Dataset Viewer
Auto-converted to Parquet
modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-28 06:28:18
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
438 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-28 06:27:47
card
stringlengths
11
1.01M
zhiyuanyou/DeQA-Score-LoRA-Mix3
zhiyuanyou
"2025-03-25T14:16:13"
21
0
transformers
[ "transformers", "mplug_owl2", "image-to-text", "en", "arxiv:2501.11561", "base_model:MAGAer13/mplug-owl2-llama2-7b", "base_model:finetune:MAGAer13/mplug-owl2-llama2-7b", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
"2025-01-15T08:07:00"
--- base_model: - MAGAer13/mplug-owl2-llama2-7b language: - en license: mit library_name: transformers pipeline_tag: image-to-text --- # DeQA-Score-LoRA-Mix3 DeQA-Score ( [project page](https://depictqa.github.io/deqa-score/) / [codes](https://github.com/zhiyuanyou/DeQA-Score) / [paper](https://arxiv.org/abs/2501.11561) ) model weights LoRA fine-tuned on KonIQ, SPAQ, and KADID datasets. This work is under our [DepictQA project](https://depictqa.github.io/). ## Non-reference IQA Results (PLCC / SRCC) | | Fine-tune | KonIQ | SPAQ | KADID | PIPAL | LIVE-Wild | AGIQA | TID2013 | CSIQ | |--------------|-----------|-----------|----------|----------|----------|-----------|----------|----------|----------| | Q-Align (Baseline) | Fully | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 | | DeQA-Score (Ours) | LoRA | **0.956 / 0.944** | **0.939 / 0.935** | **0.953 / 0.951** | **0.481 / 0.481** | **0.903 / 0.890** | **0.806 / 0.754** | **0.851 / 0.821** | **0.900 / 0.860** | If you find our work useful for your research and applications, please cite using the BibTeX: ```bibtex @inproceedings{deqa_score, title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution}, author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, year={2025}, } ```
mlfoundations-dev/llama3-1_8b_4o_annotated_olympiads
mlfoundations-dev
"2025-02-04T01:28:32"
3,842
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-01T20:45:48"
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_4o_annotated_olympiads results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_4o_annotated_olympiads This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/4o_annotated_olympiads dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
ArthurMor4is/vit-base-patch16-224-finetuned-covid_ct_set_full
ArthurMor4is
"2023-08-15T13:27:03"
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-08-14T13:41:52"
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-covid_ct_set_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-covid_ct_set_full This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1225 - Accuracy: 0.9627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4343 | 0.99 | 29 | 0.1945 | 0.9298 | | 0.2353 | 1.98 | 58 | 0.2052 | 0.9290 | | 0.1395 | 2.97 | 87 | 0.2567 | 0.9075 | | 0.1399 | 4.0 | 117 | 0.1225 | 0.9627 | | 0.1186 | 4.96 | 145 | 0.1531 | 0.9521 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Free188/llama-merge-ch_alpaca_lora-quantized-7b
Free188
"2023-04-22T14:54:11"
0
0
adapter-transformers
[ "adapter-transformers", "chemistry", "text-classification", "aa", "dataset:fka/awesome-chatgpt-prompts", "region:us" ]
text-classification
"2023-04-22T14:51:35"
--- datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: adapter-transformers pipeline_tag: text-classification tags: - chemistry ---
Katsie011/t5-small-finetuned-xsum
Katsie011
"2023-04-15T15:19:43"
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-04-15T07:47:38"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
InternationalOlympiadAI/miniSD-diffusers
InternationalOlympiadAI
"2024-08-08T21:09:54"
64
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-08-08T21:07:24"
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baby-dev/e40209b6-0413-40cd-b61f-65c437733d04
baby-dev
"2025-02-23T10:52:54"
0
0
peft
[ "peft", "bloom", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "region:us" ]
null
"2025-02-23T10:52:49"
--- library_name: peft tags: - generated_from_trainer base_model: bigscience/bloomz-560m model-index: - name: baby-dev/e40209b6-0413-40cd-b61f-65c437733d04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baby-dev/e40209b6-0413-40cd-b61f-65c437733d04 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3
stefan-it
"2023-10-17T22:57:31"
8
0
flair
[ "flair", "pytorch", "tensorboard", "token-classification", "sequence-tagger-model", "de", "base_model:hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax", "base_model:finetune:hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax", "license:mit", "region:us" ]
token-classification
"2023-10-06T23:57:41"
--- language: de license: mit tags: - flair - token-classification - sequence-tagger-model base_model: hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax inference: false widget: - text: — Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging , das Stück Σαλαμίνιαι folgte . --- # Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmByT5 as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # ⚠️ Inference Widget ⚠️ Fine-Tuning ByT5 models in Flair is currently done by implementing an own [`ByT5Embedding`][0] class. This class needs to be present when running the model with Flair. Thus, the inference widget is not working with hmByT5 at the moment on the Model Hub and is currently disabled. This should be fixed in future, when ByT5 fine-tuning is supported in Flair directly. [0]: https://github.com/stefan-it/hmBench/blob/main/byt5_embeddings.py # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[8, 4]` * Learning Rates: `[0.00015, 0.00016]` And report micro F1-score on development set: | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |-------------------|--------------|--------------|--------------|--------------|--------------|--------------| | bs4-e10-lr0.00016 | [0.8892][1] | [0.8913][2] | [0.8867][3] | [0.8843][4] | [0.8828][5] | 88.69 ± 0.31 | | bs4-e10-lr0.00015 | [0.8786][6] | [0.8793][7] | [0.883][8] | [0.8807][9] | [0.8722][10] | 87.88 ± 0.36 | | bs8-e10-lr0.00016 | [0.8602][11] | [0.8684][12] | [0.8643][13] | [0.8643][14] | [0.8623][15] | 86.39 ± 0.27 | | bs8-e10-lr0.00015 | [0.8551][16] | [0.8707][17] | [0.8599][18] | [0.8609][19] | [0.8612][20] | 86.16 ± 0.51 | [1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbyt5-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️
AmelieSchreiber/esm2_t6_8M_finetuned_cafa5
AmelieSchreiber
"2023-08-29T10:48:38"
109
0
transformers
[ "transformers", "pytorch", "esm", "text-classification", "esm2", "protein language model", "pLM", "biology", "multilabel sequence classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-08-27T15:52:57"
--- license: mit language: - en library_name: transformers tags: - esm - esm2 - protein language model - pLM - biology - multilabel sequence classification metrics: - f1 - precision - recall --- # ESM-2 Fine-tuned CAFA-5 ## ESM-2 for Protein Function Prediction This is an experimental model fine-tuned from the [esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) model for multi-label classification. In particular, the model is fine-tuned on the CAFA-5 protein sequence dataset available [here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5). More precisely, the `train_sequences.fasta` file is the list of protein sequences that were trained on, and the `train_terms.tsv` file contains the gene ontology protein function labels for each protein sequence. For more details on using ESM-2 models for multi-label sequence classification, [see here](https://huggingface.co/docs/transformers/model_doc/esm). Due to the potentially complicated class weighting necessary for the hierarchical ontology, further fine-tuning will be necessary. ## Training The training/validation split of the data for this model is available [here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5_train_val_split_1). Macro ``` Epoch 5/5 Training loss: 0.06925179701577704 Validation Precision: 0.9821931289359406 Validation Recall: 0.999934039607066 Validation MultilabelF1Score: 0.9907671213150024 Validation AUROC: 0.5831210653861931 ``` Micro ``` Validation Precision: 0.9822020821532512 Validation Recall: 0.9999363677941498 ``` ## Using the model First, download the `train_sequences.fasta` file and the `train_terms.tsv` file, and provide the local paths in the code below: ```python import os import numpy as np import torch from transformers import AutoTokenizer, EsmForSequenceClassification, AdamW from torch.nn.functional import binary_cross_entropy_with_logits from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score, precision_score, recall_score # from accelerate import Accelerator from Bio import SeqIO # Step 1: Data Preprocessing (Replace with your local paths) fasta_file = "data/train_sequences.fasta" tsv_file = "data/train_terms.tsv" fasta_data = {} tsv_data = {} for record in SeqIO.parse(fasta_file, "fasta"): fasta_data[record.id] = str(record.seq) with open(tsv_file, 'r') as f: for line in f: parts = line.strip().split("\t") tsv_data[parts[0]] = parts[1:] # tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D") seq_length = 1022 # tokenized_data = tokenizer(list(fasta_data.values()), padding=True, truncation=True, return_tensors="pt", max_length=seq_length) unique_terms = list(set(term for terms in tsv_data.values() for term in terms)) ``` Second, downlowd the file `go-basic.obo` [from here](https://huggingface.co/datasets/AmelieSchreiber/cafa_5) and store the file locally, then provide