hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a21ea3f7be2160152511d231c86be018a965ae7
527
py
Python
parsec/commands/histories/delete_history.py
abretaud/parsec
8ebcafac34b5d6df45de4cecc882b129bb604170
[ "Apache-2.0" ]
null
null
null
parsec/commands/histories/delete_history.py
abretaud/parsec
8ebcafac34b5d6df45de4cecc882b129bb604170
[ "Apache-2.0" ]
null
null
null
parsec/commands/histories/delete_history.py
abretaud/parsec
8ebcafac34b5d6df45de4cecc882b129bb604170
[ "Apache-2.0" ]
null
null
null
import click from parsec.cli import pass_context, json_loads from parsec.decorators import custom_exception, dict_output, _arg_split @click.command('delete_history') @click.argument("history_id", type=str) @click.option( "--purge", help="if ``True``, also purge (permanently delete) the history", is_flag=True ) @pass_context @custom_exception @dict_output def cli(ctx, history_id, purge=False): """Delete a history. Output: """ return ctx.gi.histories.delete_history(history_id, purge=purge)
21.08
71
0.732448
4a21eabb6a2a377243ea6d4737044c7ed6f810d4
2,922
py
Python
blog/user/views.py
znf896/Django-React-
44bfbffc8f6a6fa13e001f3fc4b42005afa426bc
[ "MIT" ]
1
2021-05-10T15:29:00.000Z
2021-05-10T15:29:00.000Z
blog/user/views.py
znf896/Django-React-
44bfbffc8f6a6fa13e001f3fc4b42005afa426bc
[ "MIT" ]
7
2020-09-07T12:44:21.000Z
2022-02-26T18:35:20.000Z
blog/user/views.py
znf896/Django-React-
44bfbffc8f6a6fa13e001f3fc4b42005afa426bc
[ "MIT" ]
null
null
null
# Create your views here. from django.http import HttpRequest, HttpResponse, JsonResponse, HttpResponseBadRequest import simplejson from .models import User import jwt from datetime import datetime from blog.settings import SECRET_KEY import bcrypt AUTHOR_VER = 60 * 60 * 8 def gen_token(user_id): ret = jwt.encode( {'user_id': user_id, 'exp': int(datetime.now().timestamp()) + AUTHOR_VER }, SECRET_KEY ) return ret.decode() # 用户验证 def authoration(view): def wrapper(req: HttpRequest): token = req.META['HTTP_JWT'] payload = jwt.decode(token, SECRET_KEY) timestamp = payload['exp'] try: # 时间验证 if timestamp: user_id = payload['user_id'] user = User.objects.get(pk=user_id) req.user = user # reqest请求中注入user对象 return view(req) except Exception as e: print(e) return HttpResponse(status_code=401) return wrapper @authoration # test = authoration(test) def test(req: HttpRequest): return HttpResponse(b'jwt test') def login(req: HttpRequest): ret = simplejson.loads(req.body) # {'password': 'abc', 'email': '[email protected]'} email = ret['email'] password = ret['password'] print('~~~~~~~') print('!!!!!!!', email, password) try: user = User.objects.get(email=email) # 查数据库 if not user: # 没有这个账号 return HttpResponseBadRequest() if not bcrypt.checkpw(password.encode(), user.password.encode()): # 密码验证错误 return HttpResponseBadRequest() return JsonResponse( {'user': {'user_id': user.id, 'name': user.name, 'email': user.name, }, 'token': gen_token(user.id) } ) except Exception as e: print(e) return HttpResponseBadRequest() def register(reg: HttpRequest): # {'name': 'znf', 'password': '[email protected]', 'email': 'abc'} playload = simplejson.loads(reg.body) print(playload, type(playload)) try: email = playload['email'] # 对注册的email进行检查 query = User.objects.filter(email=email) print(query, type(query), query.query) if query: return HttpResponseBadRequest() name = playload['name'] password = playload['password'] print(email, name, password) # ORM操作 user = User() user.email = email user.name = name user.password = bcrypt.hashpw(password.encode(), bcrypt.gensalt()) try: user.save() return JsonResponse({"userid": user.id, 'token': gen_token(user.id)}) except Exception as e: print(e) return HttpResponseBadRequest() except Exception as e: print(e) return HttpResponseBadRequest()
28.096154
88
0.578029
4a21eb8afcb395e3804302185844f4ffbc838ed2
847
py
Python
src/sheets/spreadsheet.py
y3rsh/lawrencetrailhawks-treasury
53418df0543daa62add686ca15c46ceadf98c3d8
[ "MIT" ]
null
null
null
src/sheets/spreadsheet.py
y3rsh/lawrencetrailhawks-treasury
53418df0543daa62add686ca15c46ceadf98c3d8
[ "MIT" ]
null
null
null
src/sheets/spreadsheet.py
y3rsh/lawrencetrailhawks-treasury
53418df0543daa62add686ca15c46ceadf98c3d8
[ "MIT" ]
null
null
null
import os import gspread from oauth2client.service_account import ServiceAccountCredentials def get_sheet(worksheet_name, worksheet_title): # use creds to create a client to interact with the Google Drive API scope = ['https://spreadsheets.google.com/feeds'] creds = ServiceAccountCredentials.from_json_keyfile_name(os.environ['GSERVICEJSON'], scope) client = gspread.authorize(creds) # Find a workbook by name and open the first sheet # Make sure you use the right name here. sheet = client.open(worksheet_name).worksheet(worksheet_title) # Extract and print all of the values list_of_hashes = sheet.get_all_records() #remove_characters(list_of_hashes) #print(list_of_hashes) return list_of_hashes def remove_characters(data): for val in data: for key, value in val.items(): val[key] = val[key].strip('$')
35.291667
93
0.765053
4a21ebcf22d9bed7d52354619074e0ff4034f6be
31,217
py
Python
formats/base.py
wyim-pgl/jcvi
f79ead2fb30a80ead4e3b9602e0bc4a256995864
[ "BSD-2-Clause" ]
2
2019-02-22T12:56:39.000Z
2020-03-02T03:51:45.000Z
formats/base.py
wyim-pgl/jcvi
f79ead2fb30a80ead4e3b9602e0bc4a256995864
[ "BSD-2-Clause" ]
null
null
null
formats/base.py
wyim-pgl/jcvi
f79ead2fb30a80ead4e3b9602e0bc4a256995864
[ "BSD-2-Clause" ]
1
2021-05-10T17:26:43.000Z
2021-05-10T17:26:43.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- import os import os.path as op import math import sys import logging from itertools import groupby, islice, cycle, izip from Bio import SeqIO from jcvi.apps.base import OptionParser, ActionDispatcher, sh, debug, need_update, \ mkdir, popen debug() FastaExt = ("fasta", "fa", "fna", "cds", "pep", "faa", "fsa", "seq", "nt", "aa") FastqExt = ("fastq", "fq") class BaseFile (object): def __init__(self, filename): self.filename = filename if filename: logging.debug("Load file `{0}`".format(filename)) class LineFile (BaseFile, list): """ Generic file parser for line-based files """ def __init__(self, filename, comment=None, load=False): super(LineFile, self).__init__(filename) if load: fp = must_open(filename) self.lines = [l.strip() for l in fp if l[0]!=comment] logging.debug("Load {0} lines from `{1}`.".\ format(len(self.lines), filename)) class DictFile (BaseFile, dict): """ Generic file parser for multi-column files, keyed by a particular index. """ def __init__(self, filename, keypos=0, valuepos=1, delimiter=None, strict=True, keycast=None, cast=None): super(DictFile, self).__init__(filename) fp = must_open(filename) ncols = max(keypos, valuepos) + 1 thiscols = 0 for lineno, row in enumerate(fp): row = row.rstrip() atoms = row.split(delimiter) thiscols = len(atoms) if thiscols < ncols: action = "Aborted" if strict else "Skipped" msg = "Must contain >= {0} columns. {1}.\n".format(ncols, action) msg += " --> Line {0}: {1}".format(lineno + 1, row) logging.error(msg) if strict: sys.exit(1) else: continue key = atoms[keypos] value = atoms[valuepos] if (valuepos is not None) else atoms if keycast: key = keycast(key) if cast: value = cast(value) self[key] = value assert thiscols, "File empty" self.ncols = thiscols logging.debug("Imported {0} records from `{1}`.".\ format(len(self), filename)) class SetFile (BaseFile, set): def __init__(self, filename, column=-1, delimiter=None): super(SetFile, self).__init__(filename) fp = open(filename) for row in fp: if not row.strip(): continue keys = [x.strip() for x in row.split(delimiter)] if column >= 0: keys = [keys[column]] self.update(keys) class FileShredder (object): """ Same as rm -f * """ def __init__(self, filelist, verbose=True): filelist = [x for x in filelist if x and op.exists(x)] cmd = "rm -rf {0}".format(" ".join(filelist)) sh(cmd, log=verbose) class FileMerger (object): """ Same as cat * > filename """ def __init__(self, filelist, outfile): self.filelist = filelist self.outfile = outfile self.ingz = filelist[0].endswith(".gz") self.outgz = outfile.endswith(".gz") def merge(self, checkexists=False): outfile = self.outfile if checkexists and not need_update(self.filelist, outfile): logging.debug("File `{0}` exists. Merge skipped.".format(outfile)) return files = " ".join(self.filelist) ingz, outgz = self.ingz, self.outgz if ingz and outgz: # can merge gz files directly cmd = "cat {0} > {1}".format(files, outfile) sh(cmd) else: cmd = "zcat" if self.ingz else "cat" cmd += " " + files sh(cmd, outfile=outfile) return outfile class FileSplitter (object): def __init__(self, filename, outputdir=None, format="fasta", mode="cycle"): self.filename = filename self.outputdir = outputdir self.mode = mode format = format or self._guess_format(filename) logging.debug("format is %s" % format) if format in ("fasta", "fastq"): self.klass = "seqio" elif format == "clust": self.klass = "clust" else: self.klass = "txt" self.format = format mkdir(outputdir) def _open(self, filename): if self.klass == "seqio": handle = SeqIO.parse(open(filename), self.format) elif self.klass == "clust": from jcvi.apps.uclust import ClustFile handle = iter(ClustFile(filename)) else: handle = open(filename) return handle @property def num_records(self): handle = self._open(self.filename) return sum(1 for x in handle) def _guess_format(self, filename): root, ext = op.splitext(filename) ext = ext.strip(".") if ext in FastaExt: format = "fasta" elif ext in FastqExt: format = "fastq" else: format = "txt" return format def _batch_iterator(self, N=1): """Returns N lists of records. This can be used on any iterator, for example to batch up SeqRecord objects from Bio.SeqIO.parse(...), or to batch Alignment objects from Bio.AlignIO.parse(...), or simply lines from a file handle. This is a generator function, and it returns lists of the entries from the supplied iterator. Each list will have batch_size entries, although the final list may be shorter. """ batch_size = math.ceil(self.num_records / float(N)) handle = self._open(self.filename) while True: batch = list(islice(handle, batch_size)) if not batch: break yield batch @classmethod def get_names(cls, filename, N): root, ext = op.splitext(op.basename(filename)) names = [] pad0 = len(str(int(N - 1))) for i in xrange(N): name = "{0}_{1:0{2}d}{3}".format(root, i, pad0, ext) names.append(name) return names def write(self, fw, batch): if self.klass == "seqio": SeqIO.write(batch, fw, self.format) elif self.klass == "clust": for b in batch: print >> fw, b else: for line in batch: fw.write(line) return len(batch) def split(self, N, force=False): """ There are two modes of splitting the records - batch: splitting is sequentially to records/N chunks - cycle: placing each record in the splitted files and cycles use `cycle` if the len of the record is not evenly distributed """ mode = self.mode assert mode in ("batch", "cycle", "optimal") logging.debug("set split mode=%s" % mode) self.names = self.__class__.get_names(self.filename, N) if self.outputdir: self.names = [op.join(self.outputdir, x) for x in self.names] if not need_update(self.filename, self.names) and not force: logging.error("file %s already existed, skip file splitting" % \ self.names[0]) return filehandles = [open(x, "w") for x in self.names] if mode == "batch": for batch, fw in zip(self._batch_iterator(N), filehandles): count = self.write(fw, batch) logging.debug("write %d records to %s" % (count, fw.name)) elif mode == "cycle": handle = self._open(self.filename) for record, fw in izip(handle, cycle(filehandles)): count = self.write(fw, [record]) elif mode == "optimal": """ This mode is based on Longest Processing Time (LPT) algorithm: A simple, often-used algorithm is the LPT algorithm (Longest Processing Time) which sorts the jobs by its processing time and then assigns them to the machine with the earliest end time so far. This algorithm achieves an upper bound of 4/3 - 1/(3m) OPT. Citation: <http://en.wikipedia.org/wiki/Multiprocessor_scheduling> """ endtime = [0] * N handle = self._open(self.filename) for record in handle: mt, mi = min((x, i) for (i, x) in enumerate(endtime)) fw = filehandles[mi] count = self.write(fw, [record]) endtime[mi] += len(record) for fw in filehandles: fw.close() def longest_unique_prefix(query, targets, remove_self=True): """ Find the longest unique prefix for filename, when compared against a list of filenames. Useful to simplify file names in a pool of files. See usage in formats.fasta.pool(). """ query = op.basename(query) targets = [op.basename(x) for x in targets] prefix_lengths = [len(op.commonprefix([query, name])) for name in targets] if remove_self and len(query) in prefix_lengths: prefix_lengths.remove(len(query)) longest_length = max(prefix_lengths) return query[:longest_length + 1] def check_exists(filename, oappend=False): """ Avoid overwriting some files accidentally. """ if op.exists(filename): if oappend: return oappend logging.error("`{0}` found, overwrite (Y/N)?".format(filename)) overwrite = (raw_input() == 'Y') else: overwrite = True return overwrite def must_open(filename, mode="r", checkexists=False, skipcheck=False, \ oappend=False): """ Accepts filename and returns filehandle. Checks on multiple files, stdin/stdout/stderr, .gz or .bz2 file. """ if isinstance(filename, list): assert "r" in mode if filename[0].endswith(".gz") or filename[0].endswith(".bz2"): filename = " ".join(filename) # allow opening multiple gz/bz2 files else: import fileinput return fileinput.input(filename) if filename.startswith("s3://"): from jcvi.utils.aws import pull_from_s3 filename = pull_from_s3(filename) if filename in ("-", "stdin"): assert "r" in mode fp = sys.stdin elif filename == "stdout": assert "w" in mode fp = sys.stdout elif filename == "stderr": assert "w" in mode fp = sys.stderr elif filename == "tmp" and mode == "w": from tempfile import NamedTemporaryFile fp = NamedTemporaryFile(delete=False) elif filename.endswith(".gz"): if 'r' in mode: cmd = "zcat {0}".format(filename) fp = popen(cmd, debug=False) elif 'w' in mode: import gzip fp = gzip.open(filename, mode) elif filename.endswith(".bz2"): if 'r' in mode: cmd = "bzcat {0}".format(filename) fp = popen(cmd, debug=False) elif 'w' in mode: import bz2 fp = bz2.BZ2File(filename, mode) else: if checkexists: assert mode == "w" overwrite = (not op.exists(filename)) if skipcheck \ else check_exists(filename, oappend) if overwrite: if oappend: fp = open(filename, "a") else: fp = open(filename, "w") else: logging.debug("File `{0}` already exists. Skipped."\ .format(filename)) return None else: fp = open(filename, mode) return fp bash_shebang = "#!/bin/bash" python_shebang = """#!/usr/bin/env python # -*- coding: UTF-8 -*-""" def write_file(filename, contents, meta=None, skipcheck=False, append=False, tee=False): if not meta: suffix = filename.rsplit(".", 1)[-1] if suffix == "sh": meta = "run script" elif suffix == "py": meta = "python script" else: meta = "file" meta_choices = ("file", "run script", "python script") assert meta in meta_choices, "meta must be one of {0}".\ format("|".join(meta_choices)) contents = contents.strip() shebang = "\n" if "script" in meta: if not append: if meta == "run script": shebang = bash_shebang elif meta == "python script": shebang = python_shebang contents = "\n\n".join((shebang, contents)) fw = must_open(filename, "w", checkexists=True, skipcheck=skipcheck, oappend=append) if fw: print >> fw, contents fw.close() if tee: print >> sys.stderr, contents fileop = "appended" if append else "written" message = "{0} {1} to `{2}`.".format(meta, fileop, filename) logging.debug(message.capitalize()) if meta == "run script" and not append: sh("chmod u+x {0}".format(filename)) def read_until(handle, start): # read each line until a certain start, then puts the start tag back while 1: pos = handle.tell() line = handle.readline() if not line: break if line.startswith(start): handle.seek(pos) return def read_block(handle, signal): """ Useful for reading block-like file formats, for example FASTA or OBO file, such file usually startswith some signal, and in-between the signals are a record """ signal_len = len(signal) it = (x[1] for x in groupby(handle, key=lambda row: row.strip()[:signal_len] == signal)) found_signal = False for header in it: header = list(header) for h in header[:-1]: h = h.strip() if h[:signal_len] != signal: continue yield h, [] # Header only, no contents header = header[-1].strip() if header[:signal_len] != signal: continue found_signal = True seq = list(s.strip() for s in it.next()) yield header, seq if not found_signal: handle.seek(0) seq = list(s.strip() for s in handle) yield None, seq def is_number(s, cast=float): """ Check if a string is a number. Use cast=int to check if s is an integer. """ try: cast(s) # for int, long and float except ValueError: return False return True def get_number(s, cast=int): """ Try to get a number out of a string, and cast it. """ import string d = "".join(x for x in str(s) if x in string.digits) return cast(d) def flexible_cast(s): if is_number(s, cast=int): return int(s) elif is_number(s, cast=float): return float(s) return s def main(): actions = ( ('pairwise', 'convert a list of IDs into all pairs'), ('split', 'split large file into N chunks'), ('reorder', 'reorder columns in tab-delimited files'), ('flatten', 'convert a list of IDs into one per line'), ('group', 'group elements in a table based on key (groupby) column'), ('setop', 'set operations on files'), ('join', 'join tabular-like files based on common column'), ('subset', 'subset tabular-like files based on common column'), ('truncate', 'remove lines from end of file'), ('append', 'append a column with fixed value'), ) p = ActionDispatcher(actions) p.dispatch(globals()) def pairwise(args): """ %prog pairwise ids Convert a list of IDs into all pairs. """ from itertools import combinations p = OptionParser(pairwise.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) idsfile, = args ids = SetFile(idsfile) ids = sorted(ids) fw = open(idsfile + ".pairs", "w") for a, b in combinations(ids, 2): print >> fw, "\t".join((a, b)) fw.close() def append(args): """ %prog append csvfile [tag] Append a column with fixed value. If tag is missing then just append the filename. """ p = OptionParser(append.__doc__) p.set_sep() p.set_outfile() opts, args = p.parse_args(args) nargs = len(args) if nargs not in (1, 2): sys.exit(not p.print_help()) csvfile = args[0] tag = args[1] if nargs == 2 else csvfile fp = must_open(csvfile) fw = must_open(opts.outfile, "w") for row in fp: row = row.rstrip("\r\n") row = opts.sep.join((row, tag)) print >> fw, row def truncate(args): """ %prog truncate linecount filename Remove linecount lines from the end of the file in-place. Borrowed from: <http://superuser.com/questions/127786/how-to-remove-the-last-2-lines-of-a-very-large-file> """ p = OptionParser(truncate.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) number, filename = args number = int(number) count = 0 f = open(filename, "r+b") f.seek(0, os.SEEK_END) while f.tell() > 0: f.seek(-1, os.SEEK_CUR) char = f.read(1) if char == '\n': count += 1 if count == number + 1: f.truncate() print >> sys.stderr, "Removed {0} lines from end of file".format(number) return number f.seek(-1, os.SEEK_CUR) if count < number + 1: print >> sys.stderr, "No change: requested removal would leave empty file" return -1 def flatten(args): """ %prog flatten filename > ids Convert a list of IDs (say, multiple IDs per line) and move them into one per line. For example, convert this, to this: A,B,C | A 1 | B a,4 | C | 1 | a | 4 If multi-column file with multiple elements per column, zip then flatten like so: A,B,C 2,10,gg | A,2 1,3 4 | B,10 | C,gg | 1,4 | 3,na """ from itertools import izip_longest p = OptionParser(flatten.__doc__) p.set_sep(sep=",") p.add_option("--zipflatten", default=None, dest="zipsep", help="Specify if columns of the file should be zipped before" + " flattening. If so, specify delimiter separating column elements" + " [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) tabfile, = args zipsep = opts.zipsep fp = must_open(tabfile) for row in fp: if zipsep: row = row.rstrip() atoms = row.split(opts.sep) frows = [] for atom in atoms: frows.append(atom.split(zipsep)) print "\n".join([zipsep.join(x) for x in list(izip_longest(*frows, fillvalue="na"))]) else: print row.strip().replace(opts.sep, "\n") def group(args): """ %prog group tabfile > tabfile.grouped Given a tab-delimited file, either group all elements within the file or group the elements in the value column(s) based on the key (groupby) column For example, convert this | into this --------------------------------------- a 2 3 4 | a,2,3,4,5,6 a 5 6 | b,7,8 b 7 8 | c,9,10,11 c 9 | c 10 11 | If grouping by a particular column, convert this | into this: --------------------------------------------- a 2 3 4 | a 2,5 3,6 4 a 5 6 | b 7 8 b 7 8 | c 9,10 11 c 9 | c 10 11 | By default, it uniqifies all the grouped elements """ from jcvi.utils.cbook import AutoVivification from jcvi.utils.grouper import Grouper p = OptionParser(group.__doc__) p.set_sep() p.add_option("--groupby", default=None, type='int', help="Default column to groupby [default: %default]") p.add_option("--groupsep", default=',', help="Separator to join the grouped elements [default: `%default`]") p.add_option("--nouniq", default=False, action="store_true", help="Do not uniqify the grouped elements [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) tabfile, = args sep = opts.sep groupby = opts.groupby groupsep = opts.groupsep cols = [] grouper = AutoVivification() if groupby is not None else Grouper() fp = must_open(tabfile) for row in fp: row = row.rstrip() atoms = row.split(sep) if groupby is not None: if len(cols) < len(atoms): cols = [x for x in xrange(len(atoms))] if groupby not in cols: logging.error("groupby col index `{0}` is out of range".format(groupby)) sys.exit() key = atoms[groupby] for col in cols: if col == groupby: continue if not grouper[key][col]: grouper[key][col] = [] if opts.nouniq else set() if col < len(atoms): if groupsep in atoms[col]: for atom in atoms[col].split(groupsep): if opts.nouniq: grouper[key][col].append(atom) else: grouper[key][col].add(atom) else: if opts.nouniq: grouper[key][col].append(atoms[col]) else: grouper[key][col].add(atoms[col]) else: grouper.join(*atoms) for key in grouper: if groupby is not None: line = [] for col in cols: if col == groupby: line.append(key) elif col in grouper[key].keys(): line.append(groupsep.join(grouper[key][col])) else: line.append("na") print sep.join(line) else: print groupsep.join(key) def reorder(args): """ %prog reorder tabfile 1,2,4,3 > newtabfile Reorder columns in tab-delimited files. The above syntax will print out a new file with col-1,2,4,3 from the old file. """ import csv p = OptionParser(reorder.__doc__) p.set_sep() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) tabfile, order = args sep = opts.sep order = [int(x) - 1 for x in order.split(",")] reader = csv.reader(must_open(tabfile), delimiter=sep) writer = csv.writer(sys.stdout, delimiter=sep) for row in reader: newrow = [row[x] for x in order] writer.writerow(newrow) def split(args): """ %prog split file outdir N Split file into N records. This allows splitting FASTA/FASTQ/TXT file properly at boundary of records. Split is useful for parallelization on input chunks. Option --mode is useful on how to break into chunks. 1. chunk - chunk records sequentially, 1-100 in file 1, 101-200 in file 2, etc. 2. cycle - chunk records in Round Robin fashion 3. optimal - try to make split file of roughly similar sizes, using LPT algorithm. This is the default. """ p = OptionParser(split.__doc__) mode_choices = ("batch", "cycle", "optimal") p.add_option("--all", default=False, action="store_true", help="split all records [default: %default]") p.add_option("--mode", default="optimal", choices=mode_choices, help="Mode when splitting records [default: %default]") p.add_option("--format", choices=("fasta", "fastq", "txt", "clust"), help="input file format [default: %default]") opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) filename, outdir, N = args fs = FileSplitter(filename, outputdir=outdir, format=opts.format, mode=opts.mode) if opts.all: logging.debug("option -all override N") N = fs.num_records else: N = int(N) assert N > 0, "N must be > 0" logging.debug("split file into %d chunks" % N) fs.split(N) return fs def join(args): """ %prog join file1.txt(pivotfile) file2.txt .. Join tabular-like files based on common column. --column specifies the column index to pivot on. Use comma to separate multiple values if the pivot column is different in each file. Maintain the order in the first file. --sep specifies the column separators, default to tab. Use comma to separate multiple values if the column separator is different in each file. """ from jcvi.utils.iter import flatten p = OptionParser(join.__doc__) p.add_option("--column", default="0", help="0-based column id, multiple values allowed [default: %default]") p.set_sep(multiple=True) p.add_option("--noheader", default=False, action="store_true", help="Do not print header [default: %default]") p.add_option("--na", default="na", help="Value for unjoined data [default: %default]") p.add_option("--keysep", default=",", help="specify separator joining multiple elements in the key column" + " of the pivot file [default: %default]") p.set_outfile() opts, args = p.parse_args(args) nargs = len(args) keysep = opts.keysep if len(args) < 2: sys.exit(not p.print_help()) na = opts.na c = opts.column if "," in c: cc = [int(x) for x in c.split(",")] else: cc = [int(c)] * nargs assert len(cc) == nargs, "Column index number != File number" s = opts.sep if "," in s: ss = [x for x in s.split(",")] else: ss = [s] * nargs assert len(ss) == nargs, "column separator number != File number" # Maintain the first file line order, and combine other files into it pivotfile = args[0] files = [DictFile(f, keypos=c, valuepos=None, delimiter=s) \ for f, c, s in zip(args, cc, ss)] otherfiles = files[1:] header = "\t".join(flatten([op.basename(x.filename)] * x.ncols \ for x in files)) fp = must_open(pivotfile) fw = must_open(opts.outfile, "w") if not opts.noheader: print >> fw, header for row in fp: row = row.rstrip() atoms = row.split(ss[0]) newrow = atoms key = atoms[cc[0]] keys = key.split(keysep) if keysep in key else [key] for d in otherfiles: drows = list() for key in keys: drows.append(d.get(key, [na] * d.ncols)) drow = [keysep.join(x) for x in list(zip(*drows))] newrow += drow print >> fw, "\t".join(newrow) def subset(args): """ %prog subset file1.txt(pivotfile) file2.txt .. subset tabular-like file1 based on common column with file 2. Normally file1 should have unique row entries. If more than one file2 are provided, they must have same column separators. Multiple file2's will be concatenated in the output. --column specifies the column index (0-based) to pivot on. Use comma to separate multiple values if the pivot column is different in each file. Maintain the order in the first file. --sep specifies the column separators, default to tab. Use comma to separate multiple values if the column separator is different in each file. """ p = OptionParser(subset.__doc__) p.add_option("--column", default="0", help="0-based column id, multiple values allowed [default: %default]") p.set_sep(multiple=True) p.add_option("--pivot", default=1, type="int", help="1 for using order in file1, 2 for using order in \ file2 [default: %default]") p.set_outfile() opts, args = p.parse_args(args) nargs = len(args) if len(args) < 2: sys.exit(not p.print_help()) c = opts.column if "," in c: cc = [int(x) for x in c.split(",")] assert len(set(cc[1:])) == 1, \ "Multiple file2's must have same column index." cc = cc[0:2] else: cc = [int(c)] * 2 s = opts.sep if "," in s: ss = [x for x in s.split(",")] assert len(set(cc[1:])) == 1, \ "Multiple file2's must have same column separator." ss = ss[0:2] else: ss = [s] * 2 if nargs > 2: file2 = FileMerger(args[1:], outfile="concatenatedFile2").merge() else: file2 = args[1] newargs = [args[0], file2] files = [DictFile(f, keypos=c, valuepos=None, delimiter=s) \ for f, c, s in zip(newargs, cc, ss)] pivot = 0 if opts.pivot==1 else 1 fp = open(newargs[pivot]) fw = must_open(opts.outfile, "w") for row in fp: row = row.rstrip() atoms = row.split(ss[pivot]) key = atoms[cc[pivot]] d = files[1-pivot] if key in d: print >> fw, ss[0].join(files[0][key]) if nargs > 2: FileShredder([file2]) def setop(args): """ %prog setop "fileA & fileB" > newfile Perform set operations, except on files. The files (fileA and fileB) contain list of ids. The operator is one of the four: |: union (elements found in either file) &: intersection (elements found in both) -: difference (elements in fileA but not in fileB) ^: symmetric difference (elementes found in either set but not both) Please quote the argument to avoid shell interpreting | and &. """ from jcvi.utils.natsort import natsorted p = OptionParser(setop.__doc__) p.add_option("--column", default=0, type="int", help="The column to extract, 0-based, -1 to disable [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) statement, = args fa, op, fb = statement.split() assert op in ('|', '&', '-', '^') column = opts.column fa = SetFile(fa, column=column) fb = SetFile(fb, column=column) if op == '|': t = fa | fb elif op == '&': t = fa & fb elif op == '-': t = fa - fb elif op == '^': t = fa ^ fb for x in natsorted(t): print x if __name__ == '__main__': main()
30.366732
97
0.551334
4a21ec55e38a00aed65b6c883517237a9855c49c
6,090
py
Python
make_photo_gallery.py
Tapyr/tapyr
4235fba6dce169fe747cce4d17d88dcf4a3f9f1d
[ "BSD-3-Clause" ]
6
2016-12-10T17:51:10.000Z
2021-10-11T07:51:48.000Z
make_photo_gallery.py
Tapyr/tapyr
4235fba6dce169fe747cce4d17d88dcf4a3f9f1d
[ "BSD-3-Clause" ]
null
null
null
make_photo_gallery.py
Tapyr/tapyr
4235fba6dce169fe747cce4d17d88dcf4a3f9f1d
[ "BSD-3-Clause" ]
3
2020-03-29T07:37:03.000Z
2021-01-21T16:08:40.000Z
# -*- coding: utf-8 -*- # Copyright (C) 2008-2014 Mag. Christian Tanzer. All rights reserved # Glasauergasse 32, A--1130 Wien, Austria. [email protected] # **************************************************************************** # # This module is licensed under the terms of the BSD 3-Clause License # <http://www.c-tanzer.at/license/bsd_3c.html>. # **************************************************************************** # #++ # Name # make_photo_gallery # # Purpose # Make a photo gallery # # Revision Dates # 7-May-2008 (CT) Creation # 8-May-2008 (CT) `-year` added # 8-May-2008 (CT) Set `ImageFile.MAXBLOCK` to avoid IOError during `save` # 20-Mar-2009 (CT) `convert_one` factored and `-add_to_dir` added # 1-Dec-2009 (CT) Ignore `__getslice__` warnings # 14-Jan-2011 (CT) `-format`, `-color`, `-x_off`, and `-y_off` added # 16-Jun-2013 (CT) Use `TFL.CAO`, not `TFL.Command_Line` # 1-Oct-2014 (CT) Add `fix_rotation` # ««revision-date»»··· #-- from _CAL.Date import Date from _TFL import TFL from _TFL import sos from _TFL.Filename import * from _TFL.Regexp import Regexp, re import _TFL.CAO import _TFL.FCM import warnings warnings.filterwarnings ("ignore", module = "^PIL.*") warnings.filterwarnings \ ( "ignore", "in 3.x, __getslice__ has been removed; use __getitem__") from PIL import Image, ImageDraw, ImageFile, ImageFont, ExifTags try : import plumbum except ImportError : plumbum = None ### http://mail.python.org/pipermail/image-sig/1999-August/000816.html ### to avoid exception ### IOError: encoder error -2 when writing image file ImageFile.MAXBLOCK = 1000000 # default is 64k _rotate_pat = Regexp (r"Rotate\s+(?P<angle>\d+)\s+CW") def convert_one \ ( src, name, i_size, t_size, holder, year, font, imp, thp , format, color, x_off, y_off , temp_dir = None ) : f_src = fix_rotation (src, temp_dir) im = Image.open (f_src) th = im.copy () im.thumbnail (i_size, Image.ANTIALIAS) th.thumbnail (t_size, Image.ANTIALIAS) if holder : xo = x_off if x_off > 0 else im.size [0] + x_off yo = y_off if y_off > 0 else im.size [1] + y_off draw = ImageDraw.Draw (im) draw.text \ ((xo, yo), "(C) %s %s" % (year, holder), fill = color, font = font) print (name, im.size, th.size) im.save (imp, format, progressive = True) th.save (thp, format, progressive = True) # end def convert_one def fix_rotation (src, temp_dir) : result = src if plumbum is not None : pbl = plumbum.local rot_pat = _rotate_pat jt_rot = pbl ["jpegtran"] \ ["-copy", "all", "-perfect", "-optimize", "-rotate"] xt = pbl ["exiftool"] ["-Orientation"] orient = xt (src) if rot_pat.search (orient) : angle = rot_pat.angle result = Filename (Filename (src).base_ext, default_dir = temp_dir).name cmd = jt_rot [str (angle), src] > result cmd () return result # end def fix_rotation def _main (cmd) : font = ImageFont.load_default () color = cmd.color fmt = cmd.format ext = fmt.lower () if ext == "jpeg" : ext = "jpg" holder = cmd.photographer x_off = cmd.x_off y_off = cmd.y_off year = cmd.year i_size = cmd.i_size, cmd.i_size t_size = cmd.t_size, cmd.t_size td = sos.expanded_path (cmd.target_dir) with TFL.temp_dir () as temp_dir : if cmd.add_to_dir : if not sos.path.isdir (td) : print ("Making directory %s" % (td, )) sos.mkdir_p (td) for src in cmd.argv [1:] : src, name = src.split ("=") if not name : name = src name = Filename (name).base imp = sos.path.join (td, "%s_im.%s" % (name, ext)) thp = sos.path.join (td, "%s_th.%s" % (name, ext)) convert_one \ ( src, name, i_size, t_size, holder, year, font, imp, thp , fmt, color, x_off, y_off , temp_dir ) else : td_im = sos.path.join (td, "im") td_th = sos.path.join (td, "th") for x in td_im, td_th : if not sos.path.isdir (x) : print ("Making directory %s" % (x, )) sos.mkdir_p (x) pid = cmd.start_pid for src in sorted (sos.expanded_globs (* cmd.argv [1:])) : pid += 1 name = "%04d.%s" % (pid, ext) imp = sos.path.join (td_im, name) thp = sos.path.join (td_th, name) convert_one \ ( src, name, i_size, t_size, holder, year, font, imp, thp , fmt, color, x_off, y_off , temp_dir ) # end def _main today = Date () year = today.year _Command = TFL.CAO.Cmd \ ( handler = _main , args = ( "target_dir:P?Directory to put gallery into" , "picture:P?Name of picture(s) to convert and put into `target_dir`" ) , opts = ( "add_to_dir:B" "?Add pictures to existing directory " "(no `im` and `th` subdirectories)" , "color:S=white?Color to use for copyright notice" , "format:S=JPEG?Image format used for output" , "i_size:I=800?Size of images in gallery (larger dimension)" , "photographer:S?Name of photographer" , "start_pid:I=0?Start value for picture count" , "t_size:I=150?Size of thumbnails in gallery (larger dimension)" , "x_off:I=5?X offset of copyright notice" , "y_off:I=-15?Y offset of copyright notice" , "-year:I=%s?Year for copyright" % (year, ) ) , min_args = 2 ) if __name__ == "__main__" : _Command () ### __END__ make_photo_gallery
34.40678
84
0.534647
4a21eccbbad657de37602bc0cccb202df3e04148
2,292
py
Python
airflow/operators/pig_operator.py
rubeshdcube/incubator-airflow
5419fbb78a2ea2388456c356d2f899ea1991b2de
[ "Apache-2.0" ]
6
2016-04-20T20:40:43.000Z
2022-02-20T10:32:00.000Z
airflow/operators/pig_operator.py
curest0x1021/incubator-airflow
e6d3160a061dbaa6042d524095dcd1cbc15e0bcd
[ "Apache-2.0" ]
8
2017-09-07T22:20:35.000Z
2021-05-14T17:35:27.000Z
airflow/operators/pig_operator.py
curest0x1021/incubator-airflow
e6d3160a061dbaa6042d524095dcd1cbc15e0bcd
[ "Apache-2.0" ]
9
2017-08-24T15:47:44.000Z
2022-02-14T03:30:49.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from airflow.hooks.pig_hook import PigCliHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class PigOperator(BaseOperator): """ Executes pig script. :param pig: the pig latin script to be executed :type pig: string :param pig_cli_conn_id: reference to the Hive database :type pig_cli_conn_id: string :param pigparams_jinja_translate: when True, pig params-type templating ${var} gets translated into jinja-type templating {{ var }}. Note that you may want to use this along with the ``DAG(user_defined_macros=myargs)`` parameter. View the DAG object documentation for more details. :type pigparams_jinja_translate: boolean """ template_fields = ('pig',) template_ext = ('.pig', '.piglatin',) ui_color = '#f0e4ec' @apply_defaults def __init__( self, pig, pig_cli_conn_id='pig_cli_default', pigparams_jinja_translate=False, *args, **kwargs): super(PigOperator, self).__init__(*args, **kwargs) self.pigparams_jinja_translate = pigparams_jinja_translate self.pig = pig self.pig_cli_conn_id = pig_cli_conn_id def get_hook(self): return PigCliHook(pig_cli_conn_id=self.pig_cli_conn_id) def prepare_template(self): if self.pigparams_jinja_translate: self.pig = re.sub( "(\$([a-zA-Z_][a-zA-Z0-9_]*))", "{{ \g<2> }}", self.pig) def execute(self, context): logging.info('Executing: ' + self.pig) self.hook = self.get_hook() self.hook.run_cli(pig=self.pig) def on_kill(self): self.hook.kill()
32.742857
78
0.679319
4a21ee2903b0ad595960b9cc8e2b40960d26304c
1,155
py
Python
setup.py
gurneesh/harvey
393308bfc2a833ddbbfe7aca4ddf157a7593aa73
[ "MIT" ]
null
null
null
setup.py
gurneesh/harvey
393308bfc2a833ddbbfe7aca4ddf157a7593aa73
[ "MIT" ]
null
null
null
setup.py
gurneesh/harvey
393308bfc2a833ddbbfe7aca4ddf157a7593aa73
[ "MIT" ]
null
null
null
import setuptools with open('README.md', 'r') as fh: long_description = fh.read() REQUIREMENTS = [ 'flask == 1.*', # TODO: bump to v2 after thorough testing 'requests == 2.*', 'requests_unixsocket == 0.2.*', 'slackclient == 2.*', 'python-dotenv == 0.17.*', ] DEV_REQUIREMENTS = [ 'coveralls == 3.*', 'flake8', 'mock == 4.*', 'pytest == 6.*', 'pytest-cov == 2.*', ] setuptools.setup( name='harvey-ci', version='0.12.0', description='Your personal CI/CD and Docker orchestration platform.', long_description=long_description, long_description_content_type="text/markdown", url='http://github.com/justintime50/harvey', author='Justintime50', license='MIT', packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=REQUIREMENTS, extras_require={ 'dev': DEV_REQUIREMENTS, }, entry_points={ 'console_scripts': ['harvey-ci=harvey.app:main'], }, python_requires='>=3.6', )
25.108696
73
0.606061
4a21ee3d0605529f089e67d4ae57631a2004a642
1,368
py
Python
metricbeat/tests/system/test_kafka.py
wklken/beats
60e8999da198f1c8c4242c8afc77e39a82b6e47f
[ "Apache-2.0" ]
16
2018-08-22T03:29:31.000Z
2021-09-05T14:01:10.000Z
metricbeat/tests/system/test_kafka.py
wklken/beats
60e8999da198f1c8c4242c8afc77e39a82b6e47f
[ "Apache-2.0" ]
3
2020-05-29T13:53:51.000Z
2021-06-01T22:19:56.000Z
metricbeat/tests/system/test_kafka.py
andyhao567/beats
242524e6d8e6b157ad1c2e1516dc49fd353fa895
[ "Apache-2.0" ]
6
2018-10-31T06:55:01.000Z
2021-02-06T18:50:04.000Z
import os import metricbeat import unittest from nose.plugins.attrib import attr from nose.plugins.skip import SkipTest class KafkaTest(metricbeat.BaseTest): COMPOSE_SERVICES = ['kafka'] @unittest.skipUnless(metricbeat.INTEGRATION_TESTS, "integration test") def test_partition(self): """ kafka partition metricset test """ self.create_topic() self.render_config_template(modules=[{ "name": "kafka", "metricsets": ["partition"], "hosts": self.get_hosts(), "period": "1s" }]) proc = self.start_beat() self.wait_until(lambda: self.output_lines() > 0, max_timeout=20) proc.check_kill_and_wait() output = self.read_output_json() self.assertTrue(len(output) >= 1) evt = output[0] print(evt) self.assert_fields_are_documented(evt) def create_topic(self): from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers=self.get_hosts()[0], retries=20, retry_backoff_ms=500) producer.send('foobar', b'some_message_bytes') def get_hosts(self): return [self.compose_hosts()[0] + ':' + os.getenv('KAFKA_PORT', '9092')] class Kafka_0_10_2_Test(KafkaTest): COMPOSE_SERVICES = ['kafka_0_10_2']
27.36
74
0.61769
4a21ee6a79cd156c7dd2b5ea54b8343632b359ce
1,535
py
Python
topsim/algorithms/scheduling.py
top-sim/topsim
90cb3cff2612ced3d51f94fe852dc814dcca7730
[ "MIT" ]
2
2022-03-30T01:19:20.000Z
2022-03-30T02:53:51.000Z
topsim/algorithms/scheduling.py
firewood1996/topsim
90cb3cff2612ced3d51f94fe852dc814dcca7730
[ "MIT" ]
15
2020-10-21T08:35:12.000Z
2022-01-20T07:55:24.000Z
topsim/algorithms/scheduling.py
firewood1996/topsim
90cb3cff2612ced3d51f94fe852dc814dcca7730
[ "MIT" ]
1
2021-11-02T14:21:05.000Z
2021-11-02T14:21:05.000Z
""" Algorithm presents the abstract base class for any Scheduling algorithm. """ from abc import ABC, abstractmethod class Algorithm(ABC): """ Abstract base class for all Scheduling Algorithms (used in the dynamic allocation by the 'scheduler'). The Algorithm base class only requires the single `run()` method to be implemented; the `to_df` may simply be used as a stubb. Notes ----- It is important to note that the simulation will run with an 'incorrect' algorithm. An algorithm is 'incorrect' if it attempts to: - Allocate to a machine that is already occupied - Schedule a task to a machine that has already been scheduled. These will raise RuntimeErrors. It is also important for the algorithm to take into account """ def __init__(self): self.name = "AbstractAlgorithm" @abstractmethod def run(self, cluster, clock, plan, schedule): """ Parameters ---------- cluster: :py:obj:`~topsim.core.cluster.Cluster` The cluster object for the simulation. clock: int Current simulation time (usually generated by) plan schedule Returns ------- """ pass @abstractmethod def to_df(self): """ Produce a Pandas DataFrame object to return current state of the scheduling algorithm Returns ------- df : pandas.DataFrame DataFrame with current state """
23.615385
135
0.616287
4a21eeb258ad5f918c06009c0830d960dcb1c5ba
8,878
py
Python
pandapower/results_bus.py
suzannejanssen/pandapower
8d0d422c28924c85e774e0e357e4abff86ff3c55
[ "BSD-3-Clause" ]
null
null
null
pandapower/results_bus.py
suzannejanssen/pandapower
8d0d422c28924c85e774e0e357e4abff86ff3c55
[ "BSD-3-Clause" ]
null
null
null
pandapower/results_bus.py
suzannejanssen/pandapower
8d0d422c28924c85e774e0e357e4abff86ff3c55
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2016-2018 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import numpy as np from pandapower.auxiliary import _sum_by_group from pandapower.idx_bus import VM, VA, PD, QD, LAM_P, LAM_Q, BASE_KV from pandapower.idx_gen import PG, QG def _set_buses_out_of_service(ppc): disco = np.where(ppc["bus"][:, 1] == 4)[0] ppc["bus"][disco, VM] = np.nan ppc["bus"][disco, VA] = np.nan ppc["bus"][disco, PD] = 0 ppc["bus"][disco, QD] = 0 def _get_bus_v_results(net, ppc): ac = net["_options"]["ac"] bus_idx = _get_bus_idx(net) if ac: net["res_bus"]["vm_pu"] = ppc["bus"][bus_idx][:, VM] # voltage angles net["res_bus"]["va_degree"] = ppc["bus"][bus_idx][:, VA] def _get_bus_idx(net): bus_lookup = net["_pd2ppc_lookups"]["bus"] ppi = net["bus"].index.values bus_idx = bus_lookup[ppi] return bus_idx def _get_opf_marginal_prices(net, ppc): bus_idx = _get_bus_idx(net) net["res_bus"]["lam_p"] = ppc["bus"][bus_idx][:, LAM_P] net["res_bus"]["lam_q"] = ppc["bus"][bus_idx][:, LAM_Q] def _get_bus_results(net, ppc, bus_pq): ac = net["_options"]["ac"] mode = net["_options"]["mode"] # write sum of p and q values to bus net["res_bus"]["p_mw"].values[:] = bus_pq[:, 0] if ac: net["res_bus"]["q_mvar"].values[:] = bus_pq[:, 1] # opf variables if mode == "opf": _get_opf_marginal_prices(net, ppc) # update index in res bus bus net["res_bus"].index = net["bus"].index def write_voltage_dependend_load_results(net, p, q, b): l = net["load"] _is_elements = net["_is_elements"] if len(l) > 0: load_is = _is_elements["load"] scaling = l["scaling"].values bus_lookup = net["_pd2ppc_lookups"]["bus"] lidx = bus_lookup[l["bus"].values] voltage_depend_loads = net["_options"]["voltage_depend_loads"] cz = l["const_z_percent"].values / 100. ci = l["const_i_percent"].values / 100. cp = 1. - (cz + ci) # constant power pl = l["p_mw"].values * scaling * load_is * cp net["res_load"]["p_mw"] = pl p = np.hstack([p, pl]) ql = l["q_mvar"].values * scaling * load_is * cp net["res_load"]["q_mvar"] = ql q = np.hstack([q, ql]) b = np.hstack([b, l["bus"].values]) if voltage_depend_loads: # constant impedance and constant current vm_l = net["_ppc"]["bus"][lidx,7] volt_depend = ci * vm_l + cz * vm_l ** 2 pl = l["p_mw"].values * scaling * load_is * volt_depend net["res_load"]["p_mw"] += pl p = np.hstack([p, pl]) ql = l["q_mvar"].values * scaling * load_is * volt_depend net["res_load"]["q_mvar"] += ql q = np.hstack([q, ql]) b = np.hstack([b, l["bus"].values]) return p, q, b def write_pq_results_to_element(net, ppc, element): """ get p_mw and q_mvar for a specific pq element ("load", "sgen"...). This function basically writes values element table to res_element table :param net: pandapower net :param element: element name (str) :return: """ # info from net _is_elements = net["_is_elements"] ac = net["_options"]["ac"] # info element el_data = net[element] res_ = "res_%s"%element ctrl_ = "%s_controllable"%element is_controllable = False if ctrl_ in _is_elements: controlled_elements = net[element][net._is_elements[ctrl_]].index gen_idx = net._pd2ppc_lookups[ctrl_][controlled_elements] gen_sign = 1 if element == "sgen" else -1 is_controllable = True # Wards and xwards have different names in their element table, but not in res table. Also no scaling -> Fix... p_mw = "ps_mw" if element in ["ward", "xward"] else "p_mw" q_mvar = "qs_mvar" if element in ["ward", "xward"] else "q_mvar" scaling = el_data["scaling"].values if element not in ["ward", "xward"] else 1.0 element_in_service = _is_elements[element] # P result in kw to element net[res_]["p_mw"].values[:] = el_data[p_mw].values * scaling * element_in_service if is_controllable: net[res_]["p_mw"].loc[controlled_elements] = ppc["gen"][gen_idx, PG] * gen_sign if ac: # Q result in kvar to element net[res_]["q_mvar"].values[:] = el_data[q_mvar].values * scaling * element_in_service if is_controllable: net[res_]["q_mvar"].loc[controlled_elements] = ppc["gen"][gen_idx, QG] * gen_sign return net def get_p_q_b(net, element): ac = net["_options"]["ac"] res_ = "res_" + element # bus values are needed for stacking b = net[element]["bus"].values p = net[res_]["p_mw"] q = net[res_]["q_mvar"] if ac else np.zeros_like(p) return p, q, b def _get_p_q_results(net, ppc, bus_lookup_aranged): bus_pq = np.zeros(shape=(len(net["bus"].index), 2), dtype=np.float) b, p, q = np.array([]), np.array([]), np.array([]) ac = net["_options"]["ac"] if net["_options"]["voltage_depend_loads"] and ac: # voltage dependend loads need special treatment here p, q, b = write_voltage_dependend_load_results(net, p, q, b) elements = ["sgen", "storage", "ward", "xward"] else: elements = ["load", "sgen", "storage", "ward", "xward"] for element in elements: if len(net[element]): write_pq_results_to_element(net, ppc, element) p_el, q_el, bus_el = get_p_q_b(net, element) if element == "sgen": p = np.hstack([p, -p_el]) q = np.hstack([q, -q_el]) else: p = np.hstack([p, p_el]) q = np.hstack([q, q_el]) b = np.hstack([b, bus_el]) if not ac: q = np.zeros(len(p)) # sum pq results from every element to be written to net['bus'] later on b_pp, vp, vq = _sum_by_group(b.astype(int), p, q) b_ppc = bus_lookup_aranged[b_pp] bus_pq[b_ppc, 0] = vp bus_pq[b_ppc, 1] = vq return bus_pq def _get_shunt_results(net, ppc, bus_lookup_aranged, bus_pq): ac = net["_options"]["ac"] b, p, q = np.array([]), np.array([]), np.array([]) _is_elements = net["_is_elements"] bus_lookup = net["_pd2ppc_lookups"]["bus"] s = net["shunt"] if len(s) > 0: sidx = bus_lookup[s["bus"].values] shunt_is = _is_elements["shunt"] u_shunt = ppc["bus"][sidx, VM] step = s["step"] v_ratio = (ppc["bus"][sidx, BASE_KV] / net["shunt"]["vn_kv"].values) ** 2 u_shunt = np.nan_to_num(u_shunt) p_shunt = u_shunt ** 2 * net["shunt"]["p_mw"].values * shunt_is * v_ratio * step net["res_shunt"]["p_mw"].values[:] = p_shunt p = np.hstack([p, p_shunt]) if ac: net["res_shunt"]["vm_pu"].values[:] = u_shunt q_shunt = u_shunt ** 2 * net["shunt"]["q_mvar"].values * shunt_is * v_ratio * step net["res_shunt"]["q_mvar"].values[:] = q_shunt q = np.hstack([q, q_shunt]) b = np.hstack([b, s["bus"].values]) w = net["ward"] if len(w) > 0: widx = bus_lookup[w["bus"].values] ward_is = _is_elements["ward"] u_ward = ppc["bus"][widx, VM] u_ward = np.nan_to_num(u_ward) p_ward = u_ward ** 2 * net["ward"]["pz_mw"].values * ward_is net["res_ward"]["p_mw"].values[:] = net["res_ward"]["p_mw"].values + p_ward p = np.hstack([p, p_ward]) if ac: net["res_ward"]["vm_pu"].values[:] = u_ward q_ward = u_ward ** 2 * net["ward"]["qz_mvar"].values * ward_is net["res_ward"]["q_mvar"].values[:] = net["res_ward"]["q_mvar"].values + q_ward q = np.hstack([q, q_ward]) b = np.hstack([b, w["bus"].values]) xw = net["xward"] if len(xw) > 0: widx = bus_lookup[xw["bus"].values] xward_is = _is_elements["xward"] u_xward = ppc["bus"][widx, VM] u_xward = np.nan_to_num(u_xward) p_xward = u_xward ** 2 * net["xward"]["pz_mw"].values * xward_is net["res_xward"]["p_mw"].values[:] = net["res_xward"]["p_mw"].values + p_xward p = np.hstack([p, p_xward]) if ac: net["res_xward"]["vm_pu"].values[:] = u_xward q_xward = u_xward ** 2 * net["xward"]["qz_mvar"].values * xward_is net["res_xward"]["q_mvar"].values[:] = net["res_xward"]["q_mvar"].values + q_xward q = np.hstack([q, q_xward]) b = np.hstack([b, xw["bus"].values]) if not ac: q = np.zeros(len(p)) b_pp, vp, vq = _sum_by_group(b.astype(int), p, q) b_ppc = bus_lookup_aranged[b_pp] bus_pq[b_ppc, 0] += vp if ac: bus_pq[b_ppc, 1] += vq
34.410853
115
0.575693
4a21f020550ea6baf20b0fb77cdb7e73dc22c703
12,962
py
Python
tools/tcpstates.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
1
2021-07-07T12:38:15.000Z
2021-07-07T12:38:15.000Z
tools/tcpstates.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
null
null
null
tools/tcpstates.py
Birch-san/bcc
b374be886b555ead8feaad9ec2d86ccd39d748dd
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # @lint-avoid-python-3-compatibility-imports # # tcpstates Trace the TCP session state changes with durations. # For Linux, uses BCC, BPF. Embedded C. # # USAGE: tcpstates [-h] [-C] [-S] [interval [count]] # # This uses the sock:inet_sock_set_state tracepoint, added to Linux 4.16. # Linux 4.16 also adds more state transitions so that they can be traced. # # Copyright 2018 Netflix, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # 20-Mar-2018 Brendan Gregg Created this. from __future__ import print_function from bcc import BPF import argparse from socket import inet_ntop, AF_INET, AF_INET6 from struct import pack import ctypes as ct from time import strftime, time from os import getuid # arguments examples = """examples: ./tcpstates # trace all TCP state changes ./tcpstates -t # include timestamp column ./tcpstates -T # include time column (HH:MM:SS) ./tcpstates -w # wider colums (fit IPv6) ./tcpstates -stT # csv output, with times & timestamps ./tcpstates -Y # log events to the systemd journal ./tcpstates -L 80 # only trace local port 80 ./tcpstates -L 80,81 # only trace local ports 80 and 81 ./tcpstates -D 80 # only trace remote port 80 """ parser = argparse.ArgumentParser( description="Trace TCP session state changes and durations", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-T", "--time", action="store_true", help="include time column on output (HH:MM:SS)") parser.add_argument("-t", "--timestamp", action="store_true", help="include timestamp on output (seconds)") parser.add_argument("-w", "--wide", action="store_true", help="wide column output (fits IPv6 addresses)") parser.add_argument("-s", "--csv", action="store_true", help="comma separated values output") parser.add_argument("-L", "--localport", help="comma-separated list of local ports to trace.") parser.add_argument("-D", "--remoteport", help="comma-separated list of remote ports to trace.") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) parser.add_argument("-Y", "--journal", action="store_true", help="log session state changes to the systemd journal") args = parser.parse_args() debug = 0 # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #define KBUILD_MODNAME "foo" #include <linux/tcp.h> #include <net/sock.h> #include <bcc/proto.h> BPF_HASH(last, struct sock *, u64); // separate data structs for ipv4 and ipv6 struct ipv4_data_t { u64 ts_us; u64 skaddr; u32 saddr; u32 daddr; u64 span_us; u32 pid; u32 ports; u32 oldstate; u32 newstate; char task[TASK_COMM_LEN]; }; BPF_PERF_OUTPUT(ipv4_events); struct ipv6_data_t { u64 ts_us; u64 skaddr; unsigned __int128 saddr; unsigned __int128 daddr; u64 span_us; u32 pid; u32 ports; u32 oldstate; u32 newstate; char task[TASK_COMM_LEN]; }; BPF_PERF_OUTPUT(ipv6_events); struct id_t { u32 pid; char task[TASK_COMM_LEN]; }; TRACEPOINT_PROBE(sock, inet_sock_set_state) { if (args->protocol != IPPROTO_TCP) return 0; u32 pid = bpf_get_current_pid_tgid() >> 32; // sk is used as a UUID struct sock *sk = (struct sock *)args->skaddr; // lport is either used in a filter here, or later u16 lport = args->sport; FILTER_LPORT // dport is either used in a filter here, or later u16 dport = args->dport; FILTER_DPORT // calculate delta u64 *tsp, delta_us; tsp = last.lookup(&sk); if (tsp == 0) delta_us = 0; else delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; if (args->family == AF_INET) { struct ipv4_data_t data4 = { .span_us = delta_us, .oldstate = args->oldstate, .newstate = args->newstate }; data4.skaddr = (u64)args->skaddr; data4.ts_us = bpf_ktime_get_ns() / 1000; __builtin_memcpy(&data4.saddr, args->saddr, sizeof(data4.saddr)); __builtin_memcpy(&data4.daddr, args->daddr, sizeof(data4.daddr)); // a workaround until data4 compiles with separate lport/dport data4.ports = dport + ((0ULL + lport) << 32); data4.pid = pid; bpf_get_current_comm(&data4.task, sizeof(data4.task)); ipv4_events.perf_submit(args, &data4, sizeof(data4)); } else /* 6 */ { struct ipv6_data_t data6 = { .span_us = delta_us, .oldstate = args->oldstate, .newstate = args->newstate }; data6.skaddr = (u64)args->skaddr; data6.ts_us = bpf_ktime_get_ns() / 1000; __builtin_memcpy(&data6.saddr, args->saddr_v6, sizeof(data6.saddr)); __builtin_memcpy(&data6.daddr, args->daddr_v6, sizeof(data6.daddr)); // a workaround until data6 compiles with separate lport/dport data6.ports = dport + ((0ULL + lport) << 32); data6.pid = pid; bpf_get_current_comm(&data6.task, sizeof(data6.task)); ipv6_events.perf_submit(args, &data6, sizeof(data6)); } u64 ts = bpf_ktime_get_ns(); last.update(&sk, &ts); return 0; } """ if (not BPF.tracepoint_exists("sock", "inet_sock_set_state")): print("ERROR: tracepoint sock:inet_sock_set_state missing " "(added in Linux 4.16). Exiting") exit() # code substitutions if args.remoteport: dports = [int(dport) for dport in args.remoteport.split(',')] dports_if = ' && '.join(['dport != %d' % dport for dport in dports]) bpf_text = bpf_text.replace('FILTER_DPORT', 'if (%s) { last.delete(&sk); return 0; }' % dports_if) if args.localport: lports = [int(lport) for lport in args.localport.split(',')] lports_if = ' && '.join(['lport != %d' % lport for lport in lports]) bpf_text = bpf_text.replace('FILTER_LPORT', 'if (%s) { last.delete(&sk); return 0; }' % lports_if) bpf_text = bpf_text.replace('FILTER_DPORT', '') bpf_text = bpf_text.replace('FILTER_LPORT', '') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # event data TASK_COMM_LEN = 16 # linux/sched.h class Data_ipv4(ct.Structure): _fields_ = [ ("ts_us", ct.c_ulonglong), ("skaddr", ct.c_ulonglong), ("saddr", ct.c_uint), ("daddr", ct.c_uint), ("span_us", ct.c_ulonglong), ("pid", ct.c_uint), ("ports", ct.c_uint), ("oldstate", ct.c_uint), ("newstate", ct.c_uint), ("task", ct.c_char * TASK_COMM_LEN) ] class Data_ipv6(ct.Structure): _fields_ = [ ("ts_us", ct.c_ulonglong), ("skaddr", ct.c_ulonglong), ("saddr", (ct.c_ulonglong * 2)), ("daddr", (ct.c_ulonglong * 2)), ("span_us", ct.c_ulonglong), ("pid", ct.c_uint), ("ports", ct.c_uint), ("oldstate", ct.c_uint), ("newstate", ct.c_uint), ("task", ct.c_char * TASK_COMM_LEN) ] # # Setup output formats # # Don't change the default output (next 2 lines): this fits in 80 chars. I # know it doesn't have NS or UIDs etc. I know. If you really, really, really # need to add columns, columns that solve real actual problems, I'd start by # adding an extended mode (-x) to included those columns. # header_string = "%-16s %-5s %-10.10s %s%-15s %-5s %-15s %-5s %-11s -> %-11s %s" format_string = ("%-16x %-5d %-10.10s %s%-15s %-5d %-15s %-5d %-11s " + "-> %-11s %.3f") if args.wide: header_string = ("%-16s %-5s %-16.16s %-2s %-26s %-5s %-26s %-5s %-11s " + "-> %-11s %s") format_string = ("%-16x %-5d %-16.16s %-2s %-26s %-5s %-26s %-5d %-11s " + "-> %-11s %.3f") if args.csv: header_string = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s" format_string = "%x,%d,%s,%s,%s,%s,%s,%d,%s,%s,%.3f" if args.journal: try: from systemd import journal except ImportError: print("ERROR: Journal logging requires the systemd.journal module") exit(1) def tcpstate2str(state): # from include/net/tcp_states.h: tcpstate = { 1: "ESTABLISHED", 2: "SYN_SENT", 3: "SYN_RECV", 4: "FIN_WAIT1", 5: "FIN_WAIT2", 6: "TIME_WAIT", 7: "CLOSE", 8: "CLOSE_WAIT", 9: "LAST_ACK", 10: "LISTEN", 11: "CLOSING", 12: "NEW_SYN_RECV", } if state in tcpstate: return tcpstate[state] else: return str(state) def journal_fields(event, addr_family): addr_pfx = 'IPV4' if addr_family == AF_INET6: addr_pfx = 'IPV6' fields = { # Standard fields described in systemd.journal-fields(7). journal.send # will fill in CODE_LINE, CODE_FILE, and CODE_FUNC for us. If we're # root and specify OBJECT_PID, systemd-journald will add other OBJECT_* # fields for us. 'SYSLOG_IDENTIFIER': 'tcpstates', 'PRIORITY': 5, '_SOURCE_REALTIME_TIMESTAMP': time() * 1000000, 'OBJECT_PID': str(event.pid), 'OBJECT_COMM': event.task.decode('utf-8', 'replace'), # Custom fields, aka "stuff we sort of made up". 'OBJECT_' + addr_pfx + '_SOURCE_ADDRESS': inet_ntop(addr_family, pack("I", event.saddr)), 'OBJECT_TCP_SOURCE_PORT': str(event.ports >> 32), 'OBJECT_' + addr_pfx + '_DESTINATION_ADDRESS': inet_ntop(addr_family, pack("I", event.daddr)), 'OBJECT_TCP_DESTINATION_PORT': str(event.ports & 0xffffffff), 'OBJECT_TCP_OLD_STATE': tcpstate2str(event.oldstate), 'OBJECT_TCP_NEW_STATE': tcpstate2str(event.newstate), 'OBJECT_TCP_SPAN_TIME': str(event.span_us) } msg_format_string = (u"%(OBJECT_COMM)s " + u"%(OBJECT_" + addr_pfx + "_SOURCE_ADDRESS)s " + u"%(OBJECT_TCP_SOURCE_PORT)s → " + u"%(OBJECT_" + addr_pfx + "_DESTINATION_ADDRESS)s " + u"%(OBJECT_TCP_DESTINATION_PORT)s " + u"%(OBJECT_TCP_OLD_STATE)s → %(OBJECT_TCP_NEW_STATE)s") fields['MESSAGE'] = msg_format_string % (fields) if getuid() == 0: del fields['OBJECT_COMM'] # Handled by systemd-journald return fields # process event def print_ipv4_event(cpu, data, size): event = ct.cast(data, ct.POINTER(Data_ipv4)).contents global start_ts if args.time: if args.csv: print("%s," % strftime("%H:%M:%S"), end="") else: print("%-8s " % strftime("%H:%M:%S"), end="") if args.timestamp: if start_ts == 0: start_ts = event.ts_us delta_s = (float(event.ts_us) - start_ts) / 1000000 if args.csv: print("%.6f," % delta_s, end="") else: print("%-9.6f " % delta_s, end="") print(format_string % (event.skaddr, event.pid, event.task.decode('utf-8', 'replace'), "4" if args.wide or args.csv else "", inet_ntop(AF_INET, pack("I", event.saddr)), event.ports >> 32, inet_ntop(AF_INET, pack("I", event.daddr)), event.ports & 0xffffffff, tcpstate2str(event.oldstate), tcpstate2str(event.newstate), float(event.span_us) / 1000)) if args.journal: journal.send(**journal_fields(event, AF_INET)) def print_ipv6_event(cpu, data, size): event = ct.cast(data, ct.POINTER(Data_ipv6)).contents global start_ts if args.time: if args.csv: print("%s," % strftime("%H:%M:%S"), end="") else: print("%-8s " % strftime("%H:%M:%S"), end="") if args.timestamp: if start_ts == 0: start_ts = event.ts_us delta_s = (float(event.ts_us) - start_ts) / 1000000 if args.csv: print("%.6f," % delta_s, end="") else: print("%-9.6f " % delta_s, end="") print(format_string % (event.skaddr, event.pid, event.task.decode('utf-8', 'replace'), "6" if args.wide or args.csv else "", inet_ntop(AF_INET6, event.saddr), event.ports >> 32, inet_ntop(AF_INET6, event.daddr), event.ports & 0xffffffff, tcpstate2str(event.oldstate), tcpstate2str(event.newstate), float(event.span_us) / 1000)) if args.journal: journal.send(**journal_fields(event, AF_INET6)) # initialize BPF b = BPF(text=bpf_text) # header if args.time: if args.csv: print("%s," % ("TIME"), end="") else: print("%-8s " % ("TIME"), end="") if args.timestamp: if args.csv: print("%s," % ("TIME(s)"), end="") else: print("%-9s " % ("TIME(s)"), end="") print(header_string % ("SKADDR", "C-PID", "C-COMM", "IP" if args.wide or args.csv else "", "LADDR", "LPORT", "RADDR", "RPORT", "OLDSTATE", "NEWSTATE", "MS")) start_ts = 0 # read events b["ipv4_events"].open_perf_buffer(print_ipv4_event, page_cnt=64) b["ipv6_events"].open_perf_buffer(print_ipv6_event, page_cnt=64) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()
32.982188
102
0.61094
4a21f0935d54f91bbeac7c6c4509ce6ed9bcd698
8,457
py
Python
docs/conf.py
globocom/dbaas-zabbix
3d38c522abcbaac26a6702101b0754b037332dba
[ "BSD-3-Clause" ]
3
2017-01-24T10:56:39.000Z
2019-07-23T12:19:29.000Z
docs/conf.py
globocom/dbaas-zabbix
3d38c522abcbaac26a6702101b0754b037332dba
[ "BSD-3-Clause" ]
5
2017-02-08T16:17:13.000Z
2019-10-10T16:34:56.000Z
docs/conf.py
globocom/dbaas-zabbix
3d38c522abcbaac26a6702101b0754b037332dba
[ "BSD-3-Clause" ]
1
2019-10-10T16:32:27.000Z
2019-10-10T16:32:27.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # complexity documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import dbaas-zabbix # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'dbaas-zabbix' copyright = u'2014, Felippe Raposo' # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = dbaas-zabbix.__version__ # The full version, including alpha/beta/rc tags. release = dbaas-zabbix.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'dbaas-zabbixdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'dbaas-zabbix.tex', u'dbaas-zabbix Documentation', u'Felippe Raposo', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'dbaas-zabbix', u'dbaas-zabbix Documentation', [u'Felippe Raposo'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'dbaas-zabbix', u'dbaas-zabbix Documentation', u'Felippe Raposo', 'dbaas-zabbix', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
30.752727
76
0.716093
4a21f0a97567cb67bf322139d09d8bf56fe824d7
91
py
Python
authentication/urls.py
Rasel-Al-Mamun/Fiction-Django
b5f25b84abdabc62cf82af7cdfe63fd45f265ded
[ "MIT" ]
null
null
null
authentication/urls.py
Rasel-Al-Mamun/Fiction-Django
b5f25b84abdabc62cf82af7cdfe63fd45f265ded
[ "MIT" ]
null
null
null
authentication/urls.py
Rasel-Al-Mamun/Fiction-Django
b5f25b84abdabc62cf82af7cdfe63fd45f265ded
[ "MIT" ]
null
null
null
from .import views from django.urls import path app_name = 'auth' urlpatterns = [ ]
10.111111
28
0.681319
4a21f0c5eda434f87e7c58ac57241bea45b2894c
279
py
Python
src/rating/processing/bisect.py
alterway/processing-operator
f959bb023ff0b549897ee426a17a096b9437ab71
[ "Apache-2.0" ]
null
null
null
src/rating/processing/bisect.py
alterway/processing-operator
f959bb023ff0b549897ee426a17a096b9437ab71
[ "Apache-2.0" ]
null
null
null
src/rating/processing/bisect.py
alterway/processing-operator
f959bb023ff0b549897ee426a17a096b9437ab71
[ "Apache-2.0" ]
null
null
null
import bisect def get_closest_configs_bisect(timestamp, timestamps): timestamps_len = len(timestamps) if timestamps_len == 1: return 0 index = bisect.bisect_left(timestamps, timestamp) if index == timestamps_len: return index - 1 return index
27.9
54
0.702509
4a21f3279034131e287608aa7f238be08a6231f6
986
py
Python
project4github/largest_digit.py
chinkaih319/SC101
25c179c96e0a2bbc4e47768c029ee4bf49e06245
[ "MIT" ]
null
null
null
project4github/largest_digit.py
chinkaih319/SC101
25c179c96e0a2bbc4e47768c029ee4bf49e06245
[ "MIT" ]
null
null
null
project4github/largest_digit.py
chinkaih319/SC101
25c179c96e0a2bbc4e47768c029ee4bf49e06245
[ "MIT" ]
null
null
null
""" File: largest_digit.py Name: ---------------------------------- This file recursively prints the biggest digit in 5 different integers, 12345, 281, 6, -111, -9453 If your implementation is correct, you should see 5, 8, 6, 1, 9 on Console. """ def main(): print(find_largest_digit(12345)) # 5 print(find_largest_digit(281)) # 8 print(find_largest_digit(6)) # 6 print(find_largest_digit(-111)) # 1 print(find_largest_digit(-9453)) # 9 def find_largest_digit(n): """ :param n: :return: """ time = 0 bs = 0 return helper(n, time, bs) def helper(n, time, bs): if 0 <= n <= 10: return n else: if n < 10 ** (time+1): if n < 0: return helper(-n, time, bs) else: first = n // (10 ** time) if first > bs: return first else: return bs else: sq = n//(10 ** time) - (n//(10 ** (time + 1))) * 10 if sq > bs: bs = sq time += 1 return helper(n, time, bs) if __name__ == '__main__': main()
18.603774
54
0.558824
4a21f32ebbdece2a011fd78d4e334f0837e9fc76
8,402
py
Python
torch_geometric/graphgym/contrib/layer/generalconv.py
Kenneth-Schroeder/pytorch_geometric
f7ec9e964bfae1ce5fb21d9b2b30e9e717bf8e24
[ "MIT" ]
12,651
2017-10-28T15:14:24.000Z
2021-09-12T07:22:57.000Z
torch_geometric/graphgym/contrib/layer/generalconv.py
Kenneth-Schroeder/pytorch_geometric
f7ec9e964bfae1ce5fb21d9b2b30e9e717bf8e24
[ "MIT" ]
2,472
2017-10-30T23:38:47.000Z
2021-09-12T06:41:44.000Z
torch_geometric/graphgym/contrib/layer/generalconv.py
Kenneth-Schroeder/pytorch_geometric
f7ec9e964bfae1ce5fb21d9b2b30e9e717bf8e24
[ "MIT" ]
2,363
2017-12-01T13:25:05.000Z
2021-09-12T07:23:09.000Z
import torch import torch.nn as nn from torch.nn import Parameter from torch_scatter import scatter_add from torch_geometric.nn.conv import MessagePassing from torch_geometric.utils import add_remaining_self_loops from torch_geometric.nn.inits import glorot, zeros from torch_geometric.graphgym.config import cfg class GeneralConvLayer(MessagePassing): r"""General GNN layer """ def __init__(self, in_channels, out_channels, improved=False, cached=False, bias=True, **kwargs): super(GeneralConvLayer, self).__init__(aggr=cfg.gnn.agg, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.improved = improved self.cached = cached self.normalize = cfg.gnn.normalize_adj self.weight = Parameter(torch.Tensor(in_channels, out_channels)) if cfg.gnn.self_msg == 'concat': self.weight_self = Parameter( torch.Tensor(in_channels, out_channels)) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): glorot(self.weight) if cfg.gnn.self_msg == 'concat': glorot(self.weight_self) zeros(self.bias) self.cached_result = None self.cached_num_edges = None @staticmethod def norm(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None): if edge_weight is None: edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device) fill_value = 1 if not improved else 2 edge_index, edge_weight = add_remaining_self_loops( edge_index, edge_weight, fill_value, num_nodes) row, col = edge_index deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow(-0.5) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] def forward(self, x, edge_index, edge_weight=None, edge_feature=None): """""" if cfg.gnn.self_msg == 'concat': x_self = torch.matmul(x, self.weight_self) x = torch.matmul(x, self.weight) if self.cached and self.cached_result is not None: if edge_index.size(1) != self.cached_num_edges: raise RuntimeError( 'Cached {} number of edges, but found {}. Please ' 'disable the caching behavior of this layer by removing ' 'the `cached=True` argument in its constructor.'.format( self.cached_num_edges, edge_index.size(1))) if not self.cached or self.cached_result is None: self.cached_num_edges = edge_index.size(1) if self.normalize: edge_index, norm = self.norm(edge_index, x.size(self.node_dim), edge_weight, self.improved, x.dtype) else: norm = edge_weight self.cached_result = edge_index, norm edge_index, norm = self.cached_result x_msg = self.propagate(edge_index, x=x, norm=norm, edge_feature=edge_feature) if cfg.gnn.self_msg == 'none': return x_msg elif cfg.gnn.self_msg == 'add': return x_msg + x elif cfg.gnn.self_msg == 'concat': return x_msg + x_self else: raise ValueError('self_msg {} not defined'.format( cfg.gnn.self_msg)) def message(self, x_j, norm, edge_feature): if edge_feature is None: return norm.view(-1, 1) * x_j if norm is not None else x_j else: return norm.view(-1, 1) * ( x_j + edge_feature) if norm is not None else (x_j + edge_feature) def update(self, aggr_out): if self.bias is not None: aggr_out = aggr_out + self.bias return aggr_out def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels) class GeneralEdgeConvLayer(MessagePassing): r"""General GNN layer, with edge features """ def __init__(self, in_channels, out_channels, edge_dim, improved=False, cached=False, bias=True, **kwargs): super(GeneralEdgeConvLayer, self).__init__(aggr=cfg.gnn.agg, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.improved = improved self.cached = cached self.normalize = cfg.gnn.normalize_adj self.msg_direction = cfg.gnn.msg_direction if self.msg_direction == 'single': self.linear_msg = nn.Linear(in_channels + edge_dim, out_channels, bias=False) else: self.linear_msg = nn.Linear(in_channels * 2 + edge_dim, out_channels, bias=False) if cfg.gnn.self_msg == 'concat': self.linear_self = nn.Linear(in_channels, out_channels, bias=False) if bias: self.bias = Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): zeros(self.bias) self.cached_result = None self.cached_num_edges = None @staticmethod def norm(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None): if edge_weight is None: edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device) fill_value = 1 if not improved else 2 edge_index, edge_weight = add_remaining_self_loops( edge_index, edge_weight, fill_value, num_nodes) row, col = edge_index deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow(-0.5) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] def forward(self, x, edge_index, edge_weight=None, edge_feature=None): if self.cached and self.cached_result is not None: if edge_index.size(1) != self.cached_num_edges: raise RuntimeError( 'Cached {} number of edges, but found {}. Please ' 'disable the caching behavior of this layer by removing ' 'the `cached=True` argument in its constructor.'.format( self.cached_num_edges, edge_index.size(1))) if not self.cached or self.cached_result is None: self.cached_num_edges = edge_index.size(1) if self.normalize: edge_index, norm = self.norm(edge_index, x.size(self.node_dim), edge_weight, self.improved, x.dtype) else: norm = edge_weight self.cached_result = edge_index, norm edge_index, norm = self.cached_result x_msg = self.propagate(edge_index, x=x, norm=norm, edge_feature=edge_feature) if cfg.gnn.self_msg == 'concat': x_self = self.linear_self(x) return x_self + x_msg elif cfg.gnn.self_msg == 'add': return x + x_msg else: return x_msg def message(self, x_i, x_j, norm, edge_feature): if self.msg_direction == 'both': x_j = torch.cat((x_i, x_j, edge_feature), dim=-1) else: x_j = torch.cat((x_j, edge_feature), dim=-1) x_j = self.linear_msg(x_j) return norm.view(-1, 1) * x_j if norm is not None else x_j def update(self, aggr_out): if self.bias is not None: aggr_out = aggr_out + self.bias return aggr_out def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self.in_channels, self.out_channels)
38.365297
79
0.580576
4a21f415874f39402c1cec6c6d51b94e95489831
22,103
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files from typing import List, Any, Union class Ipv4TrafficEndPoint(Base): """NOT DEFINED The Ipv4TrafficEndPoint class encapsulates a list of ipv4TrafficEndPoint resources that are managed by the user. A list of resources can be retrieved from the server using the Ipv4TrafficEndPoint.find() method. The list can be managed by using the Ipv4TrafficEndPoint.add() and Ipv4TrafficEndPoint.remove() methods. """ __slots__ = () _SDM_NAME = 'ipv4TrafficEndPoint' _SDM_ATT_MAP = { 'ArpViaInterface': 'arpViaInterface', 'CustomIpHeaderLength': 'customIpHeaderLength', 'CustomIpHeaderValue': 'customIpHeaderValue', 'CustomIpProtocol': 'customIpProtocol', 'DestinationPort': 'destinationPort', 'EnableVlan': 'enableVlan', 'GatewayMac': 'gatewayMac', 'IpAddress': 'ipAddress', 'IpMask': 'ipMask', 'IpProtocol': 'ipProtocol', 'Ipv4Dscp': 'ipv4Dscp', 'Ipv4Ecn': 'ipv4Ecn', 'MacAddress': 'macAddress', 'Name': 'name', 'ProtocolInterface': 'protocolInterface', 'RangeSize': 'rangeSize', 'SourcePort': 'sourcePort', 'UdpDestination': 'udpDestination', 'UdpSource': 'udpSource', 'VlanCount': 'vlanCount', 'VlanId': 'vlanId', 'VlanPriority': 'vlanPriority', } _SDM_ENUM_MAP = { 'ipProtocol': ['custom', 'tcp', 'udp'], } def __init__(self, parent, list_op=False): super(Ipv4TrafficEndPoint, self).__init__(parent, list_op) @property def ArpViaInterface(self): # type: () -> bool """ Returns ------- - bool: If selected, ARP request is conveyed through an Interface. """ return self._get_attribute(self._SDM_ATT_MAP['ArpViaInterface']) @ArpViaInterface.setter def ArpViaInterface(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['ArpViaInterface'], value) @property def CustomIpHeaderLength(self): # type: () -> int """ Returns ------- - number: The Custom IPv4 Header Length value. The default value is 1. """ return self._get_attribute(self._SDM_ATT_MAP['CustomIpHeaderLength']) @CustomIpHeaderLength.setter def CustomIpHeaderLength(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['CustomIpHeaderLength'], value) @property def CustomIpHeaderValue(self): # type: () -> str """ Returns ------- - str: The Custom IPv4 Header Value. The default value is 00 """ return self._get_attribute(self._SDM_ATT_MAP['CustomIpHeaderValue']) @CustomIpHeaderValue.setter def CustomIpHeaderValue(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['CustomIpHeaderValue'], value) @property def CustomIpProtocol(self): # type: () -> str """ Returns ------- - str: Specify the custom IP Protocol for the Source Traffic Endpoints. """ return self._get_attribute(self._SDM_ATT_MAP['CustomIpProtocol']) @CustomIpProtocol.setter def CustomIpProtocol(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['CustomIpProtocol'], value) @property def DestinationPort(self): # type: () -> str """ Returns ------- - str: NOT DEFINED """ return self._get_attribute(self._SDM_ATT_MAP['DestinationPort']) @DestinationPort.setter def DestinationPort(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['DestinationPort'], value) @property def EnableVlan(self): # type: () -> bool """ Returns ------- - bool: Select this check box to make VLAN available. """ return self._get_attribute(self._SDM_ATT_MAP['EnableVlan']) @EnableVlan.setter def EnableVlan(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['EnableVlan'], value) @property def GatewayMac(self): # type: () -> str """ Returns ------- - str: The Gateway MAC address of the source traffic endpoint. The default value is 00 00 00 00 00 00. """ return self._get_attribute(self._SDM_ATT_MAP['GatewayMac']) @GatewayMac.setter def GatewayMac(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['GatewayMac'], value) @property def IpAddress(self): # type: () -> str """ Returns ------- - str: Specify the IPv4 address of the Source Traffic Endpoint. The default value is 0.0.0.0. """ return self._get_attribute(self._SDM_ATT_MAP['IpAddress']) @IpAddress.setter def IpAddress(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['IpAddress'], value) @property def IpMask(self): # type: () -> int """ Returns ------- - number: Specify the Mask value. The default value is 24. """ return self._get_attribute(self._SDM_ATT_MAP['IpMask']) @IpMask.setter def IpMask(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['IpMask'], value) @property def IpProtocol(self): # type: () -> str """ Returns ------- - str(custom | tcp | udp): Click the IP Protocol type to be used. """ return self._get_attribute(self._SDM_ATT_MAP['IpProtocol']) @IpProtocol.setter def IpProtocol(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['IpProtocol'], value) @property def Ipv4Dscp(self): # type: () -> str """ Returns ------- - str: The priority specified for the IP address. The default value is 0. """ return self._get_attribute(self._SDM_ATT_MAP['Ipv4Dscp']) @Ipv4Dscp.setter def Ipv4Dscp(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Ipv4Dscp'], value) @property def Ipv4Ecn(self): # type: () -> str """ Returns ------- - str: The ECN value specified for the IP address. """ return self._get_attribute(self._SDM_ATT_MAP['Ipv4Ecn']) @Ipv4Ecn.setter def Ipv4Ecn(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Ipv4Ecn'], value) @property def MacAddress(self): # type: () -> str """ Returns ------- - str: The MAC Address of the source traffic endpoint. The default value is 00 00 00 00 00 00. """ return self._get_attribute(self._SDM_ATT_MAP['MacAddress']) @MacAddress.setter def MacAddress(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['MacAddress'], value) @property def Name(self): # type: () -> str """ Returns ------- - str: The name of the Traffic endpoint. It is an auto-populated field but can be customized for convenience. """ return self._get_attribute(self._SDM_ATT_MAP['Name']) @Name.setter def Name(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['Name'], value) @property def ProtocolInterface(self): # type: () -> str """ Returns ------- - str(None | /api/v1/sessions/1/ixnetwork/vport/.../interface): NOT DEFINED """ return self._get_attribute(self._SDM_ATT_MAP['ProtocolInterface']) @ProtocolInterface.setter def ProtocolInterface(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['ProtocolInterface'], value) @property def RangeSize(self): # type: () -> int """ Returns ------- - number: Specify the size of the traffic range. """ return self._get_attribute(self._SDM_ATT_MAP['RangeSize']) @RangeSize.setter def RangeSize(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['RangeSize'], value) @property def SourcePort(self): # type: () -> str """ Returns ------- - str: NOT DEFINED """ return self._get_attribute(self._SDM_ATT_MAP['SourcePort']) @SourcePort.setter def SourcePort(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['SourcePort'], value) @property def UdpDestination(self): # type: () -> str """ Returns ------- - str: Specify the UDP Destination. The default value is 1. """ return self._get_attribute(self._SDM_ATT_MAP['UdpDestination']) @UdpDestination.setter def UdpDestination(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['UdpDestination'], value) @property def UdpSource(self): # type: () -> str """ Returns ------- - str: Specify the UDP Source. The default value is 1. """ return self._get_attribute(self._SDM_ATT_MAP['UdpSource']) @UdpSource.setter def UdpSource(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['UdpSource'], value) @property def VlanCount(self): # type: () -> int """ Returns ------- - number: Specify the VLAN count. The default value is 1. """ return self._get_attribute(self._SDM_ATT_MAP['VlanCount']) @VlanCount.setter def VlanCount(self, value): # type: (int) -> None self._set_attribute(self._SDM_ATT_MAP['VlanCount'], value) @property def VlanId(self): # type: () -> str """ Returns ------- - str: Specify the VLAN ID (Outer and Inner). """ return self._get_attribute(self._SDM_ATT_MAP['VlanId']) @VlanId.setter def VlanId(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['VlanId'], value) @property def VlanPriority(self): # type: () -> str """ Returns ------- - str: Specify the VLAN Priority (Outer and Inner). """ return self._get_attribute(self._SDM_ATT_MAP['VlanPriority']) @VlanPriority.setter def VlanPriority(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['VlanPriority'], value) def update(self, ArpViaInterface=None, CustomIpHeaderLength=None, CustomIpHeaderValue=None, CustomIpProtocol=None, DestinationPort=None, EnableVlan=None, GatewayMac=None, IpAddress=None, IpMask=None, IpProtocol=None, Ipv4Dscp=None, Ipv4Ecn=None, MacAddress=None, Name=None, ProtocolInterface=None, RangeSize=None, SourcePort=None, UdpDestination=None, UdpSource=None, VlanCount=None, VlanId=None, VlanPriority=None): # type: (bool, int, str, str, str, bool, str, str, int, str, str, str, str, str, str, int, str, str, str, int, str, str) -> Ipv4TrafficEndPoint """Updates ipv4TrafficEndPoint resource on the server. Args ---- - ArpViaInterface (bool): If selected, ARP request is conveyed through an Interface. - CustomIpHeaderLength (number): The Custom IPv4 Header Length value. The default value is 1. - CustomIpHeaderValue (str): The Custom IPv4 Header Value. The default value is 00 - CustomIpProtocol (str): Specify the custom IP Protocol for the Source Traffic Endpoints. - DestinationPort (str): NOT DEFINED - EnableVlan (bool): Select this check box to make VLAN available. - GatewayMac (str): The Gateway MAC address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - IpAddress (str): Specify the IPv4 address of the Source Traffic Endpoint. The default value is 0.0.0.0. - IpMask (number): Specify the Mask value. The default value is 24. - IpProtocol (str(custom | tcp | udp)): Click the IP Protocol type to be used. - Ipv4Dscp (str): The priority specified for the IP address. The default value is 0. - Ipv4Ecn (str): The ECN value specified for the IP address. - MacAddress (str): The MAC Address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - Name (str): The name of the Traffic endpoint. It is an auto-populated field but can be customized for convenience. - ProtocolInterface (str(None | /api/v1/sessions/1/ixnetwork/vport/.../interface)): NOT DEFINED - RangeSize (number): Specify the size of the traffic range. - SourcePort (str): NOT DEFINED - UdpDestination (str): Specify the UDP Destination. The default value is 1. - UdpSource (str): Specify the UDP Source. The default value is 1. - VlanCount (number): Specify the VLAN count. The default value is 1. - VlanId (str): Specify the VLAN ID (Outer and Inner). - VlanPriority (str): Specify the VLAN Priority (Outer and Inner). Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def add(self, ArpViaInterface=None, CustomIpHeaderLength=None, CustomIpHeaderValue=None, CustomIpProtocol=None, DestinationPort=None, EnableVlan=None, GatewayMac=None, IpAddress=None, IpMask=None, IpProtocol=None, Ipv4Dscp=None, Ipv4Ecn=None, MacAddress=None, Name=None, ProtocolInterface=None, RangeSize=None, SourcePort=None, UdpDestination=None, UdpSource=None, VlanCount=None, VlanId=None, VlanPriority=None): # type: (bool, int, str, str, str, bool, str, str, int, str, str, str, str, str, str, int, str, str, str, int, str, str) -> Ipv4TrafficEndPoint """Adds a new ipv4TrafficEndPoint resource on the server and adds it to the container. Args ---- - ArpViaInterface (bool): If selected, ARP request is conveyed through an Interface. - CustomIpHeaderLength (number): The Custom IPv4 Header Length value. The default value is 1. - CustomIpHeaderValue (str): The Custom IPv4 Header Value. The default value is 00 - CustomIpProtocol (str): Specify the custom IP Protocol for the Source Traffic Endpoints. - DestinationPort (str): NOT DEFINED - EnableVlan (bool): Select this check box to make VLAN available. - GatewayMac (str): The Gateway MAC address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - IpAddress (str): Specify the IPv4 address of the Source Traffic Endpoint. The default value is 0.0.0.0. - IpMask (number): Specify the Mask value. The default value is 24. - IpProtocol (str(custom | tcp | udp)): Click the IP Protocol type to be used. - Ipv4Dscp (str): The priority specified for the IP address. The default value is 0. - Ipv4Ecn (str): The ECN value specified for the IP address. - MacAddress (str): The MAC Address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - Name (str): The name of the Traffic endpoint. It is an auto-populated field but can be customized for convenience. - ProtocolInterface (str(None | /api/v1/sessions/1/ixnetwork/vport/.../interface)): NOT DEFINED - RangeSize (number): Specify the size of the traffic range. - SourcePort (str): NOT DEFINED - UdpDestination (str): Specify the UDP Destination. The default value is 1. - UdpSource (str): Specify the UDP Source. The default value is 1. - VlanCount (number): Specify the VLAN count. The default value is 1. - VlanId (str): Specify the VLAN ID (Outer and Inner). - VlanPriority (str): Specify the VLAN Priority (Outer and Inner). Returns ------- - self: This instance with all currently retrieved ipv4TrafficEndPoint resources using find and the newly added ipv4TrafficEndPoint resources available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._create(self._map_locals(self._SDM_ATT_MAP, locals())) def remove(self): """Deletes all the contained ipv4TrafficEndPoint resources in this instance from the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ArpViaInterface=None, CustomIpHeaderLength=None, CustomIpHeaderValue=None, CustomIpProtocol=None, DestinationPort=None, EnableVlan=None, GatewayMac=None, IpAddress=None, IpMask=None, IpProtocol=None, Ipv4Dscp=None, Ipv4Ecn=None, MacAddress=None, Name=None, ProtocolInterface=None, RangeSize=None, SourcePort=None, UdpDestination=None, UdpSource=None, VlanCount=None, VlanId=None, VlanPriority=None): # type: (bool, int, str, str, str, bool, str, str, int, str, str, str, str, str, str, int, str, str, str, int, str, str) -> Ipv4TrafficEndPoint """Finds and retrieves ipv4TrafficEndPoint resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve ipv4TrafficEndPoint resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all ipv4TrafficEndPoint resources from the server. Args ---- - ArpViaInterface (bool): If selected, ARP request is conveyed through an Interface. - CustomIpHeaderLength (number): The Custom IPv4 Header Length value. The default value is 1. - CustomIpHeaderValue (str): The Custom IPv4 Header Value. The default value is 00 - CustomIpProtocol (str): Specify the custom IP Protocol for the Source Traffic Endpoints. - DestinationPort (str): NOT DEFINED - EnableVlan (bool): Select this check box to make VLAN available. - GatewayMac (str): The Gateway MAC address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - IpAddress (str): Specify the IPv4 address of the Source Traffic Endpoint. The default value is 0.0.0.0. - IpMask (number): Specify the Mask value. The default value is 24. - IpProtocol (str(custom | tcp | udp)): Click the IP Protocol type to be used. - Ipv4Dscp (str): The priority specified for the IP address. The default value is 0. - Ipv4Ecn (str): The ECN value specified for the IP address. - MacAddress (str): The MAC Address of the source traffic endpoint. The default value is 00 00 00 00 00 00. - Name (str): The name of the Traffic endpoint. It is an auto-populated field but can be customized for convenience. - ProtocolInterface (str(None | /api/v1/sessions/1/ixnetwork/vport/.../interface)): NOT DEFINED - RangeSize (number): Specify the size of the traffic range. - SourcePort (str): NOT DEFINED - UdpDestination (str): Specify the UDP Destination. The default value is 1. - UdpSource (str): Specify the UDP Source. The default value is 1. - VlanCount (number): Specify the VLAN count. The default value is 1. - VlanId (str): Specify the VLAN ID (Outer and Inner). - VlanPriority (str): Specify the VLAN Priority (Outer and Inner). Returns ------- - self: This instance with matching ipv4TrafficEndPoint resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._select(self._map_locals(self._SDM_ATT_MAP, locals())) def read(self, href): """Retrieves a single instance of ipv4TrafficEndPoint data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the ipv4TrafficEndPoint resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
42.587669
420
0.64032
4a21f45043d55d317110d69215b26852191a4417
9,645
py
Python
src/fileseq/utils.py
justinfx/fileseq
9ec049373af37ec21a21d2a5564deb344a96f97f
[ "MIT" ]
69
2019-09-25T13:08:14.000Z
2022-03-21T07:47:24.000Z
src/fileseq/utils.py
justinfx/fileseq
9ec049373af37ec21a21d2a5564deb344a96f97f
[ "MIT" ]
28
2020-02-19T04:58:59.000Z
2021-10-21T02:40:01.000Z
src/fileseq/utils.py
justinfx/fileseq
9ec049373af37ec21a21d2a5564deb344a96f97f
[ "MIT" ]
11
2020-04-14T10:22:06.000Z
2021-12-06T09:49:00.000Z
