|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
- config_name: arxiv |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: forget |
|
num_bytes: 22127152 |
|
num_examples: 500 |
|
- name: approximate |
|
num_bytes: 371246809 |
|
num_examples: 6155 |
|
- name: retain |
|
num_bytes: 84373706 |
|
num_examples: 2000 |
|
download_size: 216767075 |
|
dataset_size: 477747667 |
|
- config_name: general |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: evaluation |
|
num_bytes: 4628036 |
|
num_examples: 1000 |
|
- name: retain |
|
num_bytes: 24472399 |
|
num_examples: 5000 |
|
download_size: 17206310 |
|
dataset_size: 29100435 |
|
- config_name: github |
|
features: |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: forget |
|
num_bytes: 14069535 |
|
num_examples: 2000 |
|
- name: approximate |
|
num_bytes: 82904771 |
|
num_examples: 15815 |
|
- name: retain |
|
num_bytes: 28749659 |
|
num_examples: 4000 |
|
download_size: 43282163 |
|
dataset_size: 125723965 |
|
configs: |
|
- config_name: arxiv |
|
data_files: |
|
- split: forget |
|
path: arxiv/forget-* |
|
- split: approximate |
|
path: arxiv/approximate-* |
|
- split: retain |
|
path: arxiv/retain-* |
|
- config_name: general |
|
data_files: |
|
- split: evaluation |
|
path: general/evaluation-* |
|
- split: retain |
|
path: general/retain-* |
|
- config_name: github |
|
data_files: |
|
- split: forget |
|
path: github/forget-* |
|
- split: approximate |
|
path: github/approximate-* |
|
- split: retain |
|
path: github/retain-* |
|
--- |
|
|
|
# 📖 unlearn_dataset |
|
The unlearn_dataset serves as a benchmark for evaluating unlearning methodologies in pre-trained large language models across diverse domains, including arXiv, GitHub. |
|
|
|
## 🔍 Loading the datasets |
|
|
|
To load the dataset: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("llmunlearn/unlearn_dataset", name="arxiv", split="forget") |
|
``` |
|
* Available configuration names and corresponding splits: |
|
- `arxiv`: `forget, approximate, retain` |
|
- `github`: `forget, approximate, retain` |
|
- `general`: `evaluation, retain` |
|
|
|
|
|
## 🛠️ Codebase |
|
|
|
For evaluating unlearning methods on our datasets, visit our [GitHub repository](https://github.com/yaojin17/Unlearning_LLM). |
|
|
|
|
|
|
|
## ⭐ Citing our Work |
|
|
|
If you find our codebase or dataset useful, please consider citing our paper: |
|
|
|
```bib |
|
@article{yao2024machine, |
|
title={Machine Unlearning of Pre-trained Large Language Models}, |
|
author={Yao, Jin and Chien, Eli and Du, Minxin and Niu, Xinyao and Wang, Tianhao and Cheng, Zezhou and Yue, Xiang}, |
|
journal={arXiv preprint arXiv:2402.15159}, |
|
year={2024} |
|
} |
|
``` |
|
|