python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-or-later /* * Anycast support for IPv6 * Linux INET6 implementation * * Authors: * David L Stevens ([email protected]) * * based heavily on net/ipv6/mcast.c */ #include <linux/capability.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/random.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/route.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/if_inet6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/checksum.h> #define IN6_ADDR_HSIZE_SHIFT 8 #define IN6_ADDR_HSIZE BIT(IN6_ADDR_HSIZE_SHIFT) /* anycast address hash table */ static struct hlist_head inet6_acaddr_lst[IN6_ADDR_HSIZE]; static DEFINE_SPINLOCK(acaddr_hash_lock); static int ipv6_dev_ac_dec(struct net_device *dev, const struct in6_addr *addr); static u32 inet6_acaddr_hash(struct net *net, const struct in6_addr *addr) { u32 val = ipv6_addr_hash(addr) ^ net_hash_mix(net); return hash_32(val, IN6_ADDR_HSIZE_SHIFT); } /* * socket join an anycast group */ int ipv6_sock_ac_join(struct sock *sk, int ifindex, const struct in6_addr *addr) { struct ipv6_pinfo *np = inet6_sk(sk); struct net_device *dev = NULL; struct inet6_dev *idev; struct ipv6_ac_socklist *pac; struct net *net = sock_net(sk); int ishost = !net->ipv6.devconf_all->forwarding; int err = 0; ASSERT_RTNL(); if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (ipv6_addr_is_multicast(addr)) return -EINVAL; if (ifindex) dev = __dev_get_by_index(net, ifindex); if (ipv6_chk_addr_and_flags(net, addr, dev, true, 0, IFA_F_TENTATIVE)) return -EINVAL; pac = sock_kmalloc(sk, sizeof(struct ipv6_ac_socklist), GFP_KERNEL); if (!pac) return -ENOMEM; pac->acl_next = NULL; pac->acl_addr = *addr; if (ifindex == 0) { struct rt6_info *rt; rt = rt6_lookup(net, addr, NULL, 0, NULL, 0); if (rt) { dev = rt->dst.dev; ip6_rt_put(rt); } else if (ishost) { err = -EADDRNOTAVAIL; goto error; } else { /* router, no matching interface: just pick one */ dev = __dev_get_by_flags(net, IFF_UP, IFF_UP | IFF_LOOPBACK); } } if (!dev) { err = -ENODEV; goto error; } idev = __in6_dev_get(dev); if (!idev) { if (ifindex) err = -ENODEV; else err = -EADDRNOTAVAIL; goto error; } /* reset ishost, now that we have a specific device */ ishost = !idev->cnf.forwarding; pac->acl_ifindex = dev->ifindex; /* XXX * For hosts, allow link-local or matching prefix anycasts. * This obviates the need for propagating anycast routes while * still allowing some non-router anycast participation. */ if (!ipv6_chk_prefix(addr, dev)) { if (ishost) err = -EADDRNOTAVAIL; if (err) goto error; } err = __ipv6_dev_ac_inc(idev, addr); if (!err) { pac->acl_next = np->ipv6_ac_list; np->ipv6_ac_list = pac; pac = NULL; } error: if (pac) sock_kfree_s(sk, pac, sizeof(*pac)); return err; } /* * socket leave an anycast group */ int ipv6_sock_ac_drop(struct sock *sk, int ifindex, const struct in6_addr *addr) { struct ipv6_pinfo *np = inet6_sk(sk); struct net_device *dev; struct ipv6_ac_socklist *pac, *prev_pac; struct net *net = sock_net(sk); ASSERT_RTNL(); prev_pac = NULL; for (pac = np->ipv6_ac_list; pac; pac = pac->acl_next) { if ((ifindex == 0 || pac->acl_ifindex == ifindex) && ipv6_addr_equal(&pac->acl_addr, addr)) break; prev_pac = pac; } if (!pac) return -ENOENT; if (prev_pac) prev_pac->acl_next = pac->acl_next; else np->ipv6_ac_list = pac->acl_next; dev = __dev_get_by_index(net, pac->acl_ifindex); if (dev) ipv6_dev_ac_dec(dev, &pac->acl_addr); sock_kfree_s(sk, pac, sizeof(*pac)); return 0; } void __ipv6_sock_ac_close(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct net_device *dev = NULL; struct ipv6_ac_socklist *pac; struct net *net = sock_net(sk); int prev_index; ASSERT_RTNL(); pac = np->ipv6_ac_list; np->ipv6_ac_list = NULL; prev_index = 0; while (pac) { struct ipv6_ac_socklist *next = pac->acl_next; if (pac->acl_ifindex != prev_index) { dev = __dev_get_by_index(net, pac->acl_ifindex); prev_index = pac->acl_ifindex; } if (dev) ipv6_dev_ac_dec(dev, &pac->acl_addr); sock_kfree_s(sk, pac, sizeof(*pac)); pac = next; } } void ipv6_sock_ac_close(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); if (!np->ipv6_ac_list) return; rtnl_lock(); __ipv6_sock_ac_close(sk); rtnl_unlock(); } static void ipv6_add_acaddr_hash(struct net *net, struct ifacaddr6 *aca) { unsigned int hash = inet6_acaddr_hash(net, &aca->aca_addr); spin_lock(&acaddr_hash_lock); hlist_add_head_rcu(&aca->aca_addr_lst, &inet6_acaddr_lst[hash]); spin_unlock(&acaddr_hash_lock); } static void ipv6_del_acaddr_hash(struct ifacaddr6 *aca) { spin_lock(&acaddr_hash_lock); hlist_del_init_rcu(&aca->aca_addr_lst); spin_unlock(&acaddr_hash_lock); } static void aca_get(struct ifacaddr6 *aca) { refcount_inc(&aca->aca_refcnt); } static void aca_free_rcu(struct rcu_head *h) { struct ifacaddr6 *aca = container_of(h, struct ifacaddr6, rcu); fib6_info_release(aca->aca_rt); kfree(aca); } static void aca_put(struct ifacaddr6 *ac) { if (refcount_dec_and_test(&ac->aca_refcnt)) { call_rcu(&ac->rcu, aca_free_rcu); } } static struct ifacaddr6 *aca_alloc(struct fib6_info *f6i, const struct in6_addr *addr) { struct ifacaddr6 *aca; aca = kzalloc(sizeof(*aca), GFP_ATOMIC); if (!aca) return NULL; aca->aca_addr = *addr; fib6_info_hold(f6i); aca->aca_rt = f6i; INIT_HLIST_NODE(&aca->aca_addr_lst); aca->aca_users = 1; /* aca_tstamp should be updated upon changes */ aca->aca_cstamp = aca->aca_tstamp = jiffies; refcount_set(&aca->aca_refcnt, 1); return aca; } /* * device anycast group inc (add if not found) */ int __ipv6_dev_ac_inc(struct inet6_dev *idev, const struct in6_addr *addr) { struct ifacaddr6 *aca; struct fib6_info *f6i; struct net *net; int err; ASSERT_RTNL(); write_lock_bh(&idev->lock); if (idev->dead) { err = -ENODEV; goto out; } for (aca = idev->ac_list; aca; aca = aca->aca_next) { if (ipv6_addr_equal(&aca->aca_addr, addr)) { aca->aca_users++; err = 0; goto out; } } net = dev_net(idev->dev); f6i = addrconf_f6i_alloc(net, idev, addr, true, GFP_ATOMIC, NULL); if (IS_ERR(f6i)) { err = PTR_ERR(f6i); goto out; } aca = aca_alloc(f6i, addr); if (!aca) { fib6_info_release(f6i); err = -ENOMEM; goto out; } aca->aca_next = idev->ac_list; idev->ac_list = aca; /* Hold this for addrconf_join_solict() below before we unlock, * it is already exposed via idev->ac_list. */ aca_get(aca); write_unlock_bh(&idev->lock); ipv6_add_acaddr_hash(net, aca); ip6_ins_rt(net, f6i); addrconf_join_solict(idev->dev, &aca->aca_addr); aca_put(aca); return 0; out: write_unlock_bh(&idev->lock); return err; } /* * device anycast group decrement */ int __ipv6_dev_ac_dec(struct inet6_dev *idev, const struct in6_addr *addr) { struct ifacaddr6 *aca, *prev_aca; ASSERT_RTNL(); write_lock_bh(&idev->lock); prev_aca = NULL; for (aca = idev->ac_list; aca; aca = aca->aca_next) { if (ipv6_addr_equal(&aca->aca_addr, addr)) break; prev_aca = aca; } if (!aca) { write_unlock_bh(&idev->lock); return -ENOENT; } if (--aca->aca_users > 0) { write_unlock_bh(&idev->lock); return 0; } if (prev_aca) prev_aca->aca_next = aca->aca_next; else idev->ac_list = aca->aca_next; write_unlock_bh(&idev->lock); ipv6_del_acaddr_hash(aca); addrconf_leave_solict(idev, &aca->aca_addr); ip6_del_rt(dev_net(idev->dev), aca->aca_rt, false); aca_put(aca); return 0; } /* called with rtnl_lock() */ static int ipv6_dev_ac_dec(struct net_device *dev, const struct in6_addr *addr) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev) return -ENODEV; return __ipv6_dev_ac_dec(idev, addr); } void ipv6_ac_destroy_dev(struct inet6_dev *idev) { struct ifacaddr6 *aca; write_lock_bh(&idev->lock); while ((aca = idev->ac_list) != NULL) { idev->ac_list = aca->aca_next; write_unlock_bh(&idev->lock); ipv6_del_acaddr_hash(aca); addrconf_leave_solict(idev, &aca->aca_addr); ip6_del_rt(dev_net(idev->dev), aca->aca_rt, false); aca_put(aca); write_lock_bh(&idev->lock); } write_unlock_bh(&idev->lock); } /* * check if the interface has this anycast address * called with rcu_read_lock() */ static bool ipv6_chk_acast_dev(struct net_device *dev, const struct in6_addr *addr) { struct inet6_dev *idev; struct ifacaddr6 *aca; idev = __in6_dev_get(dev); if (idev) { read_lock_bh(&idev->lock); for (aca = idev->ac_list; aca; aca = aca->aca_next) if (ipv6_addr_equal(&aca->aca_addr, addr)) break; read_unlock_bh(&idev->lock); return aca != NULL; } return false; } /* * check if given interface (or any, if dev==0) has this anycast address */ bool ipv6_chk_acast_addr(struct net *net, struct net_device *dev, const struct in6_addr *addr) { struct net_device *nh_dev; struct ifacaddr6 *aca; bool found = false; rcu_read_lock(); if (dev) found = ipv6_chk_acast_dev(dev, addr); else { unsigned int hash = inet6_acaddr_hash(net, addr); hlist_for_each_entry_rcu(aca, &inet6_acaddr_lst[hash], aca_addr_lst) { nh_dev = fib6_info_nh_dev(aca->aca_rt); if (!nh_dev || !net_eq(dev_net(nh_dev), net)) continue; if (ipv6_addr_equal(&aca->aca_addr, addr)) { found = true; break; } } } rcu_read_unlock(); return found; } /* check if this anycast address is link-local on given interface or * is global */ bool ipv6_chk_acast_addr_src(struct net *net, struct net_device *dev, const struct in6_addr *addr) { return ipv6_chk_acast_addr(net, (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL ? dev : NULL), addr); } #ifdef CONFIG_PROC_FS struct ac6_iter_state { struct seq_net_private p; struct net_device *dev; struct inet6_dev *idev; }; #define ac6_seq_private(seq) ((struct ac6_iter_state *)(seq)->private) static inline struct ifacaddr6 *ac6_get_first(struct seq_file *seq) { struct ifacaddr6 *im = NULL; struct ac6_iter_state *state = ac6_seq_private(seq); struct net *net = seq_file_net(seq); state->idev = NULL; for_each_netdev_rcu(net, state->dev) { struct inet6_dev *idev; idev = __in6_dev_get(state->dev); if (!idev) continue; read_lock_bh(&idev->lock); im = idev->ac_list; if (im) { state->idev = idev; break; } read_unlock_bh(&idev->lock); } return im; } static struct ifacaddr6 *ac6_get_next(struct seq_file *seq, struct ifacaddr6 *im) { struct ac6_iter_state *state = ac6_seq_private(seq); im = im->aca_next; while (!im) { if (likely(state->idev != NULL)) read_unlock_bh(&state->idev->lock); state->dev = next_net_device_rcu(state->dev); if (!state->dev) { state->idev = NULL; break; } state->idev = __in6_dev_get(state->dev); if (!state->idev) continue; read_lock_bh(&state->idev->lock); im = state->idev->ac_list; } return im; } static struct ifacaddr6 *ac6_get_idx(struct seq_file *seq, loff_t pos) { struct ifacaddr6 *im = ac6_get_first(seq); if (im) while (pos && (im = ac6_get_next(seq, im)) != NULL) --pos; return pos ? NULL : im; } static void *ac6_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return ac6_get_idx(seq, *pos); } static void *ac6_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct ifacaddr6 *im = ac6_get_next(seq, v); ++*pos; return im; } static void ac6_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { struct ac6_iter_state *state = ac6_seq_private(seq); if (likely(state->idev != NULL)) { read_unlock_bh(&state->idev->lock); state->idev = NULL; } rcu_read_unlock(); } static int ac6_seq_show(struct seq_file *seq, void *v) { struct ifacaddr6 *im = (struct ifacaddr6 *)v; struct ac6_iter_state *state = ac6_seq_private(seq); seq_printf(seq, "%-4d %-15s %pi6 %5d\n", state->dev->ifindex, state->dev->name, &im->aca_addr, im->aca_users); return 0; } static const struct seq_operations ac6_seq_ops = { .start = ac6_seq_start, .next = ac6_seq_next, .stop = ac6_seq_stop, .show = ac6_seq_show, }; int __net_init ac6_proc_init(struct net *net) { if (!proc_create_net("anycast6", 0444, net->proc_net, &ac6_seq_ops, sizeof(struct ac6_iter_state))) return -ENOMEM; return 0; } void ac6_proc_exit(struct net *net) { remove_proc_entry("anycast6", net->proc_net); } #endif /* Init / cleanup code */ int __init ipv6_anycast_init(void) { int i; for (i = 0; i < IN6_ADDR_HSIZE; i++) INIT_HLIST_HEAD(&inet6_acaddr_lst[i]); return 0; } void ipv6_anycast_cleanup(void) { int i; spin_lock(&acaddr_hash_lock); for (i = 0; i < IN6_ADDR_HSIZE; i++) WARN_ON(!hlist_empty(&inet6_acaddr_lst[i])); spin_unlock(&acaddr_hash_lock); }
linux-master
net/ipv6/anycast.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux IPv6 multicast routing support for BSD pim6sd * Based on net/ipv4/ipmr.c. * * (c) 2004 Mickael Hoerdt, <[email protected]> * LSIIT Laboratory, Strasbourg, France * (c) 2004 Jean-Philippe Andriot, <[email protected]> * 6WIND, Paris, France * Copyright (C)2007,2008 USAGI/WIDE Project * YOSHIFUJI Hideaki <[email protected]> */ #include <linux/uaccess.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/kernel.h> #include <linux/fcntl.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/rhashtable.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <net/raw.h> #include <linux/notifier.h> #include <linux/if_arp.h> #include <net/checksum.h> #include <net/netlink.h> #include <net/fib_rules.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <linux/mroute6.h> #include <linux/pim.h> #include <net/addrconf.h> #include <linux/netfilter_ipv6.h> #include <linux/export.h> #include <net/ip6_checksum.h> #include <linux/netconf.h> #include <net/ip_tunnels.h> #include <linux/nospec.h> struct ip6mr_rule { struct fib_rule common; }; struct ip6mr_result { struct mr_table *mrt; }; /* Big lock, protecting vif table, mrt cache and mroute socket state. Note that the changes are semaphored via rtnl_lock. */ static DEFINE_SPINLOCK(mrt_lock); static struct net_device *vif_dev_read(const struct vif_device *vif) { return rcu_dereference(vif->dev); } /* Multicast router control variables */ /* Special spinlock for queue of unresolved entries */ static DEFINE_SPINLOCK(mfc_unres_lock); /* We return to original Alan's scheme. Hash table of resolved entries is changed only in process context and protected with weak lock mrt_lock. Queue of unresolved entries is protected with strong spinlock mfc_unres_lock. In this case data path is free of exclusive locks at all. */ static struct kmem_cache *mrt_cachep __read_mostly; static struct mr_table *ip6mr_new_table(struct net *net, u32 id); static void ip6mr_free_table(struct mr_table *mrt); static void ip6_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc6_cache *cache); static int ip6mr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, mifi_t mifi, int assert); static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, int cmd); static void mrt6msg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); static int ip6mr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb); static void mroute_clean_tables(struct mr_table *mrt, int flags); static void ipmr_expire_process(struct timer_list *t); #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES #define ip6mr_for_each_table(mrt, net) \ list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list, \ lockdep_rtnl_is_held() || \ list_empty(&net->ipv6.mr6_tables)) static struct mr_table *ip6mr_mr_table_iter(struct net *net, struct mr_table *mrt) { struct mr_table *ret; if (!mrt) ret = list_entry_rcu(net->ipv6.mr6_tables.next, struct mr_table, list); else ret = list_entry_rcu(mrt->list.next, struct mr_table, list); if (&ret->list == &net->ipv6.mr6_tables) return NULL; return ret; } static struct mr_table *ip6mr_get_table(struct net *net, u32 id) { struct mr_table *mrt; ip6mr_for_each_table(mrt, net) { if (mrt->id == id) return mrt; } return NULL; } static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, struct mr_table **mrt) { int err; struct ip6mr_result res; struct fib_lookup_arg arg = { .result = &res, .flags = FIB_LOOKUP_NOREF, }; /* update flow if oif or iif point to device enslaved to l3mdev */ l3mdev_update_flow(net, flowi6_to_flowi(flp6)); err = fib_rules_lookup(net->ipv6.mr6_rules_ops, flowi6_to_flowi(flp6), 0, &arg); if (err < 0) return err; *mrt = res.mrt; return 0; } static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { struct ip6mr_result *res = arg->result; struct mr_table *mrt; switch (rule->action) { case FR_ACT_TO_TBL: break; case FR_ACT_UNREACHABLE: return -ENETUNREACH; case FR_ACT_PROHIBIT: return -EACCES; case FR_ACT_BLACKHOLE: default: return -EINVAL; } arg->table = fib_rule_get_table(rule, arg); mrt = ip6mr_get_table(rule->fr_net, arg->table); if (!mrt) return -EAGAIN; res->mrt = mrt; return 0; } static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) { return 1; } static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh, struct nlattr **tb, struct netlink_ext_ack *extack) { return 0; } static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, struct nlattr **tb) { return 1; } static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh) { frh->dst_len = 0; frh->src_len = 0; frh->tos = 0; return 0; } static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { .family = RTNL_FAMILY_IP6MR, .rule_size = sizeof(struct ip6mr_rule), .addr_size = sizeof(struct in6_addr), .action = ip6mr_rule_action, .match = ip6mr_rule_match, .configure = ip6mr_rule_configure, .compare = ip6mr_rule_compare, .fill = ip6mr_rule_fill, .nlgroup = RTNLGRP_IPV6_RULE, .owner = THIS_MODULE, }; static int __net_init ip6mr_rules_init(struct net *net) { struct fib_rules_ops *ops; struct mr_table *mrt; int err; ops = fib_rules_register(&ip6mr_rules_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); INIT_LIST_HEAD(&net->ipv6.mr6_tables); mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); if (IS_ERR(mrt)) { err = PTR_ERR(mrt); goto err1; } err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); if (err < 0) goto err2; net->ipv6.mr6_rules_ops = ops; return 0; err2: rtnl_lock(); ip6mr_free_table(mrt); rtnl_unlock(); err1: fib_rules_unregister(ops); return err; } static void __net_exit ip6mr_rules_exit(struct net *net) { struct mr_table *mrt, *next; ASSERT_RTNL(); list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { list_del(&mrt->list); ip6mr_free_table(mrt); } fib_rules_unregister(net->ipv6.mr6_rules_ops); } static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return fib_rules_dump(net, nb, RTNL_FAMILY_IP6MR, extack); } static unsigned int ip6mr_rules_seq_read(struct net *net) { return fib_rules_seq_read(net, RTNL_FAMILY_IP6MR); } bool ip6mr_rule_default(const struct fib_rule *rule) { return fib_rule_matchall(rule) && rule->action == FR_ACT_TO_TBL && rule->table == RT6_TABLE_DFLT && !rule->l3mdev; } EXPORT_SYMBOL(ip6mr_rule_default); #else #define ip6mr_for_each_table(mrt, net) \ for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) static struct mr_table *ip6mr_mr_table_iter(struct net *net, struct mr_table *mrt) { if (!mrt) return net->ipv6.mrt6; return NULL; } static struct mr_table *ip6mr_get_table(struct net *net, u32 id) { return net->ipv6.mrt6; } static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, struct mr_table **mrt) { *mrt = net->ipv6.mrt6; return 0; } static int __net_init ip6mr_rules_init(struct net *net) { struct mr_table *mrt; mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); if (IS_ERR(mrt)) return PTR_ERR(mrt); net->ipv6.mrt6 = mrt; return 0; } static void __net_exit ip6mr_rules_exit(struct net *net) { ASSERT_RTNL(); ip6mr_free_table(net->ipv6.mrt6); net->ipv6.mrt6 = NULL; } static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static unsigned int ip6mr_rules_seq_read(struct net *net) { return 0; } #endif static int ip6mr_hash_cmp(struct rhashtable_compare_arg *arg, const void *ptr) { const struct mfc6_cache_cmp_arg *cmparg = arg->key; struct mfc6_cache *c = (struct mfc6_cache *)ptr; return !ipv6_addr_equal(&c->mf6c_mcastgrp, &cmparg->mf6c_mcastgrp) || !ipv6_addr_equal(&c->mf6c_origin, &cmparg->mf6c_origin); } static const struct rhashtable_params ip6mr_rht_params = { .head_offset = offsetof(struct mr_mfc, mnode), .key_offset = offsetof(struct mfc6_cache, cmparg), .key_len = sizeof(struct mfc6_cache_cmp_arg), .nelem_hint = 3, .obj_cmpfn = ip6mr_hash_cmp, .automatic_shrinking = true, }; static void ip6mr_new_table_set(struct mr_table *mrt, struct net *net) { #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); #endif } static struct mfc6_cache_cmp_arg ip6mr_mr_table_ops_cmparg_any = { .mf6c_origin = IN6ADDR_ANY_INIT, .mf6c_mcastgrp = IN6ADDR_ANY_INIT, }; static struct mr_table_ops ip6mr_mr_table_ops = { .rht_params = &ip6mr_rht_params, .cmparg_any = &ip6mr_mr_table_ops_cmparg_any, }; static struct mr_table *ip6mr_new_table(struct net *net, u32 id) { struct mr_table *mrt; mrt = ip6mr_get_table(net, id); if (mrt) return mrt; return mr_table_alloc(net, id, &ip6mr_mr_table_ops, ipmr_expire_process, ip6mr_new_table_set); } static void ip6mr_free_table(struct mr_table *mrt) { timer_shutdown_sync(&mrt->ipmr_expire_timer); mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC | MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC); rhltable_destroy(&mrt->mfc_hash); kfree(mrt); } #ifdef CONFIG_PROC_FS /* The /proc interfaces to multicast routing * /proc/ip6_mr_cache /proc/ip6_mr_vif */ static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct mr_vif_iter *iter = seq->private; struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return ERR_PTR(-ENOENT); iter->mrt = mrt; rcu_read_lock(); return mr_vif_seq_start(seq, pos); } static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) { struct mr_vif_iter *iter = seq->private; struct mr_table *mrt = iter->mrt; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); } else { const struct vif_device *vif = v; const struct net_device *vif_dev; const char *name; vif_dev = vif_dev_read(vif); name = vif_dev ? vif_dev->name : "none"; seq_printf(seq, "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", vif - mrt->vif_table, name, vif->bytes_in, vif->pkt_in, vif->bytes_out, vif->pkt_out, vif->flags); } return 0; } static const struct seq_operations ip6mr_vif_seq_ops = { .start = ip6mr_vif_seq_start, .next = mr_vif_seq_next, .stop = ip6mr_vif_seq_stop, .show = ip6mr_vif_seq_show, }; static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); struct mr_table *mrt; mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return ERR_PTR(-ENOENT); return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); } static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) { int n; if (v == SEQ_START_TOKEN) { seq_puts(seq, "Group " "Origin " "Iif Pkts Bytes Wrong Oifs\n"); } else { const struct mfc6_cache *mfc = v; const struct mr_mfc_iter *it = seq->private; struct mr_table *mrt = it->mrt; seq_printf(seq, "%pI6 %pI6 %-3hd", &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, mfc->_c.mfc_parent); if (it->cache != &mrt->mfc_unres_queue) { seq_printf(seq, " %8lu %8lu %8lu", mfc->_c.mfc_un.res.pkt, mfc->_c.mfc_un.res.bytes, mfc->_c.mfc_un.res.wrong_if); for (n = mfc->_c.mfc_un.res.minvif; n < mfc->_c.mfc_un.res.maxvif; n++) { if (VIF_EXISTS(mrt, n) && mfc->_c.mfc_un.res.ttls[n] < 255) seq_printf(seq, " %2d:%-3d", n, mfc->_c.mfc_un.res.ttls[n]); } } else { /* unresolved mfc_caches don't contain * pkt, bytes and wrong_if values */ seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); } seq_putc(seq, '\n'); } return 0; } static const struct seq_operations ipmr_mfc_seq_ops = { .start = ipmr_mfc_seq_start, .next = mr_mfc_seq_next, .stop = mr_mfc_seq_stop, .show = ipmr_mfc_seq_show, }; #endif #ifdef CONFIG_IPV6_PIMSM_V2 static int pim6_rcv(struct sk_buff *skb) { struct pimreghdr *pim; struct ipv6hdr *encap; struct net_device *reg_dev = NULL; struct net *net = dev_net(skb->dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; int reg_vif_num; if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) goto drop; pim = (struct pimreghdr *)skb_transport_header(skb); if (pim->type != ((PIM_VERSION << 4) | PIM_TYPE_REGISTER) || (pim->flags & PIM_NULL_REGISTER) || (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, sizeof(*pim), IPPROTO_PIM, csum_partial((void *)pim, sizeof(*pim), 0)) && csum_fold(skb_checksum(skb, 0, skb->len, 0)))) goto drop; /* check if the inner packet is destined to mcast group */ encap = (struct ipv6hdr *)(skb_transport_header(skb) + sizeof(*pim)); if (!ipv6_addr_is_multicast(&encap->daddr) || encap->payload_len == 0 || ntohs(encap->payload_len) + sizeof(*pim) > skb->len) goto drop; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) goto drop; /* Pairs with WRITE_ONCE() in mif6_add()/mif6_delete() */ reg_vif_num = READ_ONCE(mrt->mroute_reg_vif_num); if (reg_vif_num >= 0) reg_dev = vif_dev_read(&mrt->vif_table[reg_vif_num]); if (!reg_dev) goto drop; skb->mac_header = skb->network_header; skb_pull(skb, (u8 *)encap - skb->data); skb_reset_network_header(skb); skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = CHECKSUM_NONE; skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); netif_rx(skb); return 0; drop: kfree_skb(skb); return 0; } static const struct inet6_protocol pim6_protocol = { .handler = pim6_rcv, }; /* Service routines creating virtual interfaces: PIMREG */ static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) { struct net *net = dev_net(dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_oif = dev->ifindex, .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, .flowi6_mark = skb->mark, }; if (!pskb_inet_may_pull(skb)) goto tx_err; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) goto tx_err; DEV_STATS_ADD(dev, tx_bytes, skb->len); DEV_STATS_INC(dev, tx_packets); rcu_read_lock(); ip6mr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), MRT6MSG_WHOLEPKT); rcu_read_unlock(); kfree_skb(skb); return NETDEV_TX_OK; tx_err: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); return NETDEV_TX_OK; } static int reg_vif_get_iflink(const struct net_device *dev) { return 0; } static const struct net_device_ops reg_vif_netdev_ops = { .ndo_start_xmit = reg_vif_xmit, .ndo_get_iflink = reg_vif_get_iflink, }; static void reg_vif_setup(struct net_device *dev) { dev->type = ARPHRD_PIMREG; dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; dev->flags = IFF_NOARP; dev->netdev_ops = &reg_vif_netdev_ops; dev->needs_free_netdev = true; dev->features |= NETIF_F_NETNS_LOCAL; } static struct net_device *ip6mr_reg_vif(struct net *net, struct mr_table *mrt) { struct net_device *dev; char name[IFNAMSIZ]; if (mrt->id == RT6_TABLE_DFLT) sprintf(name, "pim6reg"); else sprintf(name, "pim6reg%u", mrt->id); dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); if (!dev) return NULL; dev_net_set(dev, net); if (register_netdevice(dev)) { free_netdev(dev); return NULL; } if (dev_open(dev, NULL)) goto failure; dev_hold(dev); return dev; failure: unregister_netdevice(dev); return NULL; } #endif static int call_ip6mr_vif_entry_notifiers(struct net *net, enum fib_event_type event_type, struct vif_device *vif, struct net_device *vif_dev, mifi_t vif_index, u32 tb_id) { return mr_call_vif_notifiers(net, RTNL_FAMILY_IP6MR, event_type, vif, vif_dev, vif_index, tb_id, &net->ipv6.ipmr_seq); } static int call_ip6mr_mfc_entry_notifiers(struct net *net, enum fib_event_type event_type, struct mfc6_cache *mfc, u32 tb_id) { return mr_call_mfc_notifiers(net, RTNL_FAMILY_IP6MR, event_type, &mfc->_c, tb_id, &net->ipv6.ipmr_seq); } /* Delete a VIF entry */ static int mif6_delete(struct mr_table *mrt, int vifi, int notify, struct list_head *head) { struct vif_device *v; struct net_device *dev; struct inet6_dev *in6_dev; if (vifi < 0 || vifi >= mrt->maxvif) return -EADDRNOTAVAIL; v = &mrt->vif_table[vifi]; dev = rtnl_dereference(v->dev); if (!dev) return -EADDRNOTAVAIL; call_ip6mr_vif_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_VIF_DEL, v, dev, vifi, mrt->id); spin_lock(&mrt_lock); RCU_INIT_POINTER(v->dev, NULL); #ifdef CONFIG_IPV6_PIMSM_V2 if (vifi == mrt->mroute_reg_vif_num) { /* Pairs with READ_ONCE() in ip6mr_cache_report() and reg_vif_xmit() */ WRITE_ONCE(mrt->mroute_reg_vif_num, -1); } #endif if (vifi + 1 == mrt->maxvif) { int tmp; for (tmp = vifi - 1; tmp >= 0; tmp--) { if (VIF_EXISTS(mrt, tmp)) break; } WRITE_ONCE(mrt->maxvif, tmp + 1); } spin_unlock(&mrt_lock); dev_set_allmulti(dev, -1); in6_dev = __in6_dev_get(dev); if (in6_dev) { atomic_dec(&in6_dev->cnf.mc_forwarding); inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in6_dev->cnf); } if ((v->flags & MIFF_REGISTER) && !notify) unregister_netdevice_queue(dev, head); netdev_put(dev, &v->dev_tracker); return 0; } static inline void ip6mr_cache_free_rcu(struct rcu_head *head) { struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); kmem_cache_free(mrt_cachep, (struct mfc6_cache *)c); } static inline void ip6mr_cache_free(struct mfc6_cache *c) { call_rcu(&c->_c.rcu, ip6mr_cache_free_rcu); } /* Destroy an unresolved cache entry, killing queued skbs and reporting error to netlink readers. */ static void ip6mr_destroy_unres(struct mr_table *mrt, struct mfc6_cache *c) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; atomic_dec(&mrt->cache_resolve_queue_len); while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved)) != NULL) { if (ipv6_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct ipv6hdr)); nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else kfree_skb(skb); } ip6mr_cache_free(c); } /* Timer process for all the unresolved queue. */ static void ipmr_do_expire_process(struct mr_table *mrt) { unsigned long now = jiffies; unsigned long expires = 10 * HZ; struct mr_mfc *c, *next; list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { if (time_after(c->mfc_un.unres.expires, now)) { /* not yet... */ unsigned long interval = c->mfc_un.unres.expires - now; if (interval < expires) expires = interval; continue; } list_del(&c->list); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); } if (!list_empty(&mrt->mfc_unres_queue)) mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); } static void ipmr_expire_process(struct timer_list *t) { struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); if (!spin_trylock(&mfc_unres_lock)) { mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); return; } if (!list_empty(&mrt->mfc_unres_queue)) ipmr_do_expire_process(mrt); spin_unlock(&mfc_unres_lock); } /* Fill oifs list. It is called under locked mrt_lock. */ static void ip6mr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, unsigned char *ttls) { int vifi; cache->mfc_un.res.minvif = MAXMIFS; cache->mfc_un.res.maxvif = 0; memset(cache->mfc_un.res.ttls, 255, MAXMIFS); for (vifi = 0; vifi < mrt->maxvif; vifi++) { if (VIF_EXISTS(mrt, vifi) && ttls[vifi] && ttls[vifi] < 255) { cache->mfc_un.res.ttls[vifi] = ttls[vifi]; if (cache->mfc_un.res.minvif > vifi) cache->mfc_un.res.minvif = vifi; if (cache->mfc_un.res.maxvif <= vifi) cache->mfc_un.res.maxvif = vifi + 1; } } cache->mfc_un.res.lastuse = jiffies; } static int mif6_add(struct net *net, struct mr_table *mrt, struct mif6ctl *vifc, int mrtsock) { int vifi = vifc->mif6c_mifi; struct vif_device *v = &mrt->vif_table[vifi]; struct net_device *dev; struct inet6_dev *in6_dev; int err; /* Is vif busy ? */ if (VIF_EXISTS(mrt, vifi)) return -EADDRINUSE; switch (vifc->mif6c_flags) { #ifdef CONFIG_IPV6_PIMSM_V2 case MIFF_REGISTER: /* * Special Purpose VIF in PIM * All the packets will be sent to the daemon */ if (mrt->mroute_reg_vif_num >= 0) return -EADDRINUSE; dev = ip6mr_reg_vif(net, mrt); if (!dev) return -ENOBUFS; err = dev_set_allmulti(dev, 1); if (err) { unregister_netdevice(dev); dev_put(dev); return err; } break; #endif case 0: dev = dev_get_by_index(net, vifc->mif6c_pifi); if (!dev) return -EADDRNOTAVAIL; err = dev_set_allmulti(dev, 1); if (err) { dev_put(dev); return err; } break; default: return -EINVAL; } in6_dev = __in6_dev_get(dev); if (in6_dev) { atomic_inc(&in6_dev->cnf.mc_forwarding); inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, dev->ifindex, &in6_dev->cnf); } /* Fill in the VIF structures */ vif_device_init(v, dev, vifc->vifc_rate_limit, vifc->vifc_threshold, vifc->mif6c_flags | (!mrtsock ? VIFF_STATIC : 0), MIFF_REGISTER); /* And finish update writing critical data */ spin_lock(&mrt_lock); rcu_assign_pointer(v->dev, dev); netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); #ifdef CONFIG_IPV6_PIMSM_V2 if (v->flags & MIFF_REGISTER) WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); #endif if (vifi + 1 > mrt->maxvif) WRITE_ONCE(mrt->maxvif, vifi + 1); spin_unlock(&mrt_lock); call_ip6mr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, vifi, mrt->id); return 0; } static struct mfc6_cache *ip6mr_cache_find(struct mr_table *mrt, const struct in6_addr *origin, const struct in6_addr *mcastgrp) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = *origin, .mf6c_mcastgrp = *mcastgrp, }; return mr_mfc_find(mrt, &arg); } /* Look for a (*,G) entry */ static struct mfc6_cache *ip6mr_cache_find_any(struct mr_table *mrt, struct in6_addr *mcastgrp, mifi_t mifi) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = in6addr_any, .mf6c_mcastgrp = *mcastgrp, }; if (ipv6_addr_any(mcastgrp)) return mr_mfc_find_any_parent(mrt, mifi); return mr_mfc_find_any(mrt, mifi, &arg); } /* Look for a (S,G,iif) entry if parent != -1 */ static struct mfc6_cache * ip6mr_cache_find_parent(struct mr_table *mrt, const struct in6_addr *origin, const struct in6_addr *mcastgrp, int parent) { struct mfc6_cache_cmp_arg arg = { .mf6c_origin = *origin, .mf6c_mcastgrp = *mcastgrp, }; return mr_mfc_find_parent(mrt, &arg, parent); } /* Allocate a multicast cache entry */ static struct mfc6_cache *ip6mr_cache_alloc(void) { struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); if (!c) return NULL; c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; c->_c.mfc_un.res.minvif = MAXMIFS; c->_c.free = ip6mr_cache_free_rcu; refcount_set(&c->_c.mfc_un.res.refcount, 1); return c; } static struct mfc6_cache *ip6mr_cache_alloc_unres(void) { struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); if (!c) return NULL; skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; return c; } /* * A cache entry has gone into a resolved state from queued */ static void ip6mr_cache_resolve(struct net *net, struct mr_table *mrt, struct mfc6_cache *uc, struct mfc6_cache *c) { struct sk_buff *skb; /* * Play the pending entries through our router */ while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { if (ipv6_hdr(skb)->version == 0) { struct nlmsghdr *nlh = skb_pull(skb, sizeof(struct ipv6hdr)); if (mr_fill_mroute(mrt, skb, &c->_c, nlmsg_data(nlh)) > 0) { nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; } else { nlh->nlmsg_type = NLMSG_ERROR; nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); skb_trim(skb, nlh->nlmsg_len); ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; } rtnl_unicast(skb, net, NETLINK_CB(skb).portid); } else { rcu_read_lock(); ip6_mr_forward(net, mrt, skb->dev, skb, c); rcu_read_unlock(); } } } /* * Bounce a cache query up to pim6sd and netlink. * * Called under rcu_read_lock() */ static int ip6mr_cache_report(const struct mr_table *mrt, struct sk_buff *pkt, mifi_t mifi, int assert) { struct sock *mroute6_sk; struct sk_buff *skb; struct mrt6msg *msg; int ret; #ifdef CONFIG_IPV6_PIMSM_V2 if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE) skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) +sizeof(*msg)); else #endif skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); if (!skb) return -ENOBUFS; /* I suppose that internal messages * do not require checksums */ skb->ip_summed = CHECKSUM_UNNECESSARY; #ifdef CONFIG_IPV6_PIMSM_V2 if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE) { /* Ugly, but we have no choice with this interface. Duplicate old header, fix length etc. And all this only to mangle msg->im6_msgtype and to set msg->im6_mbz to "mbz" :-) */ __skb_pull(skb, skb_network_offset(pkt)); skb_push(skb, sizeof(*msg)); skb_reset_transport_header(skb); msg = (struct mrt6msg *)skb_transport_header(skb); msg->im6_mbz = 0; msg->im6_msgtype = assert; if (assert == MRT6MSG_WRMIFWHOLE) msg->im6_mif = mifi; else msg->im6_mif = READ_ONCE(mrt->mroute_reg_vif_num); msg->im6_pad = 0; msg->im6_src = ipv6_hdr(pkt)->saddr; msg->im6_dst = ipv6_hdr(pkt)->daddr; skb->ip_summed = CHECKSUM_UNNECESSARY; } else #endif { /* * Copy the IP header */ skb_put(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); /* * Add our header */ skb_put(skb, sizeof(*msg)); skb_reset_transport_header(skb); msg = (struct mrt6msg *)skb_transport_header(skb); msg->im6_mbz = 0; msg->im6_msgtype = assert; msg->im6_mif = mifi; msg->im6_pad = 0; msg->im6_src = ipv6_hdr(pkt)->saddr; msg->im6_dst = ipv6_hdr(pkt)->daddr; skb_dst_set(skb, dst_clone(skb_dst(pkt))); skb->ip_summed = CHECKSUM_UNNECESSARY; } mroute6_sk = rcu_dereference(mrt->mroute_sk); if (!mroute6_sk) { kfree_skb(skb); return -EINVAL; } mrt6msg_netlink_event(mrt, skb); /* Deliver to user space multicast routing algorithms */ ret = sock_queue_rcv_skb(mroute6_sk, skb); if (ret < 0) { net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); kfree_skb(skb); } return ret; } /* Queue a packet for resolution. It gets locked cache entry! */ static int ip6mr_cache_unresolved(struct mr_table *mrt, mifi_t mifi, struct sk_buff *skb, struct net_device *dev) { struct mfc6_cache *c; bool found = false; int err; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { found = true; break; } } if (!found) { /* * Create a new entry if allowable */ c = ip6mr_cache_alloc_unres(); if (!c) { spin_unlock_bh(&mfc_unres_lock); kfree_skb(skb); return -ENOBUFS; } /* Fill in the new cache entry */ c->_c.mfc_parent = -1; c->mf6c_origin = ipv6_hdr(skb)->saddr; c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; /* * Reflect first query at pim6sd */ err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); if (err < 0) { /* If the report failed throw the cache entry out - Brad Parker */ spin_unlock_bh(&mfc_unres_lock); ip6mr_cache_free(c); kfree_skb(skb); return err; } atomic_inc(&mrt->cache_resolve_queue_len); list_add(&c->_c.list, &mrt->mfc_unres_queue); mr6_netlink_event(mrt, c, RTM_NEWROUTE); ipmr_do_expire_process(mrt); } /* See if we can append the packet */ if (c->_c.mfc_un.unres.unresolved.qlen > 3) { kfree_skb(skb); err = -ENOBUFS; } else { if (dev) { skb->dev = dev; skb->skb_iif = dev->ifindex; } skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); err = 0; } spin_unlock_bh(&mfc_unres_lock); return err; } /* * MFC6 cache manipulation by user space */ static int ip6mr_mfc_delete(struct mr_table *mrt, struct mf6cctl *mfc, int parent) { struct mfc6_cache *c; /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, &mfc->mf6cc_mcastgrp.sin6_addr, parent); rcu_read_unlock(); if (!c) return -ENOENT; rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ip6mr_rht_params); list_del_rcu(&c->_c.list); call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_ENTRY_DEL, c, mrt->id); mr6_netlink_event(mrt, c, RTM_DELROUTE); mr_cache_put(&c->_c); return 0; } static int ip6mr_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); struct mr_table *mrt; struct vif_device *v; int ct; if (event != NETDEV_UNREGISTER) return NOTIFY_DONE; ip6mr_for_each_table(mrt, net) { v = &mrt->vif_table[0]; for (ct = 0; ct < mrt->maxvif; ct++, v++) { if (rcu_access_pointer(v->dev) == dev) mif6_delete(mrt, ct, 1, NULL); } } return NOTIFY_DONE; } static unsigned int ip6mr_seq_read(struct net *net) { ASSERT_RTNL(); return net->ipv6.ipmr_seq + ip6mr_rules_seq_read(net); } static int ip6mr_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return mr_dump(net, nb, RTNL_FAMILY_IP6MR, ip6mr_rules_dump, ip6mr_mr_table_iter, extack); } static struct notifier_block ip6_mr_notifier = { .notifier_call = ip6mr_device_event }; static const struct fib_notifier_ops ip6mr_notifier_ops_template = { .family = RTNL_FAMILY_IP6MR, .fib_seq_read = ip6mr_seq_read, .fib_dump = ip6mr_dump, .owner = THIS_MODULE, }; static int __net_init ip6mr_notifier_init(struct net *net) { struct fib_notifier_ops *ops; net->ipv6.ipmr_seq = 0; ops = fib_notifier_ops_register(&ip6mr_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv6.ip6mr_notifier_ops = ops; return 0; } static void __net_exit ip6mr_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv6.ip6mr_notifier_ops); net->ipv6.ip6mr_notifier_ops = NULL; } /* Setup for IP multicast routing */ static int __net_init ip6mr_net_init(struct net *net) { int err; err = ip6mr_notifier_init(net); if (err) return err; err = ip6mr_rules_init(net); if (err < 0) goto ip6mr_rules_fail; #ifdef CONFIG_PROC_FS err = -ENOMEM; if (!proc_create_net("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_seq_ops, sizeof(struct mr_vif_iter))) goto proc_vif_fail; if (!proc_create_net("ip6_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, sizeof(struct mr_mfc_iter))) goto proc_cache_fail; #endif return 0; #ifdef CONFIG_PROC_FS proc_cache_fail: remove_proc_entry("ip6_mr_vif", net->proc_net); proc_vif_fail: rtnl_lock(); ip6mr_rules_exit(net); rtnl_unlock(); #endif ip6mr_rules_fail: ip6mr_notifier_exit(net); return err; } static void __net_exit ip6mr_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("ip6_mr_cache", net->proc_net); remove_proc_entry("ip6_mr_vif", net->proc_net); #endif ip6mr_notifier_exit(net); } static void __net_exit ip6mr_net_exit_batch(struct list_head *net_list) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) ip6mr_rules_exit(net); rtnl_unlock(); } static struct pernet_operations ip6mr_net_ops = { .init = ip6mr_net_init, .exit = ip6mr_net_exit, .exit_batch = ip6mr_net_exit_batch, }; int __init ip6_mr_init(void) { int err; mrt_cachep = kmem_cache_create("ip6_mrt_cache", sizeof(struct mfc6_cache), 0, SLAB_HWCACHE_ALIGN, NULL); if (!mrt_cachep) return -ENOMEM; err = register_pernet_subsys(&ip6mr_net_ops); if (err) goto reg_pernet_fail; err = register_netdevice_notifier(&ip6_mr_notifier); if (err) goto reg_notif_fail; #ifdef CONFIG_IPV6_PIMSM_V2 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { pr_err("%s: can't add PIM protocol\n", __func__); err = -EAGAIN; goto add_proto_fail; } #endif err = rtnl_register_module(THIS_MODULE, RTNL_FAMILY_IP6MR, RTM_GETROUTE, ip6mr_rtm_getroute, ip6mr_rtm_dumproute, 0); if (err == 0) return 0; #ifdef CONFIG_IPV6_PIMSM_V2 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); add_proto_fail: unregister_netdevice_notifier(&ip6_mr_notifier); #endif reg_notif_fail: unregister_pernet_subsys(&ip6mr_net_ops); reg_pernet_fail: kmem_cache_destroy(mrt_cachep); return err; } void ip6_mr_cleanup(void) { rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE); #ifdef CONFIG_IPV6_PIMSM_V2 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); #endif unregister_netdevice_notifier(&ip6_mr_notifier); unregister_pernet_subsys(&ip6mr_net_ops); kmem_cache_destroy(mrt_cachep); } static int ip6mr_mfc_add(struct net *net, struct mr_table *mrt, struct mf6cctl *mfc, int mrtsock, int parent) { unsigned char ttls[MAXMIFS]; struct mfc6_cache *uc, *c; struct mr_mfc *_uc; bool found; int i, err; if (mfc->mf6cc_parent >= MAXMIFS) return -ENFILE; memset(ttls, 255, MAXMIFS); for (i = 0; i < MAXMIFS; i++) { if (IF_ISSET(i, &mfc->mf6cc_ifset)) ttls[i] = 1; } /* The entries are added/deleted only under RTNL */ rcu_read_lock(); c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, &mfc->mf6cc_mcastgrp.sin6_addr, parent); rcu_read_unlock(); if (c) { spin_lock(&mrt_lock); c->_c.mfc_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(mrt, &c->_c, ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; spin_unlock(&mrt_lock); call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, mrt->id); mr6_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) return -EINVAL; c = ip6mr_cache_alloc(); if (!c) return -ENOMEM; c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; c->_c.mfc_parent = mfc->mf6cc_parent; ip6mr_update_thresholds(mrt, &c->_c, ttls); if (!mrtsock) c->_c.mfc_flags |= MFC_STATIC; err = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, ip6mr_rht_params); if (err) { pr_err("ip6mr: rhtable insert error %d\n", err); ip6mr_cache_free(c); return err; } list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); /* Check to see if we resolved a queued list. If so we * need to send on the frames and tidy up. */ found = false; spin_lock_bh(&mfc_unres_lock); list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { uc = (struct mfc6_cache *)_uc; if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { list_del(&_uc->list); atomic_dec(&mrt->cache_resolve_queue_len); found = true; break; } } if (list_empty(&mrt->mfc_unres_queue)) del_timer(&mrt->ipmr_expire_timer); spin_unlock_bh(&mfc_unres_lock); if (found) { ip6mr_cache_resolve(net, mrt, uc, c); ip6mr_cache_free(uc); } call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); mr6_netlink_event(mrt, c, RTM_NEWROUTE); return 0; } /* * Close the multicast socket, and clear the vif tables etc */ static void mroute_clean_tables(struct mr_table *mrt, int flags) { struct mr_mfc *c, *tmp; LIST_HEAD(list); int i; /* Shut down all active vif entries */ if (flags & (MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC)) { for (i = 0; i < mrt->maxvif; i++) { if (((mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS_STATIC)) || (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS))) continue; mif6_delete(mrt, i, 0, &list); } unregister_netdevice_many(&list); } /* Wipe the cache */ if (flags & (MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC)) { list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC_STATIC)) || (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC))) continue; rhltable_remove(&mrt->mfc_hash, &c->mnode, ip6mr_rht_params); list_del_rcu(&c->list); call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), FIB_EVENT_ENTRY_DEL, (struct mfc6_cache *)c, mrt->id); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); mr_cache_put(c); } } if (flags & MRT6_FLUSH_MFC) { if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { spin_lock_bh(&mfc_unres_lock); list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { list_del(&c->list); mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); } spin_unlock_bh(&mfc_unres_lock); } } } static int ip6mr_sk_init(struct mr_table *mrt, struct sock *sk) { int err = 0; struct net *net = sock_net(sk); rtnl_lock(); spin_lock(&mrt_lock); if (rtnl_dereference(mrt->mroute_sk)) { err = -EADDRINUSE; } else { rcu_assign_pointer(mrt->mroute_sk, sk); sock_set_flag(sk, SOCK_RCU_FREE); atomic_inc(&net->ipv6.devconf_all->mc_forwarding); } spin_unlock(&mrt_lock); if (!err) inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv6.devconf_all); rtnl_unlock(); return err; } int ip6mr_sk_done(struct sock *sk) { struct net *net = sock_net(sk); struct ipv6_devconf *devconf; struct mr_table *mrt; int err = -EACCES; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return err; devconf = net->ipv6.devconf_all; if (!devconf || !atomic_read(&devconf->mc_forwarding)) return err; rtnl_lock(); ip6mr_for_each_table(mrt, net) { if (sk == rtnl_dereference(mrt->mroute_sk)) { spin_lock(&mrt_lock); RCU_INIT_POINTER(mrt->mroute_sk, NULL); /* Note that mroute_sk had SOCK_RCU_FREE set, * so the RCU grace period before sk freeing * is guaranteed by sk_destruct() */ atomic_dec(&devconf->mc_forwarding); spin_unlock(&mrt_lock); inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv6.devconf_all); mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MFC); err = 0; break; } } rtnl_unlock(); return err; } bool mroute6_is_socket(struct net *net, struct sk_buff *skb) { struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, .flowi6_oif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) return NULL; return rcu_access_pointer(mrt->mroute_sk); } EXPORT_SYMBOL(mroute6_is_socket); /* * Socket options and virtual interface manipulation. The whole * virtual interface system is a complete heap, but unfortunately * that's how BSD mrouted happens to think. Maybe one day with a proper * MOSPF/PIM router set up we can clean this up. */ int ip6_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, unsigned int optlen) { int ret, parent = 0; struct mif6ctl vif; struct mf6cctl mfc; mifi_t mifi; struct net *net = sock_net(sk); struct mr_table *mrt; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; if (optname != MRT6_INIT) { if (sk != rcu_access_pointer(mrt->mroute_sk) && !ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EACCES; } switch (optname) { case MRT6_INIT: if (optlen < sizeof(int)) return -EINVAL; return ip6mr_sk_init(mrt, sk); case MRT6_DONE: return ip6mr_sk_done(sk); case MRT6_ADD_MIF: if (optlen < sizeof(vif)) return -EINVAL; if (copy_from_sockptr(&vif, optval, sizeof(vif))) return -EFAULT; if (vif.mif6c_mifi >= MAXMIFS) return -ENFILE; rtnl_lock(); ret = mif6_add(net, mrt, &vif, sk == rtnl_dereference(mrt->mroute_sk)); rtnl_unlock(); return ret; case MRT6_DEL_MIF: if (optlen < sizeof(mifi_t)) return -EINVAL; if (copy_from_sockptr(&mifi, optval, sizeof(mifi_t))) return -EFAULT; rtnl_lock(); ret = mif6_delete(mrt, mifi, 0, NULL); rtnl_unlock(); return ret; /* * Manipulate the forwarding caches. These live * in a sort of kernel/user symbiosis. */ case MRT6_ADD_MFC: case MRT6_DEL_MFC: parent = -1; fallthrough; case MRT6_ADD_MFC_PROXY: case MRT6_DEL_MFC_PROXY: if (optlen < sizeof(mfc)) return -EINVAL; if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) return -EFAULT; if (parent == 0) parent = mfc.mf6cc_parent; rtnl_lock(); if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) ret = ip6mr_mfc_delete(mrt, &mfc, parent); else ret = ip6mr_mfc_add(net, mrt, &mfc, sk == rtnl_dereference(mrt->mroute_sk), parent); rtnl_unlock(); return ret; case MRT6_FLUSH: { int flags; if (optlen != sizeof(flags)) return -EINVAL; if (copy_from_sockptr(&flags, optval, sizeof(flags))) return -EFAULT; rtnl_lock(); mroute_clean_tables(mrt, flags); rtnl_unlock(); return 0; } /* * Control PIM assert (to activate pim will activate assert) */ case MRT6_ASSERT: { int v; if (optlen != sizeof(v)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; mrt->mroute_do_assert = v; return 0; } #ifdef CONFIG_IPV6_PIMSM_V2 case MRT6_PIM: { bool do_wrmifwhole; int v; if (optlen != sizeof(v)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; do_wrmifwhole = (v == MRT6MSG_WRMIFWHOLE); v = !!v; rtnl_lock(); ret = 0; if (v != mrt->mroute_do_pim) { mrt->mroute_do_pim = v; mrt->mroute_do_assert = v; mrt->mroute_do_wrvifwhole = do_wrmifwhole; } rtnl_unlock(); return ret; } #endif #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES case MRT6_TABLE: { u32 v; if (optlen != sizeof(u32)) return -EINVAL; if (copy_from_sockptr(&v, optval, sizeof(v))) return -EFAULT; /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ if (v != RT_TABLE_DEFAULT && v >= 100000000) return -EINVAL; if (sk == rcu_access_pointer(mrt->mroute_sk)) return -EBUSY; rtnl_lock(); ret = 0; mrt = ip6mr_new_table(net, v); if (IS_ERR(mrt)) ret = PTR_ERR(mrt); else raw6_sk(sk)->ip6mr_table = v; rtnl_unlock(); return ret; } #endif /* * Spurious command, or MRT6_VERSION which you cannot * set. */ default: return -ENOPROTOOPT; } } /* * Getsock opt support for the multicast routing system. */ int ip6_mroute_getsockopt(struct sock *sk, int optname, sockptr_t optval, sockptr_t optlen) { int olr; int val; struct net *net = sock_net(sk); struct mr_table *mrt; if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_ICMPV6) return -EOPNOTSUPP; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (optname) { case MRT6_VERSION: val = 0x0305; break; #ifdef CONFIG_IPV6_PIMSM_V2 case MRT6_PIM: val = mrt->mroute_do_pim; break; #endif case MRT6_ASSERT: val = mrt->mroute_do_assert; break; default: return -ENOPROTOOPT; } if (copy_from_sockptr(&olr, optlen, sizeof(int))) return -EFAULT; olr = min_t(int, olr, sizeof(int)); if (olr < 0) return -EINVAL; if (copy_to_sockptr(optlen, &olr, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, olr)) return -EFAULT; return 0; } /* * The IP multicast ioctl support routines. */ int ip6mr_ioctl(struct sock *sk, int cmd, void *arg) { struct sioc_sg_req6 *sr; struct sioc_mif_req6 *vr; struct vif_device *vif; struct mfc6_cache *c; struct net *net = sock_net(sk); struct mr_table *mrt; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETMIFCNT_IN6: vr = (struct sioc_mif_req6 *)arg; if (vr->mifi >= mrt->maxvif) return -EINVAL; vr->mifi = array_index_nospec(vr->mifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr->mifi]; if (VIF_EXISTS(mrt, vr->mifi)) { vr->icount = READ_ONCE(vif->pkt_in); vr->ocount = READ_ONCE(vif->pkt_out); vr->ibytes = READ_ONCE(vif->bytes_in); vr->obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT_IN6: sr = (struct sioc_sg_req6 *)arg; rcu_read_lock(); c = ip6mr_cache_find(mrt, &sr->src.sin6_addr, &sr->grp.sin6_addr); if (c) { sr->pktcnt = c->_c.mfc_un.res.pkt; sr->bytecnt = c->_c.mfc_un.res.bytes; sr->wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT struct compat_sioc_sg_req6 { struct sockaddr_in6 src; struct sockaddr_in6 grp; compat_ulong_t pktcnt; compat_ulong_t bytecnt; compat_ulong_t wrong_if; }; struct compat_sioc_mif_req6 { mifi_t mifi; compat_ulong_t icount; compat_ulong_t ocount; compat_ulong_t ibytes; compat_ulong_t obytes; }; int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { struct compat_sioc_sg_req6 sr; struct compat_sioc_mif_req6 vr; struct vif_device *vif; struct mfc6_cache *c; struct net *net = sock_net(sk); struct mr_table *mrt; mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); if (!mrt) return -ENOENT; switch (cmd) { case SIOCGETMIFCNT_IN6: if (copy_from_user(&vr, arg, sizeof(vr))) return -EFAULT; if (vr.mifi >= mrt->maxvif) return -EINVAL; vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif); rcu_read_lock(); vif = &mrt->vif_table[vr.mifi]; if (VIF_EXISTS(mrt, vr.mifi)) { vr.icount = READ_ONCE(vif->pkt_in); vr.ocount = READ_ONCE(vif->pkt_out); vr.ibytes = READ_ONCE(vif->bytes_in); vr.obytes = READ_ONCE(vif->bytes_out); rcu_read_unlock(); if (copy_to_user(arg, &vr, sizeof(vr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; case SIOCGETSGCNT_IN6: if (copy_from_user(&sr, arg, sizeof(sr))) return -EFAULT; rcu_read_lock(); c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); if (c) { sr.pktcnt = c->_c.mfc_un.res.pkt; sr.bytecnt = c->_c.mfc_un.res.bytes; sr.wrong_if = c->_c.mfc_un.res.wrong_if; rcu_read_unlock(); if (copy_to_user(arg, &sr, sizeof(sr))) return -EFAULT; return 0; } rcu_read_unlock(); return -EADDRNOTAVAIL; default: return -ENOIOCTLCMD; } } #endif static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTFORWDATAGRAMS); return dst_output(net, sk, skb); } /* * Processing handlers for ip6mr_forward */ static int ip6mr_forward2(struct net *net, struct mr_table *mrt, struct sk_buff *skb, int vifi) { struct vif_device *vif = &mrt->vif_table[vifi]; struct net_device *vif_dev; struct ipv6hdr *ipv6h; struct dst_entry *dst; struct flowi6 fl6; vif_dev = vif_dev_read(vif); if (!vif_dev) goto out_free; #ifdef CONFIG_IPV6_PIMSM_V2 if (vif->flags & MIFF_REGISTER) { WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); DEV_STATS_ADD(vif_dev, tx_bytes, skb->len); DEV_STATS_INC(vif_dev, tx_packets); ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); goto out_free; } #endif ipv6h = ipv6_hdr(skb); fl6 = (struct flowi6) { .flowi6_oif = vif->link, .daddr = ipv6h->daddr, }; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); goto out_free; } skb_dst_drop(skb); skb_dst_set(skb, dst); /* * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally * not only before forwarding, but after forwarding on all output * interfaces. It is clear, if mrouter runs a multicasting * program, it should receive packets not depending to what interface * program is joined. * If we will not make it, the program will have to join on all * interfaces. On the other hand, multihoming host (or router, but * not mrouter) cannot join to more than one interface - it will * result in receiving multiple packets. */ skb->dev = vif_dev; WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); /* We are about to write */ /* XXX: extension headers? */ if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(vif_dev))) goto out_free; ipv6h = ipv6_hdr(skb); ipv6h->hop_limit--; IP6CB(skb)->flags |= IP6SKB_FORWARDED; return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, net, NULL, skb, skb->dev, vif_dev, ip6mr_forward2_finish); out_free: kfree_skb(skb); return 0; } /* Called with rcu_read_lock() */ static int ip6mr_find_vif(struct mr_table *mrt, struct net_device *dev) { int ct; /* Pairs with WRITE_ONCE() in mif6_delete()/mif6_add() */ for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) break; } return ct; } /* Called under rcu_read_lock() */ static void ip6_mr_forward(struct net *net, struct mr_table *mrt, struct net_device *dev, struct sk_buff *skb, struct mfc6_cache *c) { int psend = -1; int vif, ct; int true_vifi = ip6mr_find_vif(mrt, dev); vif = c->_c.mfc_parent; c->_c.mfc_un.res.pkt++; c->_c.mfc_un.res.bytes += skb->len; c->_c.mfc_un.res.lastuse = jiffies; if (ipv6_addr_any(&c->mf6c_origin) && true_vifi >= 0) { struct mfc6_cache *cache_proxy; /* For an (*,G) entry, we only check that the incoming * interface is part of the static tree. */ cache_proxy = mr_mfc_find_any_parent(mrt, vif); if (cache_proxy && cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) goto forward; } /* * Wrong interface: drop packet and (maybe) send PIM assert. */ if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { c->_c.mfc_un.res.wrong_if++; if (true_vifi >= 0 && mrt->mroute_do_assert && /* pimsm uses asserts, when switching from RPT to SPT, so that we cannot check that packet arrived on an oif. It is bad, but otherwise we would need to move pretty large chunk of pimd to kernel. Ough... --ANK */ (mrt->mroute_do_pim || c->_c.mfc_un.res.ttls[true_vifi] < 255) && time_after(jiffies, c->_c.mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { c->_c.mfc_un.res.last_assert = jiffies; ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); if (mrt->mroute_do_wrvifwhole) ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRMIFWHOLE); } goto dont_forward; } forward: WRITE_ONCE(mrt->vif_table[vif].pkt_in, mrt->vif_table[vif].pkt_in + 1); WRITE_ONCE(mrt->vif_table[vif].bytes_in, mrt->vif_table[vif].bytes_in + skb->len); /* * Forward the frame */ if (ipv6_addr_any(&c->mf6c_origin) && ipv6_addr_any(&c->mf6c_mcastgrp)) { if (true_vifi >= 0 && true_vifi != c->_c.mfc_parent && ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { /* It's an (*,*) entry and the packet is not coming from * the upstream: forward the packet to the upstream * only. */ psend = c->_c.mfc_parent; goto last_forward; } goto dont_forward; } for (ct = c->_c.mfc_un.res.maxvif - 1; ct >= c->_c.mfc_un.res.minvif; ct--) { /* For (*,G) entry, don't forward to the incoming interface */ if ((!ipv6_addr_any(&c->mf6c_origin) || ct != true_vifi) && ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[ct]) { if (psend != -1) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) ip6mr_forward2(net, mrt, skb2, psend); } psend = ct; } } last_forward: if (psend != -1) { ip6mr_forward2(net, mrt, skb, psend); return; } dont_forward: kfree_skb(skb); } /* * Multicast packets for forwarding arrive here */ int ip6_mr_input(struct sk_buff *skb) { struct mfc6_cache *cache; struct net *net = dev_net(skb->dev); struct mr_table *mrt; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .flowi6_mark = skb->mark, }; int err; struct net_device *dev; /* skb->dev passed in is the master dev for vrfs. * Get the proper interface that does have a vif associated with it. */ dev = skb->dev; if (netif_is_l3_master(skb->dev)) { dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); if (!dev) { kfree_skb(skb); return -ENODEV; } } err = ip6mr_fib_lookup(net, &fl6, &mrt); if (err < 0) { kfree_skb(skb); return err; } cache = ip6mr_cache_find(mrt, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); if (!cache) { int vif = ip6mr_find_vif(mrt, dev); if (vif >= 0) cache = ip6mr_cache_find_any(mrt, &ipv6_hdr(skb)->daddr, vif); } /* * No usable cache entry */ if (!cache) { int vif; vif = ip6mr_find_vif(mrt, dev); if (vif >= 0) { int err = ip6mr_cache_unresolved(mrt, vif, skb, dev); return err; } kfree_skb(skb); return -ENODEV; } ip6_mr_forward(net, mrt, dev, skb, cache); return 0; } int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm, u32 portid) { int err; struct mr_table *mrt; struct mfc6_cache *cache; struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); if (!mrt) return -ENOENT; rcu_read_lock(); cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); if (!cache && skb->dev) { int vif = ip6mr_find_vif(mrt, skb->dev); if (vif >= 0) cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, vif); } if (!cache) { struct sk_buff *skb2; struct ipv6hdr *iph; struct net_device *dev; int vif; dev = skb->dev; if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) { rcu_read_unlock(); return -ENODEV; } /* really correct? */ skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); if (!skb2) { rcu_read_unlock(); return -ENOMEM; } NETLINK_CB(skb2).portid = portid; skb_reset_transport_header(skb2); skb_put(skb2, sizeof(struct ipv6hdr)); skb_reset_network_header(skb2); iph = ipv6_hdr(skb2); iph->version = 0; iph->priority = 0; iph->flow_lbl[0] = 0; iph->flow_lbl[1] = 0; iph->flow_lbl[2] = 0; iph->payload_len = 0; iph->nexthdr = IPPROTO_NONE; iph->hop_limit = 0; iph->saddr = rt->rt6i_src.addr; iph->daddr = rt->rt6i_dst.addr; err = ip6mr_cache_unresolved(mrt, vif, skb2, dev); rcu_read_unlock(); return err; } err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); rcu_read_unlock(); return err; } static int ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mfc6_cache *c, int cmd, int flags) { struct nlmsghdr *nlh; struct rtmsg *rtm; int err; nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); if (!nlh) return -EMSGSIZE; rtm = nlmsg_data(nlh); rtm->rtm_family = RTNL_FAMILY_IP6MR; rtm->rtm_dst_len = 128; rtm->rtm_src_len = 128; rtm->rtm_tos = 0; rtm->rtm_table = mrt->id; if (nla_put_u32(skb, RTA_TABLE, mrt->id)) goto nla_put_failure; rtm->rtm_type = RTN_MULTICAST; rtm->rtm_scope = RT_SCOPE_UNIVERSE; if (c->_c.mfc_flags & MFC_STATIC) rtm->rtm_protocol = RTPROT_STATIC; else rtm->rtm_protocol = RTPROT_MROUTED; rtm->rtm_flags = 0; if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) || nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp)) goto nla_put_failure; err = mr_fill_mroute(mrt, skb, &c->_c, rtm); /* do not break the dump if cache is unresolved */ if (err < 0 && err != -ENOENT) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int _ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags) { return ip6mr_fill_mroute(mrt, skb, portid, seq, (struct mfc6_cache *)c, cmd, flags); } static int mr6_msgsize(bool unresolved, int maxvif) { size_t len = NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(4) /* RTA_TABLE */ + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ ; if (!unresolved) len = len + nla_total_size(4) /* RTA_IIF */ + nla_total_size(0) /* RTA_MULTIPATH */ + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) /* RTA_MFC_STATS */ + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) ; return len; } static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, int cmd) { struct net *net = read_pnet(&mrt->net); struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(mr6_msgsize(mfc->_c.mfc_parent >= MAXMIFS, mrt->maxvif), GFP_ATOMIC); if (!skb) goto errout; err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); if (err < 0) goto errout; rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); return; errout: kfree_skb(skb); if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); } static size_t mrt6msg_netlink_msgsize(size_t payloadlen) { size_t len = NLMSG_ALIGN(sizeof(struct rtgenmsg)) + nla_total_size(1) /* IP6MRA_CREPORT_MSGTYPE */ + nla_total_size(4) /* IP6MRA_CREPORT_MIF_ID */ /* IP6MRA_CREPORT_SRC_ADDR */ + nla_total_size(sizeof(struct in6_addr)) /* IP6MRA_CREPORT_DST_ADDR */ + nla_total_size(sizeof(struct in6_addr)) /* IP6MRA_CREPORT_PKT */ + nla_total_size(payloadlen) ; return len; } static void mrt6msg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) { struct net *net = read_pnet(&mrt->net); struct nlmsghdr *nlh; struct rtgenmsg *rtgenm; struct mrt6msg *msg; struct sk_buff *skb; struct nlattr *nla; int payloadlen; payloadlen = pkt->len - sizeof(struct mrt6msg); msg = (struct mrt6msg *)skb_transport_header(pkt); skb = nlmsg_new(mrt6msg_netlink_msgsize(payloadlen), GFP_ATOMIC); if (!skb) goto errout; nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, sizeof(struct rtgenmsg), 0); if (!nlh) goto errout; rtgenm = nlmsg_data(nlh); rtgenm->rtgen_family = RTNL_FAMILY_IP6MR; if (nla_put_u8(skb, IP6MRA_CREPORT_MSGTYPE, msg->im6_msgtype) || nla_put_u32(skb, IP6MRA_CREPORT_MIF_ID, msg->im6_mif) || nla_put_in6_addr(skb, IP6MRA_CREPORT_SRC_ADDR, &msg->im6_src) || nla_put_in6_addr(skb, IP6MRA_CREPORT_DST_ADDR, &msg->im6_dst)) goto nla_put_failure; nla = nla_reserve(skb, IP6MRA_CREPORT_PKT, payloadlen); if (!nla || skb_copy_bits(pkt, sizeof(struct mrt6msg), nla_data(nla), payloadlen)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE_R, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_cancel(skb, nlh); errout: kfree_skb(skb); rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE_R, -ENOBUFS); } static const struct nla_policy ip6mr_getroute_policy[RTA_MAX + 1] = { [RTA_SRC] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [RTA_DST] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [RTA_TABLE] = { .type = NLA_U32 }, }; static int ip6mr_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int err; err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, ip6mr_getroute_policy, extack); if (err) return err; rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for multicast route get request"); return -EINVAL; } if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); return -EINVAL; } return 0; } static int ip6mr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct in6_addr src = {}, grp = {}; struct nlattr *tb[RTA_MAX + 1]; struct mfc6_cache *cache; struct mr_table *mrt; struct sk_buff *skb; u32 tableid; int err; err = ip6mr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) return err; if (tb[RTA_SRC]) src = nla_get_in6_addr(tb[RTA_SRC]); if (tb[RTA_DST]) grp = nla_get_in6_addr(tb[RTA_DST]); tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; mrt = ip6mr_get_table(net, tableid ?: RT_TABLE_DEFAULT); if (!mrt) { NL_SET_ERR_MSG_MOD(extack, "MR table does not exist"); return -ENOENT; } /* entries are added/deleted only under RTNL */ rcu_read_lock(); cache = ip6mr_cache_find(mrt, &src, &grp); rcu_read_unlock(); if (!cache) { NL_SET_ERR_MSG_MOD(extack, "MR cache entry not found"); return -ENOENT; } skb = nlmsg_new(mr6_msgsize(false, mrt->maxvif), GFP_KERNEL); if (!skb) return -ENOBUFS; err = ip6mr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, cache, RTM_NEWROUTE, 0); if (err < 0) { kfree_skb(skb); return err; } return rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); } static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct fib_dump_filter filter = {}; int err; if (cb->strict_check) { err = ip_valid_fib_dump_req(sock_net(skb->sk), nlh, &filter, cb); if (err < 0) return err; } if (filter.table_id) { struct mr_table *mrt; mrt = ip6mr_get_table(sock_net(skb->sk), filter.table_id); if (!mrt) { if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IP6MR) return skb->len; NL_SET_ERR_MSG_MOD(cb->extack, "MR table does not exist"); return -ENOENT; } err = mr_table_dump(mrt, skb, cb, _ip6mr_fill_mroute, &mfc_unres_lock, &filter); return skb->len ? : err; } return mr_rtm_dumproute(skb, cb, ip6mr_mr_table_iter, _ip6mr_fill_mroute, &mfc_unres_lock, &filter); }
linux-master
net/ipv6/ip6mr.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 BSD socket options interface * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on linux/net/ipv4/ip_sockglue.c * * FIXME: Make the setsockopt code POSIX compliant: That is * * o Truncate getsockopt returns * o Return an optlen of the truncated length if need be * * Changes: * David L Stevens <[email protected]>: * - added multicast source filtering API for MLDv2 */ #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/mroute6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/netfilter.h> #include <linux/slab.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/udp.h> #include <net/udplite.h> #include <net/xfrm.h> #include <net/compat.h> #include <net/seg6.h> #include <linux/uaccess.h> struct ip6_ra_chain *ip6_ra_chain; DEFINE_RWLOCK(ip6_ra_lock); DEFINE_STATIC_KEY_FALSE(ip6_min_hopcount); int ip6_ra_control(struct sock *sk, int sel) { struct ip6_ra_chain *ra, *new_ra, **rap; /* RA packet may be delivered ONLY to IPPROTO_RAW socket */ if (sk->sk_type != SOCK_RAW || inet_sk(sk)->inet_num != IPPROTO_RAW) return -ENOPROTOOPT; new_ra = (sel >= 0) ? kmalloc(sizeof(*new_ra), GFP_KERNEL) : NULL; if (sel >= 0 && !new_ra) return -ENOMEM; write_lock_bh(&ip6_ra_lock); for (rap = &ip6_ra_chain; (ra = *rap) != NULL; rap = &ra->next) { if (ra->sk == sk) { if (sel >= 0) { write_unlock_bh(&ip6_ra_lock); kfree(new_ra); return -EADDRINUSE; } *rap = ra->next; write_unlock_bh(&ip6_ra_lock); sock_put(sk); kfree(ra); return 0; } } if (!new_ra) { write_unlock_bh(&ip6_ra_lock); return -ENOBUFS; } new_ra->sk = sk; new_ra->sel = sel; new_ra->next = ra; *rap = new_ra; sock_hold(sk); write_unlock_bh(&ip6_ra_lock); return 0; } struct ipv6_txoptions *ipv6_update_options(struct sock *sk, struct ipv6_txoptions *opt) { if (inet_test_bit(IS_ICSK, sk)) { if (opt && !((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) && inet_sk(sk)->inet_daddr != LOOPBACK4_IPV6) { struct inet_connection_sock *icsk = inet_csk(sk); icsk->icsk_ext_hdr_len = opt->opt_flen + opt->opt_nflen; icsk->icsk_sync_mss(sk, icsk->icsk_pmtu_cookie); } } opt = xchg((__force struct ipv6_txoptions **)&inet6_sk(sk)->opt, opt); sk_dst_reset(sk); return opt; } static bool setsockopt_needs_rtnl(int optname) { switch (optname) { case IPV6_ADDRFORM: case IPV6_ADD_MEMBERSHIP: case IPV6_DROP_MEMBERSHIP: case IPV6_JOIN_ANYCAST: case IPV6_LEAVE_ANYCAST: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_MSFILTER: return true; } return false; } static int copy_group_source_from_sockptr(struct group_source_req *greqs, sockptr_t optval, int optlen) { if (in_compat_syscall()) { struct compat_group_source_req gr32; if (optlen < sizeof(gr32)) return -EINVAL; if (copy_from_sockptr(&gr32, optval, sizeof(gr32))) return -EFAULT; greqs->gsr_interface = gr32.gsr_interface; greqs->gsr_group = gr32.gsr_group; greqs->gsr_source = gr32.gsr_source; } else { if (optlen < sizeof(*greqs)) return -EINVAL; if (copy_from_sockptr(greqs, optval, sizeof(*greqs))) return -EFAULT; } return 0; } static int do_ipv6_mcast_group_source(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct group_source_req greqs; int omode, add; int ret; ret = copy_group_source_from_sockptr(&greqs, optval, optlen); if (ret) return ret; if (greqs.gsr_group.ss_family != AF_INET6 || greqs.gsr_source.ss_family != AF_INET6) return -EADDRNOTAVAIL; if (optname == MCAST_BLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 1; } else if (optname == MCAST_UNBLOCK_SOURCE) { omode = MCAST_EXCLUDE; add = 0; } else if (optname == MCAST_JOIN_SOURCE_GROUP) { struct sockaddr_in6 *psin6; int retv; psin6 = (struct sockaddr_in6 *)&greqs.gsr_group; retv = ipv6_sock_mc_join_ssm(sk, greqs.gsr_interface, &psin6->sin6_addr, MCAST_INCLUDE); /* prior join w/ different source is ok */ if (retv && retv != -EADDRINUSE) return retv; omode = MCAST_INCLUDE; add = 1; } else /* MCAST_LEAVE_SOURCE_GROUP */ { omode = MCAST_INCLUDE; add = 0; } return ip6_mc_source(add, omode, sk, &greqs); } static int ipv6_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { struct group_filter *gsf; int ret; if (optlen < GROUP_FILTER_SIZE(0)) return -EINVAL; if (optlen > READ_ONCE(sysctl_optmem_max)) return -ENOBUFS; gsf = memdup_sockptr(optval, optlen); if (IS_ERR(gsf)) return PTR_ERR(gsf); /* numsrc >= (4G-140)/128 overflow in 32 bits */ ret = -ENOBUFS; if (gsf->gf_numsrc >= 0x1ffffffU || gsf->gf_numsrc > sysctl_mld_max_msf) goto out_free_gsf; ret = -EINVAL; if (GROUP_FILTER_SIZE(gsf->gf_numsrc) > optlen) goto out_free_gsf; ret = ip6_mc_msfilter(sk, gsf, gsf->gf_slist_flex); out_free_gsf: kfree(gsf); return ret; } static int compat_ipv6_set_mcast_msfilter(struct sock *sk, sockptr_t optval, int optlen) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter *gf32; void *p; int ret; int n; if (optlen < size0) return -EINVAL; if (optlen > READ_ONCE(sysctl_optmem_max) - 4) return -ENOBUFS; p = kmalloc(optlen + 4, GFP_KERNEL); if (!p) return -ENOMEM; gf32 = p + 4; /* we want ->gf_group and ->gf_slist_flex aligned */ ret = -EFAULT; if (copy_from_sockptr(gf32, optval, optlen)) goto out_free_p; /* numsrc >= (4G-140)/128 overflow in 32 bits */ ret = -ENOBUFS; n = gf32->gf_numsrc; if (n >= 0x1ffffffU || n > sysctl_mld_max_msf) goto out_free_p; ret = -EINVAL; if (offsetof(struct compat_group_filter, gf_slist_flex[n]) > optlen) goto out_free_p; ret = ip6_mc_msfilter(sk, &(struct group_filter){ .gf_interface = gf32->gf_interface, .gf_group = gf32->gf_group, .gf_fmode = gf32->gf_fmode, .gf_numsrc = gf32->gf_numsrc}, gf32->gf_slist_flex); out_free_p: kfree(p); return ret; } static int ipv6_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct sockaddr_in6 *psin6; struct group_req greq; if (optlen < sizeof(greq)) return -EINVAL; if (copy_from_sockptr(&greq, optval, sizeof(greq))) return -EFAULT; if (greq.gr_group.ss_family != AF_INET6) return -EADDRNOTAVAIL; psin6 = (struct sockaddr_in6 *)&greq.gr_group; if (optname == MCAST_JOIN_GROUP) return ipv6_sock_mc_join(sk, greq.gr_interface, &psin6->sin6_addr); return ipv6_sock_mc_drop(sk, greq.gr_interface, &psin6->sin6_addr); } static int compat_ipv6_mcast_join_leave(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct compat_group_req gr32; struct sockaddr_in6 *psin6; if (optlen < sizeof(gr32)) return -EINVAL; if (copy_from_sockptr(&gr32, optval, sizeof(gr32))) return -EFAULT; if (gr32.gr_group.ss_family != AF_INET6) return -EADDRNOTAVAIL; psin6 = (struct sockaddr_in6 *)&gr32.gr_group; if (optname == MCAST_JOIN_GROUP) return ipv6_sock_mc_join(sk, gr32.gr_interface, &psin6->sin6_addr); return ipv6_sock_mc_drop(sk, gr32.gr_interface, &psin6->sin6_addr); } static int ipv6_set_opt_hdr(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_opt_hdr *new = NULL; struct net *net = sock_net(sk); struct ipv6_txoptions *opt; int err; /* hop-by-hop / destination options are privileged option */ if (optname != IPV6_RTHDR && !sockopt_ns_capable(net->user_ns, CAP_NET_RAW)) return -EPERM; /* remove any sticky options header with a zero option * length, per RFC3542. */ if (optlen > 0) { if (sockptr_is_null(optval)) return -EINVAL; if (optlen < sizeof(struct ipv6_opt_hdr) || optlen & 0x7 || optlen > 8 * 255) return -EINVAL; new = memdup_sockptr(optval, optlen); if (IS_ERR(new)) return PTR_ERR(new); if (unlikely(ipv6_optlen(new) > optlen)) { kfree(new); return -EINVAL; } } opt = rcu_dereference_protected(np->opt, lockdep_sock_is_held(sk)); opt = ipv6_renew_options(sk, opt, optname, new); kfree(new); if (IS_ERR(opt)) return PTR_ERR(opt); /* routing header option needs extra check */ err = -EINVAL; if (optname == IPV6_RTHDR && opt && opt->srcrt) { struct ipv6_rt_hdr *rthdr = opt->srcrt; switch (rthdr->type) { #if IS_ENABLED(CONFIG_IPV6_MIP6) case IPV6_SRCRT_TYPE_2: if (rthdr->hdrlen != 2 || rthdr->segments_left != 1) goto sticky_done; break; #endif case IPV6_SRCRT_TYPE_4: { struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)opt->srcrt; if (!seg6_validate_srh(srh, optlen, false)) goto sticky_done; break; } default: goto sticky_done; } } err = 0; opt = ipv6_update_options(sk, opt); sticky_done: if (opt) { atomic_sub(opt->tot_len, &sk->sk_omem_alloc); txopt_put(opt); } return err; } int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); int val, valbool; int retv = -ENOPROTOOPT; bool needs_rtnl = setsockopt_needs_rtnl(optname); if (sockptr_is_null(optval)) val = 0; else { if (optlen >= sizeof(int)) { if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; } else val = 0; } valbool = (val != 0); if (ip6_mroute_opt(optname)) return ip6_mroute_setsockopt(sk, optname, optval, optlen); if (needs_rtnl) rtnl_lock(); sockopt_lock_sock(sk); /* Another thread has converted the socket into IPv4 with * IPV6_ADDRFORM concurrently. */ if (unlikely(sk->sk_family != AF_INET6)) goto unlock; switch (optname) { case IPV6_ADDRFORM: if (optlen < sizeof(int)) goto e_inval; if (val == PF_INET) { if (sk->sk_type == SOCK_RAW) break; if (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_UDPLITE) { struct udp_sock *up = udp_sk(sk); if (up->pending == AF_INET6) { retv = -EBUSY; break; } } else if (sk->sk_protocol == IPPROTO_TCP) { if (sk->sk_prot != &tcpv6_prot) { retv = -EBUSY; break; } } else { break; } if (sk->sk_state != TCP_ESTABLISHED) { retv = -ENOTCONN; break; } if (ipv6_only_sock(sk) || !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) { retv = -EADDRNOTAVAIL; break; } __ipv6_sock_mc_close(sk); __ipv6_sock_ac_close(sk); if (sk->sk_protocol == IPPROTO_TCP) { struct inet_connection_sock *icsk = inet_csk(sk); sock_prot_inuse_add(net, sk->sk_prot, -1); sock_prot_inuse_add(net, &tcp_prot, 1); /* Paired with READ_ONCE(sk->sk_prot) in inet6_stream_ops */ WRITE_ONCE(sk->sk_prot, &tcp_prot); /* Paired with READ_ONCE() in tcp_(get|set)sockopt() */ WRITE_ONCE(icsk->icsk_af_ops, &ipv4_specific); WRITE_ONCE(sk->sk_socket->ops, &inet_stream_ops); WRITE_ONCE(sk->sk_family, PF_INET); tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); } else { struct proto *prot = &udp_prot; if (sk->sk_protocol == IPPROTO_UDPLITE) prot = &udplite_prot; sock_prot_inuse_add(net, sk->sk_prot, -1); sock_prot_inuse_add(net, prot, 1); /* Paired with READ_ONCE(sk->sk_prot) in inet6_dgram_ops */ WRITE_ONCE(sk->sk_prot, prot); WRITE_ONCE(sk->sk_socket->ops, &inet_dgram_ops); WRITE_ONCE(sk->sk_family, PF_INET); } /* Disable all options not to allocate memory anymore, * but there is still a race. See the lockless path * in udpv6_sendmsg() and ipv6_local_rxpmtu(). */ np->rxopt.all = 0; inet6_cleanup_sock(sk); module_put(THIS_MODULE); retv = 0; break; } goto e_inval; case IPV6_V6ONLY: if (optlen < sizeof(int) || inet_sk(sk)->inet_num) goto e_inval; sk->sk_ipv6only = valbool; retv = 0; break; case IPV6_RECVPKTINFO: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxinfo = valbool; retv = 0; break; case IPV6_2292PKTINFO: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxoinfo = valbool; retv = 0; break; case IPV6_RECVHOPLIMIT: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxhlim = valbool; retv = 0; break; case IPV6_2292HOPLIMIT: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxohlim = valbool; retv = 0; break; case IPV6_RECVRTHDR: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.srcrt = valbool; retv = 0; break; case IPV6_2292RTHDR: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.osrcrt = valbool; retv = 0; break; case IPV6_RECVHOPOPTS: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.hopopts = valbool; retv = 0; break; case IPV6_2292HOPOPTS: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.ohopopts = valbool; retv = 0; break; case IPV6_RECVDSTOPTS: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.dstopts = valbool; retv = 0; break; case IPV6_2292DSTOPTS: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.odstopts = valbool; retv = 0; break; case IPV6_TCLASS: if (optlen < sizeof(int)) goto e_inval; if (val < -1 || val > 0xff) goto e_inval; /* RFC 3542, 6.5: default traffic class of 0x0 */ if (val == -1) val = 0; if (sk->sk_type == SOCK_STREAM) { val &= ~INET_ECN_MASK; val |= np->tclass & INET_ECN_MASK; } if (np->tclass != val) { np->tclass = val; sk_dst_reset(sk); } retv = 0; break; case IPV6_RECVTCLASS: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxtclass = valbool; retv = 0; break; case IPV6_FLOWINFO: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxflow = valbool; retv = 0; break; case IPV6_RECVPATHMTU: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxpmtu = valbool; retv = 0; break; case IPV6_TRANSPARENT: if (valbool && !sockopt_ns_capable(net->user_ns, CAP_NET_RAW) && !sockopt_ns_capable(net->user_ns, CAP_NET_ADMIN)) { retv = -EPERM; break; } if (optlen < sizeof(int)) goto e_inval; /* we don't have a separate transparent bit for IPV6 we use the one in the IPv4 socket */ inet_assign_bit(TRANSPARENT, sk, valbool); retv = 0; break; case IPV6_FREEBIND: if (optlen < sizeof(int)) goto e_inval; /* we also don't have a separate freebind bit for IPV6 */ inet_assign_bit(FREEBIND, sk, valbool); retv = 0; break; case IPV6_RECVORIGDSTADDR: if (optlen < sizeof(int)) goto e_inval; np->rxopt.bits.rxorigdstaddr = valbool; retv = 0; break; case IPV6_HOPOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: retv = ipv6_set_opt_hdr(sk, optname, optval, optlen); break; case IPV6_PKTINFO: { struct in6_pktinfo pkt; if (optlen == 0) goto e_inval; else if (optlen < sizeof(struct in6_pktinfo) || sockptr_is_null(optval)) goto e_inval; if (copy_from_sockptr(&pkt, optval, sizeof(pkt))) { retv = -EFAULT; break; } if (!sk_dev_equal_l3scope(sk, pkt.ipi6_ifindex)) goto e_inval; np->sticky_pktinfo.ipi6_ifindex = pkt.ipi6_ifindex; np->sticky_pktinfo.ipi6_addr = pkt.ipi6_addr; retv = 0; break; } case IPV6_2292PKTOPTIONS: { struct ipv6_txoptions *opt = NULL; struct msghdr msg; struct flowi6 fl6; struct ipcm6_cookie ipc6; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; if (optlen == 0) goto update; /* 1K is probably excessive * 1K is surely not enough, 2K per standard header is 16K. */ retv = -EINVAL; if (optlen > 64*1024) break; opt = sock_kmalloc(sk, sizeof(*opt) + optlen, GFP_KERNEL); retv = -ENOBUFS; if (!opt) break; memset(opt, 0, sizeof(*opt)); refcount_set(&opt->refcnt, 1); opt->tot_len = sizeof(*opt) + optlen; retv = -EFAULT; if (copy_from_sockptr(opt + 1, optval, optlen)) goto done; msg.msg_controllen = optlen; msg.msg_control_is_user = false; msg.msg_control = (void *)(opt+1); ipc6.opt = opt; retv = ip6_datagram_send_ctl(net, sk, &msg, &fl6, &ipc6); if (retv) goto done; update: retv = 0; opt = ipv6_update_options(sk, opt); done: if (opt) { atomic_sub(opt->tot_len, &sk->sk_omem_alloc); txopt_put(opt); } break; } case IPV6_UNICAST_HOPS: if (optlen < sizeof(int)) goto e_inval; if (val > 255 || val < -1) goto e_inval; np->hop_limit = val; retv = 0; break; case IPV6_MULTICAST_HOPS: if (sk->sk_type == SOCK_STREAM) break; if (optlen < sizeof(int)) goto e_inval; if (val > 255 || val < -1) goto e_inval; np->mcast_hops = (val == -1 ? IPV6_DEFAULT_MCASTHOPS : val); retv = 0; break; case IPV6_MULTICAST_LOOP: if (optlen < sizeof(int)) goto e_inval; if (val != valbool) goto e_inval; np->mc_loop = valbool; retv = 0; break; case IPV6_UNICAST_IF: { struct net_device *dev = NULL; int ifindex; if (optlen != sizeof(int)) goto e_inval; ifindex = (__force int)ntohl((__force __be32)val); if (ifindex == 0) { np->ucast_oif = 0; retv = 0; break; } dev = dev_get_by_index(net, ifindex); retv = -EADDRNOTAVAIL; if (!dev) break; dev_put(dev); retv = -EINVAL; if (sk->sk_bound_dev_if) break; np->ucast_oif = ifindex; retv = 0; break; } case IPV6_MULTICAST_IF: if (sk->sk_type == SOCK_STREAM) break; if (optlen < sizeof(int)) goto e_inval; if (val) { struct net_device *dev; int midx; rcu_read_lock(); dev = dev_get_by_index_rcu(net, val); if (!dev) { rcu_read_unlock(); retv = -ENODEV; break; } midx = l3mdev_master_ifindex_rcu(dev); rcu_read_unlock(); if (sk->sk_bound_dev_if && sk->sk_bound_dev_if != val && (!midx || midx != sk->sk_bound_dev_if)) goto e_inval; } np->mcast_oif = val; retv = 0; break; case IPV6_ADD_MEMBERSHIP: case IPV6_DROP_MEMBERSHIP: { struct ipv6_mreq mreq; if (optlen < sizeof(struct ipv6_mreq)) goto e_inval; retv = -EPROTO; if (inet_test_bit(IS_ICSK, sk)) break; retv = -EFAULT; if (copy_from_sockptr(&mreq, optval, sizeof(struct ipv6_mreq))) break; if (optname == IPV6_ADD_MEMBERSHIP) retv = ipv6_sock_mc_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr); else retv = ipv6_sock_mc_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_multiaddr); break; } case IPV6_JOIN_ANYCAST: case IPV6_LEAVE_ANYCAST: { struct ipv6_mreq mreq; if (optlen < sizeof(struct ipv6_mreq)) goto e_inval; retv = -EFAULT; if (copy_from_sockptr(&mreq, optval, sizeof(struct ipv6_mreq))) break; if (optname == IPV6_JOIN_ANYCAST) retv = ipv6_sock_ac_join(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr); else retv = ipv6_sock_ac_drop(sk, mreq.ipv6mr_ifindex, &mreq.ipv6mr_acaddr); break; } case IPV6_MULTICAST_ALL: if (optlen < sizeof(int)) goto e_inval; np->mc_all = valbool; retv = 0; break; case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: if (in_compat_syscall()) retv = compat_ipv6_mcast_join_leave(sk, optname, optval, optlen); else retv = ipv6_mcast_join_leave(sk, optname, optval, optlen); break; case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: retv = do_ipv6_mcast_group_source(sk, optname, optval, optlen); break; case MCAST_MSFILTER: if (in_compat_syscall()) retv = compat_ipv6_set_mcast_msfilter(sk, optval, optlen); else retv = ipv6_set_mcast_msfilter(sk, optval, optlen); break; case IPV6_ROUTER_ALERT: if (optlen < sizeof(int)) goto e_inval; retv = ip6_ra_control(sk, val); break; case IPV6_ROUTER_ALERT_ISOLATE: if (optlen < sizeof(int)) goto e_inval; np->rtalert_isolate = valbool; retv = 0; break; case IPV6_MTU_DISCOVER: if (optlen < sizeof(int)) goto e_inval; if (val < IPV6_PMTUDISC_DONT || val > IPV6_PMTUDISC_OMIT) goto e_inval; np->pmtudisc = val; retv = 0; break; case IPV6_MTU: if (optlen < sizeof(int)) goto e_inval; if (val && val < IPV6_MIN_MTU) goto e_inval; np->frag_size = val; retv = 0; break; case IPV6_RECVERR: if (optlen < sizeof(int)) goto e_inval; np->recverr = valbool; if (!val) skb_errqueue_purge(&sk->sk_error_queue); retv = 0; break; case IPV6_FLOWINFO_SEND: if (optlen < sizeof(int)) goto e_inval; np->sndflow = valbool; retv = 0; break; case IPV6_FLOWLABEL_MGR: retv = ipv6_flowlabel_opt(sk, optval, optlen); break; case IPV6_IPSEC_POLICY: case IPV6_XFRM_POLICY: retv = -EPERM; if (!sockopt_ns_capable(net->user_ns, CAP_NET_ADMIN)) break; retv = xfrm_user_policy(sk, optname, optval, optlen); break; case IPV6_ADDR_PREFERENCES: if (optlen < sizeof(int)) goto e_inval; retv = __ip6_sock_set_addr_preferences(sk, val); break; case IPV6_MINHOPCOUNT: if (optlen < sizeof(int)) goto e_inval; if (val < 0 || val > 255) goto e_inval; if (val) static_branch_enable(&ip6_min_hopcount); /* tcp_v6_err() and tcp_v6_rcv() might read min_hopcount * while we are changing it. */ WRITE_ONCE(np->min_hopcount, val); retv = 0; break; case IPV6_DONTFRAG: np->dontfrag = valbool; retv = 0; break; case IPV6_AUTOFLOWLABEL: np->autoflowlabel = valbool; np->autoflowlabel_set = 1; retv = 0; break; case IPV6_RECVFRAGSIZE: np->rxopt.bits.recvfragsize = valbool; retv = 0; break; case IPV6_RECVERR_RFC4884: if (optlen < sizeof(int)) goto e_inval; if (val < 0 || val > 1) goto e_inval; np->recverr_rfc4884 = valbool; retv = 0; break; } unlock: sockopt_release_sock(sk); if (needs_rtnl) rtnl_unlock(); return retv; e_inval: retv = -EINVAL; goto unlock; } int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { int err; if (level == SOL_IP && sk->sk_type != SOCK_RAW) return udp_prot.setsockopt(sk, level, optname, optval, optlen); if (level != SOL_IPV6) return -ENOPROTOOPT; err = do_ipv6_setsockopt(sk, level, optname, optval, optlen); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IPV6_IPSEC_POLICY && optname != IPV6_XFRM_POLICY) err = nf_setsockopt(sk, PF_INET6, optname, optval, optlen); #endif return err; } EXPORT_SYMBOL(ipv6_setsockopt); static int ipv6_getsockopt_sticky(struct sock *sk, struct ipv6_txoptions *opt, int optname, sockptr_t optval, int len) { struct ipv6_opt_hdr *hdr; if (!opt) return 0; switch (optname) { case IPV6_HOPOPTS: hdr = opt->hopopt; break; case IPV6_RTHDRDSTOPTS: hdr = opt->dst0opt; break; case IPV6_RTHDR: hdr = (struct ipv6_opt_hdr *)opt->srcrt; break; case IPV6_DSTOPTS: hdr = opt->dst1opt; break; default: return -EINVAL; /* should not happen */ } if (!hdr) return 0; len = min_t(unsigned int, len, ipv6_optlen(hdr)); if (copy_to_sockptr(optval, hdr, len)) return -EFAULT; return len; } static int ipv6_get_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct group_filter, gf_slist_flex); struct group_filter gsf; int num; int err; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gsf, optval, size0)) return -EFAULT; if (gsf.gf_group.ss_family != AF_INET6) return -EADDRNOTAVAIL; num = gsf.gf_numsrc; sockopt_lock_sock(sk); err = ip6_mc_msfget(sk, &gsf, optval, size0); if (!err) { if (num > gsf.gf_numsrc) num = gsf.gf_numsrc; len = GROUP_FILTER_SIZE(num); if (copy_to_sockptr(optlen, &len, sizeof(int)) || copy_to_sockptr(optval, &gsf, size0)) err = -EFAULT; } sockopt_release_sock(sk); return err; } static int compat_ipv6_get_msfilter(struct sock *sk, sockptr_t optval, sockptr_t optlen, int len) { const int size0 = offsetof(struct compat_group_filter, gf_slist_flex); struct compat_group_filter gf32; struct group_filter gf; int err; int num; if (len < size0) return -EINVAL; if (copy_from_sockptr(&gf32, optval, size0)) return -EFAULT; gf.gf_interface = gf32.gf_interface; gf.gf_fmode = gf32.gf_fmode; num = gf.gf_numsrc = gf32.gf_numsrc; gf.gf_group = gf32.gf_group; if (gf.gf_group.ss_family != AF_INET6) return -EADDRNOTAVAIL; sockopt_lock_sock(sk); err = ip6_mc_msfget(sk, &gf, optval, size0); sockopt_release_sock(sk); if (err) return err; if (num > gf.gf_numsrc) num = gf.gf_numsrc; len = GROUP_FILTER_SIZE(num) - (sizeof(gf)-sizeof(gf32)); if (copy_to_sockptr(optlen, &len, sizeof(int)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_fmode), &gf.gf_fmode, sizeof(gf32.gf_fmode)) || copy_to_sockptr_offset(optval, offsetof(struct compat_group_filter, gf_numsrc), &gf.gf_numsrc, sizeof(gf32.gf_numsrc))) return -EFAULT; return 0; } int do_ipv6_getsockopt(struct sock *sk, int level, int optname, sockptr_t optval, sockptr_t optlen) { struct ipv6_pinfo *np = inet6_sk(sk); int len; int val; if (ip6_mroute_opt(optname)) return ip6_mroute_getsockopt(sk, optname, optval, optlen); if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; switch (optname) { case IPV6_ADDRFORM: if (sk->sk_protocol != IPPROTO_UDP && sk->sk_protocol != IPPROTO_UDPLITE && sk->sk_protocol != IPPROTO_TCP) return -ENOPROTOOPT; if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; val = sk->sk_family; break; case MCAST_MSFILTER: if (in_compat_syscall()) return compat_ipv6_get_msfilter(sk, optval, optlen, len); return ipv6_get_msfilter(sk, optval, optlen, len); case IPV6_2292PKTOPTIONS: { struct msghdr msg; struct sk_buff *skb; if (sk->sk_type != SOCK_STREAM) return -ENOPROTOOPT; if (optval.is_kernel) { msg.msg_control_is_user = false; msg.msg_control = optval.kernel; } else { msg.msg_control_is_user = true; msg.msg_control_user = optval.user; } msg.msg_controllen = len; msg.msg_flags = 0; sockopt_lock_sock(sk); skb = np->pktoptions; if (skb) ip6_datagram_recv_ctl(sk, &msg, skb); sockopt_release_sock(sk); if (!skb) { if (np->rxopt.bits.rxinfo) { struct in6_pktinfo src_info; src_info.ipi6_ifindex = np->mcast_oif ? np->mcast_oif : np->sticky_pktinfo.ipi6_ifindex; src_info.ipi6_addr = np->mcast_oif ? sk->sk_v6_daddr : np->sticky_pktinfo.ipi6_addr; put_cmsg(&msg, SOL_IPV6, IPV6_PKTINFO, sizeof(src_info), &src_info); } if (np->rxopt.bits.rxhlim) { int hlim = np->mcast_hops; put_cmsg(&msg, SOL_IPV6, IPV6_HOPLIMIT, sizeof(hlim), &hlim); } if (np->rxopt.bits.rxtclass) { int tclass = (int)ip6_tclass(np->rcv_flowinfo); put_cmsg(&msg, SOL_IPV6, IPV6_TCLASS, sizeof(tclass), &tclass); } if (np->rxopt.bits.rxoinfo) { struct in6_pktinfo src_info; src_info.ipi6_ifindex = np->mcast_oif ? np->mcast_oif : np->sticky_pktinfo.ipi6_ifindex; src_info.ipi6_addr = np->mcast_oif ? sk->sk_v6_daddr : np->sticky_pktinfo.ipi6_addr; put_cmsg(&msg, SOL_IPV6, IPV6_2292PKTINFO, sizeof(src_info), &src_info); } if (np->rxopt.bits.rxohlim) { int hlim = np->mcast_hops; put_cmsg(&msg, SOL_IPV6, IPV6_2292HOPLIMIT, sizeof(hlim), &hlim); } if (np->rxopt.bits.rxflow) { __be32 flowinfo = np->rcv_flowinfo; put_cmsg(&msg, SOL_IPV6, IPV6_FLOWINFO, sizeof(flowinfo), &flowinfo); } } len -= msg.msg_controllen; return copy_to_sockptr(optlen, &len, sizeof(int)); } case IPV6_MTU: { struct dst_entry *dst; val = 0; rcu_read_lock(); dst = __sk_dst_get(sk); if (dst) val = dst_mtu(dst); rcu_read_unlock(); if (!val) return -ENOTCONN; break; } case IPV6_V6ONLY: val = sk->sk_ipv6only; break; case IPV6_RECVPKTINFO: val = np->rxopt.bits.rxinfo; break; case IPV6_2292PKTINFO: val = np->rxopt.bits.rxoinfo; break; case IPV6_RECVHOPLIMIT: val = np->rxopt.bits.rxhlim; break; case IPV6_2292HOPLIMIT: val = np->rxopt.bits.rxohlim; break; case IPV6_RECVRTHDR: val = np->rxopt.bits.srcrt; break; case IPV6_2292RTHDR: val = np->rxopt.bits.osrcrt; break; case IPV6_HOPOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: { struct ipv6_txoptions *opt; sockopt_lock_sock(sk); opt = rcu_dereference_protected(np->opt, lockdep_sock_is_held(sk)); len = ipv6_getsockopt_sticky(sk, opt, optname, optval, len); sockopt_release_sock(sk); /* check if ipv6_getsockopt_sticky() returns err code */ if (len < 0) return len; return copy_to_sockptr(optlen, &len, sizeof(int)); } case IPV6_RECVHOPOPTS: val = np->rxopt.bits.hopopts; break; case IPV6_2292HOPOPTS: val = np->rxopt.bits.ohopopts; break; case IPV6_RECVDSTOPTS: val = np->rxopt.bits.dstopts; break; case IPV6_2292DSTOPTS: val = np->rxopt.bits.odstopts; break; case IPV6_TCLASS: val = np->tclass; break; case IPV6_RECVTCLASS: val = np->rxopt.bits.rxtclass; break; case IPV6_FLOWINFO: val = np->rxopt.bits.rxflow; break; case IPV6_RECVPATHMTU: val = np->rxopt.bits.rxpmtu; break; case IPV6_PATHMTU: { struct dst_entry *dst; struct ip6_mtuinfo mtuinfo; if (len < sizeof(mtuinfo)) return -EINVAL; len = sizeof(mtuinfo); memset(&mtuinfo, 0, sizeof(mtuinfo)); rcu_read_lock(); dst = __sk_dst_get(sk); if (dst) mtuinfo.ip6m_mtu = dst_mtu(dst); rcu_read_unlock(); if (!mtuinfo.ip6m_mtu) return -ENOTCONN; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &mtuinfo, len)) return -EFAULT; return 0; } case IPV6_TRANSPARENT: val = inet_test_bit(TRANSPARENT, sk); break; case IPV6_FREEBIND: val = inet_test_bit(FREEBIND, sk); break; case IPV6_RECVORIGDSTADDR: val = np->rxopt.bits.rxorigdstaddr; break; case IPV6_UNICAST_HOPS: case IPV6_MULTICAST_HOPS: { struct dst_entry *dst; if (optname == IPV6_UNICAST_HOPS) val = np->hop_limit; else val = np->mcast_hops; if (val < 0) { rcu_read_lock(); dst = __sk_dst_get(sk); if (dst) val = ip6_dst_hoplimit(dst); rcu_read_unlock(); } if (val < 0) val = sock_net(sk)->ipv6.devconf_all->hop_limit; break; } case IPV6_MULTICAST_LOOP: val = np->mc_loop; break; case IPV6_MULTICAST_IF: val = np->mcast_oif; break; case IPV6_MULTICAST_ALL: val = np->mc_all; break; case IPV6_UNICAST_IF: val = (__force int)htonl((__u32) np->ucast_oif); break; case IPV6_MTU_DISCOVER: val = np->pmtudisc; break; case IPV6_RECVERR: val = np->recverr; break; case IPV6_FLOWINFO_SEND: val = np->sndflow; break; case IPV6_FLOWLABEL_MGR: { struct in6_flowlabel_req freq; int flags; if (len < sizeof(freq)) return -EINVAL; if (copy_from_sockptr(&freq, optval, sizeof(freq))) return -EFAULT; if (freq.flr_action != IPV6_FL_A_GET) return -EINVAL; len = sizeof(freq); flags = freq.flr_flags; memset(&freq, 0, sizeof(freq)); val = ipv6_flowlabel_opt_get(sk, &freq, flags); if (val < 0) return val; if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &freq, len)) return -EFAULT; return 0; } case IPV6_ADDR_PREFERENCES: val = 0; if (np->srcprefs & IPV6_PREFER_SRC_TMP) val |= IPV6_PREFER_SRC_TMP; else if (np->srcprefs & IPV6_PREFER_SRC_PUBLIC) val |= IPV6_PREFER_SRC_PUBLIC; else { /* XXX: should we return system default? */ val |= IPV6_PREFER_SRC_PUBTMP_DEFAULT; } if (np->srcprefs & IPV6_PREFER_SRC_COA) val |= IPV6_PREFER_SRC_COA; else val |= IPV6_PREFER_SRC_HOME; break; case IPV6_MINHOPCOUNT: val = np->min_hopcount; break; case IPV6_DONTFRAG: val = np->dontfrag; break; case IPV6_AUTOFLOWLABEL: val = ip6_autoflowlabel(sock_net(sk), np); break; case IPV6_RECVFRAGSIZE: val = np->rxopt.bits.recvfragsize; break; case IPV6_ROUTER_ALERT_ISOLATE: val = np->rtalert_isolate; break; case IPV6_RECVERR_RFC4884: val = np->recverr_rfc4884; break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, sizeof(int), len); if (copy_to_sockptr(optlen, &len, sizeof(int))) return -EFAULT; if (copy_to_sockptr(optval, &val, len)) return -EFAULT; return 0; } int ipv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int err; if (level == SOL_IP && sk->sk_type != SOCK_RAW) return udp_prot.getsockopt(sk, level, optname, optval, optlen); if (level != SOL_IPV6) return -ENOPROTOOPT; err = do_ipv6_getsockopt(sk, level, optname, USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); #ifdef CONFIG_NETFILTER /* we need to exclude all possible ENOPROTOOPTs except default case */ if (err == -ENOPROTOOPT && optname != IPV6_2292PKTOPTIONS) { int len; if (get_user(len, optlen)) return -EFAULT; err = nf_getsockopt(sk, PF_INET6, optname, optval, &len); if (err >= 0) err = put_user(len, optlen); } #endif return err; } EXPORT_SYMBOL(ipv6_getsockopt);
