hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a22fdd7d14ecfd07b11dd803793dafe2d21afd0
4,391
py
Python
rokso/rokso.py
matrixbegins/rokso-migrations
96f1a92e6278c535db73d231867cc60226dd8f18
[ "MIT" ]
1
2022-03-15T13:17:47.000Z
2022-03-15T13:17:47.000Z
rokso/rokso.py
matrixbegins/rokso-migrations
96f1a92e6278c535db73d231867cc60226dd8f18
[ "MIT" ]
null
null
null
rokso/rokso.py
matrixbegins/rokso-migrations
96f1a92e6278c535db73d231867cc60226dd8f18
[ "MIT" ]
1
2020-05-13T14:12:20.000Z
2020-05-13T14:12:20.000Z
import click, sys, os, pathlib # sys.path.append(pathlib.Path(__file__).parent.absolute()) try: from .lib import agent except ImportError: from lib import agent @click.group() def cli(): pass @click.command('init', short_help='🚀 init your migration project. configures db connection parameters') @click.option('--projectpath', prompt='Enter path to setup project', required=True, envvar='MIG_DB_PROJECT_PATH', help="The path where the project will be setup. rokso can create this directory if not exists.") @click.option('--dbhost', prompt='Enter database hostname ', required=True, envvar='MIG_DB_HOST', help="Database host where rokso will connect to.") @click.option('--dbname', prompt='Enter database name ', required=True, envvar='MIG_DB_NAME', help="Database name where rokso will apply migrations.") @click.option('--dbusername', prompt='Enter database username ', required=True, envvar='MIG_DB_USER', help="Database username for connecting database.") @click.option('--dbpassword', prompt='Enter database password', required=True, hide_input=True, envvar='MIG_DB_PASSWORD', help="Database password for connecting database.") def init(dbhost, dbname, dbusername, dbpassword, projectpath): """This commands configures basic environment variables that are needed to cary out database migrations. Make sure the given user has ALTER, ALTER ROUTINE, CREATE, CREATE ROUTINE, DELETE, DROP, EXECUTE, INDEX, INSERT, SELECT, SHOW DATABASES, UPDATE privileges. """ agent.init_setup(dbhost, dbname, dbusername, dbpassword, projectpath) @click.command('status', short_help='✅ checks the current state of database and pending migrations') def status(): """ checks the current state of database and pending migrations. It's good to run this before running migrate command. """ # click.echo('checking database status' + __file__) agent.db_status() @click.command('remap', short_help='🔄 Reverse engineer your DB migrations from existing database.') def remap(): """ Reverse engineer your DB migrations from existing database. Make sure init command is complete and you have a valid config file and migrations directory setup. """ click.echo('Starting remapping of existing database for versioning') agent.reverse_engineer_db() @click.command('create', short_help='➕ create a database migration.') @click.option('--tablename', required=True, prompt='Enter table/procedure/function name that you want to create this migration for.', help="The table/procedure/function name for which you want to create the migration.") @click.option('--filename', required=True, prompt='Enter a file name for this migration.', help="Name of the migration file.") def create(tablename, filename): """ Creates a migration template file for specified table/entity name. """ click.echo('creating a migration ...........') agent.create_db_migration(tablename, filename) @click.command('migrate', short_help='⤴️ Apply all outstanding migrations to database.') @click.option('--migration', help="Specific migration that needs to be carried out.\nThis option must be of format <tableName>/<fileName> and your file must be under the same path inside migration directory") def migrate(migration): """ Apply all outstanding migrations to database. By specifing --migration option you can apply just one single migration. """ # click.echo('Applying following migrations to database....' + migration) agent.apply_migration(migration) @click.command('rollback', short_help='⤵️ Rollback last applied migration') @click.option('--version', help="Rollbacks database state to specified version.\nThese version numbers can be obtained either from database or by running `rokso status`") def rollback(version): """ Rollback last applied out migration By specifing --version option you can rollback to a previous DB state. """ agent.rollback_db_migration(version) @click.command('last-success', short_help='⤵️ last successful migration version number') def last_success(): agent.last_success() cli.add_command(init) cli.add_command(status) cli.add_command(remap) cli.add_command(create) cli.add_command(migrate) cli.add_command(rollback) cli.add_command(last_success) def main(): return cli() if __name__ == '__main__': main()
43.91
208
0.73719
4a22fe21071891c677cbdc4409f946c2979fd518
383
py
Python
tests/python-reference/property/simple_property_decorator.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
25
2015-04-16T04:31:49.000Z
2022-03-10T15:53:28.000Z
tests/python-reference/property/simple_property_decorator.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
1
2018-11-21T22:40:02.000Z
2018-11-26T17:53:11.000Z
tests/python-reference/property/simple_property_decorator.py
jpolitz/lambda-py-paper
746ef63fc1123714b4adaf78119028afbea7bd76
[ "Apache-2.0" ]
1
2021-03-26T03:36:19.000Z
2021-03-26T03:36:19.000Z
class C(object): def __init__(self): self.x = 42 @property def f(self): self.x += 1 return self.x @f.setter def f(self, value): self.x = value @f.deleter def f(self): del self.x c = C() assert c.x == 42 assert c.f == 43 c.f = 55 assert c.x == 55 assert c.f == 56 del c.f assert not hasattr(c, 'x') assert not hasattr(c, 'f') assert hasattr(C, 'f')
15.32
26
0.582245
4a22fe3dc836ded77f9e576984da0d11042601e3
2,420
py
Python
crypto/xnuca-2020/imposter/task.py
BadMonkey7/funny-ctf-challenge
827caed5ab54f1da9217dfa25b034b9b398b11ef
[ "MIT" ]
2
2020-10-22T08:13:52.000Z
2021-01-16T06:56:24.000Z
crypto/xnuca-2020/imposter/task.py
BadMonkey7/funny-ctf-challenge
827caed5ab54f1da9217dfa25b034b9b398b11ef
[ "MIT" ]
null
null
null
crypto/xnuca-2020/imposter/task.py
BadMonkey7/funny-ctf-challenge
827caed5ab54f1da9217dfa25b034b9b398b11ef
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import os import random import string from hashlib import sha256 from Toy_AE import Toy_AE from secret import FLAG def proof_of_work(): random.seed(os.urandom(8)) proof = b''.join([random.choice(string.ascii_letters + string.digits).encode() for _ in range(20)]) digest = sha256(proof).hexdigest().encode() print("sha256(XXXX+%s) == %s" % (proof[4:],digest)) print("Give me XXXX:") x = input().encode() return False if len(x) != 4 or sha256(x + proof[4:]).hexdigest().encode() != digest else True def pack(uid, uname, token, cmd, appendix): r = b'' r += b'Uid=%d\xff' % uid r += b'UserName=%s\xff' % uname r += b'T=%s\xff' % token r += b'Cmd=%s\xff' % cmd r += appendix return r def unpack(r): data = r.split(b"\xff") uid, uname, token, cmd, appendix = int(data[0][4:]), data[1][9:], data[2][2:], data[3][4:], data[4] return (uid, uname, token, cmd, appendix) def apply_ticket(): uid = int(input("Set up your user id:")[:5]) uname = input("Your username:").encode("ascii")[:16] if uname == b"Administrator": print("Sorry, preserved username.") return token = sha256(uname).hexdigest()[:max(8, uid % 16)].encode("ascii") cmd = input("Your command:").encode("ascii")[:16] if cmd == b"Give_Me_Flag": print("Not allowed!") return appendix = input("Any Appendix?").encode("ascii")[:16] msg = pack(uid, uname, token, cmd, appendix) ct, te = ae.encrypt(msg) print("Your ticket:%s" % ct.hex()) print("With my Auth:%s" % te.hex()) def check_ticket(): ct = bytes.fromhex(input("Ticket:")) te = bytes.fromhex(input("Auth:")) msg = ae.decrypt(ct, te) assert msg uid, uname, token, cmd, appendix = unpack(msg) if uname == b"Administrator" and cmd == b"Give_Me_Flag": print(FLAG) exit(0) else: print("Nothing happend.") def menu(): print("Menu:") print("[1] Apply Ticket") print("[2] Check Ticket") print("[3] Exit") op = int(input("Your option:")) assert op in range(1, 4) if op == 1: apply_ticket() elif op == 2: check_ticket() else: print("Bye!") exit(0) if __name__ == "__main__": ae = Toy_AE() if not proof_of_work(): exit(-1) for _ in range(4): try: menu() except: exit(-1)
28.470588
103
0.572314
4a22ff454ee0aebd0e368db6956218984223477f
4,659
py
Python
configuration.py
SDRAST/support
ebe081692fc8c892c1389156e979d5baa7f8f0e6
[ "Apache-2.0" ]
null
null
null
configuration.py
SDRAST/support
ebe081692fc8c892c1389156e979d5baa7f8f0e6
[ "Apache-2.0" ]
null
null
null
configuration.py
SDRAST/support
ebe081692fc8c892c1389156e979d5baa7f8f0e6
[ "Apache-2.0" ]
null
null
null
""" module configuration - Provides a single file for program parameters Includes names of directories and files. Both functions are private, meant to be used only by software configuration generators. """ import os import datetime #from support.pyro import async # ----- general classes and functions for managing software configurations ---- def _check_and_create(path): """ Check for path and create if needed This is a private function. """ if not os.path.exists(path): os.makedirs(path) def _make_properties(prop_names): """ Decorator function for adding public properties to classes This creates the property, and its getter and setter methods Dean comments: "_make_properties is a _very esoteric function, and I remember wondering if I should remove it because it decreases readability while saving only a few lines of code. In general, I sort of think class decorators should be used sparingly, as they often obfuscate more than they clarify, (I would argue that the Pyro4.expose decorator is an example of a good class decorator.)" @param prop_names : properties to be defined for the decorated class @type prop_names : list of str """ def property_factory(prop_name): """ local function which returns a getter and setter """ def prop_get(self): """ this defines a method for getting the property's value """ prop_val = getattr(self, "_{}".format(prop_name)) return prop_val def prop_set(self, new_val): """ this defines a method for setting the property's value """ setattr(self, "_{}".format(prop_name), new_val) # return the methods for the named property return prop_get, prop_set def wrapper(cls): """ Enhances a class by setting the attributes (property_names) passed to the decorator function @param cls : class to be decorated @type cls : class """ for prop_name in prop_names: prop = property(*property_factory(prop_name)) setattr(cls, prop_name, prop) return cls return wrapper class Configuration(object): """ class for creating software configurations """ _protected = {"_emitter", "_config"} # reserved attributes def __init__(self, cls, *args, **kwargs): """ Initialize a configuration An example of ``cls`` would be ``TAMSConfiguration`` (in ``support.\`` ``configuration``). ``args`` and ``kwargs`` are the arguments used by ``clss`` to make the actual configuration, which is a ``dict``. The configuration may have an associated event emitter to which callbacks (functions to invoke when something changes) can be registered. If the keyword argument ``threaded`` is not provided then there will be no event emitter. @param cls : class from which a configuration object will be created @type cls : class @param args : additional positional arguments for initializing 'cls' @type args : list @param kwargs : keyword arguments for initializing 'cls' @type kwargs : dict """ # create the event emitter #self._emitter = async.EventEmitter( # threaded=kwargs.pop("threaded", False) #) # create the configuration self._config = cls(*args, **kwargs) def __getattr__(self, attr): if attr in Configuration._protected: return object.__getattribute__(self, attr) #elif attr in self._emitter.__class__.__dict__: # return getattr(self._emitter, attr) else: # self._emitter.emit(attr) return getattr(self._config, attr) def __setattr__(self, attr, val): if attr in Configuration._protected: object.__setattr__(self, attr, val) else: setattr(self._config, attr, val) self._emitter.emit(attr, val) def make_today_dir(self, base_dir): """ Make the following directory structure: base_dir/<year>/<doy> Args: base_dir (str): Returns: str: base_dir with year and doy subdirectories """ year, doy = datetime.datetime.utcnow().strftime("%Y,%j").split(",") today_dir = os.path.join(base_dir, year, doy) _check_and_create(today_dir) return today_dir
32.58042
79
0.618158
4a23001717e15f004959047456813bc5d74f9513
3,361
py
Python
actions/configure_vcs_vip.py
StackStorm-Exchange/vdx_vtep
aa010847faf83a6c57be551133c76c999ee885f8
[ "Apache-2.0" ]
null
null
null
actions/configure_vcs_vip.py
StackStorm-Exchange/vdx_vtep
aa010847faf83a6c57be551133c76c999ee885f8
[ "Apache-2.0" ]
1
2017-05-03T16:09:28.000Z
2017-07-19T12:53:40.000Z
actions/configure_vcs_vip.py
StackStorm-Exchange/vdx_vtep
aa010847faf83a6c57be551133c76c999ee885f8
[ "Apache-2.0" ]
2
2017-05-03T12:43:55.000Z
2021-01-28T17:48:14.000Z
# Copyright 2017 Great Software Laboratory Pvt. Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pynos.device from st2common.runners.base_action import Action from ipaddress import ip_interface class ConfigureVcsVip(Action): """ Implements the logic to set Virtual IP in VCS Fabric. This action acheives the below functionality: 1. Set VIP on the device """ def __init__(self, config=None): super(ConfigureVcsVip, self).__init__(config=config) def run(self, host=None, vip_mask=None, username=None, password=None): """Run helper methods to implement the desired state. """ if vip_mask is None: vip_mask = self.config['vip_mask'] if username is None: username = self.config['username'] if password is None: password = self.config['password'] if host is None: host = self.config['mgmt_ip1'] conn = (host, '22') auth = (username, password) changes = {} with pynos.device.Device(conn=conn, auth=auth) as device: changes['pre_requisites'] = self._check_requirements(device, vip_mask) changes['configure_vcs'] = False if changes['pre_requisites']: changes['configure_vcs'] = self._set_vcs_vip(device, vip_mask) else: self.logger.info( 'Pre-requisites validation failed for Virtual IP configuration') if not changes['configure_vcs']: self.logger.info('Virtual IP configuration in Vcs Fabric Failed') exit(1) else: self.logger.info( 'closing connection to %s after configuring Virtual IP successfully!', host) return changes def _check_requirements(self, device, vip): """ Verify if the Virtual IP already exists """ ipaddress = ip_interface(unicode(vip)) vips = device.vcs.vcs_vip(get=True) if ipaddress.version == 4: ipv4_config = vips['ipv4_vip'] conf = ipv4_config.data.find('.//{*}address') if ipaddress.version == 6: ipv6_config = vips['ipv6_vip'] conf = ipv6_config.data.find('.//{*}ipv6address') if conf is not None: self.logger.info("VCS virtual IPv %s address is already configured" % ipaddress.version) return False return True def _set_vcs_vip(self, device, vip): """ Set VCS Virtual IP on the device. """ try: device.vcs.vcs_vip(vip=vip) return True except RuntimeError as e: self.logger.error( 'Configuring VCS VIP: %s Failed with Exception: %s' % (e, vip)) return False
34.649485
100
0.607855
4a23004fa365a64140f9b665e2cd0df5eda9cdf8
4,532
py
Python
plaid_integration/plaid_integration/doctype/plaid_settings/plaid_settings.py
drivedgevd/plaid_integration
41965e6afee61586614f0de38e361e41a424be40
[ "MIT" ]
null
null
null
plaid_integration/plaid_integration/doctype/plaid_settings/plaid_settings.py
drivedgevd/plaid_integration
41965e6afee61586614f0de38e361e41a424be40
[ "MIT" ]
null
null
null
plaid_integration/plaid_integration/doctype/plaid_settings/plaid_settings.py
drivedgevd/plaid_integration
41965e6afee61586614f0de38e361e41a424be40
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2018, Drivedgevd and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe import json from frappe import _ from frappe.utils import cstr from frappe.model.document import Document from frappe.utils import now_datetime from frappe.utils.background_jobs import enqueue from plaid_integration.plaid_integration.plaid_controller import PlaidController class PlaidSettings(Document): def generate_access_token(self, public_token): plaid = PlaidController() access_token = plaid.get_access_token(public_token) return access_token def sync_transactions(self, bank, access_token): try: self.db_set("sync_status", "In Progress") frappe.msgprint(_("Queued for Syncing Plaid Transactions. It may take a few minutes.")) method = "plaid_integration.plaid_integration.doctype.plaid_settings.plaid_settings.sync_plaid_data" enqueue(method, now=True) except Exception as e: print frappe.get_traceback() self.db_set("sync_status", "Failed") frappe.msgprint("Syncing is failed. Please check Sync log") def get_transactions(self, access_token): plaid = PlaidController(access_token) transactions = plaid.get_trasaction() return transactions def make_sync_data_entries(self, synced_data, bank): accounts = self.sync_accounts(synced_data.get('accounts'), bank) transactions = self.sync_plaid_transactions(synced_data.get('transactions'), bank) return {"accounts": accounts, "transactions": transactions} def sync_accounts(self, accounts, bank): try: acc_ids = [] for acc in accounts: if not frappe.db.exists("Plaid Account", acc.get('account_id')): acc_ = frappe.new_doc("Plaid Account") acc_.account_id = acc.get('account_id') acc_.official_name = acc.get('official_name') acc_.insert() acc_ids.append(acc_.name) return acc_ids except Exception as e: raise e def sync_plaid_transactions(self, transactions, bank): try: transaction_ids = [] for idx, row in enumerate(transactions): pt = self.make_plaid_transaction(row, bank) if pt: transaction_ids.append(pt) return transaction_ids except Exception as e: raise e def make_plaid_transaction(self, transaction, bank): try: if not frappe.db.get_value("Plaid Transaction", {"transaction_id": transaction.get('transaction_id')},"name"): fields = ['account_owner', 'category_id', 'account_id', 'pending_transaction_id'\ 'transaction_name', 'date', 'transaction_id', 'transaction_type', 'amount', 'pending'] pt = frappe.new_doc("Plaid Transaction") doc_dict = {} for key, val in transaction.iteritems(): if key in fields: doc_dict[key] = val elif key == "category": doc_dict[key] = ("-").join(val) if val else "" elif key == "location": doc_dict['location'] = (",\n").join([ key+"-"+str(val) for key, val in val.iteritems()]) elif key == "payment_meta" and val: payment_meta = [] for k, v in val.iteritems(): payment_meta.append({ "key": k, "value": v }) doc_dict[key] = payment_meta elif key == "name": doc_dict["transaction_name"] = val else: pass doc_dict["bank"] = bank doc_dict['account_type'] = frappe.db.get_value("Plaid Account", { "account_id": doc_dict.get('account_id')}, "official_name") pt.update(doc_dict) pt.insert() return pt.name except Exception as e: raise e def make_sync_log(self, bank, sync_details, status): try: sync_log = frappe.new_doc("Plaid Sync Log") sync_log.date = frappe.utils.now() sync_log.sync_status = status sync_log.bank = bank sync_log.sync_log = cstr(sync_details) sync_log.save() frappe.db.commit() except Exception as e: print frappe.get_traceback() raise e @frappe.whitelist() def sync_plaid_data(): plaid_settings = frappe.get_doc("Plaid Settings", "Plaid Settings") for bank in plaid_settings.banks: try: if bank.get('access_token'): sync_data = plaid_settings.get_transactions(bank.get('access_token')) sync_details = plaid_settings.make_sync_data_entries(sync_data, bank.get('bank_name')) plaid_settings.make_sync_log(bank.get('bank_name'), sync_details, "Successful") except Exception as e: err_msg = frappe.as_unicode(e) plaid_settings.make_sync_log(bank.get('bank_name'), err_msg, "Failed") plaid_settings.sync_status = "Successful" plaid_settings.last_sync = now_datetime() plaid_settings.save()
34.861538
103
0.716461
4a2300c5a16548e846e5fdc7b94e8857711d0e49
1,043
py
Python
motey/val/plugins/xenVAL.py
Neoklosch/fog_node_prototype
d3f07d9d161d97ec2c19f66167dfb26eb9c6e616
[ "Apache-2.0" ]
null
null
null
motey/val/plugins/xenVAL.py
Neoklosch/fog_node_prototype
d3f07d9d161d97ec2c19f66167dfb26eb9c6e616
[ "Apache-2.0" ]
null
null
null
motey/val/plugins/xenVAL.py
Neoklosch/fog_node_prototype
d3f07d9d161d97ec2c19f66167dfb26eb9c6e616
[ "Apache-2.0" ]
1
2017-08-29T20:37:12.000Z
2017-08-29T20:37:12.000Z
import motey.val.plugins.abstractVAL as abstractVAL class XenVAL(abstractVAL.AbstractVAL): def __init__(self): super().__init__() def has_image(self, image_name): raise NotImplementedError("Should have implemented this") def load_image(self, image_name): raise NotImplementedError("Should have implemented this") def delete_image(self, image_name): raise NotImplementedError("Should have implemented this") def create_instance(self, image_name, parameters={}): raise NotImplementedError("Should have implemented this") def start_instance(self, container_name, parameters={}): raise NotImplementedError("Should have implemented this") def stop_instance(self, container_name): raise NotImplementedError("Should have implemented this") def has_instance(self, instance_name): raise NotImplementedError("Should have implemented this") def get_stats(self, container_name): raise NotImplementedError("Should have implemented this")
33.645161
65
0.731544
4a23018def484762eca33992075f151eb5927854
377
py
Python
tests/test_boolean.py
masteralves/python-fastjsonschema
c0f196463d517b45cf55f717b1468e4d9a5b68e8
[ "BSD-3-Clause" ]
1
2019-06-29T22:50:26.000Z
2019-06-29T22:50:26.000Z
tests/test_boolean.py
masteralves/python-fastjsonschema
c0f196463d517b45cf55f717b1468e4d9a5b68e8
[ "BSD-3-Clause" ]
null
null
null
tests/test_boolean.py
masteralves/python-fastjsonschema
c0f196463d517b45cf55f717b1468e4d9a5b68e8
[ "BSD-3-Clause" ]
null
null
null
import pytest from fastjsonschema import JsonSchemaException exc = JsonSchemaException('data must be boolean') @pytest.mark.parametrize('value, expected', [ (0, exc), (None, exc), (True, True), (False, False), ('abc', exc), ([], exc), ({}, exc), ]) def test_boolean(asserter, value, expected): asserter({'type': 'boolean'}, value, expected)
19.842105
50
0.628647
4a230208e901b1c867ca350bfeac4c23db34d799
1,265
py
Python
tests/test_event.py
johnnoone/aioconsul
02f7a529d7dc2e49bed942111067aa5faf320e90
[ "BSD-3-Clause" ]
7
2015-03-17T18:29:14.000Z
2020-01-03T06:45:43.000Z
tests/test_event.py
johnnoone/aioconsul
02f7a529d7dc2e49bed942111067aa5faf320e90
[ "BSD-3-Clause" ]
1
2015-06-04T03:06:46.000Z
2015-06-04T03:06:46.000Z
tests/test_event.py
johnnoone/aioconsul
02f7a529d7dc2e49bed942111067aa5faf320e90
[ "BSD-3-Clause" ]
2
2015-06-03T16:53:11.000Z
2021-12-16T13:38:23.000Z
import pytest from collections.abc import Mapping, Sequence @pytest.mark.asyncio async def test_endpoint(client): assert repr(client.event) == "<EventEndpoint(%r)>" % str(client.address) @pytest.mark.asyncio async def test_event(client): event = await client.event.fire("foobar") assert isinstance(event, Mapping) assert "Name" in event assert "NodeFilter" in event assert "TagFilter" in event assert "ID" in event assert "Payload" in event assert "ServiceFilter" in event assert "Version" in event assert "LTime" in event items, meta = await client.event.items("foobar") assert isinstance(items, Sequence) assert "Index" in meta assert "KnownLeader" not in meta assert "LastIndex" not in meta @pytest.mark.asyncio async def test_payload(client): event = await client.event.fire("bazqux", payload=b"foobar") assert event["Name"] == "bazqux" assert event["Payload"] == b"foobar" items, _ = await client.event.items("bazqux") for elt in items: if elt["ID"] == event["ID"]: break else: pytest.fail("Unable to find event") assert elt["ID"] == event["ID"] assert elt["Name"] == event["Name"] assert elt["Payload"] == event["Payload"]
28.111111
76
0.66166
4a230287b262e0bdd854cbbb419aa495ab1529bd
16,673
py
Python
language/mentionmemory/tasks/mention_memory_task.py
greck2908/language
61fa7260ac7d690d11ef72ca863e45a37c0bdc80
[ "Apache-2.0" ]
1,199
2018-10-16T01:30:18.000Z
2022-03-31T21:05:24.000Z
language/mentionmemory/tasks/mention_memory_task.py
greck2908/language
61fa7260ac7d690d11ef72ca863e45a37c0bdc80
[ "Apache-2.0" ]
116
2018-10-18T03:31:46.000Z
2022-03-24T13:40:50.000Z
language/mentionmemory/tasks/mention_memory_task.py
greck2908/language
61fa7260ac7d690d11ef72ca863e45a37c0bdc80
[ "Apache-2.0" ]
303
2018-10-22T12:35:12.000Z
2022-03-27T17:38:17.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains mention memory model implementation.""" from typing import Any, Callable, Dict, Optional, Tuple import flax.linen as nn import jax.numpy as jnp from language.mentionmemory.encoders import mention_memory_encoder from language.mentionmemory.modules import mention_losses from language.mentionmemory.modules import mlm_layer from language.mentionmemory.tasks import mention_encoder_task from language.mentionmemory.tasks import task_registry from language.mentionmemory.utils import default_values from language.mentionmemory.utils import jax_utils as jut from language.mentionmemory.utils import metric_utils from language.mentionmemory.utils.custom_types import Array, MetricGroups # pylint: disable=g-multiple-import import language.mentionmemory.utils.mention_preprocess_utils as mention_preprocess_utils import ml_collections import tensorflow.compat.v2 as tf class MentionMemoryModel(nn.Module): """Mention Memory pre-training model. Attributes: encoder_config: Mention Memory encoder hyperparameters. """ encoder_config: ml_collections.FrozenConfigDict def setup(self): self.encoder = mention_memory_encoder.MentionMemoryEncoder( **self.encoder_config) self.mlm_layer = mlm_layer.MLMLayer( vocab_size=self.encoder.vocab_size, hidden_size=self.encoder.hidden_size, dtype=self.encoder.dtype, layer_norm_epsilon=self.encoder.layer_norm_epsilon, embedding_init=self.encoder.kernel_init, bias_init=self.encoder.bias_init, ) def __call__( self, batch: Dict[str, Array], deterministic: bool) -> Tuple[Dict[str, Array], Dict[str, Array]]: encoded_input, loss_helpers, logging_helpers = self.encoder.forward( batch, deterministic) loss_helpers['mlm_logits'] = self.mlm_layer( encoded_input=encoded_input, mlm_target_positions=batch['mlm_target_positions'], shared_embedding=loss_helpers['word_embeddings']) return loss_helpers, logging_helpers @task_registry.register_task('mention_memory') class MentionMemoryTask(mention_encoder_task.MentionEncoderTask): """Pre-training task for mention memory encoder.""" model_class = MentionMemoryModel encoder_name = 'mention_memory' @classmethod def make_loss_fn( cls, config: ml_collections.ConfigDict ) -> Callable[..., Tuple[float, MetricGroups, Dict[str, Any]]]: """Creates task loss function. See BaseTask. The Mention Memory encoder is pre-trained with a combination of 1) MLM loss, 2) same-entity retrieval loss encouraging retrieval of mentions of the same entity as the passage mention, 3) entity coreference loss encouraging mentions of the same entity to have similar representations, and 4) Matching the Blanks-style loss encouraging mentions of the same entity which co-occur with mentions of the same second entity to have similar representations. Args: config: contains experiment hyperparameters. Returns: Loss function. """ mlm_weight = config.mlm_weight el_im_weight = config.el_im_weight el_second_im_weight = config.get('el_second_im_weight', 0) coref_res_weight = config.get('coref_res_weight', 0) coref_res_mode = config.get('coref_res_mode', 'dot') mtb_im_weight = config.get('mtb_im_weight', 0) mtb_final_weight = config.get('mtb_final_weight', 0) mtb_score_mode = config.get('mtb_score_mode', 'dot') same_passage_weight = config.get('same_passage_weight', 0) same_entity_set_retrieval_weight = config.get( 'same_entity_set_retrieval_weight', 0) el_final_weight = config.get('el_final_weight', 0) def loss_fn( model_config: ml_collections.FrozenConfigDict, model_params: Dict[str, Any], model_vars: Dict[str, Any], batch: Dict[str, Any], deterministic: bool, dropout_rng: Optional[Dict[str, Array]] = None, ) -> Tuple[float, MetricGroups, Dict[str, Any]]: """Model-specific loss function. See BaseTask.""" batch_size = batch['text_ids'].shape[0] mention_target_ids = batch['mention_target_ids'] mention_target_ids *= batch['mention_target_weights'] variable_dict = {'params': model_params} variable_dict.update(model_vars) loss_helpers, logging_helpers = cls.build_model(model_config).apply( variable_dict, batch, deterministic=deterministic, rngs=dropout_rng) mlm_logits = loss_helpers['mlm_logits'] mlm_target_is_mention = batch['mlm_target_is_mention'] mlm_target_is_not_mention = 1 - batch['mlm_target_is_mention'] mention_target_is_masked = batch['mention_target_is_masked'] mention_target_is_not_masked = 1 - mention_target_is_masked mlm_loss, mlm_denom = metric_utils.compute_weighted_cross_entropy( mlm_logits, batch['mlm_target_ids'], batch['mlm_target_weights']) correct_mask = jnp.equal( jnp.argmax(mlm_logits, axis=-1), batch['mlm_target_ids']) * batch['mlm_target_weights'] mlm_acc = correct_mask.sum() mlm_mention_acc = (correct_mask * mlm_target_is_mention).sum() mlm_mention_denom = (batch['mlm_target_weights'] * mlm_target_is_mention).sum() mlm_non_mention_acc = (correct_mask * mlm_target_is_not_mention).sum() mlm_non_mention_denom = (batch['mlm_target_weights'] * mlm_target_is_not_mention).sum() loss = mlm_weight * mlm_loss / mlm_denom metrics = { 'mlm': { 'loss': mlm_loss, 'acc': mlm_acc, 'denominator': mlm_denom, }, 'mlm_mention': { 'acc': mlm_mention_acc, 'denominator': mlm_mention_denom, }, 'mlm_non_mention': { 'acc': mlm_non_mention_acc, 'denominator': mlm_non_mention_denom, }, } def process_el_im_loss(loss, weight, prefix=''): memory_attention_weights = loss_helpers[prefix + 'memory_attention_weights'] memory_entity_ids = loss_helpers[prefix + 'top_entity_ids'] target_mentions_memory_attention_weights = jut.matmul_slice( memory_attention_weights, batch['mention_target_indices']) intermediate_entity_ids = jut.matmul_slice( memory_entity_ids, batch['mention_target_indices']) el_loss_intermediate, same_entity_avg_prob, el_im_denom = metric_utils.compute_loss_and_prob_from_probs_with_duplicates( target_mentions_memory_attention_weights, intermediate_entity_ids, mention_target_ids, batch['mention_target_weights']) if weight > 0: loss += weight * el_loss_intermediate / el_im_denom metrics[prefix + 'el_intermediate'] = { 'loss': el_loss_intermediate, 'same_entity_avg_prob': same_entity_avg_prob, 'denominator': el_im_denom, } return loss loss = process_el_im_loss(loss, el_im_weight) if 'second_memory_attention_weights' in loss_helpers: loss = process_el_im_loss(loss, el_second_im_weight, 'second_') if coref_res_weight > 0: (coref_res_loss, coref_res_metrics) = mention_losses.coreference_resolution_loss( loss_helpers['target_mention_encodings'], batch['mention_target_batch_positions'], mention_target_ids, batch_size, coref_res_mode, mention_target_is_masked) coref_res_denom = coref_res_metrics['coref_resolution']['denominator'] loss += coref_res_weight * coref_res_loss / coref_res_denom metrics.update(coref_res_metrics) if mtb_im_weight > 0: (mtb_im_loss, mtb_im_metrics) = mention_losses.mtb_loss( loss_helpers['intermediate_target_mention_encodings'], batch['mention_target_batch_positions'], mention_target_ids, batch_size, mtb_score_mode, mention_target_is_masked, 'im_') mtb_im_denom = mtb_im_metrics['im_mtb']['denominator'] loss += mtb_im_weight * mtb_im_loss / mtb_im_denom metrics.update(mtb_im_metrics) if mtb_final_weight > 0: (mtb_final_loss, mtb_final_metrics) = mention_losses.mtb_loss( loss_helpers['target_mention_encodings'], batch['mention_target_batch_positions'], mention_target_ids, batch_size, mtb_score_mode, mention_target_is_masked, 'final_') mtb_final_denom = mtb_final_metrics['final_mtb']['denominator'] loss += mtb_final_weight * mtb_final_loss / mtb_final_denom metrics.update(mtb_final_metrics) if same_passage_weight > 0: same_passage_mask = loss_helpers['memory_attention_disallowed_mask'] (same_passage_loss, same_passage_metrics, _ ) = metric_utils.compute_cross_entropy_loss_with_positives_and_negatives_masks( loss_helpers['memory_attention_scores_with_disallowed'], same_passage_mask, jnp.logical_not(same_passage_mask), batch['mention_mask']) same_passage_denom = same_passage_metrics['denominator'] loss += same_passage_weight * same_passage_loss / same_passage_denom metrics['same_passage'] = same_passage_metrics if same_entity_set_retrieval_weight > 0: if config.get('same_entity_set_target_threshold') is None: raise ValueError( '`same_entitites_retrieval_threshold` must be specified ' 'if `same_entity_set_retrieval_weight` is provided') (same_entity_set_retrieval_loss, same_entity_set_retrieval_avg_prob, same_entity_set_retrieval_denom ) = mention_losses.same_entity_set_retrieval_loss( mention_target_batch_positions=batch[ 'mention_target_batch_positions'], mention_target_ids=mention_target_ids, mention_target_weights=batch['mention_target_weights'], mention_batch_positions=batch['mention_batch_positions'], mention_mask=batch['mention_mask'], memory_text_entities=loss_helpers['memory_top_text_entities'], memory_attention_weights=loss_helpers['memory_attention_weights'], memory_mask=1 - loss_helpers['memory_attention_disallowed_mask'], batch_size=batch_size, same_entity_set_target_threshold=config .same_entity_set_target_threshold) loss += ( same_entity_set_retrieval_weight * same_entity_set_retrieval_loss / same_entity_set_retrieval_denom) metrics['same_entity_set_retrieval'] = { 'loss': same_entity_set_retrieval_loss, 'avg_prob': same_entity_set_retrieval_avg_prob, 'denominator': same_entity_set_retrieval_denom, } if el_final_weight > 0: final_attention_weights = loss_helpers['final_memory_attention_weights'] final_memory_entity_ids = loss_helpers['final_top_entity_ids'] (el_loss_final, same_entity_avg_prob_final, el_loss_denom ) = metric_utils.compute_loss_and_prob_from_probs_with_duplicates( final_attention_weights, final_memory_entity_ids, mention_target_ids, batch['mention_target_weights']) (_, same_entity_avg_prob_final_masked, el_loss_denom_masked ) = metric_utils.compute_loss_and_prob_from_probs_with_duplicates( final_attention_weights, final_memory_entity_ids, mention_target_ids, batch['mention_target_weights'] * mention_target_is_masked) (_, same_entity_avg_prob_final_not_masked, el_loss_denom_not_masked ) = metric_utils.compute_loss_and_prob_from_probs_with_duplicates( final_attention_weights, final_memory_entity_ids, mention_target_ids, batch['mention_target_weights'] * mention_target_is_not_masked) metrics['el_final'] = { 'loss': el_loss_final, 'same_entity_avg_prob': same_entity_avg_prob_final, 'denominator': el_loss_denom, } metrics['el_final_masked'] = { 'same_entity_avg_prob': same_entity_avg_prob_final_masked, 'denominator': el_loss_denom_masked, } metrics['el_final_not_masked'] = { 'same_entity_avg_prob': same_entity_avg_prob_final_not_masked, 'denominator': el_loss_denom_not_masked, } loss += el_final_weight * el_loss_final / ( el_loss_denom + default_values.SMALL_NUMBER) metrics['agg'] = { 'loss': loss, 'denominator': 1.0, } if 'n_disallowed' in logging_helpers: metrics['disallowed'] = { 'per_mention': logging_helpers['n_disallowed'], 'denominator': batch['mention_mask'].sum(), } if 'second_n_disallowed' in logging_helpers: metrics['second_n_disallowed'] = { 'per_mention': logging_helpers['second_n_disallowed'], 'denominator': batch['mention_mask'].sum(), } auxiliary_output = { 'top_entity_ids': loss_helpers['top_entity_ids'], 'top_memory_ids': loss_helpers['top_memory_ids'], } if 'second_top_entity_ids' in loss_helpers: auxiliary_output['second_top_entity_ids'] = loss_helpers[ 'second_top_entity_ids'] auxiliary_output['second_top_memory_ids'] = loss_helpers[ 'second_top_memory_ids'] return loss, metrics, auxiliary_output return loss_fn @staticmethod def make_preprocess_fn( config: ml_collections.ConfigDict ) -> Callable[[Dict[str, tf.Tensor]], Dict[str, tf.Tensor]]: """Produces function to preprocess samples. See BaseTask. Here we add a text identifier hash to the standard MentionEncoderTask preprocessing pipeline. Args: config: ConfigDict. Contains experiment hyperparameters. Returns: Function that preprocesses samples to be usable for the model (mod casting from tf to jnp dtype). """ max_length = config.model_config.encoder_config.max_length mention_preprocessing_fn = mention_encoder_task.MentionEncoderTask.make_preprocess_fn(config) # pylint: disable=line-too-long def preprocess_fn(example: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]: """Performs preprocessing for individual sample.""" new_example = mention_preprocessing_fn(example) # Compute hash of text for text identifiers new_example['text_identifiers'] = mention_preprocess_utils.text_hash_tf( example['text_ids'], max_length) return new_example return preprocess_fn @staticmethod def make_collater_fn( config: ml_collections.ConfigDict ) -> Callable[[Dict[str, tf.Tensor]], Dict[str, tf.Tensor]]: """Produces function to preprocess batches. See BaseTask. Batches text identifiers after standard mention preprocessing. Args: config: contains experiment hyperparameters. Returns: Function that preprocesses batches to be usable for the model (mod casting from tf to jnp dtype). """ mention_collater_fn = mention_encoder_task.MentionEncoderTask.make_collater_fn(config) # pylint: disable=line-too-long def collater_fn(batch: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]: new_batch = mention_collater_fn(batch) new_batch['text_identifiers'] = tf.gather( new_batch['text_identifiers'], new_batch['mention_batch_positions']) return new_batch return collater_fn @staticmethod def dummy_input(config: ml_collections.ConfigDict) -> Dict[str, Any]: """Produces model-specific dummy input batch. See BaseTask.""" dummy_input = mention_encoder_task.MentionEncoderTask.dummy_input(config) mention_position_shape = (config.max_mentions * config.per_device_batch_size,) int_type = jnp.int32 dummy_input['text_identifiers'] = jnp.ones(mention_position_shape, int_type) return dummy_input
41.269802
130
0.704132
4a230290b2a46a40286a765697451db7b2fe7c4d
17,406
py
Python
news-analysis.py
harrypottercookies/Binance-News-Sentiment-Bot
28dcbc944f07cc9e1a507f7c7e202627740e736b
[ "MIT" ]
1,521
2021-04-17T17:45:31.000Z
2022-03-29T23:15:33.000Z
news-analysis.py
harrypottercookies/Binance-News-Sentiment-Bot
28dcbc944f07cc9e1a507f7c7e202627740e736b
[ "MIT" ]
56
2021-04-18T11:26:01.000Z
2022-02-20T16:26:31.000Z
news-analysis.py
harrypottercookies/Binance-News-Sentiment-Bot
28dcbc944f07cc9e1a507f7c7e202627740e736b
[ "MIT" ]
305
2021-04-17T18:39:54.000Z
2022-03-19T03:55:06.000Z
# import for environment variables and waiting import os, time # used to parse XML feeds import xml.etree.ElementTree as ET # we use it to make async http requests import aiohttp # allows us to make our functions async import asyncio # date modules that we'll most likely need from datetime import date, datetime, timedelta # used to grab the XML url list from a CSV file import csv # used to save and load coins_in_hand dictionary import json # numpy for sums and means import numpy as np # nlp library to analyse sentiment import nltk import pytz from nltk.sentiment import SentimentIntensityAnalyzer # needed for the binance API from binance.client import Client from binance.enums import * from binance.exceptions import BinanceAPIException, BinanceOrderException # used for binance websocket from binance.websockets import BinanceSocketManager from twisted.internet import reactor # used for executing the code from itertools import count # we use it to time our parser execution speed from timeit import default_timer as timer # Use testnet (change to True) or live (change to False)? testnet = True # get binance key and secret from environment variables for testnet and live api_key_test = os.getenv('binance_api_stalkbot_testnet') api_secret_test = os.getenv('binance_secret_stalkbot_testnet') api_key_live = os.getenv('binance_api_stalkbot_live') api_secret_live = os.getenv('binance_secret_stalkbot_live') # Authenticate with the client if testnet: client = Client(api_key_test, api_secret_test) else: client = Client(api_key_live, api_secret_live) # The API URL is manually changed in the library to work on the testnet if testnet: client.API_URL = 'https://testnet.binance.vision/api' ############################################ # USER INPUT VARIABLES LIVE BELOW # # You may edit those to configure your bot # ############################################ # select what coins to look for as keywords in articles headlines # The key of each dict MUST be the symbol used for that coin on Binance # Use each list to define keywords separated by commas: 'XRP': ['ripple', 'xrp'] # keywords are case sensitive keywords = { 'XRP': ['ripple', 'xrp', 'XRP', 'Ripple', 'RIPPLE'], 'BTC': ['BTC', 'bitcoin', 'Bitcoin', 'BITCOIN'], 'XLM': ['Stellar Lumens', 'XLM'], #'BCH': ['Bitcoin Cash', 'BCH'], 'ETH': ['ETH', 'Ethereum'], 'BNB' : ['BNB', 'Binance Coin'], 'LTC': ['LTC', 'Litecoin'] } # The Buy amount in the PAIRING symbol, by default USDT # 100 will for example buy the equivalent of 100 USDT in Bitcoin. QUANTITY = 100 # define what to pair each coin to # AVOID PAIRING WITH ONE OF THE COINS USED IN KEYWORDS PAIRING = 'USDT' # define how positive the news should be in order to place a trade # the number is a compound of neg, neu and pos values from the nltk analysis # input a number between -1 and 1 SENTIMENT_THRESHOLD = 0 NEGATIVE_SENTIMENT_THRESHOLD = 0 # define the minimum number of articles that need to be analysed in order # for the sentiment analysis to qualify for a trade signal # avoid using 1 as that's not representative of the overall sentiment MINUMUM_ARTICLES = 1 # define how often to run the code (check for new + try to place trades) # in minutes REPEAT_EVERY = 60 # define how old an article can be to be included # in hours HOURS_PAST = 24 ############################################ # END OF USER INPUT VARIABLES # # Edit with care # ############################################ # coins that bought by the bot since its start coins_in_hand = {} # path to the saved coins_in_hand file coins_in_hand_file_path = 'coins_in_hand.json' # use separate files for testnet and live if testnet: coins_in_hand_file_path = 'testnet_' + coins_in_hand_file_path # if saved coins_in_hand json file exists then load it if os.path.isfile(coins_in_hand_file_path): with open(coins_in_hand_file_path) as file: coins_in_hand = json.load(file) # and add coins from actual keywords if they aren't in coins_in_hand dictionary already for coin in keywords: if coin not in coins_in_hand: coins_in_hand[coin] = 0 # current price of CRYPTO pulled through the websocket CURRENT_PRICE = {} def ticker_socket(msg): '''Open a stream for financial information for CRYPTO''' if msg['e'] != 'error': global CURRENT_PRICE CURRENT_PRICE['{0}'.format(msg['s'])] = msg['c'] else: print('error') # connect to the websocket client and start the socket bsm = BinanceSocketManager(client) for coin in keywords: conn_key = bsm.start_symbol_ticker_socket(coin+PAIRING, ticker_socket) bsm.start() '''For the amount of CRYPTO to trade in USDT''' lot_size = {} '''Find step size for each coin For example, BTC supports a volume accuracy of 0.000001, while XRP only 0.1 ''' for coin in keywords: try: info = client.get_symbol_info(coin+PAIRING) step_size = info['filters'][2]['stepSize'] lot_size[coin+PAIRING] = step_size.index('1') - 1 if lot_size[coin+PAIRING]<0: lot_size[coin+PAIRING]=0 except: pass for coin in keywords: try: info = client.get_symbol_info(coin) step_size = info['filters'][2]['stepSize'] lot_size[coin] = step_size.index('1') - 1 if lot_size[coin]<0: lot_size[coin]=0 except: pass def calculate_one_volume_from_lot_size(coin, amount): if coin not in lot_size: return float('{:.1f}'.format(amount)) else: return float('{:.{}f}'.format(amount, lot_size[coin])) def calculate_volume(): while CURRENT_PRICE == {}: print('Connecting to the socket...') time.sleep(3) else: volume = {} for coin in CURRENT_PRICE: volume[coin] = float(QUANTITY / float(CURRENT_PRICE[coin])) volume[coin] = calculate_one_volume_from_lot_size(coin, volume[coin]) return volume # load the csv file containg top 100 crypto feeds # want to scan other websites? # Simply add the RSS Feed url to the Crypto feeds.csv file with open('Crypto feeds.csv') as csv_file: # open the file csv_reader = csv.reader(csv_file) # remove any headers next(csv_reader, None) # create empty list feeds = [] # add each row cotaining RSS url to feeds list for row in csv_reader: feeds.append(row[0]) # Make headlines global variable as it should be the same across all functions headlines = {'source': [], 'title': [], 'pubDate' : [] } async def get_feed_data(session, feed, headers): ''' Get relevent data from rss feed, in async fashion :param feed: The name of the feed we want to fetch :param headers: The header we want on the request :param timeout: The default timout before we give up and move on :return: None, we don't need to return anything we append it all on the headlines dict ''' try: async with session.get(feed, headers=headers, timeout=60) as response: # define the root for our parsing text = await response.text() root = ET.fromstring(text) channel = root.find('channel/item/title').text pubDate = root.find('channel/item/pubDate').text # some jank to ensure no alien characters are being passed title = channel.encode('UTF-8').decode('UTF-8') # convert pubDat to datetime published = datetime.strptime(pubDate.replace("GMT", "+0000"), '%a, %d %b %Y %H:%M:%S %z') # calculate timedelta time_between = datetime.now(pytz.utc) - published #print(f'Czas: {time_between.total_seconds() / (60 * 60)}') if time_between.total_seconds() / (60 * 60) <= HOURS_PAST: # append the source headlines['source'].append(feed) # append the publication date headlines['pubDate'].append(pubDate) # append the title headlines['title'].append(title) print(channel) except Exception as e: # Catch any error and also print it print(f'Could not parse {feed} error is: {e}') async def get_headlines(): ''' Creates a an async task for each of our feeds which are appended to headlines :return: None ''' # add headers to the request for ElementTree. Parsing issues occur without headers headers = { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0' } # A nifty timer to see how long it takes to parse all the feeds start = timer() async with aiohttp.ClientSession() as session: tasks = [] for feed in feeds: task = asyncio.ensure_future(get_feed_data(session, feed, headers)) tasks.append(task) # This makes sure we finish all tasks/requests before we continue executing our code await asyncio.gather(*tasks) end = timer() print("Time it took to parse feeds: ", end - start) def categorise_headlines(): '''arrange all headlines scaped in a dictionary matching the coin's name''' # get the headlines asyncio.run(get_headlines()) categorised_headlines = {} # this loop will create a dictionary for each keyword defined for keyword in keywords: categorised_headlines['{0}'.format(keyword)] = [] # keyword needs to be a loop in order to be able to append headline to the correct dictionary for keyword in keywords: # looping through each headline is required as well for headline in headlines['title']: # appends the headline containing the keyword to the correct dictionary if any(key in headline for key in keywords[keyword]): categorised_headlines[keyword].append(headline) return categorised_headlines def analyse_headlines(): '''Analyse categorised headlines and return NLP scores''' sia = SentimentIntensityAnalyzer() categorised_headlines = categorise_headlines() sentiment = {} for coin in categorised_headlines: if len(categorised_headlines[coin]) > 0: # create dict for each coin sentiment['{0}'.format(coin)] = [] # append sentiment to dict for title in categorised_headlines[coin]: sentiment[coin].append(sia.polarity_scores(title)) return sentiment def compile_sentiment(): '''Arranges every compound value into a list for each coin''' sentiment = analyse_headlines() compiled_sentiment = {} for coin in sentiment: compiled_sentiment[coin] = [] for item in sentiment[coin]: # append each compound value to each coin's dict compiled_sentiment[coin].append(sentiment[coin][sentiment[coin].index(item)]['compound']) return compiled_sentiment def compound_average(): '''Calculates and returns the average compoud sentiment for each coin''' compiled_sentiment = compile_sentiment() headlines_analysed = {} for coin in compiled_sentiment: headlines_analysed[coin] = len(compiled_sentiment[coin]) # calculate the average using numpy if there is more than 1 element in list compiled_sentiment[coin] = np.array(compiled_sentiment[coin]) # get the mean compiled_sentiment[coin] = np.mean(compiled_sentiment[coin]) # convert to scalar compiled_sentiment[coin] = compiled_sentiment[coin].item() return compiled_sentiment, headlines_analysed def buy(compiled_sentiment, headlines_analysed): '''Check if the sentiment is positive and keyword is found for each handle''' volume = calculate_volume() for coin in compiled_sentiment: # check if the sentiment and number of articles are over the given threshold if compiled_sentiment[coin] > SENTIMENT_THRESHOLD and headlines_analysed[coin] >= MINUMUM_ARTICLES and coins_in_hand[coin]==0: # check the volume looks correct print(f'preparing to buy {volume[coin+PAIRING]} {coin} with {PAIRING} at {CURRENT_PRICE[coin+PAIRING]}') if (testnet): # create test order before pushing an actual order test_order = client.create_test_order(symbol=coin+PAIRING, side='BUY', type='MARKET', quantity=volume[coin+PAIRING]) # try to create a real order if the test orders did not raise an exception try: buy_limit = client.create_order( symbol=coin+PAIRING, side='BUY', type='MARKET', quantity=volume[coin+PAIRING] ) #error handling here in case position cannot be placed except Exception as e: print(e) # run the else block if the position has been placed and return some info else: # adds coin to our portfolio coins_in_hand[coin] += volume[coin+PAIRING] # retrieve the last order order = client.get_all_orders(symbol=coin+PAIRING, limit=1) if order: # convert order timsestamp into UTC format time = order[0]['time'] / 1000 utc_time = datetime.fromtimestamp(time) # grab the price of CRYPTO the order was placed at for reporting bought_at = CURRENT_PRICE[coin+PAIRING] # print order condirmation to the console print(f"order {order[0]['orderId']} has been placed on {coin} with {order[0]['origQty']} at {utc_time} and bought at {bought_at}") else: print('Could not get last order from Binance!') else: print(f'Sentiment not positive enough for {coin}, or not enough headlines analysed or already bought: {compiled_sentiment[coin]}, {headlines_analysed[coin]}') def sell(compiled_sentiment, headlines_analysed): '''Check if the sentiment is negative and keyword is found for each handle''' for coin in compiled_sentiment: # check if the sentiment and number of articles are over the given threshold if compiled_sentiment[coin] < NEGATIVE_SENTIMENT_THRESHOLD and headlines_analysed[coin] >= MINUMUM_ARTICLES and coins_in_hand[coin]>0: # check the volume looks correct print(f'preparing to sell {coins_in_hand[coin]} {coin} at {CURRENT_PRICE[coin+PAIRING]}') amount_to_sell = calculate_one_volume_from_lot_size(coin+PAIRING, coins_in_hand[coin]*99.5/100) if (testnet): # create test order before pushing an actual order test_order = client.create_test_order(symbol=coin+PAIRING, side='SELL', type='MARKET', quantity=amount_to_sell) # try to create a real order if the test orders did not raise an exception try: buy_limit = client.create_order( symbol=coin+PAIRING, side='SELL', type='MARKET', quantity=amount_to_sell ) #error handling here in case position cannot be placed except Exception as e: print(e) # run the else block if the position has been placed and return some info else: # set coin to 0 coins_in_hand[coin]=0 # retrieve the last order order = client.get_all_orders(symbol=coin+PAIRING, limit=1) if order: # convert order timsestamp into UTC format time = order[0]['time'] / 1000 utc_time = datetime.fromtimestamp(time) # grab the price of CRYPTO the order was placed at for reporting sold_at = CURRENT_PRICE[coin+PAIRING] # print order condirmation to the console print(f"order {order[0]['orderId']} has been placed on {coin} with {order[0]['origQty']} coins sold for {sold_at} each at {utc_time}") else: print('Could not get last order from Binance!') else: print(f'Sentiment not negative enough for {coin}, not enough headlines analysed or not enough {coin} to sell: {compiled_sentiment[coin]}, {headlines_analysed[coin]}') def save_coins_in_hand_to_file(): # abort saving if dictionary is empty if not coins_in_hand: return # save coins_in_hand to file with open(coins_in_hand_file_path, 'w') as file: json.dump(coins_in_hand, file, indent=4) if __name__ == '__main__': print('Press Ctrl-Q to stop the script') for i in count(): compiled_sentiment, headlines_analysed = compound_average() print("\nBUY CHECKS:") buy(compiled_sentiment, headlines_analysed) print("\nSELL CHECKS:") sell(compiled_sentiment, headlines_analysed) print('\nCurrent bot holdings: ') for coin in coins_in_hand: if coins_in_hand[coin] > 0: print(f'{coin}: {coins_in_hand[coin]}') save_coins_in_hand_to_file() print(f'\nIteration {i}') time.sleep(60 * REPEAT_EVERY)
33.602317
178
0.645237
4a23035b6afed8018c6e4eacd2896ef4d9fb84ca
982
py
Python
examples/hacker_news/setup.py
devarajnadiger/dagster
fae430f1d9463c23a427efa06dc9d0deb76429bb
[ "Apache-2.0" ]
1
2021-07-03T09:05:58.000Z
2021-07-03T09:05:58.000Z
examples/hacker_news/setup.py
devarajnadiger/dagster
fae430f1d9463c23a427efa06dc9d0deb76429bb
[ "Apache-2.0" ]
null
null
null
examples/hacker_news/setup.py
devarajnadiger/dagster
fae430f1d9463c23a427efa06dc9d0deb76429bb
[ "Apache-2.0" ]
1
2021-11-30T21:40:46.000Z
2021-11-30T21:40:46.000Z
from setuptools import find_packages, setup setup( name="hacker_news", version="dev", author="Elementl", author_email="[email protected]", classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", ], packages=find_packages(exclude=["test"]), package_data={"hacker_news": ["hacker_news_dbt/*"]}, install_requires=[ "dagster", "dagster-aws", "dagster-dbt", "dagster-pandas", "dagster-pyspark", "dagster-slack", "dagster-postgres", "dbt==0.19.0", "mock", "pandas", "pyarrow>=4.0.0", "pyspark", "requests", "gcsfs", "fsspec", "s3fs", "scipy", "sklearn", "snowflake-sqlalchemy", ], extras_require={"tests": ["mypy", "pylint", "pytest"]}, )
25.179487
59
0.529532
4a23053ee79a5b0ca4778c00df082e10ca546359
3,063
py
Python
src/wired_components/request/utils.py
pauleveritt/wired_components
a9072d5fc48680d5ff895887842ffd0f06bc0081
[ "MIT" ]
1
2019-09-15T12:30:44.000Z
2019-09-15T12:30:44.000Z
src/wired_components/request/utils.py
pauleveritt/wired_components
a9072d5fc48680d5ff895887842ffd0f06bc0081
[ "MIT" ]
null
null
null
src/wired_components/request/utils.py
pauleveritt/wired_components
a9072d5fc48680d5ff895887842ffd0f06bc0081
[ "MIT" ]
null
null
null
""" Mimic the various Pyramid path helpers. """ from typing import Union, Optional, List from wired_components.resource import Root, Resource SEP = "/" # Taken from Sphinx def relative_uri(base: str, to: str): """Return a relative URL from ``base`` to ``to``.""" # if to.startswith(SEP): # return to b2 = base.split(SEP) t2 = to.split(SEP) # remove common segments (except the last segment) for x, y in zip(b2[:-1], t2[:-1]): if x != y: break b2.pop(0) t2.pop(0) if b2 == t2: # Special case: relative_uri('f/index.html','f/index.html') # returns '', not 'index.html' return '' if len(b2) == 1 and t2 == ['']: # Special case: relative_uri('f/index.html','f/') should # return './', not '' return '.' + SEP prefix = ('..' + SEP) * (len(b2) - 1) main_path = SEP.join(t2) result = prefix + main_path return result def normalize_path(path: str) -> str: """ All paths should end with a slash """ if not path.endswith('/'): path += '/' return path def find_resource(root: Root, path: str) -> Resource: if path == '/' or path == '/.': return root path = normalize_path(path) items = iter(path[1:-1].split('/')) resource = root while True: try: current = next(items) resource = resource[current] except StopIteration: return resource def parents(resource: Resource) -> List[Optional[Resource]]: these_parents: List[Optional[Resource]] = [] parent = resource.parent while parent is not None: these_parents.append(parent) parent = parent.parent return list(reversed(these_parents)) def resource_path(resource: Resource) -> str: """ Give a slash-separated representation of resource w/ trailing / """ # Bail out quickly if we are the root or in the root if resource.parent is None: return '/' elif resource.parent.parent is None: return '/' + resource.name + '/' # The root is '' so skip it resource_parents = parents(resource) # Get the names for each parent, then join with slashes resource_parent_names = [p.name for p in resource_parents if p] path = '/'.join(resource_parent_names) + '/' + resource.name + '/' return path def relative_path( root: Root, current: Resource, target: Union[Resource, str], ) -> str: """ Given current resource, generate relative path to target """ # First, if the target is a string path, get the resource if isinstance(target, str): target = find_resource(root, normalize_path(target)) result = relative_uri( base=resource_path(current), to=resource_path(target) ) return result def relative_static_path(current: Resource, target: str): # Bail out quickly if we are the root or in the root current_path = resource_path(current) target_path = target result = relative_uri(current_path, target_path) return result
27.594595
75
0.613777
4a23057d86a74b89121841778f8c5df325dd8380
2,344
py
Python
predict.py
GT-AcerZhang/yolov3.insects_challenge
1ac6ee5a8a5c534ec11723542f4c10583935a2ad
[ "MIT" ]
1
2021-02-27T17:59:32.000Z
2021-02-27T17:59:32.000Z
predict.py
GT-AcerZhang/yolov3.insects_challenge
1ac6ee5a8a5c534ec11723542f4c10583935a2ad
[ "MIT" ]
1
2020-06-12T07:29:27.000Z
2020-06-12T07:29:27.000Z
predict.py
GT-AcerZhang/yolov3.insects_challenge
1ac6ee5a8a5c534ec11723542f4c10583935a2ad
[ "MIT" ]
1
2021-03-05T11:08:50.000Z
2021-03-05T11:08:50.000Z
# -*- coding: utf-8 -*- import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from reader import single_image_data_loader from multinms import multiclass_nms from yolov3 import YOLOv3 from draw_results import draw_results import argparse def parse_args(): parser = argparse.ArgumentParser("Evaluation Parameters") parser.add_argument( '--image_name', type=str, default='./insects/test/images/2599.jpeg', help='the directory of test images') parser.add_argument( '--weight_file', type=str, default='./yolo_epoch50', help='the path of model parameters') args = parser.parse_args() return args args = parse_args() IMAGE_NAME = args.image_name WEIGHT_FILE = args.weight_file ANCHORS = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] ANCHOR_MASKS = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] VALID_THRESH = 0.01 NMS_TOPK = 400 NMS_POSK = 100 NMS_THRESH = 0.45 NUM_CLASSES = 7 if __name__ == '__main__': with fluid.dygraph.guard(): model = YOLOv3('yolov3', num_classes=NUM_CLASSES, is_train=False) model_state_dict, _ = fluid.load_dygraph(WEIGHT_FILE) model.load_dict(model_state_dict) model.eval() total_results = [] test_loader = single_image_data_loader(IMAGE_NAME, mode='test') for i, data in enumerate(test_loader()): img_name, img_data, img_scale_data = data img = to_variable(img_data) img_scale = to_variable(img_scale_data) outputs = model.forward(img) bboxes, scores = model.get_pred(outputs, im_shape=img_scale, anchors=ANCHORS, anchor_masks=ANCHOR_MASKS, valid_thresh = VALID_THRESH) bboxes_data = bboxes.numpy() scores_data = scores.numpy() results = multiclass_nms(bboxes_data, scores_data, score_thresh=VALID_THRESH, nms_thresh=NMS_THRESH, pre_nms_topk=NMS_TOPK, pos_nms_topk=NMS_POSK) result = results[0] draw_results(result, IMAGE_NAME, draw_thresh=0.5)
29.670886
88
0.605375
4a230ac34dba750db1e6266fd2c08488cfc9e9b8
450
py
Python
bio_embeddings/__init__.py
kvetab/bio_embeddings
97309f73c964861f6e4e3d4510f4b5711d3b6b32
[ "MIT" ]
219
2020-01-19T16:39:09.000Z
2022-03-21T16:02:04.000Z
bio_embeddings/__init__.py
kvetab/bio_embeddings
97309f73c964861f6e4e3d4510f4b5711d3b6b32
[ "MIT" ]
175
2019-12-05T13:27:14.000Z
2022-03-30T16:58:32.000Z
bio_embeddings/__init__.py
kvetab/bio_embeddings
97309f73c964861f6e4e3d4510f4b5711d3b6b32
[ "MIT" ]
33
2019-12-16T09:59:44.000Z
2022-03-05T06:35:16.000Z
""" The functionality of bio_embeddings is split into 5 different modules .. autosummary:: bio_embeddings.embed bio_embeddings.extract bio_embeddings.project bio_embeddings.utilities bio_embeddings.visualize """ import bio_embeddings.embed import bio_embeddings.extract import bio_embeddings.project import bio_embeddings.utilities import bio_embeddings.visualize __all__ = ["embed", "extract", "project", "utilities", "visualize"]
23.684211
69
0.797778
4a230b54319b43590b53a4007e6dcaeed7548014
4,667
py
Python
scripts/compute_attribution_maps.py
dgrinwald93/pytorch_bnns
09bf7504f30373229579f15e847f1a7f87cf6ef0
[ "Apache-2.0" ]
null
null
null
scripts/compute_attribution_maps.py
dgrinwald93/pytorch_bnns
09bf7504f30373229579f15e847f1a7f87cf6ef0
[ "Apache-2.0" ]
null
null
null
scripts/compute_attribution_maps.py
dgrinwald93/pytorch_bnns
09bf7504f30373229579f15e847f1a7f87cf6ef0
[ "Apache-2.0" ]
null
null
null
import os import sys import json import copy import time import matplotlib.pyplot as plt from scipy.stats import entropy import numpy as np import torch from torch import cuda, device from curvature.sampling import invert_factors from pbnn.datasets.get_datasets import * from pbnn.models.utils import sample_curve_network, compute_attribution_map import lucent from lucent.util import set_seed # Fix lucent seed set_seed(42) # SETUP # file_path = './confs/compute_attribution_maps_inceptionv1.json' with open(file_path, 'r') as j: xp_conf = json.loads(j.read()) if not os.path.exists(xp_conf['attr_maps_save_path']): os.makedirs(xp_conf['attr_maps_save_path']) np.random.seed(xp_conf['np_seed']) samples = xp_conf['num_nets'] seeds = np.random.randint(0, 10000000, size=(samples, 2)) # GET GPU # device = device("cuda:0" if cuda.is_available() else "cpu") print(f'Hardware accelerator: {device}') # Get data trainloader, valloader, testloader, testset, idx_to_class, class_to_name = \ globals()['load_'+xp_conf['ds']]( batch_size=xp_conf['batch_size']) # Load pretrained model and factors model_path = xp_conf['model_path'] factors_path = xp_conf['factors_path'] model = torch.load(model_path) factors = torch.load(factors_path) posterior_mean = copy.deepcopy(model.state_dict()) estimator = 'kfac' inv_factors = invert_factors(factors, norm=1e3, scale=1e5, estimator='kfac') # Load max entropy points pred_dists = np.load(xp_conf['points_path']) entropies = entropy(pred_dists.reshape(-1,200), axis=1) print(entropies.shape) # Compute max entropies max_entropy_ids = np.argsort(entropies)[::-1] min_entropy_ids = np.argsort(entropies) # Highest entropy images # total = 10 # fig, ax = plt.subplots(1, total, figsize=(30,15)) # for i in range(total): # img = np.transpose(testset[max_entropy_ids[i]][0], (1,2,0)) # preprocessed_img = (img - img.min()) / (img.max() - img.min()) # ax[i].imshow(preprocessed_img) # ax[i].set_title(f'ID: {max_entropy_ids[i]}, label: {class_to_name[idx_to_class[testloader.dataset[max_entropy_ids[i]][1]]]}') # plt.savefig('./experiments/curve_inceptionv1/high_entropy_points/high_entropy_points.png') # # Lowest entropy images # total = 10 # fig, ax = plt.subplots(1, total, figsize=(30,15)) # for i in range(total): # img = np.transpose(testset[min_entropy_ids[i]][0], (1,2,0)) # preprocessed_img = (img - img.min()) / (img.max() - img.min()) # ax[i].imshow(preprocessed_img) # ax[i].set_title(f'ID: {min_entropy_ids[i]}, label: {class_to_name[idx_to_class[testloader.dataset[min_entropy_ids[i]][1]]]}') # plt.savefig('./experiments/curve_inceptionv1/high_entropy_points/low_entropy_points.png') # Loop # Compute attribution maps for all images for data_id in max_entropy_ids[:10]: if not os.path.exists(xp_conf['attr_maps_save_path']+f'{data_id}/'): os.makedirs(xp_conf['attr_maps_save_path']+f'{data_id}/') img = testset[data_id][0].reshape(1, 3, 224, 224) preprocessed_img = (img - img.min()) / (img.max() - img.min()) plt.imshow(np.transpose(preprocessed_img.reshape(3,224,224),(1,2,0))) fig_save_path = xp_conf['attr_maps_save_path']+f'/{data_id}/'+'original_img' plt.savefig(fig_save_path) attr_maps_arr = [] attr_maps_grid = [] preds = [] for i, seed in enumerate(seeds): # Sample net sample_curve_network(model, inv_factors, estimator, posterior_mean, seed) #Compute attribution map img = np.transpose(testset[data_id][0], (1,2,0)) tmp_attr_map_arr, tmp_attr_map_grid = compute_attribution_map(img=img, model=model, cell_image_size=60, n_steps=1024, n_groups=6, layer='mixed5b', batch_size=64, device=device) # Save attribution maps attr_maps_arr.append(tmp_attr_map_arr) attr_maps_grid.append(tmp_attr_map_grid) img = testset[data_id][0].reshape(1, 3, 224, 224) # Compute network predictions pred = model(img.reshape(1, 3, 224, 224).to(device)).max(1)[1].detach().cpu().numpy() preds.append((pred[0], class_to_name[idx_to_class[pred[0]]])) xp_conf['attr_maps_arr'] = attr_maps_arr xp_conf['attr_maps_grid'] = attr_maps_grid xp_conf['preds'] = preds xp_save_path = xp_conf['attr_maps_save_path']+f'/{data_id}/'+f'xp_dict_'+'_'.join('_'.join(time.ctime().split(' ')).split(':')) np.save(xp_save_path, xp_conf)