the local path in the the code below: ```python import torch from transformers import AutoTokenizer, EsmForSequenceClassification from sklearn.metrics import precision_recall_fscore_support # 1. Parsing the go-basic.obo file def parse_obo_file(file_path): with open(file_path, 'r') as f: data = f.read().split("[Term]") terms = [] for entry in data[1:]: lines = entry.strip().split("\n") term = {} for line in lines: if line.startswith("id:"): term["id"] = line.split("id:")[1].strip() elif line.startswith("name:"): term["name"] = line.split("name:")[1].strip() elif line.startswith("namespace:"): term["namespace"] = line.split("namespace:")[1].strip() elif line.startswith("def:"): term["definition"] = line.split("def:")[1].split('"')[1] terms.append(term) return terms parsed_terms = parse_obo_file("go-basic.obo") # Replace `go-basic.obo` with your path # 2. Load the saved model and tokenizer model_path = "AmelieSchreiber/esm2_t6_8M_finetuned_cafa5" loaded_model = EsmForSequenceClassification.from_pretrained(model_path) loaded_tokenizer = AutoTokenizer.from_pretrained(model_path) # 3. The predict_protein_function function def predict_protein_function(sequence, model, tokenizer, go_terms): inputs = tokenizer(sequence, return_tensors="pt", padding=True, truncation=True, max_length=1022) model.eval() with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) predicted_indices = torch.where(predictions > 0.05)[1].tolist() functions = [] for idx in predicted_indices: term_id = unique_terms[idx] # Use the unique_terms list from your training script for term in go_terms: if term["id"] == term_id: functions.append(term["name"]) break return functions # 4. Predicting protein function for an example sequence example_sequence = "MAYLGSLVQRRLELASGDRLEASLGVGSELDVRGDRVKAVGSLDLEEGRLEQAGVSMA" # Replace with your protein sequence predicted_functions = predict_protein_function(example_sequence, loaded_model, loaded_tokenizer, parsed_terms) print(predicted_functions) ```
huggingtweets/alexisgallagher
huggingtweets
"2021-05-21T18:10:44"
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2022-03-02T23:29:05"
--- language: en thumbnail: https://www.huggingtweets.com/alexisgallagher/1616871355671/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1274068177215827968/g9sB0dE1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alexis 🤖 AI Bot </div> <div style="font-size: 15px">@alexisgallagher bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@alexisgallagher's tweets](https://twitter.com/alexisgallagher). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 104 | | Short tweets | 232 | | Tweets kept | 2914 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28ak07sx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alexisgallagher's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kmu6pnu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kmu6pnu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/alexisgallagher') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sardoo8/finetuning-sentiment-model-3000-samples
sardoo8
"2024-06-26T10:48:42"
98
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-26T10:41:48"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3197 - Accuracy: 0.87 - F1: 0.8704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.13.3
LoneStriker/dolphin-2.9-llama3-70b-2.4bpw-h6-exl2
LoneStriker
"2024-04-25T21:33:34"
4
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
"2024-04-25T21:23:58"
--- license: llama3 language: - en datasets: - cognitivecomputations/Dolphin-2.9 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - HuggingFaceH4/ultrachat_200k - microsoft/orca-math-word-problems-200k - abacusai/SystemChat-1.1 - Locutusque/function-calling-chatml - internlm/Agent-FLAN --- # Dolphin 2.9 Llama 3 70b 🐬 Curated and trained by Eric Hartford, Lucas Atkins, Fernando Fernandes, and with help from the community of Cognitive Computations Discord: https://discord.gg/8fbBeC7ZGx <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" /> Our appreciation for the sponsors of Dolphin 2.9: - [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xH100 node This model is based on Llama-3-70b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE) The base model has 8k context, and the qLoRA fine-tuning was with 8k sequence length. It took 2.5 days on 8xH100 node provided by Crusoe Cloud This model was trained FFT on all parameters, using ChatML prompt template format. example: ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Dolphin-2.9 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling. Dolphin is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. Dolphin is licensed according to Meta's Llama license. I grant permission for any use, including commercial, that falls within accordance with Meta's Llama-3 license. Dolphin was trained on data generated from GPT4, among other models. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ## Evals ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/gYE1uPH7m7smC6odDbOgr.png) ## Quants - https://huggingface.co/crusoeai/dolphin-2.9-llama3-70b-GGUF - https://huggingface.co/crusoeai/dolphin2.9-llama3-70b-2.25bpw-exl2 - https://huggingface.co/crusoeai/dolphin2.9-llama3-70b-2.5bpw-exl2 - https://huggingface.co/crusoeai/dolphin2.9-llama3-70b-4.5bpw-exl2
nhung02/89a05e93-2200-4be6-b952-303a03b55798
nhung02
"2025-01-25T15:54:18"
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-25T15:39:36"
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 89a05e93-2200-4be6-b952-303a03b55798 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1b5ffad465136296_train_data.json ds_type: json format: custom path: /workspace/input_data/1b5ffad465136296_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung02/89a05e93-2200-4be6-b952-303a03b55798 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/1b5ffad465136296_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9b90f9ef-707a-4ff2-89f3-7f6ad5325643 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9b90f9ef-707a-4ff2-89f3-7f6ad5325643 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 89a05e93-2200-4be6-b952-303a03b55798 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6319 | 0.9112 | 200 | 0.6178 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Wood0529/StockDSR1-1.5B
Wood0529
"2025-02-28T16:08:01"
0
0
null
[ "gguf", "qwen2", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-02-28T16:03:16"
1 1.235900 2 1.241400 3 1.240100 4 1.209100 5 1.175600 6 1.184200 7 1.119700 8 1.134800 9 1.112700 10 1.110000 11 1.093000 12 1.081100 13 1.059400 14 1.075500 15 1.038300 16 1.064300 17 1.031100 18 1.021900 19 1.003600 20 1.011500 21 1.013300 22 1.001500 23 0.987100 24 0.970400 25 0.963100 26 0.964500 27 0.935400 28 0.952800 29 0.985400 30 1.002500 31 0.993600 32 0.992000 33 0.945400 34 0.948600 35 0.909800 36 0.953800 37 0.946600 38 0.951000 39 0.942400 40 0.932900 41 0.969600 42 0.928800 43 0.944500 44 0.941800 45 0.914500 46 0.946700 47 0.935600 48 0.942100 49 0.932600 50 0.904400 51 0.960200 52 0.943500 53 0.949000 54 0.955200 55 0.955700 56 0.955200 57 0.946700 58 0.920500 59 0.926900 60 0.928600 61 0.933700 62 0.906900 63 0.934200 64 0.920800 65 0.941200 66 0.924700 67 0.914700 68 0.923500 69 0.945200 70 0.931700 71 0.939300 72 0.956000 73 0.957700 74 0.930700 75 0.936200
glif-loradex-trainer/Swap_agrawal14_kuki_retro_orange
glif-loradex-trainer
"2025-03-28T07:01:33"
0
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
"2025-03-28T07:01:23"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>503</h1> <p>We had to rate limit you. To continue using our service, please log in or create an account.</p> </div> </main> </body> </html>
HPLT/translate-uk-en-v2.0-hplt_opus
HPLT
"2025-04-06T23:19:09"
0
0
null
[ "translation", "uk", "en", "arxiv:2503.10267", "license:cc-by-4.0", "region:us" ]
translation
"2025-04-06T23:18:51"
--- language: - uk - en tags: - translation license: cc-by-4.0 inference: false --- <img src="https://hplt-project.org/_next/static/media/logo-hplt.d5e16ca5.svg" width=12.5%> ### HPLT MT release v2.0 This repository contains the Ukrainian-English (uk->en) encoder-decoder translation model trained on HPLT v2.0 and OPUS parallel data. The model is currently available in Marian format and we are working on converting it to the Hugging Face format. ### Model Info * Source language: Ukrainian * Target language: English * Data: HPLT v2.0 and OPUS parallel data * Model architecture: Transformer-base * Tokenizer: SentencePiece (Unigram) You can check out our [paper](https://arxiv.org/abs/2503.10267), [GitHub repository](https://github.com/hplt-project/HPLT-MT-Models/tree/main/v2.0), or [website](https://hplt-project.org) for more details. ### Usage The model has been trained with [MarianNMT](https://github.com/marian-nmt/marian) and the weights are in the Marian format. #### Using Marian To run inference with MarianNMT, refer to the [Inference/Decoding/Translation](https://github.com/hplt-project/HPLT-MT-Models/tree/main/v1.0#inferencedecodingtranslation) section of our GitHub repository. You will need the model file `model.npz.best-chrf.npz` and the vocabulary file `model.uk-en.spm` from this repository. #### Using transformers We are working on this. ### Acknowledgements This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101070350 and from UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant number 10052546] ### Citation If you find this model useful, please cite the following paper: ```bibtex @article{hpltv2, title={An Expanded Massive Multilingual Dataset for High-Performance Language Technologies}, author={Laurie Burchell and Ona de Gibert and Nikolay Arefyev and Mikko Aulamo and Marta Bañón and Pinzhen Chen and Mariia Fedorova and Liane Guillou and Barry Haddow and Jan Hajič and Jindřich Helcl and Erik Henriksson and Mateusz Klimaszewski and Ville Komulainen and Andrey Kutuzov and Joona Kytöniemi and Veronika Laippala and Petter Mæhlum and Bhavitvya Malik and Farrokh Mehryary and Vladislav Mikhailov and Nikita Moghe and Amanda Myntti and Dayyán O'Brien and Stephan Oepen and Proyag Pal and Jousia Piha and Sampo Pyysalo and Gema Ramírez-Sánchez and David Samuel and Pavel Stepachev and Jörg Tiedemann and Dušan Variš and Tereza Vojtěchová and Jaume Zaragoza-Bernabeu}, journal={arXiv preprint arXiv:2503.10267}, year={2025}, url={https://arxiv.org/abs/2503.10267}, } ```