#! /usr/bin/env python """ utils - General tools of use to fileseq operations. """ from __future__ import absolute_import, division from builtins import bytes from builtins import next from builtins import range from builtins import object import future.utils as futils import decimal from itertools import chain, count, islice import os import sys from fileseq import exceptions FILESYSTEM_ENCODING = sys.getfilesystemencoding() or 'utf-8' def quantize(number, decimal_places, rounding=decimal.ROUND_HALF_EVEN): """ Round a decimal value to given number of decimal places Args: number (decimal.Decimal): Decimal number to round decimal_places (int): Number of decimal places in return value rounding (str): decimal.Decimal rounding mode. See rounding argument of https://docs.python.org/2/library/decimal.html#decimal.Context Returns: decimal.Decimal: """ quantize_exponent = decimal.Decimal(1).scaleb(-decimal_places) return number.quantize(quantize_exponent, rounding=rounding) def lenRange(start, stop, step=1): """ Get the length of values for a given range Args: start (int): stop (int): step (int): """ if not step: raise ValueError('step argument must not be zero') if step > 0: result = (stop - start + step - 1) // step else: result = (stop - start + step + 1) // step return max(0, result) class xrange2(object): """ An itertools-based replacement for xrange which does not exhibit the OverflowError issue on some platforms, when a value exceeds a C long size. Provides the features of an islice, with the added support for checking the length of the range. """ __slots__ = ['_len', '_islice'] def __init__(self, start, stop=None, step=1): if stop is None: start, stop = 0, start self._len = lenRange(start, stop, step) self._islice = islice(count(start, step), self._len) def __len__(self): return self._len def __next__(self): return next(self._islice) def __iter__(self): return self._islice.__iter__() # Issue #44 # On Windows platform, it is possible for xrange to get an # OverflowError if a value passed to xrange exceeds the size of a C long. # Switch to an alternate implementation. if os.name == 'nt': xrange = range = xrange2 else: xrange = range def xfrange(start, stop, step=1, maxSize=-1): """ Returns a generator that yields the frames from start to stop, inclusive. In other words it adds or subtracts a frame, as necessary, to return the stop value as well, if the stepped range would touch that value. Args: start (int): stop (int): step (int): Note that the sign will be ignored maxSize (int): Returns: generator: Raises: :class:`fileseq.exceptions.MaxSizeException`: if size is exceeded """ if not step: raise ValueError('xfrange() step argument must not be zero') start, stop, step = normalizeFrames([start, stop, step]) if start <= stop: step = abs(step) else: step = -abs(step) if isinstance(start, futils.integer_types): size = (stop - start) // step + 1 else: size = int((stop - start) / step) + 1 if maxSize >= 0 and size > maxSize: raise exceptions.MaxSizeException( "Size %d > %s (MAX_FRAME_SIZE)" % (size, maxSize)) # because an xrange is an odd object all its own, we wrap it in a # generator expression to get a proper Generator if isinstance(start, futils.integer_types): offset = step // abs(step) return (f for f in range(start, stop + offset, step)) else: return (start + i * step for i in range(size)) def normalizeFrame(frame): """ Convert a frame number to the most appropriate type - the most compact type that doesn't affect precision, for example numbers that convert exactly to integer values will be converted to int Args: frame (int, float, decimal.Decimal, str): frame number to normalize Returns: frame (int, float, or decimal.Decimal): """ if frame is None: return None elif isinstance(frame, futils.integer_types): return frame elif isinstance(frame, float): frame_int = int(frame) if frame == frame_int: return frame_int return frame elif isinstance(frame, decimal.Decimal): frame_int = int(frame) if frame == frame_int: return frame_int return frame.normalize() else: try: return int(frame) except ValueError: try: frame = decimal.Decimal(frame) except decimal.DecimalException: return frame else: return normalizeFrame(frame) def normalizeFrames(frames): """ Convert a sequence of frame numbers to the most appropriate type for the overall sequence, where all members of the result are of the same type. Args: frames (iterable of int, float, decimal.Decimal, or str): frame numbers to normalize Returns: frames (iterable of int, float, or decimal.Decimal): """ # Normalise all frame values and find their type frames = [normalizeFrame(frame) for frame in frames] frame_types = set(type(frame) for frame in frames) # Determine best overall type for frames if float in frame_types: FrameType = float elif decimal.Decimal in frame_types: FrameType = decimal.Decimal else: FrameType = int if len(frame_types) == 1: return frames # Convert all frames to chosen type frames = [FrameType(frame) for frame in frames] # Ensure all decimal frames have same exponent if FrameType is decimal.Decimal: maximum_decimal_places = max( -frame.as_tuple().exponent for frame in frames ) frames = [quantize(frame, maximum_decimal_places) for frame in frames] return frames def unique(seen, *iterables): """ Get the unique items in iterables while preserving order. Note that this mutates the seen set provided only when the returned generator is used. Args: seen (set): either an empty set, or the set of things already seen *iterables: one or more iterable lists to chain together Returns: generator: """ _add = seen.add # return a generator of the unique items and the set of the seen items # the seen set will mutate when the generator is iterated over return (i for i in chain(*iterables) if i not in seen and not _add(i)) def pad(number, width=0, decimal_places=None): """ Return the zero-padded string of a given number. Args: number (int, float, or decimal.Decimal): the number to pad width (int): width for zero padding the integral component decimal_places (int): number of decimal places to use in frame range Returns: str: """ # Make the common case fast. Truncate to integer value as USD does. # https://graphics.pixar.com/usd/docs/api/_usd__page__value_clips.html # See _DeriveClipTimeString for formating of templateAssetPath # https://github.com/PixarAnimationStudios/USD/blob/release/pxr/usd/usd/clipSetDefinition.cpp if decimal_places == 0: return futils.native_str(number).partition(".")[0].zfill(width) # USD ultimately uses vsnprintf to format floats for templateAssetPath: # _DeriveClipTimeString -> TfStringPrintf -> ArchVStringPrintf -> ArchVsnprintf -> vsnprintf # Since glibc 2.17 the printf family of functions rounds floats using the # current IEEE rounding mode, by default bankers' rounding (FE_TONEAREST). # See https://sourceware.org/bugzilla/show_bug.cgi?id=5044 and man(3) fegetround # Also https://www.exploringbinary.com/inconsistent-rounding-of-printed-floating-point-numbers/ if decimal_places is not None: if not isinstance(number, decimal.Decimal): number = decimal.Decimal(number) number = quantize(number, decimal_places, decimal.ROUND_HALF_EVEN) number = futils.native_str(number) parts = number.split(".", 1) parts[0] = parts[0].zfill(width) return ".".join(parts) def _getPathSep(path): """ Abstracts returning the appropriate path separator for the given path string. This implementation always returns ``os.sep`` Abstracted to make test mocking easier. Args: path (str): A path to check for the most common sep Returns: str: """ return os.sep _STR_TYPES = frozenset((futils.text_type, futils.binary_type)) def asString(obj): """ Ensure an object is either explicitly str or unicode and not some derived type that can change semantics. If the object is unicode, return unicode. Otherwise return the string conversion of the object. Args: obj: Object to return as str or unicode Returns: str or unicode: """ typ = type(obj) # explicit type check as faster path if typ in _STR_TYPES: if not futils.PY2 and typ is futils.binary_type: obj = os.fsdecode(obj) return obj # derived type check elif isinstance(obj, bytes): if futils.PY2: obj = bytes(obj) else: obj = obj.decode(FILESYSTEM_ENCODING) else: obj = futils.text_type(obj) return futils.native(obj)
29.138973
99
0.654536
4a21f55dbae7f5efc8428b682f48677b50551b4d
71
py
Python
py_tdlib/constructors/secret_chat_state_pending.py
Mr-TelegramBot/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
24
2018-10-05T13:04:30.000Z
2020-05-12T08:45:34.000Z
py_tdlib/constructors/secret_chat_state_pending.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
3
2019-06-26T07:20:20.000Z
2021-05-24T13:06:56.000Z
py_tdlib/constructors/secret_chat_state_pending.py
MrMahdi313/python-tdlib
2e2d21a742ebcd439971a32357f2d0abd0ce61eb
[ "MIT" ]
5
2018-10-05T14:29:28.000Z
2020-08-11T15:04:10.000Z
from ..factory import Type class secretChatStatePending(Type): pass
11.833333
35
0.788732
4a21f6232cb09ce96806fd53d5e832c2f6ff0878
26,589
py
Python
src/transformers/__init__.py
SoumyaBarikeri/transformers
996c6e113404000f50444287aa8a31a174ebd92f
[ "Apache-2.0" ]
1
2021-08-07T06:06:45.000Z
2021-08-07T06:06:45.000Z
src/transformers/__init__.py
SoumyaBarikeri/transformers
996c6e113404000f50444287aa8a31a174ebd92f
[ "Apache-2.0" ]
null
null
null
src/transformers/__init__.py
SoumyaBarikeri/transformers
996c6e113404000f50444287aa8a31a174ebd92f
[ "Apache-2.0" ]
2
2021-05-31T08:50:50.000Z
2022-01-26T13:14:58.000Z
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. __version__ = "3.3.0" # Work around to update TensorFlow's absl.logging threshold which alters the # default Python logging output behavior when present. # see: https://github.com/abseil/abseil-py/issues/99 # and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493 try: import absl.logging except ImportError: pass else: absl.logging.set_verbosity("info") absl.logging.set_stderrthreshold("info") absl.logging._warn_preinit_stderr = False # Integrations: this needs to come before other ml imports # in order to allow any 3rd-party code to initialize properly from .integrations import ( # isort:skip is_comet_available, is_optuna_available, is_ray_available, is_tensorboard_available, is_wandb_available, ) # Configurations from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig from .configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP, CONFIG_MAPPING, AutoConfig from .configuration_bart import BartConfig from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig from .configuration_bert_generation import BertGenerationConfig from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig from .configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig from .configuration_encoder_decoder import EncoderDecoderConfig from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig from .configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config from .configuration_layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig from .configuration_longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .configuration_marian import MarianConfig from .configuration_mbart import MBartConfig from .configuration_mmbt import MMBTConfig from .configuration_mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig from .configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig from .configuration_pegasus import PegasusConfig from .configuration_rag import RagConfig from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig from .configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig from .configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .configuration_utils import PretrainedConfig from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig from .configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig from .data import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, is_sklearn_available, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, ) # Files and general utilities from .file_utils import ( CONFIG_NAME, MODEL_CARD_NAME, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, add_end_docstrings, add_start_docstrings, cached_path, is_apex_available, is_datasets_available, is_faiss_available, is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available, is_torch_tpu_available, ) from .hf_argparser import HfArgumentParser # Model Cards from .modelcard import ModelCard # TF 2.0 <=> PyTorch conversion utilities from .modeling_tf_pytorch_utils import ( convert_tf_weight_name_to_pt_weight_name, load_pytorch_checkpoint_in_tf2_model, load_pytorch_model_in_tf2_model, load_pytorch_weights_in_tf2_model, load_tf2_checkpoint_in_pytorch_model, load_tf2_model_in_pytorch_model, load_tf2_weights_in_pytorch_model, ) # Pipelines from .pipelines import ( Conversation, ConversationalPipeline, CsvPipelineDataFormat, FeatureExtractionPipeline, FillMaskPipeline, JsonPipelineDataFormat, NerPipeline, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, QuestionAnsweringPipeline, SummarizationPipeline, Text2TextGenerationPipeline, TextClassificationPipeline, TextGenerationPipeline, TokenClassificationPipeline, TranslationPipeline, ZeroShotClassificationPipeline, pipeline, ) # Retriever from .retrieval_rag import RagRetriever # Tokenizers from .tokenization_albert import AlbertTokenizer from .tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer from .tokenization_bart import BartTokenizer, BartTokenizerFast from .tokenization_bert import BasicTokenizer, BertTokenizer, BertTokenizerFast, WordpieceTokenizer from .tokenization_bert_generation import BertGenerationTokenizer from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer from .tokenization_bertweet import BertweetTokenizer from .tokenization_camembert import CamembertTokenizer from .tokenization_ctrl import CTRLTokenizer from .tokenization_distilbert import DistilBertTokenizer, DistilBertTokenizerFast from .tokenization_dpr import ( DPRContextEncoderTokenizer, DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizer, DPRReaderTokenizerFast, ) from .tokenization_electra import ElectraTokenizer, ElectraTokenizerFast from .tokenization_flaubert import FlaubertTokenizer from .tokenization_fsmt import FSMTTokenizer from .tokenization_funnel import FunnelTokenizer, FunnelTokenizerFast from .tokenization_gpt2 import GPT2Tokenizer, GPT2TokenizerFast from .tokenization_layoutlm import LayoutLMTokenizer, LayoutLMTokenizerFast from .tokenization_longformer import LongformerTokenizer, LongformerTokenizerFast from .tokenization_lxmert import LxmertTokenizer, LxmertTokenizerFast from .tokenization_mbart import MBartTokenizer from .tokenization_mobilebert import MobileBertTokenizer, MobileBertTokenizerFast from .tokenization_openai import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from .tokenization_pegasus import PegasusTokenizer from .tokenization_phobert import PhobertTokenizer from .tokenization_rag import RagTokenizer from .tokenization_reformer import ReformerTokenizer from .tokenization_retribert import RetriBertTokenizer, RetriBertTokenizerFast from .tokenization_roberta import RobertaTokenizer, RobertaTokenizerFast from .tokenization_t5 import T5Tokenizer from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer, TransfoXLTokenizerFast from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import ( BatchEncoding, CharSpan, PreTrainedTokenizerBase, SpecialTokensMixin, TensorType, TokenSpan, ) from .tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_xlm import XLMTokenizer from .tokenization_xlm_roberta import XLMRobertaTokenizer from .tokenization_xlnet import SPIECE_UNDERLINE, XLNetTokenizer # Trainer from .trainer_utils import EvalPrediction, set_seed from .training_args import TrainingArguments from .training_args_tf import TFTrainingArguments from .utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_sklearn_available(): from .data import glue_compute_metrics, xnli_compute_metrics # Modeling if is_torch_available(): # Benchmarks from .benchmark.benchmark import PyTorchBenchmark from .benchmark.benchmark_args import PyTorchBenchmarkArguments from .data.data_collator import ( DataCollator, DataCollatorForLanguageModeling, DataCollatorForNextSentencePrediction, DataCollatorForPermutationLanguageModeling, DataCollatorForSOP, DataCollatorWithPadding, default_data_collator, ) from .data.datasets import ( GlueDataset, GlueDataTrainingArguments, LineByLineTextDataset, LineByLineWithSOPTextDataset, SquadDataset, SquadDataTrainingArguments, TextDataset, TextDatasetForNextSentencePrediction, ) from .generation_utils import top_k_top_p_filtering from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) from .modeling_auto import ( MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForMultipleChoice, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoModelWithLMAndDebiasHead, ) from .modeling_bart import ( BART_PRETRAINED_MODEL_ARCHIVE_LIST, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, PretrainedBartModel, ) from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) from .modeling_bert_generation import ( BertGenerationDecoder, BertGenerationEncoder, load_tf_weights_in_bert_generation, ) from .modeling_camembert import ( CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, ) from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) from .modeling_dpr import ( DPRContextEncoder, DPRPretrainedContextEncoder, DPRPretrainedQuestionEncoder, DPRPretrainedReader, DPRQuestionEncoder, DPRReader, ) from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) from .modeling_encoder_decoder import EncoderDecoderModel from .modeling_flaubert import ( FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from .modeling_fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, load_tf_weights_in_funnel, ) from .modeling_gpt2 import ( GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2DoubleHeadsModel, GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel, load_tf_weights_in_gpt2, GPT2DoubleHeadsModelEqualisingLoss, GPT2DoubleHeadsModelCosineDistLoss, GPT2DoubleHeadsModelCustomClassifier, GPT2DoubleHeadsModelSoftDebiasing, GPT2DoubleHeadsModelHardDebiasing, GPT2DoubleHeadsModelReligion2EqLoss, ) from .modeling_layoutlm import ( LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMForMaskedLM, LayoutLMForTokenClassification, LayoutLMModel, ) from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerSelfAttention, ) from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) from .modeling_marian import MarianMTModel from .modeling_mbart import MBartForConditionalGeneration from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) from .modeling_openai import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTDoubleHeadsModel, OpenAIGPTLMHeadModel, OpenAIGPTModel, OpenAIGPTPreTrainedModel, load_tf_weights_in_openai_gpt, ) from .modeling_pegasus import PegasusForConditionalGeneration from .modeling_rag import RagModel, RagSequenceForGeneration, RagTokenForGeneration from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ) from .modeling_retribert import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from .modeling_t5 import ( T5_PRETRAINED_MODEL_ARCHIVE_LIST, T5ForConditionalGeneration, T5Model, T5PreTrainedModel, load_tf_weights_in_t5, ) from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) from .modeling_utils import Conv1D, PreTrainedModel, apply_chunking_to_forward, prune_layer from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, ) from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) # Optimization from .optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from .tokenization_marian import MarianTokenizer # Trainer from .trainer import EvalPrediction, Trainer, set_seed, torch_distributed_zero_first # TensorFlow if is_tf_available(): from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments # Benchmarks from .benchmark.benchmark_tf import TensorFlowBenchmark from .generation_tf_utils import tf_top_k_top_p_filtering from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) from .modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForMultipleChoice, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, ) from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) from .modeling_tf_camembert import ( TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, ) from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) from .modeling_tf_flaubert import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) from .modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2LMHeadModel, TFGPT2MainLayer, TFGPT2Model, TFGPT2PreTrainedModel, ) from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForQuestionAnswering, TFLongformerModel, TFLongformerSelfAttention, ) from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) from .modeling_tf_openai import ( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTMainLayer, TFOpenAIGPTModel, TFOpenAIGPTPreTrainedModel, ) from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) from .modeling_tf_t5 import ( TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST, TFT5ForConditionalGeneration, TFT5Model, TFT5PreTrainedModel, ) from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) from .modeling_tf_utils import TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, ) from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) # Optimization from .optimization_tf import AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer # Trainer from .trainer_tf import TFTrainer if not is_tf_available() and not is_torch_available(): logger.warning( "Neither PyTorch nor TensorFlow >= 2.0 have been found." "Models won't be available and only tokenizers, configuration" "and file/data utilities can be used." )
35.499332
117
0.760427
4a21f6be64f592263dd23f2ec21509df09450bce
791
py
Python
test/test_grompp.py
bioexcel/virtualscreening
e973958e012e38f99b0c8ed2b798c5e5a7f72b22
[ "Apache-2.0" ]
3
2020-02-17T11:11:08.000Z
2021-12-03T18:54:47.000Z
test/test_grompp.py
bioexcel/virtualscreening
e973958e012e38f99b0c8ed2b798c5e5a7f72b22
[ "Apache-2.0" ]
1
2019-12-05T15:32:50.000Z
2019-12-10T16:13:08.000Z
test/test_grompp.py
bioexcel/virtualscreening
e973958e012e38f99b0c8ed2b798c5e5a7f72b22
[ "Apache-2.0" ]
2
2019-09-26T20:21:14.000Z
2021-07-10T04:37:31.000Z
from os.path import join as opj from test import fixtures as fx from gromacs_wrapper.grompp import Grompp class TestGrompp(object): def setUp(self): fx.test_setup(self,'grompp') def tearDown(self): fx.test_teardown(self) def test_launch(self): output_tpr_path = opj(self.properties['path'], self.properties['output_tpr_path']) returncode = Grompp(input_gro_path=opj(self.data_dir, self.properties['input_gro_path']), input_top_zip_path=opj(self.data_dir, self.properties['input_top_zip_path']), output_tpr_path=output_tpr_path, properties=self.properties).launch() assert fx.exe_success(returncode) assert fx.not_empty(output_tpr_path)
35.954545
107
0.656131
4a21f70bbf38998b13ceefdcfd94e54a814ffcb9
706
py
Python
util/chplenv/chplenv.py
MayukhSobo/chapel
c64476af40e5b49689983ac172fa201deb133af9
[ "ECL-2.0", "Apache-2.0" ]
1,602
2015-01-06T11:26:31.000Z
2022-03-30T06:17:21.000Z
util/chplenv/chplenv.py
sthagen/chapel
888fcc282385f31fe866511e3652c4e88b7721a1
[ "ECL-2.0", "Apache-2.0" ]
11,789
2015-01-05T04:50:15.000Z
2022-03-31T23:39:19.000Z
util/chplenv/chplenv.py
sthagen/chapel
888fcc282385f31fe866511e3652c4e88b7721a1
[ "ECL-2.0", "Apache-2.0" ]
498
2015-01-08T18:58:18.000Z
2022-03-20T15:37:45.000Z
import chpl_cpu import chpl_atomics import chpl_aux_filesys import chpl_bin_subdir import chpl_make import chpl_platform import chpl_comm import chpl_comm_debug import chpl_comm_segment import chpl_comm_substrate import chpl_compiler import chpl_gasnet import chpl_gmp import chpl_hwloc import chpl_jemalloc import chpl_launcher import chpl_libfabric import chpl_llvm import chpl_locale_model import chpl_gpu import chpl_arch import chpl_mem import chpl_qthreads import chpl_re2 import chpl_tasks import chpl_timers import chpl_unwind import chpl_lib_pic import chpl_sanitizers # General purpose helpers import chpl_home_utils import chpl_python_version import compiler_utils import overrides import utils
19.611111
26
0.896601
4a21f7ae0a7049aa0e0ef42f49ae239149ad8ea3
1,123
py
Python
src/models/classifier/__init__.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
src/models/classifier/__init__.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
src/models/classifier/__init__.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
# Model inspired from: https://github.com/szagoruyko/wide-residual-networks from .train import train from common.loaders import images def parse_args(parser): parser.add_argument('--dataset', type=str, default='mnist') parser.add_argument('--dataset-loc', type=str, default='.') parser.add_argument('--h-dim', type=int, default=64) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--nesterov', type=bool, default=True) parser.add_argument('--weight-decay', type=float, default=5e-4) parser.add_argument('--depth', type=float, default=16) parser.add_argument('--widen-factor', type=float, default=8) parser.add_argument('--dropRate', type=float, default=0.4) def execute(args): print(args) train_loader, valid_loader, test_loader, shape, nc = \ getattr(images, args.dataset)(args.dataset_loc, args.train_batch_size, args.test_batch_size, args.valid_split) args.nc = nc args.loader = (train_loader, valid_loader, test_loader) args.shape = shape train(args)
40.107143
118
0.707035
4a21f7d37d0e39fc4c5a191df087a53ee43ba73a
545
py
Python
core/management/commands/init_admin.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
core/management/commands/init_admin.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
core/management/commands/init_admin.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
from django.core.management.base import BaseCommand from django.contrib.auth.models import User class Command(BaseCommand): help = "Initilize admin user" def add_arguments(self, parser): pass def handle(self, *args, **options): if User.objects.all().count() == 0: User.objects.create_superuser(username='admin', password='password', email='[email protected]', first_name='Hao', last_name='FENG') print('admin user created') else: print('admin user already exists')
34.0625
148
0.66422
4a21f9405c27f4bcfe005b80c08d74f5b04c1d29
4,203
py
Python
modyz-streamlit/app1.py
KiranKhanna721/study-easy
8ad33bbb958282ccdabcb0622e988d5a96ae1d2f
[ "MIT" ]
null
null
null
modyz-streamlit/app1.py
KiranKhanna721/study-easy
8ad33bbb958282ccdabcb0622e988d5a96ae1d2f
[ "MIT" ]
null
null
null
modyz-streamlit/app1.py
KiranKhanna721/study-easy
8ad33bbb958282ccdabcb0622e988d5a96ae1d2f
[ "MIT" ]
null
null
null
from langdetect import detect from modzy import ApiClient import streamlit as st SECRET_KEY = 'modzy modelops are incredibles' API_URL = "https://app.modzy.com/api" API_KEY ="BLHlhckkavs13Oz3TZqm.MCwXnXb3KaSlLybyEXoP" client = ApiClient(base_url=API_URL, api_key=API_KEY) def text_topic_modeling(input_text): job = client.jobs.submit_text('m8z2mwe3pt', '0.0.1', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) return(result) def sentimentanalysis(input_text): job = client.jobs.submit_text('ed542963de', '1.0.1', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) return (result['results']['job']['results.json']['data']['result']) def languageanalysis(input_text): return detect(input_text) def languageTranslation(lang,input_text): if lang == 'ru': job = client.jobs.submit_text('5b98cvxsd2', '0.0.1', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'en': input_text = input_text elif lang == 'ar': job = client.jobs.submit_text('i2gapn1wh7', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'ko': job = client.jobs.submit_text('hprfkvdbgt', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'tr': job = client.jobs.submit_text('ydai26qxaa', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'id': job = client.jobs.submit_text('wn6xe6bizs', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'fa': job = client.jobs.submit_text('u54lgh7rag', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'zh-cn': job = client.jobs.submit_text('24ntd2cn93', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] elif lang == 'ur': job = client.jobs.submit_text('vay0g6tavv', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) input_text = result['results']['job']['results.json']['text'] return input_text def textsummaries(input_text): job = client.jobs.submit_text('rs2qqwbjwb', '0.0.2', {'input.txt': input_text}) result = client.results.block_until_complete(job, timeout=None) return(result['results']['job']['results.json']['summary']) def app(): input_text = st.text_input('Text') submit = st.button('Submit') if submit: if input_text is not None: st.write("Orginal Text : "+input_text) lang = languageanalysis(input_text) input_text = languageTranslation(lang,input_text) data_lang = lang st.write("Language : "+data_lang) data_inputtext = input_text st.write("English text : "+data_inputtext) data_texttopic = text_topic_modeling(input_text) st.write('Topics : ') st.write(data_texttopic) data_textsummary = textsummaries(input_text) st.write("Summary : "+data_textsummary) data_sentiment = sentimentanalysis(input_text) st.write("Sentiment : ") st.write(data_sentiment)
51.256098
88
0.626695
4a21f989038a760f70e112311126a813a683bdf5
6,263
py
Python
mimo/abstractions.py
MichaelLutter/mimo
8a6a770ee90cbd6fd5cc12141d19442a3477af2c
[ "MIT" ]
null
null
null
mimo/abstractions.py
MichaelLutter/mimo
8a6a770ee90cbd6fd5cc12141d19442a3477af2c
[ "MIT" ]
null
null
null
mimo/abstractions.py
MichaelLutter/mimo
8a6a770ee90cbd6fd5cc12141d19442a3477af2c
[ "MIT" ]
null
null
null
import abc import copy import numpy as np from future.utils import with_metaclass from mimo.util.text import progprint_xrange # Base classes class Distribution(with_metaclass(abc.ABCMeta, object)): @abc.abstractmethod def rvs(self, size=[]): # random variates (samples) pass @abc.abstractmethod def log_likelihood(self, x): """ log likelihood (either log probability mass function or log probability density function) of x, which has the same type as the output of rvs() """ pass @abc.abstractmethod def mean(self): pass @abc.abstractmethod def mode(self): pass @abc.abstractmethod def log_partition(self): pass @abc.abstractmethod def entropy(self): pass class BayesianDistribution(with_metaclass(abc.ABCMeta, Distribution)): def empirical_bayes(self, data): """ (optional) set hyperparameters via empirical bayes e.g. treat argument as a pseudo-dataset for exponential family """ raise NotImplementedError # Algorithm interfaces for inference in distributions class GibbsSampling(with_metaclass(abc.ABCMeta, BayesianDistribution)): @abc.abstractmethod def resample(self, data=[]): pass def copy_sample(self): """ return an object copy suitable for making lists of posterior samples (override this method to prevent copying shared structures into each sample) """ return copy.deepcopy(self) def resample_and_copy(self): self.resample() return self.copy_sample() class MeanField(with_metaclass(abc.ABCMeta, BayesianDistribution)): @abc.abstractmethod def expected_log_likelihood(self, x): pass @abc.abstractmethod def meanfieldupdate(self, data, weights): pass def get_vlb(self): raise NotImplementedError class MeanFieldSVI(with_metaclass(abc.ABCMeta, BayesianDistribution)): @abc.abstractmethod def meanfield_sgdstep(self, expected_suff_stats, weights, prob, stepsize): pass class MaxLikelihood(with_metaclass(abc.ABCMeta, Distribution)): @abc.abstractmethod def max_likelihood(self, data, weights=None): """ sets the parameters set to their maximum likelihood values given the (weighted) data """ pass @property def num_parameters(self): raise NotImplementedError class MAP(with_metaclass(abc.ABCMeta, BayesianDistribution)): @abc.abstractmethod def MAP(self, data, weights=None): """ sets the parameters to their MAP values given the (weighted) data analogous to max_likelihood but includes hyperparameters """ pass # Models class Model(with_metaclass(abc.ABCMeta, object)): @abc.abstractmethod def add_data(self, data): pass @abc.abstractmethod def generate(self, keep=True, **kwargs): """ Like a distribution's rvs, but this also fills in latent state over data and keeps references to the data. """ pass def rvs(self, *args, **kwargs): return self.generate(*args, keep=False, **kwargs)[0] # 0th component is data, not latent stuff # Algorithm interfaces for inference in models class ModelGibbsSampling(with_metaclass(abc.ABCMeta, Model)): @abc.abstractmethod def resample_model(self): # TODO niter? pass def copy_sample(self): """ return an object copy suitable for making lists of posterior samples (override this method to prevent copying shared structures into each sample) """ return copy.deepcopy(self) def resample_and_copy(self): self.resample_model() return self.copy_sample() class ModelMeanField(with_metaclass(abc.ABCMeta, Model)): @abc.abstractmethod def meanfield_coordinate_descent_step(self): # returns variational lower bound after update, if available pass def meanfield_coordinate_descent(self, tol=1e-1, maxiter=250, progprint=False, **kwargs): # NOTE: doesn't re-initialize! scores = [] step_iterator = range(maxiter) if not progprint else progprint_xrange( maxiter) for _ in step_iterator: scores.append(self.meanfield_coordinate_descent_step(**kwargs)) if scores[-1] is not None and len(scores) > 1: if np.abs(scores[-1] - scores[-2]) < tol: return scores print( 'WARNING: meanfield_coordinate_descent hit maxiter of %d' % maxiter) return scores class ModelMeanFieldSVI(with_metaclass(abc.ABCMeta, Model)): @abc.abstractmethod def meanfield_sgdstep(self, minibatch, prob, stepsize): pass class _EMBase(with_metaclass(abc.ABCMeta, Model)): @abc.abstractmethod def log_likelihood(self): # returns a log likelihood number on attached data pass def _EM_fit(self, method, tol=1e-1, maxiter=100, progprint=False): # NOTE: doesn't re-initialize! likes = [] step_iterator = range(maxiter) if not progprint else progprint_xrange( maxiter) for _ in step_iterator: method() likes.append(self.log_likelihood()) if len(likes) > 1: if likes[-1] - likes[-2] < tol: return likes elif likes[-1] < likes[-2]: # probably oscillation, do one more method() likes.append(self.log_likelihood()) return likes print('WARNING: EM_fit reached maxiter of %d' % maxiter) return likes class ModelEM(with_metaclass(abc.ABCMeta, _EMBase)): def EM_fit(self, tol=1e-1, maxiter=100): return self._EM_fit(self.EM_step, tol=tol, maxiter=maxiter) @abc.abstractmethod def EM_step(self): pass class ModelMAPEM(with_metaclass(abc.ABCMeta, _EMBase)): def MAP_EM_fit(self, tol=1e-1, maxiter=100): return self._EM_fit(self.MAP_EM_step, tol=tol, maxiter=maxiter) @abc.abstractmethod def MAP_EM_step(self): pass
28.729358
103
0.643781
4a21fa0e328b8baecf4b4e00d94feefbfe78d3bc
68
py
Python
ORCSchlange/__main__.py
Fabianexe/ORC-Schlange
c94ad41622ddcea2bc25a59c5debcfe4c823d9c7
[ "Apache-2.0" ]
null
null
null
ORCSchlange/__main__.py
Fabianexe/ORC-Schlange
c94ad41622ddcea2bc25a59c5debcfe4c823d9c7
[ "Apache-2.0" ]
null
null
null
ORCSchlange/__main__.py
Fabianexe/ORC-Schlange
c94ad41622ddcea2bc25a59c5debcfe4c823d9c7
[ "Apache-2.0" ]
null
null
null
from ORCSchlange import main if __name__ == "__main__": main()
13.6
28
0.691176
4a21fb6866a37bf0546019a5293a39580da3e87a
9,753
py
Python
test/functional/mining_pos_reorg.py
OasisCoinTeam/oasis-1
a5e996144bf484db751c5feb8ed38c94ab317ca5
[ "MIT" ]
10
2018-10-07T14:04:48.000Z
2019-07-14T15:48:05.000Z
test/functional/mining_pos_reorg.py
OasisCoinTeam/oasis-1
a5e996144bf484db751c5feb8ed38c94ab317ca5
[ "MIT" ]
3
2019-01-18T22:23:23.000Z
2020-02-15T19:34:13.000Z
test/functional/mining_pos_reorg.py
OasisCoinTeam/oasis-1
a5e996144bf484db751c5feb8ed38c94ab317ca5
[ "MIT" ]
14
2018-12-24T18:33:29.000Z
2022-03-08T06:26:14.000Z
#!/usr/bin/env python3 # Copyright (c) 2019 The OASIS developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.authproxy import JSONRPCException from test_framework.test_framework import OasisTestFramework from test_framework.util import ( sync_blocks, assert_equal, assert_raises_rpc_error, connect_nodes_bi, connect_nodes_clique, disconnect_nodes, set_node_times, DecimalAmt, ) class ReorgStakeTest(OasisTestFramework): def set_test_params(self): self.num_nodes = 3 # node 0 and 1 stake the blocks, node 2 makes the zerocoin spends def setup_chain(self): # Start with PoS cache: 330 blocks self._initialize_chain(toPosPhase=True) self.enable_mocktime() def setup_network(self): # connect all nodes between each other self.setup_nodes() connect_nodes_clique(self.nodes) self.sync_all() def log_title(self): title = "*** Starting %s ***" % self.__class__.__name__ underline = "-" * len(title) description = "Tests reorganisation for PoS blocks." self.log.info("\n\n%s\n%s\n%s\n", title, underline, description) def disconnect_all(self): self.log.info("Disconnecting nodes...") for i in range(self.num_nodes): for j in range(self.num_nodes): if j != i: disconnect_nodes(self.nodes[i], j) self.log.info("Nodes disconnected") def get_tot_balance(self, nodeid): wi = self.nodes[nodeid].getwalletinfo() return wi['balance'] + wi['immature_balance'] def run_test(self): def findUtxoInList(txid, vout, utxo_list): for x in utxo_list: if x["txid"] == txid and x["vout"] == vout: return True, x return False, None # Stake with node 0 and node 1 up to public spend activation (400) # 70 blocks: 5 blocks each (x7) self.log.info("Staking 70 blocks to reach public spends activation...") set_node_times(self.nodes, self.mocktime) for i in range(7): for peer in range(2): for nblock in range(5): self.mocktime = self.generate_pos(peer, self.mocktime) sync_blocks(self.nodes) block_time_0 = block_time_1 = self.mocktime self.log.info("Blocks staked.") # Check balances self.log.info("Checking balances...") initial_balance = [self.get_tot_balance(i) for i in range(self.num_nodes)] # --nodes 0, 1: 62 pow blocks + 55 pos blocks assert_equal(initial_balance[0], DecimalAmt(250.0 * (62 + 55))) assert_equal(initial_balance[1], DecimalAmt(250.0 * (62 + 55))) # --node 2: 62 pow blocks + 20 pos blocks - zc minted - zcfee assert_equal(initial_balance[2], DecimalAmt(250.0 * (62 + 20) - 6666 - 0.08)) assert_equal(self.nodes[2].getzerocoinbalance()['Total'], DecimalAmt(6666)) self.log.info("Balances ok.") # create the raw zerocoin spend txes addy = self.nodes[2].getnewaddress() self.log.info("Creating the raw zerocoin public spends...") mints = self.nodes[2].listmintedzerocoins(True, True) tx_A0 = self.nodes[2].createrawzerocoinspend(mints[0]["serial hash"], addy) tx_A1 = self.nodes[2].createrawzerocoinspend(mints[1]["serial hash"], addy) # Spending same coins to different recipients to get different txids new_addy = "yAVWM5urwaTyhiuFQHP2aP47rdZsLUG5PH" tx_B0 = self.nodes[2].createrawzerocoinspend(mints[0]["serial hash"], new_addy) tx_B1 = self.nodes[2].createrawzerocoinspend(mints[1]["serial hash"], new_addy) # Disconnect nodes minted_amount = mints[0]["denomination"] + mints[1]["denomination"] self.disconnect_all() # Stake one block with node-0 and save the stake input self.log.info("Staking 1 block with node 0...") initial_unspent_0 = self.nodes[0].listunspent() self.nodes[0].generate(1) block_time_0 += 60 set_node_times(self.nodes, block_time_0) last_block = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) assert(len(last_block["tx"]) > 1) # a PoS block has at least two txes coinstake_txid = last_block["tx"][1] coinstake_tx = self.nodes[0].getrawtransaction(coinstake_txid, True) assert(coinstake_tx["vout"][0]["scriptPubKey"]["hex"] == "") # first output of coinstake is empty stakeinput = coinstake_tx["vin"][0] # The stake input was unspent 1 block ago, now it's not res, utxo = findUtxoInList(stakeinput["txid"], stakeinput["vout"], initial_unspent_0) assert (res and utxo["spendable"]) res, utxo = findUtxoInList(stakeinput["txid"], stakeinput["vout"], self.nodes[0].listunspent()) assert (not res or not utxo["spendable"]) self.log.info("Coinstake input %s...%s-%d is no longer spendable." % ( stakeinput["txid"][:9], stakeinput["txid"][-4:], stakeinput["vout"])) # Relay zerocoin spends self.nodes[0].sendrawtransaction(tx_A0) self.nodes[0].sendrawtransaction(tx_A1) # Stake 10 more blocks with node-0 and check balances self.log.info("Staking 10 more blocks with node 0...") for i in range(10): block_time_0 = self.generate_pos(0, block_time_0) expected_balance_0 = initial_balance[0] + DecimalAmt(11 * 250.0) assert_equal(self.get_tot_balance(0), expected_balance_0) self.log.info("Balance for node 0 checks out.") # Connect with node 2, sync and check zerocoin balance self.log.info("Reconnecting node 0 and node 2") connect_nodes_bi(self.nodes, 0, 2) sync_blocks([self.nodes[i] for i in [0, 2]]) self.log.info("Resetting zerocoin mints on node 2") self.nodes[2].resetmintzerocoin(True) assert_equal(self.get_tot_balance(2), initial_balance[2] + DecimalAmt(minted_amount)) assert_equal(self.nodes[2].getzerocoinbalance()['Total'], DecimalAmt(6666-minted_amount)) self.log.info("Balance for node 2 checks out.") # Double spending txes not possible assert_raises_rpc_error(-26, "bad-txns-invalid-zxos", self.nodes[0].sendrawtransaction, tx_B0) assert_raises_rpc_error(-26, "bad-txns-invalid-zxos", self.nodes[0].sendrawtransaction, tx_B1) # verify that the stakeinput can't be spent stakeinput_tx_json = self.nodes[0].getrawtransaction(stakeinput["txid"], True) stakeinput_amount = float(stakeinput_tx_json["vout"][int(stakeinput["vout"])]["value"]) rawtx_unsigned = self.nodes[0].createrawtransaction( [{"txid": stakeinput["txid"], "vout": int(stakeinput["vout"])}], {"xxncEuJK27ygNh7imNfaX8JV6ZQUnoBqzN": (stakeinput_amount-0.01)}) rawtx = self.nodes[0].signrawtransaction(rawtx_unsigned) assert(rawtx["complete"]) try: self.nodes[0].sendrawtransaction(rawtx["hex"]) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message values are correct. if e.error["code"] not in [-26, -25]: raise AssertionError("Unexpected JSONRPC error code %i" % e.error["code"]) if ([x for x in ["bad-txns-inputs-spent", "Missing inputs"] if x in e.error['message']] == []): raise e except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) self.log.info("GOOD: v2 spend was not possible.") # Spend tx_B0 and tx_B1 on the other chain self.nodes[1].sendrawtransaction(tx_B0) self.nodes[1].sendrawtransaction(tx_B1) # Stake 12 blocks with node-1 set_node_times(self.nodes, block_time_1) self.log.info("Staking 12 blocks with node 1...") for i in range(12): block_time_1 = self.generate_pos(1, block_time_1) expected_balance_1 = initial_balance[1] + DecimalAmt(12 * 250.0) assert_equal(self.get_tot_balance(1), expected_balance_1) self.log.info("Balance for node 1 checks out.") # re-connect and sync nodes and check that node-0 and node-2 get on the other chain new_best_hash = self.nodes[1].getbestblockhash() self.log.info("Connecting and syncing nodes...") set_node_times(self.nodes, block_time_1) connect_nodes_clique(self.nodes) sync_blocks(self.nodes) for i in [0, 2]: assert_equal(self.nodes[i].getbestblockhash(), new_best_hash) # check balance of node-0 assert_equal(self.get_tot_balance(0), initial_balance[0]) self.log.info("Balance for node 0 checks out.") # check that NOW the original stakeinput is present and spendable res, utxo = findUtxoInList(stakeinput["txid"], stakeinput["vout"], self.nodes[0].listunspent()) assert (res and utxo["spendable"]) self.log.info("Coinstake input %s...%s-%d is spendable again." % ( stakeinput["txid"][:9], stakeinput["txid"][-4:], stakeinput["vout"])) self.nodes[0].sendrawtransaction(rawtx["hex"]) self.nodes[1].generate(1) sync_blocks(self.nodes) res, utxo = findUtxoInList(stakeinput["txid"], stakeinput["vout"], self.nodes[0].listunspent()) assert (not res or not utxo["spendable"]) if __name__ == '__main__': ReorgStakeTest().main()
46.665072
116
0.636317
4a21fc4ca03b5c70e7ea0acb2c16e9af3897afa4
1,167
py
Python
userbot/plugins/gps.py
thecyberbyte-tech/Secktor-Userbot
5ede9c98e4480ec48ad5dd114a5bf2da3df6dc3f
[ "MIT" ]
null
null
null
userbot/plugins/gps.py
thecyberbyte-tech/Secktor-Userbot
5ede9c98e4480ec48ad5dd114a5bf2da3df6dc3f
[ "MIT" ]
null
null
null
userbot/plugins/gps.py
thecyberbyte-tech/Secktor-Userbot
5ede9c98e4480ec48ad5dd114a5bf2da3df6dc3f
[ "MIT" ]
null
null
null
# Credits ;- @mrconfused from geopy.geocoders import Nominatim from userbot.utils import admin_cmd from telethon.tl import types from userbot import CMD_HELP @borg.on(admin_cmd(pattern="gps ?(.*)")) async def gps(event): if event.fwd_from: return reply_to_id = event.message if event.reply_to_msg_id: reply_to_id = await event.get_reply_message() input_str = event.pattern_match.group(1) if not input_str: return await event.edit("Boss ! Give A Place To Search 😔 !.") await event.edit("Finding This Location In Maps Server.....") geolocator = Nominatim(user_agent="secktor USERBOT") geoloc = geolocator.geocode(input_str) if geoloc: lon = geoloc.longitude lat = geoloc.latitude await reply_to_id.reply( input_str, file=types.InputMediaGeoPoint( types.InputGeoPoint( lat, lon ) ) ) await event.delete() else: await event.edit("i coudn't find it") CMD_HELP.update({"gps": "`.gps` <location name> :\ \nUSAGE: Sends you the given location name\ " })
25.933333
69
0.61868
4a21fcaa55dc4eb0e3b0e5341f990164f95fed1a
2,780
py
Python
lnt/server/db/search.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
19
2019-01-15T03:04:00.000Z
2021-12-08T00:09:01.000Z
lnt/server/db/search.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
5
2019-04-11T06:22:18.000Z
2021-09-13T17:41:14.000Z
lnt/server/db/search.py
llvm/lnt
77e0a25f996a5363e23f701c0d995525a5c6484a
[ "Apache-2.0" ]
21
2019-02-10T02:47:55.000Z
2022-03-31T14:16:36.000Z
import re def _naive_search_for_run(session, ts, query, num_results, default_machine): """ This 'naive' search doesn't rely on any indexes so can be used without full-text search enabled. This does make it less clever however. It is able to match queries for machine names and order numbers (specifically llvm_project_revision numbers). The revision numbers may be partial and may be preceded by '#' or 'r'. Any other non-integer tokens are considered to be partial matches for a machine name; any machine that contains ALL of the tokens will be searched. """ order_re = re.compile(r'[r#]?(\d+)') machine_queries = [] order_queries = [] # First, tokenize the query string. for q in query.split(' '): if not q: # Prune zero-length tokens continue m = order_re.match(q) if m: order_queries.append(int(m.group(1))) else: machine_queries.append(q) if not machine_queries and not default_machine: # No machines to query: no matches. We can't query all machines, we'd # end up doing a full table scan and that is not scalable. return [] machines = [] if not machine_queries: machines = [default_machine] else: for m in session.query(ts.Machine).all(): if all(q in m.name for q in machine_queries): machines.append(m.id) if not machines: return [] llvm_project_revision_idx = [i for i, f in enumerate(ts.Order.fields) if f.name == 'llvm_project_revision'][0] llvm_project_revision_col = \ ts.Order.fields[llvm_project_revision_idx].column q = session.query(ts.Run) \ .filter(ts.Run.machine_id.in_(machines)) \ .filter(ts.Run.order_id == ts.Order.id) \ .filter(llvm_project_revision_col.isnot(None)) if order_queries: oq = '%' + str(order_queries[0]) + '%' q = q.filter(llvm_project_revision_col.like(oq)) return q.order_by(ts.Run.id.desc()).limit(num_results).all() def search(session, ts, query, num_results=8, default_machine=None): """ Performs a textual search for a run. The exact syntax supported depends on the engine used to perform the search; see _naive_search_for_run for the minimum supported syntax. ts: TestSuite object query: Textual query string num_results: Number of results to return default_machine: If no machines were specified (only orders), return results from this machine. Returns a list of Run objects. """ return _naive_search_for_run(session, ts, query, num_results, default_machine)
33.902439
79
0.635971
4a21fd70e2181f6388fe357c63bec0d8b00df1c3
3,221
py
Python
diagnostics/RMHD/plot_kspectrum.py
ykawazura/calliope
343b72a0930d70332172a5d87a579b0f8dcced66
[ "MIT" ]
2
2022-02-04T19:27:11.000Z
2022-02-05T05:37:38.000Z
diagnostics/RMHD/plot_kspectrum.py
ykawazura/calliope
343b72a0930d70332172a5d87a579b0f8dcced66
[ "MIT" ]
null
null
null
diagnostics/RMHD/plot_kspectrum.py
ykawazura/calliope
343b72a0930d70332172a5d87a579b0f8dcced66
[ "MIT" ]
2
2022-02-03T10:45:48.000Z
2022-02-03T10:48:28.000Z
# -*- coding: utf-8 -*- from load import * from fft import * from plots import * print('\nplotting kspectrum\n') outdir = './fig_kspectrum/' upe2_bin = sum_negative_kz2d(upe2_bin) bpe2_bin = sum_negative_kz2d(bpe2_bin) if nlz == nkz: kp_end = np.argmin(np.abs(kpbin - kpbin.max()*2./3.)) if not is2D: kz_end = np.argmin(np.abs(kz[1:int(nkz/2)] - kz[1:int(nkz/2)].max()*2./3.)) else: kp_end = kpbin.size - 1 kz_end = int(nkz/2) #--------------------------------------------------------# # plot 1D spectra # #--------------------------------------------------------# # kprp spectrum ys = [ np.sum(upe2_bin [final_idx, :, 1:kp_end], axis=0), np.sum(bpe2_bin [final_idx, :, 1:kp_end], axis=0), kpbin[1:kp_end]**(-5./3.)/kpbin[1]**(-5./3.)*np.sum(bpe2_bin[final_idx,:,1:kp_end], axis=0)[0] ] xs = [ kpbin[1:kp_end], kpbin[1:kp_end], kpbin[1:kp_end] ] ls = [ '', '', 'k--', ] legends = [ r'$E_{u_\+}$', r'$E_{\delta B_\+}$', r'-5/3', ] plot_log1d_many(xs, ys, xlab='$k_\+ L_\+$', legends=legends, ls=ls, legendloc='lower left', title=r'$t = %.2E $' % tt[final_idx], ylab='', term=True, save=outdir+'kprp_spectra.pdf') # kz spectrum if not is2D: ys = [ np.sum(upe2_bin [final_idx, 1:kz_end, :kp_end], axis=1), np.sum(bpe2_bin [final_idx, 1:kz_end, :kp_end], axis=1), ] xs = [ kz[1:kz_end], kz[1:kz_end], ] ls = [ '', '', ] legends = [ r'$E_{u_\+}$', r'$E_{\delta B_\+}$', ] plot_log1d_many(xs, ys, xlab='$'+kzlab+'$', legends=legends, ls=ls, legendloc='lower left', title=r'$t = %.2E $' % tt[final_idx], ylab='', term=True, save=outdir+'kz_spectra.pdf') #--------------------------------------------------------# # plot 2D spectra # #--------------------------------------------------------# if not is2D: plot_log2d(upe2_bin[final_idx, 1:kz_end, 1:kp_end], kpbin[1:kp_end], kz[1:kz_end], xlab='$k_\+ L_\+$', ylab='$'+kzlab+'$', title=r'$E_{u_{\+}}$' + ' $(t = $ %.2E' % tt[final_idx] + '$)$', save=outdir + 'upe2.pdf') plot_log2d(bpe2_bin[final_idx, 1:kz_end, 1:kp_end], kpbin[1:kp_end], kz[1:kz_end], xlab='$k_\+ L_\+$', ylab='$'+kzlab+'$', title=r'$E_{\delta B_\+}$' + ' $(t = $ %.2E' % tt[final_idx] + '$)$', save=outdir + 'bpe2.pdf') #------------------# # output ascii # #------------------# np.savetxt(outdir + 'Ekprp.txt' , np.column_stack((kpbin[:kp_end], np.sum(upe2_bin [final_idx,:kz_end,:kp_end], axis=0), np.sum(bpe2_bin [final_idx,:kz_end,:kp_end], axis=0), )), fmt='%E') if not is2D: np.savetxt(outdir + 'Ekz.txt' , np.column_stack((kz[:kz_end], np.sum(upe2_bin [final_idx,:kz_end,:kp_end], axis=1), np.sum(bpe2_bin [final_idx,:kz_end,:kp_end], axis=1), )), fmt='%E') del upe2_bin del bpe2_bin
35.788889
181
0.451723
4a21fed9fe9c470531f2020af790f8e83631f9c0
7,699
py
Python
test/test_nt_misc.py
TOMOTON/rdflib
388e47258c14adbf796172e61be629f0f5c34709
[ "BSD-3-Clause" ]
2
2021-02-06T17:36:05.000Z
2021-04-21T07:33:39.000Z
test/test_nt_misc.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
null
null
null
test/test_nt_misc.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
null
null
null
import unittest import logging import os import re from rdflib import Graph, Literal, URIRef from rdflib.plugins.parsers import ntriples from urllib.request import urlopen log = logging.getLogger(__name__) class NTTestCase(unittest.TestCase): def testIssue859(self): graphA = Graph() graphB = Graph() graphA.parse("test/nt/quote-01.nt", format="ntriples") graphB.parse("test/nt/quote-02.nt", format="ntriples") for subjectA, predicateA, objA in graphA: for subjectB, predicateB, objB in graphB: self.assertEqual(subjectA, subjectB) self.assertEqual(predicateA, predicateB) self.assertEqual(objA, objB) def testIssue78(self): g = Graph() g.add((URIRef("foo"), URIRef("foo"), Literal(u"R\u00E4ksm\u00F6rg\u00E5s"))) s = g.serialize(format="nt") self.assertEqual(type(s), bytes) self.assertTrue(r"R\u00E4ksm\u00F6rg\u00E5s".encode("latin-1") in s) def testIssue146(self): g = Graph() g.add((URIRef("foo"), URIRef("foo"), Literal("test\n", lang="en"))) s = g.serialize(format="nt").strip() self.assertEqual(s, '<foo> <foo> "test\\n"@en .'.encode("latin-1")) def test_sink(self): s = ntriples.Sink() self.assertTrue(s.length == 0) s.triple(None, None, None) self.assertTrue(s.length == 1) def test_nonvalidating_unquote(self): safe = """<http://example.org/alice/foaf.rdf#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> <http://example.org/alice/foaf1.rdf> .""" ntriples.validate = False res = ntriples.unquote(safe) self.assertTrue(isinstance(res, str)) def test_validating_unquote(self): quot = """<http://example.org/alice/foaf.rdf#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> <http://example.org/alice/foaf1.rdf> .""" ntriples.validate = True res = ntriples.unquote(quot) # revert to default ntriples.validate = False log.debug("restype %s" % type(res)) def test_validating_unquote_raises(self): ntriples.validate = True uniquot = """<http://www.w3.org/People/Berners-Lee/card#cm> <http://xmlns.com/foaf/0.1/name> "R\\u00E4ksm\\u00F6rg\\u00E5s" <http://www.w3.org/People/Berners-Lee/card> .""" self.assertRaises(ntriples.ParseError, ntriples.unquote, uniquot) uniquot = """<http://www.w3.org/People/Berners-Lee/card#cm> <http://xmlns.com/foaf/0.1/name> "R\\\\u00E4ksm\\u00F6rg\\u00E5s" <http://www.w3.org/People/Berners-Lee/card> .""" self.assertRaises(ntriples.ParseError, ntriples.unquote, uniquot) # revert to default ntriples.validate = False def test_nonvalidating_uriquote(self): ntriples.validate = False safe = """<http://example.org/alice/foaf.rdf#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> <http://example.org/alice/foaf1.rdf> .""" res = ntriples.uriquote(safe) self.assertTrue(res == safe) def test_validating_uriquote(self): ntriples.validate = True uniquot = """<http://www.w3.org/People/Berners-Lee/card#cm> <http://xmlns.com/foaf/0.1/name> "R\\u00E4ksm\\u00F6rg\\u00E5s" <http://www.w3.org/People/Berners-Lee/card> .""" res = ntriples.uriquote(uniquot) # revert to default ntriples.validate = False self.assertEqual(res, uniquot) def test_NTriplesParser_fpath(self): fpath = "test/nt/" + os.listdir("test/nt")[0] p = ntriples.NTriplesParser() self.assertRaises(ntriples.ParseError, p.parse, fpath) def test_NTriplesParser_parsestring(self): p = ntriples.NTriplesParser() data = 3 self.assertRaises(ntriples.ParseError, p.parsestring, data) fname = "test/nt/lists-02.nt" with open(fname, "r") as f: data = f.read() p = ntriples.NTriplesParser() res = p.parsestring(data) self.assertTrue(res == None) def test_w3_ntriple_variants(self): uri = "file:///" + os.getcwd() + "/test/nt/test.ntriples" parser = ntriples.NTriplesParser() u = urlopen(uri) sink = parser.parse(u) u.close() # ATM we are only really interested in any exceptions thrown self.assertTrue(sink is not None) def test_bad_line(self): data = ( """<http://example.org/resource32> 3 <http://example.org/datatype1> .\n""" ) p = ntriples.NTriplesParser() self.assertRaises(ntriples.ParseError, p.parsestring, data) def test_cover_eat(self): data = ( """<http://example.org/resource32> 3 <http://example.org/datatype1> .\n""" ) p = ntriples.NTriplesParser() p.line = data self.assertRaises( ntriples.ParseError, p.eat, re.compile("<http://example.org/datatype1>") ) def test_cover_subjectobjectliteral(self): # data = '''<http://example.org/resource32> 3 <http://example.org/datatype1> .\n''' p = ntriples.NTriplesParser() p.line = "baz" self.assertRaises(ntriples.ParseError, p.subject) self.assertRaises(ntriples.ParseError, p.object) # p.line = '"baz"@fr^^<http://example.org/datatype1>' # self.assertRaises(ntriples.ParseError, p.literal) class BNodeContextTestCase(unittest.TestCase): def test_bnode_shared_across_instances(self): my_sink = FakeSink() bnode_context = dict() p = ntriples.NTriplesParser(my_sink, bnode_context=bnode_context) p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000001> . ''') q = ntriples.NTriplesParser(my_sink, bnode_context=bnode_context) q.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000002> . ''') self.assertEqual(len(my_sink.subs), 1) def test_bnode_distinct_across_instances(self): my_sink = FakeSink() p = ntriples.NTriplesParser(my_sink) p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000001> . ''') q = ntriples.NTriplesParser(my_sink) q.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000002> . ''') self.assertEqual(len(my_sink.subs), 2) def test_bnode_distinct_across_parse(self): my_sink = FakeSink() p = ntriples.NTriplesParser(my_sink) p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000001> . ''', bnode_context=dict()) p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000002> . ''', bnode_context=dict()) self.assertEqual(len(my_sink.subs), 2) def test_bnode_shared_across_parse(self): my_sink = FakeSink() p = ntriples.NTriplesParser(my_sink) p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000001> . ''') p.parsestring(''' _:0 <http://purl.obolibrary.org/obo/RO_0002350> <http://www.gbif.org/species/0000002> . ''') self.assertEqual(len(my_sink.subs), 1) class FakeSink(object): def __init__(self): self.subs = set() def triple(self, s, p, o): self.subs.add(s) if __name__ == "__main__": unittest.main()
38.113861
183
0.621769
4a21feeabc8e30b6ff43f946464501e905f96efd
15,426
py
Python
src/emuvim/test/unittests/test_resourcemodel.py
PedroPCardoso/fogbed
11d9c8ce6ccd32ee71fbb77d719cc322dd9515da
[ "Apache-2.0" ]
null
null
null
src/emuvim/test/unittests/test_resourcemodel.py
PedroPCardoso/fogbed
11d9c8ce6ccd32ee71fbb77d719cc322dd9515da
[ "Apache-2.0" ]
null
null
null
src/emuvim/test/unittests/test_resourcemodel.py
PedroPCardoso/fogbed
11d9c8ce6ccd32ee71fbb77d719cc322dd9515da
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2015 SONATA-NFV ALL RIGHTS RESERVED. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Neither the name of the SONATA-NFV [, ANY ADDITIONAL AFFILIATION] nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. This work has been performed in the framework of the SONATA project, funded by the European Commission under Grant number 671517 through the Horizon 2020 and 5G-PPP programmes. The authors would like to acknowledge the contributions of their colleagues of the SONATA partner consortium (www.sonata-nfv.eu). """ import time import os import unittest from emuvim.test.base import SimpleTestTopology from emuvim.dcemulator.resourcemodel import BaseResourceModel, ResourceFlavor, NotEnoughResourcesAvailable, ResourceModelRegistrar from emuvim.dcemulator.resourcemodel.upb.simple import UpbSimpleCloudDcRM, UpbOverprovisioningCloudDcRM, UpbDummyRM class testResourceModel(SimpleTestTopology): """ Test the general resource model API and functionality. """ def testBaseResourceModelApi(self): """ Tast bare API without real resource madel. :return: """ r = BaseResourceModel() # check if default flavors are there self.assertTrue(len(r._flavors) == 5) # check addFlavor functionality f = ResourceFlavor("test", {"testmetric": 42}) r.addFlavour(f) self.assertTrue("test" in r._flavors) self.assertTrue(r._flavors.get("test").get("testmetric") == 42) def testAddRmToDc(self): """ Test is allocate/free is called when a RM is added to a DC. :return: """ # create network self.createNet(nswitches=0, ndatacenter=1, nhosts=2, ndockers=0) # setup links self.net.addLink(self.dc[0], self.h[0]) self.net.addLink(self.h[1], self.dc[0]) # add resource model r = BaseResourceModel() self.dc[0].assignResourceModel(r) # start Mininet network self.startNet() # check number of running nodes self.assertTrue(len(self.getContainernetContainers()) == 0) self.assertTrue(len(self.net.hosts) == 2) self.assertTrue(len(self.net.switches) == 1) # check resource model and resource model registrar self.assertTrue(self.dc[0]._resource_model is not None) self.assertTrue(len(self.net.rm_registrar.resource_models) == 1) # check if alloc was called during startCompute self.assertTrue(len(r._allocated_compute_instances) == 0) self.dc[0].startCompute("tc1") time.sleep(1) self.assertTrue(len(r._allocated_compute_instances) == 1) # check if free was called during stopCompute self.dc[0].stopCompute("tc1") self.assertTrue(len(r._allocated_compute_instances) == 0) # check connectivity by using ping self.assertTrue(self.net.ping([self.h[0], self.h[1]]) <= 0.0) # stop Mininet network self.stopNet() def createDummyContainerObject(name, flavor): class DummyContainer(object): def __init__(self): # take defaukt values from son-emu self.resources = dict( cpu_period = -1, cpu_quota = -1, mem_limit = -1, memswap_limit = -1 ) #self.cpu_period = self.resources['cpu_period'] #self.cpu_quota = self.resources['cpu_quota'] #self.mem_limit = self.resources['mem_limit'] #self.memswap_limit = self.resources['memswap_limit'] def updateCpuLimit(self, cpu_period, cpu_quota): self.resources['cpu_period'] = cpu_period self.resources['cpu_quota'] = cpu_quota def updateMemoryLimit(self, mem_limit): self.resources['mem_limit'] = mem_limit d = DummyContainer() d.name = name d.flavor_name = flavor return d class testUpbSimpleCloudDcRM(SimpleTestTopology): """ Test the UpbSimpleCloudDc resource model. """ def testAllocationComputations(self): """ Test the allocation procedures and correct calculations. :return: """ # config E_CPU = 1.0 MAX_CU = 100 E_MEM = 512 MAX_MU = 2048 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=E_CPU, dc_emulation_max_mem=E_MEM) rm = UpbSimpleCloudDcRM(max_cu=MAX_CU, max_mu=MAX_MU) reg.register("test_dc", rm) c1 = createDummyContainerObject("c1", flavor="tiny") rm.allocate(c1) # calculate allocation self.assertEqual(float(c1.resources['cpu_quota']) / c1.resources['cpu_period'], E_CPU / MAX_CU * 0.5) # validate compute result self.assertEqual(float(c1.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 32) # validate memory result c2 = createDummyContainerObject("c2", flavor="small") rm.allocate(c2) # calculate allocation self.assertEqual(float(c2.resources['cpu_quota']) / c2.resources['cpu_period'], E_CPU / MAX_CU * 1) # validate compute result self.assertEqual(float(c2.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128) # validate memory result c3 = createDummyContainerObject("c3", flavor="medium") rm.allocate(c3) # calculate allocation self.assertEqual(float(c3.resources['cpu_quota']) / c3.resources['cpu_period'], E_CPU / MAX_CU * 4) # validate compute result self.assertEqual(float(c3.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 256) # validate memory result c4 = createDummyContainerObject("c4", flavor="large") rm.allocate(c4) # calculate allocation self.assertEqual(float(c4.resources['cpu_quota']) / c4.resources['cpu_period'], E_CPU / MAX_CU * 8) # validate compute result self.assertEqual(float(c4.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 512) # validate memory result c5 = createDummyContainerObject("c5", flavor="xlarge") rm.allocate(c5) # calculate allocation self.assertEqual(float(c5.resources['cpu_quota']) / c5.resources['cpu_period'], E_CPU / MAX_CU * 16) # validate compute result self.assertEqual(float(c5.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 1024) # validate memory result def testAllocationCpuLimit(self): """ Test CPU allocation limit :return: """ # config E_CPU = 1.0 MAX_CU = 40 E_MEM = 512 MAX_MU = 4096 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=E_CPU, dc_emulation_max_mem=E_MEM) rm = UpbSimpleCloudDcRM(max_cu=MAX_CU, max_mu=MAX_MU) reg.register("test_dc", rm) # test over provisioning exeption exception = False try: c6 = createDummyContainerObject("c6", flavor="xlarge") c7 = createDummyContainerObject("c7", flavor="xlarge") c8 = createDummyContainerObject("c8", flavor="xlarge") c9 = createDummyContainerObject("c9", flavor="xlarge") rm.allocate(c6) # calculate allocation rm.allocate(c7) # calculate allocation rm.allocate(c8) # calculate allocation rm.allocate(c9) # calculate allocation except NotEnoughResourcesAvailable as e: self.assertIn("Not enough compute", e.message) exception = True self.assertTrue(exception) def testAllocationMemLimit(self): """ Test MEM allocation limit :return: """ # config E_CPU = 1.0 MAX_CU = 500 E_MEM = 512 MAX_MU = 2048 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=E_CPU, dc_emulation_max_mem=E_MEM) rm = UpbSimpleCloudDcRM(max_cu=MAX_CU, max_mu=MAX_MU) reg.register("test_dc", rm) # test over provisioning exeption exception = False try: c6 = createDummyContainerObject("c6", flavor="xlarge") c7 = createDummyContainerObject("c7", flavor="xlarge") c8 = createDummyContainerObject("c8", flavor="xlarge") rm.allocate(c6) # calculate allocation rm.allocate(c7) # calculate allocation rm.allocate(c8) # calculate allocation except NotEnoughResourcesAvailable as e: self.assertIn("Not enough memory", e.message) exception = True self.assertTrue(exception) def testFree(self): """ Test the free procedure. :return: """ # config E_CPU = 1.0 MAX_CU = 100 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=1.0, dc_emulation_max_mem=512) rm = UpbSimpleCloudDcRM(max_cu=100, max_mu=100) reg.register("test_dc", rm) c1 = createDummyContainerObject("c6", flavor="tiny") rm.allocate(c1) # calculate allocation self.assertTrue(rm.dc_alloc_cu == 0.5) rm.free(c1) self.assertTrue(rm.dc_alloc_cu == 0) @unittest.skipIf(os.environ.get("SON_EMU_IN_DOCKER") is not None, "skipping test when running inside Docker container") def testInRealTopo(self): """ Start a real container and check if limitations are really passed down to Conteinernet. :return: """ # create network self.createNet(nswitches=0, ndatacenter=1, nhosts=2, ndockers=0) # setup links self.net.addLink(self.dc[0], self.h[0]) self.net.addLink(self.h[1], self.dc[0]) # add resource model r = UpbSimpleCloudDcRM(max_cu=100, max_mu=100) self.dc[0].assignResourceModel(r) # start Mininet network self.startNet() # check number of running nodes self.assertTrue(len(self.getContainernetContainers()) == 0) self.assertTrue(len(self.net.hosts) == 2) self.assertTrue(len(self.net.switches) == 1) # check resource model and resource model registrar self.assertTrue(self.dc[0]._resource_model is not None) self.assertTrue(len(self.net.rm_registrar.resource_models) == 1) # check if alloc was called during startCompute self.assertTrue(len(r._allocated_compute_instances) == 0) tc1 = self.dc[0].startCompute("tc1", flavor_name="tiny") time.sleep(1) self.assertTrue(len(r._allocated_compute_instances) == 1) # check if there is a real limitation set for containers cgroup # deactivated for now, seems not to work in docker-in-docker setup used in CI self.assertEqual(float(tc1.resources['cpu_quota'])/tc1.resources['cpu_period'], 0.005) # check if free was called during stopCompute self.dc[0].stopCompute("tc1") self.assertTrue(len(r._allocated_compute_instances) == 0) # check connectivity by using ping self.assertTrue(self.net.ping([self.h[0], self.h[1]]) <= 0.0) # stop Mininet network self.stopNet() class testUpbOverprovisioningCloudDcRM(SimpleTestTopology): """ Test the UpbOverprovisioningCloudDc resource model. """ def testAllocationComputations(self): """ Test the allocation procedures and correct calculations. :return: """ # config E_CPU = 1.0 MAX_CU = 3 E_MEM = 512 MAX_MU = 2048 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=E_CPU, dc_emulation_max_mem=E_MEM) rm = UpbOverprovisioningCloudDcRM(max_cu=MAX_CU, max_mu=MAX_MU) reg.register("test_dc", rm) c1 = createDummyContainerObject("c1", flavor="small") rm.allocate(c1) # calculate allocation self.assertAlmostEqual(float(c1.resources['cpu_quota']) / c1.resources['cpu_period'], E_CPU / MAX_CU * 1.0, places=5) self.assertAlmostEqual(float(c1.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128) self.assertAlmostEqual(rm.cpu_op_factor, 1.0) c2 = createDummyContainerObject("c2", flavor="small") rm.allocate(c2) # calculate allocation self.assertAlmostEqual(float(c2.resources['cpu_quota']) / c2.resources['cpu_period'], E_CPU / MAX_CU * 1.0, places=5) self.assertAlmostEqual(float(c2.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128) self.assertAlmostEqual(rm.cpu_op_factor, 1.0) c3 = createDummyContainerObject("c3", flavor="small") rm.allocate(c3) # calculate allocation self.assertAlmostEqual(float(c3.resources['cpu_quota']) / c3.resources['cpu_period'], E_CPU / MAX_CU * 1.0, places=5) self.assertAlmostEqual(float(c3.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128) self.assertAlmostEqual(rm.cpu_op_factor, 1.0) # from this container onwards, we should go to over provisioning mode: c4 = createDummyContainerObject("c4", flavor="small") rm.allocate(c4) # calculate allocation self.assertAlmostEqual(float(c4.resources['cpu_quota']) / c4.resources['cpu_period'], E_CPU / MAX_CU * (float(3) / 4), places=5) self.assertAlmostEqual(float(c4.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128, places=5) self.assertAlmostEqual(rm.cpu_op_factor, 0.75) c5 = createDummyContainerObject("c5", flavor="small") rm.allocate(c5) # calculate allocation self.assertAlmostEqual(float(c5.resources['cpu_quota']) / c5.resources['cpu_period'], E_CPU / MAX_CU * (float(3) / 5), places=5) self.assertAlmostEqual(float(c5.resources['mem_limit']/1024/1024), float(E_MEM) / MAX_MU * 128) self.assertAlmostEqual(rm.cpu_op_factor, 0.6) class testUpbDummyRM(SimpleTestTopology): """ Test the UpbDummyRM resource model. """ def testAllocationComputations(self): """ Test the allocation procedures and correct calculations. :return: """ # config E_CPU = 1.0 MAX_CU = 3 E_MEM = 512 MAX_MU = 2048 # create dummy resource model environment reg = ResourceModelRegistrar(dc_emulation_max_cpu=E_CPU, dc_emulation_max_mem=E_MEM) rm = UpbDummyRM(max_cu=MAX_CU, max_mu=MAX_MU) reg.register("test_dc", rm) c1 = createDummyContainerObject("c1", flavor="small") rm.allocate(c1) # calculate allocation self.assertEqual(len(rm._allocated_compute_instances), 1) c2 = createDummyContainerObject("c2", flavor="small") rm.allocate(c2) # calculate allocation self.assertEqual(len(rm._allocated_compute_instances), 2)
41.245989
137
0.654868
4a21ff063180f88cc7e4269a01fd7e0275c70e87
4,561
py
Python
test/mitmproxy/proxy2/layers/http/test_http_version_interop.py
itsintern/mitmproxy
b7efe9b2d4b986933f904912324b770dfb3e3da4
[ "MIT" ]
2
2022-03-21T16:47:15.000Z
2022-03-24T11:38:12.000Z
test/mitmproxy/proxy2/layers/http/test_http_version_interop.py
Zer0Power/mitmproxy
b7efe9b2d4b986933f904912324b770dfb3e3da4
[ "MIT" ]
null
null
null
test/mitmproxy/proxy2/layers/http/test_http_version_interop.py
Zer0Power/mitmproxy
b7efe9b2d4b986933f904912324b770dfb3e3da4
[ "MIT" ]
null
null
null
from typing import Tuple import h2.config import h2.connection import h2.events from mitmproxy.http import HTTPFlow from mitmproxy.proxy.protocol.http import HTTPMode from mitmproxy.proxy2.commands import CloseConnection, OpenConnection, SendData from mitmproxy.proxy2.context import Context, Server from mitmproxy.proxy2.events import DataReceived from mitmproxy.proxy2.layers import http from test.mitmproxy.proxy2.layers.http.hyper_h2_test_helpers import FrameFactory from test.mitmproxy.proxy2.layers.http.test_http2 import example_request_headers, example_response_headers, make_h2 from test.mitmproxy.proxy2.tutils import Placeholder, Playbook, reply h2f = FrameFactory() def event_types(events): return [type(x) for x in events] def h2_client(tctx: Context) -> Tuple[h2.connection.H2Connection, Playbook]: tctx.client.alpn = b"h2" playbook = Playbook(http.HttpLayer(tctx, HTTPMode.regular)) conn = h2.connection.H2Connection() conn.initiate_connection() server_preamble = Placeholder(bytes) assert ( playbook << SendData(tctx.client, server_preamble) ) assert event_types(conn.receive_data(server_preamble())) == [h2.events.RemoteSettingsChanged] settings_ack = Placeholder(bytes) assert ( playbook >> DataReceived(tctx.client, conn.data_to_send()) << SendData(tctx.client, settings_ack) ) assert event_types(conn.receive_data(settings_ack())) == [h2.events.SettingsAcknowledged] return conn, playbook def test_h2_to_h1(tctx): """Test HTTP/2 -> HTTP/1 request translation""" server = Placeholder(Server) flow = Placeholder(HTTPFlow) conn, playbook = h2_client(tctx) conn.send_headers(1, example_request_headers, end_stream=True) response = Placeholder(bytes) assert ( playbook >> DataReceived(tctx.client, conn.data_to_send()) << http.HttpRequestHeadersHook(flow) >> reply() << http.HttpRequestHook(flow) >> reply() << OpenConnection(server) >> reply(None) << SendData(server, b"GET / HTTP/1.1\r\nHost: example.com\r\n\r\n") >> DataReceived(server, b"HTTP/1.1 200 OK\r\nContent-Length: 12\r\n\r\n") << http.HttpResponseHeadersHook(flow) >> reply() >> DataReceived(server, b"Hello World!") << http.HttpResponseHook(flow) << CloseConnection(server) >> reply(to=-2) << SendData(tctx.client, response) ) events = conn.receive_data(response()) assert event_types(events) == [ h2.events.ResponseReceived, h2.events.DataReceived, h2.events.DataReceived, h2.events.StreamEnded ] resp: h2.events.ResponseReceived = events[0] body: h2.events.DataReceived = events[1] assert resp.headers == [(b':status', b'200'), (b'content-length', b'12')] assert body.data == b"Hello World!" def test_h1_to_h2(tctx): """Test HTTP/1 -> HTTP/2 request translation""" server = Placeholder(Server) flow = Placeholder(HTTPFlow) playbook = Playbook(http.HttpLayer(tctx, HTTPMode.regular)) conf = h2.config.H2Configuration(client_side=False) conn = h2.connection.H2Connection(conf) conn.initiate_connection() request = Placeholder(bytes) assert ( playbook >> DataReceived(tctx.client, b"GET http://example.com/ HTTP/1.1\r\nHost: example.com\r\n\r\n") << http.HttpRequestHeadersHook(flow) >> reply() << http.HttpRequestHook(flow) >> reply() << OpenConnection(server) >> reply(None, side_effect=make_h2) << SendData(server, request) ) events = conn.receive_data(request()) assert event_types(events) == [ h2.events.RemoteSettingsChanged, h2.events.RequestReceived, h2.events.StreamEnded ] conn.send_headers(1, example_response_headers) conn.send_data(1, b"Hello World!", end_stream=True) settings_ack = Placeholder(bytes) assert ( playbook >> DataReceived(server, conn.data_to_send()) << http.HttpResponseHeadersHook(flow) << SendData(server, settings_ack) >> reply(to=-2) << http.HttpResponseHook(flow) >> reply() << SendData(tctx.client, b"HTTP/1.1 200 OK\r\n\r\nHello World!") << CloseConnection(tctx.client) ) assert settings_ack() == b'\x00\x00\x00\x04\x01\x00\x00\x00\x00'
35.084615
115
0.653585
4a21ff1f809e8a338db7ed6d1960549ba1adae4a
135
py
Python
utils/__init__.py
tamnguyenvan/lipreading
37f7fc4840cacad9767beba0452cfcc194a2ba1f
[ "Apache-2.0" ]
null
null
null
utils/__init__.py
tamnguyenvan/lipreading
37f7fc4840cacad9767beba0452cfcc194a2ba1f
[ "Apache-2.0" ]
null
null
null
utils/__init__.py
tamnguyenvan/lipreading
37f7fc4840cacad9767beba0452cfcc194a2ba1f
[ "Apache-2.0" ]
null
null
null
from .dataset import LRWDataset from .dataset_lrw1000 import LRW1000_Dataset from .dataset import AVDataset from .cvtransforms import *
33.75
44
0.851852
4a21ff762dcaa1e842347a88e852fa68e44a2f8b
129,367
py
Python
Lib/test/test_os.py
ekhavana/cpython
a0e3d2dd09346b01e7d29a35ed31ed28041570b1
[ "PSF-2.0" ]
null
null
null
Lib/test/test_os.py
ekhavana/cpython
a0e3d2dd09346b01e7d29a35ed31ed28041570b1
[ "PSF-2.0" ]
null
null
null
Lib/test/test_os.py
ekhavana/cpython
a0e3d2dd09346b01e7d29a35ed31ed28041570b1
[ "PSF-2.0" ]
null
null
null
