hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a20a485df7f275a72f3399ed3c46ee21273835e
2,707
py
Python
vectors_simple_arithmetics.py
pavlovcoder/linear-algebra-python-library
8c56d94c38a4318e69b2292f8a781aed00a3cb2c
[ "MIT" ]
null
null
null
vectors_simple_arithmetics.py
pavlovcoder/linear-algebra-python-library
8c56d94c38a4318e69b2292f8a781aed00a3cb2c
[ "MIT" ]
null
null
null
vectors_simple_arithmetics.py
pavlovcoder/linear-algebra-python-library
8c56d94c38a4318e69b2292f8a781aed00a3cb2c
[ "MIT" ]
null
null
null
print( '-----------------------------------------\n'\ 'Python Library for Linear Algebra Operations | Vectors Initialization:\n'\ '-----------------------------------------\n' ) print( 'Task:\n'\ '-----------------------------------------\n'\ 'Write a simple Python module for adding, substract and scalar multiply few default vectors.\n' ) print( 'Solution:\n'\ '-----------------------------------------'\ ) #Vector module for defining a new vector on the system: class Vector(object): def __init__(self, coordinates): try: if not coordinates: raise ValueError self.coordinates = tuple(coordinates) self.dimension = len(coordinates) except ValueError: raise ValueError('The coordinates must be nonempty') except TypeError: raise TypeError('The coordinates must be an iterable') def plus(self, v): new_coordinates = [x+y for x,y in zip(self.coordinates, v.coordinates)] return Vector(new_coordinates) def minus(self, v): new_coordinates = [x-y for x,y in zip(self.coordinates, v.coordinates)] return Vector(new_coordinates) def times_scalar(self, c): new_coordinates = [c*x for x in self.coordinates] return Vector(new_coordinates) def __str__(self): return 'Vector: {}'.format(self.coordinates) def __eq__(self, v): return self.coordinates == v.coordinates #Default function for handling execution loop: def execution_loop(): data = int(input("Do you want to try again ? Enter [1] - for continue / [0] - for quit :\n>>>")) if data == 1: return True elif data == 0: return False else: print("Error: you entered incorrect command. Please, try again...") execution_loop() #Default parameters for handling execution loop: again_exec = True counter_exec = 0 #Default loop for handling execution: while again_exec: A = Vector([8.218, -9.341]) B = Vector([-1.129, 2.111]) print('Adding vectors: {0} + {1} = {2}'.format(A, B, A.plus(B))) A = Vector([7.119, 8.215]) B = Vector([-8.223, 0.878]) print('Subtracting vectors: {0} - {1} = {2}'.format(A, B, A.minus(B))) A = 7.41 B = Vector([1.671, -1.012, -0.318]) print('Scalar multiply vector by value: {0} * {1} = {2}'.format(A, B, B.times_scalar(A))) again_exec = execution_loop() counter_exec = counter_exec + 1 #The end of execution: if again_exec == False: print("Program was executed: ",counter_exec, ' times.') break print( '\n-----------------------------------------\n'\ 'Copyright 2019 Vladimir Pavlov. All Rights Reserved.\n'\ '-----------------------------------------' )
30.077778
98
0.576653
4a20a4a3840f8e0be87449347523d3d285af4b9f
1,161
py
Python
tests/test_pitch_spelling.py
CPJKU/partitura
b1053d663fc10fc839a3c9c81c9b3dbf53d9e4b2
[ "Apache-2.0" ]
56
2021-01-12T10:11:54.000Z
2022-03-14T04:37:38.000Z
tests/test_pitch_spelling.py
mgrachten/partitura
b1053d663fc10fc839a3c9c81c9b3dbf53d9e4b2
[ "Apache-2.0" ]
57
2020-12-06T18:53:38.000Z
2022-03-23T12:07:38.000Z
tests/test_pitch_spelling.py
mgrachten/partitura
b1053d663fc10fc839a3c9c81c9b3dbf53d9e4b2
[ "Apache-2.0" ]
6
2021-03-09T07:05:16.000Z
2021-11-13T20:01:38.000Z
import numpy as np import unittest from partitura import EXAMPLE_MUSICXML from partitura import load_musicxml from partitura.musicanalysis import estimate_spelling def compare_spelling(spelling, notes): comparisons = np.zeros((len(spelling), 3)) for i, (n, s) in enumerate(zip(notes, spelling)): comparisons[i, 0] = int(n.step == s["step"]) if n.alter is None and s["alter"] == 0: comparisons[i, 1] = 1 else: comparisons[i, 1] = int(n.alter == s["alter"]) comparisons[i, 2] = int(n.octave == s["octave"]) return comparisons class TestKeyEstimation(unittest.TestCase): """ Test key estimation """ score = load_musicxml(EXAMPLE_MUSICXML) def test_part(self): spelling = estimate_spelling(self.score) comparisons = compare_spelling(spelling, self.score.notes) self.assertTrue(np.all(comparisons), "Incorrect spelling") def test_note_array(self): spelling = estimate_spelling(self.score.note_array) comparisons = compare_spelling(spelling, self.score.notes) self.assertTrue(np.all(comparisons), "Incorrect spelling")
31.378378
66
0.671835
4a20a56adc692940f9e414a30ed4bfa2c9e1a542
6,285
py
Python
tests/instruments/test_manifest.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
16
2018-03-20T09:06:23.000Z
2021-09-08T18:46:15.000Z
tests/instruments/test_manifest.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
118
2015-05-13T07:50:04.000Z
2018-02-14T17:37:20.000Z
tests/instruments/test_manifest.py
jerjohste/exopy
0fe3eb94f440ead88c396a1abccf7c22dd633a61
[ "BSD-3-Clause" ]
11
2018-03-02T11:17:26.000Z
2021-06-23T22:25:40.000Z
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright 2015-2018-2018 by Exopy Authors, see AUTHORS for more details. # # Distributed under the terms of the BSD license. # # The full license is in the file LICENCE, distributed with this software. # ----------------------------------------------------------------------------- """Tests for the instrument manager manifest. """ import enaml from enaml.widgets.api import MultilineField from exopy.app.errors.widgets import BasicErrorsDisplay from exopy.instruments.infos import DriverInfos from exopy.testing.util import handle_dialog, show_and_close_widget with enaml.imports(): from .contributors import InstrContributor1 def test_driver_validation_error_handler(exopy_qtbot, instr_workbench): """Test the error handler dedicated to driver validation issues. """ core = instr_workbench.get_plugin('enaml.workbench.core') p = instr_workbench.get_plugin('exopy.instruments') d = DriverInfos(starter='starter', connections={'c1': {}, 'c2': {}}, settings={'s2': {}, 's3': {}}) cmd = 'exopy.app.errors.signal' def check_dialog(bot, dial): w = dial.errors['exopy.driver-validation'] assert 'd' in w.errors for err in ('starter', 'connections', 'settings'): assert err in w.errors['d'] with handle_dialog(exopy_qtbot, 'accept', check_dialog): core.invoke_command(cmd, {'kind': 'exopy.driver-validation', 'details': {'d': d.validate(p)[1]}}) def test_reporting_on_extension_errors(exopy_qtbot, instr_workbench): """Check reporting extension errors. """ plugin = instr_workbench.get_plugin('exopy.app.errors') handler = plugin._errors_handlers.contributions['exopy.driver-validation'] widget = handler.report(instr_workbench) assert isinstance(widget, MultilineField) show_and_close_widget(exopy_qtbot, widget) handler.errors = {'test': 'msg'} widget = handler.report(instr_workbench) assert isinstance(widget, BasicErrorsDisplay) show_and_close_widget(exopy_qtbot, widget) def test_validate_runtime_dependencies_driver(instr_workbench): """Test the validation of drivers as runtime dependencies. """ instr_workbench.register(InstrContributor1()) d_p = instr_workbench.get_plugin('exopy.app.dependencies') d_c = d_p.run_deps_collectors.contributions['exopy.instruments.drivers'] err = {} d_c.validate(instr_workbench, ('tests.test.FalseDriver', 'dummy'), err) assert len(err) == 1 assert ('instruments.test.FalseDriver' not in err['unknown-drivers']) assert 'dummy' in err['unknown-drivers'] def test_collect_runtime_dependencies_driver(instr_workbench): """Test the collection of drivers as runtime dependencies. """ instr_workbench.register(InstrContributor1()) d_p = instr_workbench.get_plugin('exopy.app.dependencies') d_c = d_p.run_deps_collectors.contributions['exopy.instruments.drivers'] dep = dict.fromkeys(('instruments.test.FalseDriver', 'dummy')) err = {} un = set() d_c.collect(instr_workbench, 'tests', dep, un, err) assert len(err) == 1 assert 'instruments.test.FalseDriver' not in err['unknown-drivers'] assert 'dummy' in err['unknown-drivers'] assert not un assert dep['instruments.test.FalseDriver'] is not None assert dep['dummy'] is None def test_validate_runtime_dependencies_profiles(prof_plugin): """Test the validation of profiles as runtime dependencies. """ w = prof_plugin.workbench d_p = w.get_plugin('exopy.app.dependencies') d_c = d_p.run_deps_collectors.contributions['exopy.instruments.profiles'] err = {} d_c.validate(w, ('fp1', 'dummy'), err) assert len(err) == 1 assert 'fp1' not in err['unknown-profiles'] assert 'dummy' in err['unknown-profiles'] def test_collect_release_runtime_dependencies_profiles(prof_plugin): """Test the collection and release of profiles as runtime dependencies. """ w = prof_plugin.workbench d_p = w.get_plugin('exopy.app.dependencies') d_c = d_p.run_deps_collectors.contributions['exopy.instruments.profiles'] dep = dict.fromkeys(('fp1', 'dummy')) err = {} un = set() d_c.collect(w, 'tests', dep, un, err) assert len(err) == 1 assert 'dummy' in err['unknown-profiles'] assert not un assert dep['fp1'] is not None assert dep['dummy'] is None assert 'fp1' in prof_plugin.used_profiles d_c.release(w, 'tests', list(dep)) assert not prof_plugin.used_profiles prof_plugin.used_profiles = {'fp2': 'tests2'} dep = dict.fromkeys(('fp1', 'fp2', 'dummy')) err = {} un = set() d_c.collect(w, 'tests', dep, un, err) assert len(err) == 1 assert 'dummy' in err['unknown-profiles'] assert 'fp2' in un assert dep['fp1'] is None assert dep['fp2'] is None assert dep['dummy'] is None def test_select_instrument_profile_command(exopy_qtbot, prof_plugin): """Test selecting an instrument profile. """ core = prof_plugin.workbench.get_plugin('enaml.workbench.core') with handle_dialog(exopy_qtbot, 'reject'): res = core.invoke_command('exopy.instruments.select_instrument') assert res is None with handle_dialog(exopy_qtbot, 'accept'): res = core.invoke_command('exopy.instruments.select_instrument', dict(profile='fp1', driver='instruments.test.FalseDriver', connection='false_connection3', settings='false_settings3')) assert res == ('fp1', 'instruments.test.FalseDriver', 'false_connection3', 'false_settings3') def test_open_browser_command(exopy_qtbot, prof_plugin): """Test opening the browsing window. """ with enaml.imports(): from enaml.workbench.ui.ui_manifest import UIManifest prof_plugin.workbench.register(UIManifest()) core = prof_plugin.workbench.get_plugin('enaml.workbench.core') with handle_dialog(exopy_qtbot): core.invoke_command('exopy.instruments.open_browser')
32.066327
79
0.661893
4a20a5b9361d950b1d1bc1198cb5df60fc54d50c
5,788
py
Python
brambling/tests/functional/test_organizer_forms.py
Shivanjain023/django-brambling
17539b82df37f22bd2b4293e73142b887c916344
[ "BSD-3-Clause" ]
8
2015-05-06T18:26:15.000Z
2018-02-07T22:18:32.000Z
brambling/tests/functional/test_organizer_forms.py
Shivanjain023/django-brambling
17539b82df37f22bd2b4293e73142b887c916344
[ "BSD-3-Clause" ]
578
2015-01-05T21:37:17.000Z
2018-02-14T16:43:50.000Z
brambling/tests/functional/test_organizer_forms.py
Shivanjain023/django-brambling
17539b82df37f22bd2b4293e73142b887c916344
[ "BSD-3-Clause" ]
1
2015-08-20T16:59:32.000Z
2015-08-20T16:59:32.000Z
from datetime import datetime, date, timedelta from django.test import TestCase, RequestFactory from django.utils import timezone from brambling.forms.organizer import ManualPaymentForm, EventCreateForm from brambling.models import Transaction, Event, OrganizationMember from brambling.tests.factories import ( OrderFactory, PersonFactory, EventFactory, ItemFactory, ItemImageFactory, ItemOptionFactory, DiscountFactory, SavedReportFactory, CustomFormFactory, CustomFormFieldFactory, ) class ManualPaymentFormTestCase(TestCase): def test_creation(self): order = OrderFactory() user = PersonFactory() form = ManualPaymentForm(order=order, user=user, data={'amount': 10, 'method': Transaction.FAKE}) self.assertFalse(form.errors) self.assertTrue(form.is_bound) txn = form.save() self.assertEqual(txn.amount, 10) self.assertEqual(txn.order, order) self.assertEqual(txn.event, order.event) self.assertEqual(txn.transaction_type, Transaction.PURCHASE) self.assertEqual(txn.method, Transaction.FAKE) self.assertEqual(txn.created_by, user) self.assertEqual(txn.is_confirmed, True) self.assertEqual(txn.api_type, order.event.api_type) class EventCreateFormTestCase(TestCase): def setUp(self): self.factory = RequestFactory() def test_adjust_date(self): request = self.factory.get('/') request.user = PersonFactory() td = timedelta(days=3) old_date = date(2015, 10, 2) old_event = EventFactory(start_date=date(2015, 10, 5)) new_event = EventFactory(start_date=old_event.start_date + td) form = EventCreateForm(request) new_date = form._adjust_date(old_event, new_event, old_date) self.assertEqual(new_date, old_date + td) def test_adjust_datetime(self): request = self.factory.get('/') request.user = PersonFactory() td = timedelta(days=3) old_date = datetime(2015, 10, 2, 5, 5, 5) old_event = EventFactory(start_date=date(2015, 10, 5)) new_event = EventFactory(start_date=old_event.start_date + td) form = EventCreateForm(request) new_date = form._adjust_date(old_event, new_event, old_date) self.assertEqual(new_date, old_date + td) def test_duplication(self): """Passing in a template_event should result in settings and relevant related objects being copied""" threedays = timedelta(days=3) template = EventFactory( start_date=timezone.now() - threedays, end_date=timezone.now() - threedays, ) item = ItemFactory(event=template) ItemOptionFactory(item=item) ItemImageFactory(item=item) DiscountFactory(event=template) SavedReportFactory(event=template) custom_form = CustomFormFactory(event=template) CustomFormFieldFactory(form=custom_form) request = self.factory.post('/', { 'name': 'New event', 'slug': 'new-event', 'start_date': timezone.now().strftime("%Y-%m-%d"), 'end_date': timezone.now().strftime("%Y-%m-%d"), 'organization': str(template.organization.pk), 'template_event': str(template.pk), }) owner = PersonFactory() OrganizationMember.objects.create( person=owner, organization=template.organization, role=OrganizationMember.OWNER, ) request.user = owner form = EventCreateForm(request, data=request.POST) self.assertFalse(form.errors) event = form.save() # Get a refreshed version from the db event = Event.objects.get(pk=event.pk) fields = ( 'description', 'website_url', 'banner_image', 'city', 'state_or_province', 'country', 'timezone', 'currency', 'has_dances', 'has_classes', 'liability_waiver', 'privacy', 'collect_housing_data', 'collect_survey_data', 'cart_timeout', 'check_postmark_cutoff', 'transfers_allowed', 'facebook_url', ) self.assertEqual( dict((f, getattr(event, f)) for f in fields), dict((f, getattr(template, f)) for f in fields) ) # Make sure things haven't been moved off old events. self.assertEqual(template.items.count(), 1) item = template.items.all()[0] self.assertEqual(item.options.count(), 1) self.assertEqual(template.discount_set.count(), 1) self.assertEqual(template.savedreport_set.count(), 1) self.assertEqual(template.forms.count(), 1) custom_form = template.forms.all()[0] self.assertEqual(custom_form.fields.count(), 1) # Make sure things have been copied to new event. self.assertEqual(event.items.count(), 1) item = event.items.all()[0] self.assertEqual(item.options.count(), 1) self.assertEqual(event.discount_set.count(), 1) self.assertEqual(event.savedreport_set.count(), 1) self.assertEqual(event.forms.count(), 1) custom_form = event.forms.all()[0] self.assertEqual(custom_form.fields.count(), 1) # Check that dates have been adjusted properly. old_item = template.items.all()[0] old_option = old_item.options.all()[0] new_item = event.items.all()[0] new_option = new_item.options.all()[0] self.assertEqual(new_option.available_start - old_option.available_start, threedays) old_discount = template.discount_set.all()[0] new_discount = event.discount_set.all()[0] self.assertEqual(new_discount.available_start - old_discount.available_start, threedays)
40.194444
109
0.65152
4a20a635f5e037078a0e577c56c6a289da083b87
3,856
py
Python
Spy-Games/code.py
Saradwata-Bandyopadhyay/greyatom-python-for-data-science
fe15b5bb27b928b0f7fe151e630d89ab07a95a0b
[ "MIT" ]
1
2020-07-02T07:38:07.000Z
2020-07-02T07:38:07.000Z
Spy-Games/code.py
Saradwata-Bandyopadhyay/greyatom-python-for-data-science
fe15b5bb27b928b0f7fe151e630d89ab07a95a0b
[ "MIT" ]
null
null
null
Spy-Games/code.py
Saradwata-Bandyopadhyay/greyatom-python-for-data-science
fe15b5bb27b928b0f7fe151e630d89ab07a95a0b
[ "MIT" ]
null
null
null
# -------------- #Code starts here #Function to read file def read_file(path): #Opening of the file located in the path in 'read' mode file=open(path,'r') #Reading of the first line of the file and storing it in a variable sentence=file.readline() #Closing of the file file.close() #Returning the first line of the file return sentence #Calling the function to read file sample_message=read_file(file_path) #Printing the line of the file print(sample_message) #Function to fuse message def fuse_msg(message_a,message_b): #Integer division of two numbers quotient=int(message_b)//int(message_a) #Returning the quotient in string format return str(quotient) #Calling the function to read file message_1=read_file(file_path_1) #Calling the function to read file message_2=read_file(file_path_2) #Calling the function 'fuse_msg' secret_msg_1=fuse_msg(message_1,message_2) #Printing the secret message print(message_1) print(message_2) #Function to substitute the message def substitute_msg(message_c): #If-else to compare the contents of the file if message_c == 'Red': sub='Army General' elif message_c == 'Green': sub='Data Scientist' else : sub= 'Marine Biologist' #Returning the substitute of the message return sub #Calling the function to read file message_3=read_file(file_path_3) print(message_3) #Calling the function 'substitute_msg' secret_msg_2=substitute_msg(message_3) #Printing the secret message print(secret_msg_2) #Function to compare message def compare_msg(message_d,message_e): #Splitting the message into a list a_list=message_d.split() #Splitting the message into a list b_list=message_e.split() #Comparing the elements from both the lists c_list=[i for i in a_list if i not in b_list ] #Combining the words of a list back to a single string sentence final_msg=" ".join(c_list) #Returning the sentence return final_msg #Calling the function to read file message_4=read_file(file_path_4) #Calling the function to read file message_5=read_file(file_path_5) #Calling the function 'compare messages' secret_msg_3=compare_msg(message_4,message_5) #Printing the secret message print(message_4) print(message_5) #Function to filter message def extract_msg(message_f): #Splitting the message into a list a_list=message_f.split() #Creating the lambda function to identify even length words even_word=lambda x:(len(x)%2==0) #Splitting the message into a list b_list=list(filter(even_word,a_list)) #Combining the words of a list back to a single string sentence final_msg=" ".join(b_list) #Returning the sentence return final_msg #Calling the function to read file message_6=read_file(file_path_6) #Calling the function 'filter_msg' secret_msg_4=extract_msg(message_6) #Printing the secret message print(message_6) #Secret message parts in the correct order message_parts=[secret_msg_3, secret_msg_1, secret_msg_4, secret_msg_2] # define the path where you final_path= user_data_dir + '/secret_message.txt' #Combine the secret message parts into a single complete secret message secret_msg=" ".join(message_parts) #Function to write inside a file def write_file(secret_msg,path): #Opening a file named 'secret_message' in 'write' mode file1=open(path,'a+') #Writing to the file file1.write(secret_msg) #Closing the file file1.close() #Calling the function to write inside the file write_file(secret_msg,final_path) #Printing the entire secret message print(secret_msg) #Code ends here
25.202614
72
0.706432
4a20a699f17fc64adfa91e1d5de7bb9340ba55e2
11,418
py
Python
salesforce/fields.py
bryancolligan/django-salesforce
cec08115f97d75d9b7b96bb34c40e48974c7269f
[ "MIT" ]
null
null
null
salesforce/fields.py
bryancolligan/django-salesforce
cec08115f97d75d9b7b96bb34c40e48974c7269f
[ "MIT" ]
null
null
null
salesforce/fields.py
bryancolligan/django-salesforce
cec08115f97d75d9b7b96bb34c40e48974c7269f
[ "MIT" ]
null
null
null
# django-salesforce # # by Phil Christensen # (c) 2012-2013 Freelancers Union (http://www.freelancersunion.org) # See LICENSE.md for details # """ Customized fields for Salesforce, especially the primary key. (like django.db.models.fields) """ import warnings from decimal import Decimal from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.translation import ugettext_lazy as _ from django.db.models import fields from django.db.models import PROTECT, DO_NOTHING # NOQA pylint:disable=unused-import from django.db import models from django.utils.encoding import smart_text from six import string_types from salesforce.backend.operations import DefaultedOnCreate # None of field types defined in this module need a "deconstruct" method, # in Django 1.7+, because their parameters only describe fixed nature of SF # standard objects that can not be modified no ways by no API or spell. FULL_WRITABLE = 0 NOT_UPDATEABLE = 1 NOT_CREATEABLE = 2 READ_ONLY = 3 # (NOT_UPDATEABLE & NOT_CREATEABLE) DEFAULTED_ON_CREATE = DefaultedOnCreate() SF_PK = getattr(settings, 'SF_PK', 'id') if SF_PK not in ('id', 'Id'): raise ImproperlyConfigured("Value of settings.SF_PK must be 'id' or 'Id' or undefined.") class SalesforceAutoField(fields.AutoField): """ An AutoField that works with Salesforce primary keys. It is used by SalesforceModel as a custom primary key. It doesn't convert its value to int. """ description = _("Text") default_error_messages = { 'invalid': _('This value must be a valid Salesforce ID.'), } def to_python(self, value): if isinstance(value, string_types) or value is None: return value return smart_text(value) def get_prep_value(self, value): return self.to_python(value) def contribute_to_class(self, cls, name, **kwargs): name = name if self.name is None else self.name # we can't require "self.auto_created==True" due to backward compatibility # with old migrations created before v0.6. Other conditions are enough. if name != SF_PK or not self.primary_key: raise ImproperlyConfigured( "SalesforceAutoField must be a primary key" "with the name '%s' (configurable by settings)." % SF_PK) if cls._meta.auto_field: # pylint:disable=unidiomatic-typecheck if not (type(self) == type(cls._meta.auto_field) and self.model._meta.abstract and # NOQA type eq cls._meta.auto_field.name == SF_PK): raise ImproperlyConfigured( "The model %s can not have more than one AutoField, " "but currently: (%s=%s, %s=%s)" % ( cls, cls._meta.auto_field.name, cls._meta.auto_field, name, self ) ) # A model is created that inherits fields from more abstract classes # with the same default SalesforceAutoFieldy. Therefore the second should be # ignored. return super(SalesforceAutoField, self).contribute_to_class(cls, name, **kwargs) cls._meta.auto_field = self class SfField(models.Field): """ Add support of 'sf_read_only' and 'custom' parameters to Salesforce fields. sf_read_only=3 (READ_ONLY): The field can not be specified neither on insert or update. e.g. LastModifiedDate (the most frequent type of read only) sf_read_only=1 (NOT_UPDATEABLE): The field can be specified on insert but can not be later never modified. e.g. ContactId in User object (relative frequent) sf_read_only=2 (NOT_CREATEABLE): The field can not be specified on insert but can be later modified. e.g. RecordType.IsActive or Lead.EmailBouncedReason sf_read_only=0: normal writable (default) custom=True : Add '__c' to the column name if no db_column is defined. """ def __init__(self, *args, **kwargs): self.sf_read_only = kwargs.pop('sf_read_only', 0) self.sf_custom = kwargs.pop('custom', None) self.sf_namespace = '' super(SfField, self).__init__(*args, **kwargs) def get_attname_column(self): """ Get the database column name automatically in most cases. """ # See "A guide to Field parameters": django/db/models/fields/__init__.py # * attname: The attribute to use on the model object. This is the same as # "name", except in the case of ForeignKeys, where "_id" is # appended. # * column: The database column for this field. This is the same as # "attname", except if db_column is specified. attname = self.get_attname() if self.db_column is not None: # explicit name column = self.db_column else: if not self.name.islower(): # a Salesforce style name e.g. 'LastName' or 'MyCustomField' column = self.name else: # a Django style name like 'last_name' or 'my_custom_field' column = self.name.title().replace('_', '') # Fix custom fields if self.sf_custom: column = self.sf_namespace + column + '__c' return attname, column def contribute_to_class(self, cls, name, private_only=False, **kwargs): # Different arguments are in Django 1.11 vs. 2.0, therefore we use universal **kwargs # pylint:disable=arguments-differ super(SfField, self).contribute_to_class(cls, name, private_only=private_only, **kwargs) if self.sf_custom is None and hasattr(cls._meta, 'sf_custom'): # Only custom fields in models explicitly marked by # Meta custom=True are recognized automatically - for # backward compatibility reasons. self.sf_custom = cls._meta.sf_custom if self.sf_custom and '__' in cls._meta.db_table[:-3]: self.sf_namespace = cls._meta.db_table.split('__')[0] + '__' self.set_attributes_from_name(name) # pylint:disable=unnecessary-pass,too-many-ancestors class CharField(SfField, models.CharField): """CharField with sf_read_only attribute for Salesforce.""" pass class EmailField(SfField, models.EmailField): """EmailField with sf_read_only attribute for Salesforce.""" pass class URLField(SfField, models.URLField): """URLField with sf_read_only attribute for Salesforce.""" pass class TextField(SfField, models.TextField): """TextField with sf_read_only attribute for Salesforce.""" pass class IntegerField(SfField, models.IntegerField): """IntegerField with sf_read_only attribute for Salesforce.""" pass class BigIntegerField(SfField, models.BigIntegerField): """BigIntegerField with sf_read_only attribute for Salesforce.""" # important for other database backends, e.g. in tests # The biggest exact value is +-(2 ** 53 -1 ), approx. 9.007E15 pass class SmallIntegerField(SfField, models.SmallIntegerField): """SmallIntegerField with sf_read_only attribute for Salesforce.""" pass class DecimalField(SfField, models.DecimalField): """ DecimalField with sf_read_only attribute for Salesforce. Salesforce has only one numeric type xsd:double, but no integer. Even a numeric field with declared zero decimal_places can contain pi=3.14159265358979 in the database accidentally, but if also the value is integer,then it is without '.0'. DecimalField is the default numeric type used by itrospection inspectdb. """ def to_python(self, value): if str(value) == 'DEFAULTED_ON_CREATE': return value ret = super(DecimalField, self).to_python(value) if ret is not None and self.decimal_places == 0: # this is because Salesforce has no numeric integer type if ret == int(ret): ret = Decimal(int(ret)) return ret # parameter "context" is for Django 1.11 and older (the same is in more classes here) def from_db_value(self, value, expression, connection, context=None): # pylint:disable=unused-argument # TODO refactor and move to the driver like in other backends if isinstance(value, float): value = str(value) return self.to_python(value) class FloatField(SfField, models.FloatField): """FloatField for Salesforce. It is Float in Python and the same as DecimalField in the database. """ pass class BooleanField(SfField, models.BooleanField): """BooleanField with sf_read_only attribute for Salesforce.""" def __init__(self, default=False, **kwargs): super(BooleanField, self).__init__(default=default, **kwargs) def to_python(self, value): if isinstance(value, DefaultedOnCreate): return value return super(BooleanField, self).to_python(value) class DateTimeField(SfField, models.DateTimeField): """DateTimeField with sf_read_only attribute for Salesforce.""" class DateField(SfField, models.DateField): """DateField with sf_read_only attribute for Salesforce.""" def from_db_value(self, value, expression, connection, context=None): # pylint:disable=unused-argument return self.to_python(value) class TimeField(SfField, models.TimeField): """TimeField with sf_read_only attribute for Salesforce.""" def from_db_value(self, value, expression, connection, context=None): # pylint:disable=unused-argument return self.to_python(value) class ForeignKey(SfField, models.ForeignKey): """ForeignKey with sf_read_only attribute and acceptable by Salesforce.""" def __init__(self, to, on_delete, *args, **kwargs): # Checks parameters before call to ancestor. if on_delete.__name__ not in ('PROTECT', 'DO_NOTHING'): # The option CASCADE (currently fails) would be unsafe after a fix # of on_delete because Cascade delete is not usually enabled in SF # for safety reasons for most fields objects, namely for Owner, # CreatedBy etc. Some related objects are deleted automatically # by SF even with DO_NOTHING in Django, e.g. for # Campaign/CampaignMember warnings.warn( "Only foreign keys with on_delete = PROTECT or " "DO_NOTHING are currently supported, not %s related to %s" % (on_delete, to)) super(ForeignKey, self).__init__(to, on_delete, *args, **kwargs) def get_attname(self): if self.name.islower(): # pylint:disable=no-else-return # the same as django.db.models.fields.related.ForeignKey.get_attname return '%s_id' % self.name else: return '%sId' % self.name def get_attname_column(self): attname, column = super(ForeignKey, self).get_attname_column() if self.db_column is None and not self.sf_custom: column += 'Id' return attname, column class OneToOneField(ForeignKey, models.OneToOneField): """OneToOneField with sf_read_only attribute and acceptable by Salesforce.""" pass AutoField = SalesforceAutoField
38.969283
115
0.664039
4a20a7ecd9a50e4b719b00927fd375db2aa83df5
5,610
py
Python
evalml/pipelines/components/estimators/classifiers/catboost_classifier.py
Mahesh1822/evalml
aa0ec2379aeba12bbd0dcaaa000f9a2a62064169
[ "BSD-3-Clause" ]
null
null
null
evalml/pipelines/components/estimators/classifiers/catboost_classifier.py
Mahesh1822/evalml
aa0ec2379aeba12bbd0dcaaa000f9a2a62064169
[ "BSD-3-Clause" ]
null
null
null
evalml/pipelines/components/estimators/classifiers/catboost_classifier.py
Mahesh1822/evalml
aa0ec2379aeba12bbd0dcaaa000f9a2a62064169
[ "BSD-3-Clause" ]
null
null
null
"""CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.""" import copy import warnings import numpy as np from skopt.space import Integer, Real from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.pipelines.components.transformers import LabelEncoder from evalml.problem_types import ProblemTypes from evalml.utils import import_or_raise, infer_feature_types class CatBoostClassifier(Estimator): """CatBoost Classifier, a classifier that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features. For more information, check out https://catboost.ai/ Args: n_estimators (float): The maximum number of trees to build. Defaults to 10. eta (float): The learning rate. Defaults to 0.03. max_depth (int): The maximum tree depth for base learners. Defaults to 6. bootstrap_type (string): Defines the method for sampling the weights of objects. Available methods are 'Bayesian', 'Bernoulli', 'MVS'. Defaults to None. silent (boolean): Whether to use the "silent" logging mode. Defaults to True. allow_writing_files (boolean): Whether to allow writing snapshot files while training. Defaults to False. n_jobs (int or None): Number of jobs to run in parallel. -1 uses all processes. Defaults to -1. random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "CatBoost Classifier" hyperparameter_ranges = { "n_estimators": Integer(4, 100), "eta": Real(0.000001, 1), "max_depth": Integer(4, 10), } """{ "n_estimators": Integer(4, 100), "eta": Real(0.000001, 1), "max_depth": Integer(4, 10), }""" model_family = ModelFamily.CATBOOST """ModelFamily.CATBOOST""" supported_problem_types = [ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ] """[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ]""" def __init__( self, n_estimators=10, eta=0.03, max_depth=6, bootstrap_type=None, silent=True, allow_writing_files=False, random_seed=0, n_jobs=-1, **kwargs, ): parameters = { "n_estimators": n_estimators, "eta": eta, "max_depth": max_depth, "bootstrap_type": bootstrap_type, "silent": silent, "allow_writing_files": allow_writing_files, } if kwargs.get("thread_count", None) is not None: warnings.warn( "Parameter 'thread_count' will be ignored. To use parallel threads, use the 'n_jobs' parameter instead." ) parameters.update(kwargs) cb_error_msg = ( "catboost is not installed. Please install using `pip install catboost.`" ) catboost = import_or_raise("catboost", error_msg=cb_error_msg) self._label_encoder = None # catboost will choose an intelligent default for bootstrap_type, so only set if provided cb_parameters = copy.copy(parameters) if bootstrap_type is None: cb_parameters.pop("bootstrap_type") cb_parameters["thread_count"] = n_jobs cb_classifier = catboost.CatBoostClassifier( **cb_parameters, random_seed=random_seed ) parameters["n_jobs"] = n_jobs super().__init__( parameters=parameters, component_obj=cb_classifier, random_seed=random_seed ) def fit(self, X, y=None): """Fits CatBoost classifier component to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. Returns: self """ X = infer_feature_types(X) cat_cols = list(X.ww.select("category", return_schema=True).columns) self.input_feature_names = list(X.columns) X, y = super()._manage_woodwork(X, y) # For binary classification, catboost expects numeric values, so encoding before. if y.nunique() <= 2: self._label_encoder = LabelEncoder() y = self._label_encoder.fit_transform(None, y)[1] self._component_obj.fit(X, y, silent=True, cat_features=cat_cols) return self def predict(self, X): """Make predictions using the fitted CatBoost classifier. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted values. """ X = infer_feature_types(X) predictions = self._component_obj.predict(X) if predictions.ndim == 2 and predictions.shape[1] == 1: predictions = predictions.flatten() if self._label_encoder: predictions = self._label_encoder.inverse_transform( predictions.astype(np.int64) ) predictions = infer_feature_types(predictions) predictions.index = X.index return predictions @property def feature_importance(self): """Feature importance of fitted CatBoost classifier.""" return self._component_obj.get_feature_importance()
38.163265
166
0.64902
4a20a83a84dfbe7805d4d1459a3050f5bebfae75
13,362
py
Python
injection_curve_analysis_shenzhen/main.py
shixin2013/python-study
acedb1d25bfd2ee53d5bf12c66df4305138359b0
[ "MIT" ]
null
null
null
injection_curve_analysis_shenzhen/main.py
shixin2013/python-study
acedb1d25bfd2ee53d5bf12c66df4305138359b0
[ "MIT" ]
null
null
null
injection_curve_analysis_shenzhen/main.py
shixin2013/python-study
acedb1d25bfd2ee53d5bf12c66df4305138359b0
[ "MIT" ]
null
null
null
#python分为可变结构与不可变结构,不可变结构基本等于复杂结构,包括list map等。复杂结构的赋值和传参都是传递的引用 # for it in list 中,it是只读的,修改它不会改变list值 # ctrl+[,] 代码缩进 import os import datetime import shutil import configparser import sys import numpy as np from scipy.optimize import leastsq import matplotlib as mpl import matplotlib.pyplot as plt from scipy.interpolate import interp1d import pandas as pd import subprocess import time import threading import math import xlrd def pres_loss_friction(L,D,rou,Q,visc,e): if Q<1e-3 : return 0 Cf = 4.343e-15 #metric #get reynolds number Cr = 0.01474 #metric Re = Cr*rou*Q/(D*visc) #get fanning friction factor if Re<4000: f = 16/Re else: t=pow(e/(3.7*D),10/9) t=t+6.9/Re t = math.log10(t)*(-3.6) f = 1/t/t return Cf*f*L*rou*Q*Q/pow(D,5)*0.1 #bar to MPa def pres_loss_friction_array_ver(L,D,rou,Q,visc,e): Cf = 4.343e-15 #metric Cr = 0.01474 #metric rev = Q.copy() for i in range(len(Q)): if Q[i]<1e-3 : rev[i]=0 else: #get reynolds number Re = Cr*rou*Q[i]/(D*visc) #get fanning friction factor if Re<4000: f = 16/Re else: t=pow(e/(3.7*D),10/9) t=t+6.9/Re t = math.log10(t)*(-3.6) f = 1/t/t rev[i] = Cf*f*L*rou*Q[i]*Q[i]/pow(D,5)*0.1 #bar to MPa return rev def pres_loss_head(H,rou): return rou*9.8*H*1e-6 def pres_loss_singleICD(fld,q,strength): global fluid_wat dens_cal = fluid_wat.dens visc_cal = fluid_wat.visc K = strength # / dens_cal =1.0 #str:bars/(rm3/day)2 dp = pow((dens_cal/fld.dens)*(fld.visc/visc_cal),0.25)*fld.dens/dens_cal*K*q*q return dp*0.1 #bar 2 MPa class Fluid: def __init__(self,rou,visc): self.dens = rou self.visc = visc class Well: def __init__(self,l,l2,h,d,e,wn,fluid,coff,strength=0.00021,PI=1.0): #ecl typical value self.length_v = l self.length_h = l2-l self.tvd = h self.diam = d*0.0254 self.rough = e*0.001 self.name = wn self.fluid = fluid self.coff = coff self.strength = strength self.PI = PI def get_pres_loss_icd(self,Q,f): global icd_interval nIcds = (int)(self.length_h/icd_interval) #print(Q) dp = pres_loss_singleICD(f,Q/nIcds,self.strength) return dp def get_bhp(self,Q,thp): bhp = thp+pres_loss_head( self.tvd, self.fluid.dens)- \ self.coff*pres_loss_friction(self.length_v,self.diam,self.fluid.dens,Q,self.fluid.visc,self.rough)- \ self.get_pres_loss_icd(Q,fluid) #pres_loss_local(self.fluid.dens,self.coff,Q,self.diam) #3.7 # if bhp<resP: # bhp = resP return bhp def get_effective_pres(self,Q,thp,resP): tmp = self.get_bhp(Q,thp)-resP if tmp<0: tmp=0 return tmp def read_thp_curve(self,fname): wb = xlrd.open_workbook(fname) st = wb.sheet_by_name(self.name) self.timeT = st.col_values(0)[1:] self.presT = st.col_values(1)[1:] self.injT = st.col_values(2)[1:] #list 不同于array,不能直接乘。乘代表重复列表多次组成新列表 self.injT = [i*1e-3*60*24 for i in self.injT] self.retT = st.col_values(3)[1:] self.retT = [abs(i)*1e-3*60*24 for i in self.retT] #对流量做平均,避免剧烈波动。向前5步平均 self.ave_rate(self.injT,200) self.effec_pres = [i for i in range(len(self.timeT))] global resp, plot_icd_pl,plot_pres_loss self.effec_PI = self.effec_pres.copy() for i in range(len(self.timeT)): if not plot_icd_pl and not plot_pres_loss: self.effec_pres[i] = self.get_effective_pres(abs(self.injT[i]),self.presT[i],resp) if self.effec_pres[i]>0.1: self.effec_PI[i]= (self.injT[i]-self.retT[i])/self.effec_pres[i]/10 if self.effec_PI[i]>self.PI: self.effec_PI[i]=self.PI elif self.effec_PI[i]<0: self.effec_PI[i]=0 else: self.effec_PI[i]= 0 elif plot_pres_loss: self.effec_pres[i] = self.coff*pres_loss_friction(self.length_v,self.diam,self.fluid.dens,abs(self.injT[i]),self.fluid.visc,self.rough)+ \ self.get_pres_loss_icd(abs(self.injT[i]),fluid) else: self.effec_pres[i] = self.get_pres_loss_icd(abs(self.injT[i]),self.fluid) #处理时间,标准化 for i in range(len(self.timeT)): if i==0 : continue if self.timeT[i]<self.timeT[i-1]: self.timeT[i:] = [it+1.0 for it in self.timeT[i:]] self.timeT = [it-self.timeT[0] for it in self.timeT] def read_wat_test_dat(self,fname,ithst=0): wb = xlrd.open_workbook(fname) st = wb.sheet_by_index(ithst) start_line = 1 self.wattest_tT = st.col_values(1)[start_line:] self.wattest_pT = st.col_values(2)[start_line:] #MPa self.wattest_inT = st.col_values(3)[start_line:] #L/min self.wattest_outT = st.col_values(4)[start_line:] #L/min self.wattest_pT = np.array( self.wattest_pT ) self.wattest_inT = np.array( [i*1e-3*60*24 for i in self.wattest_inT] )#L/min to m3/day self.wattest_outT = np.array( [abs(i)*1e-3*60*24 for i in self.wattest_outT] )#L/min to m3/day def ave_rate(self,tarT,istep): #average rate value to avoid huge oscillation. for water test data only for now tmpl = tarT.copy() for i in range(len(tmpl)): j=i n=0 total = 0.0 while j>=0 and n<istep: total+=tmpl[j] j-=1 n+=1 tarT[i] = total / n def wat_test_calc_p(self): global resp,fluid_wat intoResT = self.wattest_inT - self.wattest_outT #intoResT[intoResT<0] = 0 #q = pi(bhp-resp) bhp = intoResT/self.PI*0.1 + resp #thp = bhp-head+dp dp_icd = self.get_pres_loss_icd(self.wattest_inT,fluid_wat) dp_fric = self.coff*pres_loss_friction_array_ver(self.length_v,self.diam,fluid_wat.dens,self.wattest_inT,fluid_wat.visc,self.rough) dp_head = pres_loss_head( self.tvd, fluid_wat.dens) self.wattest_calcpT = bhp-dp_head+dp_icd+dp_fric self.wattest_DP = dp_icd+dp_fric def set_PI(self,pi): self.PI = pi def set_K(self,k): self.strength = k def set_coff(self,c): self.coff = c def pres_loss(coff,L,D,rou,Q,visc,e): return pres_loss_friction(L,D,rou,Q,visc,e)*coff def wat_test_thp_calc(p,well): #well.set_coff(p[0]) #well.set_K(p) well.set_PI(p[1]) well.wat_test_calc_p() return well.wattest_calcpT def error_thp_calc(p,well,y): return wat_test_thp_calc(p,well)-y #脚本使用流程:1) 使用斜井段长度,拟合A4H5实测摩阻 5.4 # 2)使用得到的摩阻系数计算斜井段压力损失 3)认为流量沿ICD均匀分布,压差也相同(相当于定了ICD参数),算出第一个ICD压降即可 # 总注入/ICD数 即为流入ICD的流速,按这个流速算压降。 # WELL V_MD H_MD # A4H5 3500 4300 # C3H4 4000 5068 # A3H3 1650 2500 # A5H1 1483 2205 #region match # v=[8,7,6,5,4,2] #in bpm, 1 bpm = 1800 m3/day # bpm_2_m3_day = 228.9417 # p2=[7,5.4,4.5,3.1,2,0.65] #in MPa # v = [it*bpm_2_m3_day for it in v] # L = 3500 #m # D = 4.7*0.0254 #inch 2 m # rou = 1000 # kg/m3 # visc = 0.7 #cp # e = 0.3*0.001 #mm 2 m # p_test = [pres_loss(5.4,L,D,rou,it,visc,e) for it in v] # plt.plot(v,p2,'o',label='实测阻力') # plt.plot(v,p_test,'r',label='计算阻力') # plt.legend(loc='upper left') # #plt.set_xlabel(xlabel='流速(m3/day)',ylabel='压力损失(MPa)') # plt.xlabel('流速(m3/day)') # plt.ylabel('压力损失(MPa)') # plt.show() # # # y = np.array(p2) # # # x = np.array(v) # # # pset = [L,D,rou,visc,e] # # # para =leastsq(error, 3.7, args=(x,y)) # 进行拟合 # # # p_match = [pres_loss(para,L,D,rou,it,visc,e) for it in v] # # # plt.plot(v,p_match,'g',label='拟合阻力') # sys.exit() #endregion dat_file_nam = R"C:\Users\shixi\Desktop\workContracts\ShenZhenLh11\WorkSpace\inje_dat_for_reading.xlsx" resp = 12.4 #Mpa dens = 1050 visc = 2.0 fluid = Fluid(dens,visc) fluid_wat = Fluid(1000,0.7) #a4h5 len tvd diam_in rough_mm # wA4H5 = Well(3450,1240,4.7,0.3,'A4H5',fluid) # wA4H5.read_thp_curve(dat_file_nam) # wA5H1 = Well(3450,1240,4.7,0.3,'A5H1',fluid) # wA5H1.read_thp_curve(dat_file_nam) # wA4H5 = Well(3450,1240,4.7,0.3,'A4H5',fluid) # wA4H5.read_thp_curve(dat_file_nam) # wA4H5 = Well(3450,1240,4.7,0.3,'A4H5',fluid) # wA4H5.read_thp_curve(dat_file_nam) # #plot # plt.plot(wA4H5.timeT,wA4H5.effec_pres,label='有效压力') # plt.plot(wA4H5.timeT,wA4H5.presT,label='泵注压力') # plt.legend(loc='upper right') # plt.show() icd_interval=10 #m ?需确定 K需确定(开放注入?) plot_icd_pl = False plot_wat_test_match = False plot_pres_loss = True wlist = [] # 摩阻系数清水拟合值:5.4 # vlen hlen tvd diam_in rough_mm, coff, K PI(40-100), wlist.append(Well(3500,4300, 1240,4.7, 0.3, 'A4H5',fluid, 2.37,0.021,60)) wlist.append(Well(4000,5068, 1246,4.7, 0.3, 'C3H4',fluid, 2.37, 0.021,100 )) #最大5mpa摩阻,考虑到a4h5他们估算是4mpa,c3h4较长,基本合理 wlist.append(Well(1650,2500, 1214,4.7, 0.3, 'A3H3',fluid, 2.37, 0.021,94))#1.7 wlist.append(Well(1483,2205, 1240,4.7, 0.3, 'A5H1',fluid, 2.37, 0.021,55 ))#3.4 太大了,有点扯 # wlist.append(Well(2200,3000, 1240,4.7, 0.3, 'test',fluid, 2.37, 0.021,55 ))#3.4 太大了,有点扯 # qqq = 1200*1e-3*60*24 # dp1 = -pres_loss_head( wlist[0].tvd, wlist[0].fluid.dens) # dp2 = wlist[0].coff*pres_loss_friction(wlist[0].length_v,wlist[0].diam,wlist[0].fluid.dens,qqq,wlist[0].fluid.visc,wlist[0].rough) # dp3 = wlist[0].get_pres_loss_icd(qqq,fluid) # dp = dp1+dp2+dp3+resp # print(dp1,'',dp2,'',dp3,'',dp) # exit(0) nfig = 4 fig, axs = plt.subplots(nfig) plt.figure() i=0 if plot_wat_test_match: root = R"C:\Users\shixi\Desktop\workContracts\深圳礁灰岩\资料\4连续封隔体控水\清水实验资料\\" root = os.path.dirname(root) ave_step = 1 for w in wlist: fnam = os.path.join(root, w.name+'井清水测试.xlsx') for i in range(1): #根据是否注释掉,切换一个井多个测试数据和一个井一个测试数据的情况 #w.read_wat_test_dat(fnam) #print('reading sheet 0 of c3h4/a5h1') w.read_wat_test_dat(fnam,2) print('reading sheet 1-6 of a3h3') #axs[i].plot(w.wattest_tT,w.wattest_inT,'go',label=w.name+'ori in') #axs[i].plot(w.wattest_tT,w.wattest_outT,label=w.name+'ori out') w.ave_rate(w.wattest_inT,ave_step) w.ave_rate(w.wattest_outT,ave_step) #axs[i].plot(w.wattest_tT,w.wattest_inT,'r',label=w.name+'ave in') #axs[i].plot(w.wattest_tT,w.wattest_outT,label=w.name+'ave out') #axs[i].legend(loc='upper left') axs[i].set(ylabel='MPa') axs[i].plot(w.wattest_tT,w.wattest_pT,label=w.name+'记录井口压力') w.wat_test_calc_p() axs[i].plot(w.wattest_tT,w.wattest_calcpT,label=w.name+'计算井口压力') axs[i].plot(w.wattest_tT,w.wattest_DP,label=w.name+'压力损失') axs[i].grid() #match # p0 = [2.37,100] # 拟合的初始参数设置 # para =leastsq(error_thp_calc, p0, args=(w,w.wattest_pT)) # 进行拟合 # y_fitted = wat_test_thp_calc(para[0],w) # 画出拟合后的曲线 # axs[i].plot(w.wattest_tT,y_fitted,label=w.name+'拟合c,pi:'+str(para[0][0])+' '+str(para[0][1])) # w.set_K(0.015) #w.set_PI(100) # w.wat_test_calc_p() # axs[i].plot(w.wattest_tT,w.wattest_calcpT,label=w.name+'计算井口压力'+str(w.strength)) # w.set_K(0.01) #w.set_PI(100) # w.wat_test_calc_p() # axs[i].plot(w.wattest_tT,w.wattest_calcpT,label=w.name+'计算井口压力'+str(w.strength)) # ax2 = axs[i].twinx() # ax2.plot(w.wattest_tT,w.wattest_inT,'g',label=w.name+'入口流量') # ax2.plot(w.wattest_tT,w.wattest_inT-w.wattest_outT,'b',label=w.name+'净注入量') # ax2.set(ylabel='m3/day') axs[i].legend(loc='upper left') #dataframe = pd.DataFrame({'Time':w.wattest_tT,'Caculate Pres(MPa)':w.wattest_calcpT,'Record Pres(MPa)':w.wattest_pT}) #dataframe.to_csv(os.path.join(root, w.name+'_'+str(i)+'th_wat_test.csv'),index=False,sep=',') i+=1 else: root = os.path.dirname(dat_file_nam) for w in wlist: print(w.name+'begin') w.read_thp_curve(dat_file_nam) axs[i].plot(w.timeT,w.effec_pres,'r',label=w.name+'有效压力') axs[i].plot(w.timeT,w.presT,'b',label=w.name+'泵注压力') ax2 = axs[i].twinx() ax2.plot(w.timeT,w.effec_PI,'g',label=w.name+'有效PI') axs[i].legend(loc='upper right') axs[i].set(ylabel='MPa') ax2.set(ylabel='PI') ax2.legend(loc='upper right') plt.plot(w.timeT,w.effec_pres,label=w.name+'有效压力') #plt.plot(w.timeT,w.effec_PI,label=w.name+'有效PI') plt.legend(loc='upper right') #plt.set(ylabel='MPa') #output csv #dataframe = pd.DataFrame({'Time':w.timeT,'Effective_pressure':w.effec_pres}) #dataframe.to_csv(os.path.join(root, w.name+'_effcPres.csv'),index=False,sep=',') i+=1 plt.show()
34.349614
154
0.592277
4a20a86e7d839bab12b45f3485abd44eeb5ea4f3
186
py
Python
src/xliff/apps.py
Integreat/integreat-cms
b3f80964a6182d714f26ac229342b47e1c7c4f29
[ "Apache-2.0" ]
14
2020-12-03T07:56:30.000Z
2021-10-30T13:09:50.000Z
src/xliff/apps.py
Integreat/integreat-cms
b3f80964a6182d714f26ac229342b47e1c7c4f29
[ "Apache-2.0" ]
367
2020-11-20T00:34:20.000Z
2021-12-14T15:20:42.000Z
src/xliff/apps.py
Integreat/integreat-cms
b3f80964a6182d714f26ac229342b47e1c7c4f29
[ "Apache-2.0" ]
3
2021-02-09T18:46:52.000Z
2021-12-07T10:41:39.000Z
""" Configuration of XLIFF app """ from django.apps import AppConfig class XLIFFConfig(AppConfig): """ XLIFF config inheriting the django AppConfig """ name = "xliff"
14.307692
48
0.672043
4a20a8bf59ab3c96c69f1159acc44ff088d1d57d
305
py
Python
assignmenthub/page_edits/migrations/0011_delete_privacypolicy.py
webspace95/assignment_hub_prototype
bf1b588fa817e1d622f965cb9536c986a4a965cf
[ "MIT" ]
null
null
null
assignmenthub/page_edits/migrations/0011_delete_privacypolicy.py
webspace95/assignment_hub_prototype
bf1b588fa817e1d622f965cb9536c986a4a965cf
[ "MIT" ]
null
null
null
assignmenthub/page_edits/migrations/0011_delete_privacypolicy.py
webspace95/assignment_hub_prototype
bf1b588fa817e1d622f965cb9536c986a4a965cf
[ "MIT" ]
null
null
null
# Generated by Django 3.0.4 on 2022-03-11 09:24 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('page_edits', '0010_howweworktext_body'), ] operations = [ migrations.DeleteModel( name='PrivacyPolicy', ), ]
17.941176
50
0.616393
4a20a8c427f7355818383d0c14289c7ed04fc51c
319
py
Python
tests/test_utils.py
matt-carr/cloudstorage
6bcf731f14678ad1469234311a7748691be529cd
[ "MIT" ]
null
null
null
tests/test_utils.py
matt-carr/cloudstorage
6bcf731f14678ad1469234311a7748691be529cd
[ "MIT" ]
null
null
null
tests/test_utils.py
matt-carr/cloudstorage
6bcf731f14678ad1469234311a7748691be529cd
[ "MIT" ]
null
null
null
from cloudstorage.utils import rgetattr, rsetattr def test_rgetattr(): b = type('B', (), {'c': True})() a = type('A', (), {'b': b})() assert rgetattr(a, 'b.c') def test_rsetattr(): b = type('B', (), {'c': True})() a = type('A', (), {'b': b})() rsetattr(a, 'b.c', False) assert not a.b.c
21.266667
49
0.495298
4a20aa3496f82f952cc332c68731c9339df26881
12,525
py
Python
peering/tables.py
zimage/peering-manager
8765c276b01b182d267d9be81413087a1c6f7ce9
[ "Apache-2.0" ]
null
null
null
peering/tables.py
zimage/peering-manager
8765c276b01b182d267d9be81413087a1c6f7ce9
[ "Apache-2.0" ]
null
null
null
peering/tables.py
zimage/peering-manager
8765c276b01b182d267d9be81413087a1c6f7ce9
[ "Apache-2.0" ]
1
2020-03-31T02:04:39.000Z
2020-03-31T02:04:39.000Z
import django_tables2 as tables from .models import ( AutonomousSystem, Community, ConfigurationTemplate, DirectPeeringSession, InternetExchange, InternetExchangePeeringSession, Router, RoutingPolicy, ) from peeringdb.models import PeerRecord from peering_manager import settings from utils.tables import ActionsColumn, BaseTable, SelectColumn from utils.templatetags.helpers import markdown AUTONOMOUS_SYSTEM_ACTIONS = """ {% if perms.peering.change_autonomoussystem %} <a href="{% url 'peering:autonomous_system_edit' asn=record.asn %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ AUTONOMOUS_SYSTEM_HAS_POTENTIAL_IX_PEERING_SESSIONS = """ {% if record.has_potential_ix_peering_sessions %} <span class="text-right" data-toggle="tooltip" data-placement="left" title="Potential Peering Sessions"> <i class="fas fa-exclamation-circle text-warning"></i> </span> {% endif %} """ BGPSESSION_STATUS = """ {% if record.enabled %} <i class="fas fa-check-square text-success"></i> {% else %} <i class="fas fa-times text-danger"></i> {% endif %} """ BGP_RELATIONSHIP = "{{ record.get_relationship_html }}" COMMUNITY_ACTIONS = """ {% if perms.peering.change_community %} <a href="{% url 'peering:community_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ COMMUNITY_TYPE = "{{ record.get_type_html }}" CONFIGURATION_TEMPLATE_ACTIONS = """ {% if perms.peering.change_configurationtemplate %} <a href="{% url 'peering:configuration_template_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ DIRECT_PEERING_SESSION_ACTIONS = """ {% load helpers %} {% if record.comment %} <button type="button" class="btn btn-xs btn-info popover-hover" data-toggle="popover" data-html="true" title="Peering Session Comments" data-content="{{ record.comment | markdown }}"><i class="fas fa-comment"></i></button> {% endif %} {% if record.autonomous_system.comment %} <button type="button" class="btn btn-xs btn-info popover-hover" data-toggle="popover" data-html="true" title="Autonomous System Comments" data-content="{{ record.autonomous_system.comment | markdown }}"><i class="fas fa-comments"></i></button> {% endif %} {% if perms.peering.change_directpeeringsession %} <a href="{% url 'peering:direct_peering_session_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ INTERNET_EXCHANGE_ACTIONS = """ {% if perms.peering.change_internetexchange %} <a href="{% url 'peering:internet_exchange_edit' slug=record.slug %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ INTERNET_EXCHANGE_PEERING_SESSION_ACTIONS = """ {% load helpers %} {% if record.comment %} <button type="button" class="btn btn-xs btn-info popover-hover" data-toggle="popover" data-html="true" title="Peering Session Comments" data-content="{{ record.comment | markdown }}"><i class="fas fa-comment"></i></button> {% endif %} {% if record.autonomous_system.comment %} <button type="button" class="btn btn-xs btn-info popover-hover" data-toggle="popover" data-html="true" title="Autonomous System Comments" data-content="{{ record.autonomous_system.comment | markdown }}"><i class="fas fa-comments"></i></button> {% endif %} {% if record.internet_exchange.comment %} <button type="button" class="btn btn-xs btn-info popover-hover" data-toggle="popover" data-html="true" title="Internet Exchange Comments" data-content="{{ record.internet_exchange.comment | markdown }}"><i class="fas fa-comment-dots"></i></button> {% endif %} {% if perms.peering.change_internetexchangepeeringsession %} <a href="{% url 'peering:internet_exchange_peering_session_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ INTERNET_EXCHANGE_PEERING_SESSION_IS_ROUTE_SERVER = """ {% if record.is_route_server %} <i class="fas fa-check-square text-success"></i> {% else %} <i class="fas fa-times text-danger"></i> {% endif %} """ ROUTER_ACTIONS = """ {% if perms.peering.change_router %} <a href="{% url 'peering:router_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ ROUTER_ENCRYPT_PASSWORD = """ {% if record.encrypt_passwords %} <i class="fas fa-check-square text-success"></i> {% else %} <i class="fas fa-times text-danger"></i> {% endif %} """ ROUTING_POLICY_ACTIONS = """ {% if perms.peering.change_routingpolicy %} <a href="{% url 'peering:routing_policy_edit' pk=record.pk %}" class="btn btn-xs btn-warning"><i class="fas fa-edit"></i></a> {% endif %} """ ROUTING_POLICY_TYPE = "{{ record.get_type_html }}" class BGPSessionStateColumn(tables.TemplateColumn): def __init__(self, *args, **kwargs): default = kwargs.pop("default", "") visible = kwargs.pop( "visible", settings.NAPALM_USERNAME and settings.NAPALM_PASSWORD ) verbose_name = kwargs.pop("verbose_name", "State") template_code = kwargs.pop("template_code", "{{ record.get_bgp_state_html }}") super().__init__( *args, default=default, verbose_name=verbose_name, template_code=template_code, visible=visible, **kwargs ) class AutonomousSystemTable(BaseTable): """ Table for AutonomousSystem lists """ pk = SelectColumn() asn = tables.Column(verbose_name="ASN") name = tables.LinkColumn() irr_as_set = tables.Column(verbose_name="IRR AS-SET", orderable=False) ipv6_max_prefixes = tables.Column(verbose_name="IPv6 Max Prefixes") ipv4_max_prefixes = tables.Column(verbose_name="IPv4 Max Prefixes") has_potential_ix_peering_sessions = tables.TemplateColumn( verbose_name="", orderable=False, template_code=AUTONOMOUS_SYSTEM_HAS_POTENTIAL_IX_PEERING_SESSIONS, ) actions = ActionsColumn(template_code=AUTONOMOUS_SYSTEM_ACTIONS) class Meta(BaseTable.Meta): model = AutonomousSystem fields = ( "pk", "asn", "name", "irr_as_set", "ipv6_max_prefixes", "ipv4_max_prefixes", "actions", ) class CommunityTable(BaseTable): """ Table for Community lists """ pk = SelectColumn() name = tables.LinkColumn() type = tables.TemplateColumn(template_code=COMMUNITY_TYPE) actions = ActionsColumn(template_code=COMMUNITY_ACTIONS) class Meta(BaseTable.Meta): model = Community fields = ("pk", "name", "value", "type", "actions") class ConfigurationTemplateTable(BaseTable): """ Table for ConfigurationTemplate lists """ pk = SelectColumn() name = tables.LinkColumn() actions = ActionsColumn(template_code=CONFIGURATION_TEMPLATE_ACTIONS) class Meta(BaseTable.Meta): model = ConfigurationTemplate fields = ("pk", "name", "updated", "actions") class DirectPeeringSessionTable(BaseTable): """ Table for DirectPeeringSession lists """ pk = SelectColumn() local_asn = tables.Column(verbose_name="Local ASN") autonomous_system = tables.LinkColumn(verbose_name="AS") ip_address = tables.LinkColumn(verbose_name="IP Address") relationship = tables.TemplateColumn( verbose_name="Relationship", template_code=BGP_RELATIONSHIP ) enabled = tables.TemplateColumn( verbose_name="Status", template_code=BGPSESSION_STATUS ) session_state = BGPSessionStateColumn(accessor="bgp_state") router = tables.RelatedLinkColumn(verbose_name="Router", accessor="router") actions = ActionsColumn(template_code=DIRECT_PEERING_SESSION_ACTIONS) class Meta(BaseTable.Meta): model = DirectPeeringSession fields = ( "pk", "local_asn", "autonomous_system", "ip_address", "relationship", "enabled", "session_state", "router", "actions", ) class InternetExchangeTable(BaseTable): """ Table for InternetExchange lists """ pk = SelectColumn() name = tables.LinkColumn() ipv6_address = tables.Column(verbose_name="IPv6 Address") ipv4_address = tables.Column(verbose_name="IPv4 Address") configuration_template = tables.RelatedLinkColumn( verbose_name="Template", accessor="configuration_template" ) router = tables.RelatedLinkColumn(verbose_name="Router", accessor="router") actions = ActionsColumn(template_code=INTERNET_EXCHANGE_ACTIONS) class Meta(BaseTable.Meta): model = InternetExchange fields = ( "pk", "name", "ipv6_address", "ipv4_address", "configuration_template", "router", "actions", ) class InternetExchangePeeringSessionTable(BaseTable): """ Table for InternetExchangePeeringSession lists """ pk = SelectColumn() asn = tables.Column(verbose_name="ASN", accessor="autonomous_system.asn") autonomous_system = tables.RelatedLinkColumn( verbose_name="AS Name", accessor="autonomous_system", text=lambda record: record.autonomous_system.name, ) internet_exchange = tables.RelatedLinkColumn( verbose_name="IX Name", accessor="internet_exchange" ) ip_address = tables.LinkColumn(verbose_name="IP Address") is_route_server = tables.TemplateColumn( verbose_name="Route Server", template_code=INTERNET_EXCHANGE_PEERING_SESSION_IS_ROUTE_SERVER, attrs={"td": {"class": "text-center"}, "th": {"class": "text-center"}}, ) enabled = tables.TemplateColumn( verbose_name="Enabled", template_code=BGPSESSION_STATUS, attrs={"td": {"class": "text-center"}, "th": {"class": "text-center"}}, ) session_state = BGPSessionStateColumn(accessor="bgp_state") actions = ActionsColumn(template_code=INTERNET_EXCHANGE_PEERING_SESSION_ACTIONS) class Meta(BaseTable.Meta): model = InternetExchangePeeringSession fields = ( "pk", "asn", "autonomous_system", "internet_exchange", "ip_address", "is_route_server", "enabled", "session_state", "actions", ) class PeerRecordTable(BaseTable): """ Table for PeerRecord lists """ empty_text = "No available peers found." pk = SelectColumn() asn = tables.Column(verbose_name="ASN", accessor="network.asn") name = tables.Column(verbose_name="AS Name", accessor="network.name") irr_as_set = tables.Column( verbose_name="IRR AS-SET", accessor="network.irr_as_set", orderable=False ) ipv6_max_prefixes = tables.Column( verbose_name="IPv6", accessor="network.info_prefixes6" ) ipv4_max_prefixes = tables.Column( verbose_name="IPv4", accessor="network.info_prefixes4" ) ipv6_address = tables.Column( verbose_name="IPv6 Address", accessor="network_ixlan.ipaddr6" ) ipv4_address = tables.Column( verbose_name="IPv4 Address", accessor="network_ixlan.ipaddr4" ) class Meta(BaseTable.Meta): model = PeerRecord fields = ( "pk", "asn", "name", "irr_as_set", "ipv6_max_prefixes", "ipv4_max_prefixes", "ipv6_address", "ipv4_address", ) class RouterTable(BaseTable): """ Table for Router lists """ pk = SelectColumn() name = tables.LinkColumn() encrypt_passwords = tables.TemplateColumn( verbose_name="Encrypt Password", template_code=ROUTER_ENCRYPT_PASSWORD, attrs={"td": {"class": "text-center"}, "th": {"class": "text-center"}}, ) actions = ActionsColumn(template_code=ROUTER_ACTIONS) class Meta(BaseTable.Meta): model = Router fields = ("pk", "name", "hostname", "platform", "encrypt_passwords", "actions") class RoutingPolicyTable(BaseTable): """ Table for RoutingPolicy lists """ pk = SelectColumn() name = tables.LinkColumn() type = tables.TemplateColumn(template_code=ROUTING_POLICY_TYPE) actions = ActionsColumn(template_code=ROUTING_POLICY_ACTIONS) class Meta(BaseTable.Meta): model = RoutingPolicy fields = ("pk", "name", "type", "weight", "address_family", "actions")
34.409341
247
0.663393
4a20aa63561c3f9e86f385d00836641dc6ddc374
1,487
py
Python
src/utils.py
YechielK/rcp2
7135d4fe2538dd5e7ac7e61a7351ed09473c95dc
[ "MIT" ]
10
2019-02-22T03:48:16.000Z
2022-02-06T00:23:53.000Z
src/utils.py
YechielK/rcp2
7135d4fe2538dd5e7ac7e61a7351ed09473c95dc
[ "MIT" ]
82
2019-02-19T20:28:00.000Z
2022-03-20T16:55:45.000Z
src/utils.py
YechielK/rcp2
7135d4fe2538dd5e7ac7e61a7351ed09473c95dc
[ "MIT" ]
30
2019-02-18T17:25:31.000Z
2022-01-22T14:38:29.000Z
"""General project utilities. The following top-level variables make it easier to reference specific directories in other scripts and notebooks: - :data:`src.utils.ROOT`: The project root (usually named ``rcp2/``). - :data:`src.utils.DATA`: The project data directory and subdirectories - :GEOID:`src.utils.GEOID`: GEOIDS are the ID system for census geographies stored as key value pairs of 'geoid_name': len(GEOID) .. note:: The ``DATA`` variable assumes that you have downloaded and set up the data directory as follows: :: Data/ ├── 03_Shapefiles │ ├── 2010_Census_shapefiles │ └── SVI2016_US_shapefiles ├── Master Project Data ├── processed └── raw """ import pathlib # The project root diretory. ROOT = pathlib.Path(__file__, "..", "..").resolve() # Paths to project data directories. DATA = { "data": ROOT / "Data", "raw": ROOT / "Data" / "raw", "interim": ROOT / "Data" / 'interim', "master": ROOT / "Data" / "Master Project Data", "model-outputs": ROOT / "Data" / "Model Outputs", "processed": ROOT / "Data" / "processed", "shapefiles": ROOT / "Data" / "03_Shapefiles", "shapefiles-census": ROOT / "Data" / "03_Shapefiles" / "2010_Census_shapefiles", "shapefiles-svi": ROOT / "Data" / "03_Shapefiles" / "SVI2016_US_shapefiles", 'acs' : ROOT /'Data' / 'Model Outputs' / 'ACS_Extraction' } GEOID = { 'state': 2, 'county': 5, 'tract' : 11, 'block_group' : 12 }
28.056604
84
0.635508
4a20aa651cd49e38411e9cd47333c4b5633f2b0a
6,443
py
Python
homeassistant/components/opentherm_gw/sensor.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
6
2017-08-02T19:26:39.000Z
2020-03-14T22:47:41.000Z
homeassistant/components/opentherm_gw/sensor.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
58
2020-08-03T07:33:02.000Z
2022-03-31T06:02:05.000Z
homeassistant/components/opentherm_gw/sensor.py
tbarbette/core
8e58c3aa7bc8d2c2b09b6bd329daa1c092d52d3c
[ "Apache-2.0" ]
14
2018-08-19T16:28:26.000Z
2021-09-02T18:26:53.000Z
"""Support for OpenTherm Gateway sensors.""" import logging from pprint import pformat from homeassistant.components.sensor import ENTITY_ID_FORMAT from homeassistant.const import CONF_ID from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity, async_generate_entity_id from homeassistant.helpers.entity_registry import async_get_registry from . import DOMAIN from .const import ( DATA_GATEWAYS, DATA_OPENTHERM_GW, DEPRECATED_SENSOR_SOURCE_LOOKUP, SENSOR_INFO, TRANSLATE_SOURCE, ) _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the OpenTherm Gateway sensors.""" sensors = [] deprecated_sensors = [] gw_dev = hass.data[DATA_OPENTHERM_GW][DATA_GATEWAYS][config_entry.data[CONF_ID]] ent_reg = await async_get_registry(hass) for var, info in SENSOR_INFO.items(): device_class = info[0] unit = info[1] friendly_name_format = info[2] status_sources = info[3] for source in status_sources: sensors.append( OpenThermSensor( gw_dev, var, source, device_class, unit, friendly_name_format, ) ) old_style_entity_id = async_generate_entity_id( ENTITY_ID_FORMAT, f"{var}_{gw_dev.gw_id}", hass=gw_dev.hass ) old_ent = ent_reg.async_get(old_style_entity_id) if old_ent and old_ent.config_entry_id == config_entry.entry_id: if old_ent.disabled: ent_reg.async_remove(old_style_entity_id) else: deprecated_sensors.append( DeprecatedOpenThermSensor( gw_dev, var, device_class, unit, friendly_name_format, ) ) sensors.extend(deprecated_sensors) if deprecated_sensors: _LOGGER.warning( "The following sensor entities are deprecated and may no " "longer behave as expected. They will be removed in a future " "version. You can force removal of these entities by disabling " "them and restarting Home Assistant.\n%s", pformat([s.entity_id for s in deprecated_sensors]), ) async_add_entities(sensors) class OpenThermSensor(Entity): """Representation of an OpenTherm Gateway sensor.""" def __init__(self, gw_dev, var, source, device_class, unit, friendly_name_format): """Initialize the OpenTherm Gateway sensor.""" self.entity_id = async_generate_entity_id( ENTITY_ID_FORMAT, f"{var}_{source}_{gw_dev.gw_id}", hass=gw_dev.hass ) self._gateway = gw_dev self._var = var self._source = source self._value = None self._device_class = device_class self._unit = unit if TRANSLATE_SOURCE[source] is not None: friendly_name_format = ( f"{friendly_name_format} ({TRANSLATE_SOURCE[source]})" ) self._friendly_name = friendly_name_format.format(gw_dev.name) self._unsub_updates = None async def async_added_to_hass(self): """Subscribe to updates from the component.""" _LOGGER.debug("Added OpenTherm Gateway sensor %s", self._friendly_name) self._unsub_updates = async_dispatcher_connect( self.hass, self._gateway.update_signal, self.receive_report ) async def async_will_remove_from_hass(self): """Unsubscribe from updates from the component.""" _LOGGER.debug("Removing OpenTherm Gateway sensor %s", self._friendly_name) self._unsub_updates() @property def available(self): """Return availability of the sensor.""" return self._value is not None @property def entity_registry_enabled_default(self): """Disable sensors by default.""" return False @callback def receive_report(self, status): """Handle status updates from the component.""" value = status[self._source].get(self._var) if isinstance(value, float): value = f"{value:2.1f}" self._value = value self.async_write_ha_state() @property def name(self): """Return the friendly name of the sensor.""" return self._friendly_name @property def device_info(self): """Return device info.""" return { "identifiers": {(DOMAIN, self._gateway.gw_id)}, "name": self._gateway.name, "manufacturer": "Schelte Bron", "model": "OpenTherm Gateway", "sw_version": self._gateway.gw_version, } @property def unique_id(self): """Return a unique ID.""" return f"{self._gateway.gw_id}-{self._source}-{self._var}" @property def device_class(self): """Return the device class.""" return self._device_class @property def state(self): """Return the state of the device.""" return self._value @property def unit_of_measurement(self): """Return the unit of measurement.""" return self._unit @property def should_poll(self): """Return False because entity pushes its state.""" return False class DeprecatedOpenThermSensor(OpenThermSensor): """Represent a deprecated OpenTherm Gateway Sensor.""" # pylint: disable=super-init-not-called def __init__(self, gw_dev, var, device_class, unit, friendly_name_format): """Initialize the OpenTherm Gateway sensor.""" self.entity_id = async_generate_entity_id( ENTITY_ID_FORMAT, f"{var}_{gw_dev.gw_id}", hass=gw_dev.hass ) self._gateway = gw_dev self._var = var self._source = DEPRECATED_SENSOR_SOURCE_LOOKUP[var] self._value = None self._device_class = device_class self._unit = unit self._friendly_name = friendly_name_format.format(gw_dev.name) self._unsub_updates = None @property def unique_id(self): """Return a unique ID.""" return f"{self._gateway.gw_id}-{self._var}"
32.872449
86
0.625485
4a20aadc2e223c042e4faf492ce59ccaae0cddfd
1,881
py
Python
lib/_included_packages/plexnet/mediachoice.py
aleenator/plex-for-kodi
e6610e42ce1afd115cf59632b949e18597625323
[ "BSD-3-Clause" ]
233
2016-12-01T10:00:33.000Z
2022-03-26T21:43:47.000Z
lib/_included_packages/plexnet/mediachoice.py
aleenator/plex-for-kodi
e6610e42ce1afd115cf59632b949e18597625323
[ "BSD-3-Clause" ]
327
2016-11-30T18:27:32.000Z
2022-03-13T20:49:27.000Z
lib/_included_packages/plexnet/mediachoice.py
aleenator/plex-for-kodi
e6610e42ce1afd115cf59632b949e18597625323
[ "BSD-3-Clause" ]
140
2016-12-01T18:41:24.000Z
2022-03-08T17:08:44.000Z
from __future__ import absolute_import from . import plexstream from . import util class MediaChoice(object): SUBTITLES_DEFAULT = 0 SUBTITLES_BURN = 1 SUBTITLES_SOFT_DP = 2 SUBTITLES_SOFT_ANY = 3 def __init__(self, media=None, partIndex=0): self.media = media self.part = None self.forceTranscode = False self.isDirectPlayable = False self.videoStream = None self.audioStream = None self.subtitleStream = None self.isSelected = False self.subtitleDecision = self.SUBTITLES_DEFAULT self.sorts = util.AttributeDict() if media: self.indirectHeaders = media.indirectHeaders self.part = media.parts[partIndex] if self.part: # We generally just rely on PMS to have told us selected streams, so # initialize our streams accordingly. self.videoStream = self.part.getSelectedStreamOfType(plexstream.PlexStream.TYPE_VIDEO) self.audioStream = self.part.getSelectedStreamOfType(plexstream.PlexStream.TYPE_AUDIO) self.subtitleStream = self.part.getSelectedStreamOfType(plexstream.PlexStream.TYPE_SUBTITLE) else: util.WARN_LOG("Media does not contain a valid part") util.LOG("Choice media: {0} part:{1}".format(media, partIndex)) for streamType in ("videoStream", "audioStream", "subtitleStream"): attr = getattr(self, streamType) if attr: util.LOG("Choice {0}: {1}".format(streamType, repr(attr))) else: util.WARN_LOG("Could not create media choice for invalid media") def __str__(self): return "direct playable={0} version={1}".format(self.isDirectPlayable, self.media) def __repr__(self): return self.__str__()
36.882353
108
0.633705
4a20ab1ebbc9ccce112835135639f5a6355837db
655
py
Python
foodData/processFile.py
IBM/mpnn
218697020de8ecb48b908cc1ed58c4633de398a1
[ "Apache-2.0" ]
1
2020-08-01T15:52:17.000Z
2020-08-01T15:52:17.000Z
foodData/processFile.py
IBM/mpnn
218697020de8ecb48b908cc1ed58c4633de398a1
[ "Apache-2.0" ]
6
2019-12-16T21:59:48.000Z
2022-02-10T00:13:21.000Z
foodData/processFile.py
IBM/mpnn
218697020de8ecb48b908cc1ed58c4633de398a1
[ "Apache-2.0" ]
6
2019-11-02T05:48:42.000Z
2021-09-03T03:38:27.000Z
import numpy as np with open("./foodData/doinfer.txt") as f: data=f.readlines() seq=[] ang1=[] ang2=[] for i in range(len(data)): if(i%3==0): line=np.asarray(list(data[i].strip())) seq.append(line) elif(i%3==1): ang1s=np.asarray(data[i].strip().split(" ")) ang1.append(ang1s[np.where(ang1s!='')]) else: ang2s=np.asarray(data[i].strip().split(" ")) ang2.append(ang2s[np.where(ang2s!='')]) # # res=np.asarray(res) np.save("doinfer.npy", np.asarray(seq)) np.save("doinfer_ang1_tgt.npy", np.asarray(ang1)) np.save("doinfer_ang2_tgt.npy", np.asarray(ang2)) print(seq) print(ang1) print(ang2)
22.586207
52
0.610687
4a20ab49c67c68a77a93bb079909eaa8f1336f63
1,448
py
Python
runtests.py
Frojd/Fabrik
9f2edbba97a7fd236b72a9b3010f6e912ab5c001
[ "MIT" ]
12
2015-11-03T20:41:29.000Z
2019-02-15T17:13:27.000Z
runtests.py
Frojd/Fabrik
9f2edbba97a7fd236b72a9b3010f6e912ab5c001
[ "MIT" ]
35
2015-08-23T17:10:00.000Z
2017-05-10T12:08:57.000Z
runtests.py
Frojd/Fabrik
9f2edbba97a7fd236b72a9b3010f6e912ab5c001
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import unittest import sys from fabric.state import env from fabric.state import output test_suite = [ "tests.test_api", "tests.test_ext", "tests.test_recipes", "tests.test_cli", ] def prepare_test(): import logging from fabrik.logger import logger # Mute fabric output["status"] = False output["aborts"] = False output["warnings"] = False output["running"] = False output["stdout"] = False output["stderr"] = False output["exceptions"] = False output["debug"] = False # Raise exceptions on errors env.raise_errors = True # Disable fabrik logging logger.setLevel(logging.CRITICAL) def runtests(test_modules=None): prepare_test() # List of modules to test if (not test_modules): test_modules = test_suite # Construct and run test suite suite = unittest.TestSuite() for t in test_modules: try: mod = __import__(t, globals(), locals(), ["suite"]) suitefn = getattr(mod, "suite") suite.addTest(suitefn()) except (ImportError, AttributeError): suite.addTest(unittest.defaultTestLoader.loadTestsFromName(t)) result = unittest.TextTestRunner().run(suite) sys.exit(not result.wasSuccessful()) if __name__ == "__main__": test_modules = None if len(sys.argv) > 1: test_modules = [sys.argv[1]] runtests(test_modules)
21.61194
74
0.638122
4a20abda3b0a642c283108bad2c1a485b3c3c4ec
1,212
py
Python
iamheadless_publisher_site_homepages/pydantic_models.py
plain-ie/iamheadless_publisher_site_homepages
f7263de520c895664b508702495b34aac4aed8ae
[ "MIT" ]
null
null
null
iamheadless_publisher_site_homepages/pydantic_models.py
plain-ie/iamheadless_publisher_site_homepages
f7263de520c895664b508702495b34aac4aed8ae
[ "MIT" ]
null
null
null
iamheadless_publisher_site_homepages/pydantic_models.py
plain-ie/iamheadless_publisher_site_homepages
f7263de520c895664b508702495b34aac4aed8ae
[ "MIT" ]
null
null
null
