Prediction=predicted_cm, value=value_cm)) self.logreg_cm_mapper = LinearColorMapper( palette=logreg_cm_colors, low=0, high=100) self.labels_logreg_cm = LabelSet(x='Actual', y='Prediction', text='value', level='overlay', x_offset=0, y_offset=-10, source=self.source_logreg_cm, render_mode='canvas', text_align='center', text_font='times', text_color='#FF0000', text_font_style='bold', text_font_size='16px') self.hover_logreg_cm = HoverTool(tooltips=[("Actual", "@Actual"), ("Predicted", "@Prediction"), ("Value", "@value")]) self.logreg_cm_plot = figure(plot_width=400, plot_height=300, title="Confusion Matrix", toolbar_location=None, tools=[self.hover_logreg_cm], x_axis_location="above") self.logreg_cm_plot.rect(x="Actual", y="Prediction", width=.9, height=.9, source=self.source_logreg_cm, line_color='black', fill_color=transform('value', self.logreg_cm_mapper)) self.logreg_cm_plot.y_range.flipped = True self.color_bar_logreg_cm = ColorBar(color_mapper=self.logreg_cm_mapper, location=(0, 0), ticker=BasicTicker( desired_num_ticks=len(logreg_cm_colors)), scale_alpha=0, major_label_text_alpha=0) self.logreg_cm_plot.add_layout(self.color_bar_logreg_cm, 'right') self.color_bar_logreg_cm.background_fill_color = "whitesmoke" self.logreg_cm_plot = self.plot_format(self.logreg_cm_plot) self.logreg_cm_plot.add_layout(self.labels_logreg_cm) self.logreg_cm_plot.min_border_left = 50 self.logreg_cm_plot.min_border_top = 50 self.hover_logreg_roc = HoverTool(tooltips=[("False Positive Rate", "@fpr_roc"), ("True Positive Rate", "@tpr_roc")], names=['roc']) fpr_roc, tpr_roc = [], [] self.source_logreg_roc = ColumnDataSource( data=dict(fpr_roc=fpr_roc, tpr_roc=tpr_roc)) const_roc_x, const_roc_y = [], [] self.source_logreg_const_roc = ColumnDataSource( data=dict(const_roc_x=const_roc_x, const_roc_y=const_roc_y)) self.logreg_roc_plot = figure(plot_width=500, plot_height=500, title="ROC AUC", toolbar_location=None, tools=[self.hover_logreg_roc], x_range=(-0.04, 1.04), y_range=(-0.04, 1.04)) self.roc_line = self.logreg_roc_plot.line(x="fpr_roc", y="tpr_roc", line_width=4, source=self.source_logreg_roc, line_color='dodgerblue', name='roc') self.logreg_roc_plot.line(x="const_roc_x", y="const_roc_y", line_width=2, line_dash='dashed', source=self.source_logreg_const_roc, line_color='orangered') self.legend_roc = Legend(items=[LegendItem(label="", renderers=[ self.roc_line])], location='bottom_right') self.logreg_roc_plot.add_layout(self.legend_roc) self.logreg_roc_plot = self.plot_format(self.logreg_roc_plot) self.logreg_roc_plot.min_border_left = 50 self.logreg_roc_plot.min_border_bottom = 50 self.logreg_data_select = Select(title="Dataset:", value="Select dataset", options=["Select dataset"] + list(self.logreg_data_source.keys())) self.logreg_features_ms = MultiSelect( title="Select features:", value=["ALL"], options=["ALL"]) self.normalize_logreg = RadioButtonGroup( labels=["Actual Data", "Normalize Data"], active=0) self.logreg_target_ms = Select(title="Select target for Logistic regression:", value="SELECT TARGET", options=["SELECT TARGET"]) self.button_logreg = Button(label="Calculate regression") self.button_logreg.disabled = True self.logreg_data_select.on_change("value", self.create_figure_logreg) self.logreg_target_ms.on_change('value', self.logreg_button_enable) self.button_logreg.on_click(self.logreg_plot) self.div_report_title = Div( text="""<center>Classification Report</center>""", width=600) self.alert_logreg = Div(text='', css_classes=['hidden'], visible=False) self.alert_logreg.js_on_change('text', self.callback_notification) tab_logreg = Panel(child=column(self.logreg_data_select, self.table_logreg, row(column(self.logreg_features_ms, self.normalize_logreg, self.logreg_target_ms, self.button_logreg), column(self.div_report_title, self.table_class_rep_logreg, self.logreg_cm_plot, self.logreg_roc_plot, self.alert_logreg))), title="Logistic Regression") return tab_logreg class classification(plot_attributes): def __init__(self): self.source_classify = None def create_figure_classify(self, attr, old, new): self.active_df = self.classify_data_select.value if self.active_df != "Select dataset": self.file_path = str( self.cwd + self.data_path + str(self.classify_data_source.get(self.active_df))) classify_df = pd.read_csv(self.file_path) classify_df = classify_df.fillna(classify_df.mean()) classify_df.columns = [x.upper() for x in classify_df.columns] self.classify_df = classify_df self.source_classify.data = dict(classify_df) self.table_classify.columns = [TableColumn(field=cols, title=cols, width=90) for cols in self.classify_df.columns] self.classify_features_ms.options = [ "ALL"] + classify_df.columns.values.tolist() likely_cat = {} for var in classify_df.columns: likely_cat[var] = classify_df[var].nunique() <= 20 likely_cat = [k for k, v in likely_cat.items() if v is True] self.classify_target_ms.options = ['SELECT TARGET'] + likely_cat self.button_classify.disabled = True else: self.source_classify.data = {} self.table_classify.columns = [] self.classify_features_ms.options = ["ALL"] self.classify_features_ms.value = ["ALL"] self.classify_target_ms.options = ['SELECT TARGET'] self.classify_target_ms.value = 'SELECT TARGET' self.button_classify.disabled = True self.source_classify_cm.data = {} self.source_classify_fi.data = {} self.source_class_rep_classify.data = {} def classify_button_enable(self, attr, old, new): if self.classify_target_ms.value != "SELECT TARGET": self.button_classify.disabled = False else: self.button_classify.disabled = True def classify_plot(self): features = self.classify_features_ms.value label = self.classify_target_ms.value classify_df = self.classify_df active_norm = self.normalize_classify.active if label != "SELECT TARGET": if 'ALL' in features: df_columns = classify_df.columns.values.tolist() df_columns.remove(label) features_df = classify_df.loc[:, df_columns] else: if label in features: features.remove(label) features_df = classify_df.loc[:, features] else: features_df = classify_df.loc[:, features] target_df = classify_df.loc[:, label] accuracy_score, class_report_df, confusion_df, \ rf_feature_labels, rf_feature_importance = get_classify_output( features_df, target_df, active_norm) self.source_class_rep_classify.data = dict(class_report_df) self.table_class_rep_classify.columns = [TableColumn(field=cols, title=cols, width=90) for cols in class_report_df.columns] self.table_class_rep_classify.index_position = None self.classify_cm_mapper.low, self.classify_cm_mapper.high = confusion_df.value.values.min(), \ confusion_df.value.values.max() self.color_bar_classify_cm.scale_alpha = 1 self.color_bar_classify_cm.major_label_text_alpha = 1 if str(confusion_df['Actual'].dtype) == 'object' or str(confusion_df['Prediction'].dtype) == 'object': self.classify_cm_plot.xaxis.ticker = list( set(pd.Categorical(confusion_df['Actual']).codes)) ticker_x_dict = dict( enumerate(pd.Categorical(confusion_df['Actual']).categories)) confusion_df['Actual'] = pd.Categorical( confusion_df['Actual']).codes self.classify_cm_plot.xaxis.major_label_overrides = ticker_x_dict self.classify_cm_plot.xaxis.major_label_orientation = pi / 4 self.classify_cm_plot.yaxis.ticker = list( set(pd.Categorical(confusion_df['Prediction']).codes)) ticker_y_dict = dict(enumerate(pd.Categorical( confusion_df['Prediction']).categories)) confusion_df['Prediction'] = pd.Categorical( confusion_df['Prediction']).codes self.classify_cm_plot.yaxis.major_label_overrides = ticker_y_dict else: self.classify_cm_plot.x_range.start, self.classify_cm_plot.x_range.end = confusion_df.Actual.min(), \ confusion_df.Actual.max() self.classify_cm_plot.y_range.start, self.classify_cm_plot.y_range.end = confusion_df.Prediction.min(), \ confusion_df.Prediction.max() self.classify_cm_plot.xaxis.ticker = sorted(target_df.unique()) self.classify_cm_plot.yaxis.ticker = sorted(target_df.unique()) self.classify_cm_plot.xaxis.axis_label = "Actual" self.classify_cm_plot.yaxis.axis_label = "Predicted" self.source_classify_cm.data = confusion_df rf_df = pd.DataFrame(dict({'rf_features': rf_feature_labels, 'rf_importance': rf_feature_importance})).nlargest(15, "rf_importance") self.source_classify_fi.data = dict(rf_df) self.classify_fi_plot.x_range.factors = rf_df['rf_features'].values.tolist( ) self.error_count += 1 self.alert_classify.text = str( self.error_count)+" Classification completed" def classify(self): df_classify = pd.DataFrame() self.source_classify = ColumnDataSource(data=dict(df_classify)) classify_columns = [TableColumn(field=cols, title=cols) for cols in df_classify.columns] self.table_classify = DataTable(source=self.source_classify, columns=classify_columns, width=1200, height=300, fit_columns=True) df_class_report = pd.DataFrame() self.source_class_rep_classify = ColumnDataSource( data=dict(df_class_report)) class_rep_columns_classify = [TableColumn( field=cols, title=cols) for cols in df_class_report.columns] self.table_class_rep_classify = DataTable(source=self.source_class_rep_classify, columns=class_rep_columns_classify, width=600, height=200, fit_columns=True) classify_cm_colors = list(reversed(Blues[9])) actual_cm, predicted_cm, value_cm = [], [], [] self.source_classify_cm = ColumnDataSource(data=dict(Actual=actual_cm, Prediction=predicted_cm, value=value_cm)) self.classify_cm_mapper = LinearColorMapper( palette=classify_cm_colors, low=0, high=100) self.labels_classify_cm = LabelSet(x='Actual', y='Prediction', text='value', level='overlay', x_offset=0, y_offset=-10, source=self.source_classify_cm, render_mode='canvas', text_align='center', text_font='times', text_color='#FF0000', text_font_style='bold', text_font_size='16px') self.hover_classify_cm = HoverTool(tooltips=[("Actual", "@Actual"), ("Predicted", "@Prediction"), ("Value", "@value")]) self.classify_cm_plot = figure(plot_width=600, plot_height=550, title="Confusion Matrix", toolbar_location=None, tools=[self.hover_logreg_cm], x_axis_location="above") self.classify_cm_plot.rect(x="Actual", y="Prediction", width=.9, height=.9, source=self.source_classify_cm, line_color='black', fill_color=transform('value', self.classify_cm_mapper)) self.classify_cm_plot.y_range.flipped = True self.color_bar_classify_cm = ColorBar(color_mapper=self.classify_cm_mapper, location=(0, 0), ticker=BasicTicker( desired_num_ticks=len(classify_cm_colors)), scale_alpha=0, major_label_text_alpha=0) self.classify_cm_plot.add_layout(self.color_bar_classify_cm, 'right') self.color_bar_classify_cm.background_fill_color = "whitesmoke" self.classify_cm_plot = self.plot_format(self.classify_cm_plot) self.classify_cm_plot.add_layout(self.labels_classify_cm) self.classify_cm_plot.min_border_left = 100 self.classify_cm_plot.min_border_top = 100 self.classify_cm_plot.min_border_bottom = 50 rf_features = [] rf_importance = [] self.hover_classify_fi = HoverTool(tooltips=[("Feature", "@rf_features"), ("Importance Score", "@rf_importance{0.02f}")]) self.source_classify_fi = ColumnDataSource( data=dict(rf_features=rf_features, rf_importance=rf_importance)) self.classify_fi_plot = figure(x_range=[], plot_width=600, plot_height=600, toolbar_location=None, title="Feature Importance", tools=[self.hover_classify_fi]) self.classify_fi_plot.vbar(x='rf_features', top='rf_importance', bottom=0, width=0.9, source=self.source_classify_fi, line_color='white', fill_color='dodgerblue') self.classify_fi_plot.background_fill_color = self.background_fill_color self.classify_fi_plot.border_fill_color = self.border_fill_color self.classify_fi_plot.yaxis.formatter = self.x_axis_format self.classify_fi_plot.title.align = self.title_align self.classify_fi_plot.title.text_font = self.text_font self.classify_fi_plot.axis.axis_label_text_font = self.axis_label_text_font self.classify_fi_plot.axis.axis_label_text_font_size = '8pt' self.classify_fi_plot.title.text_font_size = self.text_font_size self.classify_fi_plot.xaxis.major_label_orientation = pi / 4 self.classify_fi_plot.min_border_left = 50 self.classify_fi_plot.min_border_bottom = 100 self.classify_data_select = Select(title="Dataset:", value="Select dataset", options=["Select dataset"] + list(self.classify_data_source.keys())) self.classify_features_ms = MultiSelect( title="Select features:", value=["ALL"], options=["ALL"]) self.normalize_classify = RadioButtonGroup( labels=["Actual Data", "Normalize Data"], active=0) self.classify_target_ms = Select(title="Select target for Classification:", value="SELECT TARGET", options=["SELECT TARGET"]) self.button_classify = Button(label="Perform classification") self.button_classify.disabled = True self.classify_data_select.on_change( 'value', self.create_figure_classify) self.classify_target_ms.on_change("value", self.classify_button_enable) self.button_classify.on_click(self.classify_plot) self.div_report_title = Div( text="""<center>Classification Report</center>""", width=600) self.alert_classify = Div(text='', css_classes=[ 'hidden'], visible=False) self.alert_classify.js_on_change('text', self.callback_notification) tab_classify = Panel(child=column(self.classify_data_select, self.table_classify, row(column(self.classify_features_ms, self.normalize_classify, self.classify_target_ms, self.button_classify), column(self.div_report_title, self.table_class_rep_classify, column(self.classify_cm_plot, self.classify_fi_plot, self.alert_classify)))), title="Classification") return tab_classify class clustering(plot_attributes): """ Tab for Clustering """ def __init__(self): self.source_clustering = None self.clust_df = None self.source_clust = None self.mapper = None self.clust_scat = None self.clust_slider = None self.button_cluster = None self.clus_data_select = None self.clust_features_ms = None self.clust_norm_rbg = None self.hover_clust = None self.table_clustering = None def cluster_plot(self): active_features = self.clust_features_ms.value active_norm = self.clust_norm_rbg.active active_clust_no = self.clust_slider.value source_clust_data = clustering_data(self.clust_df, active_features, active_norm, active_clust_no, self.clustering_data_source, self.mapper, self.clust_scat) self.source_clust.data = source_clust_data self.error_count += 1 self.alert_cluster.text = str(self.error_count)+" Clustering Completed" def clustering_plot(self, attr, old, new): self.active_df = str(self.clus_data_select.value) if self.active_df != "Select dataset": self.button_cluster.disabled = False self.file_path = str( self.cwd + self.data_path + str(self.clustering_data_source.get(self.active_df))) clust_df = pd.read_csv(self.file_path) clust_df = clust_df.fillna(clust_df.mean()) clust_df.columns = [x.upper() for x in clust_df.columns] self.clust_df = clust_df self.source_clustering.data = dict(clust_df) self.table_clustering.columns = [TableColumn(field=cols, title=cols, width=90) for cols in self.clust_df.columns] self.clust_features_ms.options = ['ALL'] + list(clust_df.columns) else: self.button_cluster.disabled = True def cluster(self): df_clustering =
pd.DataFrame()
pandas.DataFrame
import os, re, json, datetime, random, csv import tensorflow as tf import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix import pandas as pd import numpy as np import seaborn as sn from string import ascii_uppercase import utils.dataGenerator as datagen import utils.dataGenerator4D as datagen4D metrics_index = ['Sensitivity', 'Specificity', 'Precision', 'Negative predictive value', 'Fall out', 'False negative rate', 'False discovery rate', 'Accuracy', 'F1 Score'] def filter_files_by_regex(files:list, regex:str): filtered_list = [val for val in files if re.search(regex, val)] return filtered_list def build_regex_for_subjects(subjects:list): user_regex_string ="^(" for subject in subjects: user_regex_string = (user_regex_string + subject + '|') user_regex_string = user_regex_string[:-1] + ')' user_regex_string = re.compile(user_regex_string) return user_regex_string def build_regex_for_movement(movements:list): user_regex_string ="(" for movement in movements: user_regex_string = (user_regex_string + movement + '|') user_regex_string = user_regex_string[:-1] + ')' user_regex_string = re.compile(user_regex_string) return user_regex_string def extract_info_from_config(cfg:json): return cfg["input-rows"], cfg["input-columns"], cfg["channels"], cfg["movements"], cfg["batch-size"], cfg["train-steps"], cfg["validation-steps"], cfg["test-steps"], cfg["epochs"] def split_dataset(files:list, cfg:json): movements_regex_string = build_regex_for_movement(cfg["movements"]) # Load train set train_user_regex_string = build_regex_for_subjects(cfg["train-subjects"]) train_files = filter_files_by_regex(files, train_user_regex_string) train_files = filter_files_by_regex(train_files, movements_regex_string) # Use only original files if desired if cfg["no-augmentation"]: train_files = filter_files_by_regex(train_files, r'-0.csv$') # Load test set test_user_regex_string = build_regex_for_subjects(cfg["test-subjects"]) test_files = filter_files_by_regex(files, test_user_regex_string) test_files = filter_files_by_regex(test_files, movements_regex_string) # Use only original files for testing test_files = filter_files_by_regex(test_files, r'-0.csv$') # Load validation set validation_user_regex_string = build_regex_for_subjects(cfg["validation-subjects"]) validation_files = filter_files_by_regex(files, validation_user_regex_string) validation_files = filter_files_by_regex(validation_files, movements_regex_string) # Use only original files for validation validation_files = filter_files_by_regex(validation_files, r'-0.csv$') print("Original train files: " + str(len(filter_files_by_regex(train_files, r'-0.csv$')))) print("Total train files: " + str(len(train_files))) print("Original validation files: " + str(len(filter_files_by_regex(validation_files, r'-0.csv$')))) print("Total validation files: " + str(len(validation_files))) print("Original test files: " + str(len(filter_files_by_regex(test_files, r'-0.csv$')))) print("Total test files: " + str(len(test_files))) return train_files, validation_files, test_files def balance_data_set(files:list, cfg:json, set:str): movement_samples = {} for movement in cfg["movements"]: movement_regex_string = re.compile(movement) files_filtered = filter_files_by_regex(files, movement_regex_string) movement_samples[movement] = len(files_filtered) min_key = min(movement_samples, key=movement_samples.get) final_files = [] print("Under balancing data-set by movement " + min_key + " with " + str(movement_samples[min_key]) + " total files.") for movement in cfg["movements"]: movement_regex_string = re.compile(movement) files_filtered = filter_files_by_regex(files, movement_regex_string) random.shuffle(files_filtered) final_files = final_files + files_filtered[:movement_samples[min_key]] print("Final " + set + " data-set has " + str(len(final_files)) + " images.") return final_files def loadCfgJson(file_path:str): with open(file_path) as f: return json.load(f) def create_folder(folder_path: str, folderBaseName:str=''): datetime_object = datetime.datetime.now() folder_path = folder_path + '/' + folderBaseName + str(datetime_object) os.mkdir(folder_path) return folder_path def create_outcome_file(outcome_path:str, model, test_loss, test_accuracy, history_callback, comments:str): history = history_callback.history with open(outcome_path + '/outcome.txt', 'w') as file: file.write('##################################################\n') file.write('# MODEL SUMMARY #\n') file.write('##################################################\n') model.summary(print_fn=lambda x: file.write(x + '\n')) file.write('\n\n') file.write('##################################################\n') file.write('# TRAIN OUTCOME #\n') file.write('##################################################\n') for i in range(len(history["loss"])): file.write( 'loss: ' + str(format(history["loss"][i], ".4f")) + ' | accuracy: ' + str(format(history["accuracy"][i], ".4f")) + ' | val_loss: ' + str(format(history["val_loss"][i], ".4f")) + ' | val_accuracy: ' + str(format(history["val_accuracy"][i], ".4f")) + '\n') file.write('\n\n') file.write('##################################################\n') file.write('# TEST OUTCOME #\n') file.write('##################################################\n') file.write( 'loss: ' + str(format(test_loss, ".4f")) + ' | accuracy: ' + str(format(test_accuracy, ".4f"))) file.write('\n\n') file.write('##################################################\n') file.write('# NOTES #\n') file.write('##################################################\n') file.write(comments) file.write('\n\n') def create_config_output_file(outcome_path:str, cfg:json): with open(outcome_path + '/config.json', 'w') as outfile: json.dump(cfg, outfile) def save_model_and_weights(outcome_path:str, model): model_json = model.to_json() with open(outcome_path + '/model.json', "w") as json_file: json_file.write(model_json) model.save_weights(outcome_path + '/model.h5') def addCallbacks(callbacks:json, callback_list: list, outcome_path:str): modelCheckPoint = False for callback in callbacks: if(callback["type"] == "earlyStop"): callback_list.append(tf.keras.callbacks.EarlyStopping(monitor=callback["monitor"], patience=callback["patience"])) if(callback["type"] == "modelCheckPoint"): modelCheckPoint = True callback_list.append(tf.keras.callbacks.ModelCheckpoint(monitor=callback["monitor"], save_weights_only=callback["save_weights_only"], save_best_only=callback["save_best_only"] , filepath= outcome_path, mode=callback["mode"] )) return callback_list, modelCheckPoint def initialize_folder(path): try: os.mkdir(path) except OSError: print ("Creation of the directory %s failed" % path) else: print ("Successfully created the directory %s " % path) def calculate_confusion_matrix_metrics(confusion_matrix, movements): FP = confusion_matrix.sum(axis=0) - np.diag(confusion_matrix) FN = confusion_matrix.sum(axis=1) - np.diag(confusion_matrix) TP = np.diag(confusion_matrix) TN = confusion_matrix.sum() - (FP + FN + TP) FP = FP.astype(float) FN = FN.astype(float) TP = TP.astype(float) TN = TN.astype(float) # Sensitivity, hit rate, recall, or true positive rate TPR = TP/(TP+FN) # Specificity or true negative rate TNR = TN/(TN+FP) # Precision or positive predictive value PPV = TP/(TP+FP) # Negative predictive value NPV = TN/(TN+FN) # Fall out or false positive rate FPR = FP/(FP+TN) # False negative rate FNR = FN/(TP+FN) # False discovery rate FDR = FP/(TP+FP) # Overall accuracy for each class ACC = (TP+TN)/(TP+FP+FN+TN) # F1 Score FONE = 2*TP/(2*TP + FP + FN) metrics_df = pd.DataFrame([TPR, TNR, PPV, NPV, FPR, FNR, FDR, ACC, FONE] ,index= metrics_index ,columns=movements) metrics_df['Average'] = metrics_df.mean(numeric_only=True, axis=1) return metrics_df def create_confusion_matrix(prediction:list, file_path:str, movements:list): predicted_labels = prediction.argmax(axis=-1) with open(file_path+ '/test.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') test_labels= [] for row in csv_reader: array = row[0].replace("\n", " ").replace("[", " ").replace("]", " ")[1:] labels = array.split(" ") for label in labels: if label.isdigit(): test_labels.append(int(label)) test_labels = np.array(test_labels) final_confusion_matrix = confusion_matrix(test_labels, predicted_labels) # os.remove(file_path+ '/test.csv') columns = np.array(movements) # Build & save confusion matrix save_dataframe_as_heatMap(nparray=final_confusion_matrix, indexNames=columns \ ,columNames=columns, saveFolder=file_path, imgBaseName='/confusion-matrix', format='d') # Build & save confusion metrics matrix metrics_df=calculate_confusion_matrix_metrics(final_confusion_matrix, movements) metrics_df.to_csv(file_path+'/confusion-matrix-metrics.csv') fig = plt.figure(figsize = (len(metrics_index),len(columns))) sn.set(font_scale=1.4) # for label size sn.heatmap(metrics_df, annot=True, cmap='Blues', annot_kws={"size": 10}) # font size fig.tight_layout() plt.savefig(file_path + '/confusion-matrix-metrics.png') # Build & save normalized confusion matrix row_sums = final_confusion_matrix.sum(axis=1) normalized_aggregated_confusion_matrix = final_confusion_matrix / row_sums[:, np.newaxis] save_dataframe_as_heatMap(nparray=normalized_aggregated_confusion_matrix, indexNames=columns \ ,columNames=columns, saveFolder=file_path, imgBaseName='/confusion-matrix-normalized') def restrict_to_physcial_gpu(): gpus = tf.config.list_physical_devices('GPU') if gpus: # Restrict TensorFlow to only use the first GPU try: tf.config.experimental.set_visible_devices(gpus[0], 'GPU') logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU") except RuntimeError as e: # Visible devices must be set before GPUs have been initialized print(e) def set_memory_growth(): gpus = tf.config.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) # For K-Fold directories build average confusion matrices def build_average_confusion_matrix(kFoldFolder:str): _, folders, _ = next(os.walk(kFoldFolder)) confusion_matrix_metrics = [] confusion_matrixs = [] columns = [] for folder in folders: confusion_matrix =
pd.read_csv(kFoldFolder + '/' + folder + '/confusion-matrix.csv', header=None)
pandas.read_csv
from datetime import timedelta import pytest from pandas import PeriodIndex, Series, Timedelta, date_range, period_range, to_datetime import pandas._testing as tm class TestToTimestamp: def test_to_timestamp(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009") series = Series(1, index=index, name="foo") exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") result = series.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) assert result.name == "foo" exp_index =
date_range("1/1/2001", end="1/1/2009", freq="AS-JAN")
pandas.date_range