# As a test suite for the os module, this is woefully inadequate, but this # does add tests for a few functions which have been determined to be more # portable than they had been thought to be. import asynchat import asyncore import codecs import contextlib import decimal import errno import fractions import getpass import itertools import locale import mmap import os import pickle import shutil import signal import socket import stat import subprocess import sys import sysconfig import time import unittest import uuid import warnings from test import support try: import threading except ImportError: threading = None try: import resource except ImportError: resource = None try: import fcntl except ImportError: fcntl = None try: import _winapi except ImportError: _winapi = None try: import grp groups = [g.gr_gid for g in grp.getgrall() if getpass.getuser() in g.gr_mem] if hasattr(os, 'getgid'): process_gid = os.getgid() if process_gid not in groups: groups.append(process_gid) except ImportError: groups = [] try: import pwd all_users = [u.pw_uid for u in pwd.getpwall()] except (ImportError, AttributeError): all_users = [] try: from _testcapi import INT_MAX, PY_SSIZE_T_MAX except ImportError: INT_MAX = PY_SSIZE_T_MAX = sys.maxsize from test.support.script_helper import assert_python_ok from test.support import unix_shell root_in_posix = False if hasattr(os, 'geteuid'): root_in_posix = (os.geteuid() == 0) # Detect whether we're on a Linux system that uses the (now outdated # and unmaintained) linuxthreads threading library. There's an issue # when combining linuxthreads with a failed execv call: see # http://bugs.python.org/issue4970. if hasattr(sys, 'thread_info') and sys.thread_info.version: USING_LINUXTHREADS = sys.thread_info.version.startswith("linuxthreads") else: USING_LINUXTHREADS = False # Issue #14110: Some tests fail on FreeBSD if the user is in the wheel group. HAVE_WHEEL_GROUP = sys.platform.startswith('freebsd') and os.getgid() == 0 @contextlib.contextmanager def ignore_deprecation_warnings(msg_regex, quiet=False): with support.check_warnings((msg_regex, DeprecationWarning), quiet=quiet): yield def requires_os_func(name): return unittest.skipUnless(hasattr(os, name), 'requires os.%s' % name) class _PathLike(os.PathLike): def __init__(self, path=""): self.path = path def __str__(self): return str(self.path) def __fspath__(self): if isinstance(self.path, BaseException): raise self.path else: return self.path def create_file(filename, content=b'content'): with open(filename, "xb", 0) as fp: fp.write(content) # Tests creating TESTFN class FileTests(unittest.TestCase): def setUp(self): if os.path.lexists(support.TESTFN): os.unlink(support.TESTFN) tearDown = setUp def test_access(self): f = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) os.close(f) self.assertTrue(os.access(support.TESTFN, os.W_OK)) def test_closerange(self): first = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) # We must allocate two consecutive file descriptors, otherwise # it will mess up other file descriptors (perhaps even the three # standard ones). second = os.dup(first) try: retries = 0 while second != first + 1: os.close(first) retries += 1 if retries > 10: # XXX test skipped self.skipTest("couldn't allocate two consecutive fds") first, second = second, os.dup(second) finally: os.close(second) # close a fd that is open, and one that isn't os.closerange(first, first + 2) self.assertRaises(OSError, os.write, first, b"a") @support.cpython_only def test_rename(self): path = support.TESTFN old = sys.getrefcount(path) self.assertRaises(TypeError, os.rename, path, 0) new = sys.getrefcount(path) self.assertEqual(old, new) def test_read(self): with open(support.TESTFN, "w+b") as fobj: fobj.write(b"spam") fobj.flush() fd = fobj.fileno() os.lseek(fd, 0, 0) s = os.read(fd, 4) self.assertEqual(type(s), bytes) self.assertEqual(s, b"spam") @support.cpython_only # Skip the test on 32-bit platforms: the number of bytes must fit in a # Py_ssize_t type @unittest.skipUnless(INT_MAX < PY_SSIZE_T_MAX, "needs INT_MAX < PY_SSIZE_T_MAX") @support.bigmemtest(size=INT_MAX + 10, memuse=1, dry_run=False) def test_large_read(self, size): self.addCleanup(support.unlink, support.TESTFN) create_file(support.TESTFN, b'test') # Issue #21932: Make sure that os.read() does not raise an # OverflowError for size larger than INT_MAX with open(support.TESTFN, "rb") as fp: data = os.read(fp.fileno(), size) # The test does not try to read more than 2 GB at once because the # operating system is free to return less bytes than requested. self.assertEqual(data, b'test') def test_write(self): # os.write() accepts bytes- and buffer-like objects but not strings fd = os.open(support.TESTFN, os.O_CREAT | os.O_WRONLY) self.assertRaises(TypeError, os.write, fd, "beans") os.write(fd, b"bacon\n") os.write(fd, bytearray(b"eggs\n")) os.write(fd, memoryview(b"spam\n")) os.close(fd) with open(support.TESTFN, "rb") as fobj: self.assertEqual(fobj.read().splitlines(), [b"bacon", b"eggs", b"spam"]) def write_windows_console(self, *args): retcode = subprocess.call(args, # use a new console to not flood the test output creationflags=subprocess.CREATE_NEW_CONSOLE, # use a shell to hide the console window (SW_HIDE) shell=True) self.assertEqual(retcode, 0) @unittest.skipUnless(sys.platform == 'win32', 'test specific to the Windows console') def test_write_windows_console(self): # Issue #11395: the Windows console returns an error (12: not enough # space error) on writing into stdout if stdout mode is binary and the # length is greater than 66,000 bytes (or less, depending on heap # usage). code = "print('x' * 100000)" self.write_windows_console(sys.executable, "-c", code) self.write_windows_console(sys.executable, "-u", "-c", code) def fdopen_helper(self, *args): fd = os.open(support.TESTFN, os.O_RDONLY) f = os.fdopen(fd, *args) f.close() def test_fdopen(self): fd = os.open(support.TESTFN, os.O_CREAT|os.O_RDWR) os.close(fd) self.fdopen_helper() self.fdopen_helper('r') self.fdopen_helper('r', 100) def test_replace(self): TESTFN2 = support.TESTFN + ".2" self.addCleanup(support.unlink, support.TESTFN) self.addCleanup(support.unlink, TESTFN2) create_file(support.TESTFN, b"1") create_file(TESTFN2, b"2") os.replace(support.TESTFN, TESTFN2) self.assertRaises(FileNotFoundError, os.stat, support.TESTFN) with open(TESTFN2, 'r') as f: self.assertEqual(f.read(), "1") def test_open_keywords(self): f = os.open(path=__file__, flags=os.O_RDONLY, mode=0o777, dir_fd=None) os.close(f) def test_symlink_keywords(self): symlink = support.get_attribute(os, "symlink") try: symlink(src='target', dst=support.TESTFN, target_is_directory=False, dir_fd=None) except (NotImplementedError, OSError): pass # No OS support or unprivileged user # Test attributes on return values from os.*stat* family. class StatAttributeTests(unittest.TestCase): def setUp(self): self.fname = support.TESTFN self.addCleanup(support.unlink, self.fname) create_file(self.fname, b"ABC") @unittest.skipUnless(hasattr(os, 'stat'), 'test needs os.stat()') def check_stat_attributes(self, fname): result = os.stat(fname) # Make sure direct access works self.assertEqual(result[stat.ST_SIZE], 3) self.assertEqual(result.st_size, 3) # Make sure all the attributes are there members = dir(result) for name in dir(stat): if name[:3] == 'ST_': attr = name.lower() if name.endswith("TIME"): def trunc(x): return int(x) else: def trunc(x): return x self.assertEqual(trunc(getattr(result, attr)), result[getattr(stat, name)]) self.assertIn(attr, members) # Make sure that the st_?time and st_?time_ns fields roughly agree # (they should always agree up to around tens-of-microseconds) for name in 'st_atime st_mtime st_ctime'.split(): floaty = int(getattr(result, name) * 100000) nanosecondy = getattr(result, name + "_ns") // 10000 self.assertAlmostEqual(floaty, nanosecondy, delta=2) try: result[200] self.fail("No exception raised") except IndexError: pass # Make sure that assignment fails try: result.st_mode = 1 self.fail("No exception raised") except AttributeError: pass try: result.st_rdev = 1 self.fail("No exception raised") except (AttributeError, TypeError): pass try: result.parrot = 1 self.fail("No exception raised") except AttributeError: pass # Use the stat_result constructor with a too-short tuple. try: result2 = os.stat_result((10,)) self.fail("No exception raised") except TypeError: pass # Use the constructor with a too-long tuple. try: result2 = os.stat_result((0,1,2,3,4,5,6,7,8,9,10,11,12,13,14)) except TypeError: pass def test_stat_attributes(self): self.check_stat_attributes(self.fname) def test_stat_attributes_bytes(self): try: fname = self.fname.encode(sys.getfilesystemencoding()) except UnicodeEncodeError: self.skipTest("cannot encode %a for the filesystem" % self.fname) self.check_stat_attributes(fname) def test_stat_result_pickle(self): result = os.stat(self.fname) for proto in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(result, proto) self.assertIn(b'stat_result', p) if proto < 4: self.assertIn(b'cos\nstat_result\n', p) unpickled = pickle.loads(p) self.assertEqual(result, unpickled) @unittest.skipUnless(hasattr(os, 'statvfs'), 'test needs os.statvfs()') def test_statvfs_attributes(self): try: result = os.statvfs(self.fname) except OSError as e: # On AtheOS, glibc always returns ENOSYS if e.errno == errno.ENOSYS: self.skipTest('os.statvfs() failed with ENOSYS') # Make sure direct access works self.assertEqual(result.f_bfree, result[3]) # Make sure all the attributes are there. members = ('bsize', 'frsize', 'blocks', 'bfree', 'bavail', 'files', 'ffree', 'favail', 'flag', 'namemax') for value, member in enumerate(members): self.assertEqual(getattr(result, 'f_' + member), result[value]) # Make sure that assignment really fails try: result.f_bfree = 1 self.fail("No exception raised") except AttributeError: pass try: result.parrot = 1 self.fail("No exception raised") except AttributeError: pass # Use the constructor with a too-short tuple. try: result2 = os.statvfs_result((10,)) self.fail("No exception raised") except TypeError: pass # Use the constructor with a too-long tuple. try: result2 = os.statvfs_result((0,1,2,3,4,5,6,7,8,9,10,11,12,13,14)) except TypeError: pass @unittest.skipUnless(hasattr(os, 'statvfs'), "need os.statvfs()") def test_statvfs_result_pickle(self): try: result = os.statvfs(self.fname) except OSError as e: # On AtheOS, glibc always returns ENOSYS if e.errno == errno.ENOSYS: self.skipTest('os.statvfs() failed with ENOSYS') for proto in range(pickle.HIGHEST_PROTOCOL + 1): p = pickle.dumps(result, proto) self.assertIn(b'statvfs_result', p) if proto < 4: self.assertIn(b'cos\nstatvfs_result\n', p) unpickled = pickle.loads(p) self.assertEqual(result, unpickled) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") def test_1686475(self): # Verify that an open file can be stat'ed try: os.stat(r"c:\pagefile.sys") except FileNotFoundError: self.skipTest(r'c:\pagefile.sys does not exist') except OSError as e: self.fail("Could not stat pagefile.sys") @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") @unittest.skipUnless(hasattr(os, "pipe"), "requires os.pipe()") def test_15261(self): # Verify that stat'ing a closed fd does not cause crash r, w = os.pipe() try: os.stat(r) # should not raise error finally: os.close(r) os.close(w) with self.assertRaises(OSError) as ctx: os.stat(r) self.assertEqual(ctx.exception.errno, errno.EBADF) def check_file_attributes(self, result): self.assertTrue(hasattr(result, 'st_file_attributes')) self.assertTrue(isinstance(result.st_file_attributes, int)) self.assertTrue(0 <= result.st_file_attributes <= 0xFFFFFFFF) @unittest.skipUnless(sys.platform == "win32", "st_file_attributes is Win32 specific") def test_file_attributes(self): # test file st_file_attributes (FILE_ATTRIBUTE_DIRECTORY not set) result = os.stat(self.fname) self.check_file_attributes(result) self.assertEqual( result.st_file_attributes & stat.FILE_ATTRIBUTE_DIRECTORY, 0) # test directory st_file_attributes (FILE_ATTRIBUTE_DIRECTORY set) dirname = support.TESTFN + "dir" os.mkdir(dirname) self.addCleanup(os.rmdir, dirname) result = os.stat(dirname) self.check_file_attributes(result) self.assertEqual( result.st_file_attributes & stat.FILE_ATTRIBUTE_DIRECTORY, stat.FILE_ATTRIBUTE_DIRECTORY) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") def test_access_denied(self): # Default to FindFirstFile WIN32_FIND_DATA when access is # denied. See issue 28075. # os.environ['TEMP'] should be located on a volume that # supports file ACLs. fname = os.path.join(os.environ['TEMP'], self.fname) self.addCleanup(support.unlink, fname) create_file(fname, b'ABC') # Deny the right to [S]YNCHRONIZE on the file to # force CreateFile to fail with ERROR_ACCESS_DENIED. DETACHED_PROCESS = 8 subprocess.check_call( # bpo-30584: Use security identifier *S-1-5-32-545 instead # of localized "Users" to not depend on the locale. ['icacls.exe', fname, '/deny', '*S-1-5-32-545:(S)'], creationflags=DETACHED_PROCESS ) result = os.stat(fname) self.assertNotEqual(result.st_size, 0) class UtimeTests(unittest.TestCase): def setUp(self): self.dirname = support.TESTFN self.fname = os.path.join(self.dirname, "f1") self.addCleanup(support.rmtree, self.dirname) os.mkdir(self.dirname) create_file(self.fname) def restore_float_times(state): with ignore_deprecation_warnings('stat_float_times'): os.stat_float_times(state) # ensure that st_atime and st_mtime are float with ignore_deprecation_warnings('stat_float_times'): old_float_times = os.stat_float_times(-1) self.addCleanup(restore_float_times, old_float_times) os.stat_float_times(True) def support_subsecond(self, filename): # Heuristic to check if the filesystem supports timestamp with # subsecond resolution: check if float and int timestamps are different st = os.stat(filename) return ((st.st_atime != st[7]) or (st.st_mtime != st[8]) or (st.st_ctime != st[9])) def _test_utime(self, set_time, filename=None): if not filename: filename = self.fname support_subsecond = self.support_subsecond(filename) if support_subsecond: # Timestamp with a resolution of 1 microsecond (10^-6). # # The resolution of the C internal function used by os.utime() # depends on the platform: 1 sec, 1 us, 1 ns. Writing a portable # test with a resolution of 1 ns requires more work: # see the issue #15745. atime_ns = 1002003000 # 1.002003 seconds mtime_ns = 4005006000 # 4.005006 seconds else: # use a resolution of 1 second atime_ns = 5 * 10**9 mtime_ns = 8 * 10**9 set_time(filename, (atime_ns, mtime_ns)) st = os.stat(filename) if support_subsecond: self.assertAlmostEqual(st.st_atime, atime_ns * 1e-9, delta=1e-6) self.assertAlmostEqual(st.st_mtime, mtime_ns * 1e-9, delta=1e-6) else: self.assertEqual(st.st_atime, atime_ns * 1e-9) self.assertEqual(st.st_mtime, mtime_ns * 1e-9) self.assertEqual(st.st_atime_ns, atime_ns) self.assertEqual(st.st_mtime_ns, mtime_ns) def test_utime(self): def set_time(filename, ns): # test the ns keyword parameter os.utime(filename, ns=ns) self._test_utime(set_time) @staticmethod def ns_to_sec(ns): # Convert a number of nanosecond (int) to a number of seconds (float). # Round towards infinity by adding 0.5 nanosecond to avoid rounding # issue, os.utime() rounds towards minus infinity. return (ns * 1e-9) + 0.5e-9 def test_utime_by_indexed(self): # pass times as floating point seconds as the second indexed parameter def set_time(filename, ns): atime_ns, mtime_ns = ns atime = self.ns_to_sec(atime_ns) mtime = self.ns_to_sec(mtime_ns) # test utimensat(timespec), utimes(timeval), utime(utimbuf) # or utime(time_t) os.utime(filename, (atime, mtime)) self._test_utime(set_time) def test_utime_by_times(self): def set_time(filename, ns): atime_ns, mtime_ns = ns atime = self.ns_to_sec(atime_ns) mtime = self.ns_to_sec(mtime_ns) # test the times keyword parameter os.utime(filename, times=(atime, mtime)) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_follow_symlinks, "follow_symlinks support for utime required " "for this test.") def test_utime_nofollow_symlinks(self): def set_time(filename, ns): # use follow_symlinks=False to test utimensat(timespec) # or lutimes(timeval) os.utime(filename, ns=ns, follow_symlinks=False) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_fd, "fd support for utime required for this test.") def test_utime_fd(self): def set_time(filename, ns): with open(filename, 'wb', 0) as fp: # use a file descriptor to test futimens(timespec) # or futimes(timeval) os.utime(fp.fileno(), ns=ns) self._test_utime(set_time) @unittest.skipUnless(os.utime in os.supports_dir_fd, "dir_fd support for utime required for this test.") def test_utime_dir_fd(self): def set_time(filename, ns): dirname, name = os.path.split(filename) dirfd = os.open(dirname, os.O_RDONLY) try: # pass dir_fd to test utimensat(timespec) or futimesat(timeval) os.utime(name, dir_fd=dirfd, ns=ns) finally: os.close(dirfd) self._test_utime(set_time) def test_utime_directory(self): def set_time(filename, ns): # test calling os.utime() on a directory os.utime(filename, ns=ns) self._test_utime(set_time, filename=self.dirname) def _test_utime_current(self, set_time): # Get the system clock current = time.time() # Call os.utime() to set the timestamp to the current system clock set_time(self.fname) if not self.support_subsecond(self.fname): delta = 1.0 else: # On Windows, the usual resolution of time.time() is 15.6 ms delta = 0.020 st = os.stat(self.fname) msg = ("st_time=%r, current=%r, dt=%r" % (st.st_mtime, current, st.st_mtime - current)) self.assertAlmostEqual(st.st_mtime, current, delta=delta, msg=msg) def test_utime_current(self): def set_time(filename): # Set to the current time in the new way os.utime(self.fname) self._test_utime_current(set_time) def test_utime_current_old(self): def set_time(filename): # Set to the current time in the old explicit way. os.utime(self.fname, None) self._test_utime_current(set_time) def get_file_system(self, path): if sys.platform == 'win32': root = os.path.splitdrive(os.path.abspath(path))[0] + '\\' import ctypes kernel32 = ctypes.windll.kernel32 buf = ctypes.create_unicode_buffer("", 100) ok = kernel32.GetVolumeInformationW(root, None, 0, None, None, None, buf, len(buf)) if ok: return buf.value # return None if the filesystem is unknown def test_large_time(self): # Many filesystems are limited to the year 2038. At least, the test # pass with NTFS filesystem. if self.get_file_system(self.dirname) != "NTFS": self.skipTest("requires NTFS") large = 5000000000 # some day in 2128 os.utime(self.fname, (large, large)) self.assertEqual(os.stat(self.fname).st_mtime, large) def test_utime_invalid_arguments(self): # seconds and nanoseconds parameters are mutually exclusive with self.assertRaises(ValueError): os.utime(self.fname, (5, 5), ns=(5, 5)) from test import mapping_tests class EnvironTests(mapping_tests.BasicTestMappingProtocol): """check that os.environ object conform to mapping protocol""" type2test = None def setUp(self): self.__save = dict(os.environ) if os.supports_bytes_environ: self.__saveb = dict(os.environb) for key, value in self._reference().items(): os.environ[key] = value def tearDown(self): os.environ.clear() os.environ.update(self.__save) if os.supports_bytes_environ: os.environb.clear() os.environb.update(self.__saveb) def _reference(self): return {"KEY1":"VALUE1", "KEY2":"VALUE2", "KEY3":"VALUE3"} def _empty_mapping(self): os.environ.clear() return os.environ # Bug 1110478 @unittest.skipUnless(unix_shell and os.path.exists(unix_shell), 'requires a shell') def test_update2(self): os.environ.clear() os.environ.update(HELLO="World") with os.popen("%s -c 'echo $HELLO'" % unix_shell) as popen: value = popen.read().strip() self.assertEqual(value, "World") @unittest.skipUnless(unix_shell and os.path.exists(unix_shell), 'requires a shell') def test_os_popen_iter(self): with os.popen("%s -c 'echo \"line1\nline2\nline3\"'" % unix_shell) as popen: it = iter(popen) self.assertEqual(next(it), "line1\n") self.assertEqual(next(it), "line2\n") self.assertEqual(next(it), "line3\n") self.assertRaises(StopIteration, next, it) # Verify environ keys and values from the OS are of the # correct str type. def test_keyvalue_types(self): for key, val in os.environ.items(): self.assertEqual(type(key), str) self.assertEqual(type(val), str) def test_items(self): for key, value in self._reference().items(): self.assertEqual(os.environ.get(key), value) # Issue 7310 def test___repr__(self): """Check that the repr() of os.environ looks like environ({...}).""" env = os.environ self.assertEqual(repr(env), 'environ({{{}}})'.format(', '.join( '{!r}: {!r}'.format(key, value) for key, value in env.items()))) def test_get_exec_path(self): defpath_list = os.defpath.split(os.pathsep) test_path = ['/monty', '/python', '', '/flying/circus'] test_env = {'PATH': os.pathsep.join(test_path)} saved_environ = os.environ try: os.environ = dict(test_env) # Test that defaulting to os.environ works. self.assertSequenceEqual(test_path, os.get_exec_path()) self.assertSequenceEqual(test_path, os.get_exec_path(env=None)) finally: os.environ = saved_environ # No PATH environment variable self.assertSequenceEqual(defpath_list, os.get_exec_path({})) # Empty PATH environment variable self.assertSequenceEqual(('',), os.get_exec_path({'PATH':''})) # Supplied PATH environment variable self.assertSequenceEqual(test_path, os.get_exec_path(test_env)) if os.supports_bytes_environ: # env cannot contain 'PATH' and b'PATH' keys try: # ignore BytesWarning warning with warnings.catch_warnings(record=True): mixed_env = {'PATH': '1', b'PATH': b'2'} except BytesWarning: # mixed_env cannot be created with python -bb pass else: self.assertRaises(ValueError, os.get_exec_path, mixed_env) # bytes key and/or value self.assertSequenceEqual(os.get_exec_path({b'PATH': b'abc'}), ['abc']) self.assertSequenceEqual(os.get_exec_path({b'PATH': 'abc'}), ['abc']) self.assertSequenceEqual(os.get_exec_path({'PATH': b'abc'}), ['abc']) @unittest.skipUnless(os.supports_bytes_environ, "os.environb required for this test.") def test_environb(self): # os.environ -> os.environb value = 'euro\u20ac' try: value_bytes = value.encode(sys.getfilesystemencoding(), 'surrogateescape') except UnicodeEncodeError: msg = "U+20AC character is not encodable to %s" % ( sys.getfilesystemencoding(),) self.skipTest(msg) os.environ['unicode'] = value self.assertEqual(os.environ['unicode'], value) self.assertEqual(os.environb[b'unicode'], value_bytes) # os.environb -> os.environ value = b'\xff' os.environb[b'bytes'] = value self.assertEqual(os.environb[b'bytes'], value) value_str = value.decode(sys.getfilesystemencoding(), 'surrogateescape') self.assertEqual(os.environ['bytes'], value_str) # On FreeBSD < 7 and OS X < 10.6, unsetenv() doesn't return a value (issue # #13415). @support.requires_freebsd_version(7) @support.requires_mac_ver(10, 6) def test_unset_error(self): if sys.platform == "win32": # an environment variable is limited to 32,767 characters key = 'x' * 50000 self.assertRaises(ValueError, os.environ.__delitem__, key) else: # "=" is not allowed in a variable name key = 'key=' self.assertRaises(OSError, os.environ.__delitem__, key) def test_key_type(self): missing = 'missingkey' self.assertNotIn(missing, os.environ) with self.assertRaises(KeyError) as cm: os.environ[missing] self.assertIs(cm.exception.args[0], missing) self.assertTrue(cm.exception.__suppress_context__) with self.assertRaises(KeyError) as cm: del os.environ[missing] self.assertIs(cm.exception.args[0], missing) self.assertTrue(cm.exception.__suppress_context__) class WalkTests(unittest.TestCase): """Tests for os.walk().""" # Wrapper to hide minor differences between os.walk and os.fwalk # to tests both functions with the same code base def walk(self, top, **kwargs): if 'follow_symlinks' in kwargs: kwargs['followlinks'] = kwargs.pop('follow_symlinks') return os.walk(top, **kwargs) def setUp(self): join = os.path.join self.addCleanup(support.rmtree, support.TESTFN) # Build: # TESTFN/ # TEST1/ a file kid and two directory kids # tmp1 # SUB1/ a file kid and a directory kid # tmp2 # SUB11/ no kids # SUB2/ a file kid and a dirsymlink kid # tmp3 # SUB21/ not readable # tmp5 # link/ a symlink to TESTFN.2 # broken_link # broken_link2 # broken_link3 # TEST2/ # tmp4 a lone file self.walk_path = join(support.TESTFN, "TEST1") self.sub1_path = join(self.walk_path, "SUB1") self.sub11_path = join(self.sub1_path, "SUB11") sub2_path = join(self.walk_path, "SUB2") sub21_path = join(sub2_path, "SUB21") tmp1_path = join(self.walk_path, "tmp1") tmp2_path = join(self.sub1_path, "tmp2") tmp3_path = join(sub2_path, "tmp3") tmp5_path = join(sub21_path, "tmp3") self.link_path = join(sub2_path, "link") t2_path = join(support.TESTFN, "TEST2") tmp4_path = join(support.TESTFN, "TEST2", "tmp4") broken_link_path = join(sub2_path, "broken_link") broken_link2_path = join(sub2_path, "broken_link2") broken_link3_path = join(sub2_path, "broken_link3") # Create stuff. os.makedirs(self.sub11_path) os.makedirs(sub2_path) os.makedirs(sub21_path) os.makedirs(t2_path) for path in tmp1_path, tmp2_path, tmp3_path, tmp4_path, tmp5_path: with open(path, "x") as f: f.write("I'm " + path + " and proud of it. Blame test_os.\n") if support.can_symlink(): os.symlink(os.path.abspath(t2_path), self.link_path) os.symlink('broken', broken_link_path, True) os.symlink(join('tmp3', 'broken'), broken_link2_path, True) os.symlink(join('SUB21', 'tmp5'), broken_link3_path, True) self.sub2_tree = (sub2_path, ["SUB21", "link"], ["broken_link", "broken_link2", "broken_link3", "tmp3"]) else: self.sub2_tree = (sub2_path, [], ["tmp3"]) os.chmod(sub21_path, 0) try: os.listdir(sub21_path) except PermissionError: self.addCleanup(os.chmod, sub21_path, stat.S_IRWXU) else: os.chmod(sub21_path, stat.S_IRWXU) os.unlink(tmp5_path) os.rmdir(sub21_path) del self.sub2_tree[1][:1] def test_walk_topdown(self): # Walk top-down. all = list(self.walk(self.walk_path)) self.assertEqual(len(all), 4) # We can't know which order SUB1 and SUB2 will appear in. # Not flipped: TESTFN, SUB1, SUB11, SUB2 # flipped: TESTFN, SUB2, SUB1, SUB11 flipped = all[0][1][0] != "SUB1" all[0][1].sort() all[3 - 2 * flipped][-1].sort() all[3 - 2 * flipped][1].sort() self.assertEqual(all[0], (self.walk_path, ["SUB1", "SUB2"], ["tmp1"])) self.assertEqual(all[1 + flipped], (self.sub1_path, ["SUB11"], ["tmp2"])) self.assertEqual(all[2 + flipped], (self.sub11_path, [], [])) self.assertEqual(all[3 - 2 * flipped], self.sub2_tree) def test_walk_prune(self, walk_path=None): if walk_path is None: walk_path = self.walk_path # Prune the search. all = [] for root, dirs, files in self.walk(walk_path): all.append((root, dirs, files)) # Don't descend into SUB1. if 'SUB1' in dirs: # Note that this also mutates the dirs we appended to all! dirs.remove('SUB1') self.assertEqual(len(all), 2) self.assertEqual(all[0], (str(walk_path), ["SUB2"], ["tmp1"])) all[1][-1].sort() all[1][1].sort() self.assertEqual(all[1], self.sub2_tree) def test_file_like_path(self): self.test_walk_prune(_PathLike(self.walk_path)) def test_walk_bottom_up(self): # Walk bottom-up. all = list(self.walk(self.walk_path, topdown=False)) self.assertEqual(len(all), 4, all) # We can't know which order SUB1 and SUB2 will appear in. # Not flipped: SUB11, SUB1, SUB2, TESTFN # flipped: SUB2, SUB11, SUB1, TESTFN flipped = all[3][1][0] != "SUB1" all[3][1].sort() all[2 - 2 * flipped][-1].sort() all[2 - 2 * flipped][1].sort() self.assertEqual(all[3], (self.walk_path, ["SUB1", "SUB2"], ["tmp1"])) self.assertEqual(all[flipped], (self.sub11_path, [], [])) self.assertEqual(all[flipped + 1], (self.sub1_path, ["SUB11"], ["tmp2"])) self.assertEqual(all[2 - 2 * flipped], self.sub2_tree) def test_walk_symlink(self): if not support.can_symlink(): self.skipTest("need symlink support") # Walk, following symlinks. walk_it = self.walk(self.walk_path, follow_symlinks=True) for root, dirs, files in walk_it: if root == self.link_path: self.assertEqual(dirs, []) self.assertEqual(files, ["tmp4"]) break else: self.fail("Didn't follow symlink with followlinks=True") def test_walk_bad_dir(self): # Walk top-down. errors = [] walk_it = self.walk(self.walk_path, onerror=errors.append) root, dirs, files = next(walk_it) self.assertEqual(errors, []) dir1 = 'SUB1' path1 = os.path.join(root, dir1) path1new = os.path.join(root, dir1 + '.new') os.rename(path1, path1new) try: roots = [r for r, d, f in walk_it] self.assertTrue(errors) self.assertNotIn(path1, roots) self.assertNotIn(path1new, roots) for dir2 in dirs: if dir2 != dir1: self.assertIn(os.path.join(root, dir2), roots) finally: os.rename(path1new, path1) @unittest.skipUnless(hasattr(os, 'fwalk'), "Test needs os.fwalk()") class FwalkTests(WalkTests): """Tests for os.fwalk().""" def walk(self, top, **kwargs): for root, dirs, files, root_fd in self.fwalk(top, **kwargs): yield (root, dirs, files) def fwalk(self, *args, **kwargs): return os.fwalk(*args, **kwargs) def _compare_to_walk(self, walk_kwargs, fwalk_kwargs): """ compare with walk() results. """ walk_kwargs = walk_kwargs.copy() fwalk_kwargs = fwalk_kwargs.copy() for topdown, follow_symlinks in itertools.product((True, False), repeat=2): walk_kwargs.update(topdown=topdown, followlinks=follow_symlinks) fwalk_kwargs.update(topdown=topdown, follow_symlinks=follow_symlinks) expected = {} for root, dirs, files in os.walk(**walk_kwargs): expected[root] = (set(dirs), set(files)) for root, dirs, files, rootfd in self.fwalk(**fwalk_kwargs): self.assertIn(root, expected) self.assertEqual(expected[root], (set(dirs), set(files))) def test_compare_to_walk(self): kwargs = {'top': support.TESTFN} self._compare_to_walk(kwargs, kwargs) def test_dir_fd(self): try: fd = os.open(".", os.O_RDONLY) walk_kwargs = {'top': support.TESTFN} fwalk_kwargs = walk_kwargs.copy() fwalk_kwargs['dir_fd'] = fd self._compare_to_walk(walk_kwargs, fwalk_kwargs) finally: os.close(fd) def test_yields_correct_dir_fd(self): # check returned file descriptors for topdown, follow_symlinks in itertools.product((True, False), repeat=2): args = support.TESTFN, topdown, None for root, dirs, files, rootfd in self.fwalk(*args, follow_symlinks=follow_symlinks): # check that the FD is valid os.fstat(rootfd) # redundant check os.stat(rootfd) # check that listdir() returns consistent information self.assertEqual(set(os.listdir(rootfd)), set(dirs) | set(files)) def test_fd_leak(self): # Since we're opening a lot of FDs, we must be careful to avoid leaks: # we both check that calling fwalk() a large number of times doesn't # yield EMFILE, and that the minimum allocated FD hasn't changed. minfd = os.dup(1) os.close(minfd) for i in range(256): for x in self.fwalk(support.TESTFN): pass newfd = os.dup(1) self.addCleanup(os.close, newfd) self.assertEqual(newfd, minfd) class BytesWalkTests(WalkTests): """Tests for os.walk() with bytes.""" def walk(self, top, **kwargs): if 'follow_symlinks' in kwargs: kwargs['followlinks'] = kwargs.pop('follow_symlinks') for broot, bdirs, bfiles in os.walk(os.fsencode(top), **kwargs): root = os.fsdecode(broot) dirs = list(map(os.fsdecode, bdirs)) files = list(map(os.fsdecode, bfiles)) yield (root, dirs, files) bdirs[:] = list(map(os.fsencode, dirs)) bfiles[:] = list(map(os.fsencode, files)) @unittest.skipUnless(hasattr(os, 'fwalk'), "Test needs os.fwalk()") class BytesFwalkTests(FwalkTests): """Tests for os.walk() with bytes.""" def fwalk(self, top='.', *args, **kwargs): for broot, bdirs, bfiles, topfd in os.fwalk(os.fsencode(top), *args, **kwargs): root = os.fsdecode(broot) dirs = list(map(os.fsdecode, bdirs)) files = list(map(os.fsdecode, bfiles)) yield (root, dirs, files, topfd) bdirs[:] = list(map(os.fsencode, dirs)) bfiles[:] = list(map(os.fsencode, files)) class MakedirTests(unittest.TestCase): def setUp(self): os.mkdir(support.TESTFN) def test_makedir(self): base = support.TESTFN path = os.path.join(base, 'dir1', 'dir2', 'dir3') os.makedirs(path) # Should work path = os.path.join(base, 'dir1', 'dir2', 'dir3', 'dir4') os.makedirs(path) # Try paths with a '.' in them self.assertRaises(OSError, os.makedirs, os.curdir) path = os.path.join(base, 'dir1', 'dir2', 'dir3', 'dir4', 'dir5', os.curdir) os.makedirs(path) path = os.path.join(base, 'dir1', os.curdir, 'dir2', 'dir3', 'dir4', 'dir5', 'dir6') os.makedirs(path) def test_mode(self): with support.temp_umask(0o002): base = support.TESTFN parent = os.path.join(base, 'dir1') path = os.path.join(parent, 'dir2') os.makedirs(path, 0o555) self.assertTrue(os.path.exists(path)) self.assertTrue(os.path.isdir(path)) if os.name != 'nt': self.assertEqual(stat.S_IMODE(os.stat(path).st_mode), 0o555) self.assertEqual(stat.S_IMODE(os.stat(parent).st_mode), 0o775) def test_exist_ok_existing_directory(self): path = os.path.join(support.TESTFN, 'dir1') mode = 0o777 old_mask = os.umask(0o022) os.makedirs(path, mode) self.assertRaises(OSError, os.makedirs, path, mode) self.assertRaises(OSError, os.makedirs, path, mode, exist_ok=False) os.makedirs(path, 0o776, exist_ok=True) os.makedirs(path, mode=mode, exist_ok=True) os.umask(old_mask) # Issue #25583: A drive root could raise PermissionError on Windows os.makedirs(os.path.abspath('/'), exist_ok=True) def test_exist_ok_s_isgid_directory(self): path = os.path.join(support.TESTFN, 'dir1') S_ISGID = stat.S_ISGID mode = 0o777 old_mask = os.umask(0o022) try: existing_testfn_mode = stat.S_IMODE( os.lstat(support.TESTFN).st_mode) try: os.chmod(support.TESTFN, existing_testfn_mode | S_ISGID) except PermissionError: raise unittest.SkipTest('Cannot set S_ISGID for dir.') if (os.lstat(support.TESTFN).st_mode & S_ISGID != S_ISGID): raise unittest.SkipTest('No support for S_ISGID dir mode.') # The os should apply S_ISGID from the parent dir for us, but # this test need not depend on that behavior. Be explicit. os.makedirs(path, mode | S_ISGID) # http://bugs.python.org/issue14992 # Should not fail when the bit is already set. os.makedirs(path, mode, exist_ok=True) # remove the bit. os.chmod(path, stat.S_IMODE(os.lstat(path).st_mode) & ~S_ISGID) # May work even when the bit is not already set when demanded. os.makedirs(path, mode | S_ISGID, exist_ok=True) finally: os.umask(old_mask) def test_exist_ok_existing_regular_file(self): base = support.TESTFN path = os.path.join(support.TESTFN, 'dir1') f = open(path, 'w') f.write('abc') f.close() self.assertRaises(OSError, os.makedirs, path) self.assertRaises(OSError, os.makedirs, path, exist_ok=False) self.assertRaises(OSError, os.makedirs, path, exist_ok=True) os.remove(path) def tearDown(self): path = os.path.join(support.TESTFN, 'dir1', 'dir2', 'dir3', 'dir4', 'dir5', 'dir6') # If the tests failed, the bottom-most directory ('../dir6') # may not have been created, so we look for the outermost directory # that exists. while not os.path.exists(path) and path != support.TESTFN: path = os.path.dirname(path) os.removedirs(path) @unittest.skipUnless(hasattr(os, 'chown'), "Test needs chown") class ChownFileTests(unittest.TestCase): @classmethod def setUpClass(cls): os.mkdir(support.TESTFN) def test_chown_uid_gid_arguments_must_be_index(self): stat = os.stat(support.TESTFN) uid = stat.st_uid gid = stat.st_gid for value in (-1.0, -1j, decimal.Decimal(-1), fractions.Fraction(-2, 2)): self.assertRaises(TypeError, os.chown, support.TESTFN, value, gid) self.assertRaises(TypeError, os.chown, support.TESTFN, uid, value) self.assertIsNone(os.chown(support.TESTFN, uid, gid)) self.assertIsNone(os.chown(support.TESTFN, -1, -1)) @unittest.skipUnless(len(groups) > 1, "test needs more than one group") def test_chown(self): gid_1, gid_2 = groups[:2] uid = os.stat(support.TESTFN).st_uid os.chown(support.TESTFN, uid, gid_1) gid = os.stat(support.TESTFN).st_gid self.assertEqual(gid, gid_1) os.chown(support.TESTFN, uid, gid_2) gid = os.stat(support.TESTFN).st_gid self.assertEqual(gid, gid_2) @unittest.skipUnless(root_in_posix and len(all_users) > 1, "test needs root privilege and more than one user") def test_chown_with_root(self): uid_1, uid_2 = all_users[:2] gid = os.stat(support.TESTFN).st_gid os.chown(support.TESTFN, uid_1, gid) uid = os.stat(support.TESTFN).st_uid self.assertEqual(uid, uid_1) os.chown(support.TESTFN, uid_2, gid) uid = os.stat(support.TESTFN).st_uid self.assertEqual(uid, uid_2) @unittest.skipUnless(not root_in_posix and len(all_users) > 1, "test needs non-root account and more than one user") def test_chown_without_permission(self): uid_1, uid_2 = all_users[:2] gid = os.stat(support.TESTFN).st_gid with self.assertRaises(PermissionError): os.chown(support.TESTFN, uid_1, gid) os.chown(support.TESTFN, uid_2, gid) @classmethod def tearDownClass(cls): os.rmdir(support.TESTFN) class RemoveDirsTests(unittest.TestCase): def setUp(self): os.makedirs(support.TESTFN) def tearDown(self): support.rmtree(support.TESTFN) def test_remove_all(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) os.removedirs(dirb) self.assertFalse(os.path.exists(dirb)) self.assertFalse(os.path.exists(dira)) self.assertFalse(os.path.exists(support.TESTFN)) def test_remove_partial(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) create_file(os.path.join(dira, 'file.txt')) os.removedirs(dirb) self.assertFalse(os.path.exists(dirb)) self.assertTrue(os.path.exists(dira)) self.assertTrue(os.path.exists(support.TESTFN)) def test_remove_nothing(self): dira = os.path.join(support.TESTFN, 'dira') os.mkdir(dira) dirb = os.path.join(dira, 'dirb') os.mkdir(dirb) create_file(os.path.join(dirb, 'file.txt')) with self.assertRaises(OSError): os.removedirs(dirb) self.assertTrue(os.path.exists(dirb)) self.assertTrue(os.path.exists(dira)) self.assertTrue(os.path.exists(support.TESTFN)) class DevNullTests(unittest.TestCase): def test_devnull(self): with open(os.devnull, 'wb', 0) as f: f.write(b'hello') f.close() with open(os.devnull, 'rb') as f: self.assertEqual(f.read(), b'') class URandomTests(unittest.TestCase): def test_urandom_length(self): self.assertEqual(len(os.urandom(0)), 0) self.assertEqual(len(os.urandom(1)), 1) self.assertEqual(len(os.urandom(10)), 10) self.assertEqual(len(os.urandom(100)), 100) self.assertEqual(len(os.urandom(1000)), 1000) def test_urandom_value(self): data1 = os.urandom(16) self.assertIsInstance(data1, bytes) data2 = os.urandom(16) self.assertNotEqual(data1, data2) def get_urandom_subprocess(self, count): code = '\n'.join(( 'import os, sys', 'data = os.urandom(%s)' % count, 'sys.stdout.buffer.write(data)', 'sys.stdout.buffer.flush()')) out = assert_python_ok('-c', code) stdout = out[1] self.assertEqual(len(stdout), 16) return stdout def test_urandom_subprocess(self): data1 = self.get_urandom_subprocess(16) data2 = self.get_urandom_subprocess(16) self.assertNotEqual(data1, data2) @unittest.skipUnless(hasattr(os, 'getrandom'), 'need os.getrandom()') class GetRandomTests(unittest.TestCase): @classmethod def setUpClass(cls): try: os.getrandom(1) except OSError as exc: if exc.errno == errno.ENOSYS: # Python compiled on a more recent Linux version # than the current Linux kernel raise unittest.SkipTest("getrandom() syscall fails with ENOSYS") else: raise def test_getrandom_type(self): data = os.getrandom(16) self.assertIsInstance(data, bytes) self.assertEqual(len(data), 16) def test_getrandom0(self): empty = os.getrandom(0) self.assertEqual(empty, b'') def test_getrandom_random(self): self.assertTrue(hasattr(os, 'GRND_RANDOM')) # Don't test os.getrandom(1, os.GRND_RANDOM) to not consume the rare # resource /dev/random def test_getrandom_nonblock(self): # The call must not fail. Check also that the flag exists try: os.getrandom(1, os.GRND_NONBLOCK) except BlockingIOError: # System urandom is not initialized yet pass def test_getrandom_value(self): data1 = os.getrandom(16) data2 = os.getrandom(16) self.assertNotEqual(data1, data2) # os.urandom() doesn't use a file descriptor when it is implemented with the # getentropy() function, the getrandom() function or the getrandom() syscall OS_URANDOM_DONT_USE_FD = ( sysconfig.get_config_var('HAVE_GETENTROPY') == 1 or sysconfig.get_config_var('HAVE_GETRANDOM') == 1 or sysconfig.get_config_var('HAVE_GETRANDOM_SYSCALL') == 1) @unittest.skipIf(OS_URANDOM_DONT_USE_FD , "os.random() does not use a file descriptor") class URandomFDTests(unittest.TestCase): @unittest.skipUnless(resource, "test requires the resource module") def test_urandom_failure(self): # Check urandom() failing when it is not able to open /dev/random. # We spawn a new process to make the test more robust (if getrlimit() # failed to restore the file descriptor limit after this, the whole # test suite would crash; this actually happened on the OS X Tiger # buildbot). code = """if 1: import errno import os import resource soft_limit, hard_limit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (1, hard_limit)) try: os.urandom(16) except OSError as e: assert e.errno == errno.EMFILE, e.errno else: raise AssertionError("OSError not raised") """ assert_python_ok('-c', code) def test_urandom_fd_closed(self): # Issue #21207: urandom() should reopen its fd to /dev/urandom if # closed. code = """if 1: import os import sys import test.support os.urandom(4) with test.support.SuppressCrashReport(): os.closerange(3, 256) sys.stdout.buffer.write(os.urandom(4)) """ rc, out, err = assert_python_ok('-Sc', code) def test_urandom_fd_reopened(self): # Issue #21207: urandom() should detect its fd to /dev/urandom # changed to something else, and reopen it. self.addCleanup(support.unlink, support.TESTFN) create_file(support.TESTFN, b"x" * 256) code = """if 1: import os import sys import test.support os.urandom(4) with test.support.SuppressCrashReport(): for fd in range(3, 256): try: os.close(fd) except OSError: pass else: # Found the urandom fd (XXX hopefully) break os.closerange(3, 256) with open({TESTFN!r}, 'rb') as f: new_fd = f.fileno() # Issue #26935: posix allows new_fd and fd to be equal but # some libc implementations have dup2 return an error in this # case. if new_fd != fd: os.dup2(new_fd, fd) sys.stdout.buffer.write(os.urandom(4)) sys.stdout.buffer.write(os.urandom(4)) """.format(TESTFN=support.TESTFN) rc, out, err = assert_python_ok('-Sc', code) self.assertEqual(len(out), 8) self.assertNotEqual(out[0:4], out[4:8]) rc, out2, err2 = assert_python_ok('-Sc', code) self.assertEqual(len(out2), 8) self.assertNotEqual(out2, out) @contextlib.contextmanager def _execvpe_mockup(defpath=None): """ Stubs out execv and execve functions when used as context manager. Records exec calls. The mock execv and execve functions always raise an exception as they would normally never return. """ # A list of tuples containing (function name, first arg, args) # of calls to execv or execve that have been made. calls = [] def mock_execv(name, *args): calls.append(('execv', name, args)) raise RuntimeError("execv called") def mock_execve(name, *args): calls.append(('execve', name, args)) raise OSError(errno.ENOTDIR, "execve called") try: orig_execv = os.execv orig_execve = os.execve orig_defpath = os.defpath os.execv = mock_execv os.execve = mock_execve if defpath is not None: os.defpath = defpath yield calls finally: os.execv = orig_execv os.execve = orig_execve os.defpath = orig_defpath class ExecTests(unittest.TestCase): @unittest.skipIf(USING_LINUXTHREADS, "avoid triggering a linuxthreads bug: see issue #4970") def test_execvpe_with_bad_program(self): self.assertRaises(OSError, os.execvpe, 'no such app-', ['no such app-'], None) def test_execv_with_bad_arglist(self): self.assertRaises(ValueError, os.execv, 'notepad', ()) self.assertRaises(ValueError, os.execv, 'notepad', []) self.assertRaises(ValueError, os.execv, 'notepad', ('',)) self.assertRaises(ValueError, os.execv, 'notepad', ['']) def test_execvpe_with_bad_arglist(self): self.assertRaises(ValueError, os.execvpe, 'notepad', [], None) self.assertRaises(ValueError, os.execvpe, 'notepad', [], {}) self.assertRaises(ValueError, os.execvpe, 'notepad', [''], {}) @unittest.skipUnless(hasattr(os, '_execvpe'), "No internal os._execvpe function to test.") def _test_internal_execvpe(self, test_type): program_path = os.sep + 'absolutepath' if test_type is bytes: program = b'executable' fullpath = os.path.join(os.fsencode(program_path), program) native_fullpath = fullpath arguments = [b'progname', 'arg1', 'arg2'] else: program = 'executable' arguments = ['progname', 'arg1', 'arg2'] fullpath = os.path.join(program_path, program) if os.name != "nt": native_fullpath = os.fsencode(fullpath) else: native_fullpath = fullpath env = {'spam': 'beans'} # test os._execvpe() with an absolute path with _execvpe_mockup() as calls: self.assertRaises(RuntimeError, os._execvpe, fullpath, arguments) self.assertEqual(len(calls), 1) self.assertEqual(calls[0], ('execv', fullpath, (arguments,))) # test os._execvpe() with a relative path: # os.get_exec_path() returns defpath with _execvpe_mockup(defpath=program_path) as calls: self.assertRaises(OSError, os._execvpe, program, arguments, env=env) self.assertEqual(len(calls), 1) self.assertSequenceEqual(calls[0], ('execve', native_fullpath, (arguments, env))) # test os._execvpe() with a relative path: # os.get_exec_path() reads the 'PATH' variable with _execvpe_mockup() as calls: env_path = env.copy() if test_type is bytes: env_path[b'PATH'] = program_path else: env_path['PATH'] = program_path self.assertRaises(OSError, os._execvpe, program, arguments, env=env_path) self.assertEqual(len(calls), 1) self.assertSequenceEqual(calls[0], ('execve', native_fullpath, (arguments, env_path))) def test_internal_execvpe_str(self): self._test_internal_execvpe(str) if os.name != "nt": self._test_internal_execvpe(bytes) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32ErrorTests(unittest.TestCase): def setUp(self): try: os.stat(support.TESTFN) except FileNotFoundError: exists = False except OSError as exc: exists = True self.fail("file %s must not exist; os.stat failed with %s" % (support.TESTFN, exc)) else: self.fail("file %s must not exist" % support.TESTFN) def test_rename(self): self.assertRaises(OSError, os.rename, support.TESTFN, support.TESTFN+".bak") def test_remove(self): self.assertRaises(OSError, os.remove, support.TESTFN) def test_chdir(self): self.assertRaises(OSError, os.chdir, support.TESTFN) def test_mkdir(self): self.addCleanup(support.unlink, support.TESTFN) with open(support.TESTFN, "x") as f: self.assertRaises(OSError, os.mkdir, support.TESTFN) def test_utime(self): self.assertRaises(OSError, os.utime, support.TESTFN, None) def test_chmod(self): self.assertRaises(OSError, os.chmod, support.TESTFN, 0) class TestInvalidFD(unittest.TestCase): singles = ["fchdir", "dup", "fdopen", "fdatasync", "fstat", "fstatvfs", "fsync", "tcgetpgrp", "ttyname"] #singles.append("close") #We omit close because it doesn't raise an exception on some platforms def get_single(f): def helper(self): if hasattr(os, f): self.check(getattr(os, f)) return helper for f in singles: locals()["test_"+f] = get_single(f) def check(self, f, *args): try: f(support.make_bad_fd(), *args) except OSError as e: self.assertEqual(e.errno, errno.EBADF) else: self.fail("%r didn't raise an OSError with a bad file descriptor" % f) @unittest.skipUnless(hasattr(os, 'isatty'), 'test needs os.isatty()') def test_isatty(self): self.assertEqual(os.isatty(support.make_bad_fd()), False) @unittest.skipUnless(hasattr(os, 'closerange'), 'test needs os.closerange()') def test_closerange(self): fd = support.make_bad_fd() # Make sure none of the descriptors we are about to close are # currently valid (issue 6542). for i in range(10): try: os.fstat(fd+i) except OSError: pass else: break if i < 2: raise unittest.SkipTest( "Unable to acquire a range of invalid file descriptors") self.assertEqual(os.closerange(fd, fd + i-1), None) @unittest.skipUnless(hasattr(os, 'dup2'), 'test needs os.dup2()') def test_dup2(self): self.check(os.dup2, 20) @unittest.skipUnless(hasattr(os, 'fchmod'), 'test needs os.fchmod()') def test_fchmod(self): self.check(os.fchmod, 0) @unittest.skipUnless(hasattr(os, 'fchown'), 'test needs os.fchown()') def test_fchown(self): self.check(os.fchown, -1, -1) @unittest.skipUnless(hasattr(os, 'fpathconf'), 'test needs os.fpathconf()') def test_fpathconf(self): self.check(os.pathconf, "PC_NAME_MAX") self.check(os.fpathconf, "PC_NAME_MAX") @unittest.skipUnless(hasattr(os, 'ftruncate'), 'test needs os.ftruncate()') def test_ftruncate(self): self.check(os.truncate, 0) self.check(os.ftruncate, 0) @unittest.skipUnless(hasattr(os, 'lseek'), 'test needs os.lseek()') def test_lseek(self): self.check(os.lseek, 0, 0) @unittest.skipUnless(hasattr(os, 'read'), 'test needs os.read()') def test_read(self): self.check(os.read, 1) @unittest.skipUnless(hasattr(os, 'readv'), 'test needs os.readv()') def test_readv(self): buf = bytearray(10) self.check(os.readv, [buf]) @unittest.skipUnless(hasattr(os, 'tcsetpgrp'), 'test needs os.tcsetpgrp()') def test_tcsetpgrpt(self): self.check(os.tcsetpgrp, 0) @unittest.skipUnless(hasattr(os, 'write'), 'test needs os.write()') def test_write(self): self.check(os.write, b" ") @unittest.skipUnless(hasattr(os, 'writev'), 'test needs os.writev()') def test_writev(self): self.check(os.writev, [b'abc']) def test_inheritable(self): self.check(os.get_inheritable) self.check(os.set_inheritable, True) @unittest.skipUnless(hasattr(os, 'get_blocking'), 'needs os.get_blocking() and os.set_blocking()') def test_blocking(self): self.check(os.get_blocking) self.check(os.set_blocking, True) class LinkTests(unittest.TestCase): def setUp(self): self.file1 = support.TESTFN self.file2 = os.path.join(support.TESTFN + "2") def tearDown(self): for file in (self.file1, self.file2): if os.path.exists(file): os.unlink(file) def _test_link(self, file1, file2): create_file(file1) os.link(file1, file2) with open(file1, "r") as f1, open(file2, "r") as f2: self.assertTrue(os.path.sameopenfile(f1.fileno(), f2.fileno())) def test_link(self): self._test_link(self.file1, self.file2) def test_link_bytes(self): self._test_link(bytes(self.file1, sys.getfilesystemencoding()), bytes(self.file2, sys.getfilesystemencoding())) def test_unicode_name(self): try: os.fsencode("\xf1") except UnicodeError: raise unittest.SkipTest("Unable to encode for this platform.") self.file1 += "\xf1" self.file2 = self.file1 + "2" self._test_link(self.file1, self.file2) @unittest.skipIf(sys.platform == "win32", "Posix specific tests") class PosixUidGidTests(unittest.TestCase): @unittest.skipUnless(hasattr(os, 'setuid'), 'test needs os.setuid()') def test_setuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.setuid, 0) self.assertRaises(OverflowError, os.setuid, 1<<32) @unittest.skipUnless(hasattr(os, 'setgid'), 'test needs os.setgid()') def test_setgid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setgid, 0) self.assertRaises(OverflowError, os.setgid, 1<<32) @unittest.skipUnless(hasattr(os, 'seteuid'), 'test needs os.seteuid()') def test_seteuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.seteuid, 0) self.assertRaises(OverflowError, os.seteuid, 1<<32) @unittest.skipUnless(hasattr(os, 'setegid'), 'test needs os.setegid()') def test_setegid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setegid, 0) self.assertRaises(OverflowError, os.setegid, 1<<32) @unittest.skipUnless(hasattr(os, 'setreuid'), 'test needs os.setreuid()') def test_setreuid(self): if os.getuid() != 0: self.assertRaises(OSError, os.setreuid, 0, 0) self.assertRaises(OverflowError, os.setreuid, 1<<32, 0) self.assertRaises(OverflowError, os.setreuid, 0, 1<<32) @unittest.skipUnless(hasattr(os, 'setreuid'), 'test needs os.setreuid()') def test_setreuid_neg1(self): # Needs to accept -1. We run this in a subprocess to avoid # altering the test runner's process state (issue8045). subprocess.check_call([ sys.executable, '-c', 'import os,sys;os.setreuid(-1,-1);sys.exit(0)']) @unittest.skipUnless(hasattr(os, 'setregid'), 'test needs os.setregid()') def test_setregid(self): if os.getuid() != 0 and not HAVE_WHEEL_GROUP: self.assertRaises(OSError, os.setregid, 0, 0) self.assertRaises(OverflowError, os.setregid, 1<<32, 0) self.assertRaises(OverflowError, os.setregid, 0, 1<<32) @unittest.skipUnless(hasattr(os, 'setregid'), 'test needs os.setregid()') def test_setregid_neg1(self): # Needs to accept -1. We run this in a subprocess to avoid # altering the test runner's process state (issue8045). subprocess.check_call([ sys.executable, '-c', 'import os,sys;os.setregid(-1,-1);sys.exit(0)']) @unittest.skipIf(sys.platform == "win32", "Posix specific tests") class Pep383Tests(unittest.TestCase): def setUp(self): if support.TESTFN_UNENCODABLE: self.dir = support.TESTFN_UNENCODABLE elif support.TESTFN_NONASCII: self.dir = support.TESTFN_NONASCII else: self.dir = support.TESTFN self.bdir = os.fsencode(self.dir) bytesfn = [] def add_filename(fn): try: fn = os.fsencode(fn) except UnicodeEncodeError: return bytesfn.append(fn) add_filename(support.TESTFN_UNICODE) if support.TESTFN_UNENCODABLE: add_filename(support.TESTFN_UNENCODABLE) if support.TESTFN_NONASCII: add_filename(support.TESTFN_NONASCII) if not bytesfn: self.skipTest("couldn't create any non-ascii filename") self.unicodefn = set() os.mkdir(self.dir) try: for fn in bytesfn: support.create_empty_file(os.path.join(self.bdir, fn)) fn = os.fsdecode(fn) if fn in self.unicodefn: raise ValueError("duplicate filename") self.unicodefn.add(fn) except: shutil.rmtree(self.dir) raise def tearDown(self): shutil.rmtree(self.dir) def test_listdir(self): expected = self.unicodefn found = set(os.listdir(self.dir)) self.assertEqual(found, expected) # test listdir without arguments current_directory = os.getcwd() try: os.chdir(os.sep) self.assertEqual(set(os.listdir()), set(os.listdir(os.sep))) finally: os.chdir(current_directory) def test_open(self): for fn in self.unicodefn: f = open(os.path.join(self.dir, fn), 'rb') f.close() @unittest.skipUnless(hasattr(os, 'statvfs'), "need os.statvfs()") def test_statvfs(self): # issue #9645 for fn in self.unicodefn: # should not fail with file not found error fullname = os.path.join(self.dir, fn) os.statvfs(fullname) def test_stat(self): for fn in self.unicodefn: os.stat(os.path.join(self.dir, fn)) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32KillTests(unittest.TestCase): def _kill(self, sig): # Start sys.executable as a subprocess and communicate from the # subprocess to the parent that the interpreter is ready. When it # becomes ready, send *sig* via os.kill to the subprocess and check # that the return code is equal to *sig*. import ctypes from ctypes import wintypes import msvcrt # Since we can't access the contents of the process' stdout until the # process has exited, use PeekNamedPipe to see what's inside stdout # without waiting. This is done so we can tell that the interpreter # is started and running at a point where it could handle a signal. PeekNamedPipe = ctypes.windll.kernel32.PeekNamedPipe PeekNamedPipe.restype = wintypes.BOOL PeekNamedPipe.argtypes = (wintypes.HANDLE, # Pipe handle ctypes.POINTER(ctypes.c_char), # stdout buf wintypes.DWORD, # Buffer size ctypes.POINTER(wintypes.DWORD), # bytes read ctypes.POINTER(wintypes.DWORD), # bytes avail ctypes.POINTER(wintypes.DWORD)) # bytes left msg = "running" proc = subprocess.Popen([sys.executable, "-c", "import sys;" "sys.stdout.write('{}');" "sys.stdout.flush();" "input()".format(msg)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) self.addCleanup(proc.stdout.close) self.addCleanup(proc.stderr.close) self.addCleanup(proc.stdin.close) count, max = 0, 100 while count < max and proc.poll() is None: # Create a string buffer to store the result of stdout from the pipe buf = ctypes.create_string_buffer(len(msg)) # Obtain the text currently in proc.stdout # Bytes read/avail/left are left as NULL and unused rslt = PeekNamedPipe(msvcrt.get_osfhandle(proc.stdout.fileno()), buf, ctypes.sizeof(buf), None, None, None) self.assertNotEqual(rslt, 0, "PeekNamedPipe failed") if buf.value: self.assertEqual(msg, buf.value.decode()) break time.sleep(0.1) count += 1 else: self.fail("Did not receive communication from the subprocess") os.kill(proc.pid, sig) self.assertEqual(proc.wait(), sig) def test_kill_sigterm(self): # SIGTERM doesn't mean anything special, but make sure it works self._kill(signal.SIGTERM) def test_kill_int(self): # os.kill on Windows can take an int which gets set as the exit code self._kill(100) def _kill_with_event(self, event, name): tagname = "test_os_%s" % uuid.uuid1() m = mmap.mmap(-1, 1, tagname) m[0] = 0 # Run a script which has console control handling enabled. proc = subprocess.Popen([sys.executable, os.path.join(os.path.dirname(__file__), "win_console_handler.py"), tagname], creationflags=subprocess.CREATE_NEW_PROCESS_GROUP) # Let the interpreter startup before we send signals. See #3137. count, max = 0, 100 while count < max and proc.poll() is None: if m[0] == 1: break time.sleep(0.1) count += 1 else: # Forcefully kill the process if we weren't able to signal it. os.kill(proc.pid, signal.SIGINT) self.fail("Subprocess didn't finish initialization") os.kill(proc.pid, event) # proc.send_signal(event) could also be done here. # Allow time for the signal to be passed and the process to exit. time.sleep(0.5) if not proc.poll(): # Forcefully kill the process if we weren't able to signal it. os.kill(proc.pid, signal.SIGINT) self.fail("subprocess did not stop on {}".format(name)) @unittest.skip("subprocesses aren't inheriting Ctrl+C property") def test_CTRL_C_EVENT(self): from ctypes import wintypes import ctypes # Make a NULL value by creating a pointer with no argument. NULL = ctypes.POINTER(ctypes.c_int)() SetConsoleCtrlHandler = ctypes.windll.kernel32.SetConsoleCtrlHandler SetConsoleCtrlHandler.argtypes = (ctypes.POINTER(ctypes.c_int), wintypes.BOOL) SetConsoleCtrlHandler.restype = wintypes.BOOL # Calling this with NULL and FALSE causes the calling process to # handle Ctrl+C, rather than ignore it. This property is inherited # by subprocesses. SetConsoleCtrlHandler(NULL, 0) self._kill_with_event(signal.CTRL_C_EVENT, "CTRL_C_EVENT") def test_CTRL_BREAK_EVENT(self): self._kill_with_event(signal.CTRL_BREAK_EVENT, "CTRL_BREAK_EVENT") @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32ListdirTests(unittest.TestCase): """Test listdir on Windows.""" def setUp(self): self.created_paths = [] for i in range(2): dir_name = 'SUB%d' % i dir_path = os.path.join(support.TESTFN, dir_name) file_name = 'FILE%d' % i file_path = os.path.join(support.TESTFN, file_name) os.makedirs(dir_path) with open(file_path, 'w') as f: f.write("I'm %s and proud of it. Blame test_os.\n" % file_path) self.created_paths.extend([dir_name, file_name]) self.created_paths.sort() def tearDown(self): shutil.rmtree(support.TESTFN) def test_listdir_no_extended_path(self): """Test when the path is not an "extended" path.""" # unicode self.assertEqual( sorted(os.listdir(support.TESTFN)), self.created_paths) # bytes self.assertEqual( sorted(os.listdir(os.fsencode(support.TESTFN))), [os.fsencode(path) for path in self.created_paths]) def test_listdir_extended_path(self): """Test when the path starts with '\\\\?\\'.""" # See: http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#maxpath # unicode path = '\\\\?\\' + os.path.abspath(support.TESTFN) self.assertEqual( sorted(os.listdir(path)), self.created_paths) # bytes path = b'\\\\?\\' + os.fsencode(os.path.abspath(support.TESTFN)) self.assertEqual( sorted(os.listdir(path)), [os.fsencode(path) for path in self.created_paths]) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") @support.skip_unless_symlink class Win32SymlinkTests(unittest.TestCase): filelink = 'filelinktest' filelink_target = os.path.abspath(__file__) dirlink = 'dirlinktest' dirlink_target = os.path.dirname(filelink_target) missing_link = 'missing link' def setUp(self): assert os.path.exists(self.dirlink_target) assert os.path.exists(self.filelink_target) assert not os.path.exists(self.dirlink) assert not os.path.exists(self.filelink) assert not os.path.exists(self.missing_link) def tearDown(self): if os.path.exists(self.filelink): os.remove(self.filelink) if os.path.exists(self.dirlink): os.rmdir(self.dirlink) if os.path.lexists(self.missing_link): os.remove(self.missing_link) def test_directory_link(self): os.symlink(self.dirlink_target, self.dirlink) self.assertTrue(os.path.exists(self.dirlink)) self.assertTrue(os.path.isdir(self.dirlink)) self.assertTrue(os.path.islink(self.dirlink)) self.check_stat(self.dirlink, self.dirlink_target) def test_file_link(self): os.symlink(self.filelink_target, self.filelink) self.assertTrue(os.path.exists(self.filelink)) self.assertTrue(os.path.isfile(self.filelink)) self.assertTrue(os.path.islink(self.filelink)) self.check_stat(self.filelink, self.filelink_target) def _create_missing_dir_link(self): 'Create a "directory" link to a non-existent target' linkname = self.missing_link if os.path.lexists(linkname): os.remove(linkname) target = r'c:\\target does not exist.29r3c740' assert not os.path.exists(target) target_is_dir = True os.symlink(target, linkname, target_is_dir) def test_remove_directory_link_to_missing_target(self): self._create_missing_dir_link() # For compatibility with Unix, os.remove will check the # directory status and call RemoveDirectory if the symlink # was created with target_is_dir==True. os.remove(self.missing_link) @unittest.skip("currently fails; consider for improvement") def test_isdir_on_directory_link_to_missing_target(self): self._create_missing_dir_link() # consider having isdir return true for directory links self.assertTrue(os.path.isdir(self.missing_link)) @unittest.skip("currently fails; consider for improvement") def test_rmdir_on_directory_link_to_missing_target(self): self._create_missing_dir_link() # consider allowing rmdir to remove directory links os.rmdir(self.missing_link) def check_stat(self, link, target): self.assertEqual(os.stat(link), os.stat(target)) self.assertNotEqual(os.lstat(link), os.stat(link)) bytes_link = os.fsencode(link) self.assertEqual(os.stat(bytes_link), os.stat(target)) self.assertNotEqual(os.lstat(bytes_link), os.stat(bytes_link)) def test_12084(self): level1 = os.path.abspath(support.TESTFN) level2 = os.path.join(level1, "level2") level3 = os.path.join(level2, "level3") self.addCleanup(support.rmtree, level1) os.mkdir(level1) os.mkdir(level2) os.mkdir(level3) file1 = os.path.abspath(os.path.join(level1, "file1")) create_file(file1) orig_dir = os.getcwd() try: os.chdir(level2) link = os.path.join(level2, "link") os.symlink(os.path.relpath(file1), "link") self.assertIn("link", os.listdir(os.getcwd())) # Check os.stat calls from the same dir as the link self.assertEqual(os.stat(file1), os.stat("link")) # Check os.stat calls from a dir below the link os.chdir(level1) self.assertEqual(os.stat(file1), os.stat(os.path.relpath(link))) # Check os.stat calls from a dir above the link os.chdir(level3) self.assertEqual(os.stat(file1), os.stat(os.path.relpath(link))) finally: os.chdir(orig_dir) @unittest.skipUnless(sys.platform == "win32", "Win32 specific tests") class Win32JunctionTests(unittest.TestCase): junction = 'junctiontest' junction_target = os.path.dirname(os.path.abspath(__file__)) def setUp(self): assert os.path.exists(self.junction_target) assert not os.path.exists(self.junction) def tearDown(self): if os.path.exists(self.junction): # os.rmdir delegates to Windows' RemoveDirectoryW, # which removes junction points safely. os.rmdir(self.junction) def test_create_junction(self): _winapi.CreateJunction(self.junction_target, self.junction) self.assertTrue(os.path.exists(self.junction)) self.assertTrue(os.path.isdir(self.junction)) # Junctions are not recognized as links. self.assertFalse(os.path.islink(self.junction)) def test_unlink_removes_junction(self): _winapi.CreateJunction(self.junction_target, self.junction) self.assertTrue(os.path.exists(self.junction)) os.unlink(self.junction) self.assertFalse(os.path.exists(self.junction)) @support.skip_unless_symlink class NonLocalSymlinkTests(unittest.TestCase): def setUp(self): r""" Create this structure: base \___ some_dir """ os.makedirs('base/some_dir') def tearDown(self): shutil.rmtree('base') def test_directory_link_nonlocal(self): """ The symlink target should resolve relative to the link, not relative to the current directory. Then, link base/some_link -> base/some_dir and ensure that some_link is resolved as a directory. In issue13772, it was discovered that directory detection failed if the symlink target was not specified relative to the current directory, which was a defect in the implementation. """ src = os.path.join('base', 'some_link') os.symlink('some_dir', src) assert os.path.isdir(src) class FSEncodingTests(unittest.TestCase): def test_nop(self): self.assertEqual(os.fsencode(b'abc\xff'), b'abc\xff') self.assertEqual(os.fsdecode('abc\u0141'), 'abc\u0141') def test_identity(self): # assert fsdecode(fsencode(x)) == x for fn in ('unicode\u0141', 'latin\xe9', 'ascii'): try: bytesfn = os.fsencode(fn) except UnicodeEncodeError: continue self.assertEqual(os.fsdecode(bytesfn), fn) class DeviceEncodingTests(unittest.TestCase): def test_bad_fd(self): # Return None when an fd doesn't actually exist. self.assertIsNone(os.device_encoding(123456)) @unittest.skipUnless(os.isatty(0) and (sys.platform.startswith('win') or (hasattr(locale, 'nl_langinfo') and hasattr(locale, 'CODESET'))), 'test requires a tty and either Windows or nl_langinfo(CODESET)') def test_device_encoding(self): encoding = os.device_encoding(0) self.assertIsNotNone(encoding) self.assertTrue(codecs.lookup(encoding)) class PidTests(unittest.TestCase): @unittest.skipUnless(hasattr(os, 'getppid'), "test needs os.getppid") def test_getppid(self): p = subprocess.Popen([sys.executable, '-c', 'import os; print(os.getppid())'], stdout=subprocess.PIPE) stdout, _ = p.communicate() # We are the parent of our subprocess self.assertEqual(int(stdout), os.getpid()) def test_waitpid(self): args = [sys.executable, '-c', 'pass'] # Add an implicit test for PyUnicode_FSConverter(). pid = os.spawnv(os.P_NOWAIT, _PathLike(args[0]), args) status = os.waitpid(pid, 0) self.assertEqual(status, (pid, 0)) class SpawnTests(unittest.TestCase): def create_args(self, *, with_env=False, use_bytes=False): self.exitcode = 17 filename = support.TESTFN self.addCleanup(support.unlink, filename) if not with_env: code = 'import sys; sys.exit(%s)' % self.exitcode else: self.env = dict(os.environ) # create an unique key self.key = str(uuid.uuid4()) self.env[self.key] = self.key # read the variable from os.environ to check that it exists code = ('import sys, os; magic = os.environ[%r]; sys.exit(%s)' % (self.key, self.exitcode)) with open(filename, "w") as fp: fp.write(code) args = [sys.executable, filename] if use_bytes: args = [os.fsencode(a) for a in args] self.env = {os.fsencode(k): os.fsencode(v) for k, v in self.env.items()} return args @requires_os_func('spawnl') def test_spawnl(self): args = self.create_args() exitcode = os.spawnl(os.P_WAIT, args[0], *args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnle') def test_spawnle(self): args = self.create_args(with_env=True) exitcode = os.spawnle(os.P_WAIT, args[0], *args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnlp') def test_spawnlp(self): args = self.create_args() exitcode = os.spawnlp(os.P_WAIT, args[0], *args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnlpe') def test_spawnlpe(self): args = self.create_args(with_env=True) exitcode = os.spawnlpe(os.P_WAIT, args[0], *args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnv') def test_spawnv(self): args = self.create_args() exitcode = os.spawnv(os.P_WAIT, args[0], args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnve') def test_spawnve(self): args = self.create_args(with_env=True) exitcode = os.spawnve(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnvp') def test_spawnvp(self): args = self.create_args() exitcode = os.spawnvp(os.P_WAIT, args[0], args) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnvpe') def test_spawnvpe(self): args = self.create_args(with_env=True) exitcode = os.spawnvpe(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnv') def test_nowait(self): args = self.create_args() pid = os.spawnv(os.P_NOWAIT, args[0], args) result = os.waitpid(pid, 0) self.assertEqual(result[0], pid) status = result[1] if hasattr(os, 'WIFEXITED'): self.assertTrue(os.WIFEXITED(status)) self.assertEqual(os.WEXITSTATUS(status), self.exitcode) else: self.assertEqual(status, self.exitcode << 8) @requires_os_func('spawnve') def test_spawnve_bytes(self): # Test bytes handling in parse_arglist and parse_envlist (#28114) args = self.create_args(with_env=True, use_bytes=True) exitcode = os.spawnve(os.P_WAIT, args[0], args, self.env) self.assertEqual(exitcode, self.exitcode) @requires_os_func('spawnl') def test_spawnl_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnl, os.P_NOWAIT, args[0]) self.assertRaises(ValueError, os.spawnl, os.P_NOWAIT, args[0], '') @requires_os_func('spawnle') def test_spawnle_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnle, os.P_NOWAIT, args[0], {}) self.assertRaises(ValueError, os.spawnle, os.P_NOWAIT, args[0], '', {}) @requires_os_func('spawnv') def test_spawnv_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ()) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], []) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ('',)) self.assertRaises(ValueError, os.spawnv, os.P_NOWAIT, args[0], ['']) @requires_os_func('spawnve') def test_spawnve_noargs(self): args = self.create_args() self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], (), {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], [], {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], ('',), {}) self.assertRaises(ValueError, os.spawnve, os.P_NOWAIT, args[0], [''], {}) # The introduction of this TestCase caused at least two different errors on # *nix buildbots. Temporarily skip this to let the buildbots move along. @unittest.skip("Skip due to platform/environment differences on *NIX buildbots") @unittest.skipUnless(hasattr(os, 'getlogin'), "test needs os.getlogin") class LoginTests(unittest.TestCase): def test_getlogin(self): user_name = os.getlogin() self.assertNotEqual(len(user_name), 0) @unittest.skipUnless(hasattr(os, 'getpriority') and hasattr(os, 'setpriority'), "needs os.getpriority and os.setpriority") class ProgramPriorityTests(unittest.TestCase): """Tests for os.getpriority() and os.setpriority().""" def test_set_get_priority(self): base = os.getpriority(os.PRIO_PROCESS, os.getpid()) os.setpriority(os.PRIO_PROCESS, os.getpid(), base + 1) try: new_prio = os.getpriority(os.PRIO_PROCESS, os.getpid()) if base >= 19 and new_prio <= 19: raise unittest.SkipTest("unable to reliably test setpriority " "at current nice level of %s" % base) else: self.assertEqual(new_prio, base + 1) finally: try: os.setpriority(os.PRIO_PROCESS, os.getpid(), base) except OSError as err: if err.errno != errno.EACCES: raise if threading is not None: class SendfileTestServer(asyncore.dispatcher, threading.Thread): class Handler(asynchat.async_chat): def __init__(self, conn): asynchat.async_chat.__init__(self, conn) self.in_buffer = [] self.closed = False self.push(b"220 ready\r\n") def handle_read(self): data = self.recv(4096) self.in_buffer.append(data) def get_data(self): return b''.join(self.in_buffer) def handle_close(self): self.close() self.closed = True def handle_error(self): raise def __init__(self, address): threading.Thread.__init__(self) asyncore.dispatcher.__init__(self) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.bind(address) self.listen(5) self.host, self.port = self.socket.getsockname()[:2] self.handler_instance = None self._active = False self._active_lock = threading.Lock() # --- public API @property def running(self): return self._active def start(self): assert not self.running self.__flag = threading.Event() threading.Thread.start(self) self.__flag.wait() def stop(self): assert self.running self._active = False self.join() def wait(self): # wait for handler connection to be closed, then stop the server while not getattr(self.handler_instance, "closed", False): time.sleep(0.001) self.stop() # --- internals def run(self): self._active = True self.__flag.set() while self._active and asyncore.socket_map: self._active_lock.acquire() asyncore.loop(timeout=0.001, count=1) self._active_lock.release() asyncore.close_all() def handle_accept(self): conn, addr = self.accept() self.handler_instance = self.Handler(conn) def handle_connect(self): self.close() handle_read = handle_connect def writable(self): return 0 def handle_error(self): raise @unittest.skipUnless(threading is not None, "test needs threading module") @unittest.skipUnless(hasattr(os, 'sendfile'), "test needs os.sendfile()") class TestSendfile(unittest.TestCase): DATA = b"12345abcde" * 16 * 1024 # 160 KB SUPPORT_HEADERS_TRAILERS = not sys.platform.startswith("linux") and \ not sys.platform.startswith("solaris") and \ not sys.platform.startswith("sunos") requires_headers_trailers = unittest.skipUnless(SUPPORT_HEADERS_TRAILERS, 'requires headers and trailers support') @classmethod def setUpClass(cls): cls.key = support.threading_setup() create_file(support.TESTFN, cls.DATA) @classmethod def tearDownClass(cls): support.threading_cleanup(*cls.key) support.unlink(support.TESTFN) def setUp(self): self.server = SendfileTestServer((support.HOST, 0)) self.server.start() self.client = socket.socket() self.client.connect((self.server.host, self.server.port)) self.client.settimeout(1) # synchronize by waiting for "220 ready" response self.client.recv(1024) self.sockno = self.client.fileno() self.file = open(support.TESTFN, 'rb') self.fileno = self.file.fileno() def tearDown(self): self.file.close() self.client.close() if self.server.running: self.server.stop() def sendfile_wrapper(self, sock, file, offset, nbytes, headers=[], trailers=[]): """A higher level wrapper representing how an application is supposed to use sendfile(). """ while 1: try: if self.SUPPORT_HEADERS_TRAILERS: return os.sendfile(sock, file, offset, nbytes, headers, trailers) else: return os.sendfile(sock, file, offset, nbytes) except OSError as err: if err.errno == errno.ECONNRESET: # disconnected raise elif err.errno in (errno.EAGAIN, errno.EBUSY): # we have to retry send data continue else: raise def test_send_whole_file(self): # normal send total_sent = 0 offset = 0 nbytes = 4096 while total_sent < len(self.DATA): sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break offset += sent total_sent += sent self.assertTrue(sent <= nbytes) self.assertEqual(offset, total_sent) self.assertEqual(total_sent, len(self.DATA)) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(len(data), len(self.DATA)) self.assertEqual(data, self.DATA) def test_send_at_certain_offset(self): # start sending a file at a certain offset total_sent = 0 offset = len(self.DATA) // 2 must_send = len(self.DATA) - offset nbytes = 4096 while total_sent < must_send: sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break offset += sent total_sent += sent self.assertTrue(sent <= nbytes) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() expected = self.DATA[len(self.DATA) // 2:] self.assertEqual(total_sent, len(expected)) self.assertEqual(len(data), len(expected)) self.assertEqual(data, expected) def test_offset_overflow(self): # specify an offset > file size offset = len(self.DATA) + 4096 try: sent = os.sendfile(self.sockno, self.fileno, offset, 4096) except OSError as e: # Solaris can raise EINVAL if offset >= file length, ignore. if e.errno != errno.EINVAL: raise else: self.assertEqual(sent, 0) self.client.shutdown(socket.SHUT_RDWR) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(data, b'') def test_invalid_offset(self): with self.assertRaises(OSError) as cm: os.sendfile(self.sockno, self.fileno, -1, 4096) self.assertEqual(cm.exception.errno, errno.EINVAL) def test_keywords(self): # Keyword arguments should be supported os.sendfile(out=self.sockno, offset=0, count=4096, **{'in': self.fileno}) if self.SUPPORT_HEADERS_TRAILERS: os.sendfile(self.sockno, self.fileno, offset=0, count=4096, headers=(), trailers=(), flags=0) # --- headers / trailers tests @requires_headers_trailers def test_headers(self): total_sent = 0 sent = os.sendfile(self.sockno, self.fileno, 0, 4096, headers=[b"x" * 512]) total_sent += sent offset = 4096 nbytes = 4096 while 1: sent = self.sendfile_wrapper(self.sockno, self.fileno, offset, nbytes) if sent == 0: break total_sent += sent offset += sent expected_data = b"x" * 512 + self.DATA self.assertEqual(total_sent, len(expected_data)) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(hash(data), hash(expected_data)) @requires_headers_trailers def test_trailers(self): TESTFN2 = support.TESTFN + "2" file_data = b"abcdef" self.addCleanup(support.unlink, TESTFN2) create_file(TESTFN2, file_data) with open(TESTFN2, 'rb') as f: os.sendfile(self.sockno, f.fileno(), 0, len(file_data), trailers=[b"1234"]) self.client.close() self.server.wait() data = self.server.handler_instance.get_data() self.assertEqual(data, b"abcdef1234") @requires_headers_trailers @unittest.skipUnless(hasattr(os, 'SF_NODISKIO'), 'test needs os.SF_NODISKIO') def test_flags(self): try: os.sendfile(self.sockno, self.fileno, 0, 4096, flags=os.SF_NODISKIO) except OSError as err: if err.errno not in (errno.EBUSY, errno.EAGAIN): raise def supports_extended_attributes(): if not hasattr(os, "setxattr"): return False try: with open(support.TESTFN, "xb", 0) as fp: try: os.setxattr(fp.fileno(), b"user.test", b"") except OSError: return False finally: support.unlink(support.TESTFN) return True @unittest.skipUnless(supports_extended_attributes(), "no non-broken extended attribute support") # Kernels < 2.6.39 don't respect setxattr flags. @support.requires_linux_version(2, 6, 39) class ExtendedAttributeTests(unittest.TestCase): def _check_xattrs_str(self, s, getxattr, setxattr, removexattr, listxattr, **kwargs): fn = support.TESTFN self.addCleanup(support.unlink, fn) create_file(fn) with self.assertRaises(OSError) as cm: getxattr(fn, s("user.test"), **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) init_xattr = listxattr(fn) self.assertIsInstance(init_xattr, list) setxattr(fn, s("user.test"), b"", **kwargs) xattr = set(init_xattr) xattr.add("user.test") self.assertEqual(set(listxattr(fn)), xattr) self.assertEqual(getxattr(fn, b"user.test", **kwargs), b"") setxattr(fn, s("user.test"), b"hello", os.XATTR_REPLACE, **kwargs) self.assertEqual(getxattr(fn, b"user.test", **kwargs), b"hello") with self.assertRaises(OSError) as cm: setxattr(fn, s("user.test"), b"bye", os.XATTR_CREATE, **kwargs) self.assertEqual(cm.exception.errno, errno.EEXIST) with self.assertRaises(OSError) as cm: setxattr(fn, s("user.test2"), b"bye", os.XATTR_REPLACE, **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) setxattr(fn, s("user.test2"), b"foo", os.XATTR_CREATE, **kwargs) xattr.add("user.test2") self.assertEqual(set(listxattr(fn)), xattr) removexattr(fn, s("user.test"), **kwargs) with self.assertRaises(OSError) as cm: getxattr(fn, s("user.test"), **kwargs) self.assertEqual(cm.exception.errno, errno.ENODATA) xattr.remove("user.test") self.assertEqual(set(listxattr(fn)), xattr) self.assertEqual(getxattr(fn, s("user.test2"), **kwargs), b"foo") setxattr(fn, s("user.test"), b"a"*1024, **kwargs) self.assertEqual(getxattr(fn, s("user.test"), **kwargs), b"a"*1024) removexattr(fn, s("user.test"), **kwargs) many = sorted("user.test{}".format(i) for i in range(100)) for thing in many: setxattr(fn, thing, b"x", **kwargs) self.assertEqual(set(listxattr(fn)), set(init_xattr) | set(many)) def _check_xattrs(self, *args, **kwargs): self._check_xattrs_str(str, *args, **kwargs) support.unlink(support.TESTFN) self._check_xattrs_str(os.fsencode, *args, **kwargs) support.unlink(support.TESTFN) def test_simple(self): self._check_xattrs(os.getxattr, os.setxattr, os.removexattr, os.listxattr) def test_lpath(self): self._check_xattrs(os.getxattr, os.setxattr, os.removexattr, os.listxattr, follow_symlinks=False) def test_fds(self): def getxattr(path, *args): with open(path, "rb") as fp: return os.getxattr(fp.fileno(), *args) def setxattr(path, *args): with open(path, "wb", 0) as fp: os.setxattr(fp.fileno(), *args) def removexattr(path, *args): with open(path, "wb", 0) as fp: os.removexattr(fp.fileno(), *args) def listxattr(path, *args): with open(path, "rb") as fp: return os.listxattr(fp.fileno(), *args) self._check_xattrs(getxattr, setxattr, removexattr, listxattr) @unittest.skipUnless(hasattr(os, 'get_terminal_size'), "requires os.get_terminal_size") class TermsizeTests(unittest.TestCase): def test_does_not_crash(self): """Check if get_terminal_size() returns a meaningful value. There's no easy portable way to actually check the size of the terminal, so let's check if it returns something sensible instead. """ try: size = os.get_terminal_size() except OSError as e: if sys.platform == "win32" or e.errno in (errno.EINVAL, errno.ENOTTY): # Under win32 a generic OSError can be thrown if the # handle cannot be retrieved self.skipTest("failed to query terminal size") raise self.assertGreaterEqual(size.columns, 0) self.assertGreaterEqual(size.lines, 0) def test_stty_match(self): """Check if stty returns the same results stty actually tests stdin, so get_terminal_size is invoked on stdin explicitly. If stty succeeded, then get_terminal_size() should work too. """ try: size = subprocess.check_output(['stty', 'size']).decode().split() except (FileNotFoundError, subprocess.CalledProcessError): self.skipTest("stty invocation failed") expected = (int(size[1]), int(size[0])) # reversed order try: actual = os.get_terminal_size(sys.__stdin__.fileno()) except OSError as e: if sys.platform == "win32" or e.errno in (errno.EINVAL, errno.ENOTTY): # Under win32 a generic OSError can be thrown if the # handle cannot be retrieved self.skipTest("failed to query terminal size") raise self.assertEqual(expected, actual) class OSErrorTests(unittest.TestCase): def setUp(self): class Str(str): pass self.bytes_filenames = [] self.unicode_filenames = [] if support.TESTFN_UNENCODABLE is not None: decoded = support.TESTFN_UNENCODABLE else: decoded = support.TESTFN self.unicode_filenames.append(decoded) self.unicode_filenames.append(Str(decoded)) if support.TESTFN_UNDECODABLE is not None: encoded = support.TESTFN_UNDECODABLE else: encoded = os.fsencode(support.TESTFN) self.bytes_filenames.append(encoded) self.bytes_filenames.append(bytearray(encoded)) self.bytes_filenames.append(memoryview(encoded)) self.filenames = self.bytes_filenames + self.unicode_filenames def test_oserror_filename(self): funcs = [ (self.filenames, os.chdir,), (self.filenames, os.chmod, 0o777), (self.filenames, os.lstat,), (self.filenames, os.open, os.O_RDONLY), (self.filenames, os.rmdir,), (self.filenames, os.stat,), (self.filenames, os.unlink,), ] if sys.platform == "win32": funcs.extend(( (self.bytes_filenames, os.rename, b"dst"), (self.bytes_filenames, os.replace, b"dst"), (self.unicode_filenames, os.rename, "dst"), (self.unicode_filenames, os.replace, "dst"), (self.unicode_filenames, os.listdir, ), )) else: funcs.extend(( (self.filenames, os.listdir,), (self.filenames, os.rename, "dst"), (self.filenames, os.replace, "dst"), )) if hasattr(os, "chown"): funcs.append((self.filenames, os.chown, 0, 0)) if hasattr(os, "lchown"): funcs.append((self.filenames, os.lchown, 0, 0)) if hasattr(os, "truncate"): funcs.append((self.filenames, os.truncate, 0)) if hasattr(os, "chflags"): funcs.append((self.filenames, os.chflags, 0)) if hasattr(os, "lchflags"): funcs.append((self.filenames, os.lchflags, 0)) if hasattr(os, "chroot"): funcs.append((self.filenames, os.chroot,)) if hasattr(os, "link"): if sys.platform == "win32": funcs.append((self.bytes_filenames, os.link, b"dst")) funcs.append((self.unicode_filenames, os.link, "dst")) else: funcs.append((self.filenames, os.link, "dst")) if hasattr(os, "listxattr"): funcs.extend(( (self.filenames, os.listxattr,), (self.filenames, os.getxattr, "user.test"), (self.filenames, os.setxattr, "user.test", b'user'), (self.filenames, os.removexattr, "user.test"), )) if hasattr(os, "lchmod"): funcs.append((self.filenames, os.lchmod, 0o777)) if hasattr(os, "readlink"): if sys.platform == "win32": funcs.append((self.unicode_filenames, os.readlink,)) else: funcs.append((self.filenames, os.readlink,)) for filenames, func, *func_args in funcs: for name in filenames: try: if isinstance(name, (str, bytes)): func(name, *func_args) else: with self.assertWarnsRegex(DeprecationWarning, 'should be'): func(name, *func_args) except OSError as err: self.assertIs(err.filename, name, str(func)) except UnicodeDecodeError: pass else: self.fail("No exception thrown by {}".format(func)) class CPUCountTests(unittest.TestCase): def test_cpu_count(self): cpus = os.cpu_count() if cpus is not None: self.assertIsInstance(cpus, int) self.assertGreater(cpus, 0) else: self.skipTest("Could not determine the number of CPUs") class FDInheritanceTests(unittest.TestCase): def test_get_set_inheritable(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) os.set_inheritable(fd, True) self.assertEqual(os.get_inheritable(fd), True) @unittest.skipIf(fcntl is None, "need fcntl") def test_get_inheritable_cloexec(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) # clear FD_CLOEXEC flag flags = fcntl.fcntl(fd, fcntl.F_GETFD) flags &= ~fcntl.FD_CLOEXEC fcntl.fcntl(fd, fcntl.F_SETFD, flags) self.assertEqual(os.get_inheritable(fd), True) @unittest.skipIf(fcntl is None, "need fcntl") def test_set_inheritable_cloexec(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(fcntl.fcntl(fd, fcntl.F_GETFD) & fcntl.FD_CLOEXEC, fcntl.FD_CLOEXEC) os.set_inheritable(fd, True) self.assertEqual(fcntl.fcntl(fd, fcntl.F_GETFD) & fcntl.FD_CLOEXEC, 0) def test_open(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_inheritable(fd), False) @unittest.skipUnless(hasattr(os, 'pipe'), "need os.pipe()") def test_pipe(self): rfd, wfd = os.pipe() self.addCleanup(os.close, rfd) self.addCleanup(os.close, wfd) self.assertEqual(os.get_inheritable(rfd), False) self.assertEqual(os.get_inheritable(wfd), False) def test_dup(self): fd1 = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd1) fd2 = os.dup(fd1) self.addCleanup(os.close, fd2) self.assertEqual(os.get_inheritable(fd2), False) @unittest.skipUnless(hasattr(os, 'dup2'), "need os.dup2()") def test_dup2(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) # inheritable by default fd2 = os.open(__file__, os.O_RDONLY) try: os.dup2(fd, fd2) self.assertEqual(os.get_inheritable(fd2), True) finally: os.close(fd2) # force non-inheritable fd3 = os.open(__file__, os.O_RDONLY) try: os.dup2(fd, fd3, inheritable=False) self.assertEqual(os.get_inheritable(fd3), False) finally: os.close(fd3) @unittest.skipUnless(hasattr(os, 'openpty'), "need os.openpty()") def test_openpty(self): master_fd, slave_fd = os.openpty() self.addCleanup(os.close, master_fd) self.addCleanup(os.close, slave_fd) self.assertEqual(os.get_inheritable(master_fd), False) self.assertEqual(os.get_inheritable(slave_fd), False) class PathTConverterTests(unittest.TestCase): # tuples of (function name, allows fd arguments, additional arguments to # function, cleanup function) functions = [ ('stat', True, (), None), ('lstat', False, (), None), ('access', False, (os.F_OK,), None), ('chflags', False, (0,), None), ('lchflags', False, (0,), None), ('open', False, (0,), getattr(os, 'close', None)), ] def test_path_t_converter(self): str_filename = support.TESTFN if os.name == 'nt': bytes_fspath = bytes_filename = None else: bytes_filename = support.TESTFN.encode('ascii') bytes_fspath = _PathLike(bytes_filename) fd = os.open(_PathLike(str_filename), os.O_WRONLY|os.O_CREAT) self.addCleanup(support.unlink, support.TESTFN) self.addCleanup(os.close, fd) int_fspath = _PathLike(fd) str_fspath = _PathLike(str_filename) for name, allow_fd, extra_args, cleanup_fn in self.functions: with self.subTest(name=name): try: fn = getattr(os, name) except AttributeError: continue for path in (str_filename, bytes_filename, str_fspath, bytes_fspath): if path is None: continue with self.subTest(name=name, path=path): result = fn(path, *extra_args) if cleanup_fn is not None: cleanup_fn(result) with self.assertRaisesRegex( TypeError, 'should be string, bytes'): fn(int_fspath, *extra_args) if allow_fd: result = fn(fd, *extra_args) # should not fail if cleanup_fn is not None: cleanup_fn(result) else: with self.assertRaisesRegex( TypeError, 'os.PathLike'): fn(fd, *extra_args) @unittest.skipUnless(hasattr(os, 'get_blocking'), 'needs os.get_blocking() and os.set_blocking()') class BlockingTests(unittest.TestCase): def test_blocking(self): fd = os.open(__file__, os.O_RDONLY) self.addCleanup(os.close, fd) self.assertEqual(os.get_blocking(fd), True) os.set_blocking(fd, False) self.assertEqual(os.get_blocking(fd), False) os.set_blocking(fd, True) self.assertEqual(os.get_blocking(fd), True) class ExportsTests(unittest.TestCase): def test_os_all(self): self.assertIn('open', os.__all__) self.assertIn('walk', os.__all__) class TestScandir(unittest.TestCase): check_no_resource_warning = support.check_no_resource_warning def setUp(self): self.path = os.path.realpath(support.TESTFN) self.bytes_path = os.fsencode(self.path) self.addCleanup(support.rmtree, self.path) os.mkdir(self.path) def create_file(self, name="file.txt"): path = self.bytes_path if isinstance(name, bytes) else self.path filename = os.path.join(path, name) create_file(filename, b'python') return filename def get_entries(self, names): entries = dict((entry.name, entry) for entry in os.scandir(self.path)) self.assertEqual(sorted(entries.keys()), names) return entries def assert_stat_equal(self, stat1, stat2, skip_fields): if skip_fields: for attr in dir(stat1): if not attr.startswith("st_"): continue if attr in ("st_dev", "st_ino", "st_nlink"): continue self.assertEqual(getattr(stat1, attr), getattr(stat2, attr), (stat1, stat2, attr)) else: self.assertEqual(stat1, stat2) def check_entry(self, entry, name, is_dir, is_file, is_symlink): self.assertIsInstance(entry, os.DirEntry) self.assertEqual(entry.name, name) self.assertEqual(entry.path, os.path.join(self.path, name)) self.assertEqual(entry.inode(), os.stat(entry.path, follow_symlinks=False).st_ino) entry_stat = os.stat(entry.path) self.assertEqual(entry.is_dir(), stat.S_ISDIR(entry_stat.st_mode)) self.assertEqual(entry.is_file(), stat.S_ISREG(entry_stat.st_mode)) self.assertEqual(entry.is_symlink(), os.path.islink(entry.path)) entry_lstat = os.stat(entry.path, follow_symlinks=False) self.assertEqual(entry.is_dir(follow_symlinks=False), stat.S_ISDIR(entry_lstat.st_mode)) self.assertEqual(entry.is_file(follow_symlinks=False), stat.S_ISREG(entry_lstat.st_mode)) self.assert_stat_equal(entry.stat(), entry_stat, os.name == 'nt' and not is_symlink) self.assert_stat_equal(entry.stat(follow_symlinks=False), entry_lstat, os.name == 'nt') def test_attributes(self): link = hasattr(os, 'link') symlink = support.can_symlink() dirname = os.path.join(self.path, "dir") os.mkdir(dirname) filename = self.create_file("file.txt") if link: os.link(filename, os.path.join(self.path, "link_file.txt")) if symlink: os.symlink(dirname, os.path.join(self.path, "symlink_dir"), target_is_directory=True) os.symlink(filename, os.path.join(self.path, "symlink_file.txt")) names = ['dir', 'file.txt'] if link: names.append('link_file.txt') if symlink: names.extend(('symlink_dir', 'symlink_file.txt')) entries = self.get_entries(names) entry = entries['dir'] self.check_entry(entry, 'dir', True, False, False) entry = entries['file.txt'] self.check_entry(entry, 'file.txt', False, True, False) if link: entry = entries['link_file.txt'] self.check_entry(entry, 'link_file.txt', False, True, False) if symlink: entry = entries['symlink_dir'] self.check_entry(entry, 'symlink_dir', True, False, True) entry = entries['symlink_file.txt'] self.check_entry(entry, 'symlink_file.txt', False, True, True) def get_entry(self, name): path = self.bytes_path if isinstance(name, bytes) else self.path entries = list(os.scandir(path)) self.assertEqual(len(entries), 1) entry = entries[0] self.assertEqual(entry.name, name) return entry def create_file_entry(self, name='file.txt'): filename = self.create_file(name=name) return self.get_entry(os.path.basename(filename)) def test_current_directory(self): filename = self.create_file() old_dir = os.getcwd() try: os.chdir(self.path) # call scandir() without parameter: it must list the content # of the current directory entries = dict((entry.name, entry) for entry in os.scandir()) self.assertEqual(sorted(entries.keys()), [os.path.basename(filename)]) finally: os.chdir(old_dir) def test_repr(self): entry = self.create_file_entry() self.assertEqual(repr(entry), "<DirEntry 'file.txt'>") def test_fspath_protocol(self): entry = self.create_file_entry() self.assertEqual(os.fspath(entry), os.path.join(self.path, 'file.txt')) def test_fspath_protocol_bytes(self): bytes_filename = os.fsencode('bytesfile.txt') bytes_entry = self.create_file_entry(name=bytes_filename) fspath = os.fspath(bytes_entry) self.assertIsInstance(fspath, bytes) self.assertEqual(fspath, os.path.join(os.fsencode(self.path),bytes_filename)) def test_removed_dir(self): path = os.path.join(self.path, 'dir') os.mkdir(path) entry = self.get_entry('dir') os.rmdir(path) # On POSIX, is_dir() result depends if scandir() filled d_type or not if os.name == 'nt': self.assertTrue(entry.is_dir()) self.assertFalse(entry.is_file()) self.assertFalse(entry.is_symlink()) if os.name == 'nt': self.assertRaises(FileNotFoundError, entry.inode) # don't fail entry.stat() entry.stat(follow_symlinks=False) else: self.assertGreater(entry.inode(), 0) self.assertRaises(FileNotFoundError, entry.stat) self.assertRaises(FileNotFoundError, entry.stat, follow_symlinks=False) def test_removed_file(self): entry = self.create_file_entry() os.unlink(entry.path) self.assertFalse(entry.is_dir()) # On POSIX, is_dir() result depends if scandir() filled d_type or not if os.name == 'nt': self.assertTrue(entry.is_file()) self.assertFalse(entry.is_symlink()) if os.name == 'nt': self.assertRaises(FileNotFoundError, entry.inode) # don't fail entry.stat() entry.stat(follow_symlinks=False) else: self.assertGreater(entry.inode(), 0) self.assertRaises(FileNotFoundError, entry.stat) self.assertRaises(FileNotFoundError, entry.stat, follow_symlinks=False) def test_broken_symlink(self): if not support.can_symlink(): return self.skipTest('cannot create symbolic link') filename = self.create_file("file.txt") os.symlink(filename, os.path.join(self.path, "symlink.txt")) entries = self.get_entries(['file.txt', 'symlink.txt']) entry = entries['symlink.txt'] os.unlink(filename) self.assertGreater(entry.inode(), 0) self.assertFalse(entry.is_dir()) self.assertFalse(entry.is_file()) # broken symlink returns False self.assertFalse(entry.is_dir(follow_symlinks=False)) self.assertFalse(entry.is_file(follow_symlinks=False)) self.assertTrue(entry.is_symlink()) self.assertRaises(FileNotFoundError, entry.stat) # don't fail entry.stat(follow_symlinks=False) def test_bytes(self): self.create_file("file.txt") path_bytes = os.fsencode(self.path) entries = list(os.scandir(path_bytes)) self.assertEqual(len(entries), 1, entries) entry = entries[0] self.assertEqual(entry.name, b'file.txt') self.assertEqual(entry.path, os.fsencode(os.path.join(self.path, 'file.txt'))) @unittest.skipUnless(os.listdir in os.supports_fd, 'fd support for listdir required for this test.') def test_fd(self): self.assertIn(os.scandir, os.supports_fd) self.create_file('file.txt') expected_names = ['file.txt'] if support.can_symlink(): os.symlink('file.txt', os.path.join(self.path, 'link')) expected_names.append('link') fd = os.open(self.path, os.O_RDONLY) try: with os.scandir(fd) as it: entries = list(it) names = [entry.name for entry in entries] self.assertEqual(sorted(names), expected_names) self.assertEqual(names, os.listdir(fd)) for entry in entries: self.assertEqual(entry.path, entry.name) self.assertEqual(os.fspath(entry), entry.name) self.assertEqual(entry.is_symlink(), entry.name == 'link') if os.stat in os.supports_dir_fd: st = os.stat(entry.name, dir_fd=fd) self.assertEqual(entry.stat(), st) st = os.stat(entry.name, dir_fd=fd, follow_symlinks=False) self.assertEqual(entry.stat(follow_symlinks=False), st) finally: os.close(fd) def test_empty_path(self): self.assertRaises(FileNotFoundError, os.scandir, '') def test_consume_iterator_twice(self): self.create_file("file.txt") iterator = os.scandir(self.path) entries = list(iterator) self.assertEqual(len(entries), 1, entries) # check than consuming the iterator twice doesn't raise exception entries2 = list(iterator) self.assertEqual(len(entries2), 0, entries2) def test_bad_path_type(self): for obj in [1.234, {}, []]: self.assertRaises(TypeError, os.scandir, obj) def test_close(self): self.create_file("file.txt") self.create_file("file2.txt") iterator = os.scandir(self.path) next(iterator) iterator.close() # multiple closes iterator.close() with self.check_no_resource_warning(): del iterator def test_context_manager(self): self.create_file("file.txt") self.create_file("file2.txt") with os.scandir(self.path) as iterator: next(iterator) with self.check_no_resource_warning(): del iterator def test_context_manager_close(self): self.create_file("file.txt") self.create_file("file2.txt") with os.scandir(self.path) as iterator: next(iterator) iterator.close() def test_context_manager_exception(self): self.create_file("file.txt") self.create_file("file2.txt") with self.assertRaises(ZeroDivisionError): with os.scandir(self.path) as iterator: next(iterator) 1/0 with self.check_no_resource_warning(): del iterator def test_resource_warning(self): self.create_file("file.txt") self.create_file("file2.txt") iterator = os.scandir(self.path) next(iterator) with self.assertWarns(ResourceWarning): del iterator support.gc_collect() # exhausted iterator iterator = os.scandir(self.path) list(iterator) with self.check_no_resource_warning(): del iterator class TestPEP519(unittest.TestCase): # Abstracted so it can be overridden to test pure Python implementation # if a C version is provided. fspath = staticmethod(os.fspath) def test_return_bytes(self): for b in b'hello', b'goodbye', b'some/path/and/file': self.assertEqual(b, self.fspath(b)) def test_return_string(self): for s in 'hello', 'goodbye', 'some/path/and/file': self.assertEqual(s, self.fspath(s)) def test_fsencode_fsdecode(self): for p in "path/like/object", b"path/like/object": pathlike = _PathLike(p) self.assertEqual(p, self.fspath(pathlike)) self.assertEqual(b"path/like/object", os.fsencode(pathlike)) self.assertEqual("path/like/object", os.fsdecode(pathlike)) def test_pathlike(self): self.assertEqual('#feelthegil', self.fspath(_PathLike('#feelthegil'))) self.assertTrue(issubclass(_PathLike, os.PathLike)) self.assertTrue(isinstance(_PathLike(), os.PathLike)) def test_garbage_in_exception_out(self): vapor = type('blah', (), {}) for o in int, type, os, vapor(): self.assertRaises(TypeError, self.fspath, o) def test_argument_required(self): self.assertRaises(TypeError, self.fspath) def test_bad_pathlike(self): # __fspath__ returns a value other than str or bytes. self.assertRaises(TypeError, self.fspath, _PathLike(42)) # __fspath__ attribute that is not callable. c = type('foo', (), {}) c.__fspath__ = 1 self.assertRaises(TypeError, self.fspath, c()) # __fspath__ raises an exception. self.assertRaises(ZeroDivisionError, self.fspath, _PathLike(ZeroDivisionError())) # Only test if the C version is provided, otherwise TestPEP519 already tested # the pure Python implementation. if hasattr(os, "_fspath"): class TestPEP519PurePython(TestPEP519): """Explicitly test the pure Python implementation of os.fspath().""" fspath = staticmethod(os._fspath) if __name__ == "__main__": unittest.main()
37.23863
101
0.595005
4a22013f7c1f8e84fa1006b847fd38a6e09d9136
2,389
py
Python
app/soc/views/helper/templates.py
jamslevy/gsoc
e995e1a8d34e0291ab988ba501ae4efc61f9516d
[ "Apache-2.0" ]
1
2016-05-09T14:43:53.000Z
2016-05-09T14:43:53.000Z
app/soc/views/helper/templates.py
jamslevy/gsoc
e995e1a8d34e0291ab988ba501ae4efc61f9516d
[ "Apache-2.0" ]
null
null
null
app/soc/views/helper/templates.py
jamslevy/gsoc
e995e1a8d34e0291ab988ba501ae4efc61f9516d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2.5 # # Copyright 2008 the Melange authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for manipulating templates. """ __authors__ = [ '"Todd Larsen" <[email protected]>', '"Pawel Solyga" <[email protected]>' ] def makeSiblingTemplatesList(templates, new_template_file, default_template=None): """Converts template paths into a list of "sibling" templates. Args: templates: search list of templates (or just a single template not in a list) from which template paths will be extracted (discarding the final template file name of each template) new_template_file: new "sibling" template file to append to each extracted template path default_template: a default template (or a list of them) to append to the end of the generated "sibling" template paths; default is None Returns: A list of potential "sibling" templates named by new_template_file located in the paths of the templates in the supplied list. For example, from: ['foo/bar/the_old_template.html', 'foo/the_old_template.html'] to: ['foo/bar/some_new_template.html', 'foo/some_new_template.html'] """ if not isinstance(templates, (list, tuple)): templates = [templates] if default_template is None: default_template = [] if not isinstance(default_template, (list, tuple)): default_template = [default_template] sibling_templates = [ '%s/%s' % (t.rsplit('/', 1)[0], new_template_file) for t in templates] return sibling_templates + default_template def unescape(html): """Returns the given HTML with ampersands, quotes and carets decoded. """ if not isinstance(html, basestring): html = str(html) html.replace('&#39;',"'").replace('&lt;', '<') html.replace('&gt;', '>').replace('&quot;', '"').replace('&amp;', '&') return html