from typing import List, Optional from django.shortcuts import reverse from iamheadless_publisher_site.pydantic_models import BaseItemContentsPydanticModel, BaseItemDataPydanticModel, BaseItemPydanticModel from .conf import settings from .urls import urlpatterns class HomepageContentPydanticModel(BaseItemContentsPydanticModel): title: str language: str content: Optional[str] seo_keywords: Optional[str] seo_description: Optional[str] class HomepageDataPydanticModel(BaseItemDataPydanticModel): contents: List[HomepageContentPydanticModel] class HomepagePydanticModel(BaseItemPydanticModel): _content_model = HomepageContentPydanticModel _data_model = HomepageDataPydanticModel _display_name_plural = 'homepages' _display_name_singular = 'homepage' _item_type = 'homepage' _searchable = False _browsable = True _urlpatterns = urlpatterns data: HomepageDataPydanticModel def get_item_url(self, language): return reverse( settings.URLNAME_HOMEPAGE, kwargs={ 'language': language } ) @property def CONTENTS(self): return self.dict()['data']['contents']
26.347826
134
0.738449
4a20ac5c60790cf00cf9c5c037e3f3dc134dc263
5,264
py
Python
ask-sdk-model/ask_sdk_model/events/skillevents/permission_accepted_request.py
nikhilym/alexa-apis-for-python
be6b31529dba4c9b4db7d5e5b7cb509761b0c58d
[ "Apache-2.0" ]
null
null
null
ask-sdk-model/ask_sdk_model/events/skillevents/permission_accepted_request.py
nikhilym/alexa-apis-for-python
be6b31529dba4c9b4db7d5e5b7cb509761b0c58d
[ "Apache-2.0" ]
null
null
null
ask-sdk-model/ask_sdk_model/events/skillevents/permission_accepted_request.py
nikhilym/alexa-apis-for-python
be6b31529dba4c9b4db7d5e5b7cb509761b0c58d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum from ask_sdk_model.request import Request if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.events.skillevents.permission_body import PermissionBody class PermissionAcceptedRequest(Request): """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param body: :type body: (optional) ask_sdk_model.events.skillevents.permission_body.PermissionBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ deserialized_types = { 'object_type': 'str', 'request_id': 'str', 'timestamp': 'datetime', 'body': 'ask_sdk_model.events.skillevents.permission_body.PermissionBody', 'event_creation_time': 'datetime', 'event_publishing_time': 'datetime' } attribute_map = { 'object_type': 'type', 'request_id': 'requestId', 'timestamp': 'timestamp', 'body': 'body', 'event_creation_time': 'eventCreationTime', 'event_publishing_time': 'eventPublishingTime' } def __init__(self, request_id=None, timestamp=None, body=None, event_creation_time=None, event_publishing_time=None): # type: (Optional[str], Optional[datetime], Optional[PermissionBody], Optional[datetime], Optional[datetime]) -> None """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param body: :type body: (optional) ask_sdk_model.events.skillevents.permission_body.PermissionBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ self.__discriminator_value = "AlexaSkillEvent.SkillPermissionAccepted" self.object_type = self.__discriminator_value super(PermissionAcceptedRequest, self).__init__(object_type=self.__discriminator_value, request_id=request_id, timestamp=timestamp) self.body = body self.event_creation_time = event_creation_time self.event_publishing_time = event_publishing_time def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, PermissionAcceptedRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
38.144928
182
0.644377
4a20aed61d0204e37a37c7f23b6baeb5000eb8a9
4,663
py
Python
google/ads/google_ads/v6/proto/enums/user_list_prepopulation_status_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/enums/user_list_prepopulation_status_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/enums/user_list_prepopulation_status_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/enums/user_list_prepopulation_status.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/enums/user_list_prepopulation_status.proto', package='google.ads.googleads.v6.enums', syntax='proto3', serialized_options=b'\n!com.google.ads.googleads.v6.enumsB UserListPrepopulationStatusProtoP\001ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v6/enums;enums\242\002\003GAA\252\002\035Google.Ads.GoogleAds.V6.Enums\312\002\035Google\\Ads\\GoogleAds\\V6\\Enums\352\002!Google::Ads::GoogleAds::V6::Enums', create_key=_descriptor._internal_create_key, serialized_pb=b'\nBgoogle/ads/googleads/v6/enums/user_list_prepopulation_status.proto\x12\x1dgoogle.ads.googleads.v6.enums\x1a\x1cgoogle/api/annotations.proto\"\x87\x01\n\x1fUserListPrepopulationStatusEnum\"d\n\x1bUserListPrepopulationStatus\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\r\n\tREQUESTED\x10\x02\x12\x0c\n\x08\x46INISHED\x10\x03\x12\n\n\x06\x46\x41ILED\x10\x04\x42\xf5\x01\n!com.google.ads.googleads.v6.enumsB UserListPrepopulationStatusProtoP\x01ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v6/enums;enums\xa2\x02\x03GAA\xaa\x02\x1dGoogle.Ads.GoogleAds.V6.Enums\xca\x02\x1dGoogle\\Ads\\GoogleAds\\V6\\Enums\xea\x02!Google::Ads::GoogleAds::V6::Enumsb\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _USERLISTPREPOPULATIONSTATUSENUM_USERLISTPREPOPULATIONSTATUS = _descriptor.EnumDescriptor( name='UserListPrepopulationStatus', full_name='google.ads.googleads.v6.enums.UserListPrepopulationStatusEnum.UserListPrepopulationStatus', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='REQUESTED', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FINISHED', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='FAILED', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=167, serialized_end=267, ) _sym_db.RegisterEnumDescriptor(_USERLISTPREPOPULATIONSTATUSENUM_USERLISTPREPOPULATIONSTATUS) _USERLISTPREPOPULATIONSTATUSENUM = _descriptor.Descriptor( name='UserListPrepopulationStatusEnum', full_name='google.ads.googleads.v6.enums.UserListPrepopulationStatusEnum', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _USERLISTPREPOPULATIONSTATUSENUM_USERLISTPREPOPULATIONSTATUS, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=132, serialized_end=267, ) _USERLISTPREPOPULATIONSTATUSENUM_USERLISTPREPOPULATIONSTATUS.containing_type = _USERLISTPREPOPULATIONSTATUSENUM DESCRIPTOR.message_types_by_name['UserListPrepopulationStatusEnum'] = _USERLISTPREPOPULATIONSTATUSENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) UserListPrepopulationStatusEnum = _reflection.GeneratedProtocolMessageType('UserListPrepopulationStatusEnum', (_message.Message,), { 'DESCRIPTOR' : _USERLISTPREPOPULATIONSTATUSENUM, '__module__' : 'google.ads.googleads.v6.enums.user_list_prepopulation_status_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.enums.UserListPrepopulationStatusEnum) }) _sym_db.RegisterMessage(UserListPrepopulationStatusEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
42.779817
707
0.802702
4a20afc19233a7e37a9e29715e16e35c544240a4
2,958
py
Python
azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/cluster_create_properties_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/cluster_create_properties_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-hdinsight/azure/mgmt/hdinsight/models/cluster_create_properties_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ClusterCreateProperties(Model): """The cluster create parameters. :param cluster_version: The version of the cluster. :type cluster_version: str :param os_type: The type of operating system. Possible values include: 'Windows', 'Linux' :type os_type: str or ~azure.mgmt.hdinsight.models.OSType :param tier: The cluster tier. Possible values include: 'Standard', 'Premium' :type tier: str or ~azure.mgmt.hdinsight.models.Tier :param cluster_definition: The cluster definition. :type cluster_definition: ~azure.mgmt.hdinsight.models.ClusterDefinition :param security_profile: The security profile. :type security_profile: ~azure.mgmt.hdinsight.models.SecurityProfile :param compute_profile: The compute profile. :type compute_profile: ~azure.mgmt.hdinsight.models.ComputeProfile :param storage_profile: The storage profile. :type storage_profile: ~azure.mgmt.hdinsight.models.StorageProfile :param disk_encryption_properties: The disk encryption properties. :type disk_encryption_properties: ~azure.mgmt.hdinsight.models.DiskEncryptionProperties """ _attribute_map = { 'cluster_version': {'key': 'clusterVersion', 'type': 'str'}, 'os_type': {'key': 'osType', 'type': 'OSType'}, 'tier': {'key': 'tier', 'type': 'Tier'}, 'cluster_definition': {'key': 'clusterDefinition', 'type': 'ClusterDefinition'}, 'security_profile': {'key': 'securityProfile', 'type': 'SecurityProfile'}, 'compute_profile': {'key': 'computeProfile', 'type': 'ComputeProfile'}, 'storage_profile': {'key': 'storageProfile', 'type': 'StorageProfile'}, 'disk_encryption_properties': {'key': 'diskEncryptionProperties', 'type': 'DiskEncryptionProperties'}, } def __init__(self, *, cluster_version: str=None, os_type=None, tier=None, cluster_definition=None, security_profile=None, compute_profile=None, storage_profile=None, disk_encryption_properties=None, **kwargs) -> None: super(ClusterCreateProperties, self).__init__(**kwargs) self.cluster_version = cluster_version self.os_type = os_type self.tier = tier self.cluster_definition = cluster_definition self.security_profile = security_profile self.compute_profile = compute_profile self.storage_profile = storage_profile self.disk_encryption_properties = disk_encryption_properties
49.3
221
0.683908
4a20afe462651150f3ec887cb82a129364f3bfc5
3,433
py
Python
autotabular/pipeline/components/data_preprocessing/label_encoder/label_encoder.py
jianzhnie/AutoTabular
fb407300adf97532a26d33f7442d2a606fa30512
[ "Apache-2.0" ]
48
2021-09-06T08:09:26.000Z
2022-03-28T13:02:54.000Z
autotabular/pipeline/components/data_preprocessing/label_encoder/label_encoder.py
Fanxingye/Autotabular
d630c78290a52f8c73885afb16884e18135c34f6
[ "Apache-2.0" ]
null
null
null
autotabular/pipeline/components/data_preprocessing/label_encoder/label_encoder.py
Fanxingye/Autotabular
d630c78290a52f8c73885afb16884e18135c34f6
[ "Apache-2.0" ]
7
2021-09-23T07:28:46.000Z
2021-10-02T21:15:18.000Z
from decimal import Decimal from typing import Dict, Optional, Tuple, Union import numpy as np from autotabular.pipeline.base import DATASET_PROPERTIES_TYPE, PIPELINE_DATA_DTYPE from autotabular.pipeline.components.base import AutotabularPreprocessingAlgorithm from autotabular.pipeline.constants import DENSE, INPUT, SPARSE, UNSIGNED_DATA from ConfigSpace.configuration_space import ConfigurationSpace class LabelEncoder(object): def __init__(self, try_to_fit_numeric=False): from sklearn.preprocessing import LabelEncoder self.lbl = LabelEncoder() self._try_to_fit_numeric = try_to_fit_numeric def fit(self, x): self.lbl.fit(x) # list(x.values)) if self._try_to_fit_numeric: try: arr = {Decimal(c): c for c in self.lbl.classes_} sorted_arr = dict(sorted(arr.items())) self.lbl.classes_ = np.array( list(sorted_arr.values()), dtype=self.lbl.classes_.dtype) except Exception as e: print(e) pass def transform(self, x): try: return self.lbl.transform(x) # list(x.values)) except ValueError as ve: print(ve) # rescue classes = np.unique(x) # list(x.values)) diff = np.setdiff1d(classes, self.lbl.classes_) self.lbl.classes_ = np.concatenate((self.lbl.classes_, diff)) return self.lbl.transform(x) # list(x.values)) def inverse_transform(self, x): return self.lbl.inverse_transform(x) # (list(x.values)) class LabelEncoderTransformer(AutotabularPreprocessingAlgorithm): def __init__( self, random_state: Optional[np.random.RandomState] = None, ): self.random_state = random_state def fit( self, X: Optional[PIPELINE_DATA_DTYPE] = None, y: PIPELINE_DATA_DTYPE = None, ) -> 'LabelEncoderTransformer': self.preprocessor = LabelEncoder(try_to_fit_numeric=False) self.preprocessor.fit(y) return self def transform(self, X: PIPELINE_DATA_DTYPE) -> PIPELINE_DATA_DTYPE: if self.preprocessor is None: raise NotImplementedError() # Notice we are shifting the unseen categories during fit to 1 # from -1, 0, ... to 0,..., cat + 1 # This is done because Category shift requires non negative integers # Consider removing this if that step is removed return self.preprocessor.transform(X) @staticmethod def get_properties( dataset_properties: Optional[DATASET_PROPERTIES_TYPE] = None ) -> Dict[str, Optional[Union[str, int, bool, Tuple]]]: return { 'shortname': 'LabelEncoderTransformer', 'name': 'LabelEncoder Transformer', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'handles_multioutput': True, # TODO find out of this is right! 'handles_sparse': True, 'handles_dense': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (INPUT, ), } @staticmethod def get_hyperparameter_search_space( dataset_properties: Optional[DATASET_PROPERTIES_TYPE] = None, ) -> ConfigurationSpace: return ConfigurationSpace()
36.136842
82
0.635304
4a20b1067f827fadd75ce7cab3b1fe45ddca37fd
634
py
Python
app/config.py
Berthedusabeyezu/News-Highlight
cd4af3edb031a5bf1013684058434e05d07f5c99
[ "MIT" ]
null
null
null
app/config.py
Berthedusabeyezu/News-Highlight
cd4af3edb031a5bf1013684058434e05d07f5c99
[ "MIT" ]
null
null
null
app/config.py
Berthedusabeyezu/News-Highlight
cd4af3edb031a5bf1013684058434e05d07f5c99
[ "MIT" ]
null
null
null
class Config: ''' General configuration parent class ''' NEWS_API_BASE_URL ='https://newsapi.org/v2/sources?category={}&apiKey={}' ARTICLES_API_BASE_URL = 'https://newsapi.org/v2/everything?sources={}&apiKey={}' class ProdConfig(Config): ''' Production configuration child class Args: Config: The parent configuration class with General configuration settings ''' pass class DevConfig(Config): ''' Development configuration child class Args: Config: The parent configuration class with General configuration settings ''' DEBUG = True
21.133333
84
0.657729
4a20b37c735c455139512fa2d7c7f96b1d836065
206
py
Python
services/catalog/src/simcore_service_catalog/db/repositories/_base.py
elisabettai/osparc-simcore
ad7b6e05111b50fe95e49306a992170490a7247f
[ "MIT" ]
null
null
null
services/catalog/src/simcore_service_catalog/db/repositories/_base.py
elisabettai/osparc-simcore
ad7b6e05111b50fe95e49306a992170490a7247f
[ "MIT" ]
1
2021-11-29T13:38:09.000Z
2021-11-29T13:38:09.000Z
services/catalog/src/simcore_service_catalog/db/repositories/_base.py
mrnicegyu11/osparc-simcore
b6fa6c245dbfbc18cc74a387111a52de9b05d1f4
[ "MIT" ]
null
null
null
from dataclasses import dataclass from sqlalchemy.ext.asyncio import AsyncEngine @dataclass class BaseRepository: """ Repositories are pulled at every request """ db_engine: AsyncEngine
15.846154
46
0.747573
4a20b490512902e94929b357933dbd9ce1abcdee
2,154
py
Python
trainer.py
vicioux/mobile-semantic-segmentation
4879e76b274c90323960996c42d8aec916e44ee2
[ "MIT" ]
34
2019-01-21T14:21:06.000Z
2022-03-23T12:27:35.000Z
trainer.py
tsingjinyun/mobile-semantic-segmentation
4879e76b274c90323960996c42d8aec916e44ee2
[ "MIT" ]
2
2019-10-26T09:19:42.000Z
2021-07-18T21:59:26.000Z
trainer.py
tsingjinyun/mobile-semantic-segmentation
4879e76b274c90323960996c42d8aec916e44ee2
[ "MIT" ]
8
2019-06-12T07:58:58.000Z
2020-11-06T02:29:56.000Z
import pandas as pd import torch class Trainer: def __init__(self, data_loaders, criterion, device, on_after_epoch=None): self.data_loaders = data_loaders self.criterion = criterion self.device = device self.history = [] self.on_after_epoch = on_after_epoch def train(self, model, optimizer, num_epochs): for epoch in range(num_epochs): train_epoch_loss = self._train_on_epoch(model, optimizer) val_epoch_loss = self._val_on_epoch(model, optimizer) hist = { 'epoch': epoch, 'train_loss': train_epoch_loss, 'val_loss': val_epoch_loss, } self.history.append(hist) if self.on_after_epoch is not None: self.on_after_epoch(model, pd.DataFrame(self.history)) return pd.DataFrame(self.history) def _train_on_epoch(self, model, optimizer): model.train() data_loader = self.data_loaders[0] running_loss = 0.0 for inputs, labels in data_loader: inputs = inputs.to(self.device) labels = labels.to(self.device) optimizer.zero_grad() with torch.set_grad_enabled(True): outputs = model(inputs) loss = self.criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(data_loader.dataset) return epoch_loss def _val_on_epoch(self, model, optimizer): model.eval() data_loader = self.data_loaders[1] running_loss = 0.0 for inputs, labels in data_loader: inputs = inputs.to(self.device) labels = labels.to(self.device) optimizer.zero_grad() with torch.set_grad_enabled(False): outputs = model(inputs) loss = self.criterion(outputs, labels) running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(data_loader.dataset) return epoch_loss
29.506849
77
0.589136
4a20b4b4ccfbcfefb214f689ab9338ce7e4531b7
527
py
Python
env/lib/python3.8/site-packages/plotly/validators/splom/hoverlabel/_bordercolor.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/splom/hoverlabel/_bordercolor.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/splom/hoverlabel/_bordercolor.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class BordercolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="bordercolor", parent_name="splom.hoverlabel", **kwargs ): super(BordercolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "style"), **kwargs )
32.9375
81
0.639469
4a20b61b2a5c91e76a0264fb45c79c023867c30b
2,440
py
Python
apps/project/ActuatorAdaptor.py
GANESHRAMKANAKASABAI1996/CONNECTED-DEVICES-_PYTHON
da231c97bacbc3aa26096b1f94ee9201466678ca
[ "CNRI-Python" ]
null
null
null
apps/project/ActuatorAdaptor.py
GANESHRAMKANAKASABAI1996/CONNECTED-DEVICES-_PYTHON
da231c97bacbc3aa26096b1f94ee9201466678ca
[ "CNRI-Python" ]
null
null
null
apps/project/ActuatorAdaptor.py
GANESHRAMKANAKASABAI1996/CONNECTED-DEVICES-_PYTHON
da231c97bacbc3aa26096b1f94ee9201466678ca
[ "CNRI-Python" ]
null
null
null
''' Created on Jan 26, 2019 ActuatorAdaptor.py : class to process actuator message and set message to SenseHat @author: GANESHRAM KANAKASABAI ''' from project import ActuatorData from project import SenseHatLedActivator from project import SmtpClientConnector class ActuatorAdaptor(object): ''' ActuatorAdaptor - class to process actuator message, update it and set message to SenseHat @variable ActuatorData: instance of ActuatorData class @variable SenseHatLedActivator: instance of SenseHatLedActivator class ''' ActuatorData = None SenseHatLedActivator = None def __init__(self): ''' ActuatorAdaptor Constructor ''' self.ActuatorData = ActuatorData.ActuatorData() self.connector = SmtpClientConnector.SmtpClientConnector() self.SenseHatLedActivator = SenseHatLedActivator.SenseHatLedActivator() self.SenseHatLedActivator.setEnableLedFlag(True) #Enable the SenseHatLedActivator Thread self.SenseHatLedActivator.start() #Start the SenseHatLedActivator Thread def processMessage(self, key, pActuatorData): ''' function to process ActuatorData, update it and set message to SenseHat @param pActuatorData: ActuatorData that needs to be processed ''' if (key != None): if(self.ActuatorData != pActuatorData): if (key == "tempact"): self.SenseHatLedActivator.setDisplayMessage('temperature set to ' + str(pActuatorData.temperatureactuator) + ' ˚C '); self.connector.publishMessage('Alert ! Temperature range breached' , 'setting temperature to' + str(abs(pActuatorData.temperatureactuator)) + ' ˚C ') elif(key == "preact"): self.SenseHatLedActivator.setDisplayMessage('pressure set to ' + str(pActuatorData.pressureactuator) + ' Pa '); self.connector.publishMessage('Alert ! Pressure range breached' , 'setting pressure to ' + str(abs(pActuatorData.pressureactuator)) + ' Pa ') elif(key == "humidact"): self.SenseHatLedActivator.setDisplayMessage('humidity set to ' + str(pActuatorData.humidityactuator) + ' RH '); self.connector.publishMessage('Alert ! Humidity range breached', 'setting humidity to ' + str(abs(pActuatorData.humidityactuator)) + ' RH ') self.ActuatorData.updateData(pActuatorData)
49.795918
169
0.684426
4a20b6c4205121c200c7e1aab9edb4541d97b347
726
py
Python
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/EXT/stencil_two_side.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/EXT/stencil_two_side.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/raw/GL/EXT/stencil_two_side.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_EXT_stencil_two_side' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_EXT_stencil_two_side',error_checker=_errors._error_checker) GL_ACTIVE_STENCIL_FACE_EXT=_C('GL_ACTIVE_STENCIL_FACE_EXT',0x8911) GL_STENCIL_TEST_TWO_SIDE_EXT=_C('GL_STENCIL_TEST_TWO_SIDE_EXT',0x8910) @_f @_p.types(None,_cs.GLenum) def glActiveStencilFaceEXT(face):pass
38.210526
118
0.796143
4a20b6dd7221700126c11c2c26569db6c53f35dc
34,351
py
Python
baselines/policy/bounded_mlp_policy.py
WolfLo/OPTIMIST
b6b49f34e53b3f626ae764bb1e9672fcabb54d19
[ "MIT" ]
5
2019-06-17T13:15:56.000Z
2019-10-16T04:38:00.000Z
baselines/policy/bounded_mlp_policy.py
WolfLo/OPTIMIST
b6b49f34e53b3f626ae764bb1e9672fcabb54d19
[ "MIT" ]
null
null
null
baselines/policy/bounded_mlp_policy.py
WolfLo/OPTIMIST
b6b49f34e53b3f626ae764bb1e9672fcabb54d19
[ "MIT" ]
2
2019-08-11T22:38:21.000Z
2019-11-04T15:25:32.000Z
from baselines.common.mpi_running_mean_std import RunningMeanStd import baselines.common.tf_util as U import tensorflow as tf import gym from baselines.common import set_global_seeds from baselines.common.distributions import make_pdtype import numpy as np import scipy.stats as sts #import time class MlpPolicyBounded(object): """Gaussian policy with critic, based on multi-layer perceptron""" recurrent = False def __init__(self, name, *args, **kwargs): # with tf.device('/cpu:0'): with tf.variable_scope(name): self._init(*args, **kwargs) U.initialize() self.scope = tf.get_variable_scope().name self._prepare_getsetters() def _init(self, ob_space, ac_space, hid_size, num_hid_layers, max_mean=None, min_mean=None, max_std=None, min_std=None, gaussian_fixed_var=True, trainable_std=True, use_bias=True, use_critic=True, seed=None, hidden_W_init=U.normc_initializer(1.0), std_init=1, gain_init=None): """Params: ob_space: task observation space ac_space : task action space hid_size: width of hidden layers num_hid_layers: depth gaussian_fixed_var: True->separate parameter for logstd, False->two-headed mlp use_bias: whether to include bias in neurons use_critic: whether to learn a value predictor seed: random seed max_mean: maximum policy mean max_std: maximum policy standard deviation min_mean: minimum policy mean min_std: minimum policy standard deviation """ # Check environment's shapes assert isinstance(ob_space, gym.spaces.Box) # Set hidden layers' size if isinstance(hid_size, list): num_hid_layers = len(hid_size) else: hid_size = [hid_size] * num_hid_layers # Set seed if seed is not None: set_global_seeds(seed) # Boundaries # Default values if max_mean is None: max_mean = ob_space.high if min_mean is None: min_mean = ob_space.low if min_std is None: min_std = std_init/np.sqrt(2) if max_std is None: max_std = np.sqrt(2) * std_init # Illegal values if(max_mean <= min_mean): raise ValueError("max_mean should be greater than min_mean!") if(min_std <= 0): raise ValueError("min_std should be greater than 0!") if(max_std <= min_std): raise ValueError("max_std should be greater than min_std!") if(std_init > max_std or std_init < min_std): raise ValueError("Initial std out of range!") self.max_mean = max_mean self.min_mean = min_mean self.max_std = max_std self.min_std = min_std self.std_init = std_init self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) # Critic if use_critic: with tf.variable_scope('vf'): obz = tf.clip_by_value( (ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh( tf.layers.dense( last_out, hid_size[i], name="fc%i" % (i+1), kernel_initializer=hidden_W_init)) self.vpred = tf.layers.dense( last_out, 1, name='final', kernel_initializer=hidden_W_init)[:, 0] # Actor with tf.variable_scope('pol'): obz = tf.clip_by_value( (ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh( tf.layers.dense(last_out, hid_size[i], name='fc%i' % (i+1), kernel_initializer=hidden_W_init, use_bias=use_bias)) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): # Bounded mean mu_range = max_mean - min_mean if gain_init is not None: mean_initializer = tf.constant_initializer( np.arctanh(2./mu_range * (gain_init + mu_range/2. - max_mean))) mean = mean = tf.nn.tanh( tf.layers.dense(last_out, pdtype.param_shape()[0]//2, kernel_initializer=mean_initializer, use_bias=use_bias)) mean = mean * mu_range/2. self.mean = mean = tf.add(mean, - mu_range/2 + max_mean, name='final') # Bounded std logstd_range = np.log(max_std) - np.log(min_std) std_param_initializer = tf.constant_initializer( np.arctanh(2./logstd_range * (np.log(std_init) + logstd_range/2. - np.log(max_std)))) std_param = tf.get_variable( name="std_param", shape=[1, pdtype.param_shape()[0]//2], initializer=std_param_initializer, trainable=trainable_std) logstd = tf.nn.tanh(std_param) logstd = logstd * logstd_range/2. logstd = self.logstd = tf.add(logstd, - logstd_range/2 + np.log(max_std), name="pol_logstd") self.logstd = logstd pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: raise NotImplementedError """ pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=output_W_init) """ # Acting self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) if use_critic: self._act = U.function([stochastic, ob], [ac, self.vpred]) else: self._act = U.function([stochastic, ob], [ac, tf.zeros(1)]) # Evaluating self.ob = ob self.ac_in = U.get_placeholder(name="ac_in", dtype=ac_space.dtype, shape=[sequence_length] + list(ac_space.shape)) self.gamma = U.get_placeholder(name="gamma", dtype=tf.float32, shape=[]) self.rew = U.get_placeholder(name="rew", dtype=tf.float32, shape=[sequence_length]+[1]) self.logprobs = self.pd.logp(self.ac_in) # [\log\pi(a|s)] self._get_mean = U.function([ob], [self.mean]) self._get_std = U.function([], [tf.exp(self.logstd)]) self._get_stuff = U.function([ob], [obz, last_out, pdparam]) # Fisher with tf.variable_scope('pol') as vs: self.weights = weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, \ scope=vs.name) self.flat_weights = flat_weights = tf.concat([tf.reshape(w, [-1]) for w in weights], axis=0) self.n_weights = flat_weights.shape[0].value self.score = score = U.flatgrad(self.logprobs, weights) # \nabla\log p(\tau) self.fisher = tf.einsum('i,j->ij', score, score) # Performance graph initializations self._setting = [] # Acting def act(self, stochastic, ob): """ Actions sampled from the policy Params: stochastic: use noise ob: current state """ oneD = len(ob.shape) == 1 if oneD: ob = ob[None] ac1, vpred1 = self._act(stochastic, ob) if oneD: ac1, vpred1 = ac1[0], vpred1[0] return ac1, vpred1 # Distribution parameters def eval_mean(self, ob): return self._get_mean(ob)[0] def eval_std(self): return self._get_std()[0] def eval_stuff(self, ob): return self._get_stuff(ob) # Divergence def eval_renyi(self, states, other, order=2): """Exponentiated Renyi divergence exp(Renyi(self, other)) for each state Params: states: flat list of states other: other policy order: order \alpha of the divergence """ if order<2: raise NotImplementedError('Only order>=2 is currently supported') to_check = order/tf.exp(self.logstd) + (1 - order)/tf.exp(other.logstd) if not (U.function([self.ob],[to_check])(states)[0] > 0).all(): raise ValueError('Conditions on standard deviations are not met') detSigma = tf.exp(tf.reduce_sum(self.logstd)) detOtherSigma = tf.exp(tf.reduce_sum(other.logstd)) mixSigma = order*tf.exp(self.logstd) + (1 - order) * tf.exp(other.logstd) detMixSigma = tf.reduce_prod(mixSigma) renyi = order/2 * (self.mean - other.mean)/mixSigma*(self.mean - other.mean) - \ 1./(2*(order - 1))*(tf.log(detMixSigma) - (1-order)*tf.log(detSigma) - order*tf.log(detOtherSigma)) e_renyi = tf.exp(renyi) fun = U.function([self.ob],[e_renyi]) return fun(states)[0] # Performance evaluation def eval_J(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): """ Performance evaluation, possibly off-policy Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS gamma: discount factor Returns: sample variance of episodic performance Var_J_hat, """ # Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) # Build performance evaluation graph (lazy) assert horizon>0 and batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) # Evaluate performance stats result = self._get_avg_J(_states, _actions, _rewards, gamma, _mask)[0] return np.asscalar(result) def eval_var_J(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): """ Performance variance evaluation, possibly off-policy Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS gamma: discount factor Returns: sample variance of episodic performance J_hat """ #Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) #Build performance evaluation graph (lazy) assert horizon>0 and batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) #Evaluate performance stats result = self._get_var_J(_states, _actions, _rewards, gamma, _mask)[0] return np.asscalar(result) def eval_iw_stats(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): batch_size, horizon, _states, _actions, _rewards, _mask = ( self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon)) self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) results = self._get_iw_stats(_states, _actions, _rewards, gamma, _mask) return tuple(map(np.asscalar, results)) def eval_ret_stats(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) results = self._get_ret_stats(_states, _actions, _rewards, gamma, _mask) return tuple(map(np.asscalar, results)) def eval_grad_J(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): """ Gradients of performance Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS gamma: discount factor Returns: gradient of average episodic performance wrt actor weights, """ #Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) #Build performance evaluation graph (lazy) assert batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) #Evaluate gradients result = self._get_grad_J(_states, _actions, _rewards, gamma, _mask)[0] return np.ravel(result) def eval_grad_var_J(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty): """ Gradients of performance stats Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS gamma: discount factor Returns: gradient of sample variance of episodic performance wrt actor weights """ #Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) #Build performance evaluation graph (lazy) assert batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) #Evaluate gradients result = self._get_grad_var_J(_states, _actions, _rewards, gamma, _mask)[0] return np.ravel(result) def eval_bound(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty, delta=0.2, use_ess=False): """ Student-t bound on performance Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS gamma: discount factor delta: 1 - confidence """ #Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) #Build performance evaluation graph (lazy) assert horizon>0 and batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) #Evaluate bound N = self._get_ess(_states, _actions, _rewards, gamma, _mask)[0] if use_ess else batch_size N = max(N, 2) bound = self._avg_J - sts.t.ppf(1 - delta, N - 1) / np.sqrt(N) * tf.sqrt(self._var_J) return np.asscalar(U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask],[bound])( _states, _actions, _rewards, gamma, _mask)[0]) def eval_grad_bound(self, states, actions, rewards, lens_or_batch_size=1, horizon=None, gamma=.99, behavioral=None, per_decision=False, normalize=False, truncate_at=np.infty, delta=.2, use_ess=False): """ Gradient of student-t bound Params: states, actions, rewards as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon gamma: discount factor behavioral: policy used to collect (s, a, r) tuples per_decision: whether to use Per-Decision IS in place of regular episodic IS normalize: whether to apply self-normalization truncate_at: upper bound on importance weights (infinite by default); ignored in case of self-normalization delta: 1 - confidence """ #Prepare data batch_size, horizon, _states, _actions, _rewards, _mask = self._prepare_data(states, actions, rewards, lens_or_batch_size, horizon) #Build performance evaluation graph (lazy) assert horizon>0 and batch_size>0 self._build(batch_size, horizon, behavioral, per_decision, normalize, truncate_at) #Evaluate bound gradient N = self._get_ess(_states, _actions, _rewards, gamma, _mask)[0] if use_ess else batch_size N = max(N, 2) bound = self._avg_J - sts.t.ppf(1 - delta, N - 1) / np.sqrt(N) * tf.sqrt(self._var_J) grad_bound = U.flatgrad(bound, self.get_param()) return np.ravel(U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask],[grad_bound])( _states, _actions, _rewards, gamma, _mask)[0]) def _prepare_data(self, states, actions, rewards, lens_or_batch_size, horizon, do_pad=True, do_concat=True): assert len(states) > 0 assert len(states)==len(actions) if actions is not None: assert len(actions)==len(states) if type(lens_or_batch_size) is list: lens = lens_or_batch_size no_of_samples = sum(lens) assert no_of_samples > 0 batch_size = len(lens) if horizon is None: horizon = max(lens) assert all(np.array(lens) <= horizon) else: assert type(lens_or_batch_size) is int batch_size = lens_or_batch_size assert len(states)%batch_size == 0 if horizon is None: horizon = len(states)/batch_size no_of_samples = horizon * batch_size lens = [horizon] * batch_size mask = np.ones(no_of_samples) if do_pad else None indexes = np.cumsum(lens) to_resize = [states, actions, rewards, mask] to_resize = [x for x in to_resize if x is not None] resized = [batch_size, horizon] for v in to_resize: v = np.array(v[:no_of_samples]) if v.ndim == 1: v = np.expand_dims(v, axis=1) v = np.split(v, indexes, axis=0) if do_pad: padding_shapes = [tuple([horizon - m.shape[0]] + list(m.shape[1:])) for m in v if m.shape[0]>0] paddings = [np.zeros(shape, dtype=np.float32) for shape in padding_shapes] v = [np.concatenate((m, pad)) for (m, pad) in zip(v, paddings)] if do_concat: v = np.concatenate(v, axis=0) resized.append(v) return tuple(resized) def _build(self, batch_size, horizon, behavioral, per_decision, normalize=False, truncate_at=np.infty): if [batch_size, horizon, behavioral, per_decision, normalize, truncate_at]!=self._setting: #checkpoint = time.time() self._setting = [batch_size, horizon, behavioral, per_decision, normalize, truncate_at] self.mask = tf.placeholder(name="mask", dtype=tf.float32, shape=[batch_size*horizon, 1]) rews_by_episode = tf.split(self.rew, batch_size) rews_by_episode = tf.stack(rews_by_episode) disc = self.gamma + 0*rews_by_episode disc = tf.cumprod(disc, axis=1, exclusive=True) disc_rews = rews_by_episode * disc rets = tf.reduce_sum(disc_rews, axis=1) if behavioral is None: #On policy avg_J, var_J = tf.nn.moments(tf.reduce_sum(disc_rews, axis=1), axes=[0]) grad_avg_J = tf.constant(0) grad_var_J = tf.constant(0) avg_iw = tf.constant(1) var_iw = tf.constant(0) max_iw = tf.constant(1) ess = batch_size else: #Off policy -> importance weighting :( log_ratios = self.logprobs - behavioral.pd.logp(self.ac_in) log_ratios = tf.expand_dims(log_ratios, axis=1) log_ratios = tf.multiply(log_ratios, self.mask) log_ratios_by_episode = tf.split(log_ratios, batch_size) log_ratios_by_episode = tf.stack(log_ratios_by_episode) if per_decision: #Per-decision iw = tf.exp(tf.cumsum(log_ratios_by_episode, axis=1)) if not normalize: #Per-decision, unnormalized (possibly truncated) iw = tf.clip_by_value(iw, 0, truncate_at) weighted_rets = tf.reduce_sum(tf.multiply(disc_rews,iw), axis=1) avg_J, var_J = tf.nn.moments(weighted_rets, axes=[0]) else: #Per-decision, self-normalized iw = batch_size*iw/tf.reduce_sum(iw, axis=0) avg_J_t = tf.reduce_mean(disc_rews* iw, axis=0) avg_J = tf.reduce_sum(avg_J_t) var_J = 1./batch_size * tf.reduce_sum(disc**2 * tf.reduce_mean(iw**2 * (rews_by_episode - avg_J_t)**2, axis=0)) #Da controllare weighted_rets = tf.reduce_sum(tf.multiply(disc_rews,iw), axis=1) eff_iw = weighted_rets/rets avg_iw, var_iw = tf.nn.moments(eff_iw, axes=[0]) max_iw = tf.reduce_max(eff_iw) else: #Per-trajectory iw = tf.exp(tf.reduce_sum(log_ratios_by_episode, axis=1)) if not normalize: #Per trajectory, unnormalized (possibly truncated) iw = tf.clip_by_value(iw, 0, truncate_at) weighted_rets = tf.multiply(rets, iw) avg_J, var_J = tf.nn.moments(weighted_rets, axes=[0]) avg_iw, var_iw = tf.nn.moments(iw, axes=[0]) ess = tf.round(tf.reduce_sum(iw)**2 / tf.reduce_sum(iw**2)) else: #Per-trajectory, self-normalized iw = batch_size*iw/tf.reduce_sum(iw, axis=0) avg_J = tf.reduce_mean(rets*iw, axis=0) var_J = 1./batch_size * tf.reduce_mean(iw**2 * (rets - avg_J)**2) avg_iw = tf.reduce_mean(iw, axis=0) var_iw = 1./batch_size * tf.reduce_mean((iw - 1)**2) ess = tf.round(tf.reduce_sum(iw)**2 / tf.reduce_sum(iw**2)) max_iw = tf.reduce_max(iw) grad_avg_J = U.flatgrad(avg_J, self.get_param()) grad_var_J = U.flatgrad(var_J, self.get_param()) avg_ret, var_ret = tf.nn.moments(tf.reduce_sum(disc_rews, axis=1), axes=[0]) max_ret = tf.reduce_max(tf.reduce_sum(disc_rews, axis=1)) self._avg_J = avg_J self._var_J = var_J self._grad_avg_J = grad_avg_J self._grad_var_J = grad_var_J self._get_avg_J = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [avg_J]) self._get_var_J = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [var_J]) self._get_grad_J = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [grad_avg_J]) self._get_grad_var_J = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [grad_var_J]) self._get_all = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [avg_J, var_J, grad_avg_J, grad_var_J]) self._get_ess = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [ess]) self._get_iw_stats = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [avg_iw, var_iw, max_iw, ess]) self._get_ret_stats = U.function([self.ob, self.ac_in, self.rew, self.gamma, self.mask], [avg_ret, var_ret, max_ret]) #print('Recompile time:', time.time() - checkpoint) #Fisher def eval_fisher(self, states, actions, lens_or_batch_size, horizon=None, behavioral=None): """ Fisher information matrix Params: states, actions as lists, flat wrt time lens_or_batch_size: list with episode lengths or scalar representing the number of (equally long) episodes horizon: max task horizon behavioral: policy used to collect (s, a, r) tuples """ #Prepare data batch_size, horizon, _states, _actions = self._prepare_data(states, actions, None, lens_or_batch_size, horizon, do_pad=False, do_concat=False) fisher = self.fisher with tf.device('/cpu:0'): if behavioral is not None: log_ratios = self.logprobs - behavioral.pd.logp(self.ac_in) iw = tf.exp(tf.reduce_sum(log_ratios)) fisher = tf.multiply(iw, fisher) fun = U.function([self.ob, self.ac_in], [fisher]) fisher_samples = np.array([fun(s, a)[0] for (s,a) in zip(_states, _actions)]) #one call per EPISODE return np.mean(fisher_samples, axis=0) def _prepare_getsetters(self): with tf.variable_scope('pol') as vs: self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=vs.name) self.get_parameter = U.GetFlat(self.var_list) self.set_parameter = U.SetFromFlat(self.var_list) # Weight manipulation def eval_param(self): """"Policy parameters (numeric,flat)""" return self.get_parameter() def get_param(self): return self.weights def set_param(self,param): """Set policy parameters to (flat) param""" self.set_parameter(param) # Used by original implementation def get_variables(self): return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, self.scope) def get_trainable_variables(self): return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.scope) def get_initial_state(self): return [] def set_script_test(env, policy, horizon, seed, bounded_policy, trainable_std, gain_init, max_mean, min_mean, max_std, min_std, std_init): # Common imports import sys, re, os, time, logging from collections import defaultdict # Framework imports import gym import tensorflow as tf # Self imports: utils from baselines.common import set_global_seeds from baselines import logger import baselines.common.tf_util as U from baselines.common.rllab_utils import Rllab2GymWrapper, rllab_env_from_name from baselines.common.atari_wrappers import make_atari, wrap_deepmind # Import custom envs import baselines.envs.lqg1d # registered at import as gym env def get_env_type(env_id): # First load all envs _game_envs = defaultdict(set) for env in gym.envs.registry.all(): env_type = env._entry_point.split(':')[0].split('.')[-1] _game_envs[env_type].add(env.id) # Get env type env_type = None for g, e in _game_envs.items(): if env_id in e: env_type = g break return env_type env = 'LQG1D-v0' # Prepare environment maker if env.startswith('rllab.'): # Get env name and class env_name = re.match('rllab.(\w+)', env).group(1) env_rllab_class = rllab_env_from_name(env_name) # Define env maker def make_env(): env_rllab = env_rllab_class() _env = Rllab2GymWrapper(env_rllab) return _env # Used later env_type = 'rllab' else: # Normal gym, get if Atari or not. env_type = get_env_type(env) assert env_type is not None, "Env not recognized." # Define the correct env maker if env_type == 'atari': # Atari, custom env creation def make_env(): _env = make_atari(env) return wrap_deepmind(_env) else: # Not atari, standard env creation def make_env(): env_rllab = gym.make(env) return env_rllab # Prepare policy maker if policy == 'linear': hid_size = num_hid_layers = 0 elif policy == 'nn': hid_size = [100, 50, 25] num_hid_layers = 3 def make_policy(name, ob_space, ac_space): return MlpPolicyBounded( name=name, ob_space=ob_space, ac_space=ac_space, hid_size=hid_size, num_hid_layers=num_hid_layers, gaussian_fixed_var=True, trainable_std=trainable_std, use_bias=False, use_critic=False, #hidden_W_init=tf.constant_initializer(1.1), gain_init=gain_init, max_mean=max_mean, min_mean=min_mean, max_std=max_std, min_std=min_std, std_init=std_init) # Initialize affinity = len(os.sched_getaffinity(0)) sess = U.make_session(affinity) sess.__enter__() set_global_seeds(seed) gym.logger.setLevel(logging.WARN) env = make_env() ob_space = env.observation_space ac_space = env.action_space pi = make_policy('pi', ob_space, ac_space) return pi if __name__ == '__main__': pi = set_script_test( env='LQG1D-v0', policy='linear', horizon=20, seed=1, bounded_policy=True, trainable_std=False, gain_init=-0.61525125, max_mean=1, min_mean=-1, max_std=None, min_std=0.1, std_init=0.11) mu = pi.eval_mean([[1]]) print('mu', mu) obz, last_out, pdparam = pi.eval_stuff([[-1]]) print('obz', obz) print('last_out', last_out) print('pdparam', pdparam[0]) sigma = pi.eval_std() print('sigma', sigma)
44.323871
139
0.562254
4a20b74a81048abd2b2832f147a0673c8f733498
33,049
py
Python
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_authentication_scheme.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_authentication_scheme.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/fortinet/fortios/plugins/modules/fortios_authentication_scheme.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019-2020 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_authentication_scheme short_description: Configure Authentication Schemes in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify authentication feature and scheme category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.0 version_added: "2.10" author: - Link Zheng (@chillancezen) - Jie Xue (@JieX19) - Hongbin Lu (@fgtdev-hblu) - Frank Shen (@frankshen01) - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Legacy fortiosapi has been deprecated, httpapi is the preferred way to run playbooks requirements: - ansible>=2.9.0 options: access_token: description: - Token-based authentication. Generated from GUI of Fortigate. type: str required: false enable_log: description: - Enable/Disable logging for task. type: bool required: false default: false vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root member_path: type: str description: - Member attribute path to operate on. - Delimited by a slash character if there are more than one attribute. - Parameter marked with member_path is legitimate for doing member operation. member_state: type: str description: - Add or delete a member under specified attribute path. - When member_state is specified, the state option is ignored. choices: - present - absent state: description: - Indicates whether to create or remove the object. type: str required: true choices: - present - absent authentication_scheme: description: - Configure Authentication Schemes. default: null type: dict suboptions: domain_controller: description: - Domain controller setting. Source user.domain-controller.name. type: str ems_device_owner: description: - Enable/disable SSH public-key authentication with device owner . type: str choices: - enable - disable fsso_agent_for_ntlm: description: - FSSO agent to use for NTLM authentication. Source user.fsso.name. type: str fsso_guest: description: - Enable/disable user fsso-guest authentication . type: str choices: - enable - disable kerberos_keytab: description: - Kerberos keytab setting. Source user.krb-keytab.name. type: str method: description: - Authentication methods . type: list choices: - ntlm - basic - digest - form - negotiate - fsso - rsso - ssh-publickey - cert - saml name: description: - Authentication scheme name. required: true type: str negotiate_ntlm: description: - Enable/disable negotiate authentication for NTLM . type: str choices: - enable - disable require_tfa: description: - Enable/disable two-factor authentication . type: str choices: - enable - disable saml_server: description: - SAML configuration. Source user.saml.name. type: str saml_timeout: description: - SAML authentication timeout in seconds. type: int ssh_ca: description: - SSH CA name. Source firewall.ssh.local-ca.name. type: str user_cert: description: - Enable/disable authentication with user certificate . type: str choices: - enable - disable user_database: description: - Authentication server to contain user information; "local" (default) or "123" (for LDAP). type: list suboptions: name: description: - Authentication server name. Source system.datasource.name user.radius.name user.tacacs+.name user.ldap.name user.group.name. required: true type: str ''' EXAMPLES = ''' - collections: - fortinet.fortios connection: httpapi hosts: fortigate01 vars: ansible_httpapi_port: 443 ansible_httpapi_use_ssl: true ansible_httpapi_validate_certs: false vdom: root tasks: - name: fortios_authentication_scheme fortios_authentication_scheme: vdom: root state: present authentication_scheme: fsso_guest: disable method: basic name: terr-auth-scheme negotiate_ntlm: enable require_tfa: disable user_database: - name: local-user-db ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import FortiOSHandler from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import check_legacy_fortiosapi from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import schema_to_module_spec from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.fortios import check_schema_versioning from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FAIL_SOCKET_MSG from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.comparison import is_same_comparison from ansible_collections.fortinet.fortios.plugins.module_utils.fortios.comparison import serialize def filter_authentication_scheme_data(json): option_list = ['domain_controller', 'ems_device_owner', 'fsso_agent_for_ntlm', 'fsso_guest', 'kerberos_keytab', 'method', 'name', 'negotiate_ntlm', 'require_tfa', 'saml_server', 'saml_timeout', 'ssh_ca', 'user_cert', 'user_database'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def flatten_single_path(data, path, index): if not data or index == len(path) or path[index] not in data or not data[path[index]]: return if index == len(path) - 1: data[path[index]] = ' '.join(str(elem) for elem in data[path[index]]) elif isinstance(data[path[index]], list): for value in data[path[index]]: flatten_single_path(value, path, index + 1) else: flatten_single_path(data[path[index]], path, index + 1) def flatten_multilists_attributes(data): multilist_attrs = [ [u'method'], ] for attr in multilist_attrs: flatten_single_path(data, attr, 0) return data def underscore_to_hyphen(data): if isinstance(data, list): for i, elem in enumerate(data): data[i] = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def authentication_scheme(data, fos, check_mode=False): vdom = data['vdom'] state = data['state'] authentication_scheme_data = data['authentication_scheme'] authentication_scheme_data = flatten_multilists_attributes(authentication_scheme_data) filtered_data = underscore_to_hyphen(filter_authentication_scheme_data(authentication_scheme_data)) # check_mode starts from here if check_mode: mkey = fos.get_mkey('authentication', 'scheme', filtered_data, vdom=vdom) current_data = fos.get('authentication', 'scheme', vdom=vdom, mkey=mkey) is_existed = current_data and current_data.get('http_status') == 200 \ and isinstance(current_data.get('results'), list) \ and len(current_data['results']) > 0 # 2. if it exists and the state is 'present' then compare current settings with desired if state == 'present' or state is True: if mkey is None: return False, True, filtered_data # if mkey exists then compare each other # record exits and they're matched or not if is_existed: is_same = is_same_comparison( serialize(current_data['results'][0]), serialize(filtered_data)) return False, not is_same, filtered_data # record does not exist return False, True, filtered_data if state == 'absent': if mkey is None: return False, False, filtered_data if is_existed: return False, True, filtered_data return False, False, filtered_data return True, False, {'reason: ': 'Must provide state parameter'} if state == "present" or state is True: return fos.set('authentication', 'scheme', data=filtered_data, vdom=vdom) elif state == "absent": return fos.delete('authentication', 'scheme', mkey=filtered_data['name'], vdom=vdom) else: fos._module.fail_json(msg='state must be present or absent!') def is_successful_status(resp): return 'status' in resp and resp['status'] == 'success' or \ 'http_status' in resp and resp['http_status'] == 200 or \ 'http_method' in resp and resp['http_method'] == "DELETE" and resp['http_status'] == 404 def fortios_authentication(data, fos, check_mode): fos.do_member_operation('authentication_scheme') if data['authentication_scheme']: resp = authentication_scheme(data, fos, check_mode) else: fos._module.fail_json(msg='missing task body: %s' % ('authentication_scheme')) if check_mode: return resp return not is_successful_status(resp), \ is_successful_status(resp) and \ (resp['revision_changed'] if 'revision_changed' in resp else True), \ resp versioned_schema = { "type": "list", "children": { "user_cert": { "type": "string", "options": [ { "value": "enable", "revisions": { "v7.0.1": True } }, { "value": "disable", "revisions": { "v7.0.1": True } } ], "revisions": { "v7.0.1": True } }, "negotiate_ntlm": { "type": "string", "options": [ { "value": "enable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "disable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } ], "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "name": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "saml_server": { "type": "string", "revisions": { "v7.0.1": True, "v7.0.0": True } }, "saml_timeout": { "type": "integer", "revisions": { "v7.0.1": True, "v7.0.0": True } }, "fsso_guest": { "type": "string", "options": [ { "value": "enable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "disable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } ], "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "ems_device_owner": { "type": "string", "options": [ { "value": "enable", "revisions": { "v7.0.0": True } }, { "value": "disable", "revisions": { "v7.0.0": True } } ], "revisions": { "v7.0.1": False, "v7.0.0": True } }, "kerberos_keytab": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "fsso_agent_for_ntlm": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "domain_controller": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "ssh_ca": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "require_tfa": { "type": "string", "options": [ { "value": "enable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "disable", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } ], "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "method": { "multiple_values": True, "type": "list", "options": [ { "value": "ntlm", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "basic", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "digest", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "form", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "negotiate", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "fsso", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "rsso", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "ssh-publickey", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, { "value": "cert", "revisions": { "v7.0.1": True, "v7.0.0": True } }, { "value": "saml", "revisions": { "v7.0.1": True, "v7.0.0": True } } ], "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } }, "user_database": { "type": "list", "children": { "name": { "type": "string", "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } }, "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } }, "revisions": { "v6.0.0": True, "v7.0.0": True, "v6.0.5": True, "v6.4.4": True, "v7.0.1": True, "v6.4.0": True, "v6.4.1": True, "v6.2.0": True, "v6.2.3": True, "v6.2.5": True, "v6.2.7": True, "v6.0.11": True } } def main(): module_spec = schema_to_module_spec(versioned_schema) mkeyname = 'name' fields = { "access_token": {"required": False, "type": "str", "no_log": True}, "enable_log": {"required": False, "type": bool}, "vdom": {"required": False, "type": "str", "default": "root"}, "member_path": {"required": False, "type": "str"}, "member_state": { "type": "str", "required": False, "choices": ["present", "absent"] }, "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "authentication_scheme": { "required": False, "type": "dict", "default": None, "options": { } } } for attribute_name in module_spec['options']: fields["authentication_scheme"]['options'][attribute_name] = module_spec['options'][attribute_name] if mkeyname and mkeyname == attribute_name: fields["authentication_scheme"]['options'][attribute_name]['required'] = True check_legacy_fortiosapi() module = AnsibleModule(argument_spec=fields, supports_check_mode=True) versions_check_result = None if module._socket_path: connection = Connection(module._socket_path) if 'access_token' in module.params: connection.set_option('access_token', module.params['access_token']) if 'enable_log' in module.params: connection.set_option('enable_log', module.params['enable_log']) else: connection.set_option('enable_log', False) fos = FortiOSHandler(connection, module, mkeyname) versions_check_result = check_schema_versioning(fos, versioned_schema, "authentication_scheme") is_error, has_changed, result = fortios_authentication(module.params, fos, module.check_mode) else: module.fail_json(**FAIL_SOCKET_MSG) if versions_check_result and versions_check_result['matched'] is False: module.warn("Ansible has detected version mismatch between FortOS system and your playbook, see more details by specifying option -vvv") if not is_error: if versions_check_result and versions_check_result['matched'] is False: module.exit_json(changed=has_changed, version_check_warning=versions_check_result, meta=result) else: module.exit_json(changed=has_changed, meta=result) else: if versions_check_result and versions_check_result['matched'] is False: module.fail_json(msg="Error in repo", version_check_warning=versions_check_result, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
32.983034
154
0.414052
4a20b7fffcf477295cf6aacd13446c84740dc405
2,393
py
Python
4. Convolutional Neural Networks/yad2k/models/keras_darknet19.py
Boonichi/Deep-Learning-Specialization
4061c4a2b38cadeb12d582cdcb2e7de7b1d3b407
[ "MIT" ]
null
null
null
4. Convolutional Neural Networks/yad2k/models/keras_darknet19.py
Boonichi/Deep-Learning-Specialization
4061c4a2b38cadeb12d582cdcb2e7de7b1d3b407
[ "MIT" ]
null
null
null
4. Convolutional Neural Networks/yad2k/models/keras_darknet19.py
Boonichi/Deep-Learning-Specialization
4061c4a2b38cadeb12d582cdcb2e7de7b1d3b407
[ "MIT" ]
null
null
null
"""Darknet19 Model Defined in Keras.""" import functools from functools import partial from keras.layers import Conv2D, MaxPooling2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.regularizers import l2 from ..utils.utils import compose # Partial wrapper for Convolution2D with static default argument. _DarknetConv2D = partial(Conv2D, padding='same') @functools.wraps(Conv2D) def DarknetConv2D(*args, **kwargs): """Wrapper to set Darknet weight regularizer for Convolution2D.""" darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)} darknet_conv_kwargs.update(kwargs) return _DarknetConv2D(*args, **darknet_conv_kwargs) def DarknetConv2D_BN_Leaky(*args, **kwargs): """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {'use_bias': False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(), LeakyReLU(alpha=0.1)) def bottleneck_block(outer_filters, bottleneck_filters): """Bottleneck block of 3x3, 1x1, 3x3 convolutions.""" return compose( DarknetConv2D_BN_Leaky(outer_filters, (3, 3)), DarknetConv2D_BN_Leaky(bottleneck_filters, (1, 1)), DarknetConv2D_BN_Leaky(outer_filters, (3, 3))) def bottleneck_x2_block(outer_filters, bottleneck_filters): """Bottleneck block of 3x3, 1x1, 3x3, 1x1, 3x3 convolutions.""" return compose( bottleneck_block(outer_filters, bottleneck_filters), DarknetConv2D_BN_Leaky(bottleneck_filters, (1, 1)), DarknetConv2D_BN_Leaky(outer_filters, (3, 3))) def darknet_body(): """Generate first 18 conv layers of Darknet-19.""" return compose( DarknetConv2D_BN_Leaky(32, (3, 3)), MaxPooling2D(), DarknetConv2D_BN_Leaky(64, (3, 3)), MaxPooling2D(), bottleneck_block(128, 64), MaxPooling2D(), bottleneck_block(256, 128), MaxPooling2D(), bottleneck_x2_block(512, 256), MaxPooling2D(), bottleneck_x2_block(1024, 512)) def darknet19(inputs): """Generate Darknet-19 model for Imagenet classification.""" body = darknet_body()(inputs) logits = DarknetConv2D(1000, (1, 1), activation='softmax')(body) return Model(inputs, logits)
33.704225
77
0.712077
4a20b86888ac0635902dcb9c8181891a3ed8a937
8,948
py
Python
tests/synth_tests/test_synth_workload.py
agalup/GPUMemManSurvey
494e41c2587b69472ad5a17a602ff290b1b1a6ab
[ "MIT" ]
13
2021-02-26T15:15:29.000Z
2021-09-22T19:06:27.000Z
tests/synth_tests/test_synth_workload.py
agalup/GPUMemManSurvey
494e41c2587b69472ad5a17a602ff290b1b1a6ab
[ "MIT" ]
null
null
null
tests/synth_tests/test_synth_workload.py
agalup/GPUMemManSurvey
494e41c2587b69472ad5a17a602ff290b1b1a6ab
[ "MIT" ]
1
2021-09-29T21:24:15.000Z
2021-09-29T21:24:15.000Z
import sys sys.path.append('../../scripts') import os import shutil import time from datetime import datetime from timedprocess import Command from Helper import generateResultsFromSynthetic # from Helper import plotMean import csv import argparse def main(): # Run all files from a directory print("##############################################################################") print("Callable as: python test_synth_workload.py") print("##############################################################################") # Specify which test configuration to use testcases = {} num_allocations = 10000 smallest_allocation_size = 4 largest_allocation_size = 1024 alloc_size = 8 num_iterations = 1 free_memory = 1 generate_results = True generate_plots = True clean_temporary_files = True test_warp_based = False filetype = "pdf" time_out_val = 100 if os.name == 'nt': # If on Windows build_path = os.path.join("build", "Release") sync_build_path = os.path.join("sync_build", "Release") else: build_path = "build/" sync_build_path = "sync_build/" parser = argparse.ArgumentParser(description='Test workload for various frameworks') parser.add_argument('-t', type=str, help='Specify which frameworks to test, separated by +, e.g. o+s+h+c+f+r+x+b ---> c : cuda | s : scatteralloc | h : halloc | o : ouroboros | f : fdgmalloc | r : register-efficient | x : xmalloc') parser.add_argument('-threadrange', type=str, help='Specify number of threads, given as powers of two, e.g. 0-5 -> results in 1-32') parser.add_argument('-range', type=str, help='Sepcify Allocation Range, e.g. 4-1024') parser.add_argument('-iter', type=int, help='How many iterations?') parser.add_argument('-runtest', action='store_true', default=False, help='Run testcases') parser.add_argument('-genres', action='store_true', default=False, help='Generate results') parser.add_argument('-genplot', action='store_true', default=False, help='Generate results file and plot') parser.add_argument('-testwrite', action='store_true', default=False, help='If set tests write performance, not allocation performance') parser.add_argument('-timeout', type=int, help='Timeout Value in Seconds, process will be killed after as many seconds') parser.add_argument('-plotscale', type=str, help='log/linear') parser.add_argument('-filetype', type=str, help='png or pdf') parser.add_argument('-allocsize', type=int, help='How large is the manageable memory in GiB?') parser.add_argument('-device', type=int, help='Which device to use', default=0) args = parser.parse_args() executable_extension = "" if os.name == 'nt': # If on Windows executable_extension = ".exe" # Parse approaches if(args.t): if any("c" in s for s in args.t): testcases["CUDA"] = os.path.join(build_path, str("c_synth_test") + executable_extension) if any("x" in s for s in args.t): testcases["XMalloc"] = os.path.join(sync_build_path, str("x_synth_test") + executable_extension) if any("h" in s for s in args.t): testcases["Halloc"] = os.path.join(sync_build_path, str("h_synth_test") + executable_extension) if any("s" in s for s in args.t): testcases["ScatterAlloc"] = os.path.join(sync_build_path, str("s_synth_test") + executable_extension) if any("o" in s for s in args.t): testcases["Ouroboros-P-S"] = os.path.join(build_path, str("o_synth_test_p") + executable_extension) testcases["Ouroboros-P-VA"] = os.path.join(build_path, str("o_synth_test_vap") + executable_extension) testcases["Ouroboros-P-VL"] = os.path.join(build_path, str("o_synth_test_vlp") + executable_extension) testcases["Ouroboros-C-S"] = os.path.join(build_path, str("o_synth_test_c") + executable_extension) testcases["Ouroboros-C-VA"] = os.path.join(build_path, str("o_synth_test_vac") + executable_extension) testcases["Ouroboros-C-VL"] = os.path.join(build_path, str("o_synth_test_vlc") + executable_extension) if any("f" in s for s in args.t): testcases["FDGMalloc"] = os.path.join(sync_build_path, str("f_synth_test") + executable_extension) if any("r" in s for s in args.t): # testcases["RegEff-A"] = os.path.join(sync_build_path, str("r_synth_test_a") + executable_extension) testcases["RegEff-AW"] = os.path.join(sync_build_path, str("r_synth_test_aw") + executable_extension) testcases["RegEff-C"] = os.path.join(sync_build_path, str("r_synth_test_c") + executable_extension) testcases["RegEff-CF"] = os.path.join(sync_build_path, str("r_synth_test_cf") + executable_extension) testcases["RegEff-CM"] = os.path.join(sync_build_path, str("r_synth_test_cm") + executable_extension) testcases["RegEff-CFM"] = os.path.join(sync_build_path, str("r_synth_test_cfm") + executable_extension) if any("b" in s for s in args.t): testcases["Baseline"] = os.path.join(sync_build_path, str("b_synth_test") + executable_extension) # Parse range if(args.threadrange): selected_range = args.threadrange.split('-') smallest_num_threads = 2 ** int(selected_range[0]) largest_num_threads = 2 ** int(selected_range[1]) # Parse range if(args.range): selected_range = args.range.split('-') smallest_allocation_size = int(selected_range[0]) largest_allocation_size = int(selected_range[1]) # Parse num iterations if(args.iter): num_iterations = args.iter # Run Testcases run_testcases = args.runtest # Generate results generate_results = args.genres # Generate plots generate_plots = args.genplot # Plot Axis scaling plotscale = args.plotscale # Timeout (in seconds) if(args.timeout): time_out_val = args.timeout if(args.filetype): filetype = args.filetype if(args.allocsize): alloc_size = args.allocsize #################################################################################################### #################################################################################################### # Run testcases #################################################################################################### #################################################################################################### if run_testcases: testwritestr = "0" namestr = "" if args.testwrite: testwritestr = "1" namestr = "write_" for name, executable in testcases.items(): csv_path = "results/synth_" + namestr + name + "_" + str(smallest_num_threads)+ "-" + str(largest_num_threads) + "_" + str(smallest_allocation_size) + "-" + str(largest_allocation_size) + ".csv" if(os.path.isfile(csv_path)): print("This file <" + csv_path + "> already exists, do you really want to OVERWRITE?") inputfromconsole = input() if not (inputfromconsole == "yes" or inputfromconsole == "y"): continue with open(csv_path, "w", newline='') as csv_file: csv_file.write("NumThreads, mean, std-dev, min, max, median\n") num_threads = smallest_num_threads while num_threads <= largest_num_threads: with open(csv_path, "a", newline='') as csv_file: csv_file.write(str(num_threads) + ", ") run_config = str(num_threads) + " " + str(smallest_allocation_size) + " " + str(largest_allocation_size) + " " + str(num_iterations) + " 0 " + csv_path + " " + str(alloc_size) + " " + testwritestr + " " + str(args.device) executecommand = "{0} {1}".format(executable, run_config) print("#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#") print("Running " + name + " with command -> " + executecommand) print("#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#") print(executecommand) _, process_killed = Command(executecommand).run(timeout=time_out_val) if process_killed : print("We killed the process!") with open(csv_path, "a", newline='') as csv_file: csv_file.write("0,0,-------------------> Ran longer than " + str(time_out_val) + "\n") else: print("Success!") with open(csv_path, "a", newline='') as csv_file: csv_file.write("\n") num_threads *= 2 # #################################################################################################### # #################################################################################################### # # Generate new Results # #################################################################################################### # #################################################################################################### if generate_results: if not os.path.exists("results/aggregate"): os.mkdir("results/aggregate") if args.testwrite: generateResultsFromSynthetic(testcases, "results", smallest_num_threads, largest_num_threads, smallest_allocation_size, largest_allocation_size, "Num Threads", "synth_write", 2) else: generateResultsFromSynthetic(testcases, "results", smallest_num_threads, largest_num_threads, smallest_allocation_size, largest_allocation_size, "Num Threads", "synth", 1) print("Done") if __name__ == "__main__": main()
48.367568
232
0.625726
4a20b9436646cb889c258999ca83affbaec971a1
775
py
Python
docs/examples/data_access/django/example/app/views.py
connec/oso
a12d94206807b69beb6fe7a9070b9afcacdfc845
[ "Apache-2.0" ]
2,167
2020-07-28T15:49:48.000Z
2022-03-31T06:11:28.000Z
docs/examples/data_access/django/example/app/views.py
connec/oso
a12d94206807b69beb6fe7a9070b9afcacdfc845
[ "Apache-2.0" ]
1,060
2020-07-25T18:37:07.000Z
2022-03-30T05:49:44.000Z
docs/examples/data_access/django/example/app/views.py
connec/oso
a12d94206807b69beb6fe7a9070b9afcacdfc845
[ "Apache-2.0" ]
118
2020-08-05T19:27:14.000Z
2022-03-31T16:37:39.000Z
from base64 import urlsafe_b64decode from django.http import HttpResponse from app.models import Post, User def user_from_request(request): try: username = ( urlsafe_b64decode(request.headers.get("Authorization").split(" ")[1]) .decode("utf-8") .split(":")[0] ) return User.objects.get(username=username) except: return User(username="guest") def index(request): request.user = user_from_request(request) authorized_posts = Post.objects.authorize(request) formatted = [ f"{post.pk} - @{post.creator.username} - {post.access_level} - {post.contents}" for post in authorized_posts ] return HttpResponse("\n".join(formatted) + "\n", content_type="text/plain")
27.678571
87
0.643871
4a20bb31bd413d5ecb81423145b4590b8d0a29e9
160
py
Python
Note-6 A3CNet/Note 6 simple ACNet/Agent_test.py
summerRainn/DeepLearningNotes
6657694d5e22e73969e47699b4e31a28385d0f19
[ "MIT" ]
345
2017-08-23T13:48:50.000Z
2022-03-17T05:43:34.000Z
Note-6 A3CNet/Note 6 simple ACNet/Agent_test.py
summerRainn/DeepLearningNotes
6657694d5e22e73969e47699b4e31a28385d0f19
[ "MIT" ]
8
2017-09-30T15:01:23.000Z
2019-12-18T08:46:08.000Z
Note-6 A3CNet/Note 6 simple ACNet/Agent_test.py
summerRainn/DeepLearningNotes
6657694d5e22e73969e47699b4e31a28385d0f19
[ "MIT" ]
224
2017-08-31T01:10:55.000Z
2022-03-09T06:14:12.000Z
from Agent import Agent GAME = 'CartPole-v0' MAX_EPISODES = 100 def main(): A = Agent(GAME) A.run(MAX_EPISODES) if __name__ == '__main__': main()
14.545455
26
0.65
4a20bbf8e2fd44536cbd6c45b559eb3783b09e47
964
py
Python
testkraut/tests/localtests/check_fsl_workflow/bet_wf.py
hanke/testkraut
8a4c942e19e0381e26770c58fbd67b85db50c1d8
[ "MIT" ]
2
2017-10-16T14:56:59.000Z
2019-07-18T13:49:58.000Z
testkraut/tests/localtests/check_fsl_workflow/bet_wf.py
hanke/testkraut
8a4c942e19e0381e26770c58fbd67b85db50c1d8
[ "MIT" ]
null
null
null
testkraut/tests/localtests/check_fsl_workflow/bet_wf.py
hanke/testkraut
8a4c942e19e0381e26770c58fbd67b85db50c1d8
[ "MIT" ]
5
2015-03-05T07:11:36.000Z
2019-11-25T10:46:15.000Z
import os import nipype.interfaces.fsl as fsl # fsl import nipype.interfaces.io as nio # Data i/o import nipype.pipeline.engine as pe # pypeline engine fsl.FSLCommand.set_default_output_type('NIFTI_GZ') test_workflow = pe.Workflow(name='justbet') datasource = pe.Node(interface=nio.DataGrabber(outfields=['head']), name = 'datasource') datasource.inputs.base_directory = os.path.abspath(os.curdir) datasource.inputs.template = '%s.nii.gz' datasource.inputs.template_args = dict(head=[['head']]) bet = pe.Node(interface=fsl.BET(mask=True), name='bet') datasink = pe.Node(interface=nio.DataSink(parameterization=False), name="datasink") datasink.inputs.base_directory = os.path.abspath(os.curdir) test_workflow.connect(datasource, 'head', bet, 'in_file') test_workflow.connect(bet, 'out_file', datasink, '@brain') test_workflow.connect(bet, 'mask_file', datasink, '@brainmask')
37.076923
67
0.70332
4a20bcea7c2d9c858609521074d50dffedfe1c2b
3,495
py
Python
experiments/camera_demo.py
lxy5513/Multi-Style-Transfer
469bb322c21cf1c22143cb154baa5c31f9774113
[ "MIT" ]
4
2019-07-15T04:33:02.000Z
2021-04-13T13:34:39.000Z
experiments/camera_demo.py
lxy5513/Multi-Style-Transfer
469bb322c21cf1c22143cb154baa5c31f9774113
[ "MIT" ]
1
2020-07-09T10:25:44.000Z
2020-07-09T10:25:44.000Z
experiments/camera_demo.py
lxy5513/Multi-Style-Transfer
469bb322c21cf1c22143cb154baa5c31f9774113
[ "MIT" ]
1
2019-04-09T23:18:35.000Z
2019-04-09T23:18:35.000Z