kostiantynk1205/b5eeaba0-eed5-4278-8fa1-631cd40316b6
kostiantynk1205
"2025-01-14T07:01:32"
21
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "region:us" ]
null
"2025-01-14T06:47:34"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: b5eeaba0-eed5-4278-8fa1-631cd40316b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 44550b09c3b3c037_train_data.json ds_type: json format: custom path: /workspace/input_data/44550b09c3b3c037_train_data.json type: field_input: post field_instruction: query field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/b5eeaba0-eed5-4278-8fa1-631cd40316b6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/44550b09c3b3c037_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 35396ba4-675d-4701-920b-9b7f4a9ad59c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 35396ba4-675d-4701-920b-9b7f4a9ad59c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b5eeaba0-eed5-4278-8fa1-631cd40316b6 This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0001 | 1 | nan | | 0.0 | 0.0002 | 3 | nan | | 0.0 | 0.0004 | 6 | nan | | 0.0 | 0.0006 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MonteXiaofeng/Tranport-llama3_1_8B_instruct
MonteXiaofeng
"2024-09-29T03:18:57"
12
0
null
[ "safetensors", "llama", "交通运输", "语言模型", "chatmodel", "dataset:BAAI/IndustryInstruction_Transportation", "dataset:BAAI/IndustryInstruction", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:apache-2.0", "region:us" ]
null
"2024-09-23T08:24:33"
--- license: apache-2.0 datasets: - BAAI/IndustryInstruction_Transportation - BAAI/IndustryInstruction base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct tags: - 交通运输 - 语言模型 - chatmodel --- This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Transportation](https://huggingface.co/datasets/BAAI/IndustryInstruction_Transportation) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction) ## training params The training framework is llama-factory, template=llama3 ``` learning_rate=1e-5 lr_scheduler_type=cosine max_length=2048 warmup_ratio=0.05 batch_size=64 epoch=10 ``` select best ckpt by the evaluation loss ## evaluation Since I only found an instruction dataset [DUOMO-Lab/Transgpt_sft_v2](https://huggingface.co/datasets/DUOMO-Lab/Transgpt_sft_v2) in the field of traffic, in order to remove the influence of the base model, I used the data in llama3.1-8b-instruc for fine-tuning and compared and evaluated our model. The evaluation method is: use GPT4 on the validation set of each dataset to compare good, tie, and loss. The evaluation results are as follows ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642f6c64f945a8a5c9ee5b5d/c2GzApj4LlyETZ7ApPHx1.png) ## How to use ```python # !/usr/bin/env python # -*- coding:utf-8 -*- # ================================================================== # [Author] : xiaofeng # [Descriptions] : # ================================================================== from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch llama3_jinja = """{% if messages[0]['role'] == 'system' %} {% set offset = 1 %} {% else %} {% set offset = 0 %} {% endif %} {{ bos_token }} {% for message in messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }} {% endfor %} {% if add_generation_prompt %} {{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }} {% endif %}""" dtype = torch.bfloat16 model_dir = "MonteXiaofeng/Tranport-llama3_1_8B_instruct" model = AutoModelForCausalLM.from_pretrained( model_dir, device_map="cuda", torch_dtype=dtype, ) tokenizer = AutoTokenizer.from_pretrained(model_dir) tokenizer.chat_template = llama3_jinja # update template message = [ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": "私人交通工具的发展对经济有什么影响?"}, ] prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) print(prompt) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") prompt_length = len(inputs[0]) print(f"prompt_length:{prompt_length}") generating_args = { "do_sample": True, "temperature": 1.0, "top_p": 0.5, "top_k": 15, "max_new_tokens": 512, } generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args) response_ids = generate_output[:, prompt_length:] response = tokenizer.batch_decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) print(response) """ 私人交通工具的发展对经济有着深远的影响。首先,私人交通工具的发展可以促进汽车制造业的繁荣。随着私人交通工具的需求增加,汽车制造商将面临更大的市场需求,从而带动产业链的发展,创造就业机会,增加经济收入。其次,私人交通工具的发展也会带动相关 业的发展,如燃料供应、维修服务和保险等。这些行业的发展将为经济增长做出贡献。此外,私人交通工具的发展还会促进城市交通的便利性,提高人们的生活质量,从而带动消费,刺激经济发展。然而,私人交通工具的发展也会带来一些负面影响,如交通拥堵和环境 染等问题。因此,政府需要采取相应的政策措施来平衡经济发展和环境保护的需要。总的来说,私人交通工具的发展对经济有着重要的影响,需要综合考虑各种因素进行合理规划和管理。 """ ```
mradermacher/TimeZero-ActivityNet-7B-GGUF
mradermacher
"2025-04-11T20:47:36"
0
0
transformers
[ "transformers", "gguf", "en", "base_model:wwwyyy/TimeZero-ActivityNet-7B", "base_model:quantized:wwwyyy/TimeZero-ActivityNet-7B", "endpoints_compatible", "region:us", "conversational" ]
null
"2025-04-11T20:35:04"
--- base_model: wwwyyy/TimeZero-ActivityNet-7B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/wwwyyy/TimeZero-ActivityNet-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TimeZero-ActivityNet-7B-GGUF/resolve/main/TimeZero-ActivityNet-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
CharlesLi/llama_2_sky_safe_o1_4o_reflect_4000_500_full
CharlesLi
"2025-01-13T09:25:12"
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "alignment-handbook", "trl", "sft", "generated_from_trainer", "conversational", "dataset:generator", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-13T08:47:29"
--- library_name: transformers license: llama2 base_model: meta-llama/Llama-2-7b-chat-hf tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - generator model-index: - name: llama_2_sky_safe_o1_4o_reflect_4000_500_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama_2_sky_safe_o1_4o_reflect_4000_500_full This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8123 | 0.3396 | 100 | 0.7191 | | 0.6702 | 0.6791 | 200 | 0.6827 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1
Frank0303/Earningscall_Sentiment_model
Frank0303
"2024-06-06T13:04:47"
4
0
transformers
[ "transformers", "roberta", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-06-06T12:56:13"
--- license: apache-2.0 ---
Best000/e865856d-f1c7-4ec3-b176-119c1f7bc31a
Best000
"2025-01-19T04:58:36"
11
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-350m", "base_model:adapter:facebook/opt-350m", "license:other", "region:us" ]
null
"2025-01-19T04:57:17"
--- library_name: peft license: other base_model: facebook/opt-350m tags: - axolotl - generated_from_trainer model-index: - name: e865856d-f1c7-4ec3-b176-119c1f7bc31a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-350m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 09f2e168361c64eb_train_data.json ds_type: json format: custom path: /workspace/input_data/09f2e168361c64eb_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/e865856d-f1c7-4ec3-b176-119c1f7bc31a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/09f2e168361c64eb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ec5094d5-fc78-4451-abdc-291157d3224b wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: ec5094d5-fc78-4451-abdc-291157d3224b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e865856d-f1c7-4ec3-b176-119c1f7bc31a This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7566 | 0.0003 | 1 | 3.2728 | | 13.6193 | 0.0010 | 3 | 3.2565 | | 12.4585 | 0.0020 | 6 | 3.1574 | | 13.1228 | 0.0030 | 9 | 2.9448 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
bowilleatyou/5cdadc98-3b5a-4b9e-9104-11c92b402361
bowilleatyou
"2025-04-04T11:32:08"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-04-04T11:17:38"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ISTA-DASLab/DeepSeek-R1-Distill-Llama-70B-HIGGS-4bit
ISTA-DASLab
"2025-02-12T10:41:12"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "higgs", "region:us" ]
text-generation
"2025-02-12T10:22:15"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Liamdu/ppo-SnowballTarget
Liamdu
"2024-02-26T12:44:50"
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
"2024-02-26T12:44:45"
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Liamdu/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
haejiness/tmp-ner
haejiness
"2024-11-25T13:48:14"
179
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-11-25T13:47:52"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fzzhang/pearl_lora_b8
fzzhang
"2024-02-20T07:28:43"
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:louisbrulenaudet/Pearl-7B-slerp", "base_model:adapter:louisbrulenaudet/Pearl-7B-slerp", "license:apache-2.0", "region:us" ]
null
"2024-02-20T04:01:16"