# Written by i3s import os import numpy as np from sklearn.preprocessing import OneHotEncoder import pandas as pd import seaborn as sns import time from sklearn.model_selection import KFold from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.cross_decomposition import PLSRegression from sklearn.linear_model import LogisticRegression, Lasso from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn import metrics def proj_l1ball(y, eta): """ Note that the y should be better 1D or after some element-wise operation, the results will turn to be un predictable. This function will automatically reshape the y as (m,), where m is the y.size, or the y.shape[0]*y.shape[1]. """ if type(y) is not np.ndarray: y = np.array(y) if y.ndim > 1: y = np.reshape(y, (-1,)) return np.maximum( np.absolute(y) - np.amax( [ np.amax( (np.cumsum(np.sort(np.absolute(y), axis=0)[::-1], axis=0) - eta) / (np.arange(y.shape[0]) + 1) ), 0, ] ), 0, ) * np.sign(y) def centroids(XW, Y, k): Y = np.reshape(Y, -1) d = XW.shape[1] mu = np.zeros((k, d)) """ since in python the index starts from 0 not from 1, here the Y==i will be change to Y==(i+1) Or the values in Y need to be changed """ for i in range(k): C = XW[Y == (i + 1), :] mu[i, :] = np.mean(C, axis=0) return mu def class2indicator(y, k): if len(y.shape) > 1: # Either throw exception or transform y, here the latter is chosen. # Note that a list object has no attribute 'flatten()' as np.array do, # We use x = np.reshape(y,-1) instead of x = y.flatten() in case of # the type of 'list' of argument y y = np.reshape(y, -1) n = len(y) Y = np.zeros((n, k)) # dtype=float by default """ since in python the index starts from 0 not from 1, here the y==i in matlab will be change to y==(i+1) """ for i in range(k): Y[:, i] = y == (i + 1) return Y def nb_Genes(w): # Return the number of selected genes from the matrix (numpy.ndarray) w d = w.shape[0] ind_genes = np.zeros((d, 1)) for i in range(d): if np.linalg.norm(w[i, :]) > 0: ind_genes[i] = 1 indGene_w = np.where(ind_genes == 1)[0] nbG = int(np.sum(ind_genes)) return nbG, indGene_w def select_feature_w(w, featurenames): k = w.shape[1] d = w.shape[0] lst_features = [] lst_norm = [] for i in range(k): s_tmp = w[:, i] # the i-th column f_tmp = np.abs(s_tmp) # the absolute values of this column ind = np.argsort(f_tmp)[ ::-1 ] # the indices of the sorted abs column (descending order) f_tmp = np.sort(f_tmp)[::-1] # the sorted abs column (descending order) nonzero_inds = np.nonzero(f_tmp)[0] # the nonzero indices lst_f = [] lst_n = [] if len(nonzero_inds) > 0: nozero_ind = nonzero_inds[-1] # choose the last nonzero index if nozero_ind == 0: lst_f.append(featurenames[ind[0]]) lst_n.append(s_tmp[ind[0]]) else: for j in range(nozero_ind + 1): lst_f.append(featurenames[ind[j]]) lst_n = s_tmp[ind[0 : (nozero_ind + 1)]] lst_features.append(lst_f) lst_norm.append(lst_n) n_cols_f = len(lst_features) n_rows_f = max(map(len, lst_features)) # maxmum subset length n_cols_n = len(lst_norm) n_rows_n = max(map(len, lst_norm)) for i in range(n_cols_f): ft = np.array(lst_features[i]) ft.resize(n_rows_f, refcheck=False) nt = np.array(lst_norm[i]) nt.resize(n_rows_n, refcheck=False) if i == 0: features = ft normW = nt continue features = np.vstack((features, ft)) normW = np.vstack((normW, nt)) features = features.T normW = normW.T return features, normW def compute_accuracy(idxR, idx, k): """ # =============================== #----- INPUT # idxR : real labels # idx : estimated labels # k : number of class #----- OUTPUT # ACC_glob : global accuracy # tab_acc : accuracy per class # =============================== """ # Note that Python native sum function works better on list than on numpy.array # while numpy.sum function works better on numpy.array than on list. # So it will choose numpy.array as the default type for idxR and idx if type(idxR) is not np.array: idxR = np.array(idxR) if type(idx) is not np.array: idx = np.array(idx) if idxR.ndim == 2 and 1 not in idxR.shape: idxR = np.reshape(idxR, (-1, 1)) if idx.ndim == 1: idx = np.reshape(idx, idxR.shape) # Global accuracy y = np.sum(idxR == idx) ACC_glob = y / len(idxR) # Accuracy per class tab_acc = np.zeros((1, k)) """ since in python the index starts from 0 not from 1, here the idx(ind)==j in matlab will be change to idx[ind]==(j+1) """ for j in range(k): ind = np.where(idxR == (j + 1))[0] if len(ind) == 0: tab_acc[0, j] = 0.0 else: tab_acc[0, j] = int(np.sum(idx[ind] == (j + 1))) / len(ind) return ACC_glob, tab_acc def predict_L1(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 1) # print(distmu) # sns.kdeplot(np.array(distmu), shade=True, bw=0.1) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 return Ytest # function to compute the \rho value def predict_L1_molecule(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) confidence = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 1) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 confidence[i] = (distmu[0, 1] - distmu[0, 0]) / (distmu[0, 1] + distmu[0, 0]) return Ytest, confidence # =============================Plot functions================================================= # function to plot the distribution of \rho def rhoHist(rho, n_equal_bins): """ # =============================== #----- INPUT # rho : df_confidence # n_equal_bins : the number of histogram bins # #----- OUTPUT # plt.show() # =============================== """ # The leftmost and rightmost bin edges first_edge, last_edge = rho.min(), rho.max() bin_edges = np.linspace( start=first_edge, stop=last_edge, num=n_equal_bins + 1, endpoint=True ) _ = plt.hist(rho, bins=bin_edges) plt.title("Histogram of confidence score") plt.show() def pd_plot(X, Yr, W, flag=None): plt.figure() X_transform = np.dot(X, W) # cluster 1 index1 = np.where(Yr == 1) X_1 = X_transform[index1[0], :] c1 = np.mean(X_1, axis=0) # plt.scatter(X_1[:,0],X_1[:,8],c='b', label='cluster1') # cluster 2 index2 = np.where(Yr == 2) X_2 = X_transform[index2[0], :] c2 = np.mean(X_2, axis=0) if flag == True: plt.scatter(c1[0], c1[1], c="y", s=100, marker="*", label="center1") plt.scatter(c2[0], c2[1], c="c", s=100, marker="*", label="center2") plt.plot(X_1[:, 0], X_1[:, 1], "ob", label="cluster1") plt.plot(X_2[:, 0], X_2[:, 1], "^r", label="cluster2") plt.title("Primal_Dual") plt.legend() plt.show() def pca_plot(X, Yr, W, flag=None): plt.figure() # if flag==True: # X=np.dot(X,W) pca = PCA(n_components=2) X_pca = pca.fit_transform(X) X_norm = X_pca # cluster 1 index1 = np.where(Yr == 1) X_1 = X_norm[index1[0], :] c1 = np.mean(X_1, axis=0) # plt.scatter(X_1[:,0],X_1[:,8],c='b', label='cluster1') # cluster 2 index2 = np.where(Yr == 2) X_2 = X_norm[index2[0], :] c2 = np.mean(X_2, axis=0) # plt.scatter(X_2[:,0],X_2[:,8],c='g',label='cluster2') if flag == True: plt.scatter(c1[0], c1[1], c="y", s=100, marker="*", label="center1") plt.scatter(c2[0], c2[1], c="c", s=100, marker="*", label="center2") plt.plot(X_1[:, 0], X_1[:, 1], "ob", label="cluster1") plt.plot(X_2[:, 0], X_2[:, 1], "^r", label="cluster2") plt.title("PCA") plt.legend() plt.show() def Predrejection(df_confidence, eps, num_eps): """ # ===================================================================== # It calculates the false rate according to the value of epsilon # #----- INPUT # df_confidence : dataframe which contains predicted label, # original label and rho # eps : the threshold # num_eps : the number of epsilon that can be tested #----- OUTPUT # FalseRate : An array that contains the falserate according to epsilon # ===================================================================== """ Yr = np.array(df_confidence["Yoriginal"]) Yr[np.where(Yr == 2)] = -1 Ypre = np.array(df_confidence["Ypred"]) Ypre[np.where(Ypre == 2)] = -1 rho = df_confidence["rho"] epsList = np.arange(0, eps, eps / num_eps) falseRate = [] rejectSample = [] for epsilon in epsList: index = np.where((-epsilon < rho) & (rho < epsilon)) Yr[index] = 0 Ypre[index] = 0 Ydiff = Yr - Ypre rejectRate = len(index[0]) / len(Yr) error = len(np.where(Ydiff != 0)[0]) / len(Yr) falseRate.append(error) rejectSample.append(rejectRate) plt.figure() plt.plot(epsList, falseRate) plt.xlabel("Confidence score prediction") plt.ylabel("FN+FP (ratio)") # plot the number of rejected samples plt.figure() plt.plot(epsList, rejectSample) plt.xlabel("Confidence score prediction") plt.ylabel(" Reject samples (ratio) ") return np.array(falseRate) # ============================================================================== def predict_FISTA(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 2) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 return Ytest def normest(X, tol=1.0e-6, maxiter=100): # import necessary modules import scipy.sparse import numpy as np import warnings if scipy.sparse.issparse(X): x = np.array(np.sum(np.abs(X), axis=0)) x = np.reshape(x, max(x.shape)) elif type(X) == np.matrix: x = np.sum(np.abs(np.asarray(X)), axis=0) x = np.reshape(x, max(x.shape)) else: x = np.sum(np.abs(X), axis=0) norm_e = np.linalg.norm(x) if norm_e == 0: return norm_e x = x / norm_e norm_e0 = 0 count = 0 while np.abs(norm_e - norm_e0) > tol * norm_e: norm_e0 = norm_e Xx = np.matmul(X, x) if np.count_nonzero(Xx) == 0: Xx = np.random.rand(Xx.shape[0]) x = np.matmul(X.T, Xx) normx = np.linalg.norm(x) norm_e = normx / np.linalg.norm(Xx) x = x / normx count += 1 if count > maxiter: warnings.warn( "Normest::NotConverge:the number of iterations exceeds {} times.\nThe error is {}, the tolerance is {}".format( maxiter, np.abs(norm_e - norm_e0), tol ), RuntimeWarning, ) break return norm_e def merge_topGene_norm(topGenes, normW, clusternames): """ # ===================================================================== # It merge the two output from function select_features_w into a new # pandas.DataFrame whose columns will be the elements in clusternames # and each of the column will have two subcolumns: topGenes and weight # #----- INPUT # topGenes : ndarray of top Genes chosen by select_features_w # normW : normWeight of each genes given by select_features_w # clusternames : A list of the names of each class. #----- OUTPUT # df_res : A DataFrame with each colum the first subcolumn the genes # and second subcolumn their norm of weight # ===================================================================== """ if topGenes.shape != normW.shape: raise ValueError("The dimension of the two input should be the same") m, n = topGenes.shape nbC = len(clusternames) res = np.dstack((topGenes, normW)) res = res.reshape(m, 2 * n) lst_col = [] for i in range(nbC): lst_col.append((clusternames[i], "topGenes")) lst_col.append((clusternames[i], "Weights")) df_res = pd.DataFrame(res, columns=lst_col) df_res.columns = pd.MultiIndex.from_tuples( df_res.columns, names=["CluserNames", "Attributes"] ) return df_res def merge_topGene_norm_acc( topGenes, normW, clusternames, acctest, nbr_features=30, saveres=False, file_tag=None, outputPath="../results/", ): """ # =============================================================================================== \n # Based on the function merge_topGebe_norm, replace the column name for \n # normW by the accuracy \n #----- INPUT \n # topGenes (ndarray or DataFrame) : Top Genes chosen by select_features_w \n # normW (ndarray or DataFrame) : The normWeight of each genes given by select_features_w \n # clusternames (list or array) : A list of the names of each class \n # acctest (list or array) : The list of the test accuracy \n # saveres (optional, boolean) : True if we want to save the result to local \n # file_tag (optional, string) : A file tag which will be the prefix of the file name \n # outputPath (optional, string) : The output Path of the file \n # ----- OUTPUT \n # df_res : A DataFrame with each colum the first subcolumn the genes \n # and second subcolumn their norm of weight \n # =============================================================================================== \n """ if type(topGenes) is pd.DataFrame: topGenes = topGenes.values if type(normW) is pd.DataFrame: normW = normW.values if topGenes.shape != normW.shape: raise ValueError("The dimension of the two input should be the same") m, n = topGenes.shape nbC = len(clusternames) res = np.dstack((topGenes, normW)) res = res.reshape(m, 2 * n) lst_col = [] acctest_mean = acctest.values.tolist()[4] for i in range(nbC): lst_col.append((clusternames[i], "topGenes")) astr = str(acctest_mean[i]) lst_col.append((astr, "Weights")) df_res = pd.DataFrame(res[0:nbr_features, :], columns=lst_col) df_res.columns = pd.MultiIndex.from_tuples( df_res.columns, names=["CluserNames", "Attributes"] ) if saveres: df_res.to_csv( "{}{}_Heatmap of Acc_normW_Topgenes.csv".format(outputPath, file_tag), sep=";", ) return df_res def compare_2topGenes( topGenes1, topGenes2, normW1=None, normW2=None, lst_col=None, nbr_limit=30, printOut=False, ): """ #======================================================================================= # Compare column by column the elements between to topGenes, it choose for # each column first "nbr" elements to check. # The two topGenes should be in same size of columns # ----- INPUT # topGenes1, topGenes2 (DataFrame) : Two topGenes to be compared # normW1, normW2 (DataFrame,optional): Two matrix of weights correspondent. Default: None # lst_col (list, optional) : If given, only the chosen column will be compared. Default: None # nbr_limit (scalar, optional) : Number of the lines to be compared. Default: 30 # printOut (boolean, optional) : If True, the comparison result will be shown on screen. Default: False # ----- OUTPUT # out (string) : It returns a string of the comparing result as output. #======================================================================================= """ import pandas as pd import numpy as np if type(topGenes1) != type(topGenes2): raise ValueError("The two topGenes to be compared should be of the same type.") if type(topGenes1) is not pd.DataFrame: col = ["C" + str(i) for i in topGenes1.shape[1]] topGenes1 = pd.DataFrame(topGenes1, columns=col) topGenes2 = pd.DataFrame(topGenes2, columns=col) out = [] out.append("Comparing the two TopGenes:\n") # After the benchmark, the appended list and then converted to whole string seems to be the least consuming list_name = list(topGenes1.columns) if lst_col is not None: list_name = [list_name[ind] for ind in lst_col] for name in list_name: out.append( "{0:{fill}{align}40}\n".format(" Class %s " % name, fill="=", align="^") ) col_1 = np.array(topGenes1[[name]], dtype=str) col_2 = np.array(topGenes2[[name]], dtype=str) # Here np.nozero will return a tuple of 2 array corresponding the first # and the second dimension while the value of second dimension will # always be 0. So the first dimension's last location+1 will be the length # of nonzero arrays and that it's just the location of the first zero # element length_nonzero_1 = np.nonzero(col_1)[0][-1] + 1 length_nonzero_2 = np.nonzero(col_2)[0][-1] + 1 # np.nonzero will not detect '0.0' as zero type if all(col_1 == "0.0"): length_nonzero_1 = 0 if all(col_2 == "0.0"): length_nonzero_2 = 0 length_min = min(length_nonzero_1, length_nonzero_2) # Check if at least one of the classes contains only zero and avoid the error if length_min == 0 and length_nonzero_1 == length_nonzero_2: out.append( "* Warning: No feature is selected for both two class\n Skipped for this class" ) continue elif length_min == 0 and length_nonzero_1 > 0: out.append( "* Warning: No feature is selected for this class in TopGenes2\n" ) out.append( "* All {} elements are included only in topGenes1:\n".format( min(length_nonzero_1, nbr_limit) ) ) for k in range(min(length_nonzero_1, nbr_limit)): if normW1 is None: out.append(" (%s)\n" % (str(col_1[k, 0]))) else: out.append( " (%s, %s)\n" % (str(col_1[k, 0]), normW1[[name]].iloc[k, 0]) ) continue elif length_min == 0 and length_nonzero_2 > 0: out.append( "* Warning: No feature is selected for this class in TopGenes1\n" ) out.append( "* All {} elements are included only in topGenes2:\n".format( min(length_nonzero_2, nbr_limit) ) ) for k in range(min(length_nonzero_2, nbr_limit)): if normW2 is None: out.append(" (%s)\n" % (str(col_2[k, 0]))) else: out.append( " (%s, %s)\n" % (str(col_2[k, 0]), normW2[[name]].iloc[k, 0]) ) continue if length_min < nbr_limit: length = length_min out.append( "* Warning: In this column, the 1st topGenes has {} nozero elements\n* while the 2nd one has {} nonzero elements\n".format( length_nonzero_1, length_nonzero_2 ) ) out.append("* So only first %d elements are compared\n\n" % length_min) else: length = nbr_limit set_1 = col_1[0:length] set_2 = col_2[0:length] set_common = np.intersect1d(set_1, set_2) # Have in common set_o1 = np.setdiff1d(set_1, set_2) # Exclusively in topGenes1 set_o2 = np.setdiff1d(set_2, set_1) # Exclusively in topGenes2 lc = len(set_common) # print exclusively in topGenes1 out.append( "Included exclusively in first topGenes: {} elements in total.\n".format( length - lc ) ) if length - lc > 0: if normW1 is None: out.append("Details:(Name)\n") else: out.append("Details:(Name,Weight)\n") idx_i, idx_j = np.where(topGenes1[[name]].isin(set_o1)) for i, j in zip(idx_i, idx_j): if normW1 is None: out.append(" (%s)\n" % str(set_1[i, j])) else: out.append( " (%s, %s)\n" % (str(set_1[i, j]), str(normW1[[name]].iloc[i, j])) ) out.append("\nNumber of elements in common:{}\n".format(lc)) # print exclusively in topGenes1 out.append( "\nIncluded exclusively in second topGenes: {} elements in total.\n".format( length - lc ) ) if length - lc > 0: if normW2 is None: out.append("Details:(Name)\n") else: out.append("Details:(Name,Weight)\n") idx_i, idx_j = np.where(topGenes2[[name]].isin(set_o2)) for i, j in zip(idx_i, idx_j): if normW2 is None: out.append(" (%s)\n" % str(set_2[i, j])) else: out.append( " (%s, %s)\n" % (str(set_2[i, j]), str(normW2[[name]].iloc[i, j])) ) out.append("{:-<40}\n".format("")) out = "".join(out) if printOut == True: print(out) return out def heatmap_classification( Ytest, YR, clusternames, rotate=45, draw_fig=False, save_fig=False, func_tag=None, outputPath="../results/", ): """ #===================================================== # It takes the predicted labels (Ytest), true labels (YR) # and a list of the names of clusters (clusternames) # as input and provide the heatmap matrix as the output #===================================================== """ k = len(np.unique(YR)) # If we need to automatically find a k Heatmap_matrix = np.zeros((k, k)) for i in np.arange(k) + 1: for j in np.arange(k) + 1: a = np.where( Ytest[YR == i] == j, 1, 0 ).sum() # number Ytest ==j where YR==i b = np.where(YR == i, 1, 0).sum() Heatmap_matrix[i - 1, j - 1] = a / b # Plotting if draw_fig == True: plt.figure(figsize=(10, 6)) annot = False if k > 10: annot = False if clusternames is not None: axes = sns.heatmap( Heatmap_matrix, cmap="jet", annot=annot, fmt=".2f", xticklabels=clusternames, yticklabels=clusternames, ) else: axes = sns.heatmap(Heatmap_matrix, cmap="jet", annot=annot, fmt=".2f") axes.set_xlabel("Predicted true positive", fontsize=14) axes.set_ylabel("Ground true", fontsize=14) axes.tick_params(labelsize=7) plt.xticks(rotation=rotate) axes.set_title("Heatmap of confusion Matrix", fontsize=14) plt.tight_layout() if save_fig == True: plt.savefig( "{}{}_Heatmap_of_confusion_Matrix.png".format(outputPath, func_tag) ) return Heatmap_matrix def heatmap_normW( normW, clusternames=None, nbr_l=10, rotate=45, draw_fig=False, save_fig=False, func_tag=None, outputPath="../results/", ): """ #===================================================== # It takes the predicted labels (Ytest), true labels (YR) # and the number of clusters (k) as input and provide the # heatmap matrix as the output #===================================================== """ A = np.abs(normW) AN = A / A[0, :] if normW.shape[0] < nbr_l: nbr_l = normW.shape[0] ANR = AN[0:nbr_l, :] annot = False if draw_fig == True: plt.figure(figsize=(10, 6)) # axes2=sns.heatmap(ANR,cmap='jet',annot=annot,fmt='.3f') if clusternames is None: axes2 = sns.heatmap( ANR, cmap="jet", annot=annot, fmt=".3f", yticklabels=np.linspace(1, nbr_l, num=nbr_l, endpoint=True, dtype=int), ) else: axes2 = sns.heatmap( ANR, cmap="jet", annot=annot, fmt=".3f", xticklabels=clusternames, yticklabels=np.linspace(1, nbr_l, num=nbr_l, endpoint=True, dtype=int), ) plt.xticks(rotation=rotate) axes2.set_ylabel("Features", fontsize=14) axes2.set_xlabel("Clusters", fontsize=14) axes2.tick_params(labelsize=7) axes2.set_title("Heatmap of Matrix W", fontsize=14) plt.tight_layout() if save_fig == True: plt.savefig("{}{}_Heatmap_of_signature.png".format(outputPath, func_tag)) return ANR def drop_cells_with_ID(X, Y, ID, n_fold): """ # ==================================================================== # This function will detect whether the size of the first dimension of # X is divisible by n_fold. If not, it will remove the n_diff rows from # the biggest class(with the largest size in Y) where n_diff=len(Y)%n_fold # # ---- Input # X : The data # Y : The label # n_fold : The number of fold # --- Output # X_new, Y_new : The new data and the new label # ===================================================================== """ m, d = X.shape if m % n_fold == 0: return X, Y, ID n_diff = m % n_fold # choose in the biggest class to delete # Find the biggest class lst_count = [] for i in np.unique(Y): lst_count.append(np.where(Y == i, 1, 0).sum()) ind_max = np.unique(Y)[np.argmax(lst_count)] lst_inds = np.where(Y == ind_max)[0] # Delete n_diff elements in the biggest class lst_del = np.random.choice(lst_inds, n_diff) X_new = np.delete(X, lst_del, 0) Y_new = np.delete(Y, lst_del, 0) ID_new = np.delete(ID, lst_del, 0) return X_new, Y_new, ID_new def drop_cells(X, Y, n_fold): """ # ==================================================================== # This function will detect whether the size of the first dimension of # X is divisible by n_fold. If not, it will remove the n_diff rows from # the biggest class(with the largest size in Y) where n_diff=len(Y)%n_fold # # ---- Input # X : The data # Y : The label # n_fold : The number of fold # --- Output # X_new, Y_new : The new data and the new label # ===================================================================== """ m, d = X.shape if m % n_fold == 0: return X, Y n_diff = m % n_fold # choose in the biggest class to delete # Find the biggest class lst_count = [] for i in np.unique(Y): lst_count.append(np.where(Y == i, 1, 0).sum()) ind_max = np.unique(Y)[np.argmax(lst_count)] lst_inds = np.where(Y == ind_max)[0] # Delete n_diff elements in the biggest class lst_del = np.random.choice(lst_inds, n_diff) X_new = np.delete(X, lst_del, 0) Y_new = np.delete(Y, lst_del, 0) return X_new, Y_new # ===================== Algorithms ======================================= def FISTA_Primal(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # niter : The number of iterations # gamma : The hyper parameter gamma # eta : The eta to calculate the projection on l1 ball # * isEpsilon is not used in the original file in Matlab # --- Output # w : The projection matrix # mu : The centers # nbGenes_fin : The number of genes of the final step # loss : The loss for each iteration # ==================================================================== """ # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = ["niter", "eta", "gamma"] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta = param["eta"] gamma = param["gamma"] n, d = X.shape # === With class2indicator(): # Y = class2indicator(YR,k) # === With Onehotencoder: Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() loss = np.zeros(niter) XtX = np.matmul(X.T, X) XtY = np.matmul(X.T, Y) w_old = np.ones((d, k)) w_loc = w_old t_old = 1 for i in range(niter): grad_w = np.matmul(XtX, w_loc) - XtY # gradient step V = w_loc - gamma * grad_w V = np.reshape(V, d * k) # Projection on the l1 ball V = proj_l1ball(V, eta) # Reshape back w_new = np.reshape(V, (d, k)) # Chambolle method t_new = (i + 6) / 4 # or i+6 since pyhton starts from 0 ? w_loc_new = w_new + ((t_old - 1) / t_new) * (w_new - w_old) w_old = w_new w_loc = w_loc_new t_old = t_new loss[i] = np.linalg.norm(Y - np.matmul(X, w_loc), "fro") ** 2 # end iteratons w = w_loc mu = centroids(np.matmul(X, w), YR, k) nbGenes_fin = nb_Genes(w)[0] loss = loss / loss[0] return w, mu, nbGenes_fin, loss def primal_dual_L1N(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # param : A type dict paramter which must have keys: # 'niter', 'eta', 'tau', 'rho','sigma', 'beta', 'tau2' and 'delta' # Normally speaking: # (The default value for beta is 0.25.) # (IF not given, the value of the 'tau2' will be calculated by # tau2 = 0.25*(1/(np.sqrt(m)*normY)). Note that this normY is # the 2-norm of the OneHotEncode of the YR given.) # (Default value of the 'delta' is 1.0) # --- Output # w : The projection matrix of size (d,k) # mu : The centers of classes # nbGenes_fin : The number of genes of the final result # loss : The loss for each iteration # Z : The dual matrix of size (m,k) # ===================================================================== """ m, d = X.shape Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() # normY = np.linalg.norm(Y,2) # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = [ "niter", "eta", "tau", "rho", "sigma", "delta", "tau2", "beta", ] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta = param["eta"] tau = param["tau"] rho = param["rho"] sigma = param["sigma"] delta = param["delta"] tau2 = param["tau2"] # beta = param['beta'] # === END check block === # Initialization w_old = np.ones((d, k)) Z_old = np.ones((m, k)) mu_old = np.eye(k, k) Ik = np.eye(k, k) loss = np.zeros(niter) # Main Block for i in range(niter): V = w_old + tau * np.matmul(X.T, Z_old) # Reshape V = np.reshape(V, d * k) V = proj_l1ball(V, eta) V[np.where(np.abs(V) < 0.001)] = 0 # Reshape back w_new = np.reshape(V, (d, k)) # no gamma here # w_new = w_new + gamma*(w_new - w_old) => w = 2 * w_new - w_old mu_new = (mu_old + rho * tau2 * Ik - tau2 * np.matmul(Y.T, Z_old)) / ( 1 + tau2 * rho ) # mu = mu_new + gamma*(mu_new - mu_old) => mu = 2 * mu_new - mu_old Z = (Z_old + sigma * (np.matmul(Y, mu) - np.matmul(X, w))) / (1 + sigma * delta) Z_new = np.maximum(np.minimum(Z, 1), -1) mu_old = mu_new w_old = w_new Z_old = Z_new loss[i] = np.linalg.norm( np.matmul(Y, mu_new) - np.matmul(X, w_new), 1 ) + 0.5 * (np.linalg.norm(Ik - mu_new, "fro") ** 2) # End loop Z = Z_old w = w_new mu = mu_new nbGenes_fin = nb_Genes(w)[0] loss = loss / loss[0] return w, mu, nbGenes_fin, loss, Z def primal_dual_Nuclear(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # param : A type dict paramter which must have keys: # 'niter', 'eta_star', 'tau', 'rho','sigma', 'tau2','delta' # and 'gamma' # Normally speaking: # (The default value for beta is 0.25.) # (IF not given, the value of the 'tau2' will be calculated by # tau2 = 0.25*(1/(np.sqrt(m)*normY)). Note that this normY is # the 2-norm of the OneHotEncode of the YR given.) # (Default value of the 'delta' is 1.0) # --- Output # w : The projection matrix of size (d,k) # mu : The centers of classes # nbGenes_fin : The number of genes of the final result # loss : The loss for each iteration # Z : The dual matrix of size (m,k) # ===================================================================== """ m, d = X.shape Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = [ "niter", "eta_star", "tau", "rho", "sigma", "tau2", "beta", ] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta_star = param["eta_star"] delta = param["delta"] tau = param["tau"] rho = param["rho"] sigma = param["sigma"] tau2 = param["tau2"] # === END check block === # Initialization w_old = np.ones((d, k)) Z_old = np.ones((m, k)) mu_old = np.eye(k, k) Ik = np.eye(k, k) loss = np.zeros(niter) # Main Block for i in range(niter): V = w_old + tau * np.matmul(X.T, Z_old) # Nuclear constraint L, S0, R = np.linalg.svd(V, full_matrices=False) norm_nuclear = S0.sum() vs1 = proj_l1ball(S0.reshape((-1,)), eta_star) S1 = vs1.reshape(S0.shape) w = np.matmul(L, S1[..., None] * R) w = 2 * w - w_old mu_new = (mu_old + rho * tau2 * Ik - tau2 * np.matmul(Y.T, Z_old)) / ( 1 + tau2 * rho ) mu = 2 * mu_new - mu_old Z = (Z_old + sigma * (np.matmul(Y, mu) - np.matmul(X, w))) / (1 + sigma * delta) Z_new = np.maximum(np.minimum(Z, 1), -1) mu_old = mu_new w_old = w Z_old = Z_new loss[i] = np.linalg.norm(np.matmul(Y, mu_new) - np.matmul(X, w), 1) + 0.5 * ( np.linalg.norm(Ik - mu_new, "fro") ** 2 ) # End loop Z = Z_old mu = mu_new nbGenes_fin, _ = nb_Genes(w) loss = loss / loss[0] return w, mu, nbGenes_fin, loss, Z # ================================== Part 2 ==================================== # ===================== Base Launch functions (scripts) ======================== def basic_run_eta( func_algo, func_predict, X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=None, eta_star=None, gamma=1, nfold=4, rng=1, showres=True, keepfig=False, saveres=False, outputPath="../results/", ): """ # ===================================================================== # Basic function to launch the algorithm of some specific parameters. # - Input: # - func_algo (necessary) : The function of the algorithm # - func_predict (necessary) : The function to predict # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma, etc (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - showres (optional) : Boolean value. True if we want to show # the results, plot the figures etc. # # - saveres (optional) : Boolean value. True to save the results # # - outputPath (optional) : String value. The output path. # # - Output: # - mu : The centroids # - nbm : Number of genes # - accG : Global accuracy # - loss : Loss for each iterations # - W_mean : Mean weight matrix for all folds # - timeElapsed : Time elapsed for one fold # - (And the tables) : df_topGenes, df_normW, df_topG_normW, # df_topGenes_mean, df_normW_mean, # df_topG_normW_mean, df_acctest # ====================================================================== """ np.random.seed(rng) # reproducible if not os.path.exists(outputPath): # make the directory if it does not exist os.makedirs(outputPath) n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] # Normalize the mean of datas (Deprecated) # m = np.mean(X,axis=0) # X = X-m # normX = normest(X) # X = X/normX # YR = np.array(YR).reshape(-1,1) if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # For more details please see instructions in drop_cells X, YR = drop_cells(X, YR, nfold) param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["eta_star"] = eta_star param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold accuracy_train = np.zeros((nfold, k + 1)) accuracy_test = np.zeros((nfold, k + 1)) W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) W_mean = np.zeros((d, k)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing print("\nStarts trainning for") print("{:>6}:{:<6}".format("niter", niter)) if "fista" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "or" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "_l2" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) elif "nuclear" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta_star", eta_star)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) else: print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) Y_PDS = np.zeros(YR.shape) meanclassi = np.zeros(nfold) kf = KFold(n_splits=nfold, random_state=rng, shuffle=True) w_all, mu_all, nbGenes_all, loss_all = func_algo(X, YR, k, param)[0:4] for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) print("-> {} classification...".format(func_algo.__name__)) # ========== Training ========= Xtrain = X[train_ind] Xtest = X[test_ind] Ytrain = YR[train_ind] Ytest = YR[test_ind] startTime = time.perf_counter() w, mu, nbGenes, loss = func_algo(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime print("-> Completed.\n-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu # Z0[:,:,i] = Z loss_iter0[i, :] = loss # ========== Accuracy ========= Ytrain_pred = func_predict(Xtrain, w, mu) Ytest_pred = func_predict(Xtest, w, mu) accuracy_train[i, 0], accuracy_train[i, 1 : k + 1] = compute_accuracy( Ytrain, Ytrain_pred, k ) accuracy_test[i, 0], accuracy_test[i, 1 : k + 1] = compute_accuracy( Ytest, Ytest_pred, k ) meanclassi[i] = np.mean(accuracy_test[i, 1 : k + 1]) nbG[i] = nbGenes Y_PDS[test_ind] = Ytest_pred print("{:-<30}".format("")) # end kfold loop nbm = int(nbG.mean()) accG = np.mean(accuracy_test[:, 0], axis=0) Meanclass = meanclassi.mean() W_mean = np.mean(W0, axis=2) mu_mean = np.mean(mu0, axis=2) # Z_mean= np.mean(Z0,axis=2) normfro = np.linalg.norm(w, "fro") print("Training step ends.\n") # Class size Ctab = [] size_class = np.zeros(k) # Size of each class (real) size_class_est = np.zeros(k) # Size of each class (estimated) for j in range(k): size_class[j] = (YR == (j + 1)).sum() size_class_est[j] = (Y_PDS == (j + 1)).sum() Ctab.append("Class {}".format(j + 1)) df_szclass = pd.DataFrame(size_class, index=Ctab, columns=["Class Size"]) df_szclass_est = pd.DataFrame(size_class_est, index=Ctab, columns=["Class Size"]) # Data accuracy accuracy_train = np.vstack((accuracy_train, np.mean(accuracy_train, axis=0))) accuracy_test = np.vstack((accuracy_test, np.mean(accuracy_test, axis=0))) ind_df = [] for i_fold in range(nfold): ind_df.append("Fold {}".format(i_fold + 1)) ind_df.append("Mean") columns = ["Global"] if clusternames is None: columns += Ctab else: columns += clusternames df_accTrain = pd.DataFrame(accuracy_train, index=ind_df, columns=columns) df_acctest = pd.DataFrame(accuracy_test, index=ind_df, columns=columns) # Feature selection print("Selecting features from whole dataset...", end="") w, mu, nbGenes, loss = func_algo(X, YR, k, param)[0:4] topGenes, normW = select_feature_w(w, genenames) topGenes_mean, normW_mean = select_feature_w(W_mean, genenames) # Mean of each fold df_topGenes_mean = pd.DataFrame(topGenes_mean, columns=clusternames) df_normW_mean = pd.DataFrame(normW_mean, columns=clusternames) df_topG_normW_mean = merge_topGene_norm(topGenes_mean, normW_mean, clusternames) # All data df_topGenes = pd.DataFrame(topGenes, columns=clusternames) df_normW = pd.DataFrame(normW, columns=clusternames) df_topG_normW = merge_topGene_norm(topGenes, normW, clusternames) print("Completed.