import os import cv2 import numpy as np import torch from torch.autograd import Variable from net import Net from option import Options import utils from utils import StyleLoader def run_demo(args, mirror=False): # style_model = Net(ngf=args.ngf) # style_model.load_state_dict(torch.load(args.model)) model_dict = torch.load(args.model) model_dict_clone = model_dict.copy() # We can't mutate while iterating for key, value in model_dict_clone.items(): if key.endswith(('running_mean', 'running_var')): del model_dict[key] style_model = Net(ngf=args.ngf) style_model.load_state_dict(model_dict, False) style_model.eval() if args.cuda: style_loader = StyleLoader(args.style_folder, args.style_size) style_model.cuda() else: style_loader = StyleLoader(args.style_folder, args.style_size, False) # Define the codec and create VideoWriter object height = args.demo_size width = int(4.0/3*args.demo_size) swidth = int(width/4) sheight = int(height/4) if args.record: fourcc = cv2.VideoWriter_fourcc('F','M','P','4') out = cv2.VideoWriter('output.mp4', fourcc, 20.0, (2*width, height)) cam = cv2.VideoCapture(0) cam.set(3, width) cam.set(4, height) key = 0 idx = 0 while True: # read frame idx += 1 ret_val, img = cam.read() if mirror: img = cv2.flip(img, 1) cimg = img.copy() img = np.array(img).transpose(2, 0, 1) # changing style if idx%10 == 1: if int(idx/10) == 21: break style_v = style_loader.get(int(idx/10)) print('style version ----------------> ', idx) style_v = Variable(style_v.data) # print('style change to ', style_v) style_model.setTarget(style_v) img=torch.from_numpy(img).unsqueeze(0).float() if args.cuda: img=img.cuda() img = Variable(img) ## handle image img = style_model(img) if args.cuda: simg = style_v.cpu().data[0].numpy() img = img.cpu().clamp(0, 255).data[0].numpy() else: simg = style_v.data().numpy() img = img.clamp(0, 255).data[0].numpy() img = img.transpose(1, 2, 0).astype('uint8') simg = simg.transpose(1, 2, 0).astype('uint8') # display simg = cv2.resize(simg,(swidth, sheight), interpolation = cv2.INTER_CUBIC) cimg[0:sheight,0:swidth,:]=simg img = np.concatenate((cimg,img),axis=1) cv2.imshow('MSG Demo', img) #cv2.imwrite('stylized/%i.jpg'%idx,img) key = cv2.waitKey(1) if args.record: out.write(img) if key == 27: break cam.release() if args.record: out.release() cv2.destroyAllWindows() def main(): # getting things ready args = Options().parse() if args.subcommand is None: raise ValueError("ERROR: specify the experiment type") if args.cuda and not torch.cuda.is_available(): raise ValueError("ERROR: cuda is not available, try running on CPU") # run demo run_demo(args, mirror=True) if __name__ == '__main__': main()
31.205357
86
0.553362
4a20bd1a64630d45f4404859b7aee37ca3b6fe17
4,567
py
Python
third_party/cpuinfo/configure.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
null
null
null
third_party/cpuinfo/configure.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
null
null
null
third_party/cpuinfo/configure.py
gautamkmr/caffe2
cde7f21d1e34ec714bc08dbfab945a1ad30e92ff
[ "MIT" ]
null
null
null
#!/usr/bin/env python import confu parser = confu.standard_parser("cpuinfo configuration script") parser.add_argument("--log", dest="log_level", choices=("none", "error", "warning", "info", "debug"), default="error") parser.add_argument("--mock", dest="mock", action="store_true") def main(args): options = parser.parse_args(args) build = confu.Build.from_options(options) macros = { "CPUINFO_LOG_LEVEL": {"none": 0, "error": 1, "warning": 2, "info": 3, "debug": 4}[options.log_level], "CPUINFO_LOG_TO_STDIO": int(not options.mock), "CPUINFO_MOCK": int(options.mock), } build.export_cpath("include", ["cpuinfo.h"]) with build.options(source_dir="src", macros=macros, extra_include_dirs="src"): sources = ["init.c", "api.c", "log.c"] if build.target.is_x86 or build.target.is_x86_64: sources += [ "x86/init.c", "x86/info.c", "x86/vendor.c", "x86/uarch.c", "x86/name.c", "x86/topology.c", "x86/cache/init.c", "x86/cache/descriptor.c", "x86/cache/deterministic.c", ] if build.target.is_macos: sources += ["x86/mach/init.c"] elif build.target.is_linux or build.target.is_android: sources += [ "x86/linux/init.c", "x86/linux/cpuinfo.c", ] sources.append("x86/isa.c" if not build.target.is_nacl else "x86/nacl/isa.c") if build.target.is_arm or build.target.is_arm64: sources += ["arm/uarch.c", "arm/cache.c"] if build.target.is_linux or build.target.is_android: sources += [ "arm/linux/init.c", "arm/linux/cpuinfo.c", "arm/linux/clusters.c", "arm/linux/midr.c", "arm/linux/chipset.c", "arm/linux/hwcap.c", ] if build.target.is_arm: sources.append("arm/linux/aarch32-isa.c") elif build.target.is_arm64: sources.append("arm/linux/aarch64-isa.c") if build.target.is_android: sources += [ "arm/android/gpu.c", "arm/android/properties.c", ] if build.target.is_macos: sources += ["mach/topology.c"] if build.target.is_linux or build.target.is_android: sources += [ "linux/current.c", "linux/cpulist.c", "linux/smallfile.c", "linux/multiline.c", "linux/processors.c", ] if options.mock: sources += ["linux/mockfile.c"] if build.target.is_android: sources.append("linux/gpu.c") if options.mock: sources.append("gpu/gles2-mock.c") else: sources.append("gpu/gles2.c") build.static_library("cpuinfo", map(build.cc, sources)) with build.options(source_dir="tools", deps=build): build.executable("cpu-info", build.cc("cpu-info.c")) build.executable("isa-info", build.cc("isa-info.c")) build.executable("cache-info", build.cc("cache-info.c")) if build.target.is_x86_64: with build.options(source_dir="tools", include_dirs=["src", "include"]): build.executable("cpuid-dump", build.cc("cpuid-dump.c")) with build.options(source_dir="test", deps=[build, build.deps.googletest]): build.smoketest("init-test", build.cxx("init.cc")) if build.target.is_linux: build.smoketest("get-current-test", build.cxx("get-current.cc")) if build.target.is_x86_64: build.smoketest("brand-string-test", build.cxx("name/brand-string.cc")) if options.mock: with build.options(source_dir="test", include_dirs="test", macros="CPUINFO_MOCK", deps=[build, build.deps.googletest]): if build.target.is_arm64 and build.target.is_linux: build.unittest("scaleway-test", build.cxx("scaleway.cc")) if not options.mock: with build.options(source_dir="bench", deps=[build, build.deps.googlebenchmark]): build.benchmark("init-bench", build.cxx("init.cc")) if not build.target.is_macos: build.benchmark("get-current-bench", build.cxx("get-current.cc")) return build if __name__ == "__main__": import sys main(sys.argv[1:]).generate()
40.776786
127
0.554631
4a20bdf15f6152a01b76ce227aeccc28d7600f54
2,998
py
Python
aim/ql/grammar/atom.py
VkoHov/aim
92567b48437a8c71b4bde3b034fc0e5c61479cf9
[ "Apache-2.0" ]
1
2021-07-19T19:21:30.000Z
2021-07-19T19:21:30.000Z
aim/ql/grammar/atom.py
VkoHov/aim
92567b48437a8c71b4bde3b034fc0e5c61479cf9
[ "Apache-2.0" ]
2
2021-08-25T16:17:16.000Z
2022-02-10T05:49:55.000Z
aim/ql/grammar/atom.py
paulmchen/aim
53212cdce7a80cb8dadfaf7869a31fbf4ee6ce5b
[ "Apache-2.0" ]
1
2021-01-29T02:10:14.000Z
2021-01-29T02:10:14.000Z
from pyrser import grammar, meta from aim.ql.tokens.token import TokenList, Token class Atom(grammar.Grammar): entry = "input" grammar = """ input = [ atom:>_ eof ] atom = [ [ number | list | path ]:>_ | [ "True":l #is_literal(_, l, 'Boolean') | "False":l #is_literal(_, l, 'Boolean') | "None":l #is_literal(_, l, 'None') | id:i #is_identifier(_, i) | string:l #is_literal(_, l, 'String') ] ] path = [ #is_path(_) [ id:i #append_identifier(_, i) [ '.' id:i #append_identifier(_, i) ]+ ] ] list = [ [ '[' #is_list(_) atom:a #append_atom(_, a) [',' atom:a #append_atom(_, a)]* ']' ] | [ '(' #is_list(_) atom:a #append_atom(_, a) ',' ')' ] | [ '(' #is_list(_) atom:a #append_atom(_, a) [',' atom:a #append_atom(_, a)]+ ')' ] ] number = [ @ignore("null") [ int frac? exp? ]:l #is_literal(_, l, 'Number') ] int = [ '-'? [ digit1_9s | digit ] ] frac = [ '.' digits ] exp = [ e digits ] digit = [ '0'..'9' ] digit1_9 = [ '1'..'9' ] digits = [ digit+ ] digit1_9s = [ digit1_9 digits] e = [ ['e'|'E'] ['+'|'-']? ] """ @meta.hook(Atom) def is_literal(self, ast, lit, ltype): value = self.value(lit) ast.node = Token(value, ltype) return True @meta.hook(Atom) def is_identifier(self, ast, identifier): value = self.value(identifier) ast.node = Token(value, 'Identifier') return True # Compound literals @meta.hook(Atom) def is_list(self, ast): ast.node = TokenList('List') return True @meta.hook(Atom) def is_path(self, ast): ast.node = TokenList('Path') return True @meta.hook(Atom) def append_atom(self, ast, item): ast.node.append(item.node) return True @meta.hook(Atom) def append_identifier(self, ast, item): value = self.value(item) node = Token(value, 'Identifier') ast.node.append(node) return True if __name__ == '__main__': parser = Atom() print(parser.parse('12')) print(parser.parse('1.2')) print(parser.parse('asdasd')) print(parser.parse('asdasd.asd')) print(parser.parse('"asdasd.asd"')) print(parser.parse('"True"')) print(parser.parse('True')) print(parser.parse('None')) print(parser.parse('[1, 2]')) print(parser.parse('(1, 2)')) print(parser.parse('([1,2, "str"], 2)'))
22.541353
79
0.441961
4a20be9548d6bda876577d34fddfeebb9746802b
4,381
py
Python
TIDALDL-PY/tidal_dl/lang/czech.py
calliswell/Tidal-Media-Downloader
f2716e014ea8c721761a41a151df8c07394f1993
[ "Apache-2.0" ]
2
2021-07-10T09:31:48.000Z
2021-07-11T14:45:52.000Z
TIDALDL-PY/tidal_dl/lang/czech.py
calliswell/Tidal-Media-Downloader
f2716e014ea8c721761a41a151df8c07394f1993
[ "Apache-2.0" ]
null
null
null
TIDALDL-PY/tidal_dl/lang/czech.py
calliswell/Tidal-Media-Downloader
f2716e014ea8c721761a41a151df8c07394f1993
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : czech.py @Time : 2020/08/20 @Author : Tomikk @Version : 1.0 @Contact : [email protected] @Desc : ''' class LangCzech(object): SETTING = "Nastavení" VALUE = "Hodnota" SETTING_DOWNLOAD_PATH = "Umístění staženého souboru" SETTING_ONLY_M4A = "Konvertovat mp4 na m4a" SETTING_ADD_EXPLICIT_TAG = "Přidat explicitní značku" SETTING_ADD_HYPHEN = "Používat pomlčky místo mezer" SETTING_ADD_YEAR = "Přidat rok před jméno složky" SETTING_USE_TRACK_NUM = "Přidat číslo skladby" SETTING_AUDIO_QUALITY = "Kvalita hudby" SETTING_VIDEO_QUALITY = "Kvalita videa" SETTING_CHECK_EXIST = "Zkontrolovat jestli soubor již existuje" SETTING_ARTIST_BEFORE_TITLE = "Jméno interpreta před jménem skladby" SETTING_ALBUMID_BEFORE_FOLDER = "Id před složkou alba" SETTING_INCLUDE_EP = "Zahrnout single&ep" SETTING_SAVE_COVERS = "Uložit obal alba" SETTING_LANGUAGE = "Změna jazyka" SETTING_USE_PLAYLIST_FOLDER = "Use playlist folder" SETTING_MULITHREAD_DOWNLOAD = "Multi thread download" SETTING_ALBUM_FOLDER_FORMAT = "Album folder format" SETTING_TRACK_FILE_FORMAT = "Track file format" SETTING_SHOW_PROGRESS = "Show progress" CHOICE = "Výběr" FUNCTION = "Funkce" CHOICE_ENTER = "Enter" CHOICE_ENTER_URLID = "Vložit 'Url/ID':" CHOICE_EXIT = "Ukončit" CHOICE_LOGIN = "Check AccessToken" CHOICE_SETTINGS = "Nastavení" CHOICE_SET_ACCESS_TOKEN = "Nastavit přístupový token" CHOICE_DOWNLOAD_BY_URL = "Stáhnout buď url nebo id" CHOICE_LOGOUT = "Logout" PRINT_ERR = "[Error]" PRINT_INFO = "[Info]" PRINT_SUCCESS = "[Staženo]" PRINT_ENTER_CHOICE = "Zvolit volbu:" PRINT_LATEST_VERSION = "Nejnovější verze:" #PRINT_USERNAME = "přihlašovací jméno:" #PRINT_PASSWORD = "heslo" CHANGE_START_SETTINGS = "Start settings('0'-Zpět,'1'-Ano):" CHANGE_DOWNLOAD_PATH = "Cesta stažení('0' not modify):" CHANGE_AUDIO_QUALITY = "Kvalita hudby('0'-Normal,'1'-High,'2'-HiFi,'3'-Master):" CHANGE_VIDEO_QUALITY = "Kvalita videa('0'-1080,'1'-720,'2'-480,'3'-360):" CHANGE_ONLYM4A = "Konvertovat mp4 na m4a('0'-Ne,'1'-Ano):" CHANGE_ADD_EXPLICIT_TAG = "Přidat explicitní značku k souborům('0'-Ne,'1'-Ano):" CHANGE_ADD_HYPHEN = "V názvech souborů používat místo mezer pomlčky('0'-Ne,'1'-Ano):" CHANGE_ADD_YEAR = "Přidat rok vydání do názvu složky('0'-Ne,'1'-Ano):" CHANGE_USE_TRACK_NUM = "Přidat číslo skladby před název skladby('0'-Ne,'1'-Ano):" CHANGE_CHECK_EXIST = "Zkontrolovat existujicí soubor před stažením('0'-Ne,'1'-Ano):" CHANGE_ARTIST_BEFORE_TITLE = "Přidat jméno interpreta před názvem skladby('0'-Ne,'1'-Ano):" CHANGE_INCLUDE_EP = "Při stahování alba interpreta zahrnout singly a EP('0'-Ne,'1'-Ano):" CHANGE_ALBUMID_BEFORE_FOLDER = "Přidat ID před složku do alba('0'-Ne,'1'-Ano):" CHANGE_SAVE_COVERS = "Uložit obaly alb('0'-Ne,'1'-Ano):" CHANGE_LANGUAGE = "Zvolit jazyk" CHANGE_ALBUM_FOLDER_FORMAT = "Album folder format('0' not modify):" CHANGE_TRACK_FILE_FORMAT = "Track file format('0' not modify):" CHANGE_SHOW_PROGRESS = "Show progress('0'-No,'1'-Yes):" # {} are required in these strings AUTH_START_LOGIN = "Starting login process..." AUTH_LOGIN_CODE = "Your login code is {}" AUTH_NEXT_STEP = "Go to {} within the next {} to complete setup." AUTH_WAITING = "Waiting for authorization..." AUTH_TIMEOUT = "Operation timed out." MSG_VALID_ACCESSTOKEN = "AccessToken good for {}." MSG_INVAILD_ACCESSTOKEN = "Expired AccessToken. Attempting to refresh it." MSG_PATH_ERR = "Cesta neexistuje!" MSG_INPUT_ERR = "Chyba vstupu!" MODEL_ALBUM_PROPERTY = "ALBUM-PROPERTY" MODEL_TRACK_PROPERTY = "TRACK-PROPERTY" MODEL_VIDEO_PROPERTY = "VIDEO-PROPERTY" MODEL_ARTIST_PROPERTY = "ARTIST-PROPERTY" MODEL_PLAYLIST_PROPERTY = "PLAYLIST-PROPERTY" MODEL_TITLE = 'Název skladby' MODEL_TRACK_NUMBER = 'Číslo skladby' MODEL_VIDEO_NUMBER = 'Číslo videa' MODEL_RELEASE_DATE = 'Datum vydání' MODEL_VERSION = 'Verze' MODEL_EXPLICIT = 'Explicit' MODEL_ALBUM = 'Album' MODEL_ID = 'ID' MODEL_NAME = 'Jméno' MODEL_TYPE = 'Typ'
42.95098
96
0.683862
4a20c0e4e755b53673a835ed797ebed63bcc898f
10,400
py
Python
jsonpickle/ext/numpy.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
jsonpickle/ext/numpy.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
jsonpickle/ext/numpy.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import import sys import zlib import warnings import numpy as np import ast from ..handlers import BaseHandler, register, unregister from ..compat import unicode from ..util import b64decode, b64encode __all__ = ['register_handlers', 'unregister_handlers'] native_byteorder = '<' if sys.byteorder == 'little' else '>' def get_byteorder(arr): """translate equals sign to native order""" byteorder = arr.dtype.byteorder return native_byteorder if byteorder == '=' else byteorder class NumpyBaseHandler(BaseHandler): def flatten_dtype(self, dtype, data): if hasattr(dtype, 'tostring'): data['dtype'] = dtype.tostring() else: dtype = unicode(dtype) prefix = '(numpy.record, ' if dtype.startswith(prefix): dtype = dtype[len(prefix):-1] data['dtype'] = dtype def restore_dtype(self, data): dtype = data['dtype'] if dtype.startswith(('{', '[')): dtype = ast.literal_eval(dtype) return np.dtype(dtype) class NumpyDTypeHandler(NumpyBaseHandler): def flatten(self, obj, data): self.flatten_dtype(obj, data) return data def restore(self, data): return self.restore_dtype(data) class NumpyGenericHandler(NumpyBaseHandler): def flatten(self, obj, data): self.flatten_dtype(obj.dtype.newbyteorder('N'), data) data['value'] = self.context.flatten(obj.tolist(), reset=False) return data def restore(self, data): value = self.context.restore(data['value'], reset=False) return self.restore_dtype(data).type(value) class NumpyNDArrayHandler(NumpyBaseHandler): """Stores arrays as text representation, without regard for views """ def flatten_flags(self, obj, data): if obj.flags.writeable is False: data['writeable'] = False def restore_flags(self, data, arr): if not data.get('writeable', True): arr.flags.writeable = False def flatten(self, obj, data): self.flatten_dtype(obj.dtype.newbyteorder('N'), data) self.flatten_flags(obj, data) data['values'] = self.context.flatten(obj.tolist(), reset=False) if 0 in obj.shape: # add shape information explicitly as it cannot be inferred from an empty list data['shape'] = obj.shape return data def restore(self, data): values = self.context.restore(data['values'], reset=False) arr = np.array( values, dtype=self.restore_dtype(data), order=data.get('order', 'C') ) shape = data.get('shape', None) if shape is not None: arr = arr.reshape(shape) self.restore_flags(data, arr) return arr class NumpyNDArrayHandlerBinary(NumpyNDArrayHandler): """stores arrays with size greater than 'size_treshold' as (optionally) compressed base64 Notes ----- This would be easier to implement using np.save/np.load, but that would be less language-agnostic """ def __init__(self, size_treshold=16, compression=zlib): """ :param size_treshold: nonnegative int or None valid values for 'size_treshold' are all nonnegative integers and None if size_treshold is None, values are always stored as nested lists :param compression: a compression module or None valid values for 'compression' are {zlib, bz2, None} if compresion is None, no compression is applied """ self.size_treshold = size_treshold self.compression = compression def flatten_byteorder(self, obj, data): byteorder = obj.dtype.byteorder if byteorder != '|': data['byteorder'] = get_byteorder(obj) def restore_byteorder(self, data, arr): byteorder = data.get('byteorder', None) if byteorder: arr.dtype = arr.dtype.newbyteorder(byteorder) def flatten(self, obj, data): """encode numpy to json""" if self.size_treshold >= obj.size or self.size_treshold is None: # encode as text data = super(NumpyNDArrayHandlerBinary, self).flatten(obj, data) else: # encode as binary buffer = obj.tobytes(order='a') # numpy docstring is lacking as of 1.11.2, but this is the option we need if self.compression: buffer = self.compression.compress(buffer) data['values'] = b64encode(buffer) data['shape'] = obj.shape self.flatten_dtype(obj.dtype.newbyteorder('N'), data) self.flatten_byteorder(obj, data) self.flatten_flags(obj, data) if not obj.flags.c_contiguous: data['order'] = 'F' return data def restore(self, data): """decode numpy from json""" values = data['values'] if isinstance(values, list): # decode text representation arr = super(NumpyNDArrayHandlerBinary, self).restore(data) else: # decode binary representation buffer = b64decode(values) if self.compression: buffer = self.compression.decompress(buffer) arr = np.ndarray( buffer=buffer, dtype=self.restore_dtype(data), shape=data.get('shape'), order=data.get('order', 'C') ).copy() # make a copy, to force the result to own the data self.restore_byteorder(data, arr) self.restore_flags(data, arr) return arr class NumpyNDArrayHandlerView(NumpyNDArrayHandlerBinary): """Pickles references inside ndarrays, or array-views Notes ----- The current implementation has some restrictions. 'base' arrays, or arrays which are viewed by other arrays, must be f-or-c-contiguous. This is not such a large restriction in practice, because all numpy array creation is c-contiguous by default. Relaxing this restriction would be nice though; especially if it can be done without bloating the design too much. Furthermore, ndarrays which are views of array-like objects implementing __array_interface__, but which are not themselves nd-arrays, are deepcopied with a warning (by default), as we cannot guarantee whatever custom logic such classes implement is correctly reproduced. """ def __init__(self, mode='warn', size_treshold=16, compression=zlib): """ :param mode: {'warn', 'raise', 'ignore'} How to react when encountering array-like objects whos references we cannot safely serialize :param size_treshold: nonnegative int or None valid values for 'size_treshold' are all nonnegative integers and None if size_treshold is None, values are always stored as nested lists :param compression: a compression module or None valid values for 'compression' are {zlib, bz2, None} if compresion is None, no compression is applied """ super(NumpyNDArrayHandlerView, self).__init__(size_treshold, compression) self.mode = mode def flatten(self, obj, data): """encode numpy to json""" base = obj.base if base is None and obj.flags.forc: # store by value data = super(NumpyNDArrayHandlerView, self).flatten(obj, data) # ensure that views on arrays stored as text are interpreted correctly if not obj.flags.c_contiguous: data['order'] = 'F' elif isinstance(base, np.ndarray) and base.flags.forc: # store by reference data['base'] = self.context.flatten(base, reset=False) offset = obj.ctypes.data - base.ctypes.data if offset: data['offset'] = offset if not obj.flags.c_contiguous: data['strides'] = obj.strides data['shape'] = obj.shape self.flatten_dtype(obj.dtype.newbyteorder('N'), data) self.flatten_flags(obj, data) if get_byteorder(obj) != '|': byteorder = 'S' if get_byteorder(obj) != get_byteorder(base) else None if byteorder: data['byteorder'] = byteorder if self.size_treshold >= obj.size: # not used in restore since base is present, but include values for human-readability super(NumpyNDArrayHandlerBinary, self).flatten(obj, data) else: # store a deepcopy or fail if self.mode == 'warn': msg = "ndarray is defined by reference to an object we do not know how to serialize. " \ "A deep copy is serialized instead, breaking memory aliasing." warnings.warn(msg) elif self.mode == 'raise': msg = "ndarray is defined by reference to an object we do not know how to serialize." raise ValueError(msg) data = super(NumpyNDArrayHandlerView, self).flatten(obj.copy(), data) return data def restore(self, data): """decode numpy from json""" base = data.get('base', None) if base is None: # decode array with owndata=True arr = super(NumpyNDArrayHandlerView, self).restore(data) else: # decode array view, which references the data of another array base = self.context.restore(base, reset=False) assert base.flags.forc, \ "Current implementation assumes base is C or F contiguous" arr = np.ndarray( buffer=base.data, dtype=self.restore_dtype(data).newbyteorder(data.get('byteorder', '|')), shape=data.get('shape'), offset=data.get('offset', 0), strides=data.get('strides', None) ) self.restore_flags(data, arr) return arr def register_handlers(): register(np.dtype, NumpyDTypeHandler, base=True) register(np.generic, NumpyGenericHandler, base=True) register(np.ndarray, NumpyNDArrayHandlerView(), base=True) def unregister_handlers(): unregister(np.dtype) unregister(np.generic) unregister(np.ndarray)
36.491228
118
0.616154
4a20c199ad66c7b12449a20d0d8b3d6006aabef4
28,659
py
Python
github_to_sqlite/utils.py
AlvaroJoseLopes/github-to-sqlite
6f61f94f8b43b3021e79c6b6ef4d5f47f6e8785b
[ "Apache-2.0" ]
null
null
null
github_to_sqlite/utils.py
AlvaroJoseLopes/github-to-sqlite
6f61f94f8b43b3021e79c6b6ef4d5f47f6e8785b
[ "Apache-2.0" ]
null
null
null
github_to_sqlite/utils.py
AlvaroJoseLopes/github-to-sqlite
6f61f94f8b43b3021e79c6b6ef4d5f47f6e8785b
[ "Apache-2.0" ]
null
null
null
import base64 import requests import re import time import yaml FTS_CONFIG = { # table: columns "commits": ["message"], "issue_comments": ["body"], "issues": ["title", "body"], "pull_requests": ["title", "body"], "labels": ["name", "description"], "licenses": ["name"], "milestones": ["title", "description"], "releases": ["name", "body"], "repos": ["name", "description"], "users": ["login", "name"], } VIEWS = { # Name: (required_tables, SQL) "dependent_repos": ( {"repos", "dependents"}, """select repos.full_name as repo, 'https://github.com/' || dependent_repos.full_name as dependent, dependent_repos.created_at as dependent_created, dependent_repos.updated_at as dependent_updated, dependent_repos.stargazers_count as dependent_stars, dependent_repos.watchers_count as dependent_watchers from dependents join repos as dependent_repos on dependents.dependent = dependent_repos.id join repos on dependents.repo = repos.id order by dependent_repos.created_at desc""", ), "repos_starred": ( {"stars", "repos", "users"}, """select stars.starred_at, starring_user.login as starred_by, repos.* from repos join stars on repos.id = stars.repo join users as starring_user on stars.user = starring_user.id join users on repos.owner = users.id order by starred_at desc""", ), "recent_releases": ( {"repos", "releases"}, """select repos.rowid as rowid, repos.html_url as repo, releases.html_url as release, substr(releases.published_at, 0, 11) as date, releases.body as body_markdown, releases.published_at, coalesce(repos.topics, '[]') as topics from releases join repos on repos.id = releases.repo order by releases.published_at desc""", ), } FOREIGN_KEYS = [ ("repos", "license", "licenses", "key"), ] class GitHubError(Exception): def __init__(self, message, status_code): self.message = message self.status_code = status_code @classmethod def from_response(cls, response): message = response.json()["message"] if "git repository is empty" in message.lower(): cls = GitHubRepositoryEmpty return cls(message, response.status_code) class GitHubRepositoryEmpty(GitHubError): pass def save_issues(db, issues, repo): if "milestones" not in db.table_names(): if "users" not in db.table_names(): # So we can define the foreign key from milestones: db["users"].create({"id": int}, pk="id") db["milestones"].create( {"id": int, "title": str, "description": str, "creator": int, "repo": int}, pk="id", foreign_keys=(("repo", "repos", "id"), ("creator", "users", "id")), ) for original in issues: # Ignore all of the _url fields issue = { key: value for key, value in original.items() if not key.endswith("url") } # Add repo key issue["repo"] = repo["id"] # Pull request can be flattened to just their URL if issue.get("pull_request"): issue["pull_request"] = issue["pull_request"]["url"].split( "https://api.github.com/repos/" )[1] # Extract user issue["user"] = save_user(db, issue["user"]) labels = issue.pop("labels") # Extract milestone if issue["milestone"]: issue["milestone"] = save_milestone(db, issue["milestone"], repo["id"]) # For the moment we ignore the assignees=[] array but we DO turn assignee # singular into a foreign key reference issue.pop("assignees", None) if issue["assignee"]: issue["assignee"] = save_user(db, issue["assignee"]) # Add a type field to distinguish issues from pulls issue["type"] = "pull" if issue.get("pull_request") else "issue" # Insert record table = db["issues"].insert( issue, pk="id", foreign_keys=[ ("user", "users", "id"), ("assignee", "users", "id"), ("milestone", "milestones", "id"), ("repo", "repos", "id"), ], alter=True, replace=True, columns={ "user": int, "assignee": int, "milestone": int, "repo": int, "title": str, "body": str, }, ) # m2m for labels for label in labels: table.m2m("labels", label, pk="id") def save_pull_requests(db, pull_requests, repo): if "milestones" not in db.table_names(): if "users" not in db.table_names(): # So we can define the foreign key from milestones: db["users"].create({"id": int}, pk="id") db["milestones"].create( {"id": int, "title": str, "description": str, "creator": int, "repo": int}, pk="id", foreign_keys=(("repo", "repos", "id"), ("creator", "users", "id")), ) for original in pull_requests: # Ignore all of the _url fields pull_request = { key: value for key, value in original.items() if not key.endswith("url") } # Add repo key pull_request["repo"] = repo["id"] # Pull request _links can be flattened to just their URL pull_request["url"] = pull_request["_links"]["html"]["href"] pull_request.pop("_links") # Extract user pull_request["user"] = save_user(db, pull_request["user"]) labels = pull_request.pop("labels") # Extract merged_by, if it exists if pull_request.get("merged_by"): pull_request["merged_by"] = save_user(db, pull_request["merged_by"]) # Head sha pull_request["head"] = pull_request["head"]["sha"] pull_request["base"] = pull_request["base"]["sha"] # Extract milestone if pull_request["milestone"]: pull_request["milestone"] = save_milestone( db, pull_request["milestone"], repo["id"] ) # For the moment we ignore the assignees=[] array but we DO turn assignee # singular into a foreign key reference pull_request.pop("assignees", None) if original["assignee"]: pull_request["assignee"] = save_user(db, pull_request["assignee"]) pull_request.pop("active_lock_reason") # ignore requested_reviewers and requested_teams pull_request.pop("requested_reviewers", None) pull_request.pop("requested_teams", None) # Insert record table = db["pull_requests"].insert( pull_request, pk="id", foreign_keys=[ ("user", "users", "id"), ("merged_by", "users", "id"), ("assignee", "users", "id"), ("milestone", "milestones", "id"), ("repo", "repos", "id"), ], alter=True, replace=True, columns={ "user": int, "assignee": int, "milestone": int, "repo": int, "title": str, "body": str, "merged_by": int, }, ) # m2m for labels for label in labels: table.m2m("labels", label, pk="id") def save_user(db, user): # Remove all url fields except avatar_url and html_url to_save = { key: value for key, value in user.items() if (key in ("avatar_url", "html_url") or not key.endswith("url")) } # If this user was nested in repo they will be missing several fields # so fill in 'name' from 'login' so Datasette foreign keys display if to_save.get("name") is None: to_save["name"] = to_save["login"] return db["users"].upsert(to_save, pk="id", alter=True).last_pk def save_milestone(db, milestone, repo_id): milestone = dict(milestone) milestone["creator"] = save_user(db, milestone["creator"]) milestone["repo"] = repo_id milestone.pop("labels_url", None) milestone.pop("url", None) return ( db["milestones"] .insert( milestone, pk="id", foreign_keys=[("creator", "users", "id"), ("repo", "repos", "id")], alter=True, replace=True, columns={"creator": int, "repo": int}, ) .last_pk ) def save_issue_comment(db, comment): comment = dict(comment) comment["user"] = save_user(db, comment["user"]) # We set up a 'issue' foreign key, but only if issue is in the DB comment["issue"] = None issue_url = comment["issue_url"] bits = issue_url.split("/") user_slug, repo_slug, issue_number = bits[-4], bits[-3], bits[-1] # Is the issue in the DB already? issue_rows = list( db["issues"].rows_where( "number = :number and repo = (select id from repos where full_name = :repo)", {"repo": "{}/{}".format(user_slug, repo_slug), "number": issue_number}, ) ) if len(issue_rows) == 1: comment["issue"] = issue_rows[0]["id"] comment.pop("url", None) if "url" in comment.get("reactions", {}): comment["reactions"].pop("url") last_pk = ( db["issue_comments"] .insert( comment, pk="id", foreign_keys=("user", "issue"), alter=True, replace=True ) .last_pk ) return last_pk def fetch_repo(full_name, token=None): headers = make_headers(token) # Get topics: headers["Accept"] = "application/vnd.github.mercy-preview+json" print(full_name) owner, slug = full_name.split("/") url = "https://api.github.com/repos/{}/{}".format(owner, slug) response = requests.get(url, headers=headers) response.raise_for_status() return response.json() def save_repo(db, repo): assert isinstance(repo, dict), "Repo should be a dict: {}".format(repr(repo)) # Remove all url fields except html_url to_save = { key: value for key, value in repo.items() if (key == "html_url") or not key.endswith("url") } to_save["owner"] = save_user(db, to_save["owner"]) to_save["license"] = save_license(db, to_save["license"]) if "organization" in to_save: to_save["organization"] = save_user(db, to_save["organization"]) else: to_save["organization"] = None repo_id = ( db["repos"] .insert( to_save, pk="id", foreign_keys=(("owner", "users", "id"), ("organization", "users", "id")), alter=True, replace=True, columns={ "organization": int, "topics": str, "name": str, "description": str, }, ) .last_pk ) return repo_id def save_license(db, license): if license is None: return None return db["licenses"].insert(license, pk="key", replace=True).last_pk def fetch_issues(repo, token=None, issue_ids=None): headers = make_headers(token) headers["accept"] = "application/vnd.github.v3+json" if issue_ids: for issue_id in issue_ids: url = "https://api.github.com/repos/{}/issues/{}".format(repo, issue_id) response = requests.get(url, headers=headers) response.raise_for_status() yield response.json() else: url = "https://api.github.com/repos/{}/issues?state=all&filter=all".format(repo) for issues in paginate(url, headers): yield from issues def fetch_pull_requests(repo, token=None, pull_request_ids=None): headers = make_headers(token) headers["accept"] = "application/vnd.github.v3+json" if pull_request_ids: for pull_request_id in pull_request_ids: url = "https://api.github.com/repos/{}/pulls/{}".format( repo, pull_request_id ) response = requests.get(url, headers=headers) response.raise_for_status() yield response.json() else: url = "https://api.github.com/repos/{}/pulls?state=all&filter=all".format(repo) for pull_requests in paginate(url, headers): yield from pull_requests def fetch_issue_comments(repo, token=None, issue=None): assert "/" in repo headers = make_headers(token) # Get reactions: headers["Accept"] = "application/vnd.github.squirrel-girl-preview" path = "/repos/{}/issues/comments".format(repo) if issue is not None: path = "/repos/{}/issues/{}/comments".format(repo, issue) url = "https://api.github.com{}".format(path) for comments in paginate(url, headers): yield from comments def fetch_releases(repo, token=None): headers = make_headers(token) url = "https://api.github.com/repos/{}/releases".format(repo) for releases in paginate(url, headers): yield from releases def fetch_contributors(repo, token=None): headers = make_headers(token) url = "https://api.github.com/repos/{}/contributors".format(repo) for contributors in paginate(url, headers): yield from contributors def fetch_tags(repo, token=None): headers = make_headers(token) url = "https://api.github.com/repos/{}/tags".format(repo) for tags in paginate(url, headers): yield from tags def fetch_commits(repo, token=None, stop_when=None): if stop_when is None: stop_when = lambda commit: False headers = make_headers(token) url = "https://api.github.com/repos/{}/commits".format(repo) try: for commits in paginate(url, headers): for commit in commits: if stop_when(commit): return else: yield commit except GitHubRepositoryEmpty: return def fetch_all_starred(username=None, token=None): assert username or token, "Must provide username= or token= or both" headers = make_headers(token) headers["Accept"] = "application/vnd.github.v3.star+json" if username: url = "https://api.github.com/users/{}/starred".format(username) else: url = "https://api.github.com/user/starred" for stars in paginate(url, headers): yield from stars def fetch_stargazers(repo, token=None): headers = make_headers(token) headers["Accept"] = "application/vnd.github.v3.star+json" url = "https://api.github.com/repos/{}/stargazers".format(repo) for stargazers in paginate(url, headers): yield from stargazers def fetch_all_repos(username=None, token=None): assert username or token, "Must provide username= or token= or both" headers = make_headers(token) # Get topics for each repo: headers["Accept"] = "application/vnd.github.mercy-preview+json" if username: url = "https://api.github.com/users/{}/repos".format(username) else: url = "https://api.github.com/user/repos" for repos in paginate(url, headers): yield from repos def fetch_user(username=None, token=None): assert username or token, "Must provide username= or token= or both" headers = make_headers(token) if username: url = "https://api.github.com/users/{}".format(username) else: url = "https://api.github.com/user" return requests.get(url, headers=headers).json() def paginate(url, headers=None): while url: response = requests.get(url, headers=headers) # For HTTP 204 no-content this yields an empty list if response.status_code == 204: return data = response.json() if isinstance(data, dict) and data.get("message"): raise GitHubError.from_response(response) try: url = response.links.get("next").get("url") except AttributeError: url = None yield data def make_headers(token=None): headers = {} if token is not None: headers["Authorization"] = "token {}".format(token) return headers def save_stars(db, user, stars): user_id = save_user(db, user) for star in stars: starred_at = star["starred_at"] repo = star["repo"] repo_id = save_repo(db, repo) db["stars"].insert( {"user": user_id, "repo": repo_id, "starred_at": starred_at}, pk=("user", "repo"), foreign_keys=("user", "repo"), replace=True, ) def save_stargazers(db, repo_id, stargazers): for stargazer in stargazers: starred_at = stargazer["starred_at"] user_id = save_user(db, stargazer["user"]) db["stars"].upsert( {"user": user_id, "repo": repo_id, "starred_at": starred_at}, pk=("user", "repo"), foreign_keys=("user", "repo"), ) def save_releases(db, releases, repo_id=None): foreign_keys = [("author", "users", "id")] if repo_id: foreign_keys.append(("repo", "repos", "id")) for original in releases: # Ignore all of the _url fields except html_url release = { key: value for key, value in original.items() if key == "html_url" or not key.endswith("url") } assets = release.pop("assets") or [] release["repo"] = repo_id release["author"] = save_user(db, release["author"]) release_id = ( db["releases"] .insert( release, pk="id", foreign_keys=foreign_keys, alter=True, replace=True ) .last_pk ) # Handle assets for asset in assets: asset["uploader"] = save_user(db, asset["uploader"]) asset["release"] = release_id db["assets"].upsert_all( assets, pk="id", foreign_keys=[ ("uploader", "users", "id"), ("release", "releases", "id"), ], alter=True, ) def save_contributors(db, contributors, repo_id): contributor_rows_to_add = [] for contributor in contributors: contributions = contributor.pop("contributions") user_id = save_user(db, contributor) contributor_rows_to_add.append( {"repo_id": repo_id, "user_id": user_id, "contributions": contributions} ) db["contributors"].insert_all( contributor_rows_to_add, pk=("repo_id", "user_id"), foreign_keys=[("repo_id", "repos", "id"), ("user_id", "users", "id")], replace=True, ) def save_tags(db, tags, repo_id): if not db["tags"].exists(): db["tags"].create( { "repo": int, "name": str, "sha": str, }, pk=("repo", "name"), foreign_keys=[("repo", "repos", "id")], ) db["tags"].insert_all( ( { "repo": repo_id, "name": tag["name"], "sha": tag["commit"]["sha"], } for tag in tags ), replace=True, ) def save_commits(db, commits, repo_id=None): foreign_keys = [ ("author", "users", "id"), ("committer", "users", "id"), ("raw_author", "raw_authors", "id"), ("raw_committer", "raw_authors", "id"), ("repo", "repos", "id"), ] if not db["raw_authors"].exists(): db["raw_authors"].create( { "id": str, "name": str, "email": str, }, pk="id", ) if not db["commits"].exists(): # We explicitly create the table because otherwise we may create it # with incorrect column types, since author/committer can be null db["commits"].create( { "sha": str, "message": str, "author_date": str, "committer_date": str, "raw_author": str, "raw_committer": str, "repo": int, "author": int, "committer": int, }, pk="sha", foreign_keys=foreign_keys, ) for commit in commits: commit_to_insert = { "sha": commit["sha"], "message": commit["commit"]["message"], "author_date": commit["commit"]["author"]["date"], "committer_date": commit["commit"]["committer"]["date"], "raw_author": save_commit_author(db, commit["commit"]["author"]), "raw_committer": save_commit_author(db, commit["commit"]["committer"]), } commit_to_insert["repo"] = repo_id commit_to_insert["author"] = ( save_user(db, commit["author"]) if commit["author"] else None ) commit_to_insert["committer"] = ( save_user(db, commit["committer"]) if commit["committer"] else None ) db["commits"].insert( commit_to_insert, alter=True, replace=True, ) def save_commit_author(db, raw_author): name = raw_author.get("name") email = raw_author.get("email") return ( db["raw_authors"] .insert( { "name": name, "email": email, }, hash_id="id", replace=True, ) .last_pk ) def ensure_foreign_keys(db): for expected_foreign_key in FOREIGN_KEYS: table, column, table2, column2 = expected_foreign_key if ( expected_foreign_key not in db[table].foreign_keys and # Ensure all tables and columns exist db[table].exists() and db[table2].exists() and column in db[table].columns_dict and column2 in db[table2].columns_dict ): db[table].add_foreign_key(column, table2, column2) def ensure_db_shape(db): "Ensure FTS is configured and expected FKS, views and (soon) indexes are present" # Foreign keys: ensure_foreign_keys(db) db.index_foreign_keys() # FTS: existing_tables = set(db.table_names()) for table, columns in FTS_CONFIG.items(): if "{}_fts".format(table) in existing_tables: continue if table not in existing_tables: continue db[table].enable_fts(columns, create_triggers=True) # Views: existing_views = set(db.view_names()) existing_tables = set(db.table_names()) for view, (tables, sql) in VIEWS.items(): # Do all of the tables exist? if not tables.issubset(existing_tables): continue db.create_view(view, sql, replace=True) def scrape_dependents(repo, verbose=False): # Optional dependency: from bs4 import BeautifulSoup url = "https://github.com/{}/network/dependents".format(repo) while url: if verbose: print(url) response = requests.get(url) soup = BeautifulSoup(response.content, "html.parser") repos = [ a["href"].lstrip("/") for a in soup.select("a[data-hovercard-type=repository]") ] if verbose: print(repos) yield from repos # next page? try: next_link = soup.select(".paginate-container")[0].find("a", text="Next") except IndexError: break if next_link is not None: url = next_link["href"] time.sleep(1) else: url = None def fetch_emojis(token=None): headers = make_headers(token) response = requests.get("https://api.github.com/emojis", headers=headers) response.raise_for_status() return [{"name": key, "url": value} for key, value in response.json().items()] def fetch_image(url): return requests.get(url).content def get(url, token=None, accept=None): headers = make_headers(token) if accept: headers["accept"] = accept if url.startswith("/"): url = "https://api.github.com{}".format(url) response = requests.get(url, headers=headers) response.raise_for_status() return response def fetch_readme(token, full_name, html=False): headers = make_headers(token) if html: headers["accept"] = "application/vnd.github.VERSION.html" url = "https://api.github.com/repos/{}/readme".format(full_name) response = requests.get(url, headers=headers) if response.status_code != 200: return None if html: return rewrite_readme_html(response.text) else: return base64.b64decode(response.json()["content"]).decode("utf-8") _href_re = re.compile(r'\shref="#([^"]+)"') _id_re = re.compile(r'\sid="([^"]+)"') def rewrite_readme_html(html): # href="#filtering-tables" => href="#user-content-filtering-tables" hrefs = set(_href_re.findall(html)) ids = _id_re.findall(html) for href in hrefs: if "user-content-{}".format(href) not in ids: continue if href.startswith("user-content-"): continue # This href should be rewritten to user-content html = html.replace( ' href="#{}"'.format(href), ' href="#user-content-{}"'.format(href) ) return html def fetch_workflows(token, full_name): headers = make_headers(token) url = "https://api.github.com/repos/{}/contents/.github/workflows".format(full_name) response = requests.get(url, headers=headers) if response.status_code == 404: return {} workflows = {} for item in response.json(): name = item["name"] content = requests.get(item["download_url"]).text workflows[name] = content return workflows def save_workflow(db, repo_id, filename, content): workflow = yaml.safe_load(content) jobs = workflow.pop("jobs", None) or {} # If there's a `True` key it was probably meant to be "on" - grr YAML if True in workflow: workflow["on"] = workflow.pop(True) # Replace workflow if one exists already existing = list( db["workflows"].rows_where("repo = ? and filename = ?", [repo_id, filename]) ) if existing: # Delete jobs, steps and this record existing_id = existing[0]["id"] db["steps"].delete_where( "job in (select id from jobs where workflow = ?)", [existing_id] ) db["jobs"].delete_where("workflow = ?", [existing_id]) db["workflows"].delete_where("id = ?", [existing_id]) workflow_id = ( db["workflows"] .insert( { **workflow, **{ "repo": repo_id, "filename": filename, "name": workflow.get("name", filename), }, }, pk="id", column_order=["id", "filename", "name"], alter=True, foreign_keys=["repo"], ) .last_pk ) db["workflows"].create_index(["repo", "filename"], unique=True, if_not_exists=True) for job_name, job_details in jobs.items(): steps = job_details.pop("steps", None) or [] job_id = ( db["jobs"] .insert( { **{ "workflow": workflow_id, "name": job_name, "repo": repo_id, }, **job_details, }, pk="id", alter=True, foreign_keys=["workflow", "repo"], ) .last_pk ) db["steps"].insert_all( [ { **{ "seq": i + 1, "job": job_id, "repo": repo_id, }, **step, } for i, step in enumerate(steps) ], alter=True, pk="id", foreign_keys=["job", "repo"], ) def getRepoID(repo_name, db, token): existing = list(db["repos"].rows_where("full_name = ?", [repo_name])) dependencie_id = None if not existing: dependencie_full = fetch_repo(repo_name, token) time.sleep(1) save_repo(db, dependencie_full) dependencie_id = dependencie_full["id"] else: dependencie_id = existing[0]["id"] return dependencie_id
32.021229
89
0.559545
4a20c455b9e3eab990d31739667b7094d254ce97
9,207
py
Python
d2lbook/library.py
sxjscience/d2l-book
557dfb40424f21e2c00a61f808275d3bc2b855ab
[ "Apache-2.0" ]
null
null
null
d2lbook/library.py
sxjscience/d2l-book
557dfb40424f21e2c00a61f808275d3bc2b855ab
[ "Apache-2.0" ]
null
null
null
d2lbook/library.py
sxjscience/d2l-book
557dfb40424f21e2c00a61f808275d3bc2b855ab
[ "Apache-2.0" ]
null
null
null
"""Save codes into library""" from typing import List from d2lbook import notebook import logging import os import copy import re import pathlib import ast import astor from yapf.yapflib.yapf_api import FormatCode import isort def _write_header(f): f.write('# This file is generated automatically through:\n') f.write('# d2lbook build lib\n') f.write('# Don\'t edit it directly\n\n') def save_file(root_dir: str, nbfile: str): nbfile = pathlib.Path(nbfile) pyfile = root_dir / nbfile.with_suffix('.py') with nbfile.open('r') as f: nb = notebook.read_markdown(f.read()) saved = [] save_all = False for cell in nb.cells: if cell.cell_type == 'code': src = cell.source.lstrip() if re.search('# *@save_all', src): save_all = True if save_all or re.search('# *@save_cell', src): saved.append(src) else: blk = _save_block(src, '@save') if blk: saved.append(blk) if saved: with pyfile.open('w') as f: f.write( f'# This file is generated from {str(nbfile)} automatically through:\n' ) f.write('# d2lbook build lib\n') f.write('# Don\'t edit it directly\n\n') for blk in saved: f.write(blk + '\n\n') logging.info(f'Found {len(saved)} blocks in {str(nbfile)}') def save_mark(notebooks: List[str], lib_fname: str, save_mark: str): logging.info('Matching with the pattern: "%s"', save_mark) with open(lib_fname, 'w') as f: _write_header(f) lib_name = os.path.dirname(lib_fname) lib_name = lib_name.split('/')[-1] f.write('import sys\n' + lib_name + ' = sys.modules[__name__]\n\n') for nb in notebooks: _save_code(nb, f, save_mark=save_mark) logging.info('Saved into %s', lib_fname) def save_tab(notebooks: List[str], lib_fname: str, tab: str, default_tab: str): logging.info( f'Matching with the pattern: "#@save", seaching for tab {tab}') with open(lib_fname, 'w') as f: _write_header(f) for nb in notebooks: _save_code(nb, f, tab=tab, default_tab=default_tab) logging.info('Saved into %s', lib_fname) def save_version(version: str, version_fn: str): if version and version_fn: with open(version_fn, 'r', encoding='UTF-8') as f: lines = f.read().split('\n') for i, l in enumerate(lines): if '__version__' in l: lines[i] = f'__version__ = "{version}"' logging.info(f'save {lines[i]} into {version_fn}') with open(version_fn, 'w') as f: f.write('\n'.join(lines)) def _save_block(source: str, save_mark: str): if not save_mark: return '' lines = source.splitlines() block = [] for i, l in enumerate(lines): m = re.search(f'# *{save_mark}', l) if m: l = l[:m.span()[0]].rstrip() if l: block.append(l) for j in range(i + 1, len(lines)): l = lines[j] if not l.startswith(' ') and len(l): block.append(lines[j]) else: for k in range(j, len(lines)): if lines[k].startswith(' ') or not len(lines[k]): block.append(lines[k]) else: break break return format_code('\n'.join(block)) def _save_code(input_fn, output_fp, save_mark='@save', tab=None, default_tab=None): """get the code blocks (import, class, def) that will be saved""" with open(input_fn, 'r', encoding='UTF-8') as f: nb = notebook.read_markdown(f.read()) if tab: nb = notebook.get_tab_notebook(nb, tab, default_tab) if not nb: return saved = [] for cell in nb.cells: if cell.cell_type == 'code': block = _save_block(cell.source, save_mark) if block: saved.append(block) if saved: logging.info('Found %d blocks in %s', len(saved), input_fn) for block in saved: code = '# Defined in file: %s\n%s\n\n\n' % (input_fn, block) output_fp.write(code) def _parse_mapping_config(config: str): """Parse config such as: numpy -> asnumpy, reshape, ... Return a list of string pairs """ mapping = [] for line in config.splitlines(): for term in line.split(','): term = term.strip() if not term: continue if len(term.split('->')) == 2: a, b = term.split('->') mapping.append((a.strip(), b.strip())) else: mapping.append((term, term)) return mapping def save_alias(tab_lib): """Save alias into the library file""" alias = '' if 'alias' in tab_lib: alias += tab_lib['alias'].strip() + '\n' if 'lib_name' in tab_lib: lib_name = tab_lib["lib_name"] if 'simple_alias' in tab_lib: mapping = _parse_mapping_config(tab_lib['simple_alias']) alias += '\n' + '\n'.join([ f'{a} = {lib_name}.{b}' for a, b in mapping]) if 'fluent_alias' in tab_lib: mapping = _parse_mapping_config(tab_lib['fluent_alias']) alias += '\n' + '\n'.join([ f'{a} = lambda x, *args, **kwargs: x.{b}(*args, **kwargs)' for a, b in mapping]) if alias: lib_file = tab_lib['lib_file'] with open(lib_file, 'a') as f: logging.info( f'Wrote {len(alias.splitlines())} alias into {lib_file}') f.write('# Alias defined in config.ini\n') f.write(alias + '\n\n') def replace_fluent_alias(source, fluent_mapping): fluent_mapping = {a: b for a, b in fluent_mapping} new_src = source for _ in range(100): # 100 is a (random) big enough number replaced = False tree = ast.parse(new_src) for node in ast.walk(tree): if (isinstance(node, ast.Call) and isinstance(node.func, ast.Attribute) and isinstance(node.func.value, ast.Name) and node.func.value.id == 'd2l' and node.func.attr in fluent_mapping): new_node = ast.Call( ast.Attribute(value=node.args[0], attr=fluent_mapping[node.func.attr]), node.args[1:], node.keywords) new_src = new_src.replace( ast.get_source_segment(new_src, node), astor.to_source(new_node).rstrip()) replaced = True break if not replaced: break return new_src def replace_alias(nb, tab_lib): nb = copy.deepcopy(nb) patterns = [] fluent_mapping = [] if 'reverse_alias' in tab_lib: patterns += _parse_mapping_config(tab_lib['reverse_alias']) if 'lib_name' in tab_lib: lib_name = tab_lib["lib_name"] if 'simple_alias' in tab_lib: mapping = _parse_mapping_config(tab_lib['simple_alias']) patterns += [(f'd2l.{a}', f'{lib_name}.{b}') for a, b in mapping] if 'fluent_alias' in tab_lib: fluent_mapping = _parse_mapping_config(tab_lib['fluent_alias']) for cell in nb.cells: if cell.cell_type == 'code': for p, r in patterns: cell.source = re.sub(p, r, cell.source) if fluent_mapping: for a, _ in fluent_mapping: if 'd2l.' + a in cell.source: cell.source = replace_fluent_alias( cell.source, fluent_mapping) break return nb def format_code(source: str): if 'import ' in source: config = isort.settings.Config(no_lines_before=[ isort.settings.FUTURE, isort.settings.STDLIB, isort.settings. THIRDPARTY, isort.settings.FIRSTPARTY, isort.settings.LOCALFOLDER]) source = isort.code(source, config=config) # fix the bug that yapf cannot handle jupyter magic for l in source.splitlines(): if l.startswith('%') or l.startswith('!'): return source # fix the bug that yapf remove the tailling ; has_tailling_semicolon = source.rstrip().endswith(';') style = { 'DISABLE_ENDING_COMMA_HEURISTIC': True, 'SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET': False, 'SPLIT_BEFORE_CLOSING_BRACKET': False, 'SPLIT_BEFORE_DICT_SET_GENERATOR': False, 'SPLIT_BEFORE_LOGICAL_OPERATOR': False, 'SPLIT_BEFORE_NAMED_ASSIGNS': False, 'COLUMN_LIMIT': 78, 'BLANK_LINES_AROUND_TOP_LEVEL_DEFINITION': 1,} source = FormatCode(source, style_config=style)[0].strip() if has_tailling_semicolon: source += ';' return source def format_code_nb(nb): for cell in nb.cells: if cell.cell_type == 'code': cell.source = format_code(cell.source) return nb
36.828
87
0.557076
4a20c53430bf3e8e0271e436c916b592bf4225a2
5,994
py
Python
uge/api/impl/qrstat_executor.py
guiguem/config-api
40bff0ed498c571910f76ef08fb5a8b35a686e78
[ "Apache-2.0" ]
null
null
null
uge/api/impl/qrstat_executor.py
guiguem/config-api
40bff0ed498c571910f76ef08fb5a8b35a686e78
[ "Apache-2.0" ]
null
null
null
uge/api/impl/qrstat_executor.py
guiguem/config-api
40bff0ed498c571910f76ef08fb5a8b35a686e78
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # #___INFO__MARK_BEGIN__ ########################################################################## # Copyright 2016,2017 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################### #___INFO__MARK_END__ # import re import os import tempfile import xmltodict import json from uge.utility.uge_subprocess import UgeSubprocess from uge.log.log_manager import LogManager from uge.exceptions.ar_exception import AdvanceReservationException from uge.exceptions.command_failed import CommandFailed from uge.exceptions.qmaster_unreachable import QmasterUnreachable from uge.exceptions.authorization_error import AuthorizationError from uge.exceptions.object_not_found import ObjectNotFound from uge.exceptions.object_already_exists import ObjectAlreadyExists class QrstatExecutor(object): QRSTAT_ERROR_REGEX_LIST = [ (re.compile('.*unable to send message to qmaster.*'),QmasterUnreachable), (re.compile('.*must be manager.*'),AuthorizationError), (re.compile('denied.*'),AuthorizationError), (re.compile('.*does not exist.*'),ObjectNotFound), (re.compile('.*no.*defined.*'),ObjectNotFound), (re.compile('.*'),AdvanceReservationException) ] QRSTAT_SUCCESS_REGEX_LIST = [] # for successful outcome incorrectly classified as failure QRSTAT_FAILURE_REGEX_LIST = [] # for failure incorrectly classified as successful outcome def __init__(self, sge_root, sge_cell, sge_qmaster_port, sge_execd_port): self.logger = LogManager.get_instance().get_logger(self.__class__.__name__) self.env_dict = { 'SGE_ROOT' : sge_root, 'SGE_CELL' : sge_cell, 'SGE_QMASTER_PORT' : str(sge_qmaster_port), 'SGE_EXECD_PORT' : str(sge_execd_port), 'SGE_SINGLE_LINE' : '1', } self.uge_version = None self.__configure() def __configure(self): self.logger.trace('Retrieving UGE version') uge_version = self.get_uge_version() self.logger.debug('UGE version: %s' % uge_version) def get_uge_version(self): if not self.uge_version: p = self.execute_qrstat('-help') lines = p.get_stdout().split('\n') if not len(lines): raise AdvanceReservationException('Cannot determine UGE version from output: %s' % p.get_stdout()) self.uge_version = lines[0].split()[-1] return self.uge_version def execute_qrstat(self, cmd, error_regex_list=[], error_details=None, combine_error_lines=False, success_regex_list=[], failure_regex_list=[]): try: command = '. %s/%s/common/settings.sh; qrstat %s' % (self.env_dict['SGE_ROOT'], self.env_dict['SGE_CELL'], cmd) p = UgeSubprocess(command, env=self.env_dict) p.run() # In some cases successful outcome is actually a failure error = p.get_stderr() if error: for (pattern,qrstatExClass) in failure_regex_list+QrstatExecutor.QRSTAT_FAILURE_REGEX_LIST: if pattern.match(error): raise qrstatExClass(error, error_details=error_details) return p except CommandFailed, ex: error = str(ex) if combine_error_lines: error = error.replace('\n', '; ') for (pattern,result) in success_regex_list+QrstatExecutor.QRSTAT_SUCCESS_REGEX_LIST: if pattern.match(error): self.logger.debug('Ignoring command failed for success pattern, replacing stdout with result: "%s"' % result) p.stdout_ = result return p for (pattern,qrstatExClass) in error_regex_list+QrstatExecutor.QRSTAT_ERROR_REGEX_LIST: if pattern.match(error): raise qrstatExClass(error, error_details=error_details) raise def get_ar(self, name): p = self.execute_qrstat('-json -ar ' + name) lines = p.get_stdout() aro = json.loads(lines) return aro def get_ar_summary(self): p = self.execute_qrstat('-json') lines = p.get_stdout() aro = json.loads(lines) return aro def get_ar_list(self): p = self.execute_qrstat('-json -u "*"') lines = p.get_stdout() aro = json.loads(lines) arl = [] if 'ar_summary' in aro['qrstat']: for item in aro['qrstat']['ar_summary']: arl.append(item['id']) return arl ############################################################################# # Testing. if __name__ == '__main__': from uge.exceptions.command_failed import CommandFailed executor = QrstatExecutor(sge_root='/Users/aalefeld/univa/trash/UGE86', sge_cell='default',sge_qmaster_port=5560, sge_execd_port=5561) try: print 'Version: ', executor.get_uge_version() p = executor.execute_qrstat('-help') print p.get_stdout() print p.get_exit_status() #p = executor.execute_qrstat("-xml") p = executor.execute_qrstat("-xml -ar 311") s = p.get_stdout(); o = xmltodict.parse(s) print json.dumps(o) print p.get_exit_status() except CommandFailed, ex: print 'Exit Status: ', ex.get_command_exit_status() print 'Std Error : ', ex.get_command_stderr()
41.054795
148
0.627794
4a20c5bc3e19670ae70cdc980c8c2eed32e8c6ba
1,059
py
Python
primeFactorList.py
lshdfp726/GetFactors
bb5aa353df63542cf97dfd9da3678d9c8c3cec93
[ "MIT" ]
null
null
null
primeFactorList.py
lshdfp726/GetFactors
bb5aa353df63542cf97dfd9da3678d9c8c3cec93
[ "MIT" ]
null
null
null
primeFactorList.py
lshdfp726/GetFactors
bb5aa353df63542cf97dfd9da3678d9c8c3cec93
[ "MIT" ]
null
null
null
#! /usr/bin/env python # -*- coding:UTF8 -*- 'prime factor' import isPrime import getFactors primefactorArray = [] #一个数的质因数列表 def primeFactorList(number): 'get prime factor list' if isPrime.prime(number):#如果是质数,返回1和其本身 return [1,number] else: array = getFactors.getfactors(number) array.remove(1) array.remove(number) global primefactorArray temArray = [x for x in array if isPrime.prime(x)]#一个数的质因数数集合 primefactorArray.extend(temArray)#添加到质数因数列表 temp = 1 #质数的乘积 for x in temArray: temp *=x if temp == number:#如果temp 已经等于number,那么已经是质因数成积 return primefactorArray else:#利用number 和 temp 商在进行分解 return getProductList(number,temp) def getProductList(number,temp): 'get product list' global primefactorArray x = number / temp if isPrime.prime(x): primefactorArray.append(x) #如果x 是质数 ,那么 number = temp * x (temp 已经是质数的成积了) else: primeFactorList(x)#迭代求质数 return primefactorArray if __name__ == '__main__': promot = 'plsease input a number: ' number = int(raw_input(promot)) print primeFactorList(number)
23.021739
76
0.729934
4a20c74416cd35e999514b8963034293a84b53a0
7,843
py
Python
python/setup.py
lorepieri8/he-transformer
894b2204c9f9b62519207493d13756e12268e12b
[ "Apache-2.0" ]
null
null
null
python/setup.py
lorepieri8/he-transformer
894b2204c9f9b62519207493d13756e12268e12b
[ "Apache-2.0" ]
null
null
null
python/setup.py
lorepieri8/he-transformer
894b2204c9f9b62519207493d13756e12268e12b
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, Extension from setuptools.command.build_ext import build_ext import sys import setuptools import os # TODO: get from environment __version__ = '0.0.0.dev0' PYNGRAPH_ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) BOOST_ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) def find_he_transformer_dist_dir(): """Return location of he-transformer library home""" if os.environ.get('NGRAPH_HE_BUILD_PATH'): ngraph_he_dist_dir = os.environ.get('NGRAPH_HE_BUILD_PATH') else: print('Must set NGRAPH_HE_BUILD_PATH') sys.exit(1) found = os.path.exists(os.path.join(ngraph_he_dist_dir, 'include')) found = found and os.path.exists(os.path.join(ngraph_he_dist_dir, 'lib')) if not found: print( 'Cannot find he-transformer library in {} make sure that ' 'NGRAPH_HE_BUILD_PATH is set correctly'.format(ngraph_he_dist_dir)) sys.exit(1) else: print('he-transformer library found in {}'.format(ngraph_he_dist_dir)) return ngraph_he_dist_dir def find_pybind_headers_dir(): """Return location of pybind11 headers.""" if os.environ.get('PYBIND_HEADERS_PATH'): pybind_headers_dir = os.environ.get('PYBIND_HEADERS_PATH') else: pybind_headers_dir = os.path.join(PYNGRAPH_ROOT_DIR, 'pybind11') found = os.path.exists( os.path.join(pybind_headers_dir, 'include/pybind11')) if not found: print( 'Cannot find pybind11 library in {} make sure that ' 'PYBIND_HEADERS_PATH is set correctly'.format(pybind_headers_dir)) sys.exit(1) else: print('pybind11 library found in {}'.format(pybind_headers_dir)) return pybind_headers_dir def find_boost_headers_dir(): """Return location of boost headers.""" if os.environ.get('BOOST_HEADERS_PATH'): boost_headers_dir = os.environ.get('BOOST_HEADERS_PATH') else: boost_headers_dir = [os.path.join(BOOST_ROOT_DIR)] found = os.path.exists(os.path.join(boost_headers_dir, 'boost/asio')) if not found: print('Cannot find boost library in {} make sure that ' 'BOOST_HEADERS_PATH is set correctly'.format(boost_headers_dir)) print('boost library found in {}'.format(boost_headers_dir)) return boost_headers_dir def find_cxx_compiler(): """Returns C++ compiler.""" if os.environ.get('CXX_COMPILER'): print('CXX_COMPILER', os.environ.get('CXX_COMPILER')) return os.environ.get('CXX_COMPILER') else: return 'CXX' def find_c_compiler(): """Returns C compiler.""" if os.environ.get('C_COMPILER'): print('C_COMPILER', os.environ.get('C_COMPILER')) return os.environ.get('C_COMPILER') else: return 'CC' def find_project_root_dir(): """Returns PROJECT_ROOT_DIR""" if os.environ.get("PROJECT_ROOT_DIR"): return os.environ.get("PROJECT_ROOT_DIR") else: print('Cannot find PROJECT_ROOT_DIR') sys.exit(1) os.environ["CXX"] = find_cxx_compiler() os.environ["CC"] = find_c_compiler() PYBIND11_INCLUDE_DIR = find_pybind_headers_dir() + '/include' NGRAPH_HE_DIST_DIR = find_he_transformer_dist_dir() NGRAPH_HE_INCLUDE_DIR = os.path.join(NGRAPH_HE_DIST_DIR, 'include') NGRAPH_HE_LIB_DIR = os.path.join(NGRAPH_HE_DIST_DIR, 'lib') BOOST_INCLUDE_DIR = find_boost_headers_dir() PROJECT_ROOT_DIR = find_project_root_dir() print('NGRAPH_HE_DIST_DIR', NGRAPH_HE_DIST_DIR) print('NGRAPH_HE_LIB_DIR ', NGRAPH_HE_LIB_DIR) print('NGRAPH_HE_INCLUDE_DIR', NGRAPH_HE_INCLUDE_DIR) print('BOOST_INCLUDE_DIR', BOOST_INCLUDE_DIR) print('PROJECT_ROOT_DIR', PROJECT_ROOT_DIR) include_dirs = [ PYNGRAPH_ROOT_DIR, NGRAPH_HE_INCLUDE_DIR, PYBIND11_INCLUDE_DIR, BOOST_INCLUDE_DIR ] library_dirs = [NGRAPH_HE_LIB_DIR] libraries = ['he_seal_backend'] data_files = [('lib', [(NGRAPH_HE_LIB_DIR + '/' + library) for library in os.listdir(NGRAPH_HE_LIB_DIR)])] sources = ['py_he_seal_client/he_seal_client.cpp'] sources = [PYNGRAPH_ROOT_DIR + '/' + source for source in sources] ext_modules = [ Extension( 'he_seal_client', sources=sources, include_dirs=include_dirs, library_dirs=library_dirs, libraries=libraries, language='c++'), ] # As of Python 3.6, CCompiler has a `has_flag` method. # cf http://bugs.python.org/issue26689 def has_flag(compiler, flagname): """Return a boolean indicating whether a flag name is supported on the specified compiler. """ import tempfile with tempfile.NamedTemporaryFile('w', suffix='.cpp') as f: f.write('int main (int argc, char **argv) { return 0; }') try: compiler.compile([f.name], extra_postargs=[flagname]) except setuptools.distutils.errors.CompileError: return False return True def cpp_flag(compiler): """Return the -std=c++[11/14] compiler flag. The c++14 is prefered over c++11 (when it is available). """ if has_flag(compiler, '-std=c++1z'): return '-std=c++1z' elif has_flag(compiler, '-std=c++14'): return '-std=c++14' elif has_flag(compiler, '-std=c++11'): return '-std=c++11' else: raise RuntimeError('Unsupported compiler -- at least C++11 support ' 'is needed!') def add_platform_specific_link_args(link_args): """Add linker flags specific for actual OS.""" if sys.platform.startswith('linux'): link_args += ['-Wl,-rpath,$ORIGIN/../..'] link_args += ['-z', 'noexecstack'] link_args += ['-z', 'relro'] link_args += ['-z', 'now'] class BuildExt(build_ext): """A custom build extension for adding compiler-specific options.""" def _add_extra_compile_arg(self, flag, compile_args): """Return True if successfully added given flag to compiler args.""" if has_flag(self.compiler, flag): compile_args += [flag] return True return False def build_extensions(self): """Build extension providing extra compiler flags.""" # -Wstrict-prototypes is not a valid option for c++ try: self.compiler.compiler_so.remove('-Wstrict-prototypes') except (AttributeError, ValueError): pass for ext in self.extensions: ext.extra_compile_args += [cpp_flag(self.compiler)] if not self._add_extra_compile_arg('-fstack-protector-strong', ext.extra_compile_args): self._add_extra_compile_arg('-fstack-protector', ext.extra_compile_args) self._add_extra_compile_arg('-fvisibility=hidden', ext.extra_compile_args) self._add_extra_compile_arg('-flto', ext.extra_compile_args) self._add_extra_compile_arg('-fPIC', ext.extra_compile_args) self._add_extra_compile_arg('-fopenmp', ext.extra_compile_args) self._add_extra_compile_arg( '-DPROJECT_ROOT_DIR="' + PROJECT_ROOT_DIR + '"', ext.extra_compile_args) add_platform_specific_link_args(ext.extra_link_args) ext.extra_compile_args += ['-Wformat', '-Wformat-security'] ext.extra_compile_args += ['-O2', '-D_FORTIFY_SOURCE=2'] build_ext.build_extensions(self) setup( name='he_seal_client', version=__version__, author='Intel Corporation', url='https://github.com/NervanaSystems/he-transformer', description='Client for HE-transformer', long_description='', ext_modules=ext_modules, data_files=data_files, install_requires=['pybind11>=2.2'], cmdclass={'build_ext': BuildExt}, zip_safe=False)
33.660944
79
0.659569
4a20c7c734d163a83bf377946183c9383cc18966
350
py
Python
home/views.py
ishaileshmishra/todo_api_jango
8a78d018b635c55b40f88b04deada86b873cc883
[ "MIT" ]
2
2020-06-21T06:44:58.000Z
2021-09-22T05:38:33.000Z
home/views.py
ishaileshmishra/todo_api_jango
8a78d018b635c55b40f88b04deada86b873cc883
[ "MIT" ]
null
null
null
home/views.py
ishaileshmishra/todo_api_jango
8a78d018b635c55b40f88b04deada86b873cc883
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.views.generic import TemplateView # Create your views here. # home/views.py # Create your views here. class HomePageView(TemplateView): def get(self, request, **kwargs): return render(request, 'index.html', context=None) class AboutPageView(TemplateView): template_name = "about.html"
29.166667
58
0.751429
4a20c8ceea3a4c256f3a6cfda2908b8e2e6055e1
463
py
Python
accounts/views/__init__.py
bbengfort/ledger
f3b961be568d3a373228ee2ccf52afc7fb7ca9a8
[ "MIT" ]
1
2018-08-15T22:34:33.000Z
2018-08-15T22:34:33.000Z
accounts/views/__init__.py
bbengfort/ledger
f3b961be568d3a373228ee2ccf52afc7fb7ca9a8
[ "MIT" ]
75
2018-05-07T21:13:27.000Z
2021-09-22T17:45:20.000Z
accounts/views/__init__.py
bbengfort/ledger
f3b961be568d3a373228ee2ccf52afc7fb7ca9a8
[ "MIT" ]
2
2018-08-15T22:34:34.000Z
2020-07-04T17:27:41.000Z
# accounts.views # Views and controllers for the account app. # # Author: Benjamin Bengfort <[email protected]> # Created: Wed May 02 15:42:02 2018 -0400 # # ID: __init__.py [] [email protected] $ """ Views and controllers for the account app. """ ########################################################################## ## Imports ########################################################################## from .api import * from .balance import *
24.368421
74
0.477322
4a20c8d21037d3242e6498e01c12ab402706dee0
2,188
py
Python
doc/plugin_samples/vm_balance.py
oVirt/ovirt-scheduler-proxy
33f0db60549d1fb2efbbd86cdfb29dfa8a8b5d74
[ "Apache-2.0" ]
2
2017-08-03T16:45:00.000Z
2022-02-05T14:03:09.000Z
doc/plugin_samples/vm_balance.py
oVirt/ovirt-scheduler-proxy
33f0db60549d1fb2efbbd86cdfb29dfa8a8b5d74
[ "Apache-2.0" ]
null
null
null
doc/plugin_samples/vm_balance.py
oVirt/ovirt-scheduler-proxy
33f0db60549d1fb2efbbd86cdfb29dfa8a8b5d74
[ "Apache-2.0" ]
1
2017-08-03T16:45:05.000Z
2017-08-03T16:45:05.000Z
from __future__ import print_function from ovirtsdk.api import API import sys class vm_balance(): """moves a vm from a host with to many""" # What are the values this module will accept, used to present # the user with options properties_validation = 'maximum_vm_count=[0-9]*' def _get_connection(self): # open a connection to the rest api connection = None try: connection = API(url='http://host:port', username='user@domain', password='') except BaseException as ex: # letting the external proxy know there was an error print(ex, file=sys.stderr) return None return connection def _get_hosts(self, host_ids, connection): # get all the hosts with the given ids engine_hosts = connection.hosts.list( query=" or ".join(["id=%s" % u for u in host_ids])) return engine_hosts def do_balance(self, hosts_ids, args_map): conn = self._get_connection() if conn is None: return # get our parameters from the map maximum_vm_count = int(args_map.get('maximum_vm_count', 100)) # get all the hosts with the given ids engine_hosts = self._get_hosts(hosts_ids, conn) # iterate over them and decide which to balance from over_loaded_host = None white_listed_hosts = [] for engine_host in engine_hosts: if engine_host: if engine_host.summary.active < maximum_vm_count: white_listed_hosts.append(engine_host.id) continue if(not over_loaded_host or over_loaded_host.summary.active < engine_host.summary.active): over_loaded_host = engine_host if not over_loaded_host: return selected_vm = None # just pick the first we find host_vms = conn.vms.list('host=' + over_loaded_host.name) if host_vms: selected_vm = host_vms[0].id else: return print(selected_vm, white_listed_hosts)
31.710145
69
0.59415
4a20c9bccb42937fa4c22449a3ba43b3d3eeb75a
5,163
py
Python
src/python/pants/backend/python/subsystems/setuptools_test.py
mpcusack-color/pants
0ce449f9181c690dbf60b2bc51b0e97f285eb9ae
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/python/subsystems/setuptools_test.py
mpcusack-color/pants
0ce449f9181c690dbf60b2bc51b0e97f285eb9ae
[ "Apache-2.0" ]
6
2022-01-25T15:49:26.000Z
2022-02-09T11:21:13.000Z
src/python/pants/backend/python/subsystems/setuptools_test.py
thejcannon/pants
7c24f42cb78cc462b63698cef736eda7a85c40e0
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from textwrap import dedent from pants.backend.python.goals.lockfile import GeneratePythonLockfile from pants.backend.python.macros.python_artifact import PythonArtifact from pants.backend.python.subsystems import setuptools from pants.backend.python.subsystems.setuptools import SetuptoolsLockfileSentinel from pants.backend.python.target_types import PythonDistribution, PythonSourcesGeneratorTarget from pants.backend.python.util_rules.interpreter_constraints import InterpreterConstraints from pants.testutil.rule_runner import QueryRule, RuleRunner def test_setup_lockfile_interpreter_constraints() -> None: rule_runner = RuleRunner( rules=[ *setuptools.rules(), QueryRule(GeneratePythonLockfile, [SetuptoolsLockfileSentinel]), ], target_types=[PythonSourcesGeneratorTarget, PythonDistribution], objects={"setup_py": PythonArtifact}, ) global_constraint = "==3.9.*" rule_runner.set_options( ["--setuptools-lockfile=lockfile.txt"], env={"PANTS_PYTHON_INTERPRETER_CONSTRAINTS": f"['{global_constraint}']"}, ) def assert_ics(build_file: str, expected: list[str]) -> None: rule_runner.write_files({"project/BUILD": build_file}) lockfile_request = rule_runner.request( GeneratePythonLockfile, [SetuptoolsLockfileSentinel()] ) assert lockfile_request.interpreter_constraints == InterpreterConstraints(expected) # If no dependencies for python_distribution, fall back to global [python] constraints. assert_ics("python_distribution(provides=setup_py(name='dist'))", [global_constraint]) assert_ics( dedent( """\ python_sources(name="lib") python_distribution( name="dist", dependencies=[":lib"], provides=setup_py(name="dist"), ) """ ), [global_constraint], ) assert_ics( dedent( """\ python_sources(name="lib", interpreter_constraints=["==2.7.*"]) python_distribution( name="dist", dependencies=[":lib"], provides=setup_py(name="dist"), ) """ ), ["==2.7.*"], ) assert_ics( dedent( """\ python_sources(name="lib", interpreter_constraints=["==2.7.*", "==3.5.*"]) python_distribution( name="dist", dependencies=[":lib"], provides=setup_py(name="dist"), ) """ ), ["==2.7.*", "==3.5.*"], ) # If no python_distribution targets in repo, fall back to global [python] constraints. assert_ics("python_sources()", [global_constraint]) # If there are multiple distinct ICs in the repo, we OR them. This is because setup_py.py will # build each Python distribution independently. assert_ics( dedent( """\ python_sources(name="lib1", interpreter_constraints=["==2.7.*"]) python_distribution( name="dist1", dependencies=[":lib1"], provides=setup_py(name="dist"), ) python_sources(name="lib2", interpreter_constraints=["==3.5.*"]) python_distribution( name="dist2", dependencies=[":lib2"], provides=setup_py(name="dist"), ) """ ), ["==2.7.*", "==3.5.*"], ) assert_ics( dedent( """\ python_sources(name="lib1", interpreter_constraints=["==2.7.*", "==3.5.*"]) python_distribution( name="dist1", dependencies=[":lib1"], provides=setup_py(name="dist"), ) python_sources(name="lib2", interpreter_constraints=[">=3.5"]) python_distribution( name="dist2", dependencies=[":lib2"], provides=setup_py(name="dist"), ) """ ), ["==2.7.*", "==3.5.*", ">=3.5"], ) assert_ics( dedent( """\ python_sources(name="lib1") python_distribution( name="dist1", dependencies=[":lib1"], provides=setup_py(name="dist"), ) python_sources(name="lib2", interpreter_constraints=["==2.7.*"]) python_distribution( name="dist2", dependencies=[":lib2"], provides=setup_py(name="dist"), ) python_sources(name="lib3", interpreter_constraints=[">=3.6"]) python_distribution( name="dist3", dependencies=[":lib3"], provides=setup_py(name="dist"), ) """ ), ["==2.7.*", global_constraint, ">=3.6"], )