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: louisbrulenaudet/Pearl-7B-slerp model-index: - name: pearl_lora_b8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pearl_lora_b8 This model is a fine-tuned version of [louisbrulenaudet/Pearl-7B-slerp](https://huggingface.co/louisbrulenaudet/Pearl-7B-slerp) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
iloncka/spnasnet_100.rmsp_in1k_ep_20
iloncka
"2023-12-25T15:02:09"
0
0
fastai
[ "fastai", "region:us" ]
null
"2023-12-25T14:59:12"
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
research-backup/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated
research-backup
"2022-09-21T09:02:10"
3
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "dataset:relbert/semeval2012_relational_similarity", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2022-09-21T08:31:53"
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.8261309523809524 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6417112299465241 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6409495548961425 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.7871039466370205 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.946 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5921052631578947 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6527777777777778 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9100497212596053 - name: F1 (macro) type: f1_macro value: 0.9039162913439194 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8556338028169014 - name: F1 (macro) type: f1_macro value: 0.6945383312136448 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6852654387865655 - name: F1 (macro) type: f1_macro value: 0.6774872040266507 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9572233428392571 - name: F1 (macro) type: f1_macro value: 0.879744388826254 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9037919147602632 - name: F1 (macro) type: f1_macro value: 0.9024843094207563 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.6417112299465241 - Accuracy on SAT: 0.6409495548961425 - Accuracy on BATS: 0.7871039466370205 - Accuracy on U2: 0.5921052631578947 - Accuracy on U4: 0.6527777777777778 - Accuracy on Google: 0.946 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9100497212596053 - Micro F1 score on CogALexV: 0.8556338028169014 - Micro F1 score on EVALution: 0.6852654387865655 - Micro F1 score on K&H+N: 0.9572233428392571 - Micro F1 score on ROOT09: 0.9037919147602632 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.8261309523809524 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - template_mode: manual - template: Today, I finally discovered the relation between <subj> and <obj> : <subj> is the <mask> of <obj> - loss_function: info_loob - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 21 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-a-loob-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
Eleven/xlm-roberta-base-finetuned-panx-de-fr
Eleven
"2022-07-05T15:59:42"
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-07-05T15:37:17"
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1644 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1471 | 2.0 | 1430 | 0.1627 | 0.8509 | | 0.0947 | 3.0 | 2145 | 0.1644 | 0.8617 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
moussaKam/frugalscore_medium_deberta_bert-score
moussaKam
"2022-02-01T10:51:45"
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2110.08559", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05"
# FrugalScore FrugalScore is an approach to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance Paper: https://arxiv.org/abs/2110.08559?context=cs Project github: https://github.com/moussaKam/FrugalScore The pretrained checkpoints presented in the paper : | FrugalScore | Student | Teacher | Method | |----------------------------------------------------|-------------|----------------|------------| | [moussaKam/frugalscore_tiny_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_bert-score) | BERT-tiny | BERT-Base | BERTScore | | [moussaKam/frugalscore_small_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_bert-score) | BERT-small | BERT-Base | BERTScore | | [moussaKam/frugalscore_medium_bert-base_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_bert-score) | BERT-medium | BERT-Base | BERTScore | | [moussaKam/frugalscore_tiny_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_roberta_bert-score) | BERT-tiny | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_small_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_roberta_bert-score) | BERT-small | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_medium_roberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_roberta_bert-score) | BERT-medium | RoBERTa-Large | BERTScore | | [moussaKam/frugalscore_tiny_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_tiny_deberta_bert-score) | BERT-tiny | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_small_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_small_deberta_bert-score) | BERT-small | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_medium_deberta_bert-score](https://huggingface.co/moussaKam/frugalscore_medium_deberta_bert-score) | BERT-medium | DeBERTa-XLarge | BERTScore | | [moussaKam/frugalscore_tiny_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_tiny_bert-base_mover-score) | BERT-tiny | BERT-Base | MoverScore | | [moussaKam/frugalscore_small_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_small_bert-base_mover-score) | BERT-small | BERT-Base | MoverScore | | [moussaKam/frugalscore_medium_bert-base_mover-score](https://huggingface.co/moussaKam/frugalscore_medium_bert-base_mover-score) | BERT-medium | BERT-Base | MoverScore |
bibom2001/whisper0
bibom2001
"2024-10-25T10:56:35"
85
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-base", "base_model:finetune:openai/whisper-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-10-24T13:40:21"
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper0 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5080 - Wer Ortho: 99.8700 - Wer: 10.1070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 1 - training_steps: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 3.778 | 0.0031 | 5 | 4.5080 | 99.8700 | 10.1070 | ### Framework versions - Transformers 4.45.1 - Pytorch 1.12.1 - Datasets 3.0.1 - Tokenizers 0.20.0
MurDanya/llm-course-hw3-lora
MurDanya
"2025-04-12T15:11:11"
0
0
null
[ "safetensors", "mistral", "en", "dataset:cardiffnlp/tweet_eval", "base_model:OuteAI/Lite-Oute-1-300M-Instruct", "base_model:finetune:OuteAI/Lite-Oute-1-300M-Instruct", "region:us" ]
null
"2025-04-12T15:03:28"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Luongdzung/gpt-neo-1.3B-sft-che-lora-ALL-WEIGHT
Luongdzung
"2025-02-20T03:32:16"
0
0
transformers
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-20T03:29:24"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
van-ng/distilhubert-finetuned-gtzan-v2
van-ng
"2024-02-20T02:04:03"
159
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
"2024-02-19T17:35:57"
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-v2 results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan-v2 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 0.6766 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0361 | 1.0 | 113 | 1.8915 | 0.41 | | 1.3728 | 2.0 | 226 | 1.2725 | 0.64 | | 1.0442 | 3.0 | 339 | 0.9188 | 0.78 | | 0.9614 | 4.0 | 452 | 0.8790 | 0.7 | | 0.6945 | 5.0 | 565 | 0.6933 | 0.79 | | 0.3976 | 6.0 | 678 | 0.6891 | 0.79 | | 0.345 | 7.0 | 791 | 0.6091 | 0.81 | | 0.1068 | 8.0 | 904 | 0.5905 | 0.81 | | 0.1646 | 9.0 | 1017 | 0.5809 | 0.82 | | 0.1079 | 10.0 | 1130 | 0.6527 | 0.81 | | 0.0311 | 11.0 | 1243 | 0.6393 | 0.86 | | 0.0491 | 12.0 | 1356 | 0.6766 | 0.83 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.13.2
lesso/b5a9fdfb-57ef-4354-b282-c1350e119997
lesso
"2025-02-08T23:48:40"
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-02-08T03:12:32"
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b5a9fdfb-57ef-4354-b282-c1350e119997 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <br> # b5a9fdfb-57ef-4354-b282-c1350e119997 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000203 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | 2.7677 | | 0.6843 | 0.0946 | 50 | 0.4978 | | 0.4247 | 0.1891 | 100 | 0.4036 | | 0.3512 | 0.2837 | 150 | 0.3705 | | 0.3371 | 0.3783 | 200 | 0.3270 | | 0.3119 | 0.4728 | 250 | 0.3154 | | 0.288 | 0.5674 | 300 | 0.3046 | | 0.2681 | 0.6619 | 350 | 0.3054 | | 0.2736 | 0.7565 | 400 | 0.3058 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shihaozou/cv_data_50000_step5k
shihaozou
"2024-07-09T11:35:15"
29
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-07-09T10:16:42"
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HBDX/Seq-TransfoRNA
HBDX
"2024-06-20T12:47:41"
13
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "license:gpl", "endpoints_compatible", "region:us" ]
null
"2024-06-10T11:31:47"
--- tags: - pytorch_model_hub_mixin - model_hub_mixin license: gpl --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed] ## Steps to run model - First install [transforna](https://github.com/gitHBDX/TransfoRNA/tree/master) - Example code: ``` from transforna import GeneEmbeddModel,RnaTokenizer import torch model_name = 'Seq' model_path = f"HBDX/{model_name}-TransfoRNA" #load model and tokenizer model = GeneEmbeddModel.from_pretrained(model_path) model.eval() #init tokenizer. tokenizer = RnaTokenizer.from_pretrained(model_path,model_name=model_name) output = tokenizer(['AAAGTCGGAGGTTCGAAGACGATCAGATAC','TTTTCGGAACTGAGGCCATGATTAAGAGGG']) #inference #gene_embedds is the latent space representation of the input sequence. gene_embedd, _, activations,attn_scores_first,attn_scores_second = \ model(output['input_ids']) #get sub class labels sub_class_labels = model.convert_ids_to_labels(activations) #get major class labels major_class_labels = model.convert_subclass_to_majorclass(sub_class_labels) ```