35.356061
132
0.667881
4a230bc4631a4c98380a434647a49287aef1599e
15,351
py
Python
egs/word_embedding/steps/tfrnnlm/fast_cbow.py
charlesliucn/LanMIT
537dab22335a21285699776ce66d95cb14c3db52
[ "Apache-2.0" ]
17
2019-07-08T08:34:50.000Z
2021-11-19T13:39:29.000Z
egs/word_embedding/steps/tfrnnlm/fast_cbow.py
charlesliucn/kaldi-lm
537dab22335a21285699776ce66d95cb14c3db52
[ "Apache-2.0" ]
null
null
null
egs/word_embedding/steps/tfrnnlm/fast_cbow.py
charlesliucn/kaldi-lm
537dab22335a21285699776ce66d95cb14c3db52
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import os import sys import time import math import reader import random import inspect import collections import numpy as np import tensorflow as tf reload(sys) sys.setdefaultencoding("utf-8") os.environ["CUDA_VISIBLE_DEVICES"] = "5" config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.95 session = tf.Session(config = config) flags = tf.flags logging = tf.logging flags.DEFINE_string("data-path", None, "Where the training/test data is stored.") flags.DEFINE_string("vocab-path", None, "Where the wordlist file is stored.") flags.DEFINE_string("save-path", None, "Model output directory.") flags.DEFINE_integer("hidden-size", 200, "hidden dim of RNN") flags.DEFINE_integer("num-layers", 2, "number of layers of RNN") flags.DEFINE_integer("batch-size", 64, "batch size of RNN training") flags.DEFINE_float("keep-prob", 1.0, "Keep Probability of Dropout") flags.DEFINE_integer("max-epoch", 30, "The number of max epoch") FLAGS = flags.FLAGS class Config(object): """Small config.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 30 keep_prob = 1.0 lr_decay = 0.8 batch_size = 64 # this new "softmax" function we show can train a "self-normalized" RNNLM where # the sum of the output is automatically (close to) 1.0 # which saves a lot of computation for lattice-rescoring def new_softmax(labels, logits): target = tf.reshape(labels, [-1]) f_logits = tf.exp(logits) row_sums = tf.reduce_sum(f_logits, 1) # this is the negative part of the objf t2 = tf.expand_dims(target, 1) range = tf.expand_dims(tf.range(tf.shape(target)[0]), 1) ind = tf.concat([range, t2], 1) res = tf.gather_nd(logits, ind) return -res + row_sums - 1 class RnnlmInput(object): """The input data.""" def __init__(self, config, data, name=None): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.epoch_size = ((len(data) // batch_size) - 1) // num_steps self.input_data, self.targets = reader.rnnlm_producer( data, batch_size, num_steps, name=name) class RnnlmModel(object): """The RNNLM model.""" def __init__(self, is_training, config, input_, cbow_embeddings): self._input = input_ batch_size = input_.batch_size num_steps = input_.num_steps hidden_size = config.hidden_size vocab_size = config.vocab_size def lstm_cell(): # With the latest TensorFlow source code (as of Mar 27, 2017), # the BasicLSTMCell will need a reuse parameter which is unfortunately not # defined in TensorFlow 1.0. To maintain backwards compatibility, we add # an argument check here: if 'reuse' in inspect.getargspec(tf.contrib.rnn.BasicLSTMCell.__init__).args: return tf.contrib.rnn.BasicLSTMCell( hidden_size, forget_bias = 0.0, state_is_tuple = True, reuse = tf.get_variable_scope().reuse) else: return tf.contrib.rnn.BasicLSTMCell( hidden_size, forget_bias = 0.0, state_is_tuple = True) attn_cell = lstm_cell if is_training and config.keep_prob < 1: def attn_cell(): return tf.contrib.rnn.DropoutWrapper( lstm_cell(), output_keep_prob = config.keep_prob) self.cell = tf.contrib.rnn.MultiRNNCell( [attn_cell() for _ in range(config.num_layers)], state_is_tuple = True) self._initial_state = self.cell.zero_state(batch_size, tf.float32) self._initial_state_single = self.cell.zero_state(1, tf.float32) self.initial = tf.reshape(tf.stack(axis = 0, values = self._initial_state_single), [config.num_layers, 2, 1, hidden_size], name = "test_initial_state") # first implement the less efficient version test_word_in = tf.placeholder(tf.int32, [1, 1], name="test_word_in") state_placeholder = tf.placeholder(tf.float32, [config.num_layers, 2, 1, hidden_size], name = "test_state_in") # unpacking the input state context l = tf.unstack(state_placeholder, axis=0) test_input_state = tuple( [tf.contrib.rnn.LSTMStateTuple(l[idx][0],l[idx][1]) for idx in range(config.num_layers)] ) with tf.device("/cpu:0"): embed_init = tf.constant_initializer(cbow_embeddings, dtype = tf.float32) self.embedding = tf.get_variable("embedding", shape = [vocab_size, hidden_size], dtype = tf.float32, initializer = embed_init) inputs = tf.nn.embedding_lookup(self.embedding, input_.input_data) test_inputs = tf.nn.embedding_lookup(self.embedding, test_word_in) # test time with tf.variable_scope("RNN"): (test_cell_output, test_output_state) = self.cell(test_inputs[:, 0, :], test_input_state) test_state_out = tf.reshape(tf.stack(axis = 0, values = test_output_state), [config.num_layers, 2, 1, hidden_size], name = "test_state_out") test_cell_out = tf.reshape(test_cell_output, [1, hidden_size], name = "test_cell_out") # above is the first part of the graph for test # test-word-in # > ---- > test-state-out # test-state-in > test-cell-out # below is the 2nd part of the graph for test # test-word-out # > prob(word | test-word-out) # test-cell-in test_word_out = tf.placeholder(tf.int32, [1, 1], name = "test_word_out") cellout_placeholder = tf.placeholder(tf.float32, [1, hidden_size], name = "test_cell_in") softmax_w = tf.get_variable("softmax_w", [hidden_size, vocab_size], dtype = tf.float32) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype = tf.float32) softmax_b = softmax_b - 9.0 test_logits = tf.matmul(cellout_placeholder, tf.transpose(tf.nn.embedding_lookup(tf.transpose(softmax_w), test_word_out[0]))) + softmax_b[test_word_out[0,0]] p_word = test_logits[0, 0] test_out = tf.identity(p_word, name = "test_out") if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) # Simplified version of models/tutorials/rnn/rnn.py's rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use the rnn() or state_saving_rnn() from rnn.py. # # The alternative version of the code below is: # # inputs = tf.unstack(inputs, num=num_steps, axis=1) # outputs, state = tf.contrib.rnn.static_rnn( # cell, inputs, initial_state=self._initial_state) outputs = [] state = self._initial_state with tf.variable_scope("RNN"): for time_step in range(num_steps): if time_step > -1: tf.get_variable_scope().reuse_variables() (cell_output, state) = self.cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.stack(axis=1, values=outputs), [-1, hidden_size]) logits = tf.matmul(output, softmax_w) + softmax_b loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(input_.targets, [-1])], [tf.ones([batch_size * num_steps], dtype=tf.float32)], softmax_loss_function = new_softmax) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op def run_epoch(session, model, eval_op=None, verbose=False): """Runs the model on the given data.""" start_time = time.time() costs = 0.0 iters = 0 state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, } if eval_op is not None: fetches["eval_op"] = eval_op for step in range(model.input.epoch_size): feed_dict = {} for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] costs += cost iters += model.input.num_steps if verbose and step % (model.input.epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / model.input.epoch_size, np.exp(costs / iters), iters * model.input.batch_size / (time.time() - start_time))) return np.exp(costs / iters) data_index = 0 def generate_batch(train_data, embed_batch_size, skip_window): global data_index span = 2 * skip_window + 1 batch = np.ndarray(shape = (embed_batch_size, span - 1), dtype = np.int32) labels = np.ndarray(shape = (embed_batch_size, 1), dtype = np.int32) buffer = collections.deque(maxlen = span) for _ in range(span): buffer.append(train_data[data_index]) data_index = (data_index + 1) % len(train_data) for i in range(embed_batch_size): target = skip_window targets_to_avoid = [skip_window] col_idx = 0 for j in range(span): if j == span // 2: continue batch[i, col_idx] = buffer[j] col_idx += 1 labels[i, 0] = buffer[target] buffer.append(train_data[data_index]) data_index = (data_index + 1) % len(train_data) assert batch.shape[0] == embed_batch_size and batch.shape[1] == span - 1 return batch, labels def get_config(): return Config() def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to RNNLM data directory") raw_data = reader.rnnlm_raw_data(FLAGS.data_path, FLAGS.vocab_path) train_data, valid_data, _, word_map = raw_data reverse_wordmap = dict(zip(word_map.values(), word_map.keys())) vocabulary_size = len(word_map) config = get_config() config.vocab_size = len(word_map) config.hidden_size = FLAGS.hidden_size config.num_layers = FLAGS.num_layers config.batch_size = FLAGS.batch_size config.keep_prob= FLAGS.keep_prob config.max_max_epoch = FLAGS.max_epoch eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 # word embedding参数设置 embed_batch_size = 128 embedding_size = 200 skip_window = 1 valid_size = 16 valid_window = 100 embed_num_steps = 100001 valid_examples = np.array(random.sample(range(valid_window), valid_size//2)) valid_examples = np.append( valid_examples, random.sample(range(1000, 1000 + valid_window),valid_size // 2)) num_sampled = 64 graph_cbow = tf.Graph() with graph_cbow.as_default(): train_dataset = tf.placeholder(tf.int32, shape = [embed_batch_size, 2 * skip_window]) train_labels = tf.placeholder(tf.int32, shape = [embed_batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype = tf.int32) embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev = 1.0/math.sqrt(embedding_size))) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) embeds = None for i in range(2 * skip_window): embedding_i = tf.nn.embedding_lookup(embeddings, train_dataset[:, i]) print("embedding %d shape: %s" % (i, embedding_i.get_shape().as_list())) emb_x, emb_y = embedding_i.get_shape().as_list() if embeds is None: embeds = tf.reshape(embedding_i, [emb_x, emb_y, 1]) else: embeds = tf.concat([embeds, tf.reshape(embedding_i, [emb_x, emb_y, 1])], axis = 2) # assert embeds.get_shape().as_list()[2] == 2 * skip_window print("Concat embedding size: %s" % embeds.get_shape().as_list()) avg_embed = tf.reduce_mean(embeds, 2, keep_dims = False) print("Average embedding size: %s" % avg_embed.get_shape().as_list()) loss = tf.reduce_mean(tf.nn.sampled_softmax_loss( weights = softmax_weights, biases = softmax_biases, inputs = avg_embed, labels = train_labels, num_sampled = num_sampled, num_classes = vocabulary_size)) optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) with tf.Session(graph = graph_cbow) as session: tf.global_variables_initializer().run() print("Initialized!") average_loss = 0 for step in range(embed_num_steps): batch_data, batch_labels = generate_batch( train_data = train_data, embed_batch_size = embed_batch_size, skip_window = skip_window) feed_dict = {train_dataset: batch_data, train_labels: batch_labels} _, lo = session.run([optimizer, loss], feed_dict = feed_dict) average_loss += lo if step % 2000 == 0: if step > 0: average_loss = average_loss / 2000 print("Average loss at step %d: %f " % (step, average_loss)) average_loss = 0 if step % 10000 == 0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_wordmap[valid_examples[i]] top_k = 8 nearest = (-sim[i, :]).argsort()[1: top_k + 1] log = "Nearest to %s: " % valid_word for k in range(top_k): close_word = reverse_wordmap[nearest[k]] log = log + " " + close_word + "," print(log) final_embeddings = normalized_embeddings.eval() with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = RnnlmInput(config = config, data = train_data, name = "TrainInput") with tf.variable_scope("Model", reuse = None, initializer = initializer): m = RnnlmModel(is_training = True, config = config, input_ = train_input, cbow_embeddings = final_embeddings) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = RnnlmInput(config = config, data = valid_data, name = "ValidInput") with tf.variable_scope("Model", reuse = True, initializer = initializer): mvalid = RnnlmModel(is_training = False, config = config, input_ = valid_input, cbow_embeddings = final_embeddings) tf.summary.scalar("Validation Loss", mvalid.cost) sv = tf.train.Supervisor(logdir=FLAGS.save_path) with sv.managed_session() as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, m, eval_op=m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path) if __name__ == "__main__": tf.app.run()
33.962389
115
0.712787
4a230c50923f6defb1f39ad8b9bf8e41a7288ba8
49,485
py
Python
AppPkg/Applications/Python/Python-2.7.2/Lib/httplib.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
2,757
2018-04-28T21:41:36.000Z
2022-03-29T06:33:36.000Z
AppPkg/Applications/Python/Python-2.7.2/Lib/httplib.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
20
2019-07-23T15:29:32.000Z
2022-01-21T12:53:04.000Z
AppPkg/Applications/Python/Python-2.7.2/Lib/httplib.py
CEOALT1/RefindPlusUDK
116b957ad735f96fbb6d80a0ba582046960ba164
[ "BSD-2-Clause" ]
449
2018-05-09T05:54:05.000Z
2022-03-30T14:54:18.000Z
"""HTTP/1.1 client library <intro stuff goes here> <other stuff, too> HTTPConnection goes through a number of "states", which define when a client may legally make another request or fetch the response for a particular request. This diagram details these state transitions: (null) | | HTTPConnection() v Idle | | putrequest() v Request-started | | ( putheader() )* endheaders() v Request-sent | | response = getresponse() v Unread-response [Response-headers-read] |\____________________ | | | response.read() | putrequest() v v Idle Req-started-unread-response ______/| / | response.read() | | ( putheader() )* endheaders() v v Request-started Req-sent-unread-response | | response.read() v Request-sent This diagram presents the following rules: -- a second request may not be started until {response-headers-read} -- a response [object] cannot be retrieved until {request-sent} -- there is no differentiation between an unread response body and a partially read response body Note: this enforcement is applied by the HTTPConnection class. The HTTPResponse class does not enforce this state machine, which implies sophisticated clients may accelerate the request/response pipeline. Caution should be taken, though: accelerating the states beyond the above pattern may imply knowledge of the server's connection-close behavior for certain requests. For example, it is impossible to tell whether the server will close the connection UNTIL the response headers have been read; this means that further requests cannot be placed into the pipeline until it is known that the server will NOT be closing the connection. Logical State __state __response ------------- ------- ---------- Idle _CS_IDLE None Request-started _CS_REQ_STARTED None Request-sent _CS_REQ_SENT None Unread-response _CS_IDLE <response_class> Req-started-unread-response _CS_REQ_STARTED <response_class> Req-sent-unread-response _CS_REQ_SENT <response_class> """ from array import array import os import socket from sys import py3kwarning from urlparse import urlsplit import warnings with warnings.catch_warnings(): if py3kwarning: warnings.filterwarnings("ignore", ".*mimetools has been removed", DeprecationWarning) import mimetools try: from cStringIO import StringIO except ImportError: from StringIO import StringIO __all__ = ["HTTP", "HTTPResponse", "HTTPConnection", "HTTPException", "NotConnected", "UnknownProtocol", "UnknownTransferEncoding", "UnimplementedFileMode", "IncompleteRead", "InvalidURL", "ImproperConnectionState", "CannotSendRequest", "CannotSendHeader", "ResponseNotReady", "BadStatusLine", "error", "responses"] HTTP_PORT = 80 HTTPS_PORT = 443 _UNKNOWN = 'UNKNOWN' # connection states _CS_IDLE = 'Idle' _CS_REQ_STARTED = 'Request-started' _CS_REQ_SENT = 'Request-sent' # status codes # informational CONTINUE = 100 SWITCHING_PROTOCOLS = 101 PROCESSING = 102 # successful OK = 200 CREATED = 201 ACCEPTED = 202 NON_AUTHORITATIVE_INFORMATION = 203 NO_CONTENT = 204 RESET_CONTENT = 205 PARTIAL_CONTENT = 206 MULTI_STATUS = 207 IM_USED = 226 # redirection MULTIPLE_CHOICES = 300 MOVED_PERMANENTLY = 301 FOUND = 302 SEE_OTHER = 303 NOT_MODIFIED = 304 USE_PROXY = 305 TEMPORARY_REDIRECT = 307 # client error BAD_REQUEST = 400 UNAUTHORIZED = 401 PAYMENT_REQUIRED = 402 FORBIDDEN = 403 NOT_FOUND = 404 METHOD_NOT_ALLOWED = 405 NOT_ACCEPTABLE = 406 PROXY_AUTHENTICATION_REQUIRED = 407 REQUEST_TIMEOUT = 408 CONFLICT = 409 GONE = 410 LENGTH_REQUIRED = 411 PRECONDITION_FAILED = 412 REQUEST_ENTITY_TOO_LARGE = 413 REQUEST_URI_TOO_LONG = 414 UNSUPPORTED_MEDIA_TYPE = 415 REQUESTED_RANGE_NOT_SATISFIABLE = 416 EXPECTATION_FAILED = 417 UNPROCESSABLE_ENTITY = 422 LOCKED = 423 FAILED_DEPENDENCY = 424 UPGRADE_REQUIRED = 426 # server error INTERNAL_SERVER_ERROR = 500 NOT_IMPLEMENTED = 501 BAD_GATEWAY = 502 SERVICE_UNAVAILABLE = 503 GATEWAY_TIMEOUT = 504 HTTP_VERSION_NOT_SUPPORTED = 505 INSUFFICIENT_STORAGE = 507 NOT_EXTENDED = 510 # Mapping status codes to official W3C names responses = { 100: 'Continue', 101: 'Switching Protocols', 200: 'OK', 201: 'Created', 202: 'Accepted', 203: 'Non-Authoritative Information', 204: 'No Content', 205: 'Reset Content', 206: 'Partial Content', 300: 'Multiple Choices', 301: 'Moved Permanently', 302: 'Found', 303: 'See Other', 304: 'Not Modified', 305: 'Use Proxy', 306: '(Unused)', 307: 'Temporary Redirect', 400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found', 405: 'Method Not Allowed', 406: 'Not Acceptable', 407: 'Proxy Authentication Required', 408: 'Request Timeout', 409: 'Conflict', 410: 'Gone', 411: 'Length Required', 412: 'Precondition Failed', 413: 'Request Entity Too Large', 414: 'Request-URI Too Long', 415: 'Unsupported Media Type', 416: 'Requested Range Not Satisfiable', 417: 'Expectation Failed', 500: 'Internal Server Error', 501: 'Not Implemented', 502: 'Bad Gateway', 503: 'Service Unavailable', 504: 'Gateway Timeout', 505: 'HTTP Version Not Supported', } # maximal amount of data to read at one time in _safe_read MAXAMOUNT = 1048576 # maximal line length when calling readline(). _MAXLINE = 65536 class HTTPMessage(mimetools.Message): def addheader(self, key, value): """Add header for field key handling repeats.""" prev = self.dict.get(key) if prev is None: self.dict[key] = value else: combined = ", ".join((prev, value)) self.dict[key] = combined def addcontinue(self, key, more): """Add more field data from a continuation line.""" prev = self.dict[key] self.dict[key] = prev + "\n " + more def readheaders(self): """Read header lines. Read header lines up to the entirely blank line that terminates them. The (normally blank) line that ends the headers is skipped, but not included in the returned list. If a non-header line ends the headers, (which is an error), an attempt is made to backspace over it; it is never included in the returned list. The variable self.status is set to the empty string if all went well, otherwise it is an error message. The variable self.headers is a completely uninterpreted list of lines contained in the header (so printing them will reproduce the header exactly as it appears in the file). If multiple header fields with the same name occur, they are combined according to the rules in RFC 2616 sec 4.2: Appending each subsequent field-value to the first, each separated by a comma. The order in which header fields with the same field-name are received is significant to the interpretation of the combined field value. """ # XXX The implementation overrides the readheaders() method of # rfc822.Message. The base class design isn't amenable to # customized behavior here so the method here is a copy of the # base class code with a few small changes. self.dict = {} self.unixfrom = '' self.headers = hlist = [] self.status = '' headerseen = "" firstline = 1 startofline = unread = tell = None if hasattr(self.fp, 'unread'): unread = self.fp.unread elif self.seekable: tell = self.fp.tell while True: if tell: try: startofline = tell() except IOError: startofline = tell = None self.seekable = 0 line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") if not line: self.status = 'EOF in headers' break # Skip unix From name time lines if firstline and line.startswith('From '): self.unixfrom = self.unixfrom + line continue firstline = 0 if headerseen and line[0] in ' \t': # XXX Not sure if continuation lines are handled properly # for http and/or for repeating headers # It's a continuation line. hlist.append(line) self.addcontinue(headerseen, line.strip()) continue elif self.iscomment(line): # It's a comment. Ignore it. continue elif self.islast(line): # Note! No pushback here! The delimiter line gets eaten. break headerseen = self.isheader(line) if headerseen: # It's a legal header line, save it. hlist.append(line) self.addheader(headerseen, line[len(headerseen)+1:].strip()) continue else: # It's not a header line; throw it back and stop here. if not self.dict: self.status = 'No headers' else: self.status = 'Non-header line where header expected' # Try to undo the read. if unread: unread(line) elif tell: self.fp.seek(startofline) else: self.status = self.status + '; bad seek' break class HTTPResponse: # strict: If true, raise BadStatusLine if the status line can't be # parsed as a valid HTTP/1.0 or 1.1 status line. By default it is # false because it prevents clients from talking to HTTP/0.9 # servers. Note that a response with a sufficiently corrupted # status line will look like an HTTP/0.9 response. # See RFC 2616 sec 19.6 and RFC 1945 sec 6 for details. def __init__(self, sock, debuglevel=0, strict=0, method=None, buffering=False): if buffering: # The caller won't be using any sock.recv() calls, so buffering # is fine and recommended for performance. self.fp = sock.makefile('rb') else: # The buffer size is specified as zero, because the headers of # the response are read with readline(). If the reads were # buffered the readline() calls could consume some of the # response, which make be read via a recv() on the underlying # socket. self.fp = sock.makefile('rb', 0) self.debuglevel = debuglevel self.strict = strict self._method = method self.msg = None # from the Status-Line of the response self.version = _UNKNOWN # HTTP-Version self.status = _UNKNOWN # Status-Code self.reason = _UNKNOWN # Reason-Phrase self.chunked = _UNKNOWN # is "chunked" being used? self.chunk_left = _UNKNOWN # bytes left to read in current chunk self.length = _UNKNOWN # number of bytes left in response self.will_close = _UNKNOWN # conn will close at end of response def _read_status(self): # Initialize with Simple-Response defaults line = self.fp.readline() if self.debuglevel > 0: print "reply:", repr(line) if not line: # Presumably, the server closed the connection before # sending a valid response. raise BadStatusLine(line) try: [version, status, reason] = line.split(None, 2) except ValueError: try: [version, status] = line.split(None, 1) reason = "" except ValueError: # empty version will cause next test to fail and status # will be treated as 0.9 response. version = "" if not version.startswith('HTTP/'): if self.strict: self.close() raise BadStatusLine(line) else: # assume it's a Simple-Response from an 0.9 server self.fp = LineAndFileWrapper(line, self.fp) return "HTTP/0.9", 200, "" # The status code is a three-digit number try: status = int(status) if status < 100 or status > 999: raise BadStatusLine(line) except ValueError: raise BadStatusLine(line) return version, status, reason def begin(self): if self.msg is not None: # we've already started reading the response return # read until we get a non-100 response while True: version, status, reason = self._read_status() if status != CONTINUE: break # skip the header from the 100 response while True: skip = self.fp.readline(_MAXLINE + 1) if len(skip) > _MAXLINE: raise LineTooLong("header line") skip = skip.strip() if not skip: break if self.debuglevel > 0: print "header:", skip self.status = status self.reason = reason.strip() if version == 'HTTP/1.0': self.version = 10 elif version.startswith('HTTP/1.'): self.version = 11 # use HTTP/1.1 code for HTTP/1.x where x>=1 elif version == 'HTTP/0.9': self.version = 9 else: raise UnknownProtocol(version) if self.version == 9: self.length = None self.chunked = 0 self.will_close = 1 self.msg = HTTPMessage(StringIO()) return self.msg = HTTPMessage(self.fp, 0) if self.debuglevel > 0: for hdr in self.msg.headers: print "header:", hdr, # don't let the msg keep an fp self.msg.fp = None # are we using the chunked-style of transfer encoding? tr_enc = self.msg.getheader('transfer-encoding') if tr_enc and tr_enc.lower() == "chunked": self.chunked = 1 self.chunk_left = None else: self.chunked = 0 # will the connection close at the end of the response? self.will_close = self._check_close() # do we have a Content-Length? # NOTE: RFC 2616, S4.4, #3 says we ignore this if tr_enc is "chunked" length = self.msg.getheader('content-length') if length and not self.chunked: try: self.length = int(length) except ValueError: self.length = None else: if self.length < 0: # ignore nonsensical negative lengths self.length = None else: self.length = None # does the body have a fixed length? (of zero) if (status == NO_CONTENT or status == NOT_MODIFIED or 100 <= status < 200 or # 1xx codes self._method == 'HEAD'): self.length = 0 # if the connection remains open, and we aren't using chunked, and # a content-length was not provided, then assume that the connection # WILL close. if not self.will_close and \ not self.chunked and \ self.length is None: self.will_close = 1 def _check_close(self): conn = self.msg.getheader('connection') if self.version == 11: # An HTTP/1.1 proxy is assumed to stay open unless # explicitly closed. conn = self.msg.getheader('connection') if conn and "close" in conn.lower(): return True return False # Some HTTP/1.0 implementations have support for persistent # connections, using rules different than HTTP/1.1. # For older HTTP, Keep-Alive indicates persistent connection. if self.msg.getheader('keep-alive'): return False # At least Akamai returns a "Connection: Keep-Alive" header, # which was supposed to be sent by the client. if conn and "keep-alive" in conn.lower(): return False # Proxy-Connection is a netscape hack. pconn = self.msg.getheader('proxy-connection') if pconn and "keep-alive" in pconn.lower(): return False # otherwise, assume it will close return True def close(self): if self.fp: self.fp.close() self.fp = None def isclosed(self): # NOTE: it is possible that we will not ever call self.close(). This # case occurs when will_close is TRUE, length is None, and we # read up to the last byte, but NOT past it. # # IMPLIES: if will_close is FALSE, then self.close() will ALWAYS be # called, meaning self.isclosed() is meaningful. return self.fp is None # XXX It would be nice to have readline and __iter__ for this, too. def read(self, amt=None): if self.fp is None: return '' if self._method == 'HEAD': self.close() return '' if self.chunked: return self._read_chunked(amt) if amt is None: # unbounded read if self.length is None: s = self.fp.read() else: s = self._safe_read(self.length) self.length = 0 self.close() # we read everything return s if self.length is not None: if amt > self.length: # clip the read to the "end of response" amt = self.length # we do not use _safe_read() here because this may be a .will_close # connection, and the user is reading more bytes than will be provided # (for example, reading in 1k chunks) s = self.fp.read(amt) if self.length is not None: self.length -= len(s) if not self.length: self.close() return s def _read_chunked(self, amt): assert self.chunked != _UNKNOWN chunk_left = self.chunk_left value = [] while True: if chunk_left is None: line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("chunk size") i = line.find(';') if i >= 0: line = line[:i] # strip chunk-extensions try: chunk_left = int(line, 16) except ValueError: # close the connection as protocol synchronisation is # probably lost self.close() raise IncompleteRead(''.join(value)) if chunk_left == 0: break if amt is None: value.append(self._safe_read(chunk_left)) elif amt < chunk_left: value.append(self._safe_read(amt)) self.chunk_left = chunk_left - amt return ''.join(value) elif amt == chunk_left: value.append(self._safe_read(amt)) self._safe_read(2) # toss the CRLF at the end of the chunk self.chunk_left = None return ''.join(value) else: value.append(self._safe_read(chunk_left)) amt -= chunk_left # we read the whole chunk, get another self._safe_read(2) # toss the CRLF at the end of the chunk chunk_left = None # read and discard trailer up to the CRLF terminator ### note: we shouldn't have any trailers! while True: line = self.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("trailer line") if not line: # a vanishingly small number of sites EOF without # sending the trailer break if line == '\r\n': break # we read everything; close the "file" self.close() return ''.join(value) def _safe_read(self, amt): """Read the number of bytes requested, compensating for partial reads. Normally, we have a blocking socket, but a read() can be interrupted by a signal (resulting in a partial read). Note that we cannot distinguish between EOF and an interrupt when zero bytes have been read. IncompleteRead() will be raised in this situation. This function should be used when <amt> bytes "should" be present for reading. If the bytes are truly not available (due to EOF), then the IncompleteRead exception can be used to detect the problem. """ # NOTE(gps): As of svn r74426 socket._fileobject.read(x) will never # return less than x bytes unless EOF is encountered. It now handles # signal interruptions (socket.error EINTR) internally. This code # never caught that exception anyways. It seems largely pointless. # self.fp.read(amt) will work fine. s = [] while amt > 0: chunk = self.fp.read(min(amt, MAXAMOUNT)) if not chunk: raise IncompleteRead(''.join(s), amt) s.append(chunk) amt -= len(chunk) return ''.join(s) def fileno(self): return self.fp.fileno() def getheader(self, name, default=None): if self.msg is None: raise ResponseNotReady() return self.msg.getheader(name, default) def getheaders(self): """Return list of (header, value) tuples.""" if self.msg is None: raise ResponseNotReady() return self.msg.items() class HTTPConnection: _http_vsn = 11 _http_vsn_str = 'HTTP/1.1' response_class = HTTPResponse default_port = HTTP_PORT auto_open = 1 debuglevel = 0 strict = 0 def __init__(self, host, port=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): self.timeout = timeout self.source_address = source_address self.sock = None self._buffer = [] self.__response = None self.__state = _CS_IDLE self._method = None self._tunnel_host = None self._tunnel_port = None self._tunnel_headers = {} self._set_hostport(host, port) if strict is not None: self.strict = strict def set_tunnel(self, host, port=None, headers=None): """ Sets up the host and the port for the HTTP CONNECT Tunnelling. The headers argument should be a mapping of extra HTTP headers to send with the CONNECT request. """ self._tunnel_host = host self._tunnel_port = port if headers: self._tunnel_headers = headers else: self._tunnel_headers.clear() def _set_hostport(self, host, port): if port is None: i = host.rfind(':') j = host.rfind(']') # ipv6 addresses have [...] if i > j: try: port = int(host[i+1:]) except ValueError: raise InvalidURL("nonnumeric port: '%s'" % host[i+1:]) host = host[:i] else: port = self.default_port if host and host[0] == '[' and host[-1] == ']': host = host[1:-1] self.host = host self.port = port def set_debuglevel(self, level): self.debuglevel = level def _tunnel(self): self._set_hostport(self._tunnel_host, self._tunnel_port) self.send("CONNECT %s:%d HTTP/1.0\r\n" % (self.host, self.port)) for header, value in self._tunnel_headers.iteritems(): self.send("%s: %s\r\n" % (header, value)) self.send("\r\n") response = self.response_class(self.sock, strict = self.strict, method = self._method) (version, code, message) = response._read_status() if code != 200: self.close() raise socket.error("Tunnel connection failed: %d %s" % (code, message.strip())) while True: line = response.fp.readline(_MAXLINE + 1) if len(line) > _MAXLINE: raise LineTooLong("header line") if line == '\r\n': break def connect(self): """Connect to the host and port specified in __init__.""" self.sock = socket.create_connection((self.host,self.port), self.timeout, self.source_address) if self._tunnel_host: self._tunnel() def close(self): """Close the connection to the HTTP server.""" if self.sock: self.sock.close() # close it manually... there may be other refs self.sock = None if self.__response: self.__response.close() self.__response = None self.__state = _CS_IDLE def send(self, data): """Send `data' to the server.""" if self.sock is None: if self.auto_open: self.connect() else: raise NotConnected() if self.debuglevel > 0: print "send:", repr(data) blocksize = 8192 if hasattr(data,'read') and not isinstance(data, array): if self.debuglevel > 0: print "sendIng a read()able" datablock = data.read(blocksize) while datablock: self.sock.sendall(datablock) datablock = data.read(blocksize) else: self.sock.sendall(data) def _output(self, s): """Add a line of output to the current request buffer. Assumes that the line does *not* end with \\r\\n. """ self._buffer.append(s) def _send_output(self, message_body=None): """Send the currently buffered request and clear the buffer. Appends an extra \\r\\n to the buffer. A message_body may be specified, to be appended to the request. """ self._buffer.extend(("", "")) msg = "\r\n".join(self._buffer) del self._buffer[:] # If msg and message_body are sent in a single send() call, # it will avoid performance problems caused by the interaction # between delayed ack and the Nagle algorithm. if isinstance(message_body, str): msg += message_body message_body = None self.send(msg) if message_body is not None: #message_body was not a string (i.e. it is a file) and #we must run the risk of Nagle self.send(message_body) def putrequest(self, method, url, skip_host=0, skip_accept_encoding=0): """Send a request to the server. `method' specifies an HTTP request method, e.g. 'GET'. `url' specifies the object being requested, e.g. '/index.html'. `skip_host' if True does not add automatically a 'Host:' header `skip_accept_encoding' if True does not add automatically an 'Accept-Encoding:' header """ # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # in certain cases, we cannot issue another request on this connection. # this occurs when: # 1) we are in the process of sending a request. (_CS_REQ_STARTED) # 2) a response to a previous request has signalled that it is going # to close the connection upon completion. # 3) the headers for the previous response have not been read, thus # we cannot determine whether point (2) is true. (_CS_REQ_SENT) # # if there is no prior response, then we can request at will. # # if point (2) is true, then we will have passed the socket to the # response (effectively meaning, "there is no prior response"), and # will open a new one when a new request is made. # # Note: if a prior response exists, then we *can* start a new request. # We are not allowed to begin fetching the response to this new # request, however, until that prior response is complete. # if self.__state == _CS_IDLE: self.__state = _CS_REQ_STARTED else: raise CannotSendRequest() # Save the method we use, we need it later in the response phase self._method = method if not url: url = '/' hdr = '%s %s %s' % (method, url, self._http_vsn_str) self._output(hdr) if self._http_vsn == 11: # Issue some standard headers for better HTTP/1.1 compliance if not skip_host: # this header is issued *only* for HTTP/1.1 # connections. more specifically, this means it is # only issued when the client uses the new # HTTPConnection() class. backwards-compat clients # will be using HTTP/1.0 and those clients may be # issuing this header themselves. we should NOT issue # it twice; some web servers (such as Apache) barf # when they see two Host: headers # If we need a non-standard port,include it in the # header. If the request is going through a proxy, # but the host of the actual URL, not the host of the # proxy. netloc = '' if url.startswith('http'): nil, netloc, nil, nil, nil = urlsplit(url) if netloc: try: netloc_enc = netloc.encode("ascii") except UnicodeEncodeError: netloc_enc = netloc.encode("idna") self.putheader('Host', netloc_enc) else: try: host_enc = self.host.encode("ascii") except UnicodeEncodeError: host_enc = self.host.encode("idna") # Wrap the IPv6 Host Header with [] (RFC 2732) if host_enc.find(':') >= 0: host_enc = "[" + host_enc + "]" if self.port == self.default_port: self.putheader('Host', host_enc) else: self.putheader('Host', "%s:%s" % (host_enc, self.port)) # note: we are assuming that clients will not attempt to set these # headers since *this* library must deal with the # consequences. this also means that when the supporting # libraries are updated to recognize other forms, then this # code should be changed (removed or updated). # we only want a Content-Encoding of "identity" since we don't # support encodings such as x-gzip or x-deflate. if not skip_accept_encoding: self.putheader('Accept-Encoding', 'identity') # we can accept "chunked" Transfer-Encodings, but no others # NOTE: no TE header implies *only* "chunked" #self.putheader('TE', 'chunked') # if TE is supplied in the header, then it must appear in a # Connection header. #self.putheader('Connection', 'TE') else: # For HTTP/1.0, the server will assume "not chunked" pass def putheader(self, header, *values): """Send a request header line to the server. For example: h.putheader('Accept', 'text/html') """ if self.__state != _CS_REQ_STARTED: raise CannotSendHeader() hdr = '%s: %s' % (header, '\r\n\t'.join([str(v) for v in values])) self._output(hdr) def endheaders(self, message_body=None): """Indicate that the last header line has been sent to the server. This method sends the request to the server. The optional message_body argument can be used to pass message body associated with the request. The message body will be sent in the same packet as the message headers if possible. The message_body should be a string. """ if self.__state == _CS_REQ_STARTED: self.__state = _CS_REQ_SENT else: raise CannotSendHeader() self._send_output(message_body) def request(self, method, url, body=None, headers={}): """Send a complete request to the server.""" self._send_request(method, url, body, headers) def _set_content_length(self, body): # Set the content-length based on the body. thelen = None try: thelen = str(len(body)) except TypeError, te: # If this is a file-like object, try to # fstat its file descriptor try: thelen = str(os.fstat(body.fileno()).st_size) except (AttributeError, OSError): # Don't send a length if this failed if self.debuglevel > 0: print "Cannot stat!!" if thelen is not None: self.putheader('Content-Length', thelen) def _send_request(self, method, url, body, headers): # Honor explicitly requested Host: and Accept-Encoding: headers. header_names = dict.fromkeys([k.lower() for k in headers]) skips = {} if 'host' in header_names: skips['skip_host'] = 1 if 'accept-encoding' in header_names: skips['skip_accept_encoding'] = 1 self.putrequest(method, url, **skips) if body and ('content-length' not in header_names): self._set_content_length(body) for hdr, value in headers.iteritems(): self.putheader(hdr, value) self.endheaders(body) def getresponse(self, buffering=False): "Get the response from the server." # if a prior response has been completed, then forget about it. if self.__response and self.__response.isclosed(): self.__response = None # # if a prior response exists, then it must be completed (otherwise, we # cannot read this response's header to determine the connection-close # behavior) # # note: if a prior response existed, but was connection-close, then the # socket and response were made independent of this HTTPConnection # object since a new request requires that we open a whole new # connection # # this means the prior response had one of two states: # 1) will_close: this connection was reset and the prior socket and # response operate independently # 2) persistent: the response was retained and we await its # isclosed() status to become true. # if self.__state != _CS_REQ_SENT or self.__response: raise ResponseNotReady() args = (self.sock,) kwds = {"strict":self.strict, "method":self._method} if self.debuglevel > 0: args += (self.debuglevel,) if buffering: #only add this keyword if non-default, for compatibility with #other response_classes. kwds["buffering"] = True; response = self.response_class(*args, **kwds) response.begin() assert response.will_close != _UNKNOWN self.__state = _CS_IDLE if response.will_close: # this effectively passes the connection to the response self.close() else: # remember this, so we can tell when it is complete self.__response = response return response class HTTP: "Compatibility class with httplib.py from 1.5." _http_vsn = 10 _http_vsn_str = 'HTTP/1.0' debuglevel = 0 _connection_class = HTTPConnection def __init__(self, host='', port=None, strict=None): "Provide a default host, since the superclass requires one." # some joker passed 0 explicitly, meaning default port if port == 0: port = None # Note that we may pass an empty string as the host; this will throw # an error when we attempt to connect. Presumably, the client code # will call connect before then, with a proper host. self._setup(self._connection_class(host, port, strict)) def _setup(self, conn): self._conn = conn # set up delegation to flesh out interface self.send = conn.send self.putrequest = conn.putrequest self.putheader = conn.putheader self.endheaders = conn.endheaders self.set_debuglevel = conn.set_debuglevel conn._http_vsn = self._http_vsn conn._http_vsn_str = self._http_vsn_str self.file = None def connect(self, host=None, port=None): "Accept arguments to set the host/port, since the superclass doesn't." if host is not None: self._conn._set_hostport(host, port) self._conn.connect() def getfile(self): "Provide a getfile, since the superclass' does not use this concept." return self.file def getreply(self, buffering=False): """Compat definition since superclass does not define it. Returns a tuple consisting of: - server status code (e.g. '200' if all goes well) - server "reason" corresponding to status code - any RFC822 headers in the response from the server """ try: if not buffering: response = self._conn.getresponse() else: #only add this keyword if non-default for compatibility #with other connection classes response = self._conn.getresponse(buffering) except BadStatusLine, e: ### hmm. if getresponse() ever closes the socket on a bad request, ### then we are going to have problems with self.sock ### should we keep this behavior? do people use it? # keep the socket open (as a file), and return it self.file = self._conn.sock.makefile('rb', 0) # close our socket -- we want to restart after any protocol error self.close() self.headers = None return -1, e.line, None self.headers = response.msg self.file = response.fp return response.status, response.reason, response.msg def close(self): self._conn.close() # note that self.file == response.fp, which gets closed by the # superclass. just clear the object ref here. ### hmm. messy. if status==-1, then self.file is owned by us. ### well... we aren't explicitly closing, but losing this ref will ### do it self.file = None try: import ssl except ImportError: pass else: class HTTPSConnection(HTTPConnection): "This class allows communication via SSL." default_port = HTTPS_PORT def __init__(self, host, port=None, key_file=None, cert_file=None, strict=None, timeout=socket._GLOBAL_DEFAULT_TIMEOUT, source_address=None): HTTPConnection.__init__(self, host, port, strict, timeout, source_address) self.key_file = key_file self.cert_file = cert_file def connect(self): "Connect to a host on a given (SSL) port." sock = socket.create_connection((self.host, self.port), self.timeout, self.source_address) if self._tunnel_host: self.sock = sock self._tunnel() self.sock = ssl.wrap_socket(sock, self.key_file, self.cert_file) __all__.append("HTTPSConnection") class HTTPS(HTTP): """Compatibility with 1.5 httplib interface Python 1.5.2 did not have an HTTPS class, but it defined an interface for sending http requests that is also useful for https. """ _connection_class = HTTPSConnection def __init__(self, host='', port=None, key_file=None, cert_file=None, strict=None): # provide a default host, pass the X509 cert info # urf. compensate for bad input. if port == 0: port = None self._setup(self._connection_class(host, port, key_file, cert_file, strict)) # we never actually use these for anything, but we keep them # here for compatibility with post-1.5.2 CVS. self.key_file = key_file self.cert_file = cert_file def FakeSocket (sock, sslobj): warnings.warn("FakeSocket is deprecated, and won't be in 3.x. " + "Use the result of ssl.wrap_socket() directly instead.", DeprecationWarning, stacklevel=2) return sslobj class HTTPException(Exception): # Subclasses that define an __init__ must call Exception.__init__ # or define self.args. Otherwise, str() will fail. pass class NotConnected(HTTPException): pass class InvalidURL(HTTPException): pass class UnknownProtocol(HTTPException): def __init__(self, version): self.args = version, self.version = version class UnknownTransferEncoding(HTTPException): pass class UnimplementedFileMode(HTTPException): pass class IncompleteRead(HTTPException): def __init__(self, partial, expected=None): self.args = partial, self.partial = partial self.expected = expected def __repr__(self): if self.expected is not None: e = ', %i more expected' % self.expected else: e = '' return 'IncompleteRead(%i bytes read%s)' % (len(self.partial), e) def __str__(self): return repr(self) class ImproperConnectionState(HTTPException): pass class CannotSendRequest(ImproperConnectionState): pass class CannotSendHeader(ImproperConnectionState): pass class ResponseNotReady(ImproperConnectionState): pass class BadStatusLine(HTTPException): def __init__(self, line): if not line: line = repr(line) self.args = line, self.line = line class LineTooLong(HTTPException): def __init__(self, line_type): HTTPException.__init__(self, "got more than %d bytes when reading %s" % (_MAXLINE, line_type)) # for backwards compatibility error = HTTPException class LineAndFileWrapper: """A limited file-like object for HTTP/0.9 responses.""" # The status-line parsing code calls readline(), which normally # get the HTTP status line. For a 0.9 response, however, this is # actually the first line of the body! Clients need to get a # readable file object that contains that line. def __init__(self, line, file): self._line = line self._file = file self._line_consumed = 0 self._line_offset = 0 self._line_left = len(line) def __getattr__(self, attr): return getattr(self._file, attr) def _done(self): # called when the last byte is read from the line. After the # call, all read methods are delegated to the underlying file # object. self._line_consumed = 1 self.read = self._file.read self.readline = self._file.readline self.readlines = self._file.readlines def read(self, amt=None): if self._line_consumed: return self._file.read(amt) assert self._line_left if amt is None or amt > self._line_left: s = self._line[self._line_offset:] self._done() if amt is None: return s + self._file.read() else: return s + self._file.read(amt - len(s)) else: assert amt <= self._line_left i = self._line_offset j = i + amt s = self._line[i:j] self._line_offset = j self._line_left -= amt if self._line_left == 0: self._done() return s def readline(self): if self._line_consumed: return self._file.readline() assert self._line_left s = self._line[self._line_offset:] self._done() return s def readlines(self, size=None): if self._line_consumed: return self._file.readlines(size) assert self._line_left L = [self._line[self._line_offset:]] self._done() if size is None: return L + self._file.readlines() else: return L + self._file.readlines(size) def test(): """Test this module. A hodge podge of tests collected here, because they have too many external dependencies for the regular test suite. """ import sys import getopt opts, args = getopt.getopt(sys.argv[1:], 'd') dl = 0 for o, a in opts: if o == '-d': dl = dl + 1 host = 'www.python.org' selector = '/' if args[0:]: host = args[0] if args[1:]: selector = args[1] h = HTTP() h.set_debuglevel(dl) h.connect(host) h.putrequest('GET', selector) h.endheaders() status, reason, headers = h.getreply() print 'status =', status print 'reason =', reason print "read", len(h.getfile().read()) print if headers: for header in headers.headers: print header.strip() print # minimal test that code to extract host from url works class HTTP11(HTTP): _http_vsn = 11 _http_vsn_str = 'HTTP/1.1' h = HTTP11('www.python.org') h.putrequest('GET', 'http://www.python.org/~jeremy/') h.endheaders() h.getreply() h.close() try: import ssl except ImportError: pass else: for host, selector in (('sourceforge.net', '/projects/python'), ): print "https://%s%s" % (host, selector) hs = HTTPS() hs.set_debuglevel(dl) hs.connect(host) hs.putrequest('GET', selector) hs.endheaders() status, reason, headers = hs.getreply() print 'status =', status print 'reason =', reason print "read", len(hs.getfile().read()) print if headers: for header in headers.headers: print header.strip() print if __name__ == '__main__': test()
35.524049
86
0.558472
4a230cb443d1a97b9a69bd2a7164f3612c1e9ecc
1,077
py
Python
tests/config/testing.py
medecau/lamson
e78520b857384462b9eecdedfc0f8c2e57cdd00a
[ "BSD-3-Clause" ]
null
null
null
tests/config/testing.py
medecau/lamson
e78520b857384462b9eecdedfc0f8c2e57cdd00a
[ "BSD-3-Clause" ]
null
null
null
tests/config/testing.py
medecau/lamson
e78520b857384462b9eecdedfc0f8c2e57cdd00a
[ "BSD-3-Clause" ]
null
null
null
from config import settings from lamson import view from lamson.routing import Router from lamson.server import Relay import jinja2 import logging import logging.config import os # configure logging to go to a log file logging.config.fileConfig("tests/config/logging.conf") # the relay host to actually send the final message to (set debug=1 to see what # the relay is saying to the log server). settings.relay = Relay(host=settings.relay_config['host'], port=settings.relay_config['port'], debug=0) settings.receiver = None Router.defaults(**settings.router_defaults) Router.load(settings.handlers + settings.queue_handlers) Router.RELOAD=False Router.LOG_EXCEPTIONS=False view.LOADER = jinja2.Environment(loader=jinja2.PackageLoader('lamson_tests', 'templates')) # if you have pyenchant and enchant installed then the template tests will do # spell checking for you, but you need to tell pyenchant where to find itself if 'PYENCHANT_LIBRARY_PATH' not in os.environ: os.environ['PYENCHANT_LIBRARY_PATH'] = '/opt/local/lib/libenchant.dylib'
32.636364
90
0.777159
4a230ccc50f3eb4aab305c414d6ec079c65b6692
2,185
py
Python
one_app/img/app (1).py
wikucha/Alfik
541124dbe1c458fac54da65a80d9577a9abf3954
[ "MIT" ]
1
2018-05-17T10:26:51.000Z
2018-05-17T10:26:51.000Z
one_app/img/app (1).py
wikucha/Alfik
541124dbe1c458fac54da65a80d9577a9abf3954
[ "MIT" ]
21
2018-01-26T14:47:43.000Z
2018-06-08T06:56:17.000Z
one_app/img/app (1).py
wikucha/Alfik
541124dbe1c458fac54da65a80d9577a9abf3954
[ "MIT" ]
1
2021-01-20T18:09:54.000Z
2021-01-20T18:09:54.000Z
from kivy.app import App from kivy.lang import Builder from kivy.uix.screenmanager import ScreenManager, Screen from kivy.graphics import Color, Rectangle from kivy.core.window import Window from learn import LearnScreen from memory import MemoryScreen from fon_quiz import FonquizScreen from tools import load_lang, load_ulubione Builder.load_file("app.kv") # Ekran menu (wygląd wczytany z app.kv) class MenuScreen(Screen): pass # Ekran z ustawieniami class SettingsScreen(Screen): pass # Główna aplikacja zarządzająca grami class MainApp(App): def current_lang(): doc = "Obsluga wczytywania jezyka i ulubionych" def fget(self): return self._current_lang def fset(self, value): fname_dict = "lang/%s/config.py" % (value) fname_ulubione = "ulubione/%s_ulubione.pickle" % (value) self._current_lang = fname_dict self.current_lang_ulubione_file = fname_ulubione self.current_lang_dict = load_lang(fname_dict) self.current_lang_ulubione = load_ulubione(fname_ulubione) def fdel(self): del self._current_lang return locals() current_lang = property(**current_lang()) def build(self): self._current_lang = None self.current_lang_ulubione_file = None self.current_lang_dict = None self.current_lang_ulubione = None sm = ScreenManager() # Ustawienie tła with sm.canvas: Color(1, 1, 1) rect = Rectangle(source="img/tlo.png", size=Window.size) # Skalowanie obrazka przy zmianie wymiarów okna (orientacji telefonu) def resize_action(size, pos): sm.size = Window.size rect.size = Window.size sm.bind(pos=resize_action, size=resize_action) # Aplikacje którymi zarządzamy sm.add_widget(MenuScreen(name='menu')) sm.add_widget(LearnScreen(name='game')) sm.add_widget(MemoryScreen(name='memory')) sm.add_widget(FonquizScreen(name='fonquiz')) sm.add_widget(SettingsScreen(name='settings')) return sm if __name__ == '__main__': MainApp().run()
29.931507
77
0.667735
4a230d265f8e43711e49f539fbc194d7c430039c
1,087
py
Python
HausdorffDistance/ROICoordinate.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
1
2021-05-29T22:48:49.000Z
2021-05-29T22:48:49.000Z
HausdorffDistance/ROICoordinate.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
null
null
null
HausdorffDistance/ROICoordinate.py
az7jh2/My-Raystation-Scripts
3454378239320c2944fd96de8cb86be8824b5210
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #根据ROI类型,获取ROI的点坐标 def RoiCoord(structure_set,x): #每一序列下有多个ROIGeometries,可用RoiGeometries[0],[1]或RoiGeometries['ROI名']访问具体的一个ROI roi_geometries=structure_set.RoiGeometries[x] #Contours中包含有组成该ROI轮廓线的所有点坐标(DICOM格式) #指定Contours的长度len为其所含的CT层数,类型为list,可用Contours[0],[1]访问 #每一层CT指定轮廓线Contours[0]的长度len为点的数目,可用Contours[0][0],[0][1]访问 #每一个点长度len为3,用Contours[0][0].x,y,z来分别获取坐标 c1=[] if hasattr(roi_geometries.PrimaryShape,'Contours'): contour=roi_geometries.PrimaryShape.Contours #记录所有点的坐标,结果为一列表 for i in range(len(contour)): for j in range(len(contour[i])): c1.append([contour[i][j].x,contour[i][j].y,contour[i][j].z]) elif hasattr(roi_geometries.PrimaryShape,'Vertices'): contour=roi_geometries.PrimaryShape.Vertices #指定ROI的长度len为其所含的点数,类型为list,可用Vertices[0],[1]访问 #每一个点长度len为3,用Vertices[0].x,y,z来分别获取坐标 for i in range(len(contour)): c1.append([contour[i].x,contour[i].y,contour[i].z]) else: print 'type of ROI is not matched' return c1
43.48
81
0.687213
4a230db78c41cce0d8f52d733e02dacbb0a81496
26,538
py
Python
tensorforce/models/memory_model.py
hcarlens/tensorforce
e28898c6a07c2d4b4245008dee7a5324f0530cbe
[ "Apache-2.0" ]
null
null
null
tensorforce/models/memory_model.py
hcarlens/tensorforce
e28898c6a07c2d4b4245008dee7a5324f0530cbe
[ "Apache-2.0" ]
null
null
null
tensorforce/models/memory_model.py
hcarlens/tensorforce
e28898c6a07c2d4b4245008dee7a5324f0530cbe