33.309677
98
0.550843
4a20c9f888612469e5b8f547f25e16a294e55008
3,988
py
Python
aries_cloudagent/vc/vc_ld/models/linked_data_proof.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
247
2019-07-02T21:10:21.000Z
2022-03-30T13:55:33.000Z
aries_cloudagent/vc/vc_ld/models/linked_data_proof.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
1,462
2019-07-02T20:57:30.000Z
2022-03-31T23:13:35.000Z
aries_cloudagent/vc/vc_ld/models/linked_data_proof.py
kuraakhilesh8230/aries-cloudagent-python
ee384d1330f6a50ff45a507392ce54f92900f23a
[ "Apache-2.0" ]
377
2019-06-20T21:01:31.000Z
2022-03-30T08:27:53.000Z
"""LinkedDataProof.""" from marshmallow import INCLUDE, fields, post_dump from ....messaging.valid import INDY_ISO8601_DATETIME, UUIDFour, Uri from ....messaging.models.base import BaseModel, BaseModelSchema from typing import Optional class LDProof(BaseModel): """Linked Data Proof model.""" class Meta: """LinkedDataProof metadata.""" schema_class = "LinkedDataProofSchema" def __init__( self, type: Optional[str] = None, proof_purpose: Optional[str] = None, verification_method: Optional[str] = None, created: Optional[str] = None, domain: Optional[str] = None, challenge: Optional[str] = None, jws: Optional[str] = None, proof_value: Optional[str] = None, nonce: Optional[str] = None, **kwargs, ) -> None: """Initialize the LDProof instance.""" self.type = type self.proof_purpose = proof_purpose self.verification_method = verification_method self.created = created self.domain = domain self.challenge = challenge self.jws = jws self.proof_value = proof_value self.nonce = nonce self.extra = kwargs class LinkedDataProofSchema(BaseModelSchema): """Linked data proof schema. Based on https://w3c-ccg.github.io/ld-proofs """ class Meta: """Accept parameter overload.""" unknown = INCLUDE model_class = LDProof type = fields.Str( required=True, description=( "Identifies the digital signature suite" " that was used to create the signature" ), example="Ed25519Signature2018", ) proof_purpose = fields.Str( data_key="proofPurpose", required=True, description="Proof purpose", example="assertionMethod", ) verification_method = fields.Str( data_key="verificationMethod", required=True, description="Information used for proof verification", example=( "did:key:z6Mkgg342Ycpuk263R9d8Aq6MUaxPn1DDeHyGo38EefXmgDL" "#z6Mkgg342Ycpuk263R9d8Aq6MUaxPn1DDeHyGo38EefXmgDL" ), validate=Uri(), ) created = fields.Str( required=True, description=( "The string value of an ISO8601 combined date" " and time string generated by the Signature Algorithm" ), **INDY_ISO8601_DATETIME, ) domain = fields.Str( required=False, description="A string value specifying the restricted domain of the signature.", example="example.com", validate=Uri(), ) challenge = fields.Str( required=False, description=( "Associates a challenge with a proof, for use" " with a proofPurpose such as authentication" ), example=UUIDFour.EXAMPLE, ) jws = fields.Str( required=False, description="Associates a Detached Json Web Signature with a proof", example=( "eyJhbGciOiAiRWREUc2UsICJjcml0IjogWyJiNjQiXX0..lKJU0Df_ke" "blRKhZAS9Qq6zybm-HqUXNVZ8vgEPNTAjQ1Ch6YBKY7UBAjg6iBX5qBQ" ), ) proof_value = fields.Str( required=False, data_key="proofValue", description="The proof value of a proof", example=( "sy1AahqbzJQ63n9RtekmwzqZeVj494VppdAVJBnMYrTwft6cLJJGeTSSxCCJ6HKnRtwE7" "jjDh6sB2z2AAiZY9BBnCD8wUVgwqH3qchGRCuC2RugA4eQ9fUrR4Yuycac3caiaaay" ), ) nonce = fields.Str( required=False, description="The nonce", example=( "CF69iO3nfvqRsRBNElE8b4wO39SyJHPM7Gg1nExltW5vSfQA1lvDCR/zXX1To0/4NLo==" ), ) @post_dump(pass_original=True) def add_unknown_properties(self, data: dict, original, **kwargs): """Add back unknown properties before outputting.""" data.update(original.extra) return data
27.503448
88
0.621113
4a20caa6731635b89943624c01d838076fa82fbc
5,963
py
Python
scripts/var_visualization.py
BalazsHoranyi/TimeSeries-D3M-Wrappers
61d97bf5235fcfa9ffd95f7e0982e04f650e54de
[ "MIT" ]
null
null
null
scripts/var_visualization.py
BalazsHoranyi/TimeSeries-D3M-Wrappers
61d97bf5235fcfa9ffd95f7e0982e04f650e54de
[ "MIT" ]
null
null
null
scripts/var_visualization.py
BalazsHoranyi/TimeSeries-D3M-Wrappers
61d97bf5235fcfa9ffd95f7e0982e04f650e54de
[ "MIT" ]
null
null
null
# compare ARIMA and VAR predictions on examples from population spawn dataset from common_primitives import dataset_to_dataframe as DatasetToDataFrame from d3m import container from d3m.primitives.time_series_forecasting.vector_autoregression import VAR from Sloth.predict import Arima from d3m.container import DataFrame as d3m_DataFrame import pandas as pd import matplotlib.pyplot as plt import math import numpy as np from collections import OrderedDict from sklearn.metrics import mean_absolute_error as mae # dataset to dataframe input_dataset = container.Dataset.load('file:///datasets/seed_datasets_current/LL1_736_population_spawn_simpler/TRAIN/dataset_TRAIN/datasetDoc.json') hyperparams_class = DatasetToDataFrame.DatasetToDataFramePrimitive.metadata.query()['primitive_code']['class_type_arguments']['Hyperparams'] ds2df_client = DatasetToDataFrame.DatasetToDataFramePrimitive(hyperparams = hyperparams_class.defaults().replace({"dataframe_resource":"learningData"})) df = d3m_DataFrame(ds2df_client.produce(inputs = input_dataset).value) original = df.copy() # apply VAR to predict each species in each sector n_periods = 25 var_hp = VAR.metadata.query()['primitive_code']['class_type_arguments']['Hyperparams'] var = VAR(hyperparams = var_hp.defaults().replace({'filter_index_two':1, 'filter_index_one':2, 'n_periods':n_periods, 'interval':25, 'datetime_index_unit':'D'})) var.set_training_data(inputs = df, outputs = None) var.fit() test_dataset = container.Dataset.load('file:///datasets/seed_datasets_current/LL1_736_population_spawn_simpler/TEST/dataset_TEST/datasetDoc.json') test_df = d3m_DataFrame(ds2df_client.produce(inputs = test_dataset).value) test_df = test_df.drop(columns = 'count') var_pred = var.produce(inputs = d3m_DataFrame(ds2df_client.produce(inputs = test_dataset).value)).value var_pred = var_pred.merge(test_df, on = 'd3mIndex', how='left') # load targets data targets = pd.read_csv('file:///datasets/seed_datasets_current/LL1_736_population_spawn_simpler/SCORE/targets.csv') test_df['d3mIndex'] = test_df['d3mIndex'].astype(int) targets = targets.merge(test_df,on = 'd3mIndex', how = 'left') # compare VAR predictions to ARIMA predictions for individual species / sectors sector = 'S_0002' species = ['cas9_YABE', 'cas9_MBI'] original = original[original['sector'] == sector] var_pred = var_pred[var_pred['sector'] == sector] targets = targets[targets['sector'] == sector] # instantiate arima primitive clf = Arima(True) COLORS = ["#FA5655", "#F79690", "#B9BC2D", "#86B6B2", "#955B99", "#252B7A"] for specie in species: x_train = original[original['species'] == specie]['day'].values.astype(int) train = original[original['species'] == specie]['count'].values.astype(float) v_pred = var_pred[var_pred['species'] == specie]['count'].values.astype(float) true = targets[targets['species'] == specie]['count'].values.astype(float) x_pred = var_pred[var_pred['species'] == specie]['day'].values.astype(int) clf.fit(train) a_pred = clf.predict(n_periods)[-1:] # plot results plt.clf() plt.scatter(x_train, train, c = COLORS[3], label = 'training data') plt.scatter(x_pred, true, c = COLORS[3], label = 'ground truth prediction') plt.scatter(x_pred, v_pred, c = COLORS[2], label = 'VAR prediction', edgecolor = 'black', linewidth = 1) plt.scatter(x_pred, a_pred, c = COLORS[0], label = 'ARIMA prediction', edgecolor = 'black', linewidth = 1) plt.xlabel('Day of the Year') plt.ylabel('Population') plt.title(f'VAR vs. ARIMA Comparison for Prediction of Species {specie} in Sector {sector}') plt.legend() plt.savefig(f'{specie}.png') # # compare VAR predictions to ARIMA for each sector # clf = Arima(True) # #sectors = ['S_3102', 'S_4102', 'S_5102'] # #species = ['cas9_VBBA', 'cas9_FAB', 'cas9_JAC', 'cas9_CAD', 'cas9_YABE', 'cas9_HNAF', 'cas9_NIAG', 'cas9_MBI'] # COLORS = ["#FA5655", "#F79690", "#B9BC2D", "#86B6B2", "#955B99", "#252B7A"] # for sector in targets['sector'].unique()[15:30]: # original_1 = original[original['sector'] == sector] # var_pred_1 = var_pred[var_pred['sector'] == sector] # targets_1 = targets[targets['sector'] == sector].sort_values(by='species') # print(var_pred_1['count'].values) # print(var_pred_1.head()) # print(targets_1['count'].values) # print(targets_1.head()) # # arima prediction on each species in sector # a_pred = [] # print(f'a_pred: {a_pred}') # print(np.sort(targets_1['species'].unique())) # for specie in np.sort(targets_1['species'].unique()): # train = original_1[original_1['species'] == specie]['count'].values.astype(float) # clf.fit(train) # a_pred.append(clf.predict(n_periods)[-1:][0]) # ap = mae(targets_1['count'].values, a_pred) # vp = mae(targets_1['count'].values, var_pred_1['count'].values) # linewidth = '1' if vp <= ap else '0' # print(f"arima: {mae(targets_1['count'].values, a_pred)}") # print(f"var: {mae(targets_1['count'].values, var_pred_1['count'].values)}") # plt.scatter(sector, mae(targets_1['count'].values, a_pred), c = COLORS[0], label = 'MAE of ARIMA prediction') # if linewidth == '0': # plt.scatter(sector, mae(targets_1['count'].values, var_pred_1['count'].values), edgecolor = 'black', linewidth = linewidth, c = COLORS[2], label = 'MAE of VAR prediction') # else: # plt.scatter(sector, mae(targets_1['count'].values, var_pred_1['count'].values), edgecolor = 'black', linewidth = linewidth, c = COLORS[2], label = 'VAR prediction better than ARIMA prediction') # plt.xlabel(f'Sector') # plt.xticks(rotation = 45) # plt.ylabel('Mean Absolute Error') # plt.title(f'VAR vs. ARIMA Prediction on Population Spawn Dataset') # handles, labels = plt.gca().get_legend_handles_labels() # by_label = OrderedDict(zip(labels, handles)) # plt.legend(by_label.values(), by_label.keys()) # plt.tight_layout() # plt.savefig(f'mae_comp_1.png')
50.109244
203
0.714406
4a20caf3a41b350b746a569b806b6f9d148809be
219
py
Python
mysite/mysite/listDb.py
xinkaiwang/robotJump
622e97451f450b755aecbd60e15b2cd47d875f47
[ "MIT" ]
null
null
null
mysite/mysite/listDb.py
xinkaiwang/robotJump
622e97451f450b755aecbd60e15b2cd47d875f47
[ "MIT" ]
null
null
null
mysite/mysite/listDb.py
xinkaiwang/robotJump
622e97451f450b755aecbd60e15b2cd47d875f47
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") import django django.setup() # your imports, e.g. Django models from buckets.models import * all = ImageInfo.objects.all()
16.846154
59
0.753425
4a20cb0e1297b40af29ba359338e6430bf62ff25
5,992
py
Python
gym/gym/envs/my_games/Atari/physics.py
tailintalent/mela
6220f530ff8516d0652ca0849a57ab883b893199
[ "MIT" ]
3
2019-11-12T08:15:07.000Z
2020-05-07T16:49:15.000Z
gym/gym/envs/my_games/Atari/physics.py
tailintalent/mela
6220f530ff8516d0652ca0849a57ab883b893199
[ "MIT" ]
1
2020-12-07T14:29:57.000Z
2020-12-07T14:29:57.000Z
gym/gym/envs/my_games/Atari/physics.py
tailintalent/mela
6220f530ff8516d0652ca0849a57ab883b893199
[ "MIT" ]
null
null
null
import numpy as np def get_physics(physics_settings, dt): physics_list = [] for physics_name, physics_params in physics_settings: if physics_name == "linear": physics_class = Linear elif physics_name == "gravity": physics_class = Uniform_Gravity elif physics_name == "Brownian_force": physics_class = Brownian_Force elif physics_name == "drag": physics_class = Drag elif physics_name == "central_force": physics_class = Central_Force elif physics_name == "point_force_paddle": physics_class = Point_Force_Paddle elif physics_name == "pairwise_force": physics_class = Pairwise_Force else: raise Exception("physics_name {0} not recognized!".format(physics_name)) physics = physics_class(params = physics_params, dt = dt) physics_list.append(physics) return physics_list class Physics(object): def __init__(self, dt, params = {}): self.dt = dt self.params = params def is_in_domain(self, ball, **kwargs): in_domain = True if "domain" in self.params: (x_min, x_max), (y_min, y_max) = self.params["domain"] if (x_min is not None and ball.x < x_min) or \ (x_max is not None and ball.x > x_max) or \ (y_min is not None and ball.y < y_min) or \ (y_max is not None and ball.y > y_max): in_domain = False return in_domain def exert(self, dt, ball_list, **kwargs): raise NotImplementedError class Linear(Physics): def __init__(self, dt, params = {}): self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): pass class Uniform_Gravity(Physics): def __init__(self, dt, params = {}): assert "g" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): for ball in ball_dict.values(): if self.is_in_domain(ball): ball.vy += self.params["g"] * self.dt class Brownian_Force(Physics): def __init__(self, dt, params = {}): assert "force_amp" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): for ball in ball_dict.values(): if self.is_in_domain(ball): ball.vx += np.random.randn() * self.params["force_amp"] * self.dt ball.vy += np.random.randn() * self.params["force_amp"] * self.dt class Drag(Physics): def __init__(self, dt, params = {}): assert "coeff" in params and "power" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): for ball in ball_dict.values(): if self.is_in_domain(ball): v = np.sqrt(ball.vx ** 2 + ball.vy ** 2) ball.vx -= self.params["coeff"] * ball.vx / v * v ** self.params["power"] * self.dt ball.vy -= self.params["coeff"] * ball.vy / v * v ** self.params["power"] * self.dt class Central_Force(Physics): def __init__(self, dt, params = {}): assert "coeff" in params and "power" in params and "center" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): center_x, center_y = self.params["center"] force_coeff = self.params["coeff"] force_power = self.params["power"] for ball in ball_dict.values(): if self.is_in_domain(ball): force_x = 0 force_y = 0 r = np.sqrt((ball.x - center_x) ** 2 + (ball.y - center_y) ** 2) force = force_coeff * r ** (force_power - 1) force_x += force * (center_x - ball.x) force_y += force * (center_y - ball.y) ball.vx += force_x * self.dt ball.vy += force_y * self.dt class Point_Force_Paddle(Physics): def __init__(self, dt, params = {}): assert "coeff" in params and "power" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): paddle_dict = kwargs["paddle_dict"] force_coeff = self.params["coeff"] force_power = self.params["power"] for ball in ball_dict.values(): if self.is_in_domain(ball): force_x = 0 force_y = 0 for paddle in paddle_dict.values(): r = np.sqrt((ball.x - paddle.x) ** 2 + (ball.y - paddle.y) ** 2) force = force_coeff * r ** (force_power - 1) force_x += force * (paddle.x - ball.x) force_y += force * (paddle.y - ball.y) ball.vx += force_x * self.dt ball.vy += force_y * self.dt # Interaction forces: class Pairwise_Force(Physics): def __init__(self, dt, params = {}): assert "coeff" in params and "power" in params self.dt = dt self.params = params def exert(self, ball_dict, **kwargs): force_coeff = self.params["coeff"] force_power = self.params["power"] for i, ball1 in enumerate(ball_dict.values()): if self.is_in_domain(ball1): force_x = 0 force_y = 0 for j, ball2 in enumerate(ball_dict.values()): if j != i: if self.is_in_domain(ball2): r_x = ball2.x - ball1.x r_y = ball2.y - ball1.y r = np.sqrt(r_x ** 2 + r_y ** 2) r = np.maximum(r, 1) force = force_coeff * r ** (force_power - 1) force_x += force * r_x force_y += force * r_y ball1.vx += force_x * self.dt ball1.vy += force_y * self.dt
35.455621
99
0.535547
4a20cd1a211fb78bdf888dd10abb78dc0d383b02
1,254
py
Python
location/factory.py
iandees/loco
5369decfc1c12a46a1b5011cff52225f90138761
[ "MIT" ]
2
2018-07-04T23:35:24.000Z
2019-01-22T01:54:57.000Z
location/factory.py
iandees/loco
5369decfc1c12a46a1b5011cff52225f90138761
[ "MIT" ]
5
2018-06-30T21:51:48.000Z
2018-06-30T22:12:18.000Z
location/factory.py
iandees/loco
5369decfc1c12a46a1b5011cff52225f90138761
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from flask import Flask, session from flask_sslify import SSLify from werkzeug.contrib.fixers import ProxyFix from location import blueprints, oauth_providers from location.core import cache, db, env, login_manager, migrate, oauth def create_app(package_name): app = Flask(package_name, instance_relative_config=True) config_name = "location.config.{}".format(env) app.config.from_object(config_name) cache.init_app(app) db.init_app(app) migrate.init_app(app, db) sslify = SSLify(app) oauth.init_app(app) app.oauth_provider = oauth_providers.get_provider( app.config.get('OAUTH_PROVIDER'), app.config.get('OAUTH_CLIENT_ID'), app.config.get('OAUTH_CLIENT_SECRET'), app.config.get('ALLOWED_DOMAIN') ) oauth_app = oauth.remote_app(**app.oauth_provider.settings()) @oauth_app.tokengetter def get_access_token(): return session.get('access_token') login_manager.init_app(app) app.register_blueprint(blueprints.root_bp) app.register_blueprint(blueprints.auth_bp) app.register_blueprint(blueprints.locations_bp) app.register_blueprint(blueprints.teams_bp) app.wsgi_app = ProxyFix(app.wsgi_app) return app
27.866667
71
0.72807
4a20cfb50fdcf31f32b5eb01c4c3bec04b14d09c
553
py
Python
judge/config.py
Zoctan/WYUOpenJudge
59c74dc12f22012d6e28f7dffa3cb633c87d4686
[ "Apache-2.0" ]
null
null
null
judge/config.py
Zoctan/WYUOpenJudge
59c74dc12f22012d6e28f7dffa3cb633c87d4686
[ "Apache-2.0" ]
1
2018-05-26T10:39:24.000Z
2018-05-26T10:39:24.000Z
judge/config.py
Zoctan/WYUOpenJudge
59c74dc12f22012d6e28f7dffa3cb633c87d4686
[ "Apache-2.0" ]
1
2018-05-18T10:29:06.000Z
2018-05-18T10:29:06.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os setting = 'charset=utf8' class Config: SECRET_KEY = os.environ.get('SECRET_KEY') or \ 'the quick brown fox jumps over the lazy dog' SQLALCHEMY_TRACK_MODIFICATIONS = True @staticmethod def init_app(app): pass class DevelopmentConfig(Config): pass class TestingConfig(Config): pass class ProductionConfig(Config): pass config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'production': ProductionConfig }
16.757576
62
0.663653
4a20cfcac68e5b7476f45f583c8ee923a0278fb0
5,107
py
Python
Tests/test_closure.py
0xFireball/exascript2
f6c69ac41f8fa1e5e9e42a677717e85b9ff9d0c3
[ "Apache-2.0" ]
null
null
null
Tests/test_closure.py
0xFireball/exascript2
f6c69ac41f8fa1e5e9e42a677717e85b9ff9d0c3
[ "Apache-2.0" ]
null
null
null
Tests/test_closure.py
0xFireball/exascript2
f6c69ac41f8fa1e5e9e42a677717e85b9ff9d0c3
[ "Apache-2.0" ]
1
2019-09-18T05:37:46.000Z
2019-09-18T05:37:46.000Z
##################################################################################### # # Copyright (c) Microsoft Corporation. All rights reserved. # # This source code is subject to terms and conditions of the Apache License, Version 2.0. A # copy of the license can be found in the License.html file at the root of this distribution. If # you cannot locate the Apache License, Version 2.0, please send an email to # [email protected]. By using this source code in any fashion, you are agreeing to be bound # by the terms of the Apache License, Version 2.0. # # You must not remove this notice, or any other, from this software. # # ##################################################################################### from iptest.assert_util import * x = 123456 # global to possibly mislead the closures # Simple cases def f(): x = 1 def g(): return x return g AreEqual(f()(), 1) def f(): x = 2 def g(y): return x + y return g AreEqual(f()(3), 5) def f(y): x = 3 def g(): return x + y return g AreEqual(f(5)(), 8) def f(x,y): def g(): return x**2 + y**2 return g AreEqual(f(2,3)(), 13) def f(p): x = 3 def g(q): y = 5 def h(r): z = 7 def i(s): return x,y,z,p,q,r,s return i(13) return h(11) return g(9) AreEqual(f(17), (3, 5, 7, 17, 9, 11, 13)) # Find the right binding def f(): def g(): def h(): return x x = 13 return h x = 17 return g AreEqual(f()()(), 13) def f(): def g(): def h(x): return x x = 13 return h x = 17 return g AreEqual(f()()(19), 19) def f(): def g(): x = p def h(y): return x + y return h p = 3 three = g() p = 5 five = g() p = 7 seven = g() return three(4), five(4), seven(4) AreEqual(f(), (7, 9, 11)) # Skip levels def f(): x = 4 def g(): def h(): return x + 2 return h return g AreEqual(f()()(),6) def f(): x = 5 def g(): def h(): def i(): return x + 3 return i return h return g AreEqual(f()()()(), 8) def f(): x = 6 def g(): def h(): def i(): return x return i() return h() return g() AreEqual(f(), 6) # Recursion def f(): y = [] def g(x): y.append(x) if (x > 0): g(x - 1) g(10) return y AreEqual(f(), [10,9,8,7,6,5,4,3,2,1,0]) # Classes def f(): x = 23 class c: y = x return c() AreEqual(f().y, 23) def f(): x = 23 class c: def m(self): return x x = 29 return c().m() AreEqual(f(), 29) # Generators def f(): x = 10 class c: def m(self): def n(): return i for i in range(x): yield n() return c() AreEqual(list(f().m()), [0,1,2,3,4,5,6,7,8,9]) def f(i): def g(j): for k in range(i+j): def h(): return k yield h() return g AreEqual(list(f(3)(5)), [0, 1, 2, 3, 4, 5, 6, 7]) class C: def __init__(self): self.setm (lambda: self.m ('lambda and self test')) def m(self, t): return t def setm(self, n): self.n = n AreEqual(C().n(), "lambda and self test") class c: x = 5 y = x x = 7 z = x AreEqual(c.y, 5) AreEqual(x, 123456) AreEqual(c.z, c.x) AreEqual(c.x, 7) class c: global x AreEqual(x, 123456) def f(self): return x AreEqual(c().f(), 123456) def f(): global x def g(): def h(): return x return h x = 654321 return g AreEqual(f()()(), 654321) def f(): x = 10 class c: x = 5 def m(self): return x return c() AreEqual(f().m(), 10) def f(): def g(): print a g() a = 10 AssertError(NameError, f) x = 123456 def f(): x = 123 def g(): global x AreEqual(x, 123456) def h(): return x return h() return g() AreEqual(f(), 123456) def f(): x = 7 def g(): global x def h(): return x return h() return g() AreEqual(f(), 123456) y = 654321 def f(): [x, y] = 3, 7 def g(): AreEqual(x, 3) AreEqual(y, 7) g() AreEqual(x, 3) AreEqual(y, 7) return x, y AreEqual(f(), (3, 7)) AreEqual(x, 123456) AreEqual(y, 654321) def f(): def f1(): [a, b] = [2,3] AreEqual(a, 2) AreEqual(b, 3) f1() a = 3 AreEqual(a, 3) del a f() x = "global x" y = "global y" z = "global z" def test(): AreEqual(y, "global y") exec "y = 10" AreEqual(y, 10) test() def test2(): AreEqual(x, "global x") exec "x = 5" AreEqual(x, 5) yield x AreEqual(test2().next(), 5) class C: AreEqual(z, "global z") exec "z = 7" AreEqual(z, 7)
15.336336
96
0.447425
4a20d043e1808e9cc5923fd54110496eab7e33a6
812
py
Python
demo/demo/urls.py
SureeLee/TestDjango
70edef664ef9b537cf0aa507277b3efb37cf7d39
[ "Apache-2.0" ]
null
null
null
demo/demo/urls.py
SureeLee/TestDjango
70edef664ef9b537cf0aa507277b3efb37cf7d39
[ "Apache-2.0" ]
null
null
null
demo/demo/urls.py
SureeLee/TestDjango
70edef664ef9b537cf0aa507277b3efb37cf7d39
[ "Apache-2.0" ]
null
null
null
"""demo URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('model_one.urls')), ]
33.833333
79
0.697044
4a20d10509d5fc8572416ed54640bc42a55913f8
191
py
Python
text_generation/text_generation.py
ivan-jaramillo/text-generation
c6d4b52179cabeeb577549be7fbc5bc421adafe5
[ "MIT" ]
null
null
null
text_generation/text_generation.py
ivan-jaramillo/text-generation
c6d4b52179cabeeb577549be7fbc5bc421adafe5
[ "MIT" ]
4
2021-07-11T16:21:01.000Z
2021-08-20T03:30:20.000Z
text_generation/text_generation.py
ivan-jaramillo/text-generation
c6d4b52179cabeeb577549be7fbc5bc421adafe5
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow.keras.layers.experimental import preprocessing import numpy as np import os import time def main(): pass if __name__ == '__main__': main()
13.642857
62
0.743455
4a20d24d17e68a3914225d77f90c9afb5286d63a
4,555
py
Python
test/test_postgres.py
pennsignals/dsdk
fc8d40444fd077b4341e8dfe6d36f5a4b04ca8b5
[ "MIT" ]
6
2020-03-27T20:56:27.000Z
2022-01-11T16:10:22.000Z
test/test_postgres.py
pennsignals/dsdk
fc8d40444fd077b4341e8dfe6d36f5a4b04ca8b5
[ "MIT" ]
37
2019-12-11T21:15:21.000Z
2021-12-22T14:57:38.000Z
test/test_postgres.py
pennsignals/dsdk
fc8d40444fd077b4341e8dfe6d36f5a4b04ca8b5
[ "MIT" ]
5
2020-03-31T16:30:48.000Z
2022-02-10T20:50:34.000Z
# -*- coding: utf-8 -*- """Test postgres.""" from contextlib import contextmanager from os import environ as os_env from typing import Any, Generator from pandas import DataFrame, read_sql_query from dsdk import Asset, Batch, Postgres, configure_logger from dsdk.model import Batch as ModelBatch logger = configure_logger(__name__) class Persistor(Postgres): """Persistor.""" def __init__( self, env=None, **kwargs, ): """__init__.""" if env is None: env = os_env self.attempts = 0 super().__init__( username=kwargs.get( "username", env.get("POSTGRES_USERNAME", "postgres") ), password=kwargs.get( "password", env.get("POSTGRES_PASSWORD", "postgres") ), host=kwargs.get("host", env.get("POSTGRES_HOST", "postgres")), port=kwargs.get("port", int(env.get("POSTGRES_PORT", "5432"))), database=kwargs.get( "database", env.get("POSTGRES_DATABASE", "test") ), sql=Asset.build( path=kwargs.get( "sql", env.get("POSTGRES_SQL", "./assets/postgres") ), ext=".sql", ), tables=kwargs.get( "tables", env.get( "POSTGRES_TABLES", ",".join( ( "example.models", "example.microservices", "example.runs", "example.predictions", ) ), ).split(","), ), ) @contextmanager def connect(self) -> Generator[Any, None, None]: """Connect.""" self.attempts += 1 with super().connect() as con: yield con def test_connect(): """Test connect.""" persistor = Persistor() with persistor.connect() as con: logger.info(con.info) def test_check_ok(): """Test check OK.""" persistor = Persistor() with persistor.rollback() as cur: persistor.check(cur) def test_check_not_ok(): """Test check not OK.""" persistor = Persistor(tables=("test.dne",)) try: with persistor.rollback() as cur: persistor.check(cur) except RuntimeError: return raise AssertionError("Schema check passed even though table dne.") def test_cursor(): """Test cursor.""" persistor = Persistor() with persistor.rollback() as cur: cur.execute("""select 1 as n""") for row in cur.fetchall(): n, *_ = row assert n == 1 def test_open_run( data=( (0, 0.75, True, False, False), (1, 0.25, True, False, False), (2, 0.75, False, True, False), (3, 0.25, False, True, False), (4, 0.75, False, False, True), (5, 0.25, False, False, True), ), in_columns=( "subject_id", "greenish", "is_animal", "is_vegetable", "is_mineral", ), check=""" select run_id, subject_id, score, greenish, is_animal, is_vegetable, is_mineral from predictions natural join features id where run_id = %(run_id)s""", ): """Test open_run.""" batch = Batch( as_of=None, duration=None, microservice_version="1.0.0", time_zone=None, ) persistor = Persistor() model_batch = ModelBatch(model_version="1.0.0", parent=batch) with persistor.open_run(parent=model_batch) as run: df = DataFrame(data=list(data), columns=in_columns) df.set_index("subject_id") df["score"] = ~df["is_mineral"] * ( (df["is_animal"] * df["greenish"]) + (df["is_vegetable"] * (1.0 - df["greenish"])) ) run.predictions = df with persistor.rollback() as cur: cur.execute(persistor.sql.schema) df = read_sql_query( sql=check, con=cur.connection, params={"run_id": run.id} ) df.set_index("subject_id") # reorder columns to match run.predictions df = df[run.predictions.columns] # logger.error(df.head(10)) # logger.error(run.predictions.head(10)) assert df.equals(run.predictions) def test_retry_connect(): """Test retry_connect.""" def test_store_evidence(): """Test store evidence.""" def test_store_df(): """Test store_df."""
25.589888
75
0.528211
4a20d300a4d9427c1cca5969dd4dd8b1cb1b51a8
15,827
py
Python
sdk/recoveryservices/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/operations/_recovery_points_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/recoveryservices/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/operations/_recovery_points_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/recoveryservices/azure-mgmt-recoveryservicesbackup/azure/mgmt/recoveryservicesbackup/operations/_recovery_points_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class RecoveryPointsOperations(object): """RecoveryPointsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.recoveryservicesbackup.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, vault_name, # type: str resource_group_name, # type: str fabric_name, # type: str container_name, # type: str protected_item_name, # type: str filter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.RecoveryPointResourceList"] """Lists the backup copies for the backed up item. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param fabric_name: Fabric name associated with the backed up item. :type fabric_name: str :param container_name: Container name associated with the backed up item. :type container_name: str :param protected_item_name: Backed up item whose backup copies are to be fetched. :type protected_item_name: str :param filter: OData filter options. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RecoveryPointResourceList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.recoveryservicesbackup.models.RecoveryPointResourceList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecoveryPointResourceList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'vaultName': self._serialize.url("vault_name", vault_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'fabricName': self._serialize.url("fabric_name", fabric_name, 'str'), 'containerName': self._serialize.url("container_name", container_name, 'str'), 'protectedItemName': self._serialize.url("protected_item_name", protected_item_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RecoveryPointResourceList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupFabrics/{fabricName}/protectionContainers/{containerName}/protectedItems/{protectedItemName}/recoveryPoints'} # type: ignore def get( self, vault_name, # type: str resource_group_name, # type: str fabric_name, # type: str container_name, # type: str protected_item_name, # type: str recovery_point_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.RecoveryPointResource" """Provides the information of the backed up data identified using RecoveryPointID. This is an asynchronous operation. To know the status of the operation, call the GetProtectedItemOperationResult API. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param fabric_name: Fabric name associated with backed up item. :type fabric_name: str :param container_name: Container name associated with backed up item. :type container_name: str :param protected_item_name: Backed up item name whose backup data needs to be fetched. :type protected_item_name: str :param recovery_point_id: RecoveryPointID represents the backed up data to be fetched. :type recovery_point_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RecoveryPointResource, or the result of cls(response) :rtype: ~azure.mgmt.recoveryservicesbackup.models.RecoveryPointResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecoveryPointResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'vaultName': self._serialize.url("vault_name", vault_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'fabricName': self._serialize.url("fabric_name", fabric_name, 'str'), 'containerName': self._serialize.url("container_name", container_name, 'str'), 'protectedItemName': self._serialize.url("protected_item_name", protected_item_name, 'str'), 'recoveryPointId': self._serialize.url("recovery_point_id", recovery_point_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RecoveryPointResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupFabrics/{fabricName}/protectionContainers/{containerName}/protectedItems/{protectedItemName}/recoveryPoints/{recoveryPointId}'} # type: ignore def get_access_token( self, vault_name, # type: str resource_group_name, # type: str fabric_name, # type: str container_name, # type: str protected_item_name, # type: str recovery_point_id, # type: str parameters, # type: "_models.AADPropertiesResource" **kwargs # type: Any ): # type: (...) -> Optional["_models.CrrAccessTokenResource"] """Returns the Access token for communication between BMS and Protection service. Returns the Access token for communication between BMS and Protection service. :param vault_name: The name of the recovery services vault. :type vault_name: str :param resource_group_name: The name of the resource group where the recovery services vault is present. :type resource_group_name: str :param fabric_name: Fabric name associated with the container. :type fabric_name: str :param container_name: Name of the container. :type container_name: str :param protected_item_name: Name of the Protected Item. :type protected_item_name: str :param recovery_point_id: Recovery Point Id. :type recovery_point_id: str :param parameters: Get Access Token request. :type parameters: ~azure.mgmt.recoveryservicesbackup.models.AADPropertiesResource :keyword callable cls: A custom type or function that will be passed the direct response :return: CrrAccessTokenResource, or the result of cls(response) :rtype: ~azure.mgmt.recoveryservicesbackup.models.CrrAccessTokenResource or None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.CrrAccessTokenResource"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-20" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.get_access_token.metadata['url'] # type: ignore path_format_arguments = { 'vaultName': self._serialize.url("vault_name", vault_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'fabricName': self._serialize.url("fabric_name", fabric_name, 'str'), 'containerName': self._serialize.url("container_name", container_name, 'str'), 'protectedItemName': self._serialize.url("protected_item_name", protected_item_name, 'str'), 'recoveryPointId': self._serialize.url("recovery_point_id", recovery_point_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AADPropertiesResource') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 400]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.NewErrorResponseAutoGenerated, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('CrrAccessTokenResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_access_token.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{vaultName}/backupFabrics/{fabricName}/protectionContainers/{containerName}/protectedItems/{protectedItemName}/recoveryPoints/{recoveryPointId}/accessToken'} # type: ignore
51.553746
325
0.672774
4a20d3a97b20991dd5a0c4a6bfeb3b6d4a4df73e
1,209
py
Python
api/utils/transfer.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
api/utils/transfer.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
api/utils/transfer.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
import pexpect class Transfer(object): def __init__(self, ip, user, passwd,): self.ip = ip self.user = user self.passwd = passwd def file_transfer(self, dst_path, filename, to_local=False): print("远程传输开始...") passwd_key = '.*assword.*' if not to_local: cmdline = 'scp %s %s@%s:%s' % (filename, self.user, self.ip, dst_path) else: cmdline = 'scp %s@%s:%s %s' % (self.user, self.ip, filename, dst_path) try: child = pexpect.spawn(cmdline) child.sendline('yes') #child.expect_exact(passwd_key, timeout=None) child.expect(passwd_key, timeout=None) child.sendline(self.passwd) child.expect(pexpect.EOF, timeout=None) print("Transfer Work Finish!") except: raise if __name__ == "__main__": triger = Transfer('10.60.1.142', 'sqlgraph', 'sqlgraph') # triger.file_transfer('/home/sqlgraph/ssd/search_script', '/home/ssd/git_lab_102/v_0610/QBInterface/set_relation.csv') triger.file_transfer('/home/ssd/git_lab_102/v_0610/QBInterface', '/home/sqlgraph/ssd/search_script/create_eed_graph2_v2.sh', True)
36.636364
134
0.612076
4a20d3aeb5be6a283c3d65224facd995093f95b0
23,754
py
Python
plgx-esp-ui/polylogyx/blueprints/v1/hosts.py
dhoomakethu/plgx-esp
b466b52a5e16a0d12a61e505e48add83bee5bad4
[ "MIT" ]
20
2019-12-09T13:55:13.000Z
2022-01-10T09:10:42.000Z
plgx-esp-ui/polylogyx/blueprints/v1/hosts.py
dhoomakethu/plgx-esp
b466b52a5e16a0d12a61e505e48add83bee5bad4
[ "MIT" ]
13
2019-12-03T13:27:27.000Z
2021-12-03T05:22:49.000Z
plgx-esp-ui/polylogyx/blueprints/v1/hosts.py
dhoomakethu/plgx-esp
b466b52a5e16a0d12a61e505e48add83bee5bad4
[ "MIT" ]
16
2019-11-15T11:45:06.000Z
2022-01-07T08:07:11.000Z
from flask_restplus import Namespace, Resource, inputs from polylogyx.blueprints.v1.utils import * from polylogyx.utils import require_api_key, assemble_configuration, assemble_additional_configuration from polylogyx.dao.v1 import hosts_dao as dao, tags_dao from polylogyx.wrappers.v1 import host_wrappers as wrapper, parent_wrappers as parentwrapper ns = Namespace('hosts', description='nodes related operations') @require_api_key @ns.route('', endpoint='hosts_list') class HostsList(Resource): """List all Nodes Filtered""" parser = requestparse(['status', 'platform', 'searchterm', 'start', 'limit', 'enabled', 'alerts_count'], [bool, str, str, int, int, inputs.boolean, inputs.boolean], ['status(true/false)', 'platform(windows/linux/darwin)', 'searchterm', 'start', 'limit', 'enabled(true/false)', 'alerts_count(true/false)'], [False, False, False, False, False, False, False], [None, ["windows", "linux", "darwin"], None, None, None, None, None], [None, None, "", None, None, True, True]) @ns.expect(parser) def post(self): args = self.parser.parse_args() query_set = dao.get_hosts_paginated(args['status'], args['platform'], args['searchterm'], args['enabled'], args['alerts_count']).offset(args['start']).limit(args['limit']).all() total_count = dao.get_hosts_total_count(args['status'], args['platform'], args['enabled']) if query_set: results = [] for node_alert_count_pair in query_set: if args['alerts_count']: node_dict = node_alert_count_pair[0].get_dict() node_dict['alerts_count'] = node_alert_count_pair[1] else: node_dict = node_alert_count_pair.get_dict() results.append(node_dict) data = {'results': results, 'count': dao.get_hosts_paginated(args['status'], args['platform'], args['searchterm'], args['enabled'], args['alerts_count']).count(), 'total_count':total_count} else: data = {'results': [], 'count': 0, 'total_count': total_count} status = "success" message = "Successfully fetched the hosts details" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/export') @ns.doc(params = {}) class NodesCSV(Resource): '''Returns a csv file object with nodes info as data''' def get(self): from sqlalchemy import desc, and_ record_query = Node.query.filter(and_(Node.state!=Node.REMOVED, Node.state!=Node.DELETED)).order_by(desc(Node.id)).all() results = [] for value in record_query: res = {} data = value.to_dict() res['Host_Identifier'] = value.display_name if value.os_info: res['os'] = value.os_info['name'] else: res['os'] = value.platform res['last_ip'] = data["last_ip"] res['tags'] = [tag.to_dict() for tag in value.tags] res['id'] = data['id'] res['health'] = value.node_is_active() res['platform'] = data["platform"] results.append(res) headers = [] if results: firstRecord = results[0] for key in firstRecord.keys(): headers.append(key) bio = BytesIO() writer = csv.writer(bio) writer.writerow(headers) for data in results: row = [] row.extend([data.get(column, '') for column in headers]) writer.writerow(row) bio.seek(0) file_data = send_file( bio, mimetype='text/csv', as_attachment=True, attachment_filename='nodes.csv' ) return file_data @require_api_key @ns.route('/<string:host_identifier>', endpoint='node_details') @ns.route('/<int:node_id>', endpoint='node_details_by_id') class NodeDetailsList(Resource): """List a Node Details""" def get(self, host_identifier=None, node_id=None): data = None if node_id: queryset = dao.getNodeById(node_id) elif host_identifier: queryset = dao.get_node_by_host_identifier(host_identifier) else: queryset = None db.session.commit() if not queryset: message = "There is no host exists with this host identifier or node id given!" status = "failure" else: data = marshal(queryset, wrapper.nodewrapper) if not data: data={} message = "Node details are fetched successfully" status = "success" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/<string:host_identifier>/alerts/distribution', endpoint='host_alerts_count_for_host_identifier') @ns.route('/<int:node_id>/alerts/distribution', endpoint='host_alerts_count_for_node_id') class HostAlertsDistribution(Resource): """List a Node Details""" def get(self, host_identifier=None, node_id=None): if node_id: node = dao.getNodeById(node_id) elif host_identifier: node = dao.get_node_by_host_identifier(host_identifier) else: node = None if not node: data = None message = "There is no host exists with this host identifier or node id given!" status = "failure" else: data = {} data['sources'] = dao.host_alerts_distribution_by_source(node) data['rules'] = [{"name": rule_count_pair[0], "count": rule_count_pair[1]} for rule_count_pair in dao.host_alerts_distribution_by_rule(node)] message = "Alerts distribution details are fetched for the host" status = "success" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/count', endpoint='nodes_related_count') class NodeCountList(Resource): """Lists all Nodes Filtered count""" def get(self): data = dao.get_hosts_filtered_status_platform_count() return marshal(respcls("Successfully fetched the nodes status count", 'success', data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/status_logs', endpoint='node_status_logs') class HostStatusLogs(Resource): """Host Status Logs""" parser = requestparse(['host_identifier', 'node_id', 'start', 'limit', 'searchterm'], [str, int, int, int, str], ["host identifier of the node", "id of the node", 'start', 'limit', 'searchterm'], [False, False, False, False, False], [None, None, None, None, None], [None, None, None, None, '']) @ns.expect(parser) def post(self): args = self.parser.parse_args() data = None status = "failure" if args['node_id'] is not None or args['host_identifier'] is not None: if args['host_identifier'] is not None: qs = dao.get_node_by_host_identifier(args['host_identifier']) else: node_id = args['node_id'] qs = dao.getNodeById(node_id) if qs: data = {'results': marshal(dao.get_status_logs_of_a_node(qs, args['searchterm']).offset(args['start']).limit(args['limit']).all(), wrapper.node_status_log_wrapper), 'count':dao.get_status_logs_of_a_node(qs, args['searchterm']).count(), 'total_count':dao.get_status_logs_total_count(qs)} message = "Successfully fetched the host's status logs" status = "success" else: message = "Host identifier or node id passed is not correct!" else: message = "Please pass one of node id or host identifier!" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/additional_config', endpoint='node_additional_config') class HostAdditionalConfig(Resource): """Additional Config of a Node""" parser = requestparse(['host_identifier', 'node_id'], [str, int], ["host identifier of the node", "id of the node"], [False, False]) @ns.expect(parser) def post(self): args = self.parser.parse_args() config = None status = "failure" if args['node_id'] is not None or args['host_identifier'] is not None: if args['host_identifier'] is not None: node = dao.get_node_by_host_identifier(args['host_identifier']) else: node_id = args['node_id'] node = dao.getNodeById(node_id) if node: config = assemble_additional_configuration(node) status = "success" message = "Successfully fetched additional config of the node for the host identifier passed" else: message = "Host identifier or node id passed is not correct!" else: message = "Atleast one of host identifier or node id should be given!" return marshal(respcls(message, status, config), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/config', endpoint='node_full_config') class HostFullConfig(Resource): """Full Config of a Node""" parser = requestparse(['host_identifier', 'node_id'], [str, int], ["host identifier of the node", "id of the node"], [False, False]) @ns.expect(parser) def post(self): args = self.parser.parse_args() config = None status = "failure" if args['node_id'] is not None or args['host_identifier'] is not None: if args['host_identifier'] is not None: node = dao.get_node_by_host_identifier(args['host_identifier']) else: node_id = args['node_id'] node = dao.getNodeById(node_id) if node: config = assemble_configuration(node) status = "success" message = "Successfully fetched full config of the node for the host identifier passed" else: message = "Host identifier or node id passed is not correct!" else: message = "Atleast one of host identifier or node id should be given!" return marshal(respcls(message, status, config), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/recent_activity/count', endpoint='node_recent_activity_count') @ns.doc(params={'host_identifier': 'Host identifier of the Node', 'node_id': 'id of the Node'}) class RecentActivityCount(Resource): """Recent Activity count of a Node""" parser = requestparse(['host_identifier', 'node_id'], [str, int], ["host identifier of the node", "id of the node"], [False, False]) @ns.expect(parser) def post(self): args = self.parser.parse_args() status = "failure" data = None if args['node_id'] is not None or args['host_identifier'] is not None: if args['host_identifier'] is not None: node = dao.get_node_by_host_identifier(args['host_identifier']) if node: node_id = node.id else: node_id = None else: node_id = args['node_id'] if not node_id: message = "Please pass correct host identifier or node id to get the results" else: data = [{'name': query[0], 'count': query[1]} for query in dao.get_result_log_count(node_id)] status = "success" message = "Successfully fetched the count of schedule query results count of host identifier passed" else: message = "Atleast one of host identifier or node id should be given!" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/recent_activity', endpoint='node_recent_activity_results') @ns.doc(params={'host_identifier': 'Host identifier of the Node', 'query_name': 'query name', 'start': 'start count', 'limit': 'end count'}) class RecentActivityResults(Resource): """Recent Activity results of a query of a Node""" parser = requestparse(['host_identifier', 'node_id', 'query_name', 'start', 'limit', 'searchterm'], [str, int, str, int, int, str], ["host identifier of the node", "node_id", "query", "start count", "end count", "searchterm"], [False, False, True, False, False, False], [None, None, None, None, None, None], [None, None, None, 0, 10, ""]) @ns.expect(parser) def post(self): args = self.parser.parse_args() status = "failure" data = {} if args['node_id'] is not None or args['host_identifier'] is not None: if args['host_identifier'] is not None: node = dao.get_node_by_host_identifier(args['host_identifier']) if node: node_id = node.id else: node_id = None else: node_id = args['node_id'] if not node_id: message = "Please pass correct host identifier or node id to get the results" else: qs = dao.get_result_log_of_a_query(node_id, args['query_name'], args['start'], args['limit'], args['searchterm']) data = {'count': qs[0], 'total_count': qs[2], 'results': [ {'timestamp': list_ele[1].strftime('%m/%d/%Y %H/%M/%S'), 'action': list_ele[2], 'columns': list_ele[3]} for list_ele in qs[1]]} status = "success" message = "Successfully fetched the count of schedule query results count of host identifier passed" else: message = "Atleast one of host identifier or node id should be given!" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) # Modify Tag section @require_api_key @ns.route('/<string:host_identifier>/tags', endpoint='node_tags') @ns.route('/<int:node_id>/tags', endpoint='node_tags_by_node_id') class ListTagsOfNode(Resource): """Resource for tags of a host""" parser = requestparse(['tag'], [str], ["tag to add/remove for the node"], [True]) @ns.doc(params={'host_identifier': 'Host identifier of the Node', 'node_id': 'id of the Node'}) def get(self, host_identifier=None, node_id=None): """Lists tags of a node by its host_identifier""" status = 'failure' if host_identifier: node = dao.get_node_by_host_identifier(host_identifier) elif node_id: node = dao.getNodeById(node_id) else: node = None if not node: message = "Host id or node id passed it not correct" data = None else: data = [tag.value for tag in node.tags] status = "success" message = "Successfully fetched the tags of host" return marshal(respcls(message, status, data), parentwrapper.common_response_wrapper, skip_none=True) @ns.doc(params={'host_identifier': 'Host identifier of the Node', 'node_id': 'id of the Node', 'tag':"tag to add to host"}) @ns.expect(parser) def post(self, host_identifier=None, node_id=None): """Creates tags of a node by its host_identifier""" args = self.parser.parse_args() status = 'failure' if host_identifier: node = dao.get_node_by_host_identifier(host_identifier) elif node_id: node = dao.getNodeById(node_id) else: node = None if node: tag = args['tag'].strip() if not tag: message = "Tag provided is invalid!" else: tag = tags_dao.create_tag_obj(tag) node.tags.append(tag) node.save() status="success" message = "Successfully created tags to host" else: message = "Host id or node id passed it not correct" return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) @ns.doc(params={'host_identifier': 'Host identifier of the Node', 'node_id': 'id of the Node', 'tag': 'tag to remove'}) @ns.expect(parser) def delete(self, host_identifier=None, node_id=None): """Remove tags of a node by its host_identifier""" args = self.parser.parse_args() status = 'failure' if host_identifier: node = dao.get_node_by_host_identifier(host_identifier) elif node_id: node = dao.getNodeById(node_id) else: node = None if node: tag = args['tag'].strip() tag = tags_dao.get_tag_by_value(tag) if tag: if dao.is_tag_of_node(node, tag): node.tags.remove(tag) node.save() message = "Successfully removed tags from host" status = "success" else: message = "Tag provided is not in host's tag list, Please check tag once again" else: message = "Tag provided doesnot exists" else: message = "Host id or node id passed it not correct" return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) @require_api_key @ns.route('/search/export', endpoint="nodes_search_export") @ns.doc(params={}) class ExportNodeSearchQueryCSV(Resource): '''Export node search query to csv''' parser = requestparse(['conditions', 'host_identifier', 'query_name', 'node_id'], [dict, str, str, int], ["conditions to search for", 'host_identifier of the node', 'name of the schedule query', 'id of the node'], [False, False, True, False]) @ns.expect(parser) def post(self): args = self.parser.parse_args() host_identifier = args['host_identifier'] conditions = args['conditions'] query_name = args['query_name'] node_id = args['node_id'] if node_id or host_identifier: if host_identifier: node_id = get_node_id_by_host_id(host_identifier) if not node_id: return marshal(respcls("Host identifier given is invalid!", "failure"), parentwrapper.common_response_wrapper, skip_none=True) else: return marshal(respcls("Atleast one of host identifier or node id is required!", "failure"), parentwrapper.common_response_wrapper, skip_none=True) if conditions: try: search_rules = SearchParser() root = search_rules.parse_group(conditions) filter = root.run('', [], 'result_log') except Exception as e: message = str(e) return marshal(respcls(message, "failure"), parentwrapper.common_response_wrapper, skip_none=True) try: results = dao.node_result_log_search_results(filter, node_id, query_name) except: message = "Unable to find data for the payload given" return marshal(respcls(message, "failure"), parentwrapper.common_response_wrapper, skip_none=True) else: results = dao.node_result_log_results(node_id, query_name) if results: results = [r for r, in results] headers = [] if not len(results) == 0: firstRecord = results[0] for key in firstRecord.keys(): headers.append(key) bio = BytesIO() writer = csv.writer(bio) writer.writerow(headers) for data in results: row = [] row.extend([data.get(column, '') for column in headers]) writer.writerow(row) bio.seek(0) response = send_file( bio, mimetype='text/csv', as_attachment=True, attachment_filename=query_name+'_'+str(node_id)+str(dt.datetime.now())+'.csv' ) return response else: message = "There are no matching results for the payload given" return marshal(respcls(message, "failure"), parentwrapper.common_response_wrapper, skip_none=True) @ns.route('/<string:host_identifier>/delete', endpoint='node_removed') @ns.route('/<int:node_id>/delete', endpoint='node_removed_by_id') class NodeRemoved(Resource): @ns.doc(params={'node_id': "id of the host", 'host_identifier': "host identifier of the host"}) def delete(self, host_identifier=None, node_id=None): node = None message = "Node is not present with this node id or host identifier" status = "failure" if host_identifier: node = dao.get_node_by_host_identifier(host_identifier) if node_id: node = dao.getNodeById(node_id) if node: current_app.logger.info("Host {} is requested for permanent deletion".format(node.host_identifier)) dao.delete_host(node) message = "Successfully deleted the host" status = "Success" return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) @ns.doc(params={'node_id': "id of the host", 'host_identifier': "host identifier of the host"}) def put(self, host_identifier=None, node_id=None): node = None message = "Node is not present with this node id or host identifier" status = "failure" if host_identifier: node = dao.get_node_by_host_identifier(host_identifier) if node_id: node = dao.getNodeById(node_id) if node: current_app.logger.info("Host {} is requested to be disabled for all his activities from agent".format(node.host_identifier)) dao.soft_remove_host(node) message = "Successfully removed the host" status = "Success" return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) @ns.route('/<string:host_identifier>/enable', endpoint='node_enabled') @ns.route('/<int:node_id>/enable', endpoint='node_enabled_by_id') class NodeEnabled(Resource): @ns.doc(params={'node_id': "id of the host", 'host_identifier': "host identifier of the host"}) def put(self, host_identifier=None, node_id=None): node = None message = "Node is not present with this node id or host identifier" status = "failure" if host_identifier: node = dao.get_disable_node_by_host_identifier(host_identifier) if node_id: node = dao.getDisableNodeById(node_id) if node: current_app.logger.info("Host {} is requested to be enabled again".format(node.host_identifier)) dao.enable_host(node) message = "Successfully enabled the host" status = "Success" return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True) return marshal(respcls(message, status), parentwrapper.common_response_wrapper, skip_none=True)
44.903592
329
0.615896
4a20d54b6022592ce577936c8a87736324e0056c
3,742
py
Python
axiom/tags.py
hawkowl/axiom
8636e29aa224d05388a0f58106dc29f895b82209
[ "MIT" ]
23
2015-01-08T07:29:32.000Z
2021-11-03T11:27:48.000Z
axiom/tags.py
hawkowl/axiom
8636e29aa224d05388a0f58106dc29f895b82209
[ "MIT" ]
109
2015-01-08T05:54:56.000Z
2022-03-02T04:06:40.000Z
axiom/tags.py
hawkowl/axiom
8636e29aa224d05388a0f58106dc29f895b82209
[ "MIT" ]
16
2015-01-08T07:08:43.000Z
2021-07-28T02:53:17.000Z
from epsilon.extime import Time from axiom.item import Item from axiom.attributes import text, reference, integer, AND, timestamp class Tag(Item): typeName = 'tag' schemaVersion = 1 name = text(doc=""" The short string which is being applied as a tag to an Item. """) created = timestamp(doc=""" When this tag was applied to the Item to which it applies. """) object = reference(doc=""" The Item to which this tag applies. """) catalog = reference(doc=""" The L{Catalog} item in which this tag was created. """) tagger = reference(doc=""" An optional reference to the Item which is responsible for this tag's existence. """) class _TagName(Item): """ Helper class to make Catalog.tagNames very fast. One of these is created for each distinct tag name that is created. _TagName Items are never deleted from the database. """ typeName = 'tagname' name = text(doc=""" The short string which uniquely represents this tag. """, indexed=True) catalog = reference(doc=""" The L{Catalog} item in which this tag exists. """) class Catalog(Item): typeName = 'tag_catalog' schemaVersion = 2 tagCount = integer(default=0) def tag(self, obj, tagName, tagger=None): """ """ # check to see if that tag exists. Put the object attribute first, # since each object should only have a handful of tags and the object # reference is indexed. As long as this is the case, it doesn't matter # whether the name or catalog attributes are indexed because selecting # from a small set of results is fast even without an index. if self.store.findFirst(Tag, AND(Tag.object == obj, Tag.name == tagName, Tag.catalog == self)): return # if the tag doesn't exist, maybe we need to create a new tagname object self.store.findOrCreate(_TagName, name=tagName, catalog=self) # Increment only if we are creating a new tag self.tagCount += 1 Tag(store=self.store, object=obj, name=tagName, catalog=self, created=Time(), tagger=tagger) def tagNames(self): """ Return an iterator of unicode strings - the unique tag names which have been applied objects in this catalog. """ return self.store.query(_TagName, _TagName.catalog == self).getColumn("name") def tagsOf(self, obj): """ Return an iterator of unicode strings - the tag names which apply to the given object. """ return self.store.query( Tag, AND(Tag.catalog == self, Tag.object == obj)).getColumn("name") def objectsIn(self, tagName): return self.store.query( Tag, AND(Tag.catalog == self, Tag.name == tagName)).getColumn("object") def upgradeCatalog1to2(oldCatalog): """ Create _TagName instances which version 2 of Catalog automatically creates for use in determining the tagNames result, but which version 1 of Catalog did not create. """ newCatalog = oldCatalog.upgradeVersion('tag_catalog', 1, 2, tagCount=oldCatalog.tagCount) tags = newCatalog.store.query(Tag, Tag.catalog == newCatalog) tagNames = tags.getColumn("name").distinct() for t in tagNames: _TagName(store=newCatalog.store, catalog=newCatalog, name=t) return newCatalog from axiom.upgrade import registerUpgrader registerUpgrader(upgradeCatalog1to2, 'tag_catalog', 1, 2)
29.698413
85
0.614645
4a20d5a70974506d0bd75e0638db9a5df1642bf8
18,608
py
Python
ava_nmt/build_model.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
45
2017-08-06T15:02:12.000Z
2021-01-24T19:12:13.000Z
ava_nmt/build_model.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
null
null
null
ava_nmt/build_model.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
14
2017-08-07T04:56:55.000Z
2019-01-07T09:43:24.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Sword York # GitHub: https://github.com/SwordYork/sequencing # No rights reserved. # import json import numpy import sequencing as sq import tensorflow as tf from sequencing import TIME_MAJOR, MODE, LinearOp from sequencing.utils.metrics import Delta_BLEU from sequencing.utils.misc import get_rnn_cell, EncoderDecoderBridge def cross_entropy_sequence_loss(logits, targets, sequence_length): with tf.name_scope('cross_entropy_sequence_loss'): total_length = tf.to_float(tf.reduce_sum(sequence_length)) batch_size = tf.to_float(tf.shape(sequence_length)[0]) entropy_losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=targets) # Mask out the losses we don't care about loss_mask = tf.sequence_mask( tf.to_int32(sequence_length), tf.to_int32(tf.shape(targets)[0])) loss_mask = tf.transpose(tf.to_float(loss_mask), [1, 0]) losses = entropy_losses * loss_mask # losses.shape: T * B # sequence_length: B total_loss_avg = tf.reduce_sum(losses) / batch_size return total_loss_avg def rl_sequence_loss(logits, predict_ids, sequence_length, baseline_states, reward, start_rl_step): # reward: T * B with tf.name_scope('rl_sequence_loss'): max_ml_step = tf.to_int32(tf.maximum(tf.reduce_max(start_rl_step), 0)) min_ml_step = tf.to_int32(tf.maximum(tf.reduce_min(start_rl_step), 0)) # entropy loss: # before start_rl_step is ml entropy # after start_rl_step should be rl entropy entropy_losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=predict_ids) # ML loss ml_entropy_losses = tf.slice(entropy_losses, [0, 0], [max_ml_step, -1]) # Mask out the losses we don't care about ml_loss_mask = tf.sequence_mask( tf.to_int32(start_rl_step), max_ml_step) ml_loss_mask = tf.transpose(tf.to_float(ml_loss_mask), [1, 0]) ml_loss = tf.reduce_sum(ml_entropy_losses * ml_loss_mask) / \ tf.maximum(tf.reduce_sum(ml_loss_mask), 1) # RL rl_entropy_losses = tf.slice(entropy_losses, [min_ml_step, 0], [-1, -1]) # Mask out the losses we don't care about rl_loss_mask = ( tf.to_float(tf.sequence_mask( tf.to_int32(sequence_length - min_ml_step), tf.to_int32(tf.shape(predict_ids)[0] - min_ml_step))) - tf.to_float(tf.sequence_mask( tf.to_int32(start_rl_step - min_ml_step), tf.to_int32(tf.shape(predict_ids)[0] - min_ml_step)))) rl_loss_mask = tf.transpose(tf.to_float(rl_loss_mask), [1, 0]) baseline_states = tf.slice(baseline_states, [min_ml_step, 0, 0], [-1, -1, -1]) reward = tf.slice(reward, [min_ml_step, 0], [-1, -1]) # prevent from dividing by zero rl_total = tf.maximum(tf.reduce_sum(rl_loss_mask), 1) with tf.variable_scope('baseline'): reward_predicted_m = tf.contrib.layers.fully_connected( baseline_states, baseline_states.get_shape().as_list()[-1], activation_fn=tf.nn.relu, scope='middle') # note, there is no negative reward, so we could use relu reward_predicted = tf.contrib.layers.fully_connected( reward_predicted_m, 1, activation_fn=None) reward_predicted = tf.squeeze(reward_predicted, axis=[2]) reward_losses = tf.pow(reward_predicted - reward, 2) reward_loss_rmse = tf.sqrt( tf.reduce_sum(reward_losses * rl_loss_mask) / rl_total + 1e-12) reward_entropy_losses = (reward - tf.stop_gradient(reward_predicted)) \ * rl_entropy_losses * rl_loss_mask reward_entropy_loss = tf.reduce_sum(reward_entropy_losses) / rl_total predict_reward = tf.cond(tf.greater(tf.shape(reward_predicted)[0], 0), lambda: tf.reduce_mean( tf.slice(reward_predicted, [0, 0], [1, -1])), lambda: tf.to_float(0)) # Calculate the average log perplexity in each batch total_loss_avg = ml_loss + reward_entropy_loss + reward_loss_rmse # the first reward predict is total reward return total_loss_avg, \ ml_loss, \ reward_loss_rmse, \ predict_reward def _py_func(predict_target_ids, ground_truth_ids, eos_id): n = 4 # 4-gram delta = True # delta future reward batch_size = predict_target_ids.shape[1] length = numpy.zeros(batch_size, dtype=numpy.int32) reward = numpy.zeros_like(predict_target_ids, dtype=numpy.float32) for i in range(batch_size): p_id = predict_target_ids[:, i].tolist() p_len = p_id.index(eos_id) + 1 if eos_id in p_id else len(p_id) length[i] = p_len p_id = p_id[:p_len] t_id = ground_truth_ids[:, i].tolist() t_len = t_id.index(eos_id) + 1 if eos_id in t_id else len(t_id) t_id = t_id[:t_len] bleu_scores = Delta_BLEU(p_id, t_id, n) reward_i = bleu_scores[:, n - 1].copy() if delta: reward_i[1:] = reward_i[1:] - reward_i[:-1] reward[:p_len, i] = reward_i[::-1].cumsum()[::-1] else: reward[:p_len, i] = reward_i[-1] return reward, length def build_attention_model(params, src_vocab, trg_vocab, source_placeholders, target_placeholders, beam_size=1, mode=MODE.TRAIN, burn_in_step=100000, increment_step=10000, teacher_rate=1.0, max_step=100): """ Build a model. :param params: dict. {encoder: {rnn_cell: {}, ...}, decoder: {rnn_cell: {}, ...}} for example: {'encoder': {'rnn_cell': {'state_size': 512, 'cell_name': 'BasicLSTMCell', 'num_layers': 2, 'input_keep_prob': 1.0, 'output_keep_prob': 1.0}, 'attention_key_size': attention_size}, 'decoder': {'rnn_cell': {'cell_name': 'BasicLSTMCell', 'state_size': 512, 'num_layers': 1, 'input_keep_prob': 1.0, 'output_keep_prob': 1.0}, 'trg_vocab_size': trg_vocab_size}} :param src_vocab: Vocab of source symbols. :param trg_vocab: Vocab of target symbols. :param source_ids: placeholder :param source_seq_length: placeholder :param target_ids: placeholder :param target_seq_length: placeholder :param beam_size: used in beam inference :param mode: :return: """ if mode != MODE.TRAIN: params = sq.disable_dropout(params) tf.logging.info(json.dumps(params, indent=4)) decoder_params = params['decoder'] # parameters source_ids = source_placeholders['src'] source_seq_length = source_placeholders['src_len'] source_sample_matrix = source_placeholders['src_sample_matrix'] source_word_seq_length = source_placeholders['src_word_len'] target_ids = target_placeholders['trg'] target_seq_length = target_placeholders['trg_len'] # Because source encoder is different to the target feedback, # we construct source_embedding_table manually source_char_embedding_table = sq.LookUpOp(src_vocab.vocab_size, src_vocab.embedding_dim, name='source') source_char_embedded = source_char_embedding_table(source_ids) # encode char to word char_encoder = sq.StackRNNEncoder(params['char_encoder'], params['attention_key_size']['char'], name='char_rnn', mode=mode) # char_encoder_outputs: T_c B F char_encoded_representation = char_encoder.encode(source_char_embedded, source_seq_length) char_encoder_outputs = char_encoded_representation.outputs #dynamical_batch_size = tf.shape(char_encoder_outputs)[1] #space_indices = tf.where(tf.equal(tf.transpose(source_ids), src_vocab.space_id)) ##space_indices = tf.transpose(tf.gather_nd(tf.transpose(space_indices), [[1], [0]])) #space_indices = tf.concat(tf.split(space_indices, 2, axis=1)[::-1], axis=1) #space_indices = tf.transpose(tf.reshape(space_indices, [dynamical_batch_size, -1, 2]), # [1, 0, 2]) ## T_w * B * F #source_embedded = tf.gather_nd(char_encoder_outputs, space_indices) # must be time major char_encoder_outputs = tf.transpose(char_encoder_outputs, perm=(1, 0, 2)) sampled_word_embedded = tf.matmul(source_sample_matrix, char_encoder_outputs) source_embedded = tf.transpose(sampled_word_embedded, perm=(1, 0, 2)) char_attention_keys = char_encoded_representation.attention_keys char_attention_values = char_encoded_representation.attention_values char_attention_length = char_encoded_representation.attention_length encoder = sq.StackBidirectionalRNNEncoder(params['encoder'], params['attention_key_size']['word'], name='stack_rnn', mode=mode) encoded_representation = encoder.encode(source_embedded, source_word_seq_length) attention_keys = encoded_representation.attention_keys attention_values = encoded_representation.attention_values attention_length = encoded_representation.attention_length encoder_final_states_bw = encoded_representation.final_state[-1][-1].h # feedback if mode == MODE.RL: tf.logging.info('BUILDING RL TRAIN FEEDBACK......') dynamical_batch_size = tf.shape(attention_keys)[1] feedback = sq.RLTrainingFeedBack(target_ids, target_seq_length, trg_vocab, dynamical_batch_size, burn_in_step=burn_in_step, increment_step=increment_step, max_step=max_step) elif mode == MODE.TRAIN: tf.logging.info('BUILDING TRAIN FEEDBACK WITH {} TEACHER_RATE' '......'.format(teacher_rate)) feedback = sq.TrainingFeedBack(target_ids, target_seq_length, trg_vocab, teacher_rate, max_step=max_step) elif mode == MODE.EVAL: tf.logging.info('BUILDING EVAL FEEDBACK ......') feedback = sq.TrainingFeedBack(target_ids, target_seq_length, trg_vocab, 0., max_step=max_step) else: tf.logging.info('BUILDING INFER FEEDBACK WITH BEAM_SIZE {}' '......'.format(beam_size)) infer_key_size = attention_keys.get_shape().as_list()[-1] infer_value_size = attention_values.get_shape().as_list()[-1] infer_states_bw_shape = encoder_final_states_bw.get_shape().as_list()[-1] infer_char_key_size = char_attention_keys.get_shape().as_list()[-1] infer_char_value_size = char_attention_values.get_shape().as_list()[-1] encoder_final_states_bw = tf.reshape(tf.tile(encoder_final_states_bw, [1, beam_size]), [-1, infer_states_bw_shape]) # expand beam if TIME_MAJOR: # batch size should be dynamical dynamical_batch_size = tf.shape(attention_keys)[1] final_key_shape = [-1, dynamical_batch_size * beam_size, infer_key_size] final_value_shape = [-1, dynamical_batch_size * beam_size, infer_value_size] attention_keys = tf.reshape( (tf.tile(attention_keys, [1, 1, beam_size])), final_key_shape) attention_values = tf.reshape( (tf.tile(attention_values, [1, 1, beam_size])), final_value_shape) final_char_key_shape = [-1, dynamical_batch_size * beam_size, infer_char_key_size] final_char_value_shape = [-1, dynamical_batch_size * beam_size, infer_char_value_size] char_attention_keys = tf.reshape( (tf.tile(char_attention_keys, [1, 1, beam_size])), final_char_key_shape) char_attention_values = tf.reshape( (tf.tile(char_attention_values, [1, 1, beam_size])), final_char_value_shape) else: dynamical_batch_size = tf.shape(attention_keys)[0] final_key_shape = [dynamical_batch_size * beam_size, -1, infer_key_size] final_value_shape = [dynamical_batch_size * beam_size, -1, infer_value_size] final_char_key_shape = [dynamical_batch_size * beam_size, -1, infer_char_key_size] final_char_value_shape = [dynamical_batch_size * beam_size, -1, infer_char_value_size] attention_keys = tf.reshape( (tf.tile(attention_keys, [1, beam_size, 1])), final_key_shape) attention_values = tf.reshape( (tf.tile(attention_values, [1, beam_size, 1])), final_value_shape) char_attention_keys = tf.reshape( (tf.tile(char_attention_keys, [1, beam_size, 1])), final_char_key_shape) char_attention_values = tf.reshape( (tf.tile(char_attention_values, [1, beam_size, 1])), final_char_value_shape) attention_length = tf.reshape( tf.transpose(tf.tile([attention_length], [beam_size, 1])), [-1]) char_attention_length = tf.reshape( tf.transpose(tf.tile([char_attention_length], [beam_size, 1])), [-1]) feedback = sq.BeamFeedBack(trg_vocab, beam_size, dynamical_batch_size, max_step=max_step) encoder_decoder_bridge = EncoderDecoderBridge(encoder_final_states_bw.get_shape().as_list()[-1], decoder_params['rnn_cell']) decoder_state_size = decoder_params['rnn_cell']['state_size'] # attention attention = sq.AvAttention(decoder_state_size, attention_keys, attention_values, attention_length, char_attention_keys, char_attention_values, char_attention_length) context_size = attention.context_size with tf.variable_scope('logits_func'): attention_mix = LinearOp( context_size + feedback.embedding_dim + decoder_state_size, decoder_state_size , name='attention_mix') attention_mix_middle = LinearOp( decoder_state_size, decoder_state_size // 2, name='attention_mix_middle') logits_trans = LinearOp(decoder_state_size // 2, feedback.vocab_size, name='logits_trans') logits_func = lambda _softmax: logits_trans( tf.nn.relu(attention_mix_middle( tf.nn.relu(attention_mix(_softmax))))) # decoder decoder = sq.AttentionRNNDecoder(decoder_params, attention, feedback, logits_func=logits_func, init_state=encoder_decoder_bridge(encoder_final_states_bw), mode=mode) decoder_output, decoder_final_state = sq.dynamic_decode(decoder, swap_memory=True, scope='decoder') # not training if mode == MODE.EVAL or mode == MODE.INFER: return decoder_output, decoder_final_state # bos is added in feedback # so target_ids is predict_ids if not TIME_MAJOR: ground_truth_ids = tf.transpose(target_ids, [1, 0]) else: ground_truth_ids = target_ids # construct the loss if mode == MODE.RL: # Creates a variable to hold the global_step. global_step_tensor = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope='global_step')[0] rl_time_steps = tf.floordiv(tf.maximum(global_step_tensor - burn_in_step, 0), increment_step) start_rl_step = target_seq_length - rl_time_steps baseline_states = tf.stop_gradient(decoder_output.baseline_states) predict_ids = tf.stop_gradient(decoder_output.predicted_ids) # TODO: bug in tensorflow ground_or_predict_ids = tf.cond(tf.greater(rl_time_steps, 0), lambda: predict_ids, lambda: ground_truth_ids) reward, sequence_length = tf.py_func( func=_py_func, inp=[ground_or_predict_ids, ground_truth_ids, trg_vocab.eos_id], Tout=[tf.float32, tf.int32], name='reward') sequence_length.set_shape((None,)) total_loss_avg, entropy_loss_avg, reward_loss_rmse, reward_predicted \ = rl_sequence_loss( logits=decoder_output.logits, predict_ids=predict_ids, sequence_length=sequence_length, baseline_states=baseline_states, start_rl_step=start_rl_step, reward=reward) return decoder_output, total_loss_avg, entropy_loss_avg, \ reward_loss_rmse, reward_predicted else: total_loss_avg = cross_entropy_sequence_loss( logits=decoder_output.logits, targets=ground_truth_ids, sequence_length=target_seq_length) return decoder_output, total_loss_avg, total_loss_avg, \ tf.to_float(0.), tf.to_float(0.)