34.128571
78
0.701549
4a2201d4e6342f3633b1f53b7c76ba1712de1244
4,197
py
Python
mentalist/view/substitution.py
qkum/mentalist
fb6944f5f60d0964a085606abcdf6ad0dad8905f
[ "MIT" ]
1,293
2017-11-07T15:36:24.000Z
2022-03-30T06:28:34.000Z
mentalist/view/substitution.py
qkum/mentalist
fb6944f5f60d0964a085606abcdf6ad0dad8905f
[ "MIT" ]
22
2018-01-17T12:49:55.000Z
2021-12-24T03:45:08.000Z
mentalist/view/substitution.py
qkum/mentalist
fb6944f5f60d0964a085606abcdf6ad0dad8905f
[ "MIT" ]
215
2017-11-07T19:55:20.000Z
2022-03-30T06:28:36.000Z
import tkinter as Tk from functools import partial from .base import BaseNode from .main import center_window from .const import SUBSTITUTION_CHECKS, SPECIAL_TYPES from .. import model class SubstitutionNode(BaseNode): '''Substitute one character for another ''' def __init__(self, controller, master=None, **kwargs): BaseNode.__init__(self, controller, master=master, title='Substitution', **kwargs) self.case_popup = None self.sp_case = None def add_upper_button(self): mb = Tk.Menubutton(self.upper_frame, text=' + ', relief='raised', font=('Helvetica', '14')) mb.menu = Tk.Menu(mb, tearoff=0) mb['menu'] = mb.menu label = 'No Substitution' mb.menu.add_command(label=label, command=partial(self.controller.add_attr, label=label, node_view=self, attr_class=model.NothingMutatorAttr)) mb.menu.add_command(label='Replace All Instances...', command=partial(self.open_sub_popup, 'All')) mb.menu.add_command(label='Replace First Instance...', command=partial(self.open_sub_popup, 'First')) mb.menu.add_command(label='Replace Last Instance...', command=partial(self.open_sub_popup, 'Last')) mb.pack(side='left', fill='x', padx=10, pady=5) def open_sub_popup(self, type_): '''Opens popup for defining the characters to substitute type_: 'All', 'First', or 'Last' ''' self.sub_popup = Tk.Toplevel() self.sub_popup.withdraw() self.sub_popup.title('Replace {}'.format(type_)) self.sub_popup.resizable(width=False, height=False) frame = Tk.Frame(self.sub_popup) lb = Tk.Label(frame, text='Select Substitution Checks'.format(self.title)) lb.pack(fill='both', side='top') # Create a checkbox for each possible character substitution box = Tk.Frame(frame) self.chk_subs = [] max_column_checks = 15 for v in range(len(SUBSTITUTION_CHECKS)): val = SUBSTITUTION_CHECKS[v] var = Tk.IntVar() tmp = Tk.Checkbutton(box, text=val, relief=Tk.FLAT, variable=var, font=('Courier', '14')) self.chk_subs.append(var) # Split the checks into columns so the window isn't too tall tmp.grid(row=v % max_column_checks, column=v // max_column_checks, sticky='W', padx=10) box.pack(fill='both', side='top', padx=30, pady=20) box_type = Tk.Frame(frame) self.sub_type = Tk.IntVar() for i, val in enumerate(SPECIAL_TYPES): tmp = Tk.Radiobutton(box_type, text=val, relief=Tk.FLAT, variable=self.sub_type, value=i) tmp.pack(fill='both', side='left') box_type.pack(fill='both', side='top', padx=30, pady=20) btn_box = Tk.Frame(frame) btn_cancel = Tk.Button(btn_box, text='Cancel', command=self.cancel_sub_popup) btn_cancel.pack(side='right', padx=10, pady=20) btn_ok = Tk.Button(btn_box, text='Ok', command=partial(self.on_ok_sub_popup, type_)) btn_ok.pack(side='left', padx=10, pady=20) btn_box.pack() frame.pack(fill='both', padx=40, pady=10) center_window(self.sub_popup, self.main.master) self.sub_popup.focus_set() def cancel_sub_popup(self, *args): if self.sub_popup: self.sub_popup.destroy() self.sub_popup = None def on_ok_sub_popup(self, type_, *args): '''OK in substitution popup was selected, create the attribute type_: 'All', 'First', or 'Last' ''' checked_vals = [SUBSTITUTION_CHECKS[i] for i in range(len(SUBSTITUTION_CHECKS)) if self.chk_subs[i].get() == 1] if len(checked_vals) > 0: special_type = SPECIAL_TYPES[self.sub_type.get()] label = 'Replace {}: {} ({})'.format(type_, ', '.join(checked_vals), special_type) self.controller.add_attr(label=label, node_view=self, attr_class=model.SubstitutionAttr, type_=type_, checked_vals=checked_vals, all_together=special_type=='All together') self.cancel_sub_popup()
46.120879
183
0.627353
4a22023c68e05bd941096efad3c7f93687b5e08c
1,609
py
Python
milk2/milk2.py
jasonhuh/UASCO-Solutions
dfcd574d12b574f396ac041dc1b33c20e9282e5c
[ "MIT" ]
null
null
null
milk2/milk2.py
jasonhuh/UASCO-Solutions
dfcd574d12b574f396ac041dc1b33c20e9282e5c
[ "MIT" ]
null
null
null
milk2/milk2.py
jasonhuh/UASCO-Solutions
dfcd574d12b574f396ac041dc1b33c20e9282e5c
[ "MIT" ]
null
null
null
""" ID: jasonhu5 LANG: PYTHON3 TASK: milk2 """ def solve(ar): # Combine overlapping events def merge_events(ar): ar = sorted(ar, key=lambda x: x[0]) # Sort by start time stack = [ar[0]] for _, event in enumerate(ar[1:]): top = stack[-1] if top[1] >= event[0]: # Events overlap if top[1] < event[1]: stack.pop() stack.append((top[0], event[1])) else: stack.append(event) return stack finals = merge_events(ar) max_range, max_space = finals[0][1] - finals[0][0], 0 for i, event in enumerate(finals[1:], 1): max_range = max(max_range, event[1] - event[0]) max_space = max(max_space, event[0] - finals[i-1][1]) return (max_range, max_space) def test_simple(): assert solve([(100, 200)]) == (100, 0) assert solve([(300, 1000), (700, 1200), (1500, 2100)]) == (900, 300) assert solve([(2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), \ (14, 15), (16, 17), (18, 19), (1, 20)]) == (19, 0) assert solve([(100, 200), (200, 400), (400, 800), (800, 1600), (50, 100), \ (1700, 3200)]) == (1550, 100) if __name__ == '__main__': test_simple() fin = open('milk2.in', 'r') fout = open('milk2.out', 'w') N = int(fin.readline().strip()) ar = [] for _ in range(N): start, finish = map(int, fin.readline().strip().split()) ar.append((start, finish)) ans = solve(ar) fout.write('{} {}\n'.format(ans[0], ans[1])) fout.close()
32.836735
79
0.497825
4a220372594bc419c6e7de1c95df55a49cc8c5a0
12,520
py
Python
Train_faceNet_model/Train+FaceNet+model/tf_slim/nets/inception_v3_test.py
yxing0225/Masked_Face_Detection-Recognition
126c5bebcefb5b5fbbb105007f32574cb9359064
[ "Apache-2.0" ]
307
2019-06-28T00:25:39.000Z
2022-03-27T15:56:15.000Z
Train_faceNet_model/Train+FaceNet+model/tf_slim/nets/inception_v3_test.py
yxing0225/Masked_Face_Detection-Recognition
126c5bebcefb5b5fbbb105007f32574cb9359064
[ "Apache-2.0" ]
17
2019-07-26T08:21:40.000Z
2022-02-25T02:53:23.000Z
Train_faceNet_model/Train+FaceNet+model/tf_slim/nets/inception_v3_test.py
yxing0225/Masked_Face_Detection-Recognition
126c5bebcefb5b5fbbb105007f32574cb9359064
[ "Apache-2.0" ]
95
2019-06-30T05:44:07.000Z
2022-03-28T04:38:52.000Z
# coding=utf-8 # coding=utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nets.inception_v3.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tf_slim import model_analyzer from tf_slim.nets import inception_v3 from tf_slim.ops import variables as variables_lib from tf_slim.ops.arg_scope import arg_scope # pylint:disable=g-direct-tensorflow-import from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test # pylint:enable=g-direct-tensorflow-import def setUpModule(): tf.disable_eager_execution() class InceptionV3Test(test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildBaseNetwork(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) final_endpoint, end_points = inception_v3.inception_v3_base(inputs) self.assertTrue(final_endpoint.op.name.startswith('InceptionV3/Mixed_7c')) self.assertListEqual(final_endpoint.get_shape().as_list(), [batch_size, 8, 8, 2048]) expected_endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c' ] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 299, 299 endpoints = [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3', 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c' ] for index, endpoint in enumerate(endpoints): with ops.Graph().as_default(): inputs = random_ops.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = inception_v3.inception_v3_base( inputs, final_endpoint=endpoint) self.assertTrue( out_tensor.op.name.startswith('InceptionV3/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points) def testBuildAndCheckAllEndPointsUptoMixed7c(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3_base( inputs, final_endpoint='Mixed_7c') endpoints_shapes = { 'Conv2d_1a_3x3': [batch_size, 149, 149, 32], 'Conv2d_2a_3x3': [batch_size, 147, 147, 32], 'Conv2d_2b_3x3': [batch_size, 147, 147, 64], 'MaxPool_3a_3x3': [batch_size, 73, 73, 64], 'Conv2d_3b_1x1': [batch_size, 73, 73, 80], 'Conv2d_4a_3x3': [batch_size, 71, 71, 192], 'MaxPool_5a_3x3': [batch_size, 35, 35, 192], 'Mixed_5b': [batch_size, 35, 35, 256], 'Mixed_5c': [batch_size, 35, 35, 288], 'Mixed_5d': [batch_size, 35, 35, 288], 'Mixed_6a': [batch_size, 17, 17, 768], 'Mixed_6b': [batch_size, 17, 17, 768], 'Mixed_6c': [batch_size, 17, 17, 768], 'Mixed_6d': [batch_size, 17, 17, 768], 'Mixed_6e': [batch_size, 17, 17, 768], 'Mixed_7a': [batch_size, 8, 8, 1280], 'Mixed_7b': [batch_size, 8, 8, 2048], 'Mixed_7c': [batch_size, 8, 8, 2048] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 299, 299 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with arg_scope(inception_v3.inception_v3_arg_scope()): inception_v3.inception_v3_base(inputs) total_params, _ = model_analyzer.analyze_vars( variables_lib.get_model_variables()) self.assertAlmostEqual(21802784, total_params) def testBuildEndPoints(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue('Logits' in end_points) logits = end_points['Logits'] self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('AuxLogits' in end_points) aux_logits = end_points['AuxLogits'] self.assertListEqual(aux_logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Mixed_7c' in end_points) pre_pool = end_points['Mixed_7c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 8, 8, 2048]) self.assertTrue('PreLogits' in end_points) pre_logits = end_points['PreLogits'] self.assertListEqual(pre_logits.get_shape().as_list(), [batch_size, 1, 1, 2048]) def testBuildEndPointsWithDepthMultiplierLessThanOne(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v3.inception_v3( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(0.5 * original_depth, new_depth) def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v3.inception_v3(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v3.inception_v3( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(2.0 * original_depth, new_depth) def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = inception_v3.inception_v3(inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = inception_v3.inception_v3(inputs, num_classes, depth_multiplier=0.0) def testHalfSizeImages(self): batch_size = 5 height, width = 150, 150 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 3, 3, 2048]) def testUnknownImageShape(self): ops.reset_default_graph() batch_size = 2 height, width = 299, 299 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.cached_session() as sess: inputs = array_ops.placeholder( dtypes.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception_v3.inception_v3(inputs, num_classes) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_7c'] feed_dict = {inputs: input_np} variables.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048]) def testUnknownBatchSize(self): batch_size = 1 height, width = 299, 299 num_classes = 1000 inputs = array_ops.placeholder(dtypes.float32, (None, height, width, 3)) logits, _ = inception_v3.inception_v3(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV3/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = random_ops.random_uniform((batch_size, height, width, 3)) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 299, 299 num_classes = 1000 eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = inception_v3.inception_v3( eval_inputs, num_classes, is_training=False) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEqual(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = random_ops.random_uniform( (train_batch_size, height, width, 3)) inception_v3.inception_v3(train_inputs, num_classes) eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3)) logits, _ = inception_v3.inception_v3( eval_inputs, num_classes, is_training=False, reuse=True) predictions = math_ops.argmax(logits, 1) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEqual(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = random_ops.random_uniform([1, 299, 299, 3]) logits, _ = inception_v3.inception_v3( images, num_classes=num_classes, spatial_squeeze=False) with self.cached_session() as sess: variables.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) if __name__ == '__main__': test.main()
39.746032
80
0.692093
4a220501b117daae1426ce85f57c2b902a8b2b36
7,775
py
Python
report_stats_on_json_kg.py
RTXteam/RTX-KG2
2e4affbd423550e5b2456f97da07184a4833d66a
[ "MIT" ]
3
2021-11-09T19:41:40.000Z
2021-12-26T21:51:38.000Z
report_stats_on_json_kg.py
RTXteam/RTX-KG2
2e4affbd423550e5b2456f97da07184a4833d66a
[ "MIT" ]
190
2021-05-22T01:25:49.000Z
2022-03-20T05:05:37.000Z
report_stats_on_json_kg.py
RTXteam/RTX-KG2
2e4affbd423550e5b2456f97da07184a4833d66a
[ "MIT" ]
1
2021-05-26T22:51:26.000Z
2021-05-26T22:51:26.000Z
#!/usr/bin/env python3 '''Prints a JSON overview report of a JSON knowledge graph in Biolink format, to STDOUT. Usage: report_stats_on_json_kg.py [--useSimplifiedPredicates] <inputKGFile.json> <outputKGFile.json> The input file can be optionally gzipped (specify with the .gz extension). ''' __author__ = 'Stephen Ramsey' __copyright__ = 'Oregon State University' __credits__ = ['Stephen Ramsey', 'Erica Wood', 'Veronica Flores'] __license__ = 'MIT' __version__ = '0.1.0' __maintainer__ = '' __email__ = '' __status__ = 'Prototype' import argparse import collections import datetime import gzip import json import kg2_util import shutil import sys import tempfile def make_arg_parser(): arg_parser = argparse.ArgumentParser(description='build-kg2: builds the KG2 knowledge graph for the RTX system') arg_parser.add_argument('inputFile', type=str) arg_parser.add_argument('outputFile', type=str) arg_parser.add_argument('--useSimplifiedPredicates', dest='use_simplified_predicates', action='store_true', default=False) return arg_parser def get_prefix_from_curie_id(curie_id: str): assert ':' in curie_id return curie_id.split(':')[0] def get_nodes_with_none_category(nodes: list): return [node for node in nodes if node['category_label'] is None or node['category_label'] == 'unknown category'] def count_nodes_by_curie_prefix(nodes: list): return collections.Counter([get_prefix_from_curie_id(node['id']) for node in nodes]) def count_nodes_by_curie_prefix_given_no_category(nodes: list): return count_nodes_by_curie_prefix(get_nodes_with_none_category(nodes)) def count_nodes_by_category(nodes: list): return collections.Counter([node['category_label'] for node in nodes]) def count_nodes_by_source(nodes: list): return collections.Counter([node['knowledge_source'] for node in nodes]) def count_number_of_nodes_by_source_and_category(nodes: list): fulldict = {} sourcedict = collections.Counter([node['knowledge_source'] for node in nodes]) sourcecatdict = {} categorylist = [] for source in sourcedict: categorylist = [] for node in nodes: if node['knowledge_source'] == source: categorylist.append(node['category_label']) sourcecatdict.update({source: categorylist}) for defintion in sourcecatdict: sourcecount = collections.Counter(sourcecatdict.get(defintion)) fulldict.update({defintion: sourcecount}) return fulldict def count_edges_by_source(edges: list): ret_data = None if type(edges[0]['knowledge_source']) == str: ret_data = collections.Counter([edge['knowledge_source'] for edge in edges]) else: assert type(edges[0]['knowledge_source'] == list) provby_list = [] for edge in edges: provby_list += edge['knowledge_source'] ret_data = collections.Counter(provby_list) return ret_data def count_edges_by_predicate_curie(edges: list): curie_field = 'original_predicate' if not args.use_simplified_predicates else 'predicate' return collections.Counter([edge[curie_field] for edge in edges]) def count_edges_by_predicate_type(edges: list): label_field = 'relation_label' if not args.use_simplified_predicates else 'predicate_label' return collections.Counter([edge[label_field] for edge in edges]) def count_edges_by_predicate_curie_prefix(edges: list): curie_field = 'original_predicate' if not args.use_simplified_predicates else 'predicate' return collections.Counter([get_prefix_from_curie_id(edge[curie_field]) for edge in edges]) def count_predicates_by_predicate_curie_prefix(edges: list): curie_field = 'original_predicate' if not args.use_simplified_predicates else 'predicate' unique_relation_curies = set([edge[curie_field] for edge in edges]) return collections.Counter([get_prefix_from_curie_id(curie) for curie in unique_relation_curies]) def count_types_of_pairs_of_curies_for_xrefs(edges: list): prefix_pairs_list = list() for edge in edges: if edge['relation_label'] == 'xref' or edge['relation_label'] == 'close_match': subject_curie = edge['subject'] subject_prefix = get_prefix_from_curie_id(subject_curie) object_curie = edge['object'] object_prefix = get_prefix_from_curie_id(object_curie) key = subject_prefix + '---' + object_prefix prefix_pairs_list.append(key) return collections.Counter(prefix_pairs_list) def count_types_of_pairs_of_curies_for_equivs(edges: list): prefix_pairs_list = list() for edge in edges: if edge['relation_label'] == kg2_util.EDGE_LABEL_OWL_SAME_AS: subject_curie = edge['subject'] subject_prefix = get_prefix_from_curie_id(subject_curie) object_curie = edge['object'] object_prefix = get_prefix_from_curie_id(object_curie) key = subject_prefix + '---' + object_prefix prefix_pairs_list.append(key) return collections.Counter(prefix_pairs_list) if __name__ == '__main__': args = make_arg_parser().parse_args() input_file_name = args.inputFile if not input_file_name.endswith('.gz'): input_file = open(input_file_name, 'r') graph = json.load(input_file) else: input_file = gzip.GzipFile(input_file_name, 'r') graph = json.loads(input_file.read().decode('utf-8')) if 'nodes' not in graph: print("WARNING: 'nodes' property is missing from the input JSON.", file=sys.stderr) nodes = graph.get('nodes', []) nodes = graph.get('nodes', []) for n in nodes[::-1]: # search for build info node starting at end if n["name"] == "KG2:Build": # should be the first node accessed nodes.remove(n) # remove it so stats aren't reported break if 'edges' not in graph: print("WARNING: 'edges' property is missing from the input JSON.", file=sys.stderr) edges = graph.get('edges', []) stats = {'_number_of_nodes': len(nodes), # underscore is to make sure it sorts to the top of the report '_number_of_edges': len(edges), # underscore is to make sure it sorts to the top of the report '_report_datetime': datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 'number_of_nodes_by_curie_prefix': dict(count_nodes_by_curie_prefix(nodes)), 'number_of_nodes_without_category__by_curie_prefix': dict(count_nodes_by_curie_prefix_given_no_category(nodes)), 'number_of_nodes_by_category_label': dict(count_nodes_by_category(nodes)), 'number_of_nodes_by_source': dict(count_nodes_by_source(nodes)), 'number_of_edges_by_predicate_curie': dict(count_edges_by_predicate_curie(edges)), 'number_of_edges_by_predicate_type': dict(count_edges_by_predicate_type(edges)), 'number_of_edges_by_predicate_curie_prefixes': dict(count_edges_by_predicate_curie_prefix(edges)), 'number_of_predicates_by_predicate_curie_prefixes': dict(count_predicates_by_predicate_curie_prefix(edges)), 'number_of_edges_by_source': dict(count_edges_by_source(edges)), 'types_of_pairs_of_curies_for_xrefs': dict(count_types_of_pairs_of_curies_for_xrefs(edges)), 'types_of_pairs_of_curies_for_equivs': dict(count_types_of_pairs_of_curies_for_equivs(edges)), 'number_of_nodes_by_source_and_category': dict(count_number_of_nodes_by_source_and_category(nodes))} temp_output_file = tempfile.mkstemp(prefix='kg2-')[1] with open(temp_output_file, 'w') as outfile: json.dump(stats, outfile, indent=4, sort_keys=True) shutil.move(temp_output_file, args.outputFile)
42.486339
126
0.720129
4a22055c05768cad7b118754ca41fc27214ebb80
3,114
py
Python
gitea_api/models/dismiss_pull_review_options.py
r7l/python-gitea-api
31d3dba27ea7e551e2048a1230c4ab4d73365006
[ "MIT" ]
1
2022-02-09T23:43:26.000Z
2022-02-09T23:43:26.000Z
gitea_api/models/dismiss_pull_review_options.py
r7l/python-gitea-api
31d3dba27ea7e551e2048a1230c4ab4d73365006
[ "MIT" ]
null
null
null
gitea_api/models/dismiss_pull_review_options.py
r7l/python-gitea-api
31d3dba27ea7e551e2048a1230c4ab4d73365006
[ "MIT" ]
null
null
null
# coding: utf-8 """ Gitea API. This documentation describes the Gitea API. # noqa: E501 OpenAPI spec version: 1.16.7 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DismissPullReviewOptions(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'message': 'str' } attribute_map = { 'message': 'message' } def __init__(self, message=None): # noqa: E501 """DismissPullReviewOptions - a model defined in Swagger""" # noqa: E501 self._message = None self.discriminator = None if message is not None: self.message = message @property def message(self): """Gets the message of this DismissPullReviewOptions. # noqa: E501 :return: The message of this DismissPullReviewOptions. # noqa: E501 :rtype: str """ return self._message @message.setter def message(self, message): """Sets the message of this DismissPullReviewOptions. :param message: The message of this DismissPullReviewOptions. # noqa: E501 :type: str """ self._message = message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DismissPullReviewOptions, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DismissPullReviewOptions): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.054054
83
0.563263
4a22065024f098e88d909e90f93566a9572e31fa
3,198
py
Python
google/cloud/asset_v1/types/__init__.py
Abdur-rahmaanJ/python-asset
c79d51d31dd04a6cf2b903d91259c093bf200010
[ "Apache-2.0" ]
null
null
null
google/cloud/asset_v1/types/__init__.py
Abdur-rahmaanJ/python-asset
c79d51d31dd04a6cf2b903d91259c093bf200010
[ "Apache-2.0" ]
null
null
null
google/cloud/asset_v1/types/__init__.py
Abdur-rahmaanJ/python-asset
c79d51d31dd04a6cf2b903d91259c093bf200010
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .asset_service import ( AnalyzeIamPolicyLongrunningMetadata, AnalyzeIamPolicyLongrunningRequest, AnalyzeIamPolicyLongrunningResponse, AnalyzeIamPolicyRequest, AnalyzeIamPolicyResponse, AnalyzeMoveRequest, AnalyzeMoveResponse, BatchGetAssetsHistoryRequest, BatchGetAssetsHistoryResponse, BigQueryDestination, CreateFeedRequest, DeleteFeedRequest, ExportAssetsRequest, ExportAssetsResponse, Feed, FeedOutputConfig, GcsDestination, GcsOutputResult, GetFeedRequest, IamPolicyAnalysisOutputConfig, IamPolicyAnalysisQuery, ListAssetsRequest, ListAssetsResponse, ListFeedsRequest, ListFeedsResponse, MoveAnalysis, MoveAnalysisResult, MoveImpact, OutputConfig, OutputResult, PartitionSpec, PubsubDestination, SearchAllIamPoliciesRequest, SearchAllIamPoliciesResponse, SearchAllResourcesRequest, SearchAllResourcesResponse, UpdateFeedRequest, ContentType, ) from .assets import ( Asset, AttachedResource, ConditionEvaluation, IamPolicyAnalysisResult, IamPolicyAnalysisState, IamPolicySearchResult, Resource, ResourceSearchResult, TemporalAsset, TimeWindow, VersionedResource, ) __all__ = ( "AnalyzeIamPolicyLongrunningMetadata", "AnalyzeIamPolicyLongrunningRequest", "AnalyzeIamPolicyLongrunningResponse", "AnalyzeIamPolicyRequest", "AnalyzeIamPolicyResponse", "AnalyzeMoveRequest", "AnalyzeMoveResponse", "BatchGetAssetsHistoryRequest", "BatchGetAssetsHistoryResponse", "BigQueryDestination", "CreateFeedRequest", "DeleteFeedRequest", "ExportAssetsRequest", "ExportAssetsResponse", "Feed", "FeedOutputConfig", "GcsDestination", "GcsOutputResult", "GetFeedRequest", "IamPolicyAnalysisOutputConfig", "IamPolicyAnalysisQuery", "ListAssetsRequest", "ListAssetsResponse", "ListFeedsRequest", "ListFeedsResponse", "MoveAnalysis", "MoveAnalysisResult", "MoveImpact", "OutputConfig", "OutputResult", "PartitionSpec", "PubsubDestination", "SearchAllIamPoliciesRequest", "SearchAllIamPoliciesResponse", "SearchAllResourcesRequest", "SearchAllResourcesResponse", "UpdateFeedRequest", "ContentType", "Asset", "AttachedResource", "ConditionEvaluation", "IamPolicyAnalysisResult", "IamPolicyAnalysisState", "IamPolicySearchResult", "Resource", "ResourceSearchResult", "TemporalAsset", "TimeWindow", "VersionedResource", )
26.429752
74
0.730457
4a2206e795477bb8b2367786fbb990a095120fca
2,563
py
Python
aleph/logic/resolver.py
nabla-c0d3/aleph
d0e4e04e23cb7ee3971298e33ccb1c5171ae0779
[ "MIT" ]
2
2021-01-09T17:27:23.000Z
2021-01-09T17:27:25.000Z
aleph/logic/resolver.py
nabla-c0d3/aleph
d0e4e04e23cb7ee3971298e33ccb1c5171ae0779
[ "MIT" ]
null
null
null
aleph/logic/resolver.py
nabla-c0d3/aleph
d0e4e04e23cb7ee3971298e33ccb1c5171ae0779
[ "MIT" ]
null
null
null
# Bulk object resolver. # The purpose of this module is to quickly load objects of different # types from the backend. It's typically used by the API serialiser # to ensure that nested objects are loaded only once. # import logging from normality import stringify from collections import defaultdict from aleph.core import cache from aleph.model import Role, Collection, Alert, Entity, EntitySet, EntitySetItem from aleph.logic.roles import get_role from aleph.logic.alerts import get_alert from aleph.logic.entitysets import get_entityset, get_entitysetitem from aleph.index.collections import get_collection from aleph.index.entities import entities_by_ids log = logging.getLogger(__name__) LOADERS = { Role: get_role, Collection: get_collection, Alert: get_alert, EntitySet: get_entityset, EntitySetItem: get_entitysetitem, } def _instrument_stub(stub): if not hasattr(stub, "_rx_queue"): stub._rx_queue = set() if not hasattr(stub, "_rx_cache"): stub._rx_cache = {} def queue(stub, clazz, key, schema=None): """Notify the resolver associated with `stub` that the given object needs to be retrieved. Multiple calls with the same object signature will be merged.""" _instrument_stub(stub) key = stringify(key) if key is None: return stub._rx_queue.add((clazz, key, schema)) def resolve(stub): _instrument_stub(stub) cache_keys = {} schemata = {} for clazz, key, schema in stub._rx_queue: if (clazz, key) in stub._rx_cache: continue cid = cache.object_key(clazz, key) cache_keys[cid] = (clazz, key) schemata[cid] = schema keys = list(cache_keys.keys()) queries = defaultdict(list) for cid, value in cache.get_many_complex(keys): clazz, key = cache_keys.get(cid) if value is None: # log.info("MISS [%s]: %s", clazz.__name__, key) if clazz == Entity: queries[schemata.get(cid)].append(key) loader = LOADERS.get(clazz) if loader is not None: value = loader(key) stub._rx_cache[(clazz, key)] = value for schema, ids in queries.items(): for entity in entities_by_ids(ids, schemata=schema, cached=True): stub._rx_cache[(Entity, entity.get("id"))] = entity def get(stub, clazz, key): """Retrieve an object that has been loaded (or None).""" _instrument_stub(stub) key = stringify(key) if key is None: return return stub._rx_cache.get((clazz, key))
30.879518
81
0.672649
4a2207259cdc5fae2e34c8d285f4399b293cef6d
38,158
py
Python
salt/states/esxi.py
nielsk/salt
be5d400d903e68d99c216fd63a7146d86a64a55d
[ "Apache-2.0" ]
null
null
null
salt/states/esxi.py
nielsk/salt
be5d400d903e68d99c216fd63a7146d86a64a55d
[ "Apache-2.0" ]
null
null
null
salt/states/esxi.py
nielsk/salt
be5d400d903e68d99c216fd63a7146d86a64a55d
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Manage VMware ESXi Hosts. .. versionadded:: 2015.8.4 Dependencies ============ - pyVmomi Python Module - ESXCLI pyVmomi ------- PyVmomi can be installed via pip: .. code-block:: bash pip install pyVmomi .. note:: Version 6.0 of pyVmomi has some problems with SSL error handling on certain versions of Python. If using version 6.0 of pyVmomi, Python 2.6, Python 2.7.9, or newer must be present. This is due to an upstream dependency in pyVmomi 6.0 that is not supported in Python versions 2.7 to 2.7.8. If the version of Python is not in the supported range, you will need to install an earlier version of pyVmomi. See `Issue #29537`_ for more information. .. _Issue #29537: https://github.com/saltstack/salt/issues/29537 Based on the note above, to install an earlier version of pyVmomi than the version currently listed in PyPi, run the following: .. code-block:: bash pip install pyVmomi==5.5.0.2014.1.1 The 5.5.0.2014.1.1 is a known stable version that this original ESXi State Module was developed against. ESXCLI ------ Currently, about a third of the functions used in the vSphere Execution Module require the ESXCLI package be installed on the machine running the Proxy Minion process. The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLI. VMware provides vCLI package installation instructions for `vSphere 5.5`_ and `vSphere 6.0`_. .. _vSphere 5.5: http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html .. _vSphere 6.0: http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html Once all of the required dependencies are in place and the vCLI package is installed, you can check to see if you can connect to your ESXi host or vCenter server by running the following command: .. code-block:: bash esxcli -s <host-location> -u <username> -p <password> system syslog config get If the connection was successful, ESXCLI was successfully installed on your system. You should see output related to the ESXi host's syslog configuration. .. note:: Be aware that some functionality in this state module may depend on the type of license attached to the ESXi host. For example, certain services are only available to manipulate service state or policies with a VMware vSphere Enterprise or Enterprise Plus license, while others are available with a Standard license. The ``ntpd`` service is restricted to an Enterprise Plus license, while ``ssh`` is available via the Standard license. Please see the `vSphere Comparison`_ page for more information. .. _vSphere Comparison: https://www.vmware.com/products/vsphere/compare About ----- This state module was written to be used in conjunction with Salt's :mod:`ESXi Proxy Minion <salt.proxy.esxi>`. For a tutorial on how to use Salt's ESXi Proxy Minion, please refer to the :ref:`ESXi Proxy Minion Tutorial <tutorial-esxi-proxy>` for configuration examples, dependency installation instructions, how to run remote execution functions against ESXi hosts via a Salt Proxy Minion, and a larger state example. ''' # Import Python Libs from __future__ import absolute_import import logging # Import Salt Libs import salt.ext.six as six import salt.utils.files from salt.exceptions import CommandExecutionError # Get Logging Started log = logging.getLogger(__name__) def __virtual__(): return 'esxi.cmd' in __salt__ def coredump_configured(name, enabled, dump_ip, host_vnic='vmk0', dump_port=6500): ''' Ensures a host's core dump configuration. name Name of the state. enabled Sets whether or not ESXi core dump collection should be enabled. This is a boolean value set to ``True`` or ``False`` to enable or disable core dumps. Note that ESXi requires that the core dump must be enabled before any other parameters may be set. This also affects the ``changes`` results in the state return dictionary. If ``enabled`` is ``False``, we can't obtain any previous settings to compare other state variables, resulting in many ``old`` references returning ``None``. Once ``enabled`` is ``True`` the ``changes`` dictionary comparisons will be more accurate. This is due to the way the system coredemp network configuration command returns data. dump_ip The IP address of host that will accept the dump. host_vnic Host VNic port through which to communicate. Defaults to ``vmk0``. dump_port TCP port to use for the dump. Defaults to ``6500``. Example: .. code-block:: yaml configure-host-coredump: esxi.coredump_configured: - enabled: True - dump_ip: 'my-coredump-ip.example.com' ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' enabled_msg = 'ESXi requires that the core dump must be enabled ' \ 'before any other parameters may be set.' host = __pillar__['proxy']['host'] current_config = __salt__[esxi_cmd]('get_coredump_network_config').get(host) error = current_config.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_config = current_config.get('Coredump Config') current_enabled = current_config.get('enabled') # Configure coredump enabled state, if there are changes. if current_enabled != enabled: enabled_changes = {'enabled': {'old': current_enabled, 'new': enabled}} # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('coredump_network_enable', enabled=enabled).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Allow users to disable core dump, but then return since # nothing else can be set if core dump is disabled. if not enabled: ret['result'] = True ret['comment'] = enabled_msg ret['changes'].update(enabled_changes) return ret ret['changes'].update(enabled_changes) elif not enabled: # If current_enabled and enabled match, but are both False, # We must return before configuring anything. This isn't a # failure as core dump may be disabled intentionally. ret['result'] = True ret['comment'] = enabled_msg return ret # Test for changes with all remaining configurations. The changes flag is used # To detect changes, and then set_coredump_network_config is called one time. changes = False current_ip = current_config.get('ip') if current_ip != dump_ip: ret['changes'].update({'dump_ip': {'old': current_ip, 'new': dump_ip}}) changes = True current_vnic = current_config.get('host_vnic') if current_vnic != host_vnic: ret['changes'].update({'host_vnic': {'old': current_vnic, 'new': host_vnic}}) changes = True current_port = current_config.get('port') if current_port != str(dump_port): ret['changes'].update({'dump_port': {'old': current_port, 'new': str(dump_port)}}) changes = True # Only run the command if not using test=True and changes were detected. if not __opts__['test'] and changes is True: response = __salt__[esxi_cmd]('set_coredump_network_config', dump_ip=dump_ip, host_vnic=host_vnic, dump_port=dump_port).get(host) if response.get('success') is False: msg = response.get('stderr') if not msg: msg = response.get('stdout') ret['comment'] = 'Error: {0}'.format(msg) return ret ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'Core Dump configuration is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'Core dump configuration will change.' return ret def password_present(name, password): ''' Ensures the given password is set on the ESXi host. Passwords cannot be obtained from host, so if a password is set in this state, the ``vsphere.update_host_password`` function will always run (except when using test=True functionality) and the state's changes dictionary will always be populated. The username for which the password will change is the same username that is used to authenticate against the ESXi host via the Proxy Minion. For example, if the pillar definition for the proxy username is defined as ``root``, then the username that the password will be updated for via this state is ``root``. name Name of the state. password The new password to change on the host. Example: .. code-block:: yaml configure-host-password: esxi.password_present: - password: 'new-bad-password' ''' ret = {'name': name, 'result': True, 'changes': {'old': 'unknown', 'new': '********'}, 'comment': 'Host password was updated.'} esxi_cmd = 'esxi.cmd' if __opts__['test']: ret['result'] = None ret['comment'] = 'Host password will change.' return ret else: try: __salt__[esxi_cmd]('update_host_password', new_password=password) except CommandExecutionError as err: ret['result'] = False ret['comment'] = 'Error: {0}'.format(err) return ret return ret def ntp_configured(name, service_running, ntp_servers=None, service_policy=None, service_restart=False, update_datetime=False): ''' Ensures a host's NTP server configuration such as setting NTP servers, ensuring the NTP daemon is running or stopped, or restarting the NTP daemon for the ESXi host. name Name of the state. service_running Ensures the running state of the ntp daemon for the host. Boolean value where ``True`` indicates that ntpd should be running and ``False`` indicates that it should be stopped. ntp_servers A list of servers that should be added to the ESXi host's NTP configuration. service_policy The policy to set for the NTP service. .. note:: When setting the service policy to ``off`` or ``on``, you *must* quote the setting. If you don't, the yaml parser will set the string to a boolean, which will cause trouble checking for stateful changes and will error when trying to set the policy on the ESXi host. service_restart If set to ``True``, the ntp daemon will be restarted, regardless of its previous running state. Default is ``False``. update_datetime If set to ``True``, the date/time on the given host will be updated to UTC. Default setting is ``False``. This option should be used with caution since network delays and execution delays can result in time skews. Example: .. code-block:: yaml configure-host-ntp: esxi.ntp_configured: - service_running: True - ntp_servers: - 192.174.1.100 - 192.174.1.200 - service_policy: 'on' - service_restart: True ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' host = __pillar__['proxy']['host'] ntpd = 'ntpd' ntp_config = __salt__[esxi_cmd]('get_ntp_config').get(host) ntp_running = __salt__[esxi_cmd]('get_service_running', service_name=ntpd).get(host) error = ntp_running.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ntp_running = ntp_running.get(ntpd) # Configure NTP Servers for the Host if ntp_servers and set(ntp_servers) != set(ntp_config): # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('set_ntp_config', ntp_servers=ntp_servers).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Set changes dictionary for ntp_servers ret['changes'].update({'ntp_servers': {'old': ntp_config, 'new': ntp_servers}}) # Configure service_running state if service_running != ntp_running: # Only run the command if not using test=True if not __opts__['test']: # Start ntdp if service_running=True if ntp_running is True: response = __salt__[esxi_cmd]('service_start', service_name=ntpd).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Stop ntpd if service_running=False else: response = __salt__[esxi_cmd]('service_stop', service_name=ntpd).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_running': {'old': ntp_running, 'new': service_running}}) # Configure service_policy if service_policy: current_service_policy = __salt__[esxi_cmd]('get_service_policy', service_name=ntpd).get(host) error = current_service_policy.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_service_policy = current_service_policy.get(ntpd) if service_policy != current_service_policy: # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('set_service_policy', service_name=ntpd, service_policy=service_policy).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_policy': {'old': current_service_policy, 'new': service_policy}}) # Update datetime, if requested. if update_datetime: # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('update_host_datetime').get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'update_datetime': {'old': '', 'new': 'Host datetime was updated.'}}) # Restart ntp_service if service_restart=True if service_restart: # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('service_restart', service_name=ntpd).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_restart': {'old': '', 'new': 'NTP Daemon Restarted.'}}) ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'NTP is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'NTP state will change.' return ret def vmotion_configured(name, enabled, device='vmk0'): ''' Configures a host's VMotion properties such as enabling VMotion and setting the device VirtualNic that VMotion will use. name Name of the state. enabled Ensures whether or not VMotion should be enabled on a host as a boolean value where ``True`` indicates that VMotion should be enabled and ``False`` indicates that VMotion should be disabled. device The device that uniquely identifies the VirtualNic that will be used for VMotion for the host. Defaults to ``vmk0``. Example: .. code-block:: yaml configure-vmotion: esxi.vmotion_configured: - enabled: True - device: sample-device ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' host = __pillar__['proxy']['host'] current_vmotion_enabled = __salt__[esxi_cmd]('get_vmotion_enabled').get(host) current_vmotion_enabled = current_vmotion_enabled.get('VMotion Enabled') # Configure VMotion Enabled state, if changed. if enabled != current_vmotion_enabled: # Only run the command if not using test=True if not __opts__['test']: # Enable VMotion if enabled=True if enabled is True: response = __salt__[esxi_cmd]('vmotion_enable', device=device).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Disable VMotion if enabled=False else: response = __salt__[esxi_cmd]('vmotion_disable').get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'enabled': {'old': current_vmotion_enabled, 'new': enabled}}) ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'VMotion configuration is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'VMotion configuration will change.' return ret def vsan_configured(name, enabled, add_disks_to_vsan=False): ''' Configures a host's VSAN properties such as enabling or disabling VSAN, or adding VSAN-eligible disks to the VSAN system for the host. name Name of the state. enabled Ensures whether or not VSAN should be enabled on a host as a boolean value where ``True`` indicates that VSAN should be enabled and ``False`` indicates that VSAN should be disabled. add_disks_to_vsan If set to ``True``, any VSAN-eligible disks for the given host will be added to the host's VSAN system. Default is ``False``. Example: .. code-block:: yaml configure-host-vsan: esxi.vsan_configured: - enabled: True - add_disks_to_vsan: True ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' host = __pillar__['proxy']['host'] current_vsan_enabled = __salt__[esxi_cmd]('get_vsan_enabled').get(host) error = current_vsan_enabled.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_vsan_enabled = current_vsan_enabled.get('VSAN Enabled') # Configure VSAN Enabled state, if changed. if enabled != current_vsan_enabled: # Only run the command if not using test=True if not __opts__['test']: # Enable VSAN if enabled=True if enabled is True: response = __salt__[esxi_cmd]('vsan_enable').get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Disable VSAN if enabled=False else: response = __salt__[esxi_cmd]('vsan_disable').get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'enabled': {'old': current_vsan_enabled, 'new': enabled}}) # Add any eligible disks to VSAN, if requested. if add_disks_to_vsan: current_eligible_disks = __salt__[esxi_cmd]('get_vsan_eligible_disks').get(host) error = current_eligible_disks.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret disks = current_eligible_disks.get('Eligible') if disks and isinstance(disks, list): # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('vsan_add_disks').get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'add_disks_to_vsan': {'old': '', 'new': disks}}) ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'VSAN configuration is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'VSAN configuration will change.' return ret def ssh_configured(name, service_running, ssh_key=None, ssh_key_file=None, service_policy=None, service_restart=False, certificate_verify=False): ''' Manage the SSH configuration for a host including whether or not SSH is running or the presence of a given SSH key. Note: Only one ssh key can be uploaded for root. Uploading a second key will replace any existing key. name Name of the state. service_running Ensures whether or not the SSH service should be running on a host. Represented as a boolean value where ``True`` indicates that SSH should be running and ``False`` indicates that SSH should stopped. In order to update SSH keys, the SSH service must be running. ssh_key Public SSH key to added to the authorized_keys file on the ESXi host. You can use ``ssh_key`` or ``ssh_key_file``, but not both. ssh_key_file File containing the public SSH key to be added to the authorized_keys file on the ESXi host. You can use ``ssh_key_file`` or ``ssh_key``, but not both. service_policy The policy to set for the NTP service. .. note:: When setting the service policy to ``off`` or ``on``, you *must* quote the setting. If you don't, the yaml parser will set the string to a boolean, which will cause trouble checking for stateful changes and will error when trying to set the policy on the ESXi host. service_restart If set to ``True``, the SSH service will be restarted, regardless of its previous running state. Default is ``False``. certificate_verify If set to ``True``, the SSL connection must present a valid certificate. Default is ``False``. Example: .. code-block:: yaml configure-host-ssh: esxi.ssh_configured: - service_running: True - ssh_key_file: /etc/salt/ssh_keys/my_key.pub - service_policy: 'on' - service_restart: True - certificate_verify: True ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' host = __pillar__['proxy']['host'] ssh = 'ssh' ssh_running = __salt__[esxi_cmd]('get_service_running', service_name=ssh).get(host) error = ssh_running.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ssh_running = ssh_running.get(ssh) # Configure SSH service_running state, if changed. if service_running != ssh_running: # Only actually run the command if not using test=True if not __opts__['test']: # Start SSH if service_running=True if service_running is True: enable = __salt__[esxi_cmd]('service_start', service_name=ssh).get(host) error = enable.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret # Disable SSH if service_running=False else: disable = __salt__[esxi_cmd]('service_stop', service_name=ssh).get(host) error = disable.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_running': {'old': ssh_running, 'new': service_running}}) # If uploading an SSH key or SSH key file, see if there's a current # SSH key and compare the current key to the key set in the state. current_ssh_key, ssh_key_changed = None, False if ssh_key or ssh_key_file: current_ssh_key = __salt__[esxi_cmd]('get_ssh_key', certificate_verify=certificate_verify) error = current_ssh_key.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_ssh_key = current_ssh_key.get('key') if current_ssh_key: clean_current_key = _strip_key(current_ssh_key).split(' ') if not ssh_key: ssh_key = '' # Open ssh key file and read in contents to create one key string with salt.utils.files.fopen(ssh_key_file, 'r') as key_file: for line in key_file: if line.startswith('#'): # Commented line continue ssh_key = ssh_key + line clean_ssh_key = _strip_key(ssh_key).split(' ') # Check that the first two list items of clean key lists are equal. if clean_current_key[0] != clean_ssh_key[0] or clean_current_key[1] != clean_ssh_key[1]: ssh_key_changed = True else: # If current_ssh_key is None, but we're setting a new key with # either ssh_key or ssh_key_file, then we need to flag the change. ssh_key_changed = True # Upload SSH key, if changed. if ssh_key_changed: if not __opts__['test']: # Upload key response = __salt__[esxi_cmd]('upload_ssh_key', ssh_key=ssh_key, ssh_key_file=ssh_key_file, certificate_verify=certificate_verify) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'SSH Key': {'old': current_ssh_key, 'new': ssh_key if ssh_key else ssh_key_file}}) # Configure service_policy if service_policy: current_service_policy = __salt__[esxi_cmd]('get_service_policy', service_name=ssh).get(host) error = current_service_policy.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_service_policy = current_service_policy.get(ssh) if service_policy != current_service_policy: # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('set_service_policy', service_name=ssh, service_policy=service_policy).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_policy': {'old': current_service_policy, 'new': service_policy}}) # Restart ssh_service if service_restart=True if service_restart: # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('service_restart', service_name=ssh).get(host) error = response.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret ret['changes'].update({'service_restart': {'old': '', 'new': 'SSH service restarted.'}}) ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'SSH service is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'SSH service state will change.' return ret def syslog_configured(name, syslog_configs, firewall=True, reset_service=True, reset_syslog_config=False, reset_configs=None): ''' Ensures the specified syslog configuration parameters. By default, this state will reset the syslog service after any new or changed parameters are set successfully. name Name of the state. syslog_configs Name of parameter to set (corresponds to the command line switch for esxcli without the double dashes (--)) Valid syslog_config values are ``logdir``, ``loghost``, ``logdir-unique``, ``default-rotate``, ``default-size``, and ``default-timeout``. Each syslog_config option also needs a configuration value to set. For example, ``loghost`` requires URLs or IP addresses to use for logging. Multiple log servers can be specified by listing them, comma-separated, but without spaces before or after commas (reference: https://blogs.vmware.com/vsphere/2012/04/configuring-multiple-syslog-servers-for-esxi-5.html) firewall Enable the firewall rule set for syslog. Defaults to ``True``. reset_service After a successful parameter set, reset the service. Defaults to ``True``. reset_syslog_config Resets the syslog service to it's default settings. Defaults to ``False``. If set to ``True``, default settings defined by the list of syslog configs in ``reset_configs`` will be reset before running any other syslog settings. reset_configs A comma-delimited list of parameters to reset. Only runs if ``reset_syslog_config`` is set to ``True``. If ``reset_syslog_config`` is set to ``True``, but no syslog configs are listed in ``reset_configs``, then ``reset_configs`` will be set to ``all`` by default. See ``syslog_configs`` parameter above for a list of valid options. Example: .. code-block:: yaml configure-host-syslog: esxi.syslog_configured: - syslog_configs: loghost: ssl://localhost:5432,tcp://10.1.0.1:1514 default-timeout: 120 - firewall: True - reset_service: True - reset_syslog_config: True - reset_configs: loghost,default-timeout ''' ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''} esxi_cmd = 'esxi.cmd' host = __pillar__['proxy']['host'] if reset_syslog_config: if not reset_configs: reset_configs = 'all' # Only run the command if not using test=True if not __opts__['test']: reset = __salt__[esxi_cmd]('reset_syslog_config', syslog_config=reset_configs).get(host) for key, val in six.iteritems(reset): if isinstance(val, bool): continue if not val.get('success'): msg = val.get('message') if not msg: msg = 'There was an error resetting a syslog config \'{0}\'.' \ 'Please check debug logs.'.format(val) ret['comment'] = 'Error: {0}'.format(msg) return ret ret['changes'].update({'reset_syslog_config': {'old': '', 'new': reset_configs}}) current_firewall = __salt__[esxi_cmd]('get_firewall_status').get(host) error = current_firewall.get('Error') if error: ret['comment'] = 'Error: {0}'.format(error) return ret current_firewall = current_firewall.get('rulesets').get('syslog') if current_firewall != firewall: # Only run the command if not using test=True if not __opts__['test']: enabled = __salt__[esxi_cmd]('enable_firewall_ruleset', ruleset_enable=firewall, ruleset_name='syslog').get(host) if enabled.get('retcode') != 0: err = enabled.get('stderr') out = enabled.get('stdout') ret['comment'] = 'Error: {0}'.format(err if err else out) return ret ret['changes'].update({'firewall': {'old': current_firewall, 'new': firewall}}) current_syslog_config = __salt__[esxi_cmd]('get_syslog_config').get(host) for key, val in six.iteritems(syslog_configs): # The output of get_syslog_config has different keys than the keys # Used to set syslog_config values. We need to look them up first. try: lookup_key = _lookup_syslog_config(key) except KeyError: ret['comment'] = '\'{0}\' is not a valid config variable.'.format(key) return ret current_val = current_syslog_config[lookup_key] if str(current_val) != str(val): # Only run the command if not using test=True if not __opts__['test']: response = __salt__[esxi_cmd]('set_syslog_config', syslog_config=key, config_value=val, firewall=firewall, reset_service=reset_service).get(host) success = response.get(key).get('success') if not success: msg = response.get(key).get('message') if not msg: msg = 'There was an error setting syslog config \'{0}\'. ' \ 'Please check debug logs.'.format(key) ret['comment'] = msg return ret if not ret['changes'].get('syslog_config'): ret['changes'].update({'syslog_config': {}}) ret['changes']['syslog_config'].update({key: {'old': current_val, 'new': val}}) ret['result'] = True if ret['changes'] == {}: ret['comment'] = 'Syslog is already in the desired state.' return ret if __opts__['test']: ret['result'] = None ret['comment'] = 'Syslog state will change.' return ret def _lookup_syslog_config(config): ''' Helper function that looks up syslog_config keys available from ``vsphere.get_syslog_config``. ''' lookup = {'default-timeout': 'Default Network Retry Timeout', 'logdir': 'Local Log Output', 'default-size': 'Local Logging Default Rotation Size', 'logdir-unique': 'Log To Unique Subdirectory', 'default-rotate': 'Local Logging Default Rotations', 'loghost': 'Remote Host'} return lookup.get(config) def _strip_key(key_string): ''' Strips an SSH key string of white space and line endings and returns the new string. key_string The string to be stripped. ''' key_string.strip() key_string.replace('\n', '') key_string.replace('\r\n', '') return key_string
37.15482
113
0.568452
4a22073bc84efffe46e17ccae811a00b5bca20e6
15,838
py
Python
core/forecastMod.py
champham/WrfHydroForcing
90f1cbcc233eb007818ae159be81814e5754f233
[ "BSD-3-Clause" ]
null
null
null
core/forecastMod.py
champham/WrfHydroForcing
90f1cbcc233eb007818ae159be81814e5754f233
[ "BSD-3-Clause" ]
null
null
null
core/forecastMod.py
champham/WrfHydroForcing
90f1cbcc233eb007818ae159be81814e5754f233
[ "BSD-3-Clause" ]
null
null
null
import datetime import os from core import bias_correction from core import downscale from core import err_handler from core import layeringMod from core import disaggregateMod def process_forecasts(ConfigOptions, wrfHydroGeoMeta, inputForcingMod, suppPcpMod, MpiConfig, OutputObj): """ Main calling module for running realtime forecasts and re-forecasts. :param jobMeta: :return: """ # Loop through each WRF-Hydro forecast cycle being processed. Within # each cycle, perform the following tasks: # 1.) Loop over each output frequency # 2.) Determine the input forcing cycle dates (both before and after) # for temporal interpolation, downscaling, and bias correction reasons. # 3.) If the input forcings haven't been opened and read into memory, # open them. # 4.) Check to see if the ESMF objects for input forcings have been # created. If not, create them, including the regridding object. # 5.) Regrid forcing grids for input cycle dates surrounding the # current output timestep if they haven't been regridded. # 6.) Perform bias correction and/or downscaling. # 7.) Output final grids to LDASIN NetCDF files with associated # WRF-Hydro geospatial metadata to the final output directories. # Throughout this entire process, log progress being made into LOG # files. Once a forecast cycle is complete, we will touch an empty # 'WrfHydroForcing.COMPLETE' flag in the directory. This will be # checked upon the beginning of this program to see if we # need to process any files. disaggregate_fun = disaggregateMod.disaggregate_factory(ConfigOptions) for fcstCycleNum in range(ConfigOptions.nFcsts): ConfigOptions.current_fcst_cycle = ConfigOptions.b_date_proc + datetime.timedelta( seconds=ConfigOptions.fcst_freq * 60 * fcstCycleNum) if ConfigOptions.first_fcst_cycle is None: ConfigOptions.first_fcst_cycle = ConfigOptions.current_fcst_cycle if ConfigOptions.ana_flag: fcstCycleOutDir = ConfigOptions.output_dir + "/" + ConfigOptions.e_date_proc.strftime('%Y%m%d%H') else: fcstCycleOutDir = ConfigOptions.output_dir + "/" + ConfigOptions.current_fcst_cycle.strftime('%Y%m%d%H') # put all AnA output in the same directory if ConfigOptions.ana_flag: if ConfigOptions.ana_out_dir is None: ConfigOptions.ana_out_dir = fcstCycleOutDir fcstCycleOutDir = ConfigOptions.ana_out_dir # completeFlag = ConfigOptions.scratch_dir + "/WrfHydroForcing.COMPLETE" completeFlag = fcstCycleOutDir + "/WrfHydroForcing.COMPLETE" if os.path.isfile(completeFlag): ConfigOptions.statusMsg = "Forecast Cycle: " + \ ConfigOptions.current_fcst_cycle.strftime('%Y-%m-%d %H:%M') + \ " has already completed." err_handler.log_msg(ConfigOptions, MpiConfig) # We have already completed processing this cycle, # move on. continue if (not ConfigOptions.ana_flag) or (ConfigOptions.logFile is None): if MpiConfig.rank == 0: # If the cycle directory doesn't exist, create it. if not os.path.isdir(fcstCycleOutDir): try: os.mkdir(fcstCycleOutDir) except: ConfigOptions.errMsg = "Unable to create output " \ "directory: " + fcstCycleOutDir err_handler.err_out_screen_para(ConfigOptions.errMsg, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Compose a path to a log file, which will contain information # about this forecast cycle. # ConfigOptions.logFile = ConfigOptions.output_dir + "/LOG_" + \ if ConfigOptions.ana_flag: log_time = ConfigOptions.e_date_proc else: log_time = ConfigOptions.current_fcst_cycle ConfigOptions.logFile = ConfigOptions.scratch_dir + "/LOG_" + ConfigOptions.nwmConfig + \ ('_' if ConfigOptions.nwmConfig != "long_range" else "_mem" + str(ConfigOptions.cfsv2EnsMember)+ "_") + \ ConfigOptions.d_program_init.strftime('%Y%m%d%H%M') + \ "_" + log_time.strftime('%Y%m%d%H%M') # Initialize the log file. try: err_handler.init_log(ConfigOptions, MpiConfig) except: err_handler.err_out_screen_para(ConfigOptions.errMsg, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Log information about this forecast cycle if MpiConfig.rank == 0: ConfigOptions.statusMsg = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' err_handler.log_msg(ConfigOptions, MpiConfig) ConfigOptions.statusMsg = 'Processing Forecast Cycle: ' + \ ConfigOptions.current_fcst_cycle.strftime('%Y-%m-%d %H:%M') err_handler.log_msg(ConfigOptions, MpiConfig) ConfigOptions.statusMsg = 'Forecast Cycle Length is: ' + \ str(ConfigOptions.cycle_length_minutes) + " minutes" err_handler.log_msg(ConfigOptions, MpiConfig) # MpiConfig.comm.barrier() # Loop through each output timestep. Perform the following functions: # 1.) Calculate all necessary input files per user options. # 2.) Read in input forcings from GRIB/NetCDF files. # 3.) Regrid the forcings, and temporally interpolate. # 4.) Downscale. # 5.) Layer, and output as necessary. ana_factor = 1 if ConfigOptions.ana_flag is False else 0 for outStep in range(1, ConfigOptions.num_output_steps + 1): # Reset out final grids to missing values. OutputObj.output_local[:, :, :] = -9999.0 ConfigOptions.current_output_step = outStep OutputObj.outDate = ConfigOptions.current_fcst_cycle + datetime.timedelta( seconds=ConfigOptions.output_freq * 60 * outStep ) ConfigOptions.current_output_date = OutputObj.outDate # if AnA, adjust file date for analysis vs forecast if ConfigOptions.ana_flag: file_date = OutputObj.outDate - datetime.timedelta(seconds=ConfigOptions.output_freq * 60) else: file_date = OutputObj.outDate # Calculate the previous output timestep. This is used in potential downscaling routines. if outStep == ana_factor: ConfigOptions.prev_output_date = ConfigOptions.current_output_date else: ConfigOptions.prev_output_date = ConfigOptions.current_output_date - datetime.timedelta( seconds=ConfigOptions.output_freq * 60 ) if MpiConfig.rank == 0: ConfigOptions.statusMsg = '=========================================' err_handler.log_msg(ConfigOptions, MpiConfig) ConfigOptions.statusMsg = "Processing for output timestep: " + \ file_date.strftime('%Y-%m-%d %H:%M') err_handler.log_msg(ConfigOptions, MpiConfig) # MpiConfig.comm.barrier() # Compose the expected path to the output file. Check to see if the file exists, # if so, continue to the next time step. Also initialize our output arrays if necessary. OutputObj.outPath = fcstCycleOutDir + "/" + file_date.strftime('%Y%m%d%H%M') + \ ".LDASIN_DOMAIN1" # MpiConfig.comm.barrier() if os.path.isfile(OutputObj.outPath): if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Output file: " + OutputObj.outPath + " exists. Moving " + \ " to the next output timestep." err_handler.log_msg(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) continue else: ConfigOptions.currentForceNum = 0 ConfigOptions.currentCustomForceNum = 0 # Loop over each of the input forcings specifed. for forceKey in ConfigOptions.input_forcings: input_forcings = inputForcingMod[forceKey] # Calculate the previous and next input cycle files from the inputs. input_forcings.calc_neighbor_files(ConfigOptions, OutputObj.outDate, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Regrid forcings. input_forcings.regrid_inputs(ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Run check on regridded fields for reasonable values that are not missing values. err_handler.check_forcing_bounds(ConfigOptions, input_forcings, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # If we are restarting a forecast cycle, re-calculate the neighboring files, and regrid the # next set of forcings as the previous step just regridded the previous forcing. if input_forcings.rstFlag == 1: if input_forcings.regridded_forcings1 is not None and \ input_forcings.regridded_forcings2 is not None: # Set the forcings back to reflect we just regridded the previous set of inputs, not the next. input_forcings.regridded_forcings1[:, :, :] = \ input_forcings.regridded_forcings2[:, :, :] # Re-calculate the neighbor files. input_forcings.calc_neighbor_files(ConfigOptions, OutputObj.outDate, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Regrid the forcings for the end of the window. input_forcings.regrid_inputs(ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) input_forcings.rstFlag = 0 # Run temporal interpolation on the grids. input_forcings.temporal_interpolate_inputs(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Run bias correction. bias_correction.run_bias_correction(input_forcings, ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Run downscaling on grids for this output timestep. downscale.run_downscaling(input_forcings, ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Layer in forcings from this product. layeringMod.layer_final_forcings(OutputObj, input_forcings, ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) ConfigOptions.currentForceNum = ConfigOptions.currentForceNum + 1 if forceKey == 10: ConfigOptions.currentCustomForceNum = ConfigOptions.currentCustomForceNum + 1 # Process supplemental precipitation if we specified in the configuration file. if ConfigOptions.number_supp_pcp > 0: for suppPcpKey in ConfigOptions.supp_precip_forcings: # Like with input forcings, calculate the neighboring files to use. suppPcpMod[suppPcpKey].calc_neighbor_files(ConfigOptions, OutputObj.outDate, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Regrid the supplemental precipitation. suppPcpMod[suppPcpKey].regrid_inputs(ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) if suppPcpMod[suppPcpKey].regridded_precip1 is not None \ and suppPcpMod[suppPcpKey].regridded_precip2 is not None: # if np.any(suppPcpMod[suppPcpKey].regridded_precip1) and \ # np.any(suppPcpMod[suppPcpKey].regridded_precip2): # Run check on regridded fields for reasonable values that are not missing values. err_handler.check_supp_pcp_bounds(ConfigOptions, suppPcpMod[suppPcpKey], MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) disaggregate_fun(input_forcings, suppPcpMod[suppPcpKey], ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Run temporal interpolation on the grids. suppPcpMod[suppPcpKey].temporal_interpolate_inputs(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Layer in the supplemental precipitation into the current output object. layeringMod.layer_supplemental_forcing(OutputObj, suppPcpMod[suppPcpKey], ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) # Call the output routines # adjust date for AnA if necessary if ConfigOptions.ana_flag: OutputObj.outDate = file_date OutputObj.output_final_ldasin(ConfigOptions, wrfHydroGeoMeta, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) if (not ConfigOptions.ana_flag) or (fcstCycleNum == (ConfigOptions.nFcsts - 1)): if MpiConfig.rank == 0: ConfigOptions.statusMsg = "Forcings complete for forecast cycle: " + \ ConfigOptions.current_fcst_cycle.strftime('%Y-%m-%d %H:%M') err_handler.log_msg(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig) if MpiConfig.rank == 0: # Close the log file. try: err_handler.close_log(ConfigOptions, MpiConfig) except: err_handler.err_out_screen_para(ConfigOptions.errMsg, MpiConfig) # Success.... Now touch an empty complete file for this forecast cycle to indicate # completion in case the code is re-ran. try: open(completeFlag, 'a').close() except: ConfigOptions.errMsg = "Unable to create completion file: " + completeFlag err_handler.log_critical(ConfigOptions, MpiConfig) err_handler.check_program_status(ConfigOptions, MpiConfig)
55.767606
141
0.607211
4a22082210a8bab1f61f322b0436afa738a166f9
6,484
py
Python
qa/rpc-tests/zkey_import_export.py
amicoin/amicoin
84673cb24619766d77b0c1695688ef9b40e20319
[ "Unlicense" ]
null
null
null
qa/rpc-tests/zkey_import_export.py
amicoin/amicoin
84673cb24619766d77b0c1695688ef9b40e20319
[ "Unlicense" ]
null
null
null
qa/rpc-tests/zkey_import_export.py
amicoin/amicoin
84673cb24619766d77b0c1695688ef9b40e20319
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2017 The Zcash developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import sys; assert sys.version_info < (3,), ur"This script does not run under Python 3. Please use Python 2.7.x." from decimal import Decimal from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_greater_than, start_nodes,\ initialize_chain_clean, connect_nodes_bi, wait_and_assert_operationid_status import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) fee = Decimal('0.0001') # constant (but can be changed within reason) class ZkeyImportExportTest (BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 5) def setup_network(self, split=False): self.nodes = start_nodes(5, self.options.tmpdir) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) connect_nodes_bi(self.nodes,0,4) self.is_network_split=False self.sync_all() def run_test(self): [alice, bob, charlie, david, miner] = self.nodes # the sender loses 'amount' plus fee; to_addr receives exactly 'amount' def z_send(from_node, from_addr, to_addr, amount): global fee opid = from_node.z_sendmany(from_addr, [{"address": to_addr, "amount": Decimal(amount)}], 1, fee) wait_and_assert_operationid_status(from_node, opid) self.sync_all() miner.generate(1) self.sync_all() def verify_utxos(node, amts, zaddr): amts.sort(reverse=True) txs = node.z_listreceivedbyaddress(zaddr) def cmp_confirmations_high_to_low(a, b): return cmp(b["amount"], a["amount"]) txs.sort(cmp_confirmations_high_to_low) print("Sorted txs", txs) print("amts", amts) try: assert_equal(amts, [tx["amount"] for tx in txs]) for tx in txs: # make sure JoinSplit keys exist and have valid values assert_equal("jsindex" in tx, True) assert_equal("jsoutindex" in tx, True) assert_greater_than(tx["jsindex"], -1) assert_greater_than(tx["jsoutindex"], -1) except AssertionError: logging.error( 'Expected amounts: %r; txs: %r', amts, txs) raise def get_private_balance(node): balance = node.z_gettotalbalance() return balance['private'] def find_imported_key(node, import_zaddr): zaddrs = node.z_listaddresses() assert(import_zaddr in zaddrs) return import_zaddr # Seed Alice with some funds alice.generate(10) self.sync_all() miner.generate(100) self.sync_all() # Shield Alice's coinbase funds to her zaddr alice_zaddr = alice.z_getnewaddress('sprout') res = alice.z_shieldcoinbase("*", alice_zaddr) wait_and_assert_operationid_status(alice, res['opid']) self.sync_all() miner.generate(1) self.sync_all() # Now get a pristine z-address for receiving transfers: bob_zaddr = bob.z_getnewaddress('sprout') verify_utxos(bob, [], bob_zaddr) # TODO: Verify that charlie doesn't have funds in addr # verify_utxos(charlie, []) # the amounts of each txn embodied which generates a single UTXO: amounts = map(Decimal, ['2.3', '3.7', '0.1', '0.5', '1.0', '0.19']) # Internal test consistency assertion: assert_greater_than( get_private_balance(alice), reduce(Decimal.__add__, amounts)) logging.info("Sending pre-export txns...") for amount in amounts[0:2]: z_send(alice, alice_zaddr, bob_zaddr, amount) logging.info("Exporting privkey from bob...") bob_privkey = bob.z_exportkey(bob_zaddr) logging.info("Sending post-export txns...") for amount in amounts[2:4]: z_send(alice, alice_zaddr, bob_zaddr, amount) verify_utxos(bob, amounts[:4], bob_zaddr) # verify_utxos(charlie, []) logging.info("Importing bob_privkey into charlie...") # z_importkey rescan defaults to "whenkeyisnew", so should rescan here charlie.z_importkey(bob_privkey) ipk_zaddr = find_imported_key(charlie, bob_zaddr) # z_importkey should have rescanned for new key, so this should pass: verify_utxos(charlie, amounts[:4], ipk_zaddr) # Verify idempotent behavior: charlie.z_importkey(bob_privkey) ipk_zaddr2 = find_imported_key(charlie, bob_zaddr) assert_equal(ipk_zaddr, ipk_zaddr2) # amounts should be unchanged verify_utxos(charlie, amounts[:4], ipk_zaddr2) logging.info("Sending post-import txns...") for amount in amounts[4:]: z_send(alice, alice_zaddr, bob_zaddr, amount) verify_utxos(bob, amounts, bob_zaddr) verify_utxos(charlie, amounts, ipk_zaddr) verify_utxos(charlie, amounts, ipk_zaddr2) # keep track of the fees incurred by bob (his sends) bob_fee = Decimal(0) # Try to reproduce zombie balance reported in #1936 # At generated zaddr, receive ZEC, and send ZEC back out. bob -> alice for amount in amounts[:2]: print("Sending amount from bob to alice: ", amount) z_send(bob, bob_zaddr, alice_zaddr, amount) bob_fee += fee bob_balance = sum(amounts[2:]) - bob_fee assert_equal(bob.z_getbalance(bob_zaddr), bob_balance) # z_import onto new node "david" (blockchain rescan, default or True?) david.z_importkey(bob_privkey) d_ipk_zaddr = find_imported_key(david, bob_zaddr) # Check if amt bob spent is deducted for charlie and david assert_equal(charlie.z_getbalance(ipk_zaddr), bob_balance) assert_equal(david.z_getbalance(d_ipk_zaddr), bob_balance) if __name__ == '__main__': ZkeyImportExportTest().main()
38.141176
113
0.635873
4a2208d41e53c61e63fb0afd3d97a36f176ad0ab
17,100
py
Python
src/bin/rifle.py
jrha/aquilon-tools
cfbd6c29eed5facc278bbfe315199bba59f543b4
[ "Apache-2.0" ]
null
null
null
src/bin/rifle.py
jrha/aquilon-tools
cfbd6c29eed5facc278bbfe315199bba59f543b4
[ "Apache-2.0" ]
null
null
null
src/bin/rifle.py
jrha/aquilon-tools
cfbd6c29eed5facc278bbfe315199bba59f543b4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ############################################################################## # # See COPYRIGHT file in source distribution for copyright holders # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ############################################################################## import sys import os import re import getopt import signal import tempfile import copy from subprocess import Popen, PIPE CALL = os.path.basename(__file__) CALLDIR = os.path.dirname(__file__) CKEY = CALLDIR + "/ckey" GETPROF = CALLDIR + "/getprof" CCM_DIR = "/var/lib/ccm" CCM_CURRENT_CID = CCM_DIR + "/current.cid" CCM_PROFILE = CCM_DIR + "/profile.<CID>/profile" ############################################################################## def usage(): """ Displays a usage message. """ print """ Syntax: %s [-ehIkv] [-o <output>] <file> [<resource_path ...>] %s [-ehIkv] [-o <output>] -c [<resource_path ...>] %s [-ehIkv] [-o <output>] -g {<host>|<alias>} [<resource_path ...>] %s [-ehIkv] [-o <output>] -G <cluster> [<resource_path ...>] Displays paths in Quattor XML or JSON host profile data where -c uses current profile for this host instead of requiring a pathname to an XML or JSON file -e removes Quattor-style escaping from output (WARNING: use with care, this tool cannot know which elements were escaped and which ones were not) - a single -e unescapes path components only - a double -ee unescapes values as well -G downloads profile for named cluster/metacluster using getprof -g downloads profile for named host using getprof tool -h hides structural entries that do not have values -I do not generate list index numbers, use a hash # instead -k colourises output by piping through to ckey -o <output> send output to given file, instead of to stdout -p if a value contains newlines, prefixes each newline the resource path as well as the first line -v display values only <file> is the XML or JSON file to parse (may be plain or gzipped) <resource_path ...> one or more optional resource paths to filter by Example: %s -c /software/components/spma %s /var/quattor/web/htdocs/profiles/aquilon20.one-nyp.ms.com.xml.gz \\ /software/packages %s -g ilab901.one-nyp /metadata """ % (CALL, CALL, CALL, CALL, CALL, CALL, CALL) return 1 ############################################################################## def unescape(s, path=False): """ Expand Quattor escape sequence. """ if not do_unescape: return s if do_unescape < 2 and not path: return s # # If this is a path, process one path component at a time # so that we can enclose the component in braces { ... } # if an expansion occurred # if path: lst = s.split("/") else: lst = [s] new_s = "" for comp in lst: if path and (len(new_s) == 0 or new_s[-1] != "/"): new_s += "/" complst = re.split("(_[0-9a-f][0-9a-f])", comp) add_s = "" expanded = False for atom in complst: decode_atom = False if re.match("_[0-9a-f][0-9a-f]", atom): if path: # # Escaped characters in paths will only be unescaped # if a printable character results and one that # is likely to have been escaped (i.e. not letters) # i = int(atom[1:], 16) if (i >= 0x20 and i <= 0x40) or \ (i >= 0x5b and i <= 0x60) or \ (i >= 0x7b and i <= 0x7e): decode_atom = True else: decode_atom = True if decode_atom: add_s += atom[1:].decode("hex") expanded = True else: add_s += atom if not path or not expanded: new_s += add_s else: new_s += "{" + add_s + "}" return new_s ############################################################################## def chkwrite(output, s, xdup, xout): """ Write output but check for lines we've been asked to duplicate. """ if xdup is not None: for m in xdup: if s[0:m[1]] == m[0]: xout.write(s) output.write(s) ############################################################################## def walk_xml_tree(root, idx=[], strip_prof=False, output=sys.stdout, xdup=None, xout=None): """ Walk XML tree and output resource paths of interest. """ name = root.get('name') if not name: if gen_indices: name = '/' + str(idx[-1]) else: name = '/#' else: name = '/' + name text = root.text if not text: text = '' text = text.strip() rpath = name i = -1 for node in root.iterancestors(): i -= 1 s = node.get('name') if s == None: if gen_indices: s = str(idx[i]) else: s = '#' rpath = '/' + s + rpath s = "" if (not hide_terminals or text) and not value_only: pathname = unescape(rpath.encode("utf-8"), True) s += pathname if text: if not value_only: s += " = " s += unescape(text.strip().encode("utf-8")) + "\n" elif not hide_terminals: s += "\n" if s: if strip_prof and s[:9] == "/profile/": s = s[8:] if not prefix_newlines: chkwrite(output, s, xdup, xout) else: lines = s.splitlines() s = lines.pop(0) chkwrite(output, s + "\n", xdup, xout) for line in lines: s2 = pathname + " .= " + line + "\n" if strip_prof and s2[:9] == "/profile/": s2 = s2[8:] output.write(s2) output.flush() this_idx = 0 for sub in root.getchildren(): new_idx = copy.copy(idx) new_idx.append(this_idx) this_idx += 1 walk_xml_tree(sub, new_idx, strip_prof, output=output, xdup=xdup, xout=xout) def walk_dict(d, root="", node=None, output=sys.stdout, xdup=None, xout=None): """ Walk dictionary and output resource paths of interest. """ if root == "/": root = "" for key in sorted(d): if node is not None and key != node: continue path = unescape(root + "/" + key.encode("utf-8"), True) if type(d[key]) is unicode: value = unescape(d[key].encode("utf-8")) if not value_only: if "\n" in value and prefix_newlines: chkwrite(output, path + " = " + ("\n" + path + " .= ").join( value.splitlines()) + "\n", xdup, xout) else: chkwrite(output, path + " = " + value + "\n", xdup, xout) else: output.write(value + "\n") elif type(d[key]) is dict: if not hide_terminals and not value_only: chkwrite(output, path + "\n", xdup, xout) walk_dict(d[key], root=path, output=output, xdup=xdup, xout=xout) elif type(d[key]) is list: for i in xrange(0, len(d[key])): if gen_indices: lpath = path + "/" + str(i) else: lpath = path + "/#" if type(d[key][i]) is unicode: value = unescape(d[key][i].encode("utf-8")) if not value_only: if "\n" in value and prefix_newlines: chkwrite(output, lpath + " = " + ("\n" + lpath + " .= ").join( value.splitlines()) + "\n", xdup, xout) else: chkwrite(output, lpath + " = " + value + "\n", xdup, xout) else: output.write(value + "\n") elif type(d[key][i]) is dict: if not hide_terminals and not value_only: chkwrite(output, lpath + "\n", xdup, xout) walk_dict(d[key][i], root=lpath, output=output, xdup=xdup, xout=xout) ############################################################################## def current_profile(): """ Return name of current host profile. """ if debug: sys.stderr.write("%s: locating current profile in %s\n" % \ (CALL, CCM_DIR)) with open(CCM_CURRENT_CID, "r") as f: cid = f.read().strip() filename = CCM_PROFILE.replace("<CID>", cid) if os.path.exists(filename + ".json"): return filename + ".json" return filename + ".xml" def get_profile(host, cluster = False): """ Download profile to temporary file and return tempfile handle. """ cmd = [GETPROF, host] if cluster: cmd.insert(1, "-C") if debug: cmd.insert(1, "-D") sys.stderr.write("%s: launching '%s'\n" % (CALL, " ".join(cmd))) tempfh = tempfile.NamedTemporaryFile(prefix="tmp.%s." % CALL) pipe = Popen(cmd, stdout=tempfh) rc = pipe.wait() if rc != 0: raise RuntimeError("'%s' returned exit status %d" % \ (" ".join(cmd), rc)) return tempfh def get_xml_elements(tree, path): """ Return elements in a particular XML path. """ xpath = '' for comp in path.split('/')[1:]: if comp == '*' or comp == '': xpath += '/*[@name]' else: xpath += '/*[@name="%s"]' % comp if debug: sys.stderr.write("%s: searching for XML elements: %s\n" % \ (CALL, xpath)) return tree.xpath(xpath) ############################################################################## def main(args=sys.argv, outfile=sys.stdout, xdup=None, xout=None): """ Main program entry point. If run as 'rifle', then all of the default parameters are used. Otherwise, parameters may be overridden: args = list of command-line arguments outfile = file object to write the output xdup = optional list of resource paths to duplicate xout = optional file object to write duplicated resource paths to """ global debug, hide_terminals, value_only, do_unescape global prefix_newlines, gen_indices if args == sys.argv: # # Can only use signal() if this is the main thread, and not a # module function executed from another program # signal.signal(signal.SIGPIPE, signal.SIG_DFL) # # Parse command-line arguments # try: opts, args = getopt.getopt(args[1:], "cDeG:g:hIko:pv") except getopt.GetoptError as err: print "%s: %s" % (CALL, str(err)) return 1 debug = hide_terminals = value_only = False prefix_newlines = ckey = outopen = False gen_indices = True do_unescape = 0 fname = None for o, a in opts: if o == "-c": fname = current_profile() elif o == "-D": debug = True elif o == "-e": do_unescape += 1 elif o == "-G": tempfh = get_profile(a, cluster = True) fname = tempfh.name elif o == "-g": tempfh = get_profile(a) fname = tempfh.name elif o == "-h": hide_terminals = True elif o == "-I": gen_indices = False elif o == "-k": ckey = True elif o == "-o": outfile = open(a, "w") outopen = True elif o == "-p": prefix_newlines = True elif o == "-v": value_only = True if fname == None: if len(args) < 1: return usage() fname = args[0] args.pop(0) if not os.path.exists(fname): sys.stderr.write("%s: file not found: %s\n" % (CALL, fname)) return 1 if xdup is None: xout = None else: # # Normalise xdup list # newdup = [] for m in xdup: newdup.append((m + " ", len(m)+1)) xdup = newdup # # Redirect stdout to ckey if -k was given # if ckey: pipe = Popen([CKEY], stdin=PIPE, stdout=outfile) output = pipe.stdin else: pipe = None output = outfile # # Process file # if debug: sys.stderr.write("%s: opening %s\n" % (CALL, fname)) if fname[-5:] != ".json" and fname[-8:] != ".json.gz": # # Parse XML # try: import ms.version ms.version.addpkg('lxml', '2.3.2') except: pass from lxml import etree tree = etree.parse(fname) if len(args) == 0: root = tree.getroot() walk_xml_tree(root, strip_prof=True, output=output, xdup=xdup, xout=xout) else: for path in args: if path[0] != '/': path = '/' + path elst = get_xml_elements(tree, path) strip_prof = True if len(elst) == 0 and path[:9] != "/profile/": path = "/profile" + path elst = get_xml_elements(tree, path) elif path[:9] == "/profile/": strip_prof = False for root in elst: walk_xml_tree(root, strip_prof=strip_prof, output=output, xdup=xdup, xout=xout) else: # # Parse JSON # import json if fname[-3:] == ".gz": import gzip f = gzip.open(fname) else: f = open(fname) try: jsdata = json.load(f) if len(args) == 0: # # Display entire file # walk_dict(jsdata, output=output, xdup=xdup, xout=xout) else: # # Display only specific paths, first check to see if any # paths use wildcards and expand those now # new_args = [] lpath = "" for path in args: if path[-2:] == "/*": path = path[:-2] if "*" in path: if path[0] == "/": path = path[1:] d = jsdata lst = path.split("/") path_found = True if len(lst) > 1: for comp in lst[:-1]: if comp == "*": for comp in d: rpath = path[len(lpath)+2:] args.append("%s/%s/%s" % \ (lpath, comp, rpath)) else: if comp not in d: path_found = False else: d = d[comp] lpath += "/" + comp else: new_args.append(path) # # Walk tree for each expanded path # for path in new_args: if path[0] == "/": path = path[1:] d = jsdata lst = path.split("/") path_found = True if len(lst) > 1: for comp in lst[:-1]: if comp not in d: path_found = False else: d = d[comp] if path_found and type(d) is dict: walk_dict(d, root="/" + "/".join(lst[:-1]), node=lst[-1], output=output) finally: f.close() if pipe: pipe.communicate('') if outopen: outfile.close() return 0 if __name__ == "__main__": retval = main() exit(retval)
33.595285
80
0.460643
4a220a20e4f204d62199ef36efb1c09c65e970db
547
py
Python
docs/fund_info.py
txqzzz/xingqi_fund
d5cb59759a713ccddd95b6ba6e09fc8f0dae9d84
[ "MIT" ]
null
null
null
docs/fund_info.py
txqzzz/xingqi_fund
d5cb59759a713ccddd95b6ba6e09fc8f0dae9d84
[ "MIT" ]
null
null
null
docs/fund_info.py
txqzzz/xingqi_fund
d5cb59759a713ccddd95b6ba6e09fc8f0dae9d84
[ "MIT" ]
null
null
null
from typing import List, Any, Union fund_id: List[Union[str, Any]] = ['000834', '519674', '160225', '007301', '161631', '000148', '007531', '007874', '161725', '161726', '161720', '006020', '110003', '110022', '161028', '320007', '007824', '001593', '001594', '008087', '501010', '166002', '006229', '002697', '001156', '006768', '005224', '001938', '002316', '513600', '510900', '159920', '008975', '005911']
68.375
113
0.464351
4a220a466fdcfa14be15986d352cafa55f1a679f
739
py
Python
integration/airflow/openlineage/airflow/extractors/__init__.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
1
2021-11-19T15:00:39.000Z
2021-11-19T15:00:39.000Z
integration/airflow/openlineage/airflow/extractors/__init__.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
null
null
null
integration/airflow/openlineage/airflow/extractors/__init__.py
kedar-cz/OpenLineage
bd75b53c84fd9655f593c4f161e15c14785eb93e
[ "Apache-2.0" ]
1
2021-09-07T04:16:02.000Z
2021-09-07T04:16:02.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from openlineage.airflow.extractors.extractors import Extractors from openlineage.airflow.extractors.base import BaseExtractor, StepMetadata __all__ = [Extractors, BaseExtractor, StepMetadata]
43.470588
75
0.788904
4a220ab75433d967bc55e921cdf77cb77697b3bd
277
py
Python
md4c/types.py
Exahilosys/md4c
3c37ba8892870af212108c546a6249cea0c4199e
[ "MIT" ]
null
null
null
md4c/types.py
Exahilosys/md4c
3c37ba8892870af212108c546a6249cea0c4199e
[ "MIT" ]
null
null
null
md4c/types.py
Exahilosys/md4c
3c37ba8892870af212108c546a6249cea0c4199e
[ "MIT" ]
null
null
null
import ctypes __all__ = ('char', 'char_p', 'size', 'offset', 'enum', 'void', 'ires', 'vres') char = ctypes.c_char char_p = ctypes.c_char_p size = ctypes.c_uint offset = ctypes.c_uint enum = ctypes.c_uint void = ctypes.c_void_p ires = ctypes.c_int vres = void
9.551724
78
0.65704
4a220acc41a46e1d5f13169a01754f4721c58de8
465
py
Python
scripts/wanderer_self_test.py
IRASatUC/turtle_roomba
e562de7a875e3f732e80002f658174f6e0496cba
[ "MIT" ]
null
null
null
scripts/wanderer_self_test.py
IRASatUC/turtle_roomba
e562de7a875e3f732e80002f658174f6e0496cba
[ "MIT" ]
null
null
null
scripts/wanderer_self_test.py
IRASatUC/turtle_roomba
e562de7a875e3f732e80002f658174f6e0496cba
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import absolute_import, print_function import numpy as np import math import random import time import rospy import tf from geometry_msgs.msg import Point, Pose, Twist from wanderer import Wanderer if __name__ == "__main__": rospy.init_node("wanderer_test", anonymous=True, log_level=rospy.DEBUG) wanderertester = Wanderer() rospy.on_shutdown(wanderertester.clean_shutdown) wanderertester.self_test() rospy.spin()
23.25
73
0.797849
4a220ae2c4938810e88f0a475494c6f3817a3487
13,973
py
Python
build/PureCloudPlatformClientV2/models/o_auth_client_request.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
10
2019-02-22T00:27:08.000Z
2021-09-12T23:23:44.000Z
build/PureCloudPlatformClientV2/models/o_auth_client_request.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
5
2018-06-07T08:32:00.000Z
2021-07-28T17:37:26.000Z
build/PureCloudPlatformClientV2/models/o_auth_client_request.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
6
2020-04-09T17:43:07.000Z
2022-02-17T08:48:05.000Z