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 reinforce.io. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import print_function from __future__ import division import tensorflow as tf from tensorforce import util, TensorForceError from tensorforce.core.memories import Memory from tensorforce.core.optimizers import Optimizer from tensorforce.models import Model class MemoryModel(Model): """ A memory model is a generic model to accumulate and sample data. Child classes need to implement the following methods: - `tf_loss_per_instance(states, internals, actions, terminal, reward)` returning the loss per instance for a batch. - `tf_regularization_losses(states, internals)` returning a dict of regularization losses. """ def __init__( self, states, actions, scope, device, saver, summarizer, execution, batching_capacity, variable_noise, states_preprocessing, actions_exploration, reward_preprocessing, update_mode, memory, optimizer, discount ): """ Memory model. Args: states (spec): The state-space description dictionary. actions (spec): The action-space description dictionary. scope (str): The root scope str to use for tf variable scoping. device (str): The name of the device to run the graph of this model on. saver (spec): Dict specifying whether and how to save the model's parameters. summarizer (spec): Dict specifying which tensorboard summaries should be created and added to the graph. execution (spec): Dict specifying whether and how to do distributed training on the model's graph. batching_capacity (int): Batching capacity. variable_noise (float): The stddev value of a Normal distribution used for adding random noise to the model's output (for each batch, noise can be toggled and - if active - will be resampled). Use None for not adding any noise. states_preprocessing (spec / dict of specs): Dict specifying whether and how to preprocess state signals (e.g. normalization, greyscale, etc..). actions_exploration (spec / dict of specs): Dict specifying whether and how to add exploration to the model's "action outputs" (e.g. epsilon-greedy). reward_preprocessing (spec): Dict specifying whether and how to preprocess rewards coming from the Environment (e.g. reward normalization). update_mode (spec): Update mode. memory (spec): Memory. optimizer (spec): Dict specifying the tf optimizer to use for tuning the model's trainable parameters. discount (float): The RL reward discount factor (gamma). """ self.update_mode = update_mode self.memory_spec = memory self.optimizer_spec = optimizer # Discount assert discount is None or discount >= 0.0 self.discount = discount self.memory = None self.optimizer = None self.fn_discounted_cumulative_reward = None self.fn_reference = None self.fn_loss_per_instance = None self.fn_regularization_losses = None self.fn_loss = None self.fn_optimization = None self.fn_import_experience = None super(MemoryModel, self).__init__( states=states, actions=actions, scope=scope, device=device, saver=saver, summarizer=summarizer, execution=execution, batching_capacity=batching_capacity, variable_noise=variable_noise, states_preprocessing=states_preprocessing, actions_exploration=actions_exploration, reward_preprocessing=reward_preprocessing ) def as_local_model(self): """ Makes sure our optimizer is wrapped into the global_optimizer meta. This is only relevant for distributed RL. """ super(MemoryModel, self).as_local_model() self.optimizer_spec = dict( type='global_optimizer', optimizer=self.optimizer_spec ) def setup_components_and_tf_funcs(self, custom_getter=None): """ Constructs the memory and the optimizer objects. Generates and stores all template functions. """ custom_getter = super(MemoryModel, self).setup_components_and_tf_funcs(custom_getter) # Memory self.memory = Memory.from_spec( spec=self.memory_spec, kwargs=dict( states=self.states_spec, internals=self.internals_spec, actions=self.actions_spec, summary_labels=self.summary_labels ) ) # Optimizer self.optimizer = Optimizer.from_spec( spec=self.optimizer_spec, kwargs=dict(summary_labels=self.summary_labels) ) # TensorFlow functions self.fn_discounted_cumulative_reward = tf.make_template( name_='discounted-cumulative-reward', func_=self.tf_discounted_cumulative_reward, custom_getter_=custom_getter ) self.fn_reference = tf.make_template( name_='reference', func_=self.tf_reference, custom_getter_=custom_getter ) self.fn_loss_per_instance = tf.make_template( name_='loss-per-instance', func_=self.tf_loss_per_instance, custom_getter_=custom_getter ) self.fn_regularization_losses = tf.make_template( name_='regularization-losses', func_=self.tf_regularization_losses, custom_getter_=custom_getter ) self.fn_loss = tf.make_template( name_='loss', func_=self.tf_loss, custom_getter_=custom_getter ) self.fn_optimization = tf.make_template( name_='optimization', func_=self.tf_optimization, custom_getter_=custom_getter ) self.fn_import_experience = tf.make_template( name_='import-experience', func_=self.tf_import_experience, custom_getter_=custom_getter ) return custom_getter def tf_initialize(self): """ Also initializes our Memory object (self.memory). """ super(MemoryModel, self).tf_initialize() self.memory.initialize() #def tf_discounted_cumulative_reward(self, terminal, reward, discount, final_reward=0.0): # """ # Creates the TensorFlow operations for calculating the discounted cumulative rewards # for a given sequence of rewards. # Args: # terminal: Terminal boolean tensor. # reward: Reward tensor. # discount: Discount factor. # final_reward: Last reward value in the sequence. # Returns: # Discounted cumulative reward tensor. # """ # # TODO: n-step cumulative reward (particularly for envs without terminal) # def cumulate(cumulative, reward_and_terminal): # rew, term = reward_and_terminal # return tf.where(condition=term, x=rew, y=(rew + cumulative * discount)) # # Reverse since reward cumulation is calculated right-to-left, but tf.scan only works left-to-right # reward = tf.reverse(tensor=reward, axis=(0,)) # terminal = tf.reverse(tensor=terminal, axis=(0,)) # reward = tf.scan(fn=cumulate, elems=(reward, terminal), initializer=tf.stop_gradient(input=final_reward)) # return tf.reverse(tensor=reward, axis=(0,)) # TODO: could be a utility helper function if we remove self.discount and only allow external discount-value input def tf_discounted_cumulative_reward(self, terminal, reward, discount=None, final_reward=0.0, horizon=0): """ Creates and returns the TensorFlow operations for calculating the sequence of discounted cumulative rewards for a given sequence of single rewards. Example: single rewards = 2.0 1.0 0.0 0.5 1.0 -1.0 terminal = False, False, False, False True False gamma = 0.95 final_reward = 100.0 (only matters for last episode (r=-1.0) as this episode has no terminal signal) horizon=3 output = 2.95 1.45 1.38 1.45 1.0 94.0 Args: terminal: Tensor (bool) holding the is-terminal sequence. This sequence may contain more than one True value. If its very last element is False (not terminating), the given `final_reward` value is assumed to follow the last value in the single rewards sequence (see below). reward: Tensor (float) holding the sequence of single rewards. If the last element of `terminal` is False, an assumed last reward of the value of `final_reward` will be used. discount (float): The discount factor (gamma). By default, take the Model's discount factor. final_reward (float): Reward value to use if last episode in sequence does not terminate (terminal sequence ends with False). This value will be ignored if horizon == 1 or discount == 0.0. horizon (int): The length of the horizon (e.g. for n-step cumulative rewards in continuous tasks without terminal signals). Use 0 (default) for an infinite horizon. Note that horizon=1 leads to the exact same results as a discount factor of 0.0. Returns: Discounted cumulative reward tensor with the same shape as `reward`. """ # By default -> take Model's gamma value if discount is None: discount = self.discount # Accumulates discounted (n-step) reward (start new if terminal) def cumulate(cumulative, reward_terminal_horizon_subtract): rew, is_terminal, is_over_horizon, sub = reward_terminal_horizon_subtract return tf.where( # If terminal, start new cumulation. condition=is_terminal, x=rew, y=tf.where( # If we are above the horizon length (H) -> subtract discounted value from H steps back. condition=is_over_horizon, x=(rew + cumulative * discount - sub), y=(rew + cumulative * discount) ) ) # Accumulates length of episodes (starts new if terminal) def len_(cumulative, term): return tf.where( condition=term, # Start counting from 1 after is-terminal signal x=tf.ones(shape=(), dtype=tf.int32), # Otherwise, increase length by 1 y=cumulative + 1 ) # Reverse, since reward cumulation is calculated right-to-left, but tf.scan only works left-to-right. reward = tf.reverse(tensor=reward, axis=(0,)) # e.g. -1.0 1.0 0.5 0.0 1.0 2.0 terminal = tf.reverse(tensor=terminal, axis=(0,)) # e.g. F T F F F F # Store the steps until end of the episode(s) determined by the input terminal signals (True starts new count). lengths = tf.scan(fn=len_, elems=terminal, initializer=0) # e.g. 1 1 2 3 4 5 off_horizon = tf.greater(lengths, tf.fill(dims=tf.shape(lengths), value=horizon)) # e.g. F F F F T T # Calculate the horizon-subtraction value for each step. if horizon > 0: horizon_subtractions = tf.map_fn(lambda x: (discount ** horizon) * x, reward, dtype=tf.float32) # Shift right by size of horizon (fill rest with 0.0). horizon_subtractions = tf.concat([np.zeros(shape=(horizon,)), horizon_subtractions], axis=0) horizon_subtractions = tf.slice(horizon_subtractions, begin=(0,), size=tf.shape(reward)) # e.g. 0.0, 0.0, 0.0, -1.0*g^3, 1.0*g^3, 0.5*g^3 # all 0.0 if infinite horizon (special case: horizon=0) else: horizon_subtractions = tf.zeros(shape=tf.shape(reward)) # Now do the scan, each time summing up the previous step (discounted by gamma) and # subtracting the respective `horizon_subtraction`. reward = tf.scan( fn=cumulate, elems=(reward, terminal, off_horizon, horizon_subtractions), initializer=final_reward if horizon != 1 else 0.0 ) # Re-reverse again to match input sequences. return tf.reverse(tensor=reward, axis=(0,)) def tf_reference(self, states, internals, actions, terminal, reward, next_states, next_internals, update): """ Creates the TensorFlow operations for obtaining the reference tensor(s), in case of a comparative loss. Args: states: Dict of state tensors. internals: List of prior internal state tensors. actions: Dict of action tensors. terminal: Terminal boolean tensor. reward: Reward tensor. next_states: Dict of successor state tensors. next_internals: List of posterior internal state tensors. update: Boolean tensor indicating whether this call happens during an update. Returns: Reference tensor(s). """ return None def tf_loss_per_instance(self, states, internals, actions, terminal, reward, next_states, next_internals, update, reference=None): """ Creates the TensorFlow operations for calculating the loss per batch instance. Args: states: Dict of state tensors. internals: Dict of prior internal state tensors. actions: Dict of action tensors. terminal: Terminal boolean tensor. reward: Reward tensor. next_states: Dict of successor state tensors. next_internals: List of posterior internal state tensors. update: Boolean tensor indicating whether this call happens during an update. reference: Optional reference tensor(s), in case of a comparative loss. Returns: Loss per instance tensor. """ raise NotImplementedError def tf_regularization_losses(self, states, internals, update): """ Creates the TensorFlow operations for calculating the regularization losses for the given input states. Args: states: Dict of state tensors. internals: List of prior internal state tensors. update: Boolean tensor indicating whether this call happens during an update. Returns: Dict of regularization loss tensors. """ return dict() def tf_loss(self, states, internals, actions, terminal, reward, next_states, next_internals, update, reference=None): """ Creates the TensorFlow operations for calculating the full loss of a batch. Args: states: Dict of state tensors. internals: List of prior internal state tensors. actions: Dict of action tensors. terminal: Terminal boolean tensor. reward: Reward tensor. next_states: Dict of successor state tensors. next_internals: List of posterior internal state tensors. update: Boolean tensor indicating whether this call happens during an update. reference: Optional reference tensor(s), in case of a comparative loss. Returns: Loss tensor. """ # Mean loss per instance loss_per_instance = self.fn_loss_per_instance( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals, update=update, reference=reference ) # Returns no-op. updated = self.memory.update_batch(loss_per_instance=loss_per_instance) with tf.control_dependencies(control_inputs=(updated,)): loss = tf.reduce_mean(input_tensor=loss_per_instance, axis=0) # Loss without regularization summary. if 'losses' in self.summary_labels: tf.contrib.summary.scalar(name='loss-without-regularization', tensor=loss) # Regularization losses. losses = self.fn_regularization_losses(states=states, internals=internals, update=update) if len(losses) > 0: loss += tf.add_n(inputs=[losses[name] for name in sorted(losses)]) if 'regularization' in self.summary_labels: for name in sorted(losses): tf.contrib.summary.scalar(name=('regularization/' + name), tensor=losses[name]) # Total loss summary. if 'losses' in self.summary_labels or 'total-loss' in self.summary_labels: tf.contrib.summary.scalar(name='total-loss', tensor=loss) return loss def optimizer_arguments(self, states, internals, actions, terminal, reward, next_states, next_internals): """ Returns the optimizer arguments including the time, the list of variables to optimize, and various functions which the optimizer might require to perform an update step. Args: states (dict): Dict of state tensors. internals (dict): Dict of prior internal state tensors. actions (dict): Dict of action tensors. terminal: 1D boolean is-terminal tensor. reward: 1D (float) rewards tensor. next_states (dict): Dict of successor state tensors. next_internals (dict): Dict of posterior internal state tensors. Returns: Optimizer arguments as dict to be used as **kwargs to the optimizer. """ arguments = dict( time=self.global_timestep, variables=self.get_variables(), arguments=dict( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals, update=tf.constant(value=True) ), fn_reference=self.fn_reference, fn_loss=self.fn_loss ) if self.global_model is not None: arguments['global_variables'] = self.global_model.get_variables() return arguments def tf_optimization(self, states, internals, actions, terminal, reward, next_states=None, next_internals=None): """ Creates the TensorFlow operations for performing an optimization update step based on the given input states and actions batch. Args: states: Dict of state tensors. internals: List of prior internal state tensors. actions: Dict of action tensors. terminal: Terminal boolean tensor. reward: Reward tensor. next_states: Dict of successor state tensors. next_internals: List of posterior internal state tensors. Returns: The optimization operation. """ arguments = self.optimizer_arguments( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, next_states=next_states, next_internals=next_internals ) return self.optimizer.minimize(**arguments) def tf_observe_timestep(self, states, internals, actions, terminal, reward): """ Creates and returns the op that - if frequency condition is hit - pulls a batch from the memory and does one optimization step. """ # Store timestep in memory stored = self.memory.store( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward ) # Periodic optimization with tf.control_dependencies(control_inputs=(stored,)): unit = self.update_mode['unit'] batch_size = self.update_mode['batch_size'] frequency = self.update_mode.get('frequency', batch_size) first_update = self.update_mode.get('first_update', 0) if unit == 'timesteps': # Timestep-based batch optimize = tf.logical_and( x=tf.equal(x=(self.timestep % frequency), y=0), y=tf.logical_and( x=tf.greater_equal(x=self.timestep, y=batch_size), y=tf.greater_equal(x=self.timestep, y=first_update) ) ) batch = self.memory.retrieve_timesteps(n=batch_size) elif unit == 'episodes': # Episode-based batch optimize = tf.logical_and( x=tf.equal(x=(self.episode % frequency), y=0), y=tf.logical_and( # Only update once per episode increment. x=tf.greater(x=tf.count_nonzero(input_tensor=terminal), y=0), y=tf.logical_and( x=tf.greater_equal(x=self.episode, y=batch_size), y=tf.greater_equal(x=self.episode, y=first_update) ) ) ) batch = self.memory.retrieve_episodes(n=batch_size) elif unit == 'sequences': # Timestep-sequence-based batch sequence_length = self.update_mode.get('length', 8) optimize = tf.logical_and( x=tf.equal(x=(self.timestep % frequency), y=0), y=tf.logical_and( x=tf.greater_equal(x=self.timestep, y=(batch_size + sequence_length - 1)), y=tf.greater_equal(x=self.timestep, y=first_update) ) ) batch = self.memory.retrieve_sequences(n=batch_size, sequence_length=sequence_length) else: raise TensorForceError("Invalid update unit: {}.".format(unit)) # Do not calculate gradients for memory-internal operations. batch = util.map_tensors( fn=(lambda tensor: tf.stop_gradient(input=tensor)), tensors=batch ) def true_fn(): optimize = self.fn_optimization(**batch) with tf.control_dependencies(control_inputs=(optimize,)): return tf.logical_and(x=True, y=True) return tf.cond(pred=optimize, true_fn=true_fn, false_fn=tf.no_op) def tf_import_experience(self, states, internals, actions, terminal, reward): """ Imports experiences into the TensorFlow memory structure. Can be used to import off-policy data. :param states: Dict of state values to import with keys as state names and values as values to set. :param internals: Internal values to set, can be fetched from agent via agent.current_internals if no values available. :param actions: Dict of action values to import with keys as action names and values as values to set. :param terminal: Terminal value(s) :param reward: Reward value(s) """ return self.memory.store( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward ) def create_operations(self, states, internals, actions, terminal, reward, deterministic, independent): # Import experience operation. self.import_experience_output = self.fn_import_experience( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward ) super(MemoryModel, self).create_operations( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward, deterministic=deterministic, independent=independent ) def get_variables(self, include_submodules=False, include_nontrainable=False): model_variables = super(MemoryModel, self).get_variables( include_submodules=include_submodules, include_nontrainable=include_nontrainable ) if include_nontrainable: memory_variables = self.memory.get_variables() model_variables += memory_variables optimizer_variables = self.optimizer.get_variables() # For some reason, some optimizer variables are only registered in the model. for variable in optimizer_variables: if variable in model_variables: model_variables.remove(variable) model_variables += optimizer_variables return model_variables def import_experience(self, states, internals, actions, terminal, reward): """ Stores experiences. """ fetches = self.import_experience_output feed_dict = self.get_feed_dict( states=states, internals=internals, actions=actions, terminal=terminal, reward=reward ) self.monitored_session.run(fetches=fetches, feed_dict=feed_dict)
41.336449
121
0.612593
4a230f2c152b6cd81c2fba8a78397490d0b2f074
20,499
py
Python
nemo/collections/nlp/models/intent_slot_classification/intent_slot_classification_model.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
2
2021-09-21T07:36:20.000Z
2022-02-05T15:29:04.000Z
nemo/collections/nlp/models/intent_slot_classification/intent_slot_classification_model.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
null
null
null
nemo/collections/nlp/models/intent_slot_classification/intent_slot_classification_model.py
PatrykNeubauer/NeMo
3ada744b884dba5f233f22c6991fc6092c6ca8d0
[ "Apache-2.0" ]
12
2021-06-20T08:56:10.000Z
2022-03-16T19:07:10.000Z
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict, List, Optional import onnx import torch from omegaconf import DictConfig, OmegaConf from pytorch_lightning import Trainer from torch.utils.data import DataLoader from nemo.collections.common.losses import AggregatorLoss, CrossEntropyLoss from nemo.collections.nlp.data.intent_slot_classification import ( IntentSlotClassificationDataset, IntentSlotDataDesc, IntentSlotInferenceDataset, ) from nemo.collections.nlp.metrics.classification_report import ClassificationReport from nemo.collections.nlp.models.nlp_model import NLPModel from nemo.collections.nlp.modules.common import SequenceTokenClassifier from nemo.collections.nlp.modules.common.lm_utils import get_lm_model from nemo.collections.nlp.parts.utils_funcs import tensor2list from nemo.core.classes import typecheck from nemo.core.classes.common import PretrainedModelInfo from nemo.core.neural_types import NeuralType from nemo.utils import logging class IntentSlotClassificationModel(NLPModel): @property def input_types(self) -> Optional[Dict[str, NeuralType]]: return self.bert_model.input_types @property def output_types(self) -> Optional[Dict[str, NeuralType]]: return self.classifier.output_types def __init__(self, cfg: DictConfig, trainer: Trainer = None): """ Initializes BERT Joint Intent and Slot model. """ self.max_seq_length = cfg.language_model.max_seq_length # Setup tokenizer. self.setup_tokenizer(cfg.tokenizer) # Check the presence of data_dir. if not cfg.data_dir or not os.path.exists(cfg.data_dir): # Disable setup methods. IntentSlotClassificationModel._set_model_restore_state(is_being_restored=True) # Set default values of data_desc. self._set_defaults_data_desc(cfg) else: self.data_dir = cfg.data_dir # Update configuration of data_desc. self._set_data_desc_to_cfg(cfg, cfg.data_dir, cfg.train_ds, cfg.validation_ds) # init superclass super().__init__(cfg=cfg, trainer=trainer) # Enable setup methods. IntentSlotClassificationModel._set_model_restore_state(is_being_restored=False) # Initialize Bert model self.bert_model = get_lm_model( pretrained_model_name=self.cfg.language_model.pretrained_model_name, config_file=self.register_artifact('language_model.config_file', cfg.language_model.config_file), config_dict=OmegaConf.to_container(self.cfg.language_model.config) if self.cfg.language_model.config else None, checkpoint_file=self.cfg.language_model.lm_checkpoint, vocab_file=self.register_artifact('tokenizer.vocab_file', cfg.tokenizer.vocab_file), ) # Initialize Classifier. self._reconfigure_classifier() def _set_defaults_data_desc(self, cfg): """ Method makes sure that cfg.data_desc params are set. If not, set's them to "dummy" defaults. """ if not hasattr(cfg, "data_desc"): OmegaConf.set_struct(cfg, False) cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = " " cfg.data_desc.intent_label_ids = {" ": 0} cfg.data_desc.intent_weights = [1] # Slots. cfg.data_desc.slot_labels = " " cfg.data_desc.slot_label_ids = {" ": 0} cfg.data_desc.slot_weights = [1] cfg.data_desc.pad_label = "O" OmegaConf.set_struct(cfg, True) def _set_data_desc_to_cfg(self, cfg, data_dir, train_ds, validation_ds): """ Method creates IntentSlotDataDesc and copies generated values to cfg.data_desc. """ # Save data from data desc to config - so it can be reused later, e.g. in inference. data_desc = IntentSlotDataDesc(data_dir=data_dir, modes=[train_ds.prefix, validation_ds.prefix]) OmegaConf.set_struct(cfg, False) if not hasattr(cfg, "data_desc") or cfg.data_desc is None: cfg.data_desc = {} # Intents. cfg.data_desc.intent_labels = list(data_desc.intents_label_ids.keys()) cfg.data_desc.intent_label_ids = data_desc.intents_label_ids cfg.data_desc.intent_weights = data_desc.intent_weights # Slots. cfg.data_desc.slot_labels = list(data_desc.slots_label_ids.keys()) cfg.data_desc.slot_label_ids = data_desc.slots_label_ids cfg.data_desc.slot_weights = data_desc.slot_weights cfg.data_desc.pad_label = data_desc.pad_label # for older(pre - 1.0.0.b3) configs compatibility if not hasattr(cfg, "class_labels") or cfg.class_labels is None: cfg.class_labels = {} cfg.class_labels = OmegaConf.create( {'intent_labels_file': 'intent_labels.csv', 'slot_labels_file': 'slot_labels.csv'} ) slot_labels_file = os.path.join(data_dir, cfg.class_labels.slot_labels_file) intent_labels_file = os.path.join(data_dir, cfg.class_labels.intent_labels_file) self._save_label_ids(data_desc.slots_label_ids, slot_labels_file) self._save_label_ids(data_desc.intents_label_ids, intent_labels_file) self.register_artifact('class_labels.intent_labels_file', intent_labels_file) self.register_artifact('class_labels.slot_labels_file', slot_labels_file) OmegaConf.set_struct(cfg, True) def _save_label_ids(self, label_ids: Dict[str, int], filename: str) -> None: """ Saves label ids map to a file """ with open(filename, 'w') as out: labels, _ = zip(*sorted(label_ids.items(), key=lambda x: x[1])) out.write('\n'.join(labels)) logging.info(f'Labels: {label_ids}') logging.info(f'Labels mapping saved to : {out.name}') def _reconfigure_classifier(self): """ Method reconfigures the classifier depending on the settings of model cfg.data_desc """ self.classifier = SequenceTokenClassifier( hidden_size=self.bert_model.config.hidden_size, num_intents=len(self.cfg.data_desc.intent_labels), num_slots=len(self.cfg.data_desc.slot_labels), dropout=self.cfg.head.fc_dropout, num_layers=self.cfg.head.num_output_layers, log_softmax=False, ) # define losses if self.cfg.class_balancing == 'weighted_loss': # You may need to increase the number of epochs for convergence when using weighted_loss self.intent_loss = CrossEntropyLoss(logits_ndim=2, weight=self.cfg.data_desc.intent_weights) self.slot_loss = CrossEntropyLoss(logits_ndim=3, weight=self.cfg.data_desc.slot_weights) else: self.intent_loss = CrossEntropyLoss(logits_ndim=2) self.slot_loss = CrossEntropyLoss(logits_ndim=3) self.total_loss = AggregatorLoss( num_inputs=2, weights=[self.cfg.intent_loss_weight, 1.0 - self.cfg.intent_loss_weight] ) # setup to track metrics self.intent_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.intent_labels), label_ids=self.cfg.data_desc.intent_label_ids, dist_sync_on_step=True, mode='micro', ) self.slot_classification_report = ClassificationReport( num_classes=len(self.cfg.data_desc.slot_labels), label_ids=self.cfg.data_desc.slot_label_ids, dist_sync_on_step=True, mode='micro', ) def update_data_dir_for_training(self, data_dir: str, train_ds, validation_ds) -> None: """ Update data directory and get data stats with Data Descriptor. Also, reconfigures the classifier - to cope with data with e.g. different number of slots. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir # Update configuration with new data. self._set_data_desc_to_cfg(self.cfg, data_dir, train_ds, validation_ds) # Reconfigure the classifier for different settings (number of intents, slots etc.). self._reconfigure_classifier() def update_data_dir_for_testing(self, data_dir) -> None: """ Update data directory. Args: data_dir: path to data directory """ logging.info(f'Setting data_dir to {data_dir}.') self.data_dir = data_dir @typecheck() def forward(self, input_ids, token_type_ids, attention_mask): """ No special modification required for Lightning, define it as you normally would in the `nn.Module` in vanilla PyTorch. """ hidden_states = self.bert_model( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask ) intent_logits, slot_logits = self.classifier(hidden_states=hidden_states) return intent_logits, slot_logits def training_step(self, batch, batch_idx): """ Lightning calls this inside the training loop with the data from the training dataloader passed in as `batch`. """ # forward pass input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) train_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) lr = self._optimizer.param_groups[0]['lr'] self.log('train_loss', train_loss) self.log('lr', lr, prog_bar=True) return { 'loss': train_loss, 'lr': lr, } def validation_step(self, batch, batch_idx): """ Lightning calls this inside the validation loop with the data from the validation dataloader passed in as `batch`. """ input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, intent_labels, slot_labels = batch intent_logits, slot_logits = self( input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask ) # calculate combined loss for intents and slots intent_loss = self.intent_loss(logits=intent_logits, labels=intent_labels) slot_loss = self.slot_loss(logits=slot_logits, labels=slot_labels, loss_mask=loss_mask) val_loss = self.total_loss(loss_1=intent_loss, loss_2=slot_loss) # calculate accuracy metrics for intents and slot reporting # intents preds = torch.argmax(intent_logits, axis=-1) self.intent_classification_report.update(preds, intent_labels) # slots subtokens_mask = subtokens_mask > 0.5 preds = torch.argmax(slot_logits, axis=-1)[subtokens_mask] slot_labels = slot_labels[subtokens_mask] self.slot_classification_report.update(preds, slot_labels) return { 'val_loss': val_loss, 'intent_tp': self.intent_classification_report.tp, 'intent_fn': self.intent_classification_report.fn, 'intent_fp': self.intent_classification_report.fp, 'slot_tp': self.slot_classification_report.tp, 'slot_fn': self.slot_classification_report.fn, 'slot_fp': self.slot_classification_report.fp, } def validation_epoch_end(self, outputs): """ Called at the end of validation to aggregate outputs. :param outputs: list of individual outputs of each validation step. """ avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() # calculate metrics and log classification report (separately for intents and slots) intent_precision, intent_recall, intent_f1, intent_report = self.intent_classification_report.compute() logging.info(f'Intent report: {intent_report}') slot_precision, slot_recall, slot_f1, slot_report = self.slot_classification_report.compute() logging.info(f'Slot report: {slot_report}') self.log('val_loss', avg_loss) self.log('intent_precision', intent_precision) self.log('intent_recall', intent_recall) self.log('intent_f1', intent_f1) self.log('slot_precision', slot_precision) self.log('slot_recall', slot_recall) self.log('slot_f1', slot_f1) self.intent_classification_report.reset() self.slot_classification_report.reset() return { 'val_loss': avg_loss, 'intent_precision': intent_precision, 'intent_recall': intent_recall, 'intent_f1': intent_f1, 'slot_precision': slot_precision, 'slot_recall': slot_recall, 'slot_f1': slot_f1, } def test_step(self, batch, batch_idx): """ Lightning calls this inside the test loop with the data from the test dataloader passed in as `batch`. """ return self.validation_step(batch, batch_idx) def test_epoch_end(self, outputs): """ Called at the end of test to aggregate outputs. :param outputs: list of individual outputs of each test step. """ return self.validation_epoch_end(outputs) def setup_training_data(self, train_data_config: Optional[DictConfig]): self._train_dl = self._setup_dataloader_from_config(cfg=train_data_config) def setup_validation_data(self, val_data_config: Optional[DictConfig]): self._validation_dl = self._setup_dataloader_from_config(cfg=val_data_config) def setup_test_data(self, test_data_config: Optional[DictConfig]): self._test_dl = self._setup_dataloader_from_config(cfg=test_data_config) def _setup_dataloader_from_config(self, cfg: DictConfig): input_file = f'{self.data_dir}/{cfg.prefix}.tsv' slot_file = f'{self.data_dir}/{cfg.prefix}_slots.tsv' if not (os.path.exists(input_file) and os.path.exists(slot_file)): raise FileNotFoundError( f'{input_file} or {slot_file} not found. Please refer to the documentation for the right format \ of Intents and Slots files.' ) dataset = IntentSlotClassificationDataset( input_file=input_file, slot_file=slot_file, tokenizer=self.tokenizer, max_seq_length=self.max_seq_length, num_samples=cfg.num_samples, pad_label=self.cfg.data_desc.pad_label, ignore_extra_tokens=self.cfg.ignore_extra_tokens, ignore_start_end=self.cfg.ignore_start_end, ) return DataLoader( dataset=dataset, batch_size=cfg.batch_size, shuffle=cfg.shuffle, num_workers=cfg.num_workers, pin_memory=cfg.pin_memory, drop_last=cfg.drop_last, collate_fn=dataset.collate_fn, ) def _setup_infer_dataloader(self, queries: List[str], test_ds) -> 'torch.utils.data.DataLoader': """ Setup function for a infer data loader. Args: queries: text batch_size: batch size to use during inference Returns: A pytorch DataLoader. """ dataset = IntentSlotInferenceDataset( tokenizer=self.tokenizer, queries=queries, max_seq_length=-1, do_lower_case=False ) return torch.utils.data.DataLoader( dataset=dataset, collate_fn=dataset.collate_fn, batch_size=test_ds.batch_size, shuffle=test_ds.shuffle, num_workers=test_ds.num_workers, pin_memory=test_ds.pin_memory, drop_last=test_ds.drop_last, ) def predict_from_examples(self, queries: List[str], test_ds) -> List[List[str]]: """ Get prediction for the queries (intent and slots) Args: queries: text sequences test_ds: Dataset configuration section. Returns: predicted_intents, predicted_slots: model intent and slot predictions """ predicted_intents = [] predicted_slots = [] mode = self.training try: device = 'cuda' if torch.cuda.is_available() else 'cpu' # Retrieve intent and slot vocabularies from configuration. intent_labels = self.cfg.data_desc.intent_labels slot_labels = self.cfg.data_desc.slot_labels # Initialize tokenizer. # if not hasattr(self, "tokenizer"): # self._setup_tokenizer(self.cfg.tokenizer) # Initialize modules. # self._reconfigure_classifier() # Switch model to evaluation mode self.eval() self.to(device) # Dataset. infer_datalayer = self._setup_infer_dataloader(queries, test_ds) for batch in infer_datalayer: input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask = batch intent_logits, slot_logits = self.forward( input_ids=input_ids.to(device), token_type_ids=input_type_ids.to(device), attention_mask=input_mask.to(device), ) # predict intents and slots for these examples # intents intent_preds = tensor2list(torch.argmax(intent_logits, axis=-1)) # convert numerical outputs to Intent and Slot labels from the dictionaries for intent_num in intent_preds: if intent_num < len(intent_labels): predicted_intents.append(intent_labels[int(intent_num)]) else: # should not happen predicted_intents.append("Unknown Intent") # slots slot_preds = torch.argmax(slot_logits, axis=-1) for slot_preds_query, mask_query in zip(slot_preds, subtokens_mask): query_slots = '' for slot, mask in zip(slot_preds_query, mask_query): if mask == 1: if slot < len(slot_labels): query_slots += slot_labels[int(slot)] + ' ' else: query_slots += 'Unknown_slot ' predicted_slots.append(query_slots.strip()) finally: # set mode back to its original value self.train(mode=mode) return predicted_intents, predicted_slots @classmethod def list_available_models(cls) -> Optional[PretrainedModelInfo]: """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ result = [] model = PretrainedModelInfo( pretrained_model_name="Joint_Intent_Slot_Assistant", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemonlpmodels/versions/1.0.0a5/files/Joint_Intent_Slot_Assistant.nemo", description="This models is trained on this https://github.com/xliuhw/NLU-Evaluation-Data dataset which includes 64 various intents and 55 slots. Final Intent accuracy is about 87%, Slot accuracy is about 89%.", ) result.append(model) return result
42.006148
223
0.655495
4a230f32efe95095bb6de392b4d6fb34fff5f4f6
1,518
py
Python
src/kvt/losses/arcface.py
Ynakatsuka/birdclef-2021
d7cf7b39e3164a75547ee50cc9a29bd5ed4c29bd
[ "BSD-2-Clause" ]
6
2021-06-02T01:40:27.000Z
2022-03-04T05:00:52.000Z
src/kvt/losses/arcface.py
Ynakatsuka/birdclef-2021
d7cf7b39e3164a75547ee50cc9a29bd5ed4c29bd
[ "BSD-2-Clause" ]
null
null
null
src/kvt/losses/arcface.py
Ynakatsuka/birdclef-2021
d7cf7b39e3164a75547ee50cc9a29bd5ed4c29bd
[ "BSD-2-Clause" ]
null
null
null
import math import torch import torch.nn.functional as F from torch import nn class DenseCrossEntropy(nn.Module): def forward(self, x, target, reduction="mean"): x = x.float() target = target.float() logprobs = torch.nn.functional.log_softmax(x, dim=-1) loss = -logprobs * target loss = loss.sum(-1) if reduction == "mean": return loss.mean() elif reduction == "sum": return loss.sum() elif reduction == "none": return loss class ArcFaceLoss(nn.modules.Module): def __init__(self, num_classes, s=30.0, m=0.5, reduction="mean"): super().__init__() self.reduction = reduction self.s = s self.cos_m = math.cos(m) # 0.87758 self.sin_m = math.sin(m) # 0.47943 self.th = math.cos(math.pi - m) # -0.87758 self.mm = math.sin(math.pi - m) * m # 0.23971 self.num_classes = num_classes def forward(self, logits, labels): labels = F.one_hot(labels, self.num_classes) logits = logits.float() # float16 to float32 (if used float16) cosine = logits sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) # equals to **2 phi = cosine * self.cos_m - sine * self.sin_m phi = torch.where(cosine > self.th, phi, cosine - self.mm) output = (labels * phi) + ((1.0 - labels) * cosine) output *= self.s loss = DenseCrossEntropy()(output, labels, self.reduction) return loss / 2
32.297872
71
0.577734
4a230fd6b4eab0e7a90e7a3c3d460a727645311d
449
py
Python
pproxy/__doc__.py
NellyD3v/python-proxy
7fccf8dd62204f34b0aa3a70fc568fd6ddff7728
[ "MIT" ]
1
2021-01-12T04:29:45.000Z
2021-01-12T04:29:45.000Z
pproxy/__doc__.py
NellyD3v/python-proxy
7fccf8dd62204f34b0aa3a70fc568fd6ddff7728
[ "MIT" ]
null
null
null
pproxy/__doc__.py
NellyD3v/python-proxy
7fccf8dd62204f34b0aa3a70fc568fd6ddff7728
[ "MIT" ]
null
null
null
__title__ = "pproxy" __version__ = "2.3.7" __license__ = "MIT" __description__ = "Proxy server that can tunnel among remote servers by regex rules." __keywords__ = "proxy socks http shadowsocks shadowsocksr ssr redirect pf tunnel cipher ssl udp" __author__ = "Qian Wenjie" __email__ = "[email protected]" __url__ = "https://github.com/qwj/python-proxy" __all__ = ['__version__', '__description__', '__url__']
40.818182
99
0.699332
4a231001413bec79943339bbb43fe7e8613cfde6
1,395
py
Python
kitkopt/utilities.py
jgolebiowski/kitkopt
0b46d38004b75799dd1e8603a445b1d711c03735
[ "MIT" ]
6
2018-11-19T09:49:19.000Z
2020-01-16T00:21:14.000Z
kitkopt/utilities.py
jgolebiowski/kitkopt
0b46d38004b75799dd1e8603a445b1d711c03735
[ "MIT" ]
null
null
null
kitkopt/utilities.py
jgolebiowski/kitkopt
0b46d38004b75799dd1e8603a445b1d711c03735
[ "MIT" ]
1
2019-02-20T19:57:47.000Z
2019-02-20T19:57:47.000Z
import functools import sys import time def debugtool(some_function): """ Wrapper that launches a post mortem pdb debugger on errors in the function """ @functools.wraps(some_function) def wrapper(*args, **kwargs): try: return some_function(*args, **kwargs) except: import pdb type, value, traceback = sys.exc_info() print(type, value, traceback) pdb.post_mortem(traceback) return wrapper def profile(some_function): """ Wrapper that profiles the time spent in a function """ @functools.wraps(some_function) def wrapper(*args, **kwargs): started_at = time.time() some_function(*args, **kwargs) print("Function {} took {:.4e}s".format(some_function.__name__, time.time() - started_at)) return wrapper ''' #--- When you use a decorator, you're replacing one function with another. #--- In other words, if you have a decorator def logged(func): def with_logging(*args, **kwargs): print(func.__name__ + " was called") return func(*args, **kwargs) return with_logging #--- then when you say @logged def f(x): """does some math""" return x + x * x #---- it's exactly the same as saying def f(x): """does some math""" return x + x * x f = logged(f) ''' class OptimizerError(RuntimeError): pass
21.461538
98
0.618638
4a2310f1cf9c1e85c3f716308663aeb41eaf447c
47,692
py
Python
tests/sentry/event_manager/test_event_manager.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/event_manager/test_event_manager.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/event_manager/test_event_manager.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function import logging from sentry.utils.compat import mock import pytest import uuid from collections import namedtuple from datetime import datetime, timedelta from django.utils import timezone from time import time from sentry import nodestore from sentry.app import tsdb from sentry.constants import MAX_VERSION_LENGTH from sentry.eventstore.models import Event from sentry.event_manager import HashDiscarded, EventManager, EventUser from sentry.grouping.utils import hash_from_values from sentry.models import ( Activity, Environment, ExternalIssue, Group, GroupEnvironment, GroupHash, GroupLink, GroupRelease, GroupResolution, GroupStatus, GroupTombstone, Integration, Release, ReleaseProjectEnvironment, OrganizationIntegration, UserReport, ) from sentry.utils.outcomes import Outcome from sentry.testutils import assert_mock_called_once_with_partial, TestCase from sentry.utils.data_filters import FilterStatKeys from sentry.relay.config import get_project_config def make_event(**kwargs): result = { "event_id": uuid.uuid1().hex, "message": "foo", "level": logging.ERROR, "logger": "default", "tags": [], } result.update(kwargs) return result class EventManagerTest(TestCase): def make_release_event(self, release_name, project_id): manager = EventManager(make_event(release=release_name)) manager.normalize() event = manager.save(project_id) return event def test_similar_message_prefix_doesnt_group(self): # we had a regression which caused the default hash to just be # 'event.message' instead of '[event.message]' which caused it to # generate a hash per letter manager = EventManager(make_event(event_id="a", message="foo bar")) manager.normalize() event1 = manager.save(1) manager = EventManager(make_event(event_id="b", message="foo baz")) manager.normalize() event2 = manager.save(1) assert event1.group_id != event2.group_id def test_ephemeral_interfaces_removed_on_save(self): manager = EventManager(make_event(platform="python")) manager.normalize() event = manager.save(1) group = event.group assert group.platform == "python" assert event.platform == "python" @mock.patch("sentry.event_manager.eventstream.insert") def test_dupe_message_id(self, eventstream_insert): # Saves the latest event to nodestore and eventstream project_id = 1 event_id = "a" * 32 node_id = Event.generate_node_id(project_id, event_id) manager = EventManager(make_event(event_id=event_id, message="first")) manager.normalize() manager.save(project_id) assert nodestore.get(node_id)["logentry"]["formatted"] == "first" manager = EventManager(make_event(event_id=event_id, message="second")) manager.normalize() manager.save(project_id) assert nodestore.get(node_id)["logentry"]["formatted"] == "second" assert eventstream_insert.call_count == 2 def test_updates_group(self): timestamp = time() - 300 manager = EventManager( make_event(message="foo", event_id="a" * 32, checksum="a" * 32, timestamp=timestamp) ) manager.normalize() event = manager.save(1) manager = EventManager( make_event( message="foo bar", event_id="b" * 32, checksum="a" * 32, timestamp=timestamp + 2.0 ) ) manager.normalize() with self.tasks(): event2 = manager.save(1) group = Group.objects.get(id=event.group_id) assert group.times_seen == 2 assert group.last_seen == event2.datetime assert group.message == event2.message assert group.data.get("type") == "default" assert group.data.get("metadata") == {"title": "foo bar"} def test_updates_group_with_fingerprint(self): ts = time() - 200 manager = EventManager( make_event(message="foo", event_id="a" * 32, fingerprint=["a" * 32], timestamp=ts) ) with self.tasks(): event = manager.save(1) manager = EventManager( make_event(message="foo bar", event_id="b" * 32, fingerprint=["a" * 32], timestamp=ts) ) with self.tasks(): event2 = manager.save(1) group = Group.objects.get(id=event.group_id) assert group.times_seen == 2 assert group.last_seen == event.datetime assert group.message == event2.message def test_differentiates_with_fingerprint(self): manager = EventManager( make_event(message="foo", event_id="a" * 32, fingerprint=["{{ default }}", "a" * 32]) ) with self.tasks(): manager.normalize() event = manager.save(1) manager = EventManager( make_event(message="foo bar", event_id="b" * 32, fingerprint=["a" * 32]) ) with self.tasks(): manager.normalize() event2 = manager.save(1) assert event.group_id != event2.group_id def test_unresolves_group(self): ts = time() - 300 # N.B. EventManager won't unresolve the group unless the event2 has a # later timestamp than event1. manager = EventManager(make_event(event_id="a" * 32, checksum="a" * 32, timestamp=ts)) with self.tasks(): event = manager.save(1) group = Group.objects.get(id=event.group_id) group.status = GroupStatus.RESOLVED group.save() assert group.is_resolved() manager = EventManager(make_event(event_id="b" * 32, checksum="a" * 32, timestamp=ts + 50)) event2 = manager.save(1) assert event.group_id == event2.group_id group = Group.objects.get(id=group.id) assert not group.is_resolved() @mock.patch("sentry.event_manager.plugin_is_regression") def test_does_not_unresolve_group(self, plugin_is_regression): # N.B. EventManager won't unresolve the group unless the event2 has a # later timestamp than event1. plugin_is_regression.return_value = False manager = EventManager( make_event(event_id="a" * 32, checksum="a" * 32, timestamp=1403007314) ) with self.tasks(): manager.normalize() event = manager.save(1) group = Group.objects.get(id=event.group_id) group.status = GroupStatus.RESOLVED group.save() assert group.is_resolved() manager = EventManager( make_event(event_id="b" * 32, checksum="a" * 32, timestamp=1403007315) ) manager.normalize() event2 = manager.save(1) assert event.group_id == event2.group_id group = Group.objects.get(id=group.id) assert group.is_resolved() @mock.patch("sentry.tasks.activity.send_activity_notifications.delay") @mock.patch("sentry.event_manager.plugin_is_regression") def test_marks_as_unresolved_with_new_release( self, plugin_is_regression, mock_send_activity_notifications_delay ): plugin_is_regression.return_value = True old_release = Release.objects.create( version="a", organization_id=self.project.organization_id, date_added=timezone.now() - timedelta(minutes=30), ) old_release.add_project(self.project) manager = EventManager( make_event( event_id="a" * 32, checksum="a" * 32, timestamp=time() - 50000, # need to work around active_at release=old_release.version, ) ) event = manager.save(1) group = event.group group.update(status=GroupStatus.RESOLVED) resolution = GroupResolution.objects.create(release=old_release, group=group) activity = Activity.objects.create( group=group, project=group.project, type=Activity.SET_RESOLVED_IN_RELEASE, ident=resolution.id, data={"version": ""}, ) manager = EventManager( make_event( event_id="b" * 32, checksum="a" * 32, timestamp=time(), release=old_release.version ) ) event = manager.save(1) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.RESOLVED activity = Activity.objects.get(id=activity.id) assert activity.data["version"] == "" assert GroupResolution.objects.filter(group=group).exists() manager = EventManager( make_event(event_id="c" * 32, checksum="a" * 32, timestamp=time(), release="b") ) event = manager.save(1) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.UNRESOLVED activity = Activity.objects.get(id=activity.id) assert activity.data["version"] == "b" assert not GroupResolution.objects.filter(group=group).exists() activity = Activity.objects.get(group=group, type=Activity.SET_REGRESSION) mock_send_activity_notifications_delay.assert_called_once_with(activity.id) @mock.patch("sentry.integrations.example.integration.ExampleIntegration.sync_status_outbound") @mock.patch("sentry.tasks.activity.send_activity_notifications.delay") @mock.patch("sentry.event_manager.plugin_is_regression") def test_marks_as_unresolved_with_new_release_with_integration( self, plugin_is_regression, mock_send_activity_notifications_delay, mock_sync_status_outbound, ): plugin_is_regression.return_value = True old_release = Release.objects.create( version="a", organization_id=self.project.organization_id, date_added=timezone.now() - timedelta(minutes=30), ) old_release.add_project(self.project) manager = EventManager( make_event( event_id="a" * 32, checksum="a" * 32, timestamp=time() - 50000, # need to work around active_at release=old_release.version, ) ) event = manager.save(1) group = event.group org = group.organization integration = Integration.objects.create(provider="example", name="Example") integration.add_organization(org, self.user) OrganizationIntegration.objects.filter( integration_id=integration.id, organization_id=group.organization.id ).update( config={ "sync_comments": True, "sync_status_outbound": True, "sync_status_inbound": True, "sync_assignee_outbound": True, "sync_assignee_inbound": True, } ) external_issue = ExternalIssue.objects.get_or_create( organization_id=org.id, integration_id=integration.id, key="APP-%s" % group.id )[0] GroupLink.objects.get_or_create( group_id=group.id, project_id=group.project_id, linked_type=GroupLink.LinkedType.issue, linked_id=external_issue.id, relationship=GroupLink.Relationship.references, )[0] group.update(status=GroupStatus.RESOLVED) resolution = GroupResolution.objects.create(release=old_release, group=group) activity = Activity.objects.create( group=group, project=group.project, type=Activity.SET_RESOLVED_IN_RELEASE, ident=resolution.id, data={"version": ""}, ) manager = EventManager( make_event( event_id="b" * 32, checksum="a" * 32, timestamp=time(), release=old_release.version ) ) with self.tasks(): with self.feature({"organizations:integrations-issue-sync": True}): event = manager.save(1) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.RESOLVED activity = Activity.objects.get(id=activity.id) assert activity.data["version"] == "" assert GroupResolution.objects.filter(group=group).exists() manager = EventManager( make_event(event_id="c" * 32, checksum="a" * 32, timestamp=time(), release="b") ) event = manager.save(1) mock_sync_status_outbound.assert_called_once_with( external_issue, False, event.group.project_id ) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.UNRESOLVED activity = Activity.objects.get(id=activity.id) assert activity.data["version"] == "b" assert not GroupResolution.objects.filter(group=group).exists() activity = Activity.objects.get(group=group, type=Activity.SET_REGRESSION) mock_send_activity_notifications_delay.assert_called_once_with(activity.id) @mock.patch("sentry.tasks.activity.send_activity_notifications.delay") @mock.patch("sentry.event_manager.plugin_is_regression") def test_does_not_mark_as_unresolved_with_pending_commit( self, plugin_is_regression, mock_send_activity_notifications_delay ): plugin_is_regression.return_value = True repo = self.create_repo(project=self.project) commit = self.create_commit(repo=repo) manager = EventManager( make_event( event_id="a" * 32, checksum="a" * 32, timestamp=time() - 50000, # need to work around active_at ) ) event = manager.save(self.project.id) group = event.group group.update(status=GroupStatus.RESOLVED) GroupLink.objects.create( group_id=group.id, project_id=group.project_id, linked_id=commit.id, linked_type=GroupLink.LinkedType.commit, relationship=GroupLink.Relationship.resolves, ) manager = EventManager(make_event(event_id="b" * 32, checksum="a" * 32, timestamp=time())) event = manager.save(self.project.id) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.RESOLVED @mock.patch("sentry.tasks.activity.send_activity_notifications.delay") @mock.patch("sentry.event_manager.plugin_is_regression") def test_mark_as_unresolved_with_released_commit( self, plugin_is_regression, mock_send_activity_notifications_delay ): plugin_is_regression.return_value = True release = self.create_release(project=self.project) repo = self.create_repo(project=self.project) commit = self.create_commit(repo=repo, release=release, project=self.project) manager = EventManager( make_event( event_id="a" * 32, checksum="a" * 32, timestamp=time() - 50000, # need to work around active_at ) ) event = manager.save(self.project.id) group = event.group group.update(status=GroupStatus.RESOLVED) GroupLink.objects.create( group_id=group.id, project_id=group.project_id, linked_id=commit.id, linked_type=GroupLink.LinkedType.commit, relationship=GroupLink.Relationship.resolves, ) manager = EventManager(make_event(event_id="b" * 32, checksum="a" * 32, timestamp=time())) event = manager.save(self.project.id) assert event.group_id == group.id group = Group.objects.get(id=group.id) assert group.status == GroupStatus.UNRESOLVED @mock.patch("sentry.models.Group.is_resolved") def test_unresolves_group_with_auto_resolve(self, mock_is_resolved): ts = time() - 100 mock_is_resolved.return_value = False manager = EventManager(make_event(event_id="a" * 32, checksum="a" * 32, timestamp=ts)) with self.tasks(): event = manager.save(1) mock_is_resolved.return_value = True manager = EventManager(make_event(event_id="b" * 32, checksum="a" * 32, timestamp=ts + 100)) with self.tasks(): event2 = manager.save(1) assert event.group_id == event2.group_id group = Group.objects.get(id=event.group.id) assert group.active_at.replace(second=0) == event2.datetime.replace(second=0) assert group.active_at.replace(second=0) != event.datetime.replace(second=0) def test_invalid_transaction(self): dict_input = {"messages": "foo"} manager = EventManager(make_event(transaction=dict_input)) manager.normalize() event = manager.save(1) assert event.transaction is None def test_transaction_as_culprit(self): manager = EventManager(make_event(transaction="foobar")) manager.normalize() event = manager.save(1) assert event.transaction == "foobar" assert event.culprit == "foobar" def test_culprit_is_not_transaction(self): manager = EventManager(make_event(culprit="foobar")) manager.normalize() event1 = manager.save(1) assert event1.transaction is None assert event1.culprit == "foobar" def test_inferred_culprit_from_empty_stacktrace(self): manager = EventManager(make_event(stacktrace={"frames": []})) manager.normalize() event = manager.save(1) assert event.culprit == "" def test_transaction_and_culprit(self): manager = EventManager(make_event(transaction="foobar", culprit="baz")) manager.normalize() event1 = manager.save(1) assert event1.transaction == "foobar" assert event1.culprit == "baz" def test_first_release(self): project_id = 1 event = self.make_release_event("1.0", project_id) group = event.group assert group.first_release.version == "1.0" event = self.make_release_event("2.0", project_id) group = event.group assert group.first_release.version == "1.0" def test_release_project_slug(self): project = self.create_project(name="foo") release = Release.objects.create(version="foo-1.0", organization=project.organization) release.add_project(project) event = self.make_release_event("1.0", project.id) group = event.group assert group.first_release.version == "foo-1.0" release_tag = [v for k, v in event.tags if k == "sentry:release"][0] assert release_tag == "foo-1.0" event = self.make_release_event("2.0", project.id) group = event.group assert group.first_release.version == "foo-1.0" def test_release_project_slug_long(self): project = self.create_project(name="foo") partial_version_len = MAX_VERSION_LENGTH - 4 release = Release.objects.create( version="foo-%s" % ("a" * partial_version_len,), organization=project.organization ) release.add_project(project) event = self.make_release_event("a" * partial_version_len, project.id) group = event.group assert group.first_release.version == "foo-%s" % ("a" * partial_version_len,) release_tag = [v for k, v in event.tags if k == "sentry:release"][0] assert release_tag == "foo-%s" % ("a" * partial_version_len,) def test_group_release_no_env(self): project_id = 1 event = self.make_release_event("1.0", project_id) release = Release.objects.get(version="1.0", projects=event.project_id) assert GroupRelease.objects.filter( release_id=release.id, group_id=event.group_id, environment="" ).exists() # ensure we're not erroring on second creation event = self.make_release_event("1.0", project_id) def test_group_release_with_env(self): manager = EventManager(make_event(release="1.0", environment="prod", event_id="a" * 32)) manager.normalize() event = manager.save(1) release = Release.objects.get(version="1.0", projects=event.project_id) assert GroupRelease.objects.filter( release_id=release.id, group_id=event.group_id, environment="prod" ).exists() manager = EventManager(make_event(release="1.0", environment="staging", event_id="b" * 32)) event = manager.save(1) release = Release.objects.get(version="1.0", projects=event.project_id) assert GroupRelease.objects.filter( release_id=release.id, group_id=event.group_id, environment="staging" ).exists() def test_tsdb(self): project = self.project manager = EventManager( make_event( fingerprint=["totally unique super duper fingerprint"], environment="totally unique super duper environment", ) ) event = manager.save(project.id) def query(model, key, **kwargs): return tsdb.get_sums(model, [key], event.datetime, event.datetime, **kwargs)[key] assert query(tsdb.models.project, project.id) == 1 assert query(tsdb.models.group, event.group.id) == 1 environment_id = Environment.get_for_organization_id( event.project.organization_id, "totally unique super duper environment" ).id assert query(tsdb.models.project, project.id, environment_id=environment_id) == 1 assert query(tsdb.models.group, event.group.id, environment_id=environment_id) == 1 @pytest.mark.xfail def test_record_frequencies(self): project = self.project manager = EventManager(make_event()) event = manager.save(project.id) assert tsdb.get_most_frequent( tsdb.models.frequent_issues_by_project, (event.project.id,), event.datetime ) == {event.project.id: [(event.group_id, 1.0)]} def test_event_user(self): manager = EventManager( make_event( event_id="a", environment="totally unique environment", **{"user": {"id": "1"}} ) ) manager.normalize() with self.tasks(): event = manager.save(self.project.id) environment_id = Environment.get_for_organization_id( event.project.organization_id, "totally unique environment" ).id assert tsdb.get_distinct_counts_totals( tsdb.models.users_affected_by_group, (event.group.id,), event.datetime, event.datetime ) == {event.group.id: 1} assert tsdb.get_distinct_counts_totals( tsdb.models.users_affected_by_project, (event.project.id,), event.datetime, event.datetime, ) == {event.project.id: 1} assert tsdb.get_distinct_counts_totals( tsdb.models.users_affected_by_group, (event.group.id,), event.datetime, event.datetime, environment_id=environment_id, ) == {event.group.id: 1} assert tsdb.get_distinct_counts_totals( tsdb.models.users_affected_by_project, (event.project.id,), event.datetime, event.datetime, environment_id=environment_id, ) == {event.project.id: 1} euser = EventUser.objects.get(project_id=self.project.id, ident="1") assert event.get_tag("sentry:user") == euser.tag_value # ensure event user is mapped to tags in second attempt manager = EventManager(make_event(event_id="b", **{"user": {"id": "1", "name": "jane"}})) manager.normalize() with self.tasks(): event = manager.save(self.project.id) euser = EventUser.objects.get(id=euser.id) assert event.get_tag("sentry:user") == euser.tag_value assert euser.name == "jane" assert euser.ident == "1" def test_event_user_invalid_ip(self): manager = EventManager( make_event( event_id="a", environment="totally unique environment", **{"user": {"id": "1"}} ) ) manager.normalize() # This can happen as part of PII stripping, which happens after normalization manager._data["user"]["ip_address"] = "[ip]" with self.tasks(): manager.save(self.project.id) euser = EventUser.objects.get(project_id=self.project.id) assert euser.ip_address is None def test_event_user_unicode_identifier(self): manager = EventManager(make_event(**{"user": {"username": u"foô"}})) manager.normalize() with self.tasks(): manager.save(self.project.id) euser = EventUser.objects.get(project_id=self.project.id) assert euser.username == u"foô" def test_environment(self): manager = EventManager(make_event(**{"environment": "beta"})) manager.normalize() event = manager.save(self.project.id) assert dict(event.tags).get("environment") == "beta" def test_invalid_environment(self): manager = EventManager(make_event(**{"environment": "bad/name"})) manager.normalize() event = manager.save(self.project.id) assert dict(event.tags).get("environment") is None def test_invalid_tags(self): manager = EventManager(make_event(**{"tags": [42]})) manager.normalize() assert None in manager.get_data().get("tags", []) assert 42 not in manager.get_data().get("tags", []) event = manager.save(self.project.id) assert 42 not in event.tags assert None not in event.tags @mock.patch("sentry.event_manager.eventstream.insert") def test_group_environment(self, eventstream_insert): release_version = "1.0" def save_event(): manager = EventManager( make_event( **{ "event_id": uuid.uuid1().hex, "environment": "beta", "release": release_version, } ) ) manager.normalize() return manager.save(self.project.id) event = save_event() # Ensure the `GroupEnvironment` record was created. instance = GroupEnvironment.objects.get( group_id=event.group_id, environment_id=Environment.objects.get( organization_id=self.project.organization_id, name=event.get_tag("environment") ).id, ) assert Release.objects.get(id=instance.first_release_id).version == release_version # Ensure that the first event in the (group, environment) pair is # marked as being part of a new environment. eventstream_insert.assert_called_with( group=event.group, event=event, is_new=True, is_regression=False, is_new_group_environment=True, primary_hash="acbd18db4cc2f85cedef654fccc4a4d8", skip_consume=False, received_timestamp=event.data["received"], ) event = save_event() # Ensure that the next event in the (group, environment) pair is *not* # marked as being part of a new environment. eventstream_insert.assert_called_with( group=event.group, event=event, is_new=False, is_regression=None, # XXX: wut is_new_group_environment=False, primary_hash="acbd18db4cc2f85cedef654fccc4a4d8", skip_consume=False, received_timestamp=event.data["received"], ) def test_default_fingerprint(self): manager = EventManager(make_event()) manager.normalize() event = manager.save(self.project.id) assert event.data.get("fingerprint") == ["{{ default }}"] def test_user_report_gets_environment(self): project = self.create_project() environment = Environment.objects.create( project_id=project.id, organization_id=project.organization_id, name="production" ) environment.add_project(project) event_id = "a" * 32 UserReport.objects.create( project=project, event_id=event_id, name="foo", email="[email protected]", comments="It Broke!!!", ) self.store_event( data=make_event(environment=environment.name, event_id=event_id), project_id=project.id ) assert UserReport.objects.get(event_id=event_id).environment == environment def test_default_event_type(self): manager = EventManager(make_event(message="foo bar")) manager.normalize() data = manager.get_data() assert data["type"] == "default" event = manager.save(self.project.id) group = event.group assert group.data.get("type") == "default" assert group.data.get("metadata") == {"title": "foo bar"} def test_message_event_type(self): manager = EventManager( make_event( **{ "message": "", "logentry": {"formatted": "foo bar", "message": "foo %s", "params": ["bar"]}, } ) ) manager.normalize() data = manager.get_data() assert data["type"] == "default" event = manager.save(self.project.id) group = event.group assert group.data.get("type") == "default" assert group.data.get("metadata") == {"title": "foo bar"} def test_error_event_type(self): manager = EventManager( make_event(**{"exception": {"values": [{"type": "Foo", "value": "bar"}]}}) ) manager.normalize() data = manager.get_data() assert data["type"] == "error" event = manager.save(self.project.id) group = event.group assert group.data.get("type") == "error" assert group.data.get("metadata") == {"type": "Foo", "value": "bar"} def test_csp_event_type(self): manager = EventManager( make_event( **{ "csp": { "effective_directive": "script-src", "blocked_uri": "http://example.com", } } ) ) manager.normalize() data = manager.get_data() assert data["type"] == "csp" event = manager.save(self.project.id) group = event.group assert group.data.get("type") == "csp" assert group.data.get("metadata") == { "directive": "script-src", "uri": "example.com", "message": "Blocked 'script' from 'example.com'", } def test_transaction_event_type(self): manager = EventManager( make_event( **{ "transaction": "wait", "contexts": { "trace": { "parent_span_id": "bce14471e0e9654d", "op": "foobar", "trace_id": "a0fa8803753e40fd8124b21eeb2986b5", "span_id": "bf5be759039ede9a", } }, "spans": [], "timestamp": "2019-06-14T14:01:40Z", "start_timestamp": "2019-06-14T14:01:40Z", "type": "transaction", } ) ) manager.normalize() data = manager.get_data() assert data["type"] == "transaction" def test_sdk(self): manager = EventManager(make_event(**{"sdk": {"name": "sentry-unity", "version": "1.0"}})) manager.normalize() event = manager.save(self.project.id) assert event.data["sdk"] == { "name": "sentry-unity", "version": "1.0", "integrations": None, "packages": None, } def test_no_message(self): # test that the message is handled gracefully manager = EventManager( make_event(**{"message": None, "logentry": {"message": "hello world"}}) ) manager.normalize() event = manager.save(self.project.id) assert event.message == "hello world" def test_search_message(self): manager = EventManager( make_event( **{ "message": "test", "logentry": {"message": "hello world"}, "transaction": "sentry.tasks.process", } ) ) manager.normalize() event = manager.save(self.project.id) assert event.search_message == "hello world sentry.tasks.process" def test_stringified_message(self): manager = EventManager(make_event(**{"message": 1234})) manager.normalize() event = manager.save(self.project.id) assert event.data["logentry"] == {"formatted": "1234", "message": None, "params": None} def test_bad_message(self): # test that invalid messages are rejected manager = EventManager(make_event(**{"message": ["asdf"]})) manager.normalize() event = manager.save(self.project.id) assert event.message == '["asdf"]' assert "logentry" in event.data def test_message_attribute_goes_to_interface(self): manager = EventManager(make_event(**{"message": "hello world"})) manager.normalize() event = manager.save(self.project.id) assert event.data["logentry"] == { "formatted": "hello world", "message": None, "params": None, } def test_message_attribute_shadowing(self): # Logentry shadows the legacy message attribute. manager = EventManager( make_event(**{"message": "world hello", "logentry": {"message": "hello world"}}) ) manager.normalize() event = manager.save(self.project.id) assert event.data["logentry"] == { "formatted": "hello world", "message": None, "params": None, } def test_message_attribute_interface_both_strings(self): manager = EventManager( make_event(**{"logentry": "a plain string", "message": "another string"}) ) manager.normalize() event = manager.save(self.project.id) assert event.data["logentry"] == { "formatted": "a plain string", "message": None, "params": None, } def test_throws_when_matches_discarded_hash(self): manager = EventManager(make_event(message="foo", event_id="a" * 32, fingerprint=["a" * 32])) with self.tasks(): event = manager.save(1) group = Group.objects.get(id=event.group_id) tombstone = GroupTombstone.objects.create( project_id=group.project_id, level=group.level, message=group.message, culprit=group.culprit, data=group.data, previous_group_id=group.id, ) GroupHash.objects.filter(group=group).update(group=None, group_tombstone_id=tombstone.id) manager = EventManager(make_event(message="foo", event_id="b" * 32, fingerprint=["a" * 32])) from sentry.utils.outcomes import track_outcome mock_track_outcome = mock.Mock(wraps=track_outcome) with mock.patch("sentry.event_manager.track_outcome", mock_track_outcome): with self.tasks(): with self.assertRaises(HashDiscarded): event = manager.save(1) assert_mock_called_once_with_partial( mock_track_outcome, outcome=Outcome.FILTERED, reason=FilterStatKeys.DISCARDED_HASH ) def query(model, key, **kwargs): return tsdb.get_sums(model, [key], event.datetime, event.datetime, **kwargs)[key] # Ensure that we incremented TSDB counts assert query(tsdb.models.organization_total_received, event.project.organization.id) == 2 assert query(tsdb.models.project_total_received, event.project.id) == 2 assert query(tsdb.models.project, event.project.id) == 1 assert query(tsdb.models.group, event.group.id) == 1 assert query(tsdb.models.organization_total_blacklisted, event.project.organization.id) == 1 assert query(tsdb.models.project_total_blacklisted, event.project.id) == 1 def test_event_accepted_outcome(self): manager = EventManager(make_event(message="foo")) manager.normalize() mock_track_outcome = mock.Mock() with mock.patch("sentry.event_manager.track_outcome", mock_track_outcome): manager.save(1) assert_mock_called_once_with_partial(mock_track_outcome, outcome=Outcome.ACCEPTED) def test_checksum_rehashed(self): checksum = "invalid checksum hash" manager = EventManager(make_event(**{"checksum": checksum})) manager.normalize() event = manager.save(self.project.id) hashes = [gh.hash for gh in GroupHash.objects.filter(group=event.group)] assert sorted(hashes) == sorted([hash_from_values(checksum), checksum]) @mock.patch("sentry.event_manager.is_valid_error_message") def test_should_filter_message(self, mock_is_valid_error_message): TestItem = namedtuple("TestItem", "value formatted result") items = [ TestItem({"type": "UnfilteredException"}, "UnfilteredException", True), TestItem( {"value": "This is an unfiltered exception."}, "This is an unfiltered exception.", True, ), TestItem( {"type": "UnfilteredException", "value": "This is an unfiltered exception."}, "UnfilteredException: This is an unfiltered exception.", True, ), TestItem( {"type": "FilteredException", "value": "This is a filtered exception."}, "FilteredException: This is a filtered exception.", False, ), ] data = {"exception": {"values": [item.value for item in items]}} project_config = get_project_config(self.project) manager = EventManager(data, project=self.project, project_config=project_config) mock_is_valid_error_message.side_effect = [item.result for item in items] assert manager.should_filter() == (True, FilterStatKeys.ERROR_MESSAGE) assert mock_is_valid_error_message.call_args_list == [ mock.call(project_config, item.formatted) for item in items ] def test_legacy_attributes_moved(self): event = make_event( release="my-release", environment="my-environment", site="whatever", server_name="foo.com", event_id=uuid.uuid1().hex, ) manager = EventManager(event) event = manager.save(1) # release and environment stay toplevel assert event.data["release"] == "my-release" assert event.data["environment"] == "my-environment" # site is a legacy attribute that is just a tag assert event.data.get("site") is None tags = dict(event.tags) assert tags["site"] == "whatever" assert event.data.get("server_name") is None tags = dict(event.tags) assert tags["server_name"] == "foo.com" def test_save_issueless_event(self): manager = EventManager( make_event( transaction="wait", contexts={ "trace": { "parent_span_id": "bce14471e0e9654d", "op": "foobar", "trace_id": "a0fa8803753e40fd8124b21eeb2986b5", "span_id": "bf5be759039ede9a", } }, spans=[], timestamp="2019-06-14T14:01:40Z", start_timestamp="2019-06-14T14:01:40Z", type="transaction", platform="python", ) ) event = manager.save(self.project.id) assert event.group is None assert ( tsdb.get_sums(tsdb.models.project, [self.project.id], event.datetime, event.datetime)[ self.project.id ] == 1 ) def test_fingerprint_ignored(self): manager1 = EventManager(make_event(event_id="a" * 32, fingerprint="fingerprint1")) event1 = manager1.save(self.project.id) manager2 = EventManager( make_event( event_id="b" * 32, fingerprint="fingerprint1", transaction="wait", contexts={ "trace": { "parent_span_id": "bce14471e0e9654d", "op": "foobar", "trace_id": "a0fa8803753e40fd8124b21eeb2986b5", "span_id": "bf5be759039ede9a", } }, spans=[], timestamp="2019-06-14T14:01:40Z", start_timestamp="2019-06-14T14:01:40Z", type="transaction", platform="python", ) ) event2 = manager2.save(self.project.id) assert event1.group is not None assert event2.group is None assert ( tsdb.get_sums(tsdb.models.project, [self.project.id], event1.datetime, event1.datetime)[ self.project.id ] == 2 ) assert ( tsdb.get_sums(tsdb.models.group, [event1.group.id], event1.datetime, event1.datetime)[ event1.group.id ] == 1 ) class ReleaseIssueTest(TestCase): def setUp(self): self.project = self.create_project() self.release = Release.get_or_create(self.project, "1.0") self.environment1 = Environment.get_or_create(self.project, "prod") self.environment2 = Environment.get_or_create(self.project, "staging") self.timestamp = float(int(time() - 300)) def make_event(self, **kwargs): result = { "event_id": "a" * 32, "message": "foo", "timestamp": self.timestamp + 0.23, "level": logging.ERROR, "logger": "default", "tags": [], } result.update(kwargs) return result def make_release_event( self, release_version="1.0", environment_name="prod", project_id=1, **kwargs ): event = make_event( release=release_version, environment=environment_name, event_id=uuid.uuid1().hex ) event.update(kwargs) manager = EventManager(event) with self.tasks(): event = manager.save(project_id) return event def convert_timestamp(self, timestamp): date = datetime.fromtimestamp(timestamp) date = date.replace(tzinfo=timezone.utc) return date def assert_release_project_environment(self, event, new_issues_count, first_seen, last_seen): release = Release.objects.get( organization=event.project.organization.id, version=event.get_tag("sentry:release") ) release_project_envs = ReleaseProjectEnvironment.objects.filter( release=release, project=event.project, environment=event.get_environment() ) assert len(release_project_envs) == 1 release_project_env = release_project_envs[0] assert release_project_env.new_issues_count == new_issues_count assert release_project_env.first_seen == self.convert_timestamp(first_seen) assert release_project_env.last_seen == self.convert_timestamp(last_seen) def test_different_groups(self): event1 = self.make_release_event( release_version=self.release.version, environment_name=self.environment1.name, project_id=self.project.id, checksum="a" * 32, timestamp=self.timestamp, ) self.assert_release_project_environment( event=event1, new_issues_count=1, last_seen=self.timestamp, first_seen=self.timestamp ) event2 = self.make_release_event( release_version=self.release.version, environment_name=self.environment1.name, project_id=self.project.id, checksum="b" * 32, timestamp=self.timestamp + 100, ) self.assert_release_project_environment( event=event2, new_issues_count=2, last_seen=self.timestamp + 100, first_seen=self.timestamp, ) def test_same_group(self): event1 = self.make_release_event( release_version=self.release.version, environment_name=self.environment1.name, project_id=self.project.id, checksum="a" * 32, timestamp=self.timestamp, ) self.assert_release_project_environment( event=event1, new_issues_count=1, last_seen=self.timestamp, first_seen=self.timestamp ) event2 = self.make_release_event( release_version=self.release.version, environment_name=self.environment1.name, project_id=self.project.id, checksum="a" * 32, timestamp=self.timestamp + 100, ) self.assert_release_project_environment( event=event2, new_issues_count=1, last_seen=self.timestamp + 100, first_seen=self.timestamp, ) def test_same_group_different_environment(self): event1 = self.make_release_event( release_version=self.release.version, environment_name=self.environment1.name, project_id=self.project.id, checksum="a" * 32, timestamp=self.timestamp, ) self.assert_release_project_environment( event=event1, new_issues_count=1, last_seen=self.timestamp, first_seen=self.timestamp ) event2 = self.make_release_event( release_version=self.release.version, environment_name=self.environment2.name, project_id=self.project.id, checksum="a" * 32, timestamp=self.timestamp + 100, ) self.assert_release_project_environment( event=event1, new_issues_count=1, last_seen=self.timestamp, first_seen=self.timestamp ) self.assert_release_project_environment( event=event2, new_issues_count=1, last_seen=self.timestamp + 100, first_seen=self.timestamp + 100, )