linux-master
net/ipv6/ipv6_sockglue.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * SR-IPv6 implementation * * Author: * David Lebrun <[email protected]> */ #include <linux/types.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/module.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/lwtunnel.h> #include <net/netevent.h> #include <net/netns/generic.h> #include <net/ip6_fib.h> #include <net/route.h> #include <net/seg6.h> #include <linux/seg6.h> #include <linux/seg6_iptunnel.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/dst_cache.h> #ifdef CONFIG_IPV6_SEG6_HMAC #include <net/seg6_hmac.h> #endif #include <linux/netfilter.h> static size_t seg6_lwt_headroom(struct seg6_iptunnel_encap *tuninfo) { int head = 0; switch (tuninfo->mode) { case SEG6_IPTUN_MODE_INLINE: break; case SEG6_IPTUN_MODE_ENCAP: case SEG6_IPTUN_MODE_ENCAP_RED: head = sizeof(struct ipv6hdr); break; case SEG6_IPTUN_MODE_L2ENCAP: case SEG6_IPTUN_MODE_L2ENCAP_RED: return 0; } return ((tuninfo->srh->hdrlen + 1) << 3) + head; } struct seg6_lwt { struct dst_cache cache; struct seg6_iptunnel_encap tuninfo[]; }; static inline struct seg6_lwt *seg6_lwt_lwtunnel(struct lwtunnel_state *lwt) { return (struct seg6_lwt *)lwt->data; } static inline struct seg6_iptunnel_encap * seg6_encap_lwtunnel(struct lwtunnel_state *lwt) { return seg6_lwt_lwtunnel(lwt)->tuninfo; } static const struct nla_policy seg6_iptunnel_policy[SEG6_IPTUNNEL_MAX + 1] = { [SEG6_IPTUNNEL_SRH] = { .type = NLA_BINARY }, }; static int nla_put_srh(struct sk_buff *skb, int attrtype, struct seg6_iptunnel_encap *tuninfo) { struct seg6_iptunnel_encap *data; struct nlattr *nla; int len; len = SEG6_IPTUN_ENCAP_SIZE(tuninfo); nla = nla_reserve(skb, attrtype, len); if (!nla) return -EMSGSIZE; data = nla_data(nla); memcpy(data, tuninfo, len); return 0; } static void set_tun_src(struct net *net, struct net_device *dev, struct in6_addr *daddr, struct in6_addr *saddr) { struct seg6_pernet_data *sdata = seg6_pernet(net); struct in6_addr *tun_src; rcu_read_lock(); tun_src = rcu_dereference(sdata->tun_src); if (!ipv6_addr_any(tun_src)) { memcpy(saddr, tun_src, sizeof(struct in6_addr)); } else { ipv6_dev_get_saddr(net, dev, daddr, IPV6_PREFER_SRC_PUBLIC, saddr); } rcu_read_unlock(); } /* Compute flowlabel for outer IPv6 header */ static __be32 seg6_make_flowlabel(struct net *net, struct sk_buff *skb, struct ipv6hdr *inner_hdr) { int do_flowlabel = net->ipv6.sysctl.seg6_flowlabel; __be32 flowlabel = 0; u32 hash; if (do_flowlabel > 0) { hash = skb_get_hash(skb); hash = rol32(hash, 16); flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK; } else if (!do_flowlabel && skb->protocol == htons(ETH_P_IPV6)) { flowlabel = ip6_flowlabel(inner_hdr); } return flowlabel; } /* encapsulate an IPv6 packet within an outer IPv6 header with a given SRH */ int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct ipv6hdr *hdr, *inner_hdr; struct ipv6_sr_hdr *isrh; int hdrlen, tot_len, err; __be32 flowlabel; hdrlen = (osrh->hdrlen + 1) << 3; tot_len = hdrlen + sizeof(*hdr); err = skb_cow_head(skb, tot_len + skb->mac_len); if (unlikely(err)) return err; inner_hdr = ipv6_hdr(skb); flowlabel = seg6_make_flowlabel(net, skb, inner_hdr); skb_push(skb, tot_len); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); /* inherit tc, flowlabel and hlim * hlim will be decremented in ip6_forward() afterwards and * decapsulation will overwrite inner hlim with outer hlim */ if (skb->protocol == htons(ETH_P_IPV6)) { ip6_flow_hdr(hdr, ip6_tclass(ip6_flowinfo(inner_hdr)), flowlabel); hdr->hop_limit = inner_hdr->hop_limit; } else { ip6_flow_hdr(hdr, 0, flowlabel); hdr->hop_limit = ip6_dst_hoplimit(skb_dst(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); /* the control block has been erased, so we have to set the * iif once again. * We read the receiving interface index directly from the * skb->skb_iif as it is done in the IPv4 receiving path (i.e.: * ip_rcv_core(...)). */ IP6CB(skb)->iif = skb->skb_iif; } hdr->nexthdr = NEXTHDR_ROUTING; isrh = (void *)hdr + sizeof(*hdr); memcpy(isrh, osrh, hdrlen); isrh->nexthdr = proto; hdr->daddr = isrh->segments[isrh->first_segment]; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); #ifdef CONFIG_IPV6_SEG6_HMAC if (sr_has_hmac(isrh)) { err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, tot_len); return 0; } EXPORT_SYMBOL_GPL(seg6_do_srh_encap); /* encapsulate an IPv6 packet within an outer IPv6 header with reduced SRH */ static int seg6_do_srh_encap_red(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto) { __u8 first_seg = osrh->first_segment; struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct ipv6hdr *hdr, *inner_hdr; int hdrlen = ipv6_optlen(osrh); int red_tlv_offset, tlv_offset; struct ipv6_sr_hdr *isrh; bool skip_srh = false; __be32 flowlabel; int tot_len, err; int red_hdrlen; int tlvs_len; if (first_seg > 0) { red_hdrlen = hdrlen - sizeof(struct in6_addr); } else { /* NOTE: if tag/flags and/or other TLVs are introduced in the * seg6_iptunnel infrastructure, they should be considered when * deciding to skip the SRH. */ skip_srh = !sr_has_hmac(osrh); red_hdrlen = skip_srh ? 0 : hdrlen; } tot_len = red_hdrlen + sizeof(struct ipv6hdr); err = skb_cow_head(skb, tot_len + skb->mac_len); if (unlikely(err)) return err; inner_hdr = ipv6_hdr(skb); flowlabel = seg6_make_flowlabel(net, skb, inner_hdr); skb_push(skb, tot_len); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); /* based on seg6_do_srh_encap() */ if (skb->protocol == htons(ETH_P_IPV6)) { ip6_flow_hdr(hdr, ip6_tclass(ip6_flowinfo(inner_hdr)), flowlabel); hdr->hop_limit = inner_hdr->hop_limit; } else { ip6_flow_hdr(hdr, 0, flowlabel); hdr->hop_limit = ip6_dst_hoplimit(skb_dst(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); IP6CB(skb)->iif = skb->skb_iif; } /* no matter if we have to skip the SRH or not, the first segment * always comes in the pushed IPv6 header. */ hdr->daddr = osrh->segments[first_seg]; if (skip_srh) { hdr->nexthdr = proto; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); goto out; } /* we cannot skip the SRH, slow path */ hdr->nexthdr = NEXTHDR_ROUTING; isrh = (void *)hdr + sizeof(struct ipv6hdr); if (unlikely(!first_seg)) { /* this is a very rare case; we have only one SID but * we cannot skip the SRH since we are carrying some * other info. */ memcpy(isrh, osrh, hdrlen); goto srcaddr; } tlv_offset = sizeof(*osrh) + (first_seg + 1) * sizeof(struct in6_addr); red_tlv_offset = tlv_offset - sizeof(struct in6_addr); memcpy(isrh, osrh, red_tlv_offset); tlvs_len = hdrlen - tlv_offset; if (unlikely(tlvs_len > 0)) { const void *s = (const void *)osrh + tlv_offset; void *d = (void *)isrh + red_tlv_offset; memcpy(d, s, tlvs_len); } --isrh->first_segment; isrh->hdrlen -= 2; srcaddr: isrh->nexthdr = proto; set_tun_src(net, dst->dev, &hdr->daddr, &hdr->saddr); #ifdef CONFIG_IPV6_SEG6_HMAC if (unlikely(!skip_srh && sr_has_hmac(isrh))) { err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif out: hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, tot_len); return 0; } /* insert an SRH within an IPv6 packet, just after the IPv6 header */ int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh) { struct ipv6hdr *hdr, *oldhdr; struct ipv6_sr_hdr *isrh; int hdrlen, err; hdrlen = (osrh->hdrlen + 1) << 3; err = skb_cow_head(skb, hdrlen + skb->mac_len); if (unlikely(err)) return err; oldhdr = ipv6_hdr(skb); skb_pull(skb, sizeof(struct ipv6hdr)); skb_postpull_rcsum(skb, skb_network_header(skb), sizeof(struct ipv6hdr)); skb_push(skb, sizeof(struct ipv6hdr) + hdrlen); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); memmove(hdr, oldhdr, sizeof(*hdr)); isrh = (void *)hdr + sizeof(*hdr); memcpy(isrh, osrh, hdrlen); isrh->nexthdr = hdr->nexthdr; hdr->nexthdr = NEXTHDR_ROUTING; isrh->segments[0] = hdr->daddr; hdr->daddr = isrh->segments[isrh->first_segment]; #ifdef CONFIG_IPV6_SEG6_HMAC if (sr_has_hmac(isrh)) { struct net *net = dev_net(skb_dst(skb)->dev); err = seg6_push_hmac(net, &hdr->saddr, isrh); if (unlikely(err)) return err; } #endif hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, sizeof(struct ipv6hdr) + hdrlen); return 0; } EXPORT_SYMBOL_GPL(seg6_do_srh_inline); static int seg6_do_srh(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct seg6_iptunnel_encap *tinfo; int proto, err = 0; tinfo = seg6_encap_lwtunnel(dst->lwtstate); switch (tinfo->mode) { case SEG6_IPTUN_MODE_INLINE: if (skb->protocol != htons(ETH_P_IPV6)) return -EINVAL; err = seg6_do_srh_inline(skb, tinfo->srh); if (err) return err; break; case SEG6_IPTUN_MODE_ENCAP: case SEG6_IPTUN_MODE_ENCAP_RED: err = iptunnel_handle_offloads(skb, SKB_GSO_IPXIP6); if (err) return err; if (skb->protocol == htons(ETH_P_IPV6)) proto = IPPROTO_IPV6; else if (skb->protocol == htons(ETH_P_IP)) proto = IPPROTO_IPIP; else return -EINVAL; if (tinfo->mode == SEG6_IPTUN_MODE_ENCAP) err = seg6_do_srh_encap(skb, tinfo->srh, proto); else err = seg6_do_srh_encap_red(skb, tinfo->srh, proto); if (err) return err; skb_set_inner_transport_header(skb, skb_transport_offset(skb)); skb_set_inner_protocol(skb, skb->protocol); skb->protocol = htons(ETH_P_IPV6); break; case SEG6_IPTUN_MODE_L2ENCAP: case SEG6_IPTUN_MODE_L2ENCAP_RED: if (!skb_mac_header_was_set(skb)) return -EINVAL; if (pskb_expand_head(skb, skb->mac_len, 0, GFP_ATOMIC) < 0) return -ENOMEM; skb_mac_header_rebuild(skb); skb_push(skb, skb->mac_len); if (tinfo->mode == SEG6_IPTUN_MODE_L2ENCAP) err = seg6_do_srh_encap(skb, tinfo->srh, IPPROTO_ETHERNET); else err = seg6_do_srh_encap_red(skb, tinfo->srh, IPPROTO_ETHERNET); if (err) return err; skb->protocol = htons(ETH_P_IPV6); break; } skb_set_transport_header(skb, sizeof(struct ipv6hdr)); nf_reset_ct(skb); return 0; } static int seg6_input_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { return dst_input(skb); } static int seg6_input_core(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct seg6_lwt *slwt; int err; err = seg6_do_srh(skb); if (unlikely(err)) { kfree_skb(skb); return err; } slwt = seg6_lwt_lwtunnel(orig_dst->lwtstate); preempt_disable(); dst = dst_cache_get(&slwt->cache); preempt_enable(); if (!dst) { ip6_route_input(skb); dst = skb_dst(skb); if (!dst->error) { preempt_disable(); dst_cache_set_ip6(&slwt->cache, dst, &ipv6_hdr(skb)->saddr); preempt_enable(); } } else { skb_dst_drop(skb); skb_dst_set(skb, dst); } err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) return err; if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, dev_net(skb->dev), NULL, skb, NULL, skb_dst(skb)->dev, seg6_input_finish); return seg6_input_finish(dev_net(skb->dev), NULL, skb); } static int seg6_input_nf(struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; struct net *net = dev_net(skb->dev); switch (skb->protocol) { case htons(ETH_P_IP): return NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, NULL, skb, NULL, dev, seg6_input_core); case htons(ETH_P_IPV6): return NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, NULL, skb, NULL, dev, seg6_input_core); } return -EINVAL; } static int seg6_input(struct sk_buff *skb) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return seg6_input_nf(skb); return seg6_input_core(dev_net(skb->dev), NULL, skb); } static int seg6_output_core(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct seg6_lwt *slwt; int err; err = seg6_do_srh(skb); if (unlikely(err)) goto drop; slwt = seg6_lwt_lwtunnel(orig_dst->lwtstate); preempt_disable(); dst = dst_cache_get(&slwt->cache); preempt_enable(); if (unlikely(!dst)) { struct ipv6hdr *hdr = ipv6_hdr(skb); struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.daddr = hdr->daddr; fl6.saddr = hdr->saddr; fl6.flowlabel = ip6_flowinfo(hdr); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = hdr->nexthdr; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { err = dst->error; dst_release(dst); goto drop; } preempt_disable(); dst_cache_set_ip6(&slwt->cache, dst, &fl6.saddr); preempt_enable(); } skb_dst_drop(skb); skb_dst_set(skb, dst); err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) goto drop; if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); return dst_output(net, sk, skb); drop: kfree_skb(skb); return err; } static int seg6_output_nf(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; switch (skb->protocol) { case htons(ETH_P_IP): return NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, seg6_output_core); case htons(ETH_P_IPV6): return NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, seg6_output_core); } return -EINVAL; } static int seg6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return seg6_output_nf(net, sk, skb); return seg6_output_core(net, sk, skb); } static int seg6_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct nlattr *tb[SEG6_IPTUNNEL_MAX + 1]; struct seg6_iptunnel_encap *tuninfo; struct lwtunnel_state *newts; int tuninfo_len, min_size; struct seg6_lwt *slwt; int err; if (family != AF_INET && family != AF_INET6) return -EINVAL; err = nla_parse_nested_deprecated(tb, SEG6_IPTUNNEL_MAX, nla, seg6_iptunnel_policy, extack); if (err < 0) return err; if (!tb[SEG6_IPTUNNEL_SRH]) return -EINVAL; tuninfo = nla_data(tb[SEG6_IPTUNNEL_SRH]); tuninfo_len = nla_len(tb[SEG6_IPTUNNEL_SRH]); /* tuninfo must contain at least the iptunnel encap structure, * the SRH and one segment */ min_size = sizeof(*tuninfo) + sizeof(struct ipv6_sr_hdr) + sizeof(struct in6_addr); if (tuninfo_len < min_size) return -EINVAL; switch (tuninfo->mode) { case SEG6_IPTUN_MODE_INLINE: if (family != AF_INET6) return -EINVAL; break; case SEG6_IPTUN_MODE_ENCAP: break; case SEG6_IPTUN_MODE_L2ENCAP: break; case SEG6_IPTUN_MODE_ENCAP_RED: break; case SEG6_IPTUN_MODE_L2ENCAP_RED: break; default: return -EINVAL; } /* verify that SRH is consistent */ if (!seg6_validate_srh(tuninfo->srh, tuninfo_len - sizeof(*tuninfo), false)) return -EINVAL; newts = lwtunnel_state_alloc(tuninfo_len + sizeof(*slwt)); if (!newts) return -ENOMEM; slwt = seg6_lwt_lwtunnel(newts); err = dst_cache_init(&slwt->cache, GFP_ATOMIC); if (err) { kfree(newts); return err; } memcpy(&slwt->tuninfo, tuninfo, tuninfo_len); newts->type = LWTUNNEL_ENCAP_SEG6; newts->flags |= LWTUNNEL_STATE_INPUT_REDIRECT; if (tuninfo->mode != SEG6_IPTUN_MODE_L2ENCAP) newts->flags |= LWTUNNEL_STATE_OUTPUT_REDIRECT; newts->headroom = seg6_lwt_headroom(tuninfo); *ts = newts; return 0; } static void seg6_destroy_state(struct lwtunnel_state *lwt) { dst_cache_destroy(&seg6_lwt_lwtunnel(lwt)->cache); } static int seg6_fill_encap_info(struct sk_buff *skb, struct lwtunnel_state *lwtstate) { struct seg6_iptunnel_encap *tuninfo = seg6_encap_lwtunnel(lwtstate); if (nla_put_srh(skb, SEG6_IPTUNNEL_SRH, tuninfo)) return -EMSGSIZE; return 0; } static int seg6_encap_nlsize(struct lwtunnel_state *lwtstate) { struct seg6_iptunnel_encap *tuninfo = seg6_encap_lwtunnel(lwtstate); return nla_total_size(SEG6_IPTUN_ENCAP_SIZE(tuninfo)); } static int seg6_encap_cmp(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct seg6_iptunnel_encap *a_hdr = seg6_encap_lwtunnel(a); struct seg6_iptunnel_encap *b_hdr = seg6_encap_lwtunnel(b); int len = SEG6_IPTUN_ENCAP_SIZE(a_hdr); if (len != SEG6_IPTUN_ENCAP_SIZE(b_hdr)) return 1; return memcmp(a_hdr, b_hdr, len); } static const struct lwtunnel_encap_ops seg6_iptun_ops = { .build_state = seg6_build_state, .destroy_state = seg6_destroy_state, .output = seg6_output, .input = seg6_input, .fill_encap = seg6_fill_encap_info, .get_encap_size = seg6_encap_nlsize, .cmp_encap = seg6_encap_cmp, .owner = THIS_MODULE, }; int __init seg6_iptunnel_init(void) { return lwtunnel_encap_add_ops(&seg6_iptun_ops, LWTUNNEL_ENCAP_SEG6); } void seg6_iptunnel_exit(void) { lwtunnel_encap_del_ops(&seg6_iptun_ops, LWTUNNEL_ENCAP_SEG6); }
linux-master
net/ipv6/seg6_iptunnel.c
// SPDX-License-Identifier: GPL-2.0 #include <net/ip.h> #include <net/udp.h> #include <net/udplite.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum) { int carry; __u32 ulen; __u32 uproto; __u32 sum = (__force u32)csum; sum += (__force u32)saddr->s6_addr32[0]; carry = (sum < (__force u32)saddr->s6_addr32[0]); sum += carry; sum += (__force u32)saddr->s6_addr32[1]; carry = (sum < (__force u32)saddr->s6_addr32[1]); sum += carry; sum += (__force u32)saddr->s6_addr32[2]; carry = (sum < (__force u32)saddr->s6_addr32[2]); sum += carry; sum += (__force u32)saddr->s6_addr32[3]; carry = (sum < (__force u32)saddr->s6_addr32[3]); sum += carry; sum += (__force u32)daddr->s6_addr32[0]; carry = (sum < (__force u32)daddr->s6_addr32[0]); sum += carry; sum += (__force u32)daddr->s6_addr32[1]; carry = (sum < (__force u32)daddr->s6_addr32[1]); sum += carry; sum += (__force u32)daddr->s6_addr32[2]; carry = (sum < (__force u32)daddr->s6_addr32[2]); sum += carry; sum += (__force u32)daddr->s6_addr32[3]; carry = (sum < (__force u32)daddr->s6_addr32[3]); sum += carry; ulen = (__force u32)htonl((__u32) len); sum += ulen; carry = (sum < ulen); sum += carry; uproto = (__force u32)htonl(proto); sum += uproto; carry = (sum < uproto); sum += carry; return csum_fold((__force __wsum)sum); } EXPORT_SYMBOL(csum_ipv6_magic); #endif int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto) { int err; UDP_SKB_CB(skb)->partial_cov = 0; UDP_SKB_CB(skb)->cscov = skb->len; if (proto == IPPROTO_UDPLITE) { err = udplite_checksum_init(skb, uh); if (err) return err; if (UDP_SKB_CB(skb)->partial_cov) { skb->csum = ip6_compute_pseudo(skb, proto); return 0; } } /* To support RFC 6936 (allow zero checksum in UDP/IPV6 for tunnels) * we accept a checksum of zero here. When we find the socket * for the UDP packet we'll check if that socket allows zero checksum * for IPv6 (set by socket option). * * Note, we are only interested in != 0 or == 0, thus the * force to int. */ err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, ip6_compute_pseudo); if (err) return err; if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { /* If SW calculated the value, we know it's bad */ if (skb->csum_complete_sw) return 1; /* HW says the value is bad. Let's validate that. * skb->csum is no longer the full packet checksum, * so don't treat is as such. */ skb_checksum_complete_unset(skb); } return 0; } EXPORT_SYMBOL(udp6_csum_init); /* Function to set UDP checksum for an IPv6 UDP packet. This is intended * for the simple case like when setting the checksum for a UDP tunnel. */ void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len) { struct udphdr *uh = udp_hdr(skb); if (nocheck) uh->check = 0; else if (skb_is_gso(skb)) uh->check = ~udp_v6_check(len, saddr, daddr, 0); else if (skb->ip_summed == CHECKSUM_PARTIAL) { uh->check = 0; uh->check = udp_v6_check(len, saddr, daddr, lco_csum(skb)); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } else { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); uh->check = ~udp_v6_check(len, saddr, daddr, 0); } } EXPORT_SYMBOL(udp6_set_csum);
linux-master
net/ipv6/ip6_checksum.c
// SPDX-License-Identifier: GPL-2.0-only /* * IPv6 library code, needed by static components when full IPv6 support is * not configured or static. */ #include <linux/export.h> #include <net/ipv6.h> #include <net/ipv6_stubs.h> #include <net/addrconf.h> #include <net/ip.h> /* if ipv6 module registers this function is used by xfrm to force all * sockets to relookup their nodes - this is fairly expensive, be * careful */ void (*__fib6_flush_trees)(struct net *); EXPORT_SYMBOL(__fib6_flush_trees); #define IPV6_ADDR_SCOPE_TYPE(scope) ((scope) << 16) static inline unsigned int ipv6_addr_scope2type(unsigned int scope) { switch (scope) { case IPV6_ADDR_SCOPE_NODELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_NODELOCAL) | IPV6_ADDR_LOOPBACK); case IPV6_ADDR_SCOPE_LINKLOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL) | IPV6_ADDR_LINKLOCAL); case IPV6_ADDR_SCOPE_SITELOCAL: return (IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL) | IPV6_ADDR_SITELOCAL); } return IPV6_ADDR_SCOPE_TYPE(scope); } int __ipv6_addr_type(const struct in6_addr *addr) { __be32 st; st = addr->s6_addr32[0]; /* Consider all addresses with the first three bits different of 000 and 111 as unicasts. */ if ((st & htonl(0xE0000000)) != htonl(0x00000000) && (st & htonl(0xE0000000)) != htonl(0xE0000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); if ((st & htonl(0xFF000000)) == htonl(0xFF000000)) { /* multicast */ /* addr-select 3.1 */ return (IPV6_ADDR_MULTICAST | ipv6_addr_scope2type(IPV6_ADDR_MC_SCOPE(addr))); } if ((st & htonl(0xFFC00000)) == htonl(0xFE800000)) return (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFFC00000)) == htonl(0xFEC00000)) return (IPV6_ADDR_SITELOCAL | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_SITELOCAL)); /* addr-select 3.1 */ if ((st & htonl(0xFE000000)) == htonl(0xFC000000)) return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* RFC 4193 */ if ((addr->s6_addr32[0] | addr->s6_addr32[1]) == 0) { if (addr->s6_addr32[2] == 0) { if (addr->s6_addr32[3] == 0) return IPV6_ADDR_ANY; if (addr->s6_addr32[3] == htonl(0x00000001)) return (IPV6_ADDR_LOOPBACK | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_LINKLOCAL)); /* addr-select 3.4 */ return (IPV6_ADDR_COMPATv4 | IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } if (addr->s6_addr32[2] == htonl(0x0000ffff)) return (IPV6_ADDR_MAPPED | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.3 */ } return (IPV6_ADDR_UNICAST | IPV6_ADDR_SCOPE_TYPE(IPV6_ADDR_SCOPE_GLOBAL)); /* addr-select 3.4 */ } EXPORT_SYMBOL(__ipv6_addr_type); static ATOMIC_NOTIFIER_HEAD(inet6addr_chain); static BLOCKING_NOTIFIER_HEAD(inet6addr_validator_chain); int register_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&inet6addr_chain, nb); } EXPORT_SYMBOL(register_inet6addr_notifier); int unregister_inet6addr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&inet6addr_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_notifier); int inet6addr_notifier_call_chain(unsigned long val, void *v) { return atomic_notifier_call_chain(&inet6addr_chain, val, v); } EXPORT_SYMBOL(inet6addr_notifier_call_chain); int register_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(register_inet6addr_validator_notifier); int unregister_inet6addr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&inet6addr_validator_chain, nb); } EXPORT_SYMBOL(unregister_inet6addr_validator_notifier); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v) { return blocking_notifier_call_chain(&inet6addr_validator_chain, val, v); } EXPORT_SYMBOL(inet6addr_validator_notifier_call_chain); static struct dst_entry *eafnosupport_ipv6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { return ERR_PTR(-EAFNOSUPPORT); } static int eafnosupport_ipv6_route_input(struct sk_buff *skb) { return -EAFNOSUPPORT; } static struct fib6_table *eafnosupport_fib6_get_table(struct net *net, u32 id) { return NULL; } static int eafnosupport_fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static int eafnosupport_fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { return -EAFNOSUPPORT; } static void eafnosupport_fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict) { } static u32 eafnosupport_ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { return 0; } static int eafnosupport_fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "IPv6 support not enabled in kernel"); return -EAFNOSUPPORT; } static int eafnosupport_ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) { return -EAFNOSUPPORT; } static int eafnosupport_ipv6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { kfree_skb(skb); return -EAFNOSUPPORT; } static struct net_device *eafnosupport_ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev) { return ERR_PTR(-EAFNOSUPPORT); } const struct ipv6_stub *ipv6_stub __read_mostly = &(struct ipv6_stub) { .ipv6_dst_lookup_flow = eafnosupport_ipv6_dst_lookup_flow, .ipv6_route_input = eafnosupport_ipv6_route_input, .fib6_get_table = eafnosupport_fib6_get_table, .fib6_table_lookup = eafnosupport_fib6_table_lookup, .fib6_lookup = eafnosupport_fib6_lookup, .fib6_select_path = eafnosupport_fib6_select_path, .ip6_mtu_from_fib6 = eafnosupport_ip6_mtu_from_fib6, .fib6_nh_init = eafnosupport_fib6_nh_init, .ip6_del_rt = eafnosupport_ip6_del_rt, .ipv6_fragment = eafnosupport_ipv6_fragment, .ipv6_dev_find = eafnosupport_ipv6_dev_find, }; EXPORT_SYMBOL_GPL(ipv6_stub); /* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */ const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; EXPORT_SYMBOL(in6addr_loopback); const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; EXPORT_SYMBOL(in6addr_any); const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_linklocal_allnodes); const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_linklocal_allrouters); const struct in6_addr in6addr_interfacelocal_allnodes = IN6ADDR_INTERFACELOCAL_ALLNODES_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allnodes); const struct in6_addr in6addr_interfacelocal_allrouters = IN6ADDR_INTERFACELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_interfacelocal_allrouters); const struct in6_addr in6addr_sitelocal_allrouters = IN6ADDR_SITELOCAL_ALLROUTERS_INIT; EXPORT_SYMBOL(in6addr_sitelocal_allrouters); static void snmp6_free_dev(struct inet6_dev *idev) { kfree(idev->stats.icmpv6msgdev); kfree(idev->stats.icmpv6dev); free_percpu(idev->stats.ipv6); } static void in6_dev_finish_destroy_rcu(struct rcu_head *head) { struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu); snmp6_free_dev(idev); kfree(idev); } /* Nobody refers to this device, we may destroy it. */ void in6_dev_finish_destroy(struct inet6_dev *idev) { struct net_device *dev = idev->dev; WARN_ON(!list_empty(&idev->addr_list)); WARN_ON(rcu_access_pointer(idev->mc_list)); WARN_ON(timer_pending(&idev->rs_timer)); #ifdef NET_REFCNT_DEBUG pr_debug("%s: %s\n", __func__, dev ? dev->name : "NIL"); #endif netdev_put(dev, &idev->dev_tracker); if (!idev->dead) { pr_warn("Freeing alive inet6 device %p\n", idev); return; } call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu); } EXPORT_SYMBOL(in6_dev_finish_destroy);
linux-master
net/ipv6/addrconf_core.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/export.h> #include <linux/icmpv6.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/spinlock.h> #include <net/ipv6.h> #if IS_ENABLED(CONFIG_IPV6) #if !IS_BUILTIN(CONFIG_IPV6) static ip6_icmp_send_t __rcu *ip6_icmp_send; int inet6_register_icmp_sender(ip6_icmp_send_t *fn) { return (cmpxchg((ip6_icmp_send_t **)&ip6_icmp_send, NULL, fn) == NULL) ? 0 : -EBUSY; } EXPORT_SYMBOL(inet6_register_icmp_sender); int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn) { int ret; ret = (cmpxchg((ip6_icmp_send_t **)&ip6_icmp_send, fn, NULL) == fn) ? 0 : -EINVAL; synchronize_net(); return ret; } EXPORT_SYMBOL(inet6_unregister_icmp_sender); void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm) { ip6_icmp_send_t *send; rcu_read_lock(); send = rcu_dereference(ip6_icmp_send); if (send) send(skb, type, code, info, NULL, parm); rcu_read_unlock(); } EXPORT_SYMBOL(__icmpv6_send); #endif #if IS_ENABLED(CONFIG_NF_NAT) #include <net/netfilter/nf_conntrack.h> void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info) { struct inet6_skb_parm parm = { 0 }; struct sk_buff *cloned_skb = NULL; enum ip_conntrack_info ctinfo; struct in6_addr orig_ip; struct nf_conn *ct; ct = nf_ct_get(skb_in, &ctinfo); if (!ct || !(ct->status & IPS_SRC_NAT)) { __icmpv6_send(skb_in, type, code, info, &parm); return; } if (skb_shared(skb_in)) skb_in = cloned_skb = skb_clone(skb_in, GFP_ATOMIC); if (unlikely(!skb_in || skb_network_header(skb_in) < skb_in->head || (skb_network_header(skb_in) + sizeof(struct ipv6hdr)) > skb_tail_pointer(skb_in) || skb_ensure_writable(skb_in, skb_network_offset(skb_in) + sizeof(struct ipv6hdr)))) goto out; orig_ip = ipv6_hdr(skb_in)->saddr; ipv6_hdr(skb_in)->saddr = ct->tuplehash[0].tuple.src.u3.in6; __icmpv6_send(skb_in, type, code, info, &parm); ipv6_hdr(skb_in)->saddr = orig_ip; out: consume_skb(cloned_skb); } EXPORT_SYMBOL(icmpv6_ndo_send); #endif #endif
linux-master
net/ipv6/ip6_icmp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * Mike Shaver <[email protected]> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64 || ndisc_ops_is_useropt(dev, opt->nd_opt_type); } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sock *sk = dev_net(dev)->ipv6.ndisc_sk; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) { ND_PRINTK(0, err, "ndisc: %s failed to allocate an skb\n", __func__); return NULL; } skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ skb_set_owner_w(skb, sk); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? idev->cnf.ndisc_tclass : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(skb->dev); struct sock *sk = net->ipv6.ndisc_sk; struct inet6_dev *idev; int err; struct icmp6hdr *icmp6h = icmp6_hdr(skb); u8 type; type = icmp6h->icmp6_type; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, inet6_sk(sk)->hop_limit, skb->len); rcu_read_lock(); idev = __in6_dev_get(dst->dev); IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } EXPORT_SYMBOL(ndisc_send_skb); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= ifp->idev->cnf.force_tllao; in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } struct sk_buff *ndisc_ns_create(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *saddr, u64 nonce) { int inc_opt = dev->addr_len; struct sk_buff *skb; struct nd_msg *msg; int optlen = 0; if (!saddr) return NULL; if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return NULL; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } return skb; } EXPORT_SYMBOL(ndisc_ns_create); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct in6_addr addr_buf; struct sk_buff *skb; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE | IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } skb = ndisc_ns_create(dev, solicit, saddr, nonce); if (skb) ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static enum skb_drop_reason ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); int is_router = -1; SKB_DR(reason); u64 nonce = 0; bool inc; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return reason; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return reason; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return reason; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return reason; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return reason; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return reason; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (idev->cnf.forwarding && (net->ipv6.devconf_all->proxy_ndp || idev->cnf.proxy_ndp) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else { SKB_DR_SET(reason, IPV6_NDISC_NS_OTHERHOST); goto out; } } if (is_router < 0) is_router = idev->cnf.forwarding; if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); reason = SKB_CONSUMED; } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); return reason; } static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr) { struct inet6_dev *idev = __in6_dev_get(dev); switch (idev->cnf.accept_untracked_na) { case 0: /* Don't accept untracked na (absent in neighbor cache) */ return 0; case 1: /* Create new entries from na if currently untracked */ return 1; case 2: /* Create new entries from untracked na only if saddr is in the * same subnet as an address configured on the interface that * received the na */ return !!ipv6_chk_prefix(saddr, dev); default: return 0; } } static enum skb_drop_reason ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; SKB_DR(reason); u8 new_state; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return reason; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return reason; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. * drop_unsolicited_na takes precedence over accept_untracked_na */ if (!msg->icmph.icmp6_solicited && idev && idev->cnf.drop_unsolicited_na) return reason; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return reason; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return reason; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return reason; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); /* RFC 9131 updates original Neighbour Discovery RFC 4861. * NAs with Target LL Address option without a corresponding * entry in the neighbour cache can now create a STALE neighbour * cache entry on routers. * * entry accept fwding solicited behaviour * ------- ------ ------ --------- ---------------------- * present X X 0 Set state to STALE * present X X 1 Set state to REACHABLE * absent 0 X X Do nothing * absent 1 0 X Do nothing * absent 1 1 X Add a new STALE entry * * Note that we don't do a (daddr == all-routers-mcast) check. */ new_state = msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE; if (!neigh && lladdr && idev && idev->cnf.forwarding) { if (accept_untracked_na(dev, saddr)) { neigh = neigh_create(&nd_tbl, &msg->target, dev); new_state = NUD_STALE; } } if (neigh && !IS_ERR(neigh)) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (READ_ONCE(neigh->nud_state) & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && net->ipv6.devconf_all->forwarding && net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, new_state, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } reason = SKB_CONSUMED; out: neigh_release(neigh); } return reason; } static enum skb_drop_reason ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; SKB_DR(reason); if (skb->len < sizeof(*rs_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return reason; } /* Don't accept RS if we're not in router mode */ if (!idev->cnf.forwarding) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); reason = SKB_CONSUMED; } out: return reason; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static enum skb_drop_reason ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); bool send_ifinfo_notify = false; struct neighbour *neigh = NULL; struct ndisc_options ndopts; struct fib6_info *rt = NULL; struct inet6_dev *in6_dev; u32 defrtr_usr_metric; unsigned int pref = 0; __u32 old_if_flags; struct net *net; SKB_DR(reason); int lifetime; int optlen; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return reason; } if (optlen < 0) return SKB_DROP_REASON_PKT_TOO_SMALL; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return reason; } #endif in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return reason; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!in6_dev->cnf.accept_ra_defrtr) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < in6_dev->cnf.accept_ra_min_lft) { ND_PRINTK(2, info, "RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !in6_dev->cnf.accept_ra_rtr_pref) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return reason; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } neigh->flags |= NTF_ROUTER; } else if (rt && IPV6_EXTRACT_PREF(rt->fib6_flags) != pref) { struct nl_info nlinfo = { .nl_net = net, }; rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); inet6_rt_notify(RTM_NEWROUTE, rt, &nlinfo, NLM_F_REPLACE); } if (rt) fib6_set_expires(rt, jiffies + (HZ * lifetime)); if (in6_dev->cnf.accept_ra_min_hop_limit < 256 && ra_msg->icmph.icmp6_hop_limit) { if (in6_dev->cnf.accept_ra_min_hop_limit <= ra_msg->icmph.icmp6_hop_limit) { in6_dev->cnf.hop_limit = ra_msg->icmph.icmp6_hop_limit; fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); reason = SKB_CONSUMED; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (in6_dev->cnf.accept_ra_rtr_pref && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !in6_dev->cnf.accept_ra_defrtr) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < in6_dev->cnf.accept_ra_min_lft) continue; if (ri->prefix_len < in6_dev->cnf.accept_ra_rt_info_min_plen) continue; if (ri->prefix_len > in6_dev->cnf.accept_ra_rt_info_max_plen) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (in6_dev->cnf.accept_ra_pinfo && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && in6_dev->cnf.accept_ra_mtu) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (in6_dev->cnf.mtu6 != mtu) { in6_dev->cnf.mtu6 = mtu; fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); return reason; } static enum skb_drop_reason ndisc_redirect_rcv(struct sk_buff *skb) { struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); struct ndisc_options ndopts; SKB_DR(reason); u8 *hdr; #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return reason; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return reason; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return reason; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return SKB_DROP_REASON_PKT_TOO_SMALL; return icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr, 1); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (peer) inet_putpeer(peer); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { enum skb_drop_reason reason = ndisc_recv_ns(skb); kfree_skb_reason(skb, reason); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && idev->cnf.suppress_frag_ndisc) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } enum skb_drop_reason ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; SKB_DR(reason); if (ndisc_suppress_frag_ndisc(skb)) return SKB_DROP_REASON_IPV6_NDISC_FRAG; if (skb_linearize(skb)) return SKB_DROP_REASON_NOMEM; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return SKB_DROP_REASON_IPV6_NDISC_HOP_LIMIT; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return SKB_DROP_REASON_IPV6_NDISC_BAD_CODE; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); reason = ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: reason = ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: reason = ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: reason = ndisc_router_discovery(skb); break; case NDISC_REDIRECT: reason = ndisc_redirect_rcv(skb); break; } return reason; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (idev->cnf.ndisc_notify || net->ipv6.devconf_all->ndisc_notify) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: idev = in6_dev_get(dev); if (!idev) evict_nocarrier = true; else { evict_nocarrier = idev->cnf.ndisc_evict_nocarrier && net->ipv6.devconf_all->ndisc_evict_nocarrier; in6_dev_put(idev); } change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); idev->tstamp = jiffies; inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ np->mc_loop = 0; return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); }
linux-master