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class OAuthClientRequest(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ OAuthClientRequest - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'name': 'str', 'access_token_validity_seconds': 'int', 'description': 'str', 'registered_redirect_uri': 'list[str]', 'role_ids': 'list[str]', 'authorized_grant_type': 'str', 'scope': 'list[str]', 'role_divisions': 'list[RoleDivision]', 'state': 'str', 'date_to_delete': 'datetime' } self.attribute_map = { 'name': 'name', 'access_token_validity_seconds': 'accessTokenValiditySeconds', 'description': 'description', 'registered_redirect_uri': 'registeredRedirectUri', 'role_ids': 'roleIds', 'authorized_grant_type': 'authorizedGrantType', 'scope': 'scope', 'role_divisions': 'roleDivisions', 'state': 'state', 'date_to_delete': 'dateToDelete' } self._name = None self._access_token_validity_seconds = None self._description = None self._registered_redirect_uri = None self._role_ids = None self._authorized_grant_type = None self._scope = None self._role_divisions = None self._state = None self._date_to_delete = None @property def name(self): """ Gets the name of this OAuthClientRequest. The name of the OAuth client. :return: The name of this OAuthClientRequest. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this OAuthClientRequest. The name of the OAuth client. :param name: The name of this OAuthClientRequest. :type: str """ self._name = name @property def access_token_validity_seconds(self): """ Gets the access_token_validity_seconds of this OAuthClientRequest. The number of seconds, between 5mins and 48hrs, until tokens created with this client expire. If this field is omitted, a default of 24 hours will be applied. :return: The access_token_validity_seconds of this OAuthClientRequest. :rtype: int """ return self._access_token_validity_seconds @access_token_validity_seconds.setter def access_token_validity_seconds(self, access_token_validity_seconds): """ Sets the access_token_validity_seconds of this OAuthClientRequest. The number of seconds, between 5mins and 48hrs, until tokens created with this client expire. If this field is omitted, a default of 24 hours will be applied. :param access_token_validity_seconds: The access_token_validity_seconds of this OAuthClientRequest. :type: int """ self._access_token_validity_seconds = access_token_validity_seconds @property def description(self): """ Gets the description of this OAuthClientRequest. :return: The description of this OAuthClientRequest. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this OAuthClientRequest. :param description: The description of this OAuthClientRequest. :type: str """ self._description = description @property def registered_redirect_uri(self): """ Gets the registered_redirect_uri of this OAuthClientRequest. List of allowed callbacks for this client. For example: https://myap.example.com/auth/callback :return: The registered_redirect_uri of this OAuthClientRequest. :rtype: list[str] """ return self._registered_redirect_uri @registered_redirect_uri.setter def registered_redirect_uri(self, registered_redirect_uri): """ Sets the registered_redirect_uri of this OAuthClientRequest. List of allowed callbacks for this client. For example: https://myap.example.com/auth/callback :param registered_redirect_uri: The registered_redirect_uri of this OAuthClientRequest. :type: list[str] """ self._registered_redirect_uri = registered_redirect_uri @property def role_ids(self): """ Gets the role_ids of this OAuthClientRequest. Deprecated. Use roleDivisions instead. :return: The role_ids of this OAuthClientRequest. :rtype: list[str] """ return self._role_ids @role_ids.setter def role_ids(self, role_ids): """ Sets the role_ids of this OAuthClientRequest. Deprecated. Use roleDivisions instead. :param role_ids: The role_ids of this OAuthClientRequest. :type: list[str] """ self._role_ids = role_ids @property def authorized_grant_type(self): """ Gets the authorized_grant_type of this OAuthClientRequest. The OAuth Grant/Client type supported by this client. Code Authorization Grant/Client type - Preferred client type where the Client ID and Secret are required to create tokens. Used where the secret can be secured. PKCE-Enabled Code Authorization grant type - Code grant type which requires PKCE challenge and verifier to create tokens. Used in public clients for increased security. Implicit grant type - Client ID only is required to create tokens. Used in browser and mobile apps where the secret can not be secured. SAML2-Bearer extension grant type - SAML2 assertion provider for user authentication at the token endpoint. Client Credential grant type - Used to created access tokens that are tied only to the client. :return: The authorized_grant_type of this OAuthClientRequest. :rtype: str """ return self._authorized_grant_type @authorized_grant_type.setter def authorized_grant_type(self, authorized_grant_type): """ Sets the authorized_grant_type of this OAuthClientRequest. The OAuth Grant/Client type supported by this client. Code Authorization Grant/Client type - Preferred client type where the Client ID and Secret are required to create tokens. Used where the secret can be secured. PKCE-Enabled Code Authorization grant type - Code grant type which requires PKCE challenge and verifier to create tokens. Used in public clients for increased security. Implicit grant type - Client ID only is required to create tokens. Used in browser and mobile apps where the secret can not be secured. SAML2-Bearer extension grant type - SAML2 assertion provider for user authentication at the token endpoint. Client Credential grant type - Used to created access tokens that are tied only to the client. :param authorized_grant_type: The authorized_grant_type of this OAuthClientRequest. :type: str """ allowed_values = ["CODE", "TOKEN", "SAML2BEARER", "PASSWORD", "CLIENT_CREDENTIALS"] if authorized_grant_type.lower() not in map(str.lower, allowed_values): # print("Invalid value for authorized_grant_type -> " + authorized_grant_type) self._authorized_grant_type = "outdated_sdk_version" else: self._authorized_grant_type = authorized_grant_type @property def scope(self): """ Gets the scope of this OAuthClientRequest. The scope requested by this client. Scopes only apply to clients not using the client_credential grant :return: The scope of this OAuthClientRequest. :rtype: list[str] """ return self._scope @scope.setter def scope(self, scope): """ Sets the scope of this OAuthClientRequest. The scope requested by this client. Scopes only apply to clients not using the client_credential grant :param scope: The scope of this OAuthClientRequest. :type: list[str] """ self._scope = scope @property def role_divisions(self): """ Gets the role_divisions of this OAuthClientRequest. Set of roles and their corresponding divisions associated with this client. Roles and divisions only apply to clients using the client_credential grant :return: The role_divisions of this OAuthClientRequest. :rtype: list[RoleDivision] """ return self._role_divisions @role_divisions.setter def role_divisions(self, role_divisions): """ Sets the role_divisions of this OAuthClientRequest. Set of roles and their corresponding divisions associated with this client. Roles and divisions only apply to clients using the client_credential grant :param role_divisions: The role_divisions of this OAuthClientRequest. :type: list[RoleDivision] """ self._role_divisions = role_divisions @property def state(self): """ Gets the state of this OAuthClientRequest. The state of the OAuth client. Active: The OAuth client can be used to create access tokens. This is the default state. Disabled: Access tokens created by the client are invalid and new ones cannot be created. Inactive: Access tokens cannot be created with this OAuth client and it will be deleted. :return: The state of this OAuthClientRequest. :rtype: str """ return self._state @state.setter def state(self, state): """ Sets the state of this OAuthClientRequest. The state of the OAuth client. Active: The OAuth client can be used to create access tokens. This is the default state. Disabled: Access tokens created by the client are invalid and new ones cannot be created. Inactive: Access tokens cannot be created with this OAuth client and it will be deleted. :param state: The state of this OAuthClientRequest. :type: str """ allowed_values = ["active", "disabled", "inactive"] if state.lower() not in map(str.lower, allowed_values): # print("Invalid value for state -> " + state) self._state = "outdated_sdk_version" else: self._state = state @property def date_to_delete(self): """ Gets the date_to_delete of this OAuthClientRequest. The time at which this client will be deleted. Date time is represented as an ISO-8601 string. For example: yyyy-MM-ddTHH:mm:ss[.mmm]Z :return: The date_to_delete of this OAuthClientRequest. :rtype: datetime """ return self._date_to_delete @date_to_delete.setter def date_to_delete(self, date_to_delete): """ Sets the date_to_delete of this OAuthClientRequest. The time at which this client will be deleted. Date time is represented as an ISO-8601 string. For example: yyyy-MM-ddTHH:mm:ss[.mmm]Z :param date_to_delete: The date_to_delete of this OAuthClientRequest. :type: datetime """ self._date_to_delete = date_to_delete def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
37.461126
731
0.648966
4a220b6bce4fa4e938a78f5bdbdf78fcaa742ff4
9,706
py
Python
accelerator/methods.py
sebras/berkeman-acceldev
72efd8f3f8d4a4f4bf71612f1d9703fd89fd48e4
[ "Apache-2.0" ]
null
null
null
accelerator/methods.py
sebras/berkeman-acceldev
72efd8f3f8d4a4f4bf71612f1d9703fd89fd48e4
[ "Apache-2.0" ]
null
null
null
accelerator/methods.py
sebras/berkeman-acceldev
72efd8f3f8d4a4f4bf71612f1d9703fd89fd48e4
[ "Apache-2.0" ]
1
2020-02-15T17:09:16.000Z
2020-02-15T17:09:16.000Z
############################################################################ # # # Copyright (c) 2017 eBay Inc. # # Modifications copyright (c) 2018-2019 Carl Drougge # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ############################################################################ from __future__ import print_function from __future__ import division import os import datetime from time import time from collections import defaultdict from importlib import import_module from accelerator.compat import iteritems, itervalues, first_value from accelerator.compat import NoneType, unicode, long from accelerator.extras import DotDict, OptionString, OptionEnum, OptionDefault, RequiredOption from accelerator.runner import new_runners from accelerator.setupfile import _sorted_set class MethodLoadException(Exception): def __init__(self, lst): Exception.__init__(self, 'Failed to load ' + ', '.join(lst)) self.module_list = lst class Methods(object): def __init__(self, package_list, configfilename): self.package_list = package_list self.db = {} for package in self.package_list: try: package_mod = import_module(package) if not hasattr(package_mod, "__file__"): raise ImportError("no __file__") except ImportError: raise Exception("Failed to import %s, maybe missing __init__.py?" % (package,)) if not package_mod.__file__: raise Exception("%s has no __file__, maybe missing __init__.py?" % (package,)) confname = os.path.join(os.path.dirname(package_mod.__file__), configfilename) tmp = read_method_conf(confname) for x in tmp: if x in self.db: print("METHOD: ERROR, method \"%s\" defined both in \"%s\" and \"%s\"!" % ( x, package, self.db[x]['package'])) exit(1) for x in tmp.values(): x['package'] = os.path.basename(package) self.db.update(tmp) # build dependency tree for all methods self.deptree = {} for method in self.db: self.deptree[method] = self._build_dep_tree(method, tree={}) self.link = {k: v.get('link') for k, v in iteritems(self.db)} def _build_dep_tree(self, method, tree={}): if method not in self.db: raise Exception("Method %r doesn't exist" % method) dependencies = self.db[method].get('dep', []) tree.setdefault(method, {'dep' : dependencies, 'level' : -1, 'method' : method}) if not dependencies: tree[method]['level'] = 0 else: for dep in dependencies: self._build_dep_tree(dep, tree=tree) tree[method]['level'] = max( tree[method]['level'], tree[dep]['level']+1, ) return tree def new_deptree(self, top_method): return self._build_dep_tree(top_method, tree={}) # Collect information on methods class SubMethods(Methods): def __init__(self, package_list, configfilename, daemon_config): super(SubMethods, self).__init__(package_list, configfilename) t0 = time() per_runner = defaultdict(list) for key, val in iteritems(self.db): package = val['package'] per_runner[val['version']].append((package, key)) self.runners = new_runners(daemon_config, set(per_runner)) warnings = [] failed = [] self.hash = {} self.params = {} self.typing = {} for version, data in iteritems(per_runner): runner = self.runners.get(version) if not runner: msg = '%%s.%%s (unconfigured interpreter %s)' % (version) failed.extend(msg % t for t in sorted(data)) continue w, f, h, p = runner.load_methods(package_list, data) warnings.extend(w) failed.extend(f) self.hash.update(h) self.params.update(p) for key, params in iteritems(self.params): self.typing[key] = options2typing(key, params.options) params.defaults = params2defaults(params) params.required = options2required(params.options) def prt(a, prefix): maxlen = (max(len(e) for e in a) + len(prefix)) line = '=' * maxlen print() print(line) for e in sorted(a): msg = prefix + e print(msg + ' ' * (maxlen - len(msg))) print(line) print() if warnings: prt(warnings, 'WARNING: ') if failed: print('\033[47;31;1m') prt(failed, 'FAILED to import ') print('\033[m') raise MethodLoadException(failed) print("Updated %d methods on %d runners in %.1f seconds" % ( len(self.hash), len(per_runner), time() - t0, )) def params2optset(self, params): optset = set() for optmethod, method_params in iteritems(params): for group, d in iteritems(method_params): filled_in = dict(self.params[optmethod].defaults[group]) filled_in.update(d) for optname, optval in iteritems(filled_in): optset.add('%s %s-%s %s' % (optmethod, group, optname, _reprify(optval),)) return optset def _reprify(o): if isinstance(o, OptionDefault): o = o.default if isinstance(o, (bytes, str, int, float, long, bool, NoneType)): return repr(o) if isinstance(o, unicode): # not reachable in PY3, the above "str" matches return repr(o.encode('utf-8')) if isinstance(o, set): return '[%s]' % (', '.join(map(_reprify, _sorted_set(o))),) if isinstance(o, (list, tuple)): return '[%s]' % (', '.join(map(_reprify, o)),) if isinstance(o, dict): return '{%s}' % (', '.join('%s: %s' % (_reprify(k), _reprify(v),) for k, v in sorted(iteritems(o))),) if isinstance(o, (datetime.datetime, datetime.date, datetime.time, datetime.timedelta,)): return str(o) raise Exception('Unhandled %s in dependency resolution' % (type(o),)) def params2defaults(params): d = DotDict() for key in ('datasets', 'jobs',): r = {} for v in params[key]: if isinstance(v, list): r[v[0]] = [] else: r[v] = None d[key] = r def fixup(item): if isinstance(item, dict): d = {k: fixup(v) for k, v in iteritems(item)} if len(d) == 1 and first_value(d) is None and first_value(item) is not None: return {} return d if isinstance(item, (list, tuple, set,)): l = [fixup(v) for v in item] if l == [None] and list(item) != [None]: l = [] return type(item)(l) if isinstance(item, (type, OptionEnum)): return None assert isinstance(item, (bytes, unicode, int, float, long, bool, OptionEnum, NoneType, datetime.datetime, datetime.date, datetime.time, datetime.timedelta)), type(item) return item def fixup0(item): if isinstance(item, RequiredOption): item = item.value if isinstance(item, OptionDefault): item = item.default return fixup(item) d.options = {k: fixup0(v) for k, v in iteritems(params.options)} return d def options2required(options): res = set() def chk(key, value): if value is OptionString or isinstance(value, RequiredOption): res.add(key) elif isinstance(value, OptionEnum): if None not in value._valid: res.add(key) elif isinstance(value, dict): for v in itervalues(value): chk(key, v) elif isinstance(value, (list, tuple, set,)): for v in value: chk(key, v) for key, value in iteritems(options): chk(key, value) return res def options2typing(method, options): from accelerator.job import JobWithFile res = {} def value2spec(value): if isinstance(value, list): if not value: return fmt = '[%s]' value = value[0] else: fmt = '%s' typ = None if value is JobWithFile or isinstance(value, JobWithFile): typ = 'JobWithFile' elif isinstance(value, set): typ = 'set' elif value in (datetime.datetime, datetime.date, datetime.time, datetime.timedelta,): typ = value.__name__ elif isinstance(value, (datetime.datetime, datetime.date, datetime.time, datetime.timedelta,)): typ = type(value).__name__ if typ: return fmt % (typ,) def collect(key, value, path=''): path = "%s/%s" % (path, key,) if isinstance(value, dict): for v in itervalues(value): collect('*', v, path) return spec = value2spec(value) assert res.get(path, spec) == spec, 'Method %s has incompatible types in options%s' % (method, path,) res[path] = spec for k, v in iteritems(options): collect(k, v) # reverse by key len, so something inside a dict always comes before # the dict itself. (We don't currently have any dict-like types, but we # might later.) return sorted(([k[1:], v] for k, v in iteritems(res) if v), key=lambda i: -len(i[0])) def read_method_conf(filename): """ read and parse the methods.conf file """ db = {} with open(filename) as fh: for lineno, line in enumerate(fh, 1): data = line.split('#')[0].split() if not data: continue method = data.pop(0) try: version = data.pop(0) except IndexError: version = 'DEFAULT' if data: raise Exception('Trailing garbage on %s:%d: %s' % (filename, lineno, line,)) db[method] = DotDict(version=version) return db
34.41844
170
0.625592
4a220ce6783a612ad5fdb71e3532778105df0896
1,441
py
Python
src/users/tests/test_models.py
zkkamir/planning-project
f1b82194c41145272569028b36088c2e9834c72f
[ "MIT" ]
null
null
null
src/users/tests/test_models.py
zkkamir/planning-project
f1b82194c41145272569028b36088c2e9834c72f
[ "MIT" ]
null
null
null
src/users/tests/test_models.py
zkkamir/planning-project
f1b82194c41145272569028b36088c2e9834c72f
[ "MIT" ]
null
null
null
import pytest @pytest.mark.django_db def test_create_user(django_user_model): """ Test user creation. """ user = django_user_model.objects.create_user( email="[email protected]", password="testtest" ) assert django_user_model.objects.count() == 1 assert user.email == "[email protected]" assert user.is_active is True assert user.is_staff is False assert user.is_superuser is False with pytest.raises(AttributeError): user.username with pytest.raises(TypeError): django_user_model.objects.create_user() with pytest.raises(TypeError): django_user_model.objects.create_user(email="") with pytest.raises(ValueError): django_user_model.objects.create_user(email="", password="foo") @pytest.mark.django_db def test_create_superuser(django_user_model): """ Test superuser creation. """ user = django_user_model.objects.create_superuser( email="[email protected]", password="testtest" ) assert django_user_model.objects.count() == 1 assert user.email == "[email protected]" assert user.is_active is True assert user.is_staff is True assert user.is_superuser is True with pytest.raises(AttributeError): user.username with pytest.raises(ValueError): django_user_model.objects.create_superuser( email="[email protected]", password="foo", is_superuser=False )
31.326087
75
0.69882
4a2210af7fb4db99416975899d5c4de7da1d6fed
3,048
py
Python
docs/conf.py
tonitick/horovod
73d860f2396321761e0f5ef6fe934130afd69094
[ "Apache-2.0" ]
null
null
null
docs/conf.py
tonitick/horovod
73d860f2396321761e0f5ef6fe934130afd69094
[ "Apache-2.0" ]
1
2019-07-29T10:08:33.000Z
2019-07-29T10:08:33.000Z
docs/conf.py
tonitick/horovod
73d860f2396321761e0f5ef6fe934130afd69094
[ "Apache-2.0" ]
1
2019-04-08T17:12:48.000Z
2019-04-08T17:12:48.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'Horovod' copyright = '2019, The Horovod Authors' author = 'The Horovod Authors' from horovod import __version__ version = __version__ # -- Mocking configuration --------------------------------------------------- import mocks mocks.instrument() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinxcontrib.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The master toctree document. master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Autodoc configuration --------------------------------------------------- autodoc_default_options = { 'members': None, 'member-order': 'bysource', 'special-members': '__init__', 'imported-members': None, 'undoc-members': None, } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # For alabaster: https://alabaster.readthedocs.io/en/latest/customization.html # html_theme_options = { 'logo': 'logo.png', 'description': 'Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.', 'github_user': 'horovod', 'github_repo': 'horovod', 'github_button': True, 'github_type': 'star', 'github_count': 'true', 'fixed_sidebar': True, 'sidebar_collapse': True, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
31.102041
102
0.650262
4a22110880d10b3922ea4afb0ed19ee3af1c55c3
1,451
py
Python
Python/Listas/Q22.py
Flavio-Varejao/Exercicios
69d62d09e5ef5da4446b6bf7dccda9eae7361d96
[ "MIT" ]
null
null
null
Python/Listas/Q22.py
Flavio-Varejao/Exercicios
69d62d09e5ef5da4446b6bf7dccda9eae7361d96
[ "MIT" ]
null
null
null
Python/Listas/Q22.py
Flavio-Varejao/Exercicios
69d62d09e5ef5da4446b6bf7dccda9eae7361d96
[ "MIT" ]
null
null
null
mouses={'1':0,'2':0,'3':0,'4':0} resposta=1 while resposta != "0": opcao=input("\nEscolha uma opção:\n"+ "<1> - Necessita de esfera\n"+ "<2> - Necessita de limpeza\n"+ "<3> - Necessita trocar do cabo ou conector\n"+ "<4> - Quebrado ou inutilizado: ") if opcao == "1": print("\nNecessita de esfera") mouses['1']=int(input("Digite a quantidade: ")) elif opcao == "2": print("\nNecessita de limpeza") mouses['2']=int(input("Digite a quantidade: ")) elif opcao == "3": print("\nNecessita trocar do cabo ou conector") mouses['3']=int(input("Digite a quantidade: ")) elif opcao == "4": print("\nQuebrado ou inutilizado") mouses['4']=int(input("Digite a quantidade: ")) else: break resposta=input("\nDigite <0> para sair: ") print("\nQuantidade de mouses:",sum(mouses.values())) print("\nSituação Quantidade Percentual") print("1 - necessita da esfera ",mouses['1']," ",mouses['1']/sum(mouses.values())) print("2 - necessita de limpeza ",mouses['2']," ",mouses['2']/sum(mouses.values())) print("3 - necessita troca do cabo ou conector ",mouses['3']," ",mouses['3']/sum(mouses.values())) print("4 - quebrado ou inutilizado ",mouses['4']," ",mouses['4']/sum(mouses.values()))
46.806452
111
0.532047
4a2212c1d6a8d2c18a7f2e3573d4db93bc57aefa
7,697
py
Python
notifications/views.py
facundojmaero/django-notifications
74edab0ab45d8ca3eee2d2b20c5d3f4a127ef652
[ "BSD-3-Clause" ]
null
null
null
notifications/views.py
facundojmaero/django-notifications
74edab0ab45d8ca3eee2d2b20c5d3f4a127ef652
[ "BSD-3-Clause" ]
null
null
null
notifications/views.py
facundojmaero/django-notifications
74edab0ab45d8ca3eee2d2b20c5d3f4a127ef652
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ''' Django Notifications example views ''' from distutils.version import StrictVersion # pylint: disable=no-name-in-module,import-error from django import get_version from django.contrib.auth.decorators import login_required from django.forms import model_to_dict from django.shortcuts import get_object_or_404, redirect from django.utils.decorators import method_decorator from django.views.generic import ListView from notifications import settings from notifications.utils import id2slug, slug2id from notifications.settings import get_config from django.views.decorators.cache import never_cache from swapper import load_model Notification = load_model('notifications', 'Notification') if StrictVersion(get_version()) >= StrictVersion('1.7.0'): from django.http import JsonResponse # noqa else: # Django 1.6 doesn't have a proper JsonResponse import json from django.http import HttpResponse # noqa def date_handler(obj): return obj.isoformat() if hasattr(obj, 'isoformat') else obj def JsonResponse(data): # noqa return HttpResponse( json.dumps(data, default=date_handler), content_type="application/json") class NotificationViewList(ListView): template_name = 'notifications/list.html' context_object_name = 'notifications' paginate_by = settings.get_config()['PAGINATE_BY'] @method_decorator(login_required) def dispatch(self, request, *args, **kwargs): return super(NotificationViewList, self).dispatch( request, *args, **kwargs) class AllNotificationsList(NotificationViewList): """ Index page for authenticated user """ def get_queryset(self): if settings.get_config()['SOFT_DELETE']: qset = self.request.user.notifications.active() else: qset = self.request.user.notifications.all() return qset class UnreadNotificationsList(NotificationViewList): def get_queryset(self): return self.request.user.notifications.unread() @login_required def mark_all_as_read(request): request.user.notifications.mark_all_as_read() _next = request.GET.get('next') if _next: return redirect(_next) return redirect('notifications:unread') @login_required def mark_as_read(request, slug=None): notification_id = slug2id(slug) notification = get_object_or_404( Notification, recipient=request.user, id=notification_id) notification.mark_as_read() _next = request.GET.get('next') if _next: return redirect(_next) return redirect('notifications:unread') @login_required def mark_as_unread(request, slug=None): notification_id = slug2id(slug) notification = get_object_or_404( Notification, recipient=request.user, id=notification_id) notification.mark_as_unread() _next = request.GET.get('next') if _next: return redirect(_next) return redirect('notifications:unread') @login_required def delete(request, slug=None): notification_id = slug2id(slug) notification = get_object_or_404( Notification, recipient=request.user, id=notification_id) if settings.get_config()['SOFT_DELETE']: notification.deleted = True notification.save() else: notification.delete() _next = request.GET.get('next') if _next: return redirect(_next) return redirect('notifications:all') @never_cache def live_unread_notification_count(request): try: user_is_authenticated = request.user.is_authenticated() except TypeError: # Django >= 1.11 user_is_authenticated = request.user.is_authenticated if not user_is_authenticated: data = { 'unread_count': 0 } else: data = { 'unread_count': request.user.notifications.unread().count(), } return JsonResponse(data) @never_cache def live_unread_notification_list(request): ''' Return a json with a unread notification list ''' try: user_is_authenticated = request.user.is_authenticated() except TypeError: # Django >= 1.11 user_is_authenticated = request.user.is_authenticated if not user_is_authenticated: data = { 'unread_count': 0, 'unread_list': [] } return JsonResponse(data) default_num_to_fetch = get_config()['NUM_TO_FETCH'] try: # If they don't specify, make it 5. num_to_fetch = request.GET.get('max', default_num_to_fetch) num_to_fetch = int(num_to_fetch) if not (1 <= num_to_fetch <= 100): num_to_fetch = default_num_to_fetch except ValueError: # If casting to an int fails. num_to_fetch = default_num_to_fetch unread_list = [] for notification in request.user.notifications.unread()[0:num_to_fetch]: struct = model_to_dict(notification) struct['slug'] = id2slug(notification.id) if notification.actor: struct['actor'] = str(notification.actor) if notification.target: struct['target'] = str(notification.target) if notification.action_object: struct['action_object'] = str(notification.action_object) if notification.data: struct['data'] = notification.data unread_list.append(struct) if request.GET.get('mark_as_read'): notification.mark_as_read() data = { 'unread_count': request.user.notifications.unread().count(), 'unread_list': unread_list } return JsonResponse(data) @never_cache def live_all_notification_list(request): ''' Return a json with a unread notification list ''' try: user_is_authenticated = request.user.is_authenticated() except TypeError: # Django >= 1.11 user_is_authenticated = request.user.is_authenticated if not user_is_authenticated: data = { 'all_count': 0, 'all_list': [] } return JsonResponse(data) default_num_to_fetch = get_config()['NUM_TO_FETCH'] try: # If they don't specify, make it 5. num_to_fetch = request.GET.get('max', default_num_to_fetch) num_to_fetch = int(num_to_fetch) if not (1 <= num_to_fetch <= 100): num_to_fetch = default_num_to_fetch except ValueError: # If casting to an int fails. num_to_fetch = default_num_to_fetch all_list = [] for notification in request.user.notifications.all()[0:num_to_fetch]: struct = model_to_dict(notification) struct['slug'] = id2slug(notification.id) if notification.actor: struct['actor'] = str(notification.actor) if notification.target: struct['target'] = str(notification.target) if notification.action_object: struct['action_object'] = str(notification.action_object) if notification.data: struct['data'] = notification.data all_list.append(struct) if request.GET.get('mark_as_read'): notification.mark_as_read() data = { 'all_count': request.user.notifications.count(), 'all_list': all_list } return JsonResponse(data) def live_all_notification_count(request): try: user_is_authenticated = request.user.is_authenticated() except TypeError: # Django >= 1.11 user_is_authenticated = request.user.is_authenticated if not user_is_authenticated: data = { 'all_count': 0 } else: data = { 'all_count': request.user.notifications.count(), } return JsonResponse(data)
29.718147
93
0.67169
4a2212df19fd4354258808f9f5d685729bd853f0
1,456
py
Python
scripts/species/data_loader.py
JDonini/Cats-and-Dogs-Classification
1322f80536ff077ab87e5176a13ea5db242254b1
[ "MIT" ]
10
2018-11-30T08:31:09.000Z
2020-03-30T09:34:12.000Z
scripts/species/data_loader.py
JDonini/Cats_Dogs_Classification
1322f80536ff077ab87e5176a13ea5db242254b1
[ "MIT" ]
1
2019-10-05T14:07:09.000Z
2019-10-05T14:07:09.000Z
scripts/species/data_loader.py
JDonini/Cats_Dogs_Classification
1322f80536ff077ab87e5176a13ea5db242254b1
[ "MIT" ]
4
2018-04-30T05:12:12.000Z
2018-06-21T13:56:43.000Z
import warnings import torch import torchvision.transforms as transforms from torchvision import datasets import os import sys sys.path.append('utils') from config import IMG_SIZE, BATCH_SIZE, NUM_WORKERS, DATA_PATH warnings.filterwarnings("ignore") print("Processing Species...") transform = { 'train': transforms.Compose([transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), 'test': transforms.Compose([transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) } dsets = {x: datasets.ImageFolder(os.path.join(DATA_PATH, x), transform[x]) for x in ['train', 'test']} dset_loaders = {x: torch.utils.data.DataLoader(dsets[x], batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS) for x in ['train', 'test']} dset_sizes = {x: len(dsets[x]) for x in ['train', 'test']} dset_classes = dsets['train'].classes
36.4
118
0.513049
4a22135ea3474f8e428d4ef7d4cc93d49f80e52c
871
py
Python
test/unit/rules/resources/lmbd/test_deprecated_runtime_eol.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,134
2019-03-02T14:58:34.000Z
2021-05-15T00:57:16.000Z
test/unit/rules/resources/lmbd/test_deprecated_runtime_eol.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1,122
2019-03-03T04:27:15.000Z
2021-05-14T20:51:16.000Z
test/unit/rules/resources/lmbd/test_deprecated_runtime_eol.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
297
2019-03-11T09:56:57.000Z
2021-05-14T16:41:19.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from test.unit.rules import BaseRuleTestCase from datetime import datetime from cfnlint.rules.resources.lmbd.DeprecatedRuntimeEol import DeprecatedRuntimeEol # pylint: disable=E0401 class TestDeprecatedRuntimeEol(BaseRuleTestCase): """Test Lambda Deprecated Runtime usage""" def setUp(self): """Setup""" super(TestDeprecatedRuntimeEol, self).setUp() self.collection.register(DeprecatedRuntimeEol()) self.collection.rules[0].current_date = datetime(2019, 6, 29) def test_file_positive(self): """Test Positive""" self.helper_file_positive() def test_file_negative(self): """Test failure""" self.helper_file_negative('test/fixtures/templates/bad/resources/lambda/runtimes.yaml', 2)
33.5
107
0.723307
4a22144e5631ed1acbc39175093ae35139fa1fe2
1,241
py
Python
sayhitotheworld/urls.py
RUAN-ZX/sayhitothwworld
0258ef715484d300e43b2a193b85ab7e5a01fba4
[ "MIT" ]
1
2020-07-22T10:20:32.000Z
2020-07-22T10:20:32.000Z
sayhitotheworld/urls.py
RUAN-ZX/sayhitothwworld
0258ef715484d300e43b2a193b85ab7e5a01fba4
[ "MIT" ]
null
null
null
sayhitotheworld/urls.py
RUAN-ZX/sayhitothwworld
0258ef715484d300e43b2a193b85ab7e5a01fba4
[ "MIT" ]
null
null
null
"""sayhitotheworld URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include from django.urls import path from django.conf import settings from django.conf.urls.static import static # urls.py配置如下,for media访问 from django.conf.urls import url from django.views.static import serve from .settings import MEDIA_ROOT urlpatterns = [ path('Ryaninnerpeace/admin/', admin.site.urls), path('', include('app_sayhi.urls')), url(r'^media/(?P<path>.*)$', serve, {"document_root": MEDIA_ROOT}), ]+ static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) #4 # /avatar/{{ student.studentAvatar }} nginx设计:)
36.5
77
0.730862
4a22146bd64b5129993809b06da71e5ca9d301db
1,221
py
Python
packages/pyright-internal/src/tests/samples/typeNarrowing11.py
sransara/pyright
4e117682c946b60f2b24fd75a07736954b21f158
[ "MIT" ]
1
2020-12-28T16:58:24.000Z
2020-12-28T16:58:24.000Z
packages/pyright-internal/src/tests/samples/typeNarrowing11.py
sransara/pyright
4e117682c946b60f2b24fd75a07736954b21f158
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/typeNarrowing11.py
sransara/pyright
4e117682c946b60f2b24fd75a07736954b21f158
[ "MIT" ]
null
null
null
# This sample tests the type narrowing capabilities involving # types that have enumerated literals (bool and enums). from enum import Enum from typing import Literal, Union class SomeEnum(Enum): SOME_ENUM_VALUE1 = 1 SOME_ENUM_VALUE2 = 2 SOME_ENUM_VALUE3 = 3 def func1(a: SomeEnum) -> Literal[3]: if a == SomeEnum.SOME_ENUM_VALUE1 or a == SomeEnum.SOME_ENUM_VALUE2: return 3 else: return a.value def func2(a: SomeEnum) -> Literal[3]: if a == SomeEnum.SOME_ENUM_VALUE1: return 3 elif a == SomeEnum.SOME_ENUM_VALUE2: return 3 else: return a.value def must_be_true(a: Literal[True]): ... def must_be_false(a: Literal[False]): ... def func3(a: bool): if a == True: must_be_true(a) else: must_be_false(a) def func3(a: bool): if not a: must_be_false(a) else: must_be_true(a) class MyEnum(Enum): ZERO = 0 ONE = 1 def func4(x: Union[MyEnum, str]): if x is MyEnum.ZERO: t1: Literal["Literal[MyEnum.ZERO]"] = reveal_type(x) elif x is MyEnum.ONE: t2: Literal["Literal[MyEnum.ONE]"] = reveal_type(x) else: t3: Literal["str"] = reveal_type(x)
19.078125
72
0.622441
4a221597a950d7a2b40f7cf2c71e783e2bb28f86
62,321
py
Python
selfdrive/car/hyundai/values.py
barghe/Barghe_OP
013e2f9a69352fae0c0eff62bd247247d0219452
[ "MIT" ]
null
null
null
selfdrive/car/hyundai/values.py
barghe/Barghe_OP
013e2f9a69352fae0c0eff62bd247247d0219452
[ "MIT" ]
null
null
null
selfdrive/car/hyundai/values.py
barghe/Barghe_OP
013e2f9a69352fae0c0eff62bd247247d0219452
[ "MIT" ]
null
null
null
from cereal import car from selfdrive.car import dbc_dict Ecu = car.CarParams.Ecu class CarControllerParams: ACCEL_MAX = 2.0 ACCEL_MIN = -3.7 STEER_MAX = 384 # 409 is the max, 255 is stock STEER_DELTA_UP = 3 STEER_DELTA_DOWN = 5 STEER_DRIVER_ALLOWANCE = 50 STEER_DRIVER_MULTIPLIER = 2 STEER_DRIVER_FACTOR = 1 class CAR: # genesis GENESIS = "GENESIS 2015-2016" GENESIS_G70 = "GENESIS G70 2018" GENESIS_G80 = "GENESIS G80 2017" GENESIS_EQ900 = "GENESIS EQ900 2017" GENESIS_EQ900_L = "GENESIS EQ900 LIMOUSINE" GENESIS_G90 = "GENESIS G90 2019" # hyundai ELANTRA = "HYUNDAI ELANTRA LIMITED ULTIMATE 2017" ELANTRA_2021 = "HYUNDAI ELANTRA 2021" ELANTRA_HEV_2021 = "HYUNDAI ELANTRA HEV 2021" ELANTRA_GT_I30 = "HYUNDAI I30 N LINE 2019 & GT 2018 DCT" SONATA = "HYUNDAI SONATA 2020" SONATA_HEV = "HYUNDAI SONATA HEV 2020" SONATA21_HEV = "HYUNDAI SONATA HEV 2021" SONATA19 = "HYUNDAI SONATA 2019" SONATA19_HEV = "HYUNDAI SONATA 2019 HEV" SONATA_LF_TURBO = "HYUNDAI SONATA LF TURBO" KONA = "HYUNDAI KONA 2019" KONA_EV = "HYUNDAI KONA EV 2019" KONA_HEV = "HYUNDAI KONA HEV 2019" IONIQ = "HYUNDAI IONIQ HYBRID PREMIUM 2017" IONIQ_EV_LTD = "HYUNDAI IONIQ ELECTRIC LIMITED 2019" IONIQ_EV_2020 = "HYUNDAI IONIQ ELECTRIC 2020" IONIQ_PHEV = "HYUNDAI IONIQ PHEV 2020" SANTA_FE = "HYUNDAI SANTA FE LIMITED 2019" SANTA_FE_2022 = "HYUNDAI SANTA FE 2022" SANTA_FE_HEV_2022 = "HYUNDAI SANTA FE HYBRID 2022" PALISADE = "HYUNDAI PALISADE 2020" VELOSTER = "HYUNDAI VELOSTER 2019" GRANDEUR_IG = "HYUNDAI GRANDEUR IG 2017" GRANDEUR_IG_HEV = "HYUNDAI GRANDEUR IG HEV 2019" GRANDEUR_IG_FL = "HYUNDAI GRANDEUR IG FL 2020" GRANDEUR_IG_FL_HEV = "HYUNDAI GRANDEUR IG FL HEV 2020" TUCSON_TL_SCC = "HYUNDAI TUCSON TL SCC 2017" # kia FORTE = "KIA FORTE E 2018" K5 = "KIA K5 2019 & 2016" K5_2021 = "KIA K5 2021" K5_HEV = "KIA K5 HYBRID 2017 & SPORTS 2019" SPORTAGE = "KIA SPORTAGE S 2020" SORENTO = "KIA SORENTO GT LINE 2018" STINGER = "KIA STINGER GT2 2018" NIRO_EV = "KIA NIRO EV 2020 PLATINUM" NIRO_HEV = "KIA NIRO HEV 2018" NIRO_HEV_2021 = "KIA NIRO HEV 2021" CEED = "KIA CEED 2019" SELTOS = "KIA SELTOS 2021" MOHAVE = "KIA MOHAVE 2019" K7 = "KIA K7 2016-2019" K7_HEV = "KIA K7 HEV 2016-2019" K9 = "KIA K9 2016-2019" class Buttons: NONE = 0 RES_ACCEL = 1 SET_DECEL = 2 GAP_DIST = 3 CANCEL = 4 FINGERPRINTS = { # genesis CAR.GENESIS: [{ 67: 8, 68: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 7, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 5, 897: 8, 902: 8, 903: 6, 916: 8, 1024: 2, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1287: 4, 1292: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1334: 8, 1335: 8, 1342: 6, 1345: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 5, 1407: 8, 1419: 8, 1427: 6, 1434: 2, 1456: 4 },{ 67: 8, 68: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 7, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 5, 897: 8, 902: 8, 903: 6, 916: 8, 1024: 2, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 3, 1287: 4, 1292: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1334: 8, 1335: 8, 1345: 8, 1363: 8, 1369: 8, 1370: 8, 1378: 4, 1379: 8, 1384: 5, 1407: 8, 1419: 8, 1427: 6, 1434: 2, 1456: 4 },{ 67: 8, 68: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 7, 593: 8, 608: 8, 688: 5, 809: 8, 854: 7, 870: 7, 871: 8, 872: 5, 897: 8, 902: 8, 903: 6, 912: 7, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1268: 8, 1280: 1, 1281: 3, 1287: 4, 1292: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1334: 8, 1335: 8, 1345: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 5, 1407: 8, 1419: 8, 1427: 6, 1434: 2, 1437: 8, 1456: 4 },{ 67: 8, 68: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 7, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 5, 897: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1287: 4, 1292: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1334: 8, 1335: 8, 1345: 8, 1363: 8, 1369: 8, 1370: 8, 1378: 4, 1379: 8, 1384: 5, 1407: 8, 1425: 2, 1427: 6, 1437: 8, 1456: 4 },{ 67: 8, 68: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 7, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 5, 897: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1287: 4, 1292: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1334: 8, 1335: 8, 1345: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 5, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1437: 8, 1456: 4 }], CAR.GENESIS_G70: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 544: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832:8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1168: 7, 1170: 8, 1173:8, 1184: 8, 1186: 2, 1191: 2, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1379: 8, 1384: 8, 1407: 8, 1419:8, 1427: 6, 1456: 4, 1470: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8, 2015: 8 }], CAR.GENESIS_G80: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1024: 2, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1191: 2, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1434: 2, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 546: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 3, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1434: 2, 1437: 8, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 8, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1193: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1437: 8, 1456: 4, 1470: 8 }], CAR.GENESIS_EQ900: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 3, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1434: 2, 1456: 4, 1470: 8, 1988: 8, 2000: 8, 2003: 8, 2004: 8, 2005: 8, 2008: 8, 2011: 8, 2012: 8, 2013: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 544: 8, 545: 8, 546: 8, 548: 8, 549: 8, 550: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1434: 2, 1456: 4, 1470: 8 }], CAR.GENESIS_EQ900_L: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 3, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1434: 2, 1456: 4, 1470: 8 }], CAR.GENESIS_G90: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 549: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1113: 8, 1136: 8, 1141: 8, 1142: 8, 1143: 8, 1150: 4, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1180: 8, 1184: 8, 1186: 2, 1191: 2, 1210: 8, 1265: 4, 1280: 1, 1281: 3, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1434: 2, 1456: 4, 1470: 8, 2003: 8, 2004: 8, 2011: 8, 2012: 8 }], # hyundai CAR.ELANTRA: [{ 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 897: 8, 832: 8, 899: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1170: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1314: 8, 1322: 8, 1345: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1532: 5, 2001: 8, 2003: 8, 2004: 8, 2009: 8, 2012: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.ELANTRA_GT_I30: [{ 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1193: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1952: 8, 1960: 8, 1988: 8, 2000: 8, 2001: 8, 2005: 8, 2008: 8, 2009: 8, 2013: 8, 2017: 8, 2025: 8 },{ 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 897: 8, 899: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1440: 8, 1456: 4, 1470: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8 },{ 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 897: 8, 899: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1486: 8, 1487: 8, 1491: 8, 1960: 8, 1990: 8, 1998: 8, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2008: 8, 2009: 8, 2012: 8, 2013: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.SONATA: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 545: 8, 546: 8, 547: 8, 548: 8, 549: 8, 550: 8, 576: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 8, 865: 8, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 908: 8, 909: 8, 912: 7, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1089: 5, 1107: 5, 1108: 8, 1114: 8, 1136: 8, 1145: 8, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1170: 8, 1173: 8, 1180: 8, 1183: 8, 1184: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 8, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1330: 8, 1339: 8, 1342: 6, 1343: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1394: 8, 1407: 8, 1419: 8, 1427: 6, 1446: 8, 1456: 4, 1460: 8, 1470: 8, 1485: 8, 1504: 3 }], CAR.SONATA_HEV: [{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 548: 8, 576: 8, 593: 8, 688: 6, 757: 2, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1102: 8, 1108: 8, 1114: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1173: 8, 1180: 8, 1184: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 8, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1330: 8, 1339: 8, 1342: 6, 1343: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1446: 8, 1448: 8, 1456: 4, 1460: 8, 1470: 8, 1476: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 6, 757: 2, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1102: 8, 1108: 8, 1114: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1173: 8, 1180: 8, 1184: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 8, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1330: 8, 1339: 8, 1342: 6, 1343: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1446: 8, 1448: 8, 1456: 4, 1460: 8, 1470: 8, 1476: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 513: 8, 514: 8, 515: 8, 516: 8, 517: 8, 522: 8, 523: 8, 524: 8, 525: 8, 544: 8, 568: 8, 569: 8, 570: 8, 571: 8, 572: 8, 573: 8, 574: 8, 575: 8, 576: 8, 577: 8, 578: 8, 579: 8, 580: 8, 581: 8, 582: 8, 583: 8, 584: 8, 585: 8, 586: 8, 587: 8, 588: 8, 589: 8, 590: 8, 591: 8, 592: 8, 593: 8, 594: 8, 595: 8, 596: 8, 597: 8, 602: 8, 603: 8, 604: 8, 605: 8, 606: 8, 614: 8, 615: 8, 616: 8, 617: 8, 618: 8, 621: 8, 622: 8, 623: 8, 688: 6, 757: 2, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1102: 8, 1108: 8, 1114: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1173: 8, 1180: 8, 1184: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 8, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1330: 8, 1339: 8, 1342: 6, 1343: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1446: 8, 1448: 8, 1456: 4, 1460: 8, 1470: 8, 1476: 8, 1517: 8, 1518: 8, 1519: 8, 1535: 8 }], CAR.SONATA19: [{ 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1314: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1397: 8, 1407: 8, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1532: 5, 2000: 8, 2001: 8, 2004: 8, 2005: 8, 2008: 8, 2009: 8, 2012: 8, 2013: 8, 2014: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.SONATA19_HEV: [{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 7, 593: 8, 688: 5, 832: 7, 881: 8, 882: 8, 897: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1168: 7, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1345: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8 }], CAR.SONATA_LF_TURBO: [{ 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 897: 8, 899: 8, 902: 8, 903: 6, 912: 7, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1312: 8, 1314: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1460: 8, 1470: 8, 1471: 8, 1472: 8, 1491: 8, 1530: 8, 1532: 5, 2016: 8, 2024: 8 }, { 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1314: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1371: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1460: 8, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 2015: 8, 2024: 8 }, { 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1314: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1460: 8, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1905: 8, 1913: 8, 1990: 8, 1998: 8, 2006: 8, 2014: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 } ], CAR.KONA: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 354: 3, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 909: 8, 916: 8, 1040: 8, 1078: 4, 1107: 5, 1136: 8, 1156: 8, 1170: 8, 1173: 8, 1191: 2, 1265: 4, 1280: 1, 1287: 4, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1384: 8, 1394: 8,1407: 8, 1414: 3, 1419: 8, 1427: 6, 1456: 4, 1470: 8, 2004: 8, 2009: 8, 2012: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 354: 3, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 909: 8, 916: 8, 1040: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1170: 8, 1173: 8, 1186: 2, 1191: 2, 1265: 4, 1280: 1, 1287: 4, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1384: 8, 1394: 8, 1407: 8, 1414: 3, 1419: 8, 1427: 6, 1456: 4, 1470: 8, 1988: 8, 1990: 8, 1998: 8, 2001: 8, 2004: 8, 2009: 8, 2012: 8, 2015: 8 }], CAR.KONA_EV: [{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 549: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1307: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 4, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 4, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 4, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 547: 8, 548: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1193: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1307: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 4, 1379: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 547: 8, 548: 8, 549: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1307: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 4, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1535: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8 }], CAR.KONA_HEV: [{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 547: 8, 548: 8, 549: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1138: 4, 1151: 6, 1155: 8, 1157: 4, 1164: 8, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1193: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 8, 1379: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 },{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 547: 8, 548: 8, 549: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1138: 4, 1151: 6, 1155: 8, 1157: 4, 1164: 8, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1193: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1378: 8, 1379: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8 }], CAR.IONIQ: [{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 5, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1173: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470:8, 1476: 8, 1535: 8 },{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576:8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1173: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 },{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 544: 8, 576: 8, 832: 8, 881: 8, 882: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1173: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 }], CAR.IONIQ_EV_LTD: [{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 7, 546: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1157: 4, 1164: 8, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1379: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8, 2015: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 7, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1168: 7, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1425: 2, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1507: 8, 1535: 8 }], CAR.IONIQ_EV_2020: [{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 524: 8, 544: 7, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1157: 4, 1164: 8, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1379: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2005: 8, 2008: 8, 2012: 8, 2013: 8 }], CAR.SANTA_FE: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1227: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1379: 8, 1384: 8, 1407: 8, 1414: 3, 1419: 8, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 6, 764: 8, 809: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1180: 8, 1183: 8, 1186: 2, 1227: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1414: 3, 1419: 8, 1427: 6, 1456: 4, 1470: 8, 1988: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8 },{ 67: 8, 68: 8, 80: 4, 160: 8, 161: 8, 272: 8, 288: 4, 339: 8, 356: 8, 357: 8, 399: 8, 544: 8, 608: 8, 672: 8, 688: 5, 704: 1, 790: 8, 809: 8, 848: 8, 880: 8, 898: 8, 900: 8, 901: 8, 904: 8, 1056: 8, 1064: 8, 1065: 8, 1072: 8, 1075: 8, 1087: 8, 1088: 8, 1151: 8, 1200: 8, 1201: 8, 1232: 4, 1264: 8, 1265: 8, 1266: 8, 1296: 8, 1306: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1348: 8, 1349: 8, 1369: 8, 1370: 8, 1371: 8, 1407: 8, 1415: 8, 1419: 8, 1440: 8, 1442: 4, 1461: 8, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1168: 7, 1170: 8, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1227: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1379: 8, 1384: 8, 1407: 8, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 912: 7, 1040: 8, 1042: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1180: 8, 1183: 8, 1191: 2, 1227: 8, 1260: 8, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1456: 4, 1470: 8, 1628: 8, 1629: 8, 1630: 8, 1631: 8, 1674: 8, 1675: 8, 1676: 8, 1677: 8, 1791: 8 },{ 67 : 8 , 127 : 8 , 304 : 8 , 320 : 8 , 339 : 8 , 356 : 4 , 544 : 8 , 546 : 8 , 547 :8 , 548 : 8 , 549 : 8 , 593 : 8 , 608 : 8 , 688 : 6 , 809 : 8 , 832 : 8 , 854 : 7 , 870 : 7 , 871 :8 , 872 : 8 , 897 : 8 , 902 : 8 , 903 : 8 , 905 : 8 , 909 : 8 , 916 : 8 , 1040 : 8 , 1042 : 8 , 1056 : 8 , 1057 : 8 , 1078 : 4 , 1107 : 5 , 1136 :8 , 1151 : 6 , 1155 : 8 , 1156 : 8 , 1157 : 4 , 1162 : 8 , 1164 : 8 , 1168 : 7 , 1170 : 8 , 1173 : 8 , 1180 : 8 , 1183 : 8 , 1186 : 2 , 1191 : 2 , 1210 :8 , 1227 : 8 , 1265 : 4 , 1280 : 1 , 1287 : 4 , 1290 : 8 , 1292 : 8 , 1294 : 8 , 1312 : 8 , 1322 : 8 , 1342 : 6 , 1345 : 8 , 1348 : 8 , 1363 : 8 , 1369 : 8 , 1371 : 8 , 1378 : 8 , 1384 : 8 , 1407 : 8 , 1414 : 3 , 1419 : 8 , 1425 : 2 , 1427 : 6 ,1456 : 4 , 1470 : 8 }], CAR.PALISADE: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 549: 8, 576: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1123: 8, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1280: 8, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1456: 4, 1470: 8, 2000: 8, 2005: 8, 2008: 8 }], CAR.VELOSTER: [{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 558: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1170: 8, 1181: 5, 1186: 2, 1191: 2, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1378: 4, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1532: 5, 1872: 8, 1988: 8, 1996: 8, 2000: 8, 2001: 8, 2004: 8, 2008: 8, 2009: 8, 2012: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.GRANDEUR_IG: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 854 : 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8 , 1151: 6, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1185: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312 : 8, 1322: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6 , 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 546: 8, 547: 8, 549: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1185: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 546: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1185: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1185: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1156: 8, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1185: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1456: 4, 1470: 8 }], CAR.GRANDEUR_IG_HEV: [ {68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 549: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1156: 8, 1157: 4, 1168: 7, 1173: 8, 1185: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2005: 8, 2008: 8, 2012: 8, 2013: 8 }, {68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1156: 8, 1157: 4, 1168: 7, 1173: 8, 1185: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 }, {68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 546: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1156: 8, 1157: 4, 1168: 7, 1173: 8, 1185: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1379: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 }], CAR.GRANDEUR_IG_FL: [ {67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 516: 8, 524: 8, 528: 8, 532: 8, 544: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 8, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1170: 8, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1456: 4, 1470: 8}, ], CAR.GRANDEUR_IG_FL_HEV: [ { 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 5, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1108: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 516: 8, 544: 8, 576: 8, 593: 8, 688: 5, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1108: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 } ], CAR.TUCSON_TL_SCC: [{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 608: 8, 790: 8, 809: 8, 832: 8, 899: 8, 902: 8, 903: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1186: 2, 1191: 2, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1312: 8, 1314: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1530: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 608: 8, 790: 8, 809: 8, 832: 8, 899: 8, 902: 8, 903: 8, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1186: 2, 1191: 2, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1312: 8, 1314: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1530: 8, 2015: 8, 2024: 8, 2025: 8 }], # kia CAR.FORTE: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1078: 4, 1107: 5, 1136: 8, 1156: 8, 1170: 8, 1173: 8, 1191: 2, 1225: 8, 1265: 4, 1280: 4, 1287: 4, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1384: 8, 1394: 8, 1407: 8, 1427: 6, 1456: 4, 1470: 8 }], CAR.K5: [{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 909: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1186: 2, 1191: 2, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1530: 8, 1532: 5, 1952: 8, 1960: 8, 1988: 8, 1996: 8, 2001: 8, 2004: 8, 2008: 8, 2009: 8, 2012: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 897: 8, 899: 8, 902: 8, 903: 6, 912: 7, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1265: 4, 1268: 8, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1492: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 512: 6, 544: 8, 608: 8, 790: 8, 809: 8, 832: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1415: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1492: 8, 1905: 8, 1913: 8, 2001: 8, 2009: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 608: 8, 790: 8, 809: 8, 832: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1236: 2, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1366: 8, 1367: 8, 1369: 8, 1371: 8, 1407: 8, 1415: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1492: 8, 2015: 8, 2024: 8, 2025: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 512: 6, 544: 8, 608: 8, 625: 8, 790: 8, 809: 8, 832: 8, 899: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1236: 2, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1366: 8, 1367: 8, 1369: 8, 1371: 8, 1407: 8, 1415: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1491: 8, 1492: 8, 2015: 8, 2024: 8, 2025: 8 },{ 64: 8, 66: 8, 67: 8, 68: 8, 127: 8, 128: 8, 129: 8, 273: 8, 274: 8, 275: 8, 339: 8, 354: 3, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 558: 8, 593: 8, 608: 8, 640: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 909: 8, 912: 7, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1151: 6, 1168: 7, 1170: 8, 1186: 2, 1191: 2, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1268: 8, 1280: 1, 1282: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1356: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1414: 3, 1415: 8, 1419: 8, 1425: 2, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1492: 8, 1530: 8, 1532: 5, 1792: 8, 1872: 8, 1937: 8, 1953: 8, 1968: 8, 1988: 8, 1996: 8, 2000: 8, 2001: 8, 2004: 8, 2008: 8, 2009: 8, 2012: 8, 2015: 8, 2016: 8, 2017: 8, 2024: 8, 2025: 8 }], CAR.K5_HEV: [{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 6, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1168: 7, 1173: 8, 1236: 2, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 },{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 5, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 909: 8, 912: 7, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1151: 6, 1168: 7, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1407: 8, 1419: 8, 1420: 8, 1425: 2, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 }], CAR.SPORTAGE: [{ 67: 8, 68: 8, 127: 8, 273: 8, 274: 8, 275: 8, 339: 8, 356: 4, 399: 8, 447: 8, 512: 6, 544: 8, 593: 8, 608: 8, 688: 5, 790: 8, 809: 8, 832: 8, 884: 8, 897: 8, 899: 8, 902: 8, 903: 6, 909: 8, 916: 8, 1040: 8, 1078: 4, 1170: 8, 1191: 2, 1253: 8, 1254: 8, 1255: 8, 1265: 4, 1280: 1, 1282: 4, 1287: 4, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1349: 8, 1351: 8, 1353: 8, 1363: 8, 1365: 8, 1366: 8, 1367: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1440: 8, 1456: 4, 1470: 8, 1472: 8, 1486: 8, 1487: 8, 1491: 8, 1492: 8, 1530: 8 }], CAR.SORENTO: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1331: 8, 1332: 8, 1333: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1370: 8, 1371: 8, 1384: 8, 1407: 8, 1411: 8, 1419: 8, 1425: 2, 1427: 6, 1444: 8, 1456: 4, 1470: 8, 1489: 1 }], CAR.STINGER: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1379: 8, 1384: 8, 1407: 8, 1419: 8, 1425: 2, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1437: 8, 1456: 4, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 358: 6, 359: 8, 544: 8, 546: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1265: 4, 1280: 1, 1281: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1437: 8, 1456: 4, 1470: 8 }], CAR.NIRO_EV: [{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 516: 8, 544: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1168: 7, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1193: 8, 1225: 8, 1260: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8, 1990: 8, 1998: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 8, 1151: 6, 1157: 4, 1168: 7, 1173: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1426: 8, 1427: 6, 1429: 8, 1430: 8, 1456: 4, 1470: 8, 1473: 8, 1507: 8, 1535: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8, 2015: 8 }], CAR.NIRO_HEV: [{68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 832: 8, 881: 8, 882: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1173: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 },{ 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 5, 832: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1136: 6, 1173: 8, 1225: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1535: 8 }], CAR.CEED: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 354: 3, 356: 4, 544: 8, 576: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1157: 4, 1168: 7, 1170: 8, 1173: 8, 1183: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1384: 8, 1394: 8, 1407: 8, 1414: 3, 1427: 6, 1456: 4, 2015: 8 }], CAR.SELTOS: [ {67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 524: 8, 544: 8, 593: 8, 608: 8, 688: 6, 809: 8, 832: 8, 854: 8, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 905: 8, 909: 8, 910: 5, 911: 5, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1102: 8, 1107: 5, 1114: 8, 1136: 8, 1145: 8, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1170: 8, 1173: 8, 1186: 2, 1191: 2, 1225: 8, 1265: 4, 1280: 8, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1379: 8, 1384: 8, 1394: 8, 1407: 8, 1419: 8, 1427: 6, 1446: 8, 1456: 4, 1470: 8, 1485: 8, 1988: 8, 1996: 8, 2000: 8, 2004: 8, 2008: 8, 2012: 8, 2015: 8 }, {67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 354: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 6, 764: 8, 809: 8, 832: 8, 854: 8, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 905: 8, 909: 8, 910: 5, 911: 5, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1114: 8, 1136: 8, 1145: 8, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1170: 8, 1173: 8, 1186: 2, 1188: 8, 1191: 2, 1225: 8, 1265: 4, 1280: 8, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1378: 8, 1379: 8, 1384: 8, 1394: 8, 1407: 8, 1414: 3, 1419: 8, 1427: 6, 1446: 8, 1456: 4, 1470: 8, 1485: 8 }, ], CAR.MOHAVE: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 8, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1123: 8, 1136: 8, 1145: 8, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 8, 1170: 8, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1193: 8, 1210: 8, 1225: 8, 1227: 8, 1265: 4, 1280: 8, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1456: 4, 1470: 8, 1479: 8 }], CAR.K7: [{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 549: 8, 608: 8, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1397: 8, 1407: 8, 1419: 8, 1427: 6, 1444: 8, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 546: 8, 608: 8, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1444: 8, 1456: 4, 1470: 8 },{ 67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 549: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1157: 4, 1162: 4, 1168: 7, 1170: 8, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1444: 8, 1456: 4, 1470: 8 } , {67: 8, 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 916: 8, 1040: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1156: 8, 1168: 7, 1170: 8, 1173: 8, 1265: 4, 1280: 1, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1444: 8, 1456: 4, 1470: 8 } ], CAR.K7_HEV: [{ 68: 8, 127: 8, 304: 8, 320: 8, 339: 8, 352: 8, 356: 4, 544: 8, 576: 8, 593: 8, 688: 5, 832: 8, 865: 8, 881: 8, 882: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 913: 8, 916: 8, 1040: 8, 1042: 8, 1056: 8, 1057: 8, 1078: 4, 1096: 8, 1102: 8, 1108: 8, 1136: 6, 1138: 5, 1151: 8, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 7, 1173: 8, 1180: 8, 1186: 2, 1191: 2, 1210: 8, 1227: 8, 1265: 4, 1268: 8, 1280: 1, 1287: 4, 1290: 8, 1291: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1343: 8, 1345: 8, 1348: 8, 1355: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 8, 1379: 8, 1407: 8, 1419: 8, 1427: 6, 1429: 8, 1430: 8, 1448: 8, 1456: 4, 1470: 8, 1476: 8, 1535: 8 }], CAR.K9: [{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1056: 8, 1057: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1184: 8, 1186: 2, 1191: 2, 1227: 8, 1265: 4, 1280: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1379: 8, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1456: 4, 1470: 8 },{ 67: 8, 127: 8, 304: 8, 320: 8, 339: 8, 356: 4, 544: 8, 593: 8, 608: 8, 688: 5, 809: 8, 832: 8, 854: 7, 870: 7, 871: 8, 872: 8, 897: 8, 902: 8, 903: 8, 905: 8, 909: 8, 916: 8, 1056: 8, 1057: 8, 1064: 8, 1078: 4, 1107: 5, 1136: 8, 1151: 6, 1155: 8, 1156: 8, 1157: 4, 1162: 8, 1164: 8, 1168: 7, 1170: 8, 1173: 8, 1180: 8, 1184: 8, 1186: 2, 1191: 2, 1210: 8, 1227: 8, 1265: 4, 1280: 4, 1281: 4, 1287: 4, 1290: 8, 1292: 8, 1294: 8, 1312: 8, 1322: 8, 1342: 6, 1345: 8, 1348: 8, 1363: 8, 1369: 8, 1371: 8, 1378: 4, 1384: 8, 1407: 8, 1419: 8, 1427: 6, 1434: 2, 1456: 4, 1470: 8 }], } FW_VERSIONS = {} CHECKSUM = { "crc8": [CAR.SANTA_FE, CAR.SONATA, CAR.PALISADE, CAR.SONATA_HEV, CAR.SONATA21_HEV, CAR.SELTOS, CAR.ELANTRA_2021, CAR.ELANTRA_HEV_2021, CAR.SANTA_FE_HEV_2022, CAR.K5_2021], "6B": [CAR.SORENTO, CAR.GENESIS, CAR.SANTA_FE_2022], } FEATURES = { # Use Cluster for Gear Selection, rather than Transmission "use_cluster_gears": {CAR.ELANTRA, CAR.KONA, CAR.ELANTRA_GT_I30, CAR.K7, CAR.GRANDEUR_IG, CAR.GRANDEUR_IG_FL}, # Use TCU Message for Gear Selection "use_tcu_gears": {CAR.K5, CAR.SONATA19, CAR.VELOSTER, CAR.SONATA_LF_TURBO, CAR.TUCSON_TL_SCC}, # Use E_GEAR Message for Gear Selection "use_elect_gears": {CAR.K5_HEV, CAR.IONIQ_EV_LTD, CAR.KONA_EV, CAR.KONA_HEV, CAR.SONATA_HEV, CAR.SONATA21_HEV, CAR.SONATA21_HEV, CAR.NIRO_EV, CAR.K7_HEV, CAR.GRANDEUR_IG_HEV, CAR.GRANDEUR_IG_FL_HEV, CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.ELANTRA_HEV_2021, CAR.NIRO_HEV, CAR.NIRO_HEV_2021, CAR.SANTA_FE_HEV_2022}, # send LFA MFA message for new HKG models "send_lfa_mfa": {CAR.SONATA, CAR.PALISADE, CAR.SONATA_HEV, CAR.SONATA21_HEV, CAR.SANTA_FE, CAR.NIRO_EV, CAR.GRANDEUR_IG_FL, CAR.GRANDEUR_IG_FL_HEV, CAR.KONA_EV, CAR.KONA_HEV, CAR.TUCSON_TL_SCC, CAR.ELANTRA_2021, CAR.ELANTRA_HEV_2021, CAR.K9, CAR.GENESIS_G90, CAR.NIRO_HEV_2021, CAR.SANTA_FE_2022, CAR.SANTA_FE_HEV_2022, CAR.K5_2021, CAR.SELTOS, CAR.MOHAVE}, # these cars use the FCA11 message for the AEB and FCW signals, all others use SCC12 "use_fca": {CAR.SONATA, CAR.ELANTRA, CAR.ELANTRA_GT_I30, CAR.STINGER, CAR.IONIQ_EV_2020, CAR.IONIQ_PHEV, CAR.KONA, CAR.KONA_EV, CAR.FORTE, CAR.PALISADE, CAR.GENESIS_G70, CAR.SANTA_FE, CAR.SELTOS, CAR.ELANTRA_2021, CAR.ELANTRA_HEV_2021, CAR.K9, CAR.GENESIS_G90, CAR.SANTA_FE_2022, CAR.SANTA_FE_HEV_2022, CAR.K5_2021, CAR.MOHAVE}, "has_scc13": {CAR.PALISADE, CAR.NIRO_HEV, CAR.NIRO_HEV_2021, CAR.K9, CAR.GENESIS_G90, CAR.K5_2021, CAR.MOHAVE}, "has_scc14": {CAR.PALISADE, CAR.NIRO_HEV, CAR.NIRO_HEV_2021, CAR.K9, CAR.GENESIS_G90, CAR.K5_2021, CAR.MOHAVE}, } HYBRID_CAR = {CAR.K5_HEV, CAR.KONA_HEV, CAR.NIRO_HEV, CAR.NIRO_HEV_2021, CAR.SONATA_HEV, CAR.SONATA21_HEV, CAR.SONATA19_HEV, CAR.K7_HEV, CAR.GRANDEUR_IG_HEV, CAR.GRANDEUR_IG_FL_HEV, CAR.IONIQ_PHEV, CAR.ELANTRA_HEV_2021, CAR.IONIQ, CAR.SANTA_FE_HEV_2022} EV_CAR = {CAR.IONIQ_EV_LTD, CAR.IONIQ_EV_2020, CAR.KONA_EV, CAR.NIRO_EV} EV_HYBRID_CAR = EV_CAR | HYBRID_CAR DBC = { # genesis CAR.GENESIS: dbc_dict('hyundai_kia_generic', None), CAR.GENESIS_G70: dbc_dict('hyundai_kia_generic', None), CAR.GENESIS_G80: dbc_dict('hyundai_kia_generic', None), CAR.GENESIS_EQ900: dbc_dict('hyundai_kia_generic', None), CAR.GENESIS_EQ900_L: dbc_dict('hyundai_kia_generic', None), CAR.GENESIS_G90: dbc_dict('hyundai_kia_generic', None), # hyundai CAR.ELANTRA: dbc_dict('hyundai_kia_generic', None), CAR.ELANTRA_2021: dbc_dict('hyundai_kia_generic', None), CAR.ELANTRA_HEV_2021: dbc_dict('hyundai_kia_generic', None), CAR.ELANTRA_GT_I30: dbc_dict('hyundai_kia_generic', None), CAR.SONATA: dbc_dict('hyundai_kia_generic', None), CAR.SONATA_HEV: dbc_dict('hyundai_kia_generic', None), CAR.SONATA21_HEV: dbc_dict('hyundai_kia_generic', None), CAR.SONATA19: dbc_dict('hyundai_kia_generic', None), CAR.SONATA19_HEV: dbc_dict('hyundai_kia_generic', None), CAR.SONATA_LF_TURBO: dbc_dict('hyundai_kia_generic', None), CAR.KONA: dbc_dict('hyundai_kia_generic', None), CAR.KONA_EV: dbc_dict('hyundai_kia_generic', None), CAR.KONA_HEV: dbc_dict('hyundai_kia_generic', None), CAR.IONIQ: dbc_dict('hyundai_kia_generic', None), CAR.IONIQ_EV_LTD: dbc_dict('hyundai_kia_generic', None), CAR.IONIQ_PHEV: dbc_dict('hyundai_kia_generic', None), CAR.IONIQ_EV_2020: dbc_dict('hyundai_kia_generic', None), CAR.SANTA_FE: dbc_dict('hyundai_kia_generic', None), CAR.SANTA_FE_2022: dbc_dict('hyundai_kia_generic', None), CAR.SANTA_FE_HEV_2022: dbc_dict('hyundai_kia_generic', None), CAR.PALISADE: dbc_dict('hyundai_kia_generic', None), CAR.VELOSTER: dbc_dict('hyundai_kia_generic', None), CAR.GRANDEUR_IG: dbc_dict('hyundai_kia_generic', None), CAR.GRANDEUR_IG_HEV: dbc_dict('hyundai_kia_generic', None), CAR.GRANDEUR_IG_FL: dbc_dict('hyundai_kia_generic', None), CAR.GRANDEUR_IG_FL_HEV: dbc_dict('hyundai_kia_generic', None), CAR.TUCSON_TL_SCC: dbc_dict('hyundai_kia_generic', None), # kia CAR.FORTE: dbc_dict('hyundai_kia_generic', None), CAR.K5: dbc_dict('hyundai_kia_generic', None), CAR.K5_2021: dbc_dict('hyundai_kia_generic', None), CAR.K5_HEV: dbc_dict('hyundai_kia_generic', None), CAR.SPORTAGE: dbc_dict('hyundai_kia_generic', None), CAR.SORENTO: dbc_dict('hyundai_kia_generic', None), CAR.STINGER: dbc_dict('hyundai_kia_generic', None), CAR.NIRO_EV: dbc_dict('hyundai_kia_generic', None), CAR.NIRO_HEV: dbc_dict('hyundai_kia_generic', None), CAR.NIRO_HEV_2021: dbc_dict('hyundai_kia_generic', None), CAR.CEED: dbc_dict('hyundai_kia_generic', None), CAR.SELTOS: dbc_dict('hyundai_kia_generic', None), CAR.MOHAVE: dbc_dict('hyundai_kia_generic', None), CAR.K7: dbc_dict('hyundai_kia_generic', None), CAR.K7_HEV: dbc_dict('hyundai_kia_generic', None), CAR.K9: dbc_dict('hyundai_kia_generic', None), } STEER_THRESHOLD = 150 def main(): for member, value in vars(CAR).items(): if not member.startswith("_"): print(value) if __name__ == "__main__": main()
143.596774
1,136
0.552591
4a2215c14c6e64aef1667e271eb0758b75e1dc1f
1,134
py
Python
exercises/0138-CopyListWithRandomPointer/copy_list_with_random_pointer.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
1
2020-09-26T15:09:25.000Z
2020-09-26T15:09:25.000Z
exercises/0138-CopyListWithRandomPointer/copy_list_with_random_pointer.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
null
null
null
exercises/0138-CopyListWithRandomPointer/copy_list_with_random_pointer.py
tqa236/leetcode-solutions
556147981c43509a6e8a7f59f138d1ab027ebfd1
[ "MIT" ]
null
null
null
class Node: def __init__(self, x: int, next: "Node" = None, random: "Node" = None): self.val = int(x) self.next = next self.random = random class Solution: def copyRandomList(self, head: "Node") -> "Node": if not head: return None node = head new_node = None node_map = {} new_node_map = {} while node: if not new_node: new_node = Node(node.val, None, None) new_head = new_node new_node_map[node] = new_node if node.random in new_node_map: new_node.random = new_node_map[node.random] if node.random not in node_map: node_map[node.random] = [new_node] else: node_map[node.random].append(new_node) if node in node_map: for random_node in node_map[node]: random_node.random = new_node node = node.next if node: new_node.next = Node(node.val, None, None) new_node = new_node.next return new_head
32.4
75
0.518519
4a221682ad63daa2939630d0a95dbd8f1493eb30
11,547
py
Python
modeling/backbone/xception.py
PenG-hy/DeepLabv3
3eda6c5b395053324251d963477c5fd26ae046dd
[ "MIT" ]
4
2021-12-22T01:52:33.000Z
2022-03-29T07:46:23.000Z
modeling/backbone/xception.py
PenG-hy/DeepLabv3
3eda6c5b395053324251d963477c5fd26ae046dd
[ "MIT" ]
null
null
null
modeling/backbone/xception.py
PenG-hy/DeepLabv3
3eda6c5b395053324251d963477c5fd26ae046dd
[ "MIT" ]
null
null
null
import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from ..sync_batchnorm.batchnorm import SynchronizedBatchNorm2d def fixed_padding(inputs, kernel_size, dilation): kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end)) return padded_inputs class SeparableConv2d(nn.Module): def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, BatchNorm=None): super(SeparableConv2d, self).__init__() self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation, groups=inplanes, bias=bias) self.bn = BatchNorm(inplanes) self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = fixed_padding(x, self.conv1.kernel_size[0], dilation=self.conv1.dilation[0]) x = self.conv1(x) x = self.bn(x) x = self.pointwise(x) return x class Block(nn.Module): def __init__(self, inplanes, planes, reps, stride=1, dilation=1, BatchNorm=None, start_with_relu=True, grow_first=True, is_last=False): super(Block, self).__init__() if planes != inplanes or stride != 1: self.skip = nn.Conv2d(inplanes, planes, 1, stride=stride, bias=False) self.skipbn = BatchNorm(planes) else: self.skip = None self.relu = nn.ReLU(inplace=True) rep = [] filters = inplanes if grow_first: rep.append(self.relu) rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm)) rep.append(BatchNorm(planes)) filters = planes for i in range(reps - 1): rep.append(self.relu) rep.append(SeparableConv2d(filters, filters, 3, 1, dilation, BatchNorm=BatchNorm)) rep.append(BatchNorm(filters)) if not grow_first: rep.append(self.relu) rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm)) rep.append(BatchNorm(planes)) if stride != 1: rep.append(self.relu) rep.append(SeparableConv2d(planes, planes, 3, 2, BatchNorm=BatchNorm)) rep.append(BatchNorm(planes)) if stride == 1 and is_last: rep.append(self.relu) rep.append(SeparableConv2d(planes, planes, 3, 1, BatchNorm=BatchNorm)) rep.append(BatchNorm(planes)) if not start_with_relu: rep = rep[1:] self.rep = nn.Sequential(*rep) def forward(self, inp): x = self.rep(inp) if self.skip is not None: skip = self.skip(inp) skip = self.skipbn(skip) else: skip = inp x = x + skip return x class AlignedXception(nn.Module): """ Modified Alighed Xception """ def __init__(self, output_stride, BatchNorm, pretrained=True): super(AlignedXception, self).__init__() if output_stride == 16: entry_block3_stride = 2 middle_block_dilation = 1 exit_block_dilations = (1, 2) elif output_stride == 8: entry_block3_stride = 1 middle_block_dilation = 2 exit_block_dilations = (2, 4) else: raise NotImplementedError # Entry flow self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False) self.bn1 = BatchNorm(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1, bias=False) self.bn2 = BatchNorm(64) self.block1 = Block(64, 128, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False) self.block2 = Block(128, 256, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False, grow_first=True) self.block3 = Block(256, 728, reps=2, stride=entry_block3_stride, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True, is_last=True) # Middle flow self.block4 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block5 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block6 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block7 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block8 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block9 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block10 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block11 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block12 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block13 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block14 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block15 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block16 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block17 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block18 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) self.block19 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation, BatchNorm=BatchNorm, start_with_relu=True, grow_first=True) # Exit flow self.block20 = Block(728, 1024, reps=2, stride=1, dilation=exit_block_dilations[0], BatchNorm=BatchNorm, start_with_relu=True, grow_first=False, is_last=True) self.conv3 = SeparableConv2d(1024, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm) self.bn3 = BatchNorm(1536) self.conv4 = SeparableConv2d(1536, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm) self.bn4 = BatchNorm(1536) self.conv5 = SeparableConv2d(1536, 2048, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm) self.bn5 = BatchNorm(2048) # Init weights self._init_weight() # Load pretrained model if pretrained: self._load_pretrained_model() def forward(self, x): # Entry flow x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.block1(x) # add relu here x = self.relu(x) low_level_feat = x x = self.block2(x) x = self.block3(x) # Middle flow x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.block13(x) x = self.block14(x) x = self.block15(x) x = self.block16(x) x = self.block17(x) x = self.block18(x) x = self.block19(x) # Exit flow x = self.block20(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) x = self.bn4(x) x = self.relu(x) x = self.conv5(x) x = self.bn5(x) x = self.relu(x) return x, low_level_feat def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _load_pretrained_model(self): pretrain_dict = model_zoo.load_url('http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth') model_dict = {} state_dict = self.state_dict() for k, v in pretrain_dict.items(): if k in state_dict: if 'pointwise' in k: v = v.unsqueeze(-1).unsqueeze(-1) if k.startswith('block11'): model_dict[k] = v model_dict[k.replace('block11', 'block12')] = v model_dict[k.replace('block11', 'block13')] = v model_dict[k.replace('block11', 'block14')] = v model_dict[k.replace('block11', 'block15')] = v model_dict[k.replace('block11', 'block16')] = v model_dict[k.replace('block11', 'block17')] = v model_dict[k.replace('block11', 'block18')] = v model_dict[k.replace('block11', 'block19')] = v elif k.startswith('block12'): model_dict[k.replace('block12', 'block20')] = v elif k.startswith('bn3'): model_dict[k] = v model_dict[k.replace('bn3', 'bn4')] = v elif k.startswith('conv4'): model_dict[k.replace('conv4', 'conv5')] = v elif k.startswith('bn4'): model_dict[k.replace('bn4', 'bn5')] = v else: model_dict[k] = v state_dict.update(model_dict) self.load_state_dict(state_dict) if __name__ == "__main__": import torch model = AlignedXception(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=16) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())
39.955017
116
0.582835
4a2216d230203cf4d2b51f8d68075c0e3e4462d1
161,776
py
Python
test/test_tensor_creation_ops.py
kulinseth/pytorch
337c71be05f959799a305164e6edf86c686bb673
[ "Intel" ]
null
null
null
test/test_tensor_creation_ops.py
kulinseth/pytorch
337c71be05f959799a305164e6edf86c686bb673
[ "Intel" ]
null
null
null
test/test_tensor_creation_ops.py
kulinseth/pytorch
337c71be05f959799a305164e6edf86c686bb673
[ "Intel" ]
null
null
null