\n") # Two heatmaps M_heatmap_classification = heatmap_classification( Y_PDS, YR, clusternames, rotate=60 ) M_heatmap_signature = heatmap_normW(normW, clusternames, nbr_l=30, rotate=60) # Results if showres == True: print("Size class (real):") print(df_szclass) print("\nSize class (estimated):") print(df_szclass_est) print("\nAccuracy Train") print(df_accTrain) print("\nAccuracy Test") print(df_acctest) if keepfig == False: plt.close("all") fig_lossIter = plt.figure(figsize=(8, 6)) plt.plot(np.arange(niter, dtype=int) + 1, loss) msg_eta = "$\eta$:%d" % eta if eta is not None else "" msg_etaS = "$\eta*$:%d" % eta_star if eta_star is not None else "" plt.title( "loss for each iteration {} {}\n ({})".format( msg_eta, msg_etaS, func_algo.__name__ ), fontsize=18, ) plt.ylabel("Loss", fontsize=18) plt.xlabel("Iteration", fontsize=18) plt.xticks(np.linspace(1, niter, num=6, endpoint=True, dtype=int)) plt.xlim(left=1, right=niter) plt.ylim((0, 1)) # Saving Result if saveres == True: # define two nametags nametag_eta = "_eta-%d" % eta if eta is not None else "" nametag_etaS = "_etaStar-%d" % eta_star if eta_star is not None else "" # save loss filename_loss = "loss_{}_beta-{}_delta-{}{}{}_niter-{}.txt".format( func_algo.__name__, beta, delta, nametag_eta, nametag_etaS, niter ) np.savetxt(outputPath + filename_loss, loss) # define function name tag for two heatmaps func_tag = func_algo.__name__ + nametag_eta + nametag_etaS # Save heatmaps filename_heat = "{}{}_Heatmap_of_confusion_Matrix.npy".format( outputPath, func_tag ) np.save(filename_heat, M_heatmap_classification) filename_heat = "{}{}_Heatmap_of_signature_Matrix.npy".format( outputPath, func_tag ) np.save(filename_heat, M_heatmap_signature) df_acctest.to_csv( "{}{}{}{}_AccuracyTest.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) df_topG_normW.to_csv( "{}{}{}{}_TopGenesAndNormW.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) # Other possiblilities to save # fig_lossIter.savefig('{}{}{}{}_niter-{}_loss_iters.png'.format(outputPath,func_algo.__name__,nametag_eta,nametag_etaS,niter)) # All data # df_topGenes.to_csv('{}{}_TopGenes.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW.to_csv('{}{}_NormW.csv'.format(outputPath,func_algo.__name__),sep=';') # Mean of each fold # df_topGenes_mean.to_csv('{}{}_TopGenes_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW_mean.to_csv('{}{}_NormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_topG_normW_mean.to_csv('{}{}_TopGenesAndNormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') return ( mu_mean, nbm, accG, loss, W_mean, timeElapsed, df_topGenes, df_normW, df_topG_normW, df_topGenes_mean, df_normW_mean, df_topG_normW_mean, df_acctest, w_all, ) # ===================== ======================================================== def getPredLabel(Ypred): for i in range(Ypred.shape[0]): if Ypred[i] > 1.5: Ypred[i] = 2 if Ypred[i] <= 1.5: Ypred[i] = 1 return Ypred # =====================Functions used to compare different algorithms======================================================== def getCoefs(alg, model): if alg == "RF": coef = model.feature_importances_ if alg == "svm": coef = model.coef_.transpose() if alg == "plsda": coef = model.coef_ return coef # =====================Functions used to compute the ranked features and their weights======================= def TopGenbinary(w, feature_names): n = len(w) difference = np.zeros(n) for i in range(n): difference[i] = w[i][0] - w[i][1] df1 = pd.DataFrame(feature_names, columns=["pd"]) df1["weights"] = difference # =====Sort the difference based on the absolute value========= df1["sort_helper"] = df1["weights"].abs() df2 = df1.sort_values(by="sort_helper", ascending=False).drop("sort_helper", axis=1) # ==== end_sort============= return df2 def rankFeatureHelper(alg, coef, feature_names): df1 = pd.DataFrame(feature_names, columns=[alg]) df1["weights"] = coef df1["sort_helper"] = df1["weights"].abs() df2 = df1.sort_values(by="sort_helper", ascending=False).drop("sort_helper", axis=1) return df2 def rankFeatures(X, Yr, algList, feature_names): # flag=0 featureList = [] for alg in algList: if alg == "svm": clf = SVC(probability=True, kernel="linear") model = clf.fit(X, Yr.ravel()) coef = model.coef_.transpose() df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) if alg == "RF": clf = RandomForestClassifier(n_estimators=400, random_state=10, max_depth=3) model = clf.fit(X, Yr.ravel()) coef = model.feature_importances_ df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) if alg == "plsda": clf = PLSRegression(n_components=4, scale=False) model = clf.fit(X, Yr.ravel()) coef = model.coef_ df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) # if flag == 0: # df_rankFeature = TopGenbinary(coef, feature_names) # flag =1 # else: # df_feature = TopGenbinary(coef, feature_names) # df_rankFeature return featureList # ===============================Compute the \rho============================== def basic_run_eta_molecule( X, YR, ID, k, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=500, gamma=1, nfold=4, random_seed=1, ): """ # ===================================================================== # This function is used to compute the df_confidence # Basic function to launch the algorithm of some specific parameters. # - Input: # The function of the algorithm: primal_dual_L1N # The function to predict: predict_L1_molecule # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - Output: # - Yprediction : list of Predicted labels # ====================================================================== """ np.random.seed(random_seed) # reproducible n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # See more details in drop_cells X, YR, Ident = drop_cells_with_ID(X, YR, ID, nfold) dico = dict(list(enumerate(Ident))) ref = pd.DataFrame.from_dict(dico, orient="index") param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing print("\nStarts trainning for") print("{:>6}:{:<6}".format("niter", niter)) print("{:>6}:{:<6}".format("eta", eta)) if "fista" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("gamma", delta)) elif "or" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "_l2" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) else: print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) Yprediction = [] Confidence = [] # accuracy_train = np.zeros((nfold,k+1)) # accuracy_test = np.zeros((nfold,k+1)) ID = [] Ident = [] kf = KFold(n_splits=nfold, random_state=random_seed, shuffle=True) w_all, mu_all, nbGenes_all, loss_all = primal_dual_L1N(X, YR, k, param)[0:4] for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) print("-> {} classification...".format(primal_dual_L1N.__name__)) # ========== Training ========= dico = dico Xtrain = X[train_ind] Ytrain = YR[train_ind] Xtest = X[test_ind] startTime = time.perf_counter() w, mu, nbGenes, loss = primal_dual_L1N(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime print("-> Completed.\n-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu loss_iter0[i, :] = loss # ========== Prediction ========= Ypred, conf = predict_L1_molecule(Xtest, w, mu) Yprediction.append(Ypred) Confidence.append(conf) ID.append(test_ind) Ident.append(ref.iloc[test_ind]) nbG[i] = nbGenes print("{:-<30}".format("")) # end kfold loop return Yprediction, Confidence, ID, Ident, YR, ref # ===================== Base Launch functions (scripts) ======================== def basic_run_eta_compare( func_algo, func_predict, X, YR, k, alglist, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=None, eta_star=None, gamma=1, nfold=4, rng=1, showres=False, keepfig=False, saveres=False, outputPath="../results/", ): """ # ===================================================================== # Basic function to launch the algorithm of some specific parameters. # - Input: # - func_algo (necessary) : The function of the algorithm # - func_predict (necessary) : The function to predict # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma, etc (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - showres (optional) : Boolean value. True if we want to show # the results, plot the figures etc. # # - saveres (optional) : Boolean value. True to save the results # # - alglist (optional) : The seed to control the random funcion # # - outputPath (optional) : String value. The output path. # # # - Output: # - mu : The centroids # - nbm : Number of genes # - accG : Global accuracy # - loss : Loss for each iterations # - W_mean : Mean weight matrix for all folds # - timeElapsed : Time elapsed for one fold # - (And the tables) : df_topGenes, df_normW, df_topG_normW, # df_topGenes_mean, df_normW_mean, # df_topG_normW_mean, df_acctest # ====================================================================== """ np.random.seed(rng) # reproducible if not os.path.exists(outputPath): # make the directory if it does not exist os.makedirs(outputPath) n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] # Normalize the mean of datas (Deprecated) # m = np.mean(X,axis=0) # X = X-m # normX = normest(X) # X = X/normX # YR = np.array(YR).reshape(-1,1) if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # For more details please see instructions in drop_cells X, YR = drop_cells(X, YR, nfold) param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["eta_star"] = eta_star param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold accuracy_train = np.zeros((nfold, k + 1)) accuracy_test = np.zeros((nfold, k + 1)) auc_train = np.zeros((nfold)) auc_test = np.zeros((nfold)) sil_train = np.zeros((nfold)) W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) W_mean = np.zeros((d, k)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing # print('\nStarts trainning for') # print('{:>6}:{:<6}'.format('niter',niter)) Y_PDS = np.zeros(YR.shape) meanclassi = np.zeros(nfold) kf = KFold(n_splits=nfold, random_state=rng, shuffle=True) numalg = len(alglist) accuracy_train_comp = np.zeros((nfold, numalg)) accuracy_test_comp = np.zeros((nfold, numalg)) AUC_train_comp = np.zeros((nfold, numalg * 4)) AUC_test_comp = np.zeros((nfold, numalg * 4)) timeElapsedMatrix = np.zeros((nfold, numalg + 1)) w_all, mu_all, nbGenes_all, loss_all = func_algo(X, YR, k, param)[0:4] # 4-flod cross validation for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) # ========== Training ========= Xtrain = X[train_ind] Xtest = X[test_ind] Ytrain = YR[train_ind] Ytest = YR[test_ind] Ytr = pd.get_dummies(Ytrain.ravel()).values.T.T Yte = pd.get_dummies(Ytest.ravel()) startTime = time.perf_counter() w, mu, nbGenes, loss = func_algo(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime timeElapsedMatrix[i][numalg] = timeElapsed print("-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu # Z0[:,:,i] = Z loss_iter0[i, :] = loss # ========== Accuracy ========= Ytrain_pred = func_predict(Xtrain, w, mu) Ytest_pred = func_predict(Xtest, w, mu) accuracy_train[i, 0], accuracy_train[i, 1 : k + 1] = compute_accuracy( Ytrain, Ytrain_pred, k ) accuracy_test[i, 0], accuracy_test[i, 1 : k + 1] = compute_accuracy( Ytest, Ytest_pred, k ) if ( np.unique(Ytest).shape[0] == 2 and np.unique(Ytest_pred.astype("int64")).shape[0] == 2 ): auc_test[i] = roc_auc_score(Ytest_pred.astype("int64"), Ytest) auc_train[i] = roc_auc_score(Ytrain_pred.astype("int64"), Ytrain) meanclassi[i] = np.mean(accuracy_test[i, 1 : k + 1]) nbG[i] = nbGenes Y_PDS[test_ind] = Ytest_pred # start loop of other algorithms' comparison for j in range(numalg): alg = alglist[j] if alg == "svm": tuned_parameters = [ {"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]}, {"kernel": ["linear"], "C": [1, 10, 100, 1000]}, ] clf = GridSearchCV(SVC(), tuned_parameters) # clf = SVC(probability=True,kernel='linear') if alg == "RF": clf = RandomForestClassifier( n_estimators=400, random_state=10, max_depth=3 ) if alg == "plsda": clf = PLSRegression(n_components=4, scale=False) # build the model startTime = time.perf_counter() # clf = OneVsRestClassifier(clf) model = clf.fit(Xtrain, Ytrain.ravel()) # model = clf.fit(X,Ytr) # if (alg == 'svm'): # print(clf.best_params_) endTime = time.perf_counter() timeElapsedMatrix[i][j] = endTime - startTime if k > 2: Ypred_test = np.around( model.predict(Xtest) ).ravel() # getPredLabel(model.predict(Xtest)) Ypred_train = np.around( model.predict(Xtrain) ).ravel() # getPredLabel(model.predict(Xtrain)) else: Ypred_test = getPredLabel(model.predict(Xtest)) Ypred_train = getPredLabel(model.predict(Xtrain)) accuracy_test_comp[i][j] = accuracy_score(Ypred_test.astype("int64"), Ytest) accuracy_train_comp[i][j] = accuracy_score( Ypred_train.astype("int64"), Ytrain ) # print("sil = ", metrics.silhouette_score(model.x_scores_, Ypred_train) ) if alg == "plsda": sil_train[i] = metrics.silhouette_score(model.x_scores_, Ypred_train) if ( np.unique(Ytest).shape[0] == 2 and np.unique(Ypred_test.astype("int64")).shape[0] == 2 ): AUC_test_comp[i][j * 4] = roc_auc_score( Ypred_test.astype("int64"), Ytest ) AUC_train_comp[i][j * 4] = roc_auc_score( Ypred_train.astype("int64"), Ytrain ) # F1 precision recal AUC_train_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytrain, Ypred_train.astype("int64"), average="macro" )[ :-1 ] AUC_test_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytest, Ypred_test.astype("int64"), average="macro" )[ :-1 ] # end kfold loop nbm = int(nbG.mean()) accG = np.mean(accuracy_test[:, 0], axis=0) Meanclass = meanclassi.mean() W_mean = np.mean(W0, axis=2) mu_mean = np.mean(mu0, axis=2) # Z_mean= np.mean(Z0,axis=2) normfro = np.linalg.norm(w, "fro") # Class size Ctab = [] size_class = np.zeros(k) # Size of each class (real) size_class_est = np.zeros(k) # Size of each class (estimated) for j in range(k): size_class[j] = (YR == (j + 1)).sum() size_class_est[j] = (Y_PDS == (j + 1)).sum() Ctab.append("Class {}".format(j + 1)) df_szclass = pd.DataFrame(size_class, index=Ctab, columns=["Class Size"]) df_szclass_est = pd.DataFrame(size_class_est, index=Ctab, columns=["Class Size"]) # Data accuracy accuracy_train = np.vstack((accuracy_train, np.mean(accuracy_train, axis=0))) accuracy_test = np.vstack((accuracy_test, np.mean(accuracy_test, axis=0))) # auc_train = np.vstack((auc_train,np.mean(auc_train,axis=0))) # auc_test = np.vstack((auc_test,np.mean(auc_test,axis=0))) ind_df = [] for i_fold in range(nfold): ind_df.append("Fold {}".format(i_fold + 1)) ind_df.append("Mean") columns = ["Global"] if clusternames is None: columns += Ctab else: columns += clusternames df_accTrain = pd.DataFrame(accuracy_train, index=ind_df, columns=columns) df_acctest = pd.DataFrame(accuracy_test, index=ind_df, columns=columns) # Data accuracy1 ind_df_comp = [] for i_fold in range(nfold): ind_df_comp.append("Fold {}".format(i_fold + 1)) df_comp =
pd.DataFrame(accuracy_test_comp, index=ind_df_comp, columns=alglist)
pandas.DataFrame
import plotly.express as px import pandas as pd import sys from functools import reduce data =
pd.read_csv("../data/RKI_COVID19.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Jun 29 14:00:18 2020 updated on Thu Oct 15 18:07:45 2020 @author: <NAME> """ #reproducability from numpy.random import seed seed(1) import tensorflow as tf tf.random.set_seed(1) import numpy as np from bayes_opt import BayesianOptimization from bayes_opt.logger import JSONLogger from bayes_opt.event import Events from bayes_opt.util import load_logs import os import glob import pandas as pd import keras as ks import datetime from scipy import stats from matplotlib import pyplot from sklearn.preprocessing import MinMaxScaler import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') def load_RM_GW_and_HYRAS_Data(i): pathGW = "./GWData" pathHYRAS = "./MeteoData" pathconnect = "/" GWData_list = glob.glob(pathGW+pathconnect+'*.csv'); Well_ID = GWData_list[i] Well_ID = Well_ID.replace(pathGW+'\\', '') Well_ID = Well_ID.replace('_GWdata.csv', '') GWData = pd.read_csv(pathGW+pathconnect+Well_ID+'_GWdata.csv', parse_dates=['Date'],index_col=0, dayfirst = True, decimal = '.', sep=',') HYRASData = pd.read_csv(pathHYRAS+pathconnect+Well_ID+'_HYRASdata.csv', parse_dates=['Date'],index_col=0, dayfirst = True, decimal = '.', sep=',') data = pd.merge(GWData, HYRASData, how='inner', left_index = True, right_index = True) #introduce GWL t-1 as additional Input GWData_shift1 = GWData GWData_shift1.index = GWData_shift1.index.shift(periods = 7, freq = 'D') GWData_shift1.rename(columns={"GWL": "GWLt-1"},inplace=True) data = pd.merge(data, GWData_shift1, how='inner', left_index = True, right_index = True) return data, Well_ID def split_data(data, GLOBAL_SETTINGS): dataset = data[(data.index < GLOBAL_SETTINGS["test_start"])] #separate testdata TrainingData = dataset[0:round(0.8 * len(dataset))] StopData = dataset[round(0.8 * len(dataset))+1:round(0.9 * len(dataset))] StopData_ext = dataset[round(0.8 * len(dataset))+1-GLOBAL_SETTINGS["seq_length"]:round(0.9 * len(dataset))] #extend data according to dealys/sequence length OptData = dataset[round(0.9 * len(dataset))+1:] OptData_ext = dataset[round(0.9 * len(dataset))+1-GLOBAL_SETTINGS["seq_length"]:] #extend data according to dealys/sequence length TestData = data[(data.index >= GLOBAL_SETTINGS["test_start"]) & (data.index <= GLOBAL_SETTINGS["test_end"])] #Testdaten entsprechend dem angegebenen Testzeitraum TestData_ext = pd.concat([dataset.iloc[-GLOBAL_SETTINGS["seq_length"]:], TestData], axis=0) # extend Testdata to be able to fill sequence later return TrainingData, StopData, StopData_ext, OptData, OptData_ext, TestData, TestData_ext def extract_PI1_testdata(data, GLOBAL_SETTINGS): dataset = data[(data.index < GLOBAL_SETTINGS["test_start"])] #separate testdata start = dataset.shape[0]-1 Testdata_PI1 = data['GWL'][start:-1] return Testdata_PI1 # split a multivariate sequence into samples def split_sequences(data, GLOBAL_SETTINGS): X, y = list(), list() for i in range(len(data)): # find the end of this pattern end_ix = i + GLOBAL_SETTINGS["seq_length"] out_end_ix = end_ix + GLOBAL_SETTINGS["output_seq_length"] # check if we are beyond the dataset if out_end_ix > len(data): break # gather input and output parts of the pattern seq_x, seq_y = data[i:end_ix, 1:], data[end_ix:out_end_ix, 0] X.append(seq_x) y.append(seq_y) return np.array(X), np.array(y) def gwmodel(ini,GLOBAL_SETTINGS,X_train, Y_train,X_stop, Y_stop): # define model seed(ini) tf.random.set_seed(ini) model = ks.models.Sequential() model.add(ks.layers.LSTM(GLOBAL_SETTINGS["hidden_size"], unit_forget_bias = True, dropout = GLOBAL_SETTINGS["dropout"])) model.add(ks.layers.Dense(GLOBAL_SETTINGS["output_seq_length"], activation='linear')) optimizer = ks.optimizers.Adam(lr=GLOBAL_SETTINGS["learning_rate"], epsilon=10E-3, clipnorm=GLOBAL_SETTINGS["clip_norm"], clipvalue=GLOBAL_SETTINGS["clip_value"]) model.compile(loss='mse', optimizer=optimizer, metrics=['mse']) # early stopping es = ks.callbacks.EarlyStopping(monitor='val_loss', mode='min', verbose=0, patience=5) # fit network model.fit(X_train, Y_train, validation_data=(X_stop, Y_stop), epochs=GLOBAL_SETTINGS["epochs"], verbose=1, batch_size=GLOBAL_SETTINGS["batch_size"], callbacks=[es]) return model # this is the optimizer function but checks only if paramters are integers and calls real optimizer function def bayesOpt_function(pp,hiddensize, seqlength, batchsize,rH,T,Tsin): #means basically conversion to rectangular function hiddensize_int = int(hiddensize) seqlength_int = int(seqlength) batchsize_int = int(batchsize) pp = int(pp) rH = int(round(rH)) T = int(round(T)) Tsin = int(round(Tsin)) return bayesOpt_function_with_discrete_params(pp, hiddensize_int, seqlength_int, batchsize_int, rH, T, Tsin) #this is the real optimizer function def bayesOpt_function_with_discrete_params(pp,hiddensize_int, seqlength_int, batchsize_int, rH, T, Tsin): assert type(hiddensize_int) == int assert type(seqlength_int) == int assert type(batchsize_int) == int assert type(rH) == int assert type(T) == int assert type(Tsin) == int #[...] # fixed settings for all experiments GLOBAL_SETTINGS = { 'pp': pp, 'batch_size': batchsize_int, 'clip_norm': True, 'clip_value': 1, 'dropout': 0, 'epochs': 30, 'hidden_size': hiddensize_int, 'learning_rate': 1e-3, 'seq_length': seqlength_int, 'output_seq_length': 12, 'test_start': pd.to_datetime('02012012', format='%d%m%Y'), 'test_end': pd.to_datetime('28122015', format='%d%m%Y') } ## load data data, Well_ID = load_RM_GW_and_HYRAS_Data(GLOBAL_SETTINGS["pp"]) # inputs if rH == 0: data = data.drop(columns='rH') if T == 0: data = data.drop(columns='T') if Tsin == 0: data = data.drop(columns='Tsin') #scale data scaler = MinMaxScaler(feature_range=(-1, 1)) # scaler = StandardScaler() scaler_gwl = MinMaxScaler(feature_range=(-1, 1)) scaler_gwl.fit(pd.DataFrame(data['GWL'])) data_n = pd.DataFrame(scaler.fit_transform(data), index=data.index, columns=data.columns) #split data TrainingData, StopData, StopData_ext, OptData, OptData_ext, TestData, TestData_ext = split_data(data, GLOBAL_SETTINGS) TrainingData_n, StopData_n, StopData_ext_n, OptData_n, OptData_ext_n, TestData_n, TestData_ext_n = split_data(data_n, GLOBAL_SETTINGS) # #sequence data # X_train, Y_train = to_supervised(TrainingData_n.values, GLOBAL_SETTINGS) # X_stop, Y_stop = to_supervised(StopData_ext_n.values, GLOBAL_SETTINGS) # X_opt, Y_opt = to_supervised(OptData_ext_n.values, GLOBAL_SETTINGS) # X_test, Y_test = to_supervised(TestData_ext_n.values, GLOBAL_SETTINGS) X_train, Y_train = split_sequences(TrainingData_n.values, GLOBAL_SETTINGS) X_stop, Y_stop = split_sequences(StopData_ext_n.values, GLOBAL_SETTINGS) X_opt, Y_opt = split_sequences(OptData_ext_n.values, GLOBAL_SETTINGS) X_test, Y_test= split_sequences(TestData_ext_n.values, GLOBAL_SETTINGS) #build and train model with idifferent initializations inimax = 5 forecast_idx = OptData_ext_n.index.day < 8 forecast_idx = forecast_idx[GLOBAL_SETTINGS["seq_length"]:len(OptData_ext_n)-GLOBAL_SETTINGS["output_seq_length"]+1] X_opt_reduced = X_opt[forecast_idx] Y_opt_reduced = Y_opt[forecast_idx] optresults_members = np.zeros((len(OptData_n), len(X_opt_reduced), inimax)) optresults_members[:] = np.nan for ini in range(inimax): print("BayesOpt-Iteration {} - ini-Ensemblemember {}".format(len(optimizer.res)+1, ini+1)) # f = open('log_full.txt', "a") # print("BayesOpt-Iteration {} - ini-Ensemblemember {}".format(len(optimizer.res)+1, ini+1), file = f) # f.close() model = gwmodel(ini,GLOBAL_SETTINGS,X_train, Y_train, X_stop, Y_stop) idx = 0 for i in range(0,len(X_opt_reduced)): opt_sim_n = model.predict(X_opt_reduced[i,:,:].reshape(1,X_opt_reduced.shape[1],X_opt_reduced.shape[2])) opt_sim = scaler_gwl.inverse_transform(opt_sim_n) while forecast_idx[idx] == False: idx = idx + 1 optresults_members[idx:idx+GLOBAL_SETTINGS["output_seq_length"], i, ini] = opt_sim.reshape(-1,) idx = idx+1 opt_sim_median = np.nanmedian(optresults_members,axis = 2) # get scores errors = np.zeros((opt_sim_median.shape[1],6)) errors[:] = np.nan for i in range(0,opt_sim_median.shape[1]): sim = np.asarray(opt_sim_median[:,i].reshape(-1,1)) sim = sim[~np.isnan(sim)].reshape(-1,1) obs = np.asarray(scaler_gwl.inverse_transform(Y_opt_reduced[i,:].reshape(-1,1))) err = sim-obs err_rel = (sim-obs)/(np.max(data['GWL'])-np.min(data['GWL'])) err_nash = obs - np.mean(np.asarray(data['GWL'][(data.index < GLOBAL_SETTINGS["test_start"])])) errors[i,0] = 1 - ((np.sum(err ** 2)) / (np.sum((err_nash) ** 2))) #NSE r = stats.linregress(sim[:,0], obs[:,0]) errors[i,1] = r.rvalue ** 2 #R2 errors[i,2] = np.sqrt(np.mean(err ** 2)) #RMSE errors[i,3] = np.sqrt(np.mean(err_rel ** 2)) * 100 #rRMSE errors[i,4] = np.mean(err) #Bias errors[i,5] = np.mean(err_rel) * 100 #rBias m_error = np.median(errors,axis = 0).reshape(1,-1) print("total elapsed time = {}".format(datetime.datetime.now()-time1)) print("(pp) elapsed time = {}".format(datetime.datetime.now()-time_single)) # f = open('log_full.txt', "a") # print("elapsed time = {}".format(datetime.datetime.now()-time1), file = f) # f.close() return m_error[0,0]+m_error[0,1] def simulate_testset(pp,hiddensize_int, seqlength_int, batchsize_int, rH, T, Tsin): # fixed settings for all experiments GLOBAL_SETTINGS = { 'pp': pp, 'batch_size': batchsize_int, 'clip_norm': True, 'clip_value': 1, 'dropout': 0, 'epochs': 30, 'hidden_size': hiddensize_int, 'learning_rate': 1e-3, 'seq_length': seqlength_int, 'output_seq_length': 12, 'test_start': pd.to_datetime('02012012', format='%d%m%Y'), 'test_end': pd.to_datetime('28122015', format='%d%m%Y') } ## load data data, Well_ID = load_RM_GW_and_HYRAS_Data(GLOBAL_SETTINGS["pp"]) # inputs if rH == 0: data = data.drop(columns='rH') if T == 0: data = data.drop(columns='T') if Tsin == 0: data = data.drop(columns='Tsin') #scale data scaler = MinMaxScaler(feature_range=(-1, 1)) # scaler = StandardScaler() scaler_gwl = MinMaxScaler(feature_range=(-1, 1)) scaler_gwl.fit(
pd.DataFrame(data['GWL'])
pandas.DataFrame
import datetime import os from typing import List, Dict, Optional from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware import pandas as pd from pydantic import BaseModel API_URL = os.environ.get("API_URL", None) if API_URL is None: raise ValueError("API_URL not known") app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["GET"], allow_headers=["*"], ) class CountyReport(BaseModel): name: str fips: Optional[int] sources: Dict[str, List[str]] # {url: [var1, var2]} class StateReport(CountyReport): counties: List[CountyReport] class Reports(BaseModel): week_end: datetime.datetime week_start: datetime.datetime updates: List[StateReport] def aggregate_week_fips_updates(x): return pd.Series( { "state": x["state"].iloc[0], "name": x["fullname"].iloc[0], "sources": ( x.groupby("source").apply(lambda y: list(y["variable_name"])).to_dict() ), } ) def aggregate_week_updates(week_state): out = {} out["name"] = state = week_state.name[1] state_only = week_state.query("name == @state") out["sources"] = {} for ss in list(state_only["sources"]): out["sources"].update(ss) non_state: pd.DataFrame = week_state.query("name != @state") out["counties"] = [] def group_county_sources(c_df: pd.DataFrame): c_out = { "name": c_df["name"].iloc[0], "fips": c_df["fips"].iloc[0], "sources": {}, } for c_src in list(c_df["sources"]): c_out["sources"].update(c_src) return c_out out["counties"] = list(non_state.groupby("fips").apply(group_county_sources)) return pd.Series(out) def flatten_by_date(x): return x.drop(["start_date", "state"], axis=1).to_dict(orient="records") def get_reports(): df = pd.read_json(f"{API_URL}/us_covid_variable_start_date") df["start_date"] =
pd.to_datetime(df["start_date"])
pandas.to_datetime
from pippin.classifiers.classifier import Classifier from pippin.config import mkdirs from pippin.dataprep import DataPrep from pippin.snana_fit import SNANALightCurveFit from pippin.snana_sim import SNANASimulation from pippin.task import Task import pandas as pd import os from astropy.io import fits import numpy as np class Aggregator(Task): def __init__(self, name, output_dir, dependencies, options): super().__init__(name, output_dir, dependencies=dependencies) self.passed = False self.classifiers = [d for d in dependencies if isinstance(d, Classifier)] self.output_df = os.path.join(self.output_dir, "merged.csv") self.output_df_key = os.path.join(self.output_dir, "merged.key.gz") self.id = "SNID" self.type_name = "SNTYPE" self.options = options self.include_type = bool(options.get("INCLUDE_TYPE", False)) self.plot = bool(options.get("PLOT", False)) self.colours = ['#f95b4a', '#3d9fe2', '#ffa847', '#c4ef7a', '#e195e2', '#ced9ed', '#fff29b'] def _check_completion(self, squeue): return Task.FINISHED_SUCCESS if self.passed else Task.FINISHED_FAILURE def check_regenerate(self, force_refresh): new_hash = self.get_hash_from_string(self.name + str(self.include_type) + str(self.plot)) old_hash = self.get_old_hash(quiet=True) if new_hash != old_hash: self.logger.info("Hash check failed, regenerating") return new_hash elif force_refresh: self.logger.debug("Force refresh deteted") return new_hash else: self.logger.info("Hash check passed, not rerunning") return False def get_underlying_sim_task(self): check = [] for task in self.dependencies: for t in task.dependencies: check.append(t) if isinstance(task, SNANALightCurveFit): check += task.dependencies for task in check: if isinstance(task, SNANASimulation) or isinstance(task, DataPrep): return task self.logger.error(f"Unable to find a simulation or data dependency for aggregator {self.name}") return None def load_prediction_file(self, filename): df = pd.read_csv(filename, comment="#") columns = df.columns if len(columns) == 1 and "VARNAME" in columns[0]: df = pd.read_csv(filename, comment="#", sep=r"\s+") if "VARNAMES:" in df.columns: df = df.drop(columns="VARNAMES:") remove_columns = [c for i, c in enumerate(df.columns) if i != 0 and "PROB_" not in c] df = df.drop(columns=remove_columns) return df def _run(self, force_refresh): new_hash = self.check_regenerate(force_refresh) if new_hash: mkdirs(self.output_dir) prediction_files = [d.output["predictions_filename"] for d in self.classifiers] df = None for f in prediction_files: dataframe = self.load_prediction_file(f) dataframe = dataframe.rename(columns={dataframe.columns[0]: self.id}) if df is None: df = dataframe self.logger.debug(f"Merging on column {self.id} for file {f}") else: self.logger.debug(f"Merging on column {self.id} for file {f}") df =
pd.merge(df, dataframe, on=self.id, how="outer")
pandas.merge