36.048375
100
0.60096
4a23118f9a19b9d5c62130d94d29de602873c349
2,544
py
Python
python/equeenInput.py
Fatizel/EightQueensPuzzle
d8fd190621be9d2e0cbc835df360024cc6e5b8d3
[ "MIT" ]
null
null
null
python/equeenInput.py
Fatizel/EightQueensPuzzle
d8fd190621be9d2e0cbc835df360024cc6e5b8d3
[ "MIT" ]
null
null
null
python/equeenInput.py
Fatizel/EightQueensPuzzle
d8fd190621be9d2e0cbc835df360024cc6e5b8d3
[ "MIT" ]
null
null
null
import datetime #import library for conection db from sqlalchemy import create_engine # Funtion for define if exist a queen in the dashboard def verification(row, col, queens): if not len(queens): return False for queen in queens: if not len(queen): continue r,c = queen if r == row: return True # Check row if c == col: return True # Check column if (col-c) == (row-r): return True # Check left diagonal if (col-c) == -(row-r): return True # Check right diagonal return False #Funtion for iterate in the rows solution. def research(n): numSolution = 0; solutions = None for row in range(1, n+1): # for each row, check all valid column solutions, numSolution = inspection(solutions, row, n, numSolution) return solutions, numSolution # Funtion that evaluate the solution for iteration def inspection(solutions, row, n, numSolution): #Matrix for solutions nSolution = [] #Num of solution for iteration numSolution = 0 for col in range(1, n+1): if not solutions or not len(solutions): nSolution.append([] + [(row, col)]) else: for solution in solutions: if not verification(row, col, solution): numSolution = numSolution + 1 nSolution.append(solution + [(row, col)]) return nSolution, numSolution #Funtion for database conect def dbconect(userN, pw, host, port,tName): dbString = "postgresql://"+userN+":"+pw+"@"+host+":"+port; db = create_engine(dbString) db.execute("DROP TABLE IF EXISTS " + tName ) db.execute("DROP SCHEMA IF EXISTS "+ tName) db.execute("CREATE TABLE IF NOT EXISTS "+ tName +"(queen text,iter text,dx text,dy text)") return db #Funtion for add data in table def dbinsert(db,tName, queen, itera, dx, dy): db.execute("INSERT INTO "+ tName +" (queen, iter, dx, dy) VALUES ("+queen+", "+itera+", "+dx+","+dy+")") #reader = db.execute("SELECT * FROM "+ tName) #for r in reader: # print(r) tName = "queenR" queen = int(8) current_time = datetime.datetime.now() print(current_time) db = dbconect("postgres","mysecretpassword","localhost","5432", tName) solution, numSolution = research(queen) a = solution iTb = 0 for row in a: iTb = iTb +1 for elem in row: dbinsert(db,tName,str(queen),str(iTb),str(elem[0]),str(elem[1])) current_time = datetime.datetime.now() print(current_time) print("Soluciones almacenadas: " + str(numSolution))
33.038961
108
0.639151
4a2312c1d6639d0e4c867b3a9c5a815a576e1d32
2,671
py
Python
var/spack/repos/builtin/packages/r-genomicranges/package.py
robertsawko/spack
135cf4835f5b646c4aaa0e2eb5552c80fc3a5ce8
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2019-11-28T10:14:14.000Z
2019-11-28T10:14:14.000Z
var/spack/repos/builtin/packages/r-genomicranges/package.py
robertsawko/spack
135cf4835f5b646c4aaa0e2eb5552c80fc3a5ce8
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/r-genomicranges/package.py
robertsawko/spack
135cf4835f5b646c4aaa0e2eb5552c80fc3a5ce8
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2017-01-21T17:19:32.000Z
2017-01-21T17:19:32.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RGenomicranges(RPackage): """Representation and manipulation of genomic intervals. The ability to efficiently represent and manipulate genomic annotations and alignments is playing a central role when it comes to analyzing high-throughput sequencing data (a.k.a. NGS data). The GenomicRanges package defines general purpose containers for storing and manipulating genomic intervals and variables defined along a genome. More specialized containers for representing and manipulating short alignments against a reference genome, or a matrix-like summarization of an experiment, are defined in the GenomicAlignments and SummarizedExperiment packages, respectively. Both packages build on top of the GenomicRanges infrastructure.""" homepage = "https://bioconductor.org/packages/GenomicRanges" git = "https://git.bioconductor.org/packages/GenomicRanges.git" version('1.36.1', commit='418e7e5647dd54d81b804455ddfcbc027fd0164a') version('1.34.0', commit='ebaad5ca61abb67c2c30c132e07531ba4257bccd') version('1.32.7', commit='4c56dc836dbfd0d228dc810e8d401811cdbc267c') version('1.30.3', commit='e99979054bc50ed8c0109bc54563036c1b368997') version('1.28.6', commit='197472d618f3ed04c795dc6ed435500c29619563') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('r-xvector', type=('build', 'run')) depends_on('[email protected]:', when='@1.30.3:', type=('build', 'run')) depends_on('[email protected]:', when='@1.30.3:', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.7:', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.7:', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.7:', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.7:', type=('build', 'run')) depends_on('[email protected]:', when='@1.32.7:', type=('build', 'run')) depends_on('[email protected]:', when='@1.34.0:', type=('build', 'run')) depends_on('[email protected]:', when='@1.34.0:', type=('build', 'run')) depends_on('[email protected]:', when='@1.36.1:', type=('build', 'run'))
51.365385
80
0.681018
4a2312d1b20262e42760698917b2465f453e499f
21,540
py
Python
test/chain_lighting.py
nonemaw/YeTi
92a3ba89f5b7fd8b2d5d3f5929ade0bf0b9e5cbe
[ "MIT" ]
1
2017-10-04T12:21:20.000Z
2017-10-04T12:21:20.000Z
test/chain_lighting.py
nonemaw/YeTi
92a3ba89f5b7fd8b2d5d3f5929ade0bf0b9e5cbe
[ "MIT" ]
null
null
null
test/chain_lighting.py
nonemaw/YeTi
92a3ba89f5b7fd8b2d5d3f5929ade0bf0b9e5cbe
[ "MIT" ]
null
null
null
import copy import inspect from functools import reduce from itertools import islice from reprlib import recursive_repr from collections import Iterator, Iterable, OrderedDict, Mapping class OrderedTable(OrderedDict): """ enabling dot operation for dict/OrderedDict Example: >>> t = OrderedTable({'key1': 1, 'key2': {'key3': 3, 'key4': 4}}) >>> t.key2.key5 = 5 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for arg in args: if isinstance(arg, dict): for k, v in arg.items(): self[k] = OrderedTable(v) if isinstance(v, dict) else v if kwargs: for k, v in kwargs.items(): self[k] = OrderedTable(v) if isinstance(v, dict) else v @recursive_repr() def __repr__(self): if not self: return 'OrderedTable()' return f'OrderedTable({list(self.items())})' def __getattr__(self, item): """ enable >>> t.key """ return self.get(item) def __setattr__(self, key, value): """ enable >>> t.key2 = 2 """ # convert value to Table type before passing to __setitem__ if isinstance(value, dict): value = OrderedTable(value) self.__setitem__(key, value) def __delattr__(self, item): """ enable >>> del t.key3 """ self.__delitem__(item) def __setitem__(self, key, value): """ signature not matched, but it works good """ super().__setitem__(key, value) self.__dict__.update({key: value}) def __delitem__(self, key): """ signature not matched, but it works good """ super().__delitem__(key) del self.__dict__[key] def update(self, m: Mapping = None, **kwargs): """ override dict's update method for Table: when updating mappings, convert them into Table first rather than pass dict directly """ if m is not None: for k, v in m.items() if isinstance(m, Mapping) else m: if isinstance(v, dict): v = OrderedTable(v) self[k] = v for k, v in kwargs.items(): if isinstance(v, dict): v = OrderedTable(v) self[k] = v def append_keys(self, keys: Iterable, default=None): for k in keys: self.update({k: default}) def append(self, item=None, **kwargs): """ append one or multiple key-value pairs to the end of dict the operation will be converted to update() if same key appears """ if item is not None: if isinstance(item, list): for i in item: self.update(i) elif isinstance(item, Mapping): self.update(item) for k, v in kwargs.items(): if isinstance(v, dict): v = OrderedTable(v) self[k] = v def extend(self, items:Iterable): """ extend multiple key-value pairs to the end of dict the operation will be converted to update() if same key appears """ for i in items: self.update(i) class CL: """ ChainLightning provides convenient function chain mechanisms, which also allows you to modify Iterable/Iterator directly at same time """ def __init__(self, obj): self.__obj = self.__assert_obj(obj) self.__cache = copy.deepcopy(obj) if isinstance(obj, Iterator): self.type = 1 # type 1 is Iterator else: self.type = 2 # type 2 is Iterable def __iter__(self): if self.type == 1: return copy.deepcopy(self.__obj) return iter(self.__obj) def __str__(self): if self.type == 1: self_obj = str(list(self)) else: self_obj = str(self.__obj) self_id = '0x{:02x}'.format(id(self)) if self.type == 1: return f'<ChainLightning at {self_id}> value={self_obj} type=Iterator' elif self.type == 2: return f'<ChainLightning at {self_id}> value={self_obj} type=Iterable' self_type = str(type(self.__obj)) return f'<ChainLightning at {self_id}> value={self_obj} type={self_type}' def __repr__(self): return str(self) def __len__(self): return self.reduce(func=lambda x, _: x + 1, initial=0) def __enter__(self): return iter(self) def __call__(self, func_name: str, *args, **kwargs): if hasattr(self, func_name): return getattr(self, func_name)(*args, **kwargs) def __getitem__(self, item): """ enable >>> CL(iter([1, 2, 3, 4, 5]))[::2] """ if not isinstance(item, (int, slice)): raise TypeError( f'Indices must be an integer or slice, not {type(item)}' ) # Iterable case, pass item directly if self.type == 2: return self.__obj.__getitem__(item) # Iterator case elif self.type == 1: # slice case, "item" is a built-in slice object if isinstance(item, slice): res = islice(self, item.start, item.stop, item.step) return res # int case else: counter = 0 for i in self: if counter == item: return i else: counter += 1 else: raise IndexError('Index out of range') def __update_type_n_cache(self): """ after some operations an Iterator or Iterable might be converted between each other, try to update type/cache after those changes """ self.__cache = copy.deepcopy(self.__obj) if isinstance(self.__obj, Iterator): self.type = 1 elif isinstance(self.__obj, Iterable): self.type = 2 else: self.type = 0 def __restore_from_cache(self): """ restore from cache for Iterators """ if self.type == 1: self.__obj = copy.deepcopy(self.__cache) def __assert_obj(self, obj): try: assert obj and isinstance(obj, (Iterator, Iterable)) except AssertionError: obj = list(obj) if isinstance(obj, dict) and not isinstance(obj, OrderedTable): tmp = OrderedTable() for key in obj: tmp[key] = obj.get(key) obj = tmp return obj def __assert_func(self, func, arg_num: int = None): """ assert whether the "func" is a valid function if "arg_num" is given (not None), then assert if func's valid number of parameters is legal return: func's legal number of arguments """ if not callable(func): raise TypeError('Argument "func" got a non-callable object') # the given number of arg_num should pass one of the assert() if arg_num is not None: # _args is the total number of func's arguments _args = len(inspect.getfullargspec(func).args) # _kwargs is the total number of func's kw-arguments try: _kwargs = len(inspect.getfullargspec(func).defaults) except: _kwargs = 0 try: assert _args - _kwargs == arg_num return _args - _kwargs except AssertionError: try: assert _args == arg_num return _args except AssertionError: raise TypeError( f'{func.__name__}() takes {_args} args and {_kwargs} kwargs, but expecting {arg_num} args' ) ###################### tools: ###################### # length() -> len(self) # done() -> self.__obj # get_iter() -> Iterator # get_reverse() -> self.__obj # get_sort() -> self.__obj # has_duplicate() -> bool # check() -> self.__obj def length(self) -> int: return len(self) def done(self): """ retrieve self.__obj's value when user's operation is done, e.g.: CL(xxx).sorted(x).map(x).filter(x).group_by(x).done() """ return self.__obj def get_iter(self) -> Iterator: """ obtain an iterator from self """ return iter(self) def get_reverse(self): """ obtain a reversed version of current object's value, and it won't modify the object's value """ # an Iterable if self.type == 2 and not isinstance(self.__obj, dict): return reversed(self) # an Iterator, not reversible, convert to list for reversed() elif self.type == 1 and not isinstance(self.__obj, dict): return reversed(list(self)) # a dict elif isinstance(self.__obj, dict): # FIXME: why I cannot use reversed(self) in here? res = reversed(self.__obj) tmp = OrderedTable() for key in res: tmp[key] = self.__obj.get(key) return tmp def get_sort(self, key=None, reverse=None): """ obtain a sorted version of current object's value, and it won't modify the object's value """ if key: self.__assert_func(key, arg_num=1) # sorted() with reverse flag if reverse is not None and not isinstance(self.__obj, dict): if not isinstance(reverse, (bool, int)): raise TypeError( f'Argument "reverse" should be in type of bool/int, but got {type(reverse)}' ) return sorted(self, key=key, reverse=reverse) # sorted without reverse flag elif not reverse and not isinstance(self.__obj, dict): return sorted(self, key=key) # a dict elif isinstance(self.__obj, dict): if reverse is not None: res = sorted(self, key=key, reverse=reverse) else: res = sorted(self, key=key) tmp = OrderedTable() for key in res: tmp[key] = self.__obj.get(key) return tmp def get_rsort(self, key=None): """ obtain a reversely sorted version of current object's value, and it won't modify the object's value """ return self.get_sort(key, reverse=True) def has_duplicate(self): """ if there exists duplicate items """ return not (len(self) == len(set(self))) def check(self, _type=None): """ enable a quick check to __obj's human-readable value """ if self.type == 1: if _type is not None and callable(_type): return _type(self) return list(self) else: return self.__obj ###################### pipelines: ###################### # map() -> self # zip() -> self # filter() -> self # sorted() -> self # reversed() -> self # flatten() -> self # # key_only() -> self # value_only() -> self # # append() -> self # extend() -> self # insert() -> self # remove() -> self # pop() -> self # update() -> self # # reset() -> self def map(self, func) -> 'CL': self.__assert_func(func, arg_num=1) self.__obj = map(func, self) self.__update_type_n_cache() return self def zip(self, obj=None) -> 'CL': """ zip current object with another Iterator/Iterable or None """ assert isinstance(obj, (Iterator, Iterable)) self.__obj = zip(self, obj) self.__update_type_n_cache() return self def filter(self, func) -> 'CL': self.__assert_func(func, arg_num=1) self.__obj = filter(func, self) self.__update_type_n_cache() return self def sorted(self, key=None, reverse=None) -> 'CL': """ doing sorted() operation, and it will modify object's value and return self as a pipeline """ if key: self.__assert_func(key, arg_num=1) # sorted() with reverse flag if reverse is not None and not isinstance(self.__obj, dict): if not isinstance(reverse, (bool, int)): raise TypeError( f'Argument "reverse" should be in type of bool/int, but got {type(reverse)}' ) self.__obj = sorted(self, key=key, reverse=reverse) # sorted without reverse flag elif not reverse and not isinstance(self.__obj, dict): self.__obj = sorted(self, key=key) # a dict elif isinstance(self.__obj, dict): if reverse is not None: res = sorted(self, key=key, reverse=reverse) else: res = sorted(self, key=key) tmp = OrderedTable() for key in res: tmp[key] = self.__obj.get(key) self.__obj = tmp self.__update_type_n_cache() return self def rsorted(self, key=None) -> 'CL': return self.sorted(key, reverse=True) def reversed(self) -> 'CL': """ doing reversed() operation, and it will modify object's value and return itself as a pipeline """ # an Iterable if self.type == 2 and not isinstance(self.__obj, dict): # FIXME: why I cannot use reversed(self) in here? self.__obj = reversed(self.__obj) # an Iterator, not reversible, convert to list for reversed() elif self.type == 1 and not isinstance(self.__obj, dict): self.__obj = reversed(list(self)) # a dict elif isinstance(self.__obj, dict): # FIXME: why I cannot use reversed(self) in here? res = reversed(self.__obj) tmp = OrderedTable() for key in res: tmp[key] = self.__obj.get(key) self.__obj = tmp self.__update_type_n_cache() return self def __flatten(self, obj): for i in obj: if isinstance(i, Iterable) and not isinstance(i, (str, bytes)): yield from self.__flatten(i) else: yield i def flatten(self) -> 'CL': """ make object "flat" and return itself as a pipeline CL([1,2,[3,4,[5,6],7,[8,9]]]).flatten() => CL([1,2,3,4,5,6,7,8,9]) """ self.__obj = iter([_ for _ in self.__flatten(self)]) self.__update_type_n_cache() return self def key_only(self) -> 'CL': """ only work when object's value is a dict and return itself as a pipeline """ if isinstance(self.__obj, dict): self.__obj = [_ for _ in self] self.__update_type_n_cache() return self def value_only(self) -> 'CL': """ only work when object's value is a dict and return itself as a pipeline """ if isinstance(self.__obj, dict): self.__obj = [self.__obj.get(_) for _ in self] self.__update_type_n_cache() return self def append(self, item) -> 'CL': """ append an item to the end of Iterable/Iterator/Dict """ # an Iterable or a dict if self.type == 2: self.__obj.append(item) # an Iterator elif self.type == 1: tmp = list(self.__obj) tmp.append(item) self.__obj = iter(tmp) return self def extend(self, items) -> 'CL': """ extend a list of items to the end of Iterable/Iterator/Dict """ if not isinstance(items, (list, tuple, dict)): try: items = list(items) except: return self # an Iterable or a dict if self.type == 2: self.__obj.extend(items) # an Iterator elif self.type == 1: tmp = list(self.__obj) tmp.extend(items) self.__obj = iter(tmp) return self def insert(self) -> 'CL': """ insert an item to designated position of Iterable/Iterator/Dict """ return self def remove(self) -> 'CL': """ remove an item from designated position of Iterable/Iterator/Dict """ return self def pop(self) -> 'CL': """ pop an item from designated position of Iterable/Iterator/Dict """ return self def update(self) -> 'CL': """ update an item to designated position of Iterable/Iterator/Dict """ return self def reset(self, obj=None) -> 'CL': """ reset object's value if error occurs e.g.: >>> t = CL([1,2,3]) >>> t.map(lambda x: x[0]) >>> print(t) it will continuously raise TypeError whenever you call the object, as closure of map() only invokes when object is being called, the wrong lambda function will be stored in memory until the map iterator has been consumed in this case use reset() to reset object's value """ self.__obj = self.__assert_obj(obj) self.__update_type_n_cache() return self ###################### basic operations: ###################### # any() -> res # all() -> res # reduce() -> res # foldl() -> res # foldr() -> res def any(self, func=None) -> bool: if not func: res = any(self) else: self.__assert_func(func, arg_num=1) res = any(map(func, self)) return res def all(self, func=None) -> bool: if not func: res = all(self) else: self.__assert_func(func, arg_num=1) res = all(map(func, self)) return res def reduce(self, func, initial=None): """ reduce / foldl method """ self.__assert_func(func, arg_num=2) return reduce(func, self, initial) def fold_left(self, func, initial=None): return self.reduce(func, initial) def foldl(self, func, initial=None): return self.reduce(func, initial) def fold_right(self, func, initial=None): """ r_reduce / foldr method """ self.__assert_func(func, arg_num=2) return reduce(func, self.reversed(), initial) def foldr(self, func, initial=None): return self.fold_right(func, initial) ###################### math operations: ###################### # sum() -> res # average() -> res # max() -> res # min() -> res def sum(self): try: return self.reduce(func=lambda x, y: x + y) except: return None def average(self): sum = self.sum() if isinstance(sum, (int, float, complex)): return sum / len(self) else: return None def max(self, func=None, min: bool = False): """ can accept a function as argument for comparing a "max" value e.g.: max(func=lambda x: len(x)) for find the longest string in an Iterator/Iterable if "min" is set to True, then it will return a minimum value """ res = None cmp = None if func is not None: self.__assert_func(func, arg_num=1) else: func = lambda x: x for item in self: try: if res is None and cmp is None: res = item cmp = func(item) else: new_cmp = func(item) if min: if new_cmp < cmp: res = item cmp = new_cmp else: if new_cmp > cmp: res = item cmp = new_cmp except: return None return res def min(self, func=None): """ can accept a function as argument for comparing a "min" value e.g.: min(func=lambda x: len(x)) for find the shortest string in an Iterator/Iterable """ return self.max(func=func, min=True) ###################### advance operations: ###################### # sort_by() # group_by() # count_by() # distinct_by() # flatten() # first() # first_not() def sort_by(self): pass def group_by(self, key, attr, func): if key is None and func is None and attr is None: raise ValueError( 'CL.group_by() should accept at least one argument') res = {} if key: pass elif attr: pass else: pass return res def count_by(self): pass def distinct_by(self): pass if __name__ == '__main__': t = CL([1,2,3,4,5]) t.append('fdsafsdfdsf') print(t)
29.506849
114
0.516806
4a2312d5aad749a7ae10fc8daa93546207067ebd
453
py
Python
eventkit_cloud/jobs/migrations/0014_dataprovidertype_use_bbox.py
zta6/eventkit-cloud
a9e1aaa2bbfd3d11d3cf3df91e413e6220d6e876
[ "BSD-3-Clause" ]
9
2019-02-27T19:42:02.000Z
2021-05-09T14:16:28.000Z
eventkit_cloud/jobs/migrations/0014_dataprovidertype_use_bbox.py
zta6/eventkit-cloud
a9e1aaa2bbfd3d11d3cf3df91e413e6220d6e876
[ "BSD-3-Clause" ]
9
2019-05-14T01:23:30.000Z
2021-05-26T07:53:09.000Z
eventkit_cloud/jobs/migrations/0014_dataprovidertype_use_bbox.py
zta6/eventkit-cloud
a9e1aaa2bbfd3d11d3cf3df91e413e6220d6e876
[ "BSD-3-Clause" ]
3
2019-04-24T07:09:54.000Z
2021-04-14T02:42:53.000Z
# Generated by Django 3.1.2 on 2021-05-04 14:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('jobs', '0013_add_ogc_process_provider'), ] operations = [ migrations.AddField( model_name='dataprovidertype', name='use_bbox', field=models.BooleanField(default=False, verbose_name='Use bounding box to calculate area'), ), ]
23.842105
104
0.635762
4a231386e563f3729a208f7d303d54e6e383de34
6,547
py
Python
pynet/models/CoRA.py
Duplums/pynet
5f91dc2e80c2eb4e44d57403dd65aa80e8a5875b
[ "CECILL-B" ]
null
null
null
pynet/models/CoRA.py
Duplums/pynet
5f91dc2e80c2eb4e44d57403dd65aa80e8a5875b
[ "CECILL-B" ]
null
null
null
pynet/models/CoRA.py
Duplums/pynet
5f91dc2e80c2eb4e44d57403dd65aa80e8a5875b
[ "CECILL-B" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F def passthrough(x, **kwargs): return x def ELUCons(elu, nchan): if elu: return nn.LeakyReLU(inplace=True) else: return nn.PReLU(nchan) # normalization between sub-volumes is necessary # for good performance class ContBatchNorm3d(nn.modules.batchnorm._BatchNorm): def _check_input_dim(self, input): if input.dim() != 5: raise ValueError('expected 5D input (got {}D input)' .format(input.dim())) # super(ContBatchNorm3d, self)._check_input_dim(input) def forward(self, input): self._check_input_dim(input) return F.batch_norm( input, self.running_mean, self.running_var, self.weight, self.bias, True, self.momentum, self.eps) class LUConv(nn.Module): def __init__(self, nchan, elu): super(LUConv, self).__init__() self.relu1 = ELUCons(elu, nchan) self.conv1 = nn.Conv3d(nchan, nchan, kernel_size=5, padding=2, bias=False) self.bn1 = ContBatchNorm3d(nchan) def forward(self, x): out = self.relu1(self.bn1(self.conv1(x))) return out def _make_nConv(nchan, depth, elu): layers = [] for _ in range(depth): layers.append(LUConv(nchan, elu)) return nn.Sequential(*layers) class InputTransition(nn.Module): def __init__(self, inChans, elu): super(InputTransition, self).__init__() self.conv1 = nn.Conv3d(inChans, 16, kernel_size=5, padding=2, bias=False) self.bn1 = ContBatchNorm3d(16) self.relu1 = ELUCons(elu, 16) def forward(self, x): # do we want a PRELU here as well? out = self.bn1(self.conv1(x)) # split input in to 16 channels x16 = torch.cat((x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x), 1) out = self.relu1(torch.add(out, x16)) return out class DownTransition(nn.Module): def __init__(self, inChans, nConvs, elu, dropout=False): super(DownTransition, self).__init__() outChans = 2*inChans self.down_conv = nn.Conv3d(inChans, outChans, kernel_size=2, stride=2, bias=False) self.bn1 = ContBatchNorm3d(outChans) self.do1 = passthrough self.relu1 = ELUCons(elu, outChans) self.relu2 = ELUCons(elu, outChans) if dropout: self.do1 = nn.Dropout3d() self.ops = _make_nConv(outChans, nConvs, elu) def forward(self, x): down = self.relu1(self.bn1(self.down_conv(x))) out = self.do1(down) out = self.ops(out) out = self.relu2(torch.add(out, down)) return out class UpTransition(nn.Module): def __init__(self, inChans, outChans, nConvs, elu, dropout=False): super(UpTransition, self).__init__() self.up_conv = nn.ConvTranspose3d(inChans, outChans, kernel_size=2, stride=2, bias=False) self.relu1 = ELUCons(elu, outChans) self.bn1 = ContBatchNorm3d(outChans) self.do1 = passthrough self.do2 = nn.Dropout3d() self.relu2 = ELUCons(elu, outChans) if dropout: self.do1 = nn.Dropout3d() self.ops = _make_nConv(outChans, nConvs, elu) def forward(self, x, skipx): out = self.do1(x) #skipxdo = self.do2(skipx) out = self.relu1(self.bn1(self.up_conv(out))) # print(out.shape, skipxdo.shape) xcat = out out = self.ops(xcat) out = self.relu2(torch.add(out, xcat)) return out class OutputTransition(nn.Module): def __init__(self, inChans, outChans, elu): super(OutputTransition, self).__init__() self.conv1 = nn.Conv3d(inChans, 2, kernel_size=5, padding=2, bias=False) self.bn1 = ContBatchNorm3d(2) self.conv2 = nn.Conv3d(2, outChans, kernel_size=1, bias=True) self.relu1 = ELUCons(elu, outChans) def forward(self, x): # convolve 32 down to 2 channels out = self.relu1(self.bn1(self.conv1(x))) out = self.conv2(out) return out class CoRA(nn.Module): # the number of convolutions in each layer corresponds # to what is in the actual prototxt, not the intent def __init__(self, inChannels, outChannels, elu=True, with_labels=False): super(CoRA, self).__init__() self.with_labels = with_labels # Encoder 1 self.in_tr = InputTransition(inChannels, elu) self.down_tr32 = DownTransition(16, 1, elu) self.down_tr64 = DownTransition(32, 2, elu) self.down_tr128 = DownTransition(64, 3, elu, dropout=True) self.down_tr256 = DownTransition(128, 2, elu, dropout=True) # Decoder 1 self.up_tr256 = UpTransition(256, 128, 2, elu, dropout=True) self.up_tr128 = UpTransition(128, 64, 2, elu, dropout=True) self.up_tr64 = UpTransition(64, 32, 1, elu) self.up_tr32 = UpTransition(32, 16, 1, elu) self.out_tr = OutputTransition(16, outChannels, elu) if self.with_labels: # Decoder 2 self.up_tr256_2 = UpTransition(256, 128, 2, elu, dropout=True) self.up_tr128_2 = UpTransition(128, 64, 2, elu, dropout=True) self.up_tr64_2 = UpTransition(64, 32, 1, elu) self.up_tr32_2 = UpTransition(32, 16, 1, elu) self.out_tr_2 = OutputTransition(16, outChannels, elu) self.rec = nn.MSELoss() def forward(self, x, label=None): self.input = x # dim == (inChannels, H, W, D) self.out16 = self.in_tr(x) # dim == (16, H, W, D) self.out32 = self.down_tr32(self.out16) # (32, H//2, W//2, D//2) self.out64 = self.down_tr64(self.out32) # (64, H//4, W//4, D//4) self.out128 = self.down_tr128(self.out64) # (128, H//8, W//8, D//8) out256 = self.down_tr256(self.out128) # (256, H//16, W//16, D//16) self.up128 = self.up_tr256(out256, self.out128) # (128, H//8, W//8, D//8) self.up64 = self.up_tr128(self.up128, self.out64) # (64, H//4, W//4, D//4) self.up32 = self.up_tr64(self.up64, self.out32) # (32, H//2, W//2, D//2) self.up16 = self.up_tr32(self.up32, self.out16) # (16, H, W, D) self.out = self.out_tr(self.up16) # (outChannnels, H, W, D) return self.out def rec_loss(self, *args, **kwargs): return self.rec(self.up128, self.out128) + self.rec(self.up64, self.out64) + self.rec(self.up32, self.out32) + \ self.rec(self.up16, self.out16) + self.rec(self.input, self.out)
35.389189
120
0.608676
4a23147a4630c083a1cf2db91864eb8ad3a03d17
2,014
py
Python
pcat2py/class/22326cdc-5cc5-11e4-af55-00155d01fe08.py
phnomcobra/PCAT2PY
937c3b365cdc5ac69b78f59070be0a21bdb53db0
[ "MIT" ]
null
null
null
pcat2py/class/22326cdc-5cc5-11e4-af55-00155d01fe08.py
phnomcobra/PCAT2PY
937c3b365cdc5ac69b78f59070be0a21bdb53db0
[ "MIT" ]
null
null
null
pcat2py/class/22326cdc-5cc5-11e4-af55-00155d01fe08.py
phnomcobra/PCAT2PY
937c3b365cdc5ac69b78f59070be0a21bdb53db0
[ "MIT" ]
null
null
null
#!/usr/bin/python ################################################################################ # 22326cdc-5cc5-11e4-af55-00155d01fe08 # # Justin Dierking # [email protected] # [email protected] # # 10/24/2014 Original Construction ################################################################################ class Finding: def __init__(self): self.output = [] self.is_compliant = False self.uuid = "22326cdc-5cc5-11e4-af55-00155d01fe08" def check(self, cli): # Initialize Compliance self.is_compliant = False # Execute command and parse capture standard output stdout = cli.system("grep pam_cracklib /etc/pam.d/system-auth") # Split output lines self.output = stdout.split('\n') # Process standard output for line in self.output: if line.startswith("password") and "maxrepeat=3" in line: self.is_compliant = True return self.is_compliant def fix(self, cli): # Desired PAM setting value_pair = "maxrepeat=3" sub_string = value_pair.split("=") name = sub_string[0] # Execute command and parse capture standard output stdout = cli.system("grep pam_cracklib /etc/pam.d/system-auth") # Split output lines output = stdout.split('\n') # Process standard output for line in output: password_pam_cracklib_line = "" if line.startswith("password"): sub_string = (line.strip()).split(" ") for string in sub_string: if name not in string: password_pam_cracklib_line += string + " " password_pam_cracklib_line += value_pair cli.system("sed -i 's/.*pam_cracklib.*/" + password_pam_cracklib_line + "/' /etc/pam.d/system-auth")
33.016393
120
0.518868
4a2314b0c4c4cc7ba108544d4685aaec852e2d94
10,476
py
Python
sensor/optimization_stock_weight_v0.py
jokbull/benew_model
12dfcfcf48a8fd14d62faee5e79e9ac83b0f02d7
[ "MIT" ]
1
2019-05-27T02:13:47.000Z
2019-05-27T02:13:47.000Z
sensor/optimization_stock_weight_v0.py
jokbull/benew_model
12dfcfcf48a8fd14d62faee5e79e9ac83b0f02d7
[ "MIT" ]
null
null
null
sensor/optimization_stock_weight_v0.py
jokbull/benew_model
12dfcfcf48a8fd14d62faee5e79e9ac83b0f02d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @author: scrat import numpy as np from cvxopt import solvers, matrix from collider.data.sensor import Sensor class OptimizationStockWeight(Sensor): @property def output_variables(self): return ["targetWeight"] def do(self, date, mp, **kwargs): # region 读入参数, 对应输入的数据 # 优化器的参数 lambdax = kwargs.get("lambdax", 1) # lambda = 0.5? tc = kwargs.get("tc", 0.003) # 手续费假定 n = kwargs.get("top", 200) # 前n个股票进入优化器 single_max = kwargs.get("single_max", 0.02) # 个股最大权重 # benchmark weight weight_index = kwargs.get("benchmark_weight","weight_index_500") # 因子矩阵 column = mp.alphaName exog = mp.alphaExposure # 行业风格矩阵 risk_column = mp.riskName risk_factor = mp.riskExposure # 协方差矩阵 cov = mp.factorCovariance # 特质风险 if hasattr(mp, "sp_risk"): sp = mp.sp_risk else: sp = np.zeros_like(mp.stockReturn) # 停牌股票, non_suspend全是True/False, 没有nan is_suspend = kwargs.get("is_susp", np.full(mp.stockReturn.size, 0)) non_suspend = is_suspend == 0 # 计算benchmark因子暴露 benchmark_exposure = mp.data_manager.get_bar(date=mp.date, columns=[weight_index])[weight_index] benchmark_exposure = np.nan_to_num(benchmark_exposure) / np.nansum(benchmark_exposure) benchmark_expo = np.dot(benchmark_exposure, np.nan_to_num(risk_factor)) # endregion success = False while (not success) and n < 1500: stock_return = mp.stockReturn.copy() stock_return[np.any(np.isnan(exog), axis=1)] = np.nan # region 计算进行优化的股票集合 # 1. mp.pool中计算top_flag # 2. holding | top_flag # 3. 因子不缺 # step 1. 在mp.pool中计算top_flag stock_return[~mp.pool] = np.nan # 这里在while-loop中虽然是重复计算,但是为了代码的可读性,还是放在loop里面 non_nan_cnt = np.sum(~np.isnan(stock_return)) if non_nan_cnt < n: self.logger.warning("non_nan_cnt(%s) < n(%s)" % (non_nan_cnt, n)) n = non_nan_cnt return_ordered_index = np.argsort(-stock_return)[:non_nan_cnt] top_flag = np.full(stock_return.size, False, dtype=bool) top_flag[return_ordered_index[:n]] = True # # candidates没有nan # candidates = (mp.weight > 0) | top_flag # # 最近一期的因子或者风格缺失的可能性如下: top_flag中因为可以有stock_return, 所以风格因子和alpha因子 # # 都不会缺失; 持仓的股票是有可能有缺失的,比如停牌很久. # candidates &= ~np.any(np.isnan(exog), axis=1) # candidates &= ~np.any(np.isnan(risk_factor), axis=1) # candidates &= ~np.isnan(sp) candidates = top_flag.copy() # 在top_flag中的肯定是有predicted_stock_return的,所以数据肯定不缺失 # 在candidates中去掉其他nan的情况 # case 1. special_risk为nan # candidates &= ~np.isnan(sp) # 在candidates中还需要加入以下的情况 # case 1. 持仓 且 有stock_return (即数据不缺失) candidates |= (mp.weight > 0) & (~np.isnan(stock_return)) # 持仓 且 停牌 且 数据缺失 holding_suspend = (mp.weight > 0) & (is_suspend == 1) & (np.isnan(stock_return)) holding_suspend_sum = np.sum(mp.weight[holding_suspend]) candidates_cnt = np.nansum(candidates) # endregion # 以下的部分都是基于candidates_cnt的向量进行. # risk_matrix = risk_factor[candidates] x = exog[candidates] w0 = mp.weight[candidates] if any(holding_suspend): for ix, _ in enumerate(holding_suspend): if _: if any(np.isnan(exog[ix])): self.logger.warn("Holding %s have nan factors %s" % (mp.data_manager.codes[ix], column[np.isnan(exog[ix]).ravel()])) if any(np.isnan(risk_factor[ix])): self.logger.warn("Holding %s have nan factors %s" % (mp.data_manager.codes[ix], risk_column[np.isnan(risk_factor[ix]).ravel()])) r = stock_return[candidates] sp_diag = np.diagflat(sp[candidates]) # region 构造等式约束 A_list = [] b_list = [] # 等式约束: # 1. sum权重的 = 1 A_list.append(np.ones(shape=(1, candidates_cnt), dtype=np.double)) b_list.append(np.array([1 - holding_suspend_sum])) # b_list.append(np.array([1])) # 2. 停牌股票的权重锁定(有持仓不能动,没持仓不能买) weight_locked = (candidates & ~non_suspend)[candidates] if any(weight_locked): weight_locked_cnt = np.nansum(weight_locked) # 需要锁定的股票个数 a_mat = np.zeros(shape=(weight_locked_cnt, candidates_cnt), dtype=np.double) for i, j in zip(range(weight_locked_cnt), np.arange(candidates_cnt)[weight_locked]): a_mat[i, j] = 1 A_list.append(a_mat) b_list.append(w0[weight_locked]) # 停牌股票权重 # endregion # region 构造不等式条件 G_list = [] h_list = [] # 1. 对于不停牌的股票,个股权重不能大于single_max wmax = np.full(candidates_cnt, single_max) # 个股支持最大权重不超过wmax neq_left_1 = np.eye(candidates_cnt) neq_right_1 = wmax G_list.append(neq_left_1[~weight_locked]) h_list.append(neq_right_1[~weight_locked]) # 2. 在long-only的前提下,个股权重非负 neq_left_2 = -np.eye(candidates_cnt) neq_right_2 = np.zeros(candidates_cnt) G_list.append(neq_left_2[~weight_locked]) h_list.append(neq_right_2[~weight_locked]) # 3. 行业风格暴露约束,相对benchmark上界约束 risk_condition = kwargs.get("risk_condition", {"up": {}, "down": {}}) # 构造 for k, v in risk_condition['up'].items(): col_index = risk_column == k w = risk_factor[candidates][:, col_index] G_list.append(w.T) h_list.append(np.array([benchmark_expo[col_index] + v])) # 4. 行业风格暴露约束,相对指数下届约束 # 风格约束 for k, v in risk_condition['down'].items(): col_index = risk_column == k w = risk_factor[candidates][:, col_index] G_list.append(-w.T) h_list.append(np.array([- benchmark_expo[col_index] + v])) # endregion # region 考虑交易费用的两步优化 # z = np.maximum(wmax - w0, w0) # # commission_part1_left = np.eye(candidates_cnt) # commission_part1_right = z + w0 # # commission_part2_left = -np.eye(candidates_cnt) # commission_part2_right = z - w0 # # G_list.append(commission_part1_left) # h_list.append(commission_part1_right) # # G_list.append(commission_part2_left) # h_list.append(commission_part2_right) q = matrix(-stock_return[candidates]) P = matrix(2 * lambdax * (np.dot(np.dot(x, cov), x.T) + sp_diag)) A = matrix([matrix(a) for a in A_list], tc="d") b = matrix([matrix(b) for b in b_list], tc="d") G = matrix([matrix(g) for g in G_list], tc="d") h = matrix([matrix(h) for h in h_list], tc="d") try: res = solvers.qp(P=P, q=q, G=G, h=h, A=A, b=b, **kwargs) # kktsolver="ldl", # options={"show_progress": False, "maxiters": maxiters}) if res["status"] != "optimal": self.logger.warn("Stage 1 optimization failed at top %s, %s" % (n, date)) if n == non_nan_cnt: raise Exception("non_nan_cnt(%s) is few at %s." % (n, date)) n += 300 else: self.logger.trace("Stage 1 optimization succeed at top %s" % n) weights = np.ravel(res["x"]) # 第二次优化约束条件, # 等式约束条件不变, # 收益算上成本 cost = np.where((weights - w0) > 0, tc, -tc) q = matrix(-r + cost, tc="d") # 对于第一次求解判断为买入的票限制其权重为【w1,wmax】 # 对于第一次求解判断为卖出的票限制其权重为【0,w1】 ''' neq_left_1 = np.eye(candidates_cnt) neq_right_1 = wmax G_list.append(neq_left_1[~weight_locked]) h_list.append(neq_right_1[~weight_locked]) ''' # 第一次求解为卖出情况 opt_neq_left_1 = np.eye(candidates_cnt) opt_neq_right_1 = w0 sell_codes = cost < 0 G_list.append(opt_neq_left_1[sell_codes]) h_list.append(opt_neq_right_1[sell_codes]) # 第一次求解为买入情况 opt_neq_left_2 = -np.eye(candidates_cnt) opt_neq_right_2 = -w0 G_list.append(opt_neq_left_2[~sell_codes]) h_list.append(opt_neq_right_2[~sell_codes]) G = matrix([matrix(g) for g in G_list], tc="d") h = matrix([matrix(h) for h in h_list], tc="d") res = solvers.qp(P=P, q=q, G=G, h=h, A=A, b=b, **kwargs) if res["status"] == "optimal": self.logger.trace("Stage 2 optimization succeed at top %s" % n) success = True else: if n == non_nan_cnt: raise Exception("non_nan_cnt(%s) is few at %s." % (n, date)) self.logger.warn("Stage 2 optimization failed at top %s, %s" % (n, date)) n += 300 except Exception as e: self.logger.exception(e) break # endregion if success: # fill to the fixed length target_weight = np.full(stock_return.size, 0, dtype=np.double) target_weight[holding_suspend] = mp.weight[holding_suspend] target_weight[candidates] = np.round(res["x"], 6).ravel() else: # 优化失败,持仓不变 self.logger.warn("No optimize solution, keep holding. %s" % date) target_weight = mp.weight return target_weight,
37.414286
156
0.524723
4a2317e31d84ee633eb1f64926f7f757502123df
592
py
Python
decorate_args/main.py
FlynnOwen/Python-utils
7d720c6654aba69115b5bc5cdfd8052d93a438b6
[ "MIT" ]
2
2022-03-27T03:51:02.000Z
2022-03-27T09:03:22.000Z
decorate_args/main.py
FlynnOwen/Python-utils
7d720c6654aba69115b5bc5cdfd8052d93a438b6
[ "MIT" ]
null
null
null
decorate_args/main.py
FlynnOwen/Python-utils
7d720c6654aba69115b5bc5cdfd8052d93a438b6
[ "MIT" ]
null
null
null
def prefix_decorator(prefix): def decorator_function(original_function): def wrapper_function(*args, **kwargs): print(prefix, 'Executed before', original_function.__name__) result = original_function(*args, **kwargs) print(prefix, 'Executed after', original_function.__name__, '\n') return result return wrapper_function return decorator_function @prefix_decorator('Prefix!') def display_info(name, age): print(f'display_info ran with arguments ({name}, {age})') display_info('John', 25) display_info('Rod', 35)
31.157895
77
0.680743
4a2319e0236c6cd5771ac6ca88cf8b5573e07ab9
362
py
Python
ex_08_05/ex_08_05.py
ColinTing/Python-Specialization
7a1b096362526d3574e9d787c9a63d3d13686608
[ "MIT" ]
2
2019-05-04T12:25:34.000Z
2019-05-04T15:18:03.000Z
ex_08_05/ex_08_05.py
ColinTing/Python-for-Everybody-Specialization
7a1b096362526d3574e9d787c9a63d3d13686608
[ "MIT" ]
null
null
null
ex_08_05/ex_08_05.py
ColinTing/Python-for-Everybody-Specialization
7a1b096362526d3574e9d787c9a63d3d13686608
[ "MIT" ]
null
null
null
fname = input("Enter file name: ") if len(fname) < 1 : fname = "mbox-short.txt" fh = open(fname) count = 0 #lst = list() for line in fh: line = line.rstrip() lst = line.split() if len(lst)>1 and lst[0] == "From": count = count + 1 print(lst[1]) print("There were", count, "lines in the file with From as the first word")
24.133333
75
0.571823
4a231a29a5b6e41b53cc9186da387e20c4b3fd58
647
py
Python
anno/views.py
voelkerb/annoticity
8c99fcd5c42b8b170bf54eaf7474db661eb9b45d
[ "CC0-1.0" ]
5
2021-03-08T16:54:19.000Z
2021-10-02T08:14:38.000Z
anno/views.py
voelkerb/annoticity
8c99fcd5c42b8b170bf54eaf7474db661eb9b45d
[ "CC0-1.0" ]
null
null
null
anno/views.py
voelkerb/annoticity
8c99fcd5c42b8b170bf54eaf7474db661eb9b45d
[ "CC0-1.0" ]
null
null
null
from django.shortcuts import render import json from . import redd from . import fired from . import blond from . import eco from . import ukdale def index(request): """ view function for sales app """ reddInfo = redd.info() firedInfo = fired.info() blondInfo = blond.info() ecoInfo = eco.info() ukdaleInfo = ukdale.info() context = {"FIREDInfo": json.dumps(firedInfo), "navbar":"FIRED", "UKDALEInfo": json.dumps(ukdaleInfo), "ECOInfo": json.dumps(ecoInfo), "BLONDInfo": json.dumps(blondInfo), "REDDInfo": json.dumps(reddInfo),'use_seconds':False} return render(request, 'eventLabeling.html', context=context)
29.409091
228
0.700155
4a231a7ea031355ecb03dda9d780f2cbde05bd97
4,479
py
Python
pocs/tests/test_config.py
zacharyt20/POCS
8f785eaf27178be7d72106cb82e5400a8b852ba8
[ "MIT" ]
1
2019-07-19T10:37:08.000Z
2019-07-19T10:37:08.000Z
pocs/tests/test_config.py
zacharyt20/POCS
8f785eaf27178be7d72106cb82e5400a8b852ba8
[ "MIT" ]
null
null
null
pocs/tests/test_config.py
zacharyt20/POCS
8f785eaf27178be7d72106cb82e5400a8b852ba8
[ "MIT" ]
null
null
null
import os import pytest import uuid import yaml from astropy import units as u from pocs.utils.config import load_config from pocs.utils.config import save_config def test_load_simulator(config): assert 'camera' in config['simulator'] assert 'mount' in config['simulator'] assert 'weather' in config['simulator'] assert 'night' in config['simulator'] def test_no_overwrite(config): with pytest.warns(UserWarning): save_config('pocs', config, overwrite=False) def test_overwrite(config): config01 = { 'foo': 'bar' } config02 = { 'bar': 'foo' } assert config01 != config02 save_config('foo', config01) config03 = load_config('foo') assert config01 == config03 save_config('foo', config02) config04 = load_config('foo') assert config02 == config04 assert config01 != config04 conf_fn = '{}/conf_files/foo.yaml'.format(os.getenv('POCS')) os.remove(conf_fn) assert os.path.exists(conf_fn) is False def test_full_path(): temp_config_path = '/tmp/{}.yaml'.format(uuid.uuid4()) temp_config = {'foo': 42} save_config(temp_config_path, temp_config) c = load_config(temp_config_path) assert c == temp_config os.remove(temp_config_path) def test_local_config(): _local_config_file = '{}/conf_files/pocs_local.yaml'.format(os.getenv('POCS')) if not os.path.exists(_local_config_file): conf = load_config(ignore_local=True) assert conf['name'] == 'Generic PANOPTES Unit' local_yaml = { 'name': 'ConfTestName' } with open(_local_config_file, 'w') as f: f.write(yaml.dump(local_yaml)) conf = load_config() assert conf['name'] != 'Generic PANOPTES Unit' os.remove(_local_config_file) else: conf = load_config() assert conf['name'] != 'Generic PANOPTES Unit' def test_multiple_config(): config01 = {'foo': 1} config02 = {'foo': 2, 'bar': 42} config03 = {'bam': 'boo'} assert config01 != config02 f01 = str(uuid.uuid4()) f02 = str(uuid.uuid4()) f03 = str(uuid.uuid4()) save_config(f01, config01) save_config(f02, config02) save_config(f03, config03) config04 = load_config(f01) config05 = load_config(f02) config06 = load_config(f03) assert config01 == config04 assert config02 == config05 assert config03 == config06 config07 = load_config([f01, f02], ignore_local=True) config08 = load_config([f02, f01], ignore_local=True) assert config07 != config01 assert config07 == config02 assert config08 != config01 assert config08 != config02 assert config08 != config05 assert 'foo' not in config06 assert 'bar' not in config06 assert 'foo' in config05 assert 'foo' in config07 assert 'foo' in config08 assert 'bar' in config05 assert 'bar' in config07 assert 'bar' in config08 assert 'bam' in config06 assert config07['foo'] == 2 assert config08['foo'] == 1 os.remove('{}/conf_files/{}.yaml'.format(os.getenv('POCS'), f01)) os.remove('{}/conf_files/{}.yaml'.format(os.getenv('POCS'), f02)) os.remove('{}/conf_files/{}.yaml'.format(os.getenv('POCS'), f03)) def test_no_config(): # Move existing config to temp _config_file = '{}/conf_files/pocs.yaml'.format(os.getenv('POCS')) _config_file_temp = '{}/conf_files/pocs_temp.yaml'.format(os.getenv('POCS')) os.rename(_config_file, _config_file_temp) config = load_config(ignore_local=True) assert len(config.keys()) == 0 os.rename(_config_file_temp, _config_file) def test_parse(config): lat = config['location']['latitude'] assert isinstance(lat, u.Quantity) def test_no_parse(): config = load_config(parse=False, ignore_local=True) lat = config['location']['latitude'] assert isinstance(lat, u.Quantity) is False assert isinstance(lat, float) def test_location_latitude(config): lat = config['location']['latitude'] assert lat >= -90 * u.degree and lat <= 90 * u.degree def test_location_longitude(config): lat = config['location']['longitude'] assert lat >= -360 * u.degree and lat <= 360 * u.degree def test_location_positive_elevation(config): elev = config['location']['elevation'] assert elev >= 0.0 * u.meter def test_directories(config): assert config['directories']['data'] == os.path.join(os.getenv('PANDIR'), 'data')
25.448864
85
0.658406
4a231b1a5fd4d69717fce7ec7c00535eccdeb34b
4,792
py
Python
inter_iit.py
ISROMP/MP_ISRO_T13
6cde7c4866a47a2819197f82e83d77735661e5d0
[ "MIT" ]
null
null
null
inter_iit.py
ISROMP/MP_ISRO_T13
6cde7c4866a47a2819197f82e83d77735661e5d0
[ "MIT" ]
null
null
null
inter_iit.py
ISROMP/MP_ISRO_T13
6cde7c4866a47a2819197f82e83d77735661e5d0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """inter_iit.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1mrxMKcojB1HFFw6kTOKMIdMZdx7ZmPiI """ import matplotlib.pyplot as plt import numpy as np from astropy.visualization import astropy_mpl_style plt.style.use(astropy_mpl_style) from google.colab import drive from astropy.utils.data import get_pkg_data_filename from astropy.io import fits from astropy.visualization import astropy_mpl_style plt.style.use(astropy_mpl_style) # image_file = get_pkg_data_filename('/content/ch2_xsm_20211111_v1_level1.fits') from astropy.utils.data import download_file image_file = fits.open('/content/ch2_xsm_20210917_v1_level2.lc') image_file2 = fits.open('/content/ch2_xsm_20210923_v1_level2.lc') image_file3 = fits.open('/content/ch2_xsm_20211108_v1_level2.lc') img_data=image_file[1].data img_data2=image_file2[1].data img_data3=image_file3[1].data y=img_data['RATE'] x=img_data['TIME'] y1=img_data2['RATE'] x1=img_data2['TIME'] y2=img_data3['RATE'] x2=img_data3['TIME'] def biner(signal): z=[] for i in signal: if i> 800 and i<= 5011: z.append(1000) #type B elif i>5011 and i<= 25000: z.append(5000) #type C elif i>25000 and i<= 250000: z.append(25000) #type M elif i>2500000: z.append(250000) #type X elif i<=800: z.append(0) #inconclusive, could be A return z z=biner(y) z1=biner(y1) z2=biner(y2) plt_1 = plt.figure(figsize=(200,7)) plt.plot(x, z) plt.plot(x, y) plt.show() plt_1 = plt.figure(figsize=(200,7)) plt.plot(x1, z1) plt.show() plt_1 = plt.figure(figsize=(200,7)) plt.plot(x2, z2) plt.show() def stable(signal): timer=0 ts=0 for i in range(len(signal)): if signal[i]!=0 and timer==0: ts=i timer=1 if signal[i]==0 and timer==1: timer=0 if i-ts<120: for j in range(ts, i+1): signal[j]=0 return signal f= stable(z) f1=stable(z1) f2=stable(z2) plt_1 = plt.figure(figsize=(200,7)) plt.plot(x, f) plt.plot(x,y) plt.show() plt_1 = plt.figure(figsize=(200,7)) plt.plot(x1, f1) plt.plot(x1,y1) plt.show() plt_1 = plt.figure(figsize=(200,7)) plt.plot(x2, f2) plt.plot(x2,y2) plt.show() def extractor( signal, time): stable_signal= stable(biner(signal)) t_start=[] i_start=[] start_flux=[] end_flux=[] t_stop=[] i_stop=[] peak_count=[] t_peak=[] i_peak=[] i_rise=[] t_rise=[] i_decay=[] t_decay=[] cat=[] timer=0 for i in range(len(signal)): if stable_signal[i] >99 and timer==0: t_start.append(time[i]) i_start.append(i) timer=1 if stable_signal[i] <99 and timer==1: t_stop.append(time[i]) i_stop.append(i) timer=0 if t_start==[]: t_start.append(0) i_start.append(0) for i in range(len(t_start)): peak_count_val=0 peak_instance=0 for index in range(i_start[i], i_stop[i]): if peak_count_val< signal[index]: peak_count_val= signal[index] peak_instance= index peak_count.append( peak_count_val ) t_peak.append( time[peak_instance]) i_peak.append(peak_instance) bin_max= max(stable_signal[i_start[i]: i_stop[i]]) if bin_max==1000: cat.append('B') elif bin_max==5000: cat.append('C') elif bin_max==25000: cat.append('M') elif bin_max==250000: cat.append('X') # for i in range(len(t_start)): # up_thresh= signal[i_peak[i]]/20 # down_thresh= signal[i_peak[i]]/2 # start_flux.append(up_thresh) # end_flux.append(down_thresh) for i in range(len(t_start)): start_t, end_t, start_i, end_i=t_peak[i], t_peak[i], i_peak[i], i_peak[i] while( signal[start_i]> peak_count[i]/20 and start_i>i_start[i]): start_i-=1 while( signal[end_i]> peak_count[i]/2 and end_i<i_stop[i]): end_i+=1 i_rise.append(start_i) i_decay.append(end_i) t_rise.append( time[start_i] ) t_decay.append( time[end_i] ) data={ 't_start': t_start, 't_stop': t_stop, 'category': cat, 'peak count rate': peak_count, 'peak instance': t_peak, 'rise instance': t_rise, 'decay instance': t_decay, 'i_start': i_start, 'i_stop': i_stop, 'i_peak': i_peak, 'i_rise': i_peak, 'i_decay': i_decay, } return data data= extractor(y, x) t_start= data['t_start'] t_stop= data['t_stop'] t_peak= data['peak time'] t_rise= data['rise instance'] t_decay= data['decay instance'] cat= data['category'] len(t_stop) for i in range(1): print( t_rise[i]-t_peak[i], t_peak[i]-t_decay[i], t_start[i]-t_peak[i], t_peak[i]-t_stop[i], cat[i]) data['category'] data['peak time'] aq = y[0]-191.50723 if(aq<0.000001): print("true") yj=np.around(y, 3) aq = y[0]-191.507 if(aq<0.001): print("true") type(x)
20.925764
102
0.657972
4a231c476844b6bcdc5c0dff40754205f7b43483
2,305
py
Python
vega/trainer/modules/conf/loss.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
724
2020-06-22T12:05:30.000Z
2022-03-31T07:10:54.000Z
vega/trainer/modules/conf/loss.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
147
2020-06-30T13:34:46.000Z
2022-03-29T11:30:17.000Z
vega/trainer/modules/conf/loss.py
jie311/vega
1bba6100ead802697e691403b951e6652a99ccae
[ "MIT" ]
160
2020-06-29T18:27:58.000Z
2022-03-23T08:42:21.000Z
# -*- coding=utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Default loss configs.""" from vega.common import ConfigSerializable import vega class LossConfig(ConfigSerializable): """Default Loss Config.""" _class_type = "trainer.loss" _exclude_keys = ['type'] _update_all_attrs = True type = 'CrossEntropyLoss' @classmethod def from_dict(cls, data, skip_check=True): """Restore config from a dictionary or a file.""" cls = super(LossConfig, cls).from_dict(data, skip_check) if vega.is_ms_backend(): if "params" not in data: cls.params = {'sparse': True} elif "sparse" not in data.params: cls.params.update({'sparse': True}) return cls @classmethod def rules(cls): """Return rules for checking.""" rules = {"type": {"type": str}, "params": {"type": dict}} return rules class LossMappingDict(object): """Loss Mapping Dictionary.""" type_mapping_dict = dict( CrossEntropyLoss=dict(torch='CrossEntropyLoss', tf='CrossEntropyLoss', ms='SoftmaxCrossEntropyWithLogits'), MixAuxiliaryLoss=dict(torch='MixAuxiliaryLoss', tf='MixAuxiliaryLoss', ms='MixAuxiliaryLoss'), L1Loss=dict(torch='L1Loss', tf='absolute_difference', ms="L1Loss"), MSELoss=dict(torch='MSELoss', tf='mean_squared_error', ms=None), ) params_mapping_dict = dict( CrossEntropyLoss=dict( ignore_index=dict(torch='ignore_index', tf='ignore_index', ms=None), # is_grad=dict(torch=None, tf=None, ms='is_grad'), sparse=dict(torch=None, tf=None, ms='sparse'), ), MixAuxiliaryLoss=dict( loss_base=dict(torch='loss_base', tf='loss_base', ms='loss_base'), aux_weight=dict(torch='aux_weight', tf='aux_weight', ms='aux_weight'), ) )
36.015625
102
0.636009
4a231d83cd4de21b0fc11818433bb64ca3a12db4
489
py
Python
blender/arm/logicnode/scene/LN_set_scene_active.py
notwarp/armory
bd6078e3035eefcb3c725664698eeb369b4c2d88
[ "Zlib" ]
null
null
null
blender/arm/logicnode/scene/LN_set_scene_active.py
notwarp/armory
bd6078e3035eefcb3c725664698eeb369b4c2d88
[ "Zlib" ]
null
null
null
blender/arm/logicnode/scene/LN_set_scene_active.py
notwarp/armory
bd6078e3035eefcb3c725664698eeb369b4c2d88
[ "Zlib" ]
null
null
null
from arm.logicnode.arm_nodes import * class SetSceneNode(ArmLogicTreeNode): """Sets the active scene.""" bl_idname = 'LNSetSceneNode' bl_label = 'Set Scene Active' arm_version = 1 def init(self, context): super(SetSceneNode, self).init(context) self.add_input('ArmNodeSocketAction', 'In') self.add_input('NodeSocketShader', 'Scene') self.add_output('ArmNodeSocketAction', 'Out') self.add_output('ArmNodeSocketObject', 'Root')
30.5625
54
0.674847
4a231e0719f77b0cb5128a896a17d6ee62ffa1d0
149
py
Python
ding/worker/__init__.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
464
2021-07-08T07:26:33.000Z
2022-03-31T12:35:16.000Z
ding/worker/__init__.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
177
2021-07-09T08:22:55.000Z
2022-03-31T07:35:22.000Z
ding/worker/__init__.py
LuciusMos/DI-engine
b040b1c36afce038effec9eb483f625131573824
[ "Apache-2.0" ]
92
2021-07-08T12:16:37.000Z
2022-03-31T09:24:41.000Z
from .collector import * from .learner import * from .replay_buffer import * from .coordinator import * from .adapter import * from .buffer import *
21.285714
28
0.758389
4a231e2098419df2281fba0e307580332842ba6b
8,465
py
Python
applications/popart/bert/utils/packed_bert_utils.py
payoto/graphcore_examples
46d2b7687b829778369fc6328170a7b14761e5c6
[ "MIT" ]
260
2019-11-18T01:50:00.000Z
2022-03-28T23:08:53.000Z
applications/popart/bert/utils/packed_bert_utils.py
payoto/graphcore_examples
46d2b7687b829778369fc6328170a7b14761e5c6
[ "MIT" ]
27
2020-01-28T23:07:50.000Z
2022-02-14T15:37:06.000Z
applications/popart/bert/utils/packed_bert_utils.py
payoto/graphcore_examples
46d2b7687b829778369fc6328170a7b14761e5c6
[ "MIT" ]
56
2019-11-18T02:13:12.000Z
2022-02-28T14:36:09.000Z
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import popart import numpy as np def add_inputs(model): # make inputs directly accessible to the model model.inputs = {} model.labels = {} config = model.config # Sequence inputs # Input mask contains a sequence index for each token in the pack sequence_shape = [config.micro_batch_size * config.sequence_length] sequence_info = popart.TensorInfo("UINT32", sequence_shape) model.inputs["input_ids"] = model.builder.addInputTensor(sequence_info, "input_ids") model.inputs["input_mask"] = model.builder.addInputTensor(sequence_info, "input_mask") model.inputs["position_ids"] = model.builder.addInputTensor(sequence_info, "position_ids") model.inputs["segment_ids"] = model.builder.addInputTensor(sequence_info, "segment_ids") # MLM token ids and their respective positions. # The masked_lm_weights contain the index of the sequence in the pack to which a token belongs mlm_shape = [config.micro_batch_size, config.max_lm_predictions] mlm_info = popart.TensorInfo("UINT32", mlm_shape) model.labels["masked_lm_ids"] = model.builder.addInputTensor(mlm_info, "masked_lm_ids") model.inputs["masked_lm_weights"] = model.builder.addInputTensor(mlm_info, "masked_lm_weights") # NSP (there are multiple [CLS] tokens per pack) nsp_shape = [config.micro_batch_size, config.max_sequences_per_pack] nsp_info = popart.TensorInfo("UINT32", nsp_shape) model.labels["nsp_labels"] = model.builder.addInputTensor(nsp_info, "nsp_labels") model.labels["nsp_weights"] = model.builder.addInputTensor(nsp_info, "nsp_weights") # The shapes for the constructed inputs and labels # (in order of appearance in the dataset). Required for compatibility with legacy code input_tensor_shapes = [sequence_shape]*4 + [mlm_shape]*2 + [nsp_shape]*2 input_tensor_names = ["input_ids", "input_mask", "segment_ids", "position_ids"] input_tensor_names += ["masked_lm_ids", "masked_lm_weights"] input_tensor_names += ["nsp_labels", "nsp_weights"] return [(name, shape) for name, shape in zip(input_tensor_names, input_tensor_shapes)] def logits_graph(model): # Glue code for compatibility with non-packing version and naming convention indices = model.inputs["input_ids"] positions = model.inputs["position_ids"] segments = model.inputs["segment_ids"] masks = [model.inputs["input_mask"]] list_of_logits = model.build_graph(indices, positions, segments, masks) return list_of_logits def attention_mask(model, x): """ model.input["input_mask"] is used to create the a mask which prevents cross-contamination between sequences in a pack """ config = model.config input_mask = model.inputs["input_mask"] final_mask = model.builder.customOp(opName="AttentionMask", opVersion=1, domain="ai.graphcore", inputs=[input_mask, x], attributes={"dataType": model.config.popart_dtype})[0] final_mask = model.detach(final_mask) return final_mask def slice_nsp_tokens(model, pooler_input): """ The nsp tokens have been rearranged to the back of the sequence and can simply be sliced off. """ config = model.config starts = config.sequence_length - config.max_sequences_per_pack ends = config.sequence_length pooler_input = model.builder.aiOnnxOpset9.slice([pooler_input], axes=[1], starts=[starts], ends=[ends]) pooler_input = model.builder.reshape_const(model.builder.aiOnnx, [pooler_input], [config.micro_batch_size, config.max_sequences_per_pack, config.hidden_size]) return pooler_input def pretraining_loss_and_accuracy(model, logits): # MLM and NSP loss and accuracy calculation # some tensors are shared between the two loss calculations # Which outputs should be streamed back to host outputs_to_anchor = {} config = model.config # MLM with model.mlm_scope: mlm_logits = logits[0] mlm_predictions = model.builder.aiOnnx.argmax([mlm_logits], axis=-1, keepdims=0, debugContext=f"MLM/ArgMax") mlm_labels = model.labels["masked_lm_ids"] mlm_labels = model.builder.aiOnnx.cast([mlm_labels], "INT32") mlm_seq_ind = model.inputs["masked_lm_weights"] mlm_seq_ind = model.builder.reshape_const(model.builder.aiOnnx, [mlm_seq_ind], [config.micro_batch_size, -1]) # MLM loss # computed on a pertoken basis (original BERT implementation) mlm_probs = model.builder.aiOnnx.softmax([mlm_logits], axis=-1) mlm_loss = model.builder.aiGraphcore.nllloss([mlm_probs, mlm_labels], ignoreIndex=0, reduction=popart.ReductionType.Sum, debugContext=f"MLM/loss") mlm_loss = model.builder.aiOnnx.cast([mlm_loss], "FLOAT") outputs_to_anchor[mlm_loss] = popart.AnchorReturnType("SUM") # MLM accuracy mlm_accuracy_per_token = model.builder.aiOnnx.equal([mlm_predictions, mlm_labels]) mlm_accuracy_per_token = model.detach(mlm_accuracy_per_token) mlm_accuracy_per_token = model.builder.aiOnnx.cast([mlm_accuracy_per_token], "FLOAT") mlm_token_weights = model.builder.aiOnnx.greater([mlm_seq_ind, model.constant_tensor([0], dtype=np.uint32)]) mlm_token_weights = model.builder.aiOnnx.cast([mlm_token_weights], "FLOAT") mlm_accuracy_per_token = model.builder.aiOnnx.mul([mlm_accuracy_per_token, mlm_token_weights]) mlm_accuracy = model.builder.aiOnnx.reducesum([mlm_accuracy_per_token], keepdims=False) outputs_to_anchor[mlm_accuracy] = popart.AnchorReturnType("SUM") # NSP accuracy and loss computed per-pack with model.nsp_scope: nsp_logits = logits[1] nsp_predictions = model.builder.aiOnnx.argmax([nsp_logits], axis=-1, keepdims=0, debugContext=f"NSP/ArgMax") nsp_labels = model.builder.aiOnnx.cast([model.labels["nsp_labels"]], "INT32") nsp_weights = model.builder.aiOnnx.cast([model.labels["nsp_weights"]], "INT32") nsp_weights_f = model.builder.aiOnnx.cast([nsp_weights], "FLOAT") # 1 or 0 mask # NSP loss nsp_probs = model.builder.aiOnnx.softmax([nsp_logits], axis=-1) nsp_nll_per_token = model.builder.aiGraphcore.nllloss([nsp_probs, model.labels["nsp_labels"]], ignoreIndex=None, reduction=popart.ReductionType.NoReduction, debugContext=f"NSP/loss") nsp_nll_per_token = model.builder.aiOnnx.cast([nsp_nll_per_token], "FLOAT") nsp_loss = model.builder.aiOnnx.mul([nsp_nll_per_token, nsp_weights_f]) nsp_loss = model.builder.aiOnnx.reducesum([nsp_loss], keepdims=False) outputs_to_anchor[nsp_loss] = popart.AnchorReturnType("SUM") # NSP accuracy nsp_accuracy_per_token = model.builder.aiOnnx.equal([nsp_labels, nsp_predictions]) nsp_accuracy_per_token = model.builder.aiOnnx.cast([nsp_accuracy_per_token], "FLOAT") nsp_accuracy = model.builder.aiOnnx.mul([nsp_accuracy_per_token, nsp_weights_f]) nsp_accuracy = model.builder.aiOnnx.reducesum([nsp_accuracy], keepdims=False) outputs_to_anchor[nsp_accuracy] = popart.AnchorReturnType("SUM") # MLM + NSP is final loss with model.final_loss_scope: final_loss = model.builder.aiOnnx.add([mlm_loss, nsp_loss], "FinalLoss") for out in outputs_to_anchor.keys(): model.builder.addOutputTensor(out) return [mlm_loss, nsp_loss], [mlm_accuracy, nsp_accuracy], final_loss, outputs_to_anchor