import torch import numpy as np import sys import math import warnings import unittest from itertools import product, combinations, combinations_with_replacement, permutations import random from torch.testing import make_tensor from torch.testing._internal.common_utils import ( TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings, torch_to_numpy_dtype_dict, slowTest, TEST_SCIPY, IS_MACOS, IS_PPC, IS_WINDOWS) from torch.testing._internal.common_device_type import ( instantiate_device_type_tests, deviceCountAtLeast, onlyOnCPUAndCUDA, onlyCPU, largeTensorTest, precisionOverride, dtypes, onlyCUDA, skipCPUIf, dtypesIfCUDA, dtypesIfCPU, skipMeta) from torch.testing._internal.common_dtype import ( get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes ) # TODO: refactor tri_tests_args, _compare_trilu_indices, run_additional_tri_tests from torch.testing._internal.common_methods_invocations import ( tri_tests_args, _compare_trilu_indices, run_additional_tri_tests) # TODO: replace with make_tensor def _generate_input(shape, dtype, device, with_extremal): if shape == (): x = torch.tensor((), dtype=dtype, device=device) else: if dtype.is_floating_point or dtype.is_complex: # work around torch.randn not being implemented for bfloat16 if dtype == torch.bfloat16: x = torch.randn(*shape, device=device) * random.randint(30, 100) x = x.to(torch.bfloat16) else: x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100) x[torch.randn(*shape) > 0.5] = 0 if with_extremal and dtype.is_floating_point: # Use extremal values x[torch.randn(*shape) > 0.5] = float('nan') x[torch.randn(*shape) > 0.5] = float('inf') x[torch.randn(*shape) > 0.5] = float('-inf') elif with_extremal and dtype.is_complex: x[torch.randn(*shape) > 0.5] = complex('nan') x[torch.randn(*shape) > 0.5] = complex('inf') x[torch.randn(*shape) > 0.5] = complex('-inf') elif dtype == torch.bool: x = torch.zeros(shape, dtype=dtype, device=device) x[torch.randn(*shape) > 0.5] = True else: x = torch.randint(15, 100, shape, dtype=dtype, device=device) return x # TODO: replace with make_tensor def _rand_shape(dim, min_size, max_size): shape = [] for i in range(dim): shape.append(random.randint(min_size, max_size)) return tuple(shape) # Test suite for tensor creation ops # # Includes creation functions like torch.eye, random creation functions like # torch.rand, and *like functions like torch.ones_like. # DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in # test_torch.py) OR numpy interop (which is also still tested in test_torch.py) # # See https://pytorch.org/docs/master/torch.html#creation-ops class TestTensorCreation(TestCase): exact_dtype = True @onlyCPU @dtypes(torch.float) def test_diag_embed(self, device, dtype): x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4) result = torch.diag_embed(x) expected = torch.stack([torch.diag(r) for r in x], 0) self.assertEqual(result, expected) result = torch.diag_embed(x, offset=1, dim1=0, dim2=2) expected = torch.stack([torch.diag(r, 1) for r in x], 1) self.assertEqual(result, expected) def test_cat_mem_overlap(self, device): x = torch.rand((1, 3), device=device).expand((6, 3)) y = torch.rand((3, 3), device=device) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.cat([y, y], out=x) @onlyOnCPUAndCUDA def test_vander(self, device): x = torch.tensor([1, 2, 3, 5], device=device) self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape) with self.assertRaisesRegex(RuntimeError, "N must be non-negative."): torch.vander(x, N=-1) with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."): torch.vander(torch.stack((x, x))) @onlyOnCPUAndCUDA @dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long, torch.float, torch.double, torch.cfloat, torch.cdouble) def test_vander_types(self, device, dtype): if dtype is torch.uint8: # Note: no negative uint8 values X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]] elif dtype is torch.bool: # Note: see https://github.com/pytorch/pytorch/issues/37398 # for why this is necessary. X = [[True, True, True, True], [False, True, True, True, True]] elif dtype in [torch.cfloat, torch.cdouble]: X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j], [2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]] else: X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]] N = [None, 0, 1, 3] increasing = [False, True] for x, n, inc in product(X, N, increasing): numpy_dtype = torch_to_numpy_dtype_dict[dtype] pt_x = torch.tensor(x, device=device, dtype=dtype) np_x = np.array(x, dtype=numpy_dtype) pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc) np_res = np.vander(np_x, n, inc) self.assertEqual( pt_res, torch.from_numpy(np_res), atol=1e-3, rtol=0, exact_dtype=False) def test_cat_all_dtypes_and_devices(self, device): for dt in get_all_dtypes(): x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device) expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 0), expected1) expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device) self.assertEqual(torch.cat((x, x), 1), expected2) def test_fill_all_dtypes_and_devices(self, device): for dt in get_all_dtypes(): for x in [torch.tensor((10, 10), dtype=dt, device=device), torch.empty(10000, dtype=dt, device=device)]: # large tensor numel = x.numel() bound = 100 if dt in (torch.uint8, torch.int8) else 2000 for n in range(-bound, bound, bound // 10): x.fill_(n) self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device)) self.assertEqual(dt, x.dtype) def test_roll(self, device): numbers = torch.arange(1, 9, device=device) single_roll = numbers.roll(1, 0) expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device) self.assertEqual(single_roll, expected, msg="{} did not equal expected result".format(single_roll)) roll_backwards = numbers.roll(-2, 0) expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device) self.assertEqual(roll_backwards, expected, msg="{} did not equal expected result".format(roll_backwards)) data = numbers.view(2, 2, 2) rolled = data.roll(1, 0) expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2) self.assertEqual(expected, rolled, msg="{} did not equal expected result: {}".format(rolled, expected)) data = data.view(2, 4) # roll a loop until back where started loop_rolled = data.roll(2, 0).roll(4, 1) self.assertEqual(data, loop_rolled, msg="{} did not equal the original: {}".format(loop_rolled, data)) # multiple inverse loops self.assertEqual(data, data.roll(-20, 0).roll(-40, 1)) self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0)) # test non-contiguous # strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4)) strided = numbers.view(2, 4).transpose(0, 1) self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor") expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2) rolled = strided.roll(1, 0) self.assertEqual(expected, rolled, msg="non contiguous tensor rolled to {} instead of {} ".format(rolled, expected)) # test roll with no dimension specified expected = numbers.roll(1, 0).view(2, 4) self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.") self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.") # test roll over multiple dimensions expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device) double_rolled = data.roll(shifts=(2, -1), dims=(1, 0)) self.assertEqual(double_rolled, expected, msg="should be able to roll over two dimensions, got {}".format(double_rolled)) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=())) self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1)) # shifts/dims should align self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,))) self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2))) # test bool tensor t = torch.zeros(6, dtype=torch.bool, device=device) t[0] = True t[3] = True self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0)) # test complex tensor t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device) t[0] = 1 + 0.5j t[3] = 4. expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device) self.assertEqual(expected, t.roll(1, 0)) @slowTest def test_triu_tril(self, device): def gen_mask(shape, diagonal, device, upper): mask = torch.zeros(*shape[-2:]).byte() for i in range(shape[-2]): for j in range(shape[-1]): cond = j - i < diagonal if upper else j - i > diagonal if cond: mask[i, j] = 1 return mask.expand(*shape).to(device) torch_functions = {True: torch.triu, False: torch.tril} numpy_functions = {True: np.triu, False: np.tril} # TODO: remove this when bool and half are supported for torch.where def bool_half_compat_where(pred, true_tensor, false_tensor, dtype): if dtype == torch.bool or dtype == torch.half: return torch.where(pred.byte(), true_tensor.byte(), false_tensor.byte()).to(dtype=dtype) else: return torch.where(pred, true_tensor, false_tensor) def run_test(shape, device, diagonal, dtype): x = torch.empty(*shape, device=device, dtype=dtype).fill_(2) for upper in [True, False]: # normal test with mask torch_tri_func = torch_functions[upper] res1 = torch_tri_func(x, diagonal=diagonal) res2 = torch.empty(0, device=device, dtype=dtype) torch_tri_func(x, diagonal=diagonal, out=res2) exp_mask = gen_mask(shape, diagonal, device, upper) expected = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x, dtype) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(expected, res1, atol=0, rtol=0) # non-contiguous and expanded tensors test if 0 not in shape: for s in range(-len(shape), -1): # non-contiguous tensors x_nc = x.clone().transpose(s, s + 1) exp_mask = gen_mask(x_nc.size(), diagonal, device, upper) if 1 not in shape: assert not x_nc.is_contiguous(), "x is intentionally non-contiguous" exp_nc = bool_half_compat_where(exp_mask, torch.tensor(0).type_as(x), x_nc, dtype) self.assertEqual(torch_tri_func(x_nc, diagonal), exp_nc, atol=0, rtol=0) x_nc_is_contiguous = x_nc.is_contiguous() if upper: self.assertEqual(x_nc.triu_(diagonal), exp_nc, atol=0, rtol=0) else: self.assertEqual(x_nc.tril_(diagonal), exp_nc, atol=0, rtol=0) self.assertTrue(x_nc.is_contiguous() == x_nc_is_contiguous, "contiguity of x_nc should not be changed") # expanded tensors expanded_size = (x.size(0),) + x.size() x_expanded = x.clone().expand(*expanded_size) if x.size(0) != 1: assert 0 in x_expanded.stride(), "x intentionally has 0 in its stride" output = torch_tri_func(x_expanded, diagonal) self.assertEqual(output, expected.expand(expanded_size), atol=0, rtol=0) if x.size(0) != 1: self.assertTrue(0 in x_expanded.stride(), "geometry of x_expanded should be the same") if upper: self.assertEqual(output, x_expanded.triu_(diagonal), atol=0, rtol=0) else: self.assertEqual(output, x_expanded.tril_(diagonal), atol=0, rtol=0) # numpy test numpy_tri_func = numpy_functions[upper] self.assertEqual(numpy_tri_func(x.to('cpu').numpy(), diagonal), res1.cpu().numpy()) diagonals = [-2, -1, 0, 1, 2] shapes = [(3, 3), (5, 3, 3), (7, 5, 3, 3), # square matrices (7, 3), (5, 7, 3), (7, 5, 7, 3), # fat matrices (3, 7), (5, 3, 7), (7, 5, 3, 7), # thin matrices (3, 0), (0, 3, 3), (3, 3, 0, 0), # no numel matrices (3, 1), (5, 3, 1), (7, 5, 3, 1), # very fat matrices (1, 3), (5, 1, 3), (7, 5, 1, 3), # very thin matrices (1, 3, 3, 3), (3, 1, 3, 3, 3)] # unsqueezed batch dimensions dtypes = [dtype for dtype in get_all_dtypes() if dtype != torch.bfloat16] for s, d, dtype in product(shapes, diagonals, dtypes): run_test(s, device, d, dtype) def test_diagflat(self, device): dtype = torch.float32 # Basic sanity test x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x) self.assertEqual(result, expected) # Test offset x = torch.randn((100,), dtype=dtype, device=device) result = torch.diagflat(x, 17) expected = torch.diag(x, 17) self.assertEqual(result, expected) # Test where input has more than one dimension x = torch.randn((2, 3, 4), dtype=dtype, device=device) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Noncontig input x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0) self.assertFalse(x.is_contiguous()) result = torch.diagflat(x) expected = torch.diag(x.contiguous().view(-1)) self.assertEqual(result, expected) # Complex number support result = torch.diagflat(torch.ones(4, dtype=torch.complex128)) expected = torch.eye(4, dtype=torch.complex128) self.assertEqual(result, expected) def test_block_diag(self, device): def block_diag_workaround(*arrs): arrs_expanded = [] for a in arrs: if a.dim() == 2: arrs_expanded.append(a) elif a.dim() == 1: arrs_expanded.append(a.expand(1, a.size(0))) elif a.dim() == 0: arrs_expanded.append(a.expand(1, 1)) shapes = torch.tensor([a.shape for a in arrs_expanded], device=device) out = torch.zeros( torch.sum(shapes, dim=0).tolist(), dtype=arrs_expanded[0].dtype, device=device ) r, c = 0, 0 for i, (rr, cc) in enumerate(shapes): out[r:r + rr, c:c + cc] = arrs_expanded[i] r += rr c += cc return out tensors = [ torch.rand((2, 2), device=device), torch.rand((2, 3), device=device), torch.rand(10, device=device), torch.rand((8, 1), device=device), torch.rand(1, device=device)[0] ] result = torch.block_diag(*tensors) result_check = block_diag_workaround(*tensors) self.assertEqual(result, result_check) tensor = torch.rand(1, device=device)[0] result = torch.block_diag(tensor) result_check = tensor.expand(1, 1) self.assertEqual(result, result_check) tensor = torch.rand(10, device=device) result = torch.block_diag(tensor) result_check = tensor.expand(1, tensor.size(0)) self.assertEqual(result, result_check) result = torch.block_diag() result_check = torch.empty(1, 0, device=device) self.assertEqual(result, result_check) self.assertEqual(result.device.type, 'cpu') test_dtypes = [ torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float32, torch.float64, torch.complex64, torch.complex128 ] # Test pairs of different dtypes for dtype1 in test_dtypes: for dtype2 in test_dtypes: a = torch.tensor(1, device=device, dtype=dtype1) b = torch.tensor(2, device=device, dtype=dtype2) result = torch.block_diag(a, b) result_dtype = torch.result_type(a, b) result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype) self.assertEqual(result, result_check) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions" ): torch.block_diag(torch.tensor(5), torch.tensor([[[6]]])) with self.assertRaisesRegex( RuntimeError, "torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions" ): torch.block_diag(torch.tensor([[[[6]]]])) if device != 'cpu': with self.assertRaisesRegex( RuntimeError, ( "torch.block_diag: input tensors must all be on the same device." " Input 0 is on device cpu and input 1 is on device " ) ): torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device)) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") def test_block_diag_scipy(self, device): import scipy.linalg scipy_tensors_list = [ [ 1, [2], [], [3, 4, 5], [[], []], [[6], [7.3]] ], [ [[1, 2], [3, 4]], [1] ], [ [[4, 9], [7, 10]], [4.6, 9.12], [1j + 3] ], [] ] expected_torch_types = [ torch.float32, torch.int64, torch.complex64, torch.float32 ] expected_scipy_types = [ torch.float64, # windows scipy block_diag returns int32 types torch.int32 if IS_WINDOWS else torch.int64, torch.complex128, torch.float64 ] for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types): torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors] torch_result = torch.block_diag(*torch_tensors) self.assertEqual(torch_result.dtype, torch_type) scipy_result = torch.tensor( scipy.linalg.block_diag(*scipy_tensors), device=device ) self.assertEqual(scipy_result.dtype, scipy_type) scipy_result = scipy_result.to(torch_type) self.assertEqual(torch_result, scipy_result) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex(self, device, dtype): real = torch.tensor([1, 2], device=device, dtype=dtype) imag = torch.tensor([3, 4], device=device, dtype=dtype) z = torch.complex(real, imag) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_polar(self, device, dtype): abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype) angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi], device=device, dtype=dtype) z = torch.polar(abs, angle) complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3, -3.89711431703 - 2.25j, -1, -1], dtype=complex_dtype), z, atol=1e-5, rtol=1e-5) @onlyOnCPUAndCUDA @dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float16, torch.complex64, torch.complex128, torch.bool) def test_torch_complex_floating_dtype_error(self, device, dtype): for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) error = r"Expected both inputs to be Float or Double tensors but " \ r"got [A-Za-z]+ and [A-Za-z]+" with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex_same_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' for op in (torch.complex, torch.polar): other_dtype = torch.float64 if dtype == torch.float32 else torch.float32 a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=other_dtype) error = "Expected object of scalar type {} but got scalar type " \ "{} for second argument".format(dtype_name(dtype), dtype_name(other_dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b) @onlyOnCPUAndCUDA @dtypes(torch.float32, torch.float64) def test_torch_complex_out_dtype_error(self, device, dtype): def dtype_name(dtype): return 'Float' if dtype == torch.float32 else 'Double' def complex_dtype_name(dtype): return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble' for op in (torch.complex, torch.polar): a = torch.tensor([1, 2], device=device, dtype=dtype) b = torch.tensor([3, 4], device=device, dtype=dtype) out = torch.zeros(2, device=device, dtype=dtype) expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128 error = "Expected object of scalar type {} but got scalar type " \ "{} for argument 'out'".format( complex_dtype_name(expected_dtype), dtype_name(dtype)) with self.assertRaisesRegex(RuntimeError, error): op(a, b, out=out) def test_cat_empty_legacy(self, device): # FIXME: this is legacy behavior and should be removed # when we support empty tensors with arbitrary sizes dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((0,), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) with self.assertRaisesRegex(RuntimeError, 'non-empty list of Tensors'): torch.cat([], dim=1) def test_cat_empty(self, device): dtype = torch.float32 x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device) empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device) res1 = torch.cat([x, empty], dim=1) res2 = torch.cat([empty, x], dim=1) self.assertEqual(res1, res2) res1 = torch.cat([empty, empty], dim=1) self.assertEqual(res1, empty) # check non-legacy-behavior (sizes don't match) empty = torch.randn((4, 0, 31, 32), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) # check non-legacy-behavior (dimensions don't match) empty = torch.randn((4, 0), dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, empty], dim=1)) self.assertRaises(RuntimeError, lambda: torch.cat([empty, x], dim=1)) def test_cat_out(self, device): x = torch.zeros((0), device=device) y = torch.randn((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 0"): torch.cat([x, y], dim=0, out=x) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([x, y], dim=0, out=y) z = torch.zeros((4, 6), device=device) with self.assertRaisesRegex( RuntimeError, r"unsupported operation:.* input tensor 1"): torch.cat([y, z], out=z[:2, :]) w = y.view(-1).clone() a = torch.cat([w[:2], w[4:6]]) b = torch.cat([w[:2], w[4:6]], out=w[6:10]) self.assertEqual(a, b) self.assertEqual(w[:6], y.view(-1)[:6]) # Case: # Reference: https://github.com/pytorch/pytorch/issues/49878 for dim in [0, 1]: x = torch.zeros((10, 5, 2), device=device) random_length = random.randint(1, 4) y = x.narrow(dim, 0, x.shape[dim] - random_length) val = torch.full_like(y[0], 3., device=device) if dim == 0: self.assertTrue(y.is_contiguous()) else: self.assertFalse(y.is_contiguous()) torch.cat((val[None],) * y.shape[0], dim=0, out=y) expected_y = torch.cat((val[None],) * y.shape[0], dim=0) expected_x = torch.zeros((10, 5, 2), device=device) if dim == 0: expected_x[:x.shape[dim] - random_length, :, :] = expected_y elif dim == 1: expected_x[:, :x.shape[dim] - random_length, :] = expected_y self.assertEqual(y, expected_y) self.assertEqual(x, expected_x) def test_cat_out_channels_last(self, device): x = torch.randn((4, 3, 8, 8)) y = torch.randn(x.shape) res1 = torch.cat((x, y)) z = res1.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), out=z) self.assertEqual(res1, res2) @onlyOnCPUAndCUDA def test_cat_in_channels_last(self, device): for dim in range(4): x = torch.randn((4, 15, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) # Size larger than grain size. x = torch.randn((4, 15, 256, 256), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y), dim=dim) x = x.clone().contiguous(memory_format=torch.channels_last) y = y.clone().contiguous(memory_format=torch.channels_last) res2 = torch.cat((x, y), dim=dim) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(res1, res2) @onlyOnCPUAndCUDA def test_cat_preserve_channels_last(self, device): x = torch.randn((4, 3, 8, 8), device=device) y = torch.randn(x.shape, device=device) res1 = torch.cat((x, y)) res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last))) self.assertEqual(res1, res2) self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last)) # discontiguous channels-last inputs x = torch.arange(24, dtype=torch.float, device=device).reshape(2, 2, 3, 2).to(memory_format=torch.channels_last) x1 = x[:, :, :2] x2 = x[:, :, 1:] res1 = torch.cat((x1, x2), dim=-1) res2 = torch.cat((x1.contiguous(), x2.contiguous()), dim=-1) self.assertEqual(res1, res2) self.assertTrue(res1.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA def test_cat_out_memory_format(self, device): inp_size = (4, 4, 4, 4) expected_size = (8, 4, 4, 4) a_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) a_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.channels_last) b_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.contiguous_format) b_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.contiguous_format) c_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last) # Case 1: if out= is the correct shape then the memory format of out= is respected out_cuda = torch.empty(expected_size, device=device).contiguous(memory_format=torch.contiguous_format) res1_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty(expected_size, device='cpu').contiguous(memory_format=torch.contiguous_format) res1_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res1_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res1_cpu.is_contiguous(memory_format=torch.contiguous_format)) # Case 2: if out= is not the correct shape then the output it is resized internally # - For the CPU variant the memory format is that of the first tensor # - For the CUDA variant it only propagates memory format if all the tensors have # the same memory format, otherwise it just uses contiguous_format as a default out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and b_cuda have different memory_format res2_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda) out_cpu = torch.empty((0), device='cpu').contiguous(memory_format=torch.contiguous_format) res2_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu) self.assertTrue(res2_cuda.is_contiguous(memory_format=torch.contiguous_format)) self.assertTrue(res2_cpu.is_contiguous(memory_format=torch.channels_last)) out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format) # a_cuda and c_cuda have same memory_format res3_cuda = torch.cat((a_cuda, c_cuda), out=out_cuda) self.assertTrue(res3_cuda.is_contiguous(memory_format=torch.channels_last)) @onlyCUDA @deviceCountAtLeast(2) def test_cat_different_devices(self, devices): cuda0 = torch.randn((3, 3), device=devices[0]) cuda1 = torch.randn((3, 3), device=devices[1]) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.cat((cuda0, cuda1)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.cat((cuda0, cuda0), out=cuda1) @onlyCUDA def test_cat_stack_cross_devices(self, device): cuda = torch.randn((3, 3), device=device) cpu = torch.randn((3, 3), device='cpu') # cat with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.cat((cuda, cpu)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.cat((cpu, cuda)) # Stack with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cuda, cpu)) with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"): torch.stack((cpu, cuda)) # TODO: reconcile with other cat tests # TODO: Compare with a NumPy reference instead of CPU @onlyCUDA def test_cat(self, device): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim) y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim) z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randn(20, SIZE, SIZE, device=device) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randn(1, SIZE, SIZE, device=device) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) # TODO: update this test to compare against NumPy instead of CPU @onlyCUDA @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_device_rounding(self, device, dtype): # test half-to-even a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8] res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.] a_tensor = torch.tensor(a, device=device).round() res_tensor = torch.tensor(res, device='cpu') self.assertEqual(a_tensor, res_tensor) # Note: This test failed on XLA since its test cases are created by empty_strided which # doesn't support overlapping sizes/strides in XLA impl @onlyOnCPUAndCUDA def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device): # Test like functions against tensoriterator based unary operator (exp) to # make sure the returned tensor from like function follows the same stride propergation # rule as what tensoriterator does for unary operator. The like function's output strides # is computed on CPU side always, no need to test GPU here. def compare_helper_(like_fn, t): te = torch.exp(t) tl = like_fn(t) self.assertEqual(te.stride(), tl.stride()) self.assertEqual(te.size(), tl.size()) like_fns = [ lambda t, **kwargs: torch.zeros_like(t, **kwargs), lambda t, **kwargs: torch.ones_like(t, **kwargs), lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs), lambda t, **kwargs: torch.randint_like(t, 100, **kwargs), lambda t, **kwargs: torch.randn_like(t, **kwargs), lambda t, **kwargs: torch.rand_like(t, **kwargs), lambda t, **kwargs: torch.full_like(t, 7, **kwargs), lambda t, **kwargs: torch.empty_like(t, **kwargs)] # dense non-overlapping tensor, # non-dense non-overlapping sliced tensor # non-dense non-overlapping gapped tensor # non-dense non-overlapping 0 strided tensor # non-dense overlapping general tensor # non-dense overlapping sliced tensor # non-dense overlapping gapped tensor # non-dense overlapping 0 strided tensor # non-dense overlapping equal strides tset = ( torch.randn(4, 3, 2, device=device), torch.randn(4, 3, 2, device=device)[:, :, ::2], torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0), torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0), torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0), torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0), torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0)) for like_fn in like_fns: for t in tset: for p in permutations(range(t.dim())): tp = t.permute(p) compare_helper_(like_fn, tp) def _hvd_split_helper(self, torch_fn, np_fn, op_name, inputs, device, dtype, dim): dimension_error_message = op_name + " requires a tensor with at least " divisibiliy_error_message = op_name + " attempted to split along dimension " for shape, arg in inputs: direction = dim - (len(shape) == 1 and dim == 1) bound = dim + 2 * (dim == 0) + (dim == 2) error_expected = len(shape) < bound or (not isinstance(arg, list) and shape[direction] % arg != 0) t = make_tensor(shape, device, dtype) t_np = t.cpu().numpy() if not error_expected: self.assertEqual(torch_fn(t, arg), np_fn(t_np, arg)) else: self.assertRaises(RuntimeError, lambda: torch_fn(t, arg)) self.assertRaises(ValueError, lambda: np_fn(t, arg)) expected_error_message = dimension_error_message if len(shape) < bound else divisibiliy_error_message self.assertRaisesRegex(RuntimeError, expected_error_message, lambda: torch_fn(t, arg)) @onlyOnCPUAndCUDA @dtypes(torch.long, torch.float32, torch.complex64) def test_hsplit(self, device, dtype): inputs = ( ((), 3), ((), [2, 4, 6]), ((6,), 2), ((6,), 4), ((6,), [2, 5]), ((6,), [7, 9]), ((3, 8), 4), ((3, 8), 5), ((3, 8), [1, 5]), ((3, 8), [3, 8]), ((5, 5, 5), 2), ((5, 5, 5), [1, 4]), ((5, 0, 5), 3), ((5, 5, 0), [2, 6]), ) self._hvd_split_helper(torch.hsplit, np.hsplit, "torch.hsplit", inputs, device, dtype, 1) @onlyOnCPUAndCUDA @dtypes(torch.long, torch.float32, torch.complex64) def test_vsplit(self, device, dtype): inputs = ( ((6,), 2), ((6,), 4), ((6, 5), 2), ((6, 5), 4), ((6, 5), [1, 2, 3]), ((6, 5), [1, 5, 9]), ((6, 5, 5), 2), ((6, 0, 5), 2), ((5, 0, 5), [1, 5]), ) self._hvd_split_helper(torch.vsplit, np.vsplit, "torch.vsplit", inputs, device, dtype, 0) @onlyOnCPUAndCUDA @dtypes(torch.long, torch.float32, torch.complex64) def test_dsplit(self, device, dtype): inputs = ( ((6,), 4), ((6, 6), 3), ((5, 5, 6), 2), ((5, 5, 6), 4), ((5, 5, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ((5, 5, 0), 2), ((5, 0, 6), 4), ((5, 0, 6), [1, 2, 3]), ((5, 5, 6), [1, 5, 9]), ) self._hvd_split_helper(torch.dsplit, np.dsplit, "torch.dsplit", inputs, device, dtype, 2) def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype): # Test error for non-tuple argument t = torch.randn(10) with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn(t) # Test error for a single array with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"): torch_fn((t)) # Test 0-D num_tensors = random.randint(1, 5) input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)] actual = torch_fn(input_t) expected = np_fn([input.cpu().numpy() for input in input_t]) self.assertEqual(actual, expected) for ndims in range(1, 5): base_shape = list(_rand_shape(ndims, min_size=1, max_size=5)) for i in range(ndims): shape = list(base_shape) num_tensors = random.randint(1, 5) torch_input = [] # Create tensors with shape being different along one axis only for param in range(num_tensors): shape[i] = random.randint(1, 5) torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False)) # Determine if input tensors have valid dimensions. valid_dim = True for k in range(len(torch_input) - 1): for tdim in range(ndims): # Test whether all tensors have the same shape except in concatenating dimension # Unless the number of dimensions is less than the corresponding at_least function dimension # Since the original concatenating dimension would shift after applying at_least and would no # longer be the concatenating dimension if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]: valid_dim = False # Special case for hstack is needed since hstack works differently when ndims is 1 if valid_dim or (torch_fn is torch.hstack and ndims == 1): # Valid dimensions, test against numpy np_input = [input.cpu().numpy() for input in torch_input] actual = torch_fn(torch_input) expected = np_fn(np_input) self.assertEqual(actual, expected) else: # Invalid dimensions, test for error with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"): torch_fn(torch_input) with self.assertRaises(ValueError): np_input = [input.cpu().numpy() for input in torch_input] np_fn(np_input) @onlyOnCPUAndCUDA @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) + get_all_complex_dtypes())) def test_hstack_column_stack(self, device, dtype): ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack)) for torch_op, np_op in ops: self._test_special_stacks(1, 1, torch_op, np_op, device, dtype) # Test torch.column_stack with combinations of 1D and 2D tensors input one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device) two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10) inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor torch_result = torch.column_stack(inputs) np_inputs = [input.cpu().numpy() for input in inputs] np_result = np.column_stack(np_inputs) self.assertEqual(np_result, torch_result) @onlyOnCPUAndCUDA @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) + get_all_complex_dtypes())) def test_vstack_row_stack(self, device, dtype): ops = ((torch.vstack, np.vstack), (torch.row_stack, np.row_stack)) for torch_op, np_op in ops: self._test_special_stacks(0, 2, torch_op, np_op, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch_op(torch_input) expected = np_op(np_input) self.assertEqual(actual, expected) @onlyOnCPUAndCUDA @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) + get_all_complex_dtypes())) def test_dstack(self, device, dtype): self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype) for i in range(5): # Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1) n = random.randint(1, 10) input_a = _generate_input((n,), dtype, device, with_extremal=False) input_b = _generate_input((1, n), dtype, device, with_extremal=False) input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b, input_c] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) # Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1) m = random.randint(1, 10) n = random.randint(1, 10) input_a = _generate_input((m, n), dtype, device, with_extremal=False) input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False) torch_input = [input_a, input_b] np_input = [input.cpu().numpy() for input in torch_input] actual = torch.dstack(torch_input) expected = np.dstack(np_input) self.assertEqual(actual, expected) @dtypes(torch.int32, torch.int64) def test_large_linspace(self, device, dtype): start = torch.iinfo(dtype).min end = torch.iinfo(dtype).max & ~0xfff steps = 15 x = torch.linspace(start, end, steps, dtype=dtype, device=device) self.assertGreater(x[1] - x[0], (end - start) / steps) @dtypes(torch.float32, torch.float64) def test_unpack_double(self, device, dtype): # Reference: https://github.com/pytorch/pytorch/issues/33111 vals = (2 ** 24 + 1, 2 ** 53 + 1, np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1, -1e500, 1e500) for val in vals: t = torch.tensor(val, dtype=dtype, device=device) a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype]) self.assertEqual(t, torch.from_numpy(a)) def _float_to_int_conversion_helper(self, vals, device, dtype): a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype]) t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype) self.assertEqual(torch.from_numpy(a), t.cpu()) # Checks that float->integer casts don't produce undefined behavior errors. # Note: In C++, casting from a floating value to an integral dtype # is undefined if the floating point value is not within the integral # dtype's dynamic range. This can (and should) cause undefined behavior # errors with UBSAN. These casts are deliberate in PyTorch, however, and # NumPy has the same behavior. @onlyOnCPUAndCUDA @unittest.skipIf(IS_MACOS, "Test is broken on MacOS, see https://github.com/pytorch/pytorch/issues/38752") @unittest.skipIf(IS_PPC, "Test is borken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671") @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_finite(self, device, dtype): min = torch.finfo(torch.float).min max = torch.finfo(torch.float).max # Note: CUDA max float -> integer conversion is divergent on some dtypes vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max) if self.device_type == 'cuda': if torch.version.hip: # HIP min float -> int64 conversion is divergent vals = (-2, -1.5, -.5, 0, .5, 1.5, 2) else: vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2) self._float_to_int_conversion_helper(vals, device, dtype) # Note: CUDA will fail this test on most dtypes, often dramatically. @onlyCPU @dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) def test_float_to_int_conversion_nonfinite(self, device, dtype): vals = (float('-inf'), float('inf'), float('nan')) self._float_to_int_conversion_helper(vals, device, dtype) # TODO: re-enable this test @unittest.skipIf(True, "real and imag not implemented for complex") @onlyOnCPUAndCUDA def test_complex_type_conversions(self, device): dtypes = [torch.float, torch.complex64, torch.complex128] for from_type in dtypes: for to_type in dtypes: from_tensor = torch.randn(4, dtype=from_type, device=device) to_tensor = from_tensor.to(to_type) if from_type.is_complex and not to_type.is_complex: self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False) elif not from_type.is_complex and to_type.is_complex: self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False) self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False) else: self.assertEqual(from_tensor, to_tensor, exact_dtype=False) @slowTest @onlyCPU def test_cat_big(self, device): SIZE1 = 6500 SIZE2 = 4500 concat_list = [] concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device)) concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device)) result = torch.cat(concat_list) self.assertEqual(result.size(0), SIZE1 + SIZE2) @onlyCPU def test_cat_bad_input_sizes(self, device): x = torch.randn(2, 1, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 1, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z])) x = torch.randn(2, 1, 2, device=device) y = torch.randn(2, 1, 1, device=device) z = torch.randn(2, 2, 1, device=device) self.assertRaises(RuntimeError, lambda: torch.cat([x, y, z], dim=1)) @onlyCPU @dtypes(torch.half, torch.double, torch.int) def test_cat2(self, device, dtype): SIZE = 10 for dim in range(-3, 3): pos_dim = dim if dim >= 0 else 3 + dim x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim) res1 = torch.cat((x, y, z), dim) self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0) self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0) x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype) self.assertEqual(torch.cat(torch.split(x, 7)), x) self.assertEqual(torch.cat(torch.chunk(x, 7)), x) y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype) z = torch.cat([x, y]) self.assertEqual(z.size(), (21, SIZE, SIZE)) self.assertRaises(RuntimeError, lambda: torch.cat([])) self.assertRaisesRegex(TypeError, 'got None', lambda: torch.cat([x, None])) @onlyCPU def test_cat_scalars(self, device): x = torch.tensor(0, device=device) y = torch.tensor(1, device=device) with self.assertRaisesRegex(RuntimeError, 'zero-dimensional.*cannot be concatenated'): torch.cat([x, y]) def test_zeros_dtype_out_match(self, device): d = torch.tensor((2, 3), device=device, dtype=torch.double) self.assertRaises(RuntimeError, lambda: torch.zeros((2, 3), device=device, dtype=torch.float32, out=d)) # TODO: update to work on CUDA, too @onlyCPU def test_trilu_indices(self, device): for test_args in tri_tests_args: _compare_trilu_indices(self, *test_args) run_additional_tri_tests(self, 'cpu') # test default options x = torch.ones( 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) self.assertEqual( x.tril(0).nonzero().transpose(0, 1), torch.tril_indices(3, 3)) self.assertEqual( x.triu(0).nonzero().transpose(0, 1), torch.triu_indices(3, 3)) # test stride 0 cases x = torch.ones( 3, 1, 3, 3, dtype=torch.long, device='cpu', layout=torch.strided) output = x.triu(2).expand(3, 3, 3, 3) b = x.clone().expand(3, 3, 3, 3) self.assertEqual(b.triu(2), output) self.assertRaises(RuntimeError, lambda: b.triu_(2)) # TODO: update to work on CUDA, too @onlyCPU def test_stack(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): res = torch.stack((x, y, z), dim) res_neg = torch.stack((x, y, z), dim - 4) expected_size = x.size()[:dim] + (3,) + x.size()[dim:] self.assertEqual(res, res_neg) self.assertEqual(res.size(), expected_size) self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0) # TODO: update to work on CUDA, too @onlyCPU def test_stack_out(self, device): for dtype in (torch.half, torch.double, torch.int): x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype) for dim in range(4): expected_size = x.size()[:dim] + (3,) + x.size()[dim:] res_out = x.new(expected_size) res_neg_out = x.new(expected_size) res_out_dp = res_out.data_ptr() res_out_neg_dp = res_neg_out.data_ptr() torch.stack((x, y, z), dim, out=res_out) torch.stack((x, y, z), dim - 4, out=res_neg_out) self.assertEqual(res_out, res_neg_out) self.assertEqual(res_out.size(), expected_size) self.assertEqual(res_out_dp, res_out.data_ptr()) self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr()) self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0) self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0) def test_repeat_interleave(self, device): x = torch.tensor([0, 1, 2, 3], device=device) expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) self.assertEqual(torch.repeat_interleave(x), expected) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.arange(4.0, device=device)) with self.assertRaises(RuntimeError): torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) y = torch.tensor([[1, 2], [3, 4]], device=device) y1_v1 = torch.repeat_interleave(y, 2) y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) self.assertEqual(y1_v1, y1_expect) self.assertEqual(y1_v2, y1_expect) self.assertEqual(y1_v3, y1_expect) y2 = torch.repeat_interleave(y, 3, dim=1) y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]], device=device) self.assertEqual(y2, y2_expect) y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) y3_expect = torch.tensor([[1, 2], [3, 4], [3, 4]], device=device) self.assertEqual(y3, y3_expect) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) with self.assertRaises(RuntimeError): torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) # test zero sized dimension x = torch.zeros((5, 0), device=device) y = torch.repeat_interleave(x, repeats=3, dim=1) self.assertEqual(y, x.new_zeros(5, 0, device=device)) x = torch.tensor([], dtype=torch.int64, device=device) y = torch.repeat_interleave(x, x) self.assertEqual(y, x) # TODO: udpate to work on CUDA, too @onlyCPU def test_new_methods_requires_grad(self, device): size = (10,) test_cases = [ # method name, args ('new_full', [size, 1]), ('new_empty', [size]), ('new_zeros', [size]), ('new_ones', [size]), ] for method_name, args in test_cases: x = torch.randn(size) for requires_grad in [True, False]: x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad) self.assertEqual(x_new.requires_grad, requires_grad) x = torch.randint(10, size) with self.assertRaisesRegex( RuntimeError, r'Only Tensors of floating point and complex dtype can require gradients'): x_new = x.__getattribute__(method_name)(*args, requires_grad=True) # TODO: update to work on CUDA, too? @onlyCPU def test_tensor_from_sequence(self, device): class MockSequence(object): def __init__(self, lst): self.lst = lst def __len__(self): return len(self.lst) def __getitem__(self, item): raise TypeError class GoodMockSequence(MockSequence): def __getitem__(self, item): return self.lst[item] bad_mock_seq = MockSequence([1.0, 2.0, 3.0]) good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0]) with self.assertRaisesRegex(ValueError, 'could not determine the shape'): torch.tensor(bad_mock_seq) self.assertEqual(torch.tensor([1.0, 2.0, 3.0]), torch.tensor(good_mock_seq)) # TODO: update to work on CUDA, too? @onlyCPU def test_simple_scalar_cast(self, device): ok = [torch.tensor([1.5]), torch.zeros(1, 1, 1, 1)] ok_values = [1.5, 0] not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]]) for tensor, value in zip(ok, ok_values): self.assertEqual(int(tensor), int(value)) self.assertEqual(float(tensor), float(value)) self.assertEqual(complex(tensor), complex(value)) self.assertEqual(complex(torch.tensor(1.5j)), 1.5j) for tensor in not_ok: self.assertRaises(ValueError, lambda: int(tensor)) self.assertRaises(ValueError, lambda: float(tensor)) self.assertRaises(ValueError, lambda: complex(tensor)) self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j))) self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j))) # TODO: update to work on CUDA, too? @onlyCPU def test_offset_scalar_cast(self, device): x = torch.tensor([1., 2., 3.]) y = x[2:] self.assertEqual(int(y), 3) def test_meshgrid(self, device): a = torch.tensor(1, device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) grid_a, grid_b, grid_c = torch.meshgrid([a, b, c]) self.assertEqual(grid_a.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c.shape, torch.Size([1, 3, 2])) grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c) self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2])) self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2])) expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device) expected_grid_b = torch.tensor([[[1, 1], [2, 2], [3, 3]]], device=device) expected_grid_c = torch.tensor([[[1, 2], [1, 2], [1, 2]]], device=device) self.assertTrue(grid_a.equal(expected_grid_a)) self.assertTrue(grid_b.equal(expected_grid_b)) self.assertTrue(grid_c.equal(expected_grid_c)) self.assertTrue(grid_a2.equal(expected_grid_a)) self.assertTrue(grid_b2.equal(expected_grid_b)) self.assertTrue(grid_c2.equal(expected_grid_c)) def test_cartesian_prod(self, device): a = torch.tensor([1], device=device) b = torch.tensor([1, 2, 3], device=device) c = torch.tensor([1, 2], device=device) prod = torch.cartesian_prod(a, b, c) expected = torch.tensor(list(product([a], b, c)), device=device) self.assertEqual(expected, prod) # test 0 size input d = torch.empty(0, dtype=b.dtype, device=device) prod = torch.cartesian_prod(a, b, c, d) expected = torch.empty(0, 4, dtype=b.dtype, device=device) self.assertEqual(expected, prod) # test single input prod = torch.cartesian_prod(b) self.assertEqual(b, prod) def test_combinations(self, device): a = torch.tensor([1, 2, 3], device=device) c = torch.combinations(a, r=1) expected = torch.tensor(list(combinations(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=1, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device) self.assertEqual(c, expected) c = torch.combinations(a) expected = torch.tensor(list(combinations(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, with_replacement=True) expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=3) expected = torch.tensor(list(combinations(a, r=3)), device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=4) expected = torch.empty(0, 4, dtype=a.dtype, device=device) self.assertEqual(c, expected) c = torch.combinations(a, r=5) expected = torch.empty(0, 5, dtype=a.dtype, device=device) self.assertEqual(c, expected) # test empty imput a = torch.empty(0, device=device) c1 = torch.combinations(a) c2 = torch.combinations(a, with_replacement=True) expected = torch.empty(0, 2, dtype=a.dtype, device=device) self.assertEqual(c1, expected) self.assertEqual(c2, expected) def test_linlogspace_mem_overlap(self, device): x = torch.rand(1, device=device).expand(10) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.linspace(1, 10, 10, out=x) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): torch.logspace(1, 10, 10, out=x) def test_ctor_with_numpy_array(self, device): correct_dtypes = [ np.double, np.float, np.float16, np.int64, np.int32, np.int16, np.int8, np.uint8, np.bool, ] incorrect_byteorder = '>' if sys.byteorder == 'little' else '<' incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']] for dtype in correct_dtypes: array = np.array([1, 2, 3, 4], dtype=dtype) # Upcast tensor = torch.DoubleTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) # Downcast (sometimes) tensor = torch.FloatTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) tensor = torch.HalfTensor(array).to(device) for i in range(len(array)): self.assertEqual(tensor[i], array[i]) @dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64) def test_random(self, device, dtype): # This test is flaky with p<=(2/(ub-lb))^200=6e-36 t = torch.empty(200, dtype=dtype, device=device) lb = 1 ub = 4 t.fill_(-1) t.random_(lb, ub) self.assertEqual(t.min(), lb) self.assertEqual(t.max(), ub - 1) t.fill_(-1) t.random_(ub) self.assertEqual(t.min(), 0) self.assertEqual(t.max(), ub - 1) def test_random_bool(self, device): size = 2000 t = torch.empty(size, dtype=torch.bool, device=device) t.fill_(False) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) t.fill_(True) t.random_() self.assertEqual(t.min(), False) self.assertEqual(t.max(), True) self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6) def test_random_from_to_bool(self, device): size = 2000 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max min_val = 0 max_val = 1 froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42] tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val] for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=torch.bool, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(from_, to_) range_ = to_ - from_ delta = 1 self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes())) def test_random_full_range(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 t = torch.empty(size, dtype=dtype, device=device) if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]: from_ = int(max(-fp_limit, int64_min_val)) to_inc_ = int(min(fp_limit, int64_max_val)) else: from_ = int(max(torch.iinfo(dtype).min, int64_min_val)) to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val)) range_ = to_inc_ - from_ + 1 t.random_(from_, None) delta = max(1, alpha * range_) self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_) @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes())) def test_random_from_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1] tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val froms = [min_val, -42, 0, 42] tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1] tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] if dtype == torch.double: fp_limit = 2**53 elif dtype == torch.float: fp_limit = 2**24 elif dtype == torch.half: fp_limit = 2**11 elif dtype == torch.bfloat16: fp_limit = 2**8 else: fp_limit = 0 for from_ in froms: for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= from_ <= max_val): self.assertRaisesRegex( RuntimeError, "from is out of bounds", lambda: t.random_(from_, to_) ) elif not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: if dtype.is_floating_point and ( not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)): if not (-fp_limit <= from_ <= fp_limit): self.assertWarnsRegex(UserWarning, "from is out of bounds", lambda: t.random_(from_, to_)) if not (-fp_limit <= (to_ - 1) <= fp_limit): self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds", lambda: t.random_(from_, to_)) else: t.random_(from_, to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes())) def test_random_to(self, device, dtype): size = 2000 alpha = 0.1 int64_min_val = torch.iinfo(torch.int64).min int64_max_val = torch.iinfo(torch.int64).max if dtype in [torch.float, torch.double, torch.half]: min_val = int(max(torch.finfo(dtype).min, int64_min_val)) max_val = int(min(torch.finfo(dtype).max, int64_max_val)) tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.bfloat16: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val >> 1] elif dtype == torch.uint8: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val] elif dtype == torch.int64: min_val = int64_min_val max_val = int64_max_val tos = [-42, 0, 42, max_val] else: min_val = torch.iinfo(dtype).min max_val = torch.iinfo(dtype).max tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val] from_ = 0 for to_ in tos: t = torch.empty(size, dtype=dtype, device=device) if to_ > from_: if not (min_val <= (to_ - 1) <= max_val): self.assertRaisesRegex( RuntimeError, "to - 1 is out of bounds", lambda: t.random_(from_, to_) ) else: t.random_(to_) range_ = to_ - from_ delta = max(1, alpha * range_) if dtype == torch.bfloat16: # Less strict checks because of rounding errors # TODO investigate rounding errors self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_) else: self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta)) self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_) else: self.assertRaisesRegex( RuntimeError, "random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_), lambda: t.random_(from_, to_) ) @dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes())) def test_random_default(self, device, dtype): size = 2000 alpha = 0.1 if dtype == torch.float: to_inc = 1 << 24 elif dtype == torch.double: to_inc = 1 << 53 elif dtype == torch.half: to_inc = 1 << 11 elif dtype == torch.bfloat16: to_inc = 1 << 8 else: to_inc = torch.iinfo(dtype).max t = torch.empty(size, dtype=dtype, device=device) t.random_() self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc) self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc) # TODO: this test should be updated @onlyOnCPUAndCUDA def test_empty_full(self, device): torch_device = torch.device(device) device_type = torch_device.type if device_type == 'cpu': do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device) if device_type == 'cuda': do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, None) do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device) # TODO: this test should be updated @suppress_warnings @onlyOnCPUAndCUDA @deviceCountAtLeast(1) def test_tensor_device(self, devices): device_type = torch.device(devices[0]).type if device_type == 'cpu': self.assertEqual('cpu', torch.tensor(5).device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type) self.assertEqual('cpu', torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type) self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type) if device_type == 'cuda': self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device)) self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device=0).device)) self.assertEqual('cuda:0', str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device)) self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device)) for device in devices: with torch.cuda.device(device): device_string = 'cuda:' + str(torch.cuda.current_device()) self.assertEqual(device_string, str(torch.tensor(5, dtype=torch.int64, device='cuda').device)) with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu') with self.assertRaises(RuntimeError): torch.tensor(5).cuda('cpu:0') if len(devices) > 1: self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device)) self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device=1).device)) self.assertEqual('cuda:1', str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:1').device)) self.assertEqual('cuda:1', str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device)) # TODO: this test should be updated @onlyOnCPUAndCUDA def test_as_strided_neg(self, device): error = r'as_strided: Negative strides are not supported at the ' \ r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]' with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1)) with self.assertRaisesRegex(RuntimeError, error): torch.as_strided(torch.ones(14, device=device), (2,), (-11,)) # TODO: this test should be updated def test_zeros(self, device): res1 = torch.zeros(100, 100, device=device) res2 = torch.tensor((), device=device) torch.zeros(100, 100, device=device, out=res2) self.assertEqual(res1, res2) boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool) expected = torch.tensor([[False, False], [False, False]], device=device, dtype=torch.bool) self.assertEqual(boolTensor, expected) halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half) expected = torch.tensor([[0.]], device=device, dtype=torch.float16) self.assertEqual(halfTensor, expected) bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16) expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16) self.assertEqual(bfloat16Tensor, expected) complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64) expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64) self.assertEqual(complexTensor, expected) # TODO: this test should be updated def test_zeros_out(self, device): shape = (3, 4) out = torch.zeros(shape, device=device) torch.zeros(shape, device=device, out=out) # change the dtype, layout, device with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, dtype=torch.int64, out=out) with self.assertRaises(RuntimeError): torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out) # leave them the same self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, dtype=out.dtype, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, layout=torch.strided, out=out)) self.assertEqual(torch.zeros(shape, device=device), torch.zeros(shape, device=device, out=out)) # TODO: this test should be updated def test_ones(self, device): res1 = torch.ones(100, 100, device=device) res2 = torch.tensor((), device=device) torch.ones(100, 100, device=device, out=res2) self.assertEqual(res1, res2) # test boolean tensor res1 = torch.ones(1, 2, device=device, dtype=torch.bool) expected = torch.tensor([[True, True]], device=device, dtype=torch.bool) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_constructor_dtypes(self, device): default_type = torch.tensor([]).type() self.assertIs(torch.tensor([]).dtype, torch.get_default_dtype()) self.assertIs(torch.uint8, torch.ByteTensor.dtype) self.assertIs(torch.float32, torch.FloatTensor.dtype) self.assertIs(torch.float64, torch.DoubleTensor.dtype) torch.set_default_tensor_type('torch.FloatTensor') self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.DoubleStorage, torch.Storage) torch.set_default_tensor_type(torch.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.FloatStorage, torch.Storage) if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertIs(torch.float32, torch.get_default_dtype()) self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype) self.assertIs(torch.cuda.FloatStorage, torch.Storage) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.get_default_dtype()) self.assertIs(torch.cuda.DoubleStorage, torch.Storage) # don't support integral or sparse default types. self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor')) self.assertRaises(TypeError, lambda: torch.set_default_dtype(torch.int64)) # don't allow passing dtype to set_default_tensor_type self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32)) torch.set_default_tensor_type(default_type) # TODO: this test should be updated @onlyCPU def test_constructor_device_legacy(self, device): self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cpu') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) x = torch.randn((3,), device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu')) # Tensor constructor/new with Tensor argument shouldn't work with device specified i = torch.tensor([1], device='cuda') self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu')) self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu')) default_type = torch.Tensor().type() torch.set_default_tensor_type(torch.cuda.FloatTensor) self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu')) torch.set_default_tensor_type(torch.cuda.FloatTensor) torch.set_default_tensor_type(default_type) x = torch.randn((3,), device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu')) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory(self, device): # TODO: This test probably doesn't make too much sense now that # torch.tensor has been established for a while; it makes more # sense to test the legacy behavior in terms of the new behavior expected = torch.Tensor([1, 1]) # test data res1 = torch.tensor([1, 1]) self.assertEqual(res1, expected, exact_dtype=False) res1 = torch.tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = torch.tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = torch.tensor(expected, dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy with numpy for dtype in [np.float64, np.int64, np.int8, np.uint8]: a = np.array([5.]).astype(dtype) res1 = torch.tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) # test boolean tensor a = torch.tensor([True, True, False, True, True], dtype=torch.bool) b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool) self.assertEqual(a, b) c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool) self.assertEqual(a, c) d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool) e = torch.tensor((True, False, True, True, True), dtype=torch.bool) self.assertEqual(e, d) f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool) self.assertEqual(e, f) int64_max = torch.iinfo(torch.int64).max int64_min = torch.iinfo(torch.int64).min float64_max = torch.finfo(torch.float64).max float64_min = torch.finfo(torch.float64).min g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool) self.assertEqual(e, g_1) g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool) self.assertEqual(e, g_2) g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool) self.assertEqual(e, g_3) h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool) i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool) self.assertEqual(h, i) j = torch.tensor((True, True, True, True), dtype=torch.bool) k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool) self.assertEqual(j, k) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_tensor_factory_copy_var(self, device): def check_copy(copy, is_leaf, requires_grad, data_ptr=None): if data_ptr is None: data_ptr = copy.data_ptr self.assertEqual(copy, source, exact_dtype=False) self.assertTrue(copy.is_leaf == is_leaf) self.assertTrue(copy.requires_grad == requires_grad) self.assertTrue(copy.data_ptr == data_ptr) source = torch.randn(5, 5, dtype=torch.double, requires_grad=True) # test torch.tensor() check_copy(torch.tensor(source), True, False) check_copy(torch.tensor(source, requires_grad=False), True, False) check_copy(torch.tensor(source, requires_grad=True), True, True) # test tensor.new_tensor() copy = torch.randn(1) check_copy(copy.new_tensor(source), True, False) check_copy(copy.new_tensor(source, requires_grad=False), True, False) check_copy(copy.new_tensor(source, requires_grad=True), True, True) # test torch.as_tensor() check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph # TODO: this test should be updated @onlyCPU def test_tensor_factory_type_inference(self, device): def test_inference(default_dtype): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(default_dtype) default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128 self.assertIs(default_dtype, torch.tensor(()).dtype) self.assertIs(default_dtype, torch.tensor(5.).dtype) self.assertIs(torch.int64, torch.tensor(5).dtype) self.assertIs(torch.bool, torch.tensor(True).dtype) self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype) self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype) self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype) self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype) self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype) self.assertIs(torch.float64, torch.tensor(np.array(())).dtype) self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype) if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows) self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype) else: self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype) self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype) self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype) self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype) self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype) torch.set_default_dtype(saved_dtype) test_inference(torch.float64) test_inference(torch.float32) # TODO: this test should be updated @suppress_warnings @onlyCPU def test_new_tensor(self, device): expected = torch.autograd.Variable(torch.ByteTensor([1, 1])) # test data res1 = expected.new_tensor([1, 1]) self.assertEqual(res1, expected) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertEqual(res1, expected, exact_dtype=False) self.assertIs(torch.int, res1.dtype) # test copy res2 = expected.new_tensor(expected) self.assertEqual(res2, expected) res2[1] = 2 self.assertEqual(expected, torch.ones_like(expected)) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertEqual(res2, expected, exact_dtype=False) self.assertIs(torch.int, res2.dtype) # test copy with numpy a = np.array([5.]) res1 = torch.tensor(a) res1 = res1.new_tensor(a) self.assertEqual(5., res1[0].item()) a[0] = 7. self.assertEqual(5., res1[0].item()) if torch.cuda.device_count() >= 2: expected = expected.cuda(1) res1 = expected.new_tensor([1, 1]) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor([1, 1], dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) res2 = expected.new_tensor(expected) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), expected.get_device()) res2 = expected.new_tensor(expected, dtype=torch.int, device=0) self.assertIs(torch.int, res1.dtype) self.assertEqual(res2.get_device(), 0) res1 = expected.new_tensor(1) self.assertEqual(res1.get_device(), expected.get_device()) res1 = expected.new_tensor(1, dtype=torch.int) self.assertIs(torch.int, res1.dtype) self.assertEqual(res1.get_device(), expected.get_device()) # TODO: this test should be updated @onlyCPU def test_as_tensor(self, device): # from python data x = [[0, 1], [2, 3]] self.assertEqual(torch.tensor(x), torch.as_tensor(x)) self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32)) # python data with heterogeneous types z = [0, 'torch'] with self.assertRaisesRegex(TypeError, "invalid data type"): torch.tensor(z) torch.as_tensor(z) # python data with self-referential lists z = [0] z += [z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) z = [[1, 2], z] with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"): torch.tensor(z) torch.as_tensor(z) # from tensor (doesn't copy unless type is different) y = torch.tensor(x) self.assertIs(y, torch.as_tensor(y)) self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32)) if torch.cuda.is_available(): self.assertIsNot(y, torch.as_tensor(y, device='cuda')) y_cuda = y.to('cuda') self.assertIs(y_cuda, torch.as_tensor(y_cuda)) self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda')) # doesn't copy for dtype in [np.float64, np.int64, np.int8, np.uint8]: n = np.random.rand(5, 6).astype(dtype) n_astensor = torch.as_tensor(n) self.assertEqual(torch.tensor(n), n_astensor) n_astensor[0][0] = 25.7 self.assertEqual(torch.tensor(n), n_astensor) # changing dtype causes copy n = np.random.rand(5, 6).astype(np.float32) n_astensor = torch.as_tensor(n, dtype=torch.float64) self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor) n_astensor[0][1] = 250.8 self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor) # changing device causes copy if torch.cuda.is_available(): n = np.random.randn(5, 6) n_astensor = torch.as_tensor(n, device='cuda') self.assertEqual(torch.tensor(n, device='cuda'), n_astensor) n_astensor[0][2] = 250.9 self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor) # TODO: this test should be updated @suppress_warnings def test_range(self, device): res1 = torch.range(0, 1, device=device) res2 = torch.tensor((), device=device) torch.range(0, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Check range for non-contiguous tensors. x = torch.zeros(2, 3, device=device) torch.range(0, 3, device=device, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1, 0), device=device, dtype=torch.float32) res2 = torch.tensor((), device=device) torch.range(1, 0, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1, device=device) res2 = torch.tensor((), device=device) torch.range(1, 1, -1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.range(1, 1, 1, device=device, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # TODO: this test should be updated def test_range_warning(self, device): with warnings.catch_warnings(record=True) as w: torch.range(0, 10, device=device) self.assertEqual(len(w), 1) # TODO: this test should be updated @onlyCPU def test_arange(self, device): res = torch.tensor(range(10000)) res1 = torch.arange(0, 10000) # Use a larger number so vectorized code can be triggered res2 = torch.tensor([], dtype=torch.int64) torch.arange(0, 10000, out=res2) self.assertEqual(res, res1, atol=0, rtol=0) self.assertEqual(res, res2, atol=0, rtol=0) # Vectorization on non-contiguous tensors res = torch.rand(3, 3, 300000).to(torch.int64) res = res.permute(2, 0, 1) torch.arange(0, 300000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3)) # Check arange with only one argument res1 = torch.arange(10) res2 = torch.arange(0, 10) self.assertEqual(res1, res2, atol=0, rtol=0) # Check arange for non-contiguous tensors. x = torch.zeros(2, 3) torch.arange(0, 4, out=x.narrow(1, 1, 2)) res2 = torch.tensor(((0., 0., 1.), (0., 2., 3.))) self.assertEqual(x, res2, atol=1e-16, rtol=0) # Check negative res1 = torch.tensor((1., 0.)) res2 = torch.tensor([]) torch.arange(1, -1, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # Equal bounds res1 = torch.ones(1) res2 = torch.tensor([]) torch.arange(1, 0, -1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) torch.arange(1, 2, 1, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # FloatTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.FloatTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.FloatTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # DoubleTensor res1 = torch.arange(0.6, 0.89, 0.1, out=torch.DoubleTensor()) self.assertEqual(res1, [0.6, 0.7, 0.8]) res1 = torch.arange(1, 10, 0.3, out=torch.DoubleTensor()) self.assertEqual(res1.size(0), 30) self.assertEqual(res1[0], 1) self.assertEqual(res1[29], 9.7) # Bool Input matching numpy semantics r = torch.arange(True) self.assertEqual(r[0], 0) r2 = torch.arange(False) self.assertEqual(len(r2), 0) self.assertEqual(r.dtype, torch.int64) self.assertEqual(r2.dtype, torch.int64) # Check that it's exclusive r = torch.arange(0, 5) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 5) r = torch.arange(0, 5, 2) self.assertEqual(r.min(), 0) self.assertEqual(r.max(), 4) self.assertEqual(r.numel(), 3) r1 = torch.arange(0, 5 + 1e-6) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(0, 5, dtype=torch.float32) r3 = torch.arange(0, 5 - 1e-6) self.assertEqual(r1[:-1], r2, atol=0, rtol=0) self.assertEqual(r2, r3, atol=0, rtol=0) r1 = torch.arange(10, -1 + 1e-6, -1) # NB: without the dtype, we'll infer output type to be int64 r2 = torch.arange(10, -1, -1, dtype=torch.float32) r3 = torch.arange(10, -1 - 1e-6, -1) self.assertEqual(r1, r2, atol=0, rtol=0) self.assertEqual(r2, r3[:-1], atol=0, rtol=0) # Test Rounding Errors line = torch.zeros(size=(1, 49)) self.assertWarnsRegex(UserWarning, 'The out tensor will be resized', lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line)) self.assertEqual(line.shape, [50]) x = torch.empty(1).expand(10) self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x)) msg = "unsupported range" self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'))) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'))) for device in torch.testing.get_all_device_types(): self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device)) # check with step size self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device)) self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device)) self.assertRaisesRegex( RuntimeError, "overflow", lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device)) # check that it holds a consistent output shape on precision-cornered step sizes d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device) self.assertEqual(d.shape[0], 800) # TODO: this test should be updated @onlyCPU def test_arange_inference(self, device): saved_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float32) # end only self.assertIs(torch.float32, torch.arange(1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype) # start, end, [step] self.assertIs(torch.float32, torch.arange(1., 3).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype) self.assertIs(torch.float32, torch.arange(1, 3.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype) self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype) self.assertIs(torch.float32, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16), torch.tensor(1., dtype=torch.float64)).dtype) self.assertIs(torch.int64, torch.arange(1, 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype) self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype) self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3), torch.tensor(1, dtype=torch.int16)).dtype) torch.set_default_dtype(saved_dtype) # cannot call storage() on meta tensor @skipMeta def test_empty_strided(self, device): for shape in [(2, 3, 4), (0, 2, 0)]: # some of these cases are pretty strange, just verifying that if as_strided # allows them then empty_strided can as well. for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: empty_strided = torch.empty_strided(shape, strides, device=device) # as_strided checks the storage size is big enough to support such a strided tensor; # instead of repeating this calculation, we just use empty_strided which does the same # calculation when setting the storage size. as_strided = torch.empty(empty_strided.storage().size(), device=device).as_strided(shape, strides) self.assertEqual(empty_strided.shape, as_strided.shape) self.assertEqual(empty_strided.stride(), as_strided.stride()) def test_new_empty_strided(self, device): def _test(sizes, strides, dtype): x = torch.zeros(5, 5, dtype=dtype, device=device) result = x.new_empty_strided(sizes, strides) expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device) self.assertEqual(result.shape, expected.shape) self.assertEqual(result.stride(), expected.stride()) self.assertEqual(result.dtype, expected.dtype) self.assertEqual(result.device, expected.device) _test([2, 3], [3, 1], torch.float) _test([5, 3], [0, 1], torch.int) _test([], [], torch.float) # Some really weird cases for shape in [(2, 3, 4), (0, 2, 0)]: for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]: _test(shape, strides, torch.float) def test_strided_mismatched_stride_shape(self, device): for shape, strides in [((1, ), ()), ((1, 2), (1, ))]: with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided(shape, strides) with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"): torch.tensor(0.42, device=device).as_strided_(shape, strides) def test_empty_tensor_props(self, device): sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)] for size in sizes: x = torch.empty(tuple(size), device=device) self.assertEqual(size, x.shape) self.assertTrue(x.is_contiguous()) size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size) y = torch.empty(tuple(size_ones_instead_of_zeros), device=device) self.assertEqual(x.stride(), y.stride()) def test_eye(self, device): for dtype in get_all_dtypes(): if dtype == torch.bfloat16: continue # Test the RuntimeError is raised when either m or n is a negative number for n, m in ((-1, 1), (1, -1), (-1, -1)): with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'): torch.eye(n, m, device=device, dtype=dtype) # Test when the `m` parameter is not provided for n in (3, 5, 7): res1 = torch.eye(n, device=device, dtype=dtype) naive_eye = torch.zeros(n, n, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, out=res2) self.assertEqual(res1, res2) for n, m in product([3, 5, 7], repeat=2): # Construct identity using diagonal and fill res1 = torch.eye(n, m, device=device, dtype=dtype) naive_eye = torch.zeros(n, m, dtype=dtype, device=device) naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1) self.assertEqual(naive_eye, res1) # Check eye_out outputs res2 = torch.empty(0, device=device, dtype=dtype) torch.eye(n, m, out=res2) self.assertEqual(res1, res2) @precisionOverride({torch.float: 1e-8, torch.double: 1e-10}) @dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False) + get_all_complex_dtypes())) def test_linspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0) end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.linspace(start, end, steps, device=device, dtype=dtype) a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertTrue(t[0].item() == a[0]) self.assertTrue(t[steps - 1].item() == a[steps - 1]) def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype): start = torch.randn(1, dtype=dtype).item() end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item() def test_fn(torch_fn, numpy_fn, steps): t = torch_fn(start, end, steps, device=device) a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: test_fn(torch.linspace, np.linspace, steps) @dtypes(torch.complex64) def test_linspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace, device, dtype) @dtypes(torch.complex64) def test_logspace_vs_numpy_complex(self, device, dtype): self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace, device, dtype) @precisionOverride({torch.float: 1e-6, torch.double: 1e-10}) @dtypes(*get_all_fp_dtypes(include_half=False, include_bfloat16=False)) def test_logspace_vs_numpy(self, device, dtype): start = -0.0316082797944545745849609375 end = .0315315723419189453125 for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]: t = torch.logspace(start, end, steps, device=device, dtype=dtype) a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype]) t = t.cpu() self.assertEqual(t, torch.from_numpy(a)) self.assertEqual(t[0], a[0]) self.assertEqual(t[steps - 1], a[steps - 1]) def _linspace_logspace_warning_helper(self, op, device, dtype): with self.assertWarnsOnceRegex(UserWarning, "Not providing a value for .+"): op(0, 10, device=device, dtype=dtype) @dtypes(torch.float) def test_linspace_steps_warning(self, device, dtype): self._linspace_logspace_warning_helper(torch.linspace, device, dtype) @dtypes(torch.float) def test_logspace_steps_warning(self, device, dtype): self._linspace_logspace_warning_helper(torch.logspace, device, dtype) @onlyCUDA @largeTensorTest('16GB') def test_range_factories_64bit_indexing(self, device): bigint = 2 ** 31 + 1 t = torch.arange(bigint, dtype=torch.long, device=device) self.assertEqual(t[-1].item(), bigint - 1) del t t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 1) del t t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device) self.assertEqual(t[-1].item(), 2) del t @onlyOnCPUAndCUDA def test_tensor_ctor_device_inference(self, device): torch_device = torch.device(device) values = torch.tensor((1, 2, 3), device=device) # Tests tensor and as_tensor # Note: warnings are suppressed (suppresses warnings) for op in (torch.tensor, torch.as_tensor): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertEqual(op(values).device, torch_device) self.assertEqual(op(values, dtype=torch.float64).device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): self.assertEqual(op(values.cpu()).device, torch.device('cpu')) # Tests sparse ctor indices = torch.tensor([[0, 1, 1], [2, 0, 1], [2, 1, 0]], device=device) sparse_size = (3, 3, 3) sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size) self.assertEqual(sparse_default.device, torch_device) sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch_device) if self.device_type == 'cuda': with torch.cuda.device(device): sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(), sparse_size, dtype=torch.float64) self.assertEqual(sparse_with_dtype.device, torch.device('cpu')) @onlyOnCPUAndCUDA @precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3}) @unittest.skipIf(not TEST_SCIPY, "Scipy not found") @dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long) @dtypesIfCPU(torch.float, torch.double, torch.long) def test_signal_window_functions(self, device, dtype): import scipy.signal as signal def test(name, kwargs): torch_method = getattr(torch, name + '_window') if not dtype.is_floating_point: with self.assertRaisesRegex(RuntimeError, r'floating point'): torch_method(3, dtype=dtype) return for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]: for periodic in [True, False]: res = torch_method(size, periodic=periodic, **kwargs, device=device, dtype=dtype) # NB: scipy always returns a float64 result ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic)) self.assertEqual(res, ref, exact_dtype=False) with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'): torch_method(3, layout=torch.sparse_coo) self.assertTrue(torch_method(3, requires_grad=True).requires_grad) self.assertFalse(torch_method(3).requires_grad) for window in ['hann', 'hamming', 'bartlett', 'blackman']: test(window, kwargs={}) for num_test in range(50): test('kaiser', kwargs={'beta': random.random() * 30}) def test_tensor_factories_empty(self, device): # ensure we can create empty tensors from each factory function shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)] for shape in shapes: for dt in get_all_dtypes(): self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape) self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape) self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape) if dt == torch.bool: self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape) elif dt.is_complex: self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape) else: self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape) if dt not in {torch.double, torch.float, torch.half, torch.bfloat16, torch.complex64, torch.complex128}: self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape) if dt == torch.double or dt == torch.float or dt.is_complex: self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape) self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape) self.assertEqual((0,), torch.arange(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, device=device).shape) self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape) self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape) self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape) self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape) self.assertEqual((0,), torch.randperm(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, device=device).shape) self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape) self.assertEqual((0,), torch.hamming_window(0, device=device).shape) self.assertEqual((0,), torch.hann_window(0, device=device).shape) self.assertEqual((0,), torch.kaiser_window(0, device=device).shape) self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape) self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape) @onlyCUDA def test_tensor_factory_gpu_type_inference(self, device): saved_type = torch.tensor([]).type() torch.set_default_tensor_type(torch.cuda.DoubleTensor) torch.set_default_dtype(torch.float32) self.assertIs(torch.float32, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_dtype(torch.float64) self.assertIs(torch.float64, torch.tensor(0.).dtype) self.assertEqual(torch.device(device), torch.tensor(0.).device) torch.set_default_tensor_type(saved_type) @onlyCUDA def test_tensor_factory_gpu_type(self, device): saved_type = torch.tensor([]).type() torch.set_default_tensor_type(torch.cuda.FloatTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float32, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(torch.cuda.DoubleTensor) x = torch.zeros((5, 5)) self.assertIs(torch.float64, x.dtype) self.assertTrue(x.is_cuda) torch.set_default_tensor_type(saved_type) @skipCPUIf(True, 'compares device with cpu') @dtypes(torch.int, torch.long, torch.float, torch.double) def test_arange_device_vs_cpu(self, device, dtype): cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu') device_tensor = torch.arange(0, 10, dtype=dtype, device=device) self.assertEqual(cpu_tensor, device_tensor) def test_arange_bfloat16(self, device): ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) # step=2 ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device) bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device) self.assertEqual(ref_tensor, bfloat16_tensor) @dtypes(*get_all_dtypes(include_bool=False, include_half=False)) @dtypesIfCUDA(*get_all_dtypes(include_bool=False, include_half=True)) def test_linspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.linspace(_from, to, 137, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) # small tensor self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype), torch.tensor(list(range(10, 21)), device=device, dtype=dtype)) # large tensor if dtype not in (torch.int8, torch.uint8): self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype), torch.tensor(list(range(10, 2001)), device=device, dtype=dtype)) # Vectorization on non-contiguous tensors if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test res = torch.rand(3, 3, 1000, device=device).to(dtype) res = res.permute(2, 0, 1) torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res) self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype)) self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype)) # steps = 1 self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype), torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0) # steps = 0 self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"): torch.linspace(0j, 1j, 5, device=device, dtype=dtype) # Check linspace for generating the correct output for each dtype. start = 0 if dtype == torch.uint8 else -100 expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double) actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype) # If on GPU, allow for minor error depending on dtype. tol = 0. if device != 'cpu': if dtype == torch.half: tol = 1e-1 elif dtype == torch.float: tol = 1e-5 elif dtype == torch.double: tol = 1e-10 self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0) # Check linspace for generating with start > end. self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype), torch.tensor((2, 1, 0), device=device, dtype=dtype), atol=0, rtol=0) # Check for race condition (correctness when applied on a large tensor). if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16): y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0), 1000000, device=device, dtype=dtype) if dtype.is_complex: cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag) else: cond = y[:-1] < y[1:] correct = all(cond) self.assertTrue(correct) # Check linspace for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype) self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0) def _test_linspace_logspace_deduction_helper(self, fn, device): for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]: dtype = torch.float32 if isinstance(start, complex) or isinstance(end, complex): dtype = torch.cfloat self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype) def test_linspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.linspace, device) def test_logspace_deduction(self, device): # Test deduction from input parameters. self._test_linspace_logspace_deduction_helper(torch.logspace, device) # The implementation of linspace+logspace goes through a different path # when the steps arg is equal to 0 or 1. For other values of `steps` # they call specialized linspace (or logspace) kernels. LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1] # NOTE [Linspace+Logspace precision override] # Our Linspace and logspace torch.half CUDA kernels are not very precise. # Since linspace/logspace are deterministic, we can compute an expected # amount of error (by testing without a precision override), adding a tiny # amount (EPS) to that, and using that value as the override. LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5 # Compares linspace device vs. cpu def _test_linspace(self, device, dtype, steps): a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device) b = torch.linspace(0, 10, steps=steps) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes())) def test_linspace_device_vs_cpu(self, device, dtype): self._test_linspace(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes())) def test_linspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_linspace(device, dtype, steps=steps) # Compares logspace device vs cpu def _test_logspace(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps) self.assertEqual(a, b, exact_dtype=False) # Compares logspace device vs cpu def _test_logspace_base2(self, device, dtype, steps): a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device) b = torch.logspace(1, 1.1, steps=steps, base=2) self.assertEqual(a, b, exact_dtype=False) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_device_vs_cpu(self, device, dtype): self._test_logspace(device, dtype, steps=10) # See NOTE [Linspace+Logspace precision override] @skipCPUIf(True, "compares with CPU") @precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS}) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_base2(self, device, dtype): self._test_logspace_base2(device, dtype, steps=10) @skipCPUIf(True, "compares with CPU") @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_logspace_special_steps(self, device, dtype): for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS: self._test_logspace(device, dtype, steps=steps) self._test_logspace_base2(device, dtype, steps=steps) @dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_complex=False)) @dtypesIfCUDA(*((get_all_int_dtypes() + [torch.float32, torch.float16, torch.bfloat16]) if TEST_WITH_ROCM else get_all_dtypes(include_bool=False, include_half=True, include_complex=False))) def test_logspace(self, device, dtype): _from = random.random() to = _from + random.random() res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype) res2 = torch.tensor((), device=device, dtype=dtype) torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype)) self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0) if dtype == torch.float: # passed dtype can't be safely casted to inferred dtype with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0, 1j, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1, 5, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"): torch.logspace(0j, 1j, 5, device=device, dtype=dtype) # Check precision - start, stop and base are chosen to avoid overflow # steps is chosen so that step size is not subject to rounding error # a tolerance is needed for gpu tests due to differences in computation atol = None rtol = None if self.device_type == 'cpu': atol = 0 rtol = 0 self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype), torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype), atol=atol, rtol=rtol) # Check non-default base=2 self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype), torch.ones(1, device=device, dtype=dtype) * 2) self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype), torch.tensor((1, 2, 4), device=device, dtype=dtype)) # Check logspace_ for generating with start > end. self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype), torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0) # Check logspace_ for non-contiguous tensors. x = torch.zeros(2, 3, device=device, dtype=dtype) y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2)) self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0) @onlyOnCPUAndCUDA @dtypes(torch.half, torch.float, torch.double) def test_full_inference(self, device, dtype): size = (2, 2) prev_default = torch.get_default_dtype() torch.set_default_dtype(dtype) # Tests bool fill value inference t = torch.full(size, True) self.assertEqual(t.dtype, torch.bool) # Tests integer fill value inference t = torch.full(size, 1) self.assertEqual(t.dtype, torch.long) # Tests float fill value inference t = torch.full(size, 1.) self.assertEqual(t.dtype, dtype) # Tests complex inference t = torch.full(size, (1 + 1j)) ctype = torch.complex128 if dtype is torch.double else torch.complex64 self.assertEqual(t.dtype, ctype) torch.set_default_dtype(prev_default) def test_full_out(self, device): size = (5,) o = torch.empty(size, device=device, dtype=torch.long) # verifies dtype/out conflict throws a RuntimeError with self.assertRaises(RuntimeError): torch.full(o.shape, 1., dtype=torch.float, out=o) # verifies out dtype overrides inference self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype) self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype) # check that warning for numpy being not writable is suppressed # when a copy of it is being created. # see issue #47160 def test_tensor_from_non_writable_numpy(self, device): with warnings.catch_warnings(record=True) as w: a = np.arange(5.) a.flags.writeable = False t = torch.tensor(a) self.assertEqual(len(w), 0) # Class for testing random tensor creation ops, like torch.randint class TestRandomTensorCreation(TestCase): exact_dtype = True # TODO: add torch.complex64, torch.complex128 @dtypes(torch.float, torch.double) def test_normal(self, device, dtype): def helper(self, device, dtype, ptype, t_transform, std_transform): q = torch.empty(100, 100, dtype=dtype, device=device) q.normal_() self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0) q.normal_(2, 3) self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0) q = torch.empty(100, 100, dtype=dtype, device=device) q_row1 = q[0:1].clone() q[99:100].normal_() self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0) self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1)) mean = torch.empty(100, 100, dtype=dtype, device=device) mean[:50].fill_(ptype(0)) mean[50:].fill_(ptype(1)) std = torch.empty(100, 100, dtype=torch.float, device=device) std[:, :50] = 4 std[:, 50:] = 1 r = torch.normal(mean) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, 3) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, 3, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, std) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) torch.normal(2, std, out=r) self.assertFalse(r.dtype.is_complex) self.assertEqual(str(r.device), device) self.assertEqual(r.mean(), 2, atol=0.2, rtol=0) self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0) self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0) r.fill_(42) r = torch.normal(mean, std) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) torch.normal(mean, std, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0) self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0) self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0) self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0) r.fill_(42) r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) r.fill_(42) torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0) self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0) # float std 0 with float mean r.fill_(42) torch.normal(2, 0, (10, 10), dtype=dtype, device=device, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # float std 0 with tensor mean r.fill_(42) mean_rand = torch.randn(10, 10, dtype=dtype, device=device) torch.normal(mean_rand, 0, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) # tensor std 0 with float mean r.fill_(42) std_zeros = torch.zeros(10, 10, dtype=dtype, device=device) torch.normal(2, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertTrue(r.eq(2).all()) # tensor std 0 with tensor mean r.fill_(42) torch.normal(mean_rand, std_zeros, out=r) self.assertEqual(r.dtype, dtype) self.assertEqual(str(r.device), device) self.assertEqual(mean_rand, r, atol=0, rtol=0) if dtype.is_complex: helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2)) helper(self, device, dtype, lambda x: complex(x, x), lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2)) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device))) out = torch.empty(100, 100, dtype=dtype, device=device) self.assertRaisesRegex( RuntimeError, "normal expects standard deviation to be non-complex", lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out)) else: helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean) # Ensure that normal raises appropriate error when `std` < 0 def test_normal_std_error(self, device): a = torch.tensor(0, dtype=torch.float32, device=device) std = torch.tensor(-1, dtype=torch.float32, device=device) for input in [0, a]: with self.assertRaisesRegex(RuntimeError, r'normal_ expects std >= 0.0'): torch.normal(input, -1, (10,)) with self.assertRaisesRegex(RuntimeError, r'normal expects all elements of std >= 0.0'): torch.normal(input, std) @dtypes(torch.float, torch.double, torch.half) @dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16) def test_uniform_from_to(self, device, dtype): size = 2000 alpha = 0.1 float_min = torch.finfo(torch.float).min float_max = torch.finfo(torch.float).max double_min = torch.finfo(torch.double).min double_max = torch.finfo(torch.double).max if dtype == torch.bfloat16: min_val = -3.389531389251535e+38 max_val = 3.389531389251535e+38 else: min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max values = [double_min, float_min, -42, 0, 42, float_max, double_max] for from_ in values: for to_ in values: t = torch.empty(size, dtype=dtype, device=device) if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val): pass elif to_ < from_: self.assertRaisesRegex( RuntimeError, "uniform_ expects to return", lambda: t.uniform_(from_, to_) ) elif to_ - from_ > max_val: self.assertRaisesRegex( RuntimeError, "uniform_ expects to-from", lambda: t.uniform_(from_, to_) ) else: t.uniform_(from_, to_) range_ = to_ - from_ if not (dtype == torch.bfloat16) and not ( dtype == torch.half and device == 'cpu') and not torch.isnan(t).all(): delta = alpha * range_ double_t = t.to(torch.double) if range_ == 0: self.assertTrue(double_t.min() == from_) self.assertTrue(double_t.max() == to_) elif dtype == torch.half: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() <= to_) else: self.assertTrue(from_ <= double_t.min() <= (from_ + delta)) self.assertTrue((to_ - delta) <= double_t.max() < to_) def test_random_neg_values(self, device): SIZE = 10 signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short] for dtype in signed_dtypes: res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype) res.random_(-10, -1) self.assertLessEqual(res.max().item(), 9) self.assertGreaterEqual(res.min().item(), -10) # TODO: this test should be updated @onlyCPU def test_randint_inference(self, device): size = (2, 1) for args in [(3,), (1, 3)]: # (low,) and (low, high) self.assertIs(torch.int64, torch.randint(*args, size=size).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.float32) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype) out = torch.empty(size, dtype=torch.int64) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype) self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype) # TODO: this test should be updated @onlyCPU def test_randint(self, device): SIZE = 100 def seed(generator): if generator is None: torch.manual_seed(123456) else: generator.manual_seed(123456) return generator for generator in (None, torch.Generator()): generator = seed(generator) res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator) res2 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2) generator = seed(generator) res3 = torch.randint(6, (SIZE, SIZE), generator=generator) res4 = torch.empty((), dtype=torch.int64) generator = seed(generator) torch.randint(6, (SIZE, SIZE), out=res4, generator=generator) self.assertEqual(res1, res2) self.assertEqual(res1, res3) self.assertEqual(res1, res4) self.assertEqual(res2, res3) self.assertEqual(res2, res4) self.assertEqual(res3, res4) self.assertTrue((res1 < 6).all().item()) self.assertTrue((res1 >= 0).all().item()) @dtypes(torch.half, torch.float, torch.bfloat16, torch.double, torch.complex64, torch.complex128) def test_randn(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.randn(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.randn(size, size, out=res2) self.assertEqual(res1, res2) @dtypes(torch.float, torch.double, torch.complex64, torch.complex128) def test_rand(self, device, dtype): SIZE = 100 for size in [0, SIZE]: torch.manual_seed(123456) res1 = torch.rand(size, size, dtype=dtype, device=device) res2 = torch.tensor([], dtype=dtype, device=device) torch.manual_seed(123456) torch.rand(size, size, out=res2) self.assertEqual(res1, res2) def test_randperm(self, device): if device == 'cpu' or device == 'meta': rng_device = None else: # TODO: This won't actually work for non-CUDA device # see https://github.com/pytorch/pytorch/issues/54282 rng_device = [device] # Test core functionality. On CUDA, different value of n has different # code path for n in (5, 100, 50000, 100000): # Ensure both integer and floating-point numbers are tested. Half follows an execution path that is # different from others on CUDA. for dtype in (torch.long, torch.half, torch.float): if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. continue with torch.random.fork_rng(devices=rng_device): res1 = torch.randperm(n, dtype=dtype, device=device) res2 = torch.empty(0, dtype=dtype, device=device) torch.randperm(n, out=res2, dtype=dtype, device=device) self.assertEqual(res1, res2, atol=0, rtol=0) self.assertEqual(res1.sort().values.long(), torch.arange(n, device=device)) # Default type is long for n in (100, 10000): self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) # randperm of 0 elements is an empty tensor res1 = torch.randperm(0) res2 = torch.tensor(5, dtype=dtype, device=device) torch.randperm(0, out=res2) self.assertEqual(res1.numel(), 0) self.assertEqual(res2.numel(), 0) # Test exceptions when n is too large for a floating point type for dtype, small_n, large_n in ((torch.uint8, 2**8, 2**8 + 1), (torch.half, 2**11 + 1, 2**11 + 2), (torch.float, 2**24 + 1, 2**24 + 2), (torch.double, 2**25, # 2**53 + 1 is too large to run 2**53 + 2)): res = torch.empty(0, dtype=dtype, device=device) torch.randperm(small_n, out=res) # No exception expected self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device)) # Test non-contiguous tensors for n in (4, 5, 6, 10, 20): non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() self.assertFalse(non_contiguous_tensor.is_contiguous()) with torch.random.fork_rng(devices=rng_device): res = torch.randperm(n, dtype=torch.long, device=device) torch.randperm(n, out=non_contiguous_tensor) self.assertEqual(non_contiguous_tensor, res) self.assertEqual(res.sort().values.long(), torch.arange(n, device=device)) # Test exceptions when device and generator types are incompatible @onlyCUDA def test_randperm_device_compatibility(self, device): cuda_gen = torch.Generator(device='cuda') cpu_gen = torch.Generator(device='cpu') # n=0 is a special case that we don't need to use generator, thus no error even if # device and generator don't match torch.randperm(0, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randperm(0, device='cuda:1', generator=torch.Generator(device='cuda:0')) torch.randperm(0, device='cuda', generator=torch.Generator(device='cpu')) torch.randperm(0, device='cpu', generator=torch.Generator(device='cuda')) for n in (1, 3, 100, 30000): torch.randperm(n, device='cuda', generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda')) # For cuda:0 to match cuda:1, we are making consistent device type matching # behavior just like torch.randint. Longer term, generator should ignore # device ordinal, since it's not used anyway. torch.randint(low=0, high=n + 1, size=(1,), device="cuda:0", generator=torch.Generator(device='cuda:1')) torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda:1')) if torch.cuda.device_count() > 1: torch.randint(low=0, high=n + 1, size=(1,), device="cuda:1", generator=torch.Generator(device='cuda:0')) torch.randperm(n, device='cuda:1', generator=torch.Generator(device='cuda:0')) regex = 'Expected a .* device type for generator but found .*' cuda_t = torch.tensor(n, device='cuda') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t)) cpu_t = torch.tensor(n, device='cpu') self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t)) self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU # Class for testing *like ops, like torch.ones_like class TestLikeTensorCreation(TestCase): exact_dtype = True # TODO: this test should be updated def test_ones_like(self, device): expected = torch.ones(100, 100, device=device) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # test boolean tensor expected = torch.tensor([True, True], device=device, dtype=torch.bool) res1 = torch.ones_like(expected) self.assertEqual(res1, expected) # TODO: this test should be updated @onlyCPU def test_empty_like(self, device): x = torch.autograd.Variable(torch.tensor([])) y = torch.autograd.Variable(torch.randn(4, 4)) z = torch.autograd.Variable(torch.IntTensor([1, 2, 3])) for a in (x, y, z): self.assertEqual(torch.empty_like(a).shape, a.shape) self.assertEqualTypeString(torch.empty_like(a), a) def test_zeros_like(self, device): expected = torch.zeros((100, 100,), device=device) res1 = torch.zeros_like(expected) self.assertEqual(res1, expected) @deviceCountAtLeast(2) def test_zeros_like_multiple_device(self, devices): expected = torch.zeros(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.zeros_like(x) self.assertEqual(output, expected) @deviceCountAtLeast(2) def test_ones_like_multiple_device(self, devices): expected = torch.ones(100, 100, device=devices[0]) x = torch.randn(100, 100, device=devices[1], dtype=torch.float32) output = torch.ones_like(x) self.assertEqual(output, expected) # Full-like precedence is the explicit dtype then the dtype of the "like" # tensor. @onlyOnCPUAndCUDA def test_full_like_inference(self, device): size = (2, 2) like = torch.empty((5,), device=device, dtype=torch.long) self.assertEqual(torch.full_like(like, 1.).dtype, torch.long) self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype, torch.complex64) instantiate_device_type_tests(TestTensorCreation, globals()) instantiate_device_type_tests(TestRandomTensorCreation, globals()) instantiate_device_type_tests(TestLikeTensorCreation, globals()) if __name__ == '__main__': run_tests()