#!/usr/bin/env python # coding: utf-8 import json from typing import Optional import pandas as pd import plotly.graph_objs as go from evidently import ColumnMapping from evidently.analyzers.classification_performance_analyzer import ClassificationPerformanceAnalyzer from evidently.model.widget import BaseWidgetInfo from evidently.dashboard.widgets.widget import Widget, RED class ClassSupportWidget(Widget): def __init__(self, title: str, dataset: str = 'reference'): super().__init__(title) self.dataset = dataset # reference or current def analyzers(self): return [ClassificationPerformanceAnalyzer] def calculate(self, reference_data: pd.DataFrame, current_data: Optional[pd.DataFrame], column_mapping: ColumnMapping, analyzers_results) -> Optional[BaseWidgetInfo]: results = ClassificationPerformanceAnalyzer.get_results(analyzers_results) target_name = results.columns.utility_columns.target prediction_name = results.columns.utility_columns.prediction if target_name is None or prediction_name is None: if self.dataset == 'reference': raise ValueError(f"Widget [{self.title}] requires 'target' and 'prediction' columns.") return None if self.dataset == 'current': result_metrics = results.current_metrics elif self.dataset == 'reference': result_metrics = results.reference_metrics if result_metrics is None: raise ValueError(f"Widget [{self.title}] required 'reference' results from" f" {ClassificationPerformanceAnalyzer.__name__} but no data found") else: raise ValueError(f"Widget [{self.title}] requires 'current' or 'reference' dataset value") if result_metrics is None: return None # plot support bar metrics_frame =
pd.DataFrame(result_metrics.metrics_matrix)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 18 21:53:21 2018 @author: jsulloa """ import numpy as np from scipy.stats import randint, uniform import pandas as pd import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.model_selection import GridSearchCV, StratifiedKFold, RandomizedSearchCV from sklearn.naive_bayes import GaussianNB, ComplementNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn import metrics def tune_clf_binary_grid(X, y_true, clf_name, n_splits_cv=5, refit_score='precision'): """ Tune a classifier using grid search cross validation """ scorers = { 'precision': metrics.make_scorer(metrics.precision_score), 'recall': metrics.make_scorer(metrics.recall_score), 'f1': metrics.make_scorer(metrics.f1_score), 'auc': metrics.make_scorer(metrics.roc_auc_score)} if clf_name=='rf': print("Tuning Random Forest") clf = RandomForestClassifier(n_jobs=-1, class_weight='balanced_subsample') param_grid = {'n_estimators' : [1, 5, 10, 100, 300, 500], 'max_features' : [2, 6, 10, 14, 18, 32]} elif clf_name=='svm': print("Tuning Support Vector Machine") clf = svm.SVC(class_weight='balanced', probability=True) param_grid = [ {'kernel': ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1], 'C': [0.1, 1, 10, 10]}] elif clf_name=='adb': print("Tuning Ada Boost") clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) param_grid = {'n_estimators':[50, 120], 'learning_rate':[0.1, 0.5, 1.], 'base_estimator__min_samples_split' : np.arange(2, 8, 2), 'base_estimator__max_depth' : np.arange(1, 4, 1)} else: print("Invalid option. Valid options are: 'rf', 'adb' and 'svm' ") # Tune classifier with cross validation skf = StratifiedKFold(n_splits=n_splits_cv) grid_search = GridSearchCV(clf, param_grid, scoring=scorers, refit=refit_score, cv=skf, return_train_score=True, iid=True, n_jobs=-1, verbose=2) # print basic info print('Best score:', grid_search.best_score_) print('Best parameters:', grid_search.best_params_) return grid_search def tune_clf_multiclass_grid(X, y_true, clf_name, n_splits_cv=5, score='f1_weighted', verbose=2, max_features_rf=[2, 6, 10, 14, 18]): """ Tune a classifier usinggrid search and cross validation """ if clf_name=='rf': print("Tuning Random Forest") clf = RandomForestClassifier(n_jobs=-1) param_grid = {'n_estimators' : [1, 5, 10, 100, 300], 'max_features' : max_features_rf} elif clf_name=='svm': print("Tuning Support Vector Machine") clf = svm.SVC() param_grid = {'kernel': ['rbf'], 'gamma': [0.001, 0.01, 0.1, 1], 'C': [0.1, 1, 10, 100]} elif clf_name=='adb': print("Tuning Ada Boost") clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) param_grid = {'n_estimators':[50, 120], 'learning_rate':[0.1, 0.5, 1.], 'base_estimator__min_samples_split' : np.arange(2, 8, 2), 'base_estimator__max_depth' : np.arange(1, 4, 1)} else: print("Invalid option. Valid options are: 'rf', 'svm' and 'adb'") # Tune classifier with cross validation skf = StratifiedKFold(n_splits=n_splits_cv) grid_search = GridSearchCV(clf, param_grid, scoring=score, refit=True, cv=skf, return_train_score=True, iid=True, n_jobs=-1, verbose=2) # print basic info print('Best score:', grid_search.best_score_) print('Best parameters:', grid_search.best_params_) return grid_search ## NOTE_ NAME WAS CHANGED FROM tune_clf_multiclass_rand def tune_clf_rand(X, y_true, clf_name, n_splits_cv=5, n_iter=10, score='f1_weighted', verbose=2): """ Tune a classifier using randomized search and cross validation Parameters: X: array-like, dtype=float64, size=[n_samples, n_features] array with observations and features y_true: array, dtype=float64, size=[n_samples] array with labels for each observation clf_name: str name of the classifier to be tuned, 'rf', 'adb' or 'svm'. n_splits_cv: int Number of folds for cross validation n_iter: int, default=10 Number of parameter settings that are sampled score: string, callable, list/tuple, dict or None, default: None Score to evaluate prediction on the test set verbose: int Controls the verbosity: the higher, the more messages """ if clf_name=='rf': print("Tuning Random Forest") clf = RandomForestClassifier(n_jobs=-1) param_grid = {'max_depth' : [3, None], 'n_estimators' : randint(1,1000), 'max_features' : randint(1,X.shape[1]-1)} elif clf_name=='svm': print("Tuning Support Vector Machine") clf = svm.SVC(class_weight='balanced', probability=True) param_grid = {'kernel': ['rbf'], 'gamma': uniform(0.01, 1), 'C': uniform(1,100)} elif clf_name=='adb': print("Tuning Ada Boost") clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) param_grid = {'n_estimators':randint(1,1000), 'learning_rate':uniform(0.01, 1), 'base_estimator__min_samples_split' : randint(2,20), 'base_estimator__max_depth' : [3, None]} elif clf_name=='knn': print('Tuning KNN') clf = KNeighborsClassifier() param_grid = { 'n_neighbors': randint(1,50)} elif clf_name=='cnb': print('Tuning Complement Naive Bayes') clf = ComplementNB() param_grid = { 'alpha': uniform(0, 10)} elif clf_name=='gnb': print('Tuning Gaussian Naive Bayes') clf = GaussianNB() param_grid = { 'var_smoothing': uniform(1e-10, 10)} elif clf_name=='ann': print('Tuning Artificial Neural Networks') clf = MLPClassifier(solver='lbfgs', max_iter=500) param_grid = {'hidden_layer_sizes' :randint(5,100), 'alpha': uniform(1e-5,1)} else: print("Invalid option. Valid options are: 'rf', 'svm' and 'adb'") # Tune classifier with cross validation skf = StratifiedKFold(n_splits=n_splits_cv) rand_search = RandomizedSearchCV(clf, param_grid, scoring=score, n_iter=n_iter, refit=True, cv=skf, return_train_score=True, iid=True, n_jobs=-1, verbose=2) rand_search.fit(X, y_true) # print basic info print('Best score:', rand_search.best_score_) print('Best parameters:', rand_search.best_params_) return rand_search def print_report_cv(clf_gs): """ Print report of GridSearch Accepts only numerical y_true """ print("Grid scores on development set:") print() df_scores = pd.DataFrame.from_dict(clf_gs.cv_results_) print(df_scores[['mean_fit_time', 'mean_test_f1', 'mean_test_recall', 'mean_test_precision', 'param_max_features', 'param_n_estimators']]) print() print('Best parameters:') print("\n".join("{}\t{}".format(k, v) for k, v in clf_gs.best_params_.items())) print('Best score:', np.round(clf_gs.best_score_,3)) def plot_param_cv(clf_gs, scorer, param): df_res = pd.DataFrame.from_dict(clf_gs.cv_results_) score = 'mean_test_' + scorer score_std = 'std_test_' + scorer param = 'param_' + param mean_value = df_res[score] std_value = df_res[score_std] # plot plt.figure(figsize=(8, 6)) plt.errorbar(np.arange(len(mean_value)), mean_value, yerr=std_value, fmt='o') plt.xticks(np.arange(len(mean_value)), df_res[param]) plt.xlabel(param) plt.ylabel(score) plt.box(on=None) def print_report(y_true, y_pred, th=0.5, plot=True, curve_type='roc'): """ Print a report of binary classification performance Parameters ---------- y_true: ndarray Ground truth data y_pred: ndarray Predicted data th: float Thrshold to compute metrics precision, recall, accuracy and f1 score. plot: bool, default True Plot curves curve_type: string, default 'precision_recall' Type of curve to plot, 'precision_recall' or 'roc' Returns ------- model_eval: dict Dictionary with multiple metrics for model evaluation Note from Hands on Machine Learning with scikit-learn (): Since the ROC curve is so similar to the precision/recall (or PR) curve, you may wonder how to decide which one to use. As a rule of thumb, you should prefer the PR curve whenever the positive class is rare or when you care more about the false positives than the false negatives, and the ROC curve otherwise. """ y_bin = y_pred>th fpr, tpr, th_roc = metrics.roc_curve(y_true, y_pred, pos_label=1) precisions, recalls, th_pr = metrics.precision_recall_curve(y_true, y_pred, pos_label=1) model_eval = {'auc' : metrics.auc(fpr, tpr), 'th' : th, 'confusion_matrix' : metrics.confusion_matrix(y_true, y_bin), 'precision': metrics.precision_score(y_true, y_bin), 'recall': metrics.recall_score(y_true, y_bin), 'accuracy': metrics.accuracy_score(y_true, y_bin), 'f1': metrics.f1_score(y_true, y_bin)} print() print('Area Under the Curve:',np.round(metrics.auc(fpr, tpr),decimals=4)) print('\nConfusion matrix for threshold =', th,':') print(pd.DataFrame(metrics.confusion_matrix(y_true, y_bin), columns=['pred_neg', 'pred_pos'], index=['neg', 'pos'])) print() print(pd.DataFrame({ 'Precision': [metrics.precision_score(y_true, y_bin)], 'Recall': [metrics.recall_score(y_true, y_bin)], 'Accuracy': [metrics.accuracy_score(y_true, y_bin)], 'F1 score': [metrics.f1_score(y_true, y_bin)]})) # Trace ROC curve if plot==True and curve_type=='roc': plt.figure(figsize= (16,8)) plt.subplot(1,2,1) # left size plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('False postivie rate') plt.ylabel('True positive rate') plt.grid(1) plt.subplot(1,2,2) # right size plt.plot(th_roc, 1-fpr, label='1-False positive rate') plt.plot(th_roc, tpr, label='True positive rate') plt.xlim(-0.5,1.1) plt.xlabel('Decision threshold') plt.ylabel('Score') plt.legend(loc='best') plt.show() elif plot==True and curve_type=='prc': plt.figure(figsize= (16,8)) plt.subplot(1,2,1) # left size plt.plot([1, 0], [0, 1], 'k--') plt.plot(recalls, precisions) plt.title('PR curve') plt.xlabel('Recall') plt.ylabel('Precision') plt.grid(1) plt.subplot(1,2,2) # right size plt.plot(th_pr, precisions[:-1], label='Precision') plt.plot(th_pr, recalls[:-1], label='Recall') plt.xlim(-0.1,1.1) plt.xlabel('Decision threshold') plt.ylabel('Score') plt.legend(loc='best') plt.show() else: print('Error plotting: curve_type should be \'roc\' or \'prc\' ') pass return model_eval def print_report_grid_search(clf, clf_name, X_test, y_test): """ Print report of classifier performance evaluated on new test data Parameters ---------- clf : classifier previously tuned with GridSearchCV clf_name: name of classifier. Valid options are 'svm', 'rf' ,'adb' X_test: features for test data y_test: labels for test data Returns ------- clf_gs: a tune classifier with GridSearchCV. """ # make the predictions y_pred = clf.predict(X_test.values) ## Print report print('Best params:') print(clf.best_params_) # confusion matrix on the test data. print('\nConfusion matrix optimized on test data:') print(pd.DataFrame(metrics.confusion_matrix(y_test, y_pred), columns=['pred_neg', 'pred_pos'], index=['neg', 'pos'])) print('\nPrecision:', metrics.precision_score(y_test, y_pred), '\nRecall:', metrics.recall_score(y_test, y_pred), '\nAccuracy:', metrics.accuracy_score(y_test, y_pred)) # Compute performance at multiple thresholds if clf_name=='rf': y_test_score = clf.predict_proba(X_test) fpr, tpr, th = metrics.roc_curve(y_test, y_test_score[:,1], pos_label=1) elif clf_name=='svm': y_test_score = clf.decision_function(X_test) fpr, tpr, th = metrics.roc_curve(y_test, y_test_score, pos_label=1) elif clf_name=='adb': y_test_score = clf.decision_function(X_test) fpr, tpr, th = metrics.roc_curve(y_test, y_test_score, pos_label=1) # Trace ROC curve plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr, tpr, label=clf_name) plt.grid(1) def misclassif_idx(y_true, y_pred): """ Get indices of misclassified observations Parameters ---------- y_true: ndarray, numeric Ground truth labels in numeric format y_pred: ndarray, numeric Predicted labels as numeric, 0 or 1 Returns ------- """ idx_fp=np.where(0 > y_true - y_pred) idx_fn=np.where(0 < y_true - y_pred) return {'fp':idx_fp[0], 'fn': idx_fn[0]} from sklearn.metrics import f1_score from sklearn.discriminant_analysis import LinearDiscriminantAnalysis def test_feature_set(fname_db): """ Test feature set discrimination with Linear Discrimanant Analysis TODO: Check if the approach is valid, set plot functionality plot=1 """ # load file and assign to objects df = pd.read_csv(fname_db) df = df.dropna() df = df.reset_index(drop=True) shape_idx = [col for col in df if col.startswith('shp')] X = df[shape_idx] y_true = df.label.str.slice(0,1) y_true = y_true.astype('int8') lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y_true).predict(X) score = round(f1_score(y_pred=y_pred,y_true=y_true),3) lda = LinearDiscriminantAnalysis(n_components=2) X_lda = lda.fit(X, y_true).transform(X) plt.figure() plt.plot(X_lda[y_true==0],'o',color='navy', markersize=3) plt.plot(X_lda[y_true==1],'o',color='darkorange', markersize=3) plt.title('LDA on: '+fname_db) plt.grid(True) plt.show() print('F1 score: ', score) def get_max_df(df, column): """ Get maximum of a dataframe column Parameters: ---------- df: pandas dataframe A data frame with multiple columns column: str Name of the column to get the maximum Returns: ------- """ idx_max = df[column].idxmax() return df.loc[idx_max,:] def pred_roi_to_file(path_pred, column_proba): """ Translate predictions on ROIs to file by keeping the ROI with maximum probability. Note: This works only for binary classifiers Parameters: ---------- path_pred: str Full path to the ROIs predicted (xdata) column_proba: str Name of the column that has the positive predictions Returns: ------- y_pred_file: dataframe Dataframe with name of files and the associated positive prediction """ # load file and assign to objects y_pred_roi =
pd.read_csv(path_pred)
pandas.read_csv
# *-* coding: utf-8 *-* """Read binary data from the IRIS Instruments Syscal Pro system TODO: Properly sort out handling of electrode positions and conversion to electrode numbers. """ import struct from io import StringIO import logging import pandas as pd import numpy as np from reda.importers.utils.decorators import enable_result_transforms logger = logging.getLogger(__name__) def _convert_coords_to_abmn_X(data, **kwargs): """The syscal only stores positions for the electrodes. Yet, we need to infer electrode numbers for (a,b,m,n) by means of some heuristics. This heuristic uses the x-coordinates to infer an electrode spacing (y/z coordinates are ignored). We also assume a constant spacing of electrodes (i.e., a gap in electrode positions would indicate unused electrodes). This is usually a good estimate as hardly anybody does change the electrode positions stored in the Syscal system (talk to us if you do). Note that this function can use user input to simplify the process by using a user-supplied x0 value for the smallest electrode position (corresponding to electrode 1) and a user-supplied spacing (removing the need to infer from the positions). Parameters ---------- data : Nx4 array|Nx4 :py:class:`pandas.DataFrame` The x positions of a, b, m, n electrodes. N is the number of measurements x0 : float, optional position of first electrode. If not given, then use the smallest x-position in the data as the first electrode. spacing : float electrode spacing. This is important if not all electrodes are used in a given measurement setup. If not given, then the smallest distance between electrodes is assumed to be the electrode spacing. Naturally, this requires measurements (or injections) with subsequent electrodes. Returns ------- data_new : Nx4 :py:class:`pandas.DataFrame` The electrode number columns a,b,m,n """ assert data.shape[1] == 4, 'data variable must only contain four columns' x0 = kwargs.get( 'x0', data.min().min() ) electrode_spacing = kwargs.get('spacing', None) # try to determine from the data itself if electrode_spacing is None: electrode_positions = data.values electrode_spacing = np.abs( electrode_positions[:, 1:] - electrode_positions[:, 0:-1] ).min() data_new =
pd.DataFrame()
pandas.DataFrame
#%% md ## Read from MIMIC csv files #%% import pandas as pd # files can be downloaded from https://mimic.physionet.org/gettingstarted/dbsetup/ med_file = 'PRESCRIPTIONS.csv' diag_file = 'DIAGNOSES_ICD.csv' procedure_file = 'PROCEDURES_ICD.csv' # drug code mapping files (already in ./data/) ndc2atc_file = 'ndc2atc_level4.csv' cid_atc = 'drug-atc.csv' ndc2rxnorm_file = 'ndc2rxnorm_mapping.txt' # drug-drug interactions can be down https://www.dropbox.com/s/8os4pd2zmp2jemd/drug-DDI.csv?dl=0 ddi_file = 'drug-DDI.csv' def process_procedure(): pro_pd =
pd.read_csv(procedure_file, dtype={'ICD9_CODE': 'category'})
pandas.read_csv
import re import math import pandas as pd import numpy as np import nltk import heapq import pickle import datetime from nltk.corpus import stopwords from operator import itemgetter # Loading the dictionary with open('dictionary.pkl', 'rb') as f: data = pickle.load(f) # Loading the dictionary with term count with open('newdictionary.pkl', 'rb') as f: newdata = pickle.load(f) # Read the csv file ff = pd.DataFrame(pd.read_csv('Airbnb_Texas_Rentals.csv')) ff = ff.fillna('0') ff = ff.drop(['Unnamed: 0'], axis=1) # Insert the date_post_1 column based on the date of listing ff['month']=[(x.split()[0]).lower() for x in ff['date_of_listing']] ff['month_number']=np.where(ff['month']=='may',"-05-01", np.where(ff['month']=='june',"-06-01", np.where(ff['month']=='july',"-07-01", np.where(ff['month']=="august","-08-01", np.where(ff['month']=="september","-09-01", np.where(ff['month']=="october","-10-01", np.where(ff['month']=="november","-11-01", np.where(ff['month']=="december","-12-01", np.where(ff['month']=="january","-01-01", np.where(ff['month']=="february","-02-01", np.where(ff['month']=="march","-03-01", np.where(ff['month']=="april","-04-01","-01-01")))))))))))) ff['year']=[x.split()[1] for x in ff['date_of_listing']] ff['date_post']=ff['year']+ff['month_number'] ff['date_post_1']=[pd.to_datetime(x) for x in ff['date_post']] # calculate the room rate for each listing and merge it to the data frame ff['rate_num']=[str(d).replace("$","") for d in ff['average_rate_per_night']] ff=ff.fillna('0') ff['rate_num_1']=[pd.to_numeric(x) if x!="nan" else 0 for x in ff['rate_num'] ] ff_means=pd.DataFrame(ff.groupby(['city'])['rate_num_1'].mean()) ff_means.columns=['Average_in_this_city'] ff=ff.merge(ff_means, left_on='city', right_on='city', how='left') # FUNCTIONS----FUNCTIONS----FUNCTIONS------------------------------ #input = [word1, word2, ...] #output = {word1: [pos1, pos2], word2: [pos1, pos2], ...} def index_one_file(termlist): fileIndex = {} words = list(set(termlist)) word_list = [x for x in termlist] for i in range(len(word_list)): for item in words: if item == word_list[i]: fileIndex.setdefault(item, []).append(i) return fileIndex #input = {filename: [word1, word2, ...], ...} #ouput = {filename: {word: [pos1, pos2, ...]}, ...} def make_indices(dictionary): total = {} for filename in dictionary.keys(): new = dictionary[filename] total[filename] = index_one_file(new) return total # Dict reversal #input = {filename: {word: [pos1, pos2, ...], ... }} #output = {word: {filename: [pos1, pos2]}, ...}, ...} def fullIndex(regdex): total_index = {} for filename in regdex.keys(): for word in regdex[filename].keys(): if word in total_index.keys(): if filename in total_index[word].keys(): total_index[word][filename].extend(regdex[filename][word][:]) else: total_index[word][filename] = regdex[filename][word] else: total_index[word] = {filename: regdex[filename][word]} return total_index # Search Engine # Preprocess the search def preprocess(search): search = search.lower().split() stop_words = set(stopwords.words('english')) lemma = nltk.wordnet.WordNetLemmatizer() search_lst = [] for x in search: if not x in stop_words: x = re.sub("[^a-zA-Z]+", "*", x) if "*" in x: y = x.split('*') y[0]=lemma.lemmatize(y[0]) search_lst.append(y[0]) if len(y)>1: y[1]=lemma.lemmatize(y[1]) search_lst.append(y[1]) else: x = lemma.lemmatize(x) search_lst.append(x) search_lst = (' '.join(search_lst)) return search_lst #Input for the search def search_eng_input(phrase): phrase = phrase.lower().split() n = len(phrase) list1, list2, list3 = [], [], [] for x in phrase: x = preprocess(x) list1.append(x) for x in list1: if x in data.keys(): list2.append(set(data[x].keys())) b = list2[0] for i in range(0,len(list2)): b = (b & list2[i]) for x in b: list3.append(int(re.sub("[^0-9]+", "", x))-1) return list3 # Executing the query and return the result for conjunctive search def exec_query_s_1(search): pd.set_option('display.max_colwidth', -1) l = [] df = pd.DataFrame() l = (search_eng_input(search)) if len(l)>0: df = ff[['title','description','city', 'url']].loc[l] if df.empty == False: df.set_index('title', inplace=True) return df # TF-IDF def tf(term_count, total_count): return term_count / total_count def idf(doc_count, contain_count): return math.log(doc_count / contain_count) def tf_idf(term_count, total_count, doc_count, contain_count): if total_count == 0: total_count = 1 if contain_count == 0: contain_count = 1 return round(tf(term_count, total_count) * idf(doc_count, contain_count),2) # return the number of words in a document when input in the name def total_count(filename): total = 0 inverse_data = fullIndex(data) #inverse the data if filename in inverse_data.keys(): value = inverse_data.get(filename, 0) #get the sub_dict for k, v in value.items(): total += len(v) # count the number of term in a document return total else: return 0 # return the number of documents that contain a certain word when input in a term def contain_count(term): if term in data.keys(): return len(data[term].keys()) else: return 0 # functions for returning the search with ranking similarity scores #creating doc vectors def doc_vec(query): lemma = nltk.wordnet.WordNetLemmatizer() querylist = query.split() query = search_eng_input_1(query) # return the list of documents matched first query = [x+1 for x in query] # +1 for the correct position doc = {} docvec = [0] * len(querylist) for index, word in enumerate(querylist): word = lemma.lemmatize(word) word = word.lower() try: subvec = [] value = newdata[word]# get {doc1:tf-idf, doc2: tf-idf} of each word in search query for k, v in value.items(): for i in query: # loop all the documents'ids that search gives key = ('filtered_doc_%s'%str(i)) if key == k: # if the id is in the dict subvec.append(v) # append the score to the vector = [[tf-idf1,tf-idf2,..],[tf-idf1,tf-idf2,..],..] subvec += [0] * (len(query) - len(subvec)) # make the vectors equal in length for not found instances docvec[index] = subvec del subvec except KeyError: docvec[index] = [0]*len(value.keys()) # if the word not in dict, create a zero vector # this loop return the dict with format {doc1:vector1,doc2:vector2,...} for the query for index in range(len(docvec[0])): sub_vec = [item[index] for item in docvec] doc.update({query[index]:sub_vec}) return doc #create query vector def query_vec(query): pattern = re.compile('[\W_]+') # for faster search function query = pattern.sub(' ',query) querylist = query.split() b = len(querylist) c = 18259 #total number of documents queryvec = [0]*b for index,word in enumerate(querylist): a = querylist.count(word) d = contain_count(word) wordtfidf = tf_idf(a,b,c,d) # tf-idf score for each word queryvec[index] = wordtfidf return queryvec def dotproduct(vec1, vec2): if len(vec1) != len(vec2): return 0 return sum([x*y for x,y in zip(vec1, vec2)]) def magnitude(vec): return pow(sum(map(lambda x: x**2, vec)),.5) # calculate the score of the results based on query def generatescore(query): queryvec = query_vec(query) doc_vecs_dict = doc_vec(query) score_dict = {} for k, v in doc_vecs_dict.items(): score = round(dotproduct(queryvec, v)/(magnitude(queryvec)*magnitude(v)),2) score_dict.update({k:score}) return score_dict # heap data structure to keep top k def heappq(mysearch): query = search_eng_input(mysearch) k = 10 # default top k-element if k >= len(query): k = len(query) d = generatescore(mysearch) k_keys_sorted = heapq.nlargest(k, d.items(), key = itemgetter(1)) key_lst, score_lst = [], [] for i in range(k): key_lst.append(k_keys_sorted[i][0]) score_lst.append(k_keys_sorted[i][1]) return key_lst, score_lst # executing tf_idf conjunctive search def exec_tfidf_search(mysearch): key_lst, score_lst = heappq(mysearch) key_lst = [x-1 for x in key_lst] # to get the correct row in df
pd.set_option('display.max_colwidth', -1)
pandas.set_option
from datetime import datetime import numpy as np import pandas as pd from sklearn.utils import shuffle from data_process import data_process_utils from data_process.census_process.census_data_creation_config import census_data_creation from data_process.census_process.census_degree_process_utils import consistentize_census9495_columns, \ numericalize_census9495_data, standardize_census_data from data_process.census_process.mapping_resource import cate_to_index_map, continuous_cols, categorical_cols, \ target_col_name # follow link provides description on columns of Census Income Dataset: # https://docs.1010data.com/Tutorials/MachineLearningExamples/CensusIncomeDataSet.html def get_timestamp(): return int(datetime.utcnow().timestamp()) CENSUS_COLUMNS = ["age", "class_worker", "det_ind_code", "det_occ_code", "education", "wage_per_hour", "hs_college", "marital_stat", "major_ind_code", "major_occ_code", "race", "hisp_origin", "gender", "union_member", "unemp_reason", "full_or_part_emp", "capital_gain", "capital_loss", "stock_dividends", "tax_filer_stat", "region_prev_res", "state_prev_res", "det_hh_fam_stat", "det_hh_summ", "instance_weight", "mig_chg_msa", "mig_chg_reg", "mig_move_reg", "mig_same", "mig_prev_sunbelt", "num_emp", "fam_under_18", "country_father", "country_mother", "country_self", "citizenship", "own_or_self", "vet_question", "vet_benefits", "weeks_worked", "year", "income_label"] RERANGED_CENSUS_COLUMNS_NEW = ["age", "gender_index", "age_index", "class_worker", "det_ind_code", "det_occ_code", "education", "education_year", "wage_per_hour", "hs_college", "marital_stat", "major_ind_code", "major_occ_code", "race", "hisp_origin", "gender", "union_member", "unemp_reason", "full_or_part_emp", "capital_gain", "capital_loss", "stock_dividends", "tax_filer_stat", "region_prev_res", "state_prev_res", "det_hh_fam_stat", "det_hh_summ", "instance_weight", "mig_chg_msa", "mig_chg_reg", "mig_move_reg", "mig_same", "mig_prev_sunbelt", "num_emp", "fam_under_18", "country_father", "country_mother", "country_self", "citizenship", "own_or_self", "vet_question", "vet_benefits", "weeks_worked", "year", "income_label"] def process(data_path, to_dir=None, train=True): census = pd.read_csv(data_path, names=CENSUS_COLUMNS, skipinitialspace=True) print("[INFO] load {} data".format("train" if train else "test")) print("[INFO] load data with shape:", census.shape) appendix = "_train" if train else "_test" extension = ".csv" appendix = appendix + extension print("[INFO] consistentize original data") c_census = consistentize_census9495_columns(census) c_census.to_csv(to_dir + 'consistentized_census9495' + appendix, header=True, index=False) print("[INFO] numericalize data") p_census = numericalize_census9495_data(c_census, cate_to_index_map) return p_census def compute_instance_prob(data_frame): weight_sum = data_frame["instance_weight"].sum() data_frame["instance_weight"] = data_frame["instance_weight"] / weight_sum def create_file_appendix(train): appendix = "_train" if train else "_valid" extension = ".csv" return appendix + extension def create_degree_src_tgt_data(p_census, from_dir, to_dir, data_tag, pos_ratio, num_all, train=True, grad_train_scaler=None, undergrad_train_scaler=None, grad_census_test_values=None, save_intermediate_tables=False): appendix = create_file_appendix(train) print("====================== create_degree_source_target_data for {} data ======================" .format("train" if train else "valid")) # form source and target domain data doctorate_census = p_census[p_census['education'] == 11] master_census = p_census[(p_census['education'] == 9) | (p_census['education'] == 10)] undergrad_census = p_census[ (p_census['education'] != 9) & (p_census['education'] != 10) & (p_census['education'] != 11)] columns = continuous_cols + categorical_cols + ['instance_weight', target_col_name] doctorate_census = doctorate_census[columns] master_census = master_census[columns] undergrad_census = undergrad_census[columns] print("[INFO] doctorate_census shape", doctorate_census.shape) print("[INFO] master_census shape", master_census.shape) print("[INFO] undergrad_census shape", undergrad_census.shape) if save_intermediate_tables: doctorate_census.to_csv(to_dir + 'doctorate_census9495' + appendix, header=True, index=False) master_census.to_csv(to_dir + 'master_census9495' + appendix, header=True, index=False) undergrad_census.to_csv(to_dir + 'undergrad_census9495' + appendix, header=True, index=False) doctorate_census = pd.read_csv(from_dir + 'doctorate_census9495' + appendix, skipinitialspace=True) master_census =