44.623501
100
0.594153
4a20d75f6b8429fbcaf8846ba18df6aba06ef0e1
1,449
py
Python
WeatherScreens/ImageScreen.py
ondrejkoren/WeatherFrame
2f9da22e5fa162e9ec7af218f353c16eb1250572
[ "MIT" ]
2
2020-10-26T19:18:11.000Z
2020-10-27T17:27:40.000Z
WeatherScreens/ImageScreen.py
ondrejkoren/WeatherFrame
2f9da22e5fa162e9ec7af218f353c16eb1250572
[ "MIT" ]
null
null
null
WeatherScreens/ImageScreen.py
ondrejkoren/WeatherFrame
2f9da22e5fa162e9ec7af218f353c16eb1250572
[ "MIT" ]
1
2020-12-18T03:42:42.000Z
2020-12-18T03:42:42.000Z
from PIL import Image, ImageDraw, ImageFont from suntime import Sun, SunTimeException from dateutil import tz from datetime import datetime, date, timedelta import pyowm import math from random import randrange from . import constants import dateutil.parser from . import ScreenBase class ImageScreen(ScreenBase.ScreenBase): def __init__(self, path: str, resolution: tuple = (constants.DISPLAY_WIDTH, constants.DISPLAY_HEIGHT)): ScreenBase.ScreenBase.__init__(self) self.path = path self.resolution = resolution def render(self): image_file = Image.open(self.path) # open colour image width, height = image_file.size # Get dimensions scale = width/self.resolution[0] print("scale: ", scale) image_file = image_file.resize((int(width/scale), int(height/scale)), Image.ANTIALIAS) width, height = image_file.size # Get dimensions new_x, new_y = 800, 480 if width < height: new_x, new_y = new_y, new_x left = (width - new_x) / 2 top = (height - new_y) / 2 right = (width + new_x) / 2 bottom = (height + new_y) / 2 # Crop the center of the image image_file = image_file.crop((left, top, right, bottom)) self.image = image_file.convert('1') # convert image to black and white draw = ImageDraw.Draw(self.image) return self.image
34.5
94
0.643892
4a20d8c8785576d9bad952a75a13645b72f2ff75
104,386
py
Python
trainer.py
qianrusun1015/Disentangled-Person-Image-Generation
e4703860bb1b351050ce50f339985ff0811f1d64
[ "MIT" ]
165
2018-03-28T10:50:36.000Z
2022-01-09T10:56:58.000Z
trainer.py
qianrusun1015/Disentangled-Person-Image-Generation
e4703860bb1b351050ce50f339985ff0811f1d64
[ "MIT" ]
13
2018-04-11T08:04:44.000Z
2020-11-20T12:50:33.000Z
trainer.py
saswat0/Disentangled-Person-Image-Generation
e4703860bb1b351050ce50f339985ff0811f1d64
[ "MIT" ]
38
2018-05-16T08:50:11.000Z
2021-05-14T02:56:52.000Z
from __future__ import print_function # from trainer_Base import * import os, pdb import StringIO import scipy.misc import numpy as np import glob from itertools import chain from collections import deque import pickle, shutil from tqdm import tqdm from tqdm import trange from skimage.measure import compare_ssim as ssim from skimage.color import rgb2gray from PIL import Image from tensorflow.python.ops import control_flow_ops, sparse_ops import models from utils import * import tflib as lib from wgan_gp import * from datasets import market1501, deepfashion, dataset_utils ############################################################################################## ######################### Market1501 with FgBgPose BodyROIVis ################################ class DPIG_Encoder_GAN_BodyROI(object): def __init__(self, config): self._common_init(config) self.keypoint_num = 18 self.D_arch = config.D_arch self.part_num = 37 ## Also change *7 --> *37 in datasets/market1501.py if 'market' in config.dataset.lower(): if config.is_train: self.dataset_obj = market1501.get_split('train', config.data_path) else: self.dataset_obj = market1501.get_split('test', config.data_path) self.x, self.x_target, self.pose, self.pose_target, self.pose_rcv, self.pose_rcv_target, self.mask_r4, self.mask_r4_target, self.mask_r6, self.mask_r6_target, \ self.part_bbox, self.part_bbox_target, self.part_vis, self.part_vis_target = self._load_batch_pair_pose(self.dataset_obj) def _common_init(self, config): self.config = config self.data_loader = None self.dataset = config.dataset self.beta1 = config.beta1 self.beta2 = config.beta2 self.optimizer = config.optimizer self.batch_size = config.batch_size self.step = tf.Variable(config.start_step, name='step', trainable=False) self.g_lr = tf.Variable(config.g_lr, dtype=tf.float32, name='g_lr') self.d_lr = tf.Variable(config.d_lr, dtype=tf.float32, name='d_lr') self.g_lr_update = tf.assign(self.g_lr, self.g_lr * 0.5, name='g_lr_update') self.d_lr_update = tf.assign(self.d_lr, self.d_lr * 0.5, name='d_lr_update') self.gamma = config.gamma self.lambda_k = config.lambda_k self.z_num = config.z_num self.conv_hidden_num = config.conv_hidden_num self.img_H, self.img_W = config.img_H, config.img_W self.model_dir = config.model_dir self.load_path = config.load_path self.use_gpu = config.use_gpu self.data_format = config.data_format _, height, width, self.channel = self._get_conv_shape() self.repeat_num = int(np.log2(height)) - 2 self.data_path = config.data_path self.pretrained_path = config.pretrained_path self.pretrained_appSample_path = config.pretrained_appSample_path self.pretrained_poseAE_path = config.pretrained_poseAE_path self.pretrained_poseSample_path = config.pretrained_poseSample_path self.ckpt_path = config.ckpt_path self.z_emb_dir = config.z_emb_dir self.start_step = config.start_step self.log_step = config.log_step self.max_step = config.max_step # self.save_model_secs = config.save_model_secs self.lr_update_step = config.lr_update_step self.is_train = config.is_train self.sample_app = config.sample_app self.sample_fg = config.sample_fg self.sample_bg = config.sample_bg self.sample_pose = config.sample_pose self.one_app_per_batch = config.one_app_per_batch self.interpolate_fg = config.interpolate_fg self.interpolate_fg_up = config.interpolate_fg_up self.interpolate_fg_down = config.interpolate_fg_down self.interpolate_bg = config.interpolate_bg self.interpolate_pose = config.interpolate_pose self.inverse_fg = config.inverse_fg self.inverse_bg = config.inverse_bg self.inverse_pose = config.inverse_pose self.config = config if self.is_train: self.num_threads = 4 self.capacityCoff = 2 else: # during testing to keep the order of the input data self.num_threads = 1 self.capacityCoff = 1 def _get_conv_shape(self): shape = [self.batch_size, self.img_H, self.img_W, 3] return shape def _getOptimizer(self, wgan_gp, gen_cost, disc_cost, G_var, D_var): clip_disc_weights = None if wgan_gp.MODE == 'wgan': gen_train_op = tf.train.RMSPropOptimizer(learning_rate=self.g_lr).minimize(gen_cost, var_list=G_var, colocate_gradients_with_ops=True) disc_train_op = tf.train.RMSPropOptimizer(learning_rate=self.d_lr).minimize(disc_cost, var_list=D_var, colocate_gradients_with_ops=True) clip_ops = [] for var in lib.params_with_name('Discriminator'): clip_bounds = [-.01, .01] clip_ops.append(tf.assign(var, tf.clip_by_value(var, clip_bounds[0], clip_bounds[1]))) clip_disc_weights = tf.group(*clip_ops) elif wgan_gp.MODE == 'wgan-gp': gen_train_op = tf.train.AdamOptimizer(learning_rate=self.g_lr, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=G_var, colocate_gradients_with_ops=True) disc_train_op = tf.train.AdamOptimizer(learning_rate=self.d_lr, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=D_var, colocate_gradients_with_ops=True) elif wgan_gp.MODE == 'dcgan': gen_train_op = tf.train.AdamOptimizer(learning_rate=self.g_lr, beta1=0.5).minimize(gen_cost, var_list=G_var, colocate_gradients_with_ops=True) disc_train_op = tf.train.AdamOptimizer(learning_rate=self.d_lr, beta1=0.5).minimize(disc_cost, var_list=D_var, colocate_gradients_with_ops=True) elif wgan_gp.MODE == 'lsgan': gen_train_op = tf.train.RMSPropOptimizer(learning_rate=self.g_lr).minimize(gen_cost, var_list=G_var, colocate_gradients_with_ops=True) disc_train_op = tf.train.RMSPropOptimizer(learning_rate=self.d_lr).minimize(disc_cost, var_list=D_var, colocate_gradients_with_ops=True) else: raise Exception() return gen_train_op, disc_train_op, clip_disc_weights def _getDiscriminator(self, wgan_gp, arch='DCGAN'): if 'DCGAN'==arch: return wgan_gp.DCGANDiscriminator elif 'FCDis'==arch: return wgan_gp.FCDiscriminator if arch.startswith('DCGANRegion'): return wgan_gp.DCGANDiscriminatoRegion raise Exception('You must choose an architecture!') # def _getDiscriminator(self, wgan_gp, arch='DCGAN'): # if 'Patch70x70'==arch: # return wgan_gp.PatchDiscriminator_70x70 # elif 'Patch46x46'==arch: # return wgan_gp.PatchDiscriminator_46x46 # elif 'Patch28x28'==arch: # return wgan_gp.PatchDiscriminator_28x28 # elif 'Patch16x16'==arch: # return wgan_gp.PatchDiscriminator_16x16 # elif 'Patch13x13'==arch: # return wgan_gp.PatchDiscriminator_13x13 # elif 'DCGAN'==arch: # # Baseline (G: DCGAN, D: DCGAN) # return wgan_gp.DCGANDiscriminator # elif 'FCDis'==arch: # return wgan_gp.FCDiscriminator # raise Exception('You must choose an architecture!') def init_net(self): self.build_model() if self.pretrained_path is not None: var1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='Encoder') var2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='ID_AE') self.saverPart = tf.train.Saver(var1+var2, max_to_keep=20) if self.pretrained_poseAE_path is not None: var = tf.get_collection(tf.GraphKeys.VARIABLES, scope='PoseAE') self.saverPoseAEPart = tf.train.Saver(var, max_to_keep=20) self.saver = tf.train.Saver(max_to_keep=20) self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=None, summary_op=None, summary_writer=self.summary_writer, global_step=self.step, save_model_secs=0, ready_for_local_init_op=None) gpu_options = tf.GPUOptions(allow_growth=True) sess_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) if self.pretrained_path is not None: self.saverPart.restore(self.sess, self.pretrained_path) print('restored from pretrained_path:', self.pretrained_path) if self.pretrained_poseAE_path is not None: self.saverPoseAEPart.restore(self.sess, self.pretrained_poseAE_path) print('restored from pretrained_poseAE_path:', self.pretrained_poseAE_path) if self.ckpt_path is not None: self.saver.restore(self.sess, self.ckpt_path) print('restored from ckpt_path:', self.ckpt_path) self.test_dir_name = 'test_result' def _gan_loss(self, wgan_gp, Discriminator, disc_real, disc_fake, real_data=None, fake_data=None, arch=None): if wgan_gp.MODE == 'wgan': gen_cost = -tf.reduce_mean(disc_fake) disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real) elif wgan_gp.MODE == 'wgan-gp': gen_cost = -tf.reduce_mean(disc_fake) disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real) alpha = tf.random_uniform( shape=[wgan_gp.BATCH_SIZE/len(wgan_gp.DEVICES),1,1,1], minval=0., maxval=1. ) differences = fake_data - real_data interpolates = real_data + (tf.squeeze(alpha,[2,3])*differences) gradients = tf.gradients(Discriminator(interpolates), [interpolates])[0] slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1])) gradient_penalty = tf.reduce_mean((slopes-1.)**2) disc_cost += wgan_gp.LAMBDA*gradient_penalty elif wgan_gp.MODE == 'dcgan': gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_fake, labels=tf.ones_like(disc_fake))) disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_fake, labels=tf.zeros_like(disc_fake))) disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_real, labels=tf.ones_like(disc_real))) disc_cost /= 2. elif wgan_gp.MODE == 'lsgan': gen_cost = tf.reduce_mean((disc_fake - 1)**2) disc_cost = (tf.reduce_mean((disc_real - 1)**2) + tf.reduce_mean((disc_fake - 0)**2))/2. else: raise Exception() return gen_cost, disc_cost def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp = WGAN_GP(DATA_DIR='', MODE='dcgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.img_H*self.img_W*3) self.Discriminator_fn = self._getDiscriminator(self.wgan_gp, arch=self.D_arch) def build_model(self): self._define_input() with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1-3 (totally 3) # self.embs, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROI(self.x, self.part_bbox, len(indices), 64, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) # Part 1-7 (totally 7) indices = range(7) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) self.embs, _, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROI(self.x, select_part_bbox, len(indices), 32, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # self.embs, _, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROI2(self.x, select_part_bbox, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=0.9, reuse=False) ## Part 1,4-8 (totally 6) # indices = [1] + range(4,9) # select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) # self.embs, _, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROI(self.x, select_part_bbox, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) ## Part 1,8-16 (totally 10) # indices = [0] + range(7,16) # select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) # select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) # self.embs, _, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROIVis(self.x, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) with tf.variable_scope("ID_AE") as vs: G, _, self.G_var = self.Generator_fn( self.embs_rep, self.pose, self.channel, self.z_num, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) self.G_var += self.Encoder_var self.G = denorm_img(G, self.data_format) pair = tf.concat([self.x, G], 0) self.D_z = self.Discriminator_fn(tf.transpose( pair, [0,3,1,2] ), input_dim=3) self.D_var = lib.params_with_name('Discriminator.') D_z_pos, D_z_neg = tf.split(self.D_z, 2) self.g_loss, self.d_loss = self._gan_loss(self.wgan_gp, self.Discriminator_fn, D_z_pos, D_z_neg, arch=self.D_arch) self.PoseMaskLoss = tf.reduce_mean(tf.abs(G - self.x) * (self.mask_r6)) self.L1Loss = tf.reduce_mean(tf.abs(G - self.x)) self.g_loss_only = self.g_loss self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G", self.G), tf.summary.scalar("loss/PoseMaskLoss", self.PoseMaskLoss), tf.summary.scalar("loss/L1Loss", self.L1Loss), tf.summary.scalar("loss/g_loss", self.g_loss), tf.summary.scalar("loss/g_loss_only", self.g_loss_only), tf.summary.scalar("loss/d_loss", self.d_loss), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), ]) def _define_loss_optim(self): self.g_loss += self.L1Loss * 20 self.g_optim, self.d_optim, self.clip_disc_weights = self._getOptimizer(self.wgan_gp, self.g_loss, self.d_loss, self.G_var, self.D_var) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, mask_fixed, mask_target_fixed, part_bbox_fixed, \ part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): if step>0: self.sess.run([self.g_optim]) # Train critic if (self.wgan_gp.MODE == 'dcgan') or (self.wgan_gp.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run(self.d_optim) if self.wgan_gp.MODE == 'wgan': self.sess.run(self.clip_disc_weights) if 0==step or step % self.log_step == self.log_step-1: fetch_dict = { "summary": self.summary_op } result = self.sess.run(fetch_dict) self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or step % (self.log_step * 3) == (self.log_step * 3)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, part_bbox_fixed, part_vis_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) def test(self): test_result_dir = os.path.join(self.model_dir, 'test_result') test_result_dir_x = os.path.join(test_result_dir, 'x') test_result_dir_x_target = os.path.join(test_result_dir, 'x_target') test_result_dir_G = os.path.join(test_result_dir, 'G') test_result_dir_pose = os.path.join(test_result_dir, 'pose') test_result_dir_pose_target = os.path.join(test_result_dir, 'pose_target') test_result_dir_mask = os.path.join(test_result_dir, 'mask') test_result_dir_mask_target = os.path.join(test_result_dir, 'mask_target') if not os.path.exists(test_result_dir): os.makedirs(test_result_dir) if not os.path.exists(test_result_dir_x): os.makedirs(test_result_dir_x) if not os.path.exists(test_result_dir_x_target): os.makedirs(test_result_dir_x_target) if not os.path.exists(test_result_dir_G): os.makedirs(test_result_dir_G) if not os.path.exists(test_result_dir_pose): os.makedirs(test_result_dir_pose) if not os.path.exists(test_result_dir_pose_target): os.makedirs(test_result_dir_pose_target) if not os.path.exists(test_result_dir_mask): os.makedirs(test_result_dir_mask) if not os.path.exists(test_result_dir_mask_target): os.makedirs(test_result_dir_mask_target) for i in xrange(100): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, mask_fixed, mask_target_fixed, part_bbox_fixed, \ part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) if 0==i: x_fake = self.generate(x, x_target, pose_fixed, part_bbox_fixed, part_vis_fixed, test_result_dir, idx=self.start_step, save=True) else: x_fake = self.generate(x, x_target, pose_fixed, part_bbox_fixed, part_vis_fixed, test_result_dir, idx=self.start_step, save=False) p = (np.amax(pose_fixed, axis=-1, keepdims=False)+1.0)*127.5 pt = (np.amax(pose_target_fixed, axis=-1, keepdims=False)+1.0)*127.5 for j in xrange(self.batch_size): idx = i*self.batch_size+j im = Image.fromarray(x_fixed[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_x, idx)) im = Image.fromarray(x_target_fixed[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_x_target, idx)) im = Image.fromarray(x_fake[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_G, idx)) im = Image.fromarray(p[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_pose, idx)) im = Image.fromarray(pt[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_pose_target, idx)) im = Image.fromarray(mask_fixed[j,:].squeeze().astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_mask, idx)) im = Image.fromarray(mask_target_fixed[j,:].squeeze().astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_mask_target, idx)) if 0==i: save_image(x_fixed, '{}/x_fixed.png'.format(test_result_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(test_result_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(test_result_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(test_result_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(test_result_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(test_result_dir)) def test_one_by_one(self, img_dir, pair_path, all_peaks_path, subsets_path, pair_num=500, shuffle=True, random_int=0, result_dir_name='test_demo'): test_result_dir = os.path.join(self.model_dir, result_dir_name) test_result_dir_x = os.path.join(test_result_dir, 'x') test_result_dir_x_target = os.path.join(test_result_dir, 'x_target') test_result_dir_G = os.path.join(test_result_dir, 'G') test_result_dir_pose = os.path.join(test_result_dir, 'pose') test_result_dir_pose_target = os.path.join(test_result_dir, 'pose_target') test_result_dir_mask = os.path.join(test_result_dir, 'mask') test_result_dir_mask_target = os.path.join(test_result_dir, 'mask_target') if not os.path.exists(test_result_dir): os.makedirs(test_result_dir) if not os.path.exists(test_result_dir_x): os.makedirs(test_result_dir_x) if not os.path.exists(test_result_dir_x_target): os.makedirs(test_result_dir_x_target) if not os.path.exists(test_result_dir_G): os.makedirs(test_result_dir_G) if not os.path.exists(test_result_dir_pose): os.makedirs(test_result_dir_pose) if not os.path.exists(test_result_dir_pose_target): os.makedirs(test_result_dir_pose_target) if not os.path.exists(test_result_dir_mask): os.makedirs(test_result_dir_mask) if not os.path.exists(test_result_dir_mask_target): os.makedirs(test_result_dir_mask_target) pairs = pickle.load(open(pair_path,'r')) all_peaks_dic = pickle.load(open(all_peaks_path,'r')) subsets_dic = pickle.load(open(subsets_path,'r')) if shuffle: np.random.seed(0) idx_all = np.random.permutation(len(pairs)) else: idx_all = np.array(range(len(pairs))) # idx_list = idx_all[:test_pair_num] height, width, _ = scipy.misc.imread(os.path.join(img_dir, pairs[0][0])).shape cnt = -1 for i in trange(len(idx_all)): if cnt>= pair_num-1: break idx = idx_all[i] if (pairs[idx][0] in all_peaks_dic) and (pairs[idx][1] in all_peaks_dic): cnt += 1 ## Pose 0 peaks_0 = _get_valid_peaks(all_peaks_dic[pairs[idx][0]], subsets_dic[pairs[idx][0]]) indices_r4_0, values_r4_0, shape = _getSparsePose(peaks_0, height, width, self.keypoint_num, radius=4, mode='Solid') pose_dense_0 = _sparse2dense(indices_r4_0, values_r4_0, shape) pose_mask_r4_0 = _getPoseMask(peaks_0, height, width, radius=4, mode='Solid') ## Pose 1 peaks_1 = _get_valid_peaks(all_peaks_dic[pairs[idx][1]], subsets_dic[pairs[idx][1]]) indices_r4_1, values_r4_1, shape = _getSparsePose(peaks_1, height, width, self.keypoint_num, radius=4, mode='Solid') pose_dense_1 = _sparse2dense(indices_r4_1, values_r4_1, shape) pose_mask_r4_1 = _getPoseMask(peaks_1, height, width, radius=4, mode='Solid') ## Generate image x = scipy.misc.imread(os.path.join(img_dir, pairs[idx][0])) x = process_image(x, 127.5, 127.5) x_target = scipy.misc.imread(os.path.join(img_dir, pairs[idx][1])) x_target = process_image(x_target, 127.5, 127.5) x_batch = np.expand_dims(x,axis=0) pose_batch = np.expand_dims(pose_dense_1*2-1,axis=0) G = self.sess.run(self.G, {self.x: x_batch, self.pose_target: pose_batch}) ## Save shutil.copy(os.path.join(img_dir, pairs[idx][0]), os.path.join(test_result_dir_x, 'pair%05d-%s'%(cnt, pairs[idx][0]))) shutil.copy(os.path.join(img_dir, pairs[idx][1]), os.path.join(test_result_dir_x_target, 'pair%05d-%s'%(cnt, pairs[idx][1]))) im = Image.fromarray(G.squeeze().astype(np.uint8)) im.save('%s/pair%05d-%s-%s.jpg'%(test_result_dir_G, cnt, pairs[idx][0], pairs[idx][1])) im = np.amax(pose_dense_0, axis=-1, keepdims=False)*255 im = Image.fromarray(im.astype(np.uint8)) im.save('%s/pair%05d-%s.jpg'%(test_result_dir_pose, cnt, pairs[idx][0])) im = np.amax(pose_dense_1, axis=-1, keepdims=False)*255 im = Image.fromarray(im.astype(np.uint8)) im.save('%s/pair%05d-%s.jpg'%(test_result_dir_pose_target, cnt, pairs[idx][1])) im = pose_mask_r4_0*255 im = Image.fromarray(im.astype(np.uint8)) im.save('%s/pair%05d-%s.jpg'%(test_result_dir_mask, cnt, pairs[idx][0])) im = pose_mask_r4_1*255 im = Image.fromarray(im.astype(np.uint8)) im.save('%s/pair%05d-%s.jpg'%(test_result_dir_mask_target, cnt, pairs[idx][1])) else: continue def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, part_vis_fixed, root_path=None, path=None, idx=None, save=True): G = self.sess.run(self.G, {self.x: x_fixed, self.pose: pose_fixed, self.part_bbox: part_bbox_fixed, self.part_vis: part_vis_fixed}) ssim_G_x_list = [] for i in xrange(G.shape[0]): G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8)) x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8)) ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False)) ssim_G_x_mean = np.mean(ssim_G_x_list) if path is None and save: path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean)) save_image(G, path) print("[*] Samples saved: {}".format(path)) return G def get_image_from_loader(self): x, x_target, pose, pose_target, mask, mask_target, part_bbox, part_bbox_target, part_vis, part_vis_target = self.sess.run([self.x, self.x_target, self.pose, self.pose_target, self.mask_r6, self.mask_r6_target, self.part_bbox, self.part_bbox_target, self.part_vis, self.part_vis_target]) x = unprocess_image(x, 127.5, 127.5) x_target = unprocess_image(x_target, 127.5, 127.5) mask = mask*255 mask_target = mask_target*255 return x, x_target, pose, pose_target, mask, mask_target, part_bbox, part_bbox_target, part_vis, part_vis_target def _load_batch_pair_pose(self, dataset): data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset, common_queue_capacity=32, common_queue_min=8) image_raw_0, image_raw_1, label, pose_rcv_0, pose_rcv_1, mask_r4_0, mask_r4_1, mask_r6_0, mask_r6_1, part_bbox_0, part_bbox_1, part_vis_0, part_vis_1 = data_provider.get([ 'image_raw_0', 'image_raw_1', 'label', 'pose_peaks_0_rcv', 'pose_peaks_1_rcv', 'pose_mask_r4_0', 'pose_mask_r4_1', 'pose_mask_r6_0', 'pose_mask_r6_1', 'part_bbox_0', 'part_bbox_1', 'part_vis_0', 'part_vis_1']) image_raw_0 = tf.reshape(image_raw_0, [128, 64, 3]) image_raw_1 = tf.reshape(image_raw_1, [128, 64, 3]) mask_r4_0 = tf.cast(tf.reshape(mask_r4_0, [128, 64, 1]), tf.float32) mask_r4_1 = tf.cast(tf.reshape(mask_r4_1, [128, 64, 1]), tf.float32) mask_r6_0 = tf.cast(tf.reshape(mask_r6_0, [128, 64, 1]), tf.float32) mask_r6_1 = tf.cast(tf.reshape(mask_r6_1, [128, 64, 1]), tf.float32) part_bbox_0 = tf.reshape(part_bbox_0, [self.part_num, 4]) part_bbox_1 = tf.reshape(part_bbox_1, [self.part_num, 4]) images_0, images_1, poses_rcv_0, poses_rcv_1, masks_r4_0, masks_r4_1, masks_r6_0, masks_r6_1, part_bboxs_0, part_bboxs_1, part_viss_0, part_viss_1 = tf.train.batch([image_raw_0, image_raw_1, pose_rcv_0, pose_rcv_1, mask_r4_0, mask_r4_1, mask_r6_0, mask_r6_1, part_bbox_0, part_bbox_1, part_vis_0, part_vis_1], batch_size=self.batch_size, num_threads=self.num_threads, capacity=self.capacityCoff * self.batch_size) images_0 = process_image(tf.to_float(images_0), 127.5, 127.5) images_1 = process_image(tf.to_float(images_1), 127.5, 127.5) poses_0 = tf.cast(coord2channel_simple_rcv(poses_rcv_0, keypoint_num=18, is_normalized=False, img_H=128, img_W=64), tf.float32) poses_1 = tf.cast(coord2channel_simple_rcv(poses_rcv_1, keypoint_num=18, is_normalized=False, img_H=128, img_W=64), tf.float32) poses_0 = tf_poseInflate(poses_0, keypoint_num=18, radius=4, img_H=self.img_H, img_W=self.img_W) poses_1 = tf_poseInflate(poses_1, keypoint_num=18, radius=4, img_H=self.img_H, img_W=self.img_W) return images_0, images_1, poses_0, poses_1, poses_rcv_0, poses_rcv_1, masks_r4_0, masks_r4_1, masks_r6_0, masks_r6_1, part_bboxs_0, part_bboxs_1, part_viss_0, part_viss_1 class DPIG_Encoder_GAN_BodyROI_FgBg(DPIG_Encoder_GAN_BodyROI): def build_model(self): self._define_input() with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1,8-16 (totally 10) # indices = [1] + range(8,17) ## Part 1-7 (totally 7) indices = range(0,7) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) # self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgFeaOneBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) self.embs, _, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgFeaTwoBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgImgOneBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgImgTwoBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) with tf.variable_scope("ID_AE") as vs: G, _, self.G_var = self.Generator_fn( self.embs_rep, self.pose, self.channel, self.z_num, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) self.G_var += self.Encoder_var self.G = denorm_img(G, self.data_format) D_z_pos = self.Discriminator_fn(tf.transpose( self.x, [0,3,1,2] ), input_dim=3) D_z_neg = self.Discriminator_fn(tf.transpose( G, [0,3,1,2] ), input_dim=3) self.D_var = lib.params_with_name('Discriminator.') self.g_loss, self.d_loss = self._gan_loss(self.wgan_gp, self.Discriminator_fn, D_z_pos, D_z_neg, arch=self.D_arch) self.PoseMaskLoss = tf.reduce_mean(tf.abs(G - self.x) * (self.mask_r6)) self.L1Loss = tf.reduce_mean(tf.abs(G - self.x)) self.g_loss_only = self.g_loss self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G", self.G), tf.summary.scalar("loss/PoseMaskLoss", self.PoseMaskLoss), tf.summary.scalar("loss/L1Loss", self.L1Loss), tf.summary.scalar("loss/g_loss", self.g_loss), tf.summary.scalar("loss/g_loss_only", self.g_loss_only), tf.summary.scalar("loss/d_loss", self.d_loss), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), ]) def _define_loss_optim(self): self.g_loss += self.L1Loss * 20 self.g_optim, self.d_optim, self.clip_disc_weights = self._getOptimizer(self.wgan_gp, self.g_loss, self.d_loss, self.G_var, self.D_var) class DPIG_PoseRCV_AE_BodyROI(DPIG_Encoder_GAN_BodyROI): def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp = WGAN_GP(DATA_DIR='', MODE='dcgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.keypoint_num*3) self.Discriminator_fn = self._getDiscriminator(self.wgan_gp, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("PoseAE") as vs: ## Norm to [-1, 1] pose_rcv_norm = tf.reshape(self.pose_rcv, [self.batch_size, self.keypoint_num, 3]) R = tf.cast(tf.slice(pose_rcv_norm, [0,0,0], [-1,-1,1]), tf.float32)/float(self.img_H)*2.0 - 1 C = tf.cast(tf.slice(pose_rcv_norm, [0,0,1], [-1,-1,1]), tf.float32)/float(self.img_W)*2.0 - 1 V = tf.cast(tf.slice(pose_rcv_norm, [0,0,2], [-1,-1,1]), tf.float32) pose_rcv_norm = tf.concat([R,C,V], axis=-1) self.pose_embs, self.G_var_encoder = models.PoseEncoderFCRes(tf.reshape(pose_rcv_norm, [self.batch_size,-1]), z_num=32, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) if self.sample_pose: ## Sampling new poses during testing self.pose_embs = tf.random_normal(tf.shape(self.pose_embs), mean=0.0, stddev=0.2, dtype=tf.float32) G_pose_coord, G_pose_visible, self.G_var_decoder = models.PoseDecoderFCRes(self.pose_embs, self.keypoint_num, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) self.G_var_pose = self.G_var_encoder + self.G_var_decoder G_pose_rcv = tf.concat([tf.reshape(G_pose_coord, [self.batch_size,self.keypoint_num,2]), tf.expand_dims(G_pose_visible,-1)], axis=-1) G_pose = coord2channel_simple_rcv(G_pose_rcv, self.keypoint_num, is_normalized=True, img_H=self.img_H, img_W=self.img_W) self.G_pose = denorm_img(tf.tile(tf.reduce_max(G_pose, axis=-1, keep_dims=True), [1,1,1,3]), self.data_format) self.G_pose_rcv = G_pose_rcv self.reconstruct_loss = tf.reduce_mean(tf.square(pose_rcv_norm - G_pose_rcv)) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.scalar("loss/reconstruct_loss", self.reconstruct_loss), ]) def _define_loss_optim(self): self.g_optim = tf.train.AdamOptimizer(learning_rate=self.g_lr, beta1=0.5).minimize(self.reconstruct_loss * 20, var_list=self.G_var_pose, colocate_gradients_with_ops=True) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): if step>0: self.sess.run([self.g_optim]) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) def get_image_from_loader(self): x, x_target, pose, pose_target, pose_rcv, mask, mask_target, part_bbox, part_bbox_target = self.sess.run([self.x, self.x_target, self.pose, self.pose_target, self.pose_rcv, self.mask_r6, self.mask_r6_target, self.part_bbox, self.part_bbox_target]) x = unprocess_image(x, 127.5, 127.5) x_target = unprocess_image(x_target, 127.5, 127.5) mask = mask*255 mask_target = mask_target*255 return x, x_target, pose, pose_target, pose_rcv, mask, mask_target, part_bbox, part_bbox_target ################### Subnet of Appearance/Pose Sampling ################# class DPIG_Encoder_subSampleAppNetFgBg_GAN_BodyROI(DPIG_Encoder_GAN_BodyROI): def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp_fg = WGAN_GP(DATA_DIR='', MODE='wgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10) self.Discriminator_fg_fn = self._getDiscriminator(self.wgan_gp_fg, arch='FCDis') self.wgan_gp_bg = WGAN_GP(DATA_DIR='', MODE='wgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10) self.Discriminator_bg_fn = self._getDiscriminator(self.wgan_gp_bg, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1,8-16 (totally 10) # indices = [0] + range(7,16) ## Part 1-7 (totally 7) indices = range(0,7) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) self.embs, _, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgFeaTwoBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) self.fg_embs = tf.slice(self.embs, [0,0], [-1,len(indices)*32]) self.bg_embs = tf.slice(self.embs, [0,len(indices)*32], [-1,-1]) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) with tf.variable_scope("ID_AE") as vs: G, _, self.G_var = self.Generator_fn( self.embs_rep, self.pose, self.channel, self.z_num, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) with tf.variable_scope("Gaussian_FC_Fg") as vs: embs_shape = self.fg_embs.get_shape().as_list() self.app_embs_fg, self.G_var_app_embs_fg = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU) with tf.variable_scope("Gaussian_FC_Bg") as vs: embs_shape = self.bg_embs.get_shape().as_list() self.app_embs_bg, self.G_var_app_embs_bg = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=4, hidden_num=256, data_format=self.data_format, activation_fn=LeakyReLU) ## Adversarial for Gaussian Fg # encode_pair_fg = tf.concat([self.fg_embs, self.app_embs_fg], 0) # D_z_embs_fg = self.Discriminator_fg_fn(encode_pair_fg, input_dim=encode_pair_fg.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Fg_FCDis_') # D_z_pos_embs_fg, D_z_neg_embs_fg = tf.split(D_z_embs_fg, 2) D_z_pos_embs_fg = self.Discriminator_fg_fn(self.fg_embs, input_dim=self.fg_embs.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Fg_FCDis_') D_z_neg_embs_fg = self.Discriminator_fg_fn(self.app_embs_fg, input_dim=self.app_embs_fg.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Fg_FCDis_') self.D_var_embs_fg = lib.params_with_name('Fg_FCDis_Discriminator.') self.g_loss_embs_fg, self.d_loss_embs_fg = self._gan_loss(self.wgan_gp_fg, self.Discriminator_fg_fn, D_z_pos_embs_fg, D_z_neg_embs_fg, self.fg_embs, self.app_embs_fg) ## Adversarial for Gaussian Bg # encode_pair_bg = tf.concat([self.bg_embs, self.app_embs_bg], 0) # D_z_embs_bg = self.Discriminator_bg_fn(encode_pair_bg, input_dim=encode_pair_bg.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Bg_FCDis_') # D_z_pos_embs_bg, D_z_neg_embs_bg = tf.split(D_z_embs_bg, 2) D_z_pos_embs_bg = self.Discriminator_bg_fn(self.bg_embs, input_dim=self.bg_embs.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Bg_FCDis_') D_z_neg_embs_bg = self.Discriminator_bg_fn(self.app_embs_bg, input_dim=self.app_embs_bg.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Bg_FCDis_') self.D_var_embs_bg = lib.params_with_name('Bg_FCDis_Discriminator.') self.g_loss_embs_bg, self.d_loss_embs_bg = self._gan_loss(self.wgan_gp_bg, self.Discriminator_bg_fn, D_z_pos_embs_bg, D_z_neg_embs_bg, self.bg_embs, self.app_embs_bg) assert (self.batch_size>0)and(self.batch_size%2==0), 'batch should be Even and >0' self.app_embs_fixFg = tf.tile(tf.slice(self.app_embs_fg, [0,0], [1,-1]), [self.batch_size/2,1]) self.app_embs_varyFg = tf.slice(self.app_embs_fg, [self.batch_size/2,0], [self.batch_size/2,-1]) self.app_embs_fixBg = tf.tile(tf.slice(self.app_embs_bg, [0,0], [1,-1]), [self.batch_size/2,1]) self.app_embs_varyBg = tf.slice(self.app_embs_bg, [self.batch_size/2,0], [self.batch_size/2,-1]) self.app_embs = tf.concat([tf.concat([self.app_embs_fixFg,self.app_embs_varyFg],axis=0), tf.concat([self.app_embs_varyBg,self.app_embs_fixBg],axis=0)], axis=-1) self.embs_app_rep = tf.tile(tf.expand_dims(self.app_embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_app_rep = tf.reshape(self.embs_app_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_app_rep = nchw_to_nhwc(self.embs_app_rep) with tf.variable_scope("ID_AE") as vs: # pdb.set_trace() G_gaussian_app, _, _ = self.Generator_fn( self.embs_app_rep, self.pose, self.channel, self.z_num, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=True) self.G = denorm_img(G_gaussian_app, self.data_format) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G", self.G), tf.summary.scalar("loss/g_loss_embs_fg", self.g_loss_embs_fg), tf.summary.scalar("loss/d_loss_embs_fg", self.d_loss_embs_fg), tf.summary.scalar("loss/g_loss_embs_bg", self.g_loss_embs_bg), tf.summary.scalar("loss/d_loss_embs_bg", self.d_loss_embs_bg), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), ]) def _define_loss_optim(self): self.g_optim_embs_fg, self.d_optim_embs_fg, self.clip_disc_weights_embs_fg = self._getOptimizer(self.wgan_gp_fg, self.g_loss_embs_fg, self.d_loss_embs_fg, self.G_var_app_embs_fg, self.D_var_embs_fg) self.g_optim_embs_bg, self.d_optim_embs_bg, self.clip_disc_weights_embs_bg = self._getOptimizer(self.wgan_gp_bg, self.g_loss_embs_bg, self.d_loss_embs_bg, self.G_var_app_embs_bg, self.D_var_embs_bg) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, mask_fixed, mask_target_fixed, part_bbox_fixed, part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): ## Fg if step>0: self.sess.run([self.g_optim_embs_fg]) # Train critic if (self.wgan_gp_fg.MODE == 'dcgan') or (self.wgan_gp_fg.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp_fg.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run(self.d_optim_embs_fg) if self.wgan_gp_fg.MODE == 'wgan': self.sess.run(self.clip_disc_weights_embs_fg) ## Bg if step>0: self.sess.run([self.g_optim_embs_bg]) # Train critic if (self.wgan_gp_bg.MODE == 'dcgan') or (self.wgan_gp_bg.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp_bg.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run(self.d_optim_embs_bg) if self.wgan_gp_bg.MODE == 'wgan': self.sess.run(self.clip_disc_weights_embs_bg) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or step % (self.log_step * 1.5) == (self.log_step * 1.5)-1 or step % (self.log_step * 5) == (self.log_step * 5)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, part_bbox_fixed, part_vis_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 5) == (self.log_step * 5)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) class DPIG_subnetSamplePoseRCV_GAN_BodyROI(DPIG_PoseRCV_AE_BodyROI): def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp_encoder = WGAN_GP(DATA_DIR='', MODE='wgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.keypoint_num*3) self.Discriminator_encoder_fn = self._getDiscriminator(self.wgan_gp_encoder, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("PoseAE") as vs: ## Norm to [-1, 1] pose_rcv_norm = tf.reshape(self.pose_rcv, [self.batch_size, self.keypoint_num, 3]) R = tf.cast(tf.slice(pose_rcv_norm, [0,0,0], [-1,-1,1]), tf.float32)/float(self.img_H)*2.0 - 1 C = tf.cast(tf.slice(pose_rcv_norm, [0,0,1], [-1,-1,1]), tf.float32)/float(self.img_W)*2.0 - 1 V = tf.cast(tf.slice(pose_rcv_norm, [0,0,2], [-1,-1,1]), tf.float32) pose_rcv_norm = tf.concat([R,C,V], axis=-1) self.pose_embs, self.G_var_encoder = models.PoseEncoderFCRes(tf.reshape(pose_rcv_norm, [self.batch_size,-1]), z_num=32, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) embs_shape = self.pose_embs.get_shape().as_list() # with tf.variable_scope("Gaussian_FC") as vs: with tf.variable_scope("PoseGaussian") as vs: self.G_pose_embs, self.G_var_embs = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU) with tf.variable_scope("PoseAE") as vs: G_pose_coord, G_pose_visible, self.G_var_decoder = models.PoseDecoderFCRes(self.G_pose_embs, self.keypoint_num, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) G_pose_rcv = tf.concat([tf.reshape(G_pose_coord, [self.batch_size,self.keypoint_num,2]), tf.expand_dims(G_pose_visible,-1)], axis=-1) G_pose = coord2channel_simple_rcv(G_pose_rcv, self.keypoint_num, is_normalized=True, img_H=self.img_H, img_W=self.img_W) self.G_pose = denorm_img(tf.tile(tf.reduce_max(G_pose, axis=-1, keep_dims=True), [1,1,1,3]), self.data_format) self.G_pose_rcv = G_pose_rcv ## Adversarial for pose_embs self.pose_embs = tf.reshape(self.pose_embs, [self.batch_size,-1]) self.G_pose_embs = tf.reshape(self.G_pose_embs, [self.batch_size,-1]) encode_pair = tf.concat([self.pose_embs, self.G_pose_embs], 0) self.D_z_embs = self.Discriminator_encoder_fn(encode_pair, input_dim=encode_pair.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Pose_emb_') self.D_var_embs = lib.params_with_name('Pose_emb_Discriminator.') D_z_pos, D_z_neg = tf.split(self.D_z_embs, 2) self.g_loss_embs, self.d_loss_embs = self._gan_loss(self.wgan_gp_encoder, self.Discriminator_encoder_fn, D_z_pos, D_z_neg, self.pose_embs, self.G_pose_embs) ## Use the pose to generate person with pretrained generator with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1,1-7 (totally 7) indices = range(7) ## Part 1,8-16 (totally 10) # indices = [1] + range(8,17) # indices = [0] + range(7,16) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) # pdb.set_trace() self.embs, _, _, _ = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgFeaTwoBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # self.embs, _, _ = GeneratorCNN_ID_Encoder_BodyROIVis(self.x, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # self.embs, _, self.Encoder_var = GeneratorCNN_ID_Encoder_BodyROI(self.x, self.part_bbox, 7, 32, # self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) ## Use py code to get G_pose_inflated, so the op is out of the graph self.G_pose_inflated = tf.placeholder(tf.float32, shape=G_pose.get_shape()) with tf.variable_scope("ID_AE") as vs: G, _, _ = self.Generator_fn( self.embs_rep, self.G_pose_inflated, self.channel, self.z_num, self.repeat_num, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) self.G = denorm_img(G, self.data_format) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G_pose", self.G_pose), tf.summary.scalar("loss/g_loss_embs", self.g_loss_embs), tf.summary.scalar("loss/d_loss_embs", self.d_loss_embs), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), tf.summary.histogram("distribution/pose_emb", self.pose_embs), tf.summary.histogram("distribution/G_pose_embs", self.G_pose_embs), tf.summary.histogram("distribution/app_emb", self.embs), ]) def _define_loss_optim(self): self.g_optim_embs, self.d_optim_embs, self.clip_disc_weights_embs = self._getOptimizer(self.wgan_gp_encoder, self.g_loss_embs, self.d_loss_embs, self.G_var_embs, self.D_var_embs) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): # Use GAN for Pose Embedding if step>0: self.sess.run([self.g_optim_embs]) # Train critic if (self.wgan_gp_encoder.MODE == 'dcgan') or (self.wgan_gp_encoder.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp_encoder.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run([self.d_optim_embs]) if self.wgan_gp_encoder.MODE == 'wgan': self.sess.run(self.clip_disc_weights_embs) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or 10==step or 200==step or step % (self.log_step * 3) == (self.log_step * 3)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, part_bbox_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, root_path=None, path=None, idx=None, save=True): G_pose_rcv, G_pose = self.sess.run([self.G_pose_rcv, self.G_pose]) G_pose_inflated = py_poseInflate(G_pose_rcv, is_normalized=True, radius=4, img_H=128, img_W=64) G = self.sess.run(self.G, {self.x: x_fixed, self.G_pose_inflated: G_pose_inflated, self.part_bbox: part_bbox_fixed}) G_pose_inflated_img = np.tile(np.amax((G_pose_inflated+1)*127.5, axis=-1, keepdims=True), [1,1,1,3]) ssim_G_x_list = [] for i in xrange(G.shape[0]): G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8)) x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8)) ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False)) ssim_G_x_mean = np.mean(ssim_G_x_list) if path is None and save: path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean)) save_image(G, path) print("[*] Samples saved: {}".format(path)) path = os.path.join(root_path, '{}_G_pose.png'.format(idx)) save_image(G_pose, path) print("[*] Samples saved: {}".format(path)) path = os.path.join(root_path, '{}_G_pose_inflated.png'.format(idx)) save_image(G_pose_inflated_img, path) print("[*] Samples saved: {}".format(path)) return G ################################################################################################# ####################################### DF train models ######################################### ######################### DeepFashion with AppPose BodyROI ################################ class DPIG_Encoder_GAN_BodyROI_256(DPIG_Encoder_GAN_BodyROI): def __init__(self, config): self._common_init(config) self.keypoint_num = 18 self.part_num = 37 self.D_arch = config.D_arch if 'deepfashion' in config.dataset.lower() or 'df' in config.dataset.lower(): if config.is_train: self.dataset_obj = deepfashion.get_split('train', config.data_path) else: self.dataset_obj = deepfashion.get_split('test', config.data_path) self.x, self.x_target, self.pose, self.pose_target, self.pose_rcv, self.pose_rcv_target, self.mask, self.mask_target, \ self.part_bbox, self.part_bbox_target, self.part_vis, self.part_vis_target = self._load_batch_pair_pose(self.dataset_obj) def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp = WGAN_GP(DATA_DIR='', MODE='dcgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.img_H*self.img_W*3) self.Discriminator_fn = self._getDiscriminator(self.wgan_gp, arch=self.D_arch) def build_model(self): self._define_input() with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1-7 (totally 7) indices = range(7) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROIVis(self.x,select_part_bbox, select_part_vis, len(indices), 32, self.repeat_num+1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, roi_size=64, reuse=False) ## Part 1,4-8 (totally 6) # # indices = [1] + range(4,9) # indices = [0] + range(3,8) ## Part 1,8-16 (totally 10) # indices = [0] + range(7,16) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) with tf.variable_scope("ID_AE") as vs: G, _, self.G_var = self.Generator_fn( self.embs_rep, self.pose, self.channel, self.z_num, self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) self.G_var += self.Encoder_var self.G = denorm_img(G, self.data_format) pair = tf.concat([self.x, G], 0) self.D_z = self.Discriminator_fn(tf.transpose( pair, [0,3,1,2] ), input_dim=3) self.D_var = lib.params_with_name('Discriminator.') D_z_pos, D_z_neg = tf.split(self.D_z, 2) self.g_loss, self.d_loss = self._gan_loss(self.wgan_gp, self.Discriminator_fn, D_z_pos, D_z_neg, arch=self.D_arch) self.PoseMaskLoss = tf.reduce_mean(tf.abs(G - self.x) * (self.mask)) self.L1Loss = tf.reduce_mean(tf.abs(G - self.x)) self.g_loss_only = self.g_loss self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G", self.G), tf.summary.scalar("loss/PoseMaskLoss", self.PoseMaskLoss), tf.summary.scalar("loss/L1Loss", self.L1Loss), tf.summary.scalar("loss/g_loss", self.g_loss), tf.summary.scalar("loss/g_loss_only", self.g_loss_only), tf.summary.scalar("loss/d_loss", self.d_loss), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), ]) def _define_loss_optim(self): self.g_loss += self.L1Loss * 20 self.g_optim, self.d_optim, self.clip_disc_weights = self._getOptimizer(self.wgan_gp, self.g_loss, self.d_loss, self.G_var, self.D_var) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, pose_rcv_target_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): if step>0: self.sess.run([self.g_optim]) # Train critic if (self.wgan_gp.MODE == 'dcgan') or (self.wgan_gp.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run(self.d_optim) if self.wgan_gp.MODE == 'wgan': self.sess.run(self.clip_disc_weights) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) # "k_t": self.k_t, result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or 10==step or step % (self.log_step * 3) == (self.log_step * 3)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, part_bbox_fixed, part_vis_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) def test(self): test_result_dir = os.path.join(self.model_dir, self.test_dir_name) test_result_dir_x = os.path.join(test_result_dir, 'x') test_result_dir_x_target = os.path.join(test_result_dir, 'x_target') test_result_dir_G = os.path.join(test_result_dir, 'G') test_result_dir_pose = os.path.join(test_result_dir, 'pose') test_result_dir_pose_target = os.path.join(test_result_dir, 'pose_target') test_result_dir_mask = os.path.join(test_result_dir, 'mask') test_result_dir_mask_target = os.path.join(test_result_dir, 'mask_target') if not os.path.exists(test_result_dir): os.makedirs(test_result_dir) if not os.path.exists(test_result_dir_x): os.makedirs(test_result_dir_x) if not os.path.exists(test_result_dir_x_target): os.makedirs(test_result_dir_x_target) if not os.path.exists(test_result_dir_G): os.makedirs(test_result_dir_G) if not os.path.exists(test_result_dir_pose): os.makedirs(test_result_dir_pose) if not os.path.exists(test_result_dir_pose_target): os.makedirs(test_result_dir_pose_target) if not os.path.exists(test_result_dir_mask): os.makedirs(test_result_dir_mask) if not os.path.exists(test_result_dir_mask_target): os.makedirs(test_result_dir_mask_target) for i in xrange(100): ## for test Samples # for i in xrange(800): ## for IS score x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, pose_rcv_target_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) if 0==i: x_fake = self.generate(x, x_target, pose_fixed, part_bbox_fixed, test_result_dir, part_vis_fixed, idx=i, save=True) else: x_fake = self.generate(x, x_target, pose_fixed, part_bbox_fixed, test_result_dir, part_vis_fixed, idx=i, save=False) p = (np.amax(pose_fixed, axis=-1, keepdims=False)+1.0)*127.5 pt = (np.amax(pose_target_fixed, axis=-1, keepdims=False)+1.0)*127.5 for j in xrange(self.batch_size): idx = i*self.batch_size+j im = Image.fromarray(x_fixed[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_x, idx)) im = Image.fromarray(x_target_fixed[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_x_target, idx)) im = Image.fromarray(x_fake[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_G, idx)) im = Image.fromarray(p[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_pose, idx)) im = Image.fromarray(pt[j,:].astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_pose_target, idx)) # pdb.set_trace() im = Image.fromarray(mask_fixed[j,:].squeeze().astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_mask, idx)) im = Image.fromarray(mask_target_fixed[j,:].squeeze().astype(np.uint8)) im.save('%s/%05d.png'%(test_result_dir_mask_target, idx)) # pdb.set_trace() if 0==i: save_image(x_fixed, '{}/x_fixed.png'.format(test_result_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(test_result_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(test_result_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(test_result_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(test_result_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(test_result_dir)) def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, part_vis_fixed, root_path=None, path=None, idx=None, save=True): G = self.sess.run(self.G, {self.x: x_fixed, self.pose: pose_fixed, self.part_bbox: part_bbox_fixed, self.part_vis: part_vis_fixed}) ssim_G_x_list = [] for i in xrange(G.shape[0]): G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8)) x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8)) ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False)) ssim_G_x_mean = np.mean(ssim_G_x_list) if path is None and save: path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean)) save_image(G, path) print("[*] Samples saved: {}".format(path)) return G # def generate(self, x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, part_bbox_fixed, root_path=None, path=None, idx=None, save=True): # G = self.sess.run(self.G, {self.x: x_fixed, self.pose: pose_fixed, self.pose_target: pose_target_fixed, self.part_bbox: part_bbox_fixed}) # ssim_G_x_list = [] # for i in xrange(G.shape[0]): # G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8)) # x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8)) # ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False)) # ssim_G_x_mean = np.mean(ssim_G_x_list) # if path is None and save: # path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean)) # save_image(G, path) # print("[*] Samples saved: {}".format(path)) # return G def get_image_from_loader(self): x, x_target, pose, pose_target, pose_rcv, pose_rcv_target, mask, mask_target, part_bbox, part_bbox_target, part_vis, part_vis_target = self.sess.run([self.x, self.x_target, self.pose, self.pose_target, self.pose_rcv, self.pose_rcv_target, self.mask, self.mask_target, self.part_bbox, self.part_bbox_target, self.part_vis, self.part_vis_target]) x = unprocess_image(x, 127.5, 127.5) x_target = unprocess_image(x_target, 127.5, 127.5) mask = mask*255 mask_target = mask_target*255 return x, x_target, pose, pose_target, pose_rcv, pose_rcv_target, mask, mask_target, part_bbox, part_bbox_target, part_vis, part_vis_target def _load_batch_pair_pose(self, dataset): data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset, common_queue_capacity=32, common_queue_min=8) image_raw_0, image_raw_1, label, pose_rcv_0, pose_rcv_1, mask_0, mask_1, part_bbox_0, part_bbox_1, part_vis_0, part_vis_1 = data_provider.get([ 'image_raw_0', 'image_raw_1', 'label', 'pose_peaks_0_rcv', 'pose_peaks_1_rcv', 'pose_mask_r4_0', 'pose_mask_r4_1', 'part_bbox_0', 'part_bbox_1', 'part_vis_0', 'part_vis_1']) image_raw_0 = tf.reshape(image_raw_0, [256, 256, 3]) image_raw_1 = tf.reshape(image_raw_1, [256, 256, 3]) mask_0 = tf.cast(tf.reshape(mask_0, [256, 256, 1]), tf.float32) mask_1 = tf.cast(tf.reshape(mask_1, [256, 256, 1]), tf.float32) part_bbox_0 = tf.reshape(part_bbox_0, [self.part_num, 4]) part_bbox_1 = tf.reshape(part_bbox_1, [self.part_num, 4]) images_0, images_1, poses_rcv_0, poses_rcv_1, masks_0, masks_1, part_bboxs_0, part_bboxs_1, part_viss_0, part_viss_1 = tf.train.batch([image_raw_0, image_raw_1, pose_rcv_0, pose_rcv_1, mask_0, mask_1, part_bbox_0, part_bbox_1, part_vis_0, part_vis_1], batch_size=self.batch_size, num_threads=self.num_threads, capacity=self.capacityCoff * self.batch_size) images_0 = process_image(tf.to_float(images_0), 127.5, 127.5) images_1 = process_image(tf.to_float(images_1), 127.5, 127.5) poses_0 = tf.cast(coord2channel_simple_rcv(poses_rcv_0, keypoint_num=18, is_normalized=False, img_H=256, img_W=256), tf.float32) poses_1 = tf.cast(coord2channel_simple_rcv(poses_rcv_1, keypoint_num=18, is_normalized=False, img_H=256, img_W=256), tf.float32) poses_0 = tf_poseInflate(poses_0, keypoint_num=18, radius=4, img_H=self.img_H, img_W=self.img_W) poses_1 = tf_poseInflate(poses_1, keypoint_num=18, radius=4, img_H=self.img_H, img_W=self.img_W) return images_0, images_1, poses_0, poses_1, poses_rcv_0, poses_rcv_1, masks_0, masks_1, part_bboxs_0, part_bboxs_1, part_viss_0, part_viss_1 class DPIG_Encoder_subSampleAppNet_GAN_BodyROI_256(DPIG_Encoder_GAN_BodyROI_256): def init_net(self): self.build_model() if self.pretrained_path is not None: var1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='Encoder') var2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='ID_AE') self.saverPart = tf.train.Saver(var1+var2, max_to_keep=20) self.saver = tf.train.Saver(max_to_keep=20) self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=None, summary_op=None, summary_writer=self.summary_writer, global_step=self.step, save_model_secs=0, ready_for_local_init_op=None) gpu_options = tf.GPUOptions(allow_growth=False) sess_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) if self.pretrained_path is not None: self.saverPart.restore(self.sess, self.pretrained_path) print('restored from pretrained_path:', self.pretrained_path) elif self.ckpt_path is not None: self.saver.restore(self.sess, self.ckpt_path) print('restored from ckpt_path:', self.ckpt_path) def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp_encoder = WGAN_GP(DATA_DIR='', MODE='wgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=7*32) self.Discriminator_encoder_fn = self._getDiscriminator(self.wgan_gp_encoder, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("Encoder") as vs: pb_list = tf.split(self.part_bbox, self.part_num, axis=1) pv_list = tf.split(self.part_vis, self.part_num, axis=1) ## Part 1-7 (totally 7) indices = range(7) select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROI(self.x, select_part_bbox, len(indices), 32, self.repeat_num+1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_rep = nchw_to_nhwc(self.embs_rep) with tf.variable_scope("ID_AE") as vs: G, _, self.G_var = self.Generator_fn( self.embs_rep, self.pose, self.channel, self.z_num, self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) embs_shape = self.embs.get_shape().as_list() with tf.variable_scope("Gaussian_FC") as vs: self.app_embs, self.G_var_app_embs = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU) ## Adversarial for Gaussian encode_pair = tf.concat([self.embs, self.app_embs], 0) self.D_z_embs = self.Discriminator_encoder_fn(encode_pair, input_dim=encode_pair.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='FCDis_') self.D_var_embs = lib.params_with_name('FCDis_Discriminator.') D_z_pos_embs, D_z_neg_embs = tf.split(self.D_z_embs, 2) self.g_loss_embs, self.d_loss_embs = self._gan_loss(self.wgan_gp_encoder, self.Discriminator_encoder_fn, D_z_pos_embs, D_z_neg_embs, self.embs, self.app_embs) self.embs_app_rep = tf.tile(tf.expand_dims(self.app_embs,-1), [1, 1, self.img_H*self.img_W]) self.embs_app_rep = tf.reshape(self.embs_app_rep, [self.batch_size, -1, self.img_H, self.img_W]) self.embs_app_rep = nchw_to_nhwc(self.embs_app_rep) with tf.variable_scope("ID_AE") as vs: G_gaussian_app, _, _ = self.Generator_fn( self.embs_app_rep, self.pose, self.channel, self.z_num, self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=True) self.G = denorm_img(G_gaussian_app, self.data_format) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G", self.G), tf.summary.scalar("loss/g_loss_embs", self.g_loss_embs), tf.summary.scalar("loss/d_loss_embs", self.d_loss_embs), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), ]) def _define_loss_optim(self): self.g_optim_embs, self.d_optim_embs, self.clip_disc_weights_embs = self._getOptimizer(self.wgan_gp_encoder, self.g_loss_embs, self.d_loss_embs, self.G_var_app_embs, self.D_var_embs) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, mask_fixed, mask_target_fixed, part_bbox_fixed, part_bbox_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): if step>0: self.sess.run([self.g_optim_embs]) # Train critic if (self.wgan_gp_encoder.MODE == 'dcgan') or (self.wgan_gp_encoder.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp_encoder.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run(self.d_optim_embs) if self.wgan_gp_encoder.MODE == 'wgan': self.sess.run(self.clip_disc_weights_embs) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or step % (self.log_step * 3) == (self.log_step * 3)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, pose_target_fixed, part_bbox_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) class DPIG_PoseRCV_AE_BodyROI_256(DPIG_Encoder_GAN_BodyROI_256): def init_net(self): self.build_model() if self.pretrained_path is not None: var1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='Encoder') var2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='ID_AE') self.saverPart = tf.train.Saver(var1+var2, max_to_keep=20) self.saver = tf.train.Saver(max_to_keep=20) self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=None, summary_op=None, summary_writer=self.summary_writer, global_step=self.step, save_model_secs=0, ready_for_local_init_op=None) gpu_options = tf.GPUOptions(allow_growth=True) sess_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) if self.pretrained_path is not None: self.saverPart.restore(self.sess, self.pretrained_path) print('restored from pretrained_path:', self.pretrained_path) elif self.ckpt_path is not None: self.saver.restore(self.sess, self.ckpt_path) print('restored from ckpt_path:', self.ckpt_path) def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp = WGAN_GP(DATA_DIR='', MODE='dcgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.keypoint_num*3) self.Discriminator_fn = self._getDiscriminator(self.wgan_gp, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("PoseAE") as vs: ## Norm to [-1, 1] pose_rcv_norm = tf.reshape(self.pose_rcv, [self.batch_size, self.keypoint_num, 3]) R = tf.cast(tf.slice(pose_rcv_norm, [0,0,0], [-1,-1,1]), tf.float32)/float(self.img_H)*2.0 - 1 C = tf.cast(tf.slice(pose_rcv_norm, [0,0,1], [-1,-1,1]), tf.float32)/float(self.img_W)*2.0 - 1 V = tf.cast(tf.slice(pose_rcv_norm, [0,0,2], [-1,-1,1]), tf.float32) pose_rcv_norm = tf.concat([R,C,V], axis=-1) self.pose_embs, self.G_var_encoder = models.PoseEncoderFCRes(tf.reshape(pose_rcv_norm, [self.batch_size,-1]), z_num=32, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) if self.sample_pose: ## Sampling new poses during testing self.pose_embs = tf.random_normal(tf.shape(self.pose_embs), mean=0.0, stddev=0.2, dtype=tf.float32) G_pose_coord, G_pose_visible, self.G_var_decoder = models.PoseDecoderFCRes(self.pose_embs, self.keypoint_num, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) self.G_var_pose = self.G_var_encoder + self.G_var_decoder G_pose_rcv = tf.concat([tf.reshape(G_pose_coord, [self.batch_size,self.keypoint_num,2]), tf.expand_dims(G_pose_visible,-1)], axis=-1) self.G_pose_rcv = G_pose_rcv self.reconstruct_loss = tf.reduce_mean(tf.square(pose_rcv_norm - G_pose_rcv)) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.scalar("loss/reconstruct_loss", self.reconstruct_loss), ]) def _define_loss_optim(self): self.g_optim = tf.train.AdamOptimizer(learning_rate=self.g_lr, beta1=0.5).minimize(self.reconstruct_loss * 20, var_list=self.G_var_pose, colocate_gradients_with_ops=True) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, pose_rcv_target_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) # save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) # save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): if step>0: self.sess.run([self.g_optim]) if step % self.log_step == self.log_step-1: fetch_dict = { "summary": self.summary_op, "reconstruct_loss": self.reconstruct_loss } result = self.sess.run(fetch_dict) self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() print('reconstruct_loss:%f'%result['reconstruct_loss']) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) class DPIG_subnetSamplePoseRCV_GAN_BodyROI_256(DPIG_PoseRCV_AE_BodyROI_256): def init_net(self): self.build_model() if self.pretrained_path is not None: var1 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='Encoder') var2 = tf.get_collection(tf.GraphKeys.VARIABLES, scope='ID_AE') self.saverPart = tf.train.Saver(var1+var2, max_to_keep=20) if self.pretrained_poseAE_path is not None: var = tf.get_collection(tf.GraphKeys.VARIABLES, scope='PoseAE') self.saverPoseAEPart = tf.train.Saver(var, max_to_keep=20) self.saver = tf.train.Saver(max_to_keep=20) self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=None, summary_op=None, summary_writer=self.summary_writer, global_step=self.step, save_model_secs=0, ready_for_local_init_op=None) gpu_options = tf.GPUOptions(allow_growth=True) sess_config = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) if self.pretrained_path is not None: self.saverPart.restore(self.sess, self.pretrained_path) print('restored from pretrained_path:', self.pretrained_path) if self.pretrained_poseAE_path is not None: self.saverPoseAEPart.restore(self.sess, self.pretrained_poseAE_path) print('restored from pretrained_poseAE_path:', self.pretrained_poseAE_path) if self.ckpt_path is not None: self.saver.restore(self.sess, self.ckpt_path) print('restored from ckpt_path:', self.ckpt_path) def _define_input(self): self.is_train_tensor = tf.Variable(self.is_train, name='phase') self.Generator_encoder_fn = models.GeneratorCNN_ID_Encoder self.Generator_fn = models.GeneratorCNN_ID_UAEAfterResidual self.wgan_gp_encoder = WGAN_GP(DATA_DIR='', MODE='wgan', DIM=64, BATCH_SIZE=self.batch_size, ITERS=200000, LAMBDA=10, G_OUTPUT_DIM=self.keypoint_num*3) self.Discriminator_encoder_fn = self._getDiscriminator(self.wgan_gp_encoder, arch='FCDis') def build_model(self): self._define_input() with tf.variable_scope("PoseAE") as vs: ## Norm to [-1, 1] pose_rcv_norm = tf.reshape(self.pose_rcv, [self.batch_size, self.keypoint_num, 3]) R = tf.cast(tf.slice(pose_rcv_norm, [0,0,0], [-1,-1,1]), tf.float32)/float(self.img_H)*2.0 - 1 C = tf.cast(tf.slice(pose_rcv_norm, [0,0,1], [-1,-1,1]), tf.float32)/float(self.img_W)*2.0 - 1 V = tf.cast(tf.slice(pose_rcv_norm, [0,0,2], [-1,-1,1]), tf.float32) pose_rcv_norm = tf.concat([R,C,V], axis=-1) self.pose_embs, self.G_var_encoder = models.PoseEncoderFCRes(tf.reshape(pose_rcv_norm, [self.batch_size,-1]), z_num=32, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) embs_shape = self.pose_embs.get_shape().as_list() # with tf.variable_scope("Gaussian_FC") as vs: with tf.variable_scope("PoseGaussian") as vs: self.G_pose_embs, self.G_var_embs = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU) # self.G_pose_embs, self.G_var_embs = models.GaussianFCRes(embs_shape, embs_shape[-1], repeat_num=6, hidden_num=1024, data_format=self.data_format, activation_fn=LeakyReLU) with tf.variable_scope("PoseAE") as vs: G_pose_coord, G_pose_visible, self.G_var_decoder = models.PoseDecoderFCRes(self.G_pose_embs, self.keypoint_num, repeat_num=4, hidden_num=512, data_format=self.data_format, activation_fn=LeakyReLU, reuse=False) G_pose_rcv = tf.concat([tf.reshape(G_pose_coord, [self.batch_size,self.keypoint_num,2]), tf.expand_dims(G_pose_visible,-1)], axis=-1) G_pose = coord2channel_simple_rcv(G_pose_rcv, self.keypoint_num, is_normalized=True, img_H=self.img_H, img_W=self.img_W) self.G_pose = denorm_img(tf.tile(tf.reduce_max(G_pose, axis=-1, keep_dims=True), [1,1,1,3]), self.data_format) self.G_pose_rcv = G_pose_rcv ## Adversarial for pose_embs self.pose_embs = tf.reshape(self.pose_embs, [self.batch_size,-1]) self.G_pose_embs = tf.reshape(self.G_pose_embs, [self.batch_size,-1]) encode_pair = tf.concat([self.pose_embs, self.G_pose_embs], 0) self.D_z_embs = self.Discriminator_encoder_fn(encode_pair, input_dim=encode_pair.get_shape().as_list()[-1], FC_DIM=512, n_layers=3, reuse=False, name='Pose_emb_') self.D_var_embs = lib.params_with_name('Pose_emb_Discriminator.') D_z_pos, D_z_neg = tf.split(self.D_z_embs, 2) self.g_loss_embs, self.d_loss_embs = self._gan_loss(self.wgan_gp_encoder, self.Discriminator_encoder_fn, D_z_pos, D_z_neg, self.pose_embs, self.G_pose_embs) # ## Use the pose to generate person with pretrained generator # with tf.variable_scope("Encoder") as vs: # pb_list = tf.split(self.part_bbox, self.part_num, axis=1) # pv_list = tf.split(self.part_vis, self.part_num, axis=1) # ## Part 1,1-7 (totally 7) # indices = range(7) # ## Part 1,8-16 (totally 10) # # indices = [1] + range(8,17) # # indices = [0] + range(7,16) # select_part_bbox = tf.concat([pb_list[i] for i in indices], axis=1) # select_part_vis = tf.cast(tf.concat([pv_list[i] for i in indices], axis=1), tf.float32) # # pdb.set_trace() # self.embs, _, _, _ = models.GeneratorCNN_ID_Encoder_BodyROIVis_FgBgFeaTwoBranch(self.x, self.mask_r6, select_part_bbox, select_part_vis, len(indices), 32, # self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # # self.embs, _, _ = models.GeneratorCNN_ID_Encoder_BodyROIVis(self.x, select_part_bbox, select_part_vis, len(indices), 32, # # self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, keep_part_prob=1.0, reuse=False) # # self.embs, _, self.Encoder_var = models.GeneratorCNN_ID_Encoder_BodyROI(self.x, self.part_bbox, 7, 32, # # self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) # self.embs_rep = tf.tile(tf.expand_dims(self.embs,-1), [1, 1, self.img_H*self.img_W]) # self.embs_rep = tf.reshape(self.embs_rep, [self.batch_size, -1, self.img_H, self.img_W]) # self.embs_rep = nchw_to_nhwc(self.embs_rep) # ## Use py code to get G_pose_inflated, so the op is out of the graph # self.G_pose_inflated = tf.placeholder(tf.float32, shape=G_pose.get_shape()) # with tf.variable_scope("ID_AE") as vs: # G, _, _ = self.Generator_fn( # self.embs_rep, self.G_pose_inflated, # self.channel, self.z_num, self.repeat_num-1, self.conv_hidden_num, self.data_format, activation_fn=tf.nn.relu, reuse=False) # self.G = denorm_img(G, self.data_format) self._define_loss_optim() self.summary_op = tf.summary.merge([ tf.summary.image("G_pose", self.G_pose), tf.summary.scalar("loss/g_loss_embs", self.g_loss_embs), tf.summary.scalar("loss/d_loss_embs", self.d_loss_embs), tf.summary.scalar("misc/d_lr", self.d_lr), tf.summary.scalar("misc/g_lr", self.g_lr), # tf.summary.histogram("distribution/pose_emb", self.pose_embs), # tf.summary.histogram("distribution/G_pose_embs", self.G_pose_embs), # tf.summary.histogram("distribution/app_emb", self.embs), ]) def _define_loss_optim(self): self.g_optim_embs, self.d_optim_embs, self.clip_disc_weights_embs = self._getOptimizer(self.wgan_gp_encoder, self.g_loss_embs, self.d_loss_embs, self.G_var_embs, self.D_var_embs) def train(self): x_fixed, x_target_fixed, pose_fixed, pose_target_fixed, pose_rcv_fixed, pose_rcv_target_fixed, mask_fixed, mask_target_fixed, \ part_bbox_fixed, part_bbox_target_fixed, part_vis_fixed, part_vis_target_fixed = self.get_image_from_loader() save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir)) save_image(x_target_fixed, '{}/x_target_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_fixed.png'.format(self.model_dir)) save_image((np.amax(pose_target_fixed, axis=-1, keepdims=True)+1.0)*127.5, '{}/pose_target_fixed.png'.format(self.model_dir)) save_image(mask_fixed, '{}/mask_fixed.png'.format(self.model_dir)) save_image(mask_target_fixed, '{}/mask_target_fixed.png'.format(self.model_dir)) for step in trange(self.start_step, self.max_step): # Use GAN for Pose Embedding if step>0: self.sess.run([self.g_optim_embs]) # Train critic if (self.wgan_gp_encoder.MODE == 'dcgan') or (self.wgan_gp_encoder.MODE == 'lsgan'): disc_ITERS = 1 else: disc_ITERS = self.wgan_gp_encoder.CRITIC_ITERS for i in xrange(disc_ITERS): self.sess.run([self.d_optim_embs]) if self.wgan_gp_encoder.MODE == 'wgan': self.sess.run(self.clip_disc_weights_embs) fetch_dict = {} if step % self.log_step == self.log_step-1: fetch_dict.update({ "summary": self.summary_op }) result = self.sess.run(fetch_dict) if step % self.log_step == self.log_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() if 0==step or 10==step or 200==step or step % (self.log_step * 3) == (self.log_step * 3)-1: x = process_image(x_fixed, 127.5, 127.5) x_target = process_image(x_target_fixed, 127.5, 127.5) self.generate(x, x_target, pose_fixed, part_bbox_fixed, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run([self.g_lr_update, self.d_lr_update]) if step % (self.log_step * 30) == (self.log_step * 30)-1: self.saver.save(self.sess, os.path.join(self.model_dir, 'model.ckpt'), global_step=step) def generate(self, x_fixed, x_target_fixed, pose_fixed, part_bbox_fixed, root_path=None, path=None, idx=None, save=True): G_pose_rcv, G_pose = self.sess.run([self.G_pose_rcv, self.G_pose]) G_pose_inflated = py_poseInflate(G_pose_rcv, is_normalized=True, radius=4, img_H=256, img_W=256) # G = self.sess.run(self.G, {self.x: x_fixed, self.G_pose_inflated: G_pose_inflated, self.part_bbox: part_bbox_fixed}) G_pose_inflated_img = np.tile(np.amax((G_pose_inflated+1)*127.5, axis=-1, keepdims=True), [1,1,1,3]) # ssim_G_x_list = [] # for i in xrange(G_pose.shape[0]): # G_gray = rgb2gray((G[i,:]).clip(min=0,max=255).astype(np.uint8)) # x_gray = rgb2gray(((x_fixed[i,:]+1)*127.5).clip(min=0,max=255).astype(np.uint8)) # ssim_G_x_list.append(ssim(G_gray, x_gray, data_range=x_gray.max() - x_gray.min(), multichannel=False)) # ssim_G_x_mean = np.mean(ssim_G_x_list) if path is None and save: # path = os.path.join(root_path, '{}_G_ssim{}.png'.format(idx,ssim_G_x_mean)) # save_image(G, path) # print("[*] Samples saved: {}".format(path)) path = os.path.join(root_path, '{}_G_pose.png'.format(idx)) save_image(G_pose, path) print("[*] Samples saved: {}".format(path)) path = os.path.join(root_path, '{}_G_pose_inflated.png'.format(idx)) save_image(G_pose_inflated_img, path) print("[*] Samples saved: {}".format(path)) return G_pose