46.823734
132
0.589673
4a22174da326db0be109b35e27cd1bf611b9c53c
30,939
py
Python
tests/test_plugin.py
queilawithaQ/lightning
78064f8773685238c780d065edb037090c62b47f
[ "MIT" ]
null
null
null
tests/test_plugin.py
queilawithaQ/lightning
78064f8773685238c780d065edb037090c62b47f
[ "MIT" ]
null
null
null
tests/test_plugin.py
queilawithaQ/lightning
78064f8773685238c780d065edb037090c62b47f
[ "MIT" ]
null
null
null
from collections import OrderedDict from fixtures import * # noqa: F401,F403 from flaky import flaky # noqa: F401 from lightning import RpcError, Millisatoshi from utils import DEVELOPER, only_one, sync_blockheight, TIMEOUT, wait_for, TEST_NETWORK import json import os import pytest import re import sqlite3 import subprocess import time import unittest def test_option_passthrough(node_factory, directory): """ Ensure that registering options works. First attempts without the plugin and then with the plugin. """ plugin_path = os.path.join(os.getcwd(), 'contrib/plugins/helloworld.py') help_out = subprocess.check_output([ 'lightningd/lightningd', '--lightning-dir={}'.format(directory), '--help' ]).decode('utf-8') assert('--greeting' not in help_out) help_out = subprocess.check_output([ 'lightningd/lightningd', '--lightning-dir={}'.format(directory), '--plugin={}'.format(plugin_path), '--help' ]).decode('utf-8') assert('--greeting' in help_out) # Now try to see if it gets accepted, would fail to start if the # option didn't exist n = node_factory.get_node(options={'plugin': plugin_path, 'greeting': 'Ciao'}) n.stop() def test_millisatoshi_passthrough(node_factory): """ Ensure that Millisatoshi arguments and return work. """ plugin_path = os.path.join(os.getcwd(), 'tests/plugins/millisatoshis.py') n = node_factory.get_node(options={'plugin': plugin_path, 'log-level': 'io'}) # By keyword ret = n.rpc.call('echo', {'msat': Millisatoshi(17), 'not_an_msat': '22msat'})['echo_msat'] assert type(ret) == Millisatoshi assert ret == Millisatoshi(17) # By position ret = n.rpc.call('echo', [Millisatoshi(18), '22msat'])['echo_msat'] assert type(ret) == Millisatoshi assert ret == Millisatoshi(18) def test_rpc_passthrough(node_factory): """Starting with a plugin exposes its RPC methods. First check that the RPC method appears in the help output and then try to call it. """ plugin_path = os.path.join(os.getcwd(), 'contrib/plugins/helloworld.py') n = node_factory.get_node(options={'plugin': plugin_path, 'greeting': 'Ciao'}) # Make sure that the 'hello' command that the helloworld.py plugin # has registered is available. cmd = [hlp for hlp in n.rpc.help()['help'] if 'hello' in hlp['command']] assert(len(cmd) == 1) # Make sure usage message is present. assert only_one(n.rpc.help('hello')['help'])['command'] == 'hello [name]' # While we're at it, let's check that helloworld.py is logging # correctly via the notifications plugin->lightningd assert n.daemon.is_in_log('Plugin helloworld.py initialized') # Now try to call it and see what it returns: greet = n.rpc.hello(name='World') assert(greet == "Ciao World") with pytest.raises(RpcError): n.rpc.fail() def test_plugin_dir(node_factory): """--plugin-dir works""" plugin_dir = os.path.join(os.getcwd(), 'contrib/plugins') node_factory.get_node(options={'plugin-dir': plugin_dir, 'greeting': 'Mars'}) def test_plugin_slowinit(node_factory): """Tests that the 'plugin' RPC command times out if plugin doesnt respond""" n = node_factory.get_node() with pytest.raises(RpcError, match="Timed out while waiting for plugin response"): n.rpc.plugin_start(os.path.join(os.getcwd(), "tests/plugins/slow_init.py")) # It's not actually configured yet, see what happens; # make sure 'rescan' and 'list' controls dont crash n.rpc.plugin_rescan() n.rpc.plugin_list() def test_plugin_command(node_factory): """Tests the 'plugin' RPC command""" n = node_factory.get_node() # Make sure that the 'hello' command from the helloworld.py plugin # is not available. cmd = [hlp for hlp in n.rpc.help()["help"] if "hello" in hlp["command"]] assert(len(cmd) == 0) # Add the 'contrib/plugins' test dir n.rpc.plugin_startdir(directory=os.path.join(os.getcwd(), "contrib/plugins")) # Make sure that the 'hello' command from the helloworld.py plugin # is now available. cmd = [hlp for hlp in n.rpc.help()["help"] if "hello" in hlp["command"]] assert(len(cmd) == 1) # Make sure 'rescan' and 'list' subcommands dont crash n.rpc.plugin_rescan() n.rpc.plugin_list() # Make sure the plugin behaves normally after stop and restart assert("Successfully stopped helloworld.py." == n.rpc.plugin_stop(plugin="helloworld.py")['']) n.daemon.wait_for_log(r"Killing plugin: helloworld.py") n.rpc.plugin_start(plugin=os.path.join(os.getcwd(), "contrib/plugins/helloworld.py")) n.daemon.wait_for_log(r"Plugin helloworld.py initialized") assert("Hello world" == n.rpc.call(method="hello")) # Now stop the helloworld plugin assert("Successfully stopped helloworld.py." == n.rpc.plugin_stop(plugin="helloworld.py")['']) n.daemon.wait_for_log(r"Killing plugin: helloworld.py") # Make sure that the 'hello' command from the helloworld.py plugin # is not available anymore. cmd = [hlp for hlp in n.rpc.help()["help"] if "hello" in hlp["command"]] assert(len(cmd) == 0) # Test that we cannot start a plugin with 'dynamic' set to False in # getmanifest with pytest.raises(RpcError, match=r"Not a dynamic plugin"): n.rpc.plugin_start(plugin=os.path.join(os.getcwd(), "tests/plugins/static.py")) # Test that we cannot stop a started plugin with 'dynamic' flag set to # False n2 = node_factory.get_node(options={ "plugin": os.path.join(os.getcwd(), "tests/plugins/static.py") }) with pytest.raises(RpcError, match=r"static.py cannot be managed when lightningd is up"): n2.rpc.plugin_stop(plugin="static.py") # Test that we don't crash when starting a broken plugin with pytest.raises(RpcError, match=r"Timed out while waiting for plugin response"): n2.rpc.plugin_start(plugin=os.path.join(os.getcwd(), "tests/plugins/broken.py")) def test_plugin_disable(node_factory): """--disable-plugin works""" plugin_dir = os.path.join(os.getcwd(), 'contrib/plugins') # We need plugin-dir before disable-plugin! n = node_factory.get_node(options=OrderedDict([('plugin-dir', plugin_dir), ('disable-plugin', '{}/helloworld.py' .format(plugin_dir))])) with pytest.raises(RpcError): n.rpc.hello(name='Sun') # Also works by basename. n = node_factory.get_node(options=OrderedDict([('plugin-dir', plugin_dir), ('disable-plugin', 'helloworld.py')])) with pytest.raises(RpcError): n.rpc.hello(name='Sun') def test_plugin_hook(node_factory, executor): """The helloworld plugin registers a htlc_accepted hook. The hook will sleep for a few seconds and log a message. `lightningd` should wait for the response and only then complete the payment. """ l1, l2 = node_factory.line_graph(2, opts={'plugin': os.path.join(os.getcwd(), 'contrib/plugins/helloworld.py')}) start_time = time.time() f = executor.submit(l1.pay, l2, 100000) l2.daemon.wait_for_log(r'on_htlc_accepted called') # The hook will sleep for 20 seconds before answering, so `f` # should take at least that long. f.result() end_time = time.time() assert(end_time >= start_time + 20) def test_plugin_connect_notifications(node_factory): """ test 'connect' and 'disconnect' notifications """ l1, l2 = node_factory.get_nodes(2, opts={'plugin': os.path.join(os.getcwd(), 'contrib/plugins/helloworld.py')}) l1.connect(l2) l1.daemon.wait_for_log(r'Received connect event') l2.daemon.wait_for_log(r'Received connect event') l2.rpc.disconnect(l1.info['id']) l1.daemon.wait_for_log(r'Received disconnect event') l2.daemon.wait_for_log(r'Received disconnect event') def test_failing_plugins(directory): fail_plugins = [ os.path.join(os.getcwd(), 'contrib/plugins/fail/failtimeout.py'), os.path.join(os.getcwd(), 'contrib/plugins/fail/doesnotexist.py'), ] for p in fail_plugins: with pytest.raises(subprocess.CalledProcessError): subprocess.check_output([ 'lightningd/lightningd', '--lightning-dir={}'.format(directory), '--plugin={}'.format(p), '--help', ]) def test_pay_plugin(node_factory): l1, l2 = node_factory.line_graph(2) inv = l2.rpc.invoice(123000, 'label', 'description', 3700) res = l1.rpc.pay(bolt11=inv['bolt11']) assert res['status'] == 'complete' with pytest.raises(RpcError, match=r'missing required parameter'): l1.rpc.call('pay') # Make sure usage messages are present. msg = 'pay bolt11 [msatoshi] [label] [riskfactor] [maxfeepercent] '\ '[retry_for] [maxdelay] [exemptfee]' if DEVELOPER: msg += ' [use_shadow]' assert only_one(l1.rpc.help('pay')['help'])['command'] == msg def test_plugin_connected_hook(node_factory): """ l1 uses the reject plugin to reject connections. l1 is configured to accept connections from l2, but not from l3. """ opts = [{'plugin': os.path.join(os.getcwd(), 'tests/plugins/reject.py')}, {}, {}] l1, l2, l3 = node_factory.get_nodes(3, opts=opts) l1.rpc.reject(l3.info['id']) l2.connect(l1) l1.daemon.wait_for_log(r"{} is allowed".format(l2.info['id'])) assert len(l1.rpc.listpeers(l2.info['id'])['peers']) == 1 l3.connect(l1) l1.daemon.wait_for_log(r"{} is in reject list".format(l3.info['id'])) # FIXME: this error occurs *after* connection, so we connect then drop. l3.daemon.wait_for_log(r"openingd-chan#1: peer_in WIRE_ERROR") l3.daemon.wait_for_log(r"You are in reject list") def check_disconnect(): peers = l1.rpc.listpeers(l3.info['id'])['peers'] return peers == [] or not peers[0]['connected'] wait_for(check_disconnect) def test_async_rpcmethod(node_factory, executor): """This tests the async rpcmethods. It works in conjunction with the `asynctest` plugin which stashes requests and then resolves all of them on the fifth call. """ l1 = node_factory.get_node(options={'plugin': os.path.join(os.getcwd(), 'tests/plugins/asynctest.py')}) results = [] for i in range(10): results.append(executor.submit(l1.rpc.asyncqueue)) time.sleep(3) # None of these should have returned yet assert len([r for r in results if r.done()]) == 0 # This last one triggers the release and all results should be 42, # since the last number is returned for all l1.rpc.asyncflush(42) assert [r.result() for r in results] == [42] * len(results) @unittest.skipIf(os.getenv('TEST_DB_PROVIDER', 'sqlite3') != 'sqlite3', "Only sqlite3 implements the db_write_hook currently") def test_db_hook(node_factory, executor): """This tests the db hook.""" dbfile = os.path.join(node_factory.directory, "dblog.sqlite3") l1 = node_factory.get_node(options={'plugin': os.path.join(os.getcwd(), 'tests/plugins/dblog.py'), 'dblog-file': dbfile}) # It should see the db being created, and sometime later actually get # initted. # This precedes startup, so needle already past assert l1.daemon.is_in_log(r'plugin-dblog.py: deferring \d+ commands') l1.daemon.logsearch_start = 0 l1.daemon.wait_for_log('plugin-dblog.py: replaying pre-init data:') l1.daemon.wait_for_log('plugin-dblog.py: CREATE TABLE version \\(version INTEGER\\)') l1.daemon.wait_for_log("plugin-dblog.py: initialized.* 'startup': True") l1.stop() # Databases should be identical. db1 = sqlite3.connect(os.path.join(l1.daemon.lightning_dir, TEST_NETWORK, 'lightningd.sqlite3')) db2 = sqlite3.connect(dbfile) assert [x for x in db1.iterdump()] == [x for x in db2.iterdump()] def test_utf8_passthrough(node_factory, executor): l1 = node_factory.get_node(options={'plugin': os.path.join(os.getcwd(), 'tests/plugins/utf8.py'), 'log-level': 'io'}) # This works because Python unmangles. res = l1.rpc.call('utf8', ['ナンセンス 1杯']) assert '\\u' not in res['utf8'] assert res['utf8'] == 'ナンセンス 1杯' # Now, try native. out = subprocess.check_output(['cli/lightning-cli', '--network={}'.format(TEST_NETWORK), '--lightning-dir={}' .format(l1.daemon.lightning_dir), 'utf8', 'ナンセンス 1杯']).decode('utf-8') assert '\\u' not in out assert out == '{\n "utf8": "ナンセンス 1杯"\n}\n' def test_invoice_payment_hook(node_factory): """ l1 uses the reject-payment plugin to reject invoices with odd preimages. """ opts = [{}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/reject_some_invoices.py')}] l1, l2 = node_factory.line_graph(2, opts=opts) # This one works inv1 = l2.rpc.invoice(123000, 'label', 'description', preimage='1' * 64) l1.rpc.pay(inv1['bolt11']) l2.daemon.wait_for_log('label=label') l2.daemon.wait_for_log('msat=') l2.daemon.wait_for_log('preimage=' + '1' * 64) # This one will be rejected. inv2 = l2.rpc.invoice(123000, 'label2', 'description', preimage='0' * 64) with pytest.raises(RpcError): l1.rpc.pay(inv2['bolt11']) pstatus = l1.rpc.call('paystatus', [inv2['bolt11']])['pay'][0] assert pstatus['attempts'][0]['failure']['data']['failcodename'] == 'WIRE_TEMPORARY_NODE_FAILURE' l2.daemon.wait_for_log('label=label2') l2.daemon.wait_for_log('msat=') l2.daemon.wait_for_log('preimage=' + '0' * 64) def test_invoice_payment_hook_hold(node_factory): """ l1 uses the hold_invoice plugin to delay invoice payment. """ opts = [{}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/hold_invoice.py'), 'holdtime': TIMEOUT / 2}] l1, l2 = node_factory.line_graph(2, opts=opts) inv1 = l2.rpc.invoice(123000, 'label', 'description', preimage='1' * 64) l1.rpc.pay(inv1['bolt11']) def test_openchannel_hook(node_factory, bitcoind): """ l2 uses the reject_odd_funding_amounts plugin to reject some openings. """ opts = [{}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/reject_odd_funding_amounts.py')}] l1, l2 = node_factory.line_graph(2, fundchannel=False, opts=opts) # Get some funds. addr = l1.rpc.newaddr()['bech32'] txid = bitcoind.rpc.sendtoaddress(addr, 10) numfunds = len(l1.rpc.listfunds()['outputs']) bitcoind.generate_block(1, txid) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) > numfunds) # Even amount: works. l1.rpc.fundchannel(l2.info['id'], 100000) # Make sure plugin got all the vars we expect l2.daemon.wait_for_log('reject_odd_funding_amounts.py: 11 VARS') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: channel_flags=1') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: channel_reserve_satoshis=1000000msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: dust_limit_satoshis=546000msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: feerate_per_kw=7500') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: funding_satoshis=100000000msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: htlc_minimum_msat=0msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: id={}'.format(l1.info['id'])) l2.daemon.wait_for_log('reject_odd_funding_amounts.py: max_accepted_htlcs=483') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: max_htlc_value_in_flight_msat=18446744073709551615msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: push_msat=0msat') l2.daemon.wait_for_log('reject_odd_funding_amounts.py: to_self_delay=5') # Close it. txid = l1.rpc.close(l2.info['id'])['txid'] bitcoind.generate_block(1, txid) wait_for(lambda: [c['state'] for c in only_one(l1.rpc.listpeers(l2.info['id'])['peers'])['channels']] == ['ONCHAIN']) # Odd amount: fails l1.connect(l2) with pytest.raises(RpcError, match=r"I don't like odd amounts"): l1.rpc.fundchannel(l2.info['id'], 100001) @unittest.skipIf(not DEVELOPER, "without DEVELOPER=1, gossip v slow") def test_htlc_accepted_hook_fail(node_factory): """Send payments from l1 to l2, but l2 just declines everything. l2 is configured with a plugin that'll hook into htlc_accepted and always return failures. The same should also work for forwarded htlcs in the second half. """ l1, l2, l3 = node_factory.line_graph(3, opts=[ {}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/fail_htlcs.py')}, {} ], wait_for_announce=True) # This must fail phash = l2.rpc.invoice(1000, "lbl", "desc")['payment_hash'] route = l1.rpc.getroute(l2.info['id'], 1000, 1)['route'] # Here shouldn't use `pay` command because l2 rejects with WIRE_TEMPORARY_NODE_FAILURE, # then it will be excluded when l1 try another pay attempt. # Note if the destination is excluded, the route result is undefined. l1.rpc.sendpay(route, phash) with pytest.raises(RpcError) as excinfo: l1.rpc.waitsendpay(phash) assert excinfo.value.error['data']['failcode'] == 0x2002 assert excinfo.value.error['data']['erring_index'] == 1 # And the invoice must still be unpaid inv = l2.rpc.listinvoices("lbl")['invoices'] assert len(inv) == 1 and inv[0]['status'] == 'unpaid' # Now try with forwarded HTLCs: l2 should still fail them # This must fail inv = l3.rpc.invoice(1000, "lbl", "desc")['bolt11'] with pytest.raises(RpcError): l1.rpc.pay(inv) # And the invoice must still be unpaid inv = l3.rpc.listinvoices("lbl")['invoices'] assert len(inv) == 1 and inv[0]['status'] == 'unpaid' @unittest.skipIf(not DEVELOPER, "without DEVELOPER=1, gossip v slow") def test_htlc_accepted_hook_resolve(node_factory): """l3 creates an invoice, l2 knows the preimage and will shortcircuit. """ l1, l2, l3 = node_factory.line_graph(3, opts=[ {}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/shortcircuit.py')}, {} ], wait_for_announce=True) inv = l3.rpc.invoice(msatoshi=1000, label="lbl", description="desc", preimage="00" * 32)['bolt11'] l1.rpc.pay(inv) # And the invoice must still be unpaid inv = l3.rpc.listinvoices("lbl")['invoices'] assert len(inv) == 1 and inv[0]['status'] == 'unpaid' def test_htlc_accepted_hook_direct_restart(node_factory, executor): """l2 restarts while it is pondering what to do with an HTLC. """ l1, l2 = node_factory.line_graph(2, opts=[ {'may_reconnect': True}, {'may_reconnect': True, 'plugin': os.path.join(os.getcwd(), 'tests/plugins/hold_htlcs.py')} ]) i1 = l2.rpc.invoice(msatoshi=1000, label="direct", description="desc")['bolt11'] f1 = executor.submit(l1.rpc.pay, i1) l2.daemon.wait_for_log(r'Holding onto an incoming htlc for 10 seconds') needle = l2.daemon.logsearch_start l2.restart() # Now it should try again, *after* initializing. # This may be before "Server started with public key" swallowed by restart() l2.daemon.logsearch_start = needle + 1 l2.daemon.wait_for_log(r'hold_htlcs.py initializing') l2.daemon.wait_for_log(r'Holding onto an incoming htlc for 10 seconds') f1.result() @unittest.skipIf(not DEVELOPER, "without DEVELOPER=1, gossip v slow") def test_htlc_accepted_hook_forward_restart(node_factory, executor): """l2 restarts while it is pondering what to do with an HTLC. """ l1, l2, l3 = node_factory.line_graph(3, opts=[ {'may_reconnect': True}, {'may_reconnect': True, 'plugin': os.path.join(os.getcwd(), 'tests/plugins/hold_htlcs.py')}, {'may_reconnect': True}, ], wait_for_announce=True) i1 = l3.rpc.invoice(msatoshi=1000, label="direct", description="desc")['bolt11'] f1 = executor.submit(l1.rpc.dev_pay, i1, use_shadow=False) l2.daemon.wait_for_log(r'Holding onto an incoming htlc for 10 seconds') needle = l2.daemon.logsearch_start l2.restart() # Now it should try again, *after* initializing. # This may be before "Server started with public key" swallowed by restart() l2.daemon.logsearch_start = needle + 1 l2.daemon.wait_for_log(r'hold_htlcs.py initializing') l2.daemon.wait_for_log(r'Holding onto an incoming htlc for 10 seconds') # Grab the file where the plugin wrote the onion and read it in for some # additional checks logline = l2.daemon.wait_for_log(r'Onion written to') fname = re.search(r'Onion written to (.*\.json)', logline).group(1) onion = json.load(open(fname)) assert onion['type'] == 'tlv' assert re.match(r'^11020203e80401..0608................$', onion['payload']) assert len(onion['shared_secret']) == 64 assert onion['forward_amount'] == '1000msat' assert len(onion['next_onion']) == 2 * (1300 + 32 + 33 + 1) f1.result() def test_warning_notification(node_factory): """ test 'warning' notifications """ l1 = node_factory.get_node(options={'plugin': os.path.join(os.getcwd(), 'tests/plugins/pretend_badlog.py')}, allow_broken_log=True) # 1. test 'warn' level event = "Test warning notification(for unusual event)" l1.rpc.call('pretendbad', {'event': event, 'level': 'warn'}) # ensure an unusual log_entry was produced by 'pretendunusual' method l1.daemon.wait_for_log('plugin-pretend_badlog.py: Test warning notification\\(for unusual event\\)') # now wait for notification l1.daemon.wait_for_log('plugin-pretend_badlog.py: Received warning') l1.daemon.wait_for_log('plugin-pretend_badlog.py: level: warn') l1.daemon.wait_for_log('plugin-pretend_badlog.py: time: *') l1.daemon.wait_for_log('plugin-pretend_badlog.py: source: plugin-pretend_badlog.py') l1.daemon.wait_for_log('plugin-pretend_badlog.py: log: Test warning notification\\(for unusual event\\)') # 2. test 'error' level, steps like above event = "Test warning notification(for broken event)" l1.rpc.call('pretendbad', {'event': event, 'level': 'error'}) l1.daemon.wait_for_log(r'\*\*BROKEN\*\* plugin-pretend_badlog.py: Test warning notification\(for broken event\)') l1.daemon.wait_for_log('plugin-pretend_badlog.py: Received warning') l1.daemon.wait_for_log('plugin-pretend_badlog.py: level: error') l1.daemon.wait_for_log('plugin-pretend_badlog.py: time: *') l1.daemon.wait_for_log('plugin-pretend_badlog.py: source: plugin-pretend_badlog.py') l1.daemon.wait_for_log('plugin-pretend_badlog.py: log: Test warning notification\\(for broken event\\)') @unittest.skipIf(not DEVELOPER, "needs to deactivate shadow routing") def test_invoice_payment_notification(node_factory): """ Test the 'invoice_payment' notification """ opts = [{}, {"plugin": os.path.join(os.getcwd(), "contrib/plugins/helloworld.py")}] l1, l2 = node_factory.line_graph(2, opts=opts) msats = 12345 preimage = '1' * 64 label = "a_descriptive_label" inv1 = l2.rpc.invoice(msats, label, 'description', preimage=preimage) l1.rpc.dev_pay(inv1['bolt11'], use_shadow=False) l2.daemon.wait_for_log(r"Received invoice_payment event for label {}," " preimage {}, and amount of {}msat" .format(label, preimage, msats)) def test_channel_opened_notification(node_factory): """ Test the 'channel_opened' notification sent at channel funding success. """ opts = [{}, {"plugin": os.path.join(os.getcwd(), "tests/plugins/misc_notifications.py")}] amount = 10**6 l1, l2 = node_factory.line_graph(2, fundchannel=True, fundamount=amount, opts=opts) l2.daemon.wait_for_log(r"A channel was opened to us by {}, " "with an amount of {}*" .format(l1.info["id"], amount)) @unittest.skipIf(not DEVELOPER, "needs DEVELOPER=1") def test_forward_event_notification(node_factory, bitcoind, executor): """ test 'forward_event' notifications """ amount = 10**8 disconnects = ['-WIRE_UPDATE_FAIL_HTLC', 'permfail'] l1, l2, l3 = node_factory.line_graph(3, opts=[ {}, {'plugin': os.path.join(os.getcwd(), 'tests/plugins/forward_payment_status.py')}, {} ], wait_for_announce=True) l4 = node_factory.get_node() l5 = node_factory.get_node(disconnect=disconnects) l2.openchannel(l4, 10**6, wait_for_announce=False) l2.openchannel(l5, 10**6, wait_for_announce=True) bitcoind.generate_block(5) wait_for(lambda: len(l1.rpc.listchannels()['channels']) == 8) payment_hash13 = l3.rpc.invoice(amount, "first", "desc")['payment_hash'] route = l1.rpc.getroute(l3.info['id'], amount, 1)['route'] # status: offered -> settled l1.rpc.sendpay(route, payment_hash13) l1.rpc.waitsendpay(payment_hash13) # status: offered -> failed route = l1.rpc.getroute(l4.info['id'], amount, 1)['route'] payment_hash14 = "f" * 64 with pytest.raises(RpcError): l1.rpc.sendpay(route, payment_hash14) l1.rpc.waitsendpay(payment_hash14) # status: offered -> local_failed payment_hash15 = l5.rpc.invoice(amount, 'onchain_timeout', 'desc')['payment_hash'] fee = amount * 10 // 1000000 + 1 c12 = l1.get_channel_scid(l2) c25 = l2.get_channel_scid(l5) route = [{'msatoshi': amount + fee - 1, 'id': l2.info['id'], 'delay': 12, 'channel': c12}, {'msatoshi': amount - 1, 'id': l5.info['id'], 'delay': 5, 'channel': c25}] executor.submit(l1.rpc.sendpay, route, payment_hash15) l5.daemon.wait_for_log('permfail') l5.wait_for_channel_onchain(l2.info['id']) l2.bitcoin.generate_block(1) l2.daemon.wait_for_log(' to ONCHAIN') l5.daemon.wait_for_log(' to ONCHAIN') l2.daemon.wait_for_log('Propose handling THEIR_UNILATERAL/OUR_HTLC by OUR_HTLC_TIMEOUT_TO_US .* after 6 blocks') bitcoind.generate_block(6) l2.wait_for_onchaind_broadcast('OUR_HTLC_TIMEOUT_TO_US', 'THEIR_UNILATERAL/OUR_HTLC') bitcoind.generate_block(1) l2.daemon.wait_for_log('Resolved THEIR_UNILATERAL/OUR_HTLC by our proposal OUR_HTLC_TIMEOUT_TO_US') l5.daemon.wait_for_log('Ignoring output.*: OUR_UNILATERAL/THEIR_HTLC') bitcoind.generate_block(100) sync_blockheight(bitcoind, [l2]) stats = l2.rpc.listforwards()['forwards'] assert len(stats) == 3 plugin_stats = l2.rpc.call('listforwards_plugin')['forwards'] assert len(plugin_stats) == 6 # use stats to build what we expect went to plugin. expect = stats[0].copy() # First event won't have conclusion. del expect['resolved_time'] expect['status'] = 'offered' assert plugin_stats[0] == expect expect = stats[0].copy() assert plugin_stats[1] == expect expect = stats[1].copy() del expect['resolved_time'] expect['status'] = 'offered' assert plugin_stats[2] == expect expect = stats[1].copy() assert plugin_stats[3] == expect expect = stats[2].copy() del expect['failcode'] del expect['failreason'] expect['status'] = 'offered' assert plugin_stats[4] == expect expect = stats[2].copy() assert plugin_stats[5] == expect def test_plugin_deprecated_relpath(node_factory): """Test that we can use old-style relative plugin paths with deprecated-apis""" l1 = node_factory.get_node(options={'plugin-dir': 'contrib/plugins', 'plugin': 'tests/plugins/millisatoshis.py', 'allow-deprecated-apis': True}) plugins = l1.rpc.plugin_list()['plugins'] assert ('helloworld.py', True) in [(os.path.basename(p['name']), p['active']) for p in plugins] assert ('millisatoshis.py', True) in [(os.path.basename(p['name']), p['active']) for p in plugins] assert l1.daemon.is_in_log('DEPRECATED WARNING.*plugin-dir={}' .format(os.path.join(os.getcwd(), 'contrib/plugins'))) assert l1.daemon.is_in_log('DEPRECATED WARNING.*plugin={}' .format(os.path.join(os.getcwd(), 'tests/plugins/millisatoshis.py'))) def test_sendpay_notifications(node_factory, bitcoind): """ test 'sendpay_success' and 'sendpay_failure' notifications """ amount = 10**8 opts = [{'plugin': os.path.join(os.getcwd(), 'tests/plugins/sendpay_notifications.py')}, {}, {'may_reconnect': False}] l1, l2, l3 = node_factory.line_graph(3, opts=opts, wait_for_announce=True) chanid23 = l2.get_channel_scid(l3) payment_hash1 = l3.rpc.invoice(amount, "first", "desc")['payment_hash'] payment_hash2 = l3.rpc.invoice(amount, "second", "desc")['payment_hash'] route = l1.rpc.getroute(l3.info['id'], amount, 1)['route'] l1.rpc.sendpay(route, payment_hash1) response1 = l1.rpc.waitsendpay(payment_hash1) l2.rpc.close(chanid23, 1) l1.rpc.sendpay(route, payment_hash2) with pytest.raises(RpcError) as err: l1.rpc.waitsendpay(payment_hash2) results = l1.rpc.call('listsendpays_plugin') assert len(results['sendpay_success']) == 1 assert len(results['sendpay_failure']) == 1 assert results['sendpay_success'][0] == response1 assert results['sendpay_failure'][0] == err.value.error def test_rpc_command_hook(node_factory): """Test the `sensitive_command` hook""" plugin = os.path.join(os.getcwd(), "tests/plugins/rpc_command.py") l1 = node_factory.get_node(options={"plugin": plugin}) # Usage of "sendpay" has been restricted by the plugin with pytest.raises(RpcError, match=r"You cannot do this"): l1.rpc.call("sendpay") # The plugin replaces a call made for the "invoice" command invoice = l1.rpc.invoice(10**6, "test_side", "test_input") decoded = l1.rpc.decodepay(invoice["bolt11"]) assert decoded["description"] == "A plugin modified this description" # The plugin sends a custom response to "listfunds" funds = l1.rpc.listfunds() assert funds[0] == "Custom result" # Test command redirection to a plugin l1.rpc.call('help', [0]) # Test command which removes plugin itself! l1.rpc.plugin_stop('rpc_command.py')
39.563939
135
0.659459
4a22174f05051bca63d41ffdea87e13639a0e25c
4,983
py
Python
torchOnVideo/super_resolution/SOF_VSR/train_model.py
torchOnVideo/torchOnVideo
aa07d5661f772eca027ecc6b79e14bd68a515aa1
[ "MIT" ]
2
2021-03-19T08:05:06.000Z
2021-05-22T21:54:10.000Z
torchOnVideo/super_resolution/SOF_VSR/train_model.py
torchOnVideo/torchOnVideo
aa07d5661f772eca027ecc6b79e14bd68a515aa1
[ "MIT" ]
null
null
null
torchOnVideo/super_resolution/SOF_VSR/train_model.py
torchOnVideo/torchOnVideo
aa07d5661f772eca027ecc6b79e14bd68a515aa1
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import numpy as np from torch.utils.data import DataLoader import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import os from ..SOF_VSR import SOF_VSR from ..models import SOFVSR, OFRnet, SRnet from torchOnVideo.datasets.CVDL.super_resolution import TrainSOFVSR from torchOnVideo.losses import OFR_loss class TrainModel(SOF_VSR): def __init__(self, model=None, train_set=None, train_dir='../../db/CVDL_SOFVSR_traindata', train_data_loader=None, loss=None, checkpoint=None, start_epoch=0, use_start_epoch_checkpoint=False, output_dir="../../outputs/CVDL_SOFVSR", scale = 4, patch_size=32, degradation='BI', epochs=20, batch_size=32, shuffle=True, num_workers=4, n_iters=200000, optimizer=None, lr=1e-3, milestone=[80000, 16000], scheduler=None, gpu_mode=False, epoch_display_step=1, batch_display_step=1, run_validation=False, val_dir="../../db/f16_vnlnet_valdata", val_set=None, val_loader=None): super(TrainModel, self).__init__(scale=scale) self.degradation = degradation self.gpu_mode = gpu_mode print('==> Building training set ') if train_set is None: self.train_set = TrainSOFVSR(trainset_dir=train_dir, scale=scale, patch_size=patch_size, n_iters=n_iters, batch_size=batch_size, degradation=degradation) else: self.train_set = train_set print('==> Building training data loader ') if train_data_loader is None: self.train_loader = DataLoader(dataset=self.train_set, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) else: self.train_loader = train_data_loader print('==> Building model ') if model is None: self.model = SOFVSR(scale=scale) else: self.model = model print('==> Building optimizer ') if optimizer is None: self.optimizer = optim.Adam(self.model.parameters(), lr=lr) else: self.optimizer = optimizer print('==> Building scheduler ') if scheduler is None: self.scheduler = lr_scheduler.MultiStepLR(self.optimizer, milestones=milestone, gamma=0.01) else: self.scheduler = scheduler if loss in None: self.criterion = nn.MSELoss(size_average=False) else: self.criterion = loss self.max_step = self.train_loader.__len__() def __call__(self, *args, **kwargs): self.model.train() print('==> Training has started ') loss_list = [] for idx_iter, (LR, HR) in enumerate(self.train_loader): self.scheduler.step() # data b, n_frames, h_lr, w_lr = LR.size() idx_center = (n_frames - 1) // 2 LR, HR = Variable(LR), Variable(HR) if self.gpu_mode: LR = LR.cuda() HR = HR.cuda() LR = LR.view(b, -1, 1, h_lr, w_lr) HR = HR.view(b, -1, 1, h_lr * self.scale, w_lr * self.scale) # inference flow_L1, flow_L2, flow_L3, SR = self.model(LR) # loss loss_SR = self.criterion(SR, HR[:, idx_center, :, :, :]) # SHARDUL CHECK CUDA loss_OFR = torch.zeros(1).cuda() for i in range(n_frames): if i != idx_center: loss_L1 = OFR_loss(F.avg_pool2d(LR[:, i, :, :, :], kernel_size=2), F.avg_pool2d(LR[:, idx_center, :, :, :], kernel_size=2), flow_L1[i]) loss_L2 = OFR_loss(LR[:, i, :, :, :], LR[:, idx_center, :, :, :], flow_L2[i]) loss_L3 = OFR_loss(HR[:, i, :, :, :], HR[:, idx_center, :, :, :], flow_L3[i]) loss_OFR = loss_OFR + loss_L3 + 0.2 * loss_L2 + 0.1 * loss_L1 loss = loss_SR + 0.01 * loss_OFR / (n_frames - 1) loss_list.append(loss.data.cpu()) # backwards self.optimizer.zero_grad() loss.backward() self.optimizer.step() # save checkpoint if idx_iter % 5000 == 0: print('Iteration---%6d, loss---%f' % (idx_iter + 1, np.array(loss_list).mean())) save_path = 'log/' + self.degradation + '_x' + str(self.scale) save_name = self.degradation + '_x' + str(self.scale) + '_iter' + str(idx_iter) + '.pth' if not os.path.exists(save_path): os.mkdir(save_path) torch.save(self.model.state_dict(), save_path + '/' + save_name) loss_list = []
38.038168
117
0.554686
4a22189b4204d1c416525a653d94f4fc026ebb68
559
py
Python
sheetfu/__init__.py
shilik/sheetfu
3b77e27fe3295f3168c8361f495eb873c2ac3bf3
[ "MIT" ]
1
2020-01-04T14:37:27.000Z
2020-01-04T14:37:27.000Z
sheetfu/__init__.py
shilik/sheetfu
3b77e27fe3295f3168c8361f495eb873c2ac3bf3
[ "MIT" ]
null
null
null
sheetfu/__init__.py
shilik/sheetfu
3b77e27fe3295f3168c8361f495eb873c2ac3bf3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ sheetfu ~~~~~~~ A python library to interact with Google Sheets. :copyright: © 2018 by Social Point Labs. :license: MIT, see LICENSE for more details. """ # Important! Never update this version manually. The automatic semantic-releases library takes care of updating it # # Manually changing this number could result in unexpected behaviour # __version__ = "1.5.0" from sheetfu.client import SpreadsheetApp from sheetfu.modules.table import Table from sheetfu.modules.table_selector import TableSelector
25.409091
116
0.733453
4a221941b9c5473e8ef3a19a3f3e4f79aa5387f9
10,786
py
Python
tests/coworks/tech/test_ms.py
sidneyarcidiacono/coworks
7f51b83e8699ced991d16a5a43ad19e569b6e814
[ "MIT" ]
null
null
null
tests/coworks/tech/test_ms.py
sidneyarcidiacono/coworks
7f51b83e8699ced991d16a5a43ad19e569b6e814
[ "MIT" ]
null
null
null
tests/coworks/tech/test_ms.py
sidneyarcidiacono/coworks
7f51b83e8699ced991d16a5a43ad19e569b6e814
[ "MIT" ]
null
null
null
from coworks.coworks import ApiResponse from tests.coworks.ms import * class ParamMS(TechMicroService): value = "123" def token_authorizer(self, token): return True @entry def get(self, str): return str @entry def get_concat(self, str1, str2): return str1 + str2 @entry def get_value(self): return self.value @entry def put_value(self, value=None): self.value = value return self.value @entry def get_param(self, str1, param1='default1', param2='default2'): return str1 + str(param1) + param2 @entry def post_params(self, **kwargs): return { 'keys': [k for k in kwargs.keys()], } class TupleReturnedMS(TechMS): @entry def get(self): return 'ok', 200 @entry def get_json(self): return {'value': 'ok'}, 200 @entry def get_resp(self, str): return ApiResponse(str, 200) @entry def get_error(self, str): return str, 300 @entry def get_tuple(self, str): return str, 200, {'x-test': 'true'} class AmbiguousMS(TechMS): @entry def get(self, uid): return uid, 200 @entry def post_test(self): return {'value': 'ok'}, 200 class TestClass: def test_request_arg(self): app = SimpleMS() with app.test_client() as c: response = c.get('/', headers={'Accept': 'text/plain', 'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get" assert 'Content-Type' in response.headers assert response.headers['Content-Type'] == 'application/json' assert 'Content-Length' in response.headers assert response.headers['Content-Length'] == str(len(response.get_data(as_text=True))) response = c.post('/', headers={'Authorization': 'token'}) assert response.status_code == 405 response = c.get('/get1', headers={'Authorization': 'token'}) assert response.status_code == 404 response = c.get('/content', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get content" response = c.get('/content/3', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get content with 3" response = c.get('/content/3/other', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get content with 3 and other" response = c.post('/content', json={"other": 'other'}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "post content without value but other" response = c.post('/content/3', json={"other": 'other'}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "post content with 3 and other" response = c.post('/content/3', json="other", headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "post content with 3 and other" response = c.post('/content/3', json={"other": 'other', "value": 5}, headers={'Authorization': 'token'}) assert response.status_code == 400 def test_request_kwargs(self): app = SimpleMS() with app.test_client() as c: response = c.get('/kwparam1?value=5', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with only 5" response = c.get('/kwparam1?other=other&value=5', headers={'Authorization': 'token'}) assert response.status_code == 400 response = c.get('/kwparam1?value=5', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with only 5" response = c.get('/kwparam1', json={"other": 'other', "value": 5}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with only 0" response = c.get('/kwparam2?other=other&value=5', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with 5 and ['other']" response = c.get('/kwparam2', json={"other": 'other', "value": 5}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with 0 and []" response = c.put('/kwparam2', json={"other": 'other', "value": 5}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with 5 and ['other']" response = c.put('/kwparam2?other=other&value=5', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "get **param with 5 and ['other']" response = c.get('/extended/content', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "hello world" def test_request_form_data(self): """normal API call.""" app = ParamMS() with app.test_client() as c: files = { 'template': io.BytesIO(b"hello {{ world_name }}"), } data = { 'key': 'value', 'template': (files['template'], 'template.j2'), } response = c.post('/params', content_type='multipart/form-data', data=data, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.is_json assert 'keys' in response.json assert response.json['keys'] == ['key', 'template'] def test_parameterized(self): app = ParamMS() with app.test_client() as c: response = c.get('/123', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123' response = c.get('/concat/123/456', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123456' response = c.get('/value', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123' response = c.put("/value", json={'value': "456"}, headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '456' response = c.get("/value", headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '456' response = c.get('/param/test1', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == 'test1default1default2' response = c.get('/param/test1?param1=value1', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == 'test1value1default2' response = c.get('/param/test1?param2=value2', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == 'test1default1value2' response = c.get('/param/test1?param1=value1&param2=value2', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == 'test1value1value2' response = c.get('/param/test1?param1=value1&param1=value2', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == "test1['value1', 'value2']default2" def test_slug_parameterized(self): app = ParamMS() with app.test_client() as c: response = c.get('/123', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123' response = c.get('/concat/123/456', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123456' def test_tuple_returned(self): app = TupleReturnedMS() with app.test_client() as c: headers = {'Accept': 'text/plain', 'Authorization': 'token'} response = c.get('/', headers=headers) assert response.status_code == 200 assert response.get_data(as_text=True) == 'ok' assert response.headers['content-type'] == 'application/json' response = c.get('/json', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.json['value'] == 'ok' assert response.headers['content-type'] == 'application/json' response = c.get('/resp/ok', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == 'ok' assert response.headers['content-type'] == 'application/json' response = c.get('/tuple/test', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.headers['content-type'] == 'application/json' assert response.headers['x-test'] == 'true' assert response.get_data(as_text=True) == 'test' def test_entry_not_unique(self): app = AmbiguousMS() with app.test_request_context(): assert '/test' in app.routes with app.test_client() as c: response = c.get('/123', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.get_data(as_text=True) == '123' response = c.post('/test', headers={'Authorization': 'token'}) assert response.status_code == 200 assert response.json == {'value': "ok"}
45.70339
116
0.589746
4a2219d787dadfb374bc1b6490512cd3922c5c59
6,850
py
Python
riboviz/utils.py
acope3/riboviz
03a4f13b2d833b8650ebf33bdce81fe2639eb9cf
[ "Apache-2.0" ]
null
null
null
riboviz/utils.py
acope3/riboviz
03a4f13b2d833b8650ebf33bdce81fe2639eb9cf
[ "Apache-2.0" ]
null
null
null
riboviz/utils.py
acope3/riboviz
03a4f13b2d833b8650ebf33bdce81fe2639eb9cf
[ "Apache-2.0" ]
null
null
null
""" Useful functions. """ import os import os.path import numpy as np import pandas as pd def value_in_dict(key, dictionary, allow_false_empty=False): """ Check that a value is in a dictionary and the value is not ``None``. If dictionary is:: { "A":1, "B":None, "C":{},"D":[], "E":[1], "F":True, "G":False } then: * ``value_in_dict("A", dictionary)`` is ``True`` * ``value_in_dict("B", dictionary)`` is ``False`` * ``value_in_dict("C", dictionary)`` is ``False`` * ``value_in_dict("D", dictionary)`` is ``False`` * ``value_in_dict("E", dictionary)`` is ``True`` * ``value_in_dict("F", dictionary)`` is ``True`` * ``value_in_dict("G", dictionary)`` is ``False`` * ``value_in_dict("A", dictionary, True)`` is ``True`` * ``value_in_dict("B", dictionary, True)`` is ``False`` * ``value_in_dict("C", dictionary, True)`` is ``True`` * ``value_in_dict("D", dictionary, True)`` is ``True`` * ``value_in_dict("E", dictionary, True)`` is ``True`` * ``value_in_dict("F", dictionary, True)`` is ``True`` * ``value_in_dict("G", dictionary, True)`` is ``True`` :param key: Key :type key: - :param dictionary: Dictionary :type dictionary: dict :param allow_false_empty: Allow ``False``, empty string, \ ``list`` or ``dict`` to be considered as an existing value :type allow_false_empty: bool :return: ``True`` or ``False`` :rtype: bool """ is_in = key in dictionary and dictionary[key] is not None if not allow_false_empty: is_in = is_in and bool(dictionary[key]) return is_in def list_to_str(lst): """ Convert list to space-delimited string. :param lst: list :type lst: list :return: list as string :rtype: str or unicode """ return ' '.join(map(str, lst)) def get_file_ext(file_name): """ Given a file name return full file extension, everything after the first ``.`` in the file name. For example, given ``example.fastq.gz`` return ``fastq.gz``, given ``example.fastq`` return ``fastq``, given ``example`` return ``''``. The extension is returned in lower-case. :param file_name: File name :type file_name: str or uniecode :return: Extension :rtype: str or unicode """ file_type = ".".join(os.path.basename(file_name).split(".")[1:]) return file_type.lower() def equal_file_names(file1, file2): """ Compare local names of two files each of which must exist and be a file. :param file1: File name :type file1: str or unicode :param file2: File name :type file2: str or unicode :raise AssertionError: If file do not exist, are not files or their names differ """ local_file1 = os.path.split(file1)[1].lower() local_file2 = os.path.split(file2)[1].lower() assert os.path.exists(file1) and os.path.isfile(file1),\ "File %s does not exist or is not a file" assert os.path.exists(file2) and os.path.isfile(file2),\ "File %s does not exist or is not a file" assert local_file1 == local_file2,\ "Unequal file names: %s, %s" % (local_file1, local_file2) def equal_file_sizes(file1, file2): """ Compare sizes of two files. :param file1: File name :type file1: str or unicode :param file2: File name :type file2: str or unicode :raise AssertionError: If the file sizes differ :raise Exception: If problems arise when accessing the files """ stat1 = os.stat(file1) stat2 = os.stat(file2) assert stat1.st_size == stat2.st_size,\ "Unequal file sizes: %s, %s" % (file1, file2) def equal_dataframes(data1, data2, tolerance=0.0001): """ Compare two Pandas data frames for equality. The data frames are expected to be two dimensional i.e. rows and columns. The data frames are compared column-by-column: * ``float64`` columns are converted to numpy arrays then tested for equality to within the given tolerance using ``numpy.allclose``. This is used instead of ``pandas.testing.assert_frame_equal`` as there is an issue with how that function handles precision (see 'pandas.testing.assert_frame_equal doesn't do precision according to the doc' #25068, https://github.com/pandas-dev/pandas/issues/25068). In addition, ``NAN`` values are considered to be equal. * All other columns (``object``, ``int64``, ``bool``, ``datetime64``, ``timedelta``) are compared for exact equality using ``pandas.core.series.Series.equals``. :param data1: dataframe :type data1: pandas.core.frame.DataFrame :param data2: dataframe :type data2: pandas.core.frame.DataFrame :param tolerance: Tolerance for floating point comparisons :type tolerance: float :raise AssertionError: If the data frames differ in their content """ assert data1.shape == data2.shape,\ "Unequal shape: %s, %s"\ % (str(data1.shape), str(data2.shape)) assert set(data1.columns) == set(data2.columns),\ "Unequal column names: %s, %s"\ % (str(data1.columns), str(data2.columns)) for column in data1.columns: column1 = data1[column] column2 = data2[column] if column1.dtype in (int, float) and column2.dtype in (int, float): column_data1 = column1.to_numpy() column_data2 = column2.to_numpy() assert np.allclose(column_data1, column_data2, rtol=0, atol=tolerance, equal_nan=True),\ "Unequal column values: %s" % column else: assert column1.equals(column2),\ "Unequal column values: %s" % column def equal_tsv(file1, file2, tolerance=0.0001, comment="#"): """ Compare two tab-separated (TSV) files for equality. This function uses :py:func:`equal_dataframes`. :param file1: File name :type file1: str or unicode :param file2: File name :type file2: str or unicode :param tolerance: Tolerance for floating point comparisons :type tolerance: float :param comment: Comment prefix :type comment: str or unicode :raise AssertionError: If files differ in their contents :raise Exception: If problems arise when loading the files """ data1 = pd.read_csv(file1, sep="\t", comment=comment) data2 = pd.read_csv(file2, sep="\t", comment=comment) try: equal_dataframes(data1, data2, tolerance) except AssertionError as error: # Add file names to error message. message = error.args[0] message += " in file: " + str(file1) + ":" + str(file2) error.args = (message,) raise
33.578431
75
0.619854
4a2219e935a46db2a10cd0664ade7e8df859ef97
625
py
Python
project/data/scrapers/ambitiouskitchen.py
bmogyorodi/recipe_search
0e7fa4b961342b6c37f36f444337109836618938
[ "BSD-3-Clause" ]
1
2021-08-13T08:33:09.000Z
2021-08-13T08:33:09.000Z
project/data/scrapers/ambitiouskitchen.py
bmogyorodi/recipe_search
0e7fa4b961342b6c37f36f444337109836618938
[ "BSD-3-Clause" ]
null
null
null
project/data/scrapers/ambitiouskitchen.py
bmogyorodi/recipe_search
0e7fa4b961342b6c37f36f444337109836618938
[ "BSD-3-Clause" ]
2
2021-08-13T08:33:35.000Z
2022-02-21T19:42:23.000Z
from ._generic import RootSitemapScraper class AmbitiousKitchenScraper(RootSitemapScraper): """ A scraper for ambitiouskitchen.com """ NAME = "ambitiouskitchen" RECIPE_URL_FORMAT = "https://www.ambitiouskitchen.com/{id}/" # e.g. https://www.ambitiouskitchen.com/healthy-white-chicken-chili/ # Recipes are not distinct from any other post, all have only a slug RECIPE_URL_RE = r"https://www.ambitiouskitchen.com/(?P<id>[^/]+)/?$" SITEMAPS_ROOT_URL = "https://www.ambitiouskitchen.com/sitemap.xml" SITEMAP_URL_RE = r"https://www.ambitiouskitchen.com/sitemap-pt-post-\d{4}-\d{2}.xml"
36.764706
88
0.7104
4a221a76950c9089348ea067f0687386643517e9
1,045
py
Python
deep-rl/lib/python2.7/site-packages/OpenGL/raw/GL/ATI/separate_stencil.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
210
2016-04-09T14:26:00.000Z
2022-03-25T18:36:19.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/raw/GL/ATI/separate_stencil.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
72
2016-09-04T09:30:19.000Z
2022-03-27T17:06:53.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/raw/GL/ATI/separate_stencil.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
64
2016-04-09T14:26:49.000Z
2022-03-21T11:19:47.000Z
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_ATI_separate_stencil' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_ATI_separate_stencil',error_checker=_errors._error_checker) GL_STENCIL_BACK_FAIL_ATI=_C('GL_STENCIL_BACK_FAIL_ATI',0x8801) GL_STENCIL_BACK_FUNC_ATI=_C('GL_STENCIL_BACK_FUNC_ATI',0x8800) GL_STENCIL_BACK_PASS_DEPTH_FAIL_ATI=_C('GL_STENCIL_BACK_PASS_DEPTH_FAIL_ATI',0x8802) GL_STENCIL_BACK_PASS_DEPTH_PASS_ATI=_C('GL_STENCIL_BACK_PASS_DEPTH_PASS_ATI',0x8803) @_f @_p.types(None,_cs.GLenum,_cs.GLenum,_cs.GLint,_cs.GLuint) def glStencilFuncSeparateATI(frontfunc,backfunc,ref,mask):pass @_f @_p.types(None,_cs.GLenum,_cs.GLenum,_cs.GLenum,_cs.GLenum) def glStencilOpSeparateATI(face,sfail,dpfail,dppass):pass
43.541667
117
0.831579
4a221ad8e36673e26fd65dfb44de0ad5828d99f7
3,317
py
Python
test/functional/mining_getblocktemplate_longpoll.py
sirlanceoflompoc/karmacoin
3a75016399f75c27f97856f842915b5c7c4e8fb6
[ "MIT" ]
null
null
null
test/functional/mining_getblocktemplate_longpoll.py
sirlanceoflompoc/karmacoin
3a75016399f75c27f97856f842915b5c7c4e8fb6
[ "MIT" ]
null
null
null
test/functional/mining_getblocktemplate_longpoll.py
sirlanceoflompoc/karmacoin
3a75016399f75c27f97856f842915b5c7c4e8fb6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Karmacoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test longpolling with getblocktemplate.""" from decimal import Decimal from test_framework.test_framework import KarmacoinTestFramework from test_framework.util import get_rpc_proxy, random_transaction import threading class LongpollThread(threading.Thread): def __init__(self, node): threading.Thread.__init__(self) # query current longpollid template = node.getblocktemplate({'rules': ['segwit']}) self.longpollid = template['longpollid'] # create a new connection to the node, we can't use the same # connection from two threads self.node = get_rpc_proxy(node.url, 1, timeout=600, coveragedir=node.coverage_dir) def run(self): self.node.getblocktemplate({'longpollid': self.longpollid, 'rules': ['segwit']}) class GetBlockTemplateLPTest(KarmacoinTestFramework): def set_test_params(self): self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.log.info("Warning: this test will take about 70 seconds in the best case. Be patient.") self.nodes[0].generate(10) template = self.nodes[0].getblocktemplate({'rules': ['segwit']}) longpollid = template['longpollid'] # longpollid should not change between successive invocations if nothing else happens template2 = self.nodes[0].getblocktemplate({'rules': ['segwit']}) assert template2['longpollid'] == longpollid # Test 1: test that the longpolling wait if we do nothing thr = LongpollThread(self.nodes[0]) thr.start() # check that thread still lives thr.join(5) # wait 5 seconds or until thread exits assert thr.is_alive() # Test 2: test that longpoll will terminate if another node generates a block self.nodes[1].generate(1) # generate a block on another node # check that thread will exit now that new transaction entered mempool thr.join(5) # wait 5 seconds or until thread exits assert not thr.is_alive() # Test 3: test that longpoll will terminate if we generate a block ourselves thr = LongpollThread(self.nodes[0]) thr.start() self.nodes[0].generate(1) # generate a block on another node thr.join(5) # wait 5 seconds or until thread exits assert not thr.is_alive() # Test 4: test that introducing a new transaction into the mempool will terminate the longpoll thr = LongpollThread(self.nodes[0]) thr.start() # generate a random transaction and submit it min_relay_fee = self.nodes[0].getnetworkinfo()["relayfee"] # min_relay_fee is fee per 1000 bytes, which should be more than enough. (txid, txhex, fee) = random_transaction(self.nodes, Decimal("1.1"), min_relay_fee, Decimal("0.001"), 20) # after one minute, every 10 seconds the mempool is probed, so in 80 seconds it should have returned thr.join(60 + 20) assert not thr.is_alive() if __name__ == '__main__': GetBlockTemplateLPTest().main()
43.644737
112
0.685258
4a221afeae99e04de23f03669453b340a1cd2450
1,889
py
Python
gym-uds-server.py
tiberiu92/gym-uds-api
65ff4a4368197ce43e954d66ed0daa31a93236af
[ "MIT" ]
1
2018-06-29T10:31:23.000Z
2018-06-29T10:31:23.000Z
gym-uds-server.py
tiberiu92/gym-uds-api
65ff4a4368197ce43e954d66ed0daa31a93236af
[ "MIT" ]
null
null
null
gym-uds-server.py
tiberiu92/gym-uds-api
65ff4a4368197ce43e954d66ed0daa31a93236af
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import os import time from concurrent import futures import grpc import gym import gym_uds_pb2 import gym_uds_pb2_grpc import numpy as np _ONE_DAY_IN_SECONDS = 60 * 60 * 24 class Environment(gym_uds_pb2_grpc.EnvironmentServicer): def __init__(self, env_id): self.env = gym.make(env_id) def Reset(self, empty_request, context): observation = self.env.reset() observation_pb = gym_uds_pb2.Observation(data=observation.ravel(), shape=observation.shape) return gym_uds_pb2.State(observation=observation_pb, reward=0.0, done=False) def Step(self, action_request, context): observation, reward, done, _ = self.env.step(action_request.value) assert type(observation) is np.ndarray observation_pb = gym_uds_pb2.Observation(data=observation.ravel(), shape=observation.shape) return gym_uds_pb2.State(observation=observation_pb, reward=reward, done=done) def Sample(self, empty_request, context): action = self.env.action_space.sample() return gym_uds_pb2.Action(value=action) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('id', help='the id of the gym environment to simulate') parser.add_argument( 'filepath', nargs='?', default='unix:///tmp/gym-uds-socket', help='a unique filepath where the server will bind') args = parser.parse_args() try: os.remove(args.filepath) except FileNotFoundError: pass server = grpc.server(futures.ThreadPoolExecutor(max_workers=1)) gym_uds_pb2_grpc.add_EnvironmentServicer_to_server(Environment(args.id), server) server.add_insecure_port(args.filepath) server.start() try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0)
30.967213
99
0.707253
4a221b32106f31c980bb3572da64784a9844a0c3
2,264
py
Python
cohesity_management_sdk/models/couchbase_connect_params.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-09-24T17:35:53.000Z
2022-03-25T08:08:47.000Z
cohesity_management_sdk/models/couchbase_connect_params.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-03-29T19:32:29.000Z
2022-01-03T23:16:45.000Z
cohesity_management_sdk/models/couchbase_connect_params.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
16
2019-02-27T06:54:12.000Z
2021-11-16T18:10:24.000Z
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. class CouchbaseConnectParams(object): """Implementation of the 'CouchbaseConnectParams' model. Specifies an Object containing information about a registered couchbase source. Attributes: carrier_direct_port (int): Specifies the Carrier direct/sll port. http_direct_port (int): Specifies the HTTP direct/sll port. requires_ssl (bool): Specifies whether this cluster allows connection through SSL only. seeds (list of string): Specifies the Seeds of this Couchbase Cluster. """ # Create a mapping from Model property names to API property names _names = { "carrier_direct_port": 'carrierDirectPort', "http_direct_port": 'httpDirectPort', "requires_ssl": 'requiresSsl', "seeds":'seeds' } def __init__(self, carrier_direct_port=None, http_direct_port=None, requires_ssl=None, seeds=None): """Constructor for the CouchbaseConnectParams class""" # Initialize members of the class self.carrier_direct_port = carrier_direct_port self.http_direct_port = http_direct_port self.requires_ssl = requires_ssl self.seeds = seeds @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary carrier_direct_port = dictionary.get('carrierDirectPort') http_direct_port = dictionary.get('httpDirectPort') requires_ssl = dictionary.get('requiresSsl') seeds = dictionary.get('seeds') # Return an object of this model return cls(carrier_direct_port, http_direct_port, requires_ssl, seeds)
31.444444
81
0.636926
4a221b46cffa440adc8d81dcc9dea389237194d0
358
py
Python
runtests/mpi/tests/test_benchmark.py
pastewka/runtests
9b6d4806e3b662fac2f266a8aadf79ce1caca134
[ "BSD-2-Clause" ]
3
2019-11-04T10:50:20.000Z
2019-11-13T13:03:20.000Z
card_test/venv/Lib/site-packages/runtests/mpi/tests/test_benchmark.py
latedude2/P3_image_processing
69ce6de8f6c962f961edb83e6974d60e86343faa
[ "MIT" ]
9
2018-03-13T20:59:26.000Z
2021-02-24T15:34:40.000Z
card_test/venv/Lib/site-packages/runtests/mpi/tests/test_benchmark.py
latedude2/P3_image_processing
69ce6de8f6c962f961edb83e6974d60e86343faa
[ "MIT" ]
1
2019-08-05T06:43:28.000Z
2019-08-05T06:43:28.000Z
from runtests.mpi import MPITest import pytest import time def test_benchmark1(benchmark): comm = benchmark.comm with benchmark("test 1"): time.sleep((1+comm.rank)*0.25) @pytest.mark.parametrize('x', [1, 2]) def test_benchmark2(benchmark, x): comm = benchmark.comm with benchmark("test 2"): time.sleep((1+comm.rank)*0.25)
21.058824
38
0.673184
4a221bccb3e610591fe0a0320ee0958fb2a38885
11,256
py
Python
util.py
baronrustamov/bulka
fe19fa993e0d1fa013b83bc08705c70cd26d84aa
[ "MIT" ]
null
null
null
util.py
baronrustamov/bulka
fe19fa993e0d1fa013b83bc08705c70cd26d84aa
[ "MIT" ]
null
null
null
util.py
baronrustamov/bulka
fe19fa993e0d1fa013b83bc08705c70cd26d84aa
[ "MIT" ]
1
2021-06-07T14:45:57.000Z
2021-06-07T14:45:57.000Z
import logging import threading from collections import namedtuple from functools import wraps import requests from bs4 import BeautifulSoup from fuzzywuzzy import process, fuzz from requests import Session from telegram import ParseMode, Update from telegram.ext import CallbackContext from const import USER_AGENT ARROW_CHARACTER = '➜' GITHUB_URL = "https://github.com/" DEFAULT_REPO_OWNER = 'python-telegram-bot' DEFAULT_REPO_NAME = 'python-telegram-bot' DEFAULT_REPO = f'{DEFAULT_REPO_OWNER}/{DEFAULT_REPO_NAME}' # Require x non-command messages between each /rules etc. RATE_LIMIT_SPACING = 2 def get_reply_id(update): if update.message and update.message.reply_to_message: return update.message.reply_to_message.message_id return None def reply_or_edit(update, context, text): chat_data = context.chat_data if update.edited_message: chat_data[update.edited_message.message_id].edit_text(text, parse_mode=ParseMode.HTML, disable_web_page_preview=True) else: issued_reply = get_reply_id(update) if issued_reply: chat_data[update.message.message_id] = context.bot.sendMessage(update.message.chat_id, text, reply_to_message_id=issued_reply, parse_mode=ParseMode.HTML, disable_web_page_preview=True) else: chat_data[update.message.message_id] = update.message.reply_text(text, parse_mode=ParseMode.HTML, disable_web_page_preview=True) def get_text_not_in_entities(html): soup = BeautifulSoup(html, 'html.parser') return ' '.join(soup.find_all(text=True, recursive=False)) def build_menu(buttons, n_cols, header_buttons=None, footer_buttons=None): menu = [buttons[i:i + n_cols] for i in range(0, len(buttons), n_cols)] if header_buttons: menu.insert(0, header_buttons) if footer_buttons: menu.append(footer_buttons) return menu def rate_limit_tracker(update: Update, context: CallbackContext): data = context.chat_data.get('rate_limit', {}) for key in data.keys(): data[key] += 1 def rate_limit(f): """ Rate limit command so that RATE_LIMIT_SPACING non-command messages are required between invocations. """ @wraps(f) def wrapper(update, context, *args, **kwargs): # Get rate limit data try: data = context.chat_data['rate_limit'] except KeyError: data = context.chat_data['rate_limit'] = {} # If we have not seen two non-command messages since last of type `f` if data.get(f, RATE_LIMIT_SPACING) < RATE_LIMIT_SPACING: logging.debug('Ignoring due to rate limit!') return data[f] = 0 return f(update, context, *args, **kwargs) return wrapper def truncate_str(str, max): return (str[:max] + '…') if len(str) > max else str Issue = namedtuple('Issue', 'type, owner, repo, number, url, title, author') Commit = namedtuple('Commit', 'owner, repo, sha, url, title, author') class GitHubIssues: def __init__(self, default_owner=DEFAULT_REPO_OWNER, default_repo=DEFAULT_REPO_NAME): self.s = Session() self.s.headers.update({'user-agent': USER_AGENT}) self.base_url = 'https://api.github.com/' self.default_owner = default_owner self.default_repo = default_repo self.logger = logging.getLogger(self.__class__.__qualname__) self.etag = None self.issues = {} self.issues_lock = threading.Lock() def set_auth(self, client_id, client_secret): self.s.auth = (client_id, client_secret) def _get_json(self, url, data=None, headers=None): # Add base_url if needed url = url if url.startswith('https://') else self.base_url + url self.logger.info('Getting %s', url) try: r = self.s.get(url, params=data, headers=headers) except requests.exceptions.RequestException as e: self.logger.exception('While getting %s with data %s', url, data, exec_info=e) return False, None, (None, None) self.logger.debug('status_code=%d', r.status_code) if not r.ok: self.logger.error('Not OK: %s', r.text) # Only try .json() if we actually got new data return r.ok, None if r.status_code == 304 else r.json(), (r.headers, r.links) def pretty_format(self, thing, short=False, short_with_title=False, title_max_length=15): if isinstance(thing, Issue): return self.pretty_format_issue(thing, short=short, short_with_title=short_with_title, title_max_length=title_max_length) return self.pretty_format_commit(thing, short=short, short_with_title=short_with_title, title_max_length=title_max_length) def pretty_format_issue(self, issue, short=False, short_with_title=False, title_max_length=15): # PR OwnerIfNotDefault/RepoIfNotDefault#9999: Title by Author # OwnerIfNotDefault/RepoIfNotDefault#9999 if short=True s = (f'{"" if issue.owner == self.default_owner else issue.owner + "/"}' f'{"" if issue.repo == self.default_repo else issue.repo}' f'#{issue.number}') if short: return s elif short_with_title: return f'{s}: {truncate_str(issue.title, title_max_length)}' return f'{issue.type} {s}: {issue.title} by {issue.author}' def pretty_format_commit(self, commit, short=False, short_with_title=False, title_max_length=15): # Commit OwnerIfNotDefault/RepoIfNotDefault@abcdf123456789: Title by Author # OwnerIfNotDefault/RepoIfNotDefault@abcdf123456789 if short=True s = (f'{"" if commit.owner == self.default_owner else commit.owner + "/"}' f'{"" if commit.repo == self.default_repo else commit.repo}' f'@{commit.sha[:7]}') if short: return s elif short_with_title: return f'{s}: {truncate_str(commit.title, title_max_length)}' return f'Commit {s}: {commit.title} by {commit.author}' def get_issue(self, number: int, owner=None, repo=None): # Other owner or repo than default? if owner is not None or repo is not None: owner = owner or self.default_owner repo = repo or self.default_repo ok, data, _ = self._get_json(f'repos/{owner}/{repo}/issues/{number}') # Return issue directly, or unknown if not found return Issue(type=('PR' if 'pull_request' in data else 'Issue') if ok else '', owner=owner, repo=repo, number=number, url=data['html_url'] if ok else f'https://github.com/{owner}/{repo}/issues/{number}', title=data['title'] if ok else 'Unknown', author=data['user']['login'] if ok else 'Unknown') # Look the issue up, or if not found, fall back on above code try: return self.issues[number] except KeyError: return self.get_issue(number, owner=self.default_owner, repo=self.default_repo) def get_commit(self, sha: int, owner=None, repo=None): owner = owner or self.default_owner repo = repo or self.default_repo ok, data, _ = self._get_json(f'repos/{owner}/{repo}/commits/{sha}') return Commit(owner=owner, repo=repo, sha=sha, url=data['html_url'] if ok else f'https://github.com/{owner}/{repo}/commits/{sha}', title=data['commit']['message'].partition('\n')[0] if ok else 'Unknown', author=data['commit']['author']['name'] if ok else 'Unknown') def _job(self, url, job_queue, first=True): logging.debug('Getting issues from %s', url) # Load 100 issues # We pass the ETag if we have one (not called from init_issues) ok, data, (headers, links) = self._get_json(url, { 'per_page': 100, 'state': 'all' }, {'If-None-Match': self.etag} if self.etag else None) if ok and data: # Add to issue cache # Acquire lock so we don't add while a func (like self.search) is iterating over it with self.issues_lock: for issue in data: self.issues[issue['number']] = Issue(type='PR' if 'pull_request' in issue else 'Issue', owner=self.default_owner, repo=self.default_repo, url=issue['html_url'], number=issue['number'], title=issue['title'], author=issue['user']['login']) elif not ok: # Retry in 5 sec job_queue.run_once(lambda _: self._job(url, job_queue), 5) return # If more issues if 'next' in links: # Process next page after 5 sec to not get rate-limited job_queue.run_once(lambda _: self._job(links['next']['url'], job_queue), 5) # No more issues else: # In 10 min check if the 100 first issues changed, and update them in our cache if needed job_queue.run_once(lambda _: self._job(links['first']['url'], job_queue, first=True), 10 * 60) # If this is on page one (first) then we wanna save the header if first: self.etag = headers['etag'] def init_issues(self, job_queue): self._job(f'repos/{self.default_owner}/{self.default_repo}/issues', job_queue, first=True) def search(self, query): def processor(x): if isinstance(x, Issue): x = x.title return x.strip().lower() # We don't care about the score, so return first element # This must not happen while updating the self.issues dict so acquire the lock with self.issues_lock: return [result[0] for result in process.extract(query, self.issues, scorer=fuzz.partial_ratio, processor=processor, limit=1000)] github_issues = GitHubIssues()
42.315789
110
0.565387
4a221c02052a92cd77593b96ba4dd2c0bda1529b
19,819
py
Python
v1_7_0/dx_operations_vdb.py
mcbrune/delphixpy-automation
f986dbf69809748a8c9721a19663c6f6fb66fc3c
[ "MIT" ]
2
2017-01-18T20:27:33.000Z
2017-07-25T14:23:29.000Z
v1_7_0/dx_operations_vdb.py
mcbrune/delphixpy-automation
f986dbf69809748a8c9721a19663c6f6fb66fc3c
[ "MIT" ]
null
null
null
v1_7_0/dx_operations_vdb.py
mcbrune/delphixpy-automation
f986dbf69809748a8c9721a19663c6f6fb66fc3c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Corey Brune - Oct 2016 #This script starts or stops a VDB #requirements #pip install docopt delphixpy #The below doc follows the POSIX compliant standards and allows us to use #this doc to also define our arguments for the script. """List all VDBs or Start, stop, enable, disable a VDB Usage: dx_operations_vdb.py (--vdb <name [--stop | --start | --enable | --disable] | --list) [-d <identifier> | --engine <identifier> | --all] [--debug] [--parallel <n>] [--poll <n>] [--config <path_to_file>] [--logdir <path_to_file>] dx_operations_vdb.py -h | --help | -v | --version List all VDBs, start, stop, enable, disable a VDB Examples: dx_operations_vdb.py -d landsharkengine --vdb testvdb --stop dx_operations_vdb.py --vdb --start Options: --vdb <name> Name of the VDB to stop or start --start Stop the VDB --stop Stop the VDB --list List all databases from an engine --enable Enable the VDB --disable Disable the VDB -d <identifier> Identifier of Delphix engine in dxtools.conf. --engine <type> Alt Identifier of Delphix engine in dxtools.conf. --all Run against all engines. --debug Enable debug logging --parallel <n> Limit number of jobs to maxjob --poll <n> The number of seconds to wait between job polls [default: 10] --config <path_to_file> The path to the dxtools.conf file [default: ./dxtools.conf] --logdir <path_to_file> The path to the logfile you want to use. [default: ./dx_operations_vdb.log] -h --help Show this screen. -v --version Show version. """ VERSION="v.0.0.002" from docopt import docopt import logging from os.path import basename import signal import sys import time import traceback import json from multiprocessing import Process from time import sleep, time from delphixpy.v1_7_0.delphix_engine import DelphixEngine from delphixpy.v1_7_0.exceptions import HttpError, JobError from delphixpy.v1_7_0 import job_context from delphixpy.v1_7_0.web import database, host, job, source from delphixpy.v1_7_0.exceptions import RequestError, JobError, HttpError class dlpxException(Exception): def __init__(self, message): self.message = message def vdb_operation(engine, server, jobs, vdb_name, operation): """ Function to start, stop, enable or disable a VDB """ print_debug(engine['hostname'] + ': Searching for ' + vdb_name + ' reference.\n') vdb_obj = find_obj_by_name(engine, server, source, vdb_name) try: if vdb_obj: if operation == 'start': source.start(server, vdb_obj.reference) elif operation == 'stop': source.stop(server, vdb_obj.reference) elif operation == 'enable': source.enable(server, vdb_obj.reference) elif operation == 'disable': source.disable(server, vdb_obj.reference) jobs[engine['hostname']] = server.last_job except (RequestError, HttpError, JobError, AttributeError), e: raise dlpxException('An error occurred while performing ' + operation + ' on ' + vdb_name + '.:%s\n' % (e)) def list_databases(engine, server, jobs): """ Function to list all databases for a given engine """ try: databases = database.get_all(server) for db in databases: if db.provision_container == None: db.provision_container = 'dSource' print 'name = ', str(db.name), '\n', 'current timeflow = ', \ str(db.current_timeflow), '\n', 'provision container = ', \ str(db.provision_container), '\n', 'processor = ', \ str(db.processor), '\n' except (RequestError, HttpError, JobError, AttributeError), e: print 'An error occurred while listing databases on ' + \ engine['ip_address'] + '.:%s\n' % (e) def find_obj_by_name(engine, server, f_class, obj_name): """ Function to find objects by name and object class, and return object's reference as a string You might use this function to find objects like groups. """ print_debug(engine["hostname"] + ": Searching objects in the " + f_class.__name__ + " class\n for one named \"" + obj_name + "\"") obj_ref = '' all_objs = f_class.get_all(server) try: for obj in all_objs: if obj.name == obj_name: print_debug(engine["hostname"] + ": Found a match " + str(obj.reference)) return obj #If the code reaches here, the object was not found. raise dlpxException('Object %s not found in %s\n' % (obj_name, engine['ip_address'])) except (RequestError, HttpError, JobError, AttributeError), e: raise dlpxException('Object %s not found in %s' % (obj_name, engine['ip_address'])) def get_config(config_file_path): """ This function reads in the dxtools.conf file """ #First test to see that the file is there and we can open it try: config_file = open(config_file_path).read() except: print_error("Was unable to open " + config_file_path + ". Please check the path and permissions, then try again.") sys.exit(1) #Now parse the file contents as json and turn them into a python # dictionary, throw an error if it isn't proper json try: config = json.loads(config_file) except: print_error("Was unable to read " + config_file_path + " as json. Please check file in a json formatter and " + "try again.") sys.exit(1) #Create a dictionary of engines (removing the data node from the # dxtools.json, for easier parsing) delphix_engines = {} for each in config['data']: delphix_engines[each['hostname']] = each print_debug(delphix_engines) return delphix_engines def logging_est(logfile_path): """ Establish Logging """ global debug logging.basicConfig(filename=logfile_path,format='%(levelname)s:%(asctime)s:%(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') print_info("Welcome to " + basename(__file__) + ", version " + VERSION) global logger debug = arguments['--debug'] logger = logging.getLogger() if debug == True: logger.setLevel(10) print_info("Debug Logging is enabled.") def job_mode(server): """ This function tells Delphix how to execute jobs, based on the single_thread variable at the beginning of the file """ #Synchronously (one at a time) if single_thread == True: job_m = job_context.sync(server) print_debug("These jobs will be executed synchronously") #Or asynchronously else: job_m = job_context.async(server) print_debug("These jobs will be executed asynchronously") return job_m def job_wait(): """ This job stops all work in the thread/process until jobs are completed. """ #Grab all the jos on the server (the last 25, be default) all_jobs = job.get_all(server) #For each job in the list, check to see if it is running (not ended) for jobobj in all_jobs: if not (jobobj.job_state in ["CANCELED", "COMPLETED", "FAILED"]): print_debug("Waiting for " + jobobj.reference + " (currently: " + jobobj.job_state + ") to finish running against the container") #If so, wait job_context.wait(server,jobobj.reference) def on_exit(sig, func=None): """ This function helps us end cleanly and with exit codes """ print_info("Shutdown Command Received") print_info("Shutting down " + basename(__file__)) sys.exit(0) def print_debug(print_obj): """ Call this function with a log message to prefix the message with DEBUG """ try: if debug == True: print "DEBUG: " + str(print_obj) logging.debug(str(print_obj)) except: pass def print_error(print_obj): """ Call this function with a log message to prefix the message with ERROR """ print "ERROR: " + str(print_obj) logging.error(str(print_obj)) def print_info(print_obj): """ Call this function with a log message to prefix the message with INFO """ print "INFO: " + str(print_obj) logging.info(str(print_obj)) def print_warning(print_obj): """ Call this function with a log message to prefix the message with WARNING """ print "WARNING: " + str(print_obj) logging.warning(str(print_obj)) def run_async(func): """ http://code.activestate.com/recipes/576684-simple-threading-decorator/ run_async(func) function decorator, intended to make "func" run in a separate thread (asynchronously). Returns the created Thread object E.g.: @run_async def task1(): do_something @run_async def task2(): do_something_too t1 = task1() t2 = task2() ... t1.join() t2.join() """ from threading import Thread from functools import wraps @wraps(func) def async_func(*args, **kwargs): func_hl = Thread(target = func, args = args, kwargs = kwargs) func_hl.start() return func_hl return async_func @run_async def main_workflow(engine): """ This function actually runs the jobs. Use the @run_async decorator to run this function asynchronously. This allows us to run against multiple Delphix Engine simultaneously """ #Pull out the values from the dictionary for this engine engine_address = engine["ip_address"] engine_username = engine["username"] engine_password = engine["password"] #Establish these variables as empty for use later jobs = {} #Setup the connection to the Delphix Engine server = serversess(engine_address, engine_username, engine_password) try: if arguments['--vdb']: #Get the database reference we are copying from the database name database_obj = find_obj_by_name(engine, server, database, arguments['--vdb']) except dlpxException, e: print '\nERROR: %s\n' % (e.message) sys.exit(1) thingstodo = ["thingtodo"] #reset the running job count before we begin i = 0 with job_mode(server): while (len(jobs) > 0 or len(thingstodo)> 0): if len(thingstodo)> 0: if arguments['--start']: vdb_operation(engine, server, jobs, database_name, 'start') elif arguments['--stop']: vdb_operation(engine, server, jobs, database_name, 'stop') elif arguments['--enable']: vdb_operation(engine, server, jobs, database_name, 'enable') elif arguments['--disable']: vdb_operation(engine, server, jobs, database_name, 'disable') elif arguments['--list']: list_databases(engine, server, jobs) thingstodo.pop() #get all the jobs, then inspect them i = 0 for j in jobs.keys(): job_obj = job.get(server, jobs[j]) print_debug(job_obj) print_info(engine["hostname"] + ": VDB Operations: " + job_obj.job_state) if job_obj.job_state in ["CANCELED", "COMPLETED", "FAILED"]: #If the job is in a non-running state, remove it from the # running jobs list. del jobs[j] else: #If the job is in a running state, increment the running # job count. i += 1 print_info(engine["hostname"] + ": " + str(i) + " jobs running. ") #If we have running jobs, pause before repeating the checks. if len(jobs) > 0: sleep(float(arguments['--poll'])) def run_job(engine): """ This function runs the main_workflow aynchronously against all the servers specified """ #Create an empty list to store threads we create. threads = [] #If the --all argument was given, run against every engine in dxtools.conf if arguments['--all']: print_info("Executing against all Delphix Engines in the dxtools.conf") #For each server in the dxtools.conf... for delphix_engine in dxtools_objects: engine = dxtools_objects[delphix_engine] #Create a new thread and add it to the list. threads.append(main_workflow(engine)) else: #Else if the --engine argument was given, test to see if the engine # exists in dxtools.conf if arguments['--engine']: try: engine = dxtools_objects[arguments['--engine']] print_info("Executing against Delphix Engine: " + arguments['--engine']) except: print_error("Delphix Engine \"" + arguments['--engine'] + "\" cannot be found in " + config_file_path) print_error("Please check your value and try again. Exiting") sys.exit(1) #Else if the -d argument was given, test to see if the engine exists # in dxtools.conf elif arguments['-d']: try: engine = dxtools_objects[arguments['-d']] print_info("Executing against Delphix Engine: " + arguments['-d']) except: print_error("Delphix Engine \"" + arguments['-d'] + "\" cannot be found in " + config_file_path) print_error("Please check your value and try again. Exiting") sys.exit(1) else: #Else search for a default engine in the dxtools.conf for delphix_engine in dxtools_objects: if dxtools_objects[delphix_engine]['default'] == 'true': engine = dxtools_objects[delphix_engine] print_info("Executing against the default Delphix Engine " "in the dxtools.conf: " + dxtools_objects[delphix_engine]['hostname']) break if engine == None: print_error("No default engine found. Exiting") sys.exit(1) #run the job against the engine threads.append(main_workflow(engine)) #For each thread in the list... for each in threads: #join them back together so that we wait for all threads to complete # before moving on each.join() def serversess(f_engine_address, f_engine_username, f_engine_password): """ Function to setup the session with the Delphix Engine """ server_session= DelphixEngine(f_engine_address, f_engine_username, f_engine_password, "DOMAIN") return server_session def set_exit_handler(func): """ This function helps us set the correct exit code """ signal.signal(signal.SIGTERM, func) def time_elapsed(): """ This function calculates the time elapsed since the beginning of the script. Call this anywhere you want to note the progress in terms of time """ elapsed_minutes = round((time() - time_start)/60, +1) return elapsed_minutes def update_jobs_dictionary(engine, server, jobs): """ This function checks each job in the dictionary and updates its status or removes it if the job is complete. Return the number of jobs still running. """ #Establish the running jobs counter, as we are about to update the count # from the jobs report. i = 0 #get all the jobs, then inspect them for j in jobs.keys(): job_obj = job.get(server, jobs[j]) print_debug(engine["hostname"] + ": " + str(job_obj)) print_info(engine["hostname"] + ": " + j.name + ": " + job_obj.job_state) if job_obj.job_state in ["CANCELED", "COMPLETED", "FAILED"]: #If the job is in a non-running state, remove it from the running # jobs list. del jobs[j] else: #If the job is in a running state, increment the running job count. i += 1 return i def main(argv): #We want to be able to call on these variables anywhere in the script. global single_thread global usebackup global time_start global config_file_path global database_name global host_name global dxtools_objects try: logging_est(arguments['--logdir']) print_debug(arguments) time_start = time() engine = None single_thread = False config_file_path = arguments['--config'] #Parse the dxtools.conf and put it into a dictionary dxtools_objects = get_config(config_file_path) database_name = arguments['--vdb'] #This is the function that will handle processing main_workflow for # all the servers. run_job(engine) elapsed_minutes = time_elapsed() print_info("script took " + str(elapsed_minutes) + " minutes to get this far.") #Here we handle what we do when the unexpected happens except SystemExit as e: """ This is what we use to handle our sys.exit(#) """ sys.exit(e) except HttpError as e: """ We use this exception handler when our connection to Delphix fails """ print_error("Connection failed to the Delphix Engine") print_error( "Please check the ERROR message below") print_error(e.message) sys.exit(2) except JobError as e: """ We use this exception handler when a job fails in Delphix so that we have actionable data """ print_error("A job failed in the Delphix Engine") print_error(e.job) elapsed_minutes = time_elapsed() print_info(basename(__file__) + " took " + str(elapsed_minutes) + " minutes to get this far.") sys.exit(3) except KeyboardInterrupt: """ We use this exception handler to gracefully handle ctrl+c exits """ print_debug("You sent a CTRL+C to interrupt the process") elapsed_minutes = time_elapsed() print_info(basename(__file__) + " took " + str(elapsed_minutes) + " minutes to get this far.") except: """ Everything else gets caught here """ print_error(sys.exc_info()[0]) print_error(traceback.format_exc()) elapsed_minutes = time_elapsed() print_info(basename(__file__) + " took " + str(elapsed_minutes) + " minutes to get this far.") sys.exit(1) if __name__ == "__main__": #Grab our arguments from the doc at the top of the script arguments = docopt(__doc__, version=basename(__file__) + " " + VERSION) #Feed our arguments to the main function, and off we go! main(arguments)