mcparty2/distilbert-base-uncased-finetuned-emotion
mcparty2
"2023-09-27T05:03:06"
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-09-27T04:33:52"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9263847378294227 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Accuracy: 0.9265 - F1: 0.9264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.815 | 1.0 | 250 | 0.3069 | 0.915 | 0.9144 | | 0.2449 | 2.0 | 500 | 0.2151 | 0.9265 | 0.9264 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Lddz/Lalibela
Lddz
"2025-03-29T13:38:29"
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-03-29T13:19:07"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: lalibela --- # Lalibela <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `lalibela` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Lddz/Lalibela', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
albertus-sussex/veriscrape-sbert-movie-reference_2_to_verify_8-fold-1
albertus-sussex
"2025-03-30T17:12:48"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:3083", "loss:TripletLoss", "custom_code", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:Alibaba-NLP/gte-base-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-base-en-v1.5", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-03-30T16:46:35"
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3083 - loss:TripletLoss base_model: Alibaba-NLP/gte-base-en-v1.5 widget: - source_sentence: Michael Caton-Jones sentences: - title - director - Donaldson - Mr. Deeds - source_sentence: The Road Home sentences: - NR - title - mpaa_rating - Mrs. Parker and the Vicious Circle - source_sentence: N sentences: - mpaa_rating - R - director - Lee - source_sentence: Adventures in Babysitting sentences: - title - Beverly Hills Cop - G - mpaa_rating - source_sentence: Yimou sentences: - Paul Newman - director - R - mpaa_rating pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - silhouette_cosine - silhouette_euclidean model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - task: type: silhouette name: Silhouette dataset: name: Unknown type: unknown metrics: - type: silhouette_cosine value: 0.9431755542755127 name: Silhouette Cosine - type: silhouette_euclidean value: 0.8039237856864929 name: Silhouette Euclidean - type: silhouette_cosine value: 0.9402034878730774 name: Silhouette Cosine - type: silhouette_euclidean value: 0.7980138063430786 name: Silhouette Euclidean --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("albertus-sussex/veriscrape-sbert-movie-reference_2_to_verify_8-fold-1") # Run inference sentences = [ 'Yimou', 'Paul Newman', 'R', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.9432** | | silhouette_euclidean | 0.8039 | #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.9402** | | silhouette_euclidean | 0.798 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,083 training samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 4.63 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.64 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.68 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.7 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.71 tokens</li><li>max: 6 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-----------------------------|:-------------------------------|:----------------------------------|:----------------------|:----------------------| | <code>George Stevens</code> | <code>Guédiguian</code> | <code>The Spanish Prisoner</code> | <code>director</code> | <code>title</code> | | <code>Drama</code> | <code>Children's/Family</code> | <code>Kenneth Branagh</code> | <code>genre</code> | <code>director</code> | | <code>Carroll Ballard</code> | <code>Cameron</code> | <code>Mary Poppins</code> | <code>director</code> | <code>title</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 343 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 343 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 4.69 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.56 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.63 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.71 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.76 tokens</li><li>max: 6 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-----------------------|:---------------------|:----------------------------------------------------|:----------------------|:-------------------------| | <code>Vila</code> | <code>Rudolph</code> | <code>Aparajito</code> | <code>director</code> | <code>title</code> | | <code>Joe Dante</code> | <code>Arkless</code> | <code>R (for language and some drug content)</code> | <code>director</code> | <code>mpaa_rating</code> | | <code>Caan</code> | <code>Musker</code> | <code>Cronos</code> | <code>director</code> | <code>title</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| | -1 | -1 | - | - | 0.4752 | 0.1453 | | 1.0 | 25 | 1.5567 | 0.0558 | 0.9942 | 0.9442 | | 2.0 | 50 | 0.0315 | 0.0081 | 1.0 | 0.9396 | | 3.0 | 75 | 0.0143 | 0.0005 | 1.0 | 0.9410 | | 4.0 | 100 | 0.0043 | 0.0 | 1.0 | 0.9419 | | 5.0 | 125 | 0.0037 | 0.0 | 1.0 | 0.9432 | | -1 | -1 | - | - | 1.0 | 0.9402 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 4.0.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.5.2 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e3_s55555_v4_l5_v50
KingKazma
"2023-08-13T21:00:49"
0
0
peft
[ "peft", "region:us" ]
null
"2023-08-13T21:00:48"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
carolinacon/ppo-LunarLander-v2
carolinacon
"2025-04-17T13:47:06"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2025-04-17T13:46:44"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.47 +/- 21.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gsw2301/ppo-Huggy
gsw2301
"2023-08-02T20:48:47"
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
"2023-08-02T20:48:44"
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gsw2301/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ChandanGR/Qwen2.5-1.5B-4bit-channel
ChandanGR
"2025-03-24T14:46:16"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
"2025-03-24T14:45:55"
Temporary Redirect. Redirecting to /api/resolve-cache/models/ChandanGR/Qwen2.5-1.5B-4bit-channel/233d467e8b7b4f92653da0b1e55b63481ffa8b78/README.md?%2FChandanGR%2FQwen2.5-1.5B-4bit-channel%2Fresolve%2Fmain%2FREADME.md=&etag=%22bc5f30d6632ac0efdc7be2e9095e9e9579af2e33%22
shibajustfor/440f76a1-e371-43b7-b754-207a85eb58f8
shibajustfor
"2025-03-13T10:42:44"
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "region:us" ]
null
"2025-03-13T10:42:28"
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/mistral-7b-instruct-v0.2 model-index: - name: shibajustfor/440f76a1-e371-43b7-b754-207a85eb58f8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shibajustfor/440f76a1-e371-43b7-b754-207a85eb58f8 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memeviss/white_4
memeviss
"2025-03-29T16:50:09"
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
"2025-03-29T16:42:09"
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
JeloH/qwen-textgen-model15nnn
JeloH
"2024-12-17T21:22:05"
125
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-12-17T21:21:51"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AIgroup-CVM-utokyohospital/MedSwallow-70b
AIgroup-CVM-utokyohospital
"2025-03-03T14:01:09"
99
0
peft
[ "peft", "safetensors", "medical", "arxiv:2406.14882", "license:cc-by-nc-sa-4.0", "region:us" ]
null
"2024-02-02T08:15:58"
--- library_name: peft license: cc-by-nc-sa-4.0 tags: - medical --- ⚠️⚠️⚠️ Only for research purpose. Do not use it for medical purpose. ⚠️⚠️⚠️ # MedSwallow-70B🏥 [東工大Swallow](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)をベースモデルとし, 医療Q&AデータセットでInstruction Tuningを施した医療ドメインの日本語LLMです. チューニングには独自で用意した米国医師国家試験(USMLE)を和訳したQ&Aデータセットを用いました. MedSwallow is a Japanese medical LLM for medical question-answering. MedSwallow is based on [Swallow-70B](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) and has passed instruction tuning with USMLE dataset translated in Japanese by our own. ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 ## License ライセンスは非商用ライセンスです. Non-commercial. ## Usage ``` model_name = "tokyotech-llm/Swallow-70b-instruct-hf" peft_model= "AIgroup-CVM-utokyohospital/MedSwallow-70b" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_8bit=False, torch_dtype=torch.float16, device_map=device, model = PeftModel.from_pretrained( model, peft_model, torch_dtype=torch.float16, device_map=device, ) ``` ## Benchmark See also [Japanese Medical Language Model Evaluation Harness](https://github.com/stardust-coder/japanese-lm-med-harness). - IgakuQA (in English): - IgakuQA (in Japanese): - MedQA (in English) : - MedQA (in Japanese) : ## How to cite ``` @misc{sukeda202470bparameterlargelanguagemodels, title={70B-parameter large language models in Japanese medical question-answering}, author={Issey Sukeda and Risa Kishikawa and Satoshi Kodera}, year={2024}, eprint={2406.14882}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.14882}, } ```
llm-jp/llm-jp-3-vila-14b
llm-jp
"2024-11-18T08:29:59"
272
6
null
[ "safetensors", "llava_llama", "image-text-to-text", "ja", "region:us" ]