pd.read_csv(from_dir + 'master_census9495' + appendix, skipinitialspace=True)
pandas.read_csv
import pandas as pd import geopandas import json import altair as alt def make_metrics_df(): GEOJSON = 'geojson/wi_map_plan_{}.geojson' mm_gaps = [] sl_indices = [] efficiency_gaps = [] plan_number = [i for i in range(1,84)] for i in range(1,84): plan = geopandas.read_file(GEOJSON.format(i)) mm_gaps.append(plan['mm_gap'].iloc[0]) sl_indices.append(plan['SL_index'].iloc[0]) efficiency_gaps.append(plan['efficiency_gap'].iloc[0]) metrics_dict = {'plan_number':plan_number,'mm_gap':mm_gaps,'sl_index':sl_indices,'efficiency_gap':efficiency_gaps} metrics_df =
pd.DataFrame(metrics_dict, columns = ['plan_number','mm_gap','sl_index','efficiency_gap'])
pandas.DataFrame
from datetime import datetime import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas._testing as tm class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) assert msg in str(m[0].message) # convert to utc with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = idx.to_series(index=[0, 1]) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) # list of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) # GH 6785 # set the index manually import pytz df = DataFrame([{"ts": datetime(2014, 4, 1, tzinfo=pytz.utc), "foo": 1}]) expected = df.set_index("ts") df.index = df["ts"] df.pop("ts") tm.assert_frame_equal(df, expected) def test_set_columns(self, float_string_frame): cols = Index(np.arange(len(float_string_frame.columns))) float_string_frame.columns = cols with pytest.raises(ValueError, match="Length mismatch"): float_string_frame.columns = cols[::2] def test_dti_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = date_range("2011/01/01", periods=6, freq="M", tz="US/Eastern") idx2 = date_range("2013", periods=6, freq="A", tz="Asia/Tokyo") df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.reindex(idx2) tm.assert_index_equal(df.index, idx2) # GH 11314 # with tz index = date_range( datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="H", tz="US/Eastern" ) df = DataFrame(np.random.randn(24, 1), columns=["a"], index=index) new_index = date_range( datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="H", tz="US/Eastern" ) result = df.set_index(new_index) assert result.index.freq == index.freq # Renaming def test_reindex_api_equivalence(self): # equivalence of the labels/axis and index/columns API's df = DataFrame( [[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=["a", "b", "c"], columns=["d", "e", "f"], ) res1 = df.reindex(["b", "a"]) res2 = df.reindex(index=["b", "a"]) res3 = df.reindex(labels=["b", "a"]) res4 = df.reindex(labels=["b", "a"], axis=0) res5 = df.reindex(["b", "a"], axis=0) for res in [res2, res3, res4, res5]:
tm.assert_frame_equal(res1, res)
pandas._testing.assert_frame_equal
## The packages. from selenium import webdriver from selenium.webdriver import chrome from selenium.webdriver.common.by import By import pandas, os, tqdm, time ## The goal. ''' 根據 query 從 PubMed 搜尋引擎下載對應的文章摘要,輸出成表格。 ''' ## The arguments. keyword = "Athlete's foot" platform = "pubmed" site = "https://pubmed.ncbi.nlm.nih.gov/" number = 10 folder = "LOG/VI/{}".format(keyword) os.makedirs(folder) if not os.path.isdir(folder) else None ## option = webdriver.chrome.options.Options() option.binary_location = "/usr/bin/google-chrome" # option.add_argument('--no-sandbox') service = chrome.service.Service(executable_path='driver/chrome') driver = webdriver.Chrome(options=option, service=service) page = range(1, number+1, 1) group = { "link":[], "title":[], "abstract":[], "tag":[], "author":[] } for p in page: try: driver.get("{}?term={}&filter=simsearch1.fha&page={}".format(site, keyword, p)) # group['link'] += [i.get_attribute("href") for i in driver.find_elements_by_css_selector(".docsum-title")] group['link'] += [i.get_attribute("href") for i in driver.find_elements(By.CSS_SELECTOR, ".docsum-title")] pass except: continue pass link =
pandas.DataFrame({"link":group['link']})
pandas.DataFrame
# Exercise 4 : Manipulating Geospatial Data import math import pandas as pd import geopandas as gpd from learntools.geospatial.tools import geocode import folium from folium import Marker from folium.plugins import MarkerCluster from learntools.core import binder binder.bind(globals()) from learntools.geospatial.ex4 import * def embed_map(m, file_name): from IPython.display import IFrame m.save(file_name) return IFrame(file_name, width='100%', height='500px') ## 1) Geocode the missing locations. ## Run the next code cell to create a DataFrame starbucks containing Starbucks locations in the state of California. starbucks =
pd.read_csv("../input/geospatial-learn-course-data/starbucks_locations.csv")
pandas.read_csv
import numpy as np from scipy import stats import pandas as pd from sklearn.svm import SVC from dask.distributed import Client import dask_ml.model_selection as dms def test_search_basic(xy_classification): X, y = xy_classification param_grid = {"class_weight": [None, "balanced"]} a = dms.GridSearchCV(SVC(kernel="rbf", gamma=0.1), param_grid) a.fit(X, y) param_dist = {"C": stats.uniform} b = dms.RandomizedSearchCV(SVC(kernel="rbf", gamma=0.1), param_dist) b.fit(X, y) def test_to_keys_numpy_array(): rng = np.random.RandomState(0) arr = rng.randn(20, 30) df =
pd.DataFrame(data=arr)
pandas.DataFrame
import pandas as pd import pytest from dateutil.relativedelta import relativedelta import featuretools as ft from featuretools.entityset import Timedelta from featuretools.primitives import Count # , SlidingMean from featuretools.utils.wrangle import _check_timedelta def test_timedelta_equality(): assert Timedelta(10, "d") == Timedelta(10, "d") assert Timedelta(10, "d") != 1 def test_singular(): assert Timedelta.make_singular("Month") == "Month" assert Timedelta.make_singular("Months") == "Month" def test_delta_with_observations(es): four_delta = Timedelta(4, 'observations') assert not four_delta.is_absolute() assert four_delta.get_value('o') == 4 neg_four_delta = -four_delta assert not neg_four_delta.is_absolute() assert neg_four_delta.get_value('o') == -4 time = pd.to_datetime('2019-05-01') error_txt = 'Invalid unit' with pytest.raises(Exception, match=error_txt): time + four_delta with pytest.raises(Exception, match=error_txt): time - four_delta def test_delta_with_time_unit_matches_pandas(es): customer_id = 0 sessions_df = es['sessions'].df sessions_df = sessions_df[sessions_df['customer_id'] == customer_id] log_df = es['log'].df log_df = log_df[log_df['session_id'].isin(sessions_df['id'])] all_times = log_df['datetime'].sort_values().tolist() # 4 observation delta value = 4 unit = 'h' delta = Timedelta(value, unit) neg_delta = -delta # first plus 4 obs is fifth assert all_times[0] + delta == all_times[0] + pd.Timedelta(value, unit) # using negative assert all_times[0] - neg_delta == all_times[0] + pd.Timedelta(value, unit) # fifth minus 4 obs is first assert all_times[4] - delta == all_times[4] - pd.Timedelta(value, unit) # using negative assert all_times[4] + neg_delta == all_times[4] - pd.Timedelta(value, unit) def test_check_timedelta(es): time_units = list(Timedelta._readable_units.keys()) expanded_units = list(Timedelta._readable_units.values()) exp_to_standard_unit = {e: t for e, t in zip(expanded_units, time_units)} singular_units = [u[:-1] for u in expanded_units] sing_to_standard_unit = {s: t for s, t in zip(singular_units, time_units)} to_standard_unit = {} to_standard_unit.update(exp_to_standard_unit) to_standard_unit.update(sing_to_standard_unit) full_units = singular_units + expanded_units + time_units + time_units strings = ["2 {}".format(u) for u in singular_units + expanded_units + time_units] strings += ["2{}".format(u) for u in time_units] for i, s in enumerate(strings): unit = full_units[i] standard_unit = unit if unit in to_standard_unit: standard_unit = to_standard_unit[unit] td = _check_timedelta(s) assert td.get_value(standard_unit) == 2 def test_check_pd_timedelta(es): pdtd = pd.Timedelta(5, 'm') td = _check_timedelta(pdtd) assert td.get_value('s') == 300 def test_string_timedelta_args(): assert Timedelta("1 second") == Timedelta(1, "second") assert Timedelta("1 seconds") == Timedelta(1, "second") assert Timedelta("10 days") == Timedelta(10, "days") assert Timedelta("100 days") == Timedelta(100, "days") assert Timedelta("1001 days") == Timedelta(1001, "days") assert Timedelta("1001 weeks") == Timedelta(1001, "weeks") def test_feature_takes_timedelta_string(es): feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], use_previous="1 day", primitive=Count) assert feature.use_previous == Timedelta(1, 'd') # def test_sliding_feature_takes_timedelta_string(es): # feature = SlidingMean(es['log']['id'], es['customers'], # use_previous="1 day", # window_size="1 second") # assert feature.use_previous == Timedelta(1, 'd') # assert feature.window_size == Timedelta(1, 's') def test_deltas_week(es): customer_id = 0 sessions_df = es['sessions'].df sessions_df = sessions_df[sessions_df['customer_id'] == customer_id] log_df = es['log'].df log_df = log_df[log_df['session_id'].isin(sessions_df['id'])] all_times = log_df['datetime'].sort_values().tolist() delta_week = Timedelta(1, "w") delta_days = Timedelta(7, "d") assert all_times[0] + delta_days == all_times[0] + delta_week def test_relative_year(): td_time = "1 years" td = _check_timedelta(td_time) assert td.get_value("Y") == 1 assert isinstance(td.delta_obj, relativedelta) time = pd.to_datetime('2020-02-29') assert time + td == pd.to_datetime('2021-02-28') def test_serialization(): times = [ Timedelta(1, unit='w'), Timedelta(3, unit='d'), Timedelta(5, unit='o') ] dictionaries = [ {'value': 1, 'unit': 'w'}, {'value': 3, 'unit': 'd'}, {'value': 5, 'unit': 'o'} ] for td, expected in zip(times, dictionaries): assert expected == td.get_arguments() for expected, dictionary in zip(times, dictionaries): assert expected == Timedelta.from_dictionary(dictionary) # Test multiple temporal parameters separately since it is not deterministic mult_time = {'years': 4, 'months': 3, 'days': 2} mult_td = Timedelta(mult_time) # Serialize td_units = mult_td.get_arguments()['unit'] td_values = mult_td.get_arguments()['value'] arg_list = list(zip(td_values, td_units)) assert (4, 'Y') in arg_list assert (3, 'mo') in arg_list assert (2, 'd') in arg_list # Deserialize assert mult_td == Timedelta.from_dictionary({'value': [4, 3, 2], 'unit': ['Y', 'mo', 'd']}) def test_relative_month(): td_time = "1 month" td = _check_timedelta(td_time) assert td.get_value('mo') == 1 assert isinstance(td.delta_obj, relativedelta) time = pd.to_datetime('2020-01-31') assert time + td == pd.to_datetime('2020-02-29') td_time = "6 months" td = _check_timedelta(td_time) assert td.get_value('mo') == 6 assert isinstance(td.delta_obj, relativedelta) time = pd.to_datetime('2020-01-31') assert time + td == pd.to_datetime('2020-07-31') def test_has_multiple_units(): single_unit = pd.DateOffset(months=3) multiple_units = pd.DateOffset(months=3, years=3, days=5) single_td = _check_timedelta(single_unit) multiple_td = _check_timedelta(multiple_units) assert single_td.has_multiple_units() is False assert multiple_td.has_multiple_units() is True def test_pd_dateoffset_to_timedelta(): single_temporal = pd.DateOffset(months=3) single_td = _check_timedelta(single_temporal) assert single_td.get_value('mo') == 3 assert single_td.delta_obj == pd.DateOffset(months=3) mult_temporal = pd.DateOffset(years=10, months=3, days=5) mult_td = _check_timedelta(mult_temporal) expected = {'Y': 10, 'mo': 3, 'd': 5} assert mult_td.get_value() == expected assert mult_td.delta_obj == mult_temporal # get_name() for multiple values is not deterministic assert len(mult_td.get_name()) == len("10 Years 3 Months 5 Days") special_dateoffset = pd.offsets.BDay(100) special_td = _check_timedelta(special_dateoffset) assert special_td.get_value("businessdays") == 100 assert special_td.delta_obj == special_dateoffset def test_pd_dateoffset_to_timedelta_math(): base = pd.to_datetime("2020-01-31") add = _check_timedelta(pd.DateOffset(months=2)) res = base + add assert res == pd.to_datetime("2020-03-31") base_2 = pd.to_datetime("2020-01-31") add_2 = _check_timedelta(
pd.DateOffset(months=2, days=3)
pandas.DateOffset
# -*- coding: utf-8 -*- import time from datetime import datetime import warnings from textwrap import dedent, fill import numpy as np import pandas as pd from numpy.linalg import norm, inv from scipy.linalg import solve as spsolve, LinAlgError from scipy.integrate import trapz from scipy import stats from lifelines.fitters import BaseFitter, Printer from lifelines.plotting import set_kwargs_drawstyle from lifelines.statistics import chisq_test, proportional_hazard_test, TimeTransformers, StatisticalResult from lifelines.utils.lowess import lowess from lifelines.utils.concordance import _concordance_summary_statistics, _concordance_ratio from lifelines.utils import ( _get_index, _to_list, _to_tuple, _to_1d_array, inv_normal_cdf, normalize, qth_survival_times, coalesce, check_for_numeric_dtypes_or_raise, check_low_var, check_complete_separation, check_nans_or_infs, StatError, ConvergenceWarning, StatisticalWarning, StepSizer, ConvergenceError, string_justify, interpolate_at_times_and_return_pandas, CensoringType, interpolate_at_times, format_p_value, ) __all__ = ["CoxPHFitter"] class BatchVsSingle: @staticmethod def decide(batch_mode, n_unique, n_total, n_vars): frac_dups = n_unique / n_total if batch_mode or ( # https://github.com/CamDavidsonPilon/lifelines/issues/591 for original issue. # new values from from perf/batch_vs_single script. (batch_mode is None) and ( ( 6.876218e-01 + -1.796993e-06 * n_total + -1.204271e-11 * n_total ** 2 + 1.912500e00 * frac_dups + -8.121036e-01 * frac_dups ** 2 + 4.916605e-06 * n_total * frac_dups + -5.888875e-03 * n_vars + 5.473434e-09 * n_vars * n_total ) < 1 ) ): return "batch" return "single" class CoxPHFitter(BaseFitter): r""" This class implements fitting Cox's proportional hazard model: .. math:: h(t|x) = h_0(t) \exp((x - \overline{x})' \beta) Parameters ---------- alpha: float, optional (default=0.05) the level in the confidence intervals. tie_method: string, optional specify how the fitter should deal with ties. Currently only 'Efron' is available. penalizer: float, optional (default=0.0) Attach an L2 penalizer to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. For example, this shrinks the absolute value of :math:`\beta_i`. The penalty is :math:`\frac{1}{2} \text{penalizer} ||\beta||^2`. strata: list, optional specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. Examples -------- >>> from lifelines.datasets import load_rossi >>> from lifelines import CoxPHFitter >>> rossi = load_rossi() >>> cph = CoxPHFitter() >>> cph.fit(rossi, 'week', 'arrest') >>> cph.print_summary() Attributes ---------- params_ : Series The estimated coefficients. Changed in version 0.22.0: use to be ``.hazards_`` hazard_ratios_ : Series The exp(coefficients) confidence_intervals_ : DataFrame The lower and upper confidence intervals for the hazard coefficients durations: Series The durations provided event_observed: Series The event_observed variable provided weights: Series The event_observed variable provided variance_matrix_ : numpy array The variance matrix of the coefficients strata: list the strata provided standard_errors_: Series the standard errors of the estimates score_: float the concordance index of the model. baseline_hazard_: DataFrame baseline_cumulative_hazard_: DataFrame baseline_survival_: DataFrame """ _KNOWN_MODEL = True def __init__(self, alpha=0.05, tie_method="Efron", penalizer=0.0, strata=None): super(CoxPHFitter, self).__init__(alpha=alpha) if penalizer < 0: raise ValueError("penalizer parameter must be >= 0.") if tie_method != "Efron": raise NotImplementedError("Only Efron is available at the moment.") self.alpha = alpha self.tie_method = tie_method self.penalizer = penalizer self.strata = strata @CensoringType.right_censoring def fit( self, df, duration_col=None, event_col=None, show_progress=False, initial_point=None, strata=None, step_size=None, weights_col=None, cluster_col=None, robust=False, batch_mode=None, ): """ Fit the Cox proportional hazard model to a dataset. Parameters ---------- df: DataFrame a Pandas DataFrame with necessary columns `duration_col` and `event_col` (see below), covariates columns, and special columns (weights, strata). `duration_col` refers to the lifetimes of the subjects. `event_col` refers to whether the 'death' events was observed: 1 if observed, 0 else (censored). duration_col: string the name of the column in DataFrame that contains the subjects' lifetimes. event_col: string, optional the name of thecolumn in DataFrame that contains the subjects' death observation. If left as None, assume all individuals are uncensored. weights_col: string, optional an optional column in the DataFrame, df, that denotes the weight per subject. This column is expelled and not used as a covariate, but as a weight in the final regression. Default weight is 1. This can be used for case-weights. For example, a weight of 2 means there were two subjects with identical observations. This can be used for sampling weights. In that case, use `robust=True` to get more accurate standard errors. show_progress: boolean, optional (default=False) since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. initial_point: (d,) numpy array, optional initialize the starting point of the iterative algorithm. Default is the zero vector. strata: list or string, optional specify a column or list of columns n to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. step_size: float, optional set an initial step size for the fitting algorithm. Setting to 1.0 may improve performance, but could also hurt convergence. robust: boolean, optional (default=False) Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. See "The Robust Inference for the Cox Proportional Hazards Model", Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078 cluster_col: string, optional specifies what column has unique identifiers for clustering covariances. Using this forces the sandwich estimator (robust variance estimator) to be used. batch_mode: bool, optional enabling batch_mode can be faster for datasets with a large number of ties. If left as None, lifelines will choose the best option. Returns ------- self: CoxPHFitter self with additional new properties: ``print_summary``, ``hazards_``, ``confidence_intervals_``, ``baseline_survival_``, etc. Note ---- Tied survival times are handled using Efron's tie-method. Examples -------- >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E') >>> cph.print_summary() >>> cph.predict_median(df) >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'weights': [1.1, 0.5, 2.0, 1.6, 1.2, 4.3, 1.4, 4.5, 3.0, 3.2, 0.4, 6.2], >>> 'month': [10, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E', strata=['month', 'age'], robust=True, weights_col='weights') >>> cph.print_summary() >>> cph.predict_median(df) """ if duration_col is None: raise TypeError("duration_col cannot be None.") self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + " UTC" self.duration_col = duration_col self.event_col = event_col self.robust = robust self.cluster_col = cluster_col self.weights_col = weights_col self._n_examples = df.shape[0] self._batch_mode = batch_mode self.strata = coalesce(strata, self.strata) X, T, E, weights, original_index, self._clusters = self._preprocess_dataframe(df) self.durations = T.copy() self.event_observed = E.copy() self.weights = weights.copy() if self.strata is not None: self.durations.index = original_index self.event_observed.index = original_index self.weights.index = original_index self._norm_mean = X.mean(0) self._norm_std = X.std(0) X_norm = normalize(X, self._norm_mean, self._norm_std) params_ = self._fit_model( X_norm, T, E, weights=weights, initial_point=initial_point, show_progress=show_progress, step_size=step_size ) self.params_ =
pd.Series(params_, index=X.columns, name="coef")
pandas.Series
import numpy as np import pandas as pd import pytest import xarray as xr from sklearn.utils.estimator_checks import parametrize_with_checks from skdownscale.pointwise_models import ( AnalogRegression, BcsdPrecipitation, BcsdTemperature, CunnaneTransformer, EquidistantCdfMatcher, LinearTrendTransformer, PaddedDOYGrouper, PureAnalog, PureRegression, QuantileMapper, QuantileMappingReressor, ZScoreRegressor, ) @pytest.fixture(scope='module') def sample_X_y(n=365): index = pd.date_range('2019-01-01', periods=n) X = pd.DataFrame( {'foo': np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10, 'bar': np.random.rand((n))}, index=index, ) y = X['foo'] + 2 return X, y @parametrize_with_checks( [ # Regressors AnalogRegression(), BcsdPrecipitation(), BcsdTemperature(), PureAnalog(), PureRegression(), ZScoreRegressor(), QuantileMappingReressor(n_endpoints=2), EquidistantCdfMatcher(kind='difference', n_endpoints=2), EquidistantCdfMatcher(kind='ratio', n_endpoints=2), # transformers LinearTrendTransformer(), CunnaneTransformer(), QuantileMapper(), ] ) def test_sklearn_compatible_estimator(estimator, check): check(estimator) def test_linear_trend_roundtrip(): # TODO: there is probably a better analytic test here n = 100 trend = 1 yint = 15 trendline = trend * np.arange(n) + yint trendline = trendline.reshape(-1, 1) noise = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 noise = noise.reshape(-1, 1) data = trendline + noise ltt = LinearTrendTransformer() # remove trend d_no_trend = ltt.fit_transform(data) # assert detrended data is equal to noise np.testing.assert_almost_equal(d_no_trend, noise, decimal=0) # assert linear coef is equal to trend np.testing.assert_almost_equal(ltt.lr_model_.coef_, trend, decimal=0) # assert roundtrip np.testing.assert_array_equal(ltt.inverse_transform(d_no_trend), data) def test_quantile_mapper(): n = 100 expected = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 expected = expected.reshape(-1, 1) with_bias = expected + 2 mapper = QuantileMapper() mapper.fit(expected) actual = mapper.transform(with_bias) np.testing.assert_almost_equal(actual, expected) @pytest.mark.xfail(reason='Need 3 part QM routine to handle bias removal') def test_quantile_mapper_detrend(): n = 100 trend = 1 yint = 15 trendline = trend * np.arange(n) + yint base = np.sin(np.linspace(-10 * np.pi, 10 * np.pi, n)) * 10 expected = base + trendline with_bias = expected + 2 mapper = QuantileMapper(detrend=True) mapper.fit(base) actual = mapper.transform(with_bias) np.testing.assert_almost_equal(actual.squeeze(), expected) @pytest.mark.parametrize( 'model', [ BcsdTemperature(), PureAnalog(), AnalogRegression(), PureRegression(), ZScoreRegressor(), QuantileMappingReressor(), QuantileMappingReressor(extrapolate='min'), QuantileMappingReressor(extrapolate='max'), QuantileMappingReressor(extrapolate='both'), QuantileMappingReressor(extrapolate='1to1'), EquidistantCdfMatcher(), EquidistantCdfMatcher(extrapolate='min'), EquidistantCdfMatcher(extrapolate='max'), EquidistantCdfMatcher(extrapolate='both'), EquidistantCdfMatcher(extrapolate='1to1'), ], ) def test_linear_model(model): n = 365 # TODO: add test for time other time ranges (e.g. < 365 days) index =
pd.date_range('2019-01-01', periods=n)
pandas.date_range
import pandas as pd import numpy as np from datetime import datetime import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib import dates import hashlib import json def load_rawdata(filepath): data = {'date': [], 'prod. pod': [], 'train. pod': [], 'config': []} first = 0 with open(filepath) as f: for doc in f: doc_parsed = json.loads(doc) data['prod. pod'].append(float(doc_parsed['prod_workload']['metric'])) data['train. pod'].append(float(doc_parsed['training_workload']['metric'])) data['config'].append(hashlib.md5(str(doc_parsed['prod_workload']['configuration']).encode('utf-8')).hexdigest()) if first == 0: first = int(doc_parsed['prod_workload']['start']) data['date'].append(int(doc_parsed['prod_workload']['start'])) # data['train. pod'].append(float(doc_parsed['tuning_metric'])) df = pd.DataFrame(data) df['date'] =
pd.to_datetime(df['date'], unit='s')
pandas.to_datetime
import io import pickle from unittest.mock import MagicMock, Mock, mock_open, patch import numpy as np import pandas as pd import pytest from sdv.lite import TabularPreset from sdv.metadata import Table from sdv.tabular import GaussianCopula from tests.utils import DataFrameMatcher class TestTabularPreset: def test___init__missing_name(self): """Test the ``TabularPreset.__init__`` method with no parameters. Side Effects: - ValueError should be thrown """ # Run and Assert with pytest.raises( ValueError, match=('You must provide the name of a preset using the `name` parameter. ' r'Use `TabularPreset.list_available_presets\(\)` to browse through ' 'the options.')): TabularPreset() def test___init__invalid_name(self): """Test the ``TabularPreset.__init__`` method with an invalid arg value. Input: - name = invalid parameter Side Effects: - ValueError should be thrown """ # Run and Assert with pytest.raises(ValueError, match=r'`name` must be one of *'): TabularPreset(name='invalid') @patch('sdv.lite.tabular.rdt.transformers') @patch('sdv.lite.tabular.GaussianCopula', spec_set=GaussianCopula) def test__init__speed_passes_correct_parameters(self, gaussian_copula_mock, transformers_mock): """Tests the ``TabularPreset.__init__`` method with the speed preset. The method should pass the parameters to the ``GaussianCopula`` class. Input: - name of the speed preset Side Effects: - GaussianCopula should receive the correct parameters """ # Run TabularPreset(name='FAST_ML') # Assert gaussian_copula_mock.assert_called_once_with( table_metadata=None, constraints=None, categorical_transformer='categorical_fuzzy', default_distribution='gaussian', rounding=None, ) metadata = gaussian_copula_mock.return_value._metadata metadata._dtype_transformers.update.assert_called_once_with({ 'i': transformers_mock.NumericalTransformer( dtype=np.int64, nan=None, null_column=False, min_value='auto', max_value='auto', ), 'f': transformers_mock.NumericalTransformer( dtype=np.float64, nan=None, null_column=False, min_value='auto', max_value='auto', ), 'O': transformers_mock.CategoricalTransformer(fuzzy=True), 'b': transformers_mock.BooleanTransformer(nan=None, null_column=False), 'M': transformers_mock.DatetimeTransformer(nan=None, null_column=False), }) @patch('sdv.lite.tabular.GaussianCopula', spec_set=GaussianCopula) def test__init__with_metadata(self, gaussian_copula_mock): """Tests the ``TabularPreset.__init__`` method with the speed preset. The method should pass the parameters to the ``GaussianCopula`` class. Input: - name of the speed preset Side Effects: - GaussianCopula should receive the correct parameters """ # Setup metadata = MagicMock(spec_set=Table) # Run TabularPreset(name='FAST_ML', metadata=metadata) # Assert gaussian_copula_mock.assert_called_once_with( table_metadata=metadata.to_dict(), constraints=None, categorical_transformer='categorical_fuzzy', default_distribution='gaussian', rounding=None, ) @patch('sdv.lite.tabular.rdt.transformers') @patch('sdv.lite.tabular.GaussianCopula', spec_set=GaussianCopula) def test__init__with_constraints(self, gaussian_copula_mock, transformers_mock): """Tests the ``TabularPreset.__init__`` method with constraints. The constraints should be added to the metadata. Input: - constraints Side Effects: - GaussianCopula should receive args, including the constraints. """ # Setup constraint = Mock() # Run preset = TabularPreset(name='FAST_ML', metadata=None, constraints=[constraint]) # Assert gaussian_copula_mock.assert_called_once_with( table_metadata=None, constraints=[constraint], categorical_transformer='categorical_fuzzy', default_distribution='gaussian', rounding=None, ) metadata = gaussian_copula_mock.return_value._metadata metadata._dtype_transformers.update.assert_called_once_with({ 'i': transformers_mock.NumericalTransformer( dtype=np.int64, nan='mean', null_column=None, min_value='auto', max_value='auto', ), 'f': transformers_mock.NumericalTransformer( dtype=np.float64, nan='mean', null_column=None, min_value='auto', max_value='auto', ), 'O': transformers_mock.CategoricalTransformer(fuzzy=True), 'b': transformers_mock.BooleanTransformer(nan=-1, null_column=None), 'M': transformers_mock.DatetimeTransformer(nan='mean', null_column=None), }) assert preset._null_column is True @patch('sdv.lite.tabular.GaussianCopula', spec_set=GaussianCopula) def test__init__with_constraints_and_metadata(self, gaussian_copula_mock): """Tests the ``TabularPreset.__init__`` method with constraints and metadata. The constraints should be added to the metadata. Input: - constraints - metadata Side Effects: - GaussianCopula should receive metadata with the constraints added. """ # Setup metadata = {'name': 'test_table', 'fields': []} constraint = Mock() # Run preset = TabularPreset(name='FAST_ML', metadata=metadata, constraints=[constraint]) # Assert expected_metadata = metadata.copy() expected_metadata['constraints'] = [constraint.to_dict.return_value] gaussian_copula_mock.assert_called_once_with( table_metadata=expected_metadata, constraints=None, categorical_transformer='categorical_fuzzy', default_distribution='gaussian', rounding=None, ) metadata = gaussian_copula_mock.return_value._metadata assert metadata._dtype_transformers.update.call_count == 1 assert preset._null_column is True def test_fit(self): """Test the ``TabularPreset.fit`` method. Expect that the model's fit method is called with the expected args. Input: - fit data Side Effects: - The model's ``fit`` method is called with the same data. """ # Setup metadata = Mock() metadata.to_dict.return_value = {'fields': {}} model = Mock() model._metadata = metadata preset = Mock() preset._model = model preset._null_percentages = None # Run TabularPreset.fit(preset, pd.DataFrame()) # Assert model.fit.assert_called_once_with(DataFrameMatcher(pd.DataFrame())) assert preset._null_percentages is None def test_fit_null_column_True(self): """Test the ``TabularPreset.fit`` method with modeling null columns. Expect that the model's fit method is called with the expected args when ``_null_column`` is set to ``True``. Setup: - _null_column is True Input: - fit data Side Effects: - The model's ``fit`` method is called with the same data. - ``_null_percentages`` is ``None`` """ # Setup metadata = Mock() metadata.to_dict.return_value = {'fields': {}} model = Mock() model._metadata = metadata preset = Mock() preset._model = model preset._null_column = True preset._null_percentages = None # Run TabularPreset.fit(preset, pd.DataFrame()) # Assert model.fit.assert_called_once_with(DataFrameMatcher(