net/ipv6/ndisc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 input * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * Ian P. Morris <[email protected]> * * Based in linux/net/ipv4/ip_input.c */ /* Changes * * Mitsuru KANDA @USAGI and * YOSHIFUJI Hideaki @USAGI: Remove ipv6_parse_exthdrs(). */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/icmpv6.h> #include <linux/mroute6.h> #include <linux/slab.h> #include <linux/indirect_call_wrapper.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/udp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/xfrm.h> #include <net/inet_ecn.h> #include <net/dst_metadata.h> static void ip6_rcv_finish_core(struct net *net, struct sock *sk, struct sk_buff *skb) { if (READ_ONCE(net->ipv4.sysctl_ip_early_demux) && !skb_dst(skb) && !skb->sk) { switch (ipv6_hdr(skb)->nexthdr) { case IPPROTO_TCP: if (READ_ONCE(net->ipv4.sysctl_tcp_early_demux)) tcp_v6_early_demux(skb); break; case IPPROTO_UDP: if (READ_ONCE(net->ipv4.sysctl_udp_early_demux)) udp_v6_early_demux(skb); break; } } if (!skb_valid_dst(skb)) ip6_route_input(skb); } int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) return NET_RX_SUCCESS; ip6_rcv_finish_core(net, sk, skb); return dst_input(skb); } static void ip6_sublist_rcv_finish(struct list_head *head) { struct sk_buff *skb, *next; list_for_each_entry_safe(skb, next, head, list) { skb_list_del_init(skb); dst_input(skb); } } static bool ip6_can_use_hint(const struct sk_buff *skb, const struct sk_buff *hint) { return hint && !skb_dst(skb) && ipv6_addr_equal(&ipv6_hdr(hint)->daddr, &ipv6_hdr(skb)->daddr); } static struct sk_buff *ip6_extract_route_hint(const struct net *net, struct sk_buff *skb) { if (fib6_routes_require_src(net) || fib6_has_custom_rules(net) || IP6CB(skb)->flags & IP6SKB_MULTIPATH) return NULL; return skb; } static void ip6_list_rcv_finish(struct net *net, struct sock *sk, struct list_head *head) { struct sk_buff *skb, *next, *hint = NULL; struct dst_entry *curr_dst = NULL; struct list_head sublist; INIT_LIST_HEAD(&sublist); list_for_each_entry_safe(skb, next, head, list) { struct dst_entry *dst; skb_list_del_init(skb); /* if ingress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_rcv(skb); if (!skb) continue; if (ip6_can_use_hint(skb, hint)) skb_dst_copy(skb, hint); else ip6_rcv_finish_core(net, sk, skb); dst = skb_dst(skb); if (curr_dst != dst) { hint = ip6_extract_route_hint(net, skb); /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv_finish(&sublist); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dst = dst; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ ip6_sublist_rcv_finish(&sublist); } static struct sk_buff *ip6_rcv_core(struct sk_buff *skb, struct net_device *dev, struct net *net) { enum skb_drop_reason reason; const struct ipv6hdr *hdr; u32 pkt_len; struct inet6_dev *idev; if (skb->pkt_type == PACKET_OTHERHOST) { dev_core_stats_rx_otherhost_dropped_inc(skb->dev); kfree_skb_reason(skb, SKB_DROP_REASON_OTHERHOST); return NULL; } rcu_read_lock(); idev = __in6_dev_get(skb->dev); __IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_IN, skb->len); SKB_DR_SET(reason, NOT_SPECIFIED); if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL || !idev || unlikely(idev->cnf.disable_ipv6)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); if (idev && unlikely(idev->cnf.disable_ipv6)) SKB_DR_SET(reason, IPV6DISABLED); goto drop; } memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); /* * Store incoming device index. When the packet will * be queued, we cannot refer to skb->dev anymore. * * BTW, when we send a packet for our own local address on a * non-loopback interface (e.g. ethX), it is being delivered * via the loopback interface (lo) here; skb->dev = loopback_dev. * It, however, should be considered as if it is being * arrived via the sending interface (ethX), because of the * nature of scoping architecture. --yoshfuji */ IP6CB(skb)->iif = skb_valid_dst(skb) ? ip6_dst_idev(skb_dst(skb))->dev->ifindex : dev->ifindex; if (unlikely(!pskb_may_pull(skb, sizeof(*hdr)))) goto err; hdr = ipv6_hdr(skb); if (hdr->version != 6) { SKB_DR_SET(reason, UNHANDLED_PROTO); goto err; } __IP6_ADD_STATS(net, idev, IPSTATS_MIB_NOECTPKTS + (ipv6_get_dsfield(hdr) & INET_ECN_MASK), max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs)); /* * RFC4291 2.5.3 * The loopback address must not be used as the source address in IPv6 * packets that are sent outside of a single node. [..] * A packet received on an interface with a destination address * of loopback must be dropped. */ if ((ipv6_addr_loopback(&hdr->saddr) || ipv6_addr_loopback(&hdr->daddr)) && !(dev->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev)) goto err; /* RFC4291 Errata ID: 3480 * Interface-Local scope spans only a single interface on a * node and is useful only for loopback transmission of * multicast. Packets with interface-local scope received * from another node must be discarded. */ if (!(skb->pkt_type == PACKET_LOOPBACK || dev->flags & IFF_LOOPBACK) && ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 1) goto err; /* If enabled, drop unicast packets that were encapsulated in link-layer * multicast or broadcast to protected against the so-called "hole-196" * attack in 802.11 wireless. */ if (!ipv6_addr_is_multicast(&hdr->daddr) && (skb->pkt_type == PACKET_BROADCAST || skb->pkt_type == PACKET_MULTICAST) && idev->cnf.drop_unicast_in_l2_multicast) { SKB_DR_SET(reason, UNICAST_IN_L2_MULTICAST); goto err; } /* RFC4291 2.7 * Nodes must not originate a packet to a multicast address whose scope * field contains the reserved value 0; if such a packet is received, it * must be silently dropped. */ if (ipv6_addr_is_multicast(&hdr->daddr) && IPV6_ADDR_MC_SCOPE(&hdr->daddr) == 0) goto err; /* * RFC4291 2.7 * Multicast addresses must not be used as source addresses in IPv6 * packets or appear in any Routing header. */ if (ipv6_addr_is_multicast(&hdr->saddr)) goto err; skb->transport_header = skb->network_header + sizeof(*hdr); IP6CB(skb)->nhoff = offsetof(struct ipv6hdr, nexthdr); pkt_len = ntohs(hdr->payload_len); /* pkt_len may be zero if Jumbo payload option is present */ if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) { if (pkt_len + sizeof(struct ipv6hdr) > skb->len) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTRUNCATEDPKTS); SKB_DR_SET(reason, PKT_TOO_SMALL); goto drop; } if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr))) goto err; hdr = ipv6_hdr(skb); } if (hdr->nexthdr == NEXTHDR_HOP) { if (ipv6_parse_hopopts(skb) < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); rcu_read_unlock(); return NULL; } } rcu_read_unlock(); /* Must drop socket now because of tproxy. */ if (!skb_sk_is_prefetched(skb)) skb_orphan(skb); return skb; err: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); SKB_DR_OR(reason, IP_INHDR); drop: rcu_read_unlock(); kfree_skb_reason(skb, reason); return NULL; } int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct net *net = dev_net(skb->dev); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) return NET_RX_DROP; return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, skb, dev, NULL, ip6_rcv_finish); } static void ip6_sublist_rcv(struct list_head *head, struct net_device *dev, struct net *net) { NF_HOOK_LIST(NFPROTO_IPV6, NF_INET_PRE_ROUTING, net, NULL, head, dev, NULL, ip6_rcv_finish); ip6_list_rcv_finish(net, NULL, head); } /* Receive a list of IPv6 packets */ void ipv6_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev) { struct net_device *curr_dev = NULL; struct net *curr_net = NULL; struct sk_buff *skb, *next; struct list_head sublist; INIT_LIST_HEAD(&sublist); list_for_each_entry_safe(skb, next, head, list) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); skb_list_del_init(skb); skb = ip6_rcv_core(skb, dev, net); if (skb == NULL) continue; if (curr_dev != dev || curr_net != net) { /* dispatch old sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); /* start new sublist */ INIT_LIST_HEAD(&sublist); curr_dev = dev; curr_net = net; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ if (!list_empty(&sublist)) ip6_sublist_rcv(&sublist, curr_dev, curr_net); } INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *)); /* * Deliver the packet to the host */ void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr, bool have_final) { const struct inet6_protocol *ipprot; struct inet6_dev *idev; unsigned int nhoff; SKB_DR(reason); bool raw; /* * Parse extension headers */ resubmit: idev = ip6_dst_idev(skb_dst(skb)); nhoff = IP6CB(skb)->nhoff; if (!have_final) { if (!pskb_pull(skb, skb_transport_offset(skb))) goto discard; nexthdr = skb_network_header(skb)[nhoff]; } resubmit_final: raw = raw6_local_deliver(skb, nexthdr); ipprot = rcu_dereference(inet6_protos[nexthdr]); if (ipprot) { int ret; if (have_final) { if (!(ipprot->flags & INET6_PROTO_FINAL)) { /* Once we've seen a final protocol don't * allow encapsulation on any non-final * ones. This allows foo in UDP encapsulation * to work. */ goto discard; } } else if (ipprot->flags & INET6_PROTO_FINAL) { const struct ipv6hdr *hdr; int sdif = inet6_sdif(skb); struct net_device *dev; /* Only do this once for first final protocol */ have_final = true; skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); hdr = ipv6_hdr(skb); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { dev = dev_get_by_index_rcu(net, sdif); if (!dev) goto discard; } else { dev = skb->dev; } if (ipv6_addr_is_multicast(&hdr->daddr) && !ipv6_chk_mcast_addr(dev, &hdr->daddr, &hdr->saddr) && !ipv6_is_mld(skb, nexthdr, skb_network_header_len(skb))) { SKB_DR_SET(reason, IP_INADDRERRORS); goto discard; } } if (!(ipprot->flags & INET6_PROTO_NOPOLICY)) { if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { SKB_DR_SET(reason, XFRM_POLICY); goto discard; } nf_reset_ct(skb); } ret = INDIRECT_CALL_2(ipprot->handler, tcp_v6_rcv, udpv6_rcv, skb); if (ret > 0) { if (ipprot->flags & INET6_PROTO_FINAL) { /* Not an extension header, most likely UDP * encapsulation. Use return value as nexthdr * protocol not nhoff (which presumably is * not set by handler). */ nexthdr = ret; goto resubmit_final; } else { goto resubmit; } } else if (ret == 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); } } else { if (!raw) { if (xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INUNKNOWNPROTOS); icmpv6_send(skb, ICMPV6_PARAMPROB, ICMPV6_UNK_NEXTHDR, nhoff); SKB_DR_SET(reason, IP_NOPROTO); } else { SKB_DR_SET(reason, XFRM_POLICY); } kfree_skb_reason(skb, reason); } else { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDELIVERS); consume_skb(skb); } } return; discard: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); kfree_skb_reason(skb, reason); } static int ip6_input_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_clear_delivery_time(skb); rcu_read_lock(); ip6_protocol_deliver_rcu(net, skb, 0, false); rcu_read_unlock(); return 0; } int ip6_input(struct sk_buff *skb) { return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_IN, dev_net(skb->dev), NULL, skb, skb->dev, NULL, ip6_input_finish); } EXPORT_SYMBOL_GPL(ip6_input); int ip6_mc_input(struct sk_buff *skb) { int sdif = inet6_sdif(skb); const struct ipv6hdr *hdr; struct net_device *dev; bool deliver; __IP6_UPD_PO_STATS(dev_net(skb_dst(skb)->dev), __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INMCAST, skb->len); /* skb->dev passed may be master dev for vrfs. */ if (sdif) { rcu_read_lock(); dev = dev_get_by_index_rcu(dev_net(skb->dev), sdif); if (!dev) { rcu_read_unlock(); kfree_skb(skb); return -ENODEV; } } else { dev = skb->dev; } hdr = ipv6_hdr(skb); deliver = ipv6_chk_mcast_addr(dev, &hdr->daddr, NULL); if (sdif) rcu_read_unlock(); #ifdef CONFIG_IPV6_MROUTE /* * IPv6 multicast router mode is now supported ;) */ if (atomic_read(&dev_net(skb->dev)->ipv6.devconf_all->mc_forwarding) && !(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)) && likely(!(IP6CB(skb)->flags & IP6SKB_FORWARDED))) { /* * Okay, we try to forward - split and duplicate * packets. */ struct sk_buff *skb2; struct inet6_skb_parm *opt = IP6CB(skb); /* Check for MLD */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { /* Check if this is a mld message */ u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; /* Check if the value of Router Alert * is for MLD (0x0000). */ if (opt->ra == htons(IPV6_OPT_ROUTERALERT_MLD)) { deliver = false; if (!ipv6_ext_hdr(nexthdr)) { /* BUG */ goto out; } offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) goto out; if (ipv6_is_mld(skb, nexthdr, offset)) deliver = true; goto out; } /* unknown RA - process it normally */ } if (deliver) skb2 = skb_clone(skb, GFP_ATOMIC); else { skb2 = skb; skb = NULL; } if (skb2) { ip6_mr_input(skb2); } } out: #endif if (likely(deliver)) ip6_input(skb); else { /* discard */ kfree_skb(skb); } return 0; }
linux-master
net/ipv6/ip6_input.c
#include <linux/notifier.h> #include <linux/socket.h> #include <linux/kernel.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/fib_notifier.h> #include <net/netns/ipv6.h> #include <net/ip6_fib.h> int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifier(nb, event_type, info); } int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info) { info->family = AF_INET6; return call_fib_notifiers(net, event_type, info); } static unsigned int fib6_seq_read(struct net *net) { return fib6_tables_seq_read(net) + fib6_rules_seq_read(net); } static int fib6_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { int err; err = fib6_rules_dump(net, nb, extack); if (err) return err; return fib6_tables_dump(net, nb, extack); } static const struct fib_notifier_ops fib6_notifier_ops_template = { .family = AF_INET6, .fib_seq_read = fib6_seq_read, .fib_dump = fib6_dump, .owner = THIS_MODULE, }; int __net_init fib6_notifier_init(struct net *net) { struct fib_notifier_ops *ops; ops = fib_notifier_ops_register(&fib6_notifier_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); net->ipv6.notifier_ops = ops; return 0; } void __net_exit fib6_notifier_exit(struct net *net) { fib_notifier_ops_unregister(net->ipv6.notifier_ops); }
linux-master
net/ipv6/fib6_notifier.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * CALIPSO - Common Architecture Label IPv6 Security Option * * This is an implementation of the CALIPSO protocol as specified in * RFC 5570. * * Authors: Paul Moore <[email protected]> * Huw Davies <[email protected]> */ /* (c) Copyright Hewlett-Packard Development Company, L.P., 2006, 2008 * (c) Copyright Huw Davies <[email protected]>, 2015 */ #include <linux/init.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/jhash.h> #include <linux/audit.h> #include <linux/slab.h> #include <net/ip.h> #include <net/icmp.h> #include <net/tcp.h> #include <net/netlabel.h> #include <net/calipso.h> #include <linux/atomic.h> #include <linux/bug.h> #include <asm/unaligned.h> #include <linux/crc-ccitt.h> /* Maximium size of the calipso option including * the two-byte TLV header. */ #define CALIPSO_OPT_LEN_MAX (2 + 252) /* Size of the minimum calipso option including * the two-byte TLV header. */ #define CALIPSO_HDR_LEN (2 + 8) /* Maximium size of the calipso option including * the two-byte TLV header and upto 3 bytes of * leading pad and 7 bytes of trailing pad. */ #define CALIPSO_OPT_LEN_MAX_WITH_PAD (3 + CALIPSO_OPT_LEN_MAX + 7) /* Maximium size of u32 aligned buffer required to hold calipso * option. Max of 3 initial pad bytes starting from buffer + 3. * i.e. the worst case is when the previous tlv finishes on 4n + 3. */ #define CALIPSO_MAX_BUFFER (6 + CALIPSO_OPT_LEN_MAX) /* List of available DOI definitions */ static DEFINE_SPINLOCK(calipso_doi_list_lock); static LIST_HEAD(calipso_doi_list); /* Label mapping cache */ int calipso_cache_enabled = 1; int calipso_cache_bucketsize = 10; #define CALIPSO_CACHE_BUCKETBITS 7 #define CALIPSO_CACHE_BUCKETS BIT(CALIPSO_CACHE_BUCKETBITS) #define CALIPSO_CACHE_REORDERLIMIT 10 struct calipso_map_cache_bkt { spinlock_t lock; u32 size; struct list_head list; }; struct calipso_map_cache_entry { u32 hash; unsigned char *key; size_t key_len; struct netlbl_lsm_cache *lsm_data; u32 activity; struct list_head list; }; static struct calipso_map_cache_bkt *calipso_cache; static void calipso_cache_invalidate(void); static void calipso_doi_putdef(struct calipso_doi *doi_def); /* Label Mapping Cache Functions */ /** * calipso_cache_entry_free - Frees a cache entry * @entry: the entry to free * * Description: * This function frees the memory associated with a cache entry including the * LSM cache data if there are no longer any users, i.e. reference count == 0. * */ static void calipso_cache_entry_free(struct calipso_map_cache_entry *entry) { if (entry->lsm_data) netlbl_secattr_cache_free(entry->lsm_data); kfree(entry->key); kfree(entry); } /** * calipso_map_cache_hash - Hashing function for the CALIPSO cache * @key: the hash key * @key_len: the length of the key in bytes * * Description: * The CALIPSO tag hashing function. Returns a 32-bit hash value. * */ static u32 calipso_map_cache_hash(const unsigned char *key, u32 key_len) { return jhash(key, key_len, 0); } /** * calipso_cache_init - Initialize the CALIPSO cache * * Description: * Initializes the CALIPSO label mapping cache, this function should be called * before any of the other functions defined in this file. Returns zero on * success, negative values on error. * */ static int __init calipso_cache_init(void) { u32 iter; calipso_cache = kcalloc(CALIPSO_CACHE_BUCKETS, sizeof(struct calipso_map_cache_bkt), GFP_KERNEL); if (!calipso_cache) return -ENOMEM; for (iter = 0; iter < CALIPSO_CACHE_BUCKETS; iter++) { spin_lock_init(&calipso_cache[iter].lock); calipso_cache[iter].size = 0; INIT_LIST_HEAD(&calipso_cache[iter].list); } return 0; } /** * calipso_cache_invalidate - Invalidates the current CALIPSO cache * * Description: * Invalidates and frees any entries in the CALIPSO cache. Returns zero on * success and negative values on failure. * */ static void calipso_cache_invalidate(void) { struct calipso_map_cache_entry *entry, *tmp_entry; u32 iter; for (iter = 0; iter < CALIPSO_CACHE_BUCKETS; iter++) { spin_lock_bh(&calipso_cache[iter].lock); list_for_each_entry_safe(entry, tmp_entry, &calipso_cache[iter].list, list) { list_del(&entry->list); calipso_cache_entry_free(entry); } calipso_cache[iter].size = 0; spin_unlock_bh(&calipso_cache[iter].lock); } } /** * calipso_cache_check - Check the CALIPSO cache for a label mapping * @key: the buffer to check * @key_len: buffer length in bytes * @secattr: the security attribute struct to use * * Description: * This function checks the cache to see if a label mapping already exists for * the given key. If there is a match then the cache is adjusted and the * @secattr struct is populated with the correct LSM security attributes. The * cache is adjusted in the following manner if the entry is not already the * first in the cache bucket: * * 1. The cache entry's activity counter is incremented * 2. The previous (higher ranking) entry's activity counter is decremented * 3. If the difference between the two activity counters is geater than * CALIPSO_CACHE_REORDERLIMIT the two entries are swapped * * Returns zero on success, -ENOENT for a cache miss, and other negative values * on error. * */ static int calipso_cache_check(const unsigned char *key, u32 key_len, struct netlbl_lsm_secattr *secattr) { u32 bkt; struct calipso_map_cache_entry *entry; struct calipso_map_cache_entry *prev_entry = NULL; u32 hash; if (!calipso_cache_enabled) return -ENOENT; hash = calipso_map_cache_hash(key, key_len); bkt = hash & (CALIPSO_CACHE_BUCKETS - 1); spin_lock_bh(&calipso_cache[bkt].lock); list_for_each_entry(entry, &calipso_cache[bkt].list, list) { if (entry->hash == hash && entry->key_len == key_len && memcmp(entry->key, key, key_len) == 0) { entry->activity += 1; refcount_inc(&entry->lsm_data->refcount); secattr->cache = entry->lsm_data; secattr->flags |= NETLBL_SECATTR_CACHE; secattr->type = NETLBL_NLTYPE_CALIPSO; if (!prev_entry) { spin_unlock_bh(&calipso_cache[bkt].lock); return 0; } if (prev_entry->activity > 0) prev_entry->activity -= 1; if (entry->activity > prev_entry->activity && entry->activity - prev_entry->activity > CALIPSO_CACHE_REORDERLIMIT) { __list_del(entry->list.prev, entry->list.next); __list_add(&entry->list, prev_entry->list.prev, &prev_entry->list); } spin_unlock_bh(&calipso_cache[bkt].lock); return 0; } prev_entry = entry; } spin_unlock_bh(&calipso_cache[bkt].lock); return -ENOENT; } /** * calipso_cache_add - Add an entry to the CALIPSO cache * @calipso_ptr: the CALIPSO option * @secattr: the packet's security attributes * * Description: * Add a new entry into the CALIPSO label mapping cache. Add the new entry to * head of the cache bucket's list, if the cache bucket is out of room remove * the last entry in the list first. It is important to note that there is * currently no checking for duplicate keys. Returns zero on success, * negative values on failure. The key stored starts at calipso_ptr + 2, * i.e. the type and length bytes are not stored, this corresponds to * calipso_ptr[1] bytes of data. * */ static int calipso_cache_add(const unsigned char *calipso_ptr, const struct netlbl_lsm_secattr *secattr) { int ret_val = -EPERM; u32 bkt; struct calipso_map_cache_entry *entry = NULL; struct calipso_map_cache_entry *old_entry = NULL; u32 calipso_ptr_len; if (!calipso_cache_enabled || calipso_cache_bucketsize <= 0) return 0; calipso_ptr_len = calipso_ptr[1]; entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) return -ENOMEM; entry->key = kmemdup(calipso_ptr + 2, calipso_ptr_len, GFP_ATOMIC); if (!entry->key) { ret_val = -ENOMEM; goto cache_add_failure; } entry->key_len = calipso_ptr_len; entry->hash = calipso_map_cache_hash(calipso_ptr, calipso_ptr_len); refcount_inc(&secattr->cache->refcount); entry->lsm_data = secattr->cache; bkt = entry->hash & (CALIPSO_CACHE_BUCKETS - 1); spin_lock_bh(&calipso_cache[bkt].lock); if (calipso_cache[bkt].size < calipso_cache_bucketsize) { list_add(&entry->list, &calipso_cache[bkt].list); calipso_cache[bkt].size += 1; } else { old_entry = list_entry(calipso_cache[bkt].list.prev, struct calipso_map_cache_entry, list); list_del(&old_entry->list); list_add(&entry->list, &calipso_cache[bkt].list); calipso_cache_entry_free(old_entry); } spin_unlock_bh(&calipso_cache[bkt].lock); return 0; cache_add_failure: if (entry) calipso_cache_entry_free(entry); return ret_val; } /* DOI List Functions */ /** * calipso_doi_search - Searches for a DOI definition * @doi: the DOI to search for * * Description: * Search the DOI definition list for a DOI definition with a DOI value that * matches @doi. The caller is responsible for calling rcu_read_[un]lock(). * Returns a pointer to the DOI definition on success and NULL on failure. */ static struct calipso_doi *calipso_doi_search(u32 doi) { struct calipso_doi *iter; list_for_each_entry_rcu(iter, &calipso_doi_list, list) if (iter->doi == doi && refcount_read(&iter->refcount)) return iter; return NULL; } /** * calipso_doi_add - Add a new DOI to the CALIPSO protocol engine * @doi_def: the DOI structure * @audit_info: NetLabel audit information * * Description: * The caller defines a new DOI for use by the CALIPSO engine and calls this * function to add it to the list of acceptable domains. The caller must * ensure that the mapping table specified in @doi_def->map meets all of the * requirements of the mapping type (see calipso.h for details). Returns * zero on success and non-zero on failure. * */ static int calipso_doi_add(struct calipso_doi *doi_def, struct netlbl_audit *audit_info) { int ret_val = -EINVAL; u32 doi; u32 doi_type; struct audit_buffer *audit_buf; doi = doi_def->doi; doi_type = doi_def->type; if (doi_def->doi == CALIPSO_DOI_UNKNOWN) goto doi_add_return; refcount_set(&doi_def->refcount, 1); spin_lock(&calipso_doi_list_lock); if (calipso_doi_search(doi_def->doi)) { spin_unlock(&calipso_doi_list_lock); ret_val = -EEXIST; goto doi_add_return; } list_add_tail_rcu(&doi_def->list, &calipso_doi_list); spin_unlock(&calipso_doi_list_lock); ret_val = 0; doi_add_return: audit_buf = netlbl_audit_start(AUDIT_MAC_CALIPSO_ADD, audit_info); if (audit_buf) { const char *type_str; switch (doi_type) { case CALIPSO_MAP_PASS: type_str = "pass"; break; default: type_str = "(unknown)"; } audit_log_format(audit_buf, " calipso_doi=%u calipso_type=%s res=%u", doi, type_str, ret_val == 0 ? 1 : 0); audit_log_end(audit_buf); } return ret_val; } /** * calipso_doi_free - Frees a DOI definition * @doi_def: the DOI definition * * Description: * This function frees all of the memory associated with a DOI definition. * */ static void calipso_doi_free(struct calipso_doi *doi_def) { kfree(doi_def); } /** * calipso_doi_free_rcu - Frees a DOI definition via the RCU pointer * @entry: the entry's RCU field * * Description: * This function is designed to be used as a callback to the call_rcu() * function so that the memory allocated to the DOI definition can be released * safely. * */ static void calipso_doi_free_rcu(struct rcu_head *entry) { struct calipso_doi *doi_def; doi_def = container_of(entry, struct calipso_doi, rcu); calipso_doi_free(doi_def); } /** * calipso_doi_remove - Remove an existing DOI from the CALIPSO protocol engine * @doi: the DOI value * @audit_info: NetLabel audit information * * Description: * Removes a DOI definition from the CALIPSO engine. The NetLabel routines will * be called to release their own LSM domain mappings as well as our own * domain list. Returns zero on success and negative values on failure. * */ static int calipso_doi_remove(u32 doi, struct netlbl_audit *audit_info) { int ret_val; struct calipso_doi *doi_def; struct audit_buffer *audit_buf; spin_lock(&calipso_doi_list_lock); doi_def = calipso_doi_search(doi); if (!doi_def) { spin_unlock(&calipso_doi_list_lock); ret_val = -ENOENT; goto doi_remove_return; } list_del_rcu(&doi_def->list); spin_unlock(&calipso_doi_list_lock); calipso_doi_putdef(doi_def); ret_val = 0; doi_remove_return: audit_buf = netlbl_audit_start(AUDIT_MAC_CALIPSO_DEL, audit_info); if (audit_buf) { audit_log_format(audit_buf, " calipso_doi=%u res=%u", doi, ret_val == 0 ? 1 : 0); audit_log_end(audit_buf); } return ret_val; } /** * calipso_doi_getdef - Returns a reference to a valid DOI definition * @doi: the DOI value * * Description: * Searches for a valid DOI definition and if one is found it is returned to * the caller. Otherwise NULL is returned. The caller must ensure that * calipso_doi_putdef() is called when the caller is done. * */ static struct calipso_doi *calipso_doi_getdef(u32 doi) { struct calipso_doi *doi_def; rcu_read_lock(); doi_def = calipso_doi_search(doi); if (!doi_def) goto doi_getdef_return; if (!refcount_inc_not_zero(&doi_def->refcount)) doi_def = NULL; doi_getdef_return: rcu_read_unlock(); return doi_def; } /** * calipso_doi_putdef - Releases a reference for the given DOI definition * @doi_def: the DOI definition * * Description: * Releases a DOI definition reference obtained from calipso_doi_getdef(). * */ static void calipso_doi_putdef(struct calipso_doi *doi_def) { if (!doi_def) return; if (!refcount_dec_and_test(&doi_def->refcount)) return; calipso_cache_invalidate(); call_rcu(&doi_def->rcu, calipso_doi_free_rcu); } /** * calipso_doi_walk - Iterate through the DOI definitions * @skip_cnt: skip past this number of DOI definitions, updated * @callback: callback for each DOI definition * @cb_arg: argument for the callback function * * Description: * Iterate over the DOI definition list, skipping the first @skip_cnt entries. * For each entry call @callback, if @callback returns a negative value stop * 'walking' through the list and return. Updates the value in @skip_cnt upon * return. Returns zero on success, negative values on failure. * */ static int calipso_doi_walk(u32 *skip_cnt, int (*callback)(struct calipso_doi *doi_def, void *arg), void *cb_arg) { int ret_val = -ENOENT; u32 doi_cnt = 0; struct calipso_doi *iter_doi; rcu_read_lock(); list_for_each_entry_rcu(iter_doi, &calipso_doi_list, list) if (refcount_read(&iter_doi->refcount) > 0) { if (doi_cnt++ < *skip_cnt) continue; ret_val = callback(iter_doi, cb_arg); if (ret_val < 0) { doi_cnt--; goto doi_walk_return; } } doi_walk_return: rcu_read_unlock(); *skip_cnt = doi_cnt; return ret_val; } /** * calipso_validate - Validate a CALIPSO option * @skb: the packet * @option: the start of the option * * Description: * This routine is called to validate a CALIPSO option. * If the option is valid then %true is returned, otherwise * %false is returned. * * The caller should have already checked that the length of the * option (including the TLV header) is >= 10 and that the catmap * length is consistent with the option length. * * We leave checks on the level and categories to the socket layer. */ bool calipso_validate(const struct sk_buff *skb, const unsigned char *option) { struct calipso_doi *doi_def; bool ret_val; u16 crc, len = option[1] + 2; static const u8 zero[2]; /* The original CRC runs over the option including the TLV header * with the CRC-16 field (at offset 8) zeroed out. */ crc = crc_ccitt(0xffff, option, 8); crc = crc_ccitt(crc, zero, sizeof(zero)); if (len > 10) crc = crc_ccitt(crc, option + 10, len - 10); crc = ~crc; if (option[8] != (crc & 0xff) || option[9] != ((crc >> 8) & 0xff)) return false; rcu_read_lock(); doi_def = calipso_doi_search(get_unaligned_be32(option + 2)); ret_val = !!doi_def; rcu_read_unlock(); return ret_val; } /** * calipso_map_cat_hton - Perform a category mapping from host to network * @doi_def: the DOI definition * @secattr: the security attributes * @net_cat: the zero'd out category bitmap in network/CALIPSO format * @net_cat_len: the length of the CALIPSO bitmap in bytes * * Description: * Perform a label mapping to translate a local MLS category bitmap to the * correct CALIPSO bitmap using the given DOI definition. Returns the minimum * size in bytes of the network bitmap on success, negative values otherwise. * */ static int calipso_map_cat_hton(const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr, unsigned char *net_cat, u32 net_cat_len) { int spot = -1; u32 net_spot_max = 0; u32 net_clen_bits = net_cat_len * 8; for (;;) { spot = netlbl_catmap_walk(secattr->attr.mls.cat, spot + 1); if (spot < 0) break; if (spot >= net_clen_bits) return -ENOSPC; netlbl_bitmap_setbit(net_cat, spot, 1); if (spot > net_spot_max) net_spot_max = spot; } return (net_spot_max / 32 + 1) * 4; } /** * calipso_map_cat_ntoh - Perform a category mapping from network to host * @doi_def: the DOI definition * @net_cat: the category bitmap in network/CALIPSO format * @net_cat_len: the length of the CALIPSO bitmap in bytes * @secattr: the security attributes * * Description: * Perform a label mapping to translate a CALIPSO bitmap to the correct local * MLS category bitmap using the given DOI definition. Returns zero on * success, negative values on failure. * */ static int calipso_map_cat_ntoh(const struct calipso_doi *doi_def, const unsigned char *net_cat, u32 net_cat_len, struct netlbl_lsm_secattr *secattr) { int ret_val; int spot = -1; u32 net_clen_bits = net_cat_len * 8; for (;;) { spot = netlbl_bitmap_walk(net_cat, net_clen_bits, spot + 1, 1); if (spot < 0) { if (spot == -2) return -EFAULT; return 0; } ret_val = netlbl_catmap_setbit(&secattr->attr.mls.cat, spot, GFP_ATOMIC); if (ret_val != 0) return ret_val; } return -EINVAL; } /** * calipso_pad_write - Writes pad bytes in TLV format * @buf: the buffer * @offset: offset from start of buffer to write padding * @count: number of pad bytes to write * * Description: * Write @count bytes of TLV padding into @buffer starting at offset @offset. * @count should be less than 8 - see RFC 4942. * */ static int calipso_pad_write(unsigned char *buf, unsigned int offset, unsigned int count) { if (WARN_ON_ONCE(count >= 8)) return -EINVAL; switch (count) { case 0: break; case 1: buf[offset] = IPV6_TLV_PAD1; break; default: buf[offset] = IPV6_TLV_PADN; buf[offset + 1] = count - 2; if (count > 2) memset(buf + offset + 2, 0, count - 2); break; } return 0; } /** * calipso_genopt - Generate a CALIPSO option * @buf: the option buffer * @start: offset from which to write * @buf_len: the size of opt_buf * @doi_def: the CALIPSO DOI to use * @secattr: the security attributes * * Description: * Generate a CALIPSO option using the DOI definition and security attributes * passed to the function. This also generates upto three bytes of leading * padding that ensures that the option is 4n + 2 aligned. It returns the * number of bytes written (including any initial padding). */ static int calipso_genopt(unsigned char *buf, u32 start, u32 buf_len, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; u32 len, pad; u16 crc; static const unsigned char padding[4] = {2, 1, 0, 3}; unsigned char *calipso; /* CALIPSO has 4n + 2 alignment */ pad = padding[start & 3]; if (buf_len <= start + pad + CALIPSO_HDR_LEN) return -ENOSPC; if ((secattr->flags & NETLBL_SECATTR_MLS_LVL) == 0) return -EPERM; len = CALIPSO_HDR_LEN; if (secattr->flags & NETLBL_SECATTR_MLS_CAT) { ret_val = calipso_map_cat_hton(doi_def, secattr, buf + start + pad + len, buf_len - start - pad - len); if (ret_val < 0) return ret_val; len += ret_val; } calipso_pad_write(buf, start, pad); calipso = buf + start + pad; calipso[0] = IPV6_TLV_CALIPSO; calipso[1] = len - 2; *(__be32 *)(calipso + 2) = htonl(doi_def->doi); calipso[6] = (len - CALIPSO_HDR_LEN) / 4; calipso[7] = secattr->attr.mls.lvl; crc = ~crc_ccitt(0xffff, calipso, len); calipso[8] = crc & 0xff; calipso[9] = (crc >> 8) & 0xff; return pad + len; } /* Hop-by-hop hdr helper functions */ /** * calipso_opt_update - Replaces socket's hop options with a new set * @sk: the socket * @hop: new hop options * * Description: * Replaces @sk's hop options with @hop. @hop may be NULL to leave * the socket with no hop options. * */ static int calipso_opt_update(struct sock *sk, struct ipv6_opt_hdr *hop) { struct ipv6_txoptions *old = txopt_get(inet6_sk(sk)), *txopts; txopts = ipv6_renew_options(sk, old, IPV6_HOPOPTS, hop); txopt_put(old); if (IS_ERR(txopts)) return PTR_ERR(txopts); txopts = ipv6_update_options(sk, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } return 0; } /** * calipso_tlv_len - Returns the length of the TLV * @opt: the option header * @offset: offset of the TLV within the header * * Description: * Returns the length of the TLV option at offset @offset within * the option header @opt. Checks that the entire TLV fits inside * the option header, returns a negative value if this is not the case. */ static int calipso_tlv_len(struct ipv6_opt_hdr *opt, unsigned int offset) { unsigned char *tlv = (unsigned char *)opt; unsigned int opt_len = ipv6_optlen(opt), tlv_len; if (offset < sizeof(*opt) || offset >= opt_len) return -EINVAL; if (tlv[offset] == IPV6_TLV_PAD1) return 1; if (offset + 1 >= opt_len) return -EINVAL; tlv_len = tlv[offset + 1] + 2; if (offset + tlv_len > opt_len) return -EINVAL; return tlv_len; } /** * calipso_opt_find - Finds the CALIPSO option in an IPv6 hop options header * @hop: the hop options header * @start: on return holds the offset of any leading padding * @end: on return holds the offset of the first non-pad TLV after CALIPSO * * Description: * Finds the space occupied by a CALIPSO option (including any leading and * trailing padding). * * If a CALIPSO option exists set @start and @end to the * offsets within @hop of the start of padding before the first * CALIPSO option and the end of padding after the first CALIPSO * option. In this case the function returns 0. * * In the absence of a CALIPSO option, @start and @end will be * set to the start and end of any trailing padding in the header. * This is useful when appending a new option, as the caller may want * to overwrite some of this padding. In this case the function will * return -ENOENT. */ static int calipso_opt_find(struct ipv6_opt_hdr *hop, unsigned int *start, unsigned int *end) { int ret_val = -ENOENT, tlv_len; unsigned int opt_len, offset, offset_s = 0, offset_e = 0; unsigned char *opt = (unsigned char *)hop; opt_len = ipv6_optlen(hop); offset = sizeof(*hop); while (offset < opt_len) { tlv_len = calipso_tlv_len(hop, offset); if (tlv_len < 0) return tlv_len; switch (opt[offset]) { case IPV6_TLV_PAD1: case IPV6_TLV_PADN: if (offset_e) offset_e = offset; break; case IPV6_TLV_CALIPSO: ret_val = 0; offset_e = offset; break; default: if (offset_e == 0) offset_s = offset; else goto out; } offset += tlv_len; } out: if (offset_s) *start = offset_s + calipso_tlv_len(hop, offset_s); else *start = sizeof(*hop); if (offset_e) *end = offset_e + calipso_tlv_len(hop, offset_e); else *end = opt_len; return ret_val; } /** * calipso_opt_insert - Inserts a CALIPSO option into an IPv6 hop opt hdr * @hop: the original hop options header * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Creates a new hop options header based on @hop with a * CALIPSO option added to it. If @hop already contains a CALIPSO * option this is overwritten, otherwise the new option is appended * after any existing options. If @hop is NULL then the new header * will contain just the CALIPSO option and any needed padding. * */ static struct ipv6_opt_hdr * calipso_opt_insert(struct ipv6_opt_hdr *hop, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { unsigned int start, end, buf_len, pad, hop_len; struct ipv6_opt_hdr *new; int ret_val; if (hop) { hop_len = ipv6_optlen(hop); ret_val = calipso_opt_find(hop, &start, &end); if (ret_val && ret_val != -ENOENT) return ERR_PTR(ret_val); } else { hop_len = 0; start = sizeof(*hop); end = 0; } buf_len = hop_len + start - end + CALIPSO_OPT_LEN_MAX_WITH_PAD; new = kzalloc(buf_len, GFP_ATOMIC); if (!new) return ERR_PTR(-ENOMEM); if (start > sizeof(*hop)) memcpy(new, hop, start); ret_val = calipso_genopt((unsigned char *)new, start, buf_len, doi_def, secattr); if (ret_val < 0) { kfree(new); return ERR_PTR(ret_val); } buf_len = start + ret_val; /* At this point buf_len aligns to 4n, so (buf_len & 4) pads to 8n */ pad = ((buf_len & 4) + (end & 7)) & 7; calipso_pad_write((unsigned char *)new, buf_len, pad); buf_len += pad; if (end != hop_len) { memcpy((char *)new + buf_len, (char *)hop + end, hop_len - end); buf_len += hop_len - end; } new->nexthdr = 0; new->hdrlen = buf_len / 8 - 1; return new; } /** * calipso_opt_del - Removes the CALIPSO option from an option header * @hop: the original header * @new: the new header * * Description: * Creates a new header based on @hop without any CALIPSO option. If @hop * doesn't contain a CALIPSO option it returns -ENOENT. If @hop contains * no other non-padding options, it returns zero with @new set to NULL. * Otherwise it returns zero, creates a new header without the CALIPSO * option (and removing as much padding as possible) and returns with * @new set to that header. * */ static int calipso_opt_del(struct ipv6_opt_hdr *hop, struct ipv6_opt_hdr **new) { int ret_val; unsigned int start, end, delta, pad, hop_len; ret_val = calipso_opt_find(hop, &start, &end); if (ret_val) return ret_val; hop_len = ipv6_optlen(hop); if (start == sizeof(*hop) && end == hop_len) { /* There's no other option in the header so return NULL */ *new = NULL; return 0; } delta = (end - start) & ~7; *new = kzalloc(hop_len - delta, GFP_ATOMIC); if (!*new) return -ENOMEM; memcpy(*new, hop, start); (*new)->hdrlen -= delta / 8; pad = (end - start) & 7; calipso_pad_write((unsigned char *)*new, start, pad); if (end != hop_len) memcpy((char *)*new + start + pad, (char *)hop + end, hop_len - end); return 0; } /** * calipso_opt_getattr - Get the security attributes from a memory block * @calipso: the CALIPSO option * @secattr: the security attributes * * Description: * Inspect @calipso and return the security attributes in @secattr. * Returns zero on success and negative values on failure. * */ static int calipso_opt_getattr(const unsigned char *calipso, struct netlbl_lsm_secattr *secattr) { int ret_val = -ENOMSG; u32 doi, len = calipso[1], cat_len = calipso[6] * 4; struct calipso_doi *doi_def; if (cat_len + 8 > len) return -EINVAL; if (calipso_cache_check(calipso + 2, calipso[1], secattr) == 0) return 0; doi = get_unaligned_be32(calipso + 2); rcu_read_lock(); doi_def = calipso_doi_search(doi); if (!doi_def) goto getattr_return; secattr->attr.mls.lvl = calipso[7]; secattr->flags |= NETLBL_SECATTR_MLS_LVL; if (cat_len) { ret_val = calipso_map_cat_ntoh(doi_def, calipso + 10, cat_len, secattr); if (ret_val != 0) { netlbl_catmap_free(secattr->attr.mls.cat); goto getattr_return; } if (secattr->attr.mls.cat) secattr->flags |= NETLBL_SECATTR_MLS_CAT; } secattr->type = NETLBL_NLTYPE_CALIPSO; getattr_return: rcu_read_unlock(); return ret_val; } /* sock functions. */ /** * calipso_sock_getattr - Get the security attributes from a sock * @sk: the sock * @secattr: the security attributes * * Description: * Query @sk to see if there is a CALIPSO option attached to the sock and if * there is return the CALIPSO security attributes in @secattr. This function * requires that @sk be locked, or privately held, but it does not do any * locking itself. Returns zero on success and negative values on failure. * */ static int calipso_sock_getattr(struct sock *sk, struct netlbl_lsm_secattr *secattr) { struct ipv6_opt_hdr *hop; int opt_len, len, ret_val = -ENOMSG, offset; unsigned char *opt; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); if (!txopts || !txopts->hopopt) goto done; hop = txopts->hopopt; opt = (unsigned char *)hop; opt_len = ipv6_optlen(hop); offset = sizeof(*hop); while (offset < opt_len) { len = calipso_tlv_len(hop, offset); if (len < 0) { ret_val = len; goto done; } switch (opt[offset]) { case IPV6_TLV_CALIPSO: if (len < CALIPSO_HDR_LEN) ret_val = -EINVAL; else ret_val = calipso_opt_getattr(&opt[offset], secattr); goto done; default: offset += len; break; } } done: txopt_put(txopts); return ret_val; } /** * calipso_sock_setattr - Add a CALIPSO option to a socket * @sk: the socket * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Set the CALIPSO option on the given socket using the DOI definition and * security attributes passed to the function. This function requires * exclusive access to @sk, which means it either needs to be in the * process of being created or locked. Returns zero on success and negative * values on failure. * */ static int calipso_sock_setattr(struct sock *sk, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; struct ipv6_opt_hdr *old, *new; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); old = NULL; if (txopts) old = txopts->hopopt; new = calipso_opt_insert(old, doi_def, secattr); txopt_put(txopts); if (IS_ERR(new)) return PTR_ERR(new); ret_val = calipso_opt_update(sk, new); kfree(new); return ret_val; } /** * calipso_sock_delattr - Delete the CALIPSO option from a socket * @sk: the socket * * Description: * Removes the CALIPSO option from a socket, if present. * */ static void calipso_sock_delattr(struct sock *sk) { struct ipv6_opt_hdr *new_hop; struct ipv6_txoptions *txopts = txopt_get(inet6_sk(sk)); if (!txopts || !txopts->hopopt) goto done; if (calipso_opt_del(txopts->hopopt, &new_hop)) goto done; calipso_opt_update(sk, new_hop); kfree(new_hop); done: txopt_put(txopts); } /* request sock functions. */ /** * calipso_req_setattr - Add a CALIPSO option to a connection request socket * @req: the connection request socket * @doi_def: the CALIPSO DOI to use * @secattr: the specific security attributes of the socket * * Description: * Set the CALIPSO option on the given socket using the DOI definition and * security attributes passed to the function. Returns zero on success and * negative values on failure. * */ static int calipso_req_setattr(struct request_sock *req, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { struct ipv6_txoptions *txopts; struct inet_request_sock *req_inet = inet_rsk(req); struct ipv6_opt_hdr *old, *new; struct sock *sk = sk_to_full_sk(req_to_sk(req)); if (req_inet->ipv6_opt && req_inet->ipv6_opt->hopopt) old = req_inet->ipv6_opt->hopopt; else old = NULL; new = calipso_opt_insert(old, doi_def, secattr); if (IS_ERR(new)) return PTR_ERR(new); txopts = ipv6_renew_options(sk, req_inet->ipv6_opt, IPV6_HOPOPTS, new); kfree(new); if (IS_ERR(txopts)) return PTR_ERR(txopts); txopts = xchg(&req_inet->ipv6_opt, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } return 0; } /** * calipso_req_delattr - Delete the CALIPSO option from a request socket * @req: the request socket * * Description: * Removes the CALIPSO option from a request socket, if present. * */ static void calipso_req_delattr(struct request_sock *req) { struct inet_request_sock *req_inet = inet_rsk(req); struct ipv6_opt_hdr *new; struct ipv6_txoptions *txopts; struct sock *sk = sk_to_full_sk(req_to_sk(req)); if (!req_inet->ipv6_opt || !req_inet->ipv6_opt->hopopt) return; if (calipso_opt_del(req_inet->ipv6_opt->hopopt, &new)) return; /* Nothing to do */ txopts = ipv6_renew_options(sk, req_inet->ipv6_opt, IPV6_HOPOPTS, new); if (!IS_ERR(txopts)) { txopts = xchg(&req_inet->ipv6_opt, txopts); if (txopts) { atomic_sub(txopts->tot_len, &sk->sk_omem_alloc); txopt_put(txopts); } } kfree(new); } /* skbuff functions. */ /** * calipso_skbuff_optptr - Find the CALIPSO option in the packet * @skb: the packet * * Description: * Parse the packet's IP header looking for a CALIPSO option. Returns a pointer * to the start of the CALIPSO option on success, NULL if one if not found. * */ static unsigned char *calipso_skbuff_optptr(const struct sk_buff *skb) { const struct ipv6hdr *ip6_hdr = ipv6_hdr(skb); int offset; if (ip6_hdr->nexthdr != NEXTHDR_HOP) return NULL; offset = ipv6_find_tlv(skb, sizeof(*ip6_hdr), IPV6_TLV_CALIPSO); if (offset >= 0) return (unsigned char *)ip6_hdr + offset; return NULL; } /** * calipso_skbuff_setattr - Set the CALIPSO option on a packet * @skb: the packet * @doi_def: the CALIPSO DOI to use * @secattr: the security attributes * * Description: * Set the CALIPSO option on the given packet based on the security attributes. * Returns a pointer to the IP header on success and NULL on failure. * */ static int calipso_skbuff_setattr(struct sk_buff *skb, const struct calipso_doi *doi_def, const struct netlbl_lsm_secattr *secattr) { int ret_val; struct ipv6hdr *ip6_hdr; struct ipv6_opt_hdr *hop; unsigned char buf[CALIPSO_MAX_BUFFER]; int len_delta, new_end, pad, payload; unsigned int start, end; ip6_hdr = ipv6_hdr(skb); if (ip6_hdr->nexthdr == NEXTHDR_HOP) { hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); ret_val = calipso_opt_find(hop, &start, &end); if (ret_val && ret_val != -ENOENT) return ret_val; } else { start = 0; end = 0; } memset(buf, 0, sizeof(buf)); ret_val = calipso_genopt(buf, start & 3, sizeof(buf), doi_def, secattr); if (ret_val < 0) return ret_val; new_end = start + ret_val; /* At this point new_end aligns to 4n, so (new_end & 4) pads to 8n */ pad = ((new_end & 4) + (end & 7)) & 7; len_delta = new_end - (int)end + pad; ret_val = skb_cow(skb, skb_headroom(skb) + len_delta); if (ret_val < 0) return ret_val; ip6_hdr = ipv6_hdr(skb); /* Reset as skb_cow() may have moved it */ if (len_delta) { if (len_delta > 0) skb_push(skb, len_delta); else skb_pull(skb, -len_delta); memmove((char *)ip6_hdr - len_delta, ip6_hdr, sizeof(*ip6_hdr) + start); skb_reset_network_header(skb); ip6_hdr = ipv6_hdr(skb); payload = ntohs(ip6_hdr->payload_len); ip6_hdr->payload_len = htons(payload + len_delta); } hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); if (start == 0) { struct ipv6_opt_hdr *new_hop = (struct ipv6_opt_hdr *)buf; new_hop->nexthdr = ip6_hdr->nexthdr; new_hop->hdrlen = len_delta / 8 - 1; ip6_hdr->nexthdr = NEXTHDR_HOP; } else { hop->hdrlen += len_delta / 8; } memcpy((char *)hop + start, buf + (start & 3), new_end - start); calipso_pad_write((unsigned char *)hop, new_end, pad); return 0; } /** * calipso_skbuff_delattr - Delete any CALIPSO options from a packet * @skb: the packet * * Description: * Removes any and all CALIPSO options from the given packet. Returns zero on * success, negative values on failure. * */ static int calipso_skbuff_delattr(struct sk_buff *skb) { int ret_val; struct ipv6hdr *ip6_hdr; struct ipv6_opt_hdr *old_hop; u32 old_hop_len, start = 0, end = 0, delta, size, pad; if (!calipso_skbuff_optptr(skb)) return 0; /* since we are changing the packet we should make a copy */ ret_val = skb_cow(skb, skb_headroom(skb)); if (ret_val < 0) return ret_val; ip6_hdr = ipv6_hdr(skb); old_hop = (struct ipv6_opt_hdr *)(ip6_hdr + 1); old_hop_len = ipv6_optlen(old_hop); ret_val = calipso_opt_find(old_hop, &start, &end); if (ret_val) return ret_val; if (start == sizeof(*old_hop) && end == old_hop_len) { /* There's no other option in the header so we delete * the whole thing. */ delta = old_hop_len; size = sizeof(*ip6_hdr); ip6_hdr->nexthdr = old_hop->nexthdr; } else { delta = (end - start) & ~7; if (delta) old_hop->hdrlen -= delta / 8; pad = (end - start) & 7; size = sizeof(*ip6_hdr) + start + pad; calipso_pad_write((unsigned char *)old_hop, start, pad); } if (delta) { skb_pull(skb, delta); memmove((char *)ip6_hdr + delta, ip6_hdr, size); skb_reset_network_header(skb); } return 0; } static const struct netlbl_calipso_ops ops = { .doi_add = calipso_doi_add, .doi_free = calipso_doi_free, .doi_remove = calipso_doi_remove, .doi_getdef = calipso_doi_getdef, .doi_putdef = calipso_doi_putdef, .doi_walk = calipso_doi_walk, .sock_getattr = calipso_sock_getattr, .sock_setattr = calipso_sock_setattr, .sock_delattr = calipso_sock_delattr, .req_setattr = calipso_req_setattr, .req_delattr = calipso_req_delattr, .opt_getattr = calipso_opt_getattr, .skbuff_optptr = calipso_skbuff_optptr, .skbuff_setattr = calipso_skbuff_setattr, .skbuff_delattr = calipso_skbuff_delattr, .cache_invalidate = calipso_cache_invalidate, .cache_add = calipso_cache_add }; /** * calipso_init - Initialize the CALIPSO module * * Description: * Initialize the CALIPSO module and prepare it for use. Returns zero on * success and negative values on failure. * */ int __init calipso_init(void) { int ret_val; ret_val = calipso_cache_init(); if (!ret_val) netlbl_calipso_ops_register(&ops); return ret_val; } void calipso_exit(void) { netlbl_calipso_ops_register(NULL); calipso_cache_invalidate(); kfree(calipso_cache); }
linux-master