image-text-to-text
"2024-10-26T07:48:03"
--- language: - ja pipeline_tag: image-text-to-text --- # LLM-jp-3 VILA 14B This repository provides a large vision language model (VLM) developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/), Japan. ## Usage Python version: 3.10.12 1. Clone the repository and install the libraries. <details> ```bash git clone [email protected]:llm-jp/llm-jp-VILA.git cd llm-jp-VILA ``` ```bash python3 -m venv venv source venv/bin/activate ``` ```bash pip install --upgrade pip wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl pip install flash_attn-2.4.2+cu118torch2.0cxx11abiFALSE-cp310-cp310-linux_x86_64.whl pip install -e . pip install -e ".[train]" ``` ```bash pip install git+https://github.com/huggingface/[email protected] cp -rv ./llava/train/transformers_replace/* ./venv/lib/python3.10/site-packages/transformers/ ``` </details> 2. Run the python script. You can change the `image_path` and `query` to your own. <details> ```python import argparse from io import BytesIO import requests import torch from PIL import Image from llava.constants import IMAGE_TOKEN_INDEX from llava.conversation import conv_templates from llava.mm_utils import (get_model_name_from_path, process_images, tokenizer_image_token) from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out disable_torch_init() model_checkpoint_path = "llm-jp/llm-jp-3-vila-14b" model_name = get_model_name_from_path(model_checkpoint_path) tokenizer, model, image_processor, context_len = load_pretrained_model(model_checkpoint_path, model_name) image_path = "path/to/image" image_files = [ image_path ] images = load_images(image_files) query = "<image>\nこの画像について説明してください。" conv_mode = "llmjp_v3" conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], query) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() images_tensor = process_images(images, image_processor, model.config).to(model.device, dtype=torch.float16) input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda() with torch.inference_mode(): output_ids = model.generate( input_ids, images=[ images_tensor, ], do_sample=False, num_beams=1, max_new_tokens=256, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] print(outputs) ``` </details> ## Model Details |Model components|Model / Architecture|Parameters| |:---:|:---:|:---:| |Vision encoder|[siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384)|428M| |Projector|2-layer MLP|32M| |LLM|[llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct)|13B| ## Datasets The model was trained in three stages. ### Step-0 We used the following data sets to tune the parameters in the projector. | Language | Dataset | Images| |:---|:---|---:| |Japanese|[Japanese image text pairs](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-image-text-pairs)|558K |English|[LLaVA-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)|558K ### Step-1 We used the following data sets to tune the parameters in the projector and LLM. | Language | Dataset | Images | |:---|:---|:---| |Japanese|[Japanese image text pairs](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-image-text-pairs)| 6M | | |[Japanese interleaved data](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-japanese-interleaved-data)| 6M | |English |[coyo](https://github.com/kakaobrain/coyo-dataset) (subset) | 6M | | |[mmc4-core](https://github.com/allenai/mmc4) (subset) | 6M | ### Step-2 We used the following data sets to tune the parameters in the projector and LLM. | Language | Dataset | Images | |:---|:---|:---| |Japanese|[llava-instruct-ja](https://huggingface.co/datasets/llm-jp/llava-instruct-ja)| 156K | | |[japanese-photos-conv](https://huggingface.co/datasets/llm-jp/japanese-photos-conversation)| 12K | | |[ja-vg-vqa](https://huggingface.co/datasets/llm-jp/ja-vg-vqa-conversation)| 99K | | |[synthdog-ja](https://huggingface.co/datasets/naver-clova-ix/synthdog-ja) (subset)| 102K | |English |[LLaVA](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) | 158K | | |[VQAv2](https://visualqa.org/) | 53K | | |[GQA](https://cs.stanford.edu/people/dorarad/gqa/index.html) | 46K | | |[OCRVQA](https://ocr-vqa.github.io/) | 80K | | |[TextVQA](https://textvqa.org/dataset/) | 22K | ## Evaluations We evaluated our model using [Heron Bench](https://huggingface.co/datasets/turing-motors/Japanese-Heron-Bench), [JA-VLM-Bench-In-the-Wild](https://huggingface.co/datasets/SakanaAI/JA-VLM-Bench-In-the-Wild), and [JA-VG-VQA500](https://huggingface.co/datasets/SakanaAI/JA-VG-VQA-500). We used `gpt-4o-2024-05-13` for LLM-as-a-judge. ### Heron Bench | Models | LLM-as-a-judge score (%) | |---|:---:| | [Japanese InstructBLIP Alpha](https://huggingface.co/stabilityai/japanese-instructblip-alpha) | 14.0 | | [Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm) | 24.2 | | [Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2) | 39.3 | | [LLaVA-CALM2-SigLIP](https://huggingface.co/cyberagent/llava-calm2-siglip) | 43.3 | | **llm-jp-3-vila-14b (Ours)** | 57.2 | | GPT-4o | 87.6 | ### JA-VLM-Bench-In-the-Wild | **Models** | ROUGE-L | LLM-as-a-judge score (/5.0) | |---|:---:|:---:| | [Japanese InstructBLIP Alpha](https://huggingface.co/stabilityai/japanese-instructblip-alpha) | 20.8 | 2.42 | | [Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm) | 23.3 | 2.47 | | [Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2) | 41.4 | 2.92 | | [LLaVA-CALM2-SigLIP](https://huggingface.co/cyberagent/llava-calm2-siglip) | 47.2 | 3.15 | | **llm-jp-3-vila-14b (Ours)** | 52.3 | 3.69 | | GPT-4o | 37.6 | 3.85 | ### JA-VG-VQA-500 | **Models** | ROUGE-L | LLM-as-a-judge score (/5.0) | |---|:---:|:---:| | [Japanese InstructBLIP Alpha](https://huggingface.co/stabilityai/japanese-instructblip-alpha) | -- | -- | | [Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm) | -- | -- | | [Llama-3-EvoVLM-JP-v2](https://huggingface.co/SakanaAI/Llama-3-EvoVLM-JP-v2) | 23.5 | 2.96 | | [LLaVA-CALM2-SigLIP](https://huggingface.co/cyberagent/llava-calm2-siglip) | 17.4 | 3.21 | | **llm-jp-3-vila-14b (Ours)** | 16.2 | 3.62 | | GPT-4o | 12.1 | 3.58 | ## Risks and Limitations The model released in this repository is in the early stages of our research and development. It has not been tuned such that model's outputs are aligned with social norms, ethical standards, and the law. ## License The weights of this model are released under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). In addition, a user of this model must comply with [the OpenAI terms of use](https://openai.com/policies/terms-of-use) because the model used synthetic data generated by OpenAI GPT-4. ## Additional information Regarding the license of the [synthdog-ja](https://huggingface.co/datasets/naver-clova-ix/synthdog-ja) dataset, there is no explicit license statement in the dataset documentation. While we attempted to contact the main corresponding author of "OCR-free Document Understanding Transformer" for clarification, we received no response. Based on the following considerations: 1. The [donut-base](https://huggingface.co/naver-clova-ix/donut-base) model trained on this dataset is released under the MIT license 2. The Wikipedia articles used in the dataset are licensed under CC-BY-SA We have determined that the synthdog-ja dataset is most likely governed by the CC-BY-SA license, and proceeded with training under this assumption.
adamo1139/aya-expanse-32b-ungated
adamo1139
"2024-10-29T22:12:30"
41
0
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "arxiv:2408.14960", "arxiv:2407.02552", "arxiv:2406.18682", "arxiv:2410.10801", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-10-29T21:39:47"
--- inference: false library_name: transformers language: - en - fr - de - es - it - pt - ja - ko - zh - ar - el - fa - pl - id - cs - he - hi - nl - ro - ru - tr - uk - vi license: cc-by-nc-4.0 --- # Model Card for Aya-Expanse-32B Ungated Aya-Expanse 32B, but not gated! <img src="aya-expanse-32B.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/> **Aya Expanse 32B** is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained [Command family](https://huggingface.co/CohereForAI/c4ai-command-r-plus) of models with the result of a year’s dedicated research from [Cohere For AI](https://cohere.for.ai/), including [data arbitrage](https://arxiv.org/pdf/2408.14960), [multilingual preference training](https://arxiv.org/abs/2407.02552), [safety tuning](https://arxiv.org/abs/2406.18682), and [model merging](https://arxiv.org/abs/2410.10801). The result is a powerful multilingual large language model serving 23 languages. This model card corresponds to the 32-billion version of the Aya Expanse model. We also released an 8-billion version which you can find [here](https://huggingface.co/CohereForAI/aya-expanse-8B). - Developed by: [Cohere For AI](https://cohere.for.ai/) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: Aya Expanse 32B - Model Size: 32 billion parameters ### Supported Languages We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese. ### Try it: Aya Expanse in Action Use the [Cohere playground](https://dashboard.cohere.com/playground/chat) or our [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/aya_expanse) for interactive exploration. ### How to Use Aya Expanse Install the transformers library and load Aya Expanse 32B as follows: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/aya-expanse-32b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the chat template messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` ### Example Notebooks **Fine-Tuning:** - [Detailed