pd.DataFrame()
pandas.DataFrame
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import argparse import os import warnings import numpy as np import pandas as pd from sklearn.compose import make_column_transformer from sklearn.exceptions import DataConversionWarning from sklearn.model_selection import train_test_split from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder, StandardScaler warnings.filterwarnings(action="ignore", category=DataConversionWarning) columns = [ "age", "education", "major industry code", "class of worker", "num persons worked for employer", "capital gains", "capital losses", "dividends from stocks", "income", ] class_labels = [" - 50000.", " 50000+."] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--train-test-split-ratio", type=float, default=0.3) args, _ = parser.parse_known_args() input_data_path = os.path.join("/opt/ml/processing/input", "census-income.csv") df =
pd.read_csv(input_data_path)
pandas.read_csv
import os, re, sys, time import datetime as dt import pandas as pd import numpy as np from .bot import Bot from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait class FacebookBot(Bot): LOGIN_URL = 'https://www.facebook.com/' SHARE_URL = "https://www.facebook.com/shares/view?id=" def __init__(self, browser="phantomjs", verbose=True): super(FacebookBot, self).__init__(browser, verbose=verbose) self.clr_str = lambda str: re.sub(re.compile('\W'), '', str) def login(self, usr, pwd): br_id = self._get_any_idle_br_id() self._new_command(br_id, (self.GOTO, self.LOGIN_URL)) logged_in = not self._new_command(br_id, (self.ID, "login_form"))[0] if(logged_in): self.br_dict[br_id].save_screenshot('login_status.png') self._idle_br(br_id) return elem = self._new_command(br_id, (self.ID, "email"))[1][0] elem.send_keys(usr) elem = self._new_command(br_id, (self.ID, "pass"))[1][0] elem.send_keys(pwd) elem.send_keys(Keys.RETURN) facebookLogo = "/html/body/div/div[1]/div/div/div/div[1]/div/h1/a" self.br_dict[br_id].save_screenshot('login_status.png') self._idle_br(br_id) def fetch_shared_posts_by_post_id(self, post_id): shared_posts_header = ['share_time', 'user_name', 'user_link', 'post_content', 'post_link', 'num_likes'] shared_posts_dict = {attr:{} for attr in shared_posts_header} br_id = self._get_any_idle_br_id() shared_posts_class = "fbUserContent" user_name_class = "fwb" post_link_xpath = "div[1]/div[3]/div[1]/div/div/div[2]/div/div/div[2]/div/span[3]/span/a" share_tme_xpath = "div[1]/div[3]/div[1]/div/div/div[2]/div/div/div[2]/div/span[3]/span/a/abbr" post_content_xpath = "div[1]/div[3]/div[2]" num_likes_class = "_4arz" self._new_command(br_id, (self.GOTO, self.SHARE_URL+"%d"%(int(post_id)))) all_shared_posts = [] count_update, last_loaded_posts = 0, 0 while(True): self.br_dict[br_id].execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(1) found, all_shared_posts = self._new_command(br_id, (self.CLASS, shared_posts_class)) print('loaded', len(all_shared_posts), 'posts...') count_update = 0 while(len(all_shared_posts) == last_loaded_posts): self.br_dict[br_id].execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(1) found, all_shared_posts = self._new_command(br_id, (self.CLASS, shared_posts_class)) print('retry: loaded', len(all_shared_posts), 'posts...') count_update += 1 if(count_update > 2): break if(count_update > 2): break last_loaded_posts = len(all_shared_posts) self._idle_br(br_id) if(len(all_shared_posts) == 0): print("shared post not found!") return None ind = 0 for post in all_shared_posts: try: share_time = post.find_element_by_xpath(share_tme_xpath) shared_posts_dict['share_time'][ind] = share_time.get_attribute('title') user_name = post.find_element_by_class_name(user_name_class) shared_posts_dict['user_name'][ind] = user_name.text user_link = user_name.find_element_by_tag_name("a") shared_posts_dict['user_link'][ind] = user_link.get_attribute('href') post_content = post.find_element_by_xpath(post_content_xpath) try: post_content.find_element_by_class_name('see_more_link').click() except: pass shared_posts_dict['post_content'][ind] = post_content.text post_link = post.find_element_by_xpath(post_link_xpath) shared_posts_dict['post_link'][ind] = post_link.get_attribute('href') try: num_likes = int(post.find_element_by_class_name(num_likes_class).text) except: num_likes = 0 shared_posts_dict['num_likes'][ind] = num_likes print(share_time.get_attribute('title'), user_name.text) print(post_content.text) ind += 1 except: print('failure after', ind) continue return
pd.DataFrame.from_dict(shared_posts_dict)
pandas.DataFrame.from_dict
from os import sep import pandas as pd encryptionkey =
pd.read_csv(r"C:\Users\cjwhi\OneDrive\Computer\Documents\Coding\Programs\Small Coding Projects\Hash.csv", sep = ',', names = ['Character', 'Byte'], header = None, skiprows = [0])
pandas.read_csv
# Copyright 2021 The Funnel Rocket Maintainers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import shutil from contextlib import contextmanager from dataclasses import dataclass from enum import auto from typing import List import numpy as np import pytest from pandas import RangeIndex, Series, DataFrame from frocket.common.dataset import DatasetPartsInfo, DatasetId, DatasetPartId, PartNamingMethod, DatasetInfo, \ DatasetColumnType, DatasetShortSchema from frocket.common.serializable import AutoNamedEnum from frocket.worker.runners.part_loader import shared_part_loader from tests.utils.base_test_utils import temp_filename, TEMP_DIR, DisablePyTestCollectionMixin from tests.utils.mock_s3_utils import SKIP_S3_TESTS, new_mock_s3_bucket class TestColumn(DisablePyTestCollectionMixin, str, AutoNamedEnum): int_64_userid = auto() int_64_ts = auto() int_u32 = auto() float_64_ts = auto() float_all_none = auto() float_32 = auto() float_category = auto() str_userid = auto() str_and_none = auto() str_all_none = auto() str_object_all_none = auto() str_category_userid = auto() str_category_few = auto() str_category_many = auto() bool = auto() unsupported_datetimes = auto() unsupported_lists = auto() DEFAULT_GROUP_COUNT = 200 DEFAULT_ROW_COUNT = 1000 DEFAULT_GROUP_COLUMN = TestColumn.int_64_userid.value DEFAULT_TIMESTAMP_COLUMN = TestColumn.int_64_ts.value BASE_TIME = 1609459200000 # Start of 2021, UTC BASE_USER_ID = 100000 TIME_SHIFT = 10000 UNSUPPORTED_COLUMN_DTYPES = {TestColumn.unsupported_datetimes: 'datetime64[ns]', TestColumn.unsupported_lists: 'object'} STR_AND_NONE_VALUES = ["1", "2", "3"] STR_CAT_FEW_WEIGHTS = [0.9, 0.07, 0.02, 0.01] STR_CAT_MANY_WEIGHTS = [0.5, 0.2] + [0.01] * 30 def test_colname_to_coltype(name: str) -> DatasetColumnType: prefix_to_type = { 'int': DatasetColumnType.INT, 'float': DatasetColumnType.FLOAT, 'str': DatasetColumnType.STRING, 'bool': DatasetColumnType.BOOL, 'unsupported': None } coltype = prefix_to_type[name.split('_')[0]] return coltype def datafile_schema(part: int = 0) -> DatasetShortSchema: # noinspection PyUnresolvedReferences result = DatasetShortSchema( min_timestamp=float(BASE_TIME), max_timestamp=float(BASE_TIME + TIME_SHIFT), source_categoricals=[TestColumn.str_category_userid, TestColumn.str_category_many], potential_categoricals=[TestColumn.str_and_none, TestColumn.str_category_few], columns={col.value: test_colname_to_coltype(col) for col in TestColumn if test_colname_to_coltype(col)}) # print(f"Test dataset short schema is:\n{result.to_json(indent=2)}") return result def weighted_list(size: int, weights: list) -> list: res = [] for idx, w in enumerate(weights): v = str(idx) vlen = size * w res += [v] * int(vlen) assert len(res) == size return res def str_and_none_column_values(part: int = 0, with_none: bool = True) -> List[str]: result = [*STR_AND_NONE_VALUES, f"part-{part}"] if with_none: result.append(None) return result def create_datafile(part: int = 0, size: int = DEFAULT_ROW_COUNT, filename: str = None) -> str: # First, prepare data for columns # Each part has a separate set of user (a.k.a. group) IDs initial_user_id = BASE_USER_ID * part min_user_id = initial_user_id max_user_id = initial_user_id + DEFAULT_GROUP_COUNT - 1 # To each tests, ensure that each user ID appears in the file at least once, by including the whole range, # then add random IDs in the range int64_user_ids = \ list(range(min_user_id, max_user_id + 1)) + \ random.choices(range(min_user_id, max_user_id + 1), k=size - DEFAULT_GROUP_COUNT) # And also represent as strings in another column str_user_ids = [str(uid) for uid in int64_user_ids] # Timestamp: each part has a range of values of size TIME_SHIFT min_ts = BASE_TIME + (TIME_SHIFT * part) max_ts = BASE_TIME + (TIME_SHIFT * (part + 1)) # Ensure that min & max timestamps appear exactly once, and fill the rest randomly in the range int_timestamps = \ [min_ts, max_ts] + \ random.choices(range(min_ts + 1, max_ts), k=size-2) # Now as floats and as (incorrect!) datetimes (datetimes currently unsupported) float_timestamps = [ts + random.random() for ts in int_timestamps] # More test columns int_u32_values = random.choices(range(100), k=size) float_32_values = [np.nan, *[random.random() for _ in range(size - 2)], np.nan] str_and_none_values = random.choices(str_and_none_column_values(part), k=size) bool_values = random.choices([True, False], k=size) # For yet-unsupported columns below lists_values = [[1, 2, 3]] * size datetimes = [ts * 1000000 for ts in float_timestamps] # Now create all series idx = RangeIndex(size) columns = { TestColumn.int_64_userid: Series(data=int64_user_ids), TestColumn.int_64_ts: Series(data=int_timestamps), TestColumn.int_u32: Series(data=int_u32_values, dtype='uint32'), TestColumn.float_64_ts: Series(data=float_timestamps), TestColumn.float_all_none: Series(data=None, index=idx, dtype='float64'), TestColumn.float_32:
Series(data=float_32_values, dtype='float32')
pandas.Series
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( { "group": [1, 1, 2], "int": [1, 2, 3], "float": [4.0, 5.0, 6.0], "string": list("abc"), "category_string": pd.Series(list("abc")).astype("category"), "category_int": [7, 8, 9], "datetime": pd.date_range("20130101", periods=3), "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), "timedelta": pd.timedelta_range("1 s", periods=3, freq="s"), }, columns=[ "group", "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ], ) expected_columns_numeric = Index(["int", "float", "category_int"]) # mean / median expected = pd.DataFrame( { "category_int": [7.5, 9], "float": [4.5, 6.0], "timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")], "int": [1.5, 3], "datetime": [ pd.Timestamp("2013-01-01 12:00:00"), pd.Timestamp("2013-01-03 00:00:00"), ], "datetimetz": [ pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"), pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"), ], }, index=Index([1, 2], name="group"), columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"], ) for attr in ["mean", "median"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index( [ "int", "float", "string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["min", "max"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index( [ "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["first", "last"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "string", "category_int", "timedelta"]) result = df.groupby("group").sum() tm.assert_index_equal(result.columns, expected_columns_numeric) result = df.groupby("group").sum(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int"]) for attr in ["prod", "cumprod"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index( ["int", "float", "category_int", "datetime", "datetimetz", "timedelta"] ) for attr in ["cummin", "cummax"]: result = getattr(df.groupby("group"), attr)() # GH 15561: numeric_only=False set by default like min/max
tm.assert_index_equal(result.columns, expected_columns)
pandas._testing.assert_index_equal
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Yahoo! Finance market data downloader (+fix for Pandas Datareader) # https://github.com/ranaroussi/yfinance # # Copyright 2017-2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import time as _time import datetime as _datetime import requests as _requests import pandas as _pd import numpy as _np try: from urllib.parse import quote as urlencode except ImportError: from urllib import quote as urlencode from . import utils from . import shared class TickerBase(): def __init__(self, ticker): self.ticker = ticker.upper() self._history = None self._base_url = 'https://query1.finance.yahoo.com' self._scrape_url = 'https://finance.yahoo.com/quote' self._fundamentals = False self._info = None self._sustainability = None self._recommendations = None self._major_holders = None self._institutional_holders = None self._mutualfund_holders = None self._isin = None self._calendar = None self._expirations = {} self._earnings = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._financials = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._balancesheet = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} self._cashflow = { "yearly": utils.empty_df(), "quarterly": utils.empty_df()} def history(self, period="1mo", interval="1d", start=None, end=None, prepost=False, actions=True, auto_adjust=True, back_adjust=False, proxy=None, rounding=True, tz=None, **kwargs): """ :Parameters: period : str Valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max Either Use period parameter or use start and end interval : str Valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo Intraday data cannot extend last 60 days start: str Download start date string (YYYY-MM-DD) or _datetime. Default is 1900-01-01 end: str Download end date string (YYYY-MM-DD) or _datetime. Default is now prepost : bool Include Pre and Post market data in results? Default is False auto_adjust: bool Adjust all OHLC automatically? Default is True back_adjust: bool Back-adjusted data to mimic true historical prices proxy: str Optional. Proxy server URL scheme. Default is None rounding: bool Round values to 2 decimal places? Optional. Default is False = precision suggested by Yahoo! tz: str Optional timezone locale for dates. (default data is returned as non-localized dates) **kwargs: dict debug: bool Optional. If passed as False, will suppress error message printing to console. """ if start or period is None or period.lower() == "max": if start is None: start = -2208988800 elif isinstance(start, _datetime.datetime): start = int(_time.mktime(start.timetuple())) else: start = int(_time.mktime( _time.strptime(str(start), '%Y-%m-%d'))) if end is None: end = int(_time.time()) elif isinstance(end, _datetime.datetime): end = int(_time.mktime(end.timetuple())) else: end = int(_time.mktime(_time.strptime(str(end), '%Y-%m-%d'))) params = {"period1": start, "period2": end} else: period = period.lower() params = {"range": period} params["interval"] = interval.lower() params["includePrePost"] = prepost params["events"] = "div,splits" # 1) fix weired bug with Yahoo! - returning 60m for 30m bars if params["interval"] == "30m": params["interval"] = "15m" # setup proxy in requests format if proxy is not None: if isinstance(proxy, dict) and "https" in proxy: proxy = proxy["https"] proxy = {"https": proxy} # Getting data from json url = "{}/v8/finance/chart/{}".format(self._base_url, self.ticker) data = _requests.get(url=url, params=params, proxies=proxy) if "Will be right back" in data.text: raise RuntimeError("*** YAHOO! FINANCE IS CURRENTLY DOWN! ***\n" "Our engineers are working quickly to resolve " "the issue. Thank you for your patience.") data = data.json() # Work with errors debug_mode = True if "debug" in kwargs and isinstance(kwargs["debug"], bool): debug_mode = kwargs["debug"] err_msg = "No data found for this date range, symbol may be delisted" if "chart" in data and data["chart"]["error"]: err_msg = data["chart"]["error"]["description"] shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] if "chart" not in data or data["chart"]["result"] is None or \ not data["chart"]["result"]: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # parse quotes try: quotes = utils.parse_quotes(data["chart"]["result"][0], tz) except Exception: shared._DFS[self.ticker] = utils.empty_df() shared._ERRORS[self.ticker] = err_msg if "many" not in kwargs and debug_mode: print('- %s: %s' % (self.ticker, err_msg)) return shared._DFS[self.ticker] # 2) fix weired bug with Yahoo! - returning 60m for 30m bars if interval.lower() == "30m": quotes2 = quotes.resample('30T') quotes = _pd.DataFrame(index=quotes2.last().index, data={ 'Open': quotes2['Open'].first(), 'High': quotes2['High'].max(), 'Low': quotes2['Low'].min(), 'Close': quotes2['Close'].last(), 'Adj Close': quotes2['Adj Close'].last(), 'Volume': quotes2['Volume'].sum() }) try: quotes['Dividends'] = quotes2['Dividends'].max() except Exception: pass try: quotes['Stock Splits'] = quotes2['Dividends'].max() except Exception: pass if auto_adjust: quotes = utils.auto_adjust(quotes) elif back_adjust: quotes = utils.back_adjust(quotes) if rounding: quotes = _np.round(quotes, data[ "chart"]["result"][0]["meta"]["priceHint"]) quotes['Volume'] = quotes['Volume'].fillna(0).astype(_np.int64) quotes.dropna(inplace=True) # actions dividends, splits = utils.parse_actions(data["chart"]["result"][0], tz) # combine df = _pd.concat([quotes, dividends, splits], axis=1, sort=True) df["Dividends"].fillna(0, inplace=True) df["Stock Splits"].fillna(0, inplace=True) # index eod/intraday df.index = df.index.tz_localize("UTC").tz_convert( data["chart"]["result"][0]["meta"]["exchangeTimezoneName"]) if params["interval"][-1] in {"m", "h"}: df.index.name = "Datetime" else: df.index = _pd.to_datetime(df.index.date) if tz is not None: df.index = df.index.tz_localize(tz) df.index.name = "Date" self._history = df.copy() if not actions: df.drop(columns=["Dividends", "Stock Splits"], inplace=True) return df # ------------------------ def _get_fundamentals(self, kind=None, proxy=None): def cleanup(data): df =
_pd.DataFrame(data)
pandas.DataFrame
#!/bin/env python # coding=utf8 import os import sys import json import functools import gzip from collections import defaultdict from itertools import groupby import numpy as np import pandas as pd import subprocess from scipy.io import mmwrite from scipy.sparse import csr_matrix, coo_matrix import pysam from celescope.tools.utils import format_number, log, gene_convert, glob_genomeDir from celescope.tools.report import reporter toolsdir = os.path.dirname(__file__) def report_prepare(count_file, downsample_file, outdir): json_file = outdir + '/.data.json' if not os.path.exists(json_file): data = {} else: fh = open(json_file) data = json.load(fh) fh.close() df0 = pd.read_table(downsample_file, header=0) data['percentile'] = df0['percent'].tolist() data['MedianGeneNum'] = df0['median_geneNum'].tolist() data['Saturation'] = df0['saturation'].tolist() #data['count' + '_summary'] = df0.T.values.tolist() df = pd.read_table(count_file, header=0) df = df.sort_values('UMI', ascending=False) data['CB_num'] = df[df['mark'] == 'CB'].shape[0] data['Cells'] = list(df.loc[df['mark'] == 'CB', 'UMI']) data['UB_num'] = df[df['mark'] == 'UB'].shape[0] data['Background'] = list(df.loc[df['mark'] == 'UB', 'UMI']) data['umi_summary'] = True with open(json_file, 'w') as fh: json.dump(data, fh) def hd(x, y): return len([i for i in range(len(x)) if x[i] != y[i]]) def correct_umi(fh1, barcode, gene_umi_dict, percent=0.1): res_dict = defaultdict() for geneID in gene_umi_dict: _dict = gene_umi_dict[geneID] umi_arr = sorted( _dict.keys(), key=lambda x: (_dict[x], x), reverse=True) while True: # break when only one barcode or umi_low/umi_high great than 0.1 if len(umi_arr) == 1: break umi_low = umi_arr.pop() for u in umi_arr: if float(_dict[umi_low]) / _dict[u] > percent: break if hd(umi_low, u) == 1: _dict[u] += _dict[umi_low] del (_dict[umi_low]) break res_dict[geneID] = _dict return res_dict @log def bam2table(bam, detail_file): # 提取bam中相同barcode的reads,统计比对到基因的reads信息 # samfile = pysam.AlignmentFile(bam, "rb") with gzip.open(detail_file, 'wt') as fh1: fh1.write('\t'.join(['Barcode', 'geneID', 'UMI', 'count']) + '\n') # pysam.libcalignedsegment.AlignedSegment # AAACAGGCCAGCGTTAACACGACC_CCTAACGT_A00129:340:HHH72DSXX:2:1353:23276:30843 # 获取read的barcode def keyfunc(x): return x.query_name.split('_', 1)[0] for _, g in groupby(samfile, keyfunc): gene_umi_dict = defaultdict(lambda: defaultdict(int)) for seg in g: (barcode, umi) = seg.query_name.split('_')[:2] if not seg.has_tag('XT'): continue geneID = seg.get_tag('XT') gene_umi_dict[geneID][umi] += 1 res_dict = correct_umi(fh1, barcode, gene_umi_dict) # output for geneID in res_dict: for umi in res_dict[geneID]: fh1.write('%s\t%s\t%s\t%s\n' % (barcode, geneID, umi, res_dict[geneID][umi])) @log def call_cells(df, expected_num, pdf): def num_gt2(x): return
pd.Series.sum(x[x > 1])
pandas.Series.sum
#!/usr/bin/env python3 """ Plotting routines dedicated to time-series or temporal trends """ import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib import cm # import seaborn as sns #-------------------------------------- # Time-Series Plots #-------------------------------------- def OccurancePlot(archive, searchterms, fields=None, alpha=0.2, startdate=None, enddate=None): """ Plots a time-series of occurances of a given set of search terms in the collection as a scatter plot of vertical lines Inputs: archive (obj) : archive.Archive() object searchterms (list) : Terms for which to search. fields (list) : Metadata fields in which to look. Shorthand expected. Default searches through all in config.fields_short. alpha (float) : Alpha of marker face startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. """ # Instantiate figure plt.figure(figsize=(8,len(searchterms)*1.3/3), dpi=200) # Handle colors (tab10 or brg) colors = cm.tab10(np.arange(len(searchterms)) \ / float(len(searchterms))) np.random.shuffle(colors) for ii, term in enumerate(searchterms): # Find filenames with search terms in field sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate=startdate, enddate=enddate) # Plot scatterplot w/ default spacing settings plt.scatter(data['CreateDate'], np.ones(len(data['CreateDate']))*(len(searchterms)-ii), s=400, color=colors[ii], marker='|', alpha=alpha) plt.ylim([0.5, len(searchterms) + 0.5]) plt.yticks(list(range(len(searchterms),0,-1)), searchterms) plt.title('Occurances by Date') return def OccuranceMagnitude(archive, searchterms, fields=None, alpha=0.4, scale=5, startdate=None, enddate=None): """ Plots a scatterplot time-series of occurances of a given set of search terms in the collection, with sizes of each marker reflecting the number of appearances that day Inputs: archive (obj) : archive.Archive() object searchterms (list) : Terms for which to search. fields (list) : Metadata fields in which to look. Shorthand expected. Default searches through all in config.fields_short. alpha (float) : Alpha of marker face scale (int) : Scaling factor to apply to all markers startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. """ # Instantiate figure plt.figure(figsize=(8,len(searchterms)*1.3/3), dpi=300) # Get array of colors from hsv: colors = cm.hsv(np.arange(len(searchterms)) \ / float(len(searchterms))) colors = np.array(colors) colors[:,3] = alpha np.random.shuffle(colors) for ii, term in enumerate(searchterms): # Find filenames with search terms in field sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate=startdate, enddate=enddate) # Count totals by day counts = data['CreateDate'].dt.normalize().value_counts() dates = counts.index.to_series() # Plot scatterplot w/ default spacing settings plt.scatter(dates, np.ones(len(dates))*(len(searchterms)-ii), s=counts*scale, color=colors[ii], marker='o', edgecolors=(0,0,0,1), linewidth=0.5) plt.ylim([0.5, len(searchterms) + 0.5]) plt.yticks(list(range(len(searchterms),0,-1)), searchterms) plt.title('Occurances by Date') return def ViolinPlot(archive, terms, fields, startdate=None, enddate=None, refdate='19800101_000000', palette='Set2', inner='points', scale='area', cut=0, linewidth=0.8): """ Wrapper for the Seaborn violin plot function. For each keyword in terms, find files for which that keyword appears in fields, and plot a violin of occurances by date. Most other attributes are aesthetic adjustments fed into seaborn.violinplots() Inputs: archive (obj) : archive.Archive() object terms (list) : Keywords to search for in Archive, fed into Archive.FindSource() fields (list) : Exif fields in which to search for terms, fed into Archive.FindSource() startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. refdate (str) : Reference date which is used to convert pandas datetime to numeric dates, ideally a value similar to the dates returned from the collection palette, inner, scale, cut, linewidth : See requirements for seaborn.violinplot() """ # Check if Seaborn is available try: import seaborn as sns except ImportError: print("Function unavailable, requires installation of Seaborn") print("Perform full setup for auxilary packages") return sns.set_theme(style="whitegrid") dates = [] refdate = pd.to_datetime(refdate, format="%Y%m%d_%H%M%S") for n, term in enumerate(terms): # Create a random dataset across several variables sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate, enddate) # Convert to numeric date data['epoch'] = (data['CreateDate']-refdate)//pd.Timedelta("1d") # Save to list dates.append(data['epoch']/365.0 + refdate.year) # Append all the dates into a new dataframe df =
pd.concat(dates, axis=1, keys=terms)
pandas.concat
import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt plt.style.use("./Styles/Scientific.mplstyle") import numpy as np import pandas as pd from plotting import plot_3D_scatter def get_features(data): features = {} for key, values in data.items(): timestamps, counts = np.unique(values["Timestamp"], return_counts=True) features[key] = np.array([timestamps, counts]).T return features def get_octaves(data): octaves = pd.DataFrame() for index, (key, values) in enumerate(data.items()): octave, counts = np.unique(values["Octave"], return_counts=True) octaves.insert(index, key, counts) return octaves def feature_plot(features, xlims, ylims): fig, ax = plt.subplots(figsize=(7, 2.0)) for key, value in features.items(): ax.plot(value[:, 0], value[:, 1], label=key) ax.set_xlabel("Time [s]") ax.set_ylabel("Num. of features [-]") ax.set_ylim(ylims) ax.set_xlim(xlims) lg = fig.legend(bbox_to_anchor=(0.69, 1.0), loc="upper center", \ frameon=True, fancybox=False, ncol=3) fr = lg.get_frame() fr.set_edgecolor("black") fr.set_facecolor("white") fig.subplots_adjust(left=0.10, right=0.975, top=0.75, bottom=0.17, \ wspace=0.2, hspace=0.675) return fig def octave_plot(octave_data): # Octave distribution. margin = 0.4 lefts, rights, centers = [], [], [] fig, ax = plt.subplots(figsize=(7, 2.5)) for index, method in enumerate(octave_data): counts = octave_data[method] fracs = counts / max(counts) levels = np.arange(1, len(counts)+1) center = (1.0 + margin) * index left = center - 0.5 right = center + 0.5 lefts.append(left) centers.append(center) rights.append(right) ax.barh(levels, fracs, left=-fracs/2+center, height=0.8, color="b", \ label=method) ax.set_ylabel("Image Pyramid Level [-]") ax.set_yticks([1, 2, 3, 4, 5, 6, 7, 8], minor=False) ax.set_yticklabels([1, 2, 3, 4, 5, 6, 7, 8]) ax.set_xticks(centers, minor=False) ax.set_xlim([lefts[0]-margin, rights[-1]+margin]) ax.set_xticklabels([col for col in octave_data.columns]) fig.tight_layout() return fig def main(): directory = "/home/martin/dev/Trajectory/Data/SLAM/" time_lims = [ 1611313305.76, 1611313730 ] paths = {} paths["Raw"] = directory + "RAW-Keypoint-Statistics.csv" paths["BLF"] = directory + "BLF-Keypoint-Statistics.csv" paths["HE"] = directory + "HE-Keypoint-Statistics.csv" paths["CLAHE"] = directory + "CLAHE-Keypoint-Statistics.csv" paths["UIENet"] = directory + "UIENet-Keypoint-Statistics.csv" data = {} data["Raw"] =
pd.read_csv(paths["Raw"])
pandas.read_csv