34.467826
142
0.593219
4a221c98e4d01e520edcfb2a9246e5af5d8bda4d
251
py
Python
Tupla revisao/tupla.py
Hipparcus/Python-Learning
a3bd5787ceb67f20a0a053e3db4cf77a18e12112
[ "MIT" ]
null
null
null
Tupla revisao/tupla.py
Hipparcus/Python-Learning
a3bd5787ceb67f20a0a053e3db4cf77a18e12112
[ "MIT" ]
null
null
null
Tupla revisao/tupla.py
Hipparcus/Python-Learning
a3bd5787ceb67f20a0a053e3db4cf77a18e12112
[ "MIT" ]
null
null
null
palavras = ('programacao','nomes','legal','que bacana','yeaaah','astronomia') for i in palavras: print(f"Na palavra {i} há as vogais", end=' ') for j in i: if j.lower() in ('aeiou'): print (f"{j}", end=',') print("\n")
31.375
77
0.537849
4a221d236564bfaa226c07e4893068f9dee66c78
25,638
py
Python
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/aio/operations/_diagnostic_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/aio/operations/_diagnostic_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/aio/operations/_diagnostic_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class DiagnosticOperations: """DiagnosticOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.apimanagement.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_service( self, resource_group_name: str, service_name: str, filter: Optional[str] = None, top: Optional[int] = None, skip: Optional[int] = None, **kwargs ) -> AsyncIterable["_models.DiagnosticCollection"]: """Lists all diagnostics of the API Management service instance. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param filter: | Field | Usage | Supported operators | Supported functions |</br>|-------------|-------------|-------------|-------------|</br>| name | filter | ge, le, eq, ne, gt, lt | substringof, contains, startswith, endswith |</br>. :type filter: str :param top: Number of records to return. :type top: int :param skip: Number of records to skip. :type skip: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DiagnosticCollection or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.apimanagement.models.DiagnosticCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiagnosticCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_service.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int', minimum=1) if skip is not None: query_parameters['$skip'] = self._serialize.query("skip", skip, 'int', minimum=0) query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('DiagnosticCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_service.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics'} # type: ignore async def get_entity_tag( self, resource_group_name: str, service_name: str, diagnostic_id: str, **kwargs ) -> bool: """Gets the entity state (Etag) version of the Diagnostic specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param diagnostic_id: Diagnostic identifier. Must be unique in the current API Management service instance. :type diagnostic_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: bool, or the result of cls(response) :rtype: bool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.get_entity_tag.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'diagnosticId': self._serialize.url("diagnostic_id", diagnostic_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.head(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) if cls: return cls(pipeline_response, None, response_headers) return 200 <= response.status_code <= 299 get_entity_tag.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics/{diagnosticId}'} # type: ignore async def get( self, resource_group_name: str, service_name: str, diagnostic_id: str, **kwargs ) -> "_models.DiagnosticContract": """Gets the details of the Diagnostic specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param diagnostic_id: Diagnostic identifier. Must be unique in the current API Management service instance. :type diagnostic_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DiagnosticContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.DiagnosticContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiagnosticContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'diagnosticId': self._serialize.url("diagnostic_id", diagnostic_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('DiagnosticContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics/{diagnosticId}'} # type: ignore async def create_or_update( self, resource_group_name: str, service_name: str, diagnostic_id: str, parameters: "_models.DiagnosticContract", if_match: Optional[str] = None, **kwargs ) -> "_models.DiagnosticContract": """Creates a new Diagnostic or updates an existing one. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param diagnostic_id: Diagnostic identifier. Must be unique in the current API Management service instance. :type diagnostic_id: str :param parameters: Create parameters. :type parameters: ~azure.mgmt.apimanagement.models.DiagnosticContract :param if_match: ETag of the Entity. Not required when creating an entity, but required when updating an entity. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DiagnosticContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.DiagnosticContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiagnosticContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'diagnosticId': self._serialize.url("diagnostic_id", diagnostic_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'DiagnosticContract') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('DiagnosticContract', pipeline_response) if response.status_code == 201: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('DiagnosticContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics/{diagnosticId}'} # type: ignore async def update( self, resource_group_name: str, service_name: str, diagnostic_id: str, if_match: str, parameters: "_models.DiagnosticContract", **kwargs ) -> "_models.DiagnosticContract": """Updates the details of the Diagnostic specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param diagnostic_id: Diagnostic identifier. Must be unique in the current API Management service instance. :type diagnostic_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :param parameters: Diagnostic Update parameters. :type parameters: ~azure.mgmt.apimanagement.models.DiagnosticContract :keyword callable cls: A custom type or function that will be passed the direct response :return: DiagnosticContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.DiagnosticContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiagnosticContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'diagnosticId': self._serialize.url("diagnostic_id", diagnostic_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'DiagnosticContract') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('DiagnosticContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics/{diagnosticId}'} # type: ignore async def delete( self, resource_group_name: str, service_name: str, diagnostic_id: str, if_match: str, **kwargs ) -> None: """Deletes the specified Diagnostic. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param diagnostic_id: Diagnostic identifier. Must be unique in the current API Management service instance. :type diagnostic_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'diagnosticId': self._serialize.url("diagnostic_id", diagnostic_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/diagnostics/{diagnosticId}'} # type: ignore
51.689516
208
0.661713
4a221d248637a20e62d695f12e02037197d13976
616
py
Python
examples/assign.py
LayneInNL/py2flows
5ecb555c64350cb13c3885a78fe89a40994e9d0e
[ "Apache-2.0" ]
3
2022-03-21T12:10:37.000Z
2022-03-24T13:31:19.000Z
examples/assign.py
LayneInNL/py2flows
5ecb555c64350cb13c3885a78fe89a40994e9d0e
[ "Apache-2.0" ]
1
2022-03-17T02:09:37.000Z
2022-03-17T10:08:14.000Z
examples/assign.py
LayneInNL/py2flows
5ecb555c64350cb13c3885a78fe89a40994e9d0e
[ "Apache-2.0" ]
1
2022-03-21T12:10:18.000Z
2022-03-21T12:10:18.000Z
# Copyright 2022 Layne Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. a = b.a = c[1] = 1 a, *b = 1, 2
36.235294
75
0.725649
4a221eca901c24d51311a894ad9a257ae367f04d
772
py
Python
api/tacticalrmm/logs/migrations/0009_auto_20201110_1431.py
BaDTaG/tacticalrmm
7bdd8c4626e0629d393edb5dec2541150d1802ef
[ "MIT" ]
1
2021-01-19T20:39:02.000Z
2021-01-19T20:39:02.000Z
api/tacticalrmm/logs/migrations/0009_auto_20201110_1431.py
BaDTaG/tacticalrmm
7bdd8c4626e0629d393edb5dec2541150d1802ef
[ "MIT" ]
null
null
null
api/tacticalrmm/logs/migrations/0009_auto_20201110_1431.py
BaDTaG/tacticalrmm
7bdd8c4626e0629d393edb5dec2541150d1802ef
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2020-11-10 14:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('logs', '0008_auto_20201110_1431'), ] operations = [ migrations.AlterField( model_name='auditlog', name='action', field=models.CharField(choices=[('login', 'User Login'), ('failed_login', 'Failed User Login'), ('delete', 'Delete Object'), ('modify', 'Modify Object'), ('add', 'Add Object'), ('view', 'View Object'), ('check_run', 'Check Run'), ('task_run', 'Task Run'), ('agent_install', 'Agent Install'), ('remote_session', 'Remote Session'), ('execute_script', 'Execute Script'), ('execute_command', 'Execute Command')], max_length=100), ), ]
40.631579
437
0.623057
4a221f5ee0288e18fb56178d4892d0740a3a5782
4,619
py
Python
src/embit/script.py
jimmysong/embit
36299bd0fe123d6e3a5318a9f9acfd16564c26c1
[ "MIT" ]
2
2021-03-26T22:41:55.000Z
2021-05-27T17:38:53.000Z
src/embit/script.py
jimmysong/embit
36299bd0fe123d6e3a5318a9f9acfd16564c26c1
[ "MIT" ]
null
null
null
src/embit/script.py
jimmysong/embit
36299bd0fe123d6e3a5318a9f9acfd16564c26c1
[ "MIT" ]
2
2021-03-27T10:16:21.000Z
2021-06-07T18:01:03.000Z
from .networks import NETWORKS from . import base58 from . import bech32 from . import hashes from . import compact from .base import EmbitBase, EmbitError import io SIGHASH_ALL = 1 class Script(EmbitBase): def __init__(self, data): self.data = data def address(self, network=NETWORKS["main"]): script_type = self.script_type() data = self.data if script_type is None: raise ValueError("This type of script doesn't have address representation") if script_type == "p2pkh": d = network["p2pkh"] + data[3:23] return base58.encode_check(d) if script_type == "p2sh": d = network["p2sh"] + data[2:22] return base58.encode_check(d) if script_type in ["p2wpkh", "p2wsh"]: ver = data[0] # FIXME: should be one of OP_N if ver > 0: ver = ver % 0x50 return bech32.encode(network["bech32"], ver, data[2:]) # we should never get here raise ValueError("Unsupported script type") def script_type(self): data = self.data # OP_DUP OP_HASH160 <20:hash160(pubkey)> OP_EQUALVERIFY OP_CHECKSIG if len(data) == 25 and data[:3] == b"\x76\xa9\x14" and data[-2:] == b"\x88\xac": return "p2pkh" # OP_HASH160 <20:hash160(script)> OP_EQUAL if len(data) == 23 and data[:2] == b"\xa9\x14" and data[-1] == 0x87: return "p2sh" # 0 <20:hash160(pubkey)> if len(data) == 22 and data[:2] == b"\x00\x14": return "p2wpkh" # 0 <32:sha256(script)> if len(data) == 34 and data[:2] == b"\x00\x20": return "p2wsh" # unknown type return None def write_to(self, stream): res = stream.write(compact.to_bytes(len(self.data))) res += stream.write(self.data) return res @classmethod def read_from(cls, stream): l = compact.read_from(stream) data = stream.read(l) if len(data) != l: raise ValueError("Cant read %d bytes" % l) return cls(data) def __eq__(self, other): return self.data == other.data def __ne__(self, other): return self.data != other.data class Witness(EmbitBase): def __init__(self, items): self.items = items[:] def write_to(self, stream): res = stream.write(compact.to_bytes(len(self.items))) for item in self.items: res += stream.write(compact.to_bytes(len(item))) res += stream.write(item) return res @classmethod def read_from(cls, stream): num = compact.read_from(stream) items = [] for i in range(num): l = compact.read_from(stream) data = stream.read(l) items.append(data) return cls(items) def p2pkh(pubkey): """Return Pay-To-Pubkey-Hash ScriptPubkey""" return Script(b"\x76\xa9\x14" + hashes.hash160(pubkey.sec()) + b"\x88\xac") def p2sh(script): """Return Pay-To-Script-Hash ScriptPubkey""" return Script(b"\xa9\x14" + hashes.hash160(script.data) + b"\x87") def p2wpkh(pubkey): """Return Pay-To-Witness-Pubkey-Hash ScriptPubkey""" return Script(b"\x00\x14" + hashes.hash160(pubkey.sec())) def p2wsh(script): """Return Pay-To-Witness-Pubkey-Hash ScriptPubkey""" return Script(b"\x00\x20" + hashes.sha256(script.data)) def p2pkh_from_p2wpkh(script): """Convert p2wpkh to p2pkh script""" return Script(b"\x76\xa9" + script.serialize()[2:] + b"\x88\xac") def multisig(m: int, pubkeys): if m <= 0 or m > 16: raise ValueError("m must be between 1 and 16") n = len(pubkeys) if n < m or n > 16: raise ValueError("Number of pubkeys must be between %d and 16" % m) data = bytes([80 + m]) for pubkey in pubkeys: sec = pubkey.sec() data += bytes([len(sec)]) + sec # OP_m <len:pubkey> ... <len:pubkey> OP_n OP_CHECKMULTISIG data += bytes([80 + n, 0xAE]) return Script(data) def address_to_scriptpubkey(addr): pass def script_sig_p2pkh(signature, pubkey): sec = pubkey.sec() der = signature.serialize() + bytes([SIGHASH_ALL]) data = compact.to_bytes(len(der)) + der + compact.to_bytes(len(sec)) + sec return Script(data) def script_sig_p2sh(redeem_script): """Creates scriptsig for p2sh""" # FIXME: implement for legacy p2sh as well return Script(redeem_script.serialize()) def witness_p2wpkh(signature, pubkey): return Witness([signature.serialize() + bytes([SIGHASH_ALL]), pubkey.sec()])
29.050314
88
0.598398
4a221fa002e94b1d958f31ec37c854a6a9a5b2a3
3,301
py
Python
code/MMServerEngine/others/table/table.py
xuerong/MMServerEngine
f11c34680ea56645e91bab9ef02a808ee2e1730d
[ "Apache-2.0" ]
9
2016-09-14T11:27:25.000Z
2020-11-06T06:33:33.000Z
code/MMServerEngine/others/table/table.py
wangxianglong3/MMServerEngine
d3bf90da536ab84efefba2c7128ba88695153495
[ "Apache-2.0" ]
null
null
null
code/MMServerEngine/others/table/table.py
wangxianglong3/MMServerEngine
d3bf90da536ab84efefba2c7128ba88695153495
[ "Apache-2.0" ]
7
2016-09-14T11:27:24.000Z
2019-11-04T08:30:10.000Z
#!/usr/bin/python #-*- coding: utf-8 -*- import xlrd import os import sys import shutil from xlrd import xldate_as_tuple from datetime import date,datetime table_file_name = sys.argv[1] data = xlrd.open_workbook(table_file_name) def createJavaFile(name,content): java_class_path = "com/table/"+name+".java" #删除旧文件 if os.path.exists(java_class_path): os.remove(java_class_path) newJavaFile = open(java_class_path,"wb") newJavaFile.write(content) newJavaFile.close() shutil.copy(java_class_path, "../../src/main/java/"+java_class_path) typeStrs = {"int":"int","long":"long","String":"String","string":"String","float":"float","double":"double","date":"java.sql.Timestamp"} def createValueByType(type,cell): cellStr = str(cell.value) if (cell.ctype == 3): date_value = xlrd.xldate_as_tuple(cell.value,0) cellStr = str(date_value[0])+"-"+str(date_value[1])+"-"+str(date_value[2])+" "+str(date_value[3])+":"+str(date_value[4])+":"+str(date_value[5]) if type == "int": return "(int)"+cellStr elif type == "long": return "(long)"+cellStr elif type == "String": return "\""+cellStr+"\"" elif type == "float": return "(float)"+cellStr elif type == "double": return "(double)"+cellStr elif type == "java.sql.Timestamp": return "java.sql.Timestamp.valueOf(\""+cellStr+"\")" else: return "" tables = data.sheets() for table in tables: nrows = table.nrows if nrows <2: continue start = "package com.table;\n//Auto Generate File, Do NOT Modify!!!!!!!!!!!!!!!\npublic final class "+table.name+"{\n" sb = "" getSet = "" constructor = "\tpublic "+table.name+"(" constructorContent = "" dataStr = "\tpublic static final "+table.name+"[] datas={" error = 0 names = table.row_values(0) types = table.row_values(1) i = 0 for cell in names: name = str(cell) typeStr = str(types[i]) if not typeStrs.has_key(typeStr): print table.name +" is not table" error = 1 break; type = typeStrs.get(typeStr) sb = sb +"\tprivate "+type+" "+name+";\n" if i!=0: constructor = constructor+"," constructor = constructor+type+" "+name constructorContent = constructorContent+"\t\tthis."+name+"="+name+";\n" getSet = getSet+"\tpublic "+type+" get"+name.capitalize()+"(){return "+name+";}\n" getSet = getSet+"\tpublic void set"+name.capitalize()+"("+type+" "+name+"){this."+name+"="+name+";}\n" i=i+1 if error == 1: continue; nrows = table.nrows for i in range(nrows): if i<2: continue; record = table.row_values(i) if i>2: dataStr=dataStr+"," dataStr = dataStr+"\n\t\tnew "+table.name+"(" k = 0 for cell in record: if k>0: dataStr=dataStr+"," dataStr=dataStr+createValueByType(typeStrs.get(str(types[k])),table.cell(i,k)) k = k+1 dataStr=dataStr+")" dataStr=dataStr+"\n\t};" constructor = constructor+"){\n"+constructorContent+"\t}" sb=start+dataStr+"\n"+sb+"\n"+constructor+"\n"+getSet+"}" createJavaFile(table.name,sb)
31.141509
151
0.581036
4a22202d4b5d48a5582e13ed20560c8a6ffc60bf
1,662
py
Python
Gem/PythonTests/Automated/test_suites/periodic/NonMaterialAssetsExcludedInBrowser_test.py
incisor/o3de-atomtest
026fef06827bf0dd559510882df5cb426ab00a99
[ "Apache-2.0", "MIT" ]
2
2021-07-18T11:20:41.000Z
2022-02-01T20:17:50.000Z
Gem/PythonTests/Automated/test_suites/periodic/NonMaterialAssetsExcludedInBrowser_test.py
incisor/o3de-atomtest
026fef06827bf0dd559510882df5cb426ab00a99
[ "Apache-2.0", "MIT" ]
5
2021-07-14T02:24:07.000Z
2021-10-04T21:24:35.000Z
Gem/PythonTests/Automated/test_suites/periodic/NonMaterialAssetsExcludedInBrowser_test.py
incisor/o3de-atomtest
026fef06827bf0dd559510882df5cb426ab00a99
[ "Apache-2.0", "MIT" ]
7
2021-07-06T18:21:14.000Z
2021-12-06T09:12:40.000Z
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ import os import pytest from Automated.atom_utils import hydra_test_utils as hydra TEST_DIRECTORY = os.path.dirname(__file__) LOG_MONITOR_TIMEOUT = 40 @pytest.mark.parametrize("project", ["AtomTest"]) @pytest.mark.parametrize("launcher_platform", ["windows_generic"]) class TestNonMaterialAssetsExcludedInBrowser(object): @pytest.mark.parametrize("exe_file_name", ["MaterialEditor"]) def test_MaterialBrowser_NonMaterialAssets_ExcludedInBrowser( self, request, workspace, project, launcher_platform, generic_launcher, exe_file_name ): """ Please review the hydra script run by this test for more specific test info. Test to verify if Non-Material based assets excluded from Browser """ unexpected_lines = [ "Trace::Assert", "Trace::Error", "Traceback (most recent call last):", "Expected item not found in folder", "Excluded item found in folder", "Atom MaterialEditor asset path not found in browser: ", ] hydra.launch_and_validate_results( request, TEST_DIRECTORY, generic_launcher, "NonMaterialAssetsExcludedInBrowser_test_case.py", timeout=LOG_MONITOR_TIMEOUT, expected_lines=None, unexpected_lines=unexpected_lines, halt_on_unexpected=True, log_file_name="MaterialEditor.log", )
34.625
97
0.6787
4a222067165b4cd2dc5dd855429d29466be4271c
1,465
py
Python
bars3d_demo.py
kingslair/MatPlotLib
66d1accf1a049b901dece69d18edadafbf4b687f
[ "MIT" ]
null
null
null
bars3d_demo.py
kingslair/MatPlotLib
66d1accf1a049b901dece69d18edadafbf4b687f
[ "MIT" ]
null
null
null
bars3d_demo.py
kingslair/MatPlotLib
66d1accf1a049b901dece69d18edadafbf4b687f
[ "MIT" ]
null
null
null
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation import time fig = plt.figure() ax = fig.add_subplot(111, projection='3d') op_array = np.array([]) def animate(i): pullData = open("bars_3d.txt","r").read() dataArray = pullData.split('\n') xar = [] yar = [] zar = [] for eachLine in dataArray: if len(eachLine)>1: x,y,z = eachLine.split(',') xar.append(int(x)) yar.append(int(y)) zar.append(int(z)) #print (xar) #print (yar) #print (zar) #for x1,y1,z1 in xar,yar,zar: #print (x1) #print (y1) #print (z1) #cs = [c] * len(xs) #cs[0] = 'c' ax.clear() ax.grid(zorder=0) #ax.bar(xar, yar, zs=zar, zdir='y', color="blue", alpha=1) ax.scatter(xar, yar, zs=zar) '''for c, z in zip(['r'], [10]): xs = np.arange(20) #xs =[1] ys = np.random.rand(20) #ys = [4] # You can provide either a single color or an array. To demonstrate this, # the first bar of each set will be colored cyan. cs = [c] * len(xs) cs[0] = 'c' ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8) #ax.bar(xs, ys, zs=z, zdir='z') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z')''' ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ani = animation.FuncAnimation(fig, animate, interval=1000) plt.show()
24.416667
77
0.565188
4a2220d2400c1620e374e02acf264bf5dace5983
6,550
py
Python
SQLNet/scripts/model/modules/order_predict.py
Bhaskers-Blu-Org2/EMNLP2019-Adjective-Knowledge-for-Text-to-SQL
246f52ee70d2eeb776fe99597712b57bca3883c7
[ "MIT" ]
5
2019-11-15T11:02:31.000Z
2020-05-09T09:32:26.000Z
SQLNet/scripts/model/modules/order_predict.py
Bhaskers-Blu-Org2/EMNLP2019-Adjective-Knowledge-for-Text-to-SQL
246f52ee70d2eeb776fe99597712b57bca3883c7
[ "MIT" ]
1
2020-04-07T09:20:51.000Z
2020-04-07T09:20:51.000Z
SQLNet/scripts/model/modules/order_predict.py
microsoft/EMNLP2019-Adjective-Knowledge-for-Text-to-SQL
246f52ee70d2eeb776fe99597712b57bca3883c7
[ "MIT" ]
7
2020-01-01T02:22:23.000Z
2021-11-05T04:49:19.000Z
import json import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from net_utils import run_lstm, col_name_encode class OrderPredictor(nn.Module): def __init__(self, N_word, N_h, N_depth, gpu, feats_format=""): super(OrderPredictor, self).__init__() self.N_h = N_h self.gpu = gpu self.q_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2, num_layers=N_depth, batch_first=True, dropout=0.3, bidirectional=True) self.col_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2, num_layers=N_depth, batch_first=True, dropout=0.3, bidirectional=True) self.gby_num_h = nn.Linear(N_h, N_h) self.gby_num_l = nn.Linear(N_h, N_h) self.gby_num_out = nn.Sequential(nn.Tanh(), nn.Linear(N_h, 2)) self.q_att = nn.Linear(N_h, N_h) self.col_out_q = nn.Linear(N_h, N_h) self.col_out_c = nn.Linear(N_h, N_h) self.col_out = nn.Sequential(nn.Tanh(), nn.Linear(N_h, 1)) self.agg_att = nn.Linear(N_h, N_h) self.agg_out_q = nn.Linear(N_h, N_h) self.agg_out_c = nn.Linear(N_h, N_h) self.agg_out = nn.Sequential(nn.Tanh(), nn.Linear(N_h, 6)) #to 5 self.dat_att = nn.Linear(N_h, N_h) self.dat_out_q = nn.Linear(N_h, N_h) self.dat_out_c = nn.Linear(N_h, N_h) self.dat_out = nn.Sequential(nn.Tanh(), nn.Linear(N_h, 5)) #for 4 desc/asc limit/none combinations self.dat_out_dirc = nn.Linear(50, 50) self.dat_out_dirc_out = nn.Sequential(nn.Tanh(), nn.Linear(50, 5)) #for 4 desc/asc limit/none combinations self.softmax = nn.Softmax() #dim=1 self.CE = nn.CrossEntropyLoss() self.log_softmax = nn.LogSoftmax() self.mlsml = nn.MultiLabelSoftMarginLoss() self.bce_logit = nn.BCEWithLogitsLoss() self.sigm = nn.Sigmoid() if gpu: self.cuda() self.feats_format = feats_format def forward(self, perm, st, ed, q_emb_var, q_len, col_emb_var, col_len, col_num, col_name_len, q_seq, col_seq, emb_layer, train=True): max_q_len = max(q_len) max_col_len = max(col_len) B = len(q_len) q_enc, _ = run_lstm(self.q_lstm, q_emb_var, q_len) col_enc, _ = col_name_encode(col_emb_var, col_name_len, col_len, self.col_lstm) # Predict number gby_num_att = torch.bmm(col_enc, self.gby_num_h(q_enc).transpose(1, 2)) for idx, num in enumerate(col_len): if num < max_col_len: gby_num_att[idx, num:, :] = -100 for idx, num in enumerate(q_len): if num < max_q_len: gby_num_att[idx, :, num:] = -100 gby_num_att_val = self.softmax(gby_num_att.view((-1, max_q_len))).view(B, -1, max_q_len) gby_num_K = (q_enc.unsqueeze(1) * gby_num_att_val.unsqueeze(3)).sum(2).sum(1) ody_num_score = self.gby_num_out(self.gby_num_l(gby_num_K)) # Predict columns. att_val_qc = torch.bmm(col_enc, self.q_att(q_enc).transpose(1, 2)) for idx, num in enumerate(q_len): if num < max_q_len: att_val_qc[idx, :, num:] = -100 att_prob_qc = self.softmax(att_val_qc.view((-1, max_q_len))).view(B, -1, max_q_len) # q_weighted: (B, max_col_len, hid_dim) q_weighted = (q_enc.unsqueeze(1) * att_prob_qc.unsqueeze(3)).sum(2) # Compute prediction scores # self.col_out.squeeze(): (B, max_col_len) col_score = self.col_out(self.col_out_q(q_weighted) + self.col_out_c(col_enc)).squeeze() for idx, num in enumerate(col_len): if num < max_col_len: col_score[idx, num:] = -100 # Predict aggregation agg_att_val = torch.bmm(col_enc, self.agg_att(q_enc).transpose(1, 2)) for idx, num in enumerate(col_len): if num < max_col_len: agg_att_val[idx, num:, :] = -100 for idx, num in enumerate(q_len): if num < max_q_len: agg_att_val[idx, :, num:] = -100 agg_att = self.softmax(agg_att_val.view((-1, max_q_len))).view(B, -1, max_q_len) # q_weighted_num: (B, hid_dim) q_weighted_agg = (q_enc.unsqueeze(1) * agg_att.unsqueeze(3)).sum(2).sum(1) # self.col_num_out: (B, 4) agg_score = self.agg_out(self.agg_out_q(q_weighted_agg)) # Predict desc asc limit dat_att_val = torch.bmm(col_enc, self.dat_att(q_enc).transpose(1, 2)) for idx, num in enumerate(col_len): if num < max_col_len: dat_att_val[idx, num:, :] = -100 for idx, num in enumerate(q_len): if num < max_q_len: dat_att_val[idx, :, num:] = -100 dat_att = self.softmax(dat_att_val.view((-1, max_q_len))).view(B, -1, max_q_len) # q_weighted_num: (B, hid_dim) q_weighted_dat = (q_enc.unsqueeze(1) * dat_att.unsqueeze(3)).sum(2).sum(1) # self.col_num_out: (B, 4) col_scores = col_score.data.cpu().numpy() chosen_col_gt = [np.argmax(col_scores[b]) for b in range(B)] assert B == ed - st dirc_vecs = torch.zeros([B, 50]) zero_feats = torch.zeros([50]) if self.gpu: dirc_vecs = dirc_vecs.cuda() zero_feats = zero_feats.cuda() dirc_vecs = Variable(dirc_vecs, requires_grad=False) for b in range(st, ed): idx = perm[b] gt_col = chosen_col_gt[b - st] dirc_feat = emb_layer.get_direction_feature(max_q_len, idx, gt_col, train) if self.feats_format == 'direct': # [max_len] (-1/0/1) mask = (att_prob_qc[b - st, gt_col] * dirc_feat[0]) mask_i = mask.cpu().data.numpy()[0] if mask_i > 0: dirc_vec = dirc_feat[1] elif mask_i < 0: dirc_vec = dirc_feat[2] else: dirc_vec = zero_feats dirc_vec = Variable(dirc_vec, requires_grad=False) else: # [max_len, len(feats)] dirc_vec = torch.matmul(att_prob_qc[b - st, gt_col].unsqueeze(0), dirc_feat).squeeze() dirc_vecs[b - st] = dirc_vec dat_score = self.dat_out(self.dat_out_q(q_weighted_dat)) + \ self.dat_out_dirc_out(self.dat_out_dirc(dirc_vecs)) score = (ody_num_score, col_score, agg_score, dat_score) return score
40.9375
138
0.593282
4a2221dcc1dbbee761d960e48a54e00ed4c67ca9
1,851
py
Python
augpathlib/repo_patch.py
tmsincomb/augpathlib
ed9c0edff540741fca866780a3d043a3b7644f08
[ "MIT" ]
null
null
null
augpathlib/repo_patch.py
tmsincomb/augpathlib
ed9c0edff540741fca866780a3d043a3b7644f08
[ "MIT" ]
null
null
null
augpathlib/repo_patch.py
tmsincomb/augpathlib
ed9c0edff540741fca866780a3d043a3b7644f08
[ "MIT" ]
null
null
null
import git class _Repo(git.Repo): # FIXME should we subclass Repo for this or patch ?? """ monkey patching """ def getRef(self, ref_name): for ref in self.refs: if ref.name == ref_name: return ref else: raise ValueError(f'No ref with name: {ref_name}') # monkey patch git.Repo git.Repo.getRef = _Repo.getRef class _Reference(git.Reference): """ monkey patching """ def __enter__(self): """ Checkout the ref for this head. `git stash --all` beforehand and restore during __exit__. If the ref is the same, then the stash step still happens. If you need to modify the uncommitted state of a repo this is not the tool you should use. """ if not self.is_valid(): raise exc.InvalidRefError(f'Not a valid ref: {self.name}') self.__original_branch = self.repo.active_branch self.__stash = self.repo.git.stash('--all') # always stash if self.__stash == 'No local changes to save': self.__stash = None if self == self.__original_branch: return self self.checkout() return self def __exit__(self, exc_type, exc_value, traceback): _stash = self.repo.git.stash('--all') # always stash on the way out as well if _stash == 'No local changes to save': stash = 'stash@{0}' else: stash = "stash@{1}" if self.__original_branch != self: self.__original_branch.checkout() # TODO check to make sure no other stashes were pushed on top if self.__stash is not None: self.repo.git.stash('pop', stash) self.__stash = None # monkey patch git.Reference git.Reference.__enter__ = _Reference.__enter__ git.Reference.__exit__ = _Reference.__exit__
28.921875
84
0.612102
4a2222d1ffe1c59b24e53ba72f1adff8ae5202a8
2,445
py
Python
SearchUtility_Backend/PDFTokenizer.py
ramacpr/AnyDocSearch
1b3547f418be2fcc5e1f8ae8d83af61e7234dea3
[ "MIT" ]
1
2020-12-30T13:51:22.000Z
2020-12-30T13:51:22.000Z
SearchUtility_Backend/PDFTokenizer.py
ramacpr/AnyDocSearch
1b3547f418be2fcc5e1f8ae8d83af61e7234dea3
[ "MIT" ]
null
null
null
SearchUtility_Backend/PDFTokenizer.py
ramacpr/AnyDocSearch
1b3547f418be2fcc5e1f8ae8d83af61e7234dea3
[ "MIT" ]
null
null
null
import time import MyExtendedStopWords as StopWordsHelper import MyDatabaseManager as dbManager import PyPDFEx as PDFHelper from nltk.tokenize import word_tokenize as WordHelper from nltk.stem import PorterStemmer from wordsegment import load from SearchUtility_Backend.SearchUtilityLogger import SearchUtilityLogger load() class PDFTokenizer: __stopWordObj = StopWordsHelper.ExtendedStopWord() __StopWordsList = "" __dbObj = None __logger = SearchUtilityLogger.GetLoggerObj() def __init__(self): self.__StopWordsList = self.__stopWordObj.thestopwords() self.__dbObj = dbManager.SqlDBManager() def __update_word_addresses(self, pdf_file_obj, doc_id): try: pdf_reader = PDFHelper.PdfFileReader(pdf_file_obj) for pageIndex in range(0, pdf_reader.numPages): page_obj = pdf_reader.getPage(pageIndex) # tokenizing originalPageContent = WordHelper(page_obj.extractText().lower()) # stemming stemmedContent = [PorterStemmer().stem(w) for w in originalPageContent] # store the word db positionInPage = 0 for term in stemmedContent: if term not in self.__StopWordsList: self.__dbObj.UpdateListing(term, doc_id, pageIndex, positionInPage) positionInPage += 1 except: self.__logger.fatal("Unexpected error in __update_word_addresses.") def tokenize(self, pdf_file_name_list): for pdf_file_name in pdf_file_name_list: self.__dbObj.SetServerUpdateState(True) doc_id = self.__dbObj.GetDocumentID(pdf_file_name) if doc_id is -1: continue start = time.clock() try: self.__logger.info("Updating database for file [" + str(doc_id) + "] " + pdf_file_name) pdf_file_obj = open(pdf_file_name, "rb") self.__update_word_addresses(pdf_file_obj, doc_id) self.__logger.info("Completed in " + str(time.clock() - start) + " seconds.") except: self.__logger.fatal("Unexpected error. " + pdf_file_name + " incorrectly tokenized.") finally: self.__dbObj.SetServerUpdateState(False) pdf_file_obj.close()
41.440678
104
0.622086
4a222310e407a3dd9106b01210dde6ee3443a807
8,391
py
Python
tests/io/test_yaml_dataset.py
lblanche/kedro
659a47b161d452557504b07971722125a80f6294
[ "Apache-2.0" ]
null
null
null
tests/io/test_yaml_dataset.py
lblanche/kedro
659a47b161d452557504b07971722125a80f6294
[ "Apache-2.0" ]
null
null
null
tests/io/test_yaml_dataset.py
lblanche/kedro
659a47b161d452557504b07971722125a80f6294
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2019 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. from pathlib import PurePosixPath import pandas as pd import pytest from fsspec.implementations.http import HTTPFileSystem from fsspec.implementations.local import LocalFileSystem from gcsfs import GCSFileSystem from pandas.testing import assert_frame_equal from s3fs.core import S3FileSystem from kedro.io import DataSetError, YAMLDataSet from kedro.io.core import Version @pytest.fixture def filepath_yaml(tmp_path): return str(tmp_path / "test.yaml") @pytest.fixture def yaml_data_set(filepath_yaml, save_args): return YAMLDataSet(filepath=filepath_yaml, save_args=save_args) @pytest.fixture def versioned_yaml_data_set(filepath_yaml, load_version, save_version): return YAMLDataSet( filepath=filepath_yaml, version=Version(load_version, save_version) ) @pytest.fixture def dummy_data(): return {"col1": 1, "col2": 2, "col3": 3} class TestYAMLDataSet: def test_save_and_load(self, yaml_data_set, dummy_data): """Test saving and reloading the data set.""" yaml_data_set.save(dummy_data) reloaded = yaml_data_set.load() assert dummy_data == reloaded def test_exists(self, yaml_data_set, dummy_data): """Test `exists` method invocation for both existing and nonexistent data set.""" assert not yaml_data_set.exists() yaml_data_set.save(dummy_data) assert yaml_data_set.exists() @pytest.mark.parametrize( "save_args", [{"k1": "v1", "index": "value"}], indirect=True ) def test_save_extra_params(self, yaml_data_set, save_args): """Test overriding the default save arguments.""" for key, value in save_args.items(): assert yaml_data_set._save_args[key] == value def test_load_missing_file(self, yaml_data_set): """Check the error when trying to load missing file.""" pattern = r"Failed while loading data from data set YAMLDataSet\(.*\)" with pytest.raises(DataSetError, match=pattern): yaml_data_set.load() @pytest.mark.parametrize( "filepath,instance_type", [ ("s3://bucket/file.yaml", S3FileSystem), ("file:///tmp/test.yaml", LocalFileSystem), ("/tmp/test.yaml", LocalFileSystem), ("gcs://bucket/file.yaml", GCSFileSystem), ("https://example.com/file.yaml", HTTPFileSystem), ], ) def test_protocol_usage(self, filepath, instance_type): data_set = YAMLDataSet(filepath=filepath) assert isinstance(data_set._fs, instance_type) # _strip_protocol() doesn't strip http(s) protocol if data_set._protocol == "https": path = filepath.split("://")[-1] else: path = data_set._fs._strip_protocol(filepath) assert str(data_set._filepath) == path assert isinstance(data_set._filepath, PurePosixPath) def test_catalog_release(self, mocker): fs_mock = mocker.patch("fsspec.filesystem").return_value filepath = "test.yaml" data_set = YAMLDataSet(filepath=filepath) data_set.release() fs_mock.invalidate_cache.assert_called_once_with(filepath) def test_dataframe_support(self, yaml_data_set): data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5]}) yaml_data_set.save(data) reloaded = yaml_data_set.load() assert isinstance(reloaded, dict) data_df = pd.DataFrame.from_dict(reloaded) assert_frame_equal(data, data_df) class TestYAMLDataSetVersioned: def test_version_str_repr(self, load_version, save_version): """Test that version is in string representation of the class instance when applicable.""" filepath = "test.yaml" ds = YAMLDataSet(filepath=filepath) ds_versioned = YAMLDataSet( filepath=filepath, version=Version(load_version, save_version) ) assert filepath in str(ds) assert "version" not in str(ds) assert filepath in str(ds_versioned) ver_str = "version=Version(load={}, save='{}')".format( load_version, save_version ) assert ver_str in str(ds_versioned) assert "YAMLDataSet" in str(ds_versioned) assert "YAMLDataSet" in str(ds) assert "protocol" in str(ds_versioned) assert "protocol" in str(ds) # Default save_args assert "save_args={'default_flow_style': False}" in str(ds) assert "save_args={'default_flow_style': False}" in str(ds_versioned) def test_save_and_load(self, versioned_yaml_data_set, dummy_data): """Test that saved and reloaded data matches the original one for the versioned data set.""" versioned_yaml_data_set.save(dummy_data) reloaded = versioned_yaml_data_set.load() assert dummy_data == reloaded def test_no_versions(self, versioned_yaml_data_set): """Check the error if no versions are available for load.""" pattern = r"Did not find any versions for YAMLDataSet\(.+\)" with pytest.raises(DataSetError, match=pattern): versioned_yaml_data_set.load() def test_exists(self, versioned_yaml_data_set, dummy_data): """Test `exists` method invocation for versioned data set.""" assert not versioned_yaml_data_set.exists() versioned_yaml_data_set.save(dummy_data) assert versioned_yaml_data_set.exists() def test_prevent_overwrite(self, versioned_yaml_data_set, dummy_data): """Check the error when attempting to override the data set if the corresponding yaml file for a given save version already exists.""" versioned_yaml_data_set.save(dummy_data) pattern = ( r"Save path \`.+\` for YAMLDataSet\(.+\) must " r"not exist if versioning is enabled\." ) with pytest.raises(DataSetError, match=pattern): versioned_yaml_data_set.save(dummy_data) @pytest.mark.parametrize( "load_version", ["2019-01-01T23.59.59.999Z"], indirect=True ) @pytest.mark.parametrize( "save_version", ["2019-01-02T00.00.00.000Z"], indirect=True ) def test_save_version_warning( self, versioned_yaml_data_set, load_version, save_version, dummy_data ): """Check the warning when saving to the path that differs from the subsequent load path.""" pattern = ( r"Save version `{0}` did not match load version `{1}` " r"for YAMLDataSet\(.+\)".format(save_version, load_version) ) with pytest.warns(UserWarning, match=pattern): versioned_yaml_data_set.save(dummy_data) def test_http_filesystem_no_versioning(self): pattern = r"HTTP\(s\) DataSet doesn't support versioning\." with pytest.raises(DataSetError, match=pattern): YAMLDataSet( filepath="https://example.com/file.yaml", version=Version(None, None) )
39.394366
85
0.687046
4a2223eb045882f94ff2e63780be8aac996373eb
837
py
Python
aoc-2021-python/day1.py
mihaicostin/advent-of-code
f6c1121e831fb55a7620369970b31654ee5e50e3
[ "MIT" ]
1
2018-12-07T13:48:24.000Z
2018-12-07T13:48:24.000Z
aoc-2021-python/day1.py
mihaicostin/adventofcode-2018
f6c1121e831fb55a7620369970b31654ee5e50e3
[ "MIT" ]
null
null
null
aoc-2021-python/day1.py
mihaicostin/adventofcode-2018
f6c1121e831fb55a7620369970b31654ee5e50e3
[ "MIT" ]
null
null
null
# count the number of times a depth measurement increases from the previous measurement. # (There is no measurement before the first measurement.) count = 0 with open("day1.txt") as f: lines = f.readlines() prev = -1 for line in lines: if (int(line) > prev) & (prev != -1): count = count + 1 prev = int(line) print(count) # part 2 secondCount = 0 def window_sum(array, idx): if idx > 1: return array[idx] + array[idx - 1] + array[idx - 2] return -1 with open("day1.txt") as f: lines = f.readlines() numbers = list(map(lambda el: int(el), lines)) for idx, val in enumerate(numbers): if idx > 2: a = window_sum(numbers, idx - 1) b = window_sum(numbers, idx) if b > a: secondCount += 1 print(secondCount)
23.914286
88
0.575866
4a22264368e1bd9e5dd5939ca743cef0bebb4616
4,782
py
Python
experiments/ants3d_atlas_fine_remap_labels.py
BlueBrain/atlas-annotation
118af9b95518a19b64a9d8008aabed557eb0f646
[ "Apache-2.0" ]
null
null
null
experiments/ants3d_atlas_fine_remap_labels.py
BlueBrain/atlas-annotation
118af9b95518a19b64a9d8008aabed557eb0f646
[ "Apache-2.0" ]
8
2021-11-02T17:23:22.000Z
2022-03-02T12:29:26.000Z
experiments/ants3d_atlas_fine_remap_labels.py
BlueBrain/atlas-annotation
118af9b95518a19b64a9d8008aabed557eb0f646
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2021, Blue Brain Project, EPFL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """3D atlases registration (after remapping labels) script.""" import logging import sys import numpy as np import utils from atlannot import load_volume from atlannot.ants import register, transform from atlannot.utils import remap_labels # Parameters description = """\ 3D ANTsPy registration with atlases (after remapping labels values): fixed = v3 atlas moving = v2 atlas """ experiment_name = utils.get_script_file_name() v2_atlas_path = utils.get_v2_atlas_fine_path() v3_atlas_path = utils.get_v3_atlas_fine_path() nissl_path = utils.get_nissl_path() seed = 2 # (can also be None) # Initialize the logger logger = logging.getLogger(experiment_name) script_info = """ Goal: Computing the registration between two images/volumes after switching randomly the labels. Assumptions: - The input images/volumes have the same shape. - The input images/volumes are considered as label images. - The registration is computed on the entire input images at once. Which means that if volumes are specified, the registration is a 3D registration. If 2D images are specified, this is a 2D registration. Steps: - Loading of the images - Creation of union list containing all the labels appearing at least in one of the two input images/volumes. - The conversion previous labels/new labels is done by taking as new label the position in the list of the previous label. For example: Union List: [0, 1002, 6, 9] New labels: [0, 1, 2, 3] Which means 0 stays 0 in the new volume, 1002 is becoming 1, 6 is becoming 2, ... Obviously, there are other strategies to convert previous labels to new ones. - Creation of new images/volumes with corresponding new labels. - Computation of the ANTsPY registration on the new images/volumes. - Applying transform found in the previous step at the initial images/volumes. - Computation of baseline misalignement (between inputs) and the results misalignment (between input reference and warped moving image). """ def main(): """3D atlases registration (after remapping labels).""" # Paths output_dir = utils.get_results_dir() / experiment_name if not utils.can_write_to_dir(output_dir): print("Cannot write to output directory. Stopping") return 1 # Load data logger.info("Loading data") v3_atlas = load_volume(v3_atlas_path, normalize=False) v2_atlas = load_volume(v2_atlas_path, normalize=False) nissl_volume = load_volume(nissl_path) # Preprocess data logger.info("Preprocessing data") v3_atlas_pre, v2_atlas_pre = preprocess_atlases( v3_atlas, v2_atlas, ) # Registration logger.info("Starting registration") df = register(fixed=v3_atlas_pre, moving=v2_atlas_pre) # Warping logger.info("Warping volumes") warped_atlas = transform( v2_atlas.astype(np.float32), df, interpolator="genericLabel", ) warped_atlas = warped_atlas.astype(v2_atlas.dtype) warped_nissl = transform(nissl_volume, df) # Write output logger.info("Saving results") # metadata with open(output_dir / "description.txt", "w") as fp: fp.write(description) with open(output_dir / "fixed_path.txt", "w") as fp: fp.write(str(v2_atlas_path) + "\n") with open(output_dir / "moving_path.txt", "w") as fp: fp.write(str(v3_atlas_path) + "\n") with open(output_dir / "nissl_path.txt", "w") as fp: fp.write(str(nissl_path) + "\n") # volumes np.save(output_dir / "warped_atlas", warped_atlas) np.save(output_dir / "warped_nissl", warped_nissl) np.save(output_dir / "df", df) logger.info(f"Finished. The results were saved to {output_dir}") def preprocess_atlases(*atlases, seed=None): """Preprocess atlases. Parameters ---------- atlases : Iterable of np.ndarray All atlases to preprocess. Returns ------- new_atlases : Iterable of np.ndarray Preprocessed atlases """ atlases_pre, _ = remap_labels(atlases, seed=seed) return [atlas.astype(np.float32) for atlas in atlases_pre] if __name__ == "__main__": logging.basicConfig(level=logging.INFO) sys.exit(main())
32.97931
78
0.719783
4a22264870ccdf95932f4a5b2fa01f6e3dbecb2c
20,037
py
Python
kopf/structs/references.py
asteven/kopf
433709dc8846f4b399e98f04c843362230357225
[ "MIT" ]
null
null
null
kopf/structs/references.py
asteven/kopf
433709dc8846f4b399e98f04c843362230357225
[ "MIT" ]
null
null
null
kopf/structs/references.py
asteven/kopf
433709dc8846f4b399e98f04c843362230357225
[ "MIT" ]
null
null
null
import asyncio import dataclasses import enum import fnmatch import re import urllib.parse from typing import Collection, Iterable, Iterator, List, Mapping, \ MutableMapping, NewType, Optional, Pattern, Set, Union # A namespace specification with globs, negations, and some minimal syntax; see `match_namespace()`. # Regexps are also supported if pre-compiled from the code, not from the CLI options as raw strings. NamespacePattern = Union[str, Pattern] # A specific really existing addressable namespace (at least, the one assumed to be so). # Made as a NewType for stricter type-checking to avoid collisions with patterns and other strings. NamespaceName = NewType('NamespaceName', str) # A namespace reference usable in the API calls. `None` means cluster-wide API calls. Namespace = Optional[NamespaceName] def select_specific_namespaces(patterns: Iterable[NamespacePattern]) -> Collection[NamespaceName]: """ Select the namespace specifications that can be used as direct namespaces. It is used in a fallback scenario when the namespace observation is either disabled or not possible due to restricted permission, while the normal operation is still possible in the very specific configured namespaces. """ return { NamespaceName(pattern) for pattern in patterns if isinstance(pattern, str) # excl. regexps & etc. if not('!' in pattern or '*' in pattern or '?' in pattern or ',' in pattern) } def match_namespace(name: NamespaceName, pattern: NamespacePattern) -> bool: """ Check if the specific namespace matches a namespace specification. Each individual namespace pattern is a string that follows some syntax: * the pattern consists of comma-separated parts (spaces are ignored); * each part is either an inclusive or an exclusive (negating) glob; * each glob can have ``*`` and ``?`` placeholders for any or one symbols; * the exclusive globs start with ``!``; * if the the first glob is exclusive, then a preceding catch-all is implied. A check of whether a namespace matches the individual pattern, is done by iterating the pattern's globs left-to-right: the exclusive patterns exclude it from the match; the first inclusive pattern does the initial match, while the following inclusive patterns only re-match it if it was excluded before; i.e., they do not do the full initial match. For example, the pattern ``"myapp-*, !*-pr-*, *pr-123"`` will match ``myapp-test``, ``myapp-live``, even ``myapp-pr-123``, but not ``myapp-pr-456`` and certainly not ``otherapp-pr-123``. The latter one, despite it matches the last glob, is not included because it was not matched by the initial pattern. On the other hand, the pattern ``"!*-pr-*, *pr-123"`` (equivalent to ``"*, !*-pr-*, *pr-123"``) will match ``myapp-test``, ``myapp-live``, ``myapp-pr-123``, ``anyapp-anything``, and even ``otherapp-pr-123`` -- though not ``myapp-pr-456``. Unlike in the first example, the otherapp's namespace was included initially by the first glob (the implied ``*``), and therefore could be re-matched by the last glob ``*pr-123`` after being excluded by ``!*-pr-*``. While these are theoretical capabilities of this pattern-matching algorithm, it is not expected that they will be abused too much. The main intention is to have simple one-glob patterns (either inclusive or exclusive), only rarely followed by a single negation. """ # Regexps are powerful enough on their own -- we do not parse or interpret them. if isinstance(pattern, re.Pattern): return bool(pattern.fullmatch(name)) # The first pattern should be an inclusive one. Unless it is, prepend a catch-all pattern. globs = [glob.strip() for glob in pattern.split(',')] if not globs or globs[0].startswith('!'): globs.insert(0, '*') # Iterate and calculate: every inclusive pattern makes the namespace to match regardless, # of the previous result; every exclusive pattern un-matches it if it was matched before. matches = first_match = fnmatch.fnmatch(name, globs[0]) for glob in globs[1:]: if glob.startswith('!'): matches = matches and not fnmatch.fnmatch(name, glob.lstrip('!')) else: matches = matches or (first_match and fnmatch.fnmatch(name, glob)) return matches # Detect conventional API versions for some cases: e.g. in "myresources.v1alpha1.example.com". # Non-conventional versions are indistinguishable from API groups ("myresources.foo1.example.com"). # See also: https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/ K8S_VERSION_PATTERN = re.compile(r'^v\d+(?:(?:alpha|beta)\d+)?$') @dataclasses.dataclass(frozen=True, eq=False, repr=False) class Resource: """ A reference to a very specific custom or built-in resource kind. It is used to form the K8s API URLs. Generally, K8s API only needs an API group, an API version, and a plural name of the resource. All other names are remembered to match against resource selectors, for logging, and for informational purposes. """ group: str version: str plural: str kind: Optional[str] = None singular: Optional[str] = None shortcuts: Collection[str] = () categories: Collection[str] = () subresources: Collection[str] = () namespaced: Optional[bool] = None preferred: bool = True # against conventions, but makes versionless selectors match by default. verbs: Collection[str] = () def __hash__(self) -> int: return hash((self.group, self.version, self.plural)) def __eq__(self, other: object) -> bool: if isinstance(other, Resource): self_tuple = (self.group, self.version, self.plural) other_tuple = (other.group, other.version, other.plural) return self_tuple == other_tuple else: return NotImplemented def __repr__(self) -> str: plural_main, *subs = self.plural.split('/') name_text = f'{plural_main}.{self.version}.{self.group}'.strip('.') subs_text = f'/{"/".join(subs)}' if subs else '' return f'{name_text}{subs_text}' # Mostly for tests, to be used as `@kopf.on.event(*resource, ...)` def __iter__(self) -> Iterator[str]: return iter((self.group, self.version, self.plural)) @property def name(self) -> str: return f'{self.plural}.{self.group}'.strip('.') @property def api_version(self) -> str: # Strip heading/trailing slashes if group is absent (e.g. for pods). return f'{self.group}/{self.version}'.strip('/') def get_url( self, *, server: Optional[str] = None, namespace: Namespace = None, name: Optional[str] = None, subresource: Optional[str] = None, params: Optional[Mapping[str, str]] = None, ) -> str: if subresource is not None and name is None: raise ValueError("Subresources can be used only with specific resources by their name.") if not self.namespaced and namespace is not None: raise ValueError(f"Specific namespaces are not supported for cluster-scoped resources.") if self.namespaced and namespace is None and name is not None: raise ValueError("Specific namespaces are required for specific namespaced resources.") return self._build_url(server, params, [ '/api' if self.group == '' and self.version == 'v1' else '/apis', self.group, self.version, 'namespaces' if self.namespaced and namespace is not None else None, namespace if self.namespaced and namespace is not None else None, self.plural, name, subresource, ]) def get_version_url( self, *, server: Optional[str] = None, params: Optional[Mapping[str, str]] = None, ) -> str: return self._build_url(server, params, [ '/api' if self.group == '' and self.version == 'v1' else '/apis', self.group, self.version, ]) def _build_url( self, server: Optional[str], params: Optional[Mapping[str, str]], parts: List[Optional[str]], ) -> str: query = urllib.parse.urlencode(params, encoding='utf-8') if params else '' path = '/'.join([part for part in parts if part]) url = path + ('?' if query else '') + query return url if server is None else server.rstrip('/') + '/' + url.lstrip('/') class Marker(enum.Enum): """ A special marker to handle all resources possible, built-in and custom. """ EVERYTHING = enum.auto() # An explicit catch-all marker for positional arguments of resource selectors. EVERYTHING = Marker.EVERYTHING @dataclasses.dataclass(frozen=True) class Selector: """ A resource specification that can match several resource kinds. The resource specifications are not usable in K8s API calls, as the API has no endpoints with masks or placeholders for unknown or catch-all resource identifying parts (e.g. any API group, any API version, any name). They are used only locally in the operator to match against the actual resources with specific names (:class:`Resource`). The handlers are defined with resource specifications, but are invoked with specific resource kinds. Even if those specifications look very concrete and allow no variations, they still remain specifications. """ arg1: dataclasses.InitVar[Union[None, str, Marker]] = None arg2: dataclasses.InitVar[Union[None, str, Marker]] = None arg3: dataclasses.InitVar[Union[None, str, Marker]] = None argN: dataclasses.InitVar[None] = None # a runtime guard against too many positional arguments group: Optional[str] = None version: Optional[str] = None kind: Optional[str] = None plural: Optional[str] = None singular: Optional[str] = None shortcut: Optional[str] = None category: Optional[str] = None any_name: Optional[Union[str, Marker]] = None def __post_init__( self, arg1: Union[None, str, Marker], arg2: Union[None, str, Marker], arg3: Union[None, str, Marker], argN: None, # a runtime guard against too many positional arguments ) -> None: # Since the class is frozen & read-only, post-creation field adjustment is done via a hack. # This is the same hack as used in the frozen dataclasses to initialise their fields. if argN is not None: raise TypeError("Too many positional arguments. Max 3 positional args are accepted.") elif arg3 is not None: object.__setattr__(self, 'group', arg1) object.__setattr__(self, 'version', arg2) object.__setattr__(self, 'any_name', arg3) elif arg2 is not None and isinstance(arg1, str) and '/' in arg1: object.__setattr__(self, 'group', arg1.rsplit('/', 1)[0]) object.__setattr__(self, 'version', arg1.rsplit('/')[-1]) object.__setattr__(self, 'any_name', arg2) elif arg2 is not None and arg1 == 'v1': object.__setattr__(self, 'group', '') object.__setattr__(self, 'version', arg1) object.__setattr__(self, 'any_name', arg2) elif arg2 is not None: object.__setattr__(self, 'group', arg1) object.__setattr__(self, 'any_name', arg2) elif arg1 is not None and isinstance(arg1, Marker): object.__setattr__(self, 'any_name', arg1) elif arg1 is not None and '.' in arg1 and K8S_VERSION_PATTERN.match(arg1.split('.')[1]): if len(arg1.split('.')) >= 3: object.__setattr__(self, 'group', arg1.split('.', 2)[2]) object.__setattr__(self, 'version', arg1.split('.')[1]) object.__setattr__(self, 'any_name', arg1.split('.')[0]) elif arg1 is not None and '.' in arg1: object.__setattr__(self, 'group', arg1.split('.', 1)[1]) object.__setattr__(self, 'any_name', arg1.split('.')[0]) elif arg1 is not None: object.__setattr__(self, 'any_name', arg1) # Verify that explicit & interpreted arguments have produced an unambiguous specification. names = [self.kind, self.plural, self.singular, self.shortcut, self.category, self.any_name] clean = [name for name in names if name is not None] if len(clean) > 1: raise TypeError(f"Ambiguous resource specification with names {clean}") if len(clean) < 1: raise TypeError(f"Unspecific resource with no names.") # For reasons unknown, the singular is empty for ALL builtin resources. This does not affect # the checks unless defined as e.g. ``singular=""``, which would match ALL builtins at once. # Thus we prohibit it until clarified why is it so, what does it mean, how to deal with it. if any([name == '' for name in names]): raise TypeError("Names must not be empty strings; either None or specific strings.") def __repr__(self) -> str: kwargs = {f.name: getattr(self, f.name) for f in dataclasses.fields(self)} kwtext = ', '.join([f'{key!s}={val!r}' for key, val in kwargs.items() if val is not None]) clsname = self.__class__.__name__ return f'{clsname}({kwtext})' @property def is_specific(self) -> bool: return (self.kind is not None or self.shortcut is not None or self.plural is not None or self.singular is not None or (self.any_name is not None and not isinstance(self.any_name, Marker))) def check(self, resource: Resource) -> bool: """ Check if a specific resources matches this resource specification. """ # Core v1 events are excluded from EVERYTHING: they are implicitly produced during handling, # and thus trigger unnecessary handling cycles (even for other resources, not for events). return ( (self.group is None or self.group == resource.group) and ((self.version is None and resource.preferred) or self.version == resource.version) and (self.kind is None or self.kind == resource.kind) and (self.plural is None or self.plural == resource.plural) and (self.singular is None or self.singular == resource.singular) and (self.category is None or self.category in resource.categories) and (self.shortcut is None or self.shortcut in resource.shortcuts) and (self.any_name is None or self.any_name == resource.kind or self.any_name == resource.plural or self.any_name == resource.singular or self.any_name in resource.shortcuts or (self.any_name is Marker.EVERYTHING and not EVENTS.check(resource) and not EVENTS_K8S.check(resource)))) def select(self, resources: Collection[Resource]) -> Collection[Resource]: result = {resource for resource in resources if self.check(resource)} # Core v1 API group's priority is hard-coded in K8s and kubectl. Do the same. For example: # whenever "pods" is specified, and "pods.v1" & "pods.v1beta1.metrics.k8s.io" are found, # implicitly give priority to "v1" and hide the existence of non-"v1" groups. # But not if they are specified by categories! -- In that case, keep all resources as is. if self.is_specific: v1only = {resource for resource in result if resource.group == ''} result = v1only or result return result # Some predefined API endpoints that we use in the framework itself (not exposed to the operators). # Note: the CRDs are versionless: we do not look into its ``spec`` stanza, we only watch for # the fact of changes, so the schema does not matter, any cluster-preferred API version would work. # Note: the peering resources are either zalando.org/v1 or kopf.dev/v1; both cannot co-exist because # they would share the names, so K8s will not let this. It is done for domain name transitioning. CRDS = Selector('apiextensions.k8s.io', 'customresourcedefinitions') EVENTS = Selector('v1', 'events') EVENTS_K8S = Selector('events.k8s.io', 'events') # only for exclusion from EVERYTHING NAMESPACES = Selector('v1', 'namespaces') CLUSTER_PEERINGS = Selector('clusterkopfpeerings') NAMESPACED_PEERINGS = Selector('kopfpeerings') class Backbone(Mapping[Selector, Resource]): """ Actual resources used in the core (reactor & engines) of the framework. Why? The codebase only refers to the resources by API group/version & names. The actual resources can be different in different clusters, usually due to different versions: e.g. "v1" vs. "v1beta1" for CRDs. The actual backbone resources are detected in the initial cluster scanning during the operator startup in :func:`resource_scanner`. The backbone resources cannot be changed at runtime after they are found for the first time -- since the core tasks are already started with those resource definitions, and cannot be easily restarted. This does not apply to the resources of the operator (not the framework!), where the resources can be created, changed, and deleted at runtime easily. """ def __init__(self) -> None: super().__init__() self._items: MutableMapping[Selector, Resource] = {} self._revised = asyncio.Condition() self.selectors = [NAMESPACES, EVENTS, CRDS, CLUSTER_PEERINGS, NAMESPACED_PEERINGS] def __len__(self) -> int: return len(self._items) def __iter__(self) -> Iterator[Selector]: return iter(self._items) def __getitem__(self, item: Selector) -> Resource: return self._items[item] async def fill( self, *, resources: Iterable[Resource], ) -> None: async with self._revised: for resource in resources: for spec in self.selectors: if spec not in self._items: if spec.check(resource): self._items[spec] = resource self._revised.notify_all() async def wait_for( self, selector: Selector, ) -> Resource: """ Wait for the actual resource to be found in the cluster scanning. The resources can be cached in-memory. Once the resource is retrieved, it never changes in memory even if it changes in the cluster. This is intentional -- to match with the nature of the cluster scanning, which waits for the resources and then starts background jobs, which are not easy to terminate without terminating the whole operator. """ async with self._revised: await self._revised.wait_for(lambda: selector in self) return self[selector] @dataclasses.dataclass(frozen=True) class Insights: """ Actual resources & namespaces served by the operator. """ namespaces: Set[Namespace] = dataclasses.field(default_factory=set) resources: Set[Resource] = dataclasses.field(default_factory=set) backbone: Backbone = dataclasses.field(default_factory=Backbone) # Signalled when anything changes in the insights. revised: asyncio.Condition = dataclasses.field(default_factory=asyncio.Condition) # The flags that are set after the initial listing is finished. Not cleared afterwards. ready_namespaces: asyncio.Event = dataclasses.field(default_factory=asyncio.Event) ready_resources: asyncio.Event = dataclasses.field(default_factory=asyncio.Event)
44.725446
118
0.658182
4a222722b18e220e523b12f68d6b5143f3d55a84
1,214
py
Python
src/recognition/recognize.py
amaanabbasi/LicensePlateDetectionRecognition
5b44d0cab8d084dbfa7af6a4609c062bbc8c1935
[ "CNRI-Python" ]
2
2020-01-22T13:24:11.000Z
2020-04-24T08:03:14.000Z
src/recognition/recognize.py
amaanabbasi/LicensePlateDetectionRecognition
5b44d0cab8d084dbfa7af6a4609c062bbc8c1935
[ "CNRI-Python" ]
5
2020-01-28T23:15:25.000Z
2022-02-10T01:24:45.000Z
src/recognition/recognize.py
amaanabbasi/LicensePlateDetectionRecognition
5b44d0cab8d084dbfa7af6a4609c062bbc8c1935
[ "CNRI-Python" ]
1
2020-02-03T16:17:24.000Z
2020-02-03T16:17:24.000Z
from keras.models import load_model import cv2 import numpy as np import matplotlib.pyplot as plt from keras.models import model_from_json def preprocess_img(img, flag=0): """ Takes in a character image, convert to gray, 28x28, add dimensions acc to model input. """ # print(img.shape) # img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # img= np.array(img) img = cv2.resize(img, (28, 28)) if flag: img[img < 15] = 0 img[img > 15] = 1 # img = np.expand_dims(img, axis=0) # img = np.expand_dims(img, axis=4) return img def recognize_chracters(segmented_characters, t_name, t_value): t = {} detected_plate = [] j = 0 for segmented in segmented_characters: segmented = preprocess_img(segmented, 1) cv2.imwrite("segmented/" + str(j) + ".jpg", segmented) j += 1 # cv2.waitKey(0) # cv2.destroyAllWindows() for i in range(len(t_name)): template = t_value[i] template = preprocess_img(template, 0) diff = (template - segmented).mean() t[t_name[i]] = diff detected_plate.append(min(t, key=t.get)) return detected_plate
24.77551
77
0.603789
4a22287a78aa56848bfe57266b9f7d39a6105f2a
1,663
py
Python
tests/grammpy_test/oldapi_tests/term-nonterm-grammar-handling_tests/TerminalGetTest.py
PatrikValkovic/grammpy
8308a1fd349bf9ea0d267360cc9a4ab20d1629e8
[ "MIT" ]
1
2021-02-04T12:41:08.000Z
2021-02-04T12:41:08.000Z
tests/grammpy_test/oldapi_tests/term-nonterm-grammar-handling_tests/TerminalGetTest.py
PatrikValkovic/grammpy
8308a1fd349bf9ea0d267360cc9a4ab20d1629e8
[ "MIT" ]
3
2017-07-08T16:28:52.000Z
2020-04-23T18:06:24.000Z
tests/grammpy_test/oldapi_tests/term-nonterm-grammar-handling_tests/TerminalGetTest.py
PatrikValkovic/grammpy
8308a1fd349bf9ea0d267360cc9a4ab20d1629e8
[ "MIT" ]
1
2021-02-04T12:41:10.000Z
2021-02-04T12:41:10.000Z
#!/usr/bin/env python """ :Author Patrik Valkovic :Created 03.08.2017 12:28 :Licence MIT Part of grammpy """ from unittest import TestCase, main from grammpy.old_api import Grammar class TempClass: pass class TerminalGetTest(TestCase): def test_getTermEmpty(self): gr = Grammar() self.assertIsNone(gr.get_term(TempClass)) self.assertIsNone(gr.get_term(1)) self.assertIsNone(gr.get_term('asdf')) def test_getTermClass(self): gr = Grammar() gr.add_term(TempClass) self.assertEqual(gr.get_term(TempClass).s, TempClass) def test_getTermArray(self): gr = Grammar() gr.add_term([TempClass, 0, 'asdf']) g = gr.get_term([0, 'asdf']) for i in g: self.assertTrue(i.s in [TempClass, 0, 'asdf']) self.assertEqual(g[0].s, 0) self.assertEqual(g[1].s, 'asdf') def test_dontGetTermArray(self): gr = Grammar() gr.add_term([TempClass, 0, 'asdf']) g = gr.get_term([TempClass, 'a']) self.assertEqual(g[0].s, TempClass) self.assertIsNone(g[1]) def test_getTermTuple(self): gr = Grammar() gr.add_term([TempClass, 0, 'asdf']) g = gr.get_term((0, 'asdf')) for i in g: self.assertTrue(i.s in [TempClass, 0, 'asdf']) self.assertEqual(g[0].s, 0) self.assertEqual(g[1].s, 'asdf') def test_dontGetTermTuple(self): gr = Grammar() gr.add_term([TempClass, 0, 'asdf']) g = gr.get_term((TempClass, 'a')) self.assertEqual(g[0].s, TempClass) self.assertIsNone(g[1]) if __name__ == '__main__': main()
26.396825
61
0.593506
4a2229205d2e6e931c93ab61d2fc81607972de96
3,919
py
Python
shop/models/ordermodel.py
bennylope/django-shop
7e7cd743773405f193abefdb8aa30f28b17d71cd
[ "BSD-3-Clause" ]
1
2015-03-23T20:40:39.000Z
2015-03-23T20:40:39.000Z
shop/models/ordermodel.py
bennylope/django-shop
7e7cd743773405f193abefdb8aa30f28b17d71cd
[ "BSD-3-Clause" ]
null
null
null
shop/models/ordermodel.py
bennylope/django-shop
7e7cd743773405f193abefdb8aa30f28b17d71cd
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from distutils.version import LooseVersion from django.conf import settings from django.db import models from django.db.models.signals import pre_delete from django.utils.translation import ugettext_lazy as _ from shop.models.productmodel import Product from shop.util.fields import CurrencyField from shop.util.loader import load_class import django #============================================================================== # Extensibility #============================================================================== # This overrides the various models with classes loaded from the corresponding # setting if it exists. # Order model ORDER_MODEL = getattr(settings, 'SHOP_ORDER_MODEL', 'shop.models.defaults.order.Order') Order = load_class(ORDER_MODEL, 'SHOP_ORDER_MODEL') # Order item model ORDERITEM_MODEL = getattr(settings, 'SHOP_ORDERITEM_MODEL', 'shop.models.defaults.orderitem.OrderItem') OrderItem = load_class(ORDERITEM_MODEL, 'SHOP_ORDERITEM_MODEL') # Now we clear refrence to product from every OrderItem def clear_products(sender, instance, using, **kwargs): for oi in OrderItem.objects.filter(product=instance): oi.product = None oi.save() if LooseVersion(django.get_version()) < LooseVersion('1.3'): pre_delete.connect(clear_products, sender=Product) class OrderExtraInfo(models.Model): """ A holder for extra textual information to attach to this order. """ order = models.ForeignKey(Order, related_name="extra_info", verbose_name=_('Order')) text = models.TextField(verbose_name=_('Extra info')) class Meta(object): app_label = 'shop' verbose_name = _('Order extra info') verbose_name_plural = _('Order extra info') class ExtraOrderPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order = models.ForeignKey(Order, verbose_name=_('Order')) label = models.CharField(max_length=255, verbose_name=_('Label')) value = CurrencyField(verbose_name=_('Amount')) # Does this represent shipping costs? is_shipping = models.BooleanField(default=False, editable=False, verbose_name=_('Is shipping')) class Meta(object): app_label = 'shop' verbose_name = _('Extra order price field') verbose_name_plural = _('Extra order price fields') class ExtraOrderItemPriceField(models.Model): """ This will make Cart-provided extra price fields persistent since we want to "snapshot" their statuses at the time when the order was made """ order_item = models.ForeignKey(OrderItem, verbose_name=_('Order item')) label = models.CharField(max_length=255, verbose_name=_('Label')) value = CurrencyField(verbose_name=_('Amount')) class Meta(object): app_label = 'shop' verbose_name = _('Extra order item price field') verbose_name_plural = _('Extra order item price fields') class OrderPayment(models.Model): """ A class to hold basic payment information. Backends should define their own more complex payment types should they need to store more informtion """ order = models.ForeignKey(Order, verbose_name=_('Order')) # How much was paid with this particular transfer amount = CurrencyField(verbose_name=_('Amount')) transaction_id = models.CharField(max_length=255, verbose_name=_('Transaction ID'), help_text=_("The transaction processor's reference")) payment_method = models.CharField(max_length=255, verbose_name=_('Payment method'), help_text=_("The payment backend use to process the purchase")) class Meta(object): app_label = 'shop' verbose_name = _('Order payment') verbose_name_plural = _('Order payments')
36.971698
79
0.684358
4a222a507050bf6a7c629e71f28f38508e0146a2
3,758
py
Python
core/dbt/task/seed.py
f1fe/dbt
e943b9fc842535e958ef4fd0b8703adc91556bc6
[ "Apache-2.0" ]
3,156
2017-03-05T09:59:23.000Z
2021-06-30T01:27:52.000Z
core/dbt/task/seed.py
f1fe/dbt
e943b9fc842535e958ef4fd0b8703adc91556bc6
[ "Apache-2.0" ]
2,608
2017-02-27T15:39:40.000Z
2021-06-30T01:49:20.000Z
core/dbt/task/seed.py
f1fe/dbt
e943b9fc842535e958ef4fd0b8703adc91556bc6
[ "Apache-2.0" ]
693
2017-03-13T03:04:49.000Z
2021-06-25T15:57:41.000Z
import random from .run import ModelRunner, RunTask from .printer import ( print_run_end_messages, ) from dbt.contracts.results import RunStatus from dbt.exceptions import InternalException from dbt.graph import ResourceTypeSelector from dbt.logger import TextOnly from dbt.events.functions import fire_event from dbt.events.types import ( SeedHeader, SeedHeaderSeperator, EmptyLine, PrintSeedErrorResultLine, PrintSeedResultLine, PrintStartLine ) from dbt.node_types import NodeType from dbt.contracts.results import NodeStatus class SeedRunner(ModelRunner): def describe_node(self): return "seed file {}".format(self.get_node_representation()) def before_execute(self): fire_event( PrintStartLine( description=self.describe_node(), index=self.node_index, total=self.num_nodes, report_node_data=self.node ) ) def _build_run_model_result(self, model, context): result = super()._build_run_model_result(model, context) agate_result = context['load_result']('agate_table') result.agate_table = agate_result.table return result def compile(self, manifest): return self.node def print_result_line(self, result): model = result.node if result.status == NodeStatus.Error: fire_event( PrintSeedErrorResultLine( status=result.status, index=self.node_index, total=self.num_nodes, execution_time=result.execution_time, schema=self.node.schema, relation=model.alias, report_node_data=model ) ) else: fire_event( PrintSeedResultLine( status=result.message, index=self.node_index, total=self.num_nodes, execution_time=result.execution_time, schema=self.node.schema, relation=model.alias, report_node_data=model ) ) class SeedTask(RunTask): def defer_to_manifest(self, adapter, selected_uids): # seeds don't defer return def raise_on_first_error(self): return False def get_node_selector(self): if self.manifest is None or self.graph is None: raise InternalException( 'manifest and graph must be set to get perform node selection' ) return ResourceTypeSelector( graph=self.graph, manifest=self.manifest, previous_state=self.previous_state, resource_types=[NodeType.Seed], ) def get_runner_type(self, _): return SeedRunner def task_end_messages(self, results): if self.args.show: self.show_tables(results) print_run_end_messages(results) def show_table(self, result): table = result.agate_table rand_table = table.order_by(lambda x: random.random()) schema = result.node.schema alias = result.node.alias header = "Random sample of table: {}.{}".format(schema, alias) with TextOnly(): fire_event(EmptyLine()) fire_event(SeedHeader(header=header)) fire_event(SeedHeaderSeperator(len_header=len(header))) rand_table.print_table(max_rows=10, max_columns=None) with TextOnly(): fire_event(EmptyLine()) def show_tables(self, results): for result in results: if result.status != RunStatus.Error: self.show_table(result)
30.803279
78
0.608302
4a222d4f488663708af0e650c2c5eb01cec3e1e7
1,373
py
Python
shred.py
Skeen/lodextract
1e9cdc3aa41335b6d9a0a67949bb12205aceb167
[ "Linux-OpenIB" ]
10
2017-08-25T12:03:20.000Z
2021-08-29T22:55:15.000Z
shred.py
Skeen/lodextract
1e9cdc3aa41335b6d9a0a67949bb12205aceb167
[ "Linux-OpenIB" ]
null
null
null
shred.py
Skeen/lodextract
1e9cdc3aa41335b6d9a0a67949bb12205aceb167
[ "Linux-OpenIB" ]
10
2015-08-15T04:04:32.000Z
2021-12-28T08:18:19.000Z
#!/usr/bin/env python import numpy as np from PIL import Image import crcmod import os crc24_func = crcmod.mkCrcFun(0x1864CFBL) # polynomial from libgcrypt def handle_img(inf, color): with open(inf) as f: im = Image.open(f) pal = im.getpalette() pixels = np.array(im) if pal: pal[765], pal[766], pal[767] = color pixels[pixels > 7] = 255 im = Image.fromarray(pixels) im.putpalette(pal) else: # non-palette pictures have no transparency im = Image.new('RGB', im.size, color) # in case we ever want to replace colors in rgb images: #rc, gc, bc = pixels[:,:,0], pixels[:,:,1], pixels[:,:,2] #mask = (rc == 0) & (gc == 255) & (bc == 255) #pixels[:,:,:3][mask] = color im.save(inf) def main(inf): print "processing %s"%inf crc = crc24_func(inf) r = crc>>16 g = (crc&0xff00)>>8 b = crc&0xff color = r%255,g%255,b%255 # avoid hitting special values if os.path.isdir(inf): for fname in os.listdir(inf): fname = os.path.join(inf,fname) handle_img(fname, color) else: handle_img(inf, color) return True if __name__ == '__main__': import sys if len(sys.argv) != 2: print "usage: %s indir/infile" exit(0) ret = main(sys.argv[1]) exit(0 if ret else 1)
26.921569
68
0.568099
4a222d589eaf029a5be7b78146c818eeae6b5393
16,799
py
Python
py/acmacs_py/zero_do_3.py
acorg/acmacs-py
e0bf6ff7ecfe7332980d15b50f9b6dd6f6f78de1
[ "MIT" ]
null
null
null
py/acmacs_py/zero_do_3.py
acorg/acmacs-py
e0bf6ff7ecfe7332980d15b50f9b6dd6f6f78de1
[ "MIT" ]
null
null
null
py/acmacs_py/zero_do_3.py
acorg/acmacs-py
e0bf6ff7ecfe7332980d15b50f9b6dd6f6f78de1
[ "MIT" ]
null
null
null
# 0do.py v3 support, e.g. ssm report custom import sys, os, json, subprocess, pprint, traceback from pathlib import Path from typing import List, Union, Callable import acmacs # ====================================================================== def main(): def main_commands(): return [name for name, value in vars(sys.modules["__main__"]).items() if name[0] != "_" and name != "Path" and callable(value)] def parse_command_line(): import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--command-list", action='store_true', default=False) parser.add_argument("--help-api", action='store_true', default=False) parser.add_argument("command", nargs='?') args = parser.parse_args() if args.command_list: print("\n".join(main_commands())) exit(0) if args.help_api: help(Zd) help(Painter) help(Snapshot) exit(0) if args.command: return args.command else: return main_commands()[0] command = parse_command_line() try: cmd = getattr(sys.modules["__main__"], command) zd = Zd(cmd) return cmd(zd) except Error as err: print(f"> {err}", file=sys.stderr) return 1 except Exception as err: print(f"> {type(err)}: {err}\n{traceback.format_exc()}", file=sys.stderr) return 2 # ====================================================================== class Painter (acmacs.ChartDraw): subtype_lineage_to_mapi_name = {"H1": "h1pdm.mapi", "H3": "h3.mapi", "BVICTORIA": "bvic.mapi", "BYAMAGATA": "byam.mapi"} subtype_lineage_to_mapi_key = {"H1": "loc:clade-155-156-A(H1N1)2009pdm", "H3": "loc:clades-A(H3N2)-all", "BVICTORIA": "loc:clades-B/Vic", "BYAMAGATA": "loc:clades-B/Yam"} test_antigen_size = 10 reference_antigen_size = test_antigen_size * 1.5 serum_size = test_antigen_size * 1.5 grey = "#D0D0D0" def __init__(self, chart: acmacs.Chart, mapi_filename: Path = None, mapi_key: str = None, legend_offset: List[float] = [-10, -10]): super().__init__(chart) self.mapi_filename = mapi_filename self.mapi_key = mapi_key self.draw_reset() self.draw_mark_with_mapi() self.legend(offset=legend_offset) def make(self, pdf: Path, ace: Path = None, title: bool = True, open: bool = False): if title: self.title(lines=["{lab} {virus-type/lineage-subset} {assay-no-hi-cap} " + f"{self.chart().projection(0).stress(recalculate=True):.4f}"], remove_all_lines=True) self.calculate_viewport() self.draw(pdf, open=open) print(f">>> {pdf}") if ace: self.chart().export(ace) print(f">>> {ace}") def relax(self): self.projection().relax() def draw_reset(self): pchart = self.chart() self.modify(pchart.select_antigens(lambda ag: ag.antigen.reference()), fill="transparent", outline=self.grey, outline_width=1, size=self.reference_antigen_size) self.modify(pchart.select_antigens(lambda ag: not ag.antigen.reference()), fill=self.grey, outline=self.grey, outline_width=1, size=self.test_antigen_size) self.modify(pchart.select_antigens(lambda ag: ag.passage.is_egg()), shape="egg") self.modify(pchart.select_antigens(lambda ag: bool(ag.reassortant)), rotation=0.5) self.modify(pchart.select_all_sera(), fill="transparent", outline=self.grey, outline_width=1, size=self.serum_size) self.modify(pchart.select_sera(lambda sr: sr.passage.is_egg()), shape="uglyegg") def draw_mark_with_mapi(self, mark_sera: bool = True, report: bool = False): pchart = self.chart() marked = {"ag": [], "sr": []} for en in self.load_mapi(): selector = en["select"] def clade_match(clade, clades): if clade[0] != "!": return clade in clades else: return clade[1:] not in clades def sel_ag_sr(ag_sr): good = True if good and selector.get("sequenced"): good = ag_sr.sequenced() if good and (clade := selector.get("clade")): good = clade_match(clade, ag_sr.clades()) if good and (clade_all := selector.get("clade-all")): good = all(clade_match(clade, ag_sr.clades()) for clade in clade_all) if good and (aas := selector.get("amino-acid") or selector.get("amino_acid")): good = ag_sr.sequence_aa().matches_all(aas) return good def sel_ag(ag): return sel_ag_sr(ag.antigen) def sel_sr(sr): return sel_ag_sr(sr.serum) selected = pchart.select_antigens(sel_ag) marked["ag"].append({"selected": selected, "selector": selector, "modify_args": en["modify_antigens"]}) self.modify(selected, **{k: v for k, v in en["modify_antigens"].items() if v}) if mark_sera: selected = pchart.select_sera(sel_sr) marked["sr"].append({"selected": selected, "selector": selector, "modify_args": en["modify_sera"]}) self.modify(selected, **{k: v for k, v in en["modify_sera"].items() if v}) def report_marked(marked, names_to_report): if names_to_report: for ag_sr in ["ag", "sr"]: if marked[ag_sr]: print(f'{ag_sr.upper()} ({len(marked[ag_sr])})') for en in marked[ag_sr]: print(f'{en["selected"].size():6d} {en["selector"]} {en["modify_args"]}') # reported = en["selected"].report_list(format="{AG_SR} {no0} {full_name}") # [:max_names_to_report] reported = en["selected"].report_list(format="{ag_sr} {no0:5d} {full_name}")[:names_to_report] for rep in reported: print(" ", rep) if report: report_marked(marked=marked, names_to_report=10) def load_mapi(self): subtype_lineage = self.chart().subtype_lineage() mapi_filename = self.mapi_filename or Path(os.getcwd()).parents[1].joinpath(self.subtype_lineage_to_mapi_name.get(subtype_lineage, "unknown")) print(f">>> loading mapi from {mapi_filename}") if mapi_filename.exists(): if not self.mapi_key: self.mapi_key = self.subtype_lineage_to_mapi_key.get(subtype_lineage) print(f">>> mapi key {self.mapi_key}") if self.mapi_key: try: data = json.load(mapi_filename.open())[self.mapi_key] except json.decoder.JSONDecodeError as err: raise ErrorJSON(mapi_filename, err) def make_mapi_entry(en: dict) -> dict: return { "select": en["select"], "modify_antigens": { "fill": en.get("fill", "").replace("{clade-pale}", ""), "outline": en.get("outline", "").replace("{clade-pale}", ""), "outline_width": en.get("outline_width"), "order": en.get("order"), "legend": en.get("legend") and acmacs.PointLegend(format=en["legend"].get("label"), show_if_none_selected=en["legend"].get("show_if_none_selected")), }, "modify_sera": { "outline": en.get("fill", "").replace("{clade-pale}", ""), "outline_width": 3, }, } mapi_data = [make_mapi_entry(en) for en in data if en.get("N") == "antigens"] # pprint.pprint(mapi_data) return mapi_data return [] # ====================================================================== class Snapshot: def __init__(self): self.filename = Path("snapshot.json") if self.filename.exists(): self.data = json.load(self.filename.open()) else: self.data = {"sections": []} self.current_section = None def __del__(self): self.save() self.generate_html() def save(self): json.dump(self.data, self.filename.open("w"), indent=2) def section(self, cmd = None): if cmd: for sec in self.data["sections"]: if sec["name"] == cmd.__name__: sec["images"] = [] self.current_section = sec if not self.current_section: self.current_section = {"name": cmd.__name__, "doc": cmd.__doc__, "images": []} self.data["sections"].append(self.current_section) return self.current_section["name"] def number_of_images(self) -> int: return len(self.current_section["images"]) def generate_filename(self, ace: Path, infix: bool, infix2: str = None) -> tuple[Path, Path]: s_infix = self.section() if infix: s_infix += f".{self.number_of_images():02d}" if infix2: s_infix += f".{infix2}" prefix = Path(ace.name) return prefix.with_suffix(f".{s_infix}.pdf"), prefix.with_suffix(f".{s_infix}.ace") def add_image(self, pdf: Path, ace: Path): self.current_section["images"].append({"pdf": str(pdf), "ace": str(ace)}) def generate_html(self): pass # ====================================================================== class Zd: def __init__(self, cmd): self.mapi_key = None self.mapi_data = None self.snapshot_data = Snapshot() self.chart_filename = None self.painter = None self.export_ace = True self.section(cmd) def open(self, filename: Path, chart: acmacs.Chart = None, mapi_filename: Path = None, mapi_key: str = None, legend_offset: List[float] = [-10, -10], export_ace: bool = False, open_pdf: bool = False) -> Painter: self.chart_filename = filename if not chart: chart = acmacs.Chart(filename) chart.populate_from_seqdb() self.painter = Painter(chart=chart, mapi_filename=mapi_filename, mapi_key=mapi_key, legend_offset=legend_offset) self.snapshot(overwrite=False, export_ace=export_ace, open=open_pdf) return self.painter def section(self, cmd): self.snapshot_data.section(cmd) def snapshot(self, overwrite: bool = True, infix: bool = True, export_ace: bool = True, open: bool = False): pdf, ace_filename = self.snapshot_data.generate_filename(ace=self.chart_filename, infix=infix) if overwrite or not pdf.exists(): self.painter.make(pdf=pdf, ace=ace_filename if export_ace and self.export_ace else None, open=open) self.snapshot_data.add_image(pdf=pdf, ace=ace_filename) return ace_filename def snapshot_procrustes(self, secondary: Path, threshold: float = 0.3, overwrite: bool = True, infix: bool = True, open: bool = False): pdf, ace = self.snapshot_data.generate_filename(ace=self.chart_filename, infix=infix, infix2=f"pc-{secondary.stem}") if overwrite or not pdf.exists(): secondary_chart = acmacs.Chart(secondary) self.painter.procrustes_arrows(common=acmacs.CommonAntigensSera(self.painter.chart(), secondary_chart), secondary_chart=secondary_chart, threshold=threshold) self.painter.make(pdf=pdf, title=False, open=open) self.painter.remove_procrustes_arrows() self.painter.title(remove_all_lines=True) self.snapshot_data.add_image(pdf=pdf, ace=ace) def chart_merge(cls, sources: List[Path], output_infix: str = None, match: str = "strict", incremental: bool = False, combine_cheating_assays: bool = True): first_chart = acmacs.Chart(sources[0]) last_chart = acmacs.Chart(sources[-1]) output_filename = Path(f"{last_chart.subtype_lineage()[:4].lower()}-{last_chart.assay_rbc().lower()}-{last_chart.lab().lower()}-{first_chart.date().split('-')[0]}-{last_chart.date().split('-')[-1]}{output_infix or ''}.ace") if not output_filename.exists(): subprocess.check_call(["chart-merge", "--match", match, "--merge-type", "incremental" if incremental else "simple", "--combine-cheating-assays" if combine_cheating_assays else "--no-combine-cheating-assays", "-o", str(output_filename), *(str(src) for src in sources)]) print(f">>> {output_filename}") return output_filename def glob_bash(self, pattern) -> List[Path]: "return [Path] by matching using bash, e.g. ~/ac/whocc-tables/h3-hint-cdc/h3-hint-cdc-{2020{0[4-9],1},2021}*.ace" return sorted(Path(fn) for fn in subprocess.check_output(f"ls -1 {pattern}", text=True, shell=True).strip().split("\n")) def relax(self, source_filename: Path, mcb: str="none", num_optimizations: int = 1000, num_dimensions: int = 2, keep_projections: int = 10, grid: bool = True, reorient: Union[str, Path, acmacs.Chart] = None, incremental: bool = False, populate_seqdb: bool = False, disconnect_antigens: Callable[[acmacs.SelectionDataAntigen], bool] = None, disconnect_sera: Callable[[acmacs.SelectionDataSerum], bool] = None, output_infix: str = None, slurm: bool = False): """disconnect_antigens, disconnect_antigens: callable, e.g. lambda ag""" infix = output_infix or f"{mcb}-{num_optimizations//1000}k" result_filename = source_filename.with_suffix(f".{infix}.ace") if not result_filename.exists(): if slurm: if incremental: raise Error("relax incremental is not supported with slurm=True") reorient_args = ["--reorient", str(reorient)] if reorient else [] grid_args = ["--grid"] if grid else [] no_draw_args = ["--no-draw"] subprocess.check_call(["slurm-relax", *no_draw_args, "-o", str(result_filename), str(source_filename), "-n", str(num_optimizations), "-d", str(num_dimensions), "-m", mcb, "-k", str(keep_projections), *grid_args, *reorient_args]) else: chart = acmacs.Chart(source_filename) antigens_to_disconnect = sera_to_disconnect = None if disconnect_antigens or disconnect_sera: if incremental: raise Error("relax incremental cannot handle disconnected points") print(">>> disconnecting antigens/sera", file=sys.stderr) antigens_to_disconnect = chart.select_antigens(disconnect_antigens, report=True) if disconnect_antigens else None sera_to_disconnect = chart.select_sera(disconnect_sera, report=True) if disconnect_sera else None if populate_seqdb: chart.populate_from_seqdb() print(f">>> relaxing chart {chart.description()} in {num_dimensions}d mcb:{mcb} {num_optimizations} times") if incremental: chart.relax_incremental(number_of_optimizations=num_optimizations, remove_source_projection=True) else: chart.relax(number_of_dimensions=num_dimensions, number_of_optimizations=num_optimizations, minimum_column_basis=mcb, disconnect_antigens=antigens_to_disconnect, disconnect_sera=sera_to_disconnect) if grid: chart.grid_test() chart.keep_projections(keep_projections) if reorient: if isinstance(reorient, (str, Path)): reorient = acmacs.Chart(reorient) chart.orient_to(master=reorient) chart.export(result_filename) print(f">>> {result_filename}") return result_filename # ====================================================================== class Error (Exception): pass # ---------------------------------------------------------------------- class ErrorJSON (Error): def __init__(self, filename: Union[str,Path], err: json.decoder.JSONDecodeError): self.message = f"{filename}:{err.lineno}:{err.colno}: {err.msg}" def __str__(self) -> str: return self.message # ----------------------------------------------------------------------
49.119883
244
0.57301