59.751574
210
0.632776
4a20d93affcc8ad2ed570ef54764661ad5943e47
16,763
py
Python
original/fast_jtnn/chemutils.py
sehandev/JT-VAE
8e60eb560034bbc23d9989938d36b08a739edbb6
[ "MIT" ]
4
2021-03-31T08:15:54.000Z
2022-02-04T03:42:52.000Z
original/fast_jtnn/chemutils.py
sehandev/JT-VAE
8e60eb560034bbc23d9989938d36b08a739edbb6
[ "MIT" ]
1
2021-03-31T08:30:23.000Z
2021-03-31T08:30:23.000Z
original/fast_jtnn/chemutils.py
sehandev/JT-VAE
8e60eb560034bbc23d9989938d36b08a739edbb6
[ "MIT" ]
null
null
null
import rdkit import rdkit.Chem as Chem from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree from collections import defaultdict from rdkit.Chem.EnumerateStereoisomers import EnumerateStereoisomers, StereoEnumerationOptions from .vocab import Vocab MST_MAX_WEIGHT = 100 MAX_NCAND = 2000 def set_atommap(mol, num=0): for atom in mol.GetAtoms(): atom.SetAtomMapNum(num) def get_mol(smiles): mol = Chem.MolFromSmiles(smiles) if mol is None: return None Chem.Kekulize(mol) return mol def get_smiles(mol): return Chem.MolToSmiles(mol, kekuleSmiles=True) def decode_stereo(smiles2D): mol = Chem.MolFromSmiles(smiles2D) dec_isomers = list(EnumerateStereoisomers(mol)) dec_isomers = [Chem.MolFromSmiles(Chem.MolToSmiles(mol, isomericSmiles=True)) for mol in dec_isomers] smiles3D = [Chem.MolToSmiles(mol, isomericSmiles=True) for mol in dec_isomers] chiralN = [atom.GetIdx() for atom in dec_isomers[0].GetAtoms() if int(atom.GetChiralTag()) > 0 and atom.GetSymbol() == "N"] if len(chiralN) > 0: for mol in dec_isomers: for idx in chiralN: mol.GetAtomWithIdx(idx).SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED) smiles3D.append(Chem.MolToSmiles(mol, isomericSmiles=True)) return smiles3D def sanitize(mol): try: smiles = get_smiles(mol) mol = get_mol(smiles) except Exception as e: return None return mol def copy_atom(atom): new_atom = Chem.Atom(atom.GetSymbol()) new_atom.SetFormalCharge(atom.GetFormalCharge()) new_atom.SetAtomMapNum(atom.GetAtomMapNum()) return new_atom def copy_edit_mol(mol): new_mol = Chem.RWMol(Chem.MolFromSmiles('')) for atom in mol.GetAtoms(): new_atom = copy_atom(atom) new_mol.AddAtom(new_atom) for bond in mol.GetBonds(): a1 = bond.GetBeginAtom().GetIdx() a2 = bond.GetEndAtom().GetIdx() bt = bond.GetBondType() new_mol.AddBond(a1, a2, bt) return new_mol def get_clique_mol(mol, atoms): smiles = Chem.MolFragmentToSmiles(mol, atoms, kekuleSmiles=True) new_mol = Chem.MolFromSmiles(smiles, sanitize=False) new_mol = copy_edit_mol(new_mol).GetMol() new_mol = sanitize(new_mol) #We assume this is not None return new_mol def tree_decomp(mol): n_atoms = mol.GetNumAtoms() if n_atoms == 1: #special case return [[0]], [] cliques = [] for bond in mol.GetBonds(): a1 = bond.GetBeginAtom().GetIdx() a2 = bond.GetEndAtom().GetIdx() if not bond.IsInRing(): cliques.append([a1,a2]) ssr = [list(x) for x in Chem.GetSymmSSSR(mol)] cliques.extend(ssr) nei_list = [[] for i in range(n_atoms)] for i in range(len(cliques)): for atom in cliques[i]: nei_list[atom].append(i) #Merge Rings with intersection > 2 atoms for i in range(len(cliques)): if len(cliques[i]) <= 2: continue for atom in cliques[i]: for j in nei_list[atom]: if i >= j or len(cliques[j]) <= 2: continue inter = set(cliques[i]) & set(cliques[j]) if len(inter) > 2: cliques[i].extend(cliques[j]) cliques[i] = list(set(cliques[i])) cliques[j] = [] cliques = [c for c in cliques if len(c) > 0] nei_list = [[] for i in range(n_atoms)] for i in range(len(cliques)): for atom in cliques[i]: nei_list[atom].append(i) #Build edges and add singleton cliques edges = defaultdict(int) for atom in range(n_atoms): if len(nei_list[atom]) <= 1: continue cnei = nei_list[atom] bonds = [c for c in cnei if len(cliques[c]) == 2] rings = [c for c in cnei if len(cliques[c]) > 4] if len(bonds) > 2 or (len(bonds) == 2 and len(cnei) > 2): #In general, if len(cnei) >= 3, a singleton should be added, but 1 bond + 2 ring is currently not dealt with. cliques.append([atom]) c2 = len(cliques) - 1 for c1 in cnei: edges[(c1,c2)] = 1 elif len(rings) > 2: #Multiple (n>2) complex rings cliques.append([atom]) c2 = len(cliques) - 1 for c1 in cnei: edges[(c1,c2)] = MST_MAX_WEIGHT - 1 else: for i in range(len(cnei)): for j in range(i + 1, len(cnei)): c1,c2 = cnei[i],cnei[j] inter = set(cliques[c1]) & set(cliques[c2]) if edges[(c1,c2)] < len(inter): edges[(c1,c2)] = len(inter) #cnei[i] < cnei[j] by construction edges = [u + (MST_MAX_WEIGHT-v,) for u,v in edges.items()] if len(edges) == 0: return cliques, edges #Compute Maximum Spanning Tree row,col,data = list(zip(*edges)) n_clique = len(cliques) clique_graph = csr_matrix( (data,(row,col)), shape=(n_clique,n_clique) ) junc_tree = minimum_spanning_tree(clique_graph) row,col = junc_tree.nonzero() edges = [(row[i],col[i]) for i in range(len(row))] return (cliques, edges) def atom_equal(a1, a2): return a1.GetSymbol() == a2.GetSymbol() and a1.GetFormalCharge() == a2.GetFormalCharge() #Bond type not considered because all aromatic (so SINGLE matches DOUBLE) def ring_bond_equal(b1, b2, reverse=False): b1 = (b1.GetBeginAtom(), b1.GetEndAtom()) if reverse: b2 = (b2.GetEndAtom(), b2.GetBeginAtom()) else: b2 = (b2.GetBeginAtom(), b2.GetEndAtom()) return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1]) def attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap): prev_nids = [node.nid for node in prev_nodes] for nei_node in prev_nodes + neighbors: nei_id,nei_mol = nei_node.nid,nei_node.mol amap = nei_amap[nei_id] for atom in nei_mol.GetAtoms(): if atom.GetIdx() not in amap: new_atom = copy_atom(atom) amap[atom.GetIdx()] = ctr_mol.AddAtom(new_atom) if nei_mol.GetNumBonds() == 0: nei_atom = nei_mol.GetAtomWithIdx(0) ctr_atom = ctr_mol.GetAtomWithIdx(amap[0]) ctr_atom.SetAtomMapNum(nei_atom.GetAtomMapNum()) else: for bond in nei_mol.GetBonds(): a1 = amap[bond.GetBeginAtom().GetIdx()] a2 = amap[bond.GetEndAtom().GetIdx()] if ctr_mol.GetBondBetweenAtoms(a1, a2) is None: ctr_mol.AddBond(a1, a2, bond.GetBondType()) elif nei_id in prev_nids: #father node overrides ctr_mol.RemoveBond(a1, a2) ctr_mol.AddBond(a1, a2, bond.GetBondType()) return ctr_mol def local_attach(ctr_mol, neighbors, prev_nodes, amap_list): ctr_mol = copy_edit_mol(ctr_mol) nei_amap = {nei.nid:{} for nei in prev_nodes + neighbors} for nei_id,ctr_atom,nei_atom in amap_list: nei_amap[nei_id][nei_atom] = ctr_atom ctr_mol = attach_mols(ctr_mol, neighbors, prev_nodes, nei_amap) return ctr_mol.GetMol() #This version records idx mapping between ctr_mol and nei_mol def enum_attach(ctr_mol, nei_node, amap, singletons): nei_mol,nei_idx = nei_node.mol,nei_node.nid att_confs = [] black_list = [atom_idx for nei_id,atom_idx,_ in amap if nei_id in singletons] ctr_atoms = [atom for atom in ctr_mol.GetAtoms() if atom.GetIdx() not in black_list] ctr_bonds = [bond for bond in ctr_mol.GetBonds()] if nei_mol.GetNumBonds() == 0: #neighbor singleton nei_atom = nei_mol.GetAtomWithIdx(0) used_list = [atom_idx for _,atom_idx,_ in amap] for atom in ctr_atoms: if atom_equal(atom, nei_atom) and atom.GetIdx() not in used_list: new_amap = amap + [(nei_idx, atom.GetIdx(), 0)] att_confs.append( new_amap ) elif nei_mol.GetNumBonds() == 1: #neighbor is a bond bond = nei_mol.GetBondWithIdx(0) bond_val = int(bond.GetBondTypeAsDouble()) b1,b2 = bond.GetBeginAtom(), bond.GetEndAtom() for atom in ctr_atoms: #Optimize if atom is carbon (other atoms may change valence) if atom.GetAtomicNum() == 6 and atom.GetTotalNumHs() < bond_val: continue if atom_equal(atom, b1): new_amap = amap + [(nei_idx, atom.GetIdx(), b1.GetIdx())] att_confs.append( new_amap ) elif atom_equal(atom, b2): new_amap = amap + [(nei_idx, atom.GetIdx(), b2.GetIdx())] att_confs.append( new_amap ) else: #intersection is an atom for a1 in ctr_atoms: for a2 in nei_mol.GetAtoms(): if atom_equal(a1, a2): #Optimize if atom is carbon (other atoms may change valence) if a1.GetAtomicNum() == 6 and a1.GetTotalNumHs() + a2.GetTotalNumHs() < 4: continue new_amap = amap + [(nei_idx, a1.GetIdx(), a2.GetIdx())] att_confs.append( new_amap ) #intersection is an bond if ctr_mol.GetNumBonds() > 1: for b1 in ctr_bonds: for b2 in nei_mol.GetBonds(): if ring_bond_equal(b1, b2): new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetBeginAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetEndAtom().GetIdx())] att_confs.append( new_amap ) if ring_bond_equal(b1, b2, reverse=True): new_amap = amap + [(nei_idx, b1.GetBeginAtom().GetIdx(), b2.GetEndAtom().GetIdx()), (nei_idx, b1.GetEndAtom().GetIdx(), b2.GetBeginAtom().GetIdx())] att_confs.append( new_amap ) return att_confs #Try rings first: Speed-Up def enum_assemble(node, neighbors, prev_nodes=[], prev_amap=[]): all_attach_confs = [] singletons = [nei_node.nid for nei_node in neighbors + prev_nodes if nei_node.mol.GetNumAtoms() == 1] def search(cur_amap, depth): if len(all_attach_confs) > MAX_NCAND: return if depth == len(neighbors): all_attach_confs.append(cur_amap) return nei_node = neighbors[depth] cand_amap = enum_attach(node.mol, nei_node, cur_amap, singletons) cand_smiles = set() candidates = [] for amap in cand_amap: cand_mol = local_attach(node.mol, neighbors[:depth+1], prev_nodes, amap) cand_mol = sanitize(cand_mol) if cand_mol is None: continue smiles = get_smiles(cand_mol) if smiles in cand_smiles: continue cand_smiles.add(smiles) candidates.append(amap) if len(candidates) == 0: return for new_amap in candidates: search(new_amap, depth + 1) search(prev_amap, 0) cand_smiles = set() candidates = [] aroma_score = [] for amap in all_attach_confs: cand_mol = local_attach(node.mol, neighbors, prev_nodes, amap) cand_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cand_mol)) smiles = Chem.MolToSmiles(cand_mol) if smiles in cand_smiles or check_singleton(cand_mol, node, neighbors) == False: continue cand_smiles.add(smiles) candidates.append( (smiles,amap) ) aroma_score.append( check_aroma(cand_mol, node, neighbors) ) return candidates, aroma_score def check_singleton(cand_mol, ctr_node, nei_nodes): rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() > 2] singletons = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() == 1] if len(singletons) > 0 or len(rings) == 0: return True n_leaf2_atoms = 0 for atom in cand_mol.GetAtoms(): nei_leaf_atoms = [a for a in atom.GetNeighbors() if not a.IsInRing()] #a.GetDegree() == 1] if len(nei_leaf_atoms) > 1: n_leaf2_atoms += 1 return n_leaf2_atoms == 0 def check_aroma(cand_mol, ctr_node, nei_nodes): rings = [node for node in nei_nodes + [ctr_node] if node.mol.GetNumAtoms() >= 3] if len(rings) < 2: return 0 #Only multi-ring system needs to be checked get_nid = lambda x: 0 if x.is_leaf else x.nid benzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.benzynes] penzynes = [get_nid(node) for node in nei_nodes + [ctr_node] if node.smiles in Vocab.penzynes] if len(benzynes) + len(penzynes) == 0: return 0 #No specific aromatic rings n_aroma_atoms = 0 for atom in cand_mol.GetAtoms(): if atom.GetAtomMapNum() in benzynes+penzynes and atom.GetIsAromatic(): n_aroma_atoms += 1 if n_aroma_atoms >= len(benzynes) * 4 + len(penzynes) * 3: return 1000 else: return -0.001 #Only used for debugging purpose def dfs_assemble(cur_mol, global_amap, fa_amap, cur_node, fa_node): fa_nid = fa_node.nid if fa_node is not None else -1 prev_nodes = [fa_node] if fa_node is not None else [] children = [nei for nei in cur_node.neighbors if nei.nid != fa_nid] neighbors = [nei for nei in children if nei.mol.GetNumAtoms() > 1] neighbors = sorted(neighbors, key=lambda x:x.mol.GetNumAtoms(), reverse=True) singletons = [nei for nei in children if nei.mol.GetNumAtoms() == 1] neighbors = singletons + neighbors cur_amap = [(fa_nid,a2,a1) for nid,a1,a2 in fa_amap if nid == cur_node.nid] cands = enum_assemble(cur_node, neighbors, prev_nodes, cur_amap) cand_smiles,cand_amap = list(zip(*cands)) label_idx = cand_smiles.index(cur_node.label) label_amap = cand_amap[label_idx] for nei_id,ctr_atom,nei_atom in label_amap: if nei_id == fa_nid: continue global_amap[nei_id][nei_atom] = global_amap[cur_node.nid][ctr_atom] cur_mol = attach_mols(cur_mol, children, [], global_amap) #father is already attached for nei_node in children: if not nei_node.is_leaf: dfs_assemble(cur_mol, global_amap, label_amap, nei_node, cur_node) if __name__ == "__main__": import sys from .mol_tree import MolTree lg = rdkit.RDLogger.logger() lg.setLevel(rdkit.RDLogger.CRITICAL) smiles = ["O=C1[C@@H]2C=C[C@@H](C=CC2)C1(c1ccccc1)c1ccccc1","O=C([O-])CC[C@@]12CCCC[C@]1(O)OC(=O)CC2", "ON=C1C[C@H]2CC3(C[C@@H](C1)c1ccccc12)OCCO3", "C[C@H]1CC(=O)[C@H]2[C@@]3(O)C(=O)c4cccc(O)c4[C@@H]4O[C@@]43[C@@H](O)C[C@]2(O)C1", 'Cc1cc(NC(=O)CSc2nnc3c4ccccc4n(C)c3n2)ccc1Br', 'CC(C)(C)c1ccc(C(=O)N[C@H]2CCN3CCCc4cccc2c43)cc1', "O=c1c2ccc3c(=O)n(-c4nccs4)c(=O)c4ccc(c(=O)n1-c1nccs1)c2c34", "O=C(N1CCc2c(F)ccc(F)c2C1)C1(O)Cc2ccccc2C1"] def tree_test(): for s in sys.stdin: s = s.split()[0] tree = MolTree(s) print('-------------------------------------------') print(s) for node in tree.nodes: print(node.smiles, [x.smiles for x in node.neighbors]) def decode_test(): wrong = 0 for tot,s in enumerate(sys.stdin): s = s.split()[0] tree = MolTree(s) tree.recover() cur_mol = copy_edit_mol(tree.nodes[0].mol) global_amap = [{}] + [{} for node in tree.nodes] global_amap[1] = {atom.GetIdx():atom.GetIdx() for atom in cur_mol.GetAtoms()} dfs_assemble(cur_mol, global_amap, [], tree.nodes[0], None) cur_mol = cur_mol.GetMol() cur_mol = Chem.MolFromSmiles(Chem.MolToSmiles(cur_mol)) set_atommap(cur_mol) dec_smiles = Chem.MolToSmiles(cur_mol) gold_smiles = Chem.MolToSmiles(Chem.MolFromSmiles(s)) if gold_smiles != dec_smiles: print(gold_smiles, dec_smiles) wrong += 1 print(wrong, tot + 1) def enum_test(): for s in sys.stdin: s = s.split()[0] tree = MolTree(s) tree.recover() tree.assemble() for node in tree.nodes: if node.label not in node.cands: print(tree.smiles) print(node.smiles, [x.smiles for x in node.neighbors]) print(node.label, len(node.cands)) def count(): cnt,n = 0,0 for s in sys.stdin: s = s.split()[0] tree = MolTree(s) tree.recover() tree.assemble() for node in tree.nodes: cnt += len(node.cands) n += len(tree.nodes) #print cnt * 1.0 / n count()
38.983721
440
0.602756
4a20dac80ece721a7004f3f28f0b0aa53c85edf9
4,899
py
Python
client_code/Switch/__init__.py
jshaffstall/anvil-extras
521eec32a98cc038fea27379ff6c0ab024f31c7f
[ "MIT" ]
null
null
null
client_code/Switch/__init__.py
jshaffstall/anvil-extras
521eec32a98cc038fea27379ff6c0ab024f31c7f
[ "MIT" ]
null
null
null
client_code/Switch/__init__.py
jshaffstall/anvil-extras
521eec32a98cc038fea27379ff6c0ab024f31c7f
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # # Copyright (c) 2021 The Anvil Extras project team members listed at # https://github.com/anvilistas/anvil-extras/graphs/contributors # # This software is published at https://github.com/anvilistas/anvil-extras from anvil import CheckBox, app from anvil.js import get_dom_node as _get_dom_node from anvil.js.window import document as _document from ..utils._component_helpers import _get_rgb, _html_injector __version__ = "2.0.1" primary = app.theme_colors.get("Primary 500", "#2196F3") css = """ .switch, .switch * { -webkit-tap-highlight-color: transparent; -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } .switch label { cursor: pointer; } .switch label input[type=checkbox] { opacity: 0; width: 0; height: 0; } .switch label input[type=checkbox]:checked+.lever { background-color: rgba(var(--color), .5); } .switch label input[type=checkbox]:checked+.lever:after, .switch label input[type=checkbox]:checked+.lever:before { left: 18px; } .switch label input[type=checkbox]:checked+.lever:after { background-color: rgb(var(--color)); } .switch label .lever { content: ""; display: inline-block; position: relative; width: 36px; height: 14px; background-color: rgba(0,0,0,0.38); border-radius: 15px; margin-right: 10px; -webkit-transition: background 0.3s ease; transition: background 0.3s ease; vertical-align: middle; margin: 0 16px; } .switch label .lever:after, .switch label .lever:before { content: ""; position: absolute; display: inline-block; width: 20px; height: 20px; border-radius: 50%; left: 0; top: -3px; -webkit-transition: left 0.3s ease, background 0.3s ease, -webkit-box-shadow 0.1s ease, -webkit-transform 0.1s ease; transition: left 0.3s ease, background 0.3s ease, -webkit-box-shadow 0.1s ease, -webkit-transform 0.1s ease; transition: left 0.3s ease, background 0.3s ease, box-shadow 0.1s ease, transform 0.1s ease; transition: left 0.3s ease, background 0.3s ease, box-shadow 0.1s ease, transform 0.1s ease, -webkit-box-shadow 0.1s ease, -webkit-transform 0.1s ease; } .switch label .lever:before { background-color: rgb(var(--color), 0.15); } .switch label .lever:after { background-color: #F1F1F1; -webkit-box-shadow: 0 3px 1px -2px rgba(0,0,0,0.2),0px 2px 2px 0 rgba(0,0,0,0.14),0px 1px 5px 0 rgba(0,0,0,0.12); box-shadow: 0 3px 1px -2px rgba(0,0,0,0.2),0px 2px 2px 0 rgba(0,0,0,0.14),0px 1px 5px 0 rgba(0,0,0,0.12); } input[type=checkbox]:checked:not(:disabled) ~ .lever:active::before, input[type=checkbox]:checked:not(:disabled).tabbed:focus ~ .lever::before { -webkit-transform: scale(2.4); transform: scale(2.4); background-color: rgb(var(--color), 0.15); } input[type=checkbox]:not(:disabled) ~ .lever:active:before, input[type=checkbox]:not(:disabled).tabbed:focus ~ .lever::before { -webkit-transform: scale(2.4); transform: scale(2.4); background-color: rgba(0,0,0,0.08); } .switch input[type=checkbox][disabled]+.lever { cursor: default; background-color: rgba(0,0,0,0.12); } .switch label input[type=checkbox][disabled]+.lever:after, .switch label input[type=checkbox][disabled]:checked+.lever:after { background-color: #949494; } """ _html_injector.css(css) class Switch(CheckBox): def __init__(self, checked_color=primary, text_pre="", text_post="", **properties): dom_node = self._dom_node = _get_dom_node(self) dom_node.querySelector(".checkbox").classList.add("switch") span = dom_node.querySelector("span") span.classList.add("lever") span.removeAttribute("style") input = dom_node.querySelector("input") input.removeAttribute("style") input.style.marginTop = 0 label = dom_node.querySelector("label") label.style.padding = "7px 0" self._textnode_pre = _document.createTextNode(text_pre) self._textnode_post = _document.createTextNode(text_post) label.prepend(self._textnode_pre) label.append(self._textnode_post) self.checked_color = checked_color or primary @property def checked_color(self): return self._checked_color @checked_color.setter def checked_color(self, value): self._checked_color = value self._dom_node.style.setProperty("--color", _get_rgb(value)) @property def text_pre(self): return self._textnode_pre.textContent @text_pre.setter def text_pre(self, value): self._textnode_pre.textContent = value @property def text_post(self): return self._textnode_post.textContent @text_post.setter def text_post(self, value): self._textnode_post.textContent = value text = text_post # override the CheckBox property
30.61875
155
0.683609
4a20dafa46ccc66cd904c280fe20e96de1554d62
13,872
py
Python
samples/openapi3/client/petstore/python/petstore_api/model/dog.py
deleonio/openapi-generator
6eaba7d0886ff4d683d826ae8324270bacbd3233
[ "Apache-2.0" ]
3
2021-09-19T20:02:36.000Z
2021-12-15T13:11:39.000Z
samples/openapi3/client/petstore/python/petstore_api/model/dog.py
deleonio/openapi-generator
6eaba7d0886ff4d683d826ae8324270bacbd3233
[ "Apache-2.0" ]
29
2021-04-07T07:38:57.000Z
2022-03-30T12:10:22.000Z
samples/openapi3/client/petstore/python/petstore_api/model/dog.py
deleonio/openapi-generator
6eaba7d0886ff4d683d826ae8324270bacbd3233
[ "Apache-2.0" ]
1
2021-08-11T10:03:42.000Z
2021-08-11T10:03:42.000Z
""" OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from petstore_api.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from petstore_api.exceptions import ApiAttributeError def lazy_import(): from petstore_api.model.animal import Animal from petstore_api.model.dog_all_of import DogAllOf globals()['Animal'] = Animal globals()['DogAllOf'] = DogAllOf class Dog(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'class_name': (str,), # noqa: E501 'breed': (str,), # noqa: E501 'color': (str,), # noqa: E501 } @cached_property def discriminator(): val = { } if not val: return None return {'class_name': val} attribute_map = { 'class_name': 'className', # noqa: E501 'breed': 'breed', # noqa: E501 'color': 'color', # noqa: E501 } read_only_vars = { } @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """Dog - a model defined in OpenAPI Keyword Args: class_name (str): _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) breed (str): [optional] # noqa: E501 color (str): [optional] if omitted the server will use the default value of "red" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } composed_info = validate_get_composed_info( constant_args, kwargs, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] discarded_args = composed_info[3] for var_name, var_value in kwargs.items(): if var_name in discarded_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """Dog - a model defined in OpenAPI Keyword Args: class_name (str): _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) breed (str): [optional] # noqa: E501 color (str): [optional] if omitted the server will use the default value of "red" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } composed_info = validate_get_composed_info( constant_args, kwargs, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] discarded_args = composed_info[3] for var_name, var_value in kwargs.items(): if var_name in discarded_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.") @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ Animal, DogAllOf, ], 'oneOf': [ ], }
42.552147
174
0.578431
4a20db3424f66aad6eedebb00800e7a1c7b53d46
14,707
py
Python
scam/consensus/multiprocess_validation.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
12
2021-08-04T14:35:02.000Z
2022-02-09T04:31:44.000Z
scam/consensus/multiprocess_validation.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
8
2021-08-04T20:58:10.000Z
2021-09-11T17:08:28.000Z
scam/consensus/multiprocess_validation.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
4
2021-07-28T09:50:55.000Z
2022-03-15T08:43:53.000Z
import asyncio import logging import traceback from concurrent.futures.process import ProcessPoolExecutor from dataclasses import dataclass from typing import Dict, List, Optional, Sequence, Tuple, Union, Callable from scam.consensus.block_header_validation import validate_finished_header_block from scam.consensus.block_record import BlockRecord from scam.consensus.blockchain_interface import BlockchainInterface from scam.consensus.constants import ConsensusConstants from scam.consensus.cost_calculator import NPCResult from scam.consensus.difficulty_adjustment import get_next_sub_slot_iters_and_difficulty from scam.consensus.full_block_to_block_record import block_to_block_record from scam.consensus.get_block_challenge import get_block_challenge from scam.consensus.pot_iterations import calculate_iterations_quality, is_overflow_block from scam.full_node.mempool_check_conditions import get_name_puzzle_conditions from scam.types.blockchain_format.coin import Coin from scam.types.blockchain_format.sized_bytes import bytes32 from scam.types.blockchain_format.sub_epoch_summary import SubEpochSummary from scam.types.full_block import FullBlock from scam.types.generator_types import BlockGenerator from scam.types.header_block import HeaderBlock from scam.util.block_cache import BlockCache from scam.util.errors import Err from scam.util.generator_tools import get_block_header, tx_removals_and_additions from scam.util.ints import uint16, uint64, uint32 from scam.util.streamable import Streamable, dataclass_from_dict, streamable log = logging.getLogger(__name__) @dataclass(frozen=True) @streamable class PreValidationResult(Streamable): error: Optional[uint16] required_iters: Optional[uint64] # Iff error is None npc_result: Optional[NPCResult] # Iff error is None and block is a transaction block def batch_pre_validate_blocks( constants_dict: Dict, blocks_pickled: Dict[bytes, bytes], full_blocks_pickled: Optional[List[bytes]], header_blocks_pickled: Optional[List[bytes]], prev_transaction_generators: List[Optional[bytes]], npc_results: Dict[uint32, bytes], check_filter: bool, expected_difficulty: List[uint64], expected_sub_slot_iters: List[uint64], ) -> List[bytes]: blocks = {} for k, v in blocks_pickled.items(): blocks[k] = BlockRecord.from_bytes(v) results: List[PreValidationResult] = [] constants: ConsensusConstants = dataclass_from_dict(ConsensusConstants, constants_dict) if full_blocks_pickled is not None and header_blocks_pickled is not None: assert ValueError("Only one should be passed here") if full_blocks_pickled is not None: for i in range(len(full_blocks_pickled)): try: block: FullBlock = FullBlock.from_bytes(full_blocks_pickled[i]) tx_additions: List[Coin] = [] removals: List[bytes32] = [] npc_result: Optional[NPCResult] = None if block.height in npc_results: npc_result = NPCResult.from_bytes(npc_results[block.height]) assert npc_result is not None if npc_result.npc_list is not None: removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) else: removals, tx_additions = [], [] if block.transactions_generator is not None and npc_result is None: prev_generator_bytes = prev_transaction_generators[i] assert prev_generator_bytes is not None assert block.transactions_info is not None block_generator: BlockGenerator = BlockGenerator.from_bytes(prev_generator_bytes) assert block_generator.program == block.transactions_generator npc_result = get_name_puzzle_conditions( block_generator, min(constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), cost_per_byte=constants.COST_PER_BYTE, safe_mode=True, ) removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) header_block = get_block_header(block, tx_additions, removals) required_iters, error = validate_finished_header_block( constants, BlockCache(blocks), header_block, check_filter, expected_difficulty[i], expected_sub_slot_iters[i], ) error_int: Optional[uint16] = None if error is not None: error_int = uint16(error.code.value) results.append(PreValidationResult(error_int, required_iters, npc_result)) except Exception: error_stack = traceback.format_exc() log.error(f"Exception: {error_stack}") results.append(PreValidationResult(uint16(Err.UNKNOWN.value), None, None)) elif header_blocks_pickled is not None: for i in range(len(header_blocks_pickled)): try: header_block = HeaderBlock.from_bytes(header_blocks_pickled[i]) required_iters, error = validate_finished_header_block( constants, BlockCache(blocks), header_block, check_filter, expected_difficulty[i], expected_sub_slot_iters[i], ) error_int = None if error is not None: error_int = uint16(error.code.value) results.append(PreValidationResult(error_int, required_iters, None)) except Exception: error_stack = traceback.format_exc() log.error(f"Exception: {error_stack}") results.append(PreValidationResult(uint16(Err.UNKNOWN.value), None, None)) return [bytes(r) for r in results] async def pre_validate_blocks_multiprocessing( constants: ConsensusConstants, constants_json: Dict, block_records: BlockchainInterface, blocks: Sequence[Union[FullBlock, HeaderBlock]], pool: ProcessPoolExecutor, check_filter: bool, npc_results: Dict[uint32, NPCResult], get_block_generator: Optional[Callable], batch_size: int, wp_summaries: Optional[List[SubEpochSummary]] = None, ) -> Optional[List[PreValidationResult]]: """ This method must be called under the blockchain lock If all the full blocks pass pre-validation, (only validates header), returns the list of required iters. if any validation issue occurs, returns False. Args: check_filter: constants_json: pool: constants: block_records: blocks: list of full blocks to validate (must be connected to current chain) npc_results get_block_generator """ prev_b: Optional[BlockRecord] = None # Collects all the recent blocks (up to the previous sub-epoch) recent_blocks: Dict[bytes32, BlockRecord] = {} recent_blocks_compressed: Dict[bytes32, BlockRecord] = {} num_sub_slots_found = 0 num_blocks_seen = 0 if blocks[0].height > 0: if not block_records.contains_block(blocks[0].prev_header_hash): return [PreValidationResult(uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None)] curr = block_records.block_record(blocks[0].prev_header_hash) num_sub_slots_to_look_for = 3 if curr.overflow else 2 while ( curr.sub_epoch_summary_included is None or num_blocks_seen < constants.NUMBER_OF_TIMESTAMPS or num_sub_slots_found < num_sub_slots_to_look_for ) and curr.height > 0: if num_blocks_seen < constants.NUMBER_OF_TIMESTAMPS or num_sub_slots_found < num_sub_slots_to_look_for: recent_blocks_compressed[curr.header_hash] = curr if curr.first_in_sub_slot: assert curr.finished_challenge_slot_hashes is not None num_sub_slots_found += len(curr.finished_challenge_slot_hashes) recent_blocks[curr.header_hash] = curr if curr.is_transaction_block: num_blocks_seen += 1 curr = block_records.block_record(curr.prev_hash) recent_blocks[curr.header_hash] = curr recent_blocks_compressed[curr.header_hash] = curr block_record_was_present = [] for block in blocks: block_record_was_present.append(block_records.contains_block(block.header_hash)) diff_ssis: List[Tuple[uint64, uint64]] = [] for block in blocks: if block.height != 0: assert block_records.contains_block(block.prev_header_hash) if prev_b is None: prev_b = block_records.block_record(block.prev_header_hash) sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty( constants, len(block.finished_sub_slots) > 0, prev_b, block_records ) overflow = is_overflow_block(constants, block.reward_chain_block.signage_point_index) challenge = get_block_challenge(constants, block, BlockCache(recent_blocks), prev_b is None, overflow, False) if block.reward_chain_block.challenge_chain_sp_vdf is None: cc_sp_hash: bytes32 = challenge else: cc_sp_hash = block.reward_chain_block.challenge_chain_sp_vdf.output.get_hash() q_str: Optional[bytes32] = block.reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, challenge, cc_sp_hash ) if q_str is None: for i, block_i in enumerate(blocks): if not block_record_was_present[i] and block_records.contains_block(block_i.header_hash): block_records.remove_block_record(block_i.header_hash) return None required_iters: uint64 = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, q_str, block.reward_chain_block.proof_of_space.size, difficulty, cc_sp_hash, ) block_rec = block_to_block_record( constants, block_records, required_iters, block, None, ) if block_rec.sub_epoch_summary_included is not None and wp_summaries is not None: idx = int(block.height / constants.SUB_EPOCH_BLOCKS) - 1 next_ses = wp_summaries[idx] if not block_rec.sub_epoch_summary_included.get_hash() == next_ses.get_hash(): log.error("sub_epoch_summary does not match wp sub_epoch_summary list") return None # Makes sure to not override the valid blocks already in block_records if not block_records.contains_block(block_rec.header_hash): block_records.add_block_record(block_rec) # Temporarily add block to dict recent_blocks[block_rec.header_hash] = block_rec recent_blocks_compressed[block_rec.header_hash] = block_rec else: recent_blocks[block_rec.header_hash] = block_records.block_record(block_rec.header_hash) recent_blocks_compressed[block_rec.header_hash] = block_records.block_record(block_rec.header_hash) prev_b = block_rec diff_ssis.append((difficulty, sub_slot_iters)) block_dict: Dict[bytes32, Union[FullBlock, HeaderBlock]] = {} for i, block in enumerate(blocks): block_dict[block.header_hash] = block if not block_record_was_present[i]: block_records.remove_block_record(block.header_hash) recent_sb_compressed_pickled = {bytes(k): bytes(v) for k, v in recent_blocks_compressed.items()} npc_results_pickled = {} for k, v in npc_results.items(): npc_results_pickled[k] = bytes(v) futures = [] # Pool of workers to validate blocks concurrently for i in range(0, len(blocks), batch_size): end_i = min(i + batch_size, len(blocks)) blocks_to_validate = blocks[i:end_i] if any([len(block.finished_sub_slots) > 0 for block in blocks_to_validate]): final_pickled = {bytes(k): bytes(v) for k, v in recent_blocks.items()} else: final_pickled = recent_sb_compressed_pickled b_pickled: Optional[List[bytes]] = None hb_pickled: Optional[List[bytes]] = None previous_generators: List[Optional[bytes]] = [] for block in blocks_to_validate: # We ONLY add blocks which are in the past, based on header hashes (which are validated later) to the # prev blocks dict. This is important since these blocks are assumed to be valid and are used as previous # generator references prev_blocks_dict: Dict[uint32, Union[FullBlock, HeaderBlock]] = {} curr_b: Union[FullBlock, HeaderBlock] = block while curr_b.prev_header_hash in block_dict: curr_b = block_dict[curr_b.prev_header_hash] prev_blocks_dict[curr_b.header_hash] = curr_b if isinstance(block, FullBlock): assert get_block_generator is not None if b_pickled is None: b_pickled = [] b_pickled.append(bytes(block)) try: block_generator: Optional[BlockGenerator] = await get_block_generator(block, prev_blocks_dict) except ValueError: return None if block_generator is not None: previous_generators.append(bytes(block_generator)) else: previous_generators.append(None) else: if hb_pickled is None: hb_pickled = [] hb_pickled.append(bytes(block)) futures.append( asyncio.get_running_loop().run_in_executor( pool, batch_pre_validate_blocks, constants_json, final_pickled, b_pickled, hb_pickled, previous_generators, npc_results_pickled, check_filter, [diff_ssis[j][0] for j in range(i, end_i)], [diff_ssis[j][1] for j in range(i, end_i)], ) ) # Collect all results into one flat list return [ PreValidationResult.from_bytes(result) for batch_result in (await asyncio.gather(*futures)) for result in batch_result ]
46.103448
117
0.659346
4a20db9677114435c75ffa5bb36e4ff4e39ccc8b
33,553
py
Python
python/ccxt/bithumb.py
nagabrahmam-mantha/ccxt
b7ec0c03b935a63064b8b73226b39f1099933969
[ "MIT" ]
3
2020-03-04T06:38:18.000Z
2022-01-23T13:40:12.000Z
python/ccxt/bithumb.py
nagabrahmam-mantha/ccxt
b7ec0c03b935a63064b8b73226b39f1099933969
[ "MIT" ]
null
null
null
python/ccxt/bithumb.py
nagabrahmam-mantha/ccxt
b7ec0c03b935a63064b8b73226b39f1099933969
[ "MIT" ]
1
2022-03-01T07:02:42.000Z
2022-03-01T07:02:42.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import DECIMAL_PLACES from ccxt.base.decimal_to_precision import SIGNIFICANT_DIGITS class bithumb(Exchange): def describe(self): return self.deep_extend(super(bithumb, self).describe(), { 'id': 'bithumb', 'name': 'Bithumb', 'countries': ['KR'], # South Korea 'rateLimit': 500, 'has': { 'cancelOrder': True, 'CORS': True, 'createMarketOrder': True, 'createOrder': True, 'fetchBalance': True, 'fetchIndexOHLCV': False, 'fetchMarkets': True, 'fetchMarkOHLCV': False, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTrades': True, 'withdraw': True, }, 'hostname': 'bithumb.com', 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/30597177-ea800172-9d5e-11e7-804c-b9d4fa9b56b0.jpg', 'api': { 'public': 'https://api.{hostname}/public', 'private': 'https://api.{hostname}', }, 'www': 'https://www.bithumb.com', 'doc': 'https://apidocs.bithumb.com', 'fees': 'https://en.bithumb.com/customer_support/info_fee', }, 'api': { 'public': { 'get': [ 'ticker/{currency}', 'ticker/all', 'ticker/ALL_BTC', 'ticker/ALL_KRW', 'orderbook/{currency}', 'orderbook/all', 'transaction_history/{currency}', 'transaction_history/all', 'candlestick/{currency}/{interval}', ], }, 'private': { 'post': [ 'info/account', 'info/balance', 'info/wallet_address', 'info/ticker', 'info/orders', 'info/user_transactions', 'info/order_detail', 'trade/place', 'trade/cancel', 'trade/btc_withdrawal', 'trade/krw_deposit', 'trade/krw_withdrawal', 'trade/market_buy', 'trade/market_sell', ], }, }, 'fees': { 'trading': { 'maker': self.parse_number('0.0025'), 'taker': self.parse_number('0.0025'), }, }, 'precisionMode': SIGNIFICANT_DIGITS, 'exceptions': { 'Bad Request(SSL)': BadRequest, 'Bad Request(Bad Method)': BadRequest, 'Bad Request.(Auth Data)': AuthenticationError, # {"status": "5100", "message": "Bad Request.(Auth Data)"} 'Not Member': AuthenticationError, 'Invalid Apikey': AuthenticationError, # {"status":"5300","message":"Invalid Apikey"} 'Method Not Allowed.(Access IP)': PermissionDenied, 'Method Not Allowed.(BTC Adress)': InvalidAddress, 'Method Not Allowed.(Access)': PermissionDenied, 'Database Fail': ExchangeNotAvailable, 'Invalid Parameter': BadRequest, '5600': ExchangeError, 'Unknown Error': ExchangeError, 'After May 23th, recent_transactions is no longer, hence users will not be able to connect to recent_transactions': ExchangeError, # {"status":"5100","message":"After May 23th, recent_transactions is no longer, hence users will not be able to connect to recent_transactions"} }, 'timeframes': { '1m': '1m', '3m': '3m', '5m': '5m', '10m': '10m', '30m': '30m', '1h': '1h', '6h': '6h', '12h': '12h', '1d': '24h', }, 'options': { 'quoteCurrencies': { 'BTC': { 'limits': { 'cost': { 'min': 0.0002, 'max': 100, }, }, }, 'KRW': { 'limits': { 'cost': { 'min': 500, 'max': 5000000000, }, }, }, }, }, 'commonCurrencies': { 'FTC': 'FTC2', 'MIR': 'MIR COIN', 'SOC': 'Soda Coin', }, }) def amount_to_precision(self, symbol, amount): return self.decimal_to_precision(amount, TRUNCATE, self.markets[symbol]['precision']['amount'], DECIMAL_PLACES) def fetch_markets(self, params={}): result = [] quoteCurrencies = self.safe_value(self.options, 'quoteCurrencies', {}) quotes = list(quoteCurrencies.keys()) for i in range(0, len(quotes)): quote = quotes[i] extension = self.safe_value(quoteCurrencies, quote, {}) method = 'publicGetTickerALL' + quote response = getattr(self, method)(params) data = self.safe_value(response, 'data') currencyIds = list(data.keys()) for j in range(0, len(currencyIds)): currencyId = currencyIds[j] if currencyId == 'date': continue market = data[currencyId] base = self.safe_currency_code(currencyId) symbol = currencyId + '/' + quote active = True if isinstance(market, list): numElements = len(market) if numElements == 0: active = False entry = self.deep_extend({ 'id': currencyId, 'symbol': symbol, 'base': base, 'quote': quote, 'info': market, 'type': 'spot', 'spot': True, 'active': active, 'precision': { 'amount': 4, 'price': 4, }, 'limits': { 'amount': { 'min': None, 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': {}, # set via options }, 'baseId': None, 'quoteId': None, }, extension) result.append(entry) return result def fetch_balance(self, params={}): self.load_markets() request = { 'currency': 'ALL', } response = self.privatePostInfoBalance(self.extend(request, params)) result = {'info': response} balances = self.safe_value(response, 'data') codes = list(self.currencies.keys()) for i in range(0, len(codes)): code = codes[i] account = self.account() currency = self.currency(code) lowerCurrencyId = self.safe_string_lower(currency, 'id') account['total'] = self.safe_string(balances, 'total_' + lowerCurrencyId) account['used'] = self.safe_string(balances, 'in_use_' + lowerCurrencyId) account['free'] = self.safe_string(balances, 'available_' + lowerCurrencyId) result[code] = account return self.parse_balance(result) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'currency': market['base'] + '_' + market['quote'], } if limit is not None: request['count'] = limit # default 30, max 30 response = self.publicGetOrderbookCurrency(self.extend(request, params)) # # { # "status":"0000", # "data":{ # "timestamp":"1587621553942", # "payment_currency":"KRW", # "order_currency":"BTC", # "bids":[ # {"price":"8652000","quantity":"0.0043"}, # {"price":"8651000","quantity":"0.0049"}, # {"price":"8650000","quantity":"8.4791"}, # ], # "asks":[ # {"price":"8654000","quantity":"0.119"}, # {"price":"8655000","quantity":"0.254"}, # {"price":"8658000","quantity":"0.119"}, # ] # } # } # data = self.safe_value(response, 'data', {}) timestamp = self.safe_integer(data, 'timestamp') return self.parse_order_book(data, symbol, timestamp, 'bids', 'asks', 'price', 'quantity') def parse_ticker(self, ticker, market=None): # # fetchTicker, fetchTickers # # { # "opening_price":"227100", # "closing_price":"228400", # "min_price":"222300", # "max_price":"230000", # "units_traded":"82618.56075337", # "acc_trade_value":"18767376138.6031", # "prev_closing_price":"227100", # "units_traded_24H":"151871.13484676", # "acc_trade_value_24H":"34247610416.8974", # "fluctate_24H":"8700", # "fluctate_rate_24H":"3.96", # "date":"1587710327264", # fetchTickers inject self # } # timestamp = self.safe_integer(ticker, 'date') symbol = self.safe_symbol(None, market) open = self.safe_number(ticker, 'opening_price') close = self.safe_number(ticker, 'closing_price') baseVolume = self.safe_number(ticker, 'units_traded_24H') quoteVolume = self.safe_number(ticker, 'acc_trade_value_24H') vwap = self.vwap(baseVolume, quoteVolume) return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'max_price'), 'low': self.safe_number(ticker, 'min_price'), 'bid': self.safe_number(ticker, 'buy_price'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'sell_price'), 'askVolume': None, 'vwap': vwap, 'open': open, 'close': close, 'last': close, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, }, market) def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.publicGetTickerAll(params) # # { # "status":"0000", # "data":{ # "BTC":{ # "opening_price":"9045000", # "closing_price":"9132000", # "min_price":"8938000", # "max_price":"9168000", # "units_traded":"4619.79967497", # "acc_trade_value":"42021363832.5187", # "prev_closing_price":"9041000", # "units_traded_24H":"8793.5045804", # "acc_trade_value_24H":"78933458515.4962", # "fluctate_24H":"530000", # "fluctate_rate_24H":"6.16" # }, # "date":"1587710878669" # } # } # result = {} data = self.safe_value(response, 'data', {}) timestamp = self.safe_integer(data, 'date') tickers = self.omit(data, 'date') ids = list(tickers.keys()) for i in range(0, len(ids)): id = ids[i] symbol = id market = None if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] ticker = tickers[id] isArray = isinstance(ticker, list) if not isArray: ticker['date'] = timestamp result[symbol] = self.parse_ticker(ticker, market) return self.filter_by_array(result, 'symbol', symbols) def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'currency': market['base'], } response = self.publicGetTickerCurrency(self.extend(request, params)) # # { # "status":"0000", # "data":{ # "opening_price":"227100", # "closing_price":"228400", # "min_price":"222300", # "max_price":"230000", # "units_traded":"82618.56075337", # "acc_trade_value":"18767376138.6031", # "prev_closing_price":"227100", # "units_traded_24H":"151871.13484676", # "acc_trade_value_24H":"34247610416.8974", # "fluctate_24H":"8700", # "fluctate_rate_24H":"3.96", # "date":"1587710327264" # } # } # data = self.safe_value(response, 'data', {}) return self.parse_ticker(data, market) def parse_ohlcv(self, ohlcv, market=None): # # [ # 1576823400000, # 기준 시간 # '8284000', # 시가 # '8286000', # 종가 # '8289000', # 고가 # '8276000', # 저가 # '15.41503692' # 거래량 # ] # return [ self.safe_integer(ohlcv, 0), self.safe_number(ohlcv, 1), self.safe_number(ohlcv, 3), self.safe_number(ohlcv, 4), self.safe_number(ohlcv, 2), self.safe_number(ohlcv, 5), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'currency': market['base'], 'interval': self.timeframes[timeframe], } response = self.publicGetCandlestickCurrencyInterval(self.extend(request, params)) # # { # 'status': '0000', # 'data': { # [ # 1576823400000, # 기준 시간 # '8284000', # 시가 # '8286000', # 종가 # '8289000', # 고가 # '8276000', # 저가 # '15.41503692' # 거래량 # ], # [ # 1576824000000, # 기준 시간 # '8284000', # 시가 # '8281000', # 종가 # '8289000', # 고가 # '8275000', # 저가 # '6.19584467' # 거래량 # ], # } # } # data = self.safe_value(response, 'data', []) return self.parse_ohlcvs(data, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "transaction_date":"2020-04-23 22:21:46", # "type":"ask", # "units_traded":"0.0125", # "price":"8667000", # "total":"108337" # } # # fetchOrder(private) # # { # "transaction_date": "1572497603902030", # "price": "8601000", # "units": "0.005", # "fee_currency": "KRW", # "fee": "107.51", # "total": "43005" # } # # a workaround for their bug in date format, hours are not 0-padded timestamp = None transactionDatetime = self.safe_string(trade, 'transaction_date') if transactionDatetime is not None: parts = transactionDatetime.split(' ') numParts = len(parts) if numParts > 1: transactionDate = parts[0] transactionTime = parts[1] if len(transactionTime) < 8: transactionTime = '0' + transactionTime timestamp = self.parse8601(transactionDate + ' ' + transactionTime) else: timestamp = self.safe_integer_product(trade, 'transaction_date', 0.001) if timestamp is not None: timestamp -= 9 * 3600000 # they report UTC + 9 hours, server in Korean timezone type = None side = self.safe_string(trade, 'type') side = 'sell' if (side == 'ask') else 'buy' id = self.safe_string(trade, 'cont_no') symbol = None if market is not None: symbol = market['symbol'] priceString = self.safe_string(trade, 'price') amountString = self.safe_string_2(trade, 'units_traded', 'units') costString = self.safe_string(trade, 'total') fee = None feeCostString = self.safe_string(trade, 'fee') if feeCostString is not None: feeCurrencyId = self.safe_string(trade, 'fee_currency') feeCurrencyCode = self.common_currency_code(feeCurrencyId) fee = { 'cost': feeCostString, 'currency': feeCurrencyCode, } return self.safe_trade({ 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': None, 'type': type, 'side': side, 'takerOrMaker': None, 'price': priceString, 'amount': amountString, 'cost': costString, 'fee': fee, }, market) def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'currency': market['base'], } if limit is None: request['count'] = limit # default 20, max 100 response = self.publicGetTransactionHistoryCurrency(self.extend(request, params)) # # { # "status":"0000", # "data":[ # { # "transaction_date":"2020-04-23 22:21:46", # "type":"ask", # "units_traded":"0.0125", # "price":"8667000", # "total":"108337" # }, # ] # } # data = self.safe_value(response, 'data', []) return self.parse_trades(data, market, since, limit) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) request = { 'order_currency': market['id'], 'payment_currency': market['quote'], 'units': amount, } method = 'privatePostTradePlace' if type == 'limit': request['price'] = price request['type'] = 'bid' if (side == 'buy') else 'ask' else: method = 'privatePostTradeMarket' + self.capitalize(side) response = getattr(self, method)(self.extend(request, params)) id = self.safe_string(response, 'order_id') if id is None: raise InvalidOrder(self.id + ' createOrder() did not return an order id') return { 'info': response, 'symbol': symbol, 'type': type, 'side': side, 'id': id, } def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'order_id': id, 'count': 1, 'order_currency': market['base'], 'payment_currency': market['quote'], } response = self.privatePostInfoOrderDetail(self.extend(request, params)) # # { # "status": "0000", # "data": { # order_date: '1603161798539254', # type: 'ask', # order_status: 'Cancel', # order_currency: 'BTC', # payment_currency: 'KRW', # watch_price: '0', # order_price: '13344000', # order_qty: '0.0125', # cancel_date: '1603161803809993', # cancel_type: '사용자취소', # contract: [ # { # transaction_date: '1603161799976383', # price: '13344000', # units: '0.0015', # fee_currency: 'KRW', # fee: '0', # total: '20016' # } # ], # } # } # data = self.safe_value(response, 'data') return self.parse_order(self.extend(data, {'order_id': id}), market) def parse_order_status(self, status): statuses = { 'Pending': 'open', 'Completed': 'closed', 'Cancel': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # # fetchOrder # # { # "transaction_date": "1572497603668315", # "type": "bid", # "order_status": "Completed", # "order_currency": "BTC", # "payment_currency": "KRW", # "order_price": "8601000", # "order_qty": "0.007", # "cancel_date": "", # "cancel_type": "", # "contract": [ # { # "transaction_date": "1572497603902030", # "price": "8601000", # "units": "0.005", # "fee_currency": "KRW", # "fee": "107.51", # "total": "43005" # }, # ] # } # # { # order_date: '1603161798539254', # type: 'ask', # order_status: 'Cancel', # order_currency: 'BTC', # payment_currency: 'KRW', # watch_price: '0', # order_price: '13344000', # order_qty: '0.0125', # cancel_date: '1603161803809993', # cancel_type: '사용자취소', # contract: [ # { # transaction_date: '1603161799976383', # price: '13344000', # units: '0.0015', # fee_currency: 'KRW', # fee: '0', # total: '20016' # } # ], # } # # fetchOpenOrders # # { # "order_currency": "BTC", # "payment_currency": "KRW", # "order_id": "C0101000007408440032", # "order_date": "1571728739360570", # "type": "bid", # "units": "5.0", # "units_remaining": "5.0", # "price": "501000", # } # timestamp = self.safe_integer_product(order, 'order_date', 0.001) sideProperty = self.safe_value_2(order, 'type', 'side') side = 'buy' if (sideProperty == 'bid') else 'sell' status = self.parse_order_status(self.safe_string(order, 'order_status')) price = self.safe_number_2(order, 'order_price', 'price') type = 'limit' if price == 0: price = None type = 'market' amount = self.safe_number_2(order, 'order_qty', 'units') remaining = self.safe_number(order, 'units_remaining') if remaining is None: if status == 'closed': remaining = 0 elif status != 'canceled': remaining = amount symbol = None baseId = self.safe_string(order, 'order_currency') quoteId = self.safe_string(order, 'payment_currency') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) if (base is not None) and (quote is not None): symbol = base + '/' + quote if (symbol is None) and (market is not None): symbol = market['symbol'] id = self.safe_string(order, 'order_id') rawTrades = self.safe_value(order, 'contract', []) trades = self.parse_trades(rawTrades, market, None, None, { 'side': side, 'symbol': symbol, 'order': id, }) return self.safe_order({ 'info': order, 'id': id, 'clientOrderId': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': None, 'postOnly': None, 'side': side, 'price': price, 'stopPrice': None, 'amount': amount, 'cost': None, 'average': None, 'filled': None, 'remaining': remaining, 'status': status, 'fee': None, 'trades': trades, }) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOpenOrders() requires a symbol argument') self.load_markets() market = self.market(symbol) if limit is None: limit = 100 request = { 'count': limit, 'order_currency': market['base'], 'payment_currency': market['quote'], } if since is not None: request['after'] = since response = self.privatePostInfoOrders(self.extend(request, params)) # # { # "status": "0000", # "data": [ # { # "order_currency": "BTC", # "payment_currency": "KRW", # "order_id": "C0101000007408440032", # "order_date": "1571728739360570", # "type": "bid", # "units": "5.0", # "units_remaining": "5.0", # "price": "501000", # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_orders(data, market, since, limit) def cancel_order(self, id, symbol=None, params={}): side_in_params = ('side' in params) if not side_in_params: raise ArgumentsRequired(self.id + ' cancelOrder() requires a `side` parameter(sell or buy)') if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a `symbol` argument') market = self.market(symbol) side = 'bid' if (params['side'] == 'buy') else 'ask' params = self.omit(params, ['side', 'currency']) # https://github.com/ccxt/ccxt/issues/6771 request = { 'order_id': id, 'type': side, 'order_currency': market['base'], 'payment_currency': market['quote'], } return self.privatePostTradeCancel(self.extend(request, params)) def cancel_unified_order(self, order, params={}): request = { 'side': order['side'], } return self.cancel_order(order['id'], order['symbol'], self.extend(request, params)) def withdraw(self, code, amount, address, tag=None, params={}): tag, params = self.handle_withdraw_tag_and_params(tag, params) self.check_address(address) self.load_markets() currency = self.currency(code) request = { 'units': amount, 'address': address, 'currency': currency['id'], } if currency == 'XRP' or currency == 'XMR' or currency == 'EOS' or currency == 'STEEM': destination = self.safe_string(params, 'destination') if (tag is None) and (destination is None): raise ArgumentsRequired(self.id + ' ' + code + ' withdraw() requires a tag argument or an extra destination param') elif tag is not None: request['destination'] = tag response = self.privatePostTradeBtcWithdrawal(self.extend(request, params)) return { 'info': response, 'id': None, } def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): endpoint = '/' + self.implode_params(path, params) url = self.implode_hostname(self.urls['api'][api]) + endpoint query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() body = self.urlencode(self.extend({ 'endpoint': endpoint, }, query)) nonce = str(self.nonce()) auth = endpoint + "\0" + body + "\0" + nonce # eslint-disable-line quotes signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha512) signature64 = self.decode(self.string_to_base64(signature)) headers = { 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded', 'Api-Key': self.apiKey, 'Api-Sign': signature64, 'Api-Nonce': nonce, } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'status' in response: # # {"status":"5100","message":"After May 23th, recent_transactions is no longer, hence users will not be able to connect to recent_transactions"} # status = self.safe_string(response, 'status') message = self.safe_string(response, 'message') if status is not None: if status == '0000': return # no error elif message == '거래 진행중인 내역이 존재하지 않습니다': # https://github.com/ccxt/ccxt/issues/9017 return # no error feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions, status, feedback) self.throw_exactly_matched_exception(self.exceptions, message, feedback) raise ExchangeError(feedback)
39.106061
292
0.458588
4a20dba65542f6d6e552a94371287171f2fc6491
745
py
Python
valleydeight/object_types.py
benkrikler/valedictory
36968f4da5bb5a6c4e85bd7f02fdc32db08e9579
[ "MIT" ]
1
2019-02-22T17:12:48.000Z
2019-02-22T17:12:48.000Z
valleydeight/object_types.py
benkrikler/valedictory
36968f4da5bb5a6c4e85bd7f02fdc32db08e9579
[ "MIT" ]
1
2019-02-22T16:40:36.000Z
2019-02-22T16:40:36.000Z
valleydeight/object_types.py
benkrikler/valleydeight
36968f4da5bb5a6c4e85bd7f02fdc32db08e9579
[ "MIT" ]
null
null
null
from .base import BaseValidator __all__ = ["Object"] class Object(BaseValidator): def __init__(self, class_type, expand_dicts=True, expand_lists=True, args=None, **kwargs): super(BaseValidator, self).__init__(**kwargs) self.class_type = class_type self.expand_dicts = expand_dicts self.expand_lists = expand_lists self.args = args def __call__(self, instance): if self.args: instance = self.args(instance) if self.expand_dicts and isinstance(instance, dict): return self.class_type(**instance) if self.expand_lists and isinstance(instance, (tuple, list)): return self.class_type(*instance) return self.class_type(instance)
31.041667
94
0.66443
4a20dbf8b3e9200f09a683b836d62147c6b1a800
430
py
Python
industrial_benchmark_python/test_gym_wrapper.py
siemens/industrialbenchmark
a38da654c87c16436e2382f68da3bf264e5523d0
[ "Apache-2.0" ]
74
2017-06-27T11:56:59.000Z
2022-03-24T04:18:22.000Z
industrial_benchmark_python/test_gym_wrapper.py
siemens/industrialbenchmark
a38da654c87c16436e2382f68da3bf264e5523d0
[ "Apache-2.0" ]
6
2017-11-02T14:53:28.000Z
2021-06-18T13:58:46.000Z
industrial_benchmark_python/test_gym_wrapper.py
siemens/industrialbenchmark
a38da654c87c16436e2382f68da3bf264e5523d0
[ "Apache-2.0" ]
23
2017-02-19T00:06:27.000Z
2022-02-25T12:39:25.000Z
from industrial_benchmark_python.IBGym import IBGym import numpy as np DISCOUNT = 0.97 env = IBGym(70) env.reset() returns = [] for _ in range(100): acc_return = 0. for i in range(100): state, reward, done, info = env.step(env.action_space.sample()) acc_return += reward * DISCOUNT**i returns.append(acc_return / 100.) print("random actions achieved return", np.mean(returns), "+-", np.std(returns))
26.875
80
0.67907
4a20dc19f34d16c2ebafb74b85bd1694815f05ca
47,884
py
Python
src/cogent3/core/moltype.py
StephenRogers1/cogent3
1116a0ab14d9c29a560297205546714e2db1896c
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/core/moltype.py
StephenRogers1/cogent3
1116a0ab14d9c29a560297205546714e2db1896c
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/core/moltype.py
StephenRogers1/cogent3