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [np.nan, -0.5, -1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [np.nan, 0.5, 1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # chain e = pd.Series([True, True, True, True, True, True]) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, True])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, entry_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, False, True])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) # until_next and pick_first e2 = pd.Series([True, True, True, True, True, True]) t2 = pd.Series([6, 5, 4, 3, 2, 1]).astype(np.float64) ex = e2.vbt.signals.generate_stop_exits(t2, -0.1, until_next=False, pick_first=False) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, True, True, True, True, True])) ) def test_generate_ohlc_stop_exits(self): with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=-0.1) with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=-0.1) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1, reverse=True) ) def _test_ohlc_stop_exits(**kwargs): out_dict = {'stop_price': np.nan, 'stop_type': -1} result = mask.vbt.signals.generate_ohlc_stop_exits( price['open'], price['high'], price['low'], price['close'], out_dict=out_dict, **kwargs ) if isinstance(result, tuple): _, ex = result else: ex = result return result, out_dict['stop_price'], out_dict['stop_type'] ex, stop_price, stop_type = _test_ohlc_stop_exits() pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, 0], [0, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 11.7, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, 1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=[np.nan, 0.1, 0.2], sl_trail=True, tp_stop=[np.nan, 0.1, 0.2]) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, True, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 9.6] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, 1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1, exit_wait=0) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [9.0, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 11.7], [10.8, 9.0, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, 1, -1] ]), index=mask.index, columns=mask.columns) ) (en, ex), stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=0.1, sl_trail=True, tp_stop=0.1, chain=True) pd.testing.assert_frame_equal( en, pd.DataFrame(np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) def test_between_ranges(self): ranges = mask.vbt.signals.between_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 0, 3, 1), (1, 1, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask.vbt.wrapper mask2 = pd.DataFrame([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [False, False, False] ], index=mask.index, columns=mask.columns) other_mask = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [False, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_ranges(other=other_mask) record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 1, 1, 1), (2, 1, 0, 2, 1), (3, 1, 1, 2, 1), (4, 2, 0, 3, 1), (5, 2, 1, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper ranges = mask2.vbt.signals.between_ranges(other=other_mask, from_other=True) record_arrays_close( ranges.values, np.array([ (0, 0, 1, 1, 1), (1, 0, 1, 2, 1), (2, 1, 1, 2, 1), (3, 1, 1, 3, 1), (4, 2, 1, 3, 1), (5, 2, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_partition_ranges(self): mask2 = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [True, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 0, 4, 4, 0), (2, 1, 2, 4, 1), (3, 2, 3, 4, 0) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_between_partition_ranges(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 1, 2, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.pos_rank(), pd.Series([-1, 0, 1, -1, 0], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 2, 2], [2, -1, 3] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask['a'], allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 0, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask, allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) def test_partition_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.partition_pos_rank(), pd.Series([-1, 0, 0, -1, 1], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 1, 1], [1, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [0, 0, -1], [-1, 0, 0], [1, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask['a']), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_fns(self): pd.testing.assert_frame_equal( (~mask).vbt.signals.first(), pd.DataFrame( np.array([ [False, True, True], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(1), pd.DataFrame( np.array([ [False, False, False], [False, False, True], [True, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(2), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.from_nth(0), pd.DataFrame( np.array([ [False, True, True], [True, False, True], [True, True, False], [False, True, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 1, 0, 0, 1, 0, 0, 1]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_partition_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.partition_pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 0, 1, 0, 0, 1, 0, 0]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_nth_index(self): assert mask['a'].vbt.signals.nth_index(0) == pd.Timestamp('2020-01-01 00:00:00') pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1), pd.Series([ pd.Timestamp('2020-01-04 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-2), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), np.nan ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) def test_norm_avg_index(self): assert mask['a'].vbt.signals.norm_avg_index() == -0.25 pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(), pd.Series([-0.25, 0.25, 0.0], index=mask.columns, name='norm_avg_index') ) pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(group_by=group_by), pd.Series([0.0, 0.0], index=['g1', 'g2'], name='norm_avg_index') ) def test_index_mapped(self): mapped = mask.vbt.signals.index_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 3, 1, 4, 2]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 1, 1, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 3, 1, 4, 2]) ) assert mapped.wrapper == mask.vbt.wrapper def test_total(self): assert mask['a'].vbt.signals.total() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total(), pd.Series([2, 2, 1], index=mask.columns, name='total') ) pd.testing.assert_series_equal( mask.vbt.signals.total(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total') ) def test_rate(self): assert mask['a'].vbt.signals.rate() == 0.4 pd.testing.assert_series_equal( mask.vbt.signals.rate(), pd.Series([0.4, 0.4, 0.2], index=mask.columns, name='rate') ) pd.testing.assert_series_equal( mask.vbt.signals.rate(group_by=group_by), pd.Series([0.4, 0.2], index=['g1', 'g2'], name='rate') ) def test_total_partitions(self): assert mask['a'].vbt.signals.total_partitions() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(), pd.Series([2, 2, 1], index=mask.columns, name='total_partitions') ) pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total_partitions') ) def test_partition_rate(self): assert mask['a'].vbt.signals.partition_rate() == 1.0 pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(), pd.Series([1.0, 1.0, 1.0], index=mask.columns, name='partition_rate') ) pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(group_by=group_by), pd.Series([1.0, 1.0], index=['g1', 'g2'], name='partition_rate') ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance: Min', 'Distance: Max', 'Distance: Mean', 'Distance: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object') pd.testing.assert_series_equal( mask.vbt.signals.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 1.6666666666666667, 33.333333333333336, pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 1.6666666666666667, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'),
pd.Timedelta('3 days 00:00:00')
pandas.Timedelta
""" Module of utility methods. """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import re import os import sys import time import pickle import random import scipy.sparse import numpy as np import pandas as pd import xgboost as xgb import lightgbm as lgb import termcolor import sklearn.metrics as sm from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import PredefinedSplit from sklearn.model_selection import GridSearchCV class Util: def __init__(self): self.noise_limit = 0.000025 self.timer = [] self.dirs = [] # public def check_file(self, file): """Checks to see if the file exists file: path of the file. Returns True if it exists, exits the application if not.""" if os.path.exists(file): return True else: self.exit('cannot read ' + file) def clean_msg(self, msg): """Utility function to clean msg text by removing links, special characters using simple regex statements.""" return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|\ (\w+:\/\/\S+)", " ", msg).split()) def close_writer(self, sw): """Closes a file writer. sw: file writer object.""" sw.close() def colorize(self, string, color, display): """Gives the string the specified color if there is a display. string: string to colorize. color: color to give the string. display: boolean indicating if the application is run on a consolde. Returns a colorized string if there is a display, string otherwise.""" s = string if display: s = termcolor.colored(string, color) return s def create_dirs(self, path): """Creates all directories in path that doesn't already exist. path: str, directory to create.""" if not os.path.exists(path): os.makedirs(path) def div0(self, num, denom): """Divide operation that deals with a 0 value denominator. num: numerator. denom: denominator. Returns 0.0 if the denominator is 0, otherwise returns a float.""" return 0.0 if denom == 0 else float(num) / denom def end(self, message='', fw=None): """Pop a start time and take the time difference from now. message: message to print.""" unit = 's' elapsed = time.time() - self.timer.pop() if elapsed >= 60: elapsed /= 60 unit = 'm' s = message + '%.2f' + unit + '\n' if fw is not None: fw.write(s % (elapsed)) else: self.out(s % (elapsed)) def evaluate(self, data, test_probs): """Evaluates the predictions against the true labels. data: tuple including test set labels and ids. test_probs: predictions to evaluate.""" x, y, ids, feat_names = data if y is not None: t1 = self.out('evaluating...') auroc, aupr, p, r, mp, mr, t = self.compute_scores(test_probs, y) self.time(t1) self.print_scores(mp, mr, t, aupr, auroc) self.print_median_mean(ids, test_probs, y) def exit(self, message='Unexpected error occurred!'): """Convenience method to fail gracefully. message: messaage to display to the user as to the error.""" self.out(message) self.out('exiting...') exit(0) def file_len(self, fname): """Counts the number of lines in a file. fname: path of the file. Returns the number of lines in the specified file.""" lines = 0 f = open(fname, 'r') lines = len(f.readlines()) f.close() return lines def gen_noise(self, pred): """Returns a prediction with some noise added to it. pred: predicion (e.g. value between 0.0 and 1.0). Returns predictions with noise.""" noise = random.uniform(-self.noise_limit, self.noise_limit) result = max(0.0, min(1.0, pred + noise)) return result def get_comments_filename(self, modified): """Chooses the correct comments file to read modified: Boolean indicating to read the modified comments file. Returns the name of the appropriate comments file.""" filename = 'comments.csv' if modified: filename = 'modified.csv' return filename def load(self, filename): """Loads a binary pickled object. filename: path of the file. Returns loaded object.""" if self.check_file(filename): with open(filename, 'rb') as f: obj = pickle.load(f) return obj def load_sparse(self, filename): """Loads a sparse matrix object. filename: path to the sparse matrix object file. Returns sparse matrix object.""" matrix = scipy.sparse.load_npz(filename) return matrix def mean(self, numbers): """Computes the mean for a list of numbers. numbers: list of numbers. Returns mean as a float.""" return np.mean(numbers) def out(self, message='', newline=1): """Custom print method to print multiple times on one line. message: string to print immediately.""" msg = '\n' + message if newline == 1 else message sys.stdout.write(msg) sys.stdout.flush() return time.time() def open_writer(self, name, mode='w'): f = open(name, mode) return f def percent(self, num, denom): """Turns fraction into a percent. num: numerator. denom: denominator. Returns float in percent form.""" return self.div0(num, denom) * 100.0 def plot_features(self, model, classifier, features, fname, save=True): """Plots relative feature importance. model: fitted model. classifier: specific model. features: list of feature names. fname: filename of where to store the plot. save: boolean of whether the plot should be saved.""" if classifier == 'lr': feat_importance = model.coef_[0] elif classifier == 'rf' or classifier == 'lgb': feat_importance = model.feature_importances_ elif classifier == 'xgb': try: ax = xgb.plot_importance(model._Booster) labels = ax.get_yticklabels() indices = [int(x.get_text().replace('f', '')) for x in labels] yticks = [features[ndx] for ndx in indices] ax.set_yticklabels(yticks) plt.savefig(fname + '_feats.png', bbox_inches='tight') plt.close('all') except ValueError: self.out('error plotting xgb feature importances...') return # normalize and rearrange features feat_norm = feat_importance / feat_importance.sum() sorted_idx = np.argsort(feat_norm) pos = np.arange(sorted_idx.shape[0]) + 0.5 # [0.5, 1.5, ...] feat_importance_sort = feat_norm[sorted_idx] feat_sort = np.asanyarray(features)[sorted_idx] # plot relative feature importance color = '#7A68A6' plt.figure(figsize=(12, 12)) plt.barh(pos, feat_importance_sort, align='center', color=color) plt.yticks(pos, feat_sort) plt.xlabel('Relative Importance') plt.title('Feature Importance') plt.savefig(fname + '_feats.pdf', bbox_inches='tight', format='pdf') plt.close('all') def plot_pr_curve(self, model, fname, rec, prec, aupr, title='', line='-', save=False, show_legend=False, show_grid=False, more_ticks=False): """Plots a precision-recall curve. model: name of the model. fname: filename to save the plot. rec: recalls from the aupr. prec: precisions from the aupr. aupr: area under the pr curve. title: title of the plot. line: shape used to draw the curve. save: boolean specifying whether to save the plot.""" self.set_plot_rc() # if ax is None: # fig, ax = plt.subplots() plt.figure(2) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.title(title, fontsize=22) plt.xlabel('Recall', fontsize=22) plt.ylabel('Precision', fontsize=22) plt.tick_params(axis='both', labelsize=18) # else: # plt.figure(2) plt.plot(rec, prec, line, label=model + ' = %0.3f' % aupr) if show_legend: plt.legend(loc='lower left', prop={'size': 6}) if show_grid: ax = plt.gca() ax.grid(b=True, which='major', color='#E5DCDA', linestyle='-') if more_ticks: plt.yticks(np.arange(0.0, 1.01, 0.1)) plt.xticks(np.arange(0.0, 1.01, 0.1), rotation=70) if save: plt.savefig(fname + '.pdf', bbox_inches='tight', format='pdf') plt.clf() plt.close('all') def print_stats(self, df, r_df, relation, dset, fw=None): """Prints information about a relationship in the data. df: comments dataframe. r_df: df containing number of times relationship occurred. relation: name of relation (e.g. posts). dset: dataset (e.g. 'val' or 'test').""" spam = r_df['label'].sum() out_str = '\n\t[' + dset + '] ' + relation + ': >1: ' + str(len(r_df)) out_str += ', spam: ' + str(spam) self.write(out_str, fw=fw) def pushd(self, dir): curd = os.getcwd() self.dirs.append(curd) os.chdir(dir) def popd(self): os.chdir(self.dirs.pop()) def read_csv(self, filename): """Safe read for pandas dataframes. filename: path to data file. Returns dataframe if the file exists, None otherwise.""" result = None if os.path.exists(filename): result = pd.read_csv(filename) return result def save(self, obj, filename): """Pickles an object to a binary file. obj: object to pickle. filename: path of the file.""" with open(filename, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def save_sparse(self, matrix, filename): """Saves a sparse matrix object to a file. matrix: sparse matrix object. filename: path to the file to save the object to.""" scipy.sparse.save_npz(filename, matrix) def set_noise_limit(self, noise_limit): """Setter for noise_limit.""" self.noise_limit = noise_limit def start(self, message='', fw=None): """Pushes a start time onto a stack and print a specified message. message: message to print.""" self.write(message=message, fw=fw) self.timer.append(time.time()) def test(self, data, model, fsets=['all']): """Tests data using a trained model. data: tuple including data to classify. model: trained model. Returns predictions and ids associated with those predictions.""" x, y, ids, feat_names = data if type(model) == xgb.XGBClassifier and \ any(x in fsets for x in ['ngrams', 'all']): x = x.tocsc() # bug in xgb, turn on when stacking is on. t1 = self.out('testing...') if type(model) == lgb.LGBMClassifier: ys = model.predict_proba(x, num_iteration=model.best_iteration_) else: ys = model.predict_proba(x) self.time(t1) return ys, ids def time(self, t): """Write time based on suffix.""" elapsed = time.time() - t if elapsed < 60: suffix = 's' elif elapsed < 3600: suffix = 'm' else: suffix = 'h' if suffix == 'm': elapsed /= 60.0 elif suffix == 'h': elapsed /= 3600.0 self.out('%.2f%s' % (elapsed, suffix), 0) def train(self, data, clf='rf', param_search='single', tune_size=0.15, scoring='roc_auc', n_jobs=1, verbose=1): """Trains a classifier with the specified training data. data: tuple including training data. clf: string of {'rf' 'lr', 'xgb'}. Returns trained classifier.""" x_train, y_train, _, features = data if param_search == 'single' or tune_size == 0: model, params = self.classifier(clf, param_search='single') model.set_params(**params) elif tune_size > 0: t1 = self.out('tuning...') model, params = self.classifier(clf, param_search=param_search) train_len = x_train.shape[0] split_ndx = train_len - int(train_len * tune_size) sm_x_train, x_val = x_train[:split_ndx], x_train[split_ndx:] sm_train_fold = np.full(sm_x_train.shape[0], -1) val_fold = np.full(x_val.shape[0], 0) predefined_fold = np.append(sm_train_fold, val_fold) ps = PredefinedSplit(predefined_fold) cv = ps.split(x_train, y_train) m = GridSearchCV(model, params, scoring=scoring, cv=cv, verbose=verbose, n_jobs=n_jobs) m.fit(x_train, y_train) model = m.best_estimator_ self.time(t1) t1 = self.out('training...') if clf == 'lgb': cat_feat = ['app', 'device', 'os', 'channel', 'hour'] cat_feat_ndx = [features.index(x) for x in cat_feat] train_len = x_train.shape[0] split_ndx = train_len - int(train_len * tune_size) sm_x_train, x_val = x_train[:split_ndx], x_train[split_ndx:] sm_y_train, y_val = y_train[:split_ndx], y_train[split_ndx:] eval_set = (x_val, y_val) model = model.fit(sm_x_train, sm_y_train, eval_set=eval_set, early_stopping_rounds=50, eval_metric='auc', categorical_feature=cat_feat_ndx) else: model = model.fit(x_train, y_train) self.time(t1) self.out(str(model)) return model def write(self, message='', fw=None): if fw is not None: fw.write(message) else: self.out(message) def classifier(self, classifier='rf', param_search='single'): """ Defines model and parameters to tune. Parameters ---------- classifier : str, {'rf', 'xgb', 'lr1', 'lr2'}, default: 'rf' Type of model to define. param_search : str, {'low', 'med', 'high'}, default: 'low' Level of parameters to tune. input_dim : int, default = 0 Number of features input to the model. Returns ------- Defined model and dictionary of parameters to tune. """ if classifier == 'lr': clf = LogisticRegression() high = [{'penalty': ['l1', 'l2'], 'C': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 50.0, 100.0, 500.0, 1000.0], 'solver': ['liblinear']}, {'penalty': ['l2'], 'C': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 10.0, 50.0, 100.0, 500.0, 1000.0], 'solver': ['newton-cg']}] med = [{'penalty': ['l1', 'l2'], 'C': [0.0001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0], 'solver': ['liblinear']}, {'penalty': ['l2'], 'C': [0.0001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0], 'solver': ['newton-cg']}] low = {'penalty': ['l2'], 'C': [0.0001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0], 'solver': ['liblinear'], 'class_weight': ['balanced']}, single = {'penalty': 'l2', 'C': 1000.0, 'solver': 'liblinear', 'class_weight': 'balanced'} elif classifier == 'rf': clf = RandomForestClassifier() high = {'n_estimators': [10, 100, 1000], 'max_depth': [None, 2, 4]} med = {'n_estimators': [1000], 'max_depth': [None, 2]} low = {'n_estimators': [1000], 'max_depth': [None]} single = {'n_estimators': 100, 'max_depth': 4} elif classifier == 'lgb': clf = lgb.LGBMClassifier() high = {'max_depth': [3, 4, 6], 'n_estimators': [100, 1000], 'learning_rate': [0.3, 0.1, 0.05, 0.01, 0.005, 0.001], 'subsample': [0.8, 0.9, 1.0], 'colsample_bytree': [0.8, 0.9, 1.0]} med = {'max_depth': [4, 6], 'n_estimators': [10, 100, 1000], 'learning_rate': [0.005, 0.05, 0.1], 'subsample': [0.9, 1.0], 'colsample_bytree': [1.0]} low = {'max_depth': [4], 'boosting_type': ['gbdt'], 'n_estimators': [1500], 'subsample': [0.7], 'num_leaves': [7], 'colsample_bytree': [0.7, 0.9], 'min_child_samples': [100], 'max_bin': [100], 'learning_rate': [0.1, 0.2], 'min_child_weight': [0.0], 'scale_pos_weight': [500], 'verbose': [-1]} single = {'max_depth': 4, 'n_estimators': 1500, 'learning_rate': 0.1, 'scale_pos_weight': 500, 'num_leaves': 7, 'min_child_samples': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'min_child_weight': 0.0, 'verbose': -1} # single = {'max_depth': 4, 'n_estimators': 1500, # not adclicks # 'learning_rate': 0.1, 'scale_pos_weight': 500, # 'num_leaves': 7, 'min_child_samples': 20, # 'subsample': 0.7, 'colsample_bytree': 0.7, # 'min_child_weight': 0.0, 'verbose': -1} elif classifier == 'xgb': clf = xgb.XGBClassifier() high = {'max_depth': [3, 4, 6], 'n_estimators': [100, 1000], 'learning_rate': [0.3, 0.1, 0.05, 0.01, 0.005, 0.001], 'subsample': [0.8, 0.9, 1.0], 'colsample_bytree': [0.8, 0.9, 1.0]} med = {'max_depth': [4, 6], 'n_estimators': [10, 100, 1000], 'learning_rate': [0.005, 0.05, 0.1], 'subsample': [0.9, 1.0], 'colsample_bytree': [1.0]} low = {'max_depth': [6], 'n_estimators': [1000], 'learning_rate': [0.05], 'subsample': [0.9], 'colsample_bytree': [1.0]} single = {'max_depth': 4, 'n_estimators': 100, 'learning_rate': 0.1, 'subsample': 1.0, 'colsample_bytree': 1.0, 'scale_pos_weight': 500} param_dict = {'high': high, 'med': med, 'low': low, 'single': single} param_grid = param_dict[param_search] return (clf, param_grid) def compute_scores(self, probs, y): """Generates noisy predictions and computes various metrics. probs: predictions, shape=(2, <num_instances>). y: list of true labels. report: file to write performance to. dset: dataset (e.g. 'train', 'val', 'test'). Returns auroc, aupr, recalls, precisions, max precision, max recall, and threshold where those max values take place.""" prob_preds_noise = [self.gen_noise(pred) for pred in probs[:, 1]] fpr, tpr, tholds = sm.roc_curve(y, prob_preds_noise) prec, rec, tholds = sm.precision_recall_curve(y, prob_preds_noise) aupr = sm.average_precision_score(y, prob_preds_noise) auroc = sm.auc(fpr, tpr) max_p, max_r, thold = self.find_max_prec_recall(prec, rec, tholds) return auroc, aupr, prec, rec, max_p, max_r, thold def find_max_prec_recall(self, prec, rec, tholds): """Finds the precision and recall scores with the maximum amount of area and returns their values, including the threshold. prec: list of precisions from the pr curve. rec: list of recalls from the pr curve. tholds: list of thresholds from the pr curve. Returns max precision and recall scores, including their threshold.""" max_val, max_prec, max_rec, max_thold = -1, -1, -1, -1 if len(tholds) > 1: for i in range(len(prec)): val = prec[i] * rec[i] if val > max_val: max_val = val max_thold = tholds[i] max_prec = prec[i] max_rec = rec[i] return max_prec, max_rec, max_thold def save_preds(self, probs, ids, fold, pred_f, dset, eval='cc'): """Save predictions to a specified file. probs: array of binary predictions; shape=(2, <num_instances>). ids: list of identifiers for the data instances. pred_f: folder to save predictions to. dset: dataset (e.g. 'train', 'val', 'test').""" columns = ['com_id', 'ind_pred'] fname = dset + '_' + fold + '_preds' t1 = self.out('saving predictions...') preds = list(zip(ids, probs[:, 1])) preds_df =
pd.DataFrame(preds, columns=columns)
pandas.DataFrame
from matplotlib import pyplot as plt import matplotlib.ticker as mticker from matplotlib import patches import matplotlib SMALL_SIZE = 10 MEDIUM_SIZE = 12 BIGGER_SIZE = 14 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title from os.path import join import pandas as pd import seaborn as sns import re import numpy as np # define log csv data and dataset parameters not available in csvs analysis_dir = './data/analysis' # dir to save plots to points_to_label_per_al_iter = 20 train_set_size = 949 fp_baseline = "data/_analysis/R6-20190315T030959.log/logdata.csv" # fp_medal = "data/_analysis/RM6-20190319T005512.log/logdata.csv" fp_medal_patience10 = "data/_analysis/RM6e-20190324T140934.log/logdata.csv" fp_medal_patience20 = "data/_analysis/RM6g-20190406T222759.log/logdata.csv" fps_varying_online_frac = [ # stored in dfo # "data/_analysis/RMO6-0d-20190323T003224.log/logdata.csv", "data/_analysis/RMO6-12.5d-20190322T142710.log/logdata.csv", # "data/_analysis/RMO6-25d-20190323T152428.log/logdata.csv", # "data/_analysis/RMO6-37.5d-20190322T051602.log/logdata.csv", # "data/_analysis/RMO6-50d-20190323T030509.log/logdata.csv", # "data/_analysis/RMO6-62.5d-20190322T092309.log/logdata.csv", # "data/_analysis/RMO6-75d-20190323T185418.log/logdata.csv", "data/_analysis/RMO6-87.5d-20190322T173655.log/logdata.csv", # "data/_analysis/RMO6-100d-20190323T082726.log/logdata.csv", ] fps_omedal_patience = { # "p=0.875, 20 epoch": "data/_analysis/RMO6-87.5-20epoch-20191005T215029.log/logdata.csv", "p=0.875, patience=05": "data/_analysis/RMO6-87.5-5patience-20191005T215029.log/logdata.csv", "p=0.875, patience=10": "data/_analysis/RMO6-87.5-10patience-20191006T004721.log/logdata.csv", "p=0.875, patience=20": "data/_analysis/RMO6-87.5-20patience-20191006T133459.log/logdata.csv", "p=0.125, patience=05": "data/_analysis/RMO6-12.5-5patience-20191007T054951.log/logdata.csv", # "p=0.125, patience=10": "data/_analysis/RMO6-12.5-10patience-20191007T054951.log/logdata.csv", # "p=0.125, patience=20": "data/_analysis/RMO6-12.5-20patience-20191007T020901.log/logdata.csv", # 'p=0.125, patience=05b': 'data/_analysis/RMO6-12.5-5patienceb-20191009T184359.log/logdata.csv', # 'p=0.125, patience=05c': 'data/_analysis/RMO6-12.5-5patiencec-20191009T184359.log/logdata.csv', # "p=0.875, patience=05b": "data/_analysis/RMO6-87.5-5patience-b-20191009T221911.log/logdata.csv", # "p=0.875, patience=05c": "data/_analysis/RMO6-87.5-5patience-c-20191009T221911.log/logdata.csv", # "p=0.875, patience=30": "data/_analysis/RMO6-87.5-30patience-20191010T141916.log/logdata.csv", # "p=0.875, patience=40": "data/_analysis/RMO6-87.5-40patience-20191010T005839.log/logdata.csv", # "p=0.125, vpf9": "data/_analysis/RMO6-12.5-vpf9-20191010T020718.log/logdata.csv", # "p=0.125, patience=05 vpf9": "data/_analysis/RMO6-12.5-5patience-vpf9-20191010T022128.log/logdata.csv", } def get_train_frac(fp): return str(float(re.sub(r'.*RMO6-([\d\.]+).?-.*', r'\1', fp)) * .01) # load the data dfb = pd.read_csv(fp_baseline).query('perf').sort_values('epoch').set_index('epoch') dfm20 = pd.read_csv(fp_medal_patience20).query('perf').sort_values(['al_iter', 'epoch']) dfm10 =
pd.read_csv(fp_medal_patience10)
pandas.read_csv
import pandas as pd import numpy as np from math import sqrt from sklearn.model_selection import train_test_split from sklearn.preprocessing import Imputer from sklearn.preprocessing import OneHotEncoder from sklearn.pipeline import make_pipeline from sklearn.metrics import mean_squared_error from xgboost import XGBRegressor def get_predictions(): data = pd.read_csv('https://drive.google.com/uc?export=download&id=1ibgtR07ULjL2Mf7YCiOl4mL1zxxDUNWW') y = data.SalePrice x = data.drop('SalePrice', axis=1) train_X, test_X, train_y, test_y = train_test_split(x, y) my_pipeline = make_pipeline(Imputer(), XGBRegressor()) train_X = pd.get_dummies(train_X) test_X = pd.get_dummies(test_X) train_X, test_X = train_X.align(test_X, join='left', axis=1) my_pipeline.fit(train_X, train_y) predictions = my_pipeline.predict(test_X) print(np.mean(np.abs(predictions-test_y))) def get_submission(): train_data = pd.read_csv('https://drive.google.com/uc?export=download&id=1ibgtR07ULjL2Mf7YCiOl4mL1zxxDUNWW') train_y = train_data.SalePrice train_x = train_data.drop('SalePrice', axis=1) test_x = pd.read_csv('https://drive.google.com/uc?export=download&id=1cmqIDhq9xn_5kv-ERbn-HkMVzg7tdG5v') my_pipeline = make_pipeline(Imputer(), XGBRegressor()) train_x =
pd.get_dummies(train_x)
pandas.get_dummies
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected =
pd.period_range('2014-04-28', '2014-05-12', freq='D')
pandas.period_range