net/ipv6/calipso.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * common UDP/RAW code * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> */ #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/route.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/icmp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/tcp_states.h> #include <net/dsfield.h> #include <net/sock_reuseport.h> #include <linux/errqueue.h> #include <linux/uaccess.h> static bool ipv6_mapped_addr_any(const struct in6_addr *a) { return ipv6_addr_v4mapped(a) && (a->s6_addr32[3] == 0); } static void ip6_datagram_flow_key_init(struct flowi6 *fl6, const struct sock *sk) { const struct inet_sock *inet = inet_sk(sk); const struct ipv6_pinfo *np = inet6_sk(sk); int oif = sk->sk_bound_dev_if; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = sk->sk_protocol; fl6->daddr = sk->sk_v6_daddr; fl6->saddr = np->saddr; fl6->flowi6_mark = sk->sk_mark; fl6->fl6_dport = inet->inet_dport; fl6->fl6_sport = inet->inet_sport; fl6->flowlabel = ip6_make_flowinfo(np->tclass, np->flow_label); fl6->flowi6_uid = sk->sk_uid; if (!oif) oif = np->sticky_pktinfo.ipi6_ifindex; if (!oif) { if (ipv6_addr_is_multicast(&fl6->daddr)) oif = np->mcast_oif; else oif = np->ucast_oif; } fl6->flowi6_oif = oif; security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6)); } int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr) { struct ip6_flowlabel *flowlabel = NULL; struct in6_addr *final_p, final; struct ipv6_txoptions *opt; struct dst_entry *dst; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct flowi6 fl6; int err = 0; if (np->sndflow && (np->flow_label & IPV6_FLOWLABEL_MASK)) { flowlabel = fl6_sock_lookup(sk, np->flow_label); if (IS_ERR(flowlabel)) return -EINVAL; } ip6_datagram_flow_key_init(&fl6, sk); rcu_read_lock(); opt = flowlabel ? flowlabel->opt : rcu_dereference(np->opt); final_p = fl6_update_dst(&fl6, opt, &final); rcu_read_unlock(); dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto out; } if (fix_sk_saddr) { if (ipv6_addr_any(&np->saddr)) np->saddr = fl6.saddr; if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) { sk->sk_v6_rcv_saddr = fl6.saddr; inet->inet_rcv_saddr = LOOPBACK4_IPV6; if (sk->sk_prot->rehash) sk->sk_prot->rehash(sk); } } ip6_sk_dst_store_flow(sk, dst, &fl6); out: fl6_sock_release(flowlabel); return err; } void ip6_datagram_release_cb(struct sock *sk) { struct dst_entry *dst; if (ipv6_addr_v4mapped(&sk->sk_v6_daddr)) return; rcu_read_lock(); dst = __sk_dst_get(sk); if (!dst || !dst->obsolete || dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) { rcu_read_unlock(); return; } rcu_read_unlock(); ip6_datagram_dst_update(sk, false); } EXPORT_SYMBOL_GPL(ip6_datagram_release_cb); int __ip6_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *daddr, old_daddr; __be32 fl6_flowlabel = 0; __be32 old_fl6_flowlabel; __be16 old_dport; int addr_type; int err; if (usin->sin6_family == AF_INET) { if (ipv6_only_sock(sk)) return -EAFNOSUPPORT; err = __ip4_datagram_connect(sk, uaddr, addr_len); goto ipv4_connected; } if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (usin->sin6_family != AF_INET6) return -EAFNOSUPPORT; if (np->sndflow) fl6_flowlabel = usin->sin6_flowinfo & IPV6_FLOWINFO_MASK; if (ipv6_addr_any(&usin->sin6_addr)) { /* * connect to self */ if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) ipv6_addr_set_v4mapped(htonl(INADDR_LOOPBACK), &usin->sin6_addr); else usin->sin6_addr = in6addr_loopback; } addr_type = ipv6_addr_type(&usin->sin6_addr); daddr = &usin->sin6_addr; if (addr_type & IPV6_ADDR_MAPPED) { struct sockaddr_in sin; if (ipv6_only_sock(sk)) { err = -ENETUNREACH; goto out; } sin.sin_family = AF_INET; sin.sin_addr.s_addr = daddr->s6_addr32[3]; sin.sin_port = usin->sin6_port; err = __ip4_datagram_connect(sk, (struct sockaddr *) &sin, sizeof(sin)); ipv4_connected: if (err) goto out; ipv6_addr_set_v4mapped(inet->inet_daddr, &sk->sk_v6_daddr); if (ipv6_addr_any(&np->saddr) || ipv6_mapped_addr_any(&np->saddr)) ipv6_addr_set_v4mapped(inet->inet_saddr, &np->saddr); if (ipv6_addr_any(&sk->sk_v6_rcv_saddr) || ipv6_mapped_addr_any(&sk->sk_v6_rcv_saddr)) { ipv6_addr_set_v4mapped(inet->inet_rcv_saddr, &sk->sk_v6_rcv_saddr); if (sk->sk_prot->rehash) sk->sk_prot->rehash(sk); } goto out; } if (__ipv6_addr_needs_scope_id(addr_type)) { if (addr_len >= sizeof(struct sockaddr_in6) && usin->sin6_scope_id) { if (!sk_dev_equal_l3scope(sk, usin->sin6_scope_id)) { err = -EINVAL; goto out; } WRITE_ONCE(sk->sk_bound_dev_if, usin->sin6_scope_id); } if (!sk->sk_bound_dev_if && (addr_type & IPV6_ADDR_MULTICAST)) WRITE_ONCE(sk->sk_bound_dev_if, np->mcast_oif); /* Connect to link-local address requires an interface */ if (!sk->sk_bound_dev_if) { err = -EINVAL; goto out; } } /* save the current peer information before updating it */ old_daddr = sk->sk_v6_daddr; old_fl6_flowlabel = np->flow_label; old_dport = inet->inet_dport; sk->sk_v6_daddr = *daddr; np->flow_label = fl6_flowlabel; inet->inet_dport = usin->sin6_port; /* * Check for a route to destination an obtain the * destination cache for it. */ err = ip6_datagram_dst_update(sk, true); if (err) { /* Restore the socket peer info, to keep it consistent with * the old socket state */ sk->sk_v6_daddr = old_daddr; np->flow_label = old_fl6_flowlabel; inet->inet_dport = old_dport; goto out; } reuseport_has_conns_set(sk); sk->sk_state = TCP_ESTABLISHED; sk_set_txhash(sk); out: return err; } EXPORT_SYMBOL_GPL(__ip6_datagram_connect); int ip6_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { int res; lock_sock(sk); res = __ip6_datagram_connect(sk, uaddr, addr_len); release_sock(sk); return res; } EXPORT_SYMBOL_GPL(ip6_datagram_connect); int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *uaddr, int addr_len) { DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, uaddr); if (sin6->sin6_family != AF_INET6) return -EAFNOSUPPORT; return ip6_datagram_connect(sk, uaddr, addr_len); } EXPORT_SYMBOL_GPL(ip6_datagram_connect_v6_only); static void ipv6_icmp_error_rfc4884(const struct sk_buff *skb, struct sock_ee_data_rfc4884 *out) { switch (icmp6_hdr(skb)->icmp6_type) { case ICMPV6_TIME_EXCEED: case ICMPV6_DEST_UNREACH: ip_icmp_error_rfc4884(skb, out, sizeof(struct icmp6hdr), icmp6_hdr(skb)->icmp6_datagram_len * 8); } } void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload) { struct ipv6_pinfo *np = inet6_sk(sk); struct icmp6hdr *icmph = icmp6_hdr(skb); struct sock_exterr_skb *serr; if (!np->recverr) return; skb = skb_clone(skb, GFP_ATOMIC); if (!skb) return; skb->protocol = htons(ETH_P_IPV6); serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_ICMP6; serr->ee.ee_type = icmph->icmp6_type; serr->ee.ee_code = icmph->icmp6_code; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&(((struct ipv6hdr *)(icmph + 1))->daddr) - skb_network_header(skb); serr->port = port; __skb_pull(skb, payload - skb->data); if (inet6_sk(sk)->recverr_rfc4884) ipv6_icmp_error_rfc4884(skb, &serr->ee.ee_rfc4884); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb)) kfree_skb(skb); } EXPORT_SYMBOL_GPL(ipv6_icmp_error); void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info) { const struct ipv6_pinfo *np = inet6_sk(sk); struct sock_exterr_skb *serr; struct ipv6hdr *iph; struct sk_buff *skb; if (!np->recverr) return; skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); if (!skb) return; skb->protocol = htons(ETH_P_IPV6); skb_put(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); iph = ipv6_hdr(skb); iph->daddr = fl6->daddr; ip6_flow_hdr(iph, 0, 0); serr = SKB_EXT_ERR(skb); serr->ee.ee_errno = err; serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL; serr->ee.ee_type = 0; serr->ee.ee_code = 0; serr->ee.ee_pad = 0; serr->ee.ee_info = info; serr->ee.ee_data = 0; serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb); serr->port = fl6->fl6_dport; __skb_pull(skb, skb_tail_pointer(skb) - skb->data); skb_reset_transport_header(skb); if (sock_queue_err_skb(sk, skb)) kfree_skb(skb); } void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6hdr *iph; struct sk_buff *skb; struct ip6_mtuinfo *mtu_info; if (!np->rxopt.bits.rxpmtu) return; skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); if (!skb) return; skb_put(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); iph = ipv6_hdr(skb); iph->daddr = fl6->daddr; mtu_info = IP6CBMTU(skb); mtu_info->ip6m_mtu = mtu; mtu_info->ip6m_addr.sin6_family = AF_INET6; mtu_info->ip6m_addr.sin6_port = 0; mtu_info->ip6m_addr.sin6_flowinfo = 0; mtu_info->ip6m_addr.sin6_scope_id = fl6->flowi6_oif; mtu_info->ip6m_addr.sin6_addr = ipv6_hdr(skb)->daddr; __skb_pull(skb, skb_tail_pointer(skb) - skb->data); skb_reset_transport_header(skb); skb = xchg(&np->rxpmtu, skb); kfree_skb(skb); } /* For some errors we have valid addr_offset even with zero payload and * zero port. Also, addr_offset should be supported if port is set. */ static inline bool ipv6_datagram_support_addr(struct sock_exterr_skb *serr) { return serr->ee.ee_origin == SO_EE_ORIGIN_ICMP6 || serr->ee.ee_origin == SO_EE_ORIGIN_ICMP || serr->ee.ee_origin == SO_EE_ORIGIN_LOCAL || serr->port; } /* IPv6 supports cmsg on all origins aside from SO_EE_ORIGIN_LOCAL. * * At one point, excluding local errors was a quick test to identify icmp/icmp6 * errors. This is no longer true, but the test remained, so the v6 stack, * unlike v4, also honors cmsg requests on all wifi and timestamp errors. */ static bool ip6_datagram_support_cmsg(struct sk_buff *skb, struct sock_exterr_skb *serr) { if (serr->ee.ee_origin == SO_EE_ORIGIN_ICMP || serr->ee.ee_origin == SO_EE_ORIGIN_ICMP6) return true; if (serr->ee.ee_origin == SO_EE_ORIGIN_LOCAL) return false; if (!IP6CB(skb)->iif) return false; return true; } /* * Handle MSG_ERRQUEUE */ int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct sock_exterr_skb *serr; struct sk_buff *skb; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin, msg->msg_name); struct { struct sock_extended_err ee; struct sockaddr_in6 offender; } errhdr; int err; int copied; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (!skb) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (unlikely(err)) { kfree_skb(skb); return err; } sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); if (sin && ipv6_datagram_support_addr(serr)) { const unsigned char *nh = skb_network_header(skb); sin->sin6_family = AF_INET6; sin->sin6_flowinfo = 0; sin->sin6_port = serr->port; if (skb->protocol == htons(ETH_P_IPV6)) { const struct ipv6hdr *ip6h = container_of((struct in6_addr *)(nh + serr->addr_offset), struct ipv6hdr, daddr); sin->sin6_addr = ip6h->daddr; if (np->sndflow) sin->sin6_flowinfo = ip6_flowinfo(ip6h); sin->sin6_scope_id = ipv6_iface_scope_id(&sin->sin6_addr, IP6CB(skb)->iif); } else { ipv6_addr_set_v4mapped(*(__be32 *)(nh + serr->addr_offset), &sin->sin6_addr); sin->sin6_scope_id = 0; } *addr_len = sizeof(*sin); } memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err)); sin = &errhdr.offender; memset(sin, 0, sizeof(*sin)); if (ip6_datagram_support_cmsg(skb, serr)) { sin->sin6_family = AF_INET6; if (np->rxopt.all) ip6_datagram_recv_common_ctl(sk, msg, skb); if (skb->protocol == htons(ETH_P_IPV6)) { sin->sin6_addr = ipv6_hdr(skb)->saddr; if (np->rxopt.all) ip6_datagram_recv_specific_ctl(sk, msg, skb); sin->sin6_scope_id = ipv6_iface_scope_id(&sin->sin6_addr, IP6CB(skb)->iif); } else { ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr, &sin->sin6_addr); if (inet_cmsg_flags(inet_sk(sk))) ip_cmsg_recv(msg, skb); } } put_cmsg(msg, SOL_IPV6, IPV6_RECVERR, sizeof(errhdr), &errhdr); /* Now we could try to dump offended packet options */ msg->msg_flags |= MSG_ERRQUEUE; err = copied; consume_skb(skb); out: return err; } EXPORT_SYMBOL_GPL(ipv6_recv_error); /* * Handle IPV6_RECVPATHMTU */ int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct sk_buff *skb; struct ip6_mtuinfo mtu_info; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin, msg->msg_name); int err; int copied; err = -EAGAIN; skb = xchg(&np->rxpmtu, NULL); if (!skb) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free_skb; sock_recv_timestamp(msg, sk, skb); memcpy(&mtu_info, IP6CBMTU(skb), sizeof(mtu_info)); if (sin) { sin->sin6_family = AF_INET6; sin->sin6_flowinfo = 0; sin->sin6_port = 0; sin->sin6_scope_id = mtu_info.ip6m_addr.sin6_scope_id; sin->sin6_addr = mtu_info.ip6m_addr.sin6_addr; *addr_len = sizeof(*sin); } put_cmsg(msg, SOL_IPV6, IPV6_PATHMTU, sizeof(mtu_info), &mtu_info); err = copied; out_free_skb: kfree_skb(skb); out: return err; } void ip6_datagram_recv_common_ctl(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { struct ipv6_pinfo *np = inet6_sk(sk); bool is_ipv6 = skb->protocol == htons(ETH_P_IPV6); if (np->rxopt.bits.rxinfo) { struct in6_pktinfo src_info; if (is_ipv6) { src_info.ipi6_ifindex = IP6CB(skb)->iif; src_info.ipi6_addr = ipv6_hdr(skb)->daddr; } else { src_info.ipi6_ifindex = PKTINFO_SKB_CB(skb)->ipi_ifindex; ipv6_addr_set_v4mapped(ip_hdr(skb)->daddr, &src_info.ipi6_addr); } if (src_info.ipi6_ifindex >= 0) put_cmsg(msg, SOL_IPV6, IPV6_PKTINFO, sizeof(src_info), &src_info); } } void ip6_datagram_recv_specific_ctl(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { struct ipv6_pinfo *np = inet6_sk(sk); struct inet6_skb_parm *opt = IP6CB(skb); unsigned char *nh = skb_network_header(skb); if (np->rxopt.bits.rxhlim) { int hlim = ipv6_hdr(skb)->hop_limit; put_cmsg(msg, SOL_IPV6, IPV6_HOPLIMIT, sizeof(hlim), &hlim); } if (np->rxopt.bits.rxtclass) { int tclass = ipv6_get_dsfield(ipv6_hdr(skb)); put_cmsg(msg, SOL_IPV6, IPV6_TCLASS, sizeof(tclass), &tclass); } if (np->rxopt.bits.rxflow) { __be32 flowinfo = ip6_flowinfo((struct ipv6hdr *)nh); if (flowinfo) put_cmsg(msg, SOL_IPV6, IPV6_FLOWINFO, sizeof(flowinfo), &flowinfo); } /* HbH is allowed only once */ if (np->rxopt.bits.hopopts && (opt->flags & IP6SKB_HOPBYHOP)) { u8 *ptr = nh + sizeof(struct ipv6hdr); put_cmsg(msg, SOL_IPV6, IPV6_HOPOPTS, (ptr[1]+1)<<3, ptr); } if (opt->lastopt && (np->rxopt.bits.dstopts || np->rxopt.bits.srcrt)) { /* * Silly enough, but we need to reparse in order to * report extension headers (except for HbH) * in order. * * Also note that IPV6_RECVRTHDRDSTOPTS is NOT * (and WILL NOT be) defined because * IPV6_RECVDSTOPTS is more generic. --yoshfuji */ unsigned int off = sizeof(struct ipv6hdr); u8 nexthdr = ipv6_hdr(skb)->nexthdr; while (off <= opt->lastopt) { unsigned int len; u8 *ptr = nh + off; switch (nexthdr) { case IPPROTO_DSTOPTS: nexthdr = ptr[0]; len = (ptr[1] + 1) << 3; if (np->rxopt.bits.dstopts) put_cmsg(msg, SOL_IPV6, IPV6_DSTOPTS, len, ptr); break; case IPPROTO_ROUTING: nexthdr = ptr[0]; len = (ptr[1] + 1) << 3; if (np->rxopt.bits.srcrt) put_cmsg(msg, SOL_IPV6, IPV6_RTHDR, len, ptr); break; case IPPROTO_AH: nexthdr = ptr[0]; len = (ptr[1] + 2) << 2; break; default: nexthdr = ptr[0]; len = (ptr[1] + 1) << 3; break; } off += len; } } /* socket options in old style */ if (np->rxopt.bits.rxoinfo) { struct in6_pktinfo src_info; src_info.ipi6_ifindex = opt->iif; src_info.ipi6_addr = ipv6_hdr(skb)->daddr; put_cmsg(msg, SOL_IPV6, IPV6_2292PKTINFO, sizeof(src_info), &src_info); } if (np->rxopt.bits.rxohlim) { int hlim = ipv6_hdr(skb)->hop_limit; put_cmsg(msg, SOL_IPV6, IPV6_2292HOPLIMIT, sizeof(hlim), &hlim); } if (np->rxopt.bits.ohopopts && (opt->flags & IP6SKB_HOPBYHOP)) { u8 *ptr = nh + sizeof(struct ipv6hdr); put_cmsg(msg, SOL_IPV6, IPV6_2292HOPOPTS, (ptr[1]+1)<<3, ptr); } if (np->rxopt.bits.odstopts && opt->dst0) { u8 *ptr = nh + opt->dst0; put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr); } if (np->rxopt.bits.osrcrt && opt->srcrt) { struct ipv6_rt_hdr *rthdr = (struct ipv6_rt_hdr *)(nh + opt->srcrt); put_cmsg(msg, SOL_IPV6, IPV6_2292RTHDR, (rthdr->hdrlen+1) << 3, rthdr); } if (np->rxopt.bits.odstopts && opt->dst1) { u8 *ptr = nh + opt->dst1; put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr); } if (np->rxopt.bits.rxorigdstaddr) { struct sockaddr_in6 sin6; __be16 _ports[2], *ports; ports = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_ports), &_ports); if (ports) { /* All current transport protocols have the port numbers in the * first four bytes of the transport header and this function is * written with this assumption in mind. */ sin6.sin6_family = AF_INET6; sin6.sin6_addr = ipv6_hdr(skb)->daddr; sin6.sin6_port = ports[1]; sin6.sin6_flowinfo = 0; sin6.sin6_scope_id = ipv6_iface_scope_id(&ipv6_hdr(skb)->daddr, opt->iif); put_cmsg(msg, SOL_IPV6, IPV6_ORIGDSTADDR, sizeof(sin6), &sin6); } } if (np->rxopt.bits.recvfragsize && opt->frag_max_size) { int val = opt->frag_max_size; put_cmsg(msg, SOL_IPV6, IPV6_RECVFRAGSIZE, sizeof(val), &val); } } void ip6_datagram_recv_ctl(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { ip6_datagram_recv_common_ctl(sk, msg, skb); ip6_datagram_recv_specific_ctl(sk, msg, skb); } EXPORT_SYMBOL_GPL(ip6_datagram_recv_ctl); int ip6_datagram_send_ctl(struct net *net, struct sock *sk, struct msghdr *msg, struct flowi6 *fl6, struct ipcm6_cookie *ipc6) { struct in6_pktinfo *src_info; struct cmsghdr *cmsg; struct ipv6_rt_hdr *rthdr; struct ipv6_opt_hdr *hdr; struct ipv6_txoptions *opt = ipc6->opt; int len; int err = 0; for_each_cmsghdr(cmsg, msg) { int addr_type; if (!CMSG_OK(msg, cmsg)) { err = -EINVAL; goto exit_f; } if (cmsg->cmsg_level == SOL_SOCKET) { err = __sock_cmsg_send(sk, cmsg, &ipc6->sockc); if (err) return err; continue; } if (cmsg->cmsg_level != SOL_IPV6) continue; switch (cmsg->cmsg_type) { case IPV6_PKTINFO: case IPV6_2292PKTINFO: { struct net_device *dev = NULL; int src_idx; if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct in6_pktinfo))) { err = -EINVAL; goto exit_f; } src_info = (struct in6_pktinfo *)CMSG_DATA(cmsg); src_idx = src_info->ipi6_ifindex; if (src_idx) { if (fl6->flowi6_oif && src_idx != fl6->flowi6_oif && (READ_ONCE(sk->sk_bound_dev_if) != fl6->flowi6_oif || !sk_dev_equal_l3scope(sk, src_idx))) return -EINVAL; fl6->flowi6_oif = src_idx; } addr_type = __ipv6_addr_type(&src_info->ipi6_addr); rcu_read_lock(); if (fl6->flowi6_oif) { dev = dev_get_by_index_rcu(net, fl6->flowi6_oif); if (!dev) { rcu_read_unlock(); return -ENODEV; } } else if (addr_type & IPV6_ADDR_LINKLOCAL) { rcu_read_unlock(); return -EINVAL; } if (addr_type != IPV6_ADDR_ANY) { int strict = __ipv6_addr_src_scope(addr_type) <= IPV6_ADDR_SCOPE_LINKLOCAL; if (!ipv6_can_nonlocal_bind(net, inet_sk(sk)) && !ipv6_chk_addr_and_flags(net, &src_info->ipi6_addr, dev, !strict, 0, IFA_F_TENTATIVE) && !ipv6_chk_acast_addr_src(net, dev, &src_info->ipi6_addr)) err = -EINVAL; else fl6->saddr = src_info->ipi6_addr; } rcu_read_unlock(); if (err) goto exit_f; break; } case IPV6_FLOWINFO: if (cmsg->cmsg_len < CMSG_LEN(4)) { err = -EINVAL; goto exit_f; } if (fl6->flowlabel&IPV6_FLOWINFO_MASK) { if ((fl6->flowlabel^*(__be32 *)CMSG_DATA(cmsg))&~IPV6_FLOWINFO_MASK) { err = -EINVAL; goto exit_f; } } fl6->flowlabel = IPV6_FLOWINFO_MASK & *(__be32 *)CMSG_DATA(cmsg); break; case IPV6_2292HOPOPTS: case IPV6_HOPOPTS: if (opt->hopopt || cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) { err = -EINVAL; goto exit_f; } hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg); len = ((hdr->hdrlen + 1) << 3); if (cmsg->cmsg_len < CMSG_LEN(len)) { err = -EINVAL; goto exit_f; } if (!ns_capable(net->user_ns, CAP_NET_RAW)) { err = -EPERM; goto exit_f; } opt->opt_nflen += len; opt->hopopt = hdr; break; case IPV6_2292DSTOPTS: if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) { err = -EINVAL; goto exit_f; } hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg); len = ((hdr->hdrlen + 1) << 3); if (cmsg->cmsg_len < CMSG_LEN(len)) { err = -EINVAL; goto exit_f; } if (!ns_capable(net->user_ns, CAP_NET_RAW)) { err = -EPERM; goto exit_f; } if (opt->dst1opt) { err = -EINVAL; goto exit_f; } opt->opt_flen += len; opt->dst1opt = hdr; break; case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) { err = -EINVAL; goto exit_f; } hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg); len = ((hdr->hdrlen + 1) << 3); if (cmsg->cmsg_len < CMSG_LEN(len)) { err = -EINVAL; goto exit_f; } if (!ns_capable(net->user_ns, CAP_NET_RAW)) { err = -EPERM; goto exit_f; } if (cmsg->cmsg_type == IPV6_DSTOPTS) { opt->opt_flen += len; opt->dst1opt = hdr; } else { opt->opt_nflen += len; opt->dst0opt = hdr; } break; case IPV6_2292RTHDR: case IPV6_RTHDR: if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_rt_hdr))) { err = -EINVAL; goto exit_f; } rthdr = (struct ipv6_rt_hdr *)CMSG_DATA(cmsg); switch (rthdr->type) { #if IS_ENABLED(CONFIG_IPV6_MIP6) case IPV6_SRCRT_TYPE_2: if (rthdr->hdrlen != 2 || rthdr->segments_left != 1) { err = -EINVAL; goto exit_f; } break; #endif default: err = -EINVAL; goto exit_f; } len = ((rthdr->hdrlen + 1) << 3); if (cmsg->cmsg_len < CMSG_LEN(len)) { err = -EINVAL; goto exit_f; } /* segments left must also match */ if ((rthdr->hdrlen >> 1) != rthdr->segments_left) { err = -EINVAL; goto exit_f; } opt->opt_nflen += len; opt->srcrt = rthdr; if (cmsg->cmsg_type == IPV6_2292RTHDR && opt->dst1opt) { int dsthdrlen = ((opt->dst1opt->hdrlen+1)<<3); opt->opt_nflen += dsthdrlen; opt->dst0opt = opt->dst1opt; opt->dst1opt = NULL; opt->opt_flen -= dsthdrlen; } break; case IPV6_2292HOPLIMIT: case IPV6_HOPLIMIT: if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) { err = -EINVAL; goto exit_f; } ipc6->hlimit = *(int *)CMSG_DATA(cmsg); if (ipc6->hlimit < -1 || ipc6->hlimit > 0xff) { err = -EINVAL; goto exit_f; } break; case IPV6_TCLASS: { int tc; err = -EINVAL; if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) goto exit_f; tc = *(int *)CMSG_DATA(cmsg); if (tc < -1 || tc > 0xff) goto exit_f; err = 0; ipc6->tclass = tc; break; } case IPV6_DONTFRAG: { int df; err = -EINVAL; if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) goto exit_f; df = *(int *)CMSG_DATA(cmsg); if (df < 0 || df > 1) goto exit_f; err = 0; ipc6->dontfrag = df; break; } default: net_dbg_ratelimited("invalid cmsg type: %d\n", cmsg->cmsg_type); err = -EINVAL; goto exit_f; } } exit_f: return err; } EXPORT_SYMBOL_GPL(ip6_datagram_send_ctl); void __ip6_dgram_sock_seq_show(struct seq_file *seq, struct sock *sp, __u16 srcp, __u16 destp, int rqueue, int bucket) { const struct in6_addr *dest, *src; dest = &sp->sk_v6_daddr; src = &sp->sk_v6_rcv_saddr; seq_printf(seq, "%5d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u\n", bucket, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], srcp, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], destp, sp->sk_state, sk_wmem_alloc_get(sp), rqueue, 0, 0L, 0, from_kuid_munged(seq_user_ns(seq), sock_i_uid(sp)), 0, sock_i_ino(sp), refcount_read(&sp->sk_refcnt), sp, atomic_read(&sp->sk_drops)); }
linux-master
net/ipv6/datagram.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPV6 GSO/GRO offload support * Linux INET6 implementation * * TCPv6 GSO/GRO support */ #include <linux/indirect_call_wrapper.h> #include <linux/skbuff.h> #include <net/gro.h> #include <net/protocol.h> #include <net/tcp.h> #include <net/ip6_checksum.h> #include "ip6_offload.h" INDIRECT_CALLABLE_SCOPE struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb) { /* Don't bother verifying checksum if we're going to flush anyway. */ if (!NAPI_GRO_CB(skb)->flush && skb_gro_checksum_validate(skb, IPPROTO_TCP, ip6_gro_compute_pseudo)) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } return tcp_gro_receive(head, skb); } INDIRECT_CALLABLE_SCOPE int tcp6_gro_complete(struct sk_buff *skb, int thoff) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); th->check = ~tcp_v6_check(skb->len - thoff, &iph->saddr, &iph->daddr, 0); skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV6; tcp_gro_complete(skb); return 0; } static struct sk_buff *tcp6_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct tcphdr *th; if (!(skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)) return ERR_PTR(-EINVAL); if (!pskb_may_pull(skb, sizeof(*th))) return ERR_PTR(-EINVAL); if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { const struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); /* Set up pseudo header, usually expect stack to have done * this. */ th->check = 0; skb->ip_summed = CHECKSUM_PARTIAL; __tcp_v6_send_check(skb, &ipv6h->saddr, &ipv6h->daddr); } return tcp_gso_segment(skb, features); } static const struct net_offload tcpv6_offload = { .callbacks = { .gso_segment = tcp6_gso_segment, .gro_receive = tcp6_gro_receive, .gro_complete = tcp6_gro_complete, }, }; int __init tcpv6_offload_init(void) { return inet6_add_offload(&tcpv6_offload, IPPROTO_TCP); }
linux-master
net/ipv6/tcpv6_offload.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * "Ping" sockets * * Based on ipv4/ping.c code. * * Authors: Lorenzo Colitti (IPv6 support) * Vasiliy Kulikov / Openwall (IPv4 implementation, for Linux 2.6), * Pavel Kankovsky (IPv4 implementation, for Linux 2.4.32) */ #include <net/addrconf.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/protocol.h> #include <net/udp.h> #include <net/transp_v6.h> #include <linux/proc_fs.h> #include <linux/bpf-cgroup.h> #include <net/ping.h> /* Compatibility glue so we can support IPv6 when it's compiled as a module */ static int dummy_ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) { return -EAFNOSUPPORT; } static void dummy_ip6_datagram_recv_ctl(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { } static int dummy_icmpv6_err_convert(u8 type, u8 code, int *err) { return -EAFNOSUPPORT; } static void dummy_ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload) {} static int dummy_ipv6_chk_addr(struct net *net, const struct in6_addr *addr, const struct net_device *dev, int strict) { return 0; } static int ping_v6_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from __ip6_datagram_connect() and * intended to prevent BPF program called below from accessing * bytes that are out of the bound specified by user in addr_len. */ if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; return BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr); } static int ping_v6_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct icmp6hdr user_icmph; int addr_type; struct in6_addr *daddr; int oif = 0; struct flowi6 fl6; int err; struct dst_entry *dst; struct rt6_info *rt; struct pingfakehdr pfh; struct ipcm6_cookie ipc6; err = ping_common_sendmsg(AF_INET6, msg, len, &user_icmph, sizeof(user_icmph)); if (err) return err; memset(&fl6, 0, sizeof(fl6)); if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_in6 *, u, msg->msg_name); if (msg->msg_namelen < sizeof(*u)) return -EINVAL; if (u->sin6_family != AF_INET6) { return -EAFNOSUPPORT; } daddr = &(u->sin6_addr); if (np->sndflow) fl6.flowlabel = u->sin6_flowinfo & IPV6_FLOWINFO_MASK; if (__ipv6_addr_needs_scope_id(ipv6_addr_type(daddr))) oif = u->sin6_scope_id; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = &sk->sk_v6_daddr; fl6.flowlabel = np->flow_label; } if (!oif) oif = sk->sk_bound_dev_if; if (!oif) oif = np->sticky_pktinfo.ipi6_ifindex; if (!oif && ipv6_addr_is_multicast(daddr)) oif = np->mcast_oif; else if (!oif) oif = np->ucast_oif; addr_type = ipv6_addr_type(daddr); if ((__ipv6_addr_needs_scope_id(addr_type) && !oif) || (addr_type & IPV6_ADDR_MAPPED) || (oif && sk->sk_bound_dev_if && oif != sk->sk_bound_dev_if && l3mdev_master_ifindex_by_index(sock_net(sk), oif) != sk->sk_bound_dev_if)) return -EINVAL; ipcm6_init_sk(&ipc6, np); ipc6.sockc.tsflags = READ_ONCE(sk->sk_tsflags); ipc6.sockc.mark = READ_ONCE(sk->sk_mark); fl6.flowi6_oif = oif; if (msg->msg_controllen) { struct ipv6_txoptions opt = {}; opt.tot_len = sizeof(opt); ipc6.opt = &opt; err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, &fl6, &ipc6); if (err < 0) return err; /* Changes to txoptions and flow info are not implemented, yet. * Drop the options. */ ipc6.opt = NULL; } fl6.flowi6_proto = IPPROTO_ICMPV6; fl6.saddr = np->saddr; fl6.daddr = *daddr; fl6.flowi6_mark = ipc6.sockc.mark; fl6.flowi6_uid = sk->sk_uid; fl6.fl6_icmp_type = user_icmph.icmp6_type; fl6.fl6_icmp_code = user_icmph.icmp6_code; security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); fl6.flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6.flowlabel); dst = ip6_sk_dst_lookup_flow(sk, &fl6, daddr, false); if (IS_ERR(dst)) return PTR_ERR(dst); rt = (struct rt6_info *) dst; if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = np->mcast_oif; else if (!fl6.flowi6_oif) fl6.flowi6_oif = np->ucast_oif; pfh.icmph.type = user_icmph.icmp6_type; pfh.icmph.code = user_icmph.icmp6_code; pfh.icmph.checksum = 0; pfh.icmph.un.echo.id = inet->inet_sport; pfh.icmph.un.echo.sequence = user_icmph.icmp6_sequence; pfh.msg = msg; pfh.wcheck = 0; pfh.family = AF_INET6; if (ipc6.hlimit < 0) ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); lock_sock(sk); err = ip6_append_data(sk, ping_getfrag, &pfh, len, sizeof(struct icmp6hdr), &ipc6, &fl6, rt, MSG_DONTWAIT); if (err) { ICMP6_INC_STATS(sock_net(sk), rt->rt6i_idev, ICMP6_MIB_OUTERRORS); ip6_flush_pending_frames(sk); } else { icmpv6_push_pending_frames(sk, &fl6, (struct icmp6hdr *)&pfh.icmph, len); } release_sock(sk); dst_release(dst); if (err) return err; return len; } struct proto pingv6_prot = { .name = "PINGv6", .owner = THIS_MODULE, .init = ping_init_sock, .close = ping_close, .pre_connect = ping_v6_pre_connect, .connect = ip6_datagram_connect_v6_only, .disconnect = __udp_disconnect, .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .sendmsg = ping_v6_sendmsg, .recvmsg = ping_recvmsg, .bind = ping_bind, .backlog_rcv = ping_queue_rcv_skb, .hash = ping_hash, .unhash = ping_unhash, .get_port = ping_get_port, .put_port = ping_unhash, .obj_size = sizeof(struct raw6_sock), .ipv6_pinfo_offset = offsetof(struct raw6_sock, inet6), }; EXPORT_SYMBOL_GPL(pingv6_prot); static struct inet_protosw pingv6_protosw = { .type = SOCK_DGRAM, .protocol = IPPROTO_ICMPV6, .prot = &pingv6_prot, .ops = &inet6_sockraw_ops, .flags = INET_PROTOSW_REUSE, }; #ifdef CONFIG_PROC_FS static void *ping_v6_seq_start(struct seq_file *seq, loff_t *pos) { return ping_seq_start(seq, pos, AF_INET6); } static int ping_v6_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, IPV6_SEQ_DGRAM_HEADER); } else { int bucket = ((struct ping_iter_state *) seq->private)->bucket; struct inet_sock *inet = inet_sk((struct sock *)v); __u16 srcp = ntohs(inet->inet_sport); __u16 destp = ntohs(inet->inet_dport); ip6_dgram_sock_seq_show(seq, v, srcp, destp, bucket); } return 0; } static const struct seq_operations ping_v6_seq_ops = { .start = ping_v6_seq_start, .show = ping_v6_seq_show, .next = ping_seq_next, .stop = ping_seq_stop, }; static int __net_init ping_v6_proc_init_net(struct net *net) { if (!proc_create_net("icmp6", 0444, net->proc_net, &ping_v6_seq_ops, sizeof(struct ping_iter_state))) return -ENOMEM; return 0; } static void __net_exit ping_v6_proc_exit_net(struct net *net) { remove_proc_entry("icmp6", net->proc_net); } static struct pernet_operations ping_v6_net_ops = { .init = ping_v6_proc_init_net, .exit = ping_v6_proc_exit_net, }; #endif int __init pingv6_init(void) { #ifdef CONFIG_PROC_FS int ret = register_pernet_subsys(&ping_v6_net_ops); if (ret) return ret; #endif pingv6_ops.ipv6_recv_error = ipv6_recv_error; pingv6_ops.ip6_datagram_recv_common_ctl = ip6_datagram_recv_common_ctl; pingv6_ops.ip6_datagram_recv_specific_ctl = ip6_datagram_recv_specific_ctl; pingv6_ops.icmpv6_err_convert = icmpv6_err_convert; pingv6_ops.ipv6_icmp_error = ipv6_icmp_error; pingv6_ops.ipv6_chk_addr = ipv6_chk_addr; return inet6_register_protosw(&pingv6_protosw); } /* This never gets called because it's not possible to unload the ipv6 module, * but just in case. */ void pingv6_exit(void) { pingv6_ops.ipv6_recv_error = dummy_ipv6_recv_error; pingv6_ops.ip6_datagram_recv_common_ctl = dummy_ip6_datagram_recv_ctl; pingv6_ops.ip6_datagram_recv_specific_ctl = dummy_ip6_datagram_recv_ctl; pingv6_ops.icmpv6_err_convert = dummy_icmpv6_err_convert; pingv6_ops.ipv6_icmp_error = dummy_ipv6_icmp_error; pingv6_ops.ipv6_chk_addr = dummy_ipv6_chk_addr; #ifdef CONFIG_PROC_FS unregister_pernet_subsys(&ping_v6_net_ops); #endif inet6_unregister_protosw(&pingv6_protosw); }
linux-master
net/ipv6/ping.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * SR-IPv6 implementation -- HMAC functions * * Author: * David Lebrun <[email protected]> */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/icmpv6.h> #include <linux/mroute6.h> #include <linux/slab.h> #include <linux/rhashtable.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/xfrm.h> #include <crypto/hash.h> #include <net/seg6.h> #include <net/genetlink.h> #include <net/seg6_hmac.h> #include <linux/random.h> static DEFINE_PER_CPU(char [SEG6_HMAC_RING_SIZE], hmac_ring); static int seg6_hmac_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct seg6_hmac_info *hinfo = obj; return (hinfo->hmackeyid != *(__u32 *)arg->key); } static inline void seg6_hinfo_release(struct seg6_hmac_info *hinfo) { kfree_rcu(hinfo, rcu); } static void seg6_free_hi(void *ptr, void *arg) { struct seg6_hmac_info *hinfo = (struct seg6_hmac_info *)ptr; if (hinfo) seg6_hinfo_release(hinfo); } static const struct rhashtable_params rht_params = { .head_offset = offsetof(struct seg6_hmac_info, node), .key_offset = offsetof(struct seg6_hmac_info, hmackeyid), .key_len = sizeof(u32), .automatic_shrinking = true, .obj_cmpfn = seg6_hmac_cmpfn, }; static struct seg6_hmac_algo hmac_algos[] = { { .alg_id = SEG6_HMAC_ALGO_SHA1, .name = "hmac(sha1)", }, { .alg_id = SEG6_HMAC_ALGO_SHA256, .name = "hmac(sha256)", }, }; static struct sr6_tlv_hmac *seg6_get_tlv_hmac(struct ipv6_sr_hdr *srh) { struct sr6_tlv_hmac *tlv; if (srh->hdrlen < (srh->first_segment + 1) * 2 + 5) return NULL; if (!sr_has_hmac(srh)) return NULL; tlv = (struct sr6_tlv_hmac *) ((char *)srh + ((srh->hdrlen + 1) << 3) - 40); if (tlv->tlvhdr.type != SR6_TLV_HMAC || tlv->tlvhdr.len != 38) return NULL; return tlv; } static struct seg6_hmac_algo *__hmac_get_algo(u8 alg_id) { struct seg6_hmac_algo *algo; int i, alg_count; alg_count = ARRAY_SIZE(hmac_algos); for (i = 0; i < alg_count; i++) { algo = &hmac_algos[i]; if (algo->alg_id == alg_id) return algo; } return NULL; } static int __do_hmac(struct seg6_hmac_info *hinfo, const char *text, u8 psize, u8 *output, int outlen) { struct seg6_hmac_algo *algo; struct crypto_shash *tfm; struct shash_desc *shash; int ret, dgsize; algo = __hmac_get_algo(hinfo->alg_id); if (!algo) return -ENOENT; tfm = *this_cpu_ptr(algo->tfms); dgsize = crypto_shash_digestsize(tfm); if (dgsize > outlen) { pr_debug("sr-ipv6: __do_hmac: digest size too big (%d / %d)\n", dgsize, outlen); return -ENOMEM; } ret = crypto_shash_setkey(tfm, hinfo->secret, hinfo->slen); if (ret < 0) { pr_debug("sr-ipv6: crypto_shash_setkey failed: err %d\n", ret); goto failed; } shash = *this_cpu_ptr(algo->shashs); shash->tfm = tfm; ret = crypto_shash_digest(shash, text, psize, output); if (ret < 0) { pr_debug("sr-ipv6: crypto_shash_digest failed: err %d\n", ret); goto failed; } return dgsize; failed: return ret; } int seg6_hmac_compute(struct seg6_hmac_info *hinfo, struct ipv6_sr_hdr *hdr, struct in6_addr *saddr, u8 *output) { __be32 hmackeyid = cpu_to_be32(hinfo->hmackeyid); u8 tmp_out[SEG6_HMAC_MAX_DIGESTSIZE]; int plen, i, dgsize, wrsize; char *ring, *off; /* a 160-byte buffer for digest output allows to store highest known * hash function (RadioGatun) with up to 1216 bits */ /* saddr(16) + first_seg(1) + flags(1) + keyid(4) + seglist(16n) */ plen = 16 + 1 + 1 + 4 + (hdr->first_segment + 1) * 16; /* this limit allows for 14 segments */ if (plen >= SEG6_HMAC_RING_SIZE) return -EMSGSIZE; /* Let's build the HMAC text on the ring buffer. The text is composed * as follows, in order: * * 1. Source IPv6 address (128 bits) * 2. first_segment value (8 bits) * 3. Flags (8 bits) * 4. HMAC Key ID (32 bits) * 5. All segments in the segments list (n * 128 bits) */ local_bh_disable(); ring = this_cpu_ptr(hmac_ring); off = ring; /* source address */ memcpy(off, saddr, 16); off += 16; /* first_segment value */ *off++ = hdr->first_segment; /* flags */ *off++ = hdr->flags; /* HMAC Key ID */ memcpy(off, &hmackeyid, 4); off += 4; /* all segments in the list */ for (i = 0; i < hdr->first_segment + 1; i++) { memcpy(off, hdr->segments + i, 16); off += 16; } dgsize = __do_hmac(hinfo, ring, plen, tmp_out, SEG6_HMAC_MAX_DIGESTSIZE); local_bh_enable(); if (dgsize < 0) return dgsize; wrsize = SEG6_HMAC_FIELD_LEN; if (wrsize > dgsize) wrsize = dgsize; memset(output, 0, SEG6_HMAC_FIELD_LEN); memcpy(output, tmp_out, wrsize); return 0; } EXPORT_SYMBOL(seg6_hmac_compute); /* checks if an incoming SR-enabled packet's HMAC status matches * the incoming policy. * * called with rcu_read_lock() */ bool seg6_hmac_validate_skb(struct sk_buff *skb) { u8 hmac_output[SEG6_HMAC_FIELD_LEN]; struct net *net = dev_net(skb->dev); struct seg6_hmac_info *hinfo; struct sr6_tlv_hmac *tlv; struct ipv6_sr_hdr *srh; struct inet6_dev *idev; idev = __in6_dev_get(skb->dev); srh = (struct ipv6_sr_hdr *)skb_transport_header(skb); tlv = seg6_get_tlv_hmac(srh); /* mandatory check but no tlv */ if (idev->cnf.seg6_require_hmac > 0 && !tlv) return false; /* no check */ if (idev->cnf.seg6_require_hmac < 0) return true; /* check only if present */ if (idev->cnf.seg6_require_hmac == 0 && !tlv) return true; /* now, seg6_require_hmac >= 0 && tlv */ hinfo = seg6_hmac_info_lookup(net, be32_to_cpu(tlv->hmackeyid)); if (!hinfo) return false; if (seg6_hmac_compute(hinfo, srh, &ipv6_hdr(skb)->saddr, hmac_output)) return false; if (memcmp(hmac_output, tlv->hmac, SEG6_HMAC_FIELD_LEN) != 0) return false; return true; } EXPORT_SYMBOL(seg6_hmac_validate_skb); /* called with rcu_read_lock() */ struct seg6_hmac_info *seg6_hmac_info_lookup(struct net *net, u32 key) { struct seg6_pernet_data *sdata = seg6_pernet(net); struct seg6_hmac_info *hinfo; hinfo = rhashtable_lookup_fast(&sdata->hmac_infos, &key, rht_params); return hinfo; } EXPORT_SYMBOL(seg6_hmac_info_lookup); int seg6_hmac_info_add(struct net *net, u32 key, struct seg6_hmac_info *hinfo) { struct seg6_pernet_data *sdata = seg6_pernet(net); int err; err = rhashtable_lookup_insert_fast(&sdata->hmac_infos, &hinfo->node, rht_params); return err; } EXPORT_SYMBOL(seg6_hmac_info_add); int seg6_hmac_info_del(struct net *net, u32 key) { struct seg6_pernet_data *sdata = seg6_pernet(net); struct seg6_hmac_info *hinfo; int err = -ENOENT; hinfo = rhashtable_lookup_fast(&sdata->hmac_infos, &key, rht_params); if (!hinfo) goto out; err = rhashtable_remove_fast(&sdata->hmac_infos, &hinfo->node, rht_params); if (err) goto out; seg6_hinfo_release(hinfo); out: return err; } EXPORT_SYMBOL(seg6_hmac_info_del); int seg6_push_hmac(struct net *net, struct in6_addr *saddr, struct ipv6_sr_hdr *srh) { struct seg6_hmac_info *hinfo; struct sr6_tlv_hmac *tlv; int err = -ENOENT; tlv = seg6_get_tlv_hmac(srh); if (!tlv) return -EINVAL; rcu_read_lock(); hinfo = seg6_hmac_info_lookup(net, be32_to_cpu(tlv->hmackeyid)); if (!hinfo) goto out; memset(tlv->hmac, 0, SEG6_HMAC_FIELD_LEN); err = seg6_hmac_compute(hinfo, srh, saddr, tlv->hmac); out: rcu_read_unlock(); return err; } EXPORT_SYMBOL(seg6_push_hmac); static int seg6_hmac_init_algo(void) { struct seg6_hmac_algo *algo; struct crypto_shash *tfm; struct shash_desc *shash; int i, alg_count, cpu; alg_count = ARRAY_SIZE(hmac_algos); for (i = 0; i < alg_count; i++) { struct crypto_shash **p_tfm; int shsize; algo = &hmac_algos[i]; algo->tfms = alloc_percpu(struct crypto_shash *); if (!algo->tfms) return -ENOMEM; for_each_possible_cpu(cpu) { tfm = crypto_alloc_shash(algo->name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); p_tfm = per_cpu_ptr(algo->tfms, cpu); *p_tfm = tfm; } p_tfm = raw_cpu_ptr(algo->tfms); tfm = *p_tfm; shsize = sizeof(*shash) + crypto_shash_descsize(tfm); algo->shashs = alloc_percpu(struct shash_desc *); if (!algo->shashs) return -ENOMEM; for_each_possible_cpu(cpu) { shash = kzalloc_node(shsize, GFP_KERNEL, cpu_to_node(cpu)); if (!shash) return -ENOMEM; *per_cpu_ptr(algo->shashs, cpu) = shash; } } return 0; } int __init seg6_hmac_init(void) { return seg6_hmac_init_algo(); } int __net_init seg6_hmac_net_init(struct net *net) { struct seg6_pernet_data *sdata = seg6_pernet(net); return rhashtable_init(&sdata->hmac_infos, &rht_params); } void seg6_hmac_exit(void) { struct seg6_hmac_algo *algo = NULL; int i, alg_count, cpu; alg_count = ARRAY_SIZE(hmac_algos); for (i = 0; i < alg_count; i++) { algo = &hmac_algos[i]; for_each_possible_cpu(cpu) { struct crypto_shash *tfm; struct shash_desc *shash; shash = *per_cpu_ptr(algo->shashs, cpu); kfree(shash); tfm = *per_cpu_ptr(algo->tfms, cpu); crypto_free_shash(tfm); } free_percpu(algo->tfms); free_percpu(algo->shashs); } } EXPORT_SYMBOL(seg6_hmac_exit); void __net_exit seg6_hmac_net_exit(struct net *net) { struct seg6_pernet_data *sdata = seg6_pernet(net); rhashtable_free_and_destroy(&sdata->hmac_infos, seg6_free_hi, NULL); } EXPORT_SYMBOL(seg6_hmac_net_exit);
linux-master
net/ipv6/seg6_hmac.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * UDP over IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on linux/ipv4/udp.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file. */ #include <linux/bpf-cgroup.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/indirect_call_wrapper.h> #include <net/addrconf.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/raw.h> #include <net/seg6.h> #include <net/tcp_states.h> #include <net/ip6_checksum.h> #include <net/ip6_tunnel.h> #include <trace/events/udp.h> #include <net/xfrm.h> #include <net/inet_hashtables.h> #include <net/inet6_hashtables.h> #include <net/busy_poll.h> #include <net/sock_reuseport.h> #include <net/gro.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <trace/events/skb.h> #include "udp_impl.h" static void udpv6_destruct_sock(struct sock *sk) { udp_destruct_common(sk); inet6_sock_destruct(sk); } int udpv6_init_sock(struct sock *sk) { udp_lib_init_sock(sk); sk->sk_destruct = udpv6_destruct_sock; set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); return 0; } INDIRECT_CALLABLE_SCOPE u32 udp6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport) { static u32 udp6_ehash_secret __read_mostly; static u32 udp_ipv6_hash_secret __read_mostly; u32 lhash, fhash; net_get_random_once(&udp6_ehash_secret, sizeof(udp6_ehash_secret)); net_get_random_once(&udp_ipv6_hash_secret, sizeof(udp_ipv6_hash_secret)); lhash = (__force u32)laddr->s6_addr32[3]; fhash = __ipv6_addr_jhash(faddr, udp_ipv6_hash_secret); return __inet6_ehashfn(lhash, lport, fhash, fport, udp6_ehash_secret + net_hash_mix(net)); } int udp_v6_get_port(struct sock *sk, unsigned short snum) { unsigned int hash2_nulladdr = ipv6_portaddr_hash(sock_net(sk), &in6addr_any, snum); unsigned int hash2_partial = ipv6_portaddr_hash(sock_net(sk), &sk->sk_v6_rcv_saddr, 0); /* precompute partial secondary hash */ udp_sk(sk)->udp_portaddr_hash = hash2_partial; return udp_lib_get_port(sk, snum, hash2_nulladdr); } void udp_v6_rehash(struct sock *sk) { u16 new_hash = ipv6_portaddr_hash(sock_net(sk), &sk->sk_v6_rcv_saddr, inet_sk(sk)->inet_num); udp_lib_rehash(sk, new_hash); } static int compute_score(struct sock *sk, struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned short hnum, int dif, int sdif) { int bound_dev_if, score; struct inet_sock *inet; bool dev_match; if (!net_eq(sock_net(sk), net) || udp_sk(sk)->udp_port_hash != hnum || sk->sk_family != PF_INET6) return -1; if (!ipv6_addr_equal(&sk->sk_v6_rcv_saddr, daddr)) return -1; score = 0; inet = inet_sk(sk); if (inet->inet_dport) { if (inet->inet_dport != sport) return -1; score++; } if (!ipv6_addr_any(&sk->sk_v6_daddr)) { if (!ipv6_addr_equal(&sk->sk_v6_daddr, saddr)) return -1; score++; } bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); dev_match = udp_sk_bound_dev_eq(net, bound_dev_if, dif, sdif); if (!dev_match) return -1; if (bound_dev_if) score++; if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) score++; return score; } /* called with rcu_read_lock() */ static struct sock *udp6_lib_lookup2(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned int hnum, int dif, int sdif, struct udp_hslot *hslot2, struct sk_buff *skb) { struct sock *sk, *result; int score, badness; result = NULL; badness = -1; udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { score = compute_score(sk, net, saddr, sport, daddr, hnum, dif, sdif); if (score > badness) { badness = score; if (sk->sk_state == TCP_ESTABLISHED) { result = sk; continue; } result = inet6_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), saddr, sport, daddr, hnum, udp6_ehashfn); if (!result) { result = sk; continue; } /* Fall back to scoring if group has connections */ if (!reuseport_has_conns(sk)) return result; /* Reuseport logic returned an error, keep original score. */ if (IS_ERR(result)) continue; badness = compute_score(sk, net, saddr, sport, daddr, hnum, dif, sdif); } } return result; } /* rcu_read_lock() must be held */ struct sock *__udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif, int sdif, struct udp_table *udptable, struct sk_buff *skb) { unsigned short hnum = ntohs(dport); unsigned int hash2, slot2; struct udp_hslot *hslot2; struct sock *result, *sk; hash2 = ipv6_portaddr_hash(net, daddr, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; /* Lookup connected or non-wildcard sockets */ result = udp6_lib_lookup2(net, saddr, sport, daddr, hnum, dif, sdif, hslot2, skb); if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) goto done; /* Lookup redirect from BPF */ if (static_branch_unlikely(&bpf_sk_lookup_enabled) && udptable == net->ipv4.udp_table) { sk = inet6_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), saddr, sport, daddr, hnum, dif, udp6_ehashfn); if (sk) { result = sk; goto done; } } /* Got non-wildcard socket or error on first lookup */ if (result) goto done; /* Lookup wildcard sockets */ hash2 = ipv6_portaddr_hash(net, &in6addr_any, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; result = udp6_lib_lookup2(net, saddr, sport, &in6addr_any, hnum, dif, sdif, hslot2, skb); done: if (IS_ERR(result)) return NULL; return result; } EXPORT_SYMBOL_GPL(__udp6_lib_lookup); static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb, __be16 sport, __be16 dport, struct udp_table *udptable) { const struct ipv6hdr *iph = ipv6_hdr(skb); return __udp6_lib_lookup(dev_net(skb->dev), &iph->saddr, sport, &iph->daddr, dport, inet6_iif(skb), inet6_sdif(skb), udptable, skb); } struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb, __be16 sport, __be16 dport) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct net *net = dev_net(skb->dev); int iif, sdif; inet6_get_iif_sdif(skb, &iif, &sdif); return __udp6_lib_lookup(net, &iph->saddr, sport, &iph->daddr, dport, iif, sdif, net->ipv4.udp_table, NULL); } /* Must be called under rcu_read_lock(). * Does increment socket refcount. */ #if IS_ENABLED(CONFIG_NF_TPROXY_IPV6) || IS_ENABLED(CONFIG_NF_SOCKET_IPV6) struct sock *udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif) { struct sock *sk; sk = __udp6_lib_lookup(net, saddr, sport, daddr, dport, dif, 0, net->ipv4.udp_table, NULL); if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } EXPORT_SYMBOL_GPL(udp6_lib_lookup); #endif /* do not use the scratch area len for jumbogram: their length execeeds the * scratch area space; note that the IP6CB flags is still in the first * cacheline, so checking for jumbograms is cheap */ static int udp6_skb_len(struct sk_buff *skb) { return unlikely(inet6_is_jumbogram(skb)) ? skb->len : udp_skb_len(skb); } /* * This should be easy, if there is something there we * return it, otherwise we block. */ int udpv6_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct ipv6_pinfo *np = inet6_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sk_buff *skb; unsigned int ulen, copied; int off, err, peeking = flags & MSG_PEEK; int is_udplite = IS_UDPLITE(sk); struct udp_mib __percpu *mib; bool checksum_valid = false; int is_udp4; if (flags & MSG_ERRQUEUE) return ipv6_recv_error(sk, msg, len, addr_len); if (np->rxpmtu && np->rxopt.bits.rxpmtu) return ipv6_recv_rxpmtu(sk, msg, len, addr_len); try_again: off = sk_peek_offset(sk, flags); skb = __skb_recv_udp(sk, flags, &off, &err); if (!skb) return err; ulen = udp6_skb_len(skb); copied = len; if (copied > ulen - off) copied = ulen - off; else if (copied < ulen) msg->msg_flags |= MSG_TRUNC; is_udp4 = (skb->protocol == htons(ETH_P_IP)); mib = __UDPX_MIB(sk, is_udp4); /* * If checksum is needed at all, try to do it while copying the * data. If the data is truncated, or if we only want a partial * coverage checksum (UDP-Lite), do it before the copy. */ if (copied < ulen || peeking || (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { checksum_valid = udp_skb_csum_unnecessary(skb) || !