1116a0ab14d9c29a560297205546714e2db1896c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """ moltype.py MolType provides services for resolving ambiguities, or providing the correct ambiguity for recoding. It also maintains the mappings between different kinds of alphabets, sequences and alignments. One issue with MolTypes is that they need to know about Sequence, Alphabet, and other objects, but, at the same time, those objects need to know about the MolType. It is thus essential that the connection between these other types and the MolType can be made after the objects are created. """ __author__ = "Peter Maxwell, Gavin Huttley and Rob Knight" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight", "Daniel McDonald"] __license__ = "BSD-3" __version__ = "2020.12.21a" __maintainer__ = "Gavin Huttley" __email__ = "[email protected]" __status__ = "Production" import json import re from collections import defaultdict from random import choice from string import ascii_letters as letters import numpy from numpy import ( arange, array, asarray, newaxis, ravel, remainder, take, transpose, uint8, uint16, uint32, zeros, ) from cogent3.core.alignment import ( Alignment, ArrayAlignment, SequenceCollection, ) from cogent3.core.alphabet import ( Alphabet, AlphabetError, CharAlphabet, Enumeration, _make_complement_array, ) from cogent3.core.genetic_code import get_code from cogent3.core.sequence import ( ABSequence, ArrayDnaCodonSequence, ArrayDnaSequence, ArrayProteinSequence, ArrayProteinWithStopSequence, ArrayRnaCodonSequence, ArrayRnaSequence, ArraySequence, ByteSequence, DnaSequence, NucleicAcidSequence, ProteinSequence, ProteinWithStopSequence, RnaSequence, ) from cogent3.core.sequence import Sequence as DefaultSequence from cogent3.data.molecular_weight import DnaMW, ProteinMW, RnaMW from cogent3.util.misc import ( FunctionWrapper, add_lowercase, get_object_provenance, iterable, ) from cogent3.util.transform import KeepChars, first_index_in_set Float = numpy.core.numerictypes.sctype2char(float) Int = numpy.core.numerictypes.sctype2char(int) maketrans = str.maketrans translate = str.translate IUPAC_gap = "-" IUPAC_missing = "?" IUPAC_DNA_chars = ["T", "C", "A", "G"] IUPAC_DNA_ambiguities = { "N": ("A", "C", "T", "G"), "R": ("A", "G"), "Y": ("C", "T"), "W": ("A", "T"), "S": ("C", "G"), "K": ("T", "G"), "M": ("C", "A"), "B": ("C", "T", "G"), "D": ("A", "T", "G"), "H": ("A", "C", "T"), "V": ("A", "C", "G"), } IUPAC_DNA_ambiguities_complements = { "A": "T", "C": "G", "G": "C", "T": "A", "-": "-", "M": "K", "K": "M", "N": "N", "R": "Y", "Y": "R", "W": "W", "S": "S", "X": "X", # not technically an IUPAC ambiguity, but used by repeatmasker "V": "B", "B": "V", "H": "D", "D": "H", } IUPAC_DNA_complements = {"A": "T", "C": "G", "G": "C", "T": "A", "-": "-"} IUPAC_DNA_complements = {"A": "T", "C": "G", "G": "C", "T": "A", "-": "-"} # note change in standard order from DNA IUPAC_RNA_chars = ["U", "C", "A", "G"] IUPAC_RNA_ambiguities = { "N": ("A", "C", "U", "G"), "R": ("A", "G"), "Y": ("C", "U"), "W": ("A", "U"), "S": ("C", "G"), "K": ("U", "G"), "M": ("C", "A"), "B": ("C", "U", "G"), "D": ("A", "U", "G"), "H": ("A", "C", "U"), "V": ("A", "C", "G"), } IUPAC_RNA_ambiguities_complements = { "A": "U", "C": "G", "G": "C", "U": "A", "-": "-", "M": "K", "K": "M", "N": "N", "R": "Y", "Y": "R", "W": "W", "S": "S", "X": "X", # not technically an IUPAC ambiguity, but used by repeatmasker "V": "B", "B": "V", "H": "D", "D": "H", } IUPAC_RNA_complements = {"A": "U", "C": "G", "G": "C", "U": "A", "-": "-"} # Standard RNA pairing: GU pairs count as 'weak' pairs RnaStandardPairs = { ("A", "U"): True, # True vs False for 'always' vs 'sometimes' pairing ("C", "G"): True, ("G", "C"): True, ("U", "A"): True, ("G", "U"): False, ("U", "G"): False, } # Watson-Crick RNA pairing only: GU pairs don't count as pairs RnaWCPairs = {("A", "U"): True, ("C", "G"): True, ("G", "C"): True, ("U", "A"): True} # RNA pairing with GU counted as standard pairs RnaGUPairs = { ("A", "U"): True, ("C", "G"): True, ("G", "C"): True, ("U", "A"): True, ("G", "U"): True, ("U", "G"): True, } # RNA pairing with GU, AA, GA, CA and UU mismatches allowed as weak pairs RnaExtendedPairs = { ("A", "U"): True, ("C", "G"): True, ("G", "C"): True, ("U", "A"): True, ("G", "U"): False, ("U", "G"): False, ("A", "A"): False, ("G", "A"): False, ("A", "G"): False, ("C", "A"): False, ("A", "C"): False, ("U", "U"): False, } # Standard DNA pairing: only Watson-Crick pairs count as pairs DnaStandardPairs = { ("A", "T"): True, ("C", "G"): True, ("G", "C"): True, ("T", "A"): True, } # protein letters & ambiguity codes IUPAC_PROTEIN_code_aa = { "A": "Alanine", "C": "Cysteine", "D": "Aspartic Acid", "E": "Glutamic Acid", "F": "Phenylalanine", "G": "Glycine", "H": "Histidine", "I": "Isoleucine", "K": "Lysine", "L": "Leucine", "M": "Methionine", "N": "Asparagine", "P": "Proline", "Q": "Glutamine", "R": "Arginine", "S": "Serine", "T": "Threonine", "V": "Valine", "W": "Tryptophan", "Y": "Tyrosine", "*": "STOP", } IUPAC_PROTEIN_chars = [ "A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "Y", ] PROTEIN_WITH_STOP_chars = [ "A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "Y", "*", ] IUPAC_PROTEIN_ambiguities = {"B": ["N", "D"], "X": IUPAC_PROTEIN_chars, "Z": ["Q", "E"]} PROTEIN_WITH_STOP_ambiguities = { "B": ["N", "D"], "X": PROTEIN_WITH_STOP_chars, "Z": ["Q", "E"], } class FoundMatch(Exception): """Raised when a match is found in a deep loop to skip many levels""" pass def make_matches(monomers=None, gaps=None, degenerates=None): """Makes a dict of symbol pairs (i,j) -> strictness. Strictness is True if i and j always match and False if they sometimes match (e.g. A always matches A, but W sometimes matches R). """ result = {} # allow defaults to be left blank without problems monomers = monomers or {} gaps = gaps or {} degenerates = degenerates or {} # all monomers always match themselves and no other monomers for i in monomers: result[(i, i)] = True # all gaps always match all other gaps for i in gaps: for j in gaps: result[(i, j)] = True # monomers sometimes match degenerates that contain them for i in monomers: for j in degenerates: if i in degenerates[j]: result[(i, j)] = False result[(j, i)] = False # degenerates sometimes match degenerates that contain at least one of # the same monomers for i in degenerates: for j in degenerates: try: for i_symbol in degenerates[i]: if i_symbol in degenerates[j]: result[(i, j)] = False raise FoundMatch except FoundMatch: pass # flow control: break out of doubly nested loop return result def make_pairs(pairs=None, monomers=None, gaps=None, degenerates=None): """Makes a dict of symbol pairs (i,j) -> strictness. Expands pairs into all possible pairs using degen symbols. Strictness is True if i and j always pair, and False if they 'weakly' pair (e.g. GU pairs or if it is possible that they pair). If you want to make GU pairs count as 'always matching', pass in pairs that have (G,U) and (U, G) mapped to True rather than False. """ result = {} # allow defaults to be left blank without problems pairs = pairs or {} monomers = monomers or {} gaps = gaps or {} degenerates = degenerates or {} # add in the original pairs: should be complete monomer pairs result.update(pairs) # all gaps 'weakly' pair with each other for i in gaps: for j in gaps: result[(i, j)] = False # monomers sometimes pair with degenerates if the monomer's complement # is in the degenerate symbol for i in monomers: for j in degenerates: found = False try: for curr_j in degenerates[j]: # check if (i,curr_j) and/or (curr_j,i) is a valid pair: # not mutually required if pairs are not all commutative! if (i, curr_j) in pairs: result[(i, j)] = False found = True if (curr_j, i) in pairs: result[(j, i)] = False found = True if found: raise FoundMatch except FoundMatch: pass # flow control: break out of nested loop # degenerates sometimes pair with each other if the first degenerate # contains the complement of one of the bases in the second degenerate for i in degenerates: for j in degenerates: try: for curr_i in degenerates[i]: for curr_j in degenerates[j]: if (curr_i, curr_j) in pairs: result[(i, j)] = False raise FoundMatch except FoundMatch: pass # just using for flow control # don't forget the return value! return result # RnaPairingRules is a dict of {name:(base_pairs,degen_pairs)} where base_pairs # is a dict with the non-degenerate pairing rules and degen_pairs is a dict with # both the degenerate and non-degenerate pairing rules. # NOTE: uses make_pairs to augment the initial dict after construction. RnaPairingRules = { "Standard": RnaStandardPairs, "WC": RnaWCPairs, "GU": RnaGUPairs, "Extended": RnaExtendedPairs, } for k, v in list(RnaPairingRules.items()): RnaPairingRules[k] = (v, make_pairs(v)) class CoreObjectGroup(object): """Container relating gapped, ungapped, degen, and non-degen objects.""" _types = ["base", "degen", "gap", "degen_gap"] def __init__(self, base, degen=None, gapped=None, degen_gapped=None): """Returns new CoreObjectGroup. Only base is required""" self.base = base self.degen = degen self.gapped = gapped self.degen_gapped = degen_gapped self._items = [base, degen, gapped, degen_gapped] self._set_relationships() def _set_relationships(self): """Sets relationships between the different "flavors".""" self.base.gapped = self.gapped self.base.ungapped = self.base self.base.degen = self.degen self.base.non_degen = self.base statements = [ "self.degen.gapped = self.degen_gapped", "self.degen.ungapped = self.degen", "self.degen.degen = self.degen", "self.degen.non_degen = self.base", "self.gapped.gapped = self.gapped", "self.gapped.ungapped = self.base", "self.gapped.degen = self.degen_gapped", "self.gapped.non_degen = self.gapped", "self.degen_gapped.gapped = self.degen_gapped", "self.degen_gapped.ungapped = self.degen", "self.degen_gapped.degen = self.degen_gapped", "self.degen_gapped.non_degen = self.gapped", ] for s in statements: try: exec(s) except AttributeError: pass def __getitem__(self, i): """Allows container to be indexed into, by type of object (e.g. gap).""" return self.__dict__[i] def which_type(self, a): """Returns the type of an alphabet in self, or None if not present.""" return self._types[self._items.find(a)] class AlphabetGroup(CoreObjectGroup): """Container relating gapped, ungapped, degen, and non-degen alphabets.""" def __init__( self, chars, degens, gap=IUPAC_gap, missing=IUPAC_missing, moltype=None, constructor=None, ): """Returns new AlphabetGroup.""" if constructor is None: if max(list(map(len, chars))) == 1: constructor = CharAlphabet chars = "".join(chars) degens = "".join(degens) else: constructor = Alphabet # assume multi-char self.base = constructor(chars, moltype=moltype) self.degen = constructor(chars + degens, moltype=moltype) self.gapped = constructor(chars + gap, gap, moltype=moltype) self.degen_gapped = constructor( chars + gap + degens + missing, gap, moltype=moltype ) self._items = [self.base, self.degen, self.gapped, self.degen_gapped] self._set_relationships() # set complements if MolType was specified if moltype is not None: comps = moltype.complements for i in self._items: i._complement_array = _make_complement_array(i, comps) # colours for HTML representation def _expand_colors(base, colors): base = base.copy() base.update({ch: clr for chars, clr in colors.items() for ch in chars}) return base class _DefaultValue: def __init__(self, value): self.value = value def __call__(self): return self.value _gray = _DefaultValue("gray") _base_colors = defaultdict(_gray) NT_COLORS = _expand_colors( _base_colors, {"A": "#FF0102", "C": "black", "G": "green", "T": "blue", "U": "blue"} ) AA_COLORS = _expand_colors( _base_colors, { "GAVLI": "#009999", "FYW": "#ff6600", "CM": "orange", "ST": "#009900", "KRH": "#FF0102", "DE": "blue", "NQ": "#993300", "P": "#cc0099", }, ) class MolType(object): """MolType: Handles operations that depend on the sequence type (e.g. DNA). The MolType knows how to connect alphabets, sequences, alignments, and so forth, and how to disambiguate ambiguous symbols and perform base pairing (where appropriate). WARNING: Objects passed to a MolType become associated with that MolType, i.e. if you pass ProteinSequence to a new MolType you make up, all ProteinSequences will now be associated with the new MolType. This may not be what you expect. Use preserve_existing_moltypes=True if you don't want to reset the moltype. """ def __init__( self, motifset, gap=IUPAC_gap, missing=IUPAC_missing, gaps=None, seq_constructor=None, ambiguities=None, label=None, complements=None, pairs=None, mw_calculator=None, add_lower=False, preserve_existing_moltypes=False, make_alphabet_group=False, array_seq_constructor=None, colors=None, ): """Returns a new MolType object. Note that the parameters are in flux. Parameters ---------- motifset Alphabet or sequence of items in the default alphabet. Does not include degenerates. gap default gap symbol missing symbol for missing data gaps any other symbols that should be treated as gaps (doesn't have to include gap or missing; they will be silently added) seq_constructor Class for constructing sequences. ambiguities dict of char:tuple, doesn't include gaps (these are hard-coded as - and ?, and added later. label text label, don't know what this is used for. Unnecessary? complements dict of symbol:symbol showing how the non-degenerate single characters complement each other. Used for constructing on the fly the complement table, incl. support for must_pair and can_pair. pairs dict in which keys are pairs of symbols that can pair with each other, values are True (must pair) or False (might pair). Currently, the meaning of GU pairs as 'weak' is conflated with the meaning of degenerate symbol pairs (which might pair with each other but don't necessarily, depending on how the symbol is resolved). This should be refactored. mw_calculator f(seq) -> molecular weight. add_lower if True (default: False) adds the lowercase versions of everything into the alphabet. Slated for deletion. preserve_existing_moltypes if True (default: False), does not set the MolType of the things added in **kwargs to self. make_alphabet_group if True, makes an AlphabetGroup relating the various alphabets to one another. array_seq_constructor sequence type for array sequence colors dict mapping moltype characters to colors for display Note on "degenerates" versus "ambiguities": self.degenerates contains _only_ mappings for degenerate symbols, whereas self.ambiguities contains mappings for both degenerate and non-degenerate symbols. Sometimes you want one, sometimes the other, so both are provided. """ self._serialisable = {k: v for k, v in locals().items() if k != "self"} self.gap = gap self.missing = missing self.gaps = frozenset([gap, missing]) if gaps: self.gaps = self.gaps.union(frozenset(gaps)) self.label = label # set the sequence constructor if seq_constructor is None: seq_constructor = "".join # safe default string constructor elif not preserve_existing_moltypes: seq_constructor.moltype = self self._make_seq = seq_constructor # set the ambiguities ambigs = {self.missing: tuple(motifset) + (self.gap,), self.gap: (self.gap,)} if ambiguities: ambigs.update(ambiguities) for c in motifset: ambigs[c] = (c,) self.ambiguities = ambigs # set complements -- must set before we make the alphabet group self.complements = complements or {} if make_alphabet_group: # note: must use _original_ ambiguities here self.alphabets = AlphabetGroup(motifset, ambiguities, moltype=self) self.alphabet = self.alphabets.base else: if isinstance(motifset, Enumeration): self.alphabet = motifset elif max(len(motif) for motif in motifset) == 1: self.alphabet = CharAlphabet(motifset, moltype=self) else: self.alphabet = Alphabet(motifset, moltype=self) # set the other properties self.degenerates = ambiguities and ambiguities.copy() or {} self.degenerates[self.missing] = "".join(motifset) + self.gap self.matches = make_matches(motifset, self.gaps, self.degenerates) self.pairs = pairs and pairs.copy() or {} self.pairs.update(make_pairs(pairs, motifset, self.gaps, self.degenerates)) self.mw_calculator = mw_calculator # add lowercase characters, if we're doing that if add_lower: self._add_lowercase() # cache various other data that make the calculations faster self._make_all() self._make_comp_table() # a gap can be a true gap char or a degenerate character, typically '?' # we therefore want to ensure consistent treatment across the definition # of characters as either gap or degenerate self.gap_string = "".join(self.gaps) strict_gap = "".join(set(self.gap_string) - set(self.degenerates)) self.strip_degenerate = FunctionWrapper( KeepChars(strict_gap + "".join(self.alphabet)) ) self.strip_bad = FunctionWrapper(KeepChars("".join(self.All))) to_keep = set(self.alphabet) ^ set(self.degenerates) - set(self.gaps) self.strip_bad_and_gaps = FunctionWrapper(KeepChars("".join(to_keep))) # make inverse degenerates from degenerates # ensure that lowercase versions also exist if appropriate inv_degens = {} for key, val in list(self.degenerates.items()): inv_degens[frozenset(val)] = key.upper() if add_lower: inv_degens[frozenset("".join(val).lower())] = key.lower() for m in self.alphabet: inv_degens[frozenset(m)] = m if add_lower: inv_degens[frozenset("".join(m).lower())] = m.lower() for m in self.gaps: inv_degens[frozenset(m)] = m self.inverse_degenerates = inv_degens # set array type for modeling alphabets try: self.array_type = self.alphabet.array_type except AttributeError: self.array_type = None # set modeling sequence self._make_array_seq = array_seq_constructor self._colors = colors or defaultdict(_DefaultValue("black")) def __repr__(self): """String representation of MolType. WARNING: This doesn't allow you to reconstruct the object in its present incarnation. """ return "MolType(%s)" % (self.alphabet,) def __getnewargs_ex__(self, *args, **kw): data = self.to_rich_dict(for_pickle=True) return (), data def to_rich_dict(self, for_pickle=False): data = self._serialisable.copy() if not for_pickle: # we rely on reconstruction from label data = dict(type=get_object_provenance(self), moltype=self.label) data["version"] = __version__ return data def to_json(self): """returns result of json formatted string""" data = self.to_rich_dict(for_pickle=False) return json.dumps(data) def to_regex(self, seq): """returns a regex pattern with ambiguities expanded to a character set""" if not self.is_valid(seq): raise ValueError(f"'{seq}' is invalid for this moltype") degen_indices = self.get_degenerate_positions(sequence=seq, include_gap=False) seq = list(seq) # seq can now be modified for index in degen_indices: expanded = self.ambiguities[seq[index]] seq[index] = f"[{''.join(expanded)}]" return "".join(seq) def gettype(self): """Returns type, e.g. 'dna', 'rna', 'protein'. Delete?""" return self.label def make_seq(self, seq, name=None, **kwargs): """Returns sequence of correct type.""" return self._make_seq(seq, name, **kwargs) def make_array_seq(self, seq, name=None, **kwargs): """ creates an array sequence Parameters ---------- seq characters or array name : str kwargs keyword arguments for the ArraySequence constructor. Returns ------- ArraySequence """ alphabet = kwargs.pop("alphabet", None) if alphabet is None and hasattr(self, "alphabets"): alphabet = self.alphabets.degen_gapped elif alphabet is None: alphabet = self.alphabet return self._make_array_seq(seq, alphabet=alphabet, name=name, **kwargs) def verify_sequence(self, seq, gaps_allowed=True, wildcards_allowed=True): """Checks whether sequence is valid on the default alphabet. Has special-case handling for gaps and wild-cards. This mechanism is probably useful to have in parallel with the validation routines that check specifically whether the sequence has gaps, degenerate symbols, etc., or that explicitly take an alphabet as input. """ alpha = frozenset(self.ambiguities) if gaps_allowed: alpha = alpha.union(self.gaps) if wildcards_allowed: alpha = alpha.union(self.missing) try: nonalpha = re.compile("[^%s]" % re.escape("".join(alpha))) badchar = nonalpha.search(seq) if badchar: motif = badchar.group() raise AlphabetError(motif) except TypeError: # not alphabetic sequence: try slow method for motif in seq: if motif not in alpha: raise AlphabetError(motif) def is_ambiguity(self, querymotif): """Return True if querymotif is an amibiguity character in alphabet. Parameters ---------- querymotif the motif being queried. """ return len(self.ambiguities[querymotif]) > 1 def _what_ambiguity(self, motifs): """The code that represents all of 'motifs', and minimal others. Does this duplicate DegenerateFromSequence directly? """ most_specific = len(self.alphabet) + 1 result = self.missing for (code, motifs2) in list(self.ambiguities.items()): for c in motifs: if c not in motifs2: break else: if len(motifs2) < most_specific: most_specific = len(motifs2) result = code return result def what_ambiguity(self, motifs): """The code that represents all of 'motifs', and minimal others. Does this duplicate DegenerateFromSequence directly? """ if not hasattr(self, "_reverse_ambiguities"): self._reverse_ambiguities = {} motifs = frozenset(motifs) if motifs not in self._reverse_ambiguities: self._reverse_ambiguities[motifs] = self._what_ambiguity(motifs) return self._reverse_ambiguities[motifs] def _add_lowercase(self): """Adds lowercase versions of keys and vals to each internal dict.""" for name in [ "alphabet", "degenerates", "gaps", "complements", "pairs", "matches", ]: curr = getattr(self, name) # temp hack to get around re-ordering if isinstance(curr, Alphabet): curr = tuple(curr) new = add_lowercase(curr) setattr(self, name, new) def _make_all(self): """Sets self.All, which contains all the symbols self knows about. Note that the value of items in self.All will be the string containing the possibly degenerate set of symbols that the items expand to. """ all = {} for i in self.alphabet: curr = str(i) all[i] = i for key, val in list(self.degenerates.items()): all[key] = val for i in self.gaps: all[i] = i self.All = all def _make_comp_table(self): """Sets self.ComplementTable, which maps items onto their complements. Note: self.ComplementTable is only set if self.complements exists. """ if self.complements: self.ComplementTable = maketrans( "".join(list(self.complements.keys())), "".join(list(self.complements.values())), ) def complement(self, item): """Returns complement of item, using data from self.complements. Always tries to return same type as item: if item looks like a dict, will return list of keys. """ if not self.complements: raise TypeError( "Tried to complement sequence using alphabet without complements." ) try: return item.translate(self.ComplementTable) except (AttributeError, TypeError): item = iterable(item) get = self.complements.get return item.__class__([get(i, i) for i in item]) def rc(self, item): """Returns reverse complement of item w/ data from self.complements. Always returns same type as input. """ comp = list(self.complement(item)) comp.reverse() if isinstance(item, str): return item.__class__("".join(comp)) else: return item.__class__(comp) def strand_symmetric_motifs(self, motif_length=1): """returns ordered pairs of strand complementary motifs""" if not self.pairs: raise TypeError("moltype must be DNA or RNA") motif_set = self.alphabet.get_word_alphabet(word_length=motif_length) motif_pairs = [] for m in motif_set: pair = tuple(sorted([m, self.complement(m)])) motif_pairs.append(pair) motif_pairs = set(motif_pairs) return motif_pairs def __contains__(self, item): """A MolType contains every character it knows about.""" return item in self.All def __iter__(self): """A MolType iterates only over the characters in its Alphabet..""" return iter(self.alphabet) def is_gap(self, char): """Returns True if char is a gap.""" return char in self.gaps def is_gapped(self, sequence): """Returns True if sequence contains gaps.""" return self.first_gap(sequence) is not None def is_degenerate(self, sequence): """Returns True if sequence contains degenerate characters.""" return self.first_degenerate(sequence) is not None def is_valid(self, sequence): """Returns True if sequence contains no items that are not in self.""" try: return self.first_invalid(sequence) is None except: return False def is_strict(self, sequence): """Returns True if sequence contains only items in self.alphabet.""" try: return (len(sequence) == 0) or (self.first_non_strict(sequence) is None) except: return False def valid_on_alphabet(self, sequence, alphabet=None): """Returns True if sequence contains only items in alphabet. alphabet can actually be anything that implements __contains__. Defaults to self.alphabet if not supplied. """ if alphabet is None: alphabet = self.alphabet return first_index_in_set(sequence, alphabet) is not None def first_not_in_alphabet(self, sequence, alphabet=None): """Returns index of first item not in alphabet, or None. Defaults to self.alphabet if alphabet not supplied. """ if alphabet is None: alphabet = self.alphabet return first_index_in_set(sequence, alphabet) def first_gap(self, sequence): """Returns the index of the first gap in the sequence, or None.""" gap = self.gaps for i, s in enumerate(sequence): if s in gap: return i return None def first_degenerate(self, sequence): """Returns the index of first degenerate symbol in sequence, or None.""" degen = self.degenerates for i, s in enumerate(sequence): if s in degen: return i return None def first_invalid(self, sequence): """Returns the index of first invalid symbol in sequence, or None.""" all = self.All for i, s in enumerate(sequence): if s not in all: return i return None def first_non_strict(self, sequence): """Returns the index of first non-strict symbol in sequence, or None.""" monomers = self.alphabet for i, s in enumerate(sequence): if s not in monomers: return i return None def disambiguate(self, sequence, method="strip"): """Returns a non-degenerate sequence from a degenerate one. method can be 'strip' (deletes any characters not in monomers or gaps) or 'random'(assigns the possibilities at random, using equal frequencies). """ if method == "strip": try: return sequence.__class__(self.strip_degenerate(sequence)) except: ambi = self.degenerates def not_ambiguous(x): return x not in ambi return sequence.__class__(list(filter(not_ambiguous, sequence))) elif method == "random": degen = self.degenerates result = [] for i in sequence: if i in degen: result.append(choice(degen[i])) else: result.append(i) if isinstance(sequence, str): return sequence.__class__("".join(result)) else: return sequence.__class__(result) else: raise NotImplementedError("Got unknown method %s" % method) def degap(self, sequence): """Deletes all gap characters from sequence.""" try: trans = dict([(i, None) for i in map(ord, self.gaps)]) return sequence.__class__(sequence.translate(trans)) except AttributeError: gap = self.gaps def not_gap(x): return x not in gap return sequence.__class__(list(filter(not_gap, sequence))) def gap_indices(self, sequence): """Returns list of indices of all gaps in the sequence, or [].""" gaps = self.gaps return [i for i, s in enumerate(sequence) if s in gaps] def gap_vector(self, sequence): """Returns list of bool indicating gap or non-gap in sequence.""" return list(map(self.is_gap, sequence)) def gap_maps(self, sequence): """Returns tuple containing dicts mapping between gapped and ungapped. First element is a dict such that d[ungapped_coord] = gapped_coord. Second element is a dict such that d[gapped_coord] = ungapped_coord. Note that the dicts will be invalid if the sequence changes after the dicts are made. The gaps themselves are not in the dictionary, so use d.get() or test 'if pos in d' to avoid KeyErrors if looking up all elements in a gapped sequence. """ ungapped = {} gapped = {} num_gaps = 0 for i, is_gap in enumerate(self.gap_vector(sequence)): if is_gap: num_gaps += 1 else: ungapped[i] = i - num_gaps gapped[i - num_gaps] = i return gapped, ungapped def count_gaps(self, sequence): """Counts the gaps in the specified sequence.""" gaps = self.gaps gap_count = sum(1 for s in sequence if s in gaps) return gap_count def get_degenerate_positions(self, sequence, include_gap=True): """returns indices matching degenerate characters""" degen = list(self.degenerates) if include_gap: degen.append(self.gap) return [i for i, c in enumerate(sequence) if c in degen] def count_degenerate(self, sequence): """Counts the degenerate bases in the specified sequence.""" degen = self.degenerates degen_count = 0 for s in sequence: if s in degen: degen_count += 1 return degen_count def possibilities(self, sequence): """Counts number of possible sequences matching the sequence. Uses self.degenerates to decide how many possibilites there are at each position in the sequence. """ degen = self.degenerates count = 1 for s in sequence: if s in degen: count *= len(degen[s]) return count def mw(self, sequence, method="random", delta=None): """Returns the molecular weight of the sequence. If the sequence is ambiguous, uses method (random or strip) to disambiguate the sequence. if delta is present, uses it instead of the standard weight adjustment. """ if not sequence: return 0 try: return self.mw_calculator(sequence, delta) except KeyError: # assume sequence was ambiguous return self.mw_calculator(self.disambiguate(sequence, method), delta) def can_match(self, first, second): """Returns True if every pos in 1st could match same pos in 2nd. Truncates at length of shorter sequence. gaps are only allowed to match other gaps. """ m = self.matches for pair in zip(first, second): if pair not in m: return False return True def can_mismatch(self, first, second): """Returns True if any position in 1st could cause a mismatch with 2nd. Truncates at length of shorter sequence. gaps are always counted as matches. """ m = self.matches if not first or not second: return False for pair in zip(first, second): if not m.get(pair, None): return True return False def must_match(self, first, second): """Returns True if all positions in 1st must match positions in second.""" return not self.can_mismatch(first, second) def can_pair(self, first, second): """Returns True if first and second could pair. Pairing occurs in reverse order, i.e. last position of second with first position of first, etc. Truncates at length of shorter sequence. gaps are only allowed to pair with other gaps, and are counted as 'weak' (same category as GU and degenerate pairs). NOTE: second must be able to be reverse """ p = self.pairs sec = list(second) sec.reverse() for pair in zip(first, sec): if pair not in p: return False return True def can_mispair(self, first, second): """Returns True if any position in 1st could mispair with 2nd. Pairing occurs in reverse order, i.e. last position of second with first position of first, etc. Truncates at length of shorter sequence. gaps are always counted as possible mispairs, as are weak pairs like GU. """ p = self.pairs if not first or not second: return False sec = list(second) sec.reverse() for pair in zip(first, sec): if not p.get(pair, None): return True return False def must_pair(self, first, second): """Returns True if all positions in 1st must pair with second. Pairing occurs in reverse order, i.e. last position of second with first position of first, etc. """ return not self.can_mispair(first, second) def degenerate_from_seq(self, sequence): """Returns least degenerate symbol corresponding to chars in sequence. First tries to look up in self.inverse_degenerates. Then disambiguates and tries to look up in self.inverse_degenerates. Then tries converting the case (tries uppercase before lowercase). Raises TypeError if conversion fails. """ symbols = frozenset(sequence) # check if symbols are already known inv_degens = self.inverse_degenerates result = inv_degens.get(symbols, None) if result: return result # then, try converting the symbols degens = self.All converted = set() for sym in symbols: for char in degens[sym]: converted.add(char) symbols = frozenset(converted) result = inv_degens.get(symbols, None) if result: return result # then, try converting case symbols = frozenset([s.upper() for s in symbols]) result = inv_degens.get(symbols, None) if result: return result symbols = frozenset([s.lower() for s in symbols]) result = inv_degens.get(symbols, None) if result: return result # finally, try to find the minimal subset containing the symbols symbols = frozenset([s.upper() for s in symbols]) lengths = {} for i in inv_degens: if symbols.issubset(i): lengths[len(i)] = i if lengths: # found at least some matches sorted = list(lengths.keys()) sorted.sort() return inv_degens[lengths[sorted[0]]] # if we got here, nothing worked raise TypeError("Cannot find degenerate char for symbols: %s" % symbols) def get_css_style(self, colors=None, font_size=12, font_family="Lucida Console"): """returns string of CSS classes and {character: <CSS class name>, ...} Parameters ---------- colors {char font_size in points font_family name of a monospace font """ colors = colors or self._colors # !important required to stop some browsers over-riding the style sheet ...!! template = ( '.%s_%s{font-family: "%s",monospace !important; ' "font-size: %dpt !important; color: %s; }" ) label = self.label or "" styles = _style_defaults[label].copy() styles.update( {c: "_".join([c, label]) for c in list(self.alphabet) + ["terminal_ambig"]} ) css = [ template % (char, label, font_family, font_size, colors[char]) for char in list(styles) + ["ambig"] ] return css, styles ASCII = MolType( # A default type for text read from a file etc. when we don't # want to prematurely assume DNA or Protein. seq_constructor=DefaultSequence, motifset=letters, ambiguities={}, label="text", array_seq_constructor=ArraySequence, ) DNA = MolType( seq_constructor=DnaSequence, motifset=IUPAC_DNA_chars, ambiguities=IUPAC_DNA_ambiguities, label="dna", mw_calculator=DnaMW, complements=IUPAC_DNA_ambiguities_complements, pairs=DnaStandardPairs, make_alphabet_group=True, array_seq_constructor=ArrayDnaSequence, colors=NT_COLORS, ) RNA = MolType( seq_constructor=RnaSequence, motifset=IUPAC_RNA_chars, ambiguities=IUPAC_RNA_ambiguities, label="rna", mw_calculator=RnaMW, complements=IUPAC_RNA_ambiguities_complements, pairs=RnaStandardPairs, make_alphabet_group=True, array_seq_constructor=ArrayRnaSequence, colors=NT_COLORS, ) PROTEIN = MolType( seq_constructor=ProteinSequence, motifset=IUPAC_PROTEIN_chars, ambiguities=IUPAC_PROTEIN_ambiguities, mw_calculator=ProteinMW, make_alphabet_group=True, array_seq_constructor=ArrayProteinSequence, label="protein", colors=AA_COLORS, ) PROTEIN_WITH_STOP = MolType( seq_constructor=ProteinWithStopSequence, motifset=PROTEIN_WITH_STOP_chars, ambiguities=PROTEIN_WITH_STOP_ambiguities, mw_calculator=ProteinMW, make_alphabet_group=True, array_seq_constructor=ArrayProteinWithStopSequence, label="protein_with_stop", colors=AA_COLORS, ) BYTES = MolType( # A default type for arbitrary chars read from a file etc. when we don't # want to prematurely assume _anything_ about the data. seq_constructor=ByteSequence, motifset=list(map(chr, list(range(256)))), ambiguities={}, array_seq_constructor=ArraySequence, label="bytes", ) # the None value catches cases where a moltype has no label attribute _style_defaults = { getattr(mt, "label", ""): defaultdict( _DefaultValue("ambig_%s" % getattr(mt, "label", "")) ) for mt in (ASCII, BYTES, DNA, RNA, PROTEIN, PROTEIN_WITH_STOP, None) } # following is a two-state MolType useful for testing AB = MolType( seq_constructor=ABSequence, motifset="ab", ambiguities={}, array_seq_constructor=ArraySequence, label="ab", ) class _CodonAlphabet(Alphabet): """Codon alphabets are DNA TupleAlphabets with a genetic code attribute and some codon-specific methods""" def _with(self, motifs): a = Alphabet._with(self, motifs) a.__class__ = type(self) a._gc = self._gc return a def is_sense_codon(self, codon): return not self._gc.is_stop(codon) def is_stop_codon(self, codon): return self._gc.is_stop(codon) def get_genetic_code(self): return self._gc def CodonAlphabet(gc=1, include_stop_codons=False): if isinstance(gc, (int, str)): gc = get_code(gc) if include_stop_codons: motifset = list(gc.codons) else: motifset = list(gc.sense_codons) motifset = [codon.upper().replace("U", "T") for codon in motifset] a = _CodonAlphabet(motifset, moltype=DNA) a._gc = gc return a def _method_codon_alphabet(ignore, *args, **kwargs): """If CodonAlphabet is set as a property, it gets self as extra 1st arg.""" return CodonAlphabet(*args, **kwargs) STANDARD_CODON = CodonAlphabet() # Modify NucleicAcidSequence to avoid circular import NucleicAcidSequence.codon_alphabet = _method_codon_alphabet NucleicAcidSequence.protein = PROTEIN ArrayRnaSequence.moltype = RNA ArrayRnaSequence.alphabet = RNA.alphabets.degen_gapped ArrayDnaSequence.moltype = DNA ArrayDnaSequence.alphabet = DNA.alphabets.degen_gapped ArrayProteinSequence.moltype = PROTEIN ArrayProteinSequence.alphabet = PROTEIN.alphabets.degen_gapped ArrayProteinWithStopSequence.moltype = PROTEIN_WITH_STOP ArrayProteinWithStopSequence.alphabet = PROTEIN_WITH_STOP.alphabets.degen_gapped ArraySequence.alphabet = BYTES.alphabet ArrayAlignment.alphabet = BYTES.alphabet ArrayAlignment.moltype = BYTES ArrayDnaCodonSequence.alphabet = DNA.alphabets.base.Triples ArrayRnaCodonSequence.alphabet = RNA.alphabets.base.Triples # Modify Alignment to avoid circular import Alignment.moltype = ASCII SequenceCollection.moltype = BYTES def _make_moltype_dict(): env = globals() moltypes = {} for key in env: obj = env[key] if not isinstance(obj, MolType): continue if obj.label is not None: moltypes[obj.label] = obj return moltypes moltypes = _make_moltype_dict() def get_moltype(name): """returns the moltype with the matching name attribute""" if isinstance(name, MolType): return name name = name.lower() if name not in moltypes: raise ValueError('unknown moltype "%s"' % name) return moltypes[name] def available_moltypes(): """returns Table listing available moltypes""" from cogent3.util.table import Table rows = [] for n, m in moltypes.items(): v = str(m) num = len(list(m)) if num > 10: v = f"{v[:39]}..." rows.append([n, num, v]) header = ["Abbreviation", "Number of states", "Moltype"] title = "Specify a moltype by the Abbreviation (case insensitive)." result = Table(header=header, data=rows, title=title, index_name="Abbreviation") result = result.sorted(columns=["Number of states", "Abbreviation"]) result.format_column("Abbreviation", repr) return result
31.711258
110
0.599574
4a20dc1fbde09375778b625c05d4cdb99acc7a13
476
py
Python
apps/users/migrations/0004_employee_non_employee.py
iamjdcollins/districtwebsite
89e2aea47ca3d221665bc23586a4374421be5800
[ "MIT" ]
null
null
null
apps/users/migrations/0004_employee_non_employee.py
iamjdcollins/districtwebsite
89e2aea47ca3d221665bc23586a4374421be5800
[ "MIT" ]
null
null
null
apps/users/migrations/0004_employee_non_employee.py
iamjdcollins/districtwebsite
89e2aea47ca3d221665bc23586a4374421be5800
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-12-04 16:13 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0003_employee_in_directory'), ] operations = [ migrations.AddField( model_name='employee', name='non_employee', field=models.BooleanField(db_index=True, default=False), ), ]
22.666667
68
0.630252
4a20dccddccf13012c67541905786914710c119f
3,673
py
Python
djangoappengine/main/main.py
elreydetoda/feedsanitizer
81a7cfc3f3d1312cd8c236b3e8cc9e84b0d72932
[ "MIT" ]
2
2020-03-13T15:07:55.000Z
2020-03-14T14:45:42.000Z
djangoappengine/main/main.py
elreydetoda/feedsanitizer
81a7cfc3f3d1312cd8c236b3e8cc9e84b0d72932
[ "MIT" ]
null
null
null
djangoappengine/main/main.py
elreydetoda/feedsanitizer
81a7cfc3f3d1312cd8c236b3e8cc9e84b0d72932
[ "MIT" ]
1
2020-10-16T04:11:58.000Z
2020-10-16T04:11:58.000Z
import os import sys # Add parent folder to sys.path, so we can import boot. # App Engine causes main.py to be reloaded if an exception gets raised # on the first request of a main.py instance, so don't add project_dir multiple # times. project_dir = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) if project_dir not in sys.path or sys.path.index(project_dir) > 0: while project_dir in sys.path: sys.path.remove(project_dir) sys.path.insert(0, project_dir) for path in sys.path[:]: if path != project_dir and os.path.isdir(os.path.join(path, 'django')): sys.path.remove(path) break # Remove the standard version of Django. if 'django' in sys.modules and sys.modules['django'].VERSION < (1, 2): for k in [k for k in sys.modules if k.startswith('django.') or k == 'django']: del sys.modules[k] from djangoappengine.boot import setup_env, setup_logging, env_ext setup_env() from django.core.handlers.wsgi import WSGIHandler from google.appengine.ext.webapp.util import run_wsgi_app from django.conf import settings def log_traceback(*args, **kwargs): import logging logging.exception('Exception in request:') from django.core import signals signals.got_request_exception.connect(log_traceback) def real_main(): # Reset path and environment variables global path_backup try: sys.path = path_backup[:] except: path_backup = sys.path[:] os.environ.update(env_ext) setup_logging() # Create a Django application for WSGI application = WSGIHandler() # Add the staticfiles handler if necessary if settings.DEBUG and 'django.contrib.staticfiles' in settings.INSTALLED_APPS: from django.contrib.staticfiles.handlers import StaticFilesHandler application = StaticFilesHandler(application) # Run the WSGI CGI handler with that application. run_wsgi_app(application) def profile_main(func): import logging, cProfile, pstats, random, StringIO only_forced_profile = getattr(settings, 'ONLY_FORCED_PROFILE', False) profile_percentage = getattr(settings, 'PROFILE_PERCENTAGE', None) if (only_forced_profile and 'profile=forced' not in os.environ.get('QUERY_STRING')) or \ (not only_forced_profile and profile_percentage and float(profile_percentage) / 100.0 <= random.random()): return func() prof = cProfile.Profile() prof = prof.runctx('func()', globals(), locals()) stream = StringIO.StringIO() stats = pstats.Stats(prof, stream=stream) sort_by = getattr(settings, 'SORT_PROFILE_RESULTS_BY', 'time') if not isinstance(sort_by, (list, tuple)): sort_by = (sort_by,) stats.sort_stats(*sort_by) restrictions = [] profile_pattern = getattr(settings, 'PROFILE_PATTERN', None) if profile_pattern: restrictions.append(profile_pattern) max_results = getattr(settings, 'MAX_PROFILE_RESULTS', 80) if max_results and max_results != 'all': restrictions.append(max_results) stats.print_stats(*restrictions) extra_output = getattr(settings, 'EXTRA_PROFILE_OUTPUT', None) or () if not isinstance(sort_by, (list, tuple)): extra_output = (extra_output,) if 'callees' in extra_output: stats.print_callees() if 'callers' in extra_output: stats.print_callers() logging.info('Profile data:\n%s', stream.getvalue()) def make_profileable(func): if getattr(settings, 'ENABLE_PROFILER', False): return lambda: profile_main(func) return func main = make_profileable(real_main) if __name__ == '__main__': main()
34.980952
90
0.702968
4a20dcdf5e0de8acee4af7b43c390fc92b57384e
2,981
py
Python
generate.py
igor0/gpt-neox
3ad61952c290669d3741c01f767d41fdee5215c5
[ "Apache-2.0" ]
1,871
2020-12-22T14:44:29.000Z
2022-03-31T14:21:40.000Z
generate.py
igor0/gpt-neox
3ad61952c290669d3741c01f767d41fdee5215c5
[ "Apache-2.0" ]
300
2020-12-23T17:51:43.000Z
2022-03-30T17:34:42.000Z
generate.py
igor0/gpt-neox
3ad61952c290669d3741c01f767d41fdee5215c5
[ "Apache-2.0" ]
235
2020-12-23T19:45:19.000Z
2022-03-31T20:33:47.000Z
#!/usr/bin/env python # coding=utf-8 # Copyright (c) 2021 Josh Levy-Kramer <[email protected]>. All rights reserved. # This file is based on code by the authors denoted below and has been modified from its original version. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from megatron.utils import print_rank_0, setup_for_inference_or_eval from megatron.text_generation_utils import generate_samples_input_from_file, generate_samples_from_prompt, generate_samples_unconditional, generate_samples_interactive def main(): """ Generate text/sample model """ model, neox_args = setup_for_inference_or_eval() if neox_args.text_gen_type == 'unconditional': print_rank_0('Generating samples unconditionally') assert neox_args.sample_output_file is not None generate_samples_unconditional( neox_args=neox_args, model=model, number_of_samples=neox_args.num_samples, output_file=neox_args.sample_output_file, maximum_tokens = neox_args.maximum_tokens, recompute = neox_args.recompute, temperature = neox_args.temperature, top_k = neox_args.top_k, top_p = neox_args.top_p ) elif neox_args.text_gen_type == 'input-file': print_rank_0(f'Generating samples from input file {neox_args.sample_input_file}') assert neox_args.sample_input_file is not None generate_samples_input_from_file( neox_args=neox_args, model=model, input_file=neox_args.sample_input_file, output_file=neox_args.sample_output_file, maximum_tokens = neox_args.maximum_tokens, recompute = neox_args.recompute, temperature = neox_args.temperature, top_k = neox_args.top_k, top_p = neox_args.top_p ) elif neox_args.text_gen_type == 'interactive': generate_samples_interactive( neox_args=neox_args, model=model, recompute = neox_args.recompute, temperature = neox_args.temperature, maximum_tokens = neox_args.maximum_tokens, top_k = neox_args.top_k, top_p = neox_args.top_p ) else: raise ValueError(f"`text-gen-type` either not specified or not recognised: {neox_args.text_gen_type}") if __name__ == "__main__": main()
39.746667
167
0.691714
4a20dd2d5f49d77a0b4d479ff84edd0bc875ad0a
3,305
py
Python
adafruit_register/i2c_bit.py
jepler/Adafruit_CircuitPython_Register
9f86b5179936bcb81d9765de2fe25c140b42036f
[ "MIT" ]
1
2020-09-27T20:08:57.000Z
2020-09-27T20:08:57.000Z
adafruit_register/i2c_bit.py
jepler/Adafruit_CircuitPython_Register
9f86b5179936bcb81d9765de2fe25c140b42036f
[ "MIT" ]
null
null
null
adafruit_register/i2c_bit.py
jepler/Adafruit_CircuitPython_Register
9f86b5179936bcb81d9765de2fe25c140b42036f
[ "MIT" ]
null
null
null
# The MIT License (MIT) # # Copyright (c) 2016 Scott Shawcroft for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # pylint: disable=too-few-public-methods """ `adafruit_register.i2c_bit` ==================================================== Single bit registers * Author(s): Scott Shawcroft """ __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_Register.git" class RWBit: """ Single bit register that is readable and writeable. Values are `bool` :param int register_address: The register address to read the bit from :param type bit: The bit index within the byte at ``register_address`` :param int register_width: The number of bytes in the register. Defaults to 1. :param bool lsb_first: Is the first byte we read from I2C the LSB? Defaults to true """ def __init__(self, register_address, bit, register_width=1, lsb_first=True): self.bit_mask = 1 << (bit % 8) # the bitmask *within* the byte! self.buffer = bytearray(1 + register_width) self.buffer[0] = register_address if lsb_first: self.byte = bit // 8 + 1 # the byte number within the buffer else: self.byte = register_width - (bit // 8) # the byte number within the buffer def __get__(self, obj, objtype=None): with obj.i2c_device as i2c: i2c.write_then_readinto(self.buffer, self.buffer, out_end=1, in_start=1) return bool(self.buffer[self.byte] & self.bit_mask) def __set__(self, obj, value): with obj.i2c_device as i2c: i2c.write_then_readinto(self.buffer, self.buffer, out_end=1, in_start=1) if value: self.buffer[self.byte] |= self.bit_mask else: self.buffer[self.byte] &= ~self.bit_mask i2c.write(self.buffer) class ROBit(RWBit): """Single bit register that is read only. Subclass of `RWBit`. Values are `bool` :param int register_address: The register address to read the bit from :param type bit: The bit index within the byte at ``register_address`` :param int register_width: The number of bytes in the register. Defaults to 1. """ def __set__(self, obj, value): raise AttributeError()
38.430233
88
0.688956
4a20dd8089114cba15741c74746eee58c62c53e9
3,677
py
Python
pyocd/target/target_LPC824M201JHI33.py
aabadie/pyOCD
5c05b0fd2d04c9de5400c3d026d13f8822d3ce3d
[ "Apache-2.0" ]
null
null
null
pyocd/target/target_LPC824M201JHI33.py
aabadie/pyOCD
5c05b0fd2d04c9de5400c3d026d13f8822d3ce3d
[ "Apache-2.0" ]
null
null
null
pyocd/target/target_LPC824M201JHI33.py
aabadie/pyOCD
5c05b0fd2d04c9de5400c3d026d13f8822d3ce3d
[ "Apache-2.0" ]
null
null
null
""" mbed CMSIS-DAP debugger Copyright (c) 2006-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from ..flash.flash import Flash from ..core.coresight_target import (SVDFile, CoreSightTarget) from ..core.memory_map import (FlashRegion, RamRegion, MemoryMap) FLASH_ALGO = { 'load_address' : 0x10000000, 'instructions' : [ 0xE00ABE00, 0x062D780D, 0x24084068, 0xD3000040, 0x1E644058, 0x1C49D1FA, 0x2A001E52, 0x4770D1F2, 0x47700a80, 0x21004842, 0x22016301, 0x63416342, 0x6b416342, 0xd0fc07c9, 0x493e6382, 0x70082002, 0x47702000, 0x47702000, 0x4c3bb5f8, 0x25002032, 0x261f444c, 0x493960a6, 0x60206065, 0x4f384449, 0x91004620, 0x696047b8, 0xd10b2800, 0x203460a6, 0x60206065, 0x60e04833, 0x99004620, 0x696047b8, 0xd0002800, 0xbdf82001, 0x4d2bb5f8, 0x444d0a84, 0x492a606c, 0x60ac2032, 0x60284449, 0x460f4e28, 0x47b04628, 0x28006968, 0x606cd10b, 0x60ac2034, 0x48246028, 0x463960e8, 0x47b04628, 0x28006968, 0x2001d000, 0xb5f8bdf8, 0x00054614, 0x6861d10e, 0x68e26820, 0x68a11840, 0x18401889, 0x18406921, 0x18406961, 0x184069a1, 0x61e04240, 0x0aa84e12, 0x2132444e, 0x60316070, 0x60b04910, 0x4f104449, 0x91004630, 0x697047b8, 0xd10e2800, 0x20336075, 0x603060b4, 0x02402001, 0x480a60f0, 0x46306130, 0x47b89900, 0x28006970, 0x2001d000, 0x0000bdf8, 0x40048040, 0x40048000, 0x00000004, 0x00000018, 0x1fff1ff1, 0x00002ee0, 0x00000000, ], 'pc_init' : 0x10000025, 'pc_erase_sector' : 0x10000089, 'pc_program_page' : 0x100000C7, 'pc_eraseAll' : 0x10000049, # Double buffering is not supported since sector size differs from page size 'static_base' : 0x10000000 + 0x00000020 + 0x00000128, 'begin_data' : 0x10000000 + 0x00000800, # Analyzer uses a max of 128 B data (32 pages * 4 bytes / page) 'begin_stack' : 0x10000800, 'min_program_length' : 1024, 'analyzer_supported' : True, 'analyzer_address' : 0x10001000 # Analyzer 0x10001000..0x10000600 } class Flash_lpc824(Flash): def __init__(self, target): super(Flash_lpc824, self).__init__(target, FLASH_ALGO) # TODO - temporary until flash algo is rebuilt with 1K page program size def program_page(self, flashPtr, bytes): write_size = 512 for i in range(0, 2): data = bytes[i * write_size : (i + 1) * write_size] Flash.program_page(self, flashPtr + i * write_size, data) class LPC824(CoreSightTarget): memoryMap = MemoryMap( FlashRegion( start=0, length=0x8000, blocksize=0x400, is_boot_memory=True, flash_class=Flash_lpc824), RamRegion( start=0x10000000, length=0x2000) ) def __init__(self, link): super(LPC824, self).__init__(link, self.memoryMap) def reset_stop_on_reset(self, software_reset=None, map_to_user=True): super(LPC824, self).reset_stop_on_reset(software_reset) # Remap to use flash and set SP and SP accordingly if map_to_user: self.write_memory(0x40048000, 0x2, 32) sp = self.read_memory(0x0) pc = self.read_memory(0x4) self.write_core_register('sp', sp) self.write_core_register('pc', pc)
43.77381
107
0.717433
4a20dde54f36c6d053aeb419765bca818ed2beab
4,654
py
Python
modules/ImgTrans.py
hanzhi713/WeChat-CLI-Tool
c2ae8f20bf4bdab4dec2abfe92e8cec94e377ad2
[ "MIT" ]
7
2017-11-30T00:19:03.000Z
2019-05-17T01:51:06.000Z
modules/ImgTrans.py
hanzhi713/WeChat-CLI-Tool
c2ae8f20bf4bdab4dec2abfe92e8cec94e377ad2
[ "MIT" ]
null
null
null
modules/ImgTrans.py
hanzhi713/WeChat-CLI-Tool
c2ae8f20bf4bdab4dec2abfe92e8cec94e377ad2
[ "MIT" ]
null
null
null
from .__templates__ import Interactive from .__config__ import multi_process, terminal_QR import numpy as np import time import itchat import io from cmath import * from PIL import Image if multi_process: from multiprocessing import Process else: from .__stoppable__ import Process class ImgTrans(Interactive): alias = "imgtf" __author__ = "Hanzhi Zhou" title = "Image Transformation" description = "\n".join(["Perform arbitrary image transformation by complex mapping"]) parameters = "[function] [kernel size]" example = "\n".join(["Example: /imgtf c:c**1.2 5\n", "This will perform a complex mapping f(c)=c^1.2 on the image you sent then smooth it with convolution kernel of size 5*5"]) # convert the sparse matrix dictionary (mapping (x, y) to (b, g, r)) to a numpy three dimensional array @staticmethod def toMatrix(newDict): global const arrs = newDict.keys() xRange = max(arrs, key=lambda x: x[0])[0] - min(arrs, key=lambda x: x[0])[0] yRange = max(arrs, key=lambda x: x[1])[1] - min(arrs, key=lambda x: x[1])[1] shiftX = xRange // 2 shiftY = yRange // 2 imgArr = np.zeros((yRange, xRange, 3), np.uint8) for x in range(xRange): for y in range(yRange): imgArr[y, x, :] = np.array(newDict.get((x - shiftX, y - shiftY), [255, 255, 255]), np.uint8) return imgArr # interpolate the pixels with a matrix of size (size*size) @staticmethod def avPixels(newImg, m, n, bgr, size, c): a = round(m) b = round(n) for i in range(-c, size - c): for j in range(-c, size - c): (x, y) = (a + i, b + j) if newImg.get((x, y)) is None: newImg[(x, y)] = bgr @staticmethod def transform(x, y, orgX, orgY, f): c = complex(x - orgX, y - orgY) return f(c) @classmethod def parse_args(cls, from_user, args): assert len(args) >= 2, "Two parameters are required: [function] and [kernel size]" f = eval("lambda " + args[0]) assert type(f(complex(0, 0))) == complex, "Illegal Complex Function!" assert args[1].isdigit(), "A positive integer is required for specifying the kernel size" return args[0], int(args[1]) def __init__(self, from_user, args): super(self.__class__, self).__init__(from_user, args) self.f, self.kernel = args self.process = None self.send_separator(from_user) itchat.send_msg("Please send an image", from_user) def msg_handler(self, msg): if msg['Text'] == '/q': if self.process is not None: self.process.terminate() self.finished = True itchat.send_msg('Command interrupted', msg['FromUserName']) self.send_separator(msg['FromUserName']) return True else: itchat.send_msg("If you want to switch command, please type /q to quit current session first", msg['FromUserName']) return False def file_handler(self, file): if not self.finished: itchat.send_msg("Image Received.\nProcessing...", file['FromUserName']) file_b = io.BytesIO(file['Text']()) self.process = Process(target=self.exec_task, args=(file.fileName.split('.')[1], file_b, file['FromUserName'], self.f,)) self.process.start() else: itchat.send_msg("Processing...\nPlease be patient...", file['FromUserName']) def exec_task(self, pic_type, file_b, from_user, f): if multi_process: itchat.auto_login(hotReload=True, enableCmdQR=terminal_QR) func = eval("lambda " + f) t = time.clock() img = np.asarray(Image.open(file_b)) height, width = img.shape[0:2] orgX, orgY = (width // 2, height // 2) c = self.kernel // 2 newImg = {} for x in range(width): for y in range(height): xy = ImgTrans.transform(x, y, orgX, orgY, func) ImgTrans.avPixels(newImg, xy.real, xy.imag, img[y, x, :], self.kernel, c) imgArr = ImgTrans.toMatrix(newImg) buf = io.BytesIO() Image.fromarray(imgArr).save(buf, format=pic_type, quality=75, compression_level=5) buf.seek(0) itchat.send_image(None, from_user, None, buf) itchat.send_msg("Time spent = {}s".format(round(time.clock() - t, 2)), from_user) self.send_separator(from_user) self.finished = True file_b.close() buf.close()
39.109244
148
0.587667
4a20de5d8952b578d0e768ba31a61df95bbfd5fc
15,833
py
Python
.aux/venv/lib/python3.9/site-packages/bandit/core/manager.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
null
null
null
.aux/venv/lib/python3.9/site-packages/bandit/core/manager.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
1
2020-11-26T17:32:49.000Z
2020-11-26T17:32:49.000Z
.aux/venv/lib/python3.9/site-packages/bandit/core/manager.py
sonntagsgesicht/regtest
160ef1089f797fbade48160efb0e1a386adbada7
[ "Apache-2.0" ]
1
2021-02-22T13:55:32.000Z
2021-02-22T13:55:32.000Z
# -*- coding:utf-8 -*- # # Copyright 2014 Hewlett-Packard Development Company, L.P. # # SPDX-License-Identifier: Apache-2.0 import collections import fnmatch import json import logging import os import sys import tokenize import traceback import six from bandit.core import constants as b_constants from bandit.core import extension_loader from bandit.core import issue from bandit.core import meta_ast as b_meta_ast from bandit.core import metrics from bandit.core import node_visitor as b_node_visitor from bandit.core import test_set as b_test_set LOG = logging.getLogger(__name__) class BanditManager(object): scope = [] def __init__(self, config, agg_type, debug=False, verbose=False, quiet=False, profile=None, ignore_nosec=False): '''Get logger, config, AST handler, and result store ready :param config: config options object :type config: bandit.core.BanditConfig :param agg_type: aggregation type :param debug: Whether to show debug messages or not :param verbose: Whether to show verbose output :param quiet: Whether to only show output in the case of an error :param profile_name: Optional name of profile to use (from cmd line) :param ignore_nosec: Whether to ignore #nosec or not :return: ''' self.debug = debug self.verbose = verbose self.quiet = quiet if not profile: profile = {} self.ignore_nosec = ignore_nosec self.b_conf = config self.files_list = [] self.excluded_files = [] self.b_ma = b_meta_ast.BanditMetaAst() self.skipped = [] self.results = [] self.baseline = [] self.agg_type = agg_type self.metrics = metrics.Metrics() self.b_ts = b_test_set.BanditTestSet(config, profile) # set the increment of after how many files to show progress self.progress = b_constants.progress_increment self.scores = [] def get_skipped(self): ret = [] # "skip" is a tuple of name and reason, decode just the name for skip in self.skipped: if isinstance(skip[0], bytes): ret.append((skip[0].decode('utf-8'), skip[1])) else: ret.append(skip) return ret def get_issue_list(self, sev_level=b_constants.LOW, conf_level=b_constants.LOW): return self.filter_results(sev_level, conf_level) def populate_baseline(self, data): '''Populate a baseline set of issues from a JSON report This will populate a list of baseline issues discovered from a previous run of bandit. Later this baseline can be used to filter out the result set, see filter_results. ''' items = [] try: jdata = json.loads(data) items = [issue.issue_from_dict(j) for j in jdata["results"]] except Exception as e: LOG.warning("Failed to load baseline data: %s", e) self.baseline = items def filter_results(self, sev_filter, conf_filter): '''Returns a list of results filtered by the baseline This works by checking the number of results returned from each file we process. If the number of results is different to the number reported for the same file in the baseline, then we return all results for the file. We can't reliably return just the new results, as line numbers will likely have changed. :param sev_filter: severity level filter to apply :param conf_filter: confidence level filter to apply ''' results = [i for i in self.results if i.filter(sev_filter, conf_filter)] if not self.baseline: return results unmatched = _compare_baseline_results(self.baseline, results) # if it's a baseline we'll return a dictionary of issues and a list of # candidate issues return _find_candidate_matches(unmatched, results) def results_count(self, sev_filter=b_constants.LOW, conf_filter=b_constants.LOW): '''Return the count of results :param sev_filter: Severity level to filter lower :param conf_filter: Confidence level to filter :return: Number of results in the set ''' return len(self.get_issue_list(sev_filter, conf_filter)) def output_results(self, lines, sev_level, conf_level, output_file, output_format, template=None): '''Outputs results from the result store :param lines: How many surrounding lines to show per result :param sev_level: Which severity levels to show (LOW, MEDIUM, HIGH) :param conf_level: Which confidence levels to show (LOW, MEDIUM, HIGH) :param output_file: File to store results :param output_format: output format plugin name :param template: Output template with non-terminal tags <N> (default: {abspath}:{line}: {test_id}[bandit]: {severity}: {msg}) :return: - ''' try: formatters_mgr = extension_loader.MANAGER.formatters_mgr if output_format not in formatters_mgr: output_format = 'screen' if sys.stdout.isatty() else 'txt' formatter = formatters_mgr[output_format] report_func = formatter.plugin if output_format == 'custom': report_func(self, fileobj=output_file, sev_level=sev_level, conf_level=conf_level, template=template) else: report_func(self, fileobj=output_file, sev_level=sev_level, conf_level=conf_level, lines=lines) except Exception as e: raise RuntimeError("Unable to output report using '%s' formatter: " "%s" % (output_format, str(e))) def discover_files(self, targets, recursive=False, excluded_paths=''): '''Add tests directly and from a directory to the test set :param targets: The command line list of files and directories :param recursive: True/False - whether to add all files from dirs :return: ''' # We'll mantain a list of files which are added, and ones which have # been explicitly excluded files_list = set() excluded_files = set() excluded_path_globs = self.b_conf.get_option('exclude_dirs') or [] included_globs = self.b_conf.get_option('include') or ['*.py'] # if there are command line provided exclusions add them to the list if excluded_paths: for path in excluded_paths.split(','): if os.path.isdir(path): path = os.path.join(path, '*') excluded_path_globs.append(path) # build list of files we will analyze for fname in targets: # if this is a directory and recursive is set, find all files if os.path.isdir(fname): if recursive: new_files, newly_excluded = _get_files_from_dir( fname, included_globs=included_globs, excluded_path_strings=excluded_path_globs ) files_list.update(new_files) excluded_files.update(newly_excluded) else: LOG.warning("Skipping directory (%s), use -r flag to " "scan contents", fname) else: # if the user explicitly mentions a file on command line, # we'll scan it, regardless of whether it's in the included # file types list if _is_file_included(fname, included_globs, excluded_path_globs, enforce_glob=False): files_list.add(fname) else: excluded_files.add(fname) self.files_list = sorted(files_list) self.excluded_files = sorted(excluded_files) def run_tests(self): '''Runs through all files in the scope :return: - ''' self._show_progress("%s [" % len(self.files_list)) # if we have problems with a file, we'll remove it from the files_list # and add it to the skipped list instead new_files_list = list(self.files_list) for count, fname in enumerate(self.files_list): LOG.debug("working on file : %s", fname) if len(self.files_list) > self.progress: # is it time to update the progress indicator? if count % self.progress == 0: self._show_progress("%s.. " % count, flush=True) try: if fname == '-': sys.stdin = os.fdopen(sys.stdin.fileno(), 'rb', 0) self._parse_file('<stdin>', sys.stdin, new_files_list) else: with open(fname, 'rb') as fdata: self._parse_file(fname, fdata, new_files_list) except IOError as e: self.skipped.append((fname, e.strerror)) new_files_list.remove(fname) self._show_progress("]\n", flush=True) # reflect any files which may have been skipped self.files_list = new_files_list # do final aggregation of metrics self.metrics.aggregate() def _show_progress(self, message, flush=False): '''Show progress on stderr Write progress message to stderr, if number of files warrants it and log level is high enough. :param message: The message to write to stderr :param flush: Whether to flush stderr after writing the message :return: ''' if len(self.files_list) > self.progress and \ LOG.getEffectiveLevel() <= logging.INFO: sys.stderr.write(message) if flush: sys.stderr.flush() def _parse_file(self, fname, fdata, new_files_list): try: # parse the current file data = fdata.read() lines = data.splitlines() self.metrics.begin(fname) self.metrics.count_locs(lines) if self.ignore_nosec: nosec_lines = set() else: try: fdata.seek(0) if six.PY2: tokens = tokenize.generate_tokens(fdata.readline) else: tokens = tokenize.tokenize(fdata.readline) nosec_lines = set( lineno for toktype, tokval, (lineno, _), _, _ in tokens if toktype == tokenize.COMMENT and '#nosec' in tokval or '# nosec' in tokval) except tokenize.TokenError: nosec_lines = set() score = self._execute_ast_visitor(fname, data, nosec_lines) self.scores.append(score) self.metrics.count_issues([score, ]) except KeyboardInterrupt: sys.exit(2) except SyntaxError: self.skipped.append((fname, "syntax error while parsing AST from file")) new_files_list.remove(fname) except Exception as e: LOG.error("Exception occurred when executing tests against " "%s. Run \"bandit --debug %s\" to see the full " "traceback.", fname, fname) self.skipped.append((fname, 'exception while scanning file')) new_files_list.remove(fname) LOG.debug(" Exception string: %s", e) LOG.debug(" Exception traceback: %s", traceback.format_exc()) def _execute_ast_visitor(self, fname, data, nosec_lines): '''Execute AST parse on each file :param fname: The name of the file being parsed :param data: Original file contents :param lines: The lines of code to process :return: The accumulated test score ''' score = [] res = b_node_visitor.BanditNodeVisitor(fname, self.b_ma, self.b_ts, self.debug, nosec_lines, self.metrics) score = res.process(data) self.results.extend(res.tester.results) return score def _get_files_from_dir(files_dir, included_globs=None, excluded_path_strings=None): if not included_globs: included_globs = ['*.py'] if not excluded_path_strings: excluded_path_strings = [] files_list = set() excluded_files = set() for root, _, files in os.walk(files_dir): for filename in files: path = os.path.join(root, filename) if _is_file_included(path, included_globs, excluded_path_strings): files_list.add(path) else: excluded_files.add(path) return files_list, excluded_files def _is_file_included(path, included_globs, excluded_path_strings, enforce_glob=True): '''Determine if a file should be included based on filename This utility function determines if a file should be included based on the file name, a list of parsed extensions, excluded paths, and a flag specifying whether extensions should be enforced. :param path: Full path of file to check :param parsed_extensions: List of parsed extensions :param excluded_paths: List of paths (globbing supported) from which we should not include files :param enforce_glob: Can set to false to bypass extension check :return: Boolean indicating whether a file should be included ''' return_value = False # if this is matches a glob of files we look at, and it isn't in an # excluded path if _matches_glob_list(path, included_globs) or not enforce_glob: if (not _matches_glob_list(path, excluded_path_strings) and not any(x in path for x in excluded_path_strings)): return_value = True return return_value def _matches_glob_list(filename, glob_list): for glob in glob_list: if fnmatch.fnmatch(filename, glob): return True return False def _compare_baseline_results(baseline, results): """Compare a baseline list of issues to list of results This function compares a baseline set of issues to a current set of issues to find results that weren't present in the baseline. :param baseline: Baseline list of issues :param results: Current list of issues :return: List of unmatched issues """ return [a for a in results if a not in baseline] def _find_candidate_matches(unmatched_issues, results_list): """Returns a dictionary with issue candidates For example, let's say we find a new command injection issue in a file which used to have two. Bandit can't tell which of the command injection issues in the file are new, so it will show all three. The user should be able to pick out the new one. :param unmatched_issues: List of issues that weren't present before :param results_list: Master list of current Bandit findings :return: A dictionary with a list of candidates for each issue """ issue_candidates = collections.OrderedDict() for unmatched in unmatched_issues: issue_candidates[unmatched] = ([i for i in results_list if unmatched == i]) return issue_candidates
37.968825
79
0.604434
4a20e01b8630e0fd4453470d9f4910ddea4a2456
8,782
py
Python
src/sagemaker_containers/_transformer.py
uditbhatia/sagemaker-containers
3c499c8a4e00c7ff7486a4632c9330b5ea2313d3
[ "Apache-2.0" ]
null
null
null
src/sagemaker_containers/_transformer.py
uditbhatia/sagemaker-containers
3c499c8a4e00c7ff7486a4632c9330b5ea2313d3
[ "Apache-2.0" ]
null
null
null
src/sagemaker_containers/_transformer.py
uditbhatia/sagemaker-containers
3c499c8a4e00c7ff7486a4632c9330b5ea2313d3
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the 'license' file accompanying this file. This file is # distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import json import textwrap import traceback from six.moves import http_client from sagemaker_containers import _encoders, _env, _errors, _functions, _worker def default_model_fn(model_dir): """Function responsible to load the model. For more information about model loading https://github.com/aws/sagemaker-python-sdk#model-loading. Args: model_dir (str): The directory where model files are stored. Returns: (obj) the loaded model. """ raise NotImplementedError(textwrap.dedent(""" Please provide a model_fn implementation. See documentation for model_fn at https://github.com/aws/sagemaker-python-sdk """)) def default_input_fn(input_data, content_type): """Takes request data and de-serializes the data into an object for prediction. When an InvokeEndpoint operation is made against an Endpoint running SageMaker model server, the model server receives two pieces of information: - The request Content-Type, for example "application/json" - The request data, which is at most 5 MB (5 * 1024 * 1024 bytes) in size. The input_fn is responsible to take the request data and pre-process it before prediction. Args: input_data (obj): the request data. content_type (str): the request Content-Type. Returns: (obj): data ready for prediction. """ return _encoders.decode(input_data, content_type) def default_predict_fn(data, model): """Function responsible for model predictions. Args: model (obj): model loaded by model_fn data: de-serializes data returned by input_fn Returns: (obj): data ready for prediction. """ raise NotImplementedError(textwrap.dedent(""" Please provide a predict_fn implementation. See documentation for predict_fn at https://github.com/aws/sagemaker-python-sdk """)) def default_output_fn(prediction, accept): """Function responsible to serialize the prediction for the response. Args: prediction (obj): prediction returned by predict_fn . accept (str): accept content-type expected by the client. Returns: (worker.Response): a Flask response object with the following args: * Args: response: the serialized data to return accept: the content-type that the data was transformed to. """ return _worker.Response(_encoders.encode(prediction, accept), accept) class Transformer(object): """The Transformer is a proxy between the worker and the framework transformation functions. It implements the default framework functions for serving. Examples: >>>import os >>>from sagemaker_containers import _env, _modules, _transformer >>>import Keras >>>ServingEnv = _env.ServingEnv() >>> >>>def predict_fn(model, data): >>> return model.predict(data) >>> >>>def model_fn(model_dir): >>> return Keras.models.load_model(os.path.join(model_dir, 'minimlmodel')) >>> >>>transformer = _transformer.Transformer(predict_fn=predict_fn, model_fn=model_fn) >>> >>>mod = _modules.download_and_import(ServingEnv.module_dir, ServingEnv.module_name) >>>transformer.load_user_fns(mod) """ def __init__(self, model_fn=None, input_fn=None, predict_fn=None, output_fn=None, transform_fn=None, error_class=_errors.ClientError): """Default constructor. Wraps the any non default framework function in an error class to isolate framework from user errors. Args: model_fn (fn): Function responsible to load the model. input_fn (fn): Takes request data and de-serializes the data into an object for prediction. predict_fn (fn): Function responsible for model predictions. output_fn (fn): Function responsible to serialize the prediction for the response. transform_fn (fn): Function responsible for taking input data and returning a prediction as a serialized response. This function takes the place of ``input_fn``, ``predict_fn``, and ``output_fn``. error_class (Exception): Error class used to separate framework and user errors. """ self._model = None self._model_fn = _functions.error_wrapper(model_fn, error_class) if model_fn else default_model_fn if transform_fn and (input_fn or predict_fn or output_fn): raise ValueError('Cannot use transform_fn implementation with input_fn, predict_fn, and/or output_fn') if transform_fn is not None: self._transform_fn = _functions.error_wrapper(transform_fn, error_class) else: self._transform_fn = self._default_transform_fn self._input_fn = _functions.error_wrapper(input_fn, error_class) if input_fn else default_input_fn self._predict_fn = _functions.error_wrapper(predict_fn, error_class) if predict_fn else default_predict_fn self._output_fn = _functions.error_wrapper(output_fn, error_class) if output_fn else default_output_fn self._error_class = error_class def initialize(self): # type: () -> None """Execute any initialization necessary to start making predictions with the Transformer. The default implementation is used to load the model. This function is called by sagemaker_containers.beta.framework.worker.Worker, before starting the Flask application. The gunicorn server forks multiple workers, executing multiple Flask applications in parallel. This function will be called once per each worker. It does not have return type or arguments. """ self._model = self._model_fn(_env.model_dir) def transform(self): # type: () -> _worker.Response """Take a request with input data, deserialize it, make a prediction, and return a serialized response. Returns: sagemaker_containers.beta.framework.worker.Response: a Flask response object with the following args: * response: the serialized data to return * accept: the content type that the data was serialized into """ request = _worker.Request() result = self._transform_fn(self._model, request.content, request.content_type, request.accept) if isinstance(result, tuple): # transforms tuple in Response for backwards compatibility return _worker.Response(response=result[0], accept=result[1]) return result def _default_transform_fn(self, model, content, content_type, accept): """Make predictions against the model and return a serialized response. This serves as the default implementation of transform_fn, used when the user has not implemented one themselves. Args: model (obj): model loaded by model_fn. content: request content. content_type (str): the request Content-Type. accept (str): accept content-type expected by the client. Returns: sagemaker_containers.beta.framework.worker.Response or tuple: the serialized response data and its content type, either as a Response object or a tuple of the form (response_data, content_type) """ try: data = self._input_fn(content, content_type) except _errors.UnsupportedFormatError as e: return self._error_response(e, http_client.UNSUPPORTED_MEDIA_TYPE) prediction = self._predict_fn(data, model) try: result = self._output_fn(prediction, accept) except _errors.UnsupportedFormatError as e: return self._error_response(e, http_client.NOT_ACCEPTABLE) return result def _error_response(self, error, status_code): body = json.dumps({'error': error.__class__.__name__, 'error-message': str(error), 'stack-trace': traceback.format_exc()}) return _worker.Response(response=body, status=status_code)
40.846512
114
0.686062
4a20e066c34b6d78fb1764d2feb7ec119a5b3dc3
13,471
py
Python
sdk/python/pulumi_openstack/vpnaas/ip_sec_policy.py
ederst/pulumi-openstack
e11af3f9ade3bc0de8b3feb9db5a9e86ad5ba989
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_openstack/vpnaas/ip_sec_policy.py
ederst/pulumi-openstack
e11af3f9ade3bc0de8b3feb9db5a9e86ad5ba989
[ "ECL-2.0", "Apache-2.0" ]
1
2021-03-11T09:01:32.000Z
2021-03-11T09:01:32.000Z
sdk/python/pulumi_openstack/vpnaas/ip_sec_policy.py
ederst/pulumi-openstack
e11af3f9ade3bc0de8b3feb9db5a9e86ad5ba989