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import gzip import os import re import shutil from collections import OrderedDict from io import BytesIO, StringIO from pathlib import Path import numpy as np import pandas as pd import pytest import cudf from cudf import read_csv from cudf.tests.utils import assert_eq, assert_exceptions_equal def make_numeric_dataframe(nrows, dtype): df = pd.DataFrame() df["col1"] = np.arange(nrows, dtype=dtype) df["col2"] = np.arange(1, 1 + nrows, dtype=dtype) return df def make_datetime_dataframe(include_non_standard=False): df = pd.DataFrame() df["col1"] = np.array( [ "31/10/2010", "05/03/2001", "20/10/1994", "18/10/1990", "1/1/1970", "2016-04-30T01:02:03.000", "2038-01-19 03:14:07", ] ) df["col2"] = np.array( [ "18/04/1995", "14 / 07 / 1994", "07/06/2006", "16/09/2005", "2/2/1970", "2007-4-30 1:6:40.000PM", "2038-01-19 03:14:08", ] ) if include_non_standard: # Last column contains non-standard date formats df["col3"] = np.array( [ "1 Jan", "2 January 1994", "Feb 2002", "31-01-2000", "1-1-1996", "15-May-2009", "21-Dec-3262", ] ) return df def make_numpy_mixed_dataframe(): df = pd.DataFrame() df["Integer"] = np.array([2345, 11987, 9027, 9027]) df["Date"] = np.array( ["18/04/1995", "14/07/1994", "07/06/2006", "16/09/2005"] ) df["Float"] = np.array([9.001, 8.343, 6, 2.781]) df["Integer2"] = np.array([2345, 106, 2088, 789277]) # Category is not yet supported from libcudf # df["Category"] = np.array(["M", "F", "F", "F"]) df["String"] = np.array(["Alpha", "Beta", "Gamma", "Delta"]) df["Boolean"] = np.array([True, False, True, False]) return df @pytest.fixture def pd_mixed_dataframe(): return make_numpy_mixed_dataframe() @pytest.fixture def cudf_mixed_dataframe(): return cudf.from_pandas(make_numpy_mixed_dataframe()) def make_all_numeric_dataframe(): df = pd.DataFrame() gdf_dtypes = [ "float", "float32", "double", "float64", "int8", "short", "int16", "int", "int32", "long", "int64", "uint8", "uint16", "uint32", "uint64", ] np_dtypes = [ np.float32, np.float32, np.float64, np.float64, np.int8, np.int16, np.int16, np.int32, np.int32, np.int64, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, ] for i in range(len(gdf_dtypes)): df[gdf_dtypes[i]] = np.arange(10, dtype=np_dtypes[i]) return ( df, OrderedDict(zip(gdf_dtypes, gdf_dtypes)), OrderedDict(zip(gdf_dtypes, np_dtypes)), ) def make_all_numeric_extremes_dataframe(): # integers 0,+1,-1,min,max # float 0.0, -0.0,+1,-1,min,max, nan, esp, espneg, tiny, [-ve values] df, gdf_dtypes, pdf_dtypes = make_all_numeric_dataframe() df = pd.DataFrame() for gdf_dtype in gdf_dtypes: np_type = pdf_dtypes[gdf_dtype] if np.issubdtype(np_type, np.integer): itype = np.iinfo(np_type) extremes = [0, +1, -1, itype.min, itype.max] df[gdf_dtype] = np.array(extremes * 4, dtype=np_type)[:20] else: ftype = np.finfo(np_type) extremes = [ 0.0, -0.0, +1, -1, np.nan, -np.nan, # ftype.min, # TODO enable after fixing truncation issue #6235 # ftype.max, # TODO enable after fixing truncation issue #6235 np_type(np.inf), -np_type(np.inf), ftype.eps, ftype.epsneg, ftype.tiny, -ftype.eps, -ftype.epsneg, -ftype.tiny, ] df[gdf_dtype] = np.array(extremes * 4, dtype=np_type)[:20] return ( df, gdf_dtypes, pdf_dtypes, ) @pytest.fixture def path_or_buf(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_path_or_buf.csv") df = make_numeric_dataframe(10, np.int32) df.to_csv(fname, index=False, header=False) buffer = df.to_csv(index=False, header=False) def _make_path_or_buf(src): if src == "filepath": return str(fname) if src == "pathobj": return fname if src == "bytes_io": return BytesIO(buffer.encode()) if src == "string_io": return StringIO(buffer) if src == "url": return Path(fname).as_uri() raise ValueError("Invalid source type") yield _make_path_or_buf dtypes = [np.float64, np.float32, np.int64, np.int32, np.uint64, np.uint32] dtypes_dict = {"1": np.float64, "2": np.float32, "3": np.int64, "4": np.int32} nelem = [5, 25, 100] @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nelem", nelem) def test_csv_reader_numeric_data(dtype, nelem, tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file1.csv") df = make_numeric_dataframe(nelem, dtype) df.to_csv(fname, index=False, header=False) dtypes = [df[k].dtype for k in df.columns] out = read_csv(str(fname), names=list(df.columns.values), dtype=dtypes) assert len(out.columns) == len(df.columns) assert_eq(df, out) @pytest.mark.parametrize("parse_dates", [["date2"], [0], ["date1", 1, "bad"]]) def test_csv_reader_datetime(parse_dates): df = make_datetime_dataframe(include_non_standard=True) buffer = df.to_csv(index=False, header=False) gdf = read_csv( StringIO(buffer), names=["date1", "date2", "bad"], parse_dates=parse_dates, dayfirst=True, ) pdf = pd.read_csv( StringIO(buffer), names=["date1", "date2", "bad"], parse_dates=parse_dates, dayfirst=True, ) assert_eq(gdf, pdf) @pytest.mark.parametrize("pandas_arg", [{"delimiter": "|"}, {"sep": "|"}]) @pytest.mark.parametrize("cudf_arg", [{"sep": "|"}, {"delimiter": "|"}]) def test_csv_reader_mixed_data_delimiter_sep( tmpdir, pandas_arg, cudf_arg, pd_mixed_dataframe ): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file3.csv") pd_mixed_dataframe.to_csv(fname, sep="|", index=False, header=False) gdf1 = read_csv( str(fname), # Category is not yet supported from libcudf # names=["1", "2", "3", "4", "5", "6", "7"], # dtype=[ # "int64", "date", "float64", "int64", "category", "str", "bool" # ], names=["1", "2", "3", "4", "5", "6"], dtype=["int64", "date", "float64", "uint64", "str", "bool"], dayfirst=True, **cudf_arg, ) gdf2 = read_csv( str(fname), # Category is not yet supported from libcudf # names=["1", "2", "3", "4", "5", "6", "7"], # dtype=[ # "int64", "date", "float64", "int64", "category", "str", "bool" # ], names=["1", "2", "3", "4", "5", "6"], dtype=["int64", "date", "float64", "uint64", "str", "bool"], dayfirst=True, **pandas_arg, ) pdf = pd.read_csv( fname, # Category is not yet supported from libcudf # names=["1", "2", "3", "4", "5", "6", "7"], names=["1", "2", "3", "4", "5", "6"], parse_dates=[1], dayfirst=True, **pandas_arg, ) assert len(gdf1.columns) == len(pdf.columns) assert len(gdf2.columns) == len(pdf.columns) assert_eq(gdf1, gdf2) @pytest.mark.parametrize("use_list", [False, True]) def test_csv_reader_dtype_list(use_list): df = make_numeric_dataframe(10, dtype=np.float32) buffer = df.to_csv(index=False, header=False) # PANDAS doesn't list but cudf does (treated as implied ordered dict) # Select first column's dtype if non-list; expect the same dtype for all if use_list: dtypes = [df[k].dtype for k in df.columns] else: dtypes = df[df.columns[0]].dtype gdf = read_csv(StringIO(buffer), dtype=dtypes, names=df.columns) assert_eq(gdf, df) @pytest.mark.parametrize("use_names", [False, True]) def test_csv_reader_dtype_dict(use_names): # Save with the column header if not explicitly specifying a list of names df, gdf_dtypes, pdf_dtypes = make_all_numeric_dataframe() buffer = df.to_csv(index=False, header=(not use_names)) dtypes = df.dtypes.to_dict() gdf_names = list(gdf_dtypes.keys()) if use_names else None pdf_names = list(pdf_dtypes.keys()) if use_names else None gdf = read_csv(StringIO(buffer), dtype=dtypes, names=gdf_names) pdf = pd.read_csv(StringIO(buffer), dtype=dtypes, names=pdf_names) assert_eq(gdf, pdf) @pytest.mark.parametrize("use_names", [True, False]) def test_csv_reader_dtype_extremes(use_names): # Save with the column header if not explicitly specifying a list of names df, gdf_dtypes, pdf_dtypes = make_all_numeric_extremes_dataframe() buffer = df.to_csv(index=False, header=(not use_names)) dtypes = df.dtypes.to_dict() gdf_names = list(gdf_dtypes.keys()) if use_names else None pdf_names = list(pdf_dtypes.keys()) if use_names else None gdf = read_csv(StringIO(buffer), dtype=dtypes, names=gdf_names) pdf = pd.read_csv(StringIO(buffer), dtype=dtypes, names=pdf_names) assert_eq(gdf, pdf) def test_csv_reader_skiprows_skipfooter(tmpdir, pd_mixed_dataframe): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file5.csv") pd_mixed_dataframe.to_csv( fname, columns=["Integer", "Date", "Float"], index=False, header=False ) # Using engine='python' to eliminate pandas warning of using python engine. df_out = pd.read_csv( fname, names=["1", "2", "3"], parse_dates=[1], dayfirst=True, skiprows=1, skipfooter=1, engine="python", ) out = read_csv( str(fname), names=["1", "2", "3"], dtype=["int64", "date", "float64"], skiprows=1, skipfooter=1, dayfirst=True, ) assert len(out.columns) == len(df_out.columns) assert len(out) == len(df_out) assert_eq(df_out, out) def test_csv_reader_negative_vals(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file6.csv") names = ["0", "1", "2"] dtypes = ["float32", "float32", "float32"] lines = [ ",".join(names), "-181.5060,-185.37000,-3", "-127.6300,-230.54600,-9", ] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) zero = [-181.5060, -127.6300] one = [-185.370, -230.54600] two = [-3, -9] df = read_csv(str(fname), names=names, dtype=dtypes, skiprows=1) np.testing.assert_allclose(zero, df["0"].to_array()) np.testing.assert_allclose(one, df["1"].to_array()) np.testing.assert_allclose(two, df["2"].to_array()) def test_csv_reader_strings(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file7.csv") names = ["text", "int"] dtypes = ["str", "int"] lines = [",".join(names), "a,0", "b,0", "c,0", "d,0"] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) df = read_csv( str(fname), names=names, dtype=dtypes, skiprows=1, decimal=".", thousands="'", ) assert len(df.columns) == 2 assert df["text"].dtype == np.dtype("object") assert df["int"].dtype == np.dtype("int64") assert df["text"][0] == "a" assert df["text"][1] == "b" assert df["text"][2] == "c" assert df["text"][3] == "d" def test_csv_reader_strings_quotechars(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file8.csv") names = ["text", "int"] dtypes = ["str", "int"] lines = [",".join(names), '"a,\n",0', '"b ""c"" d",0', "e,0", '"f,,!.,",0'] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) df = read_csv( str(fname), names=names, dtype=dtypes, skiprows=1, quotechar='"', quoting=1, ) assert len(df.columns) == 2 assert df["text"].dtype == np.dtype("object") assert df["int"].dtype == np.dtype("int64") assert df["text"][0] == "a,\n" assert df["text"][1] == 'b "c" d' assert df["text"][2] == "e" assert df["text"][3] == "f,,!.," def test_csv_reader_usecols_int_char(tmpdir, pd_mixed_dataframe): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file10.csv") pd_mixed_dataframe.to_csv( fname, columns=["Integer", "Date", "Float", "Integer2"], index=False, header=False, ) df_out = pd.read_csv(fname, usecols=[0, 1, 3]) out = read_csv(fname, usecols=[0, 1, 3]) assert len(out.columns) == len(df_out.columns) assert len(out) == len(df_out) assert_eq(df_out, out, check_names=False) def test_csv_reader_mangle_dupe_cols(tmpdir): buffer = "abc,ABC,abc,abcd,abc\n1,2,3,4,5\n" # Default: mangle_dupe_cols=True pd_df = pd.read_csv(StringIO(buffer)) cu_df = read_csv(StringIO(buffer)) assert_eq(cu_df, pd_df) # Pandas does not support mangle_dupe_cols=False cu_df = read_csv(StringIO(buffer), mangle_dupe_cols=False) # check that the dupe columns were removed assert len(cu_df.columns) == 3 np.testing.assert_array_equal(cu_df["abc"].to_array(), [1]) def test_csv_reader_float_decimal(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file12.csv") names = ["basic_32", "basic_64", "round", "decimal_only", "precision"] dtypes = ["float32", "float64", "float64", "float32", "float64"] lines = [ ";".join(names), "1,2;1234,5678;12345;0,123;-73,98007199999998", "3,4;3456,7890;67890;,456;1,7976931348623157e+307", "5,6e0;0,5679e2;1,2e10;0,07e-001;0,0", ] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) basic_32_ref = [1.2, 3.4, 5.6] basic_64_ref = [1234.5678, 3456.7890, 56.79] round_ref = [12345, 67890, 12000000000] decimal_only_ref = [0.123, 0.456, 0.007] precision_ref = [-73.98007199999998, 1.7976931348623157e307, 0.0] df = read_csv( str(fname), names=names, dtype=dtypes, skiprows=1, delimiter=";", decimal=",", ) np.testing.assert_allclose(basic_32_ref, df["basic_32"].to_array()) np.testing.assert_allclose(basic_64_ref, df["basic_64"].to_array()) np.testing.assert_allclose(round_ref, df["round"].to_array()) np.testing.assert_allclose(decimal_only_ref, df["decimal_only"].to_array()) np.testing.assert_allclose(precision_ref, df["precision"].to_array()) def test_csv_reader_NaN_values(): names = dtypes = ["float32"] empty_cells = '\n""\n' default_na_cells = ( "#N/A\n#N/A N/A\n#NA\n-1.#IND\n" "-1.#QNAN\n-NaN\n-nan\n1.#IND\n" "1.#QNAN\nN/A\n<NA>\nNA\nNULL\n" "NaN\nn/a\nnan\nnull\n" ) custom_na_cells = "NV_NAN\nNotANumber\n" all_cells = empty_cells + default_na_cells + custom_na_cells custom_na_values = ["NV_NAN", "NotANumber"] # test default NA values. empty cells should also yield NaNs gdf = read_csv( StringIO(default_na_cells + empty_cells), names=names, dtype=dtypes ) pdf = pd.read_csv( StringIO(default_na_cells + empty_cells), names=names, dtype=np.float32 ) assert_eq(pdf, gdf) # custom NA values gdf = read_csv( StringIO(all_cells), names=names, dtype=dtypes, na_values=custom_na_values, ) pdf = pd.read_csv( StringIO(all_cells), names=names, dtype=np.float32, na_values=custom_na_values, ) assert_eq(pdf, gdf) # custom NA values gdf = read_csv( StringIO(empty_cells + default_na_cells + "_NAA_\n"), names=names, dtype=dtypes, na_values="_NAA_", ) pdf = pd.read_csv( StringIO(empty_cells + default_na_cells + "_NAA_\n"), names=names, dtype=np.float32, na_values="_NAA_", ) assert_eq(pdf, gdf) # data type detection should evaluate the column to int8 (all nulls) gdf = read_csv( StringIO(all_cells), header=None, na_values=custom_na_values, ) assert gdf.dtypes[0] == "int8" assert all(gdf["0"][idx] is cudf.NA for idx in range(len(gdf["0"]))) # data type detection should evaluate the column to object if some nulls gdf = read_csv(StringIO(all_cells), header=None) assert gdf.dtypes[0] == np.dtype("object") def test_csv_reader_thousands(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file13.csv") names = dtypes = [ "float32", "float64", "int32", "int64", "uint32", "uint64", ] lines = [ ",".join(names), "1'234.5, 1'234.567, 1'234'567, 1'234'567'890,\ 1'234'567, 1'234'567'890", "12'345.6, 123'456.7, 12'345, 123'456'789, 12'345, 123'456'789", ] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) f32_ref = [1234.5, 12345.6] f64_ref = [1234.567, 123456.7] int32_ref = [1234567, 12345] int64_ref = [1234567890, 123456789] uint32_ref = [1234567, 12345] uint64_ref = [1234567890, 123456789] df = read_csv( str(fname), names=names, dtype=dtypes, skiprows=1, thousands="'" ) np.testing.assert_allclose(f32_ref, df["float32"].to_array()) np.testing.assert_allclose(f64_ref, df["float64"].to_array()) np.testing.assert_allclose(int32_ref, df["int32"].to_array()) np.testing.assert_allclose(int64_ref, df["int64"].to_array()) np.testing.assert_allclose(uint32_ref, df["uint32"].to_array()) np.testing.assert_allclose(uint64_ref, df["uint64"].to_array()) def test_csv_reader_buffer_strings(): names = ["text", "int"] dtypes = ["str", "int"] lines = [",".join(names), "a,0", "b,0", "c,0", "d,0"] buffer = "\n".join(lines) df = read_csv(StringIO(buffer), names=names, dtype=dtypes, skiprows=1) assert len(df.columns) == 2 assert df["text"].dtype == np.dtype("object") assert df["int"].dtype == np.dtype("int64") assert df["text"][0] == "a" assert df["text"][1] == "b" assert df["text"][2] == "c" assert df["text"][3] == "d" df2 = read_csv( BytesIO(str.encode(buffer)), names=names, dtype=dtypes, skiprows=1 ) assert len(df2.columns) == 2 assert df2["text"].dtype == np.dtype("object") assert df2["int"].dtype == np.dtype("int64") assert df2["text"][0] == "a" assert df2["text"][1] == "b" assert df2["text"][2] == "c" assert df2["text"][3] == "d" @pytest.mark.parametrize( "ext, out_comp, in_comp", [ (".geez", "gzip", "gzip"), (".beez", "bz2", "bz2"), (".gz", "gzip", "infer"), (".bz2", "bz2", "infer"), (".beez", "bz2", np.str_("bz2")), (".data", None, "infer"), (".txt", None, None), ("", None, None), ], ) def test_csv_reader_compression( tmpdir, ext, out_comp, in_comp, pd_mixed_dataframe ): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_compression" + ext) df = pd_mixed_dataframe df.to_csv(fname, index=False, header=False, compression=out_comp) gdf = read_csv(fname, names=list(df.columns.values), compression=in_comp) pdf = pd.read_csv( fname, names=list(df.columns.values), compression=in_comp ) assert_eq(gdf, pdf) @pytest.mark.parametrize( "names, dtypes, data, trues, falses", [ ( ["A", "B"], ["bool", "bool"], "True,True\nFalse,False\nTrue,False", None, None, ), ( ["A", "B"], ["int32", "int32"], "True,1\nFalse,2\nTrue,3", None, None, ), ( ["A", "B"], ["int32", "int32"], "YES,1\nno,2\nyes,3\nNo,4\nYes,5", ["yes", "Yes", "YES"], ["no", "NO", "No"], ), (["A", "B"], ["int32", "int32"], "foo,bar\nbar,foo", ["foo"], ["bar"]), (["x", "y"], None, "True,1\nFalse,0", None, None), ], ) def test_csv_reader_bools(tmpdir, names, dtypes, data, trues, falses): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file11.csv") lines = [",".join(names), data] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) # Usage of true_values and false_values makes that column into bool type df_out = pd.read_csv( fname, names=names, skiprows=1, dtype=(dtypes[0] if dtypes else None), true_values=trues, false_values=falses, ) out = read_csv( fname, names=names, dtype=dtypes, skiprows=1, true_values=trues, false_values=falses, ) assert_eq(df_out, out) def test_csv_quotednumbers(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file12.csv") names = ["integer", "decimal"] dtypes = ["int32", "float32"] lines = [ ",".join(names), '1,"3.14"', '"2","300"', '"3",10101.0101', '4,"6.28318"', ] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) integer_ref = [1, 2, 3, 4] decimal_ref = [3.14, 300, 10101.0101, 6.28318] df1 = read_csv(str(fname), names=names, dtype=dtypes, skiprows=1) df2 = read_csv(str(fname), names=names, dtype=dtypes, skiprows=1) assert len(df2.columns) == 2 np.testing.assert_allclose(integer_ref, df1["integer"].to_array()) np.testing.assert_allclose(decimal_ref, df1["decimal"].to_array()) np.testing.assert_allclose(integer_ref, df2["integer"].to_array()) np.testing.assert_allclose(decimal_ref, df2["decimal"].to_array()) def test_csv_reader_nrows(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file14.csv") names = ["int1", "int2"] dtypes = ["int32", "int32"] rows = 4000000 read_rows = (rows * 3) // 4 skip_rows = (rows - read_rows) // 2 sample_skip = 1000 with open(str(fname), "w") as fp: fp.write(",".join(names) + "\n") for i in range(rows): fp.write(str(i) + ", " + str(2 * i) + " \n") # with specified names df = read_csv( str(fname), names=names, dtype=dtypes, skiprows=skip_rows + 1, nrows=read_rows, ) assert df.shape == (read_rows, 2) for row in range(0, read_rows // sample_skip, sample_skip): assert df["int1"][row] == row + skip_rows assert df["int2"][row] == 2 * (row + skip_rows) assert df["int2"][read_rows - 1] == 2 * (read_rows - 1 + skip_rows) # with column name inference df = read_csv( str(fname), dtype=dtypes, skiprows=skip_rows + 1, nrows=read_rows ) assert df.shape == (read_rows, 2) assert str(skip_rows) in list(df)[0] assert str(2 * skip_rows) in list(df)[1] for row in range(0, read_rows // sample_skip, sample_skip): assert df[list(df)[0]][row] == row + skip_rows + 1 assert df[list(df)[1]][row] == 2 * (row + skip_rows + 1) assert df[list(df)[1]][read_rows - 1] == 2 * (read_rows + skip_rows) # nrows larger than the file df = read_csv(str(fname), dtype=dtypes, nrows=rows * 2) assert df.shape == (rows, 2) for row in range(0, rows // sample_skip, sample_skip): assert df["int1"][row] == row assert df["int2"][row] == 2 * row assert df["int2"][rows - 1] == 2 * (rows - 1) # nrows + skiprows larger than the file df = read_csv( str(fname), dtype=dtypes, nrows=read_rows, skiprows=read_rows ) assert df.shape == (rows - read_rows, 2) # nrows equal to zero df = read_csv(str(fname), dtype=dtypes, nrows=0) assert df.shape == (0, 2) # with both skipfooter and nrows - should throw with pytest.raises(ValueError): read_csv(str(fname), nrows=read_rows, skipfooter=1) def test_csv_reader_gzip_compression_strings(tmpdir): fnamebase = tmpdir.mkdir("gdf_csv") fname = fnamebase.join("tmp_csvreader_file15.csv") fnamez = fnamebase.join("tmp_csvreader_file15.csv.gz") names = ["text", "int"] dtypes = ["str", "int"] lines = [",".join(names), "a,0", "b,0", "c,0", "d,0"] with open(str(fname), "w") as fp: fp.write("\n".join(lines)) with open(str(fname), "rb") as f_in, gzip.open(str(fnamez), "wb") as f_out: shutil.copyfileobj(f_in, f_out) df = read_csv( str(fnamez), names=names, dtype=dtypes, skiprows=1, decimal=".", thousands="'", compression="gzip", ) assert len(df.columns) == 2 assert df["text"].dtype == np.dtype("object") assert df["int"].dtype == np.dtype("int64") assert df["text"][0] == "a" assert df["text"][1] == "b" assert df["text"][2] == "c" assert df["text"][3] == "d" @pytest.mark.parametrize("skip_rows", [0, 2, 4]) @pytest.mark.parametrize("header_row", [0, 2]) def test_csv_reader_skiprows_header(skip_rows, header_row): names = ["float_point", "integer"] dtypes = ["float64", "int64"] lines = [ ",".join(names), "1.2, 1", "2.3, 2", "3.4, 3", "4.5, 4", "5.6, 5", "6.7, 6", ] buffer = "\n".join(lines) cu_df = read_csv( StringIO(buffer), dtype=dtypes, skiprows=skip_rows, header=header_row ) pd_df = pd.read_csv( StringIO(buffer), skiprows=skip_rows, header=header_row ) assert cu_df.shape == pd_df.shape assert list(cu_df.columns.values) == list(pd_df.columns.values) def test_csv_reader_dtype_inference(): names = ["float_point", "integer"] lines = [ ",".join(names), "1.2,1", "2.3,2", "3.4,3", "4.5,4", "5.6,5", "6.7,6", ] buffer = "\n".join(lines) cu_df = read_csv(StringIO(buffer)) pd_df = pd.read_csv(StringIO(buffer)) assert cu_df.shape == pd_df.shape assert list(cu_df.columns.values) == list(pd_df.columns.values) def test_csv_reader_dtype_inference_whitespace(): names = ["float_point", "integer"] lines = [ ",".join(names), " 1.2, 1", "2.3,2 ", " 3.4, 3", " 4.5,4", "5.6, 5", " 6.7,6 ", ] buffer = "\n".join(lines) cu_df = read_csv(StringIO(buffer)) pd_df = pd.read_csv(StringIO(buffer)) assert cu_df.shape == pd_df.shape assert list(cu_df.columns.values) == list(pd_df.columns.values) def test_csv_reader_empty_dataframe(): dtypes = ["float64", "int64"] buffer = "float_point, integer" # should work fine with dtypes df = read_csv(StringIO(buffer), dtype=dtypes) assert df.shape == (0, 2) assert all(df.dtypes == ["float64", "int64"]) # should default to string columns without dtypes df = read_csv(StringIO(buffer)) assert df.shape == (0, 2) assert all(df.dtypes == ["object", "object"]) def test_csv_reader_filenotfound(tmpdir): fname = "non-existing-filename.csv" # should raise an error with pytest.raises(FileNotFoundError): read_csv(str(fname)) # should raise an error dname = tmpdir.mkdir("gdf_csv") with pytest.raises(FileNotFoundError): read_csv(str(dname)) @pytest.mark.parametrize( "src", ["filepath", "pathobj", "bytes_io", "string_io", "url"] ) def test_csv_reader_filepath_or_buffer(tmpdir, path_or_buf, src): expect = pd.read_csv(path_or_buf("filepath")) got = cudf.read_csv(path_or_buf(src)) assert_eq(expect, got) def test_csv_reader_carriage_return(tmpdir): rows = 1000 names = ["int_row", "int_double_row"] buffer = ",".join(names) + "\r\n" for row in range(rows): buffer += str(row) + ", " + str(2 * row) + "\r\n" df = read_csv(StringIO(buffer)) assert len(df) == rows for row in range(0, rows): assert df[names[0]][row] == row assert df[names[1]][row] == 2 * row def test_csv_reader_tabs(): names = ["float_point", "integer", "date"] lines = [ ",".join(names), "1.2,\t12, \t11/22/1995", "3.4\t,\t34\t,\t 01/01/2001", "\t 5.6,56 \t, 12/12/1970", "\t7.8 , 78\t,06/15/2018 \t", ] buffer = "\n".join(lines) df = read_csv(StringIO(buffer), parse_dates=["date"]) assert df.shape == (4, 3) floats = [1.2, 3.4, 5.6, 7.8] ints = [12, 34, 56, 78] dates = [ "1995-11-22T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "1970-12-12T00:00:00.000000000", "2018-06-15T00:00:00.000000000", ] np.testing.assert_allclose(floats, df["float_point"].to_array()) np.testing.assert_allclose(ints, df["integer"].to_array()) for row in range(4): assert str(df["date"][row]) == dates[row] @pytest.mark.parametrize("segment_bytes", [10000, 19999, 30001, 36000]) def test_csv_reader_byte_range(tmpdir, segment_bytes): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file16.csv") names = ["int1", "int2"] rows = 10000 with open(str(fname), "w") as fp: for i in range(rows): fp.write(str(i) + ", " + str(2 * i) + " \n") file_size = os.stat(str(fname)).st_size ref_df = read_csv(str(fname), names=names).to_pandas() dfs = [] for segment in range((file_size + segment_bytes - 1) // segment_bytes): dfs.append( read_csv( str(fname), names=names, byte_range=(segment * segment_bytes, segment_bytes), ) ) df = cudf.concat(dfs).to_pandas() assert list(df["int1"]) == list(ref_df["int1"]) assert list(df["int2"]) == list(ref_df["int2"]) def test_csv_reader_byte_range_type_corner_case(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file17.csv") cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", dtypes={"name": str, "id": int, "x": float, "y": float}, ).to_csv(fname, chunksize=100000) byte_range = (2_147_483_648, 0) with pytest.raises(RuntimeError, match="Offset is past end of file"): cudf.read_csv(fname, byte_range=byte_range, header=None) @pytest.mark.parametrize("segment_bytes", [10, 19, 31, 36]) def test_csv_reader_byte_range_strings(segment_bytes): names = ["strings"] buffer = "\n".join('"' + str(x) + '"' for x in range(1, 100)) file_size = len(buffer) ref_df = read_csv(StringIO(buffer), names=names).to_pandas() dfs = [] for segment in range((file_size + segment_bytes - 1) // segment_bytes): dfs.append( read_csv( StringIO(buffer), names=names, byte_range=(segment * segment_bytes, segment_bytes), ) ) df = cudf.concat(dfs).to_pandas() assert list(df["strings"]) == list(ref_df["strings"]) @pytest.mark.parametrize( "header_row, skip_rows, skip_blanks", [ (1, 0, True), ("infer", 2, True), (1, 4, True), (3, 0, False), ("infer", 5, False), ], ) @pytest.mark.parametrize("line_terminator", ["\n", "\r\n"]) def test_csv_reader_blanks_and_comments( skip_rows, header_row, skip_blanks, line_terminator ): lines = [ "# first comment line", line_terminator, "# third comment line", "1,2,3", "4,5,6", "7,8,9", line_terminator, "# last comment line", line_terminator, "1,1,1", ] buffer = line_terminator.join(lines) cu_df = read_csv( StringIO(buffer), comment="#", header=header_row, skiprows=skip_rows, skip_blank_lines=skip_blanks, ) pd_df = pd.read_csv( StringIO(buffer), comment="#", header=header_row, skiprows=skip_rows, skip_blank_lines=skip_blanks, ) assert cu_df.shape == pd_df.shape assert list(cu_df.columns.values) == list(pd_df.columns.values) def test_csv_reader_prefix(): lines = ["1, 1, 1, 1"] buffer = "\n".join(lines) prefix_str = "a_prefix" df = read_csv(StringIO(buffer), header=None, prefix=prefix_str) column_names = list(df.columns.values) for col in range(len(column_names)): assert column_names[col] == prefix_str + str(col) def test_csv_reader_delim_whitespace(): buffer = "1 2 3\n4 5 6" # with header row cu_df = read_csv(StringIO(buffer), delim_whitespace=True) pd_df = pd.read_csv(StringIO(buffer), delim_whitespace=True) assert_eq(pd_df, cu_df) # without header row cu_df = read_csv(StringIO(buffer), delim_whitespace=True, header=None) pd_df = pd.read_csv(StringIO(buffer), delim_whitespace=True, header=None) assert pd_df.shape == cu_df.shape # should raise an error if used with delimiter or sep with pytest.raises(ValueError): read_csv(StringIO(buffer), delim_whitespace=True, delimiter=" ") with pytest.raises(ValueError): read_csv(StringIO(buffer), delim_whitespace=True, sep=" ") def test_csv_reader_unnamed_cols(): # first and last columns are unnamed buffer = ",1,2,3,\n4,5,6,7,8" cu_df = read_csv(StringIO(buffer)) pd_df = pd.read_csv(StringIO(buffer)) assert all(pd_df.columns == cu_df.columns) assert pd_df.shape == cu_df.shape def test_csv_reader_header_quotation(): buffer = '"1,,1","2,\n,2",3\n+4,+5,+6' cu_df = read_csv(StringIO(buffer)) pd_df = pd.read_csv(StringIO(buffer)) assert cu_df.shape == (1, 3) assert_eq(pd_df, cu_df) # test cases that fail with pandas buffer_pd_fail = '"1,one," , ",2,two" ,3\n4,5,6' cu_df = read_csv(StringIO(buffer_pd_fail)) assert cu_df.shape == (1, 3) def test_csv_reader_oversized_byte_range(): buffer = "a,b,c,d,e\n4,5,6,7,8" cu_df = read_csv(StringIO(buffer), byte_range=(0, 1024)) pd_df = pd.read_csv(StringIO(buffer)) assert all(pd_df.columns == cu_df.columns) assert pd_df.shape == cu_df.shape def test_csv_reader_index_col(): buffer = "0,1,2\n3,4,5\n6,7,8" names = ["int1", "int2", "int3"] # using a column name cu_df = read_csv(StringIO(buffer), names=names, index_col="int1") pd_df = pd.read_csv(StringIO(buffer), names=names, index_col="int1") assert_eq(pd_df, cu_df) # using a column index cu_df = read_csv(StringIO(buffer), header=None, index_col=0) pd_df = pd.read_csv(StringIO(buffer), header=None, index_col=0) assert_eq(cu_df.index, pd_df.index) # using a column index with names cu_df = read_csv(StringIO(buffer), header=None, index_col=0, names=names) pd_df = pd.read_csv( StringIO(buffer), header=None, index_col=0, names=names ) assert_eq(cu_df.index, pd_df.index) # passing False to avoid using a column as index (no-op in cuDF) cu_df = read_csv(StringIO(buffer), header=None, index_col=False) pd_df = pd.read_csv(StringIO(buffer), header=None, index_col=False) assert_eq(cu_df.index, pd_df.index) @pytest.mark.parametrize( "names", [["a", "b", "c"], [416, 905, 647], range(3), None] ) def test_csv_reader_column_names(names): buffer = "0,1,2\n3,4,5\n6,7,8" df = read_csv(StringIO(buffer), names=names) if names is None: assert list(df) == ["0", "1", "2"] else: assert list(df) == list(names) def test_csv_reader_bools_false_positives(tmpdir): # values that are equal to ["True", "TRUE", "False", "FALSE"] # when using ints to detect bool values items = [3977, 4329, 24015, 27567] buffer = "\n".join(str(i) for i in items) df = read_csv(StringIO(buffer), header=None, dtype=["int32"]) np.testing.assert_array_equal(items, df["0"].to_array()) def test_csv_reader_aligned_byte_range(tmpdir): fname = tmpdir.mkdir("gdf_csv").join("tmp_csvreader_file19.csv") nelem = 1000 input_df = pd.DataFrame( {"key": np.arange(0, nelem), "zeros": np.zeros(nelem)} ) input_df.to_csv(fname) df = cudf.read_csv(str(fname), byte_range=(0, 4096)) # read_csv call above used to crash; the assert below is not crucial assert np.count_nonzero(df["zeros"].to_pandas().values) == 0 @pytest.mark.parametrize( "pdf_dtype, gdf_dtype", [(None, None), ("int", "hex"), ("int32", "hex32"), ("int64", "hex64")], ) def test_csv_reader_hexadecimals(pdf_dtype, gdf_dtype): lines = ["0x0", "-0x1000", "0xfedcba", "0xABCDEF", "0xaBcDeF", "9512c20b"] values = [int(hex_int, 16) for hex_int in lines] buffer = "\n".join(lines) if gdf_dtype is not None: # require explicit `hex` dtype to parse hexadecimals pdf =
pd.DataFrame(data=values, dtype=pdf_dtype, columns=["hex_int"])
pandas.DataFrame
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index =
tm.makeIntIndex(10, name="a")
pandas.util.testing.makeIntIndex