50.688623
131
0.691199
4a231e56a4b2169f65f4a6a2e33d04beea4563af
1,909
py
Python
jupyter_releaser/python.py
jupyterlab-bot/jupyter_releaser
1ef0ebcc39cb268ef8949e809582bd9a5a244dc3
[ "BSD-3-Clause" ]
null
null
null
jupyter_releaser/python.py
jupyterlab-bot/jupyter_releaser
1ef0ebcc39cb268ef8949e809582bd9a5a244dc3
[ "BSD-3-Clause" ]
59
2021-03-09T10:11:27.000Z
2021-04-13T09:06:46.000Z
jupyter_releaser/python.py
jupyterlab-bot/jupyter_releaser
1ef0ebcc39cb268ef8949e809582bd9a5a244dc3
[ "BSD-3-Clause" ]
1
2021-05-02T16:04:02.000Z
2021-05-02T16:04:02.000Z
# Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import os import os.path as osp import re from glob import glob from pathlib import Path from tempfile import TemporaryDirectory from jupyter_releaser import util PYPROJECT = util.PYPROJECT SETUP_PY = util.SETUP_PY def build_dist(dist_dir): """Build the python dist files into a dist folder""" # Clean the dist folder of existing npm tarballs os.makedirs(dist_dir, exist_ok=True) dest = Path(dist_dir) for pkg in glob(f"{dist_dir}/*.gz") + glob(f"{dist_dir}/*.whl"): os.remove(pkg) if PYPROJECT.exists(): util.run(f"python -m build --outdir {dist_dir} .") elif SETUP_PY.exists(): util.run(f"python setup.py sdist --dist-dir {dist_dir}") util.run(f"python setup.py bdist_wheel --dist-dir {dist_dir}") def check_dist(dist_file, test_cmd=""): """Check a Python package locally (not as a cli)""" dist_file = util.normalize_path(dist_file) util.run(f"twine check {dist_file}") if not test_cmd: # Get the package name from the dist file name name = re.match(r"(\S+)-\d", osp.basename(dist_file)).groups()[0] name = name.replace("-", "_") test_cmd = f'python -c "import {name}"' # Create venvs to install dist file # run the test command in the venv with TemporaryDirectory() as td: env_path = util.normalize_path(osp.abspath(td)) if os.name == "nt": # pragma: no cover bin_path = f"{env_path}/Scripts/" else: bin_path = f"{env_path}/bin" # Create the virtual env, upgrade pip, # install, and run test command util.run(f"python -m venv {env_path}") util.run(f"{bin_path}/python -m pip install -U pip") util.run(f"{bin_path}/pip install -q {dist_file}") util.run(f"{bin_path}/{test_cmd}")
33.491228
73
0.647459
4a231f55460cc6ddfb4ad565e8064fae0de63ca8
9,859
py
Python
mapillary_tools/commands/process_and_upload.py
testbalda/mapillary_tools
07c00bb83815e512e1b85f5957b7d1ac9dfdeb0c
[ "BSD-2-Clause" ]
null
null
null
mapillary_tools/commands/process_and_upload.py
testbalda/mapillary_tools
07c00bb83815e512e1b85f5957b7d1ac9dfdeb0c
[ "BSD-2-Clause" ]
null
null
null
mapillary_tools/commands/process_and_upload.py
testbalda/mapillary_tools
07c00bb83815e512e1b85f5957b7d1ac9dfdeb0c
[ "BSD-2-Clause" ]
null
null
null
import inspect from mapillary_tools.process_user_properties import process_user_properties from mapillary_tools.process_import_meta_properties import process_import_meta_properties from mapillary_tools.process_geotag_properties import process_geotag_properties from mapillary_tools.process_sequence_properties import process_sequence_properties from mapillary_tools.process_upload_params import process_upload_params from mapillary_tools.insert_MAPJson import insert_MAPJson from mapillary_tools.upload import upload class Command: name = 'process_and_upload' help = "Batch tool : Process images and upload to Mapillary." def add_basic_arguments(self, parser): parser.add_argument( '--rerun', help='rerun the processing', action='store_true', required=False) # user properties # user name for the import parser.add_argument("--user_name", help="user name", required=True) # organization level parameters parser.add_argument( '--organization_username', help="Specify organization user name", default=None, required=False) parser.add_argument( '--organization_key', help="Specify organization key", default=None, required=False) parser.add_argument('--private', help="Specify whether the import is private", action='store_true', default=False, required=False) parser.add_argument( '--manual_done', help='Manually finalize the upload', action='store_true', default=False, required=False) parser.add_argument( '--skip_subfolders', help='Skip all subfolders and import only the images in the given directory path.', action='store_true', default=False, required=False) def add_advanced_arguments(self, parser): # master upload parser.add_argument('--master_upload', help='Process images with a master key, note: only used by Mapillary employees', action='store_true', default=False, required=False) #import meta parser.add_argument( "--device_make", help="Specify device manufacturer. Note this input has precedence over the input read from the import source file.", default=None, required=False) parser.add_argument( "--device_model", help="Specify device model. Note this input has precedence over the input read from the import source file.", default=None, required=False) parser.add_argument( '--add_file_name', help="Add original file name to EXIF. Note this input has precedence over the input read from the import source file.", action='store_true', required=False) parser.add_argument( '--add_import_date', help="Add import date.", action='store_true', required=False) parser.add_argument('--orientation', help='Specify the image orientation in degrees. Note this might result in image rotation. Note this input has precedence over the input read from the import source file.', choices=[0, 90, 180, 270], type=int, default=None, required=False) parser.add_argument( "--GPS_accuracy", help="GPS accuracy in meters. Note this input has precedence over the input read from the import source file.", default=None, required=False) parser.add_argument( "--camera_uuid", help="Custom string used to differentiate different captures taken with the same camera make and model.", default=None, required=False) # geotagging parser.add_argument('--geotag_source', help='Provide the source of date/time and gps information needed for geotagging.', action='store', choices=['exif', 'gpx', 'gopro_video', 'nmea'], default="exif", required=False) parser.add_argument( '--geotag_source_path', help='Provide the path to the file source of date/time and gps information needed for geotagging.', action='store', default=None, required=False) parser.add_argument( '--local_time', help='Assume image timestamps are in your local time', action='store_true', default=False, required=False) parser.add_argument('--sub_second_interval', help='Sub second time between shots. Used to set image times with sub-second precision', type=float, default=0.0, required=False) parser.add_argument('--offset_time', default=0., type=float, help='time offset between the camera and the gps device, in seconds.', required=False) parser.add_argument('--offset_angle', default=0., type=float, help='offset camera angle (90 for right facing, 180 for rear facing, -90 for left facing)', required=False) parser.add_argument("--use_gps_start_time", help="Use GPS trace starting time in case of derivating timestamp from filename.", action="store_true", default=False, required=False) # sequence parser.add_argument('--cutoff_distance', default=600., type=float, help='maximum gps distance in meters within a sequence', required=False) parser.add_argument('--cutoff_time', default=60., type=float, help='maximum time interval in seconds within a sequence', required=False) parser.add_argument('--interpolate_directions', help='perform interploation of directions', action='store_true', required=False) parser.add_argument('--flag_duplicates', help='flag duplicates', action='store_true', required=False) parser.add_argument('--duplicate_distance', help='max distance for two images to be considered duplicates in meters', type=float, default=0.1, required=False) parser.add_argument( '--duplicate_angle', help='max angle for two images to be considered duplicates in degrees', type=float, default=5, required=False) # EXIF insert parser.add_argument('--skip_EXIF_insert', help='Skip inserting the extracted data into image EXIF.', action='store_true', default=False, required=False) parser.add_argument('--keep_original', help='Do not overwrite original images, instead save the processed images in a new directory by adding suffix "_processed" to the import_path.', action='store_true', default=False, required=False) parser.add_argument( '--number_threads', help='Specify the number of upload threads.', type=int, default=None, required=False) parser.add_argument( '--max_attempts', help='Specify the maximum number of attempts to upload.', type=int, default=None, required=False) # post process parser.add_argument('--summarize', help='Summarize import for given import path.', action='store_true', default=False, required=False) parser.add_argument('--move_images', help='Move images corresponding to sequence uuid, duplicate flag and upload status.', action='store_true', default=False, required=False) parser.add_argument('--save_as_json', help='Save summary or file status list in a json.', action='store_true', default=False, required=False) parser.add_argument('--list_file_status', help='List file status for given import path.', action='store_true', default=False, required=False) parser.add_argument('--push_images', help='Push images uploaded in given import path.', action='store_true', default=False, required=False) parser.add_argument( '--split_import_path', help='If splitting the import path into duplicates, sequences, success and failed uploads, provide a path for the splits.', default=None, required=False) # add custom meta data in a form of a string consisting of a triplet # "name,type,value" parser.add_argument('--custom_meta_data', help='Add custom meta data to all images. Required format of input is a string, consisting of the meta data name, type and value, separated by a comma for each entry, where entries are separated by semicolon. Supported types are long, double, string, boolean, date. Example for two meta data entries "random_name1,double,12.34;random_name2,long,1234"', default=None, required=False) def run(self, args): vars_args = vars(args) process_user_properties(**({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(process_user_properties).args})) process_import_meta_properties( **({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(process_import_meta_properties).args})) process_geotag_properties( **({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(process_geotag_properties).args})) process_sequence_properties( **({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(process_sequence_properties).args})) process_upload_params(**({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(process_upload_params).args})) insert_MAPJson(**({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(insert_MAPJson).args})) print("Process done.") upload(**({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(upload).args})) post_process(**({k: v for k, v in vars_args.iteritems() if k in inspect.getargspec(post_process).args}))
70.421429
402
0.666396
4a231fdf8251014862b5592ff8df939633c425a1
8,844
py
Python
src/gluonts/distribution/distribution.py
strawberrypie/gluon-ts
1d27423478f1dc4621f81c4659d8ba78f88ee89b
[ "Apache-2.0" ]
1
2020-01-19T13:27:51.000Z
2020-01-19T13:27:51.000Z
src/gluonts/distribution/distribution.py
strawberrypie/gluon-ts
1d27423478f1dc4621f81c4659d8ba78f88ee89b
[ "Apache-2.0" ]
null
null
null
src/gluonts/distribution/distribution.py
strawberrypie/gluon-ts
1d27423478f1dc4621f81c4659d8ba78f88ee89b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # Standard library imports from typing import List, Optional, Tuple # Third-party imports import mxnet as mx from mxnet import autograd import numpy as np # First-party imports from gluonts.model.common import Tensor def nans_like(x: Tensor) -> Tensor: return x.zeros_like() / 0.0 def softplus(F, x: Tensor) -> Tensor: return F.Activation(x, act_type="softrelu") def getF(var: Tensor): if isinstance(var, mx.nd.NDArray): return mx.nd elif isinstance(var, mx.sym.Symbol): return mx.sym else: raise RuntimeError("var must be instance of NDArray or Symbol in getF") class Distribution: r""" A class representing probability distributions. """ arg_names: Tuple is_reparameterizable = False def log_prob(self, x: Tensor) -> Tensor: r""" Compute the log-density of the distribution at `x`. Parameters ---------- x Tensor of shape `(*batch_shape, *event_shape)`. Returns ------- Tensor Tensor of shape `batch_shape` containing the log-density of the distribution for each event in `x`. """ raise NotImplementedError() def crps(self, x: Tensor) -> Tensor: r""" Compute the *continuous rank probability score* (CRPS) of `x` according to the distribution. Parameters ---------- x Tensor of shape `(*batch_shape, *event_shape)`. Returns ------- Tensor Tensor of shape `batch_shape` containing the CRPS score, according to the distribution, for each event in `x`. """ raise NotImplementedError() def loss(self, x: Tensor) -> Tensor: r""" Compute the loss at `x` according to the distribution. By default, this method returns the negative of `log_prob`. For some distributions, however, the log-density is not easily computable and therefore other loss functions are computed. Parameters ---------- x Tensor of shape `(*batch_shape, *event_shape)`. Returns ------- Tensor Tensor of shape `batch_shape` containing the value of the loss for each event in `x`. """ return -self.log_prob(x) def prob(self, x: Tensor) -> Tensor: r""" Compute the density of the distribution at `x`. Parameters ---------- x Tensor of shape `(*batch_shape, *event_shape)`. Returns ------- Tensor Tensor of shape `batch_shape` containing the density of the distribution for each event in `x`. """ return self.log_prob(x).exp() @property def batch_shape(self) -> Tuple: r""" Layout of the set of events contemplated by the distribution. Invoking `sample()` from a distribution yields a tensor of shape `batch_shape + event_shape`, and computing `log_prob` (or `loss` more in general) on such sample will yield a tensor of shape `batch_shape`. This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed. """ raise NotImplementedError() @property def event_shape(self) -> Tuple: r""" Shape of each individual event contemplated by the distribution. For example, distributions over scalars have `event_shape = ()`, over vectors have `event_shape = (d, )` where `d` is the length of the vectors, over matrices have `event_shape = (d1, d2)`, and so on. Invoking `sample()` from a distribution yields a tensor of shape `batch_shape + event_shape`. This property is available in general only in mx.ndarray mode, when the shape of the distribution arguments can be accessed. """ raise NotImplementedError() @property def event_dim(self) -> int: r""" Number of event dimensions, i.e., length of the `event_shape` tuple. This is `0` for distributions over scalars, `1` over vectors, `2` over matrices, and so on. """ raise NotImplementedError() @property def batch_dim(self) -> int: r""" Number of batch dimensions, i.e., length of the `batch_shape` tuple. """ return len(self.batch_shape) @property def all_dim(self) -> int: r""" Number of overall dimensions. """ return self.batch_dim + self.event_dim def sample( self, num_samples: Optional[int] = None, dtype=np.float32 ) -> Tensor: r""" Draw samples from the distribution. If num_samples is given the first dimension of the output will be num_samples. Parameters ---------- num_samples Number of samples to to be drawn. dtype Data-type of the samples. Returns ------- Tensor A tensor containing samples. This has shape `(*batch_shape, *eval_shape)` if `num_samples = None` and `(num_samples, *batch_shape, *eval_shape)` otherwise. """ with autograd.pause(): var = self.sample_rep(num_samples=num_samples, dtype=dtype) F = getF(var) return F.BlockGrad(var) def sample_rep( self, num_samples: Optional[int] = None, dtype=np.float32 ) -> Tensor: raise NotImplementedError() @property def args(self) -> List: raise NotImplementedError() @property def mean(self) -> Tensor: r""" Tensor containing the mean of the distribution. """ raise NotImplementedError() @property def stddev(self) -> Tensor: r""" Tensor containing the standard deviation of the distribution. """ raise NotImplementedError() @property def variance(self) -> Tensor: r""" Tensor containing the variance of the distribution. """ return self.stddev.square() def cdf(self, x: Tensor) -> Tensor: r""" Returns the value of the cumulative distribution function evaluated at x """ raise NotImplementedError() def quantile(self, level: Tensor) -> Tensor: r""" Calculates quantiles for the given levels. Parameters ---------- level Level values to use for computing the quantiles. `level` should be a 1d tensor of level values between 0 and 1. Returns ------- quantiles Quantile values corresponding to the levels passed. The return shape is (num_levels, ...DISTRIBUTION_SHAPE...), where DISTRIBUTION_SHAPE is the shape of the underlying distribution. """ raise NotImplementedError() def slice_axis( self, axis: int, begin: int, end: Optional[int] ) -> "Distribution": """ Construct a new distribution by slicing all constructor arguments as specified by the provided bounds. Relies on ``mx.nd.slice_axis``. """ sliced_distr = self.__class__( *[arg.slice_axis(axis, begin, end) for arg in self.args] ) assert isinstance(sliced_distr, type(self)) return sliced_distr def _expand_param(p: Tensor, num_samples: Optional[int] = None) -> Tensor: """ Expand parameters by num_samples along the first dimension. """ if num_samples is None: return p return p.expand_dims(axis=0).repeat(axis=0, repeats=num_samples) def _sample_multiple( sample_func, *args, num_samples: Optional[int] = None, **kwargs ) -> Tensor: """ Sample from the sample_func, by passing expanded args and kwargs and reshaping the returned samples afterwards. """ args_expanded = [_expand_param(a, num_samples) for a in args] kwargs_expanded = { k: _expand_param(v, num_samples) for k, v in kwargs.items() } samples = sample_func(*args_expanded, **kwargs_expanded) return samples
29.092105
81
0.604251
4a23206136e1051895444fde51bd589585c365f6
2,153
py
Python
nicos_demo/mantid/setups/pixels.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
12
2019-11-06T15:40:36.000Z
2022-01-01T16:23:00.000Z
nicos_demo/mantid/setups/pixels.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
91
2020-08-18T09:20:26.000Z
2022-02-01T11:07:14.000Z
nicos_demo/mantid/setups/pixels.py
ISISComputingGroup/nicos
94cb4d172815919481f8c6ee686f21ebb76f2068
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
6
2020-01-11T10:52:30.000Z
2022-02-25T12:35:23.000Z
description = 'Example Sans2D Pixel Detector Setup with Instrument View' group = 'basic' sysconfig = dict( instrument = 'sans2d', ) devices = dict( sans2d = device('nicos_demo.mantid.devices.instrument.ViewableInstrument', description = 'instrument object', responsible = 'R. Esponsible <[email protected]>', instrument = 'sans2d', website = 'http://www.nicos-controls.org', operators = ['ISIS developer team'], facility = 'ISIS demo instruments', idf = 'SANS2D_Definition.xml' ), sample = device('nicos_mlz.sans1.devices.sans1_sample.Sans1Sample', description = 'sample object', ), mot_z = device('nicos.devices.generic.VirtualMotor', description = 'front detector position in the tube', abslimits = (19.281, 23.281), curvalue = 23.281, precision = 3, speed = 1, unit = 'm', fmtstr = '%.3f', ), mot_x = device('nicos.devices.generic.VirtualMotor', description = 'horizontal offset of detector', abslimits = (1.0, 5.0), speed = 0.5, unit = 'm', curvalue = 1.1, ), mot_omega = device('nicos.devices.generic.VirtualMotor', description = 'tilt of detector', abslimits = (-40, 40), speed = 1.5, unit = 'deg', curvalue = 0, fmtstr = '%.1f', ), mantid_move_det = device('nicos_demo.mantid.devices.devices.MantidTranslationDevice', args = {'RelativePosition': False, 'ComponentName': 'front-detector'}, x = 'mot_x', z = 'mot_z', lowlevel = True, ), mantid_rot_det = device('nicos_demo.mantid.devices.devices.MantidRotationDevice', args = {'RelativeRotation': False, 'ComponentName': 'front-detector'}, y = 1, angle = 'mot_omega', lowlevel = True, ), ) startupcode = ''' printinfo("============================================================") printinfo("Welcome to the Sans 2D Instrument View demo setup.") printinfo("============================================================") '''
32.134328
89
0.553646
4a232146daaff1e6c2dae009900ce361f4e24083
4,276
py
Python
omnifit/fitter/functions.py
astrobot/omnifit
7cc9e499fd149d6d3a3a15761c5380778a3f4f42
[ "BSD-3-Clause" ]
6
2015-08-25T16:40:30.000Z
2021-05-13T08:25:07.000Z
omnifit/fitter/functions.py
astrobot/omnifit
7cc9e499fd149d6d3a3a15761c5380778a3f4f42
[ "BSD-3-Clause" ]
22
2015-08-27T15:19:50.000Z
2022-01-12T18:50:31.000Z
omnifit/fitter/functions.py
astrobot/omnifit
7cc9e499fd149d6d3a3a15761c5380778a3f4f42
[ "BSD-3-Clause" ]
4
2015-12-31T19:24:48.000Z
2019-06-18T07:28:19.000Z
import numpy as np from astropy import convolution def muldata(data,mul): """ muldata(data,mul) Multiplies data with a given multiplier, and returns the result. Parameters ---------- data : numpy.ndarray The data to multiply mul : float The multiplier to multiply the data with Returns ------- The data multiplied by the multiplier. """ return mul*data def flipped_egh(x,par,kernel=None): """ flipped_egh(x,par,kernel=None) A flipped EGH (exponential-gaussian hybrid) function. A type of lopsided Gaussian function. This has been adapted from a normal EGH, which is presented in Lan & Jorgenson, Journal of Chromatography A, 915 (2001) 1-13 Parameters ---------- x : numpy.ndarray The x axis data of function. par : lmfit.parameter.Parameters The lmfit Parameters instance, which should contain the following: * H - the magnitude of the peak maximum * xR - the "retention time" of the precursor Gaussian * w - the standard deviation of the precursor Gaussian * tau - the time constant of precursor exponential kernel : Nonetype, numpy.ndarray or astropy.convolution.Kernel If set, the result will be convolved using this kernel. Returns ------- The function calculated over the range in x, and convolved with the kernel if one was given. """ H=par['H'].value xR=par['xR'].value w=par['w'].value tau=par['tau'].value expFactor = np.exp((-1.0*(xR-x)**2.0)/(2.0*w*w+tau*(xR-x))) out_y = np.where(2.0*w*w+tau*(xR-x)>0,H*expFactor,0.0) if not(np.any(kernel)): return out_y else: return convolution.convolve(out_y,kernel) def gaussian(x,par,kernel=None): """ gaussian(x,par,kernel=None) An 1D Gaussian function, structured in a way that it can be given an lmfit Parameters instance as input. Parameters ---------- x : numpy.ndarray The x axis data of function. par : lmfit.parameter.Parameters The lmfit Parameters instance, which should contain the following: * peak - the peak height of the Gaussian * fwhm - the full width at half maximum of the Gaussian * pos - the peak position of the Gaussian kernel : Nonetype, numpy.ndarray or astropy.convolution.Kernel If set, the result will be convolved using this kernel. Returns ------- The function calculated over the range in x, and convolved with the kernel if one was given. """ peak=par['peak'].value fwhm=par['fwhm'].value pos=par['pos'].value out_y=peak*np.exp(-2.35*(x-pos)**2./fwhm**2.) if not(np.any(kernel)): return out_y else: return convolution.convolve(out_y,kernel) def cde_lorentzian(x,par,kernel=None): """ cde_lorentzian(x,par,kernel=None) A CDE-corrected Lorentzian function, sometimes used for representing astrophysical ices. For more information about this fucntion and at least one application for it, see: K. Pontoppidan et al., Astronomy & Astrophysics, 408 (2003) 981-1007 Parameters ---------- x : numpy.ndarray The x axis data of function. par : lmfit.parameter.Parameters The lmfit Parameters instance, which should contain the following: * lor1 - the first Lorentzian parameter, describing the dielectric function at frequencies low relative to the peak described by this function. * lor2 - the second Lorentzian parameter, describing the plasma frequency. * lor3 - the third Lorentzian parameter, related to the mass and imagined spring constant of the molecule which it describes. * peak - the peak height of the function * pos - the peak position of the function kernel : Nonetype, numpy.ndarray or astropy.convolution.Kernel If set, the result will be convolved using this kernel. Returns ------- The function calculated over the range in x, and convolved with the kernel if one was given. """ lor1=par['lor1'].value lor2=par['lor2'].value lor3=par['lor3'].value peak=par['peak'].value pos=par['pos'].value lorentz_oscillator=lor1+lor2**2./(pos**2.-x**2.-lor3*x*1.j) out_y=peak*x*np.imag(2.*lorentz_oscillator*np.log10(lorentz_oscillator)/(lorentz_oscillator-1.)) if not(np.any(kernel)): return out_y else: return convolution.convolve(out_y,kernel)
31.441176
98
0.693405
4a23214cb6ef31dcabd174b1e2fb16d5d23f0b02
106,495
py
Python
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
64
2016-10-20T15:47:18.000Z
2021-11-11T11:57:32.000Z
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
126
2016-10-05T10:36:14.000Z
2019-05-15T08:43:23.000Z
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/__init__.py
ckishimo/napalm-yang
8f2bd907bd3afcde3c2f8e985192de74748baf6c
[ "Apache-2.0" ]
63
2016-11-07T15:23:08.000Z
2021-09-22T14:41:16.000Z
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/isis-alias-id/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State parameters of alias ID. """ __slots__ = ("_path_helper", "_extmethods", "__type", "__alias_id") _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__type = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) self.__alias_id = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "isis-alias-id", "state", ] def _get_type(self): """ Getter method for type, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/type (identityref) YANG Description: The type of TLV being described. The type of TLV is expressed as a canonical name. """ return self.__type def _set_type(self, v, load=False): """ Setter method for type, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/type (identityref) If this variable is read-only (config: false) in the source YANG file, then _set_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_type() directly. YANG Description: The type of TLV being described. The type of TLV is expressed as a canonical name. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """type must be of a type compatible with identityref""", "defined-type": "openconfig-network-instance:identityref", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'AREA_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:AREA_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IIS_NEIGHBORS': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IIS_NEIGHBORS': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'INSTANCE_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:INSTANCE_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'AUTHENTICATION': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:AUTHENTICATION': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'PURGE_OI': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:PURGE_OI': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'EXTENDED_IS_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'ISIS_ALIAS_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:ISIS_ALIAS_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_INTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'NLPID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:NLPID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_EXTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'EXTENDED_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'DYNAMIC_NAME': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:DYNAMIC_NAME': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_ISN': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_ISN': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MULTI_TOPOLOGY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MULTI_TOPOLOGY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'ROUTER_CAPABILITIES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:ROUTER_CAPABILITIES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}},), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='identityref', is_config=False)""", } ) self.__type = t if hasattr(self, "_set"): self._set() def _unset_type(self): self.__type = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) def _get_alias_id(self): """ Getter method for alias_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/alias_id (oc-isis-types:system-id) YANG Description: List of alias ID(s). """ return self.__alias_id def _set_alias_id(self, v, load=False): """ Setter method for alias_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/alias_id (oc-isis-types:system-id) If this variable is read-only (config: false) in the source YANG file, then _set_alias_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_alias_id() directly. YANG Description: List of alias ID(s). """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """alias_id must be of a type compatible with oc-isis-types:system-id""", "defined-type": "oc-isis-types:system-id", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}'}), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-isis-types:system-id', is_config=False)""", } ) self.__alias_id = t if hasattr(self, "_set"): self._set() def _unset_alias_id(self): self.__alias_id = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) type = __builtin__.property(_get_type) alias_id = __builtin__.property(_get_alias_id) _pyangbind_elements = OrderedDict([("type", type), ("alias_id", alias_id)]) class state(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/isis/levels/level/link-state-database/lsp/tlvs/tlv/isis-alias-id/state. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: State parameters of alias ID. """ __slots__ = ("_path_helper", "_extmethods", "__type", "__alias_id") _yang_name = "state" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__type = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) self.__alias_id = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "isis", "levels", "level", "link-state-database", "lsp", "tlvs", "tlv", "isis-alias-id", "state", ] def _get_type(self): """ Getter method for type, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/type (identityref) YANG Description: The type of TLV being described. The type of TLV is expressed as a canonical name. """ return self.__type def _set_type(self, v, load=False): """ Setter method for type, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/type (identityref) If this variable is read-only (config: false) in the source YANG file, then _set_type is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_type() directly. YANG Description: The type of TLV being described. The type of TLV is expressed as a canonical name. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """type must be of a type compatible with identityref""", "defined-type": "openconfig-network-instance:identityref", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_type="dict_key", restriction_arg={'AREA_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:AREA_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IIS_NEIGHBORS': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IIS_NEIGHBORS': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'INSTANCE_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:INSTANCE_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'AUTHENTICATION': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:AUTHENTICATION': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'PURGE_OI': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:PURGE_OI': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'EXTENDED_IS_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'ISIS_ALIAS_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:ISIS_ALIAS_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_INTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'NLPID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:NLPID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_EXTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'EXTENDED_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'DYNAMIC_NAME': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:DYNAMIC_NAME': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV4_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV4_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_SRLG': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_TE_ROUTER_ID': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_ISN': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_ISN': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MULTI_TOPOLOGY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MULTI_TOPOLOGY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IPV4_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'MT_IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:MT_IPV6_REACHABILITY': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'ROUTER_CAPABILITIES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}, 'oc-isis-lsdb-types:ROUTER_CAPABILITIES': {'@module': 'openconfig-isis-lsdb-types', '@namespace': 'http://openconfig.net/yang/isis-lsdb-types'}},), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='identityref', is_config=False)""", } ) self.__type = t if hasattr(self, "_set"): self._set() def _unset_type(self): self.__type = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_type="dict_key", restriction_arg={ "AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AREA_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IIS_NEIGHBORS": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:INSTANCE_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:AUTHENTICATION": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:PURGE_OI": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IS_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ISIS_ALIAS_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:NLPID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_EXTERNAL_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:EXTENDED_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:DYNAMIC_NAME": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV4_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_SRLG": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_TE_ROUTER_ID": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_ISN": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IS_NEIGHBOR_ATTRIBUTE": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MULTI_TOPOLOGY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_INTERFACE_ADDRESSES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV4_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:MT_IPV6_REACHABILITY": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, "oc-isis-lsdb-types:ROUTER_CAPABILITIES": { "@module": "openconfig-isis-lsdb-types", "@namespace": "http://openconfig.net/yang/isis-lsdb-types", }, }, ), is_leaf=True, yang_name="type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="identityref", is_config=False, ) def _get_alias_id(self): """ Getter method for alias_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/alias_id (oc-isis-types:system-id) YANG Description: List of alias ID(s). """ return self.__alias_id def _set_alias_id(self, v, load=False): """ Setter method for alias_id, mapped from YANG variable /network_instances/network_instance/protocols/protocol/isis/levels/level/link_state_database/lsp/tlvs/tlv/isis_alias_id/state/alias_id (oc-isis-types:system-id) If this variable is read-only (config: false) in the source YANG file, then _set_alias_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_alias_id() directly. YANG Description: List of alias ID(s). """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """alias_id must be of a type compatible with oc-isis-types:system-id""", "defined-type": "oc-isis-types:system-id", "generated-type": """YANGDynClass(base=RestrictedClassType(base_type=six.text_type, restriction_dict={'pattern': '[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}'}), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='oc-isis-types:system-id', is_config=False)""", } ) self.__alias_id = t if hasattr(self, "_set"): self._set() def _unset_alias_id(self): self.__alias_id = YANGDynClass( base=RestrictedClassType( base_type=six.text_type, restriction_dict={ "pattern": "[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}\\.[0-9A-Fa-f]{4}" }, ), is_leaf=True, yang_name="alias-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="oc-isis-types:system-id", is_config=False, ) type = __builtin__.property(_get_type) alias_id = __builtin__.property(_get_alias_id) _pyangbind_elements = OrderedDict([("type", type), ("alias_id", alias_id)])
59.997183
7,352
0.489676
4a23216edbaeb4d6a154a269a4a9a8486f2944a6
2,108
py
Python
flasky_db/env.py
simonZhou-x/flasky-simon
b1ff326a9d12bccd838348aa4edf4abc311a60c7
[ "MIT" ]
null
null
null
flasky_db/env.py
simonZhou-x/flasky-simon
b1ff326a9d12bccd838348aa4edf4abc311a60c7
[ "MIT" ]
null
null
null
flasky_db/env.py
simonZhou-x/flasky-simon
b1ff326a9d12bccd838348aa4edf4abc311a60c7
[ "MIT" ]
null
null
null
from __future__ import with_statement from alembic import context from sqlalchemy import engine_from_config, pool from logging.config import fileConfig import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../") from manage import db # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config # Interpret the config file for Python logging. # This line sets up loggers basically. fileConfig(config.config_file_name) # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = db.metadata # other values from the config, defined by the needs of env.py, # can be acquired: # my_important_option = config.get_main_option("my_important_option") # ... etc. def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=target_metadata, literal_binds=True) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = engine_from_config( config.get_section(config.config_ini_section), prefix='sqlalchemy.', poolclass=pool.NullPool) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
28.486486
69
0.726281
4a2321a87b984a344edbeca64234cd4aaf5cefa6
15,162
py
Python
dodola/core.py
brews/dodola
f209631654f9c5658bbf8a824eca7e3742c8aafe
[ "Apache-2.0" ]
1
2020-11-20T21:25:47.000Z
2020-11-20T21:25:47.000Z
dodola/core.py
brews/dodola
f209631654f9c5658bbf8a824eca7e3742c8aafe
[ "Apache-2.0" ]
null
null
null
dodola/core.py
brews/dodola
f209631654f9c5658bbf8a824eca7e3742c8aafe
[ "Apache-2.0" ]
null
null
null
"""Core logic for bias-correction and downscaling Math stuff and business logic goes here. This is the "business logic". """ import numpy as np import logging from skdownscale.spatial_models import SpatialDisaggregator import xarray as xr from xclim import sdba, set_options from xclim.sdba.utils import equally_spaced_nodes from xclim.core.calendar import convert_calendar import xesmf as xe logger = logging.getLogger(__name__) # Break this down into a submodule(s) if needed. # Assume data input here is generally clean and valid. def train_quantiledeltamapping( reference, historical, variable, kind, quantiles_n=100, window_n=31 ): """Train quantile delta mapping Parameters ---------- reference : xr.Dataset Dataset to use as model reference. historical : xr.Dataset Dataset to use as historical simulation. variable : str Name of target variable to extract from `historical` and `reference`. kind : {"+", "*"} Kind of variable. Used for QDM scaling. quantiles_n : int, optional Number of quantiles for QDM. window_n : int, optional Centered window size for day-of-year grouping. Returns ------- xclim.sdba.adjustment.QuantileDeltaMapping """ qdm = sdba.adjustment.QuantileDeltaMapping( kind=str(kind), group=sdba.Grouper("time.dayofyear", window=int(window_n)), nquantiles=equally_spaced_nodes(int(quantiles_n), eps=None), ) qdm.train(ref=reference[variable], hist=historical[variable]) return qdm def adjust_quantiledeltamapping_year( simulation, qdm, year, variable, halfyearwindow_n=10, include_quantiles=False ): """Apply QDM to adjust a year within a simulation. Parameters ---------- simulation : xr.Dataset Daily simulation data to be adjusted. Must have sufficient observations around `year` to adjust. qdm : xr.Dataset or sdba.adjustment.QuantileDeltaMapping Trained ``xclim.sdba.adjustment.QuantileDeltaMapping``, or Dataset representation that will be instantiate ``xclim.sdba.adjustment.QuantileDeltaMapping``. year : int Target year to adjust, with rolling years and day grouping. variable : str Target variable in `simulation` to adjust. Adjusted output will share the same name. halfyearwindow_n : int, optional Half-length of the annual rolling window to extract along either side of `year`. include_quantiles : bool, optional Whether or not to output quantiles (sim_q) as a coordinate on the bias corrected data variable in output. Returns ------- out : xr.Dataset QDM-adjusted values from `simulation`. May be a lazy-evaluated future, not yet computed. """ year = int(year) variable = str(variable) halfyearwindow_n = int(halfyearwindow_n) if isinstance(qdm, xr.Dataset): qdm = sdba.adjustment.QuantileDeltaMapping.from_dataset(qdm) # Slice to get 15 days before and after our target year. This accounts # for the rolling 31 day rolling window. timeslice = slice( f"{year - halfyearwindow_n - 1}-12-17", f"{year + halfyearwindow_n + 1}-01-15" ) simulation = simulation[variable].sel( time=timeslice ) # TODO: Need a check to ensure we have all the data in this slice! if include_quantiles: # include quantile information in output with set_options(sdba_extra_output=True): out = qdm.adjust(simulation, interp="nearest").sel(time=str(year)) # make quantiles a coordinate of bias corrected output variable out = out["scen"].assign_coords(sim_q=out.sim_q) else: out = qdm.adjust(simulation, interp="nearest").sel(time=str(year)) return out.to_dataset(name=variable) def train_analogdownscaling( coarse_reference, fine_reference, variable, kind, quantiles_n=620, window_n=31 ): """Train analog-inspired quantile-preserving downscaling Parameters ---------- coarse_reference : xr.Dataset Dataset to use as resampled (to fine resolution) coarse reference. fine_reference : xr.Dataset Dataset to use as fine-resolution reference. variable : str Name of target variable to extract from `coarse_reference` and `fine_reference`. kind : {"+", "*"} Kind of variable. Used for creating AIQPD adjustment factors. quantiles_n : int, optional Number of quantiles for AIQPD. window_n : int, optional Centered window size for day-of-year grouping. Returns ------- xclim.sdba.adjustment.AnalogQuantilePreservingDownscaling """ # AIQPD method requires that the number of quantiles equals # the number of days in each day group # e.g. 20 years of data and a window of 31 = 620 quantiles # check that lengths of input data are the same, then only check years for one if len(coarse_reference.time) != len(fine_reference.time): raise ValueError("coarse and fine reference data inputs have different lengths") # check number of years in input data (subtract 2 for the +/- 15 days on each end) num_years = len(np.unique(fine_reference.time.dt.year)) - 2 if (num_years * int(window_n)) != quantiles_n: raise ValueError( "number of quantiles {} must equal # of years {} * window length {}, day groups must {} days".format( quantiles_n, num_years, int(window_n), quantiles_n ) ) aiqpd = sdba.adjustment.AnalogQuantilePreservingDownscaling( kind=str(kind), group=sdba.Grouper("time.dayofyear", window=int(window_n)), nquantiles=quantiles_n, ) aiqpd.train(coarse_reference[variable], fine_reference[variable]) return aiqpd def adjust_analogdownscaling(simulation, aiqpd, variable): """Apply AIQPD to downscale bias corrected output. Parameters ---------- simulation : xr.Dataset Daily bias corrected data to be downscaled. aiqpd : xr.Dataset or sdba.adjustment.AnalogQuantilePreservingDownscaling Trained ``xclim.sdba.adjustment.AnalogQuantilePreservingDownscaling``, or Dataset representation that will instantiate ``xclim.sdba.adjustment.AnalogQuantilePreservingDownscaling``. variable : str Target variable in `simulation` to downscale. Downscaled output will share the same name. Returns ------- out : xr.Dataset AIQPD-downscaled values from `simulation`. May be a lazy-evaluated future, not yet computed. """ variable = str(variable) if isinstance(aiqpd, xr.Dataset): aiqpd = sdba.adjustment.AnalogQuantilePreservingDownscaling.from_dataset(aiqpd) out = aiqpd.adjust(simulation[variable]) return out.to_dataset(name=variable) def apply_bias_correction( gcm_training_ds, obs_training_ds, gcm_predict_ds, train_variable, out_variable, method, ): """Bias correct input model data using specified method, using either monthly or +/- 15 day time grouping. Currently the QDM method is supported. Parameters ---------- gcm_training_ds : Dataset training model data for building quantile map obs_training_ds : Dataset observation data for building quantile map gcm_predict_ds : Dataset future model data to be bias corrected train_variable : str variable name used in training data out_variable : str variable name used in downscaled output method : {"QDM"} method to be used in the applied bias correction Returns ------- ds_predicted : xr.Dataset Dataset that has been bias corrected. """ if method == "QDM": # instantiates a grouper class that groups by day of the year # centered window: +/-15 day group group = sdba.Grouper("time.dayofyear", window=31) model = sdba.adjustment.QuantileDeltaMapping(group=group, kind="+") model.train( ref=obs_training_ds[train_variable], hist=gcm_training_ds[train_variable] ) predicted = model.adjust(sim=gcm_predict_ds[train_variable]) else: raise ValueError("this method is not supported") ds_predicted = predicted.to_dataset(name=out_variable) return ds_predicted def apply_downscaling( bc_ds, obs_climo_coarse, obs_climo_fine, train_variable, out_variable, method, domain_fine, weights_path=None, ): """Downscale input bias corrected data using specified method. Currently only the BCSD method for spatial disaggregation is supported. Parameters ---------- bc_ds : Dataset Model data that has already been bias corrected. obs_climo_coarse : Dataset Observation climatologies at coarse resolution. obs_climo_fine : Dataset Observation climatologies at fine resolution. train_variable : str Variable name used in obs data. out_variable : str Variable name used in downscaled output. method : {"BCSD"} Vethod to be used in the applied downscaling. domain_fine : Dataset Domain that specifies the fine resolution grid to downscale to. weights_path : str or None, optional Path to the weights file, used for downscaling to fine resolution. Returns ------- af_fine : xr.Dataset A dataset of adjustment factors at fine resolution used in downscaling. ds_downscaled : xr.Dataset A model dataset that has been downscaled from the bias correction resolution to specified domain file resolution. """ if method == "BCSD": model = SpatialDisaggregator(var=train_variable) af_coarse = model.fit(bc_ds, obs_climo_coarse, var_name=train_variable) # regrid adjustment factors # BCSD uses bilinear interpolation for both temperature and precip to # regrid adjustment factors af_fine = xesmf_regrid(af_coarse, domain_fine, "bilinear", weights_path) # apply adjustment factors predicted = model.predict( af_fine, obs_climo_fine[train_variable], var_name=train_variable ) else: raise ValueError("this method is not supported") ds_downscaled = predicted.to_dataset(name=out_variable) return af_fine, ds_downscaled def build_xesmf_weights_file(x, domain, method, filename=None): """Build ESMF weights file for regridding x to a global grid Parameters ---------- x : xr.Dataset domain : xr.Dataset Domain to regrid to. method : str Method of regridding. Passed to ``xesmf.Regridder``. filename : optional Local path to output netCDF weights file. Returns ------- outfilename : str Path to resulting weights file. """ out = xe.Regridder( x, domain, method=method, filename=filename, ) return str(out.filename) def _add_cyclic(ds, dim): """ Adds wrap-around, appending first value to end of data for named dimension. Basically an xarray version of ``cartopy.util.add_cyclic_point()``. """ return ds.map( lambda x, d: xr.concat([x, x.isel({d: 0})], dim=d), keep_attrs=True, d=str(dim), ) def xesmf_regrid(x, domain, method, weights_path=None, astype=None, add_cyclic=None): """ Regrid a Dataset. Parameters ---------- x : xr.Dataset domain : xr.Dataset Domain to regrid to. method : str Method of regridding. Passed to ``xesmf.Regridder``. weights_path : str, optional Local path to netCDF file of pre-calculated XESMF regridding weights. astype : str, numpy.dtype, or None, optional Typecode or data-type to which the regridded output is cast. add_cyclic : str, or None, optional Add cyclic point (aka wrap-around pixel) to given dimension before regridding. Useful for avoiding dateline artifacts along longitude in global datasets. Returns ------- xr.Dataset """ if add_cyclic: x = _add_cyclic(x, add_cyclic) regridder = xe.Regridder( x, domain, method=method, filename=weights_path, ) if astype: return regridder(x).astype(astype) return regridder(x) def standardize_gcm(ds, leapday_removal=True): """ Parameters ---------- ds : xr.Dataset leapday_removal : bool, optional Returns ------- xr.Dataset """ # Remove cruft coordinates, variables, dims. cruft_vars = ("height", "member_id", "time_bnds") dims_to_squeeze = [] coords_to_drop = [] for v in cruft_vars: if v in ds.dims: dims_to_squeeze.append(v) elif v in ds.coords: coords_to_drop.append(v) ds_cleaned = ds.squeeze(dims_to_squeeze, drop=True).reset_coords( coords_to_drop, drop=True ) # Cleanup time. # if variable is precip, need to update units to mm day-1 if "pr" in ds_cleaned.variables: # units should be kg/m2/s in CMIP6 output if ds_cleaned["pr"].units == "kg m-2 s-1": # convert to mm/day mmday_conversion = 24 * 60 * 60 ds_cleaned["pr"] = ds_cleaned["pr"] * mmday_conversion # update units attribute ds_cleaned["pr"].attrs["units"] = "mm day-1" else: # we want this to fail, as pr units are something we don't expect raise ValueError("check units: pr units attribute is not kg m-2 s-1") if leapday_removal: # if calendar is just integers, xclim cannot understand it if ds.time.dtype == "int64": ds_cleaned["time"] = xr.decode_cf(ds_cleaned).time # remove leap days and update calendar ds_noleap = xclim_remove_leapdays(ds_cleaned) # rechunk, otherwise chunks are different sizes ds_out = ds_noleap.chunk({"time": 730, "lat": len(ds.lat), "lon": len(ds.lon)}) else: ds_out = ds_cleaned return ds_out def xclim_remove_leapdays(ds): """ Parameters ---------- ds : xr.Dataset Returns ------- xr.Dataset """ ds_noleap = convert_calendar(ds, target="noleap") return ds_noleap def apply_wet_day_frequency_correction(ds, process): """ Parameters ---------- ds : xr.Dataset process : {"pre", "post"} Returns ------- xr.Dataset Notes ------- [1] A.J. Cannon, S.R. Sobie, & T.Q. Murdock, "Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?", Journal of Climate, vol. 28, Issue 7, pp. 6938-6959. """ threshold = 0.05 # mm/day low = 1e-16 if process == "pre": ds_corrected = ds.where(ds != 0.0, np.random.uniform(low=low, high=threshold)) elif process == "post": ds_corrected = ds.where(ds >= threshold, 0.0) else: raise ValueError("this processing option is not implemented") return ds_corrected
31.456432
226
0.65895
4a232287cbf80188706afa6aedfe1fdfc6dccb61
896
py
Python
altair/examples/simple_scatter_with_errorbars.py
Mechachleopteryx/altair
c1523443f2a3c15c6181a3a7a154351518784df7
[ "BSD-3-Clause" ]
6,831
2016-09-23T19:35:19.000Z
2022-03-31T13:29:39.000Z
altair/examples/simple_scatter_with_errorbars.py
Mechachleopteryx/altair
c1523443f2a3c15c6181a3a7a154351518784df7
[ "BSD-3-Clause" ]
2,068
2016-09-23T14:53:23.000Z
2022-03-31T01:43:15.000Z
altair/examples/simple_scatter_with_errorbars.py
Mechachleopteryx/altair
c1523443f2a3c15c6181a3a7a154351518784df7
[ "BSD-3-Clause" ]
711
2016-09-26T16:59:18.000Z
2022-03-24T11:32:40.000Z
""" Simple Scatter Plot with Errorbars ---------------------------------- A simple scatter plot of a data set with errorbars. """ # category: scatter plots import altair as alt import pandas as pd import numpy as np # generate some data points with uncertainties np.random.seed(0) x = [1, 2, 3, 4, 5] y = np.random.normal(10, 0.5, size=len(x)) yerr = 0.2 # set up data frame source = pd.DataFrame({"x": x, "y": y, "yerr": yerr}) # the base chart base = alt.Chart(source).transform_calculate( ymin="datum.y-datum.yerr", ymax="datum.y+datum.yerr" ) # generate the points points = base.mark_point( filled=True, size=50, color='black' ).encode( x=alt.X('x', scale=alt.Scale(domain=(0, 6))), y=alt.Y('y', scale=alt.Scale(zero=False)) ) # generate the error bars errorbars = base.mark_errorbar().encode( x="x", y="ymin:Q", y2="ymax:Q" ) points + errorbars
20.363636
53
0.631696
4a23231154521c0c9179cba7c140cd7bedc3ddda
2,431
py
Python
src/python/DTNRMAgent/RecurringActions/Plugins/CPUInfo.py
juztas/backup-siterm
28f4027e8c9995df5a969dee3d65263b9a09d075
[ "Apache-2.0" ]
null
null
null
src/python/DTNRMAgent/RecurringActions/Plugins/CPUInfo.py
juztas/backup-siterm
28f4027e8c9995df5a969dee3d65263b9a09d075
[ "Apache-2.0" ]
null
null
null
src/python/DTNRMAgent/RecurringActions/Plugins/CPUInfo.py
juztas/backup-siterm
28f4027e8c9995df5a969dee3d65263b9a09d075
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ Plugin which produces all info from lscpu It produces: {'CPU(s)': 2, 'L1d cache': '32K', 'CPU op-mode(s)': '32-bit, 64-bit', 'NUMA node0 CPU(s)': '0,1', 'Hypervisor vendor': 'VMware', 'L2 cache': '256K', 'L1i cache': '32K', 'CPU MHz': 3392.164, 'Core(s) per socket': 1, 'Virtualization type': 'full', 'Thread(s) per core': 1, 'On-line CPU(s) list': '0,1', 'Socket(s)': 2, 'Architecture': 'x86_64', 'Model': 60, 'Vendor ID': 'GenuineIntel', 'CPU family': 6, 'L3 cache': '8192K', 'BogoMIPS': 6784.32, 'Stepping': 3, 'Byte Order': 'Little Endian', 'NUMA node(s)': 1} Copyright 2017 California Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Title : dtnrm Author : Justas Balcas Email : justas.balcas (at) cern.ch @Copyright : Copyright (C) 2016 California Institute of Technology Date : 2017/09/26 """ from __future__ import print_function import pprint from DTNRMAgent.RecurringActions.Utilities import externalCommand, tryConvertToNumeric from DTNRMLibs.MainUtilities import getConfig NAME = 'CPUInfo' def get(config): """Get lscpu information""" cpuInfo = {} tmpOut = externalCommand('lscpu') for item in tmpOut: for desc in item.split('\n'): vals = desc.split(':') if len(vals) == 2: cpuInfo[vals[0].strip()] = tryConvertToNumeric(vals[1].strip()) else: print('CpuInfo: Skipped this item: ', vals) cpuInfo['num_cores'] = 1 if 'Socket(s)' in cpuInfo and 'Core(s) per socket': try: cpuInfo['num_cores'] = int(cpuInfo['Socket(s)']) * int(cpuInfo['Core(s) per socket']) except Exception: print('Failed to calculate num_cores from %s. will set to 1' % cpuInfo) return cpuInfo if __name__ == "__main__": PRETTY = pprint.PrettyPrinter(indent=4) PRETTY.pprint(get(getConfig(['/etc/dtnrm/main.conf', 'main.conf'])))
42.649123
111
0.663924
4a23241529ad082c45904a034a3d43c59f5113d9
3,912
py
Python
handwritten_digits/element_wise_operations.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
handwritten_digits/element_wise_operations.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
handwritten_digits/element_wise_operations.py
slaily/deep-learning-bits
cb9ce7ec539efbdfcaa023d141466f919bd31b71
[ "MIT" ]
null
null
null
import numpy as np def naive_relu(x): # X must be 2D Numpy tensor assert len(x.shape) == 2 # Avoid overwriting the input tensor x = x.copy() for row in range(x.shape[0]): for col in range(x.shape[1]): x[row, col] = max(x[row, col], 0) return x def naive_add(x, y): # X must be 2D Numpy tensor assert len(x.shape) == 2 assert x.shape == y.shape # Avoid overwriting the input tensor x = x.copy() for row in range(x.shape[0]): for col in range(x.shape[1]): x[row, col] += y[row, col] return x def naive_add_matrix_and_vector(x, y): # X must be 2D Numpy tensor assert len(x.shape) == 2 # Y must be Numpy vector assert len(y.shape) == 1 assert x.shape[1] == y.shape[0] # Avoid overwriting the input tensor x = x.copy() for row in range(x.shape[0]): for col in range(x.shape[1]): x[row, col] = y[col] return x def naive_vector_dot(x, y): assert len(x.shape) == 1 assert len(y.shape) == 1 assert x.shape[0] == y.shape[0] z = 0. for row in range(x.shape[0]): z += x[row] * y[row] return z def naive_matrix_vector_dot(x, y): assert len(x.shape) == 2 assert len(y.shape) == 1 assert x.shape[1] == y.shape[0] z = np.zeros(x.shape[0]) for row in range(x.shape[0]): for col in range(x.shape[1]): z[row] += x[row, col] * y[col] return z def naive_matrix_dot(x, y): assert len(x.shape) == 2 assert len(y.shape) == 2 assert x.shape[1] == y.shape[0] z = np.zeros((x.shape[0], y.shape[1])) for row in range(x.shape[0]): for col in range(y.shape[1]): row_x = x[row, :] column_y = y[:, col] z[row, col] = naive_vector_dot(row_x, column_y) return z # 2D Numpy tensor print('*** Naive ReLU ***') input_x_2d_tensor = np.array( [ [5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2] ] ) print('Input 2D tensor shape: ', input_x_2d_tensor.shape) print('Input 2D tensor ndim: ', input_x_2d_tensor.ndim) output_2d_tensor = naive_relu(input_x_2d_tensor) print('ReLU output: ', output_2d_tensor) print('*** ---------- ***') print() print('*** Naive ADD operation ***') input_y_2d_tensor = np.array( [ [1, 7, 22, 31, 0], [3, 9, 33, 35, 1], [4, 8, 44, 36, 2] ] ) output_2d_tensor = naive_add(input_x_2d_tensor, input_y_2d_tensor) print('Naive ADD output: ', output_2d_tensor) print('*** ---------- ***') print() print('*** Naive ADD operation - Matrix and Vector ***') input_x_2d_tensor = np.array( [ [1, 2, 3, 4], [5, 6, 7, 8] ] ) input_y_2d_tensor = np.array([9, 10, 11, 12]) output_2d_tensor = naive_add_matrix_and_vector(input_x_2d_tensor, input_y_2d_tensor) print('Naive ADD operation - Matrix and Vector output: ', output_2d_tensor) print('*** ---------- ***') print() print('*** Naive DOT operation - Vector ***') x_vector = np.array([1, 2, 3]) y_vector = np.array([4, 5, 6]) dot_product = naive_vector_dot(x_vector, y_vector) print('Naive DOT output: ', dot_product) print('*** ---------- ***') print() print('*** Naive DOT operation - Matrix and Vector ***') x_matrix = np.array( [ [1, 2, 3, 4], [5, 6, 7, 8] ] ) y_vector = np.array([1, 2, 1, 2]) dot_product = naive_matrix_vector_dot(x_matrix, y_vector) print('Naive DOT operation - Matrix and Vector output: ', dot_product) print('*** ---------- ***') print() print('*** Naive DOT operation - Matrix ***') x_matrix = np.array( [ [1, 2, 3, 4], [5, 6, 7, 8] ] ) y_matrix = np.array( [ [1, 1, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0, 0] ] ) dot_product = naive_matrix_dot(x_matrix, y_matrix) print('Naive DOT operation - Matrix: ', dot_product) print('*** ---------- ***') print()
23.42515
84
0.55956
4a2324500db1154b46bf7bcc1946bf61ed677cd8
2,915
py
Python
server/tests/dbtest.py
Kraken-CI/kraken
cc64cc1791e8d35bf978edac4cc65db738cf5133
[ "Apache-2.0" ]
66
2020-08-14T12:52:39.000Z
2022-03-31T13:56:25.000Z
server/tests/dbtest.py
kinsanras/kraken
3938ee4e65ba8f67ec5ee0e912b43fad84548f2c
[ "Apache-2.0" ]
110
2020-07-23T07:12:09.000Z
2022-03-26T05:54:18.000Z
server/tests/dbtest.py
kinsanras/kraken
3938ee4e65ba8f67ec5ee0e912b43fad84548f2c
[ "Apache-2.0" ]
4
2021-03-10T05:25:03.000Z
2022-01-24T10:12:33.000Z
# Copyright 2020-2021 The Kraken Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sqlalchemy from kraken.server.models import db def create_empty_db(db_name, drop_exisiting=False): db_root_url = os.environ.get('POSTGRES_URL', 'postgresql://kk:kk@localhost:15432/') # check if db exists engine = sqlalchemy.create_engine(db_root_url + db_name, echo=False) db_exists = False try: connection = engine.connect() connection.execute('select 1') connection.close() db_exists = True except Exception: pass engine = sqlalchemy.create_engine(db_root_url, echo=False) connection = engine.connect() if db_exists and drop_exisiting: connection.execute("commit;") connection.execute("DROP DATABASE %s;" % db_name) db_exists = False # create db if missing if not db_exists: connection.execute("commit;") connection.execute("CREATE DATABASE %s;" % db_name) connection.close() return db_root_url, db_exists def clear_db_postresql(connection): for table in db.metadata.tables.keys(): connection.execute('ALTER TABLE "%s" DISABLE TRIGGER ALL;' % table) try: connection.execute('DELETE FROM "%s";' % table) except Exception as e: if not "doesn't exist" in str(e): raise connection.execute('ALTER TABLE "%s" ENABLE TRIGGER ALL;' % table) def prepare_db(db_name=None): # session.close_all() # if metadata.bind: # metadata.bind.dispose() if db_name is None: db_name = os.environ.get('KK_UT_DB', 'kkut') # db_root_url, db_exists = create_empty_db(db_name) db_root_url, _ = create_empty_db(db_name) # prepare connection, create any missing tables #clean_db() real_db_url = db_root_url + db_name # engine = sqlalchemy.create_engine(real_db_url, echo=False) # db.metadata.bind = engine # db.setup_all() # db.create_all() # db.fix_compatibility() # if db_exists: # global_log.log_global('prepare_db - delete all rows', 'real_db_url', real_db_url) # # delete all rows from all tables # if db_url.startswith("mysql"): # clear_db_mysql(engine) # elif db_url.startswith("postgresql"): # clear_db_postresql(engine) # db.prepare_indexes(engine) return real_db_url
31.010638
91
0.67307
4a2324e57e1f6b4908891e5e1b7193e2a683b27f
2,860
py
Python
logger/json_logger.py
gvalvano/idas
e1b112c8d0cd17b2b8486435dfe9de477bca2221
[ "Apache-2.0" ]
29
2020-07-04T00:04:28.000Z
2022-03-18T01:49:34.000Z
idas/logger/json_logger.py
gvalvano/unet_crf_as_rnn
31b79741b77614764dcf3d2690fe0b0fab44934d
[ "Apache-2.0" ]
2
2020-10-31T14:41:02.000Z
2021-11-21T18:16:19.000Z
logger/json_logger.py
gvalvano/idas
e1b112c8d0cd17b2b8486435dfe9de477bca2221
[ "Apache-2.0" ]
7
2020-10-21T01:02:52.000Z
2021-11-14T16:52:18.000Z