__udp_lib_checksum_complete(skb); if (!checksum_valid) goto csum_copy_err; } if (checksum_valid || udp_skb_csum_unnecessary(skb)) { if (udp_skb_is_linear(skb)) err = copy_linear_skb(skb, copied, off, &msg->msg_iter); else err = skb_copy_datagram_msg(skb, off, msg, copied); } else { err = skb_copy_and_csum_datagram_msg(skb, off, msg); if (err == -EINVAL) goto csum_copy_err; } if (unlikely(err)) { if (!peeking) { atomic_inc(&sk->sk_drops); SNMP_INC_STATS(mib, UDP_MIB_INERRORS); } kfree_skb(skb); return err; } if (!peeking) SNMP_INC_STATS(mib, UDP_MIB_INDATAGRAMS); sock_recv_cmsgs(msg, sk, skb); /* Copy the address. */ if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); sin6->sin6_family = AF_INET6; sin6->sin6_port = udp_hdr(skb)->source; sin6->sin6_flowinfo = 0; if (is_udp4) { ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr, &sin6->sin6_addr); sin6->sin6_scope_id = 0; } else { sin6->sin6_addr = ipv6_hdr(skb)->saddr; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, inet6_iif(skb)); } *addr_len = sizeof(*sin6); BPF_CGROUP_RUN_PROG_UDP6_RECVMSG_LOCK(sk, (struct sockaddr *)sin6); } if (udp_sk(sk)->gro_enabled) udp_cmsg_recv(msg, sk, skb); if (np->rxopt.all) ip6_datagram_recv_common_ctl(sk, msg, skb); if (is_udp4) { if (inet_cmsg_flags(inet)) ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); } else { if (np->rxopt.all) ip6_datagram_recv_specific_ctl(sk, msg, skb); } err = copied; if (flags & MSG_TRUNC) err = ulen; skb_consume_udp(sk, skb, peeking ? -err : err); return err; csum_copy_err: if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, udp_skb_destructor)) { SNMP_INC_STATS(mib, UDP_MIB_CSUMERRORS); SNMP_INC_STATS(mib, UDP_MIB_INERRORS); } kfree_skb(skb); /* starting over for a new packet, but check if we need to yield */ cond_resched(); msg->msg_flags &= ~MSG_TRUNC; goto try_again; } DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); void udpv6_encap_enable(void) { static_branch_inc(&udpv6_encap_needed_key); } EXPORT_SYMBOL(udpv6_encap_enable); /* Handler for tunnels with arbitrary destination ports: no socket lookup, go * through error handlers in encapsulations looking for a match. */ static int __udp6_lib_err_encap_no_sk(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { int i; for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { int (*handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); const struct ip6_tnl_encap_ops *encap; encap = rcu_dereference(ip6tun_encaps[i]); if (!encap) continue; handler = encap->err_handler; if (handler && !handler(skb, opt, type, code, offset, info)) return 0; } return -ENOENT; } /* Try to match ICMP errors to UDP tunnels by looking up a socket without * reversing source and destination port: this will match tunnels that force the * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that * lwtunnels might actually break this assumption by being configured with * different destination ports on endpoints, in this case we won't be able to * trace ICMP messages back to them. * * If this doesn't match any socket, probe tunnels with arbitrary destination * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port * we've sent packets to won't necessarily match the local destination port. * * Then ask the tunnel implementation to match the error against a valid * association. * * Return an error if we can't find a match, the socket if we need further * processing, zero otherwise. */ static struct sock *__udp6_lib_err_encap(struct net *net, const struct ipv6hdr *hdr, int offset, struct udphdr *uh, struct udp_table *udptable, struct sock *sk, struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, __be32 info) { int (*lookup)(struct sock *sk, struct sk_buff *skb); int network_offset, transport_offset; struct udp_sock *up; network_offset = skb_network_offset(skb); transport_offset = skb_transport_offset(skb); /* Network header needs to point to the outer IPv6 header inside ICMP */ skb_reset_network_header(skb); /* Transport header needs to point to the UDP header */ skb_set_transport_header(skb, offset); if (sk) { up = udp_sk(sk); lookup = READ_ONCE(up->encap_err_lookup); if (lookup && lookup(sk, skb)) sk = NULL; goto out; } sk = __udp6_lib_lookup(net, &hdr->daddr, uh->source, &hdr->saddr, uh->dest, inet6_iif(skb), 0, udptable, skb); if (sk) { up = udp_sk(sk); lookup = READ_ONCE(up->encap_err_lookup); if (!lookup || lookup(sk, skb)) sk = NULL; } out: if (!sk) { sk = ERR_PTR(__udp6_lib_err_encap_no_sk(skb, opt, type, code, offset, info)); } skb_set_transport_header(skb, transport_offset); skb_set_network_header(skb, network_offset); return sk; } int __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info, struct udp_table *udptable) { struct ipv6_pinfo *np; const struct ipv6hdr *hdr = (const struct ipv6hdr *)skb->data; const struct in6_addr *saddr = &hdr->saddr; const struct in6_addr *daddr = seg6_get_daddr(skb, opt) ? : &hdr->daddr; struct udphdr *uh = (struct udphdr *)(skb->data+offset); bool tunnel = false; struct sock *sk; int harderr; int err; struct net *net = dev_net(skb->dev); sk = __udp6_lib_lookup(net, daddr, uh->dest, saddr, uh->source, inet6_iif(skb), inet6_sdif(skb), udptable, NULL); if (!sk || udp_sk(sk)->encap_type) { /* No socket for error: try tunnels before discarding */ if (static_branch_unlikely(&udpv6_encap_needed_key)) { sk = __udp6_lib_err_encap(net, hdr, offset, uh, udptable, sk, skb, opt, type, code, info); if (!sk) return 0; } else sk = ERR_PTR(-ENOENT); if (IS_ERR(sk)) { __ICMP6_INC_STATS(net, __in6_dev_get(skb->dev), ICMP6_MIB_INERRORS); return PTR_ERR(sk); } tunnel = true; } harderr = icmpv6_err_convert(type, code, &err); np = inet6_sk(sk); if (type == ICMPV6_PKT_TOOBIG) { if (!ip6_sk_accept_pmtu(sk)) goto out; ip6_sk_update_pmtu(skb, sk, info); if (np->pmtudisc != IPV6_PMTUDISC_DONT) harderr = 1; } if (type == NDISC_REDIRECT) { if (tunnel) { ip6_redirect(skb, sock_net(sk), inet6_iif(skb), READ_ONCE(sk->sk_mark), sk->sk_uid); } else { ip6_sk_redirect(skb, sk); } goto out; } /* Tunnels don't have an application socket: don't pass errors back */ if (tunnel) { if (udp_sk(sk)->encap_err_rcv) udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1)); goto out; } if (!np->recverr) { if (!harderr || sk->sk_state != TCP_ESTABLISHED) goto out; } else { ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1)); } sk->sk_err = err; sk_error_report(sk); out: return 0; } static int __udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int rc; if (!ipv6_addr_any(&sk->sk_v6_daddr)) { sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); sk_incoming_cpu_update(sk); } else { sk_mark_napi_id_once(sk, skb); } rc = __udp_enqueue_schedule_skb(sk, skb); if (rc < 0) { int is_udplite = IS_UDPLITE(sk); enum skb_drop_reason drop_reason; /* Note that an ENOMEM error is charged twice */ if (rc == -ENOMEM) { UDP6_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, is_udplite); drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; } else { UDP6_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, is_udplite); drop_reason = SKB_DROP_REASON_PROTO_MEM; } UDP6_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); kfree_skb_reason(skb, drop_reason); trace_udp_fail_queue_rcv_skb(rc, sk); return -1; } return 0; } static __inline__ int udpv6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { return __udp6_lib_err(skb, opt, type, code, offset, info, dev_net(skb->dev)->ipv4.udp_table); } static int udpv6_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) { enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; struct udp_sock *up = udp_sk(sk); int is_udplite = IS_UDPLITE(sk); if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; goto drop; } nf_reset_ct(skb); if (static_branch_unlikely(&udpv6_encap_needed_key) && up->encap_type) { int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); /* * This is an encapsulation socket so pass the skb to * the socket's udp_encap_rcv() hook. Otherwise, just * fall through and pass this up the UDP socket. * up->encap_rcv() returns the following value: * =0 if skb was successfully passed to the encap * handler or was discarded by it. * >0 if skb should be passed on to UDP. * <0 if skb should be resubmitted as proto -N */ /* if we're overly short, let UDP handle it */ encap_rcv = READ_ONCE(up->encap_rcv); if (encap_rcv) { int ret; /* Verify checksum before giving to encap */ if (udp_lib_checksum_complete(skb)) goto csum_error; ret = encap_rcv(sk, skb); if (ret <= 0) { __UDP6_INC_STATS(sock_net(sk), UDP_MIB_INDATAGRAMS, is_udplite); return -ret; } } /* FALLTHROUGH -- it's a UDP Packet */ } /* * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c). */ if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { if (up->pcrlen == 0) { /* full coverage was set */ net_dbg_ratelimited("UDPLITE6: partial coverage %d while full coverage %d requested\n", UDP_SKB_CB(skb)->cscov, skb->len); goto drop; } if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { net_dbg_ratelimited("UDPLITE6: coverage %d too small, need min %d\n", UDP_SKB_CB(skb)->cscov, up->pcrlen); goto drop; } } prefetch(&sk->sk_rmem_alloc); if (rcu_access_pointer(sk->sk_filter) && udp_lib_checksum_complete(skb)) goto csum_error; if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; goto drop; } udp_csum_pull_header(skb); skb_dst_drop(skb); return __udpv6_queue_rcv_skb(sk, skb); csum_error: drop_reason = SKB_DROP_REASON_UDP_CSUM; __UDP6_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); drop: __UDP6_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); atomic_inc(&sk->sk_drops); kfree_skb_reason(skb, drop_reason); return -1; } static int udpv6_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { struct sk_buff *next, *segs; int ret; if (likely(!udp_unexpected_gso(sk, skb))) return udpv6_queue_rcv_one_skb(sk, skb); __skb_push(skb, -skb_mac_offset(skb)); segs = udp_rcv_segment(sk, skb, false); skb_list_walk_safe(segs, skb, next) { __skb_pull(skb, skb_transport_offset(skb)); udp_post_segment_fix_csum(skb); ret = udpv6_queue_rcv_one_skb(sk, skb); if (ret > 0) ip6_protocol_deliver_rcu(dev_net(skb->dev), skb, ret, true); } return 0; } static bool __udp_v6_is_mcast_sock(struct net *net, const struct sock *sk, __be16 loc_port, const struct in6_addr *loc_addr, __be16 rmt_port, const struct in6_addr *rmt_addr, int dif, int sdif, unsigned short hnum) { const struct inet_sock *inet = inet_sk(sk); if (!net_eq(sock_net(sk), net)) return false; if (udp_sk(sk)->udp_port_hash != hnum || sk->sk_family != PF_INET6 || (inet->inet_dport && inet->inet_dport != rmt_port) || (!ipv6_addr_any(&sk->sk_v6_daddr) && !ipv6_addr_equal(&sk->sk_v6_daddr, rmt_addr)) || !udp_sk_bound_dev_eq(net, READ_ONCE(sk->sk_bound_dev_if), dif, sdif) || (!ipv6_addr_any(&sk->sk_v6_rcv_saddr) && !ipv6_addr_equal(&sk->sk_v6_rcv_saddr, loc_addr))) return false; if (!inet6_mc_check(sk, loc_addr, rmt_addr)) return false; return true; } static void udp6_csum_zero_error(struct sk_buff *skb) { /* RFC 2460 section 8.1 says that we SHOULD log * this error. Well, it is reasonable. */ net_dbg_ratelimited("IPv6: udp checksum is 0 for [%pI6c]:%u->[%pI6c]:%u\n", &ipv6_hdr(skb)->saddr, ntohs(udp_hdr(skb)->source), &ipv6_hdr(skb)->daddr, ntohs(udp_hdr(skb)->dest)); } /* * Note: called only from the BH handler context, * so we don't need to lock the hashes. */ static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, struct udp_table *udptable, int proto) { struct sock *sk, *first = NULL; const struct udphdr *uh = udp_hdr(skb); unsigned short hnum = ntohs(uh->dest); struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); unsigned int offset = offsetof(typeof(*sk), sk_node); unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); int dif = inet6_iif(skb); int sdif = inet6_sdif(skb); struct hlist_node *node; struct sk_buff *nskb; if (use_hash2) { hash2_any = ipv6_portaddr_hash(net, &in6addr_any, hnum) & udptable->mask; hash2 = ipv6_portaddr_hash(net, daddr, hnum) & udptable->mask; start_lookup: hslot = &udptable->hash2[hash2]; offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); } sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { if (!__udp_v6_is_mcast_sock(net, sk, uh->dest, daddr, uh->source, saddr, dif, sdif, hnum)) continue; /* If zero checksum and no_check is not on for * the socket then skip it. */ if (!uh->check && !udp_sk(sk)->no_check6_rx) continue; if (!first) { first = sk; continue; } nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) { atomic_inc(&sk->sk_drops); __UDP6_INC_STATS(net, UDP_MIB_RCVBUFERRORS, IS_UDPLITE(sk)); __UDP6_INC_STATS(net, UDP_MIB_INERRORS, IS_UDPLITE(sk)); continue; } if (udpv6_queue_rcv_skb(sk, nskb) > 0) consume_skb(nskb); } /* Also lookup *:port if we are using hash2 and haven't done so yet. */ if (use_hash2 && hash2 != hash2_any) { hash2 = hash2_any; goto start_lookup; } if (first) { if (udpv6_queue_rcv_skb(first, skb) > 0) consume_skb(skb); } else { kfree_skb(skb); __UDP6_INC_STATS(net, UDP_MIB_IGNOREDMULTI, proto == IPPROTO_UDPLITE); } return 0; } static void udp6_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) { if (udp_sk_rx_dst_set(sk, dst)) { const struct rt6_info *rt = (const struct rt6_info *)dst; sk->sk_rx_dst_cookie = rt6_get_cookie(rt); } } /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and * return code conversion for ip layer consumption */ static int udp6_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, struct udphdr *uh) { int ret; if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) skb_checksum_try_convert(skb, IPPROTO_UDP, ip6_compute_pseudo); ret = udpv6_queue_rcv_skb(sk, skb); /* a return value > 0 means to resubmit the input */ if (ret > 0) return ret; return 0; } int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto) { enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; const struct in6_addr *saddr, *daddr; struct net *net = dev_net(skb->dev); struct udphdr *uh; struct sock *sk; bool refcounted; u32 ulen = 0; if (!pskb_may_pull(skb, sizeof(struct udphdr))) goto discard; saddr = &ipv6_hdr(skb)->saddr; daddr = &ipv6_hdr(skb)->daddr; uh = udp_hdr(skb); ulen = ntohs(uh->len); if (ulen > skb->len) goto short_packet; if (proto == IPPROTO_UDP) { /* UDP validates ulen. */ /* Check for jumbo payload */ if (ulen == 0) ulen = skb->len; if (ulen < sizeof(*uh)) goto short_packet; if (ulen < skb->len) { if (pskb_trim_rcsum(skb, ulen)) goto short_packet; saddr = &ipv6_hdr(skb)->saddr; daddr = &ipv6_hdr(skb)->daddr; uh = udp_hdr(skb); } } if (udp6_csum_init(skb, uh, proto)) goto csum_error; /* Check if the socket is already available, e.g. due to early demux */ sk = inet6_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, &refcounted, udp6_ehashfn); if (IS_ERR(sk)) goto no_sk; if (sk) { struct dst_entry *dst = skb_dst(skb); int ret; if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) udp6_sk_rx_dst_set(sk, dst); if (!uh->check && !udp_sk(sk)->no_check6_rx) { if (refcounted) sock_put(sk); goto report_csum_error; } ret = udp6_unicast_rcv_skb(sk, skb, uh); if (refcounted) sock_put(sk); return ret; } /* * Multicast receive code */ if (ipv6_addr_is_multicast(daddr)) return __udp6_lib_mcast_deliver(net, skb, saddr, daddr, udptable, proto); /* Unicast */ sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable); if (sk) { if (!uh->check && !udp_sk(sk)->no_check6_rx) goto report_csum_error; return udp6_unicast_rcv_skb(sk, skb, uh); } no_sk: reason = SKB_DROP_REASON_NO_SOCKET; if (!uh->check) goto report_csum_error; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard; nf_reset_ct(skb); if (udp_lib_checksum_complete(skb)) goto csum_error; __UDP6_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); kfree_skb_reason(skb, reason); return 0; short_packet: if (reason == SKB_DROP_REASON_NOT_SPECIFIED) reason = SKB_DROP_REASON_PKT_TOO_SMALL; net_dbg_ratelimited("UDP%sv6: short packet: From [%pI6c]:%u %d/%d to [%pI6c]:%u\n", proto == IPPROTO_UDPLITE ? "-Lite" : "", saddr, ntohs(uh->source), ulen, skb->len, daddr, ntohs(uh->dest)); goto discard; report_csum_error: udp6_csum_zero_error(skb); csum_error: if (reason == SKB_DROP_REASON_NOT_SPECIFIED) reason = SKB_DROP_REASON_UDP_CSUM; __UDP6_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); discard: __UDP6_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); kfree_skb_reason(skb, reason); return 0; } static struct sock *__udp6_lib_demux_lookup(struct net *net, __be16 loc_port, const struct in6_addr *loc_addr, __be16 rmt_port, const struct in6_addr *rmt_addr, int dif, int sdif) { struct udp_table *udptable = net->ipv4.udp_table; unsigned short hnum = ntohs(loc_port); unsigned int hash2, slot2; struct udp_hslot *hslot2; __portpair ports; struct sock *sk; hash2 = ipv6_portaddr_hash(net, loc_addr, hnum); slot2 = hash2 & udptable->mask; hslot2 = &udptable->hash2[slot2]; ports = INET_COMBINED_PORTS(rmt_port, hnum); udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { if (sk->sk_state == TCP_ESTABLISHED && inet6_match(net, sk, rmt_addr, loc_addr, ports, dif, sdif)) return sk; /* Only check first socket in chain */ break; } return NULL; } void udp_v6_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); const struct udphdr *uh; struct sock *sk; struct dst_entry *dst; int dif = skb->dev->ifindex; int sdif = inet6_sdif(skb); if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) return; uh = udp_hdr(skb); if (skb->pkt_type == PACKET_HOST) sk = __udp6_lib_demux_lookup(net, uh->dest, &ipv6_hdr(skb)->daddr, uh->source, &ipv6_hdr(skb)->saddr, dif, sdif); else return; if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) return; skb->sk = sk; skb->destructor = sock_efree; dst = rcu_dereference(sk->sk_rx_dst); if (dst) dst = dst_check(dst, sk->sk_rx_dst_cookie); if (dst) { /* set noref for now. * any place which wants to hold dst has to call * dst_hold_safe() */ skb_dst_set_noref(skb, dst); } } INDIRECT_CALLABLE_SCOPE int udpv6_rcv(struct sk_buff *skb) { return __udp6_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); } /* * Throw away all pending data and cancel the corking. Socket is locked. */ static void udp_v6_flush_pending_frames(struct sock *sk) { struct udp_sock *up = udp_sk(sk); if (up->pending == AF_INET) udp_flush_pending_frames(sk); else if (up->pending) { up->len = 0; up->pending = 0; ip6_flush_pending_frames(sk); } } static int udpv6_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { if (addr_len < offsetofend(struct sockaddr, sa_family)) return -EINVAL; /* The following checks are replicated from __ip6_datagram_connect() * and intended to prevent BPF program called below from accessing * bytes that are out of the bound specified by user in addr_len. */ if (uaddr->sa_family == AF_INET) { if (ipv6_only_sock(sk)) return -EAFNOSUPPORT; return udp_pre_connect(sk, uaddr, addr_len); } if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; return BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr); } /** * udp6_hwcsum_outgoing - handle outgoing HW checksumming * @sk: socket we are sending on * @skb: sk_buff containing the filled-in UDP header * (checksum field must be zeroed out) * @saddr: source address * @daddr: destination address * @len: length of packet */ static void udp6_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len) { unsigned int offset; struct udphdr *uh = udp_hdr(skb); struct sk_buff *frags = skb_shinfo(skb)->frag_list; __wsum csum = 0; if (!frags) { /* Only one fragment on the socket. */ skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct udphdr, check); uh->check = ~csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, 0); } else { /* * HW-checksum won't work as there are two or more * fragments on the socket so that all csums of sk_buffs * should be together */ offset = skb_transport_offset(skb); skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); csum = skb->csum; skb->ip_summed = CHECKSUM_NONE; do { csum = csum_add(csum, frags->csum); } while ((frags = frags->next)); uh->check = csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } } /* * Sending */ static int udp_v6_send_skb(struct sk_buff *skb, struct flowi6 *fl6, struct inet_cork *cork) { struct sock *sk = skb->sk; struct udphdr *uh; int err = 0; int is_udplite = IS_UDPLITE(sk); __wsum csum = 0; int offset = skb_transport_offset(skb); int len = skb->len - offset; int datalen = len - sizeof(*uh); /* * Create a UDP header */ uh = udp_hdr(skb); uh->source = fl6->fl6_sport; uh->dest = fl6->fl6_dport; uh->len = htons(len); uh->check = 0; if (cork->gso_size) { const int hlen = skb_network_header_len(skb) + sizeof(struct udphdr); if (hlen + cork->gso_size > cork->fragsize) { kfree_skb(skb); return -EINVAL; } if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { kfree_skb(skb); return -EINVAL; } if (udp_sk(sk)->no_check6_tx) { kfree_skb(skb); return -EINVAL; } if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || dst_xfrm(skb_dst(skb))) { kfree_skb(skb); return -EIO; } if (datalen > cork->gso_size) { skb_shinfo(skb)->gso_size = cork->gso_size; skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, cork->gso_size); } goto csum_partial; } if (is_udplite) csum = udplite_csum(skb); else if (udp_sk(sk)->no_check6_tx) { /* UDP csum disabled */ skb->ip_summed = CHECKSUM_NONE; goto send; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ csum_partial: udp6_hwcsum_outgoing(sk, skb, &fl6->saddr, &fl6->daddr, len); goto send; } else csum = udp_csum(skb); /* add protocol-dependent pseudo-header */ uh->check = csum_ipv6_magic(&fl6->saddr, &fl6->daddr, len, fl6->flowi6_proto, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; send: err = ip6_send_skb(skb); if (err) { if (err == -ENOBUFS && !inet6_sk(sk)->recverr) { UDP6_INC_STATS(sock_net(sk), UDP_MIB_SNDBUFERRORS, is_udplite); err = 0; } } else { UDP6_INC_STATS(sock_net(sk), UDP_MIB_OUTDATAGRAMS, is_udplite); } return err; } static int udp_v6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; struct udp_sock *up = udp_sk(sk); int err = 0; if (up->pending == AF_INET) return udp_push_pending_frames(sk); skb = ip6_finish_skb(sk); if (!skb) goto out; err = udp_v6_send_skb(skb, &inet_sk(sk)->cork.fl.u.ip6, &inet_sk(sk)->cork.base); out: up->len = 0; up->pending = 0; return err; } int udpv6_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct ipv6_txoptions opt_space; struct udp_sock *up = udp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); struct in6_addr *daddr, *final_p, final; struct ipv6_txoptions *opt = NULL; struct ipv6_txoptions *opt_to_free = NULL; struct ip6_flowlabel *flowlabel = NULL; struct inet_cork_full cork; struct flowi6 *fl6 = &cork.fl.u.ip6; struct dst_entry *dst; struct ipcm6_cookie ipc6; int addr_len = msg->msg_namelen; bool connected = false; int ulen = len; int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE; int err; int is_udplite = IS_UDPLITE(sk); int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); ipcm6_init(&ipc6); ipc6.gso_size = READ_ONCE(up->gso_size); ipc6.sockc.tsflags = READ_ONCE(sk->sk_tsflags); ipc6.sockc.mark = READ_ONCE(sk->sk_mark); /* destination address check */ if (sin6) { if (addr_len < offsetof(struct sockaddr, sa_data)) return -EINVAL; switch (sin6->sin6_family) { case AF_INET6: if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; daddr = &sin6->sin6_addr; if (ipv6_addr_any(daddr) && ipv6_addr_v4mapped(&np->saddr)) ipv6_addr_set_v4mapped(htonl(INADDR_LOOPBACK), daddr); break; case AF_INET: goto do_udp_sendmsg; case AF_UNSPEC: msg->msg_name = sin6 = NULL; msg->msg_namelen = addr_len = 0; daddr = NULL; break; default: return -EINVAL; } } else if (!up->pending) { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = &sk->sk_v6_daddr; } else daddr = NULL; if (daddr) { if (ipv6_addr_v4mapped(daddr)) { struct sockaddr_in sin; sin.sin_family = AF_INET; sin.sin_port = sin6 ? sin6->sin6_port : inet->inet_dport; sin.sin_addr.s_addr = daddr->s6_addr32[3]; msg->msg_name = &sin; msg->msg_namelen = sizeof(sin); do_udp_sendmsg: err = ipv6_only_sock(sk) ? -ENETUNREACH : udp_sendmsg(sk, msg, len); msg->msg_name = sin6; msg->msg_namelen = addr_len; return err; } } /* Rough check on arithmetic overflow, better check is made in ip6_append_data(). */ if (len > INT_MAX - sizeof(struct udphdr)) return -EMSGSIZE; getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; if (up->pending) { if (up->pending == AF_INET) return udp_sendmsg(sk, msg, len); /* * There are pending frames. * The socket lock must be held while it's corked. */ lock_sock(sk); if (likely(up->pending)) { if (unlikely(up->pending != AF_INET6)) { release_sock(sk); return -EAFNOSUPPORT; } dst = NULL; goto do_append_data; } release_sock(sk); } ulen += sizeof(struct udphdr); memset(fl6, 0, sizeof(*fl6)); if (sin6) { if (sin6->sin6_port == 0) return -EINVAL; fl6->fl6_dport = sin6->sin6_port; daddr = &sin6->sin6_addr; if (np->sndflow) { fl6->flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK; if (fl6->flowlabel & IPV6_FLOWLABEL_MASK) { flowlabel = fl6_sock_lookup(sk, fl6->flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } } /* * Otherwise it will be difficult to maintain * sk->sk_dst_cache. */ if (sk->sk_state == TCP_ESTABLISHED && ipv6_addr_equal(daddr, &sk->sk_v6_daddr)) daddr = &sk->sk_v6_daddr; if (addr_len >= sizeof(struct sockaddr_in6) && sin6->sin6_scope_id && __ipv6_addr_needs_scope_id(__ipv6_addr_type(daddr))) fl6->flowi6_oif = sin6->sin6_scope_id; } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; fl6->fl6_dport = inet->inet_dport; daddr = &sk->sk_v6_daddr; fl6->flowlabel = np->flow_label; connected = true; } if (!fl6->flowi6_oif) fl6->flowi6_oif = READ_ONCE(sk->sk_bound_dev_if); if (!fl6->flowi6_oif) fl6->flowi6_oif = np->sticky_pktinfo.ipi6_ifindex; fl6->flowi6_uid = sk->sk_uid; if (msg->msg_controllen) { opt = &opt_space; memset(opt, 0, sizeof(struct ipv6_txoptions)); opt->tot_len = sizeof(*opt); ipc6.opt = opt; err = udp_cmsg_send(sk, msg, &ipc6.gso_size); if (err > 0) err = ip6_datagram_send_ctl(sock_net(sk), sk, msg, fl6, &ipc6); if (err < 0) { fl6_sock_release(flowlabel); return err; } if ((fl6->flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) { flowlabel = fl6_sock_lookup(sk, fl6->flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; } if (!(opt->opt_nflen|opt->opt_flen)) opt = NULL; connected = false; } if (!opt) { opt = txopt_get(np); opt_to_free = opt; } if (flowlabel) opt = fl6_merge_options(&opt_space, flowlabel, opt); opt = ipv6_fixup_options(&opt_space, opt); ipc6.opt = opt; fl6->flowi6_proto = sk->sk_protocol; fl6->flowi6_mark = ipc6.sockc.mark; fl6->daddr = *daddr; if (ipv6_addr_any(&fl6->saddr) && !ipv6_addr_any(&np->saddr)) fl6->saddr = np->saddr; fl6->fl6_sport = inet->inet_sport; if (cgroup_bpf_enabled(CGROUP_UDP6_SENDMSG) && !connected) { err = BPF_CGROUP_RUN_PROG_UDP6_SENDMSG_LOCK(sk, (struct sockaddr *)sin6, &fl6->saddr); if (err) goto out_no_dst; if (sin6) { if (ipv6_addr_v4mapped(&sin6->sin6_addr)) { /* BPF program rewrote IPv6-only by IPv4-mapped * IPv6. It's currently unsupported. */ err = -ENOTSUPP; goto out_no_dst; } if (sin6->sin6_port == 0) { /* BPF program set invalid port. Reject it. */ err = -EINVAL; goto out_no_dst; } fl6->fl6_dport = sin6->sin6_port; fl6->daddr = sin6->sin6_addr; } } if (ipv6_addr_any(&fl6->daddr)) fl6->daddr.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */ final_p = fl6_update_dst(fl6, opt, &final); if (final_p) connected = false; if (!fl6->flowi6_oif && ipv6_addr_is_multicast(&fl6->daddr)) { fl6->flowi6_oif = np->mcast_oif; connected = false; } else if (!fl6->flowi6_oif) fl6->flowi6_oif = np->ucast_oif; security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6)); if (ipc6.tclass < 0) ipc6.tclass = np->tclass; fl6->flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6->flowlabel); dst = ip6_sk_dst_lookup_flow(sk, fl6, final_p, connected); if (IS_ERR(dst)) { err = PTR_ERR(dst); dst = NULL; goto out; } if (ipc6.hlimit < 0) ipc6.hlimit = ip6_sk_dst_hoplimit(np, fl6, dst); if (msg->msg_flags&MSG_CONFIRM) goto do_confirm; back_from_confirm: /* Lockless fast path for the non-corking case */ if (!corkreq) { struct sk_buff *skb; skb = ip6_make_skb(sk, getfrag, msg, ulen, sizeof(struct udphdr), &ipc6, (struct rt6_info *)dst, msg->msg_flags, &cork); err = PTR_ERR(skb); if (!IS_ERR_OR_NULL(skb)) err = udp_v6_send_skb(skb, fl6, &cork.base); /* ip6_make_skb steals dst reference */ goto out_no_dst; } lock_sock(sk); if (unlikely(up->pending)) { /* The socket is already corked while preparing it. */ /* ... which is an evident application bug. --ANK */ release_sock(sk); net_dbg_ratelimited("udp cork app bug 2\n"); err = -EINVAL; goto out; } up->pending = AF_INET6; do_append_data: if (ipc6.dontfrag < 0) ipc6.dontfrag = np->dontfrag; up->len += ulen; err = ip6_append_data(sk, getfrag, msg, ulen, sizeof(struct udphdr), &ipc6, fl6, (struct rt6_info *)dst, corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); if (err) udp_v6_flush_pending_frames(sk); else if (!corkreq) err = udp_v6_push_pending_frames(sk); else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) up->pending = 0; if (err > 0) err = np->recverr ? net_xmit_errno(err) : 0; release_sock(sk); out: dst_release(dst); out_no_dst: fl6_sock_release(flowlabel); txopt_put(opt_to_free); if (!err) return len; /* * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting * ENOBUFS might not be good (it's not tunable per se), but otherwise * we don't have a good statistic (IpOutDiscards but it can be too many * things). We could add another new stat but at least for now that * seems like overkill. */ if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { UDP6_INC_STATS(sock_net(sk), UDP_MIB_SNDBUFERRORS, is_udplite); } return err; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(dst, &fl6->daddr); if (!(msg->msg_flags&MSG_PROBE) || len) goto back_from_confirm; err = 0; goto out; } EXPORT_SYMBOL(udpv6_sendmsg); static void udpv6_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct udp_sock *up = udp_sk(sk); if (!up->pending || READ_ONCE(up->corkflag)) return; lock_sock(sk); if (up->pending && !READ_ONCE(up->corkflag)) udp_v6_push_pending_frames(sk); release_sock(sk); } void udpv6_destroy_sock(struct sock *sk) { struct udp_sock *up = udp_sk(sk); lock_sock(sk); /* protects from races with udp_abort() */ sock_set_flag(sk, SOCK_DEAD); udp_v6_flush_pending_frames(sk); release_sock(sk); if (static_branch_unlikely(&udpv6_encap_needed_key)) { if (up->encap_type) { void (*encap_destroy)(struct sock *sk); encap_destroy = READ_ONCE(up->encap_destroy); if (encap_destroy) encap_destroy(sk); } if (up->encap_enabled) { static_branch_dec(&udpv6_encap_needed_key); udp_encap_disable(); } } } /* * Socket option code for UDP */ int udpv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) return udp_lib_setsockopt(sk, level, optname, optval, optlen, udp_v6_push_pending_frames); return ipv6_setsockopt(sk, level, optname, optval, optlen); } int udpv6_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { if (level == SOL_UDP || level == SOL_UDPLITE) return udp_lib_getsockopt(sk, level, optname, optval, optlen); return ipv6_getsockopt(sk, level, optname, optval, optlen); } static const struct inet6_protocol udpv6_protocol = { .handler = udpv6_rcv, .err_handler = udpv6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; /* ------------------------------------------------------------------------ */ #ifdef CONFIG_PROC_FS int udp6_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, IPV6_SEQ_DGRAM_HEADER); } else { int bucket = ((struct udp_iter_state *)seq->private)->bucket; const struct inet_sock *inet = inet_sk((const struct sock *)v); __u16 srcp = ntohs(inet->inet_sport); __u16 destp = ntohs(inet->inet_dport); __ip6_dgram_sock_seq_show(seq, v, srcp, destp, udp_rqueue_get(v), bucket); } return 0; } const struct seq_operations udp6_seq_ops = { .start = udp_seq_start, .next = udp_seq_next, .stop = udp_seq_stop, .show = udp6_seq_show, }; EXPORT_SYMBOL(udp6_seq_ops); static struct udp_seq_afinfo udp6_seq_afinfo = { .family = AF_INET6, .udp_table = NULL, }; int __net_init udp6_proc_init(struct net *net) { if (!proc_create_net_data("udp6", 0444, net->proc_net, &udp6_seq_ops, sizeof(struct udp_iter_state), &udp6_seq_afinfo)) return -ENOMEM; return 0; } void udp6_proc_exit(struct net *net) { remove_proc_entry("udp6", net->proc_net); } #endif /* CONFIG_PROC_FS */ /* ------------------------------------------------------------------------ */ struct proto udpv6_prot = { .name = "UDPv6", .owner = THIS_MODULE, .close = udp_lib_close, .pre_connect = udpv6_pre_connect, .connect = ip6_datagram_connect, .disconnect = udp_disconnect, .ioctl = udp_ioctl, .init = udpv6_init_sock, .destroy = udpv6_destroy_sock, .setsockopt = udpv6_setsockopt, .getsockopt = udpv6_getsockopt, .sendmsg = udpv6_sendmsg, .recvmsg = udpv6_recvmsg, .splice_eof = udpv6_splice_eof, .release_cb = ip6_datagram_release_cb, .hash = udp_lib_hash, .unhash = udp_lib_unhash, .rehash = udp_v6_rehash, .get_port = udp_v6_get_port, .put_port = udp_lib_unhash, #ifdef CONFIG_BPF_SYSCALL .psock_update_sk_prot = udp_bpf_update_proto, #endif .memory_allocated = &udp_memory_allocated, .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, .sysctl_mem = sysctl_udp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), .obj_size = sizeof(struct udp6_sock), .ipv6_pinfo_offset = offsetof(struct udp6_sock, inet6), .h.udp_table = NULL, .diag_destroy = udp_abort, }; static struct inet_protosw udpv6_protosw = { .type = SOCK_DGRAM, .protocol = IPPROTO_UDP, .prot = &udpv6_prot, .ops = &inet6_dgram_ops, .flags = INET_PROTOSW_PERMANENT, }; int __init udpv6_init(void) { int ret; ret = inet6_add_protocol(&udpv6_protocol, IPPROTO_UDP); if (ret) goto out; ret = inet6_register_protosw(&udpv6_protosw); if (ret) goto out_udpv6_protocol; out: return ret; out_udpv6_protocol: inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP); goto out; } void udpv6_exit(void) { inet6_unregister_protosw(&udpv6_protosw); inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP); }
linux-master
net/ipv6/udp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IP Payload Compression Protocol (IPComp) for IPv6 - RFC3173 * * Copyright (C)2003 USAGI/WIDE Project * * Author Mitsuru KANDA <[email protected]> */ /* * [Memo] * * Outbound: * The compression of IP datagram MUST be done before AH/ESP processing, * fragmentation, and the addition of Hop-by-Hop/Routing header. * * Inbound: * The decompression of IP datagram MUST be done after the reassembly, * AH/ESP processing. */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/module.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/ipcomp.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/pfkeyv2.h> #include <linux/random.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/rtnetlink.h> #include <net/ip6_route.h> #include <net/icmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/mutex.h> static int ipcomp6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct net *net = dev_net(skb->dev); __be32 spi; const struct ipv6hdr *iph = (const struct ipv6hdr *)skb->data; struct ip_comp_hdr *ipcomph = (struct ip_comp_hdr *)(skb->data + offset); struct xfrm_state *x; if (type != ICMPV6_PKT_TOOBIG && type != NDISC_REDIRECT) return 0; spi = htonl(ntohs(ipcomph->cpi)); x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, spi, IPPROTO_COMP, AF_INET6); if (!x) return 0; if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); xfrm_state_put(x); return 0; } static struct xfrm_state *ipcomp6_tunnel_create(struct xfrm_state *x) { struct net *net = xs_net(x); struct xfrm_state *t = NULL; t = xfrm_state_alloc(net); if (!t) goto out; t->id.proto = IPPROTO_IPV6; t->id.spi = xfrm6_tunnel_alloc_spi(net, (xfrm_address_t *)&x->props.saddr); if (!t->id.spi) goto error; memcpy(t->id.daddr.a6, x->id.daddr.a6, sizeof(struct in6_addr)); memcpy(&t->sel, &x->sel, sizeof(t->sel)); t->props.family = AF_INET6; t->props.mode = x->props.mode; memcpy(t->props.saddr.a6, x->props.saddr.a6, sizeof(struct in6_addr)); memcpy(&t->mark, &x->mark, sizeof(t->mark)); t->if_id = x->if_id; if (xfrm_init_state(t)) goto error; atomic_set(&t->tunnel_users, 1); out: return t; error: t->km.state = XFRM_STATE_DEAD; xfrm_state_put(t); t = NULL; goto out; } static int ipcomp6_tunnel_attach(struct xfrm_state *x) { struct net *net = xs_net(x); int err = 0; struct xfrm_state *t = NULL; __be32 spi; u32 mark = x->mark.m & x->mark.v; spi = xfrm6_tunnel_spi_lookup(net, (xfrm_address_t *)&x->props.saddr); if (spi) t = xfrm_state_lookup(net, mark, (xfrm_address_t *)&x->id.daddr, spi, IPPROTO_IPV6, AF_INET6); if (!t) { t = ipcomp6_tunnel_create(x); if (!t) { err = -EINVAL; goto out; } xfrm_state_insert(t); xfrm_state_hold(t); } x->tunnel = t; atomic_inc(&t->tunnel_users); out: return err; } static int ipcomp6_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { int err = -EINVAL; x->props.header_len = 0; switch (x->props.mode) { case XFRM_MODE_TRANSPORT: break; case XFRM_MODE_TUNNEL: x->props.header_len += sizeof(struct ipv6hdr); break; default: NL_SET_ERR_MSG(extack, "Unsupported XFRM mode for IPcomp"); goto out; } err = ipcomp_init_state(x, extack); if (err) goto out; if (x->props.mode == XFRM_MODE_TUNNEL) { err = ipcomp6_tunnel_attach(x); if (err) { NL_SET_ERR_MSG(extack, "Kernel error: failed to initialize the associated state"); goto out; } } err = 0; out: return err; } static int ipcomp6_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type ipcomp6_type = { .owner = THIS_MODULE, .proto = IPPROTO_COMP, .init_state = ipcomp6_init_state, .destructor = ipcomp_destroy, .input = ipcomp_input, .output = ipcomp_output, }; static struct xfrm6_protocol ipcomp6_protocol = { .handler = xfrm6_rcv, .input_handler = xfrm_input, .cb_handler = ipcomp6_rcv_cb, .err_handler = ipcomp6_err, .priority = 0, }; static int __init ipcomp6_init(void) { if (xfrm_register_type(&ipcomp6_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm6_protocol_register(&ipcomp6_protocol, IPPROTO_COMP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&ipcomp6_type, AF_INET6); return -EAGAIN; } return 0; } static void __exit ipcomp6_fini(void) { if (xfrm6_protocol_deregister(&ipcomp6_protocol, IPPROTO_COMP) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&ipcomp6_type, AF_INET6); } module_init(ipcomp6_init); module_exit(ipcomp6_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IP Payload Compression Protocol (IPComp) for IPv6 - RFC3173"); MODULE_AUTHOR("Mitsuru KANDA <[email protected]>"); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_COMP);
linux-master
net/ipv6/ipcomp6.c
// SPDX-License-Identifier: GPL-2.0 /* * sysctl_net_ipv6.c: sysctl interface to net IPV6 subsystem. * * Changes: * YOSHIFUJI Hideaki @USAGI: added icmp sysctl table. */ #include <linux/mm.h> #include <linux/sysctl.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/slab.h> #include <linux/export.h> #include <net/ndisc.h> #include <net/ipv6.h> #include <net/addrconf.h> #include <net/inet_frag.h> #include <net/netevent.h> #include <net/ip_fib.h> #ifdef CONFIG_NETLABEL #include <net/calipso.h> #endif #include <linux/ioam6.h> static int flowlabel_reflect_max = 0x7; static int auto_flowlabels_max = IP6_AUTO_FLOW_LABEL_MAX; static u32 rt6_multipath_hash_fields_all_mask = FIB_MULTIPATH_HASH_FIELD_ALL_MASK; static u32 ioam6_id_max = IOAM6_DEFAULT_ID; static u64 ioam6_id_wide_max = IOAM6_DEFAULT_ID_WIDE; static int proc_rt6_multipath_hash_policy(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net; int ret; net = container_of(table->data, struct net, ipv6.sysctl.multipath_hash_policy); ret = proc_dou8vec_minmax(table, write, buffer, lenp, ppos); if (write && ret == 0) call_netevent_notifiers(NETEVENT_IPV6_MPATH_HASH_UPDATE, net); return ret; } static int proc_rt6_multipath_hash_fields(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net; int ret; net = container_of(table->data, struct net, ipv6.sysctl.multipath_hash_fields); ret = proc_douintvec_minmax(table, write, buffer, lenp, ppos); if (write && ret == 0) call_netevent_notifiers(NETEVENT_IPV6_MPATH_HASH_UPDATE, net); return ret; } static struct ctl_table ipv6_table_template[] = { { .procname = "bindv6only", .data = &init_net.ipv6.sysctl.bindv6only, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "anycast_src_echo_reply", .data = &init_net.ipv6.sysctl.anycast_src_echo_reply, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "flowlabel_consistency", .data = &init_net.ipv6.sysctl.flowlabel_consistency, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "auto_flowlabels", .data = &init_net.ipv6.sysctl.auto_flowlabels, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra2 = &auto_flowlabels_max }, { .procname = "fwmark_reflect", .data = &init_net.ipv6.sysctl.fwmark_reflect, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "idgen_retries", .data = &init_net.ipv6.sysctl.idgen_retries, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "idgen_delay", .data = &init_net.ipv6.sysctl.idgen_delay, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "flowlabel_state_ranges", .data = &init_net.ipv6.sysctl.flowlabel_state_ranges, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "ip_nonlocal_bind", .data = &init_net.ipv6.sysctl.ip_nonlocal_bind, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "flowlabel_reflect", .data = &init_net.ipv6.sysctl.flowlabel_reflect, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = &flowlabel_reflect_max, }, { .procname = "max_dst_opts_number", .data = &init_net.ipv6.sysctl.max_dst_opts_cnt, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "max_hbh_opts_number", .data = &init_net.ipv6.sysctl.max_hbh_opts_cnt, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "max_dst_opts_length", .data = &init_net.ipv6.sysctl.max_dst_opts_len, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "max_hbh_length", .data = &init_net.ipv6.sysctl.max_hbh_opts_len, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "fib_multipath_hash_policy", .data = &init_net.ipv6.sysctl.multipath_hash_policy, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_rt6_multipath_hash_policy, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_THREE, }, { .procname = "fib_multipath_hash_fields", .data = &init_net.ipv6.sysctl.multipath_hash_fields, .maxlen = sizeof(u32), .mode = 0644, .proc_handler = proc_rt6_multipath_hash_fields, .extra1 = SYSCTL_ONE, .extra2 = &rt6_multipath_hash_fields_all_mask, }, { .procname = "seg6_flowlabel", .data = &init_net.ipv6.sysctl.seg6_flowlabel, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "fib_notify_on_flag_change", .data = &init_net.ipv6.sysctl.fib_notify_on_flag_change, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_TWO, }, { .procname = "ioam6_id", .data = &init_net.ipv6.sysctl.ioam6_id, .maxlen = sizeof(u32), .mode = 0644, .proc_handler = proc_douintvec_minmax, .extra2 = &ioam6_id_max, }, { .procname = "ioam6_id_wide", .data = &init_net.ipv6.sysctl.ioam6_id_wide, .maxlen = sizeof(u64), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra2 = &ioam6_id_wide_max, }, { } }; static struct ctl_table ipv6_rotable[] = { { .procname = "mld_max_msf", .data = &sysctl_mld_max_msf, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { .procname = "mld_qrv", .data = &sysctl_mld_qrv, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE }, #ifdef CONFIG_NETLABEL { .procname = "calipso_cache_enable", .data = &calipso_cache_enabled, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "calipso_cache_bucket_size", .data = &calipso_cache_bucketsize, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, #endif /* CONFIG_NETLABEL */ { } }; static int __net_init ipv6_sysctl_net_init(struct net *net) { struct ctl_table *ipv6_table; struct ctl_table *ipv6_route_table; struct ctl_table *ipv6_icmp_table; int err, i; err = -ENOMEM; ipv6_table = kmemdup(ipv6_table_template, sizeof(ipv6_table_template), GFP_KERNEL); if (!ipv6_table) goto out; /* Update the variables to point into the current struct net */ for (i = 0; i < ARRAY_SIZE(ipv6_table_template) - 1; i++) ipv6_table[i].data += (void *)net - (void *)&init_net; ipv6_route_table = ipv6_route_sysctl_init(net); if (!ipv6_route_table) goto out_ipv6_table; ipv6_icmp_table = ipv6_icmp_sysctl_init(net); if (!ipv6_icmp_table) goto out_ipv6_route_table; net->ipv6.sysctl.hdr = register_net_sysctl_sz(net, "net/ipv6", ipv6_table, ARRAY_SIZE(ipv6_table_template)); if (!net->ipv6.sysctl.hdr) goto out_ipv6_icmp_table; net->ipv6.sysctl.route_hdr = register_net_sysctl_sz(net, "net/ipv6/route", ipv6_route_table, ipv6_route_sysctl_table_size(net)); if (!net->ipv6.sysctl.route_hdr) goto out_unregister_ipv6_table; net->ipv6.sysctl.icmp_hdr = register_net_sysctl_sz(net, "net/ipv6/icmp", ipv6_icmp_table, ipv6_icmp_sysctl_table_size()); if (!net->ipv6.sysctl.icmp_hdr) goto out_unregister_route_table; err = 0; out: return err; out_unregister_route_table: unregister_net_sysctl_table(net->ipv6.sysctl.route_hdr); out_unregister_ipv6_table: unregister_net_sysctl_table(net->ipv6.sysctl.hdr); out_ipv6_icmp_table: kfree(ipv6_icmp_table); out_ipv6_route_table: kfree(ipv6_route_table); out_ipv6_table: kfree(ipv6_table); goto out; } static void __net_exit ipv6_sysctl_net_exit(struct net *net) { struct ctl_table *ipv6_table; struct ctl_table *ipv6_route_table; struct ctl_table *ipv6_icmp_table; ipv6_table = net->ipv6.sysctl.hdr->ctl_table_arg; ipv6_route_table = net->ipv6.sysctl.route_hdr->ctl_table_arg; ipv6_icmp_table = net->ipv6.sysctl.icmp_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv6.sysctl.icmp_hdr); unregister_net_sysctl_table(net->ipv6.sysctl.route_hdr); unregister_net_sysctl_table(net->ipv6.sysctl.hdr); kfree(ipv6_table); kfree(ipv6_route_table); kfree(ipv6_icmp_table); } static struct pernet_operations ipv6_sysctl_net_ops = { .init = ipv6_sysctl_net_init, .exit = ipv6_sysctl_net_exit, }; static struct ctl_table_header *ip6_header; int ipv6_sysctl_register(void) { int err = -ENOMEM; ip6_header = register_net_sysctl(&init_net, "net/ipv6", ipv6_rotable); if (!ip6_header) goto out; err = register_pernet_subsys(&ipv6_sysctl_net_ops); if (err) goto err_pernet; out: return err; err_pernet: unregister_net_sysctl_table(ip6_header); goto out; } void ipv6_sysctl_unregister(void) { unregister_net_sysctl_table(ip6_header); unregister_pernet_subsys(&ipv6_sysctl_net_ops); }
linux-master