Fine-Tuning Notebook](https://colab.research.google.com/drive/1ryPYXzqb7oIn2fchMLdCNSIH5KfyEtv4). **Community-Contributed Use Cases:**: The following notebooks contributed by *Cohere For AI Community* members show how Aya Expanse can be used for different use cases: - [Mulitlingual Writing Assistant](https://colab.research.google.com/drive/1SRLWQ0HdYN_NbRMVVUHTDXb-LSMZWF60) - [AyaMCooking](https://colab.research.google.com/drive/1-cnn4LXYoZ4ARBpnsjQM3sU7egOL_fLB?usp=sharing) - [Multilingual Question-Answering System](https://colab.research.google.com/drive/1bbB8hzyzCJbfMVjsZPeh4yNEALJFGNQy?usp=sharing) ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: Aya Expanse 32B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes supervised finetuning, preference training, and model merging. **Languages covered**: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese **Context length**: 128K ### Evaluation We evaluated Aya Expanse 8B against Gemma 2 9B, Llama 3.1 8B, Ministral 8B, and Qwen 2.5 7B using m-ArenaHard, a dataset based on the [Arena-Hard-Auto dataset](https://huggingface.co/datasets/lmarena-ai/arena-hard-auto-v0.1) and translated to the 23 languages we support in Aya Expanse 8B. Win-rates were determined using gpt-4o-2024-08-06 as a judge. For a conservative benchmark, we report results from gpt-4o-2024-08-06, though gpt-4o-mini scores showed even stronger performance. The m-ArenaHard dataset, used to evaluate Aya Expanse’s capabilities, is publicly available [here](https://huggingface.co/datasets/CohereForAI/m-ArenaHard). <img src="winrates_marenahard_complete.png" width="650" style="margin-left:'auto' margin-right:'auto' display:'block'"/> ### Model Card Contact For errors or additional questions about details in this model card, contact [email protected]. ### Terms of Use We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy).
Romain-XV/a4cf7f09-9b2b-4d6e-a3c3-a84266920288
Romain-XV
"2025-03-26T16:09:06"
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:jhflow/mistral7b-lora-multi-turn-v2", "base_model:adapter:jhflow/mistral7b-lora-multi-turn-v2", "region:us" ]
null
"2025-03-26T13:16:52"
--- library_name: peft base_model: jhflow/mistral7b-lora-multi-turn-v2 tags: - axolotl - generated_from_trainer model-index: - name: a4cf7f09-9b2b-4d6e-a3c3-a84266920288 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: jhflow/mistral7b-lora-multi-turn-v2 bf16: true chat_template: llama3 cosine_min_lr_ratio: 0.3 dataset_prepared_path: null datasets: - data_files: - 1fdffd3e13e609ac_train_data.json ds_type: json format: custom path: /workspace/input_data/1fdffd3e13e609ac_train_data.json type: field_input: tools field_instruction: func_name field_output: func_desc format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 4 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/a4cf7f09-9b2b-4d6e-a3c3-a84266920288 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1176 micro_batch_size: 4 mlflow_experiment_name: /tmp/1fdffd3e13e609ac_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: eb8998b4-58ff-4324-80f1-956118f2a3e8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eb8998b4-58ff-4324-80f1-956118f2a3e8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4cf7f09-9b2b-4d6e-a3c3-a84266920288 This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1176 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.2614 | 0.0004 | 1 | 0.6910 | | 0.2834 | 0.0829 | 200 | 0.0390 | | 0.0079 | 0.1657 | 400 | 0.0296 | | 0.0587 | 0.2486 | 600 | 0.0184 | | 0.0778 | 0.3314 | 800 | 0.0078 | | 0.0027 | 0.4143 | 1000 | 0.0093 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TinyLlama/TinyLlama_v1.1_chinese
TinyLlama
"2024-06-07T01:23:56"
469
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:cerebras/SlimPajama-627B", "arxiv:2401.02385", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-09T09:40:17"
--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B language: - en --- # TinyLlama-1.1B-v1.1 - **Codebase:** [github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama) - **Technical Report:** [arxiv.org/pdf/2401.02385](https://arxiv.org/pdf/2401.02385) <div align="center"> <img src="https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b/resolve/main/TinyLlama_logo.png" width="300"/> </div> We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. ## Overview In this project, rather than only training a single TinyLlama model, we first train TinyLlama on a corpus of 1.5 trillion tokens to obtain foundational language capabilities. Subsequently, we take this model and turn it into three different models by continual pre-training with three distinct data sampling. For a visual representation of this process, please refer to the figure below. ![Overview](overview.png) ## Pretraining Due to these issues([bug1](https://whimsical-aphid-86d.notion.site/Release-of-TinyLlama-1-5T-Checkpoints-Postponed-01b266998c1c47f78f5ae1520196d194?pvs=4), [bug2](https://whimsical-aphid-86d.notion.site/2023-12-18-Updates-from-TinyLlama-Team-7d30c01fff794da28ccc952f327c8d4f)). We try to retrain our TinyLlama to provide a better model. We train our model with 2T tokens and divided our pretraining into 3 different stages: 1) basic pretraining, 2) continual pretraining with specific domain, and 3) cooldown . #### Basic pretraining In this initial phase, we managed to train our model with only slimpajama to develop its commonsense reasoning capabilities. The model was trained with 1.5T tokens during this basic pretraining period. Since we used a cluster with 4 A100-40G per node and we only shard model weights within a node, we can only set the batch size to approximately 1.8M this time. #### Continual pretraining with specific domain We incorporated 3 different kinds of corpus during this pretraining, slimpajama (which is the same as the first phase), Math&Code (starcoder and proof pile), and Chinese (Skypile). This approach allowed us to develop three variant models with specialized capabilities. At the begining ~6B tokens in this stage, we linearly increased the sampling proportion for the domain-specific corpus (excluding Slimpajama, as it remained unchanged compared with stage 1). This warmup sampling increasing strategy was designed to gradually adjust the distribution of the pretraining data, ensuring a more stable training process. After this sampling increasing stage, we continued pretraining the model with stable sampling strategy until reaching ~1.85T tokens. #### Cooldown Implementing a cooldown phase has become a crucial technique to achieve better model convergence at the end of pretraining. However, since we have already used cosine learning rate strategy at the beginning, it becomes challenging to alter the learning rate for cooldown like what MiniCPM or deepseek does. Therefore, we try to cool down with adjusting our batch size. Specifically, we increase our batch size from 1.8M to 7.2M while keeping the original cosine learning rate schedule during our cooldown stage. #### Tinyllama model family Following an extensive and detailed pretraining process. We are now releasing three specialized versions of our model: 1. **TinyLlama_v1.1**: The standard version, used for general purposes. 2. **TinyLlama_v1.1_Math&Code**: Equipped with better ability for math and code. 3. **TinyLlama_v1.1_Chinese**: Good understanding capacity for Chinese. ## Data Here we list our data distribution in each stage: ### TinyLlama_v1.1 | Corpus | Basic pretraining | Continual pretraining with specific domain | Cooldown | | ------------- | ----------------- | ------------------------------------------ | -------- | | Slimpajama | 100.0 | 100.0 | 100.0 | ### TinyLlama_v1.1_math_code | Corpus | Basic pretraining | Continual pretraining with specific domain | Cooldown | | ------------- | ----------------- | ------------------------------------------ | -------- | | Slimpajama | 100.0 | 75.0 | 75.0 | | starcoder | - | 15.0 | 15.0 | | proof_pile | - | 10.0 | 10.0 | ### TinyLlama_v1.1_chinese | orpus | Basic pretraining | Continual pretraining with specific domain | Cooldown | | ------------- | ----------------- | ------------------------------------------ | -------- | | Slimpajama | 100.0 | 50.0 | 50.0 | | skypile | - | 50.0 | 50.0 | ### How to use You will need the transformers>=4.31 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) GitHub page for more information. ``` from transformers import AutoTokenizer import transformers import torch model = "TinyLlama/TinyLlama_v1.1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.', do_sample=True, top_k=10, num_return_sequences=1, repetition_penalty=1.5, eos_token_id=tokenizer.eos_token_id, max_length=500, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ### Eval | Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg | | ----------------------------------------- | --------------- | --------- | --------- | ---------- | --------- | --------- | ----- | --------- | --------- | | Pythia-1.0B | 300B | 47.16 | 31.40 | 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 | | TinyLlama-1.1B-intermediate-step-1431k-3T | 3T | 59.20 | 36.00 | 59.12 | 30.12 | 55.25 | 57.83 | 73.29 | 52.99 | | TinyLlama-1.1B-v1.1 | 2T | **61.47** | **36.80** | 59.43 | 32.68 | **55.47** | 55.99 | **73.56** | 53.63 | | TinyLlama-1.1B-v1_math_code | 2T | 60.80 | 36.40 | **60.22** | **33.87** | 55.20 | 57.09 | 72.69 | **53.75** | | TinyLlama-1.1B-v1.1_chinese | 2T | 58.23 | 35.20 | 59.27 | 31.40 | 55.35 | **61.41** | 73.01 | 53.41 |
End of preview. Expand in Data Studio