# Copyright 2019 Gabriele Valvano # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import io data = {} def add_new_node(key, values, file_name='log_file.json'): """ Add new node to JSON file under the key=key and with sub-keys=values. Args: key (string): dictionary key to address the node values (dict): dictionary with key-values couples file_name (string): JSON file name to write Example: data.update({'SPARSE_TRAINING': {'done_before': False, 'beta': 0.10, 'sparsity': 0.30}}) """ data.update({key: values}) with io.open(file_name, 'w', encoding='utf8') as outfile: str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(str_) def read_one_node(key, file_name='log_file.json'): """ Return the dictionary in JSON file under the key=key. Args: key (string): dictionary key to address the node file_name (string): JSON file name to read Returns: Dictionary """ with open(file_name, 'r', encoding='utf8') as infile: node = json.load(infile) return node[key] def update_node(key, sub_key, sub_value, file_name='log_file.json'): """ Update a node in a JSON file under the key=key and with sub-keys=values. Args: key (string): dictionary key to address the node sub_key (string): field name to be updated under the node key sub_value (): value to assign to the field name under the node key file_name (string): JSON file name to write """ content_dict = read_one_node(key, file_name=file_name) content_dict[sub_key] = sub_value data.update({key: content_dict}) with io.open(file_name, 'w', encoding='utf8') as outfile: str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(str_) if __name__ == '__main__': # Example of reading and writing on JSON file k = 'KEY_1' val = {'flag': True, 'alpha': 0.10, 'beta': 0.30} add_new_node(k, val) k = 'KEY_2' val = {'flag': False, 'alpha': 0.20, 'beta': 0.60} add_new_node(k, val) k = 'KEY_1' print(read_one_node(k))
30.105263
96
0.633566
4a232581b8a60885474b07c2a1212893df675ead
6,633
py
Python
doc/conf.py
neuromusic/umap
86a2ce834f37db9f5b57f58440ac66e41d035ea0
[ "BSD-2-Clause" ]
null
null
null
doc/conf.py
neuromusic/umap
86a2ce834f37db9f5b57f58440ac66e41d035ea0
[ "BSD-2-Clause" ]
null
null
null
doc/conf.py
neuromusic/umap
86a2ce834f37db9f5b57f58440ac66e41d035ea0
[ "BSD-2-Clause" ]
1
2018-08-16T11:11:08.000Z
2018-08-16T11:11:08.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # umap documentation build configuration file, created by # sphinx-quickstart on Fri Jun 8 10:09:40 2018. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', # 'bokeh.sphinxext.bokeh_plot', 'sphinx_gallery.gen_gallery', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'umap' copyright = '2018, Leland McInnes' author = 'Leland McInnes' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.3' # The full version, including alpha/beta/rc tags. release = '0.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # #html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # This is required for the alabaster theme # refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars html_sidebars = { '**': [ 'relations.html', # needs 'show_related': True theme option to display 'searchbox.html', ] } # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'umapdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'umap.tex', 'umap Documentation', 'Leland McInnes', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'umap', 'umap Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'umap', 'umap Documentation', author, 'umap', 'One line description of project.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/{.major}'.format(sys.version_info), None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), 'matplotlib': ('https://matplotlib.org/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None), 'sklearn': ('http://scikit-learn.org/stable/', None), 'bokeh': ('http://bokeh.pydata.org/en/latest/', None), } # -- Options for sphinx-gallery --------------------------------------------- sphinx_gallery_conf = { # path to your examples scripts 'examples_dirs': '../examples', # path where to save gallery generated examples 'gallery_dirs': 'auto_examples', 'plot_gallery': False, # Turn off running the examples for now 'reference_url': { 'umap': None, 'python': 'https://docs.python.org/{.major}'.format(sys.version_info), 'numpy': 'https://docs.scipy.org/doc/numpy/', 'scipy': 'https://docs.scipy.org/doc/scipy/reference', 'matplotlib': 'https://matplotlib.org/', 'pandas': 'https://pandas.pydata.org/pandas-docs/stable/', 'sklearn': 'http://scikit-learn.org/stable/', 'bokeh': 'http://bokeh.pydata.org/en/latest/', } }
32.356098
82
0.664405
4a2326071aaa5e78d4d98e4f39c95090e947380b
3,956
py
Python
gemini_instruments/hokupaa_quirc/adclass.py
astrochun/DRAGONS
041cdeeaf3eca9751085f6e01222d48c8e63cd3c
[ "BSD-3-Clause" ]
1
2020-06-03T15:13:18.000Z
2020-06-03T15:13:18.000Z
gemini_instruments/hokupaa_quirc/adclass.py
b1quint/DRAGONS
0f5814caaa791bda47edf00407722247095f8427
[ "BSD-3-Clause" ]
null
null
null
gemini_instruments/hokupaa_quirc/adclass.py
b1quint/DRAGONS
0f5814caaa791bda47edf00407722247095f8427
[ "BSD-3-Clause" ]
null
null
null
# # Gemini Observatory # # Dragons # gemini_instruments # hokupaa_QUIRC.adclass.py # ------------------------------------------------------------------------------ from astrodata import astro_data_tag from astrodata import astro_data_descriptor from astrodata import returns_list from astrodata import TagSet from ..gemini import AstroDataGemini # ------------------------------------------------------------------------------ class AstroDataHokupaaQUIRC(AstroDataGemini): __keyword_dict = dict( airmass = 'AMEND', wavelength_band = 'FILTER', observation_type = 'IMAGETYP', ) @staticmethod def _matches_data(source): return source[0].header.get('INSTRUME', '') == 'Hokupaa+QUIRC' @astro_data_tag def _tag_instrument(self): return TagSet(['HOKUPAAQUIRC']) @astro_data_tag def _tag_image(self): return TagSet(['IMAGE']) @astro_data_tag def _tag_dark(self): if 'dark' in self.phu.get('OBJECT', '').lower(): return TagSet(['DARK'], blocks=['IMAGE', 'SPECT']) @astro_data_tag def _tag_flat(self): if 'flat' in self.phu.get('OBJECT', '').lower(): return TagSet(['FLAT', 'CAL']) @astro_data_descriptor def airmass(self): return self.phu.get(self._keyword_for('airmass')) @astro_data_descriptor def detector_name(self): """ Returns the name of the detector. For HOKUPAA+QUIRC, this is always 'QUIRC' Returns ------- <str>: Detector name """ return 'QUIRC' @astro_data_descriptor def filter_name(self, pretty=False): """ This descriptor is used to display 'WaveBand' in the archive. Parameters ---------- pretty: <bool> This keyword parameter is present for API purposes. It has no effect for this descriptor. Returns ------- <str>: wavelength band substituting for filter_name(pretty=True) """ return self.wavelength_band() @astro_data_descriptor def instrument(self, generic=False): """ Returns the name of the instrument making the observation Parameters ---------- generic: <bool> Request the generic instrument name, if applicable. Returns ------- <str>: instrument name """ return self.phu.get(self._keyword_for('instrument')) @astro_data_descriptor def observation_type(self): """ Returns 'type' the observation. Returns ------- <str>: observation type. """ return self.phu.get(self._keyword_for('observation_type')) @astro_data_descriptor def ra(self): """ Returns the name of the Returns ------- <str>: right ascension """ return self.phu.get(self._keyword_for('ra')) @astro_data_descriptor def dec(self): """ Returns the name of the Returns ------- <str>: declination """ return self.phu.get(self._keyword_for('dec')) @astro_data_descriptor def wavelength_band(self): """ Returns the name of the bandpass of the observation. Returns ------- <str>: Name of the bandpass. """ return self.phu.get(self._keyword_for('wavelength_band')) @astro_data_descriptor def target_ra(self): return self.wcs_ra() @astro_data_descriptor def target_dec(self): return self.wcs_dec()
24.725
80
0.512892
4a23263a9447c141032064b3fe856f1ea98126fa
415
py
Python
noise_helpers/is_class.py
marhoy/Koopen
50b45a1bc4e6b5a157758e3091925405a28920ab
[ "CC-BY-4.0" ]
1
2021-03-19T14:40:35.000Z
2021-03-19T14:40:35.000Z
noise_helpers/is_class.py
marhoy/Koopen
50b45a1bc4e6b5a157758e3091925405a28920ab
[ "CC-BY-4.0" ]
null
null
null
noise_helpers/is_class.py
marhoy/Koopen
50b45a1bc4e6b5a157758e3091925405a28920ab
[ "CC-BY-4.0" ]
null
null
null
import numpy as np def is_class(df): if (df["weekday"] == 0) & (11 <= df["hour"] < 16 ): return 1 if (df["weekday"] == 1) & (12 <= df["hour"] < 16): return 1 if (df["weekday"] == 2) & (8 <= df["hour"] < 16): return 1 if (df["weekday"] == 3) & (8 <= df["hour"] < 12): return 1 if (df["weekday"] == 4) & (8 <= df["hour"] < 14): return 1 return 0
31.923077
55
0.426506
4a23272d612a0b76ad94ba75b503e08efbf66d27
2,150
py
Python
superset/superset/db_engine_specs/clickhouse.py
smola/superset-compose
749803b1ad0df0f424a7f99ae0dbc6e429934c45
[ "Apache-2.0" ]
6
2019-06-14T11:16:54.000Z
2020-11-08T16:02:00.000Z
superset/superset/db_engine_specs/clickhouse.py
smola/superset-compose
749803b1ad0df0f424a7f99ae0dbc6e429934c45
[ "Apache-2.0" ]
203
2019-05-31T11:13:10.000Z
2020-03-31T02:50:54.000Z
superset/superset/db_engine_specs/clickhouse.py
smola/superset-compose
749803b1ad0df0f424a7f99ae0dbc6e429934c45
[ "Apache-2.0" ]
14
2019-05-31T11:32:40.000Z
2021-01-28T11:18:16.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=C,R,W from superset.db_engine_specs.base import BaseEngineSpec class ClickHouseEngineSpec(BaseEngineSpec): """Dialect for ClickHouse analytical DB.""" engine = "clickhouse" time_secondary_columns = True time_groupby_inline = True _time_grain_functions = { None: "{col}", "PT1M": "toStartOfMinute(toDateTime({col}))", "PT5M": "toDateTime(intDiv(toUInt32(toDateTime({col})), 300)*300)", "PT10M": "toDateTime(intDiv(toUInt32(toDateTime({col})), 600)*600)", "PT15M": "toDateTime(intDiv(toUInt32(toDateTime({col})), 900)*900)", "PT0.5H": "toDateTime(intDiv(toUInt32(toDateTime({col})), 1800)*1800)", "PT1H": "toStartOfHour(toDateTime({col}))", "P1D": "toStartOfDay(toDateTime({col}))", "P1W": "toMonday(toDateTime({col}))", "P1M": "toStartOfMonth(toDateTime({col}))", "P0.25Y": "toStartOfQuarter(toDateTime({col}))", "P1Y": "toStartOfYear(toDateTime({col}))", } @classmethod def convert_dttm(cls, target_type, dttm): tt = target_type.upper() if tt == "DATE": return "toDate('{}')".format(dttm.strftime("%Y-%m-%d")) if tt == "DATETIME": return "toDateTime('{}')".format(dttm.strftime("%Y-%m-%d %H:%M:%S")) return "'{}'".format(dttm.strftime("%Y-%m-%d %H:%M:%S"))
41.346154
80
0.66186
4a2327d6a465653f310b61b803d6dc17c20d6746
483
py
Python
tests/test_api.py
rafpyprog/pySGS
095c9c1326ff9d7b5ad38297841d2bbe22654a74
[ "MIT" ]
66
2018-02-02T16:23:11.000Z
2022-01-29T21:34:40.000Z
tests/test_api.py
rafpyprog/pySGS
095c9c1326ff9d7b5ad38297841d2bbe22654a74
[ "MIT" ]
22
2018-05-28T00:01:30.000Z
2021-03-20T16:25:08.000Z
tests/test_api.py
rafpyprog/pySGS
095c9c1326ff9d7b5ad38297841d2bbe22654a74
[ "MIT" ]
16
2019-01-13T16:07:45.000Z
2021-11-19T13:18:01.000Z
import pytest from sgs import api import pandas as pd @pytest.mark.api def test_get_data(): NUMBER_OF_LINES = 20 data = api.get_data(4, "02/01/2018", "31/01/2018") assert isinstance(data, list) assert len(data) == NUMBER_OF_LINES @pytest.mark.api def test_get_data_with_strict_range(): NUMBER_OF_LINES = 0 data = api.get_data_with_strict_range(20577, "17/08/2019", "18/08/2019") assert isinstance(data, list) assert len(data) == NUMBER_OF_LINES
21.954545
76
0.710145
4a2327eea34ccd3ddb84bfc4a0bc02d1ecc0eb50
1,823
py
Python
opencv_learn/biaoge.py
Max-PJB/python-learning2
e8b05bef1574ee9abf8c90497e94ef20a7f4e3bd
[ "MIT" ]
null
null
null
opencv_learn/biaoge.py
Max-PJB/python-learning2
e8b05bef1574ee9abf8c90497e94ef20a7f4e3bd
[ "MIT" ]
null
null
null
opencv_learn/biaoge.py
Max-PJB/python-learning2
e8b05bef1574ee9abf8c90497e94ef20a7f4e3bd
[ "MIT" ]
null
null
null
import os import shutil import cv2 import numpy as np from random import random, randint from math import sin, cos, atan2, pi, sqrt class Perspective: ''' 图形斜切变换 args: img - 图片(类型: cv::mat) bbox - 边框 [{'filename': '0.jpg', 'name': 'red_stop', 'bndbox': [299, 300, 373, 442]}, {...}, ...] 类别, [左上角x坐标, 左上角y坐标, 右下角x坐标, 右下角y坐标] ''' def __init__(self): self.count = 1 # 操作次数 self.warp_rate = 0.2 # 四个角斜切大小占图像的比例 def __call__(self, img, bboxes): for bbox in bboxes: for _ in range(self.count): new_img, new_bbox = self._perspective(img, bbox) img = new_img # 修改图片 bbox['bndbox'] = new_bbox # 修改bbox return img, bboxes def _perspective(self, img, bbox): new_bbox = bbox['bndbox'] x1, y1, x2, y2 = bbox['bndbox'] roi_img = img[y1:y2, x1:x2, :].copy() # 要处理的区域 img[y1:y2, x1:x2, :] = 0 # 原区域置黑 h, w, _ = roi_img.shape hr, wr = h*self.warp_rate, w*self.warp_rate # 左上,右上,左下,右下 pts = np.float32([[0, 0], [w, 0], [0, h], [w, h]]) pts_dst = np.float32([ [wr*random(), hr*random()], [w-wr*random(), hr*random()], [wr*random(), h-hr*random()], [w-wr*random(), h-hr*random()] ]) M = cv2.getPerspectiveTransform(pts, pts_dst) p_img = cv2.warpPerspective(roi_img, M, (h, w)) # 调整bbox new_h, new_w, _ = p_img.shape x2, y2 = x1+new_w, y1+new_h # 右下角坐标 img[y1:y2, x1:x2, :] = p_img # 将修改的区域放置图中 new_bbox = [x1, y1, x2, y2] # 修改bbox return img, new_bbox
30.383333
103
0.47943
4a23280129b71abe78de78094091a82ae957357c
261
py
Python
oddeven.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
oddeven.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
oddeven.py
mahendra1904/pythod-programs
d4d75dac65e9795ea5728f75d90aa0b39296b25e
[ "bzip2-1.0.6" ]
null
null
null
n=int(input("Enter a number"))#123 rev=0 temp=n while n>0:#n=123,12,1 rem=n%10#3,2,1 rev=rev*10+rem#3,32,321 n=n//10#12,1,0 if temp==rev: print("The given number is palindrome number") else: print("The number is not palindrome number")
20.076923
50
0.636015
4a23290ad4b252618fdd648d22283a9e4561fe39
1,880
py
Python
imnn/imnn/_imnn_test.py
InformationMaximisingNeuralNetworks/imnn
2eb04d9dc1acc4e8d1e60ef0bb25dfac17bd9f81
[ "MIT" ]
18
2019-03-15T09:08:11.000Z
2021-08-08T17:24:04.000Z
imnn/imnn/_imnn_test.py
InformationMaximisingNeuralNetworks/imnn
2eb04d9dc1acc4e8d1e60ef0bb25dfac17bd9f81
[ "MIT" ]
4
2019-03-21T14:56:23.000Z
2020-07-17T15:27:41.000Z
imnn/imnn/_imnn_test.py
InformationMaximisingNeuralNetworks/imnn
2eb04d9dc1acc4e8d1e60ef0bb25dfac17bd9f81
[ "MIT" ]
4
2019-11-21T20:54:27.000Z
2021-11-14T16:46:12.000Z
import pytest import jax.numpy as np from test.defaults import defaultTests from imnn.imnn._imnn import _IMNN test = defaultTests(imnn=_IMNN, filename="_imnn") # Test that all initialisation parameters correctly raise errors @pytest.mark.parametrize("kwargs", [test.kwargs, test.reduced_kwargs]) @pytest.mark.parametrize("state", [True, False]) @pytest.mark.parametrize( "input_variable", [None, list(), 1., 1, np.zeros((1,)), test.rng, tuple(), (0, 0), (test.model[0], 0), test.bad_model, test.state]) @pytest.mark.parametrize("variable", test.kwargs.keys()) def test_initialisation_parameters_(variable, kwargs, input_variable, state): test.initialise_parameters( variable, kwargs, input_variable, state=state, validate=False) # Test that all parameters passed to fit correctly raise errors @pytest.mark.parametrize("kwargs", [test.kwargs, test.reduced_kwargs]) @pytest.mark.parametrize("state", [True, False]) @pytest.mark.parametrize( "input_variable", [None, list(), 1., 1, np.zeros((1,)), test.rng]) @pytest.mark.parametrize("variable", test.fit_kwargs.keys()) def test_fit_parameters_(variable, kwargs, input_variable, state): test.fit_parameters( variable, kwargs, test.fit_kwargs, input_variable, state=state, validate=False) # Test that fitting correctly fails and get_estimate won't run and that plot # can be made @pytest.mark.parametrize("state", [True, False]) @pytest.mark.parametrize("fit", [True, False]) @pytest.mark.parametrize("none_first", [True, False]) @pytest.mark.parametrize("kwargs", [test.kwargs, test.reduced_kwargs]) def test_combined_running_test_(kwargs, state, fit, none_first): test.combined_running_test( [test.single_target_data, test.batch_target_data], kwargs, test.fit_kwargs, state=state, validate=False, fit=fit, none_first=none_first, implemented=False)
41.777778
77
0.739362
4a232b82b5e34c0b0cd80977266ba98940d3ba78
812
py
Python
notebooks/solutions/golomb.py
xoolive/edu_constraints
9fcb226c2bd37f7a9c74c7b83b59de607ec07e4b
[ "MIT" ]
1
2020-10-13T07:15:07.000Z
2020-10-13T07:15:07.000Z
notebooks/solutions/golomb.py
xoolive/edu_constraints
9fcb226c2bd37f7a9c74c7b83b59de607ec07e4b
[ "MIT" ]
null
null
null
notebooks/solutions/golomb.py
xoolive/edu_constraints
9fcb226c2bd37f7a9c74c7b83b59de607ec07e4b
[ "MIT" ]
7
2020-10-13T09:40:02.000Z
2020-11-03T07:21:24.000Z
import facile def golomb(n: int) -> facile.Solution: ticks = [facile.variable(range(2 ** n)) for i in range(n)] # First tick at the start of the ruler facile.constraint(ticks[0] == 0) # Ticks are ordered for i in range(n - 1): facile.constraint(ticks[i] < ticks[i + 1]) # All distances distances = [] for i in range(n - 1): for j in range(i + 1, n): distances.append(facile.variable(ticks[j] - ticks[i])) facile.constraint(facile.alldifferent(distances)) for d in distances: facile.constraint(d > 0) # Breaking the symmetry size = len(distances) facile.constraint(distances[size - 1] > distances[0]) return facile.minimize( ticks, ticks[n - 1], backtrack=True, on_solution=print ) print(golomb(9))
23.882353
66
0.614532
4a232bc70d6f58ad267d1f5e284b49fa227ef29c
756
py
Python
bothanasius/cogs/meta.py
bryanforbes/Bothanasius
2fb264f52de46c4ea3dccd57d23c76c9dd313e3e
[ "BSD-3-Clause" ]
null
null
null
bothanasius/cogs/meta.py
bryanforbes/Bothanasius
2fb264f52de46c4ea3dccd57d23c76c9dd313e3e
[ "BSD-3-Clause" ]
null
null
null
bothanasius/cogs/meta.py
bryanforbes/Bothanasius
2fb264f52de46c4ea3dccd57d23c76c9dd313e3e
[ "BSD-3-Clause" ]
null
null
null
from __future__ import annotations import logging from discord.ext import commands from ..context import Context from ..bothanasius import Bothanasius log = logging.getLogger(__name__) class Meta(commands.Cog[Context]): def __init__(self, bot: Bothanasius) -> None: self.bot = bot @commands.is_owner() @commands.command(name='reload', hidden=True) async def _reload(self, ctx: Context, module: str) -> None: try: self.bot.reload_extension(f'bothanasius.cogs.{module}') except commands.ExtensionError as e: await ctx.send(f'{e.__class__.__name__}: {e}') log.exception('Failed to load extension %s.', module) def setup(bot: Bothanasius) -> None: bot.add_cog(Meta(bot))
26.068966
67
0.677249
4a232c9d3e8eb8abd77a9cdd5aac9ab0c7b55646
5,381
py
Python
requires.py
openstack/charm-interface-rabbitmq
383121fc584d2d3bf9d233eba0d3708398a4c468
[ "Apache-2.0" ]
12
2016-07-07T23:42:18.000Z
2019-01-28T21:53:38.000Z
requires.py
openstack/charm-interface-rabbitmq
383121fc584d2d3bf9d233eba0d3708398a4c468
[ "Apache-2.0" ]
null
null
null
requires.py
openstack/charm-interface-rabbitmq
383121fc584d2d3bf9d233eba0d3708398a4c468
[ "Apache-2.0" ]
1
2018-10-11T15:48:50.000Z
2018-10-11T15:48:50.000Z
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 from charms.reactive import RelationBase from charms.reactive import hook from charms.reactive import scopes from charmhelpers.core import hookenv class RabbitMQRequires(RelationBase): scope = scopes.GLOBAL # These remote data fields will be automatically mapped to accessors # with a basic documentation string provided. auto_accessors = ['password', 'private-address', 'ssl_port', 'ssl_ca', 'ha_queues', 'ha-vip-only', 'clustered', 'vip'] def vhost(self): return self.get_local('vhost') def username(self): return self.get_local('username') @hook('{requires:rabbitmq}-relation-joined') def joined(self): self.set_state('{relation_name}.connected') def update_state(self): if self.base_data_complete(): self.set_state('{relation_name}.available') if self.ssl_data_complete(): self.set_state('{relation_name}.available.ssl') else: self.remove_state('{relation_name}.available.ssl') else: self.remove_state('{relation_name}.available') self.remove_state('{relation_name}.available.ssl') if not self.rabbitmq_connected_hosts(): self.remove_state('{relation_name}.connected') @hook('{requires:rabbitmq}-relation-changed') def changed(self): self.update_state() @hook('{requires:rabbitmq}-relation-{broken,departed}') def departed(self): self.update_state() def base_data_complete(self): """ Get the connection string, if available, or None. """ data = { 'hostname': self.private_address(), 'vhost': self.vhost(), 'username': self.username(), 'password': self.password(), } if all(data.values()): return True return False def ssl_data_complete(self): """ Get the connection string, if available, or None. """ data = { 'ssl_port': self.ssl_port(), 'ssl_ca': self.ssl_ca(), } if all(data.values()): return True return False def request_access(self, username, vhost, hostname=None): """ Request access to vhost for the supplied username. """ if not hostname: try: hostname = hookenv.network_get_primary_address( self.conversation().relation_name ) except NotImplementedError: hostname = hookenv.unit_private_ip() relation_info = { 'username': username, 'vhost': vhost, 'private-address': hostname, } self.set_local(**relation_info) self.set_remote(**relation_info) def configure(self, username, vhost): """ DEPRECATED: use request_access instead Request access to vhost for the supplied username. """ self.request_access(username, vhost) def get_remote_all(self, key, default=None): """Return a list of all values presented by remote units for key""" values = [] for conversation in self.conversations(): for relation_id in conversation.relation_ids: for unit in hookenv.related_units(relation_id): value = hookenv.relation_get(key, unit, relation_id) or default if value: values.append(value) return list(set(values)) def rabbitmq_connected_hosts(self): """Return list of connected rabbit units.""" return self.get_remote_all('private-address') def rabbitmq_ready_hosts(self): """Return list of rabbit units ready to accept client connections.""" hosts = [] for conversation in self.conversations(): for relation_id in conversation.relation_ids: for unit in hookenv.related_units(relation_id): rdata = hookenv.relation_get(unit=unit, rid=relation_id) if rdata.get('password') and rdata.get('private-address'): hosts.append(rdata['private-address']) return sorted(hosts) def rabbitmq_hosts(self): """ DEPRECATED: Use rabbitmq_connected_hosts or rabbitmq_ready_hosts Return list of rabbit units ready to accept client connections.""" return self.rabbitmq_ready_hosts() def get_ssl_cert(self): """Return decoded CA cert from rabbit or None if no CA present""" if self.ssl_ca(): return base64.b64decode(self.ssl_ca()).decode('utf-8') return None
35.169935
79
0.60565
4a232e33c209c63692082e6204eb3fc5384b8e81
670
py
Python
app/tests/tech/plasma_attacker.py
systemicsmitty/TI4_battle_sim
b4ed142ff57d19ed50705ba40f83b8b3b7e3a774
[ "MIT" ]
3
2021-05-12T20:32:06.000Z
2022-02-25T21:29:23.000Z
app/tests/tech/plasma_attacker.py
systemicsmitty/TI4_battle_sim
b4ed142ff57d19ed50705ba40f83b8b3b7e3a774
[ "MIT" ]
109
2021-01-10T11:09:11.000Z
2021-03-25T20:33:13.000Z
app/tests/tech/plasma_attacker.py
systemicsmitty/TI4_battle_sim
b4ed142ff57d19ed50705ba40f83b8b3b7e3a774
[ "MIT" ]
1
2021-03-25T00:49:12.000Z
2021-03-25T00:49:12.000Z
import os import sys sys.path.insert(1, os.path.join(sys.path[0], '../../..')) import app.calculator.calculator as calc from app import testing_helpers attacker, defender, options, tol = testing_helpers.defaults() # target source: http://alphamou.se/ti4calc/ target = [3, 86, 11] # target percentages; [tie, attacker, defender] print("1 Fighter 1 PDS (Plasma Scoring) vs 1 Fighter") # Units attacker["fighter"] = 1 attacker["pds"] = 1 defender["fighter"] = 1 # Factions # Ground Combat options["ground_combat"] = False # Options options["att_plasma"] = True outcomes = calc.calculate(attacker, defender, options) testing_helpers.evaluate(outcomes, target, tol)
23.103448
69
0.726866
4a232e3ea4158158a05476ec4dae24e39a50c0a2
4,146
py
Python
purity_fb/purity_fb_1dot9/models/support_response.py
mabdelhafez/purity_fb_python_client
a9856875b3df43b4302a2e4addd1a6b71f51f5ce
[ "Apache-2.0" ]
null
null
null
purity_fb/purity_fb_1dot9/models/support_response.py
mabdelhafez/purity_fb_python_client
a9856875b3df43b4302a2e4addd1a6b71f51f5ce
[ "Apache-2.0" ]
null
null
null
purity_fb/purity_fb_1dot9/models/support_response.py
mabdelhafez/purity_fb_python_client
a9856875b3df43b4302a2e4addd1a6b71f51f5ce
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Pure Storage FlashBlade REST 1.9 Python SDK Pure Storage FlashBlade REST 1.9 Python SDK, developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.9 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class SupportResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'pagination_info': 'PaginationInfo', 'items': 'list[Support]' } attribute_map = { 'pagination_info': 'pagination_info', 'items': 'items' } def __init__(self, pagination_info=None, items=None): """ SupportResponse - a model defined in Swagger """ self._pagination_info = None self._items = None if pagination_info is not None: self.pagination_info = pagination_info if items is not None: self.items = items @property def pagination_info(self): """ Gets the pagination_info of this SupportResponse. pagination information, only available in GET requests :return: The pagination_info of this SupportResponse. :rtype: PaginationInfo """ return self._pagination_info @pagination_info.setter def pagination_info(self, pagination_info): """ Sets the pagination_info of this SupportResponse. pagination information, only available in GET requests :param pagination_info: The pagination_info of this SupportResponse. :type: PaginationInfo """ self._pagination_info = pagination_info @property def items(self): """ Gets the items of this SupportResponse. a list of support objects :return: The items of this SupportResponse. :rtype: list[Support] """ return self._items @items.setter def items(self, items): """ Sets the items of this SupportResponse. a list of support objects :param items: The items of this SupportResponse. :type: list[Support] """ self._items = items def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, SupportResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
26.922078
204
0.573806
4a232fe9564372234ceee65a6374e1979d68bbc5
3,234
py
Python
src/toml_config/settings.py
meaksh/bgzfiltra
4724bd919c7c440f5388c8718d3d75cd637e51f4
[ "MIT" ]
1
2021-05-26T15:44:57.000Z
2021-05-26T15:44:57.000Z
src/toml_config/settings.py
meaksh/bgzfiltra
4724bd919c7c440f5388c8718d3d75cd637e51f4
[ "MIT" ]
1
2021-05-19T09:55:27.000Z
2021-05-19T09:55:27.000Z
src/toml_config/settings.py
meaksh/bgzfiltra
4724bd919c7c440f5388c8718d3d75cd637e51f4
[ "MIT" ]
1
2021-05-26T15:48:52.000Z
2021-05-26T15:48:52.000Z
import os import sys import toml def get_settings(): """\ Loads TOML settings from one of the defined paths: ./.bgzfiltra.toml ./bgzfiltra.toml ~/.bgzfiltra.toml ~/.config/bgzfiltra.toml /etc/bgzfiltra.toml """ paths = ( "./.bgzfiltra.toml", "./bgzfiltra.toml", "~/.bgzfiltra.toml", "~/.config/bgzfiltra.toml", "/etc/bgzfiltra.toml", ) settings = None for path in paths: path = os.path.expanduser(path) if ( os.path.isfile(path) and not os.path.isdir(path) and not os.path.islink(path) ): settings = toml.load(path) break if not settings: print( "Could not find settings file in any of these locations:\n{}".format( "\n".join(paths) ) ) sys.exit(3) _bugzilla_section_checks(settings) _questdb_section_checks(settings) return settings def _questdb_section_checks(settings): """ QuestDB specific setting validations. """ if not settings.get("questdb"): print( 'questdb section missing in settings file:\n[questdb]\nuser = "admin"\n…', file=sys.stderr, ) sys.exit(2) if "user" not in settings["questdb"]: print( 'username definition missing in questdb section: user = "admin"', file=sys.stderr, ) sys.exit(2) if "password" not in settings["questdb"]: print( 'password definition missing in questdb section: password = "mypassword"', file=sys.stderr, ) sys.exit(2) if "host" not in settings["questdb"]: print( 'host definition missing in questdb section: host = "127.0.0.1"', file=sys.stderr, ) sys.exit(2) if "port" not in settings["questdb"]: print( 'port definition missing in questdb section: port = "8812"', file=sys.stderr, ) sys.exit(2) if "database" not in settings["questdb"]: print( 'database definition missing in questdb section: database = "mydb"', file=sys.stderr, ) sys.exit(2) def _bugzilla_section_checks(settings): """ Bugzilla specific setting validations. """ if not settings.get("bugzilla"): print( 'bugzilla section missing in settings file:\n[bugzilla]\nusernames = "[email protected]"\npassword = "mypassword"', file=sys.stderr, ) sys.exit(2) if "url" not in settings["bugzilla"]: print( 'url definition missing in settings file: url = "bugzilla.myurl.com"', file=sys.stderr, ) sys.exit(2) if "username" not in settings["bugzilla"]: print( 'username definition missing in settings file: usernames = "[email protected]"', file=sys.stderr, ) sys.exit(2) if "password" not in settings["bugzilla"]: print( 'password definition missing in settings file: password = "mypassword"', file=sys.stderr, ) sys.exit(2)
28.368421
120
0.544836
4a233018ca957db3a0b1948e2f587534d9872ba5
8,445
py
Python
aggregation-repulsion-parameter-search.py
fberlinger/UndercoverBot
ce6c1c02114cf52b0afe03af452398f7ccf12d2f
[ "MIT" ]
null
null
null
aggregation-repulsion-parameter-search.py
fberlinger/UndercoverBot
ce6c1c02114cf52b0afe03af452398f7ccf12d2f
[ "MIT" ]
null
null
null
aggregation-repulsion-parameter-search.py
fberlinger/UndercoverBot
ce6c1c02114cf52b0afe03af452398f7ccf12d2f
[ "MIT" ]
null
null
null
import matplotlib matplotlib.rcParams['figure.figsize'] = [12, 8] import math import numpy as np from queue import Queue, PriorityQueue import time import matplotlib.patches as mpatches import matplotlib.pyplot as plt from interaction import Interaction from environment import Environment from DelightFish import Fish from channel import Channel from observer import Observer from utils import generate_distortion, generate_fish, generate_replica_fish, generate_all_fish, run_simulation """ This file runs tests used to set the parameter for the Delight Fish. When run, it will output graphs of varying values of K_ar parameter. """ # 21 categorical colors. Used for plotting colors = [ [230/255, 25/255, 75/255, 1.0], [60/255, 180/255, 75/255, 1.0], [255/255, 225/255, 25/255, 1.0], [0/255, 130/255, 200/255, 1.0], [245/255, 130/255, 48/255, 1.0], [145/255, 30/255, 180/255, 1.0], [70/255, 240/255, 240/255, 1.0], [240/255, 50/255, 230/255, 1.0], [210/255, 245/255, 60/255, 1.0], [250/255, 190/255, 190/255, 1.0], [0/255, 128/255, 128/255, 1.0], [230/255, 190/255, 255/255, 1.0], [170/255, 110/255, 40/255, 1.0], [255/255, 250/255, 200/255, 1.0], [128/255, 0/255, 0/255, 1.0], [170/255, 255/255, 195/255, 1.0], [128/255, 128/255, 0/255, 1.0], [255/255, 215/255, 180/255, 1.0], [0/255, 0/255, 128/255, 1.0], [128/255, 128/255, 128/255, 1.0], [0/255, 0/255, 0/255, 1.0], ] def run_trial(run_time, num_fish, initial_spread, k_ar, alpha): """ Run a single simulation. Arguments: run_time {int} -- Length of time to run simulation num_fish {int} -- Number of fish in swarm initial_spread {int} -- Initial spread of fish's randomly initialized positions. This is essentially the max diameter of the school, where we to encircle it, at the start of the simulation k_ar {float} -- Paramter used by delight fish to weight importance of each neighbor's contribution to final velocity alpha {float} -- Equilibrium distance for Delight Fish's neighbors Returns: fish_xs {list of int lists} - x positions of each fish at each timestep. fish_ys {list of int lists} - y positions of each fish at each timestep neighbor_distances {float list} -- the average distance between a fish and its detected neighbors across all time steps avg_speeds {float list} -- the average speed of all fish at each time step """ run_time = run_time # in seconds num_fish = num_fish num_replica_fish = 0 arena_size = 200 arena_center = arena_size / 2.0 initial_spread = initial_spread fish_pos = initial_spread * np.random.rand(num_fish + num_replica_fish, 2) + arena_center - initial_spread / 2.0 clock_freqs = 1 verbose = False distortion = generate_distortion(type='none', n=arena_size) environment = Environment( node_pos=fish_pos, distortion=distortion, prob_type='binary', noise_magnitude=0, conn_thres=100, verbose=verbose ) interaction = Interaction(environment, verbose=verbose) channel = Channel(environment) fish = generate_all_fish( n_fish=num_fish, n_replica_fish= num_replica_fish, channel=channel, interaction=interaction, k_coh = 0, k_ar = k_ar, alpha = alpha, lim_neighbors=[0, math.inf], neighbor_weights=1.0, fish_max_speeds=9, clock_freqs=clock_freqs, verbose=verbose ) channel.set_nodes(fish) observer = Observer(fish=fish, environment=environment, channel=channel) run_simulation(fish=fish, observer=observer, run_time=run_time, dark=True, white_axis=False, no_legend=True, no_star=False, show_dist_plot=True, plot=False) fish_xs = observer.x fish_ys = observer.y neighbor_distances = observer.avg_dist avg_speeds = observer.avg_speed return fish_xs, fish_ys, neighbor_distances, avg_speeds def plot_fish(ax, fish_xs, fish_ys, title): """ Generate a visualization of the fish in simulation Arguements: ax {matplotlib Axis} -- axis to plot the fish on fish_xs {list of int lists} -- list of each fish's x position over time indexed by fish id fish_ys {list of int lists} -- list of each fish's y position over time. Indexed by fish id title {string} -- Title to add to top of plot. """ num_fish = len(fish_xs) for i in range(num_fish): c = colors[i%20] if i != 0 and not i % 20: c = [1.0, 1.0, 1.0, 1.0] # Plot fish trajectories ax.plot(fish_xs[i], fish_ys[i], c=c, linewidth=2.0, alpha=0.4) ax.scatter(fish_xs[i], fish_ys[i], c=c, marker='o', alpha=0.2) # plot fish start ax.scatter(fish_xs[i][0], fish_ys[i][0], c=c, marker='>', s=200, alpha=0.5) # plot fish final ax.scatter(fish_xs[i][-1], fish_ys[i][-1], c=c, marker='s', s=200,alpha=1, zorder = 100) # format black background, white axis ax.set_facecolor((0, 0, 0)) ax.spines['top'].set_color('black') ax.spines['right'].set_color('black') ax.set_title(title) def plot_dist(ax, distances): """ Plot the average distance between a fish and its neighbors over the course of a simulation. Arguements: ax {Matplotlib Axis} -- the axis to make the plot on distances {flot list} -- the average distance at each timestep """ ax.plot(range(len(distances)), distances) ax.scatter(range(len(distances)), distances) ax.set_xlabel("Time") ax.set_ylabel("Mean neighbor spacing") ax.set_title("Mean neighbor spacing over time") def plot_speed(ax, speeds): """ Plot the average speed of a fish over the course of a simulation. Arguements: ax {Matplotlib Axis} -- the axis to make the plot on distances {flot list} -- the average speed at each timestep """ ax.plot(range(len(speeds)), speeds) ax.scatter(range(len(speeds)), speeds) ax.set_xlabel("Time") ax.set_ylabel("Mean swarm speed") ax.set_title("Mean swarm speed over time") def main(): """ Search through varying preset parameters for k_ar. You can also vary alpha, the goal fish distance, to see how the weight parameter's effectiveness changes. At conclusion, the program will output a plot for each inputs with the simulation visualized and average neighbor distance and average speed over time. There are also two plots for neighbor distance and average speed with data from all parameter values aggregated into a single graph. This graph is most useful for deciding on a final value for k_ar """ _, (dist_ax, speed_ax) = plt.subplots(2,1) ks = [0.03, 0.01, 0.005, 0.003] #alphas = [0.5, 1, 2, 3.5, 4] fish = 25 alpha = 40 initial_spread = 20 time = 20 for k in ks: #for alpha in alphas: xs, ys, neighbors, speeds = run_trial(time, fish, initial_spread, k, alpha) # create figure for this trial fig = plt.figure(figsize=(12, 8)) gridsize = (3, 2) fish_ax = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2) trial_dist_ax = plt.subplot2grid(gridsize, (2, 0)) trial_speed_ax = plt.subplot2grid(gridsize, (2, 1)) title = "{} fish, {} initial spread, {} k_ar, {} time, {} alpha".format(fish, initial_spread, k, time, alpha) plot_fish(fish_ax, xs, ys, title) plot_dist(trial_dist_ax, neighbors) plot_speed(trial_speed_ax, speeds) # Add to all parameter search figure dist_ax.plot(range(len(neighbors)), neighbors, label = "k = {}, alpha = {}".format(k, alpha)) speed_ax.plot(range(len(speeds)), speeds, label = "k = {}, alpha = {}".format(k, alpha)) # add titles and formatting to stability fig dist_ax.set_xlabel("Time") dist_ax.set_ylabel("Mean neighbor spacing") dist_ax.legend() dist_ax.set_title("Spacing over time for varying values of k") speed_ax.set_xlabel("Time") speed_ax.set_ylabel("Mean swarm speed") speed_ax.legend() speed_ax.set_title("Swarm speed over time for varying values of k") plt.show() if __name__ == '__main__': main()
33.78
117
0.644168
4a233132ed2e659c2fe215c8b426df73748556e1
7,478
py
Python
PyChan/Core/Commands/Help/help.py
ErnestBytnar/PyChan-Bot
7ce38547fa85e6f56c1702db5bea4ef2700d9b6f
[ "MIT" ]
null
null
null
PyChan/Core/Commands/Help/help.py
ErnestBytnar/PyChan-Bot
7ce38547fa85e6f56c1702db5bea4ef2700d9b6f
[ "MIT" ]
null
null
null
PyChan/Core/Commands/Help/help.py
ErnestBytnar/PyChan-Bot
7ce38547fa85e6f56c1702db5bea4ef2700d9b6f
[ "MIT" ]
null
null
null
import discord from discord.ext import commands from Core.Decorators.decorators import Decorator from Core.Commands.Settings.Functions.get_server_prefix import GetServerPrefix class Help(commands.Cog): """Class contains help methods """ def __init__(self, bot): """Constructor method """ self.bot = bot @commands.group(invoke_without_command=True) @Decorator.pychan_decorator async def help(self, ctx): """Sends message with built-in funtions :param ctx: the context in which a command is called :type ctx: discord.ext.commands.Context """ prefix = GetServerPrefix.get_server_prefix(self, ctx) embed = discord.Embed(title='Help', description=f'Wpisz `{prefix}help <nazwa_komendy>` aby uzyskać więcej informacji.\n' '\n' 'Dostępne komendy:', color=discord.Color.dark_purple()) embed.add_field(name='Nauka', value='`zamiana`, `zamiana+`, `ieee754_32`, `ieee754_64`, `permutacje`, `booth`', inline=False) embed.add_field(name='Obraz', value='`ocr`, `apod`, `qr`', inline=False) embed.add_field(name='Tekst', value='`ciekawostka`', inline=False) embed.add_field(name='SKNIKOD', value='`listaCzlonkow`', inline=False) await ctx.send(embed=embed) @help.command(name='zamiana') async def zamiana_help(self, ctx): embed = discord.Embed(title='Zamiana', description='Zamienia liczbę z dowolnego systemu liczbowego na inny z przedziału <2,16>', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`zamiana <system z którego zamienamy> <do którego zamieniamy> <liczba>`', inline=False) await ctx.send(embed=embed) @help.command(name='zamiana+') async def zamiana_z_rozpisaniem_help(self, ctx): embed = discord.Embed(title='Zamiana+', description='Zamienia liczbę z dowolnego systemu liczbowego na inny z przedziału <2,16>, lecz wraz z rozpisaniem pisemnym zamiany liczb', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`zamiana+ <system z którego zamienamy> <do którego zamieniamy> <liczba>`', inline=False) await ctx.send(embed=embed) @help.command(name='ieee754_32') async def ieee754_32_help(self, ctx): embed = discord.Embed(title='IEEE754 32bit', description='Zamienia dowolną liczbę w systemie dziesiętnym w liczbę binarną przy użyciu zapisu liczby zmiennoprzecinkowej w standarcie IEEE754 32bit', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`ieee754_32 <liczba>`', inline=False) await ctx.send(embed=embed) @help.command(name='ieee754_64') async def ieee754_64_help(self, ctx): embed = discord.Embed(title='IEEE754 64bit', description='Zamienia dowolną liczbę w systemie dziesiętnym w liczbę binarną przy użyciu zapisu liczby zmiennoprzecinkowej w standarcie IEEE754 64bit', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`ieee754_64 <liczba>`', inline=False) await ctx.send(embed=embed) @help.command(name='permutacje') async def permutacje_help(self, ctx): embed = discord.Embed(title='permutacje', description='Szereg funkcji służących do obliczania permutacji', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`permutacje info <permutacja>` - wyświetla informacje o permutacji\n' '`permutacje losuj <Sn>` - losuje permutacje w podanym Sn\n' '`permutacje potega <wykładnik> <permutacja>` - Podnosi permutację do potęgi\n' '`permutacje generuj <numer permutacji> <Sn>` - Generuje permutację na podstawie numeru w porządku leksykograficznym\n', inline=False) embed.add_field(name='Aliasy komendy', value='`permutacje`, `perm`, `p`', inline=False) embed.add_field(name='Dodatkowe informacje', value='Przykłady zapisu permutacji: `<5 2 3 1 4>` lub `(1 5 4)(2)(3)` lub `<5 1 3 2 4>#(4 2 3)#(1 2 5)`', inline=False) await ctx.send(embed=embed) @help.command(name='booth') async def booth_help(self, ctx): embed = discord.Embed(title='Algorytm Booth\'a', description='Mnoży dwie liczby całkowite z użyciem algorytmu Booth\'a i wyświetla kroki.', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`booth <P> <Q>` - gdzie P i Q to liczby całkowite', inline=False) await ctx.send(embed=embed) @help.command(name='ocr') async def ocr_help(self, ctx): embed = discord.Embed(title='OCR', description='Wyciąga tekst z obrazka i wysyła na czat \n' 'Należy pamiętać o dołączeniu obrazka .jpg lub .png do wiadomości', color=discord.Color.dark_purple()) await ctx.send(embed=embed) @help.command(name='qr') async def qr_help(self, ctx): embed = discord.Embed(title='QR', description='Tworzy kod QR\n' 'Przyjmuje link do strony jako argument', color=discord.Color.dark_purple()) embed.add_field(name='Składnia', value='`qr <link>`', inline=False) await ctx.send(embed=embed) @help.command(name='apod') async def apod_help(self, ctx): embed = discord.Embed(title='Astronomy picture of the day', description='Wysyła astronomiczne zdjęcie lub film dnia wraz z opisem', color=discord.Color.dark_purple()) await ctx.send(embed=embed) @help.command(name='listaCzlonkow') async def get_members_projects_help(self, ctx): embed = discord.Embed(title='listaCzlonkow', description='Wysyła plik txt z aktualną listą członków z rolą `Członek` i przypisanymi do nich projektami', color=discord.Color.dark_purple()) await ctx.send(embed=embed) @help.command(name='ciekawostka') async def fun_fact_help(self, ctx): embed = discord.Embed(title='ciekawostka', description='Wysyła losową ciekawostkę', color=discord.Color.dark_purple()) await ctx.send(embed=embed)
49.197368
181
0.555229
4a233201ac22c7991fd0361f054605d527b62a96
2,572
py
Python
assignments/models.py
manisharmagarg/oddnary
e2dea772d44d72773aa63c449d4082a9bf07dfe1
[ "Apache-2.0" ]
null
null
null
assignments/models.py
manisharmagarg/oddnary
e2dea772d44d72773aa63c449d4082a9bf07dfe1
[ "Apache-2.0" ]
null
null
null
assignments/models.py
manisharmagarg/oddnary
e2dea772d44d72773aa63c449d4082a9bf07dfe1
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.utils.translation import ugettext_lazy as _ from django.contrib.auth import get_user_model from utils.base_model import BaseModel from utils.upload_location import ( assignment_file_location, assignment_solution_file_location ) from courses.models import ( Course, CourseSection, ) # Create your models here. User = get_user_model() class Assignment(BaseModel): course = models.ForeignKey(Course, related_name='assignments') course_section = models.ForeignKey(CourseSection, related_name='assignments', null=True, blank=True) name = models.CharField(_('name'), max_length=512) description = models.TextField(_('description'), null=True, blank=True) index = models.IntegerField(_('index'), default=0, blank=True) is_active = models.BooleanField(_('is_active'), default=False) is_deleted = models.BooleanField(_('is_deleted'), default=False) def __str__(self): return "{} - {}".format(self.course, self.name) class Meta: ordering = ('course', 'index', '-created_at',) class AssignmentFile(BaseModel): assignment = models.ForeignKey(Assignment, related_name='files') name = models.CharField(_('name'), max_length=512) file = models.FileField(_('file'), max_length=2048, upload_to=assignment_file_location) description = models.TextField(_('description'), null=True, blank=True) index = models.IntegerField(_('index'), default=0, blank=True) is_active = models.BooleanField(_('is_active'), default=False) is_deleted = models.BooleanField(_('is_deleted'), default=False) def __str__(self): return "{} - {}".format(self.assignment, self.name) class Meta: ordering = ('assignment', 'index', '-created_at',) class AssignmentSolution(BaseModel): assignment = models.ForeignKey(Assignment, related_name='solutions') user = models.ForeignKey(User, related_name='assignment_solutions',) comment = models.TextField(null=True, blank=False) def __str__(self): return "{}".format(self.assignment) class AssignmentSolutionFile(BaseModel): assignment_solution = models.ForeignKey(AssignmentSolution, related_name='files') name = models.CharField(max_length=128, null=True, blank=True) comment = models.TextField(null=True, blank=True) file = models.FileField(_('file'), max_length=2048, upload_to=assignment_solution_file_location) def __str__(self): return "{} - {}".format(self.assignment_solution, self.name)
37.275362
100
0.710731
4a233449a633487efd89f9568a2194ccd27eaba7
4,343
py
Python
multiworld/core/image_env.py
stevenlin1111/multiworld
7576a00b884f629ad5de86f6c8a3618770273029
[ "MIT" ]
null
null
null
multiworld/core/image_env.py
stevenlin1111/multiworld
7576a00b884f629ad5de86f6c8a3618770273029
[ "MIT" ]
null
null
null
multiworld/core/image_env.py
stevenlin1111/multiworld
7576a00b884f629ad5de86f6c8a3618770273029
[ "MIT" ]
1
2021-08-13T23:47:47.000Z
2021-08-13T23:47:47.000Z
import cv2 import mujoco_py import numpy as np import warnings from PIL import Image from gym.spaces import Box, Dict from multiworld.core.wrapper_env import ProxyEnv class ImageEnv(ProxyEnv): def __init__( self, wrapped_env, imsize=84, init_camera=None, transpose=False, grayscale=False, normalize=False, ): self.quick_init(locals()) super().__init__(wrapped_env) self.wrapped_env.hide_goal_markers = True self.imsize = imsize self.init_camera = init_camera self.transpose = transpose self.grayscale = grayscale self.normalize = normalize if grayscale: self.image_length = self.imsize * self.imsize else: self.image_length = 3 * self.imsize * self.imsize # This is torch format rather than PIL image self.image_shape = (self.imsize, self.imsize) # Flattened past image queue # init camera if init_camera is not None: sim = self._wrapped_env.initialize_camera(init_camera) # viewer = mujoco_py.MjRenderContextOffscreen(sim, device_id=-1) # init_camera(viewer.cam) # sim.add_render_context(viewer) self._render_local = False self._img_goal = None img_space = Box(0, 1, (self.image_length,)) spaces = self.wrapped_env.observation_space.spaces spaces['observation'] = img_space spaces['desired_goal'] = img_space spaces['achieved_goal'] = img_space spaces['image_observation'] = img_space spaces['image_desired_goal'] = img_space spaces['image_achieved_goal'] = img_space self.observation_space = Dict(spaces) def step(self, action): obs, reward, done, info = self.wrapped_env.step(action) new_obs = self._update_obs(obs) return new_obs, reward, done, info def reset(self): obs = self.wrapped_env.reset() env_state = self.wrapped_env.get_env_state() self.wrapped_env.set_to_goal(self.wrapped_env.get_goal()) self._img_goal = self._get_flat_img() self.wrapped_env.set_env_state(env_state) return self._update_obs(obs) def _update_obs(self, obs): img_obs = self._get_flat_img() obs['image_observation'] = img_obs obs['image_desired_goal'] = self._img_goal obs['image_achieved_goal'] = img_obs obs['observation'] = img_obs obs['desired_goal'] = self._img_goal obs['achieved_goal'] = img_obs return obs def _get_flat_img(self): # returns the image as a torch format np array image_obs = self._wrapped_env.get_image() if self._render_local: cv2.imshow('env', image_obs) cv2.waitKey(1) if self.grayscale: image_obs = Image.fromarray(image_obs).convert('L') image_obs = np.array(image_obs) if self.normalize: image_obs = image_obs / 255.0 if self.transpose: image_obs = image_obs.transpose() return image_obs.flatten() def enable_render(self): self._render_local = True """ Multitask functions """ def get_goal(self): goal = self.wrapped_env.get_goal() goal['desired_goal'] = self._img_goal goal['image_desired_goal'] = self._img_goal return goal def sample_goals(self, batch_size): if batch_size > 1: warnings.warn("Sampling goal images is slow") img_goals = np.zeros((batch_size, self.image_length)) goals = self.wrapped_env.sample_goals(batch_size) for i in range(batch_size): goal = self.unbatchify_dict(goals, i) self.wrapped_env.set_to_goal(goal) img_goals[i, :] = self._get_flat_img() goals['desired_goal'] = img_goals goals['image_desired_goal'] = img_goals return goals def compute_rewards(self, achieved_goals, desired_goals, info): return - np.linalg.norm(achieved_goals - desired_goals, axis=1) def normalize_image(image): assert image.dtype == np.uint8 return np.float64(image) / 255.0 def unormalize_image(image): assert image.dtype != np.uint8 return np.uint8(image * 255.0)
33.666667
76
0.63067
4a23346e4c2c74e08459b200c85a6b9db2bf7fa1
306
py
Python
good/users/apps.py
choi010521/good
7c10ab403f681591d70d22970e2d5f1e3dea9c84
[ "MIT" ]
null
null
null
good/users/apps.py
choi010521/good
7c10ab403f681591d70d22970e2d5f1e3dea9c84
[ "MIT" ]
null
null
null
good/users/apps.py
choi010521/good
7c10ab403f681591d70d22970e2d5f1e3dea9c84
[ "MIT" ]
null
null
null
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class UsersConfig(AppConfig): name = "good.users" verbose_name = _("Users") def ready(self): try: import good.users.signals # noqa F401 except ImportError: pass
21.857143
54
0.647059
4a23355c0c1a10731bca26dd9492fc53ad3e3837
70
py
Python
dltb/tool/face/__init__.py
Petr-By/qtpyvis
0b9a151ee6b9a56b486c2bece9c1f03414629efc
[ "MIT" ]
3
2017-10-04T14:51:26.000Z
2017-10-22T09:35:50.000Z
dltb/tool/face/__init__.py
CogSciUOS/DeepLearningToolbox
bf07578b9486d8c48e25df357bc4b9963b513b46
[ "MIT" ]
13
2017-11-26T10:05:00.000Z
2018-03-11T14:08:40.000Z
dltb/tool/face/__init__.py
CogSciUOS/DeepLearningToolbox
bf07578b9486d8c48e25df357bc4b9963b513b46
[ "MIT" ]
2
2017-09-24T21:39:42.000Z
2017-10-04T15:29:54.000Z
from .detector import Detector from .landmarks import FacialLandmarks
23.333333
38
0.857143
4a23364cde0e837c9fb3ec57044e267dce0235d7
384
py
Python
leetcode/__init__.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
leetcode/__init__.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
leetcode/__init__.py
SaitoTsutomu/leetcode
4656d66ab721a5c7bc59890db9a2331c6823b2bf
[ "MIT" ]
null
null
null
from typing import Dict, List, Tuple # noqa from .convert import main # noqa from .etc.imported import * # noqa from .etc.list_node import * # noqa from .etc.tree_node import * # noqa null = None # noqa try: import pkg_resources __version__ = pkg_resources.get_distribution(__package__).version except pkg_resources.DistributionNotFound: __version__ = "Unknown"
24
69
0.739583
4a23385ed652576d7b9b4ad8ad3191e06514406b
11,220
py
Python
utils/routine.py
CreeperLin/PyTorch_ProxylessNAS
9ab6d7bf284d31196f7cf985d29c62aa1c172c8c
[ "MIT" ]
9
2019-11-06T07:19:09.000Z
2021-09-17T02:44:49.000Z
utils/routine.py
Kyrie-Zhao/PyTorch_ProxylessNAS
9ab6d7bf284d31196f7cf985d29c62aa1c172c8c
[ "MIT" ]
2
2021-04-24T22:23:23.000Z
2021-04-24T22:24:18.000Z
utils/routine.py
Kyrie-Zhao/PyTorch_ProxylessNAS
9ab6d7bf284d31196f7cf985d29c62aa1c172c8c
[ "MIT" ]
4
2020-03-01T06:47:41.000Z
2021-09-17T02:44:51.000Z
# -*- coding: utf-8 -*- import os import torch import torch.nn as nn import torch.nn.functional as F import itertools import utils from visualize import plot from utils.profiling import tprof import genotypes as gt from models.nas_modules import NASModule def save_checkpoint(out_dir, model, w_optim, a_optim, lr_scheduler, epoch, logger): try: save_path = os.path.join(out_dir, 'chkpt_%03d.pt' % (epoch+1)) torch.save({ 'model': model.state_dict(), 'arch': NASModule.nasmod_state_dict(), 'w_optim': w_optim.state_dict(), 'a_optim': a_optim.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, }, save_path) logger.info("Saved checkpoint to: %s" % save_path) except Exception as e: logger.error("Save checkpoint failed: "+str(e)) def save_genotype(out_dir, genotype, epoch, logger): try: logger.info("genotype = {}".format(genotype)) save_path = os.path.join(out_dir, 'gene_{:03d}.gt'.format(epoch+1)) gt.to_file(genotype, save_path) logger.info("Saved genotype to: %s" % save_path) except: logger.error("Save genotype failed") def search(out_dir, chkpt_path, w_train_loader, a_train_loader, model, arch, writer, logger, device, config): valid_loader = a_train_loader w_optim = utils.get_optim(model.weights(), config.w_optim) a_optim = utils.get_optim(model.alphas(), config.a_optim) init_epoch = -1 if chkpt_path is not None: logger.info("Resuming from checkpoint: %s" % chkpt_path) checkpoint = torch.load(chkpt_path) model.load_state_dict(checkpoint['model']) NASModule.nasmod_load_state_dict(checkpoint['arch']) w_optim.load_state_dict(checkpoint['w_optim']) a_optim.load_state_dict(checkpoint['a_optim']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) init_epoch = checkpoint['epoch'] else: logger.info("Starting new training run") architect = arch(config, model) # warmup training loop logger.info('begin warmup training') try: if config.warmup_epochs > 0: warmup_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( w_optim, config.warmup_epochs, eta_min=config.w_optim.lr_min) last_epoch = 0 else: last_epoch = -1 tot_epochs = config.warmup_epochs for epoch in itertools.count(init_epoch+1): if epoch == tot_epochs: break lr = warmup_lr_scheduler.get_lr()[0] # training train(w_train_loader, None, model, writer, logger, architect, w_optim, a_optim, lr, epoch, tot_epochs, device, config) # validation cur_step = (epoch+1) * len(w_train_loader) top1 = validate(valid_loader, model, writer, logger, epoch, tot_epochs, cur_step, device, config) warmup_lr_scheduler.step() print("") except KeyboardInterrupt: print('skipped') lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( w_optim, config.epochs, eta_min=config.w_optim.lr_min, last_epoch=last_epoch) save_checkpoint(out_dir, model, w_optim, a_optim, lr_scheduler, init_epoch, logger) save_genotype(out_dir, model.genotype(), init_epoch, logger) # training loop logger.info('begin w/a training') best_top1 = 0. tot_epochs = config.epochs for epoch in itertools.count(init_epoch+1): if epoch == tot_epochs: break lr = lr_scheduler.get_lr()[0] model.print_alphas(logger) # training train(w_train_loader, a_train_loader, model, writer, logger, architect, w_optim, a_optim, lr, epoch, tot_epochs, device, config) # validation cur_step = (epoch+1) * len(w_train_loader) top1 = validate(valid_loader, model, writer, logger, epoch, tot_epochs, cur_step, device, config) # genotype genotype = model.genotype() save_genotype(out_dir, genotype, epoch, logger) # genotype as image if config.plot: for i, dag in enumerate(model.dags()): plot_path = os.path.join(config.plot_path, "EP{:02d}".format(epoch+1)) caption = "Epoch {} - DAG {}".format(epoch+1, i) plot(genotype.dag[i], dag, plot_path + "-dag_{}".format(i), caption) if best_top1 < top1: best_top1 = top1 best_genotype = genotype if config.save_freq != 0 and epoch % config.save_freq == 0: save_checkpoint(out_dir, model, w_optim, a_optim, lr_scheduler, epoch, logger) lr_scheduler.step() print("") logger.info("Final best Prec@1 = {:.4%}".format(best_top1)) logger.info("Best Genotype = {}".format(best_genotype)) tprof.stat_acc('model_'+NASModule.get_device()[0]) gt.to_file(best_genotype, os.path.join(out_dir, 'best.gt')) def augment(out_dir, chkpt_path, train_loader, valid_loader, model, writer, logger, device, config): w_optim = utils.get_optim(model.weights(), config.w_optim) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( w_optim, config.epochs, eta_min=config.w_optim.lr_min) init_epoch = -1 if chkpt_path is not None: logger.info("Resuming from checkpoint: %s" % chkpt_path) checkpoint = torch.load(chkpt_path) model.load_state_dict(checkpoint['model']) w_optim.load_state_dict(checkpoint['w_optim']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) init_epoch = checkpoint['epoch'] else: logger.info("Starting new training run") logger.info("Model params count: {:.3f} M, size: {:.3f} MB".format(utils.param_size(model), utils.param_count(model))) # training loop logger.info('begin training') best_top1 = 0. tot_epochs = config.epochs for epoch in itertools.count(init_epoch+1): if epoch == tot_epochs: break drop_prob = config.drop_path_prob * epoch / tot_epochs model.drop_path_prob(drop_prob) lr = lr_scheduler.get_lr()[0] # training train(train_loader, None, model, writer, logger, None, w_optim, None, lr, epoch, tot_epochs, device, config) lr_scheduler.step() # validation cur_step = (epoch+1) * len(train_loader) top1 = validate(valid_loader, model, writer, logger, epoch, tot_epochs, cur_step, device, config) # save if best_top1 < top1: best_top1 = top1 is_best = True else: is_best = False if config.save_freq != 0 and epoch % config.save_freq == 0: save_checkpoint(out_dir, model, w_optim, None, lr_scheduler, epoch, logger) print("") logger.info("Final best Prec@1 = {:.4%}".format(best_top1)) tprof.stat_acc('model_'+NASModule.get_device()[0]) def train(train_loader, valid_loader, model, writer, logger, architect, w_optim, a_optim, lr, epoch, tot_epochs, device, config): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() cur_step = epoch*len(train_loader) writer.add_scalar('train/lr', lr, cur_step) model.train() if not valid_loader is None: tr_ratio = len(train_loader) // len(valid_loader) val_iter = iter(valid_loader) eta_m = utils.ETAMeter(tot_epochs, epoch, len(train_loader)) eta_m.start() for step, (trn_X, trn_y) in enumerate(train_loader): trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True) N = trn_X.size(0) # phase 1. child network step (w) w_optim.zero_grad() tprof.timer_start('train') loss, logits = model.loss_logits(trn_X, trn_y, config.aux_weight) tprof.timer_stop('train') loss.backward() # gradient clipping if config.w_grad_clip > 0: nn.utils.clip_grad_norm_(model.weights(), config.w_grad_clip) w_optim.step() # phase 2. architect step (alpha) if not valid_loader is None and step % tr_ratio == 0: try: val_X, val_y = next(val_iter) except: val_iter = iter(valid_loader) val_X, val_y = next(val_iter) val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True) tprof.timer_start('arch') architect.step(trn_X, trn_y, val_X, val_y, lr, w_optim, a_optim) tprof.timer_stop('arch') prec1, prec5 = utils.accuracy(logits, trn_y, topk=(1, 5)) losses.update(loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step !=0 and step % config.print_freq == 0 or step == len(train_loader)-1: eta = eta_m.step(step) logger.info( "Train: [{:2d}/{}] Step {:03d}/{:03d} LR {:.3f} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%}) | ETA: {eta}".format( epoch+1, tot_epochs, step, len(train_loader)-1, lr, losses=losses, top1=top1, top5=top5, eta=utils.format_time(eta))) writer.add_scalar('train/loss', loss.item(), cur_step) writer.add_scalar('train/top1', prec1.item(), cur_step) writer.add_scalar('train/top5', prec5.item(), cur_step) cur_step += 1 logger.info("Train: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, tot_epochs, top1.avg)) tprof.stat_acc('model_'+NASModule.get_device()[0]) tprof.print_stat('train') tprof.print_stat('arch') def validate(valid_loader, model, writer, logger, epoch, tot_epochs, cur_step, device, config): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() model.eval() with torch.no_grad(): for step, (X, y) in enumerate(valid_loader): X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True) N = X.size(0) tprof.timer_start('validate') loss, logits = model.loss_logits(X, y, config.aux_weight) tprof.timer_stop('validate') prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5)) losses.update(loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step !=0 and step % config.print_freq == 0 or step == len(valid_loader)-1: logger.info( "Valid: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, tot_epochs, step, len(valid_loader)-1, losses=losses, top1=top1, top5=top5)) writer.add_scalar('val/loss', losses.avg, cur_step) writer.add_scalar('val/top1', top1.avg, cur_step) writer.add_scalar('val/top5', top5.avg, cur_step) logger.info("Valid: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, tot_epochs, top1.avg)) tprof.print_stat('validate') return top1.avg
39.230769
136
0.62139
4a23385fc80157946bb482b847cbba060ebb0e30
2,255
py
Python
BotData/ConfiG.py
SOUFIANEZAZA/fitness_1
9fcd1ed5135f34a4528f79f714538987750b0351
[ "Unlicense" ]
1
2020-11-02T12:23:37.000Z
2020-11-02T12:23:37.000Z
BotData/ConfiG.py
SOUFIANEZAZA/fitness_1
9fcd1ed5135f34a4528f79f714538987750b0351
[ "Unlicense" ]
null
null
null
BotData/ConfiG.py
SOUFIANEZAZA/fitness_1
9fcd1ed5135f34a4528f79f714538987750b0351
[ "Unlicense" ]
null
null
null
from MokupData.mokupfun import * from FunctionData.somefun import * # After Login Displaying Options def Option(): KMFHEADER() OPTIONLIST() while True: try: usrInp = input("\u001b[32m[+]\u001b[0m Enter Input:-") # If statment for option selection if usrInp == "1": clear() from BotData.MainBot import ig_teamhunter ig_teamhunter() if usrInp == "2": clear() from BotData.MainBot import ig_masslooker ig_masslooker() if usrInp == "3": clear() from BotData.MainBot import ig_rehashtag ig_rehashtag() if usrInp == "4": clear() from BotData.MainBot import ig_feedliker ig_feedliker() if usrInp == "5": clear() from BotData.MainBot import ig_inshackle ig_inshackle() if usrInp == "6": clear() from BotData.MainBot import ig_directmessage ig_directmessage() if usrInp == "7": clear() from BotData.MainBot import ig_nonfollowers ig_nonfollowers() if usrInp == "8": clear() from BotData.MainBot import ig_ProfileScraper ig_ProfileScraper() if usrInp == "9": clear() KMFHEADER() INSTRUCTIONS() DONATE() BackInp = input("\u001b[32m[+]\u001b[0m Enter Key to Main Menu ") if BackInp == "": clear() Option() else: clear() Option() if usrInp == "10": clear() KMFHEADER() LOGOUT() from BotData.MainBot import LogOut LogOut() else: from BotData.MainBot import ELSE_BOT ELSE_BOT() except KeyboardInterrupt: break clear() Option() clear() Option()
28.1875
81
0.439911
4a2338732f1ec949d037c26165b39cb80c317142
623
py
Python
services/alice/speech-kit/server.py
IlyaBerezhnoy/sensor_server
e2ab512d3596be6516ae9b4de28a8e0f767cce90
[ "MIT" ]
1
2018-05-11T13:34:07.000Z
2018-05-11T13:34:07.000Z
services/alice/speech-kit/server.py
IlyaBerezhnoy/sensor_server
e2ab512d3596be6516ae9b4de28a8e0f767cce90
[ "MIT" ]
null
null
null
services/alice/speech-kit/server.py
IlyaBerezhnoy/sensor_server
e2ab512d3596be6516ae9b4de28a8e0f767cce90
[ "MIT" ]
null
null
null
#!/bin/python from flask import Flask, jsonify, request import subprocess import os app = Flask(__name__) text = "" greetings = "'/play' and '/replay'\n" @app.route('/') def index(): return greetings @app.route('/play', methods=['POST']) def play(): global text text = request.data.decode('utf-8') os.system('./play.sh "' + text + '"') return jsonify({'played': True, "text" : text}), 201 @app.route('/replay') def replay(): global text os.system('./replay.sh') return jsonify({'replayed': True, "text" : text}), 200 if __name__ == '__main__': app.run(host='0.0.0.0', debug=True)
20.766667
58
0.616372
4a233885d9fd6f4a47eb3900370d6070acedb2fc
2,487
py
Python
marmot/representations/wmt_representation_generator.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
19
2015-08-21T13:06:37.000Z
2021-07-26T09:56:29.000Z
marmot/representations/wmt_representation_generator.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
36
2015-01-13T13:01:07.000Z
2016-06-22T06:59:59.000Z
marmot/representations/wmt_representation_generator.py
qe-team/marmot
38e09ff1d0a3025a6b7edeaaf6086ed047ec45ff
[ "0BSD" ]
8
2015-12-11T16:41:47.000Z
2019-04-08T16:28:40.000Z