net/ipv6/sysctl_net_ipv6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Multicast support for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on linux/ipv4/igmp.c and linux/ipv4/ip_sockglue.c */ /* Changes: * * yoshfuji : fix format of router-alert option * YOSHIFUJI Hideaki @USAGI: * Fixed source address for MLD message based on * <draft-ietf-magma-mld-source-05.txt>. * YOSHIFUJI Hideaki @USAGI: * - Ignore Queries for invalid addresses. * - MLD for link-local addresses. * David L Stevens <[email protected]>: * - MLDv2 support */ #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/jiffies.h> #include <linux/net.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/route.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/pkt_sched.h> #include <net/mld.h> #include <linux/workqueue.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/if_inet6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/inet_common.h> #include <net/ip6_checksum.h> /* Ensure that we have struct in6_addr aligned on 32bit word. */ static int __mld2_query_bugs[] __attribute__((__unused__)) = { BUILD_BUG_ON_ZERO(offsetof(struct mld2_query, mld2q_srcs) % 4), BUILD_BUG_ON_ZERO(offsetof(struct mld2_report, mld2r_grec) % 4), BUILD_BUG_ON_ZERO(offsetof(struct mld2_grec, grec_mca) % 4) }; static struct workqueue_struct *mld_wq; static struct in6_addr mld2_all_mcr = MLD2_ALL_MCR_INIT; static void igmp6_join_group(struct ifmcaddr6 *ma); static void igmp6_leave_group(struct ifmcaddr6 *ma); static void mld_mca_work(struct work_struct *work); static void mld_ifc_event(struct inet6_dev *idev); static bool mld_in_v1_mode(const struct inet6_dev *idev); static int sf_setstate(struct ifmcaddr6 *pmc); static void sf_markstate(struct ifmcaddr6 *pmc); static void ip6_mc_clear_src(struct ifmcaddr6 *pmc); static int ip6_mc_del_src(struct inet6_dev *idev, const struct in6_addr *pmca, int sfmode, int sfcount, const struct in6_addr *psfsrc, int delta); static int ip6_mc_add_src(struct inet6_dev *idev, const struct in6_addr *pmca, int sfmode, int sfcount, const struct in6_addr *psfsrc, int delta); static int ip6_mc_leave_src(struct sock *sk, struct ipv6_mc_socklist *iml, struct inet6_dev *idev); static int __ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr, unsigned int mode); #define MLD_QRV_DEFAULT 2 /* RFC3810, 9.2. Query Interval */ #define MLD_QI_DEFAULT (125 * HZ) /* RFC3810, 9.3. Query Response Interval */ #define MLD_QRI_DEFAULT (10 * HZ) /* RFC3810, 8.1 Query Version Distinctions */ #define MLD_V1_QUERY_LEN 24 #define MLD_V2_QUERY_LEN_MIN 28 #define IPV6_MLD_MAX_MSF 64 int sysctl_mld_max_msf __read_mostly = IPV6_MLD_MAX_MSF; int sysctl_mld_qrv __read_mostly = MLD_QRV_DEFAULT; /* * socket join on multicast group */ #define mc_dereference(e, idev) \ rcu_dereference_protected(e, lockdep_is_held(&(idev)->mc_lock)) #define sock_dereference(e, sk) \ rcu_dereference_protected(e, lockdep_sock_is_held(sk)) #define for_each_pmc_socklock(np, sk, pmc) \ for (pmc = sock_dereference((np)->ipv6_mc_list, sk); \ pmc; \ pmc = sock_dereference(pmc->next, sk)) #define for_each_pmc_rcu(np, pmc) \ for (pmc = rcu_dereference((np)->ipv6_mc_list); \ pmc; \ pmc = rcu_dereference(pmc->next)) #define for_each_psf_mclock(mc, psf) \ for (psf = mc_dereference((mc)->mca_sources, mc->idev); \ psf; \ psf = mc_dereference(psf->sf_next, mc->idev)) #define for_each_psf_rcu(mc, psf) \ for (psf = rcu_dereference((mc)->mca_sources); \ psf; \ psf = rcu_dereference(psf->sf_next)) #define for_each_psf_tomb(mc, psf) \ for (psf = mc_dereference((mc)->mca_tomb, mc->idev); \ psf; \ psf = mc_dereference(psf->sf_next, mc->idev)) #define for_each_mc_mclock(idev, mc) \ for (mc = mc_dereference((idev)->mc_list, idev); \ mc; \ mc = mc_dereference(mc->next, idev)) #define for_each_mc_rcu(idev, mc) \ for (mc = rcu_dereference((idev)->mc_list); \ mc; \ mc = rcu_dereference(mc->next)) #define for_each_mc_tomb(idev, mc) \ for (mc = mc_dereference((idev)->mc_tomb, idev); \ mc; \ mc = mc_dereference(mc->next, idev)) static int unsolicited_report_interval(struct inet6_dev *idev) { int iv; if (mld_in_v1_mode(idev)) iv = idev->cnf.mldv1_unsolicited_report_interval; else iv = idev->cnf.mldv2_unsolicited_report_interval; return iv > 0 ? iv : 1; } static int __ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr, unsigned int mode) { struct net_device *dev = NULL; struct ipv6_mc_socklist *mc_lst; struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); int err; ASSERT_RTNL(); if (!ipv6_addr_is_multicast(addr)) return -EINVAL; for_each_pmc_socklock(np, sk, mc_lst) { if ((ifindex == 0 || mc_lst->ifindex == ifindex) && ipv6_addr_equal(&mc_lst->addr, addr)) return -EADDRINUSE; } mc_lst = sock_kmalloc(sk, sizeof(struct ipv6_mc_socklist), GFP_KERNEL); if (!mc_lst) return -ENOMEM; mc_lst->next = NULL; mc_lst->addr = *addr; if (ifindex == 0) { struct rt6_info *rt; rt = rt6_lookup(net, addr, NULL, 0, NULL, 0); if (rt) { dev = rt->dst.dev; ip6_rt_put(rt); } } else dev = __dev_get_by_index(net, ifindex); if (!dev) { sock_kfree_s(sk, mc_lst, sizeof(*mc_lst)); return -ENODEV; } mc_lst->ifindex = dev->ifindex; mc_lst->sfmode = mode; RCU_INIT_POINTER(mc_lst->sflist, NULL); /* * now add/increase the group membership on the device */ err = __ipv6_dev_mc_inc(dev, addr, mode); if (err) { sock_kfree_s(sk, mc_lst, sizeof(*mc_lst)); return err; } mc_lst->next = np->ipv6_mc_list; rcu_assign_pointer(np->ipv6_mc_list, mc_lst); return 0; } int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr) { return __ipv6_sock_mc_join(sk, ifindex, addr, MCAST_EXCLUDE); } EXPORT_SYMBOL(ipv6_sock_mc_join); int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex, const struct in6_addr *addr, unsigned int mode) { return __ipv6_sock_mc_join(sk, ifindex, addr, mode); } /* * socket leave on multicast group */ int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_mc_socklist *mc_lst; struct ipv6_mc_socklist __rcu **lnk; struct net *net = sock_net(sk); ASSERT_RTNL(); if (!ipv6_addr_is_multicast(addr)) return -EINVAL; for (lnk = &np->ipv6_mc_list; (mc_lst = sock_dereference(*lnk, sk)) != NULL; lnk = &mc_lst->next) { if ((ifindex == 0 || mc_lst->ifindex == ifindex) && ipv6_addr_equal(&mc_lst->addr, addr)) { struct net_device *dev; *lnk = mc_lst->next; dev = __dev_get_by_index(net, mc_lst->ifindex); if (dev) { struct inet6_dev *idev = __in6_dev_get(dev); ip6_mc_leave_src(sk, mc_lst, idev); if (idev) __ipv6_dev_mc_dec(idev, &mc_lst->addr); } else { ip6_mc_leave_src(sk, mc_lst, NULL); } atomic_sub(sizeof(*mc_lst), &sk->sk_omem_alloc); kfree_rcu(mc_lst, rcu); return 0; } } return -EADDRNOTAVAIL; } EXPORT_SYMBOL(ipv6_sock_mc_drop); static struct inet6_dev *ip6_mc_find_dev_rtnl(struct net *net, const struct in6_addr *group, int ifindex) { struct net_device *dev = NULL; struct inet6_dev *idev = NULL; if (ifindex == 0) { struct rt6_info *rt = rt6_lookup(net, group, NULL, 0, NULL, 0); if (rt) { dev = rt->dst.dev; ip6_rt_put(rt); } } else { dev = __dev_get_by_index(net, ifindex); } if (!dev) return NULL; idev = __in6_dev_get(dev); if (!idev) return NULL; if (idev->dead) return NULL; return idev; } void __ipv6_sock_mc_close(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_mc_socklist *mc_lst; struct net *net = sock_net(sk); ASSERT_RTNL(); while ((mc_lst = sock_dereference(np->ipv6_mc_list, sk)) != NULL) { struct net_device *dev; np->ipv6_mc_list = mc_lst->next; dev = __dev_get_by_index(net, mc_lst->ifindex); if (dev) { struct inet6_dev *idev = __in6_dev_get(dev); ip6_mc_leave_src(sk, mc_lst, idev); if (idev) __ipv6_dev_mc_dec(idev, &mc_lst->addr); } else { ip6_mc_leave_src(sk, mc_lst, NULL); } atomic_sub(sizeof(*mc_lst), &sk->sk_omem_alloc); kfree_rcu(mc_lst, rcu); } } void ipv6_sock_mc_close(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); if (!rcu_access_pointer(np->ipv6_mc_list)) return; rtnl_lock(); lock_sock(sk); __ipv6_sock_mc_close(sk); release_sock(sk); rtnl_unlock(); } int ip6_mc_source(int add, int omode, struct sock *sk, struct group_source_req *pgsr) { struct in6_addr *source, *group; struct ipv6_mc_socklist *pmc; struct inet6_dev *idev; struct ipv6_pinfo *inet6 = inet6_sk(sk); struct ip6_sf_socklist *psl; struct net *net = sock_net(sk); int i, j, rv; int leavegroup = 0; int err; source = &((struct sockaddr_in6 *)&pgsr->gsr_source)->sin6_addr; group = &((struct sockaddr_in6 *)&pgsr->gsr_group)->sin6_addr; if (!ipv6_addr_is_multicast(group)) return -EINVAL; idev = ip6_mc_find_dev_rtnl(net, group, pgsr->gsr_interface); if (!idev) return -ENODEV; err = -EADDRNOTAVAIL; mutex_lock(&idev->mc_lock); for_each_pmc_socklock(inet6, sk, pmc) { if (pgsr->gsr_interface && pmc->ifindex != pgsr->gsr_interface) continue; if (ipv6_addr_equal(&pmc->addr, group)) break; } if (!pmc) { /* must have a prior join */ err = -EINVAL; goto done; } /* if a source filter was set, must be the same mode as before */ if (rcu_access_pointer(pmc->sflist)) { if (pmc->sfmode != omode) { err = -EINVAL; goto done; } } else if (pmc->sfmode != omode) { /* allow mode switches for empty-set filters */ ip6_mc_add_src(idev, group, omode, 0, NULL, 0); ip6_mc_del_src(idev, group, pmc->sfmode, 0, NULL, 0); pmc->sfmode = omode; } psl = sock_dereference(pmc->sflist, sk); if (!add) { if (!psl) goto done; /* err = -EADDRNOTAVAIL */ rv = !0; for (i = 0; i < psl->sl_count; i++) { rv = !ipv6_addr_equal(&psl->sl_addr[i], source); if (rv == 0) break; } if (rv) /* source not found */ goto done; /* err = -EADDRNOTAVAIL */ /* special case - (INCLUDE, empty) == LEAVE_GROUP */ if (psl->sl_count == 1 && omode == MCAST_INCLUDE) { leavegroup = 1; goto done; } /* update the interface filter */ ip6_mc_del_src(idev, group, omode, 1, source, 1); for (j = i+1; j < psl->sl_count; j++) psl->sl_addr[j-1] = psl->sl_addr[j]; psl->sl_count--; err = 0; goto done; } /* else, add a new source to the filter */ if (psl && psl->sl_count >= sysctl_mld_max_msf) { err = -ENOBUFS; goto done; } if (!psl || psl->sl_count == psl->sl_max) { struct ip6_sf_socklist *newpsl; int count = IP6_SFBLOCK; if (psl) count += psl->sl_max; newpsl = sock_kmalloc(sk, struct_size(newpsl, sl_addr, count), GFP_KERNEL); if (!newpsl) { err = -ENOBUFS; goto done; } newpsl->sl_max = count; newpsl->sl_count = count - IP6_SFBLOCK; if (psl) { for (i = 0; i < psl->sl_count; i++) newpsl->sl_addr[i] = psl->sl_addr[i]; atomic_sub(struct_size(psl, sl_addr, psl->sl_max), &sk->sk_omem_alloc); } rcu_assign_pointer(pmc->sflist, newpsl); kfree_rcu(psl, rcu); psl = newpsl; } rv = 1; /* > 0 for insert logic below if sl_count is 0 */ for (i = 0; i < psl->sl_count; i++) { rv = !ipv6_addr_equal(&psl->sl_addr[i], source); if (rv == 0) /* There is an error in the address. */ goto done; } for (j = psl->sl_count-1; j >= i; j--) psl->sl_addr[j+1] = psl->sl_addr[j]; psl->sl_addr[i] = *source; psl->sl_count++; err = 0; /* update the interface list */ ip6_mc_add_src(idev, group, omode, 1, source, 1); done: mutex_unlock(&idev->mc_lock); if (leavegroup) err = ipv6_sock_mc_drop(sk, pgsr->gsr_interface, group); return err; } int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf, struct sockaddr_storage *list) { const struct in6_addr *group; struct ipv6_mc_socklist *pmc; struct inet6_dev *idev; struct ipv6_pinfo *inet6 = inet6_sk(sk); struct ip6_sf_socklist *newpsl, *psl; struct net *net = sock_net(sk); int leavegroup = 0; int i, err; group = &((struct sockaddr_in6 *)&gsf->gf_group)->sin6_addr; if (!ipv6_addr_is_multicast(group)) return -EINVAL; if (gsf->gf_fmode != MCAST_INCLUDE && gsf->gf_fmode != MCAST_EXCLUDE) return -EINVAL; idev = ip6_mc_find_dev_rtnl(net, group, gsf->gf_interface); if (!idev) return -ENODEV; err = 0; if (gsf->gf_fmode == MCAST_INCLUDE && gsf->gf_numsrc == 0) { leavegroup = 1; goto done; } for_each_pmc_socklock(inet6, sk, pmc) { if (pmc->ifindex != gsf->gf_interface) continue; if (ipv6_addr_equal(&pmc->addr, group)) break; } if (!pmc) { /* must have a prior join */ err = -EINVAL; goto done; } if (gsf->gf_numsrc) { newpsl = sock_kmalloc(sk, struct_size(newpsl, sl_addr, gsf->gf_numsrc), GFP_KERNEL); if (!newpsl) { err = -ENOBUFS; goto done; } newpsl->sl_max = newpsl->sl_count = gsf->gf_numsrc; for (i = 0; i < newpsl->sl_count; ++i, ++list) { struct sockaddr_in6 *psin6; psin6 = (struct sockaddr_in6 *)list; newpsl->sl_addr[i] = psin6->sin6_addr; } mutex_lock(&idev->mc_lock); err = ip6_mc_add_src(idev, group, gsf->gf_fmode, newpsl->sl_count, newpsl->sl_addr, 0); if (err) { mutex_unlock(&idev->mc_lock); sock_kfree_s(sk, newpsl, struct_size(newpsl, sl_addr, newpsl->sl_max)); goto done; } mutex_unlock(&idev->mc_lock); } else { newpsl = NULL; mutex_lock(&idev->mc_lock); ip6_mc_add_src(idev, group, gsf->gf_fmode, 0, NULL, 0); mutex_unlock(&idev->mc_lock); } mutex_lock(&idev->mc_lock); psl = sock_dereference(pmc->sflist, sk); if (psl) { ip6_mc_del_src(idev, group, pmc->sfmode, psl->sl_count, psl->sl_addr, 0); atomic_sub(struct_size(psl, sl_addr, psl->sl_max), &sk->sk_omem_alloc); } else { ip6_mc_del_src(idev, group, pmc->sfmode, 0, NULL, 0); } rcu_assign_pointer(pmc->sflist, newpsl); mutex_unlock(&idev->mc_lock); kfree_rcu(psl, rcu); pmc->sfmode = gsf->gf_fmode; err = 0; done: if (leavegroup) err = ipv6_sock_mc_drop(sk, gsf->gf_interface, group); return err; } int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf, sockptr_t optval, size_t ss_offset) { struct ipv6_pinfo *inet6 = inet6_sk(sk); const struct in6_addr *group; struct ipv6_mc_socklist *pmc; struct ip6_sf_socklist *psl; int i, count, copycount; group = &((struct sockaddr_in6 *)&gsf->gf_group)->sin6_addr; if (!ipv6_addr_is_multicast(group)) return -EINVAL; /* changes to the ipv6_mc_list require the socket lock and * rtnl lock. We have the socket lock, so reading the list is safe. */ for_each_pmc_socklock(inet6, sk, pmc) { if (pmc->ifindex != gsf->gf_interface) continue; if (ipv6_addr_equal(group, &pmc->addr)) break; } if (!pmc) /* must have a prior join */ return -EADDRNOTAVAIL; gsf->gf_fmode = pmc->sfmode; psl = sock_dereference(pmc->sflist, sk); count = psl ? psl->sl_count : 0; copycount = count < gsf->gf_numsrc ? count : gsf->gf_numsrc; gsf->gf_numsrc = count; for (i = 0; i < copycount; i++) { struct sockaddr_in6 *psin6; struct sockaddr_storage ss; psin6 = (struct sockaddr_in6 *)&ss; memset(&ss, 0, sizeof(ss)); psin6->sin6_family = AF_INET6; psin6->sin6_addr = psl->sl_addr[i]; if (copy_to_sockptr_offset(optval, ss_offset, &ss, sizeof(ss))) return -EFAULT; ss_offset += sizeof(ss); } return 0; } bool inet6_mc_check(const struct sock *sk, const struct in6_addr *mc_addr, const struct in6_addr *src_addr) { const struct ipv6_pinfo *np = inet6_sk(sk); const struct ipv6_mc_socklist *mc; const struct ip6_sf_socklist *psl; bool rv = true; rcu_read_lock(); for_each_pmc_rcu(np, mc) { if (ipv6_addr_equal(&mc->addr, mc_addr)) break; } if (!mc) { rcu_read_unlock(); return np->mc_all; } psl = rcu_dereference(mc->sflist); if (!psl) { rv = mc->sfmode == MCAST_EXCLUDE; } else { int i; for (i = 0; i < psl->sl_count; i++) { if (ipv6_addr_equal(&psl->sl_addr[i], src_addr)) break; } if (mc->sfmode == MCAST_INCLUDE && i >= psl->sl_count) rv = false; if (mc->sfmode == MCAST_EXCLUDE && i < psl->sl_count) rv = false; } rcu_read_unlock(); return rv; } /* called with mc_lock */ static void igmp6_group_added(struct ifmcaddr6 *mc) { struct net_device *dev = mc->idev->dev; char buf[MAX_ADDR_LEN]; if (IPV6_ADDR_MC_SCOPE(&mc->mca_addr) < IPV6_ADDR_SCOPE_LINKLOCAL) return; if (!(mc->mca_flags&MAF_LOADED)) { mc->mca_flags |= MAF_LOADED; if (ndisc_mc_map(&mc->mca_addr, buf, dev, 0) == 0) dev_mc_add(dev, buf); } if (!(dev->flags & IFF_UP) || (mc->mca_flags & MAF_NOREPORT)) return; if (mld_in_v1_mode(mc->idev)) { igmp6_join_group(mc); return; } /* else v2 */ /* Based on RFC3810 6.1, for newly added INCLUDE SSM, we * should not send filter-mode change record as the mode * should be from IN() to IN(A). */ if (mc->mca_sfmode == MCAST_EXCLUDE) mc->mca_crcount = mc->idev->mc_qrv; mld_ifc_event(mc->idev); } /* called with mc_lock */ static void igmp6_group_dropped(struct ifmcaddr6 *mc) { struct net_device *dev = mc->idev->dev; char buf[MAX_ADDR_LEN]; if (IPV6_ADDR_MC_SCOPE(&mc->mca_addr) < IPV6_ADDR_SCOPE_LINKLOCAL) return; if (mc->mca_flags&MAF_LOADED) { mc->mca_flags &= ~MAF_LOADED; if (ndisc_mc_map(&mc->mca_addr, buf, dev, 0) == 0) dev_mc_del(dev, buf); } if (mc->mca_flags & MAF_NOREPORT) return; if (!mc->idev->dead) igmp6_leave_group(mc); if (cancel_delayed_work(&mc->mca_work)) refcount_dec(&mc->mca_refcnt); } /* * deleted ifmcaddr6 manipulation * called with mc_lock */ static void mld_add_delrec(struct inet6_dev *idev, struct ifmcaddr6 *im) { struct ifmcaddr6 *pmc; /* this is an "ifmcaddr6" for convenience; only the fields below * are actually used. In particular, the refcnt and users are not * used for management of the delete list. Using the same structure * for deleted items allows change reports to use common code with * non-deleted or query-response MCA's. */ pmc = kzalloc(sizeof(*pmc), GFP_KERNEL); if (!pmc) return; pmc->idev = im->idev; in6_dev_hold(idev); pmc->mca_addr = im->mca_addr; pmc->mca_crcount = idev->mc_qrv; pmc->mca_sfmode = im->mca_sfmode; if (pmc->mca_sfmode == MCAST_INCLUDE) { struct ip6_sf_list *psf; rcu_assign_pointer(pmc->mca_tomb, mc_dereference(im->mca_tomb, idev)); rcu_assign_pointer(pmc->mca_sources, mc_dereference(im->mca_sources, idev)); RCU_INIT_POINTER(im->mca_tomb, NULL); RCU_INIT_POINTER(im->mca_sources, NULL); for_each_psf_mclock(pmc, psf) psf->sf_crcount = pmc->mca_crcount; } rcu_assign_pointer(pmc->next, idev->mc_tomb); rcu_assign_pointer(idev->mc_tomb, pmc); } /* called with mc_lock */ static void mld_del_delrec(struct inet6_dev *idev, struct ifmcaddr6 *im) { struct ip6_sf_list *psf, *sources, *tomb; struct in6_addr *pmca = &im->mca_addr; struct ifmcaddr6 *pmc, *pmc_prev; pmc_prev = NULL; for_each_mc_tomb(idev, pmc) { if (ipv6_addr_equal(&pmc->mca_addr, pmca)) break; pmc_prev = pmc; } if (pmc) { if (pmc_prev) rcu_assign_pointer(pmc_prev->next, pmc->next); else rcu_assign_pointer(idev->mc_tomb, pmc->next); } if (pmc) { im->idev = pmc->idev; if (im->mca_sfmode == MCAST_INCLUDE) { tomb = rcu_replace_pointer(im->mca_tomb, mc_dereference(pmc->mca_tomb, pmc->idev), lockdep_is_held(&im->idev->mc_lock)); rcu_assign_pointer(pmc->mca_tomb, tomb); sources = rcu_replace_pointer(im->mca_sources, mc_dereference(pmc->mca_sources, pmc->idev), lockdep_is_held(&im->idev->mc_lock)); rcu_assign_pointer(pmc->mca_sources, sources); for_each_psf_mclock(im, psf) psf->sf_crcount = idev->mc_qrv; } else { im->mca_crcount = idev->mc_qrv; } in6_dev_put(pmc->idev); ip6_mc_clear_src(pmc); kfree_rcu(pmc, rcu); } } /* called with mc_lock */ static void mld_clear_delrec(struct inet6_dev *idev) { struct ifmcaddr6 *pmc, *nextpmc; pmc = mc_dereference(idev->mc_tomb, idev); RCU_INIT_POINTER(idev->mc_tomb, NULL); for (; pmc; pmc = nextpmc) { nextpmc = mc_dereference(pmc->next, idev); ip6_mc_clear_src(pmc); in6_dev_put(pmc->idev); kfree_rcu(pmc, rcu); } /* clear dead sources, too */ for_each_mc_mclock(idev, pmc) { struct ip6_sf_list *psf, *psf_next; psf = mc_dereference(pmc->mca_tomb, idev); RCU_INIT_POINTER(pmc->mca_tomb, NULL); for (; psf; psf = psf_next) { psf_next = mc_dereference(psf->sf_next, idev); kfree_rcu(psf, rcu); } } } static void mld_clear_query(struct inet6_dev *idev) { struct sk_buff *skb; spin_lock_bh(&idev->mc_query_lock); while ((skb = __skb_dequeue(&idev->mc_query_queue))) kfree_skb(skb); spin_unlock_bh(&idev->mc_query_lock); } static void mld_clear_report(struct inet6_dev *idev) { struct sk_buff *skb; spin_lock_bh(&idev->mc_report_lock); while ((skb = __skb_dequeue(&idev->mc_report_queue))) kfree_skb(skb); spin_unlock_bh(&idev->mc_report_lock); } static void mca_get(struct ifmcaddr6 *mc) { refcount_inc(&mc->mca_refcnt); } static void ma_put(struct ifmcaddr6 *mc) { if (refcount_dec_and_test(&mc->mca_refcnt)) { in6_dev_put(mc->idev); kfree_rcu(mc, rcu); } } /* called with mc_lock */ static struct ifmcaddr6 *mca_alloc(struct inet6_dev *idev, const struct in6_addr *addr, unsigned int mode) { struct ifmcaddr6 *mc; mc = kzalloc(sizeof(*mc), GFP_KERNEL); if (!mc) return NULL; INIT_DELAYED_WORK(&mc->mca_work, mld_mca_work); mc->mca_addr = *addr; mc->idev = idev; /* reference taken by caller */ mc->mca_users = 1; /* mca_stamp should be updated upon changes */ mc->mca_cstamp = mc->mca_tstamp = jiffies; refcount_set(&mc->mca_refcnt, 1); mc->mca_sfmode = mode; mc->mca_sfcount[mode] = 1; if (ipv6_addr_is_ll_all_nodes(&mc->mca_addr) || IPV6_ADDR_MC_SCOPE(&mc->mca_addr) < IPV6_ADDR_SCOPE_LINKLOCAL) mc->mca_flags |= MAF_NOREPORT; return mc; } /* * device multicast group inc (add if not found) */ static int __ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr, unsigned int mode) { struct ifmcaddr6 *mc; struct inet6_dev *idev; ASSERT_RTNL(); /* we need to take a reference on idev */ idev = in6_dev_get(dev); if (!idev) return -EINVAL; if (idev->dead) { in6_dev_put(idev); return -ENODEV; } mutex_lock(&idev->mc_lock); for_each_mc_mclock(idev, mc) { if (ipv6_addr_equal(&mc->mca_addr, addr)) { mc->mca_users++; ip6_mc_add_src(idev, &mc->mca_addr, mode, 0, NULL, 0); mutex_unlock(&idev->mc_lock); in6_dev_put(idev); return 0; } } mc = mca_alloc(idev, addr, mode); if (!mc) { mutex_unlock(&idev->mc_lock); in6_dev_put(idev); return -ENOMEM; } rcu_assign_pointer(mc->next, idev->mc_list); rcu_assign_pointer(idev->mc_list, mc); mca_get(mc); mld_del_delrec(idev, mc); igmp6_group_added(mc); mutex_unlock(&idev->mc_lock); ma_put(mc); return 0; } int ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr) { return __ipv6_dev_mc_inc(dev, addr, MCAST_EXCLUDE); } EXPORT_SYMBOL(ipv6_dev_mc_inc); /* * device multicast group del */ int __ipv6_dev_mc_dec(struct inet6_dev *idev, const struct in6_addr *addr) { struct ifmcaddr6 *ma, __rcu **map; ASSERT_RTNL(); mutex_lock(&idev->mc_lock); for (map = &idev->mc_list; (ma = mc_dereference(*map, idev)); map = &ma->next) { if (ipv6_addr_equal(&ma->mca_addr, addr)) { if (--ma->mca_users == 0) { *map = ma->next; igmp6_group_dropped(ma); ip6_mc_clear_src(ma); mutex_unlock(&idev->mc_lock); ma_put(ma); return 0; } mutex_unlock(&idev->mc_lock); return 0; } } mutex_unlock(&idev->mc_lock); return -ENOENT; } int ipv6_dev_mc_dec(struct net_device *dev, const struct in6_addr *addr) { struct inet6_dev *idev; int err; ASSERT_RTNL(); idev = __in6_dev_get(dev); if (!idev) err = -ENODEV; else err = __ipv6_dev_mc_dec(idev, addr); return err; } EXPORT_SYMBOL(ipv6_dev_mc_dec); /* * check if the interface/address pair is valid */ bool ipv6_chk_mcast_addr(struct net_device *dev, const struct in6_addr *group, const struct in6_addr *src_addr) { struct inet6_dev *idev; struct ifmcaddr6 *mc; bool rv = false; rcu_read_lock(); idev = __in6_dev_get(dev); if (idev) { for_each_mc_rcu(idev, mc) { if (ipv6_addr_equal(&mc->mca_addr, group)) break; } if (mc) { if (src_addr && !ipv6_addr_any(src_addr)) { struct ip6_sf_list *psf; for_each_psf_rcu(mc, psf) { if (ipv6_addr_equal(&psf->sf_addr, src_addr)) break; } if (psf) rv = psf->sf_count[MCAST_INCLUDE] || psf->sf_count[MCAST_EXCLUDE] != mc->mca_sfcount[MCAST_EXCLUDE]; else rv = mc->mca_sfcount[MCAST_EXCLUDE] != 0; } else rv = true; /* don't filter unspecified source */ } } rcu_read_unlock(); return rv; } /* called with mc_lock */ static void mld_gq_start_work(struct inet6_dev *idev) { unsigned long tv = get_random_u32_below(idev->mc_maxdelay); idev->mc_gq_running = 1; if (!mod_delayed_work(mld_wq, &idev->mc_gq_work, tv + 2)) in6_dev_hold(idev); } /* called with mc_lock */ static void mld_gq_stop_work(struct inet6_dev *idev) { idev->mc_gq_running = 0; if (cancel_delayed_work(&idev->mc_gq_work)) __in6_dev_put(idev); } /* called with mc_lock */ static void mld_ifc_start_work(struct inet6_dev *idev, unsigned long delay) { unsigned long tv = get_random_u32_below(delay); if (!mod_delayed_work(mld_wq, &idev->mc_ifc_work, tv + 2)) in6_dev_hold(idev); } /* called with mc_lock */ static void mld_ifc_stop_work(struct inet6_dev *idev) { idev->mc_ifc_count = 0; if (cancel_delayed_work(&idev->mc_ifc_work)) __in6_dev_put(idev); } /* called with mc_lock */ static void mld_dad_start_work(struct inet6_dev *idev, unsigned long delay) { unsigned long tv = get_random_u32_below(delay); if (!mod_delayed_work(mld_wq, &idev->mc_dad_work, tv + 2)) in6_dev_hold(idev); } static void mld_dad_stop_work(struct inet6_dev *idev) { if (cancel_delayed_work(&idev->mc_dad_work)) __in6_dev_put(idev); } static void mld_query_stop_work(struct inet6_dev *idev) { spin_lock_bh(&idev->mc_query_lock); if (cancel_delayed_work(&idev->mc_query_work)) __in6_dev_put(idev); spin_unlock_bh(&idev->mc_query_lock); } static void mld_report_stop_work(struct inet6_dev *idev) { if (cancel_delayed_work_sync(&idev->mc_report_work)) __in6_dev_put(idev); } /* * IGMP handling (alias multicast ICMPv6 messages) * called with mc_lock */ static void igmp6_group_queried(struct ifmcaddr6 *ma, unsigned long resptime) { unsigned long delay = resptime; /* Do not start work for these addresses */ if (ipv6_addr_is_ll_all_nodes(&ma->mca_addr) || IPV6_ADDR_MC_SCOPE(&ma->mca_addr) < IPV6_ADDR_SCOPE_LINKLOCAL) return; if (cancel_delayed_work(&ma->mca_work)) { refcount_dec(&ma->mca_refcnt); delay = ma->mca_work.timer.expires - jiffies; } if (delay >= resptime) delay = get_random_u32_below(resptime); if (!mod_delayed_work(mld_wq, &ma->mca_work, delay)) refcount_inc(&ma->mca_refcnt); ma->mca_flags |= MAF_TIMER_RUNNING; } /* mark EXCLUDE-mode sources * called with mc_lock */ static bool mld_xmarksources(struct ifmcaddr6 *pmc, int nsrcs, const struct in6_addr *srcs) { struct ip6_sf_list *psf; int i, scount; scount = 0; for_each_psf_mclock(pmc, psf) { if (scount == nsrcs) break; for (i = 0; i < nsrcs; i++) { /* skip inactive filters */ if (psf->sf_count[MCAST_INCLUDE] || pmc->mca_sfcount[MCAST_EXCLUDE] != psf->sf_count[MCAST_EXCLUDE]) break; if (ipv6_addr_equal(&srcs[i], &psf->sf_addr)) { scount++; break; } } } pmc->mca_flags &= ~MAF_GSQUERY; if (scount == nsrcs) /* all sources excluded */ return false; return true; } /* called with mc_lock */ static bool mld_marksources(struct ifmcaddr6 *pmc, int nsrcs, const struct in6_addr *srcs) { struct ip6_sf_list *psf; int i, scount; if (pmc->mca_sfmode == MCAST_EXCLUDE) return mld_xmarksources(pmc, nsrcs, srcs); /* mark INCLUDE-mode sources */ scount = 0; for_each_psf_mclock(pmc, psf) { if (scount == nsrcs) break; for (i = 0; i < nsrcs; i++) { if (ipv6_addr_equal(&srcs[i], &psf->sf_addr)) { psf->sf_gsresp = 1; scount++; break; } } } if (!scount) { pmc->mca_flags &= ~MAF_GSQUERY; return false; } pmc->mca_flags |= MAF_GSQUERY; return true; } static int mld_force_mld_version(const struct inet6_dev *idev) { /* Normally, both are 0 here. If enforcement to a particular is * being used, individual device enforcement will have a lower * precedence over 'all' device (.../conf/all/force_mld_version). */ if (dev_net(idev->dev)->ipv6.devconf_all->force_mld_version != 0) return dev_net(idev->dev)->ipv6.devconf_all->force_mld_version; else return idev->cnf.force_mld_version; } static bool mld_in_v2_mode_only(const struct inet6_dev *idev) { return mld_force_mld_version(idev) == 2; } static bool mld_in_v1_mode_only(const struct inet6_dev *idev) { return mld_force_mld_version(idev) == 1; } static bool mld_in_v1_mode(const struct inet6_dev *idev) { if (mld_in_v2_mode_only(idev)) return false; if (mld_in_v1_mode_only(idev)) return true; if (idev->mc_v1_seen && time_before(jiffies, idev->mc_v1_seen)) return true; return false; } static void mld_set_v1_mode(struct inet6_dev *idev) { /* RFC3810, relevant sections: * - 9.1. Robustness Variable * - 9.2. Query Interval * - 9.3. Query Response Interval * - 9.12. Older Version Querier Present Timeout */ unsigned long switchback; switchback = (idev->mc_qrv * idev->mc_qi) + idev->mc_qri; idev->mc_v1_seen = jiffies + switchback; } static void mld_update_qrv(struct inet6_dev *idev, const struct mld2_query *mlh2) { /* RFC3810, relevant sections: * - 5.1.8. QRV (Querier's Robustness Variable) * - 9.1. Robustness Variable */ /* The value of the Robustness Variable MUST NOT be zero, * and SHOULD NOT be one. Catch this here if we ever run * into such a case in future. */ const int min_qrv = min(MLD_QRV_DEFAULT, sysctl_mld_qrv); WARN_ON(idev->mc_qrv == 0); if (mlh2->mld2q_qrv > 0) idev->mc_qrv = mlh2->mld2q_qrv; if (unlikely(idev->mc_qrv < min_qrv)) { net_warn_ratelimited("IPv6: MLD: clamping QRV from %u to %u!\n", idev->mc_qrv, min_qrv); idev->mc_qrv = min_qrv; } } static void mld_update_qi(struct inet6_dev *idev, const struct mld2_query *mlh2) { /* RFC3810, relevant sections: * - 5.1.9. QQIC (Querier's Query Interval Code) * - 9.2. Query Interval * - 9.12. Older Version Querier Present Timeout * (the [Query Interval] in the last Query received) */ unsigned long mc_qqi; if (mlh2->mld2q_qqic < 128) { mc_qqi = mlh2->mld2q_qqic; } else { unsigned long mc_man, mc_exp; mc_exp = MLDV2_QQIC_EXP(mlh2->mld2q_qqic); mc_man = MLDV2_QQIC_MAN(mlh2->mld2q_qqic); mc_qqi = (mc_man | 0x10) << (mc_exp + 3); } idev->mc_qi = mc_qqi * HZ; } static void mld_update_qri(struct inet6_dev *idev, const struct mld2_query *mlh2) { /* RFC3810, relevant sections: * - 5.1.3. Maximum Response Code * - 9.3. Query Response Interval */ idev->mc_qri = msecs_to_jiffies(mldv2_mrc(mlh2)); } static int mld_process_v1(struct inet6_dev *idev, struct mld_msg *mld, unsigned long *max_delay, bool v1_query) { unsigned long mldv1_md; /* Ignore v1 queries */ if (mld_in_v2_mode_only(idev)) return -EINVAL; mldv1_md = ntohs(mld->mld_maxdelay); /* When in MLDv1 fallback and a MLDv2 router start-up being * unaware of current MLDv1 operation, the MRC == MRD mapping * only works when the exponential algorithm is not being * used (as MLDv1 is unaware of such things). * * According to the RFC author, the MLDv2 implementations * he's aware of all use a MRC < 32768 on start up queries. * * Thus, should we *ever* encounter something else larger * than that, just assume the maximum possible within our * reach. */ if (!v1_query) mldv1_md = min(mldv1_md, MLDV1_MRD_MAX_COMPAT); *max_delay = max(msecs_to_jiffies(mldv1_md), 1UL); /* MLDv1 router present: we need to go into v1 mode *only* * when an MLDv1 query is received as per section 9.12. of * RFC3810! And we know from RFC2710 section 3.7 that MLDv1 * queries MUST be of exactly 24 octets. */ if (v1_query) mld_set_v1_mode(idev); /* cancel MLDv2 report work */ mld_gq_stop_work(idev); /* cancel the interface change work */ mld_ifc_stop_work(idev); /* clear deleted report items */ mld_clear_delrec(idev); return 0; } static void mld_process_v2(struct inet6_dev *idev, struct mld2_query *mld, unsigned long *max_delay) { *max_delay = max(msecs_to_jiffies(mldv2_mrc(mld)), 1UL); mld_update_qrv(idev, mld); mld_update_qi(idev, mld); mld_update_qri(idev, mld); idev->mc_maxdelay = *max_delay; return; } /* called with rcu_read_lock() */ void igmp6_event_query(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev || idev->dead) goto out; spin_lock_bh(&idev->mc_query_lock); if (skb_queue_len(&idev->mc_query_queue) < MLD_MAX_SKBS) { __skb_queue_tail(&idev->mc_query_queue, skb); if (!mod_delayed_work(mld_wq, &idev->mc_query_work, 0)) in6_dev_hold(idev); skb = NULL; } spin_unlock_bh(&idev->mc_query_lock); out: kfree_skb(skb); } static void __mld_query_work(struct sk_buff *skb) { struct mld2_query *mlh2 = NULL; const struct in6_addr *group; unsigned long max_delay; struct inet6_dev *idev; struct ifmcaddr6 *ma; struct mld_msg *mld; int group_type; int mark = 0; int len, err; if (!pskb_may_pull(skb, sizeof(struct in6_addr))) goto kfree_skb; /* compute payload length excluding extension headers */ len = ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr); len -= skb_network_header_len(skb); /* RFC3810 6.2 * Upon reception of an MLD message that contains a Query, the node * checks if the source address of the message is a valid link-local * address, if the Hop Limit is set to 1, and if the Router Alert * option is present in the Hop-By-Hop Options header of the IPv6 * packet. If any of these checks fails, the packet is dropped. */ if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL) || ipv6_hdr(skb)->hop_limit != 1 || !(IP6CB(skb)->flags & IP6SKB_ROUTERALERT) || IP6CB(skb)->ra != htons(IPV6_OPT_ROUTERALERT_MLD)) goto kfree_skb; idev = in6_dev_get(skb->dev); if (!idev) goto kfree_skb; mld = (struct mld_msg *)icmp6_hdr(skb); group = &mld->mld_mca; group_type = ipv6_addr_type(group); if (group_type != IPV6_ADDR_ANY && !(group_type&IPV6_ADDR_MULTICAST)) goto out; if (len < MLD_V1_QUERY_LEN) { goto out; } else if (len == MLD_V1_QUERY_LEN || mld_in_v1_mode(idev)) { err = mld_process_v1(idev, mld, &max_delay, len == MLD_V1_QUERY_LEN); if (err < 0) goto out; } else if (len >= MLD_V2_QUERY_LEN_MIN) { int srcs_offset = sizeof(struct mld2_query) - sizeof(struct icmp6hdr); if (!pskb_may_pull(skb, srcs_offset)) goto out; mlh2 = (struct mld2_query *)skb_transport_header(skb); mld_process_v2(idev, mlh2, &max_delay); if (group_type == IPV6_ADDR_ANY) { /* general query */ if (mlh2->mld2q_nsrcs) goto out; /* no sources allowed */ mld_gq_start_work(idev); goto out; } /* mark sources to include, if group & source-specific */ if (mlh2->mld2q_nsrcs != 0) { if (!pskb_may_pull(skb, srcs_offset + ntohs(mlh2->mld2q_nsrcs) * sizeof(struct in6_addr))) goto out; mlh2 = (struct mld2_query *)skb_transport_header(skb); mark = 1; } } else { goto out; } if (group_type == IPV6_ADDR_ANY) { for_each_mc_mclock(idev, ma) { igmp6_group_queried(ma, max_delay); } } else { for_each_mc_mclock(idev, ma) { if (!ipv6_addr_equal(group, &ma->mca_addr)) continue; if (ma->mca_flags & MAF_TIMER_RUNNING) { /* gsquery <- gsquery && mark */ if (!mark) ma->mca_flags &= ~MAF_GSQUERY; } else { /* gsquery <- mark */ if (mark) ma->mca_flags |= MAF_GSQUERY; else ma->mca_flags &= ~MAF_GSQUERY; } if (!(ma->mca_flags & MAF_GSQUERY) || mld_marksources(ma, ntohs(mlh2->mld2q_nsrcs), mlh2->mld2q_srcs)) igmp6_group_queried(ma, max_delay); break; } } out: in6_dev_put(idev); kfree_skb: consume_skb(skb); } static void mld_query_work(struct work_struct *work) { struct inet6_dev *idev = container_of(to_delayed_work(work), struct inet6_dev, mc_query_work); struct sk_buff_head q; struct sk_buff *skb; bool rework = false; int cnt = 0; skb_queue_head_init(&q); spin_lock_bh(&idev->mc_query_lock); while ((skb = __skb_dequeue(&idev->mc_query_queue))) { __skb_queue_tail(&q, skb); if (++cnt >= MLD_MAX_QUEUE) { rework = true; break; } } spin_unlock_bh(&idev->mc_query_lock); mutex_lock(&idev->mc_lock); while ((skb = __skb_dequeue(&q))) __mld_query_work(skb); mutex_unlock(&idev->mc_lock); if (rework && queue_delayed_work(mld_wq, &idev->mc_query_work, 0)) return; in6_dev_put(idev); } /* called with rcu_read_lock() */ void igmp6_event_report(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev || idev->dead) goto out; spin_lock_bh(&idev->mc_report_lock); if (skb_queue_len(&idev->mc_report_queue) < MLD_MAX_SKBS) { __skb_queue_tail(&idev->mc_report_queue, skb); if (!mod_delayed_work(mld_wq, &idev->mc_report_work, 0)) in6_dev_hold(idev); skb = NULL; } spin_unlock_bh(&idev->mc_report_lock); out: kfree_skb(skb); } static void __mld_report_work(struct sk_buff *skb) { struct inet6_dev *idev; struct ifmcaddr6 *ma; struct mld_msg *mld; int addr_type; /* Our own report looped back. Ignore it. */ if (skb->pkt_type == PACKET_LOOPBACK) goto kfree_skb; /* send our report if the MC router may not have heard this report */ if (skb->pkt_type != PACKET_MULTICAST && skb->pkt_type != PACKET_BROADCAST) goto kfree_skb; if (!pskb_may_pull(skb, sizeof(*mld) - sizeof(struct icmp6hdr))) goto kfree_skb; mld = (struct mld_msg *)icmp6_hdr(skb); /* Drop reports with not link local source */ addr_type = ipv6_addr_type(&ipv6_hdr(skb)->saddr); if (addr_type != IPV6_ADDR_ANY && !(addr_type&IPV6_ADDR_LINKLOCAL)) goto kfree_skb; idev = in6_dev_get(skb->dev); if (!idev) goto kfree_skb; /* * Cancel the work for this group */ for_each_mc_mclock(idev, ma) { if (ipv6_addr_equal(&ma->mca_addr, &mld->mld_mca)) { if (cancel_delayed_work(&ma->mca_work)) refcount_dec(&ma->mca_refcnt); ma->mca_flags &= ~(MAF_LAST_REPORTER | MAF_TIMER_RUNNING); break; } } in6_dev_put(idev); kfree_skb: consume_skb(skb); } static void mld_report_work(struct work_struct *work) { struct inet6_dev *idev = container_of(to_delayed_work(work), struct inet6_dev, mc_report_work); struct sk_buff_head q; struct sk_buff *skb; bool rework = false; int cnt = 0; skb_queue_head_init(&q); spin_lock_bh(&idev->mc_report_lock); while ((skb = __skb_dequeue(&idev->mc_report_queue))) { __skb_queue_tail(&q, skb); if (++cnt >= MLD_MAX_QUEUE) { rework = true; break; } } spin_unlock_bh(&idev->mc_report_lock); mutex_lock(&idev->mc_lock); while ((skb = __skb_dequeue(&q))) __mld_report_work(skb); mutex_unlock(&idev->mc_lock); if (rework && queue_delayed_work(mld_wq, &idev->mc_report_work, 0)) return; in6_dev_put(idev); } static bool is_in(struct ifmcaddr6 *pmc, struct ip6_sf_list *psf, int type, int gdeleted, int sdeleted) { switch (type) { case MLD2_MODE_IS_INCLUDE: case MLD2_MODE_IS_EXCLUDE: if (gdeleted || sdeleted) return false; if (!((pmc->mca_flags & MAF_GSQUERY) && !psf->sf_gsresp)) { if (pmc->mca_sfmode == MCAST_INCLUDE) return true; /* don't include if this source is excluded * in all filters */ if (psf->sf_count[MCAST_INCLUDE]) return type == MLD2_MODE_IS_INCLUDE; return pmc->mca_sfcount[MCAST_EXCLUDE] == psf->sf_count[MCAST_EXCLUDE]; } return false; case MLD2_CHANGE_TO_INCLUDE: if (gdeleted || sdeleted) return false; return psf->sf_count[MCAST_INCLUDE] != 0; case MLD2_CHANGE_TO_EXCLUDE: if (gdeleted || sdeleted) return false; if (pmc->mca_sfcount[MCAST_EXCLUDE] == 0 || psf->sf_count[MCAST_INCLUDE]) return false; return pmc->mca_sfcount[MCAST_EXCLUDE] == psf->sf_count[MCAST_EXCLUDE]; case MLD2_ALLOW_NEW_SOURCES: if (gdeleted || !psf->sf_crcount) return false; return (pmc->mca_sfmode == MCAST_INCLUDE) ^ sdeleted; case MLD2_BLOCK_OLD_SOURCES: if (pmc->mca_sfmode == MCAST_INCLUDE) return gdeleted || (psf->sf_crcount && sdeleted); return psf->sf_crcount && !gdeleted && !sdeleted; } return false; } static int mld_scount(struct ifmcaddr6 *pmc, int type, int gdeleted, int sdeleted) { struct ip6_sf_list *psf; int scount = 0; for_each_psf_mclock(pmc, psf) { if (!is_in(pmc, psf, type, gdeleted, sdeleted)) continue; scount++; } return scount; } static void ip6_mc_hdr(const struct sock *sk, struct sk_buff *skb, struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr, int proto, int len) { struct ipv6hdr *hdr; skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reset_network_header(skb); skb_put(skb, sizeof(struct ipv6hdr)); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, 0, 0); hdr->payload_len = htons(len); hdr->nexthdr = proto; hdr->hop_limit = inet6_sk(sk)->hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } static struct sk_buff *mld_newpack(struct inet6_dev *idev, unsigned int mtu) { u8 ra[8] = { IPPROTO_ICMPV6, 0, IPV6_TLV_ROUTERALERT, 2, 0, 0, IPV6_TLV_PADN, 0 }; struct net_device *dev = idev->dev; int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct net *net = dev_net(dev); const struct in6_addr *saddr; struct in6_addr addr_buf; struct mld2_report *pmr; struct sk_buff *skb; unsigned int size; struct sock *sk; int err; sk = net->ipv6.igmp_sk; /* we assume size > sizeof(ra) here * Also try to not allocate high-order pages for big MTU */ size = min_t(int, mtu, PAGE_SIZE / 2) + hlen + tlen; skb = sock_alloc_send_skb(sk, size, 1, &err); if (!skb) return NULL; skb->priority = TC_PRIO_CONTROL; skb_reserve(skb, hlen); skb_tailroom_reserve(skb, mtu, tlen); if (ipv6_get_lladdr(dev, &addr_buf, IFA_F_TENTATIVE)) { /* <draft-ietf-magma-mld-source-05.txt>: * use unspecified address as the source address * when a valid link-local address is not available. */ saddr = &in6addr_any; } else saddr = &addr_buf; ip6_mc_hdr(sk, skb, dev, saddr, &mld2_all_mcr, NEXTHDR_HOP, 0); skb_put_data(skb, ra, sizeof(ra)); skb_set_transport_header(skb, skb_tail_pointer(skb) - skb->data); skb_put(skb, sizeof(*pmr)); pmr = (struct mld2_report *)skb_transport_header(skb); pmr->mld2r_type = ICMPV6_MLD2_REPORT; pmr->mld2r_resv1 = 0; pmr->mld2r_cksum = 0; pmr->mld2r_resv2 = 0; pmr->mld2r_ngrec = 0; return skb; } static void mld_sendpack(struct sk_buff *skb) { struct ipv6hdr *pip6 = ipv6_hdr(skb); struct mld2_report *pmr = (struct mld2_report *)skb_transport_header(skb); int payload_len, mldlen; struct inet6_dev *idev; struct net *net = dev_net(skb->dev); int err; struct flowi6 fl6; struct dst_entry *dst; rcu_read_lock(); idev = __in6_dev_get(skb->dev); IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); payload_len = (skb_tail_pointer(skb) - skb_network_header(skb)) - sizeof(*pip6); mldlen = skb_tail_pointer(skb) - skb_transport_header(skb); pip6->payload_len = htons(payload_len); pmr->mld2r_cksum = csum_ipv6_magic(&pip6->saddr, &pip6->daddr, mldlen, IPPROTO_ICMPV6, csum_partial(skb_transport_header(skb), mldlen, 0)); icmpv6_flow_init(net->ipv6.igmp_sk, &fl6, ICMPV6_MLD2_REPORT, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->dev->ifindex); dst = icmp6_dst_alloc(skb->dev, &fl6); err = 0; if (IS_ERR(dst)) { err = PTR_ERR(dst); dst = NULL; } skb_dst_set(skb, dst); if (err) goto err_out; err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, net->ipv6.igmp_sk, skb, NULL, skb->dev, dst_output); out: if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, ICMPV6_MLD2_REPORT); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } else { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); } rcu_read_unlock(); return; err_out: kfree_skb(skb); goto out; } static int grec_size(struct ifmcaddr6 *pmc, int type, int gdel, int sdel) { return sizeof(struct mld2_grec) + 16 * mld_scount(pmc,type,gdel,sdel); } static struct sk_buff *add_grhead(struct sk_buff *skb, struct ifmcaddr6 *pmc, int type, struct mld2_grec **ppgr, unsigned int mtu) { struct mld2_report *pmr; struct mld2_grec *pgr; if (!skb) { skb = mld_newpack(pmc->idev, mtu); if (!skb) return NULL; } pgr = skb_put(skb, sizeof(struct mld2_grec)); pgr->grec_type = type; pgr->grec_auxwords = 0; pgr->grec_nsrcs = 0; pgr->grec_mca = pmc->mca_addr; /* structure copy */ pmr = (struct mld2_report *)skb_transport_header(skb); pmr->mld2r_ngrec = htons(ntohs(pmr->mld2r_ngrec)+1); *ppgr = pgr; return skb; } #define AVAILABLE(skb) ((skb) ? skb_availroom(skb) : 0) /* called with mc_lock */ static struct sk_buff *add_grec(struct sk_buff *skb, struct ifmcaddr6 *pmc, int type, int gdeleted, int sdeleted, int crsend) { struct ip6_sf_list *psf, *psf_prev, *psf_next; int scount, stotal, first, isquery, truncate; struct ip6_sf_list __rcu **psf_list; struct inet6_dev *idev = pmc->idev; struct net_device *dev = idev->dev; struct mld2_grec *pgr = NULL; struct mld2_report *pmr; unsigned int mtu; if (pmc->mca_flags & MAF_NOREPORT) return skb; mtu = READ_ONCE(dev->mtu); if (mtu < IPV6_MIN_MTU) return skb; isquery = type == MLD2_MODE_IS_INCLUDE || type == MLD2_MODE_IS_EXCLUDE; truncate = type == MLD2_MODE_IS_EXCLUDE || type == MLD2_CHANGE_TO_EXCLUDE; stotal = scount = 0; psf_list = sdeleted ? &pmc->mca_tomb : &pmc->mca_sources; if (!rcu_access_pointer(*psf_list)) goto empty_source; pmr = skb ? (struct mld2_report *)skb_transport_header(skb) : NULL; /* EX and TO_EX get a fresh packet, if needed */ if (truncate) { if (pmr && pmr->mld2r_ngrec && AVAILABLE(skb) < grec_size(pmc, type, gdeleted, sdeleted)) { if (skb) mld_sendpack(skb); skb = mld_newpack(idev, mtu); } } first = 1; psf_prev = NULL; for (psf = mc_dereference(*psf_list, idev); psf; psf = psf_next) { struct in6_addr *psrc; psf_next = mc_dereference(psf->sf_next, idev); if (!is_in(pmc, psf, type, gdeleted, sdeleted) && !crsend) { psf_prev = psf; continue; } /* Based on RFC3810 6.1. Should not send source-list change * records when there is a filter mode change. */ if (((gdeleted && pmc->mca_sfmode == MCAST_EXCLUDE) || (!gdeleted && pmc->mca_crcount)) && (type == MLD2_ALLOW_NEW_SOURCES || type == MLD2_BLOCK_OLD_SOURCES) && psf->sf_crcount) goto decrease_sf_crcount; /* clear marks on query responses */ if (isquery) psf->sf_gsresp = 0; if (AVAILABLE(skb) < sizeof(*psrc) + first*sizeof(struct mld2_grec)) { if (truncate && !first) break; /* truncate these */ if (pgr) pgr->grec_nsrcs = htons(scount); if (skb) mld_sendpack(skb); skb = mld_newpack(idev, mtu); first = 1; scount = 0; } if (first) { skb = add_grhead(skb, pmc, type, &pgr, mtu); first = 0; } if (!skb) return NULL; psrc = skb_put(skb, sizeof(*psrc)); *psrc = psf->sf_addr; scount++; stotal++; if ((type == MLD2_ALLOW_NEW_SOURCES || type == MLD2_BLOCK_OLD_SOURCES) && psf->sf_crcount) { decrease_sf_crcount: psf->sf_crcount--; if ((sdeleted || gdeleted) && psf->sf_crcount == 0) { if (psf_prev) rcu_assign_pointer(psf_prev->sf_next, mc_dereference(psf->sf_next, idev)); else rcu_assign_pointer(*psf_list, mc_dereference(psf->sf_next, idev)); kfree_rcu(psf, rcu); continue; } } psf_prev = psf; } empty_source: if (!stotal) { if (type == MLD2_ALLOW_NEW_SOURCES || type == MLD2_BLOCK_OLD_SOURCES) return skb; if (pmc->mca_crcount || isquery || crsend) { /* make sure we have room for group header */ if (skb && AVAILABLE(skb) < sizeof(struct mld2_grec)) { mld_sendpack(skb); skb = NULL; /* add_grhead will get a new one */ } skb = add_grhead(skb, pmc, type, &pgr, mtu); } } if (pgr) pgr->grec_nsrcs = htons(scount); if (isquery) pmc->mca_flags &= ~MAF_GSQUERY; /* clear query state */ return skb; } /* called with mc_lock */ static void mld_send_report(struct inet6_dev *idev, struct ifmcaddr6 *pmc) { struct sk_buff *skb = NULL; int type; if (!pmc) { for_each_mc_mclock(idev, pmc) { if (pmc->mca_flags & MAF_NOREPORT) continue; if (pmc->mca_sfcount[MCAST_EXCLUDE]) type = MLD2_MODE_IS_EXCLUDE; else type = MLD2_MODE_IS_INCLUDE; skb = add_grec(skb, pmc, type, 0, 0, 0); } } else { if (pmc->mca_sfcount[MCAST_EXCLUDE]) type = MLD2_MODE_IS_EXCLUDE; else type = MLD2_MODE_IS_INCLUDE; skb = add_grec(skb, pmc, type, 0, 0, 0); } if (skb) mld_sendpack(skb); } /* * remove zero-count source records from a source filter list * called with mc_lock */ static void mld_clear_zeros(struct ip6_sf_list __rcu **ppsf, struct inet6_dev *idev) { struct ip6_sf_list *psf_prev, *psf_next, *psf; psf_prev = NULL; for (psf = mc_dereference(*ppsf, idev); psf; psf = psf_next) { psf_next = mc_dereference(psf->sf_next, idev); if (psf->sf_crcount == 0) { if (psf_prev) rcu_assign_pointer(psf_prev->sf_next, mc_dereference(psf->sf_next, idev)); else rcu_assign_pointer(*ppsf, mc_dereference(psf->sf_next, idev)); kfree_rcu(psf, rcu); } else { psf_prev = psf; } } } /* called with mc_lock */ static void mld_send_cr(struct inet6_dev *idev) { struct ifmcaddr6 *pmc, *pmc_prev, *pmc_next; struct sk_buff *skb = NULL; int type, dtype; /* deleted MCA's */ pmc_prev = NULL; for (pmc = mc_dereference(idev->mc_tomb, idev); pmc; pmc = pmc_next) { pmc_next = mc_dereference(pmc->next, idev); if (pmc->mca_sfmode == MCAST_INCLUDE) { type = MLD2_BLOCK_OLD_SOURCES; dtype = MLD2_BLOCK_OLD_SOURCES; skb = add_grec(skb, pmc, type, 1, 0, 0); skb = add_grec(skb, pmc, dtype, 1, 1, 0); } if (pmc->mca_crcount) { if (pmc->mca_sfmode == MCAST_EXCLUDE) { type = MLD2_CHANGE_TO_INCLUDE; skb = add_grec(skb, pmc, type, 1, 0, 0); } pmc->mca_crcount--; if (pmc->mca_crcount == 0) { mld_clear_zeros(&pmc->mca_tomb, idev); mld_clear_zeros(&pmc->mca_sources, idev); } } if (pmc->mca_crcount == 0 && !rcu_access_pointer(pmc->mca_tomb) && !rcu_access_pointer(pmc->mca_sources)) { if (pmc_prev) rcu_assign_pointer(pmc_prev->next, pmc_next); else rcu_assign_pointer(idev->mc_tomb, pmc_next); in6_dev_put(pmc->idev); kfree_rcu(pmc, rcu); } else pmc_prev = pmc; } /* change recs */ for_each_mc_mclock(idev, pmc) { if (pmc->mca_sfcount[MCAST_EXCLUDE]) { type = MLD2_BLOCK_OLD_SOURCES; dtype = MLD2_ALLOW_NEW_SOURCES; } else { type = MLD2_ALLOW_NEW_SOURCES; dtype = MLD2_BLOCK_OLD_SOURCES; } skb = add_grec(skb, pmc, type, 0, 0, 0); skb = add_grec(skb, pmc, dtype, 0, 1, 0); /* deleted sources */ /* filter mode changes */ if (pmc->mca_crcount) { if (pmc->mca_sfmode == MCAST_EXCLUDE) type = MLD2_CHANGE_TO_EXCLUDE; else type = MLD2_CHANGE_TO_INCLUDE; skb = add_grec(skb, pmc, type, 0, 0, 0); pmc->mca_crcount--; } } if (!skb) return; (void) mld_sendpack(skb); } static void igmp6_send(struct in6_addr *addr, struct net_device *dev, int type) { struct net *net = dev_net(dev); struct sock *sk = net->ipv6.igmp_sk; struct inet6_dev *idev; struct sk_buff *skb; struct mld_msg *hdr; const struct in6_addr *snd_addr, *saddr; struct in6_addr addr_buf; int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; int err, len, payload_len, full_len; u8 ra[8] = { IPPROTO_ICMPV6, 0, IPV6_TLV_ROUTERALERT, 2, 0, 0, IPV6_TLV_PADN, 0 }; struct flowi6 fl6; struct dst_entry *dst; if (type == ICMPV6_MGM_REDUCTION) snd_addr = &in6addr_linklocal_allrouters; else snd_addr = addr; len = sizeof(struct icmp6hdr) + sizeof(struct in6_addr); payload_len = len + sizeof(ra); full_len = sizeof(struct ipv6hdr) + payload_len; rcu_read_lock(); IP6_UPD_PO_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_OUT, full_len); rcu_read_unlock(); skb = sock_alloc_send_skb(sk, hlen + tlen + full_len, 1, &err); if (!skb) { rcu_read_lock(); IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); return; } skb->priority = TC_PRIO_CONTROL; skb_reserve(skb, hlen); if (ipv6_get_lladdr(dev, &addr_buf, IFA_F_TENTATIVE)) { /* <draft-ietf-magma-mld-source-05.txt>: * use unspecified address as the source address * when a valid link-local address is not available. */ saddr = &in6addr_any; } else saddr = &addr_buf; ip6_mc_hdr(sk, skb, dev, saddr, snd_addr, NEXTHDR_HOP, payload_len); skb_put_data(skb, ra, sizeof(ra)); hdr = skb_put_zero(skb, sizeof(struct mld_msg)); hdr->mld_type = type; hdr->mld_mca = *addr; hdr->mld_cksum = csum_ipv6_magic(saddr, snd_addr, len, IPPROTO_ICMPV6, csum_partial(hdr, len, 0)); rcu_read_lock(); idev = __in6_dev_get(skb->dev); icmpv6_flow_init(sk, &fl6, type, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->dev->ifindex); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto err_out; } skb_dst_set(skb, dst); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb->dev, dst_output); out: if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } else IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); rcu_read_unlock(); return; err_out: kfree_skb(skb); goto out; } /* called with mc_lock */ static void mld_send_initial_cr(struct inet6_dev *idev) { struct sk_buff *skb; struct ifmcaddr6 *pmc; int type; if (mld_in_v1_mode(idev)) return; skb = NULL; for_each_mc_mclock(idev, pmc) { if (pmc->mca_sfcount[MCAST_EXCLUDE]) type = MLD2_CHANGE_TO_EXCLUDE; else type = MLD2_ALLOW_NEW_SOURCES; skb = add_grec(skb, pmc, type, 0, 0, 1); } if (skb) mld_sendpack(skb); } void ipv6_mc_dad_complete(struct inet6_dev *idev) { mutex_lock(&idev->mc_lock); idev->mc_dad_count = idev->mc_qrv; if (idev->mc_dad_count) { mld_send_initial_cr(idev); idev->mc_dad_count--; if (idev->mc_dad_count) mld_dad_start_work(idev, unsolicited_report_interval(idev)); } mutex_unlock(&idev->mc_lock); } static void mld_dad_work(struct work_struct *work) { struct inet6_dev *idev = container_of(to_delayed_work(work), struct inet6_dev, mc_dad_work); mutex_lock(&idev->mc_lock); mld_send_initial_cr(idev); if (idev->mc_dad_count) { idev->mc_dad_count--; if (idev->mc_dad_count) mld_dad_start_work(idev, unsolicited_report_interval(idev)); } mutex_unlock(&idev->mc_lock); in6_dev_put(idev); } /* called with mc_lock */ static int ip6_mc_del1_src(struct ifmcaddr6 *pmc, int sfmode, const struct in6_addr *psfsrc) { struct ip6_sf_list *psf, *psf_prev; int rv = 0; psf_prev = NULL; for_each_psf_mclock(pmc, psf) { if (ipv6_addr_equal(&psf->sf_addr, psfsrc)) break; psf_prev = psf; } if (!psf || psf->sf_count[sfmode] == 0) { /* source filter not found, or count wrong => bug */ return -ESRCH; } psf->sf_count[sfmode]--; if (!psf->sf_count[MCAST_INCLUDE] && !psf->sf_count[MCAST_EXCLUDE]) { struct inet6_dev *idev = pmc->idev; /* no more filters for this source */ if (psf_prev) rcu_assign_pointer(psf_prev->sf_next, mc_dereference(psf->sf_next, idev)); else rcu_assign_pointer(pmc->mca_sources, mc_dereference(psf->sf_next, idev)); if (psf->sf_oldin && !