Dataset Card for Hugging Face Hub Model Cards

This datasets consists of model cards for models hosted on the Hugging Face Hub. The model cards are created by the community and provide information about the model, its performance, its intended uses, and more. This dataset is updated on a daily basis and includes publicly available models on the Hugging Face Hub.

This dataset is made available to help support users wanting to work with a large number of Model Cards from the Hub. We hope that this dataset will help support research in the area of Model Cards and their use but the format of this dataset may not be useful for all use cases. If there are other features that you would like to see included in this dataset, please open a new discussion.

Dataset Details

Uses

There are a number of potential uses for this dataset including:

  • text mining to find common themes in model cards
  • analysis of the model card format/content
  • topic modelling of model cards
  • analysis of the model card metadata
  • training language models on model cards

Out-of-Scope Use

[More Information Needed]

Dataset Structure

This dataset has a single split.

Dataset Creation

Curation Rationale

The dataset was created to assist people in working with model cards. In particular it was created to support research in the area of model cards and their use. It is possible to use the Hugging Face Hub API or client library to download model cards and this option may be preferable if you have a very specific use case or require a different format.

Source Data

The source data is README.md files for models hosted on the Hugging Face Hub. We do not include any other supplementary files that may be included in the model card directory.

Data Collection and Processing

The data is downloaded using a CRON job on a daily basis.

Who are the source data producers?

The source data producers are the creators of the model cards on the Hugging Face Hub. This includes a broad variety of people from the community ranging from large companies to individual researchers. We do not gather any information about who created the model card in this repository although this information can be gathered from the Hugging Face Hub API.

Annotations [optional]

There are no additional annotations in this dataset beyond the model card content.

Annotation process

N/A

Who are the annotators?

N/A

Personal and Sensitive Information

We make no effort to anonymize the data. Whilst we don't expect the majority of model cards to contain personal or sensitive information, it is possible that some model cards may contain this information. Model cards may also link to websites or email addresses.

Bias, Risks, and Limitations

Model cards are created by the community and we do not have any control over the content of the model cards. We do not review the content of the model cards and we do not make any claims about the accuracy of the information in the model cards. Some model cards will themselves discuss bias and sometimes this is done by providing examples of bias in either the training data or the responses provided by the model. As a result this dataset may contain examples of bias.

Whilst we do not directly download any images linked to in the model cards, some model cards may include images. Some of these images may not be suitable for all audiences.

Recommendations

Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.

Citation

No formal citation is required for this dataset but if you use this dataset in your work, please include a link to this dataset page.

Dataset Card Authors

@davanstrien

Dataset Card Contact

@davanstrien

Downloads last month
1,895

Collection including librarian-bots/model_cards_with_metadata