import os from nltk import word_tokenize from marmot.representations.representation_generator import RepresentationGenerator from marmot.experiment.import_utils import mk_tmp_dir class WMTRepresentationGenerator(RepresentationGenerator): def _write_to_file(self, filename, lofl): a_file = open(filename, 'w') for sentence in lofl: a_file.write('%s\n' % (' '.join([w.encode('utf-8') for w in sentence]))) a_file.close() def _parse_wmt_to_text(self, wmt_file, wmt_source_file, tmp_dir, persist=False): # parse source files source_sents = {} for line in open(wmt_source_file): str_num = line.decode('utf-8').strip().split('\t') source_sents[str_num[0]] = word_tokenize(str_num[1]) # parse target file and write new source, target, and tag files target, source, tags = [], [], [] cur_num = None cur_sent, cur_tags = [], [] for line in open(wmt_file): chunks = line[:-1].decode('utf-8').split('\t') if chunks[0] != cur_num: if len(cur_sent) > 0: # check that the sentence is in source if cur_num in source_sents: source.append(source_sents[cur_num]) target.append(cur_sent) tags.append(cur_tags) cur_sent = [] cur_tags = [] cur_num = chunks[0] cur_sent.append(chunks[2]) cur_tags.append(chunks[5]) # last sentence if len(cur_sent) > 0 and cur_num in source_sents: source.append(source_sents[cur_num]) target.append(cur_sent) tags.append(cur_tags) if persist: tmp_dir = mk_tmp_dir(tmp_dir) target_file = tmp_dir+'/'+os.path.basename(wmt_file)+'.target' tags_file = tmp_dir+'/'+os.path.basename(wmt_file)+'.tags' source_file = tmp_dir+'/'+os.path.basename(wmt_source_file)+'.txt' self._write_to_file(target_file, target) self._write_to_file(source_file, source) self._write_to_file(tags_file, tags) return {'target': target, 'source': source, 'tags': tags} def __init__(self, tg_file, src_file, tmp_dir=None, persist=False): self.data = self._parse_wmt_to_text(tg_file, src_file, tmp_dir, persist=persist) def generate(self): return self.data
38.859375
88
0.592682
4a23390822658c8601855d27ba75629f3e6d82ed
58,226
py
Python
statsmodels/tsa/statespace/dynamic_factor.py
AustinJAdams/statsmodels
e6632b6466dc7eb7062df0f26a6888da0e67e347
[ "BSD-3-Clause" ]
null
null
null
statsmodels/tsa/statespace/dynamic_factor.py
AustinJAdams/statsmodels
e6632b6466dc7eb7062df0f26a6888da0e67e347
[ "BSD-3-Clause" ]
null
null
null
statsmodels/tsa/statespace/dynamic_factor.py
AustinJAdams/statsmodels
e6632b6466dc7eb7062df0f26a6888da0e67e347
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Dynamic factor model Author: Chad Fulton License: Simplified-BSD """ from warnings import warn from collections import OrderedDict import numpy as np from .mlemodel import MLEModel, MLEResults, MLEResultsWrapper from .tools import ( is_invertible, prepare_exog, constrain_stationary_univariate, unconstrain_stationary_univariate, constrain_stationary_multivariate, unconstrain_stationary_multivariate ) from statsmodels.multivariate.pca import PCA from statsmodels.regression.linear_model import OLS from statsmodels.tsa.vector_ar.var_model import VAR from statsmodels.tools.tools import Bunch from statsmodels.tools.data import _is_using_pandas from statsmodels.tsa.tsatools import lagmat from statsmodels.tools.decorators import cache_readonly from statsmodels.tools.sm_exceptions import ValueWarning import statsmodels.base.wrapper as wrap from statsmodels.compat.pandas import Appender class DynamicFactor(MLEModel): r""" Dynamic factor model Parameters ---------- endog : array_like The observed time-series process :math:`y` exog : array_like, optional Array of exogenous regressors for the observation equation, shaped nobs x k_exog. k_factors : int The number of unobserved factors. factor_order : int The order of the vector autoregression followed by the factors. error_cov_type : {'scalar', 'diagonal', 'unstructured'}, optional The structure of the covariance matrix of the observation error term, where "unstructured" puts no restrictions on the matrix, "diagonal" requires it to be any diagonal matrix (uncorrelated errors), and "scalar" requires it to be a scalar times the identity matrix. Default is "diagonal". error_order : int, optional The order of the vector autoregression followed by the observation error component. Default is None, corresponding to white noise errors. error_var : bool, optional Whether or not to model the errors jointly via a vector autoregression, rather than as individual autoregressions. Has no effect unless `error_order` is set. Default is False. enforce_stationarity : bool, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- exog : array_like, optional Array of exogenous regressors for the observation equation, shaped nobs x k_exog. k_factors : int The number of unobserved factors. factor_order : int The order of the vector autoregression followed by the factors. error_cov_type : {'diagonal', 'unstructured'} The structure of the covariance matrix of the error term, where "unstructured" puts no restrictions on the matrix and "diagonal" requires it to be a diagonal matrix (uncorrelated errors). error_order : int The order of the vector autoregression followed by the observation error component. error_var : bool Whether or not to model the errors jointly via a vector autoregression, rather than as individual autoregressions. Has no effect unless `error_order` is set. enforce_stationarity : bool, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. Notes ----- The dynamic factor model considered here is in the so-called static form, and is specified: .. math:: y_t & = \Lambda f_t + B x_t + u_t \\ f_t & = A_1 f_{t-1} + \dots + A_p f_{t-p} + \eta_t \\ u_t & = C_1 u_{t-1} + \dots + C_1 f_{t-q} + \varepsilon_t where there are `k_endog` observed series and `k_factors` unobserved factors. Thus :math:`y_t` is a `k_endog` x 1 vector and :math:`f_t` is a `k_factors` x 1 vector. :math:`x_t` are optional exogenous vectors, shaped `k_exog` x 1. :math:`\eta_t` and :math:`\varepsilon_t` are white noise error terms. In order to identify the factors, :math:`Var(\eta_t) = I`. Denote :math:`Var(\varepsilon_t) \equiv \Sigma`. Options related to the unobserved factors: - `k_factors`: this is the dimension of the vector :math:`f_t`, above. To exclude factors completely, set `k_factors = 0`. - `factor_order`: this is the number of lags to include in the factor evolution equation, and corresponds to :math:`p`, above. To have static factors, set `factor_order = 0`. Options related to the observation error term :math:`u_t`: - `error_order`: the number of lags to include in the error evolution equation; corresponds to :math:`q`, above. To have white noise errors, set `error_order = 0` (this is the default). - `error_cov_type`: this controls the form of the covariance matrix :math:`\Sigma`. If it is "dscalar", then :math:`\Sigma = \sigma^2 I`. If it is "diagonal", then :math:`\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_n^2)`. If it is "unstructured", then :math:`\Sigma` is any valid variance / covariance matrix (i.e. symmetric and positive definite). - `error_var`: this controls whether or not the errors evolve jointly according to a VAR(q), or individually according to separate AR(q) processes. In terms of the formulation above, if `error_var = False`, then the matrices :math:C_i` are diagonal, otherwise they are general VAR matrices. References ---------- .. [*] Lütkepohl, Helmut. 2007. New Introduction to Multiple Time Series Analysis. Berlin: Springer. """ def __init__(self, endog, k_factors, factor_order, exog=None, error_order=0, error_var=False, error_cov_type='diagonal', enforce_stationarity=True, **kwargs): # Model properties self.enforce_stationarity = enforce_stationarity # Factor-related properties self.k_factors = k_factors self.factor_order = factor_order # Error-related properties self.error_order = error_order self.error_var = error_var and error_order > 0 self.error_cov_type = error_cov_type # Exogenous data (self.k_exog, exog) = prepare_exog(exog) # Note: at some point in the future might add state regression, as in # SARIMAX. self.mle_regression = self.k_exog > 0 # We need to have an array or pandas at this point if not _is_using_pandas(endog, None): endog = np.asanyarray(endog, order='C') # Save some useful model orders, internally used k_endog = endog.shape[1] if endog.ndim > 1 else 1 self._factor_order = max(1, self.factor_order) * self.k_factors self._error_order = self.error_order * k_endog # Calculate the number of states k_states = self._factor_order k_posdef = self.k_factors if self.error_order > 0: k_states += self._error_order k_posdef += k_endog if k_states == 0: k_states = 1 k_posdef = 1 # Test for non-multivariate endog if k_endog < 2: raise ValueError('The dynamic factors model is only valid for' ' multivariate time series.') # Test for too many factors if self.k_factors >= k_endog: raise ValueError('Number of factors must be less than the number' ' of endogenous variables.') # Test for invalid error_cov_type if self.error_cov_type not in ['scalar', 'diagonal', 'unstructured']: raise ValueError('Invalid error covariance matrix type' ' specification.') # By default, initialize as stationary kwargs.setdefault('initialization', 'stationary') # Initialize the state space model super(DynamicFactor, self).__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Set as time-varying model if we have exog if self.k_exog > 0: self.ssm._time_invariant = False # Initialize the components self.parameters = OrderedDict() self._initialize_loadings() self._initialize_exog() self._initialize_error_cov() self._initialize_factor_transition() self._initialize_error_transition() self.k_params = sum(self.parameters.values()) # Cache parameter vector slices def _slice(key, offset): length = self.parameters[key] param_slice = np.s_[offset:offset + length] offset += length return param_slice, offset offset = 0 self._params_loadings, offset = _slice('factor_loadings', offset) self._params_exog, offset = _slice('exog', offset) self._params_error_cov, offset = _slice('error_cov', offset) self._params_factor_transition, offset = ( _slice('factor_transition', offset)) self._params_error_transition, offset = ( _slice('error_transition', offset)) # Update _init_keys attached by super self._init_keys += ['k_factors', 'factor_order', 'error_order', 'error_var', 'error_cov_type', 'enforce_stationarity'] + list(kwargs.keys()) def _initialize_loadings(self): # Initialize the parameters self.parameters['factor_loadings'] = self.k_endog * self.k_factors # Setup fixed components of state space matrices if self.error_order > 0: start = self._factor_order end = self._factor_order + self.k_endog self.ssm['design', :, start:end] = np.eye(self.k_endog) # Setup indices of state space matrices self._idx_loadings = np.s_['design', :, :self.k_factors] def _initialize_exog(self): # Initialize the parameters self.parameters['exog'] = self.k_exog * self.k_endog # If we have exog effects, then the obs intercept needs to be # time-varying if self.k_exog > 0: self.ssm['obs_intercept'] = np.zeros((self.k_endog, self.nobs)) # Setup indices of state space matrices self._idx_exog = np.s_['obs_intercept', :self.k_endog, :] def _initialize_error_cov(self): if self.error_cov_type == 'scalar': self._initialize_error_cov_diagonal(scalar=True) elif self.error_cov_type == 'diagonal': self._initialize_error_cov_diagonal(scalar=False) elif self.error_cov_type == 'unstructured': self._initialize_error_cov_unstructured() def _initialize_error_cov_diagonal(self, scalar=False): # Initialize the parameters self.parameters['error_cov'] = 1 if scalar else self.k_endog # Setup fixed components of state space matrices # Setup indices of state space matrices k_endog = self.k_endog k_factors = self.k_factors idx = np.diag_indices(k_endog) if self.error_order > 0: matrix = 'state_cov' idx = (idx[0] + k_factors, idx[1] + k_factors) else: matrix = 'obs_cov' self._idx_error_cov = (matrix,) + idx def _initialize_error_cov_unstructured(self): # Initialize the parameters k_endog = self.k_endog self.parameters['error_cov'] = int(k_endog * (k_endog + 1) / 2) # Setup fixed components of state space matrices # Setup indices of state space matrices self._idx_lower_error_cov = np.tril_indices(self.k_endog) if self.error_order > 0: start = self.k_factors end = self.k_factors + self.k_endog self._idx_error_cov = ( np.s_['state_cov', start:end, start:end]) else: self._idx_error_cov = np.s_['obs_cov', :, :] def _initialize_factor_transition(self): order = self.factor_order * self.k_factors k_factors = self.k_factors # Initialize the parameters self.parameters['factor_transition'] = ( self.factor_order * self.k_factors**2) # Setup fixed components of state space matrices # VAR(p) for factor transition if self.k_factors > 0: if self.factor_order > 0: self.ssm['transition', k_factors:order, :order - k_factors] = ( np.eye(order - k_factors)) self.ssm['selection', :k_factors, :k_factors] = np.eye(k_factors) # Identification requires constraining the state covariance to an # identity matrix self.ssm['state_cov', :k_factors, :k_factors] = np.eye(k_factors) # Setup indices of state space matrices self._idx_factor_transition = np.s_['transition', :k_factors, :order] def _initialize_error_transition(self): # Initialize the appropriate situation if self.error_order == 0: self._initialize_error_transition_white_noise() else: # Generic setup fixed components of state space matrices # VAR(q) for error transition # (in the individual AR case, we still have the VAR(q) companion # matrix structure, but force the coefficient matrices to be # diagonal) k_endog = self.k_endog k_factors = self.k_factors _factor_order = self._factor_order _error_order = self._error_order _slice = np.s_['selection', _factor_order:_factor_order + k_endog, k_factors:k_factors + k_endog] self.ssm[_slice] = np.eye(k_endog) _slice = np.s_[ 'transition', _factor_order + k_endog:_factor_order + _error_order, _factor_order:_factor_order + _error_order - k_endog] self.ssm[_slice] = np.eye(_error_order - k_endog) # Now specialized setups if self.error_var: self._initialize_error_transition_var() else: self._initialize_error_transition_individual() def _initialize_error_transition_white_noise(self): # Initialize the parameters self.parameters['error_transition'] = 0 # No fixed components of state space matrices # Setup indices of state space matrices (just an empty slice) self._idx_error_transition = np.s_['transition', 0:0, 0:0] def _initialize_error_transition_var(self): k_endog = self.k_endog _factor_order = self._factor_order _error_order = self._error_order # Initialize the parameters self.parameters['error_transition'] = _error_order * k_endog # Fixed components already setup above # Setup indices of state space matrices # Here we want to set all of the elements of the coefficient matrices, # the same as in a VAR specification self._idx_error_transition = np.s_[ 'transition', _factor_order:_factor_order + k_endog, _factor_order:_factor_order + _error_order] def _initialize_error_transition_individual(self): k_endog = self.k_endog _error_order = self._error_order # Initialize the parameters self.parameters['error_transition'] = _error_order # Fixed components already setup above # Setup indices of state space matrices # Here we want to set only the diagonal elements of the coefficient # matrices, and we want to set them in order by equation, not by # matrix (i.e. set the first element of the first matrix's diagonal, # then set the first element of the second matrix's diagonal, then...) # The basic setup is a tiled list of diagonal indices, one for each # coefficient matrix idx = np.tile(np.diag_indices(k_endog), self.error_order) # Now we need to shift the rows down to the correct location row_shift = self._factor_order # And we need to shift the columns in an increasing way col_inc = self._factor_order + np.repeat( [i * k_endog for i in range(self.error_order)], k_endog) idx[0] += row_shift idx[1] += col_inc # Make a copy (without the row shift) so that we can easily get the # diagonal parameters back out of a generic coefficients matrix array idx_diag = idx.copy() idx_diag[0] -= row_shift idx_diag[1] -= self._factor_order idx_diag = idx_diag[:, np.lexsort((idx_diag[1], idx_diag[0]))] self._idx_error_diag = (idx_diag[0], idx_diag[1]) # Finally, we want to fill the entries in in the correct order, which # is to say we want to fill in lexicographically, first by row then by # column idx = idx[:, np.lexsort((idx[1], idx[0]))] self._idx_error_transition = np.s_['transition', idx[0], idx[1]] def clone(self, endog, exog=None, **kwargs): return self._clone_from_init_kwds(endog, exog, **kwargs) @property def _res_classes(self): return {'fit': (DynamicFactorResults, DynamicFactorResultsWrapper)} @property def start_params(self): params = np.zeros(self.k_params, dtype=np.float64) endog = self.endog.copy() # 1. Factor loadings (estimated via PCA) if self.k_factors > 0: # Use principal components + OLS as starting values res_pca = PCA(endog, ncomp=self.k_factors) mod_ols = OLS(endog, res_pca.factors) res_ols = mod_ols.fit() # Using OLS params for the loadings tends to gives higher starting # log-likelihood. params[self._params_loadings] = res_ols.params.T.ravel() # params[self._params_loadings] = res_pca.loadings.ravel() # However, using res_ols.resid tends to causes non-invertible # starting VAR coefficients for error VARs # endog = res_ols.resid endog = endog - np.dot(res_pca.factors, res_pca.loadings.T) # 2. Exog (OLS on residuals) if self.k_exog > 0: mod_ols = OLS(endog, exog=self.exog) res_ols = mod_ols.fit() # In the form: beta.x1.y1, beta.x2.y1, beta.x1.y2, ... params[self._params_exog] = res_ols.params.T.ravel() endog = res_ols.resid # 3. Factors (VAR on res_pca.factors) stationary = True if self.k_factors > 1 and self.factor_order > 0: # 3a. VAR transition (OLS on factors estimated via PCA) mod_factors = VAR(res_pca.factors) res_factors = mod_factors.fit(maxlags=self.factor_order, ic=None, trend='nc') # Save the parameters params[self._params_factor_transition] = ( res_factors.params.T.ravel()) # Test for stationarity coefficient_matrices = ( params[self._params_factor_transition].reshape( self.k_factors * self.factor_order, self.k_factors ).T ).reshape(self.k_factors, self.k_factors, self.factor_order).T stationary = is_invertible([1] + list(-coefficient_matrices)) elif self.k_factors > 0 and self.factor_order > 0: # 3b. AR transition Y = res_pca.factors[self.factor_order:] X = lagmat(res_pca.factors, self.factor_order, trim='both') params_ar = np.linalg.pinv(X).dot(Y) stationary = is_invertible(np.r_[1, -params_ar.squeeze()]) params[self._params_factor_transition] = params_ar[:, 0] # Check for stationarity if not stationary and self.enforce_stationarity: raise ValueError('Non-stationary starting autoregressive' ' parameters found with `enforce_stationarity`' ' set to True.') # 4. Errors if self.error_order == 0: if self.error_cov_type == 'scalar': params[self._params_error_cov] = endog.var(axis=0).mean() elif self.error_cov_type == 'diagonal': params[self._params_error_cov] = endog.var(axis=0) elif self.error_cov_type == 'unstructured': cov_factor = np.diag(endog.std(axis=0)) params[self._params_error_cov] = ( cov_factor[self._idx_lower_error_cov].ravel()) else: mod_errors = VAR(endog) res_errors = mod_errors.fit(maxlags=self.error_order, ic=None, trend='nc') # Test for stationarity coefficient_matrices = ( np.array(res_errors.params.T).ravel().reshape( self.k_endog * self.error_order, self.k_endog ).T ).reshape(self.k_endog, self.k_endog, self.error_order).T stationary = is_invertible([1] + list(-coefficient_matrices)) if not stationary and self.enforce_stationarity: raise ValueError('Non-stationary starting error autoregressive' ' parameters found with' ' `enforce_stationarity` set to True.') # Get the error autoregressive parameters if self.error_var: params[self._params_error_transition] = ( np.array(res_errors.params.T).ravel()) else: # In the case of individual autoregressions, extract just the # diagonal elements params[self._params_error_transition] = ( res_errors.params.T[self._idx_error_diag]) # Get the error covariance parameters if self.error_cov_type == 'scalar': params[self._params_error_cov] = ( res_errors.sigma_u.diagonal().mean()) elif self.error_cov_type == 'diagonal': params[self._params_error_cov] = res_errors.sigma_u.diagonal() elif self.error_cov_type == 'unstructured': try: cov_factor = np.linalg.cholesky(res_errors.sigma_u) except np.linalg.LinAlgError: cov_factor = np.eye(res_errors.sigma_u.shape[0]) * ( res_errors.sigma_u.diagonal().mean()**0.5) cov_factor = np.eye(res_errors.sigma_u.shape[0]) * ( res_errors.sigma_u.diagonal().mean()**0.5) params[self._params_error_cov] = ( cov_factor[self._idx_lower_error_cov].ravel()) return params @property def param_names(self): param_names = [] endog_names = self.endog_names # 1. Factor loadings param_names += [ 'loading.f%d.%s' % (j+1, endog_names[i]) for i in range(self.k_endog) for j in range(self.k_factors) ] # 2. Exog # Recall these are in the form: beta.x1.y1, beta.x2.y1, beta.x1.y2, ... param_names += [ 'beta.%s.%s' % (self.exog_names[j], endog_names[i]) for i in range(self.k_endog) for j in range(self.k_exog) ] # 3. Error covariances if self.error_cov_type == 'scalar': param_names += ['sigma2'] elif self.error_cov_type == 'diagonal': param_names += [ 'sigma2.%s' % endog_names[i] for i in range(self.k_endog) ] elif self.error_cov_type == 'unstructured': param_names += [ ('sqrt.var.%s' % endog_names[i] if i == j else 'sqrt.cov.%s.%s' % (endog_names[j], endog_names[i])) for i in range(self.k_endog) for j in range(i+1) ] # 4. Factor transition VAR param_names += [ 'L%d.f%d.f%d' % (i+1, k+1, j+1) for j in range(self.k_factors) for i in range(self.factor_order) for k in range(self.k_factors) ] # 5. Error transition VAR if self.error_var: param_names += [ 'L%d.e(%s).e(%s)' % (i+1, endog_names[k], endog_names[j]) for j in range(self.k_endog) for i in range(self.error_order) for k in range(self.k_endog) ] else: param_names += [ 'L%d.e(%s).e(%s)' % (i+1, endog_names[j], endog_names[j]) for j in range(self.k_endog) for i in range(self.error_order) ] return param_names def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. Notes ----- Constrains the factor transition to be stationary and variances to be positive. """ unconstrained = np.array(unconstrained, ndmin=1) dtype = unconstrained.dtype constrained = np.zeros(unconstrained.shape, dtype=dtype) # 1. Factor loadings # The factor loadings do not need to be adjusted constrained[self._params_loadings] = ( unconstrained[self._params_loadings]) # 2. Exog # The regression coefficients do not need to be adjusted constrained[self._params_exog] = ( unconstrained[self._params_exog]) # 3. Error covariances # If we have variances, force them to be positive if self.error_cov_type in ['scalar', 'diagonal']: constrained[self._params_error_cov] = ( unconstrained[self._params_error_cov]**2) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': constrained[self._params_error_cov] = ( unconstrained[self._params_error_cov]) # 4. Factor transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.factor_order > 0: # Transform the parameters unconstrained_matrices = ( unconstrained[self._params_factor_transition].reshape( self.k_factors, self._factor_order)) # This is always an identity matrix, but because the transform # done prior to update (where the ssm representation matrices # change), it may be complex cov = self.ssm['state_cov', :self.k_factors, :self.k_factors].real coefficient_matrices, variance = ( constrain_stationary_multivariate(unconstrained_matrices, cov)) constrained[self._params_factor_transition] = ( coefficient_matrices.ravel()) else: constrained[self._params_factor_transition] = ( unconstrained[self._params_factor_transition]) # 5. Error transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.error_order > 0: # Joint VAR specification if self.error_var: unconstrained_matrices = ( unconstrained[self._params_error_transition].reshape( self.k_endog, self._error_order)) start = self.k_factors end = self.k_factors + self.k_endog cov = self.ssm['state_cov', start:end, start:end].real coefficient_matrices, variance = ( constrain_stationary_multivariate( unconstrained_matrices, cov)) constrained[self._params_error_transition] = ( coefficient_matrices.ravel()) # Separate AR specifications else: coefficients = ( unconstrained[self._params_error_transition].copy()) for i in range(self.k_endog): start = i * self.error_order end = (i + 1) * self.error_order coefficients[start:end] = constrain_stationary_univariate( coefficients[start:end]) constrained[self._params_error_transition] = coefficients else: constrained[self._params_error_transition] = ( unconstrained[self._params_error_transition]) return constrained def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer. Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ constrained = np.array(constrained, ndmin=1) dtype = constrained.dtype unconstrained = np.zeros(constrained.shape, dtype=dtype) # 1. Factor loadings # The factor loadings do not need to be adjusted unconstrained[self._params_loadings] = ( constrained[self._params_loadings]) # 2. Exog # The regression coefficients do not need to be adjusted unconstrained[self._params_exog] = ( constrained[self._params_exog]) # 3. Error covariances # If we have variances, force them to be positive if self.error_cov_type in ['scalar', 'diagonal']: unconstrained[self._params_error_cov] = ( constrained[self._params_error_cov]**0.5) # Otherwise, nothing needs to be done elif self.error_cov_type == 'unstructured': unconstrained[self._params_error_cov] = ( constrained[self._params_error_cov]) # 3. Factor transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.factor_order > 0: # Transform the parameters constrained_matrices = ( constrained[self._params_factor_transition].reshape( self.k_factors, self._factor_order)) cov = self.ssm['state_cov', :self.k_factors, :self.k_factors].real coefficient_matrices, variance = ( unconstrain_stationary_multivariate( constrained_matrices, cov)) unconstrained[self._params_factor_transition] = ( coefficient_matrices.ravel()) else: unconstrained[self._params_factor_transition] = ( constrained[self._params_factor_transition]) # 5. Error transition VAR # VAR transition: optionally force to be stationary if self.enforce_stationarity and self.error_order > 0: # Joint VAR specification if self.error_var: constrained_matrices = ( constrained[self._params_error_transition].reshape( self.k_endog, self._error_order)) start = self.k_factors end = self.k_factors + self.k_endog cov = self.ssm['state_cov', start:end, start:end].real coefficient_matrices, variance = ( unconstrain_stationary_multivariate( constrained_matrices, cov)) unconstrained[self._params_error_transition] = ( coefficient_matrices.ravel()) # Separate AR specifications else: coefficients = ( constrained[self._params_error_transition].copy()) for i in range(self.k_endog): start = i * self.error_order end = (i + 1) * self.error_order coefficients[start:end] = ( unconstrain_stationary_univariate( coefficients[start:end])) unconstrained[self._params_error_transition] = coefficients else: unconstrained[self._params_error_transition] = ( constrained[self._params_error_transition]) return unconstrained def _validate_can_fix_params(self, param_names): super(DynamicFactor, self)._validate_can_fix_params(param_names) ix = np.cumsum(list(self.parameters.values()))[:-1] (_, _, _, factor_transition_names, error_transition_names) = [ arr.tolist() for arr in np.array_split(self.param_names, ix)] if self.enforce_stationarity and self.factor_order > 0: if self.k_factors > 1 or self.factor_order > 1: fix_all = param_names.issuperset(factor_transition_names) fix_any = ( len(param_names.intersection(factor_transition_names)) > 0) if fix_any and not fix_all: raise ValueError( 'Cannot fix individual factor transition parameters' ' when `enforce_stationarity=True`. In this case,' ' must either fix all factor transition parameters or' ' none.') if self.enforce_stationarity and self.error_order > 0: if self.error_var or self.error_order > 1: fix_all = param_names.issuperset(error_transition_names) fix_any = ( len(param_names.intersection(error_transition_names)) > 0) if fix_any and not fix_all: raise ValueError( 'Cannot fix individual error transition parameters' ' when `enforce_stationarity=True`. In this case,' ' must either fix all error transition parameters or' ' none.') def update(self, params, transformed=True, includes_fixed=False, complex_step=False): """ Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : bool, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters. Notes ----- Let `n = k_endog`, `m = k_factors`, and `p = factor_order`. Then the `params` vector has length :math:`[n \times m] + [n] + [m^2 \times p]`. It is expanded in the following way: - The first :math:`n \times m` parameters fill out the factor loading matrix, starting from the [0,0] entry and then proceeding along rows. These parameters are not modified in `transform_params`. - The next :math:`n` parameters provide variances for the error_cov errors in the observation equation. They fill in the diagonal of the observation covariance matrix, and are constrained to be positive by `transofrm_params`. - The next :math:`m^2 \times p` parameters are used to create the `p` coefficient matrices for the vector autoregression describing the factor transition. They are transformed in `transform_params` to enforce stationarity of the VAR(p). They are placed so as to make the transition matrix a companion matrix for the VAR. In particular, we assume that the first :math:`m^2` parameters fill the first coefficient matrix (starting at [0,0] and filling along rows), the second :math:`m^2` parameters fill the second matrix, etc. """ params = self.handle_params(params, transformed=transformed, includes_fixed=includes_fixed) # 1. Factor loadings # Update the design / factor loading matrix self.ssm[self._idx_loadings] = ( params[self._params_loadings].reshape(self.k_endog, self.k_factors) ) # 2. Exog if self.k_exog > 0: exog_params = params[self._params_exog].reshape( self.k_endog, self.k_exog).T self.ssm[self._idx_exog] = np.dot(self.exog, exog_params).T # 3. Error covariances if self.error_cov_type in ['scalar', 'diagonal']: self.ssm[self._idx_error_cov] = ( params[self._params_error_cov]) elif self.error_cov_type == 'unstructured': error_cov_lower = np.zeros((self.k_endog, self.k_endog), dtype=params.dtype) error_cov_lower[self._idx_lower_error_cov] = ( params[self._params_error_cov]) self.ssm[self._idx_error_cov] = ( np.dot(error_cov_lower, error_cov_lower.T)) # 4. Factor transition VAR self.ssm[self._idx_factor_transition] = ( params[self._params_factor_transition].reshape( self.k_factors, self.factor_order * self.k_factors)) # 5. Error transition VAR if self.error_var: self.ssm[self._idx_error_transition] = ( params[self._params_error_transition].reshape( self.k_endog, self._error_order)) else: self.ssm[self._idx_error_transition] = ( params[self._params_error_transition]) class DynamicFactorResults(MLEResults): """ Class to hold results from fitting an DynamicFactor model. Parameters ---------- model : DynamicFactor instance The fitted model instance Attributes ---------- specification : dictionary Dictionary including all attributes from the DynamicFactor model instance. coefficient_matrices_var : array Array containing autoregressive lag polynomial coefficient matrices, ordered from lowest degree to highest. See Also -------- statsmodels.tsa.statespace.kalman_filter.FilterResults statsmodels.tsa.statespace.mlemodel.MLEResults """ def __init__(self, model, params, filter_results, cov_type=None, **kwargs): super(DynamicFactorResults, self).__init__(model, params, filter_results, cov_type, **kwargs) self.df_resid = np.inf # attribute required for wald tests self.specification = Bunch(**{ # Model properties 'k_endog': self.model.k_endog, 'enforce_stationarity': self.model.enforce_stationarity, # Factor-related properties 'k_factors': self.model.k_factors, 'factor_order': self.model.factor_order, # Error-related properties 'error_order': self.model.error_order, 'error_var': self.model.error_var, 'error_cov_type': self.model.error_cov_type, # Other properties 'k_exog': self.model.k_exog }) # Polynomials / coefficient matrices self.coefficient_matrices_var = None if self.model.factor_order > 0: ar_params = ( np.array(self.params[self.model._params_factor_transition])) k_factors = self.model.k_factors factor_order = self.model.factor_order self.coefficient_matrices_var = ( ar_params.reshape(k_factors * factor_order, k_factors).T ).reshape(k_factors, k_factors, factor_order).T self.coefficient_matrices_error = None if self.model.error_order > 0: ar_params = ( np.array(self.params[self.model._params_error_transition])) k_endog = self.model.k_endog error_order = self.model.error_order if self.model.error_var: self.coefficient_matrices_error = ( ar_params.reshape(k_endog * error_order, k_endog).T ).reshape(k_endog, k_endog, error_order).T else: mat = np.zeros((k_endog, k_endog * error_order)) mat[self.model._idx_error_diag] = ar_params self.coefficient_matrices_error = ( mat.T.reshape(error_order, k_endog, k_endog)) @property def factors(self): """ Estimates of unobserved factors Returns ------- out : Bunch Has the following attributes shown in Notes. Notes ----- The output is a bunch of the following format: - `filtered`: a time series array with the filtered estimate of the component - `filtered_cov`: a time series array with the filtered estimate of the variance/covariance of the component - `smoothed`: a time series array with the smoothed estimate of the component - `smoothed_cov`: a time series array with the smoothed estimate of the variance/covariance of the component - `offset`: an integer giving the offset in the state vector where this component begins """ # If present, level is always the first component of the state vector out = None spec = self.specification if spec.k_factors > 0: offset = 0 end = spec.k_factors res = self.filter_results out = Bunch( filtered=res.filtered_state[offset:end], filtered_cov=res.filtered_state_cov[offset:end, offset:end], smoothed=None, smoothed_cov=None, offset=offset) if self.smoothed_state is not None: out.smoothed = self.smoothed_state[offset:end] if self.smoothed_state_cov is not None: out.smoothed_cov = ( self.smoothed_state_cov[offset:end, offset:end]) return out @cache_readonly def coefficients_of_determination(self): """ Coefficients of determination (:math:`R^2`) from regressions of individual estimated factors on endogenous variables. Returns ------- coefficients_of_determination : array A `k_endog` x `k_factors` array, where `coefficients_of_determination[i, j]` represents the :math:`R^2` value from a regression of factor `j` and a constant on endogenous variable `i`. Notes ----- Although it can be difficult to interpret the estimated factor loadings and factors, it is often helpful to use the coefficients of determination from univariate regressions to assess the importance of each factor in explaining the variation in each endogenous variable. In models with many variables and factors, this can sometimes lend interpretation to the factors (for example sometimes one factor will load primarily on real variables and another on nominal variables). See Also -------- plot_coefficients_of_determination """ from statsmodels.tools import add_constant spec = self.specification coefficients = np.zeros((spec.k_endog, spec.k_factors)) which = 'filtered' if self.smoothed_state is None else 'smoothed' for i in range(spec.k_factors): exog = add_constant(self.factors[which][i]) for j in range(spec.k_endog): endog = self.filter_results.endog[j] coefficients[j, i] = OLS(endog, exog).fit().rsquared return coefficients def plot_coefficients_of_determination(self, endog_labels=None, fig=None, figsize=None): """ Plot the coefficients of determination Parameters ---------- endog_labels : bool, optional Whether or not to label the endogenous variables along the x-axis of the plots. Default is to include labels if there are 5 or fewer endogenous variables. fig : Matplotlib Figure instance, optional If given, subplots are created in this figure instead of in a new figure. Note that the grid will be created in the provided figure using `fig.add_subplot()`. figsize : tuple, optional If a figure is created, this argument allows specifying a size. The tuple is (width, height). Notes ----- Produces a `k_factors` x 1 plot grid. The `i`th plot shows a bar plot of the coefficients of determination associated with factor `i`. The endogenous variables are arranged along the x-axis according to their position in the `endog` array. See Also -------- coefficients_of_determination """ from statsmodels.graphics.utils import _import_mpl, create_mpl_fig _import_mpl() fig = create_mpl_fig(fig, figsize) spec = self.specification # Should we label endogenous variables? if endog_labels is None: endog_labels = spec.k_endog <= 5 # Plot the coefficients of determination coefficients_of_determination = self.coefficients_of_determination plot_idx = 1 locations = np.arange(spec.k_endog) for coeffs in coefficients_of_determination.T: # Create the new axis ax = fig.add_subplot(spec.k_factors, 1, plot_idx) ax.set_ylim((0, 1)) ax.set(title='Factor %i' % plot_idx, ylabel=r'$R^2$') bars = ax.bar(locations, coeffs) if endog_labels: width = bars[0].get_width() ax.xaxis.set_ticks(locations + width / 2) ax.xaxis.set_ticklabels(self.model.endog_names) else: ax.set(xlabel='Endogenous variables') ax.xaxis.set_ticks([]) plot_idx += 1 return fig def get_prediction(self, start=None, end=None, dynamic=False, index=None, exog=None, **kwargs): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. exog : array_like, optional If the model includes exogenous regressors, you must provide exactly enough out-of-sample values for the exogenous variables if end is beyond the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecast : array Array of out of sample forecasts. """ if start is None: start = self.model._index[0] # Handle end (e.g. date) _start, _end, _out_of_sample, prediction_index = ( self.model._get_prediction_index(start, end, index, silent=True)) # Handle exogenous parameters if _out_of_sample and self.model.k_exog > 0: # Create a new faux VARMAX model for the extended dataset nobs = self.model.data.orig_endog.shape[0] + _out_of_sample endog = np.zeros((nobs, self.model.k_endog)) if self.model.k_exog > 0: if exog is None: raise ValueError('Out-of-sample forecasting in a model' ' with a regression component requires' ' additional exogenous values via the' ' `exog` argument.') exog = np.array(exog) required_exog_shape = (_out_of_sample, self.model.k_exog) try: exog = exog.reshape(required_exog_shape) except ValueError: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str(required_exog_shape), str(exog.shape))) exog = np.c_[self.model.data.orig_exog.T, exog.T].T # TODO replace with init_kwds or specification or similar model = DynamicFactor( endog, k_factors=self.model.k_factors, factor_order=self.model.factor_order, exog=exog, error_order=self.model.error_order, error_var=self.model.error_var, error_cov_type=self.model.error_cov_type, enforce_stationarity=self.model.enforce_stationarity ) model.update(self.params) # Set the kwargs with the update time-varying state space # representation matrices for name in self.filter_results.shapes.keys(): if name == 'obs': continue mat = getattr(model.ssm, name) if mat.shape[-1] > 1: if len(mat.shape) == 2: kwargs[name] = mat[:, -_out_of_sample:] else: kwargs[name] = mat[:, :, -_out_of_sample:] elif self.model.k_exog == 0 and exog is not None: warn('Exogenous array provided to predict, but additional data not' ' required. `exog` argument ignored.', ValueWarning) return super(DynamicFactorResults, self).get_prediction( start=start, end=end, dynamic=dynamic, index=index, exog=exog, **kwargs) @Appender(MLEResults.summary.__doc__) def summary(self, alpha=.05, start=None, separate_params=True): from statsmodels.iolib.summary import summary_params spec = self.specification # Create the model name model_name = [] if spec.k_factors > 0: if spec.factor_order > 0: model_type = ('DynamicFactor(factors=%d, order=%d)' % (spec.k_factors, spec.factor_order)) else: model_type = 'StaticFactor(factors=%d)' % spec.k_factors model_name.append(model_type) if spec.k_exog > 0: model_name.append('%d regressors' % spec.k_exog) else: model_name.append('SUR(%d regressors)' % spec.k_exog) if spec.error_order > 0: error_type = 'VAR' if spec.error_var else 'AR' model_name.append('%s(%d) errors' % (error_type, spec.error_order)) summary = super(DynamicFactorResults, self).summary( alpha=alpha, start=start, model_name=model_name, display_params=not separate_params ) if separate_params: indices = np.arange(len(self.params)) def make_table(self, mask, title, strip_end=True): res = (self, self.params[mask], self.bse[mask], self.zvalues[mask], self.pvalues[mask], self.conf_int(alpha)[mask]) param_names = [ '.'.join(name.split('.')[:-1]) if strip_end else name for name in np.array(self.data.param_names)[mask].tolist() ] return summary_params(res, yname=None, xname=param_names, alpha=alpha, use_t=False, title=title) k_endog = self.model.k_endog k_exog = self.model.k_exog k_factors = self.model.k_factors factor_order = self.model.factor_order _factor_order = self.model._factor_order _error_order = self.model._error_order # Add parameter tables for each endogenous variable loading_indices = indices[self.model._params_loadings] loading_masks = [] exog_indices = indices[self.model._params_exog] exog_masks = [] for i in range(k_endog): # 1. Factor loadings # Recall these are in the form: # 'loading.f1.y1', 'loading.f2.y1', 'loading.f1.y2', ... loading_mask = ( loading_indices[i * k_factors:(i + 1) * k_factors]) loading_masks.append(loading_mask) # 2. Exog # Recall these are in the form: # beta.x1.y1, beta.x2.y1, beta.x1.y2, ... exog_mask = exog_indices[i * k_exog:(i + 1) * k_exog] exog_masks.append(exog_mask) # Create the table mask = np.concatenate([loading_mask, exog_mask]) title = "Results for equation %s" % self.model.endog_names[i] table = make_table(self, mask, title) summary.tables.append(table) # Add parameter tables for each factor factor_indices = indices[self.model._params_factor_transition] factor_masks = [] if factor_order > 0: for i in range(k_factors): start = i * _factor_order factor_mask = factor_indices[start: start + _factor_order] factor_masks.append(factor_mask) # Create the table title = "Results for factor equation f%d" % (i+1) table = make_table(self, factor_mask, title) summary.tables.append(table) # Add parameter tables for error transitions error_masks = [] if spec.error_order > 0: error_indices = indices[self.model._params_error_transition] for i in range(k_endog): if spec.error_var: start = i * _error_order end = (i + 1) * _error_order else: start = i * spec.error_order end = (i + 1) * spec.error_order error_mask = error_indices[start:end] error_masks.append(error_mask) # Create the table title = ("Results for error equation e(%s)" % self.model.endog_names[i]) table = make_table(self, error_mask, title) summary.tables.append(table) # Error covariance terms error_cov_mask = indices[self.model._params_error_cov] table = make_table(self, error_cov_mask, "Error covariance matrix", strip_end=False) summary.tables.append(table) # Add a table for all other parameters masks = [] for m in (loading_masks, exog_masks, factor_masks, error_masks, [error_cov_mask]): m = np.array(m).flatten() if len(m) > 0: masks.append(m) masks = np.concatenate(masks) inverse_mask = np.array(list(set(indices).difference(set(masks)))) if len(inverse_mask) > 0: table = make_table(self, inverse_mask, "Other parameters", strip_end=False) summary.tables.append(table) return summary class DynamicFactorResultsWrapper(MLEResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts(MLEResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts(MLEResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(DynamicFactorResultsWrapper, # noqa:E305 DynamicFactorResults)
41.47151
79
0.595559
4a233a8c3744fbf4f8a464eeeb200c5eff585c30
17,673
py
Python
python_modules/dagster/dagster/core/execution/resources_init.py
metinsenturk/dagster
3560475d0d99a319632625683002931e502f32ed
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/execution/resources_init.py
metinsenturk/dagster
3560475d0d99a319632625683002931e502f32ed
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/execution/resources_init.py
metinsenturk/dagster
3560475d0d99a319632625683002931e502f32ed
[ "Apache-2.0" ]
null
null
null
import inspect from collections import deque from typing import AbstractSet, Any, Callable, Deque, Dict, Optional, cast from dagster import check from dagster.core.decorator_utils import get_function_params from dagster.core.definitions.pipeline import PipelineDefinition from dagster.core.definitions.resource import ( ResourceDefinition, ScopedResourcesBuilder, is_context_provided, ) from dagster.core.errors import ( DagsterInvariantViolationError, DagsterResourceFunctionError, DagsterUserCodeExecutionError, user_code_error_boundary, ) from dagster.core.events import DagsterEvent from dagster.core.execution.plan.inputs import ( StepInput, UnresolvedCollectStepInput, UnresolvedMappedStepInput, ) from dagster.core.execution.plan.plan import ExecutionPlan, StepHandleUnion from dagster.core.execution.plan.step import ExecutionStep from dagster.core.instance import DagsterInstance from dagster.core.log_manager import DagsterLogManager from dagster.core.storage.pipeline_run import PipelineRun from dagster.core.system_config.objects import ResourceConfig from dagster.core.utils import toposort from dagster.utils import EventGenerationManager, ensure_gen from dagster.utils.error import serializable_error_info_from_exc_info from dagster.utils.timing import format_duration, time_execution_scope from .context.init import InitResourceContext def resource_initialization_manager( resource_defs: Dict[str, ResourceDefinition], resource_configs: Dict[str, ResourceConfig], log_manager: DagsterLogManager, execution_plan: Optional[ExecutionPlan], pipeline_run: Optional[PipelineRun], resource_keys_to_init: Optional[AbstractSet[str]], instance: Optional[DagsterInstance], emit_persistent_events: Optional[bool], pipeline_def_for_backwards_compat: Optional[PipelineDefinition], ): generator = resource_initialization_event_generator( resource_defs=resource_defs, resource_configs=resource_configs, log_manager=log_manager, execution_plan=execution_plan, pipeline_run=pipeline_run, resource_keys_to_init=resource_keys_to_init, instance=instance, emit_persistent_events=emit_persistent_events, pipeline_def_for_backwards_compat=pipeline_def_for_backwards_compat, ) return EventGenerationManager(generator, ScopedResourcesBuilder) def resolve_resource_dependencies(resource_defs): """Generates a dictionary that maps resource key to resource keys it requires for initialization""" resource_dependencies = { key: resource_def.required_resource_keys for key, resource_def in resource_defs.items() } return resource_dependencies def get_dependencies(resource_name, resource_deps): """Get all resources that must be initialized before resource_name can be initialized. Uses dfs to get all required dependencies from a particular resource. If dependencies are cyclic, raise a DagsterInvariantViolationError. """ path = set() # resources we are currently checking the dependencies of reqd_resources = set() # adds dependencies for a given resource key to reqd_resources def _get_deps_helper(resource_key): path.add(resource_key) for reqd_resource_key in resource_deps[resource_key]: if reqd_resource_key in path: raise DagsterInvariantViolationError( 'Resource key "{key}" transitively depends on itself.'.format( key=reqd_resource_key ) ) _get_deps_helper(reqd_resource_key) path.remove(resource_key) reqd_resources.add(resource_key) _get_deps_helper(resource_name) return set(reqd_resources) def _core_resource_initialization_event_generator( resource_defs: Dict[str, ResourceDefinition], resource_configs: Dict[str, ResourceConfig], resource_log_manager: DagsterLogManager, resource_managers: Deque[EventGenerationManager], execution_plan: Optional[ExecutionPlan], pipeline_run: Optional[PipelineRun], resource_keys_to_init: Optional[AbstractSet[str]], instance: Optional[DagsterInstance], emit_persistent_events: Optional[bool], pipeline_def_for_backwards_compat: Optional[PipelineDefinition], ): pipeline_name = None contains_generator = False if emit_persistent_events: check.invariant( pipeline_run and execution_plan, "If emit_persistent_events is enabled, then pipeline_run and execution_plan must be provided", ) pipeline_name = cast(PipelineRun, pipeline_run).pipeline_name resource_keys_to_init = check.opt_set_param(resource_keys_to_init, "resource_keys_to_init") resource_instances: Dict[str, "InitializedResource"] = {} resource_init_times = {} try: if emit_persistent_events and resource_keys_to_init: yield DagsterEvent.resource_init_start( cast(str, pipeline_name), cast(ExecutionPlan, execution_plan), resource_log_manager, resource_keys_to_init, ) resource_dependencies = resolve_resource_dependencies(resource_defs) for level in toposort(resource_dependencies): for resource_name in level: resource_def = resource_defs[resource_name] if not resource_name in resource_keys_to_init: continue resource_fn = cast(Callable[[InitResourceContext], Any], resource_def.resource_fn) resources = ScopedResourcesBuilder(resource_instances).build( resource_def.required_resource_keys ) resource_context = InitResourceContext( resource_def=resource_def, resource_config=resource_configs[resource_name].config, pipeline_run=pipeline_run, # Add tags with information about the resource log_manager=resource_log_manager.with_tags( resource_name=resource_name, resource_fn_name=str(resource_fn.__name__), ), resources=resources, instance=instance, pipeline_def_for_backwards_compat=pipeline_def_for_backwards_compat, ) manager = single_resource_generation_manager( resource_context, resource_name, resource_def ) for event in manager.generate_setup_events(): if event: yield event initialized_resource = check.inst(manager.get_object(), InitializedResource) resource_instances[resource_name] = initialized_resource.resource resource_init_times[resource_name] = initialized_resource.duration contains_generator = contains_generator or initialized_resource.is_generator resource_managers.append(manager) if emit_persistent_events and resource_keys_to_init: yield DagsterEvent.resource_init_success( cast(str, pipeline_name), cast(ExecutionPlan, execution_plan), resource_log_manager, resource_instances, resource_init_times, ) yield ScopedResourcesBuilder(resource_instances, contains_generator) except DagsterUserCodeExecutionError as dagster_user_error: # Can only end up in this state if we attempt to initialize a resource, so # resource_keys_to_init cannot be empty if emit_persistent_events: yield DagsterEvent.resource_init_failure( cast(str, pipeline_name), cast(ExecutionPlan, execution_plan), resource_log_manager, resource_keys_to_init, serializable_error_info_from_exc_info(dagster_user_error.original_exc_info), ) raise dagster_user_error def resource_initialization_event_generator( resource_defs: Dict[str, ResourceDefinition], resource_configs: Dict[str, ResourceConfig], log_manager: DagsterLogManager, execution_plan: Optional[ExecutionPlan], pipeline_run: Optional[PipelineRun], resource_keys_to_init: Optional[AbstractSet[str]], instance: Optional[DagsterInstance], emit_persistent_events: Optional[bool], pipeline_def_for_backwards_compat: Optional[PipelineDefinition], ): check.inst_param(log_manager, "log_manager", DagsterLogManager) resource_keys_to_init = check.opt_set_param( resource_keys_to_init, "resource_keys_to_init", of_type=str ) check.opt_inst_param(execution_plan, "execution_plan", ExecutionPlan) check.opt_inst_param(pipeline_run, "pipeline_run", PipelineRun) check.opt_inst_param(instance, "instance", DagsterInstance) if execution_plan and execution_plan.step_handle_for_single_step_plans(): step = execution_plan.get_step( cast( StepHandleUnion, cast(ExecutionPlan, execution_plan).step_handle_for_single_step_plans(), ) ) resource_log_manager = log_manager.with_tags(**cast(ExecutionStep, step).logging_tags) else: resource_log_manager = log_manager generator_closed = False resource_managers: Deque[EventGenerationManager] = deque() try: yield from _core_resource_initialization_event_generator( resource_defs=resource_defs, resource_configs=resource_configs, resource_log_manager=resource_log_manager, resource_managers=resource_managers, execution_plan=execution_plan, pipeline_run=pipeline_run, resource_keys_to_init=resource_keys_to_init, instance=instance, emit_persistent_events=emit_persistent_events, pipeline_def_for_backwards_compat=pipeline_def_for_backwards_compat, ) except GeneratorExit: # Shouldn't happen, but avoid runtime-exception in case this generator gets GC-ed # (see https://amir.rachum.com/blog/2017/03/03/generator-cleanup/). generator_closed = True raise finally: if not generator_closed: error = None while len(resource_managers) > 0: manager = resource_managers.pop() try: yield from manager.generate_teardown_events() except DagsterUserCodeExecutionError as dagster_user_error: error = dagster_user_error if error and emit_persistent_events: yield DagsterEvent.resource_teardown_failure( cast(PipelineRun, pipeline_run).pipeline_name, cast(ExecutionPlan, execution_plan), resource_log_manager, resource_keys_to_init, serializable_error_info_from_exc_info(error.original_exc_info), ) class InitializedResource: """Utility class to wrap the untyped resource object emitted from the user-supplied resource function. Used for distinguishing from the framework-yielded events in an `EventGenerationManager`-wrapped event stream. """ def __init__(self, obj, duration, is_generator): self.resource = obj self.duration = duration self.is_generator = is_generator def single_resource_generation_manager(context, resource_name, resource_def): generator = single_resource_event_generator(context, resource_name, resource_def) return EventGenerationManager(generator, InitializedResource) def single_resource_event_generator(context, resource_name, resource_def): try: msg_fn = lambda: "Error executing resource_fn on ResourceDefinition {name}".format( name=resource_name ) with user_code_error_boundary( DagsterResourceFunctionError, msg_fn, log_manager=context.log ): try: with time_execution_scope() as timer_result: resource_or_gen = ( resource_def.resource_fn(context) if is_context_provided(get_function_params(resource_def.resource_fn)) else resource_def.resource_fn() ) # Flag for whether resource is generator. This is used to ensure that teardown # occurs when resources are initialized out of execution. is_gen = inspect.isgenerator(resource_or_gen) gen = ensure_gen(resource_or_gen) resource = next(gen) resource = InitializedResource( resource, format_duration(timer_result.millis), is_gen ) except StopIteration: check.failed( "Resource generator {name} must yield one item.".format(name=resource_name) ) yield resource except DagsterUserCodeExecutionError as dagster_user_error: raise dagster_user_error with user_code_error_boundary(DagsterResourceFunctionError, msg_fn, log_manager=context.log): try: next(gen) except StopIteration: pass else: check.failed( "Resource generator {name} yielded more than one item.".format(name=resource_name) ) def get_required_resource_keys_to_init( execution_plan, pipeline_def, resolved_run_config, intermediate_storage_def ): resource_keys = set() if intermediate_storage_def is not None: resource_keys = resource_keys.union(intermediate_storage_def.required_resource_keys) for step_handle, step in execution_plan.step_dict.items(): if step_handle not in execution_plan.step_handles_to_execute: continue hook_defs = pipeline_def.get_all_hooks_for_handle(step.solid_handle) for hook_def in hook_defs: resource_keys = resource_keys.union(hook_def.required_resource_keys) resource_keys = resource_keys.union( get_required_resource_keys_for_step( pipeline_def, step, execution_plan, resolved_run_config, intermediate_storage_def ) ) return frozenset(resource_keys) def get_required_resource_keys_for_step( pipeline_def, execution_step, execution_plan, resolved_run_config, intermediate_storage_def ): resource_keys = set() mode_definition = pipeline_def.get_mode_definition(resolved_run_config.mode) resource_dependencies = resolve_resource_dependencies(mode_definition.resource_defs) # add all the intermediate storage resource keys if intermediate_storage_def is not None: resource_keys = resource_keys.union(intermediate_storage_def.required_resource_keys) # add all the solid compute resource keys solid_def = pipeline_def.get_solid(execution_step.solid_handle).definition resource_keys = resource_keys.union(solid_def.required_resource_keys) # add input type, input loader, and input io manager resource keys for step_input in execution_step.step_inputs: input_def = step_input.source.get_input_def(pipeline_def) resource_keys = resource_keys.union(input_def.dagster_type.required_resource_keys) resource_keys = resource_keys.union(step_input.source.required_resource_keys(pipeline_def)) if isinstance(step_input, StepInput): source_handles = step_input.get_step_output_handle_dependencies() elif isinstance(step_input, (UnresolvedMappedStepInput, UnresolvedCollectStepInput)): # Placeholder handles will allow lookup of the unresolved execution steps # for what resources will be needed once the steps resolve source_handles = step_input.get_step_output_handle_deps_with_placeholders() else: check.failed(f"Unexpected step input type {step_input}") for source_handle in source_handles: source_manager_key = execution_plan.get_manager_key(source_handle, pipeline_def) if source_manager_key: resource_keys = resource_keys.union([source_manager_key]) # add output type, output materializer, and output io manager resource keys for step_output in execution_step.step_outputs: # Load the output type output_def = solid_def.output_def_named(step_output.name) resource_keys = resource_keys.union(output_def.dagster_type.required_resource_keys) if step_output.should_materialize and output_def.dagster_type.materializer: resource_keys = resource_keys.union( output_def.dagster_type.materializer.required_resource_keys() ) if output_def.io_manager_key: resource_keys = resource_keys.union([output_def.io_manager_key]) # add all the storage-compatible plugin resource keys for dagster_type in solid_def.all_dagster_types(): for auto_plugin in dagster_type.auto_plugins: if intermediate_storage_def is not None: if auto_plugin.compatible_with_storage_def(intermediate_storage_def): resource_keys = resource_keys.union(auto_plugin.required_resource_keys()) for resource_name in resource_keys: resource_keys = resource_keys.union( set(get_dependencies(resource_name, resource_dependencies)) ) return frozenset(resource_keys)
42.688406
106
0.700843
4a233b686e523080df20fc709aa1fa7920d176a6
17,644
py
Python
databricks/koalas/tests/test_indexing.py
abishekganesh72/koalas
40c2e209384d078ee75d08c7681d2e6a276ab834
[ "Apache-2.0" ]
null
null
null
databricks/koalas/tests/test_indexing.py
abishekganesh72/koalas
40c2e209384d078ee75d08c7681d2e6a276ab834
[ "Apache-2.0" ]
null
null
null
databricks/koalas/tests/test_indexing.py
abishekganesh72/koalas
40c2e209384d078ee75d08c7681d2e6a276ab834