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['IpSecPolicy'] class IpSecPolicy(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, auth_algorithm: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, encapsulation_mode: Optional[pulumi.Input[str]] = None, encryption_algorithm: Optional[pulumi.Input[str]] = None, lifetimes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['IpSecPolicyLifetimeArgs']]]]] = None, name: Optional[pulumi.Input[str]] = None, pfs: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, tenant_id: Optional[pulumi.Input[str]] = None, transform_protocol: Optional[pulumi.Input[str]] = None, value_specs: Optional[pulumi.Input[Mapping[str, Any]]] = None, __props__=None, __name__=None, __opts__=None): """ Manages a V2 Neutron IPSec policy resource within OpenStack. ## Example Usage ```python import pulumi import pulumi_openstack as openstack policy1 = openstack.vpnaas.IpSecPolicy("policy1") ``` ## Import Policies can be imported using the `id`, e.g. ```sh $ pulumi import openstack:vpnaas/ipSecPolicy:IpSecPolicy policy_1 832cb7f3-59fe-40cf-8f64-8350ffc03272 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] auth_algorithm: The authentication hash algorithm. Valid values are sha1, sha256, sha384, sha512. Default is sha1. Changing this updates the algorithm of the existing policy. :param pulumi.Input[str] description: The human-readable description for the policy. Changing this updates the description of the existing policy. :param pulumi.Input[str] encapsulation_mode: The encapsulation mode. Valid values are tunnel and transport. Default is tunnel. Changing this updates the existing policy. :param pulumi.Input[str] encryption_algorithm: The encryption algorithm. Valid values are 3des, aes-128, aes-192 and so on. The default value is aes-128. Changing this updates the existing policy. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['IpSecPolicyLifetimeArgs']]]] lifetimes: The lifetime of the security association. Consists of Unit and Value. :param pulumi.Input[str] name: The name of the policy. Changing this updates the name of the existing policy. :param pulumi.Input[str] pfs: The perfect forward secrecy mode. Valid values are Group2, Group5 and Group14. Default is Group5. Changing this updates the existing policy. :param pulumi.Input[str] region: The region in which to obtain the V2 Networking client. A Networking client is needed to create an IPSec policy. If omitted, the `region` argument of the provider is used. Changing this creates a new policy. :param pulumi.Input[str] tenant_id: The owner of the policy. Required if admin wants to create a policy for another project. Changing this creates a new policy. :param pulumi.Input[str] transform_protocol: The transform protocol. Valid values are ESP, AH and AH-ESP. Changing this updates the existing policy. Default is ESP. :param pulumi.Input[Mapping[str, Any]] value_specs: Map of additional options. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['auth_algorithm'] = auth_algorithm __props__['description'] = description __props__['encapsulation_mode'] = encapsulation_mode __props__['encryption_algorithm'] = encryption_algorithm __props__['lifetimes'] = lifetimes __props__['name'] = name __props__['pfs'] = pfs __props__['region'] = region __props__['tenant_id'] = tenant_id __props__['transform_protocol'] = transform_protocol __props__['value_specs'] = value_specs super(IpSecPolicy, __self__).__init__( 'openstack:vpnaas/ipSecPolicy:IpSecPolicy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, auth_algorithm: Optional[pulumi.Input[str]] = None, description: Optional[pulumi.Input[str]] = None, encapsulation_mode: Optional[pulumi.Input[str]] = None, encryption_algorithm: Optional[pulumi.Input[str]] = None, lifetimes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['IpSecPolicyLifetimeArgs']]]]] = None, name: Optional[pulumi.Input[str]] = None, pfs: Optional[pulumi.Input[str]] = None, region: Optional[pulumi.Input[str]] = None, tenant_id: Optional[pulumi.Input[str]] = None, transform_protocol: Optional[pulumi.Input[str]] = None, value_specs: Optional[pulumi.Input[Mapping[str, Any]]] = None) -> 'IpSecPolicy': """ Get an existing IpSecPolicy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] auth_algorithm: The authentication hash algorithm. Valid values are sha1, sha256, sha384, sha512. Default is sha1. Changing this updates the algorithm of the existing policy. :param pulumi.Input[str] description: The human-readable description for the policy. Changing this updates the description of the existing policy. :param pulumi.Input[str] encapsulation_mode: The encapsulation mode. Valid values are tunnel and transport. Default is tunnel. Changing this updates the existing policy. :param pulumi.Input[str] encryption_algorithm: The encryption algorithm. Valid values are 3des, aes-128, aes-192 and so on. The default value is aes-128. Changing this updates the existing policy. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['IpSecPolicyLifetimeArgs']]]] lifetimes: The lifetime of the security association. Consists of Unit and Value. :param pulumi.Input[str] name: The name of the policy. Changing this updates the name of the existing policy. :param pulumi.Input[str] pfs: The perfect forward secrecy mode. Valid values are Group2, Group5 and Group14. Default is Group5. Changing this updates the existing policy. :param pulumi.Input[str] region: The region in which to obtain the V2 Networking client. A Networking client is needed to create an IPSec policy. If omitted, the `region` argument of the provider is used. Changing this creates a new policy. :param pulumi.Input[str] tenant_id: The owner of the policy. Required if admin wants to create a policy for another project. Changing this creates a new policy. :param pulumi.Input[str] transform_protocol: The transform protocol. Valid values are ESP, AH and AH-ESP. Changing this updates the existing policy. Default is ESP. :param pulumi.Input[Mapping[str, Any]] value_specs: Map of additional options. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["auth_algorithm"] = auth_algorithm __props__["description"] = description __props__["encapsulation_mode"] = encapsulation_mode __props__["encryption_algorithm"] = encryption_algorithm __props__["lifetimes"] = lifetimes __props__["name"] = name __props__["pfs"] = pfs __props__["region"] = region __props__["tenant_id"] = tenant_id __props__["transform_protocol"] = transform_protocol __props__["value_specs"] = value_specs return IpSecPolicy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="authAlgorithm") def auth_algorithm(self) -> pulumi.Output[str]: """ The authentication hash algorithm. Valid values are sha1, sha256, sha384, sha512. Default is sha1. Changing this updates the algorithm of the existing policy. """ return pulumi.get(self, "auth_algorithm") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ The human-readable description for the policy. Changing this updates the description of the existing policy. """ return pulumi.get(self, "description") @property @pulumi.getter(name="encapsulationMode") def encapsulation_mode(self) -> pulumi.Output[str]: """ The encapsulation mode. Valid values are tunnel and transport. Default is tunnel. Changing this updates the existing policy. """ return pulumi.get(self, "encapsulation_mode") @property @pulumi.getter(name="encryptionAlgorithm") def encryption_algorithm(self) -> pulumi.Output[str]: """ The encryption algorithm. Valid values are 3des, aes-128, aes-192 and so on. The default value is aes-128. Changing this updates the existing policy. """ return pulumi.get(self, "encryption_algorithm") @property @pulumi.getter def lifetimes(self) -> pulumi.Output[Sequence['outputs.IpSecPolicyLifetime']]: """ The lifetime of the security association. Consists of Unit and Value. """ return pulumi.get(self, "lifetimes") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the policy. Changing this updates the name of the existing policy. """ return pulumi.get(self, "name") @property @pulumi.getter def pfs(self) -> pulumi.Output[str]: """ The perfect forward secrecy mode. Valid values are Group2, Group5 and Group14. Default is Group5. Changing this updates the existing policy. """ return pulumi.get(self, "pfs") @property @pulumi.getter def region(self) -> pulumi.Output[str]: """ The region in which to obtain the V2 Networking client. A Networking client is needed to create an IPSec policy. If omitted, the `region` argument of the provider is used. Changing this creates a new policy. """ return pulumi.get(self, "region") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> pulumi.Output[str]: """ The owner of the policy. Required if admin wants to create a policy for another project. Changing this creates a new policy. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter(name="transformProtocol") def transform_protocol(self) -> pulumi.Output[str]: """ The transform protocol. Valid values are ESP, AH and AH-ESP. Changing this updates the existing policy. Default is ESP. """ return pulumi.get(self, "transform_protocol") @property @pulumi.getter(name="valueSpecs") def value_specs(self) -> pulumi.Output[Optional[Mapping[str, Any]]]: """ Map of additional options. """ return pulumi.get(self, "value_specs") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
48.110714
177
0.654443
4a20e07d4b1b10db8796f9d543041b4116ad4930
339
py
Python
auctions/migrations/0010_auto_20201216_2221.py
juannajul/CS50Ecommerce
d3e8b07b4f3266f99075d408c42019426d6b7f07
[ "MIT" ]
null
null
null
auctions/migrations/0010_auto_20201216_2221.py
juannajul/CS50Ecommerce
d3e8b07b4f3266f99075d408c42019426d6b7f07
[ "MIT" ]
null
null
null
auctions/migrations/0010_auto_20201216_2221.py
juannajul/CS50Ecommerce
d3e8b07b4f3266f99075d408c42019426d6b7f07
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-12-17 02:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('auctions', '0009_auction_winner'), ] operations = [ migrations.AlterModelOptions( name='bid', options={'ordering': ('bid',)}, ), ]
18.833333
47
0.578171
4a20e091d257e92a398bc6fbddf4de28b5dc4a6c
2,026
py
Python
config/urls.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
config/urls.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
config/urls.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import include, path from django.views import defaults as default_views from django.views.generic import TemplateView urlpatterns = [ # path("", TemplateView.as_view(template_name="pages/home.html"), name="home"), path("", include("beerhunter.my_syte.urls", namespace="site")), path( "about/", TemplateView.as_view(template_name="pages/about.html"), name="about" ), # Django Admin, use {% url 'admin:index' %} path(settings.ADMIN_URL, admin.site.urls), # User management path("users/", include("beerhunter.users.urls", namespace="users")), path("accounts/", include("allauth.urls")), # Your stuff: custom urls includes go here path( 'beers/', include('beerhunter.beers.urls', namespace='beers') ), path( 'breweries/', include('beerhunter.breweries.urls', namespace='breweries') ), path( 'hops/', include('beerhunter.hops.urls', namespace='hops') ), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ path( "400/", default_views.bad_request, kwargs={"exception": Exception("Bad Request!")}, ), path( "403/", default_views.permission_denied, kwargs={"exception": Exception("Permission Denied")}, ), path( "404/", default_views.page_not_found, kwargs={"exception": Exception("Page not Found")}, ), path("500/", default_views.server_error), ] if "debug_toolbar" in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [path("__debug__/", include(debug_toolbar.urls))] + urlpatterns
33.213115
86
0.630306
4a20e0e608e7b3a2c1730d310fd90880d5354170
2,286
py
Python
emmet-core/emmet/core/symmetry.py
JaGeo/emmet
db01498d1136fc499961277f0b0edce3b9ddf386
[ "BSD-3-Clause-LBNL" ]
null
null
null
emmet-core/emmet/core/symmetry.py
JaGeo/emmet
db01498d1136fc499961277f0b0edce3b9ddf386
[ "BSD-3-Clause-LBNL" ]
null
null
null
emmet-core/emmet/core/symmetry.py
JaGeo/emmet
db01498d1136fc499961277f0b0edce3b9ddf386
[ "BSD-3-Clause-LBNL" ]
null
null
null
from typing import Any, Dict from pydantic import BaseModel, Field from pymatgen.core import Structure from pymatgen.symmetry.analyzer import SpacegroupAnalyzer, spglib from emmet.core.settings import EmmetSettings from emmet.core.utils import ValueEnum SETTINGS = EmmetSettings() class CrystalSystem(ValueEnum): """ The crystal system of the lattice """ tri = "Triclinic" mono = "Monoclinic" ortho = "Orthorhombic" tet = "Tetragonal" trig = "Trigonal" hex_ = "Hexagonal" cubic = "Cubic" class SymmetryData(BaseModel): """ Defines a symmetry data set for materials documents """ crystal_system: CrystalSystem = Field( None, title="Crystal System", description="The crystal system for this lattice" ) symbol: str = Field( None, title="Space Group Symbol", description="The spacegroup symbol for the lattice", ) number: int = Field( None, title="Space Group Number", description="The spacegroup number for the lattice", ) point_group: str = Field( None, title="Point Group Symbol", description="The point group for the lattice" ) symprec: float = Field( None, title="Symmetry Finding Precision", description="The precision given to spglib to determine the symmetry of this lattice", ) version: str = Field(None, title="SPGLib version") @classmethod def from_structure(cls, structure: Structure) -> "SymmetryData": symprec = SETTINGS.SYMPREC sg = SpacegroupAnalyzer(structure, symprec=symprec) symmetry: Dict[str, Any] = {"symprec": symprec} if not sg.get_symmetry_dataset(): sg = SpacegroupAnalyzer(structure, 1e-3, 1) symmetry["symprec"] = 1e-3 symmetry.update( { "source": "spglib", "symbol": sg.get_space_group_symbol(), "number": sg.get_space_group_number(), "point_group": sg.get_point_group_symbol(), "crystal_system": CrystalSystem(sg.get_crystal_system().title()), "hall": sg.get_hall(), "version": spglib.__version__, } ) return SymmetryData(**symmetry)
27.878049
94
0.62336
4a20e0f159e2ab0f0e6790966bba8cc48fcc8d1a
1,139
py
Python
xyz12/pf-auth/pf_auth/model/operator.py
problemfighter/pf-flask-react
ac38e3fa0fac0765eea7ec3c03937f93c55a9815
[ "Apache-2.0" ]
3
2021-11-22T07:57:23.000Z
2022-01-15T09:08:50.000Z
xyz12/pf-auth/pf_auth/model/operator.py
problemfighter/pf-flask-react
ac38e3fa0fac0765eea7ec3c03937f93c55a9815
[ "Apache-2.0" ]
null
null
null
xyz12/pf-auth/pf_auth/model/operator.py
problemfighter/pf-flask-react
ac38e3fa0fac0765eea7ec3c03937f93c55a9815
[ "Apache-2.0" ]
null
null
null
from pf_auth.common.password_util import get_password_hash, validate_password from pf_sqlalchemy.db.orm import Base, database class Operator(Base): firstName = database.Column("first_name", database.String(100)) lastName = database.Column("last_name", database.String(100)) name = database.Column("name", database.String(100)) email = database.Column("email", database.String(100), unique=True, index=True) username = database.Column("username", database.String(100), unique=True, index=True) password_hash = database.Column("password_hash", database.String(150), nullable=False, index=True) isVerified = database.Column("is_verified", database.Boolean, default=True) token = database.Column("token", database.String(200)) tokens = database.relationship('OperatorToken', backref='operator', lazy=True) @property def password(self): return self.password_hash @password.setter def password(self, password): self.password_hash = get_password_hash(password) def verify_password(self, password) -> bool: return validate_password(password, self.password_hash)
43.807692
102
0.737489
4a20e2977d57238d22e875d2bb102955f3714cee
5,226
py
Python
workflow/scripts/convert_refseq_to_prokka_gff.py
microbial-pangenomes-lab/2021_ecoli_pathogenicity
f25925c21679e2f89692ae3cfa512060c8bc04bf
[ "MIT" ]
1
2022-01-14T07:21:08.000Z
2022-01-14T07:21:08.000Z
workflow/scripts/convert_refseq_to_prokka_gff.py
microbial-pangenomes-lab/2021_ecoli_pathogenicity
f25925c21679e2f89692ae3cfa512060c8bc04bf
[ "MIT" ]
null
null
null
workflow/scripts/convert_refseq_to_prokka_gff.py
microbial-pangenomes-lab/2021_ecoli_pathogenicity
f25925c21679e2f89692ae3cfa512060c8bc04bf
[ "MIT" ]
1
2022-03-10T12:02:34.000Z
2022-03-10T12:02:34.000Z
import sys, os import argparse import gffutils as gff from io import StringIO from Bio import SeqIO def clean_gff_string(gff_string): splitlines = gff_string.splitlines() lines_to_delete = [] for index in range(len(splitlines)): if '##sequence-region' in splitlines[index]: lines_to_delete.append(index) for index in sorted(lines_to_delete, reverse=True): del splitlines[index] cleaned_gff = "\n".join(splitlines) return cleaned_gff def convert(gfffile, outputfile, fastafile, is_ignore_overlapping): #Split file and parse with open(gfffile, 'r') as infile: lines = infile.read().replace(',','') if fastafile is None: split = lines.split('##FASTA') if len(split) != 2: print("Problem reading GFF3 file: ", gfffile) raise RuntimeError("Error reading GFF3 input!") else: with open(fastafile, 'r') as infile: fasta_lines = infile.read() split = [lines, fasta_lines] with StringIO(split[1]) as temp_fasta: sequences = list(SeqIO.parse(temp_fasta, 'fasta')) for seq in sequences: seq.description = "" parsed_gff = gff.create_db(clean_gff_string(split[0]), dbfn=":memory:", force=True, keep_order=False, merge_strategy="create_unique", sort_attribute_values=True, from_string=True) with open(outputfile, 'w') as outfile: # write gff part outfile.write("##gff-version 3\n") for seq in sequences: outfile.write( " ".join(["##sequence-region", seq.id, "1", str(len(seq.seq))]) + "\n") prev_chrom = "" prev_end = -1 ids = set() seen = set() seq_order = [] for entry in parsed_gff.all_features(featuretype=(), order_by=('seqid', 'start')): entry.chrom = entry.chrom.split()[0] # skip non CDS if "CDS" not in entry.featuretype: continue # skip overlapping CDS if option is set if entry.chrom == prev_chrom and entry.start < prev_end and is_ignore_overlapping: continue # skip CDS that dont appear to be complete or have a premature stop codon premature_stop = False for sequence_index in range(len(sequences)): scaffold_id = sequences[sequence_index].id if scaffold_id == entry.seqid: gene_sequence = sequences[sequence_index].seq[( entry.start - 1):entry.stop] if (len(gene_sequence) % 3 > 0) or (len(gene_sequence) < 34): premature_stop = True break if entry.strand == "-": gene_sequence = gene_sequence.reverse_complement() if "*" in str(gene_sequence.translate())[:-1]: premature_stop = True break if premature_stop: continue c = 1 while entry.attributes['locus_tag'][0] in ids: entry.attributes['locus_tag'][0] += "." + str(c) c += 1 ids.add(entry.attributes['locus_tag'][0]) entry.attributes['ID'][0] = entry.attributes['locus_tag'][0] prev_chrom = entry.chrom prev_end = entry.end if entry.chrom not in seen: seq_order.append(entry.chrom) seen.add(entry.chrom) print(entry, file=outfile) # write fasta part outfile.write("##FASTA\n") sequences = [ seq for x in seq_order for seq in sequences if seq.id == x ] if len(sequences) != len(seen): raise RuntimeError("Mismatch between fasta and GFF!") SeqIO.write(sequences, outfile, "fasta") return def main(): parser = argparse.ArgumentParser( description='Converts refseq GFF3 to prokka format.') parser.add_argument('-g', '--gff', dest='gff', type=str, required=True, help='input gff file name') parser.add_argument( '-f', '--fasta', dest='fasta', type=str, default=None, help='input fasta file name (if separate from the GFF)') parser.add_argument('-o', '--out', dest='out', type=str, required=True, help='output file name') parser.add_argument( '--is_ignore_overlapping', action="store_true", help="set to ignore CDS that overlap (that's common in bacteria)") args = parser.parse_args() convert(args.gff, args.out, args.fasta, args.is_ignore_overlapping) return if __name__ == '__main__': main()
33.935065
94
0.516265
4a20e37679cc40d6a48571a8c5a66c9fa8852e99
1,396
py
Python
database/__init__.py
c3wien/Poke-That-Gmeind
4481e81d74cff311e7e64b0c8b5643b9d6bbe31e
[ "MIT" ]
null
null
null
database/__init__.py
c3wien/Poke-That-Gmeind
4481e81d74cff311e7e64b0c8b5643b9d6bbe31e
[ "MIT" ]
null
null
null
database/__init__.py
c3wien/Poke-That-Gmeind
4481e81d74cff311e7e64b0c8b5643b9d6bbe31e
[ "MIT" ]
null
null
null
import atexit from tempfile import gettempdir from os.path import join from sqlalchemy import create_engine, exc, event, select from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base from config import DB_USER, DB_PASSWORD, DB_HOST, DB_NAME if all([DB_USER, DB_PASSWORD, DB_HOST, DB_NAME]): db_path = "mysql+pymysql://{}:{}@{}/{}?charset=utf8".format(DB_USER, DB_PASSWORD, DB_HOST, DB_NAME) else: db_path = "sqlite:///" + join(gettempdir(), "luftfilterbegehren.db") engine = create_engine(db_path, convert_unicode=True, pool_recycle=3600) atexit.register(lambda engine: engine.dispose(), engine) db_session = scoped_session(sessionmaker(bind=engine)) Base = declarative_base() Base.query = db_session.query_property() def init_db(): from . import models Base.metadata.create_all(bind=engine) @event.listens_for(engine, "engine_connect") def ping_connection(connection, branch): if branch: return save_should_close_with_result = connection.should_close_with_result connection.should_close_with_result = False try: connection.scalar(select([1])) except exc.DBAPIError as err: if err.connection_invalidated: connection.scalar(select([1])) else: raise finally: connection.should_close_with_result = save_should_close_with_result
31.022222
103
0.743553
4a20e37c26924dcbe502727f6968c166da881f0c
339
py
Python
lib/west_tools/tool_tests/__init__.py
poharrison/westpa
8618ab598f9bb38a7bc1479932f5332b137dfcbc
[ "MIT" ]
140
2015-01-07T23:30:36.000Z
2022-03-28T17:15:30.000Z
lib/west_tools/tool_tests/__init__.py
burntyellow/westpa
9dc62478fcef0001b9c038cd56a40b6be1b9d64a
[ "MIT" ]
157
2015-01-03T03:38:36.000Z
2022-03-31T14:12:16.000Z
lib/west_tools/tool_tests/__init__.py
burntyellow/westpa
9dc62478fcef0001b9c038cd56a40b6be1b9d64a
[ "MIT" ]
56
2015-01-02T21:21:40.000Z
2022-03-03T16:27:54.000Z
from westpa import rc, h5io data_manager = rc.get_data_manager() ##Store west.h5 file in RAM for testing west_file_name = 'west.h5' west_file = h5io.WESTPAH5File(west_file_name, driver='core', backing_store=False) data_manager.we_h5file = west_file data_manager.we_h5file_version = int(west_file['/'].attrs['west_file_format_version'])
30.818182
86
0.79351
4a20e3c2add43eb8ca6cbb03a40e8b2a755c5f9e
232
py
Python
sonosrestapi/music_serve_account.py
hallo02/sonos-rest-api-wrapper
6d2dca7dcf4b778c5cda57703df5f1c8eacb58e9
[ "MIT" ]
null
null
null
sonosrestapi/music_serve_account.py
hallo02/sonos-rest-api-wrapper
6d2dca7dcf4b778c5cda57703df5f1c8eacb58e9
[ "MIT" ]
null
null
null
sonosrestapi/music_serve_account.py
hallo02/sonos-rest-api-wrapper
6d2dca7dcf4b778c5cda57703df5f1c8eacb58e9
[ "MIT" ]
1
2019-10-13T09:45:35.000Z
2019-10-13T09:45:35.000Z
class Music_serive_account: def __init__(self, id , user_id_hash_code, is_guest, service): self.id = id self.user_id_hash_code = user_id_hash_code self.is_guets = is_guest self.service = service
29
66
0.681034
4a20e40281c5dc041885023b89fbe038568a2273
334
py
Python
InfoExtractor/doc-extractor/__init__.py
flysky2008/hub_dlcp
fcc7ad722a79f325048009d3b5700f6fe1492de7
[ "Apache-2.0" ]
null
null
null
InfoExtractor/doc-extractor/__init__.py
flysky2008/hub_dlcp
fcc7ad722a79f325048009d3b5700f6fe1492de7
[ "Apache-2.0" ]
null
null
null
InfoExtractor/doc-extractor/__init__.py
flysky2008/hub_dlcp
fcc7ad722a79f325048009d3b5700f6fe1492de7
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function # Add projects here from ner_tf_BiLSTM import data from ner_tf_BiLSTM import eval from ner_tf_BiLSTM import main from ner_tf_BiLSTM import model from ner_tf_BiLSTM import utils __all__ = { data, eval, main, model, utils}
22.266667
43
0.832335
4a20e415ed06aed8433c062f57a173761e2ef5d8
3,563
py
Python
backtrader/backtrader/indicators/lrsi.py
harshabakku/live-back-testing-trader
1fd69c7598dc15bea740f160eed886f396bcba2c
[ "MIT" ]
1
2021-07-14T22:04:08.000Z
2021-07-14T22:04:08.000Z
backtrader/backtrader/indicators/lrsi.py
ajmal017/LiveBackTestingTrader
8b4f5804c0aa6046128f6706582f9cde78a0519a
[ "MIT" ]
null
null
null
backtrader/backtrader/indicators/lrsi.py
ajmal017/LiveBackTestingTrader
8b4f5804c0aa6046128f6706582f9cde78a0519a
[ "MIT" ]
3
2021-03-07T16:29:40.000Z
2022-03-17T21:42:38.000Z
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # # Copyright (C) 2015, 2016, 2017 Daniel Rodriguez # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) from . import PeriodN __all__ = ['LaguerreRSI', 'LRSI', 'LaguerreFilter', 'LAGF'] class LaguerreRSI(PeriodN): ''' Defined by John F. Ehlers in `Cybernetic Analysis for Stock and Futures`, 2004, published by Wiley. `ISBN: 978-0-471-46307-8` The Laguerre RSI tries to implements a better RSI by providing a sort of *Time Warp without Time Travel* using a Laguerre filter. This provides for faster reactions to price changes ``gamma`` is meant to have values between ``0.2`` and ``0.8``, with the best balance found theoretically at the default of ``0.5`` ''' alias = ('LRSI',) lines = ('lrsi',) params = ( ('gamma', 0.5), ('period', 6), ) plotinfo = dict( plotymargin=0.15, plotyticks=[0.0, 0.2, 0.5, 0.8, 1.0] ) l0, l1, l2, l3 = 0.0, 0.0, 0.0, 0.0 def next(self): l0_1 = self.l0 # cache previous intermediate values l1_1 = self.l1 l2_1 = self.l2 g = self.p.gamma # avoid more lookups self.l0 = l0 = (1.0 - g) * self.data + g * l0_1 self.l1 = l1 = -g * l0 + l0_1 + g * l1_1 self.l2 = l2 = -g * l1 + l1_1 + g * l2_1 self.l3 = l3 = -g * l2 + l2_1 + g * self.l3 cu = 0.0 cd = 0.0 if l0 >= l1: cu = l0 - l1 else: cd = l1 - l0 if l1 >= l2: cu += l1 - l2 else: cd += l2 - l1 if l2 >= l3: cu += l2 - l3 else: cd += l3 - l2 den = cu + cd self.lines.lrsi[0] = 1.0 if not den else cu / den class LaguerreFilter(PeriodN): ''' Defined by John F. Ehlers in `Cybernetic Analysis for Stock and Futures`, 2004, published by Wiley. `ISBN: 978-0-471-46307-8` ``gamma`` is meant to have values between ``0.2`` and ``0.8``, with the best balance found theoretically at the default of ``0.5`` ''' alias = ('LAGF',) lines = ('lfilter',) params = (('gamma', 0.5),) plotinfo = dict(subplot=False) l0, l1, l2, l3 = 0.0, 0.0, 0.0, 0.0 def next(self): l0_1 = self.l0 # cache previous intermediate values l1_1 = self.l1 l2_1 = self.l2 g = self.p.gamma # avoid more lookups self.l0 = l0 = (1.0 - g) * self.data + g * l0_1 self.l1 = l1 = -g * l0 + l0_1 + g * l1_1 self.l2 = l2 = -g * l1 + l1_1 + g * l2_1 self.l3 = l3 = -g * l2 + l2_1 + g * self.l3 self.lines.lfilter[0] = (l0 + (2 * l1) + (2 * l2) + l3) / 6
31.254386
79
0.546169
4a20e48b38248954f6d7fc46dd09cfa5711c4795
4,722
py
Python
loveshare/settings.py
reduceweight/loveshare
570250272b3b5b36e682ebf4b6deb5f83f350386
[ "MIT" ]
1
2018-04-11T05:41:43.000Z
2018-04-11T05:41:43.000Z
loveshare/settings.py
reduceweight/loveshare
570250272b3b5b36e682ebf4b6deb5f83f350386
[ "MIT" ]
8
2018-07-15T13:45:20.000Z
2022-03-11T23:17:36.000Z
loveshare/settings.py
reduceweight/loveshare
570250272b3b5b36e682ebf4b6deb5f83f350386
[ "MIT" ]
null
null
null
""" Django settings for loveshare project. Generated by 'django-admin startproject' using Django 2.1.4. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os, sys, datetime import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0,os.path.join(BASE_DIR,"apps")) root = environ.Path(BASE_DIR) public_root = root.path('public/') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ ##环境变量 # reading .env file # environ.Env.read_env() env = environ.Env( # set casting, default value DEBUG=(bool, True) ) APP_ENV = env('APP_ENV', default='docker') # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env('SECRET_KEY', default='%cb0n^gkm9x5&c1rpwb-gxx7yhim_$#2apv7z5kj8b(w^hgfoa') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env('DEBUG') ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'core.apps.CoreConfig', 'blog.apps.BlogConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'loveshare.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'loveshare.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': env.db('DATABASE_URL', default='sqlite:///db.sqlite3') } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ MEDIA_ROOT = env('APP_MEDIA_ROOT', default=public_root('media')) MEDIA_URL = '/media/' STATIC_ROOT = env('APP_STATIC_ROOT', default=public_root('static')) STATIC_URL = '/static/' # REST_FRAMEWORK # http://www.django-rest-framework.org/ REST_FRAMEWORK = { 'DATETIME_FORMAT': '%Y-%m-%d %H:%M:%S', # 分页显示 'DEFAULT_PAGINATION_CLASS': 'core.pagination.PageNumberPagination', 'PAGE_SIZE': 20, # 配置过滤 'DEFAULT_FILTER_BACKENDS': ('django_filters.rest_framework.backends.DjangoFilterBackend',), 'DEFAULT_THROTTLE_CLASSES': ( 'rest_framework.throttling.AnonRateThrottle', 'rest_framework.throttling.UserRateThrottle' ), 'DEFAULT_THROTTLE_RATES': { 'anon': '100/min', 'user': '1000/min' }, # 登录授权 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ), 'DEFAULT_PERMISSION_CLASSES': ( 'core.permissions.IsAdminOrIsOwner', ) } JWT_AUTH = { 'JWT_REFRESH_EXPIRATION_DELTA': datetime.timedelta(days=5), 'JWT_EXPIRATION_DELTA': datetime.timedelta(days=5), }
30.464516
95
0.702457
4a20e4c07861531a6a40f48209f5deefdef7b43f
3,221
py
Python
fast_image_classification/train.py
Franciutte/FastImageClassification
c82601665ff09e2dd5690a3445f07690181d6899
[ "MIT" ]
10
2020-04-18T13:21:44.000Z
2022-03-26T12:00:18.000Z
fast_image_classification/train.py
Franciutte/FastImageClassification
c82601665ff09e2dd5690a3445f07690181d6899
[ "MIT" ]
5
2020-10-12T09:04:14.000Z
2022-02-10T01:14:49.000Z
fast_image_classification/train.py
Franciutte/FastImageClassification
c82601665ff09e2dd5690a3445f07690181d6899
[ "MIT" ]
8
2020-04-06T08:30:05.000Z
2022-03-26T12:00:31.000Z
import pandas as pd import yaml import argparse from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from fast_image_classification.models import get_model_classification from fast_image_classification.training_utilities import ( dataframe_to_list_samples, batch_generator, ) def train_from_csv(csv_path, data_config_path, training_config_path): df = pd.read_csv(csv_path) train, val = train_test_split(df, test_size=0.2, random_state=1337) with open(data_config_path, "r") as f: data_config = yaml.load(f, yaml.SafeLoader) with open(training_config_path, "r") as f: training_config = yaml.load(f, yaml.SafeLoader) train_samples = dataframe_to_list_samples( train, binary_targets=data_config["targets"], base_path=data_config["images_base_path"], image_name_col=data_config["image_name_col"], ) val_samples = dataframe_to_list_samples( val, binary_targets=data_config["targets"], base_path=data_config["images_base_path"], image_name_col=data_config["image_name_col"], ) model = get_model_classification( input_shape=tuple(data_config["input_shape"]), n_classes=len(data_config["targets"]), ) train_gen = batch_generator( train_samples, resize_size=data_config["resize_shape"], augment=training_config["use_augmentation"], ) val_gen = batch_generator(val_samples, resize_size=data_config["resize_shape"]) checkpoint = ModelCheckpoint( training_config["model_path"], monitor="val_loss", verbose=1, save_best_only=True, mode="min", ) reduce = ReduceLROnPlateau(monitor="val_loss", mode="min", patience=10, min_lr=1e-7) early = EarlyStopping(monitor="val_loss", mode="min", patience=30) model.fit_generator( train_gen, steps_per_epoch=len(train_samples) // training_config["batch_size"], validation_data=val_gen, validation_steps=len(val_samples) // training_config["batch_size"], epochs=training_config["epochs"], callbacks=[checkpoint, reduce, early], ) if __name__ == "__main__": """ python train.py --csv_path "../example/data.csv" \ --data_config_path "../example/data_config.yaml" \ --training_config_path "../example/training_config.yaml" """ parser = argparse.ArgumentParser() parser.add_argument("--csv_path", help="csv_path", default="../example/data.csv") parser.add_argument( "--data_config_path", help="data_config_path", default="../example/data_config.yaml", ) parser.add_argument( "--training_config_path", help="training_config_path", default="../example/training_config.yaml", ) args = parser.parse_args() csv_path = args.csv_path data_config_path = args.data_config_path training_config_path = args.training_config_path train_from_csv( csv_path=csv_path, data_config_path=data_config_path, training_config_path=training_config_path, )
33.206186
88
0.687054
4a20e4e67bc9757b8d7437c4af6d11088de4a875
2,535
py
Python
cogdl/tasks/multiplex_node_classification.py
kwyoke/cogdl
df919b4fc7db40f8b035665edbcc7ed59f9d448e
[ "MIT" ]
1
2021-10-19T13:32:23.000Z
2021-10-19T13:32:23.000Z
cogdl/tasks/multiplex_node_classification.py
LONG-9621/cogdl
5e1d70240a3bced319b0f0e04af79acb72f65bed
[ "MIT" ]
null
null
null
cogdl/tasks/multiplex_node_classification.py
LONG-9621/cogdl
5e1d70240a3bced319b0f0e04af79acb72f65bed
[ "MIT" ]
null
null
null
import copy import os import random import warnings from collections import defaultdict import networkx as nx import numpy as np import scipy.sparse as sp import torch import torch.nn.functional as F from scipy import sparse as sp from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.multiclass import OneVsRestClassifier from sklearn.utils import shuffle as skshuffle from tqdm import tqdm from cogdl import options from cogdl.data import Dataset from cogdl.datasets import build_dataset from cogdl.models import build_model, register_model from . import BaseTask, register_task warnings.filterwarnings("ignore") @register_task("multiplex_node_classification") class MultiplexNodeClassification(BaseTask): """Node classification task.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument("--hidden-size", type=int, default=128) # fmt: on def __init__(self, args, dataset=None, model=None): super(MultiplexNodeClassification, self).__init__(args) dataset = build_dataset(args) if dataset is None else dataset self.data = dataset[0] self.label_matrix = self.data.y self.num_nodes, self.num_classes = dataset.num_nodes, dataset.num_classes self.hidden_size = args.hidden_size self.model = build_model(args) if model is None else model self.args = args self.device = torch.device('cpu' if args.cpu else 'cuda') self.model = self.model.to(self.device) def train(self): G = nx.DiGraph() G.add_edges_from(self.data.edge_index.t().tolist()) if self.args.model != "gcc": embeddings = self.model.train(G, self.data.pos.tolist()) else: embeddings = self.model.train(self.data) embeddings = np.hstack((embeddings, self.data.x.numpy())) # Select nodes which have label as training data train_index = torch.cat((self.data.train_node, self.data.valid_node)).numpy() test_index = self.data.test_node.numpy() y = self.data.y.numpy() X_train, y_train = embeddings[train_index], y[train_index] X_test, y_test = embeddings[test_index], y[test_index] clf = LogisticRegression() clf.fit(X_train, y_train) preds = clf.predict(X_test) test_f1 = f1_score(y_test, preds, average="micro") return dict(f1=test_f1)
33.8
85
0.687179
4a20e55b58c0666dfd5791291a482f767bdc0a5f
1,049
py
Python
budget.py
kyaradawbin/accountant
190b34da29d26a98e9e001e6c6d7dfd4b47b5fc9
[ "MIT" ]
1
2019-03-01T03:38:12.000Z
2019-03-01T03:38:12.000Z
budget.py
kyaradawbin/accountant
190b34da29d26a98e9e001e6c6d7dfd4b47b5fc9
[ "MIT" ]
null
null
null
budget.py
kyaradawbin/accountant
190b34da29d26a98e9e001e6c6d7dfd4b47b5fc9
[ "MIT" ]
null
null
null
def budget(): salary = float(input("Please input your salary: ")) monthly_income = round(salary/12, 2) print("Your monthly income is:", monthly_income) print() housing = round(monthly_income * .25, 2) transport = round(monthly_income * .15, 2) food = round(monthly_income * .12, 2) savings = round(monthly_income * .10, 2) utilities = round(monthly_income * .10, 2) charity = round(monthly_income * .05, 2) entertainment = round(monthly_income * .05, 2) medical = round(monthly_income * .05, 2) gift = round(monthly_income * .05, 2) print("Housing:", housing) print("Transportation:", transport) print("Food:", food) print("Savings:", savings) print("Utilities:", utilities) print("Charity:", charity) print("Entertainment:", entertainment) print("Medical", medical) print("Holidays/Gifts:", gift) print() total = housing + transport + food + savings + utilities + charity + entertainment + medical + gift print("Total spent:", total) budget()
31.787879
103
0.64633
4a20e5c76b6ad66c5944653030d1e864b28372c8
27,620
py
Python
tests/httpx/models/test_responses.py
newvicx/httpx_extensions
4a3d6e6789e9f328f49a3b27def20b0416cdb748
[ "MIT" ]
null
null
null
tests/httpx/models/test_responses.py
newvicx/httpx_extensions
4a3d6e6789e9f328f49a3b27def20b0416cdb748
[ "MIT" ]
null
null
null
tests/httpx/models/test_responses.py
newvicx/httpx_extensions
4a3d6e6789e9f328f49a3b27def20b0416cdb748
[ "MIT" ]
null
null
null
import json import pickle import pytest import httpx from httpx._compat import brotli import httpx_extensions class StreamingBody: def __iter__(self): yield b"Hello, " yield b"world!" def streaming_body(): yield b"Hello, " yield b"world!" async def async_streaming_body(): yield b"Hello, " yield b"world!" def test_response(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", request=httpx.Request("GET", "https://example.org"), ) assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "Hello, world!" assert response.request.method == "GET" assert response.request.url == "https://example.org" assert not response.is_error def test_response_content(): response = httpx_extensions.ResponseMixin(200, content="Hello, world!") assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "Hello, world!" assert response.headers == {"Content-Length": "13"} def test_response_text(): response = httpx_extensions.ResponseMixin(200, text="Hello, world!") assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "Hello, world!" assert response.headers == { "Content-Length": "13", "Content-Type": "text/plain; charset=utf-8", } def test_response_html(): response = httpx_extensions.ResponseMixin(200, html="<html><body>Hello, world!</html></body>") assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "<html><body>Hello, world!</html></body>" assert response.headers == { "Content-Length": "39", "Content-Type": "text/html; charset=utf-8", } def test_response_json(): response = httpx_extensions.ResponseMixin(200, json={"hello": "world"}) assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.json() == {"hello": "world"} assert response.headers == { "Content-Length": "18", "Content-Type": "application/json", } def test_raise_for_status(): request = httpx.Request("GET", "https://example.org") # 2xx status codes are not an error. response = httpx_extensions.ResponseMixin(200, request=request) response.raise_for_status() # 1xx status codes are informational responses. response = httpx_extensions.ResponseMixin(101, request=request) assert response.is_informational with pytest.raises(httpx.HTTPStatusError) as exc_info: response.raise_for_status() assert str(exc_info.value) == ( "Informational response '101 Switching Protocols' for url 'https://example.org'\n" "For more information check: https://httpstatuses.com/101" ) # 3xx status codes are redirections. headers = {"location": "https://other.org"} response = httpx_extensions.ResponseMixin(303, headers=headers, request=request) assert response.is_redirect with pytest.raises(httpx.HTTPStatusError) as exc_info: response.raise_for_status() assert str(exc_info.value) == ( "Redirect response '303 See Other' for url 'https://example.org'\n" "Redirect location: 'https://other.org'\n" "For more information check: https://httpstatuses.com/303" ) # 4xx status codes are a client error. response = httpx_extensions.ResponseMixin(403, request=request) assert response.is_client_error assert response.is_error with pytest.raises(httpx.HTTPStatusError) as exc_info: response.raise_for_status() assert str(exc_info.value) == ( "Client error '403 Forbidden' for url 'https://example.org'\n" "For more information check: https://httpstatuses.com/403" ) # 5xx status codes are a server error. response = httpx_extensions.ResponseMixin(500, request=request) assert response.is_server_error assert response.is_error with pytest.raises(httpx.HTTPStatusError) as exc_info: response.raise_for_status() assert str(exc_info.value) == ( "Server error '500 Internal Server Error' for url 'https://example.org'\n" "For more information check: https://httpstatuses.com/500" ) # Calling .raise_for_status without setting a request instance is # not valid. Should raise a runtime error. response = httpx_extensions.ResponseMixin(200) with pytest.raises(RuntimeError): response.raise_for_status() def test_response_repr(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) assert repr(response) == "<Response [200 OK]>" def test_response_content_type_encoding(): """ Use the charset encoding in the Content-Type header if possible. """ headers = {"Content-Type": "text-plain; charset=latin-1"} content = "Latin 1: ÿ".encode("latin-1") response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.text == "Latin 1: ÿ" assert response.encoding == "latin-1" def test_response_autodetect_encoding(): """ Autodetect encoding if there is no Content-Type header. """ content = "おはようございます。".encode("utf-8") response = httpx_extensions.ResponseMixin( 200, content=content, ) assert response.text == "おはようございます。" assert response.encoding is None def test_response_fallback_to_autodetect(): """ Fallback to autodetection if we get an invalid charset in the Content-Type header. """ headers = {"Content-Type": "text-plain; charset=invalid-codec-name"} content = "おはようございます。".encode("utf-8") response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.text == "おはようございます。" assert response.encoding is None def test_response_no_charset_with_ascii_content(): """ A response with ascii encoded content should decode correctly, even with no charset specified. """ content = b"Hello, world!" headers = {"Content-Type": "text/plain"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.status_code == 200 assert response.encoding is None assert response.text == "Hello, world!" def test_response_no_charset_with_utf8_content(): """ A response with UTF-8 encoded content should decode correctly, even with no charset specified. """ content = "Unicode Snowman: ☃".encode("utf-8") headers = {"Content-Type": "text/plain"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.text == "Unicode Snowman: ☃" assert response.encoding is None # Does not pass with httpx.Response either # def test_response_no_charset_with_iso_8859_1_content(): # """ # A response with ISO 8859-1 encoded content should decode correctly, # even with no charset specified. # """ # content = "Accented: Österreich abcdefghijklmnopqrstuzwxyz".encode("iso-8859-1") # headers = {"Content-Type": "text/plain"} # response = httpx_extensions.ResponseMixin( # 200, # content=content, # headers=headers, # ) # assert response.text == "Accented: Österreich abcdefghijklmnopqrstuzwxyz" # assert response.charset_encoding is None # assert response.apparent_encoding is not None def test_response_no_charset_with_cp_1252_content(): """ A response with Windows 1252 encoded content should decode correctly, even with no charset specified. """ content = "Euro Currency: € abcdefghijklmnopqrstuzwxyz".encode("cp1252") headers = {"Content-Type": "text/plain"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.text == "Euro Currency: € abcdefghijklmnopqrstuzwxyz" assert response.charset_encoding is None assert response.apparent_encoding is not None def test_response_non_text_encoding(): """ Default to apparent encoding for non-text content-type headers. """ headers = {"Content-Type": "image/png"} response = httpx_extensions.ResponseMixin( 200, content=b"xyz", headers=headers, ) assert response.text == "xyz" assert response.encoding is None def test_response_set_explicit_encoding(): headers = { "Content-Type": "text-plain; charset=utf-8" } # Deliberately incorrect charset response = httpx_extensions.ResponseMixin( 200, content="Latin 1: ÿ".encode("latin-1"), headers=headers, ) response.encoding = "latin-1" assert response.text == "Latin 1: ÿ" assert response.encoding == "latin-1" def test_response_force_encoding(): response = httpx_extensions.ResponseMixin( 200, content="Snowman: ☃".encode("utf-8"), ) response.encoding = "iso-8859-1" assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "Snowman: â\x98\x83" assert response.encoding == "iso-8859-1" def test_read(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) assert response.status_code == 200 assert response.text == "Hello, world!" assert response.encoding is None assert response.is_closed content = response.read() assert content == b"Hello, world!" assert response.content == b"Hello, world!" assert response.is_closed def test_empty_read(): response = httpx_extensions.ResponseMixin(200) assert response.status_code == 200 assert response.text == "" assert response.encoding is None assert response.is_closed content = response.read() assert content == b"" assert response.content == b"" assert response.is_closed @pytest.mark.asyncio async def test_aread(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) assert response.status_code == 200 assert response.text == "Hello, world!" assert response.encoding is None assert response.is_closed content = await response.aread() assert content == b"Hello, world!" assert response.content == b"Hello, world!" assert response.is_closed @pytest.mark.asyncio async def test_empty_aread(): response = httpx_extensions.ResponseMixin(200) assert response.status_code == 200 assert response.text == "" assert response.encoding is None assert response.is_closed content = await response.aread() assert content == b"" assert response.content == b"" assert response.is_closed def test_iter_raw(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) raw = b"" for part in response.iter_raw(): raw += part assert raw == b"Hello, world!" def test_iter_raw_with_chunksize(): response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_raw(chunk_size=5)] assert parts == [b"Hello", b", wor", b"ld!"] response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_raw(chunk_size=13)] assert parts == [b"Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_raw(chunk_size=20)] assert parts == [b"Hello, world!"] def test_iter_raw_on_iterable(): response = httpx_extensions.ResponseMixin( 200, content=StreamingBody(), ) raw = b"" for part in response.iter_raw(): raw += part assert raw == b"Hello, world!" def test_iter_raw_on_async(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) with pytest.raises(RuntimeError): [part for part in response.iter_raw()] def test_close_on_async(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) with pytest.raises(RuntimeError): response.close() def test_iter_raw_increments_updates_counter(): response = httpx_extensions.ResponseMixin(200, content=streaming_body()) num_downloaded = response.num_bytes_downloaded for part in response.iter_raw(): assert len(part) == (response.num_bytes_downloaded - num_downloaded) num_downloaded = response.num_bytes_downloaded @pytest.mark.asyncio async def test_aiter_raw(): response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) raw = b"" async for part in response.aiter_raw(): raw += part assert raw == b"Hello, world!" @pytest.mark.asyncio async def test_aiter_raw_with_chunksize(): response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_raw(chunk_size=5)] assert parts == [b"Hello", b", wor", b"ld!"] response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_raw(chunk_size=13)] assert parts == [b"Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_raw(chunk_size=20)] assert parts == [b"Hello, world!"] @pytest.mark.asyncio async def test_aiter_raw_on_sync(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) with pytest.raises(RuntimeError): [part async for part in response.aiter_raw()] @pytest.mark.asyncio async def test_aclose_on_sync(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) with pytest.raises(RuntimeError): await response.aclose() @pytest.mark.asyncio async def test_aiter_raw_increments_updates_counter(): response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) num_downloaded = response.num_bytes_downloaded async for part in response.aiter_raw(): assert len(part) == (response.num_bytes_downloaded - num_downloaded) num_downloaded = response.num_bytes_downloaded def test_iter_bytes(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") content = b"" for part in response.iter_bytes(): content += part assert content == b"Hello, world!" def test_iter_bytes_with_chunk_size(): response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_bytes(chunk_size=5)] assert parts == [b"Hello", b", wor", b"ld!"] response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_bytes(chunk_size=13)] assert parts == [b"Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=streaming_body()) parts = [part for part in response.iter_bytes(chunk_size=20)] assert parts == [b"Hello, world!"] def test_iter_bytes_with_empty_response(): response = httpx_extensions.ResponseMixin(200, content=b"") parts = [part for part in response.iter_bytes()] assert parts == [] @pytest.mark.asyncio async def test_aiter_bytes(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) content = b"" async for part in response.aiter_bytes(): content += part assert content == b"Hello, world!" @pytest.mark.asyncio async def test_aiter_bytes_with_chunk_size(): response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_bytes(chunk_size=5)] assert parts == [b"Hello", b", wor", b"ld!"] response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_bytes(chunk_size=13)] assert parts == [b"Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) parts = [part async for part in response.aiter_bytes(chunk_size=20)] assert parts == [b"Hello, world!"] def test_iter_text(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) content = "" for part in response.iter_text(): content += part assert content == "Hello, world!" def test_iter_text_with_chunk_size(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part for part in response.iter_text(chunk_size=5)] assert parts == ["Hello", ", wor", "ld!"] response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part for part in response.iter_text(chunk_size=13)] assert parts == ["Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part for part in response.iter_text(chunk_size=20)] assert parts == ["Hello, world!"] @pytest.mark.asyncio async def test_aiter_text(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", ) content = "" async for part in response.aiter_text(): content += part assert content == "Hello, world!" @pytest.mark.asyncio async def test_aiter_text_with_chunk_size(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part async for part in response.aiter_text(chunk_size=5)] assert parts == ["Hello", ", wor", "ld!"] response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part async for part in response.aiter_text(chunk_size=13)] assert parts == ["Hello, world!"] response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") parts = [part async for part in response.aiter_text(chunk_size=20)] assert parts == ["Hello, world!"] def test_iter_lines(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello,\nworld!", ) content = [line for line in response.iter_lines()] assert content == ["Hello,\n", "world!"] @pytest.mark.asyncio async def test_aiter_lines(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello,\nworld!", ) content = [] async for line in response.aiter_lines(): content.append(line) assert content == ["Hello,\n", "world!"] def test_sync_streaming_response(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) assert response.status_code == 200 assert not response.is_closed content = response.read() assert content == b"Hello, world!" assert response.content == b"Hello, world!" assert response.is_closed @pytest.mark.asyncio async def test_async_streaming_response(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) assert response.status_code == 200 assert not response.is_closed content = await response.aread() assert content == b"Hello, world!" assert response.content == b"Hello, world!" assert response.is_closed def test_cannot_read_after_stream_consumed(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) content = b"" for part in response.iter_bytes(): content += part with pytest.raises(httpx.StreamConsumed): response.read() @pytest.mark.asyncio async def test_cannot_aread_after_stream_consumed(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) content = b"" async for part in response.aiter_bytes(): content += part with pytest.raises(httpx.StreamConsumed): await response.aread() def test_cannot_read_after_response_closed(): response = httpx_extensions.ResponseMixin( 200, content=streaming_body(), ) response.close() with pytest.raises(httpx.StreamClosed): response.read() @pytest.mark.asyncio async def test_cannot_aread_after_response_closed(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) await response.aclose() with pytest.raises(httpx.StreamClosed): await response.aread() @pytest.mark.asyncio async def test_elapsed_not_available_until_closed(): response = httpx_extensions.ResponseMixin( 200, content=async_streaming_body(), ) with pytest.raises(RuntimeError): response.elapsed def test_unknown_status_code(): response = httpx_extensions.ResponseMixin( 600, ) assert response.status_code == 600 assert response.reason_phrase == "" assert response.text == "" def test_json_with_specified_encoding(): data = {"greeting": "hello", "recipient": "world"} content = json.dumps(data).encode("utf-16") headers = {"Content-Type": "application/json, charset=utf-16"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.json() == data def test_json_with_options(): data = {"greeting": "hello", "recipient": "world", "amount": 1} content = json.dumps(data).encode("utf-16") headers = {"Content-Type": "application/json, charset=utf-16"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.json(parse_int=str)["amount"] == "1" @pytest.mark.parametrize( "encoding", [ "utf-8", "utf-8-sig", "utf-16", "utf-16-be", "utf-16-le", "utf-32", "utf-32-be", "utf-32-le", ], ) def test_json_without_specified_charset(encoding): data = {"greeting": "hello", "recipient": "world"} content = json.dumps(data).encode(encoding) headers = {"Content-Type": "application/json"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.json() == data @pytest.mark.parametrize( "encoding", [ "utf-8", "utf-8-sig", "utf-16", "utf-16-be", "utf-16-le", "utf-32", "utf-32-be", "utf-32-le", ], ) def test_json_with_specified_charset(encoding): data = {"greeting": "hello", "recipient": "world"} content = json.dumps(data).encode(encoding) headers = {"Content-Type": f"application/json; charset={encoding}"} response = httpx_extensions.ResponseMixin( 200, content=content, headers=headers, ) assert response.json() == data @pytest.mark.parametrize( "headers, expected", [ ( {"Link": "<https://example.com>; rel='preload'"}, {"preload": {"rel": "preload", "url": "https://example.com"}}, ), ( {"Link": '</hub>; rel="hub", </resource>; rel="self"'}, { "hub": {"url": "/hub", "rel": "hub"}, "self": {"url": "/resource", "rel": "self"}, }, ), ], ) def test_link_headers(headers, expected): response = httpx_extensions.ResponseMixin( 200, content=None, headers=headers, ) assert response.links == expected @pytest.mark.parametrize("header_value", (b"deflate", b"gzip", b"br")) def test_decode_error_with_request(header_value): headers = [(b"Content-Encoding", header_value)] body = b"test 123" compressed_body = brotli.compress(body)[3:] with pytest.raises(httpx.DecodingError): httpx_extensions.ResponseMixin( 200, headers=headers, content=compressed_body, ) with pytest.raises(httpx.DecodingError): httpx_extensions.ResponseMixin( 200, headers=headers, content=compressed_body, request=httpx.Request("GET", "https://www.example.org/"), ) @pytest.mark.parametrize("header_value", (b"deflate", b"gzip", b"br")) def test_value_error_without_request(header_value): headers = [(b"Content-Encoding", header_value)] body = b"test 123" compressed_body = brotli.compress(body)[3:] with pytest.raises(httpx.DecodingError): httpx_extensions.ResponseMixin(200, headers=headers, content=compressed_body) def test_response_with_unset_request(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") assert response.status_code == 200 assert response.reason_phrase == "OK" assert response.text == "Hello, world!" assert not response.is_error def test_set_request_after_init(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") response.request = httpx.Request("GET", "https://www.example.org") assert response.request.method == "GET" assert response.request.url == "https://www.example.org" def test_cannot_access_unset_request(): response = httpx_extensions.ResponseMixin(200, content=b"Hello, world!") with pytest.raises(RuntimeError): response.request def test_generator_with_transfer_encoding_header(): def content(): yield b"test 123" # pragma: nocover response = httpx_extensions.ResponseMixin(200, content=content()) assert response.headers == {"Transfer-Encoding": "chunked"} def test_generator_with_content_length_header(): def content(): yield b"test 123" # pragma: nocover headers = {"Content-Length": "8"} response = httpx_extensions.ResponseMixin(200, content=content(), headers=headers) assert response.headers == {"Content-Length": "8"} def test_response_picklable(): response = httpx_extensions.ResponseMixin( 200, content=b"Hello, world!", request=httpx.Request("GET", "https://example.org"), ) pickle_response = pickle.loads(pickle.dumps(response)) assert pickle_response.is_closed is True assert pickle_response.is_stream_consumed is True assert pickle_response.next_request is None assert pickle_response.stream is not None assert pickle_response.content == b"Hello, world!" assert pickle_response.status_code == 200 assert pickle_response.request.url == response.request.url assert pickle_response.extensions == {} assert pickle_response.history == [] @pytest.mark.asyncio async def test_response_async_streaming_picklable(): response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) pickle_response = pickle.loads(pickle.dumps(response)) with pytest.raises(httpx.ResponseNotRead): pickle_response.content with pytest.raises(httpx.StreamClosed): await pickle_response.aread() assert pickle_response.is_stream_consumed is False assert pickle_response.num_bytes_downloaded == 0 assert pickle_response.headers == {"Transfer-Encoding": "chunked"} response = httpx_extensions.ResponseMixin(200, content=async_streaming_body()) await response.aread() pickle_response = pickle.loads(pickle.dumps(response)) assert pickle_response.is_stream_consumed is True assert pickle_response.content == b"Hello, world!" assert pickle_response.num_bytes_downloaded == 13
29.196617
98
0.672556
4a20e6cc9c684b8d96a5e98318c1c11b41576a6a
591
py
Python
lib/third_party/cloud_ml_engine_sdk/dataflow/_error_filter.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
null
null
null
lib/third_party/cloud_ml_engine_sdk/dataflow/_error_filter.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
null
null
null
lib/third_party/cloud_ml_engine_sdk/dataflow/_error_filter.py
bopopescu/Google-Cloud-SDK-1
c4683bacb2f6192d8a816932e438a0493085469b
[ "Apache-2.0" ]
1
2020-07-24T20:13:29.000Z
2020-07-24T20:13:29.000Z
"""Utilities for cleaning dataflow errors to be user friendly.""" TENSORFLOW_OP_MATCHER = "\n\nCaused by op" def filter_tensorflow_error(error_string): """Removes information from a tensorflow error to hide Dataflow details. TF appends the operation details if they exist, but the stacktrace is not useful to the user, so we remove it if present. Args: error_string: PredictionError error detail, error caught during Session.run Returns: error_string with only base error message instead of full traceback. """ return error_string.split(TENSORFLOW_OP_MATCHER)[0]
31.105263
79
0.769882
4a20e7c7324697d656d802a939b4183facf0a343
10,549
py
Python
airflow/utils/log/es_task_handler.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
1
2021-11-04T20:11:58.000Z
2021-11-04T20:11:58.000Z
airflow/utils/log/es_task_handler.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
3
2020-07-07T20:39:24.000Z
2021-09-29T17:34:46.000Z
airflow/utils/log/es_task_handler.py
suensummit/airflow
37a342d0e96a91ce2d34085e225a4e86f54c4e21
[ "Apache-2.0" ]
1
2020-11-04T03:17:51.000Z
2020-11-04T03:17:51.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import sys # Using `from elasticsearch import *` would break elasticsearch mocking used in unit test. import elasticsearch import pendulum from elasticsearch_dsl import Search from airflow.configuration import conf from airflow.utils import timezone from airflow.utils.helpers import parse_template_string from airflow.utils.log.file_task_handler import FileTaskHandler from airflow.utils.log.json_formatter import JSONFormatter from airflow.utils.log.logging_mixin import LoggingMixin class ElasticsearchTaskHandler(FileTaskHandler, LoggingMixin): """ ElasticsearchTaskHandler is a python log handler that reads logs from Elasticsearch. Note logs are not directly indexed into Elasticsearch. Instead, it flushes logs into local files. Additional software setup is required to index the log into Elasticsearch, such as using Filebeat and Logstash. To efficiently query and sort Elasticsearch results, we assume each log message has a field `log_id` consists of ti primary keys: `log_id = {dag_id}-{task_id}-{execution_date}-{try_number}` Log messages with specific log_id are sorted based on `offset`, which is a unique integer indicates log message's order. Timestamp here are unreliable because multiple log messages might have the same timestamp. """ PAGE = 0 MAX_LINE_PER_PAGE = 1000 def __init__(self, base_log_folder, filename_template, log_id_template, end_of_log_mark, write_stdout, json_format, json_fields, host='localhost:9200', es_kwargs=conf.getsection("elasticsearch_configs") or {}): """ :param base_log_folder: base folder to store logs locally :param log_id_template: log id template :param host: Elasticsearch host name """ super().__init__( base_log_folder, filename_template) self.closed = False self.log_id_template, self.log_id_jinja_template = \ parse_template_string(log_id_template) self.client = elasticsearch.Elasticsearch([host], **es_kwargs) self.mark_end_on_close = True self.end_of_log_mark = end_of_log_mark self.write_stdout = write_stdout self.json_format = json_format self.json_fields = [label.strip() for label in json_fields.split(",")] self.handler = None def _render_log_id(self, ti, try_number): if self.log_id_jinja_template: jinja_context = ti.get_template_context() jinja_context['try_number'] = try_number return self.log_id_jinja_template.render(**jinja_context) if self.json_format: execution_date = self._clean_execution_date(ti.execution_date) else: execution_date = ti.execution_date.isoformat() return self.log_id_template.format(dag_id=ti.dag_id, task_id=ti.task_id, execution_date=execution_date, try_number=try_number) @staticmethod def _clean_execution_date(execution_date): """ Clean up an execution date so that it is safe to query in elasticsearch by removing reserved characters. # https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#_reserved_characters :param execution_date: execution date of the dag run. """ return execution_date.strftime("%Y_%m_%dT%H_%M_%S_%f") def _read(self, ti, try_number, metadata=None): """ Endpoint for streaming log. :param ti: task instance object :param try_number: try_number of the task instance :param metadata: log metadata, can be used for steaming log reading and auto-tailing. :return: a list of log documents and metadata. """ if not metadata: metadata = {'offset': 0} if 'offset' not in metadata: metadata['offset'] = 0 offset = metadata['offset'] log_id = self._render_log_id(ti, try_number) logs = self.es_read(log_id, offset, metadata) next_offset = offset if not logs else logs[-1].offset # Ensure a string here. Large offset numbers will get JSON.parsed incorrectly # on the client. Sending as a string prevents this issue. # https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/MAX_SAFE_INTEGER metadata['offset'] = str(next_offset) # end_of_log_mark may contain characters like '\n' which is needed to # have the log uploaded but will not be stored in elasticsearch. metadata['end_of_log'] = False if not logs \ else logs[-1].message == self.end_of_log_mark.strip() cur_ts = pendulum.now() # Assume end of log after not receiving new log for 5 min, # as executor heartbeat is 1 min and there might be some # delay before Elasticsearch makes the log available. if 'last_log_timestamp' in metadata: last_log_ts = timezone.parse(metadata['last_log_timestamp']) if cur_ts.diff(last_log_ts).in_minutes() >= 5 or 'max_offset' in metadata \ and offset >= metadata['max_offset']: metadata['end_of_log'] = True if offset != next_offset or 'last_log_timestamp' not in metadata: metadata['last_log_timestamp'] = str(cur_ts) # If we hit the end of the log, remove the actual end_of_log message # to prevent it from showing in the UI. i = len(logs) if not metadata['end_of_log'] else len(logs) - 1 message = '\n'.join([log.message for log in logs[0:i]]) return message, metadata def es_read(self, log_id, offset, metadata): """ Returns the logs matching log_id in Elasticsearch and next offset. Returns '' if no log is found or there was an error. :param log_id: the log_id of the log to read. :type log_id: str :param offset: the offset start to read log from. :type offset: str :param metadata: log metadata, used for steaming log download. :type metadata: dict """ # Offset is the unique key for sorting logs given log_id. s = Search(using=self.client) \ .query('match_phrase', log_id=log_id) \ .sort('offset') s = s.filter('range', offset={'gt': int(offset)}) max_log_line = s.count() if 'download_logs' in metadata and metadata['download_logs'] and 'max_offset' not in metadata: try: metadata['max_offset'] = s[max_log_line - 1].execute()[-1].offset if max_log_line > 0 else 0 except Exception: self.log.exception('Could not get current log size with log_id: {}'.format(log_id)) logs = [] if max_log_line != 0: try: logs = s[self.MAX_LINE_PER_PAGE * self.PAGE:self.MAX_LINE_PER_PAGE] \ .execute() except Exception as e: self.log.exception('Could not read log with log_id: %s, error: %s', log_id, str(e)) return logs def set_context(self, ti): """ Provide task_instance context to airflow task handler. :param ti: task instance object """ super().set_context(ti) self.mark_end_on_close = not ti.raw if self.write_stdout: self.handler = logging.StreamHandler(stream=sys.__stdout__) self.handler.setLevel(self.level) if self.json_format and not ti.raw: self.handler.setFormatter( JSONFormatter(self.formatter._fmt, json_fields=self.json_fields, extras={ 'dag_id': str(ti.dag_id), 'task_id': str(ti.task_id), 'execution_date': self._clean_execution_date(ti.execution_date), 'try_number': str(ti.try_number)})) else: self.handler.setFormatter(self.formatter) else: super().set_context(ti) def emit(self, record): if self.write_stdout: self.formatter.format(record) if self.handler is not None: self.handler.emit(record) else: super().emit(record) def flush(self): if self.handler is not None: self.handler.flush() def close(self): # When application exit, system shuts down all handlers by # calling close method. Here we check if logger is already # closed to prevent uploading the log to remote storage multiple # times when `logging.shutdown` is called. if self.closed: return if not self.mark_end_on_close: self.closed = True return # Case which context of the handler was not set. if self.handler is None: self.closed = True return # Reopen the file stream, because FileHandler.close() would be called # first in logging.shutdown() and the stream in it would be set to None. if self.handler.stream is None or self.handler.stream.closed: self.handler.stream = self.handler._open() # Mark the end of file using end of log mark, # so we know where to stop while auto-tailing. self.handler.stream.write(self.end_of_log_mark) if self.write_stdout: self.handler.close() sys.stdout = sys.__stdout__ super().close() self.closed = True
39.657895
128
0.640345