(pmc->mca_flags & MAF_NOREPORT) && !mld_in_v1_mode(idev)) { psf->sf_crcount = idev->mc_qrv; rcu_assign_pointer(psf->sf_next, mc_dereference(pmc->mca_tomb, idev)); rcu_assign_pointer(pmc->mca_tomb, psf); rv = 1; } else { kfree_rcu(psf, rcu); } } return rv; } /* called with mc_lock */ static int ip6_mc_del_src(struct inet6_dev *idev, const struct in6_addr *pmca, int sfmode, int sfcount, const struct in6_addr *psfsrc, int delta) { struct ifmcaddr6 *pmc; int changerec = 0; int i, err; if (!idev) return -ENODEV; for_each_mc_mclock(idev, pmc) { if (ipv6_addr_equal(pmca, &pmc->mca_addr)) break; } if (!pmc) return -ESRCH; sf_markstate(pmc); if (!delta) { if (!pmc->mca_sfcount[sfmode]) return -EINVAL; pmc->mca_sfcount[sfmode]--; } err = 0; for (i = 0; i < sfcount; i++) { int rv = ip6_mc_del1_src(pmc, sfmode, &psfsrc[i]); changerec |= rv > 0; if (!err && rv < 0) err = rv; } if (pmc->mca_sfmode == MCAST_EXCLUDE && pmc->mca_sfcount[MCAST_EXCLUDE] == 0 && pmc->mca_sfcount[MCAST_INCLUDE]) { struct ip6_sf_list *psf; /* filter mode change */ pmc->mca_sfmode = MCAST_INCLUDE; pmc->mca_crcount = idev->mc_qrv; idev->mc_ifc_count = pmc->mca_crcount; for_each_psf_mclock(pmc, psf) psf->sf_crcount = 0; mld_ifc_event(pmc->idev); } else if (sf_setstate(pmc) || changerec) { mld_ifc_event(pmc->idev); } return err; } /* * Add multicast single-source filter to the interface list * called with mc_lock */ static int ip6_mc_add1_src(struct ifmcaddr6 *pmc, int sfmode, const struct in6_addr *psfsrc) { struct ip6_sf_list *psf, *psf_prev; psf_prev = NULL; for_each_psf_mclock(pmc, psf) { if (ipv6_addr_equal(&psf->sf_addr, psfsrc)) break; psf_prev = psf; } if (!psf) { psf = kzalloc(sizeof(*psf), GFP_KERNEL); if (!psf) return -ENOBUFS; psf->sf_addr = *psfsrc; if (psf_prev) { rcu_assign_pointer(psf_prev->sf_next, psf); } else { rcu_assign_pointer(pmc->mca_sources, psf); } } psf->sf_count[sfmode]++; return 0; } /* called with mc_lock */ static void sf_markstate(struct ifmcaddr6 *pmc) { struct ip6_sf_list *psf; int mca_xcount = pmc->mca_sfcount[MCAST_EXCLUDE]; for_each_psf_mclock(pmc, psf) { if (pmc->mca_sfcount[MCAST_EXCLUDE]) { psf->sf_oldin = mca_xcount == psf->sf_count[MCAST_EXCLUDE] && !psf->sf_count[MCAST_INCLUDE]; } else { psf->sf_oldin = psf->sf_count[MCAST_INCLUDE] != 0; } } } /* called with mc_lock */ static int sf_setstate(struct ifmcaddr6 *pmc) { struct ip6_sf_list *psf, *dpsf; int mca_xcount = pmc->mca_sfcount[MCAST_EXCLUDE]; int qrv = pmc->idev->mc_qrv; int new_in, rv; rv = 0; for_each_psf_mclock(pmc, psf) { if (pmc->mca_sfcount[MCAST_EXCLUDE]) { new_in = mca_xcount == psf->sf_count[MCAST_EXCLUDE] && !psf->sf_count[MCAST_INCLUDE]; } else new_in = psf->sf_count[MCAST_INCLUDE] != 0; if (new_in) { if (!psf->sf_oldin) { struct ip6_sf_list *prev = NULL; for_each_psf_tomb(pmc, dpsf) { if (ipv6_addr_equal(&dpsf->sf_addr, &psf->sf_addr)) break; prev = dpsf; } if (dpsf) { if (prev) rcu_assign_pointer(prev->sf_next, mc_dereference(dpsf->sf_next, pmc->idev)); else rcu_assign_pointer(pmc->mca_tomb, mc_dereference(dpsf->sf_next, pmc->idev)); kfree_rcu(dpsf, rcu); } psf->sf_crcount = qrv; rv++; } } else if (psf->sf_oldin) { psf->sf_crcount = 0; /* * add or update "delete" records if an active filter * is now inactive */ for_each_psf_tomb(pmc, dpsf) if (ipv6_addr_equal(&dpsf->sf_addr, &psf->sf_addr)) break; if (!dpsf) { dpsf = kmalloc(sizeof(*dpsf), GFP_KERNEL); if (!dpsf) continue; *dpsf = *psf; rcu_assign_pointer(dpsf->sf_next, mc_dereference(pmc->mca_tomb, pmc->idev)); rcu_assign_pointer(pmc->mca_tomb, dpsf); } dpsf->sf_crcount = qrv; rv++; } } return rv; } /* * Add multicast source filter list to the interface list * called with mc_lock */ static int ip6_mc_add_src(struct inet6_dev *idev, const struct in6_addr *pmca, int sfmode, int sfcount, const struct in6_addr *psfsrc, int delta) { struct ifmcaddr6 *pmc; int isexclude; int i, err; if (!idev) return -ENODEV; for_each_mc_mclock(idev, pmc) { if (ipv6_addr_equal(pmca, &pmc->mca_addr)) break; } if (!pmc) return -ESRCH; sf_markstate(pmc); isexclude = pmc->mca_sfmode == MCAST_EXCLUDE; if (!delta) pmc->mca_sfcount[sfmode]++; err = 0; for (i = 0; i < sfcount; i++) { err = ip6_mc_add1_src(pmc, sfmode, &psfsrc[i]); if (err) break; } if (err) { int j; if (!delta) pmc->mca_sfcount[sfmode]--; for (j = 0; j < i; j++) ip6_mc_del1_src(pmc, sfmode, &psfsrc[j]); } else if (isexclude != (pmc->mca_sfcount[MCAST_EXCLUDE] != 0)) { struct ip6_sf_list *psf; /* filter mode change */ if (pmc->mca_sfcount[MCAST_EXCLUDE]) pmc->mca_sfmode = MCAST_EXCLUDE; else if (pmc->mca_sfcount[MCAST_INCLUDE]) pmc->mca_sfmode = MCAST_INCLUDE; /* else no filters; keep old mode for reports */ pmc->mca_crcount = idev->mc_qrv; idev->mc_ifc_count = pmc->mca_crcount; for_each_psf_mclock(pmc, psf) psf->sf_crcount = 0; mld_ifc_event(idev); } else if (sf_setstate(pmc)) { mld_ifc_event(idev); } return err; } /* called with mc_lock */ static void ip6_mc_clear_src(struct ifmcaddr6 *pmc) { struct ip6_sf_list *psf, *nextpsf; for (psf = mc_dereference(pmc->mca_tomb, pmc->idev); psf; psf = nextpsf) { nextpsf = mc_dereference(psf->sf_next, pmc->idev); kfree_rcu(psf, rcu); } RCU_INIT_POINTER(pmc->mca_tomb, NULL); for (psf = mc_dereference(pmc->mca_sources, pmc->idev); psf; psf = nextpsf) { nextpsf = mc_dereference(psf->sf_next, pmc->idev); kfree_rcu(psf, rcu); } RCU_INIT_POINTER(pmc->mca_sources, NULL); pmc->mca_sfmode = MCAST_EXCLUDE; pmc->mca_sfcount[MCAST_INCLUDE] = 0; pmc->mca_sfcount[MCAST_EXCLUDE] = 1; } /* called with mc_lock */ static void igmp6_join_group(struct ifmcaddr6 *ma) { unsigned long delay; if (ma->mca_flags & MAF_NOREPORT) return; igmp6_send(&ma->mca_addr, ma->idev->dev, ICMPV6_MGM_REPORT); delay = get_random_u32_below(unsolicited_report_interval(ma->idev)); if (cancel_delayed_work(&ma->mca_work)) { refcount_dec(&ma->mca_refcnt); delay = ma->mca_work.timer.expires - jiffies; } if (!mod_delayed_work(mld_wq, &ma->mca_work, delay)) refcount_inc(&ma->mca_refcnt); ma->mca_flags |= MAF_TIMER_RUNNING | MAF_LAST_REPORTER; } static int ip6_mc_leave_src(struct sock *sk, struct ipv6_mc_socklist *iml, struct inet6_dev *idev) { struct ip6_sf_socklist *psl; int err; psl = sock_dereference(iml->sflist, sk); if (idev) mutex_lock(&idev->mc_lock); if (!psl) { /* any-source empty exclude case */ err = ip6_mc_del_src(idev, &iml->addr, iml->sfmode, 0, NULL, 0); } else { err = ip6_mc_del_src(idev, &iml->addr, iml->sfmode, psl->sl_count, psl->sl_addr, 0); RCU_INIT_POINTER(iml->sflist, NULL); atomic_sub(struct_size(psl, sl_addr, psl->sl_max), &sk->sk_omem_alloc); kfree_rcu(psl, rcu); } if (idev) mutex_unlock(&idev->mc_lock); return err; } /* called with mc_lock */ static void igmp6_leave_group(struct ifmcaddr6 *ma) { if (mld_in_v1_mode(ma->idev)) { if (ma->mca_flags & MAF_LAST_REPORTER) { igmp6_send(&ma->mca_addr, ma->idev->dev, ICMPV6_MGM_REDUCTION); } } else { mld_add_delrec(ma->idev, ma); mld_ifc_event(ma->idev); } } static void mld_gq_work(struct work_struct *work) { struct inet6_dev *idev = container_of(to_delayed_work(work), struct inet6_dev, mc_gq_work); mutex_lock(&idev->mc_lock); mld_send_report(idev, NULL); idev->mc_gq_running = 0; mutex_unlock(&idev->mc_lock); in6_dev_put(idev); } static void mld_ifc_work(struct work_struct *work) { struct inet6_dev *idev = container_of(to_delayed_work(work), struct inet6_dev, mc_ifc_work); mutex_lock(&idev->mc_lock); mld_send_cr(idev); if (idev->mc_ifc_count) { idev->mc_ifc_count--; if (idev->mc_ifc_count) mld_ifc_start_work(idev, unsolicited_report_interval(idev)); } mutex_unlock(&idev->mc_lock); in6_dev_put(idev); } /* called with mc_lock */ static void mld_ifc_event(struct inet6_dev *idev) { if (mld_in_v1_mode(idev)) return; idev->mc_ifc_count = idev->mc_qrv; mld_ifc_start_work(idev, 1); } static void mld_mca_work(struct work_struct *work) { struct ifmcaddr6 *ma = container_of(to_delayed_work(work), struct ifmcaddr6, mca_work); mutex_lock(&ma->idev->mc_lock); if (mld_in_v1_mode(ma->idev)) igmp6_send(&ma->mca_addr, ma->idev->dev, ICMPV6_MGM_REPORT); else mld_send_report(ma->idev, ma); ma->mca_flags |= MAF_LAST_REPORTER; ma->mca_flags &= ~MAF_TIMER_RUNNING; mutex_unlock(&ma->idev->mc_lock); ma_put(ma); } /* Device changing type */ void ipv6_mc_unmap(struct inet6_dev *idev) { struct ifmcaddr6 *i; /* Install multicast list, except for all-nodes (already installed) */ mutex_lock(&idev->mc_lock); for_each_mc_mclock(idev, i) igmp6_group_dropped(i); mutex_unlock(&idev->mc_lock); } void ipv6_mc_remap(struct inet6_dev *idev) { ipv6_mc_up(idev); } /* Device going down */ void ipv6_mc_down(struct inet6_dev *idev) { struct ifmcaddr6 *i; mutex_lock(&idev->mc_lock); /* Withdraw multicast list */ for_each_mc_mclock(idev, i) igmp6_group_dropped(i); mutex_unlock(&idev->mc_lock); /* Should stop work after group drop. or we will * start work again in mld_ifc_event() */ synchronize_net(); mld_query_stop_work(idev); mld_report_stop_work(idev); mld_ifc_stop_work(idev); mld_gq_stop_work(idev); mld_dad_stop_work(idev); } static void ipv6_mc_reset(struct inet6_dev *idev) { idev->mc_qrv = sysctl_mld_qrv; idev->mc_qi = MLD_QI_DEFAULT; idev->mc_qri = MLD_QRI_DEFAULT; idev->mc_v1_seen = 0; idev->mc_maxdelay = unsolicited_report_interval(idev); } /* Device going up */ void ipv6_mc_up(struct inet6_dev *idev) { struct ifmcaddr6 *i; /* Install multicast list, except for all-nodes (already installed) */ ipv6_mc_reset(idev); mutex_lock(&idev->mc_lock); for_each_mc_mclock(idev, i) { mld_del_delrec(idev, i); igmp6_group_added(i); } mutex_unlock(&idev->mc_lock); } /* IPv6 device initialization. */ void ipv6_mc_init_dev(struct inet6_dev *idev) { idev->mc_gq_running = 0; INIT_DELAYED_WORK(&idev->mc_gq_work, mld_gq_work); RCU_INIT_POINTER(idev->mc_tomb, NULL); idev->mc_ifc_count = 0; INIT_DELAYED_WORK(&idev->mc_ifc_work, mld_ifc_work); INIT_DELAYED_WORK(&idev->mc_dad_work, mld_dad_work); INIT_DELAYED_WORK(&idev->mc_query_work, mld_query_work); INIT_DELAYED_WORK(&idev->mc_report_work, mld_report_work); skb_queue_head_init(&idev->mc_query_queue); skb_queue_head_init(&idev->mc_report_queue); spin_lock_init(&idev->mc_query_lock); spin_lock_init(&idev->mc_report_lock); mutex_init(&idev->mc_lock); ipv6_mc_reset(idev); } /* * Device is about to be destroyed: clean up. */ void ipv6_mc_destroy_dev(struct inet6_dev *idev) { struct ifmcaddr6 *i; /* Deactivate works */ ipv6_mc_down(idev); mutex_lock(&idev->mc_lock); mld_clear_delrec(idev); mutex_unlock(&idev->mc_lock); mld_clear_query(idev); mld_clear_report(idev); /* Delete all-nodes address. */ /* We cannot call ipv6_dev_mc_dec() directly, our caller in * addrconf.c has NULL'd out dev->ip6_ptr so in6_dev_get() will * fail. */ __ipv6_dev_mc_dec(idev, &in6addr_linklocal_allnodes); if (idev->cnf.forwarding) __ipv6_dev_mc_dec(idev, &in6addr_linklocal_allrouters); mutex_lock(&idev->mc_lock); while ((i = mc_dereference(idev->mc_list, idev))) { rcu_assign_pointer(idev->mc_list, mc_dereference(i->next, idev)); ip6_mc_clear_src(i); ma_put(i); } mutex_unlock(&idev->mc_lock); } static void ipv6_mc_rejoin_groups(struct inet6_dev *idev) { struct ifmcaddr6 *pmc; ASSERT_RTNL(); mutex_lock(&idev->mc_lock); if (mld_in_v1_mode(idev)) { for_each_mc_mclock(idev, pmc) igmp6_join_group(pmc); } else { mld_send_report(idev, NULL); } mutex_unlock(&idev->mc_lock); } static int ipv6_mc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct inet6_dev *idev = __in6_dev_get(dev); switch (event) { case NETDEV_RESEND_IGMP: if (idev) ipv6_mc_rejoin_groups(idev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block igmp6_netdev_notifier = { .notifier_call = ipv6_mc_netdev_event, }; #ifdef CONFIG_PROC_FS struct igmp6_mc_iter_state { struct seq_net_private p; struct net_device *dev; struct inet6_dev *idev; }; #define igmp6_mc_seq_private(seq) ((struct igmp6_mc_iter_state *)(seq)->private) static inline struct ifmcaddr6 *igmp6_mc_get_first(struct seq_file *seq) { struct ifmcaddr6 *im = NULL; struct igmp6_mc_iter_state *state = igmp6_mc_seq_private(seq); struct net *net = seq_file_net(seq); state->idev = NULL; for_each_netdev_rcu(net, state->dev) { struct inet6_dev *idev; idev = __in6_dev_get(state->dev); if (!idev) continue; im = rcu_dereference(idev->mc_list); if (im) { state->idev = idev; break; } } return im; } static struct ifmcaddr6 *igmp6_mc_get_next(struct seq_file *seq, struct ifmcaddr6 *im) { struct igmp6_mc_iter_state *state = igmp6_mc_seq_private(seq); im = rcu_dereference(im->next); while (!im) { state->dev = next_net_device_rcu(state->dev); if (!state->dev) { state->idev = NULL; break; } state->idev = __in6_dev_get(state->dev); if (!state->idev) continue; im = rcu_dereference(state->idev->mc_list); } return im; } static struct ifmcaddr6 *igmp6_mc_get_idx(struct seq_file *seq, loff_t pos) { struct ifmcaddr6 *im = igmp6_mc_get_first(seq); if (im) while (pos && (im = igmp6_mc_get_next(seq, im)) != NULL) --pos; return pos ? NULL : im; } static void *igmp6_mc_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return igmp6_mc_get_idx(seq, *pos); } static void *igmp6_mc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct ifmcaddr6 *im = igmp6_mc_get_next(seq, v); ++*pos; return im; } static void igmp6_mc_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { struct igmp6_mc_iter_state *state = igmp6_mc_seq_private(seq); if (likely(state->idev)) state->idev = NULL; state->dev = NULL; rcu_read_unlock(); } static int igmp6_mc_seq_show(struct seq_file *seq, void *v) { struct ifmcaddr6 *im = (struct ifmcaddr6 *)v; struct igmp6_mc_iter_state *state = igmp6_mc_seq_private(seq); seq_printf(seq, "%-4d %-15s %pi6 %5d %08X %ld\n", state->dev->ifindex, state->dev->name, &im->mca_addr, im->mca_users, im->mca_flags, (im->mca_flags & MAF_TIMER_RUNNING) ? jiffies_to_clock_t(im->mca_work.timer.expires - jiffies) : 0); return 0; } static const struct seq_operations igmp6_mc_seq_ops = { .start = igmp6_mc_seq_start, .next = igmp6_mc_seq_next, .stop = igmp6_mc_seq_stop, .show = igmp6_mc_seq_show, }; struct igmp6_mcf_iter_state { struct seq_net_private p; struct net_device *dev; struct inet6_dev *idev; struct ifmcaddr6 *im; }; #define igmp6_mcf_seq_private(seq) ((struct igmp6_mcf_iter_state *)(seq)->private) static inline struct ip6_sf_list *igmp6_mcf_get_first(struct seq_file *seq) { struct ip6_sf_list *psf = NULL; struct ifmcaddr6 *im = NULL; struct igmp6_mcf_iter_state *state = igmp6_mcf_seq_private(seq); struct net *net = seq_file_net(seq); state->idev = NULL; state->im = NULL; for_each_netdev_rcu(net, state->dev) { struct inet6_dev *idev; idev = __in6_dev_get(state->dev); if (unlikely(idev == NULL)) continue; im = rcu_dereference(idev->mc_list); if (likely(im)) { psf = rcu_dereference(im->mca_sources); if (likely(psf)) { state->im = im; state->idev = idev; break; } } } return psf; } static struct ip6_sf_list *igmp6_mcf_get_next(struct seq_file *seq, struct ip6_sf_list *psf) { struct igmp6_mcf_iter_state *state = igmp6_mcf_seq_private(seq); psf = rcu_dereference(psf->sf_next); while (!psf) { state->im = rcu_dereference(state->im->next); while (!state->im) { state->dev = next_net_device_rcu(state->dev); if (!state->dev) { state->idev = NULL; goto out; } state->idev = __in6_dev_get(state->dev); if (!state->idev) continue; state->im = rcu_dereference(state->idev->mc_list); } if (!state->im) break; psf = rcu_dereference(state->im->mca_sources); } out: return psf; } static struct ip6_sf_list *igmp6_mcf_get_idx(struct seq_file *seq, loff_t pos) { struct ip6_sf_list *psf = igmp6_mcf_get_first(seq); if (psf) while (pos && (psf = igmp6_mcf_get_next(seq, psf)) != NULL) --pos; return pos ? NULL : psf; } static void *igmp6_mcf_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { rcu_read_lock(); return *pos ? igmp6_mcf_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *igmp6_mcf_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct ip6_sf_list *psf; if (v == SEQ_START_TOKEN) psf = igmp6_mcf_get_first(seq); else psf = igmp6_mcf_get_next(seq, v); ++*pos; return psf; } static void igmp6_mcf_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { struct igmp6_mcf_iter_state *state = igmp6_mcf_seq_private(seq); if (likely(state->im)) state->im = NULL; if (likely(state->idev)) state->idev = NULL; state->dev = NULL; rcu_read_unlock(); } static int igmp6_mcf_seq_show(struct seq_file *seq, void *v) { struct ip6_sf_list *psf = (struct ip6_sf_list *)v; struct igmp6_mcf_iter_state *state = igmp6_mcf_seq_private(seq); if (v == SEQ_START_TOKEN) { seq_puts(seq, "Idx Device Multicast Address Source Address INC EXC\n"); } else { seq_printf(seq, "%3d %6.6s %pi6 %pi6 %6lu %6lu\n", state->dev->ifindex, state->dev->name, &state->im->mca_addr, &psf->sf_addr, psf->sf_count[MCAST_INCLUDE], psf->sf_count[MCAST_EXCLUDE]); } return 0; } static const struct seq_operations igmp6_mcf_seq_ops = { .start = igmp6_mcf_seq_start, .next = igmp6_mcf_seq_next, .stop = igmp6_mcf_seq_stop, .show = igmp6_mcf_seq_show, }; static int __net_init igmp6_proc_init(struct net *net) { int err; err = -ENOMEM; if (!proc_create_net("igmp6", 0444, net->proc_net, &igmp6_mc_seq_ops, sizeof(struct igmp6_mc_iter_state))) goto out; if (!proc_create_net("mcfilter6", 0444, net->proc_net, &igmp6_mcf_seq_ops, sizeof(struct igmp6_mcf_iter_state))) goto out_proc_net_igmp6; err = 0; out: return err; out_proc_net_igmp6: remove_proc_entry("igmp6", net->proc_net); goto out; } static void __net_exit igmp6_proc_exit(struct net *net) { remove_proc_entry("mcfilter6", net->proc_net); remove_proc_entry("igmp6", net->proc_net); } #else static inline int igmp6_proc_init(struct net *net) { return 0; } static inline void igmp6_proc_exit(struct net *net) { } #endif static int __net_init igmp6_net_init(struct net *net) { int err; err = inet_ctl_sock_create(&net->ipv6.igmp_sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { pr_err("Failed to initialize the IGMP6 control socket (err %d)\n", err); goto out; } inet6_sk(net->ipv6.igmp_sk)->hop_limit = 1; net->ipv6.igmp_sk->sk_allocation = GFP_KERNEL; err = inet_ctl_sock_create(&net->ipv6.mc_autojoin_sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { pr_err("Failed to initialize the IGMP6 autojoin socket (err %d)\n", err); goto out_sock_create; } err = igmp6_proc_init(net); if (err) goto out_sock_create_autojoin; return 0; out_sock_create_autojoin: inet_ctl_sock_destroy(net->ipv6.mc_autojoin_sk); out_sock_create: inet_ctl_sock_destroy(net->ipv6.igmp_sk); out: return err; } static void __net_exit igmp6_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.igmp_sk); inet_ctl_sock_destroy(net->ipv6.mc_autojoin_sk); igmp6_proc_exit(net); } static struct pernet_operations igmp6_net_ops = { .init = igmp6_net_init, .exit = igmp6_net_exit, }; int __init igmp6_init(void) { int err; err = register_pernet_subsys(&igmp6_net_ops); if (err) return err; mld_wq = create_workqueue("mld"); if (!mld_wq) { unregister_pernet_subsys(&igmp6_net_ops); return -ENOMEM; } return err; } int __init igmp6_late_init(void) { return register_netdevice_notifier(&igmp6_netdev_notifier); } void igmp6_cleanup(void) { unregister_pernet_subsys(&igmp6_net_ops); destroy_workqueue(mld_wq); } void igmp6_late_cleanup(void) { unregister_netdevice_notifier(&igmp6_netdev_notifier); }
linux-master
net/ipv6/mcast.c
// SPDX-License-Identifier: GPL-2.0+ /* * IPv6 IOAM implementation * * Author: * Justin Iurman <[email protected]> */ #include <linux/errno.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/ioam6.h> #include <linux/ioam6_genl.h> #include <linux/rhashtable.h> #include <linux/netdevice.h> #include <net/addrconf.h> #include <net/genetlink.h> #include <net/ioam6.h> #include <net/sch_generic.h> static void ioam6_ns_release(struct ioam6_namespace *ns) { kfree_rcu(ns, rcu); } static void ioam6_sc_release(struct ioam6_schema *sc) { kfree_rcu(sc, rcu); } static void ioam6_free_ns(void *ptr, void *arg) { struct ioam6_namespace *ns = (struct ioam6_namespace *)ptr; if (ns) ioam6_ns_release(ns); } static void ioam6_free_sc(void *ptr, void *arg) { struct ioam6_schema *sc = (struct ioam6_schema *)ptr; if (sc) ioam6_sc_release(sc); } static int ioam6_ns_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_namespace *ns = obj; return (ns->id != *(__be16 *)arg->key); } static int ioam6_sc_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ioam6_schema *sc = obj; return (sc->id != *(u32 *)arg->key); } static const struct rhashtable_params rht_ns_params = { .key_len = sizeof(__be16), .key_offset = offsetof(struct ioam6_namespace, id), .head_offset = offsetof(struct ioam6_namespace, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_ns_cmpfn, }; static const struct rhashtable_params rht_sc_params = { .key_len = sizeof(u32), .key_offset = offsetof(struct ioam6_schema, id), .head_offset = offsetof(struct ioam6_schema, head), .automatic_shrinking = true, .obj_cmpfn = ioam6_sc_cmpfn, }; static struct genl_family ioam6_genl_family; static const struct nla_policy ioam6_genl_policy_addns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_NS_DATA] = { .type = NLA_U32 }, [IOAM6_ATTR_NS_DATA_WIDE] = { .type = NLA_U64 }, }; static const struct nla_policy ioam6_genl_policy_delns[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, }; static const struct nla_policy ioam6_genl_policy_addsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_DATA] = { .type = NLA_BINARY, .len = IOAM6_MAX_SCHEMA_DATA_LEN }, }; static const struct nla_policy ioam6_genl_policy_delsc[] = { [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, }; static const struct nla_policy ioam6_genl_policy_ns_sc[] = { [IOAM6_ATTR_NS_ID] = { .type = NLA_U16 }, [IOAM6_ATTR_SC_ID] = { .type = NLA_U32 }, [IOAM6_ATTR_SC_NONE] = { .type = NLA_FLAG }, }; static int ioam6_genl_addns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; u64 data64; u32 data32; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (ns) { err = -EEXIST; goto out_unlock; } ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) { err = -ENOMEM; goto out_unlock; } ns->id = id; if (!info->attrs[IOAM6_ATTR_NS_DATA]) data32 = IOAM6_U32_UNAVAILABLE; else data32 = nla_get_u32(info->attrs[IOAM6_ATTR_NS_DATA]); if (!info->attrs[IOAM6_ATTR_NS_DATA_WIDE]) data64 = IOAM6_U64_UNAVAILABLE; else data64 = nla_get_u64(info->attrs[IOAM6_ATTR_NS_DATA_WIDE]); ns->data = cpu_to_be32(data32); ns->data_wide = cpu_to_be64(data64); err = rhashtable_lookup_insert_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) kfree(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int ioam6_genl_delns(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; __be16 id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID]) return -EINVAL; id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } sc = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->namespaces, &ns->head, rht_ns_params); if (err) goto out_unlock; if (sc) rcu_assign_pointer(sc->ns, NULL); ioam6_ns_release(ns); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpns_element(struct ioam6_namespace *ns, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_schema *sc; u64 data64; u32 data32; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; data32 = be32_to_cpu(ns->data); data64 = be64_to_cpu(ns->data_wide); if (nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id)) || (data32 != IOAM6_U32_UNAVAILABLE && nla_put_u32(skb, IOAM6_ATTR_NS_DATA, data32)) || (data64 != IOAM6_U64_UNAVAILABLE && nla_put_u64_64bit(skb, IOAM6_ATTR_NS_DATA_WIDE, data64, IOAM6_ATTR_PAD))) goto nla_put_failure; rcu_read_lock(); sc = rcu_dereference(ns->schema); if (sc && nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id)) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpns_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->namespaces, iter); return 0; } static int ioam6_genl_dumpns_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpns(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_namespace *ns; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { ns = rhashtable_walk_next(iter); if (IS_ERR(ns)) { if (PTR_ERR(ns) == -EAGAIN) continue; err = PTR_ERR(ns); goto done; } else if (!ns) { break; } err = __ioam6_genl_dumpns_element(ns, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_NAMESPACES); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_addsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; int len, len_aligned, err; struct ioam6_schema *sc; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID] || !info->attrs[IOAM6_ATTR_SC_DATA]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (sc) { err = -EEXIST; goto out_unlock; } len = nla_len(info->attrs[IOAM6_ATTR_SC_DATA]); len_aligned = ALIGN(len, 4); sc = kzalloc(sizeof(*sc) + len_aligned, GFP_KERNEL); if (!sc) { err = -ENOMEM; goto out_unlock; } sc->id = id; sc->len = len_aligned; sc->hdr = cpu_to_be32(sc->id | ((u8)(sc->len / 4) << 24)); nla_memcpy(sc->data, info->attrs[IOAM6_ATTR_SC_DATA], len); err = rhashtable_lookup_insert_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto free_sc; out_unlock: mutex_unlock(&nsdata->lock); return err; free_sc: kfree(sc); goto out_unlock; } static int ioam6_genl_delsc(struct sk_buff *skb, struct genl_info *info) { struct ioam6_pernet_data *nsdata; struct ioam6_namespace *ns; struct ioam6_schema *sc; int err; u32 id; if (!info->attrs[IOAM6_ATTR_SC_ID]) return -EINVAL; id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); sc = rhashtable_lookup_fast(&nsdata->schemas, &id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } ns = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); err = rhashtable_remove_fast(&nsdata->schemas, &sc->head, rht_sc_params); if (err) goto out_unlock; if (ns) rcu_assign_pointer(ns->schema, NULL); ioam6_sc_release(sc); out_unlock: mutex_unlock(&nsdata->lock); return err; } static int __ioam6_genl_dumpsc_element(struct ioam6_schema *sc, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { struct ioam6_namespace *ns; void *hdr; hdr = genlmsg_put(skb, portid, seq, &ioam6_genl_family, flags, cmd); if (!hdr) return -ENOMEM; if (nla_put_u32(skb, IOAM6_ATTR_SC_ID, sc->id) || nla_put(skb, IOAM6_ATTR_SC_DATA, sc->len, sc->data)) goto nla_put_failure; rcu_read_lock(); ns = rcu_dereference(sc->ns); if (ns && nla_put_u16(skb, IOAM6_ATTR_NS_ID, be16_to_cpu(ns->id))) { rcu_read_unlock(); goto nla_put_failure; } rcu_read_unlock(); genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } static int ioam6_genl_dumpsc_start(struct netlink_callback *cb) { struct ioam6_pernet_data *nsdata = ioam6_pernet(sock_net(cb->skb->sk)); struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; if (!iter) { iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; cb->args[0] = (long)iter; } rhashtable_walk_enter(&nsdata->schemas, iter); return 0; } static int ioam6_genl_dumpsc_done(struct netlink_callback *cb) { struct rhashtable_iter *iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_exit(iter); kfree(iter); return 0; } static int ioam6_genl_dumpsc(struct sk_buff *skb, struct netlink_callback *cb) { struct rhashtable_iter *iter; struct ioam6_schema *sc; int err; iter = (struct rhashtable_iter *)cb->args[0]; rhashtable_walk_start(iter); for (;;) { sc = rhashtable_walk_next(iter); if (IS_ERR(sc)) { if (PTR_ERR(sc) == -EAGAIN) continue; err = PTR_ERR(sc); goto done; } else if (!sc) { break; } err = __ioam6_genl_dumpsc_element(sc, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, IOAM6_CMD_DUMP_SCHEMAS); if (err) goto done; } err = skb->len; done: rhashtable_walk_stop(iter); return err; } static int ioam6_genl_ns_set_schema(struct sk_buff *skb, struct genl_info *info) { struct ioam6_namespace *ns, *ns_ref; struct ioam6_schema *sc, *sc_ref; struct ioam6_pernet_data *nsdata; __be16 ns_id; u32 sc_id; int err; if (!info->attrs[IOAM6_ATTR_NS_ID] || (!info->attrs[IOAM6_ATTR_SC_ID] && !info->attrs[IOAM6_ATTR_SC_NONE])) return -EINVAL; ns_id = cpu_to_be16(nla_get_u16(info->attrs[IOAM6_ATTR_NS_ID])); nsdata = ioam6_pernet(genl_info_net(info)); mutex_lock(&nsdata->lock); ns = rhashtable_lookup_fast(&nsdata->namespaces, &ns_id, rht_ns_params); if (!ns) { err = -ENOENT; goto out_unlock; } if (info->attrs[IOAM6_ATTR_SC_NONE]) { sc = NULL; } else { sc_id = nla_get_u32(info->attrs[IOAM6_ATTR_SC_ID]); sc = rhashtable_lookup_fast(&nsdata->schemas, &sc_id, rht_sc_params); if (!sc) { err = -ENOENT; goto out_unlock; } } sc_ref = rcu_dereference_protected(ns->schema, lockdep_is_held(&nsdata->lock)); if (sc_ref) rcu_assign_pointer(sc_ref->ns, NULL); rcu_assign_pointer(ns->schema, sc); if (sc) { ns_ref = rcu_dereference_protected(sc->ns, lockdep_is_held(&nsdata->lock)); if (ns_ref) rcu_assign_pointer(ns_ref->schema, NULL); rcu_assign_pointer(sc->ns, ns); } err = 0; out_unlock: mutex_unlock(&nsdata->lock); return err; } static const struct genl_ops ioam6_genl_ops[] = { { .cmd = IOAM6_CMD_ADD_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addns) - 1, }, { .cmd = IOAM6_CMD_DEL_NAMESPACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delns, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delns, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delns) - 1, }, { .cmd = IOAM6_CMD_DUMP_NAMESPACES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpns_start, .dumpit = ioam6_genl_dumpns, .done = ioam6_genl_dumpns_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_ADD_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_addsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_addsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_addsc) - 1, }, { .cmd = IOAM6_CMD_DEL_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_delsc, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_delsc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_delsc) - 1, }, { .cmd = IOAM6_CMD_DUMP_SCHEMAS, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .start = ioam6_genl_dumpsc_start, .dumpit = ioam6_genl_dumpsc, .done = ioam6_genl_dumpsc_done, .flags = GENL_ADMIN_PERM, }, { .cmd = IOAM6_CMD_NS_SET_SCHEMA, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ioam6_genl_ns_set_schema, .flags = GENL_ADMIN_PERM, .policy = ioam6_genl_policy_ns_sc, .maxattr = ARRAY_SIZE(ioam6_genl_policy_ns_sc) - 1, }, }; static struct genl_family ioam6_genl_family __ro_after_init = { .name = IOAM6_GENL_NAME, .version = IOAM6_GENL_VERSION, .netnsok = true, .parallel_ops = true, .ops = ioam6_genl_ops, .n_ops = ARRAY_SIZE(ioam6_genl_ops), .resv_start_op = IOAM6_CMD_NS_SET_SCHEMA + 1, .module = THIS_MODULE, }; struct ioam6_namespace *ioam6_namespace(struct net *net, __be16 id) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); return rhashtable_lookup_fast(&nsdata->namespaces, &id, rht_ns_params); } static void __ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, struct ioam6_schema *sc, u8 sclen, bool is_input) { struct timespec64 ts; ktime_t tstamp; u64 raw64; u32 raw32; u16 raw16; u8 *data; u8 byte; data = trace->data + trace->remlen * 4 - trace->nodelen * 4 - sclen * 4; /* hop_lim and node_id */ if (trace->type.bit0) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw32 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id; *(__be32 *)data = cpu_to_be32((byte << 24) | raw32); data += sizeof(__be32); } /* ingress_if_id and egress_if_id */ if (trace->type.bit1) { if (!skb->dev) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)__in6_dev_get(skb->dev)->cnf.ioam6_id; *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw16 = IOAM6_U16_UNAVAILABLE; else raw16 = (__force u16)__in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id; *(__be16 *)data = cpu_to_be16(raw16); data += sizeof(__be16); } /* timestamp seconds */ if (trace->type.bit2) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); *(__be32 *)data = cpu_to_be32((u32)ts.tv_sec); } data += sizeof(__be32); } /* timestamp subseconds */ if (trace->type.bit3) { if (!skb->dev) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { if (!trace->type.bit2) { tstamp = skb_tstamp_cond(skb, true); ts = ktime_to_timespec64(tstamp); } *(__be32 *)data = cpu_to_be32((u32)(ts.tv_nsec / NSEC_PER_USEC)); } data += sizeof(__be32); } /* transit delay */ if (trace->type.bit4) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* namespace data */ if (trace->type.bit5) { *(__be32 *)data = ns->data; data += sizeof(__be32); } /* queue depth */ if (trace->type.bit6) { struct netdev_queue *queue; struct Qdisc *qdisc; __u32 qlen, backlog; if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); } else { queue = skb_get_tx_queue(skb_dst(skb)->dev, skb); qdisc = rcu_dereference(queue->qdisc); qdisc_qstats_qlen_backlog(qdisc, &qlen, &backlog); *(__be32 *)data = cpu_to_be32(backlog); } data += sizeof(__be32); } /* checksum complement */ if (trace->type.bit7) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* hop_lim and node_id (wide) */ if (trace->type.bit8) { byte = ipv6_hdr(skb)->hop_limit; if (is_input) byte--; raw64 = dev_net(skb_dst(skb)->dev)->ipv6.sysctl.ioam6_id_wide; *(__be64 *)data = cpu_to_be64(((u64)byte << 56) | raw64); data += sizeof(__be64); } /* ingress_if_id and egress_if_id (wide) */ if (trace->type.bit9) { if (!skb->dev) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = __in6_dev_get(skb->dev)->cnf.ioam6_id_wide; *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); if (skb_dst(skb)->dev->flags & IFF_LOOPBACK) raw32 = IOAM6_U32_UNAVAILABLE; else raw32 = __in6_dev_get(skb_dst(skb)->dev)->cnf.ioam6_id_wide; *(__be32 *)data = cpu_to_be32(raw32); data += sizeof(__be32); } /* namespace data (wide) */ if (trace->type.bit10) { *(__be64 *)data = ns->data_wide; data += sizeof(__be64); } /* buffer occupancy */ if (trace->type.bit11) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit12 undefined: filled with empty value */ if (trace->type.bit12) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit13 undefined: filled with empty value */ if (trace->type.bit13) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit14 undefined: filled with empty value */ if (trace->type.bit14) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit15 undefined: filled with empty value */ if (trace->type.bit15) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit16 undefined: filled with empty value */ if (trace->type.bit16) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit17 undefined: filled with empty value */ if (trace->type.bit17) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit18 undefined: filled with empty value */ if (trace->type.bit18) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit19 undefined: filled with empty value */ if (trace->type.bit19) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit20 undefined: filled with empty value */ if (trace->type.bit20) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* bit21 undefined: filled with empty value */ if (trace->type.bit21) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE); data += sizeof(__be32); } /* opaque state snapshot */ if (trace->type.bit22) { if (!sc) { *(__be32 *)data = cpu_to_be32(IOAM6_U32_UNAVAILABLE >> 8); } else { *(__be32 *)data = sc->hdr; data += sizeof(__be32); memcpy(data, sc->data, sc->len); } } } /* called with rcu_read_lock() */ void ioam6_fill_trace_data(struct sk_buff *skb, struct ioam6_namespace *ns, struct ioam6_trace_hdr *trace, bool is_input) { struct ioam6_schema *sc; u8 sclen = 0; /* Skip if Overflow flag is set */ if (trace->overflow) return; /* NodeLen does not include Opaque State Snapshot length. We need to * take it into account if the corresponding bit is set (bit 22) and * if the current IOAM namespace has an active schema attached to it */ sc = rcu_dereference(ns->schema); if (trace->type.bit22) { sclen = sizeof_field(struct ioam6_schema, hdr) / 4; if (sc) sclen += sc->len / 4; } /* If there is no space remaining, we set the Overflow flag and we * skip without filling the trace */ if (!trace->remlen || trace->remlen < trace->nodelen + sclen) { trace->overflow = 1; return; } __ioam6_fill_trace_data(skb, ns, trace, sc, sclen, is_input); trace->remlen -= trace->nodelen + sclen; } static int __net_init ioam6_net_init(struct net *net) { struct ioam6_pernet_data *nsdata; int err = -ENOMEM; nsdata = kzalloc(sizeof(*nsdata), GFP_KERNEL); if (!nsdata) goto out; mutex_init(&nsdata->lock); net->ipv6.ioam6_data = nsdata; err = rhashtable_init(&nsdata->namespaces, &rht_ns_params); if (err) goto free_nsdata; err = rhashtable_init(&nsdata->schemas, &rht_sc_params); if (err) goto free_rht_ns; out: return err; free_rht_ns: rhashtable_destroy(&nsdata->namespaces); free_nsdata: kfree(nsdata); net->ipv6.ioam6_data = NULL; goto out; } static void __net_exit ioam6_net_exit(struct net *net) { struct ioam6_pernet_data *nsdata = ioam6_pernet(net); rhashtable_free_and_destroy(&nsdata->namespaces, ioam6_free_ns, NULL); rhashtable_free_and_destroy(&nsdata->schemas, ioam6_free_sc, NULL); kfree(nsdata); } static struct pernet_operations ioam6_net_ops = { .init = ioam6_net_init, .exit = ioam6_net_exit, }; int __init ioam6_init(void) { int err = register_pernet_subsys(&ioam6_net_ops); if (err) goto out; err = genl_register_family(&ioam6_genl_family); if (err) goto out_unregister_pernet_subsys; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL err = ioam6_iptunnel_init(); if (err) goto out_unregister_genl; #endif pr_info("In-situ OAM (IOAM) with IPv6\n"); out: return err; #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL out_unregister_genl: genl_unregister_family(&ioam6_genl_family); #endif out_unregister_pernet_subsys: unregister_pernet_subsys(&ioam6_net_ops); goto out; } void ioam6_exit(void) { #ifdef CONFIG_IPV6_IOAM6_LWTUNNEL ioam6_iptunnel_exit(); #endif genl_unregister_family(&ioam6_genl_family); unregister_pernet_subsys(&ioam6_net_ops); }
linux-master
net/ipv6/ioam6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * GRE over IPv6 protocol decoder. * * Authors: Dmitry Kozlov ([email protected]) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/in.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/if_arp.h> #include <linux/init.h> #include <linux/in6.h> #include <linux/inetdevice.h> #include <linux/igmp.h> #include <linux/netfilter_ipv4.h> #include <linux/etherdevice.h> #include <linux/if_ether.h> #include <linux/hash.h> #include <linux/if_tunnel.h> #include <linux/ip6_tunnel.h> #include <net/sock.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/icmp.h> #include <net/protocol.h> #include <net/addrconf.h> #include <net/arp.h> #include <net/checksum.h> #include <net/dsfield.h> #include <net/inet_ecn.h> #include <net/xfrm.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/rtnetlink.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <net/ip6_tunnel.h> #include <net/gre.h> #include <net/erspan.h> #include <net/dst_metadata.h> static bool log_ecn_error = true; module_param(log_ecn_error, bool, 0644); MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); #define IP6_GRE_HASH_SIZE_SHIFT 5 #define IP6_GRE_HASH_SIZE (1 << IP6_GRE_HASH_SIZE_SHIFT) static unsigned int ip6gre_net_id __read_mostly; struct ip6gre_net { struct ip6_tnl __rcu *tunnels[4][IP6_GRE_HASH_SIZE]; struct ip6_tnl __rcu *collect_md_tun; struct ip6_tnl __rcu *collect_md_tun_erspan; struct net_device *fb_tunnel_dev; }; static struct rtnl_link_ops ip6gre_link_ops __read_mostly; static struct rtnl_link_ops ip6gre_tap_ops __read_mostly; static struct rtnl_link_ops ip6erspan_tap_ops __read_mostly; static int ip6gre_tunnel_init(struct net_device *dev); static void ip6gre_tunnel_setup(struct net_device *dev); static void ip6gre_tunnel_link(struct ip6gre_net *ign, struct ip6_tnl *t); static void ip6gre_tnl_link_config(struct ip6_tnl *t, int set_mtu); static void ip6erspan_tnl_link_config(struct ip6_tnl *t, int set_mtu); /* Tunnel hash table */ /* 4 hash tables: 3: (remote,local) 2: (remote,*) 1: (*,local) 0: (*,*) We require exact key match i.e. if a key is present in packet it will match only tunnel with the same key; if it is not present, it will match only keyless tunnel. All keysless packets, if not matched configured keyless tunnels will match fallback tunnel. */ #define HASH_KEY(key) (((__force u32)key^((__force u32)key>>4))&(IP6_GRE_HASH_SIZE - 1)) static u32 HASH_ADDR(const struct in6_addr *addr) { u32 hash = ipv6_addr_hash(addr); return hash_32(hash, IP6_GRE_HASH_SIZE_SHIFT); } #define tunnels_r_l tunnels[3] #define tunnels_r tunnels[2] #define tunnels_l tunnels[1] #define tunnels_wc tunnels[0] /* Given src, dst and key, find appropriate for input tunnel. */ static struct ip6_tnl *ip6gre_tunnel_lookup(struct net_device *dev, const struct in6_addr *remote, const struct in6_addr *local, __be32 key, __be16 gre_proto) { struct net *net = dev_net(dev); int link = dev->ifindex; unsigned int h0 = HASH_ADDR(remote); unsigned int h1 = HASH_KEY(key); struct ip6_tnl *t, *cand = NULL; struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); int dev_type = (gre_proto == htons(ETH_P_TEB) || gre_proto == htons(ETH_P_ERSPAN) || gre_proto == htons(ETH_P_ERSPAN2)) ? ARPHRD_ETHER : ARPHRD_IP6GRE; int score, cand_score = 4; struct net_device *ndev; for_each_ip_tunnel_rcu(t, ign->tunnels_r_l[h0 ^ h1]) { if (!ipv6_addr_equal(local, &t->parms.laddr) || !ipv6_addr_equal(remote, &t->parms.raddr) || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IP6GRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(t, ign->tunnels_r[h0 ^ h1]) { if (!ipv6_addr_equal(remote, &t->parms.raddr) || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IP6GRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(t, ign->tunnels_l[h1]) { if ((!ipv6_addr_equal(local, &t->parms.laddr) && (!ipv6_addr_equal(local, &t->parms.raddr) || !ipv6_addr_is_multicast(local))) || key != t->parms.i_key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IP6GRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } for_each_ip_tunnel_rcu(t, ign->tunnels_wc[h1]) { if (t->parms.i_key != key || !(t->dev->flags & IFF_UP)) continue; if (t->dev->type != ARPHRD_IP6GRE && t->dev->type != dev_type) continue; score = 0; if (t->parms.link != link) score |= 1; if (t->dev->type != dev_type) score |= 2; if (score == 0) return t; if (score < cand_score) { cand = t; cand_score = score; } } if (cand) return cand; if (gre_proto == htons(ETH_P_ERSPAN) || gre_proto == htons(ETH_P_ERSPAN2)) t = rcu_dereference(ign->collect_md_tun_erspan); else t = rcu_dereference(ign->collect_md_tun); if (t && t->dev->flags & IFF_UP) return t; ndev = READ_ONCE(ign->fb_tunnel_dev); if (ndev && ndev->flags & IFF_UP) return netdev_priv(ndev); return NULL; } static struct ip6_tnl __rcu **__ip6gre_bucket(struct ip6gre_net *ign, const struct __ip6_tnl_parm *p) { const struct in6_addr *remote = &p->raddr; const struct in6_addr *local = &p->laddr; unsigned int h = HASH_KEY(p->i_key); int prio = 0; if (!ipv6_addr_any(local)) prio |= 1; if (!ipv6_addr_any(remote) && !ipv6_addr_is_multicast(remote)) { prio |= 2; h ^= HASH_ADDR(remote); } return &ign->tunnels[prio][h]; } static void ip6gre_tunnel_link_md(struct ip6gre_net *ign, struct ip6_tnl *t) { if (t->parms.collect_md) rcu_assign_pointer(ign->collect_md_tun, t); } static void ip6erspan_tunnel_link_md(struct ip6gre_net *ign, struct ip6_tnl *t) { if (t->parms.collect_md) rcu_assign_pointer(ign->collect_md_tun_erspan, t); } static void ip6gre_tunnel_unlink_md(struct ip6gre_net *ign, struct ip6_tnl *t) { if (t->parms.collect_md) rcu_assign_pointer(ign->collect_md_tun, NULL); } static void ip6erspan_tunnel_unlink_md(struct ip6gre_net *ign, struct ip6_tnl *t) { if (t->parms.collect_md) rcu_assign_pointer(ign->collect_md_tun_erspan, NULL