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import unittest import numpy as np import pandas as pd from databricks import koalas from databricks.koalas.exceptions import SparkPandasIndexingError from databricks.koalas.testing.utils import ComparisonTestBase, ReusedSQLTestCase, compare_both class BasicIndexingTest(ComparisonTestBase): @property def pdf(self): return pd.DataFrame({'month': [1, 4, 7, 10], 'year': [2012, 2014, 2013, 2014], 'sale': [55, 40, 84, 31]}) @compare_both(almost=False) def test_indexing(self, df): df1 = df.set_index('month') yield df1 yield df.set_index('month', drop=False) yield df.set_index('month', append=True) yield df.set_index(['year', 'month']) yield df.set_index(['year', 'month'], drop=False) yield df.set_index(['year', 'month'], append=True) yield df1.set_index('year', drop=False, append=True) df2 = df1.copy() df2.set_index('year', append=True, inplace=True) yield df2 self.assertRaisesRegex(KeyError, 'unknown', lambda: df.set_index('unknown')) self.assertRaisesRegex(KeyError, 'unknown', lambda: df.set_index(['month', 'unknown'])) for d in [df, df1, df2]: yield d.reset_index() yield d.reset_index(drop=True) yield df1.reset_index(level=0) yield df2.reset_index(level=1) yield df2.reset_index(level=[1, 0]) yield df1.reset_index(level='month') yield df2.reset_index(level='year') yield df2.reset_index(level=['month', 'year']) yield df2.reset_index(level='month', drop=True) yield df2.reset_index(level=['month', 'year'], drop=True) if LooseVersion("0.20.0") <= LooseVersion(pd.__version__): self.assertRaisesRegex(IndexError, 'Too many levels: Index has only 1 level, not 3', lambda: df1.reset_index(level=2)) self.assertRaisesRegex(IndexError, 'Too many levels: Index has only 1 level, not 4', lambda: df1.reset_index(level=[3, 2])) self.assertRaisesRegex(KeyError, 'Level unknown must be same as name \\(month\\)', lambda: df1.reset_index(level='unknown')) self.assertRaisesRegex(KeyError, 'Level unknown not found', lambda: df2.reset_index(level='unknown')) df3 = df2.copy() df3.reset_index(inplace=True) yield df3 yield df1.sale.reset_index() yield df1.sale.reset_index(level=0) yield df2.sale.reset_index(level=[1, 0]) yield df1.sale.reset_index(drop=True) yield df1.sale.reset_index(name='s') yield df1.sale.reset_index(name='s', drop=True) s = df1.sale self.assertRaisesRegex(TypeError, 'Cannot reset_index inplace on a Series to create a DataFrame', lambda: s.reset_index(inplace=True)) s.reset_index(drop=True, inplace=True) yield s yield df1 def test_from_pandas_with_explicit_index(self): pdf = self.pdf df1 = koalas.from_pandas(pdf.set_index('month')) self.assertPandasEqual(df1.toPandas(), pdf.set_index('month')) df2 = koalas.from_pandas(pdf.set_index(['year', 'month'])) self.assertPandasEqual(df2.toPandas(), pdf.set_index(['year', 'month'])) def test_limitations(self): df = self.kdf.set_index('month') self.assertRaisesRegex(ValueError, 'Level should be all int or all string.', lambda: df.reset_index([1, 'month'])) self.assertRaisesRegex(NotImplementedError, 'Can\'t reset index because there is no index.', lambda: df.reset_index().reset_index()) class IndexingTest(ReusedSQLTestCase): @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0] }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def kdf(self): return koalas.from_pandas(self.pdf) def test_loc(self): kdf = self.kdf pdf = self.pdf self.assert_eq(kdf.loc[5:5], pdf.loc[5:5]) self.assert_eq(kdf.loc[3:8], pdf.loc[3:8]) self.assert_eq(kdf.loc[:8], pdf.loc[:8]) self.assert_eq(kdf.loc[3:], pdf.loc[3:]) self.assert_eq(kdf.loc[[5]], pdf.loc[[5]]) self.assert_eq(kdf.loc[:], pdf.loc[:]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 1, 8]], pdf.loc[[3, 4, 1, 8]]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 1, 9]], pdf.loc[[3, 4, 1, 9]]) # TODO?: self.assert_eq(kdf.loc[np.array([3, 4, 1, 9])], pdf.loc[np.array([3, 4, 1, 9])]) self.assert_eq(kdf.a.loc[5:5], pdf.a.loc[5:5]) self.assert_eq(kdf.a.loc[3:8], pdf.a.loc[3:8]) self.assert_eq(kdf.a.loc[:8], pdf.a.loc[:8]) self.assert_eq(kdf.a.loc[3:], pdf.a.loc[3:]) self.assert_eq(kdf.a.loc[[5]], pdf.a.loc[[5]]) # TODO?: self.assert_eq(kdf.a.loc[[3, 4, 1, 8]], pdf.a.loc[[3, 4, 1, 8]]) # TODO?: self.assert_eq(kdf.a.loc[[3, 4, 1, 9]], pdf.a.loc[[3, 4, 1, 9]]) # TODO?: self.assert_eq(kdf.a.loc[np.array([3, 4, 1, 9])], # pdf.a.loc[np.array([3, 4, 1, 9])]) self.assert_eq(kdf.a.loc[[]], pdf.a.loc[[]]) self.assert_eq(kdf.a.loc[np.array([])], pdf.a.loc[np.array([])]) self.assert_eq(kdf.loc[1000:], pdf.loc[1000:]) self.assert_eq(kdf.loc[-2000:-1000], pdf.loc[-2000:-1000]) def test_loc_non_informative_index(self): pdf = pd.DataFrame({'x': [1, 2, 3, 4]}, index=[10, 20, 30, 40]) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf.loc[20:30], pdf.loc[20:30]) pdf = pd.DataFrame({'x': [1, 2, 3, 4]}, index=[10, 20, 20, 40]) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf.loc[20:20], pdf.loc[20:20]) def test_loc_with_series(self): kdf = self.kdf pdf = self.pdf self.assert_eq(kdf.loc[kdf.a % 2 == 0], pdf.loc[pdf.a % 2 == 0]) def test_loc_noindex(self): kdf = self.kdf kdf = kdf.reset_index() pdf = self.pdf pdf = pdf.reset_index() self.assert_eq(kdf[['a']], pdf[['a']]) self.assert_eq(kdf.loc[:], pdf.loc[:]) self.assertRaises(NotImplementedError, lambda: kdf.loc[5:5]) def test_loc_multiindex(self): kdf = self.kdf kdf = kdf.set_index('b', append=True) pdf = self.pdf pdf = pdf.set_index('b', append=True) self.assert_eq(kdf[['a']], pdf[['a']]) self.assert_eq(kdf.loc[:], pdf.loc[:]) self.assertRaises(NotImplementedError, lambda: kdf.loc[5:5]) def test_loc2d_multiindex(self): kdf = self.kdf kdf = kdf.set_index('b', append=True) pdf = self.pdf pdf = pdf.set_index('b', append=True) self.assert_eq(kdf.loc[:, :], pdf.loc[:, :]) self.assert_eq(kdf.loc[:, 'a'], pdf.loc[:, 'a']) self.assertRaises(NotImplementedError, lambda: kdf.loc[5:5, 'a']) def test_loc2d(self): kdf = self.kdf pdf = self.pdf # index indexer is always regarded as slice for duplicated values self.assert_eq(kdf.loc[5:5, 'a'], pdf.loc[5:5, 'a']) self.assert_eq(kdf.loc[[5], 'a'], pdf.loc[[5], 'a']) self.assert_eq(kdf.loc[5:5, ['a']], pdf.loc[5:5, ['a']]) self.assert_eq(kdf.loc[[5], ['a']], pdf.loc[[5], ['a']]) self.assert_eq(kdf.loc[:, :], pdf.loc[:, :]) self.assert_eq(kdf.loc[3:8, 'a'], pdf.loc[3:8, 'a']) self.assert_eq(kdf.loc[:8, 'a'], pdf.loc[:8, 'a']) self.assert_eq(kdf.loc[3:, 'a'], pdf.loc[3:, 'a']) self.assert_eq(kdf.loc[[8], 'a'], pdf.loc[[8], 'a']) self.assert_eq(kdf.loc[3:8, ['a']], pdf.loc[3:8, ['a']]) self.assert_eq(kdf.loc[:8, ['a']], pdf.loc[:8, ['a']]) self.assert_eq(kdf.loc[3:, ['a']], pdf.loc[3:, ['a']]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 3], ['a']], pdf.loc[[3, 4, 3], ['a']]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.loc[3, 3, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[3, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[3:, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[kdf.a % 2 == 0, 3]) def test_loc2d_with_known_divisions(self): pdf = pd.DataFrame(np.random.randn(20, 5), index=list('abcdefghijklmnopqrst'), columns=list('ABCDE')) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf.loc[['a'], 'A'], pdf.loc[['a'], 'A']) self.assert_eq(kdf.loc[['a'], ['A']], pdf.loc[['a'], ['A']]) self.assert_eq(kdf.loc['a':'o', 'A'], pdf.loc['a':'o', 'A']) self.assert_eq(kdf.loc['a':'o', ['A']], pdf.loc['a':'o', ['A']]) self.assert_eq(kdf.loc[['n'], ['A']], pdf.loc[['n'], ['A']]) self.assert_eq(kdf.loc[['a', 'c', 'n'], ['A']], pdf.loc[['a', 'c', 'n'], ['A']]) # TODO?: self.assert_eq(kdf.loc[['t', 'b'], ['A']], pdf.loc[['t', 'b'], ['A']]) # TODO?: self.assert_eq(kdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']], # TODO?: pdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']]) def test_loc2d_duplicated_columns(self): pdf = pd.DataFrame(np.random.randn(20, 5), index=list('abcdefghijklmnopqrst'), columns=list('AABCD')) pdf = koalas.from_pandas(pdf) # TODO?: self.assert_eq(pdf.loc[['a'], 'A'], pdf.loc[['a'], 'A']) # TODO?: self.assert_eq(pdf.loc[['a'], ['A']], pdf.loc[['a'], ['A']]) self.assert_eq(pdf.loc[['j'], 'B'], pdf.loc[['j'], 'B']) self.assert_eq(pdf.loc[['j'], ['B']], pdf.loc[['j'], ['B']]) # TODO?: self.assert_eq(pdf.loc['a':'o', 'A'], pdf.loc['a':'o', 'A']) # TODO?: self.assert_eq(pdf.loc['a':'o', ['A']], pdf.loc['a':'o', ['A']]) self.assert_eq(pdf.loc['j':'q', 'B'], pdf.loc['j':'q', 'B']) self.assert_eq(pdf.loc['j':'q', ['B']], pdf.loc['j':'q', ['B']]) # TODO?: self.assert_eq(pdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D']) # TODO?: self.assert_eq(pdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D']) # TODO?: self.assert_eq(pdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A']) # TODO?: self.assert_eq(pdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A']) self.assert_eq(pdf.loc[pdf.B > 0, 'B'], pdf.loc[pdf.B > 0, 'B']) # TODO?: self.assert_eq(pdf.loc[pdf.B > 0, ['A', 'C']], pdf.loc[pdf.B > 0, ['A', 'C']]) def test_getitem(self): pdf = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'B': [9, 8, 7, 6, 5, 4, 3, 2, 1], 'C': [True, False, True] * 3}, columns=list('ABC')) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf['A'], pdf['A']) self.assert_eq(kdf[['A', 'B']], pdf[['A', 'B']]) self.assert_eq(kdf[kdf.C], pdf[pdf.C]) self.assertRaises(KeyError, lambda: kdf['X']) self.assertRaises(KeyError, lambda: kdf[['A', 'X']]) self.assertRaises(AttributeError, lambda: kdf.X) # not str/unicode # TODO?: pdf = pd.DataFrame(np.random.randn(10, 5)) # TODO?: kdf = koalas.from_pandas(pdf) # TODO?: self.assert_eq(kdf[0], pdf[0]) # TODO?: self.assert_eq(kdf[[1, 2]], pdf[[1, 2]]) # TODO?: self.assertRaises(KeyError, lambda: pdf[8]) # TODO?: self.assertRaises(KeyError, lambda: pdf[[1, 8]]) def test_getitem_slice(self): pdf = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'B': [9, 8, 7, 6, 5, 4, 3, 2, 1], 'C': [True, False, True] * 3}, index=list('abcdefghi')) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf['a':'e'], pdf['a':'e']) self.assert_eq(kdf['a':'b'], pdf['a':'b']) self.assert_eq(kdf['f':], pdf['f':]) def test_loc_on_numpy_datetimes(self): pdf = pd.DataFrame({'x': [1, 2, 3]}, index=list(map(np.datetime64, ['2014', '2015', '2016']))) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf.loc['2014':'2015'], pdf.loc['2014':'2015']) def test_loc_on_pandas_datetimes(self): pdf = pd.DataFrame({'x': [1, 2, 3]}, index=list(map(pd.Timestamp, ['2014', '2015', '2016']))) kdf = koalas.from_pandas(pdf) self.assert_eq(kdf.loc['2014':'2015'], pdf.loc['2014':'2015']) @unittest.skip('TODO?: the behavior of slice for datetime') def test_loc_datetime_no_freq(self): datetime_index = pd.date_range('2016-01-01', '2016-01-31', freq='12h') datetime_index.freq = None # FORGET FREQUENCY pdf = pd.DataFrame({'num': range(len(datetime_index))}, index=datetime_index) kdf = koalas.from_pandas(pdf) slice_ = slice('2016-01-03', '2016-01-05') result = kdf.loc[slice_, :] expected = pdf.loc[slice_, :] self.assert_eq(result, expected) @unittest.skip('TODO?: the behavior of slice for datetime') def test_loc_timestamp_str(self): pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.date_range('2011-01-01', freq='H', periods=100)) kdf = koalas.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf.loc['2011-01-02'], # TODO?: kdf.loc['2011-01-02']) self.assert_eq(pdf.loc['2011-01-02':'2011-01-05'], kdf.loc['2011-01-02':'2011-01-05']) # series # TODO?: self.assert_eq(pdf.A.loc['2011-01-02'], # TODO?: kdf.A.loc['2011-01-02']) self.assert_eq(pdf.A.loc['2011-01-02':'2011-01-05'], kdf.A.loc['2011-01-02':'2011-01-05']) pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.date_range('2011-01-01', freq='M', periods=100)) kdf = koalas.from_pandas(pdf) # TODO?: self.assert_eq(pdf.loc['2011-01'], kdf.loc['2011-01']) # TODO?: self.assert_eq(pdf.loc['2011'], kdf.loc['2011']) self.assert_eq(pdf.loc['2011-01':'2012-05'], kdf.loc['2011-01':'2012-05']) self.assert_eq(pdf.loc['2011':'2015'], kdf.loc['2011':'2015']) # series # TODO?: self.assert_eq(pdf.B.loc['2011-01'], kdf.B.loc['2011-01']) # TODO?: self.assert_eq(pdf.B.loc['2011'], kdf.B.loc['2011']) self.assert_eq(pdf.B.loc['2011-01':'2012-05'], kdf.B.loc['2011-01':'2012-05']) self.assert_eq(pdf.B.loc['2011':'2015'], kdf.B.loc['2011':'2015']) @unittest.skip('TODO?: the behavior of slice for datetime') def test_getitem_timestamp_str(self): pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.date_range('2011-01-01', freq='H', periods=100)) kdf = koalas.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf['2011-01-02'], # TODO?: kdf['2011-01-02']) self.assert_eq(pdf['2011-01-02':'2011-01-05'], kdf['2011-01-02':'2011-01-05']) pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.date_range('2011-01-01', freq='M', periods=100)) kdf = koalas.from_pandas(pdf) # TODO?: self.assert_eq(pdf['2011-01'], kdf['2011-01']) # TODO?: self.assert_eq(pdf['2011'], kdf['2011']) self.assert_eq(pdf['2011-01':'2012-05'], kdf['2011-01':'2012-05']) self.assert_eq(pdf['2011':'2015'], kdf['2011':'2015']) @unittest.skip('TODO?: period index can\'t convert to DataFrame correctly') def test_getitem_period_str(self): pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.period_range('2011-01-01', freq='H', periods=100)) kdf = koalas.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf['2011-01-02'], # TODO?: kdf['2011-01-02']) self.assert_eq(pdf['2011-01-02':'2011-01-05'], kdf['2011-01-02':'2011-01-05']) pdf = pd.DataFrame({'A': np.random.randn(100), 'B': np.random.randn(100)}, index=pd.period_range('2011-01-01', freq='M', periods=100)) kdf = koalas.from_pandas(pdf) # TODO?: self.assert_eq(pdf['2011-01'], kdf['2011-01']) # TODO?: self.assert_eq(pdf['2011'], kdf['2011']) self.assert_eq(pdf['2011-01':'2012-05'], kdf['2011-01':'2012-05']) self.assert_eq(pdf['2011':'2015'], kdf['2011':'2015'])
42.72155
100
0.545285
4a233c3784e51473706f5deef0f4ed3f7530cc6b
5,134
py
Python
Lib/test/test_msilib.py
ShiboXing/cpython
ef19bad7d6da99575d66c1f5dc8fd6ac57e92f6e
[ "CNRI-Python-GPL-Compatible" ]
1,318
2019-07-11T10:34:39.000Z
2022-03-29T15:05:19.000Z
Lib/test/test_msilib.py
ShiboXing/cpython
ef19bad7d6da99575d66c1f5dc8fd6ac57e92f6e
[ "CNRI-Python-GPL-Compatible" ]
387
2019-09-05T16:33:09.000Z
2022-03-31T10:43:39.000Z
Lib/test/test_msilib.py
docmarionum1/pyvcs-python
f62cf1a76d51302f342319d446d6fbf3c60f29c3
[ "0BSD" ]
66
2019-11-11T15:33:12.000Z
2022-03-01T07:55:55.000Z
""" Test suite for the code in msilib """ import os import unittest from test.support import TESTFN, import_module, unlink msilib = import_module('msilib') import msilib.schema def init_database(): path = TESTFN + '.msi' db = msilib.init_database( path, msilib.schema, 'Python Tests', 'product_code', '1.0', 'PSF', ) return db, path class MsiDatabaseTestCase(unittest.TestCase): def test_view_fetch_returns_none(self): db, db_path = init_database() properties = [] view = db.OpenView('SELECT Property, Value FROM Property') view.Execute(None) while True: record = view.Fetch() if record is None: break properties.append(record.GetString(1)) view.Close() db.Close() self.assertEqual( properties, [ 'ProductName', 'ProductCode', 'ProductVersion', 'Manufacturer', 'ProductLanguage', ] ) self.addCleanup(unlink, db_path) def test_view_non_ascii(self): db, db_path = init_database() view = db.OpenView("SELECT 'ß-розпад' FROM Property") view.Execute(None) record = view.Fetch() self.assertEqual(record.GetString(1), 'ß-розпад') view.Close() db.Close() self.addCleanup(unlink, db_path) def test_summaryinfo_getproperty_issue1104(self): db, db_path = init_database() try: sum_info = db.GetSummaryInformation(99) title = sum_info.GetProperty(msilib.PID_TITLE) self.assertEqual(title, b"Installation Database") sum_info.SetProperty(msilib.PID_TITLE, "a" * 999) title = sum_info.GetProperty(msilib.PID_TITLE) self.assertEqual(title, b"a" * 999) sum_info.SetProperty(msilib.PID_TITLE, "a" * 1000) title = sum_info.GetProperty(msilib.PID_TITLE) self.assertEqual(title, b"a" * 1000) sum_info.SetProperty(msilib.PID_TITLE, "a" * 1001) title = sum_info.GetProperty(msilib.PID_TITLE) self.assertEqual(title, b"a" * 1001) finally: db = None sum_info = None os.unlink(db_path) def test_database_open_failed(self): with self.assertRaises(msilib.MSIError) as cm: msilib.OpenDatabase('non-existent.msi', msilib.MSIDBOPEN_READONLY) self.assertEqual(str(cm.exception), 'open failed') def test_database_create_failed(self): db_path = os.path.join(TESTFN, 'test.msi') with self.assertRaises(msilib.MSIError) as cm: msilib.OpenDatabase(db_path, msilib.MSIDBOPEN_CREATE) self.assertEqual(str(cm.exception), 'create failed') def test_get_property_vt_empty(self): db, db_path = init_database() summary = db.GetSummaryInformation(0) self.assertIsNone(summary.GetProperty(msilib.PID_SECURITY)) db.Close() self.addCleanup(unlink, db_path) def test_directory_start_component_keyfile(self): db, db_path = init_database() self.addCleanup(unlink, db_path) self.addCleanup(db.Close) self.addCleanup(msilib._directories.clear) feature = msilib.Feature(db, 0, 'Feature', 'A feature', 'Python') cab = msilib.CAB('CAB') dir = msilib.Directory(db, cab, None, TESTFN, 'TARGETDIR', 'SourceDir', 0) dir.start_component(None, feature, None, 'keyfile') def test_getproperty_uninitialized_var(self): db, db_path = init_database() self.addCleanup(unlink, db_path) self.addCleanup(db.Close) si = db.GetSummaryInformation(0) with self.assertRaises(msilib.MSIError): si.GetProperty(-1) class Test_make_id(unittest.TestCase): #http://msdn.microsoft.com/en-us/library/aa369212(v=vs.85).aspx """The Identifier data type is a text string. Identifiers may contain the ASCII characters A-Z (a-z), digits, underscores (_), or periods (.). However, every identifier must begin with either a letter or an underscore. """ def test_is_no_change_required(self): self.assertEqual( msilib.make_id("short"), "short") self.assertEqual( msilib.make_id("nochangerequired"), "nochangerequired") self.assertEqual( msilib.make_id("one.dot"), "one.dot") self.assertEqual( msilib.make_id("_"), "_") self.assertEqual( msilib.make_id("a"), "a") #self.assertEqual( # msilib.make_id(""), "") def test_invalid_first_char(self): self.assertEqual( msilib.make_id("9.short"), "_9.short") self.assertEqual( msilib.make_id(".short"), "_.short") def test_invalid_any_char(self): self.assertEqual( msilib.make_id(".s\x82ort"), "_.s_ort") self.assertEqual( msilib.make_id(".s\x82o?*+rt"), "_.s_o___rt") if __name__ == '__main__': unittest.main()
33.555556
78
0.608103
4a233c46cfa2ec61b5783332591e9f3903735dc7
1,312
py
Python
src/dataset.py
jkulhanek/faster-rcnn-pytorch
a8db36f1ff3497b24e5d87f2b6e327534cceb688
[ "MIT" ]
2
2018-07-02T11:49:28.000Z
2020-06-21T21:40:43.000Z
src/dataset.py
jkulhanek/faster-rcnn-pytorch
a8db36f1ff3497b24e5d87f2b6e327534cceb688
[ "MIT" ]
null
null
null
src/dataset.py
jkulhanek/faster-rcnn-pytorch
a8db36f1ff3497b24e5d87f2b6e327534cceb688
[ "MIT" ]
null
null
null
import torch import torchvision import model import model_utils as utils import torchvision.transforms as transforms DATASET_PATH = "/datasets/pascalvoc/VOC2007/JPEGImages" DATASET_TRAIN_TARGET = "/datasets/pascalvoc/annotations/pascal_train2007.json" DATASET_PATH = "D:\\datasets\\pascalvoc\\VOC2007\\JPEGImages" DATASET_TRAIN_TARGET = "D:\\datasets\\pascalvoc\\annotations\\pascal_train2007.json" def target_transform(target): # Ignore ignored target = [x for x in target if x['ignore'] != 1] target_count = len(target) boxes = torch.empty((target_count, 4,), requires_grad = False) labels =torch.empty((target_count,), requires_grad = False) for i,elem in enumerate(target): boxes[i] = torch.tensor(elem['bbox']) labels[i] = elem['category_id'] return { "boxes": boxes, "labels": labels } def make_dataset(dataset_root_path = DATASET_PATH, dataset_train_target = DATASET_TRAIN_TARGET): return torchvision.datasets.CocoDetection(DATASET_PATH, DATASET_TRAIN_TARGET, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), target_transform=transforms.Lambda(target_transform))
37.485714
97
0.692073
4a233dd1a2f7b56b37a0686592ac356a1007f48a
1,204
py
Python
xmltranslate/xml_ops.py
ramansah/xmllib
71d375c7735636d28a5915afb04f19325f8a2bf7
[ "MIT" ]
null
null
null
xmltranslate/xml_ops.py
ramansah/xmllib
71d375c7735636d28a5915afb04f19325f8a2bf7
[ "MIT" ]
null
null
null
xmltranslate/xml_ops.py
ramansah/xmllib
71d375c7735636d28a5915afb04f19325f8a2bf7
[ "MIT" ]
null
null
null
from xml.etree.ElementTree import fromstring, Element, SubElement, dump def xml2dict(xml_obj: str): tree = fromstring(xml_obj) return _xml2dict(tree) def dict2xml(dict_obj: dict): for key, value in dict_obj.items(): xml_ele = Element(key) return dump(_dict2xml(value, xml_ele)) def _dict2xml(dict_obj: dict, root): for key, value in dict_obj.items(): if type(value) == dict: t = SubElement(root, key) _dict2xml(value, t) else: t = SubElement(root, key) t.text = value return root def _xml2dict(xml_ele): if xml_ele.getchildren(): obj = dict() for child in xml_ele.getchildren(): obj[child.tag] = _xml2dict(child) return { xml_ele.tag: obj } else: return xml_ele.text if __name__ == '__main__': test_string = '<parent><child2>CHILD2</child2><child1><child11>CHILD11</child11></child1></parent>' test_obj = { 'parent': { 'child1': { 'child11': 'CHILD11' }, 'child2': 'CHILD2' } } #print(xml2dict(test_string)) #print(dict2xml(test_obj))
24.571429
103
0.568106
4a233dd4541846e38dfd8d77cd00be2b898331bf
153
py
Python
pyrep/robots/arms/locobot_arm.py
WeiWeic6222848/PyRep
231a1ac6b0a179cff53c1d403d379260b9f05f2f
[ "MIT" ]
505
2019-06-26T17:02:44.000Z
2022-03-31T04:03:23.000Z
pyrep/robots/arms/locobot_arm.py
WeiWeic6222848/PyRep
231a1ac6b0a179cff53c1d403d379260b9f05f2f
[ "MIT" ]
255
2019-06-27T07:04:17.000Z
2022-03-29T18:25:48.000Z
pyrep/robots/arms/locobot_arm.py
WeiWeic6222848/PyRep
231a1ac6b0a179cff53c1d403d379260b9f05f2f
[ "MIT" ]
171
2019-06-27T05:33:50.000Z
2022-03-30T03:34:24.000Z
from pyrep.robots.arms.arm import Arm class LoCoBotArm(Arm): def __init__(self, count: int = 0): super().__init__(count, 'LoCoBotArm', 5)
19.125
48
0.666667
4a233df672395721ff4647f1f67ac71391518ed7
48
wsgi
Python
tmp/www/wsgi-scripts/graphite-api.wsgi
anvart/stormwatch
7a5f277d4021b3429871ea0c045567c365aec7f4
[ "MIT" ]
6
2017-07-05T16:59:16.000Z
2020-07-01T10:17:09.000Z
tmp/www/wsgi-scripts/graphite-api.wsgi
anvart/stormwatch
7a5f277d4021b3429871ea0c045567c365aec7f4
[ "MIT" ]
8
2017-11-03T13:36:53.000Z
2021-09-05T11:05:17.000Z
tmp/www/wsgi-scripts/graphite-api.wsgi
anvart/stormwatch
7a5f277d4021b3429871ea0c045567c365aec7f4
[ "MIT" ]
6
2016-11-10T12:56:41.000Z
2018-06-19T21:53:58.000Z
from graphite_api.app import app as application
24
47
0.854167
4a233e9f10d49d2881df2b11546b1e33d6a2fbfe
13,252
py
Python
src/ExportCsvToInflux/csv_object.py
7yl4r/export-csv-to-influx
9bb5a192983363d15e2f4210ef0f8b8e3cd185d3
[ "BSD-3-Clause" ]
null
null
null
src/ExportCsvToInflux/csv_object.py
7yl4r/export-csv-to-influx
9bb5a192983363d15e2f4210ef0f8b8e3cd185d3
[ "BSD-3-Clause" ]
null
null
null
src/ExportCsvToInflux/csv_object.py
7yl4r/export-csv-to-influx
9bb5a192983363d15e2f4210ef0f8b8e3cd185d3
[ "BSD-3-Clause" ]
null
null
null
from collections import defaultdict from .base_object import BaseObject from itertools import tee from glob import glob import hashlib import types import time import json import csv import sys import os class CSVObject(object): """CSV Object""" def __init__(self, delimiter=',', lineterminator='\n'): self.delimiter = delimiter self.lineterminator = lineterminator def get_csv_header(self, file_name): """Function: get_csv_header. :param file_name: the file name :return return csv header as list """ self.valid_file_exist(file_name) with open(file_name) as f: sniffer = csv.Sniffer() try: has_header = sniffer.has_header(f.read(40960)) except csv.Error: has_header = False f.seek(0) csv_reader = csv.DictReader(f, delimiter=self.delimiter, lineterminator=self.lineterminator) headers = csv_reader.fieldnames is_header = not any(field.isdigit() for field in headers) headers = headers if has_header or is_header else [] return headers @staticmethod def search_files_in_dir(directory, match_suffix='.csv', filter_pattern='_influx.csv'): """Function: search_files_in_dir :param directory: the directory :param match_suffix: match the file suffix, use comma to separate, only string, not support regex :param filter_pattern: filter the files, only string, not support regex """ base_object = BaseObject() match_suffix = base_object.str_to_list(match_suffix, lower=True) filter_pattern = base_object.str_to_list(filter_pattern, lower=True) # Is file is_file = os.path.isfile(directory) if is_file: yield directory # Search directory for x in os.walk(directory): for y in glob(os.path.join(x[0], '*.*')): # Continue if directory try: check_directory = os.path.isdir(y) except UnicodeEncodeError as e: y = y.encode('utf-8', 'ignore') print('Warning: Unicode Encode Error found when checking isdir {0}: {1}'.format(y, e)) check_directory = os.path.isdir(y) if check_directory is True: continue # Filter Out match_suffix_status = any(the_filter in y.lower() for the_filter in match_suffix) filter_pattern_status = any(the_filter in y.lower() for the_filter in filter_pattern) if match_suffix_status is True and filter_pattern_status is False: yield y @staticmethod def valid_file_exist(file_name): """Function: valid_file_exist :param file_name: the file name """ file_exists = os.path.exists(file_name) if file_exists is False: error_message = 'Error: The file does not exist: {0}'.format(file_name) sys.exit(error_message) def get_file_md5(self, file_name): """Function: get_file_md5 :param file_name: the file name :return return the file md5 """ self.valid_file_exist(file_name) hash_md5 = hashlib.md5() with open(file_name, "rb") as f: for chunk in iter(lambda: f.read(40960), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def get_file_modify_time(self, file_name, enable_ms=False): """Function: get_file_modify_time :param file_name: the file name :param enable_ms: enable milliseconds (default False) :return return the human readable time """ self.valid_file_exist(file_name) modified = os.path.getmtime(file_name) modified_s, modified_ms = divmod(modified * 1000, 1000) if enable_ms is False: modified_pretty = time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(modified_s)) else: modified_pretty = '%s.%03d' % (time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(modified_s)), modified_ms) return modified_pretty def get_csv_lines_count(self, file_name): """Function: get_csv_lines_count. :param file_name: the file name :return return csv line count. No count header into count """ has_header = self.get_csv_header(file_name) with open(file_name) as f: csv_reader = csv.DictReader(f, delimiter=self.delimiter, lineterminator=self.lineterminator) count = 0 if has_header else 1 for row in csv_reader: count += 1 return count def convert_csv_data_to_int_float(self, file_name=None, csv_reader=None): """Function: convert_csv_data_to_int_float :param file_name: the file name (default None) :param csv_reader: the csv dict reader (default None) The csv_reader could come from 2 ways: 1. use csv.DictReader to get the csv_reader object 2. use dict to make up the csv_reader, the dict format is as following [ {'csv_header_1': 'value', 'csv_header_2': 'value', 'csv_header_3': 'value', ...}, {'csv_header_1': 'value', 'csv_header_2': 'value', 'csv_header_3': 'value', ...}, {'csv_header_1': 'value', 'csv_header_2': 'value', 'csv_header_3': 'value', ...}, ... ] """ # init int_type = defaultdict(list) float_type = defaultdict(list) keys = list() csv_reader = list() if csv_reader is None else csv_reader csv_reader_bk = csv_reader has_header = True # Verify the csv_reader csv_reader_type = type(csv_reader) is_generator_type = isinstance(csv_reader, types.GeneratorType) if csv_reader_type != list and csv_reader_type != csv.DictReader and not is_generator_type: error_message = 'Error: The csv_reader type is not expected: {0}, ' \ 'should list type or csv.DictReader'.format(csv_reader_type) sys.exit(error_message) if is_generator_type: csv_reader, csv_reader_bk = tee(csv_reader) # Get csv_reader from csv file f = None if file_name: has_header = self.get_csv_header(file_name) f = open(file_name) csv_reader = csv.DictReader(f, delimiter=self.delimiter, lineterminator=self.lineterminator) csv_reader, csv_reader_bk = tee(csv_reader) # Process for row in csv_reader: keys = row.keys() for key in keys: value = row[key] len_value = len(value) # Continue If Value Empty if len_value == 0: continue # Valid Int Type try: if float(value).is_integer(): int_type[key].append(True) else: int_type[key].append(False) except ValueError: int_type[key].append(False) # Valid Float Type try: float(value) float_type[key].append(True) except ValueError: float_type[key].append(False) # check for empty columns for key in keys: if len(int_type[key]) == 0 or len(float_type[key]) == 0: raise ValueError( f"Column '{key}' has no valid int or float rows; " "check your csv file." ) # Valid the key if no header if keys and not has_header: for key in keys: len_key = len(key) # Continue If Key Empty if len_key == 0: continue # Valid Int Type try: if float(key).is_integer(): int_type[key].append(True) else: int_type[key].append(False) except ValueError: int_type[key].append(False) # Valid Float Type try: float(key) float_type[key].append(True) except ValueError: float_type[key].append(False) # Finalize Type int_type = {k: all(int_type[k]) for k in int_type} float_type = {k: all(float_type[k]) for k in float_type} # Yield Data i = 1 for row in csv_reader_bk: keys = row.keys() for key in keys: value = row[key] int_status = int_type[key] len_value = len(value) if len_value == 0: continue if int_status is True: row[key] = int(float(value)) if int_type[key] is True else value else: row[key] = float(value) if float_type[key] is True else value yield row, int_type, float_type if not has_header and i == 1: for key in keys: int_status = int_type[key] len_key = len(key) if len_key == 0: continue if int_status is True: row[key] = int(float(key)) if int_type[key] is True else key else: row[key] = float(key) if float_type[key] is True else key yield row, int_type, float_type i += 1 # Close file if file_name: f.close() def add_columns_to_csv(self, file_name, target, data, save_csv_file=True): """Function: add_columns_to_csv :param file_name: the file name :param target: the target file to save result :param data: the new columns data, list type, the item is dict. for example: [{"new_header_1": ["new_value_1", "new_value_2", "new_value_3"]}, {"new_header_2": ["new_value_1", "new_value_2", "new_value_3"]} ] :param save_csv_file: save csv file to local (default True) :return return the new csv data by dict """ has_header = self.get_csv_header(file_name) # Process data data_type = type(data) error_message = 'Error: The data should be list type, the item should be dict. Or the json type as following ' \ 'for example: [{"new_header_1": ["new_value_1", "new_value_2", "new_value_3"]}, ' \ '{"new_header_2": ["new_value_1", "new_value_2", "new_value_3"]}]' try: check_data_type = data_type is not list and data_type is not str and data_type is not unicode except NameError: check_data_type = data_type is not list and data_type is not str if check_data_type: sys.exit(error_message) try: check_data_type = data_type is str or data_type is unicode except NameError: check_data_type = data_type is str if check_data_type: try: data = json.loads(data) except ValueError: sys.exit(error_message) # Add columns target_writer = None target_file = None if save_csv_file: target_file = open(target, 'w+') target_writer = csv.writer(target_file, delimiter=self.delimiter, lineterminator=self.lineterminator) with open(file_name) as f: source_reader = csv.DictReader(f, delimiter=self.delimiter, lineterminator=self.lineterminator) new_headers = [list(x.keys())[0] for x in data] row_id = 0 for row in source_reader: values = list(row.values()) if row_id == 0: headers = list(row.keys()) if not has_header: continue headers += new_headers if save_csv_file: target_writer.writerow(headers) new_values = list() for x in data: try: value = list(x.values())[0][row_id] except IndexError: print('Warning: The provided column length is less than with the source csv length. ' 'Use "null" to fill the empty data') value = 'null' new_values.append(value) values += new_values row_id += 1 if save_csv_file: target_writer.writerow(values) yield dict(zip(headers, values)) if save_csv_file: target_file.close()
37.120448
120
0.541956
4a233ea9eee4061fd7ff883078303aef2e90f084
483
py
Python
tagulous/serializers/json.py
marxide/django-tagulous
80c057c5dd2dce85f4bb531b25d3b4982bd03e8f
[ "Apache-2.0" ]
null
null
null
tagulous/serializers/json.py
marxide/django-tagulous
80c057c5dd2dce85f4bb531b25d3b4982bd03e8f
[ "Apache-2.0" ]
null
null
null
tagulous/serializers/json.py
marxide/django-tagulous
80c057c5dd2dce85f4bb531b25d3b4982bd03e8f
[ "Apache-2.0" ]
null
null
null
""" JSON serializer with Tagulous support """ from __future__ import unicode_literals from django.core.serializers import json as json_serializer from tagulous.serializers import base class Serializer(base.SerializerMixin, json_serializer.Serializer): """ JSON serializer with tag field support """ pass Deserializer = base.DeserializerWrapper( json_serializer.Deserializer, doc="Deserialize a stream or string of JSON data, with tag field support", )
21
78
0.766046
4a233f05a5100d2f81b91a62e8a3d28d13bc7bd9
11,842
py
Python
dj_hetmech_app/views.py
dhimmel/hetmech-backend
28d9626d75c5fa78b03ae0cb18b32f90bcf1fe8f
[ "BSD-3-Clause" ]
4
2020-01-24T16:11:10.000Z
2020-11-19T20:40:53.000Z
dj_hetmech_app/views.py
dhimmel/hetmech-backend
28d9626d75c5fa78b03ae0cb18b32f90bcf1fe8f
[ "BSD-3-Clause" ]
57
2018-10-30T18:29:14.000Z
2019-11-04T15:19:51.000Z
dj_hetmech_app/views.py
dhimmel/hetmech-backend
28d9626d75c5fa78b03ae0cb18b32f90bcf1fe8f
[ "BSD-3-Clause" ]
3
2018-10-30T18:07:19.000Z
2019-06-04T14:50:44.000Z
import functools from django.db.models import Q from rest_framework import filters from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.reverse import reverse from rest_framework.views import APIView from rest_framework.viewsets import ReadOnlyModelViewSet from .models import Node, PathCount from .serializers import NodeSerializer, MetapathSerializer, PathCountDgpSerializer @api_view(['GET']) def api_root(request): """ Hetionet connectivity search API. This API is used to power <https://search.het.io>. The codebase for this API is available at <https://github.com/greenelab/connectivity-search-backend>. Please use GitHub Issues for any questions or feedback. """ return Response([ reverse('node', request=request, kwargs={'pk': 2}), reverse('nodes', request=request), reverse('random-node-pair', request=request), reverse('metapaths', request=request, kwargs={'source': 17054, 'target': 6602}), reverse('metapaths-random-nodes', request=request), reverse('paths', request=request, kwargs={'source': 17054, 'target': 6602, 'metapath': 'CbGeAlD'}), ]) class NodeViewSet(ReadOnlyModelViewSet): """ Return nodes, sorted by similarity to the search term. Use `search=<str>` to search `identifier` for prefix match, and `name` for substring and trigram searches (similarity defaults to 0.3); Use `search=<str>&similarity=<value>` to set your own `similarity` value in the range of (0, 1.0]. Set `similarity=1.0` to exclude trigram search. Filter for select metanodes using `metanodes=<str>`, where `<str>` is a comma-separated list of metanode abbreviations. For example, `metanodes=C,D` will restrict to Compound and Disease nodes. Set `other-node=<node_id>` to return non-null values for `metapath_count`. `metapath_counts` measures the number of metapaths stored in the database between the result node and other node. If `search` and `other-node` and both specified, results are sorted by search similarity and results with `metapath_count == 0` are returned. If `other-node` is specified but not `search`, results are sorted by `metapath_count` (descending) and only results with `metapath_count > 0` are returned. """ http_method_names = ['get'] serializer_class = NodeSerializer filter_backends = (filters.SearchFilter, ) @functools.lru_cache() def get_serializer_context(self): """ Add metapath_counts to context if "other-node" was specified. https://stackoverflow.com/a/52859696/4651668 """ context = super().get_serializer_context() search_against = context['request'].query_params.get('other-node') if search_against is None: return context try: search_against = int(search_against) except ValueError: return context from dj_hetmech_app.utils.paths import get_metapath_counts_for_node context['metapath_counts'] = get_metapath_counts_for_node(search_against) return context def get_queryset(self): """Optionally restricts the returned nodes based on `metanodes` and `search` parameters in the URL. """ queryset = Node.objects.all() # 'metanodes' parameter for exact match on metanode abbreviation metanodes = get_metanodes(self.request) if metanodes is not None: queryset = queryset.filter(metanode__abbreviation__in=metanodes) # 'search' parameter to search 'identifier' and 'name' fields search_str = self.request.query_params.get('search', None) if search_str is not None: from django.contrib.postgres.search import TrigramSimilarity from django.db.models import Case, When, Value, IntegerField # 'similarity' defaults to 0.3 similarity = self.request.query_params.get('similarity', "0.3") try: similarity = float(similarity) if similarity <= 0 or similarity > 1.0: raise ValueError except ValueError: from rest_framework.exceptions import ParseError raise ParseError( {'error': 'Value of similarity must be in (0, 1.0]'} ) queryset = queryset.annotate( similarity=TrigramSimilarity('name', search_str) ).filter( Q(identifier__istartswith=search_str) | # prefix match of "identifier Q(name__icontains=search_str) | # substring match of "name" Q(similarity__gt=similarity) # trigram search of "name" ).annotate( identifier_prefix_match=Case( When(identifier__istartswith=search_str, then=Value(1)), default=Value(0), output_field=IntegerField(), ), name_substr_match=Case( When(name__icontains=search_str, then=Value(1)), default=Value(0), output_field=IntegerField(), ) ).order_by( '-identifier_prefix_match', '-name_substr_match', '-similarity', 'name' ) elif 'other-node' in self.request.query_params: metapath_counts = self.get_serializer_context()['metapath_counts'] queryset = queryset.filter(pk__in=set(metapath_counts)) queryset = sorted(queryset, key=lambda node: metapath_counts[node.pk], reverse=True) return queryset class RandomNodePairView(APIView): """ Return a random source and target node for which at least one metapath with path count information exists in the database. The implementation chooses a random row from the PathCount table, such that source-target pairs with many metapaths are more likely to be selected than source-target pairs with few metapaths. """ http_method_names = ['get'] def get(self, request): import random # More info on random row lookup at https://stackoverflow.com/a/56119397/4651668 max_id = PathCount.objects.last().id random_id = random.randint(0, max_id) pathcount_row = PathCount.objects.get(pk=random_id) n_metapaths = PathCount.objects.filter(source=pathcount_row.source, target=pathcount_row.target).count() data = { 'source_id': pathcount_row.source.id, 'target_id': pathcount_row.target.id, 'n_metapaths': n_metapaths, 'pathcount_table_random_id': random_id, 'pathcount_table_max_id': max_id, } return Response(data) class QueryMetapathsView(APIView): """ Return metapaths between a given source and target node whose path count information is stored in the database. Specify `complete` to also return metapaths of unknown significance whose path count information is not stored in the database. If not specified, `limit` defaults to returning all metapaths (i.e. without limit). The database only stores a single orientation of a metapath. For example, if GpPpGaD is stored between the given source and target node, DaGpPpG would not also be stored. Therefore, both orientations of a metapath are searched against the PathCount table. """ http_method_names = ['get'] def get(self, request, source, target): source_node = get_object_or_404(Node, pk=source) target_node = get_object_or_404(Node, pk=target) limit = get_limit(request, default=None) from .utils.paths import get_pathcount_queryset, get_metapath_queryset pathcounts = get_pathcount_queryset(source, target) pathcounts = PathCountDgpSerializer(pathcounts, many=True).data pathcounts.sort(key=lambda x: (x['adjusted_p_value'], x['p_value'], x['metapath_abbreviation'])) if limit is not None: pathcounts = pathcounts[:limit] if 'complete' in request.query_params: metapaths_present = {x['metapath_id'] for x in pathcounts} metapath_qs = get_metapath_queryset( source_node.metanode, target_node.metanode, extra_filters=~Q(abbreviation__in=metapaths_present), ) if limit is not None: metapath_qs = metapath_qs[:limit - len(pathcounts)] pathcounts += MetapathSerializer(metapath_qs, many=True).data # `metapath_qs = metapath_qs[:0]` doesn't filter to an empty query set` if limit is not None: pathcounts = pathcounts[:limit] remove_keys = {'source', 'target', 'metapath_source', 'metapath_target'} for dictionary in pathcounts: for key in remove_keys & set(dictionary): del dictionary[key] data = { 'source': NodeSerializer(source_node).data, 'target': NodeSerializer(target_node).data, 'path_counts': pathcounts, } return Response(data) class QueryMetapathsRandomNodesView(QueryMetapathsView): """ Return metapaths for a random source and target node for which at least one metapath with path count information exists in the database. """ def get(self, request): info = RandomNodePairView().get(request=None).data response = super().get( request, source=info.pop('source_id'), target=info.pop('target_id')) response.data.update(info) return response class QueryPathsView(APIView): """ For a given source node, target node, and metapath, return the actual paths comprising the path count / DWPC. These paths have not been pre-computed and are extracted on-the-fly from the Hetionet Neo4j Browser. Therefore, it is advisable to avoid querying a source-target-metapath pair with a path count exceeding 10,000. Because results are ordered by PDP / percent_of_DWPC, reducing `limit` does not prevent neo4j from having to exhaustively traverse all paths. """ http_method_names = ['get'] def get(self, request, source, target, metapath): source_node = get_object_or_404(Node, pk=source) target_node = get_object_or_404(Node, pk=target) # TODO: validate "metapath" is a valid abbreviation limit = get_limit(request, default=100) from .utils.paths import get_paths output = get_paths(metapath, source_node.id, target_node.id, limit=limit) return Response(output) def get_object_or_404(klass, *args, **kwargs): """ Similar to `django.shortcuts.get_object_or_404` but raises NotFound and produces a more verbose error message. """ from django.shortcuts import _get_queryset from rest_framework.exceptions import NotFound queryset = _get_queryset(klass) try: return queryset.get(*args, **kwargs) except queryset.model.DoesNotExist as e: error = e except queryset.model.MultipleObjectsReturned as e: error = e message = f"{error} Lookup parameters: args={args} kwargs={kwargs}" raise NotFound(message) def get_metanodes(request): metanodes = request.query_params.get('metanodes') if metanodes is not None: assert isinstance(metanodes, str) metanodes = metanodes.split(',') return metanodes def get_limit(request, default: int = 100): from rest_framework.exceptions import ParseError limit = request.query_params.get('limit', default) if limit is None: return None try: limit = int(limit) except Exception: raise ParseError("limit is not a valid number") if limit < 0: limit = None return limit
43.218978
159
0.665259
4a233f128bd890849ac2ae2cd5160f1edf45f7e4
5,564
py
Python
model/topic.py
jaiminpan/F2E.pg
3b5baabc6f5a250bc96ff283e0afb3b1c44318de
[ "BSD-3-Clause" ]
null
null
null
model/topic.py
jaiminpan/F2E.pg
3b5baabc6f5a250bc96ff283e0afb3b1c44318de
[ "BSD-3-Clause" ]
null
null
null
model/topic.py
jaiminpan/F2E.pg
3b5baabc6f5a250bc96ff283e0afb3b1c44318de
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # # Copyright 2012 F2E.im # Do have a faith in what you're doing. # Make your life a story worth telling. import time from lib.query import Query class TopicModel(Query): def __init__(self, db): self.db = db self.table_name = "topic" super(TopicModel, self).__init__() def get_all_topics(self, num = 36, current_page = 1): join = "LEFT JOIN users AS author_user ON topic.author_id = author_user.uid \ LEFT JOIN node ON topic.node_id = node.id \ LEFT JOIN users AS last_replied_user ON topic.last_replied_by = last_replied_user.uid" order = "last_touched DESC, created DESC, last_replied_time DESC, id DESC" field = "topic.*, \ author_user.username as author_username, \ author_user.nickname as author_nickname, \ author_user.avatar as author_avatar, \ author_user.uid as author_uid, \ author_user.reputation as author_reputation, \ node.name as node_name, \ node.slug as node_slug, \ last_replied_user.username as last_replied_username, \ last_replied_user.nickname as last_replied_nickname" return self.order(order).join(join).field(field).pages(current_page = current_page, list_rows = num) def get_all_topics_by_node_slug(self, num = 36, current_page = 1, node_slug = None): where = "node.slug = '%s'" % node_slug join = "LEFT JOIN users AS author_user ON topic.author_id = author_user.uid \ LEFT JOIN node ON topic.node_id = node.id \ LEFT JOIN users AS last_replied_user ON topic.last_replied_by = last_replied_user.uid" order = "last_touched DESC, created DESC, last_replied_time DESC, id DESC" field = "topic.*, \ author_user.username as author_username, \ author_user.nickname as author_nickname, \ author_user.avatar as author_avatar, \ author_user.uid as author_uid, \ author_user.reputation as author_reputation, \ node.name as node_name, \ node.slug as node_slug, \ last_replied_user.username as last_replied_username, \ last_replied_user.nickname as last_replied_nickname" return self.where(where).order(order).join(join).field(field).pages(current_page = current_page, list_rows = num) def get_all_topics_count(self): return self.count() def get_user_all_topics(self, uid, num = 36, current_page = 1): where = "topic.author_id = %s" % uid join = "LEFT JOIN users AS author_user ON topic.author_id = author_user.uid \ LEFT JOIN node ON topic.node_id = node.id \ LEFT JOIN users AS last_replied_user ON topic.last_replied_by = last_replied_user.uid" order = "id DESC" field = "topic.*, \ author_user.username as author_username, \ author_user.nickname as author_nickname, \ author_user.avatar as author_avatar, \ author_user.uid as author_uid, \ author_user.reputation as author_reputation, \ node.name as node_name, \ node.slug as node_slug, \ last_replied_user.username as last_replied_username, \ last_replied_user.nickname as last_replied_nickname" return self.where(where).order(order).join(join).field(field).pages(current_page = current_page, list_rows = num) def get_user_all_topics_count(self, uid): where = "author_id = %s" % uid return self.where(where).count() def get_user_all_replied_topics(self, uid, num = 36, current_page = 1): where = "reply.uid = %s" % uid join = "LEFT JOIN reply ON topic.id = reply.tid LEFT JOIN users ON topic.uid = users.uid" order = "topic.id DESC" field = "*, topic.created as created" group = "tid" return self.where(where).order(order).join(join).field(field).group(group).pages(current_page = current_page, list_rows = num) def get_topic_by_topic_id(self, topic_id): where = "topic.id = %s" % topic_id join = "LEFT JOIN users AS author_user ON topic.author_id = author_user.uid \ LEFT JOIN node ON topic.node_id = node.id \ LEFT JOIN users AS last_replied_user ON topic.last_replied_by = last_replied_user.uid" field = "topic.*, \ author_user.username as author_username, \ author_user.nickname as author_nickname, \ author_user.avatar as author_avatar, \ author_user.uid as author_uid, \ author_user.reputation as author_reputation, \ node.name as node_name, \ node.slug as node_slug, \ last_replied_user.username as last_replied_username, \ last_replied_user.nickname as last_replied_nickname" return self.where(where).join(join).field(field).find() def add_new_topic(self, topic_info): return self.data(topic_info).add() def update_topic_by_topic_id(self, topic_id, topic_info): where = "topic.id = %s" % topic_id return self.where(where).data(topic_info).save() def get_user_last_created_topic(self, uid): where = "topic.author_id = %s" % uid order = "topic.created DESC" return self.where(where).order(order).find()
48.807018
134
0.63138
4a233f3271d12938ca9505b4e942bdcd0342f0e1
1,948
py
Python
okta/models/ws_federation_application_settings.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
145
2017-06-13T21:54:04.000Z
2022-02-25T05:44:34.000Z
okta/models/ws_federation_application_settings.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
146
2017-06-02T17:46:12.000Z
2022-03-29T15:52:15.000Z
okta/models/ws_federation_application_settings.py
corylevine/okta-sdk-python
c86b8fdc4525e84199143c27213c0aebc6b2af8f
[ "Apache-2.0" ]
98
2017-06-27T03:44:51.000Z
2022-03-23T04:58:18.000Z
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.models.application_settings\ import ApplicationSettings from okta.models import ws_federation_application_settings_application\ as ws_federation_application_settings_application class WsFederationApplicationSettings( ApplicationSettings ): """ A class for WsFederationApplicationSettings objects. """ def __init__(self, config=None): super().__init__(config) if config: if "app" in config: if isinstance(config["app"], ws_federation_application_settings_application.WsFederationApplicationSettingsApplication): self.app = config["app"] elif config["app"] is not None: self.app = ws_federation_application_settings_application.WsFederationApplicationSettingsApplication( config["app"] ) else: self.app = None else: self.app = None else: self.app = None def request_format(self): parent_req_format = super().request_format() current_obj_format = { "app": self.app } parent_req_format.update(current_obj_format) return parent_req_format
33.016949
121
0.666838
4a23413f89804f690215d9a822b011e84f43d865
184
py
Python
poradnia/cases/apps.py
efefre/poradnia
8bf9c88888d538cf4d1224431355c850d31ef252
[ "MIT" ]
23
2015-07-20T01:10:52.000Z
2021-01-12T10:05:48.000Z
poradnia/cases/apps.py
efefre/poradnia
8bf9c88888d538cf4d1224431355c850d31ef252
[ "MIT" ]
710
2015-07-12T13:19:14.000Z
2022-03-29T12:38:18.000Z
poradnia/cases/apps.py
efefre/poradnia
8bf9c88888d538cf4d1224431355c850d31ef252
[ "MIT" ]
20
2015-07-21T00:45:34.000Z
2021-01-31T12:48:18.000Z
from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ class CustomAppConfig(AppConfig): name = "poradnia.cases" verbose_name = _("Cases")
23
55
0.766304
4a234156724f02501103597e1db5b79f6463e576
6,553
py
Python
medusa/config.py
chebelom/cassandra-medusa
5afc3aaf9295466cd24b5d97f9f6e3455498be72
[ "Apache-2.0" ]
null
null
null
medusa/config.py
chebelom/cassandra-medusa
5afc3aaf9295466cd24b5d97f9f6e3455498be72
[ "Apache-2.0" ]
null
null
null
medusa/config.py
chebelom/cassandra-medusa
5afc3aaf9295466cd24b5d97f9f6e3455498be72
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2019 Spotify AB. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import configparser import logging import os import pathlib import sys import medusa.storage import medusa.cassandra_utils StorageConfig = collections.namedtuple( 'StorageConfig', ['bucket_name', 'key_file', 'prefix', 'fqdn', 'host_file_separator', 'storage_provider', 'base_path', 'max_backup_age', 'max_backup_count', 'api_profile', 'transfer_max_bandwidth', 'concurrent_transfers', 'multi_part_upload_threshold', 'host', 'port', 'secure'] ) CassandraConfig = collections.namedtuple( 'CassandraConfig', ['start_cmd', 'stop_cmd', 'config_file', 'cql_username', 'cql_password', 'check_running', 'is_ccm', 'sstableloader_bin', 'nodetool_username', 'nodetool_password', 'nodetool_password_file_path', 'nodetool_host', 'nodetool_port'] ) SSHConfig = collections.namedtuple( 'SSHConfig', ['username', 'key_file', 'port'] ) ChecksConfig = collections.namedtuple( 'ChecksConfig', ['health_check', 'query', 'expected_rows', 'expected_result'] ) MonitoringConfig = collections.namedtuple( 'MonitoringConfig', ['monitoring_provider'] ) MedusaConfig = collections.namedtuple( 'MedusaConfig', ['storage', 'cassandra', 'ssh', 'restore', 'monitoring', 'logging'] ) LoggingConfig = collections.namedtuple( 'LoggingConfig', ['enabled', 'file', 'format', 'level', 'maxBytes', 'backupCount'] ) DEFAULT_CONFIGURATION_PATH = pathlib.Path('/etc/medusa/medusa.ini') def load_config(args, config_file): config = configparser.ConfigParser(interpolation=None) # Set defaults config['storage'] = { 'host_file_separator': ',', 'max_backup_age': 0, 'max_backup_count': 0, 'api_profile': 'default', 'transfer_max_bandwidth': '50MB/s', 'concurrent_transfers': 1, 'multi_part_upload_threshold': 100 * 1024 * 1024, 'secure': True, } config['logging'] = { 'enabled': 'false', 'file': 'medusa.log', 'level': 'INFO', 'format': '[%(asctime)s] %(levelname)s: %(message)s', 'maxBytes': 20000000, 'backupCount': 50, } config['cassandra'] = { 'config_file': medusa.cassandra_utils.CassandraConfigReader.DEFAULT_CASSANDRA_CONFIG, 'start_cmd': 'sudo /etc/init.d/cassandra start', 'stop_cmd': 'sudo service cassandra stop', 'check_running': 'nodetool version', 'is_ccm': 0, 'sstableloader_bin': 'sstableloader' } config['ssh'] = { 'username': os.environ.get('USER') or '', 'key_file': '', 'port': 22 } config['checks'] = { 'health_check': 'cql', 'query': '', 'expected_rows': '0', 'expected_result': '' } config['monitoring'] = { 'monitoring_provider': 'None' } if config_file: logging.debug('Loading configuration from {}'.format(config_file)) config.read_file(config_file.open()) elif DEFAULT_CONFIGURATION_PATH.exists(): logging.debug('Loading configuration from {}'.format(DEFAULT_CONFIGURATION_PATH)) config.read_file(DEFAULT_CONFIGURATION_PATH.open()) else: logging.error( 'No configuration file provided via CLI, nor no default file found in {}'.format(DEFAULT_CONFIGURATION_PATH) ) sys.exit(1) config.read_dict({'storage': { key: value for key, value in _zip_fields_with_arg_values(StorageConfig._fields, args) if value is not None }}) config.read_dict({'logging': { key: value for key, value in _zip_fields_with_arg_values(LoggingConfig._fields, args) if value is not None }}) config.read_dict({'ssh': { key: value for key, value in _zip_fields_with_arg_values(SSHConfig._fields, args) if value is not None }}) config.read_dict({'restore': { key: value for key, value in _zip_fields_with_arg_values(ChecksConfig._fields, args) if value is not None }}) config.read_dict({'monitoring': { key: value for key, value in _zip_fields_with_arg_values(MonitoringConfig._fields, args) if value is not None }}) medusa_config = MedusaConfig( storage=_namedtuple_from_dict(StorageConfig, config['storage']), cassandra=_namedtuple_from_dict(CassandraConfig, config['cassandra']), ssh=_namedtuple_from_dict(SSHConfig, config['ssh']), restore=_namedtuple_from_dict(ChecksConfig, config['checks']), monitoring=_namedtuple_from_dict(MonitoringConfig, config['monitoring']), logging=_namedtuple_from_dict(LoggingConfig, config['logging']), ) for field in ['bucket_name', 'storage_provider']: if getattr(medusa_config.storage, field) is None: logging.error('Required configuration "{}" is missing in [storage] section.'.format(field)) sys.exit(2) for field in ['start_cmd', 'stop_cmd']: if getattr(medusa_config.cassandra, field) is None: logging.error('Required configuration "{}" is missing in [cassandra] section.'.format(field)) sys.exit(2) for field in ['username', 'key_file']: if getattr(medusa_config.ssh, field) is None: logging.error('Required configuration "{}" is missing in [ssh] section.'.format(field)) sys.exit(2) return medusa_config def _zip_fields_with_arg_values(fields, args): return [(field, args[field]) for field in fields] def evaluate_boolean(value): # same behaviour as python's configparser if value.lower() in ('0', 'false', 'no', 'off'): return False elif value.lower() in ('1', 'true', 'yes', 'on'): return True else: raise TypeError('{} not a boolean'.format(value)) def _namedtuple_from_dict(cls, data): return cls(**{ field: data.get(field) for field in cls._fields })
31.657005
120
0.654662
4a23435b1bb7abe7ad949d7dad9a9bd2b68044f8
160
py
Python
submit_site/post_funcs.py
tai-korestate/budongsanbuddy
8f4ddbcc2bc68c50394b62decee4882c7837fec6
[ "MIT" ]
null
null
null
submit_site/post_funcs.py
tai-korestate/budongsanbuddy
8f4ddbcc2bc68c50394b62decee4882c7837fec6
[ "MIT" ]
null
null
null
submit_site/post_funcs.py
tai-korestate/budongsanbuddy
8f4ddbcc2bc68c50394b62decee4882c7837fec6
[ "MIT" ]
null
null
null
def upload_file(fil_name): with open(string(fil_name),"wb+") as destination: for chunk in fil_name.chunk(): destination.write(chunk)
26.666667
53
0.64375
4a2343e77d46624c6170f58774fcd3d0f75a665a
5,887
py
Python
aiomisc/entrypoint.py
dizballanze/aiomisc
8c6444e4ffa56d82f1ba6947ad9e46a4020c4016
[ "MIT" ]
1
2019-03-07T11:13:30.000Z
2019-03-07T11:13:30.000Z
aiomisc/entrypoint.py
dizballanze/aiomisc
8c6444e4ffa56d82f1ba6947ad9e46a4020c4016
[ "MIT" ]
null
null
null
aiomisc/entrypoint.py
dizballanze/aiomisc
8c6444e4ffa56d82f1ba6947ad9e46a4020c4016
[ "MIT" ]
null
null
null
import asyncio import logging import typing as t from concurrent.futures._base import Executor from .context import Context, get_context from .log import LogFormat, basic_config from .service import Service from .signal import Signal from .utils import create_default_event_loop, event_loop_policy ExecutorType = Executor class Entrypoint: PRE_START = Signal() POST_STOP = Signal() async def _start(self) -> None: if self.log_config: basic_config( level=self.log_level, log_format=self.log_format, buffered=True, loop=self.loop, buffer_size=self.log_buffer_size, flush_interval=self.log_flush_interval, ) for signal in (self.pre_start, self.post_stop): signal.freeze() await self.pre_start.call(entrypoint=self, services=self.services) await asyncio.gather( *[self._start_service(svc) for svc in self.services], ) def __init__( self, *services: Service, loop: asyncio.AbstractEventLoop = None, pool_size: int = None, log_level: t.Union[int, str] = logging.INFO, log_format: t.Union[str, LogFormat] = "color", log_buffer_size: int = 1024, log_flush_interval: float = 0.2, log_config: bool = True, policy: asyncio.AbstractEventLoopPolicy = event_loop_policy, debug: bool = False ): """ :param debug: set debug to event loop :param loop: loop :param services: Service instances which will be starting. :param pool_size: thread pool size :param log_level: Logging level which will be configured :param log_format: Logging format which will be configures :param log_buffer_size: Buffer size for logging :param log_flush_interval: interval in seconds for flushing logs :param log_config: if False do not configure logging """ self._debug = debug self._loop = loop self._loop_owner = False self._thread_pool = None # type: t.Optional[ExecutorType] self.ctx = None # type: t.Optional[Context] self.log_buffer_size = log_buffer_size self.log_config = log_config self.log_flush_interval = log_flush_interval self.log_format = log_format self.log_level = log_level self.policy = policy self.pool_size = pool_size self.services = services self.shutting_down = False self.pre_start = self.PRE_START.copy() self.post_stop = self.POST_STOP.copy() self._closing = None # type: t.Optional[asyncio.Event] if self.log_config: basic_config( level=self.log_level, log_format=self.log_format, buffered=False, ) async def closing(self) -> None: # Lazy initialization because event loop might be not exists if self._closing is None: self._closing = asyncio.Event() await self._closing.wait() @property def loop(self) -> asyncio.AbstractEventLoop: if self._loop is None: self._loop, self._thread_pool = create_default_event_loop( pool_size=self.pool_size, policy=self.policy, debug=self._debug, ) self._loop_owner = True return self._loop def __del__(self) -> None: if self._loop and self._loop.is_closed(): return if self._loop_owner and self._loop is not None: self._loop.close() def __enter__(self) -> asyncio.AbstractEventLoop: self.loop.run_until_complete(self.__aenter__()) return self.loop def __exit__( self, exc_type: t.Any, exc_val: t.Any, exc_tb: t.Any, ) -> None: if self.loop.is_closed(): return self.loop.run_until_complete( self.__aexit__(exc_type, exc_val, exc_tb), ) if self._loop_owner and self._loop is not None: self._loop.close() async def __aenter__(self) -> "Entrypoint": if self._loop is None: # When __aenter__ called without __enter__ self._loop = asyncio.get_event_loop() self.ctx = Context(loop=self.loop) await self._start() return self async def __aexit__( self, exc_type: t.Any, exc_val: t.Any, exc_tb: t.Any ) -> None: try: if self.loop.is_closed(): return await self.graceful_shutdown(exc_val) self.shutting_down = True finally: if self.ctx: self.ctx.close() if self._thread_pool: self._thread_pool.shutdown() async def _start_service( self, svc: Service ) -> None: svc.set_loop(self.loop) start_task, ev_task = map( asyncio.ensure_future, ( svc.start(), svc.start_event.wait(), ), ) await asyncio.wait( (start_task, ev_task), return_when=asyncio.FIRST_COMPLETED, ) self.loop.call_soon(svc.start_event.set) await ev_task if start_task.done(): await start_task return return None async def graceful_shutdown(self, exception: Exception) -> None: if self._closing: self._closing.set() tasks = [ asyncio.shield(svc.stop(exception)) for svc in self.services ] if tasks: await asyncio.gather(*tasks, return_exceptions=True) await self.post_stop.call(entrypoint=self) await self.loop.shutdown_asyncgens() entrypoint = Entrypoint __all__ = ("entrypoint", "Entrypoint", "get_context")
28.857843
74
0.597758
4a23441477b2ba3b04c45b611a7f606bfe635d3f
7,022
py
Python
acloud/_internal.py
rfc2119/acloud-dl
a17f1c4c31c48b64f23d8bd29d88e228489322f7
[ "MIT" ]
null
null
null
acloud/_internal.py
rfc2119/acloud-dl
a17f1c4c31c48b64f23d8bd29d88e228489322f7
[ "MIT" ]
null
null
null
acloud/_internal.py
rfc2119/acloud-dl
a17f1c4c31c48b64f23d8bd29d88e228489322f7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- ''' Author : Nasir Khan (r0ot h3x49) Github : https://github.com/r0oth3x49 License : MIT Copyright (c) 2018 Nasir Khan (r0ot h3x49) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import sys import time from ._colorized import * from ._extract import CloudGuru from ._shared import ( CloudGuruCourses, CloudGuruCourseDownload, CloudGuruCourse, CloudGuruChapters, CloudGuruLectures, CloudLectureSubtitles, CloudGuruLectureStreams, CloudGuruLectureLectureAssets ) from ._getpass import GetPass class InternCloudGuruCourses(CloudGuruCourses, CloudGuru, GetPass): def __init__(self, *args, **kwargs): self._info = '' super(InternCloudGuruCourses, self).__init__(*args, **kwargs) def _fetch_courses(self): if self._have_basic_courses: return if self._cookies: auth = self._login(cookies=self._cookies) if auth.get('login') == 'successful': courses = self._extract_accessible_courses() self._courses = [InternCloudGuruCourseDownload(c, self) for c in courses] self._have_basic_courses = True class InternCloudGuruCourseDownload(CloudGuruCourseDownload): def __init__(self, course, parent): self._info = course self._session = parent._session super(InternCloudGuruCourseDownload, self).__init__() self._id = self._info.get("uniqueid") self._title = self._info.get("title") def _process_course(self, keep_alive): self._course = InternCloudGuruCourse(self._info, self._session, keep_alive) class InternCloudGuruCourse(CloudGuruCourse, CloudGuru): def __init__(self, course, session, keep_alive): self._info = '' self._course = course self._session = session self._keep_alive = keep_alive super(InternCloudGuruCourse, self).__init__() def _fetch_course(self): if self._have_basic: return course_id = self._course.get("uniqueid") self._info = self._real_extract(course_id=course_id) self._id = self._info['course_id'] self._url = self._info['course_url'] self._title = self._info['course_title'] self._chapters_count = self._info['total_chapters'] self._total_lectures = self._info['total_lectures'] self._chapters = [InternCloudGuruChapter(z) for z in self._info['chapters']] if not self._keep_alive: self._logout() self._have_basic = True class InternCloudGuruChapter(CloudGuruChapters): def __init__(self, chapter): super(InternCloudGuruChapter, self).__init__() self._chapter_id = chapter['chapter_id'] self._chapter_title = chapter['chapter_title'] self._chapter_index = chapter['chapter_index'] self._lectures_count = chapter['lectures_count'] self._lectures = [InternCloudGuruLecture(z) for z in chapter['lectures']] class InternCloudGuruLecture(CloudGuruLectures): def __init__(self, lectures): super(InternCloudGuruLecture, self).__init__() self._info = lectures self._lecture_id = self._info['lecture_id'] self._lecture_title = self._info['lecture_title'] self._lecture_index = self._info['lecture_index'] self._sources_count = self._info['sources_count'] self._assets_count = self._info['assets_count'] self._extension = self._info.get('extension') or None self._duration = self._info.get('duration') or None if self._duration: duration = int(self._duration) (mins, secs) = divmod(duration, 60) (hours, mins) = divmod(mins, 60) if hours == 0: self._duration = "%02d:%02d" % (mins, secs) else: self._duration = "%02d:%02d:%02d" % (hours, mins, secs) def _process_streams(self): streams = [InternCloudGuruLectureStream(z, self) for z in self._info['sources']] if self._sources_count > 0 else [] self._streams = streams def _process_assets(self): assets = [InternCloudGuruLectureAssets(z, self) for z in self._info['assets']] if self._assets_count > 0 else [] self._assets = assets def _process_subtitles(self): subtitles = InternCloudLectureSubtitles(self._info['subtitle_url'], self) if self._info['subtitle_url'] else "" self._subtitle = subtitles class InternCloudGuruLectureStream(CloudGuruLectureStreams): def __init__(self, sources, parent): super(InternCloudGuruLectureStream, self).__init__(parent) self._mediatype = sources.get('type') self._extension = sources.get('extension') height = sources.get('height') or 0 width = sources.get('width') or 0 self._resolution = '%sx%s' % (width, height) self._dimention = width, height self._quality = self._resolution self._url = sources.get('url') self._path = sources.get('path') self._fsize = sources.get('size') class InternCloudGuruLectureAssets(CloudGuruLectureLectureAssets): def __init__(self, assets, parent): super(InternCloudGuruLectureAssets, self).__init__(parent) self._mediatype = assets.get('type') self._extension = assets.get('extension') self._title = '{0:03d} {1!s}'.format(parent._lecture_index, assets.get('filename')) self._url = assets.get('url') class InternCloudLectureSubtitles(CloudLectureSubtitles): def __init__(self, subtitle_url, parent): super(InternCloudLectureSubtitles, self).__init__(parent) self._mediatype = "sub" self._extension = "vtt" self._language = "en" self._url = subtitle_url
39.011111
168
0.660496
4a23442f436456b900bf2b2e1e9c5799f4c8936d
2,028
py
Python
leather/scales/ordinal.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
6
2019-03-02T09:16:12.000Z
2021-08-17T13:54:49.000Z
leather/scales/ordinal.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
66
2018-01-04T07:25:13.000Z
2022-03-29T09:19:09.000Z
leather/scales/ordinal.py
nickromano/django-daily-digest
8f9a289d772cfd6b6c72536dd40c2012516b9d28
[ "MIT" ]
2
2019-09-03T09:35:44.000Z
2021-12-28T15:29:13.000Z
#!/usr/bin/env python from decimal import Decimal from leather.scales.base import Scale class Ordinal(Scale): """ A scale that maps individual values (e.g. strings) to a range. """ def __init__(self, domain): self._domain = domain def contains(self, v): """ Return :code:`True` if a given value is contained within this scale's displayed domain. """ return v in self._domain def project(self, value, range_min, range_max): """ Project a value in this scale's domain to a target range. """ range_min = Decimal(range_min) range_max = Decimal(range_max) segments = len(self._domain) segment_size = (range_max - range_min) / segments try: pos = ( range_min + (self._domain.index(value) * segment_size) + (segment_size / 2) ) except ValueError: raise ValueError( 'Value "%s" is not present in Ordinal scale domain' % value ) return pos def project_interval(self, value, range_min, range_max): """ Project a value in this scale's domain to an interval in the target range. This is used for places :class:`.Bars` and :class:`.Columns`. """ range_min = Decimal(range_min) range_max = Decimal(range_max) segments = len(self._domain) segment_size = (range_max - range_min) / segments gap = segment_size / Decimal(20) try: a = range_min + (self._domain.index(value) * segment_size) + gap b = range_min + ((self._domain.index(value) + 1) * segment_size) - gap except ValueError: raise ValueError( 'Value "%s" is not present in Ordinal scale domain' % value ) return (a, b) def ticks(self): """ Generate a series of ticks for this scale. """ return self._domain
27.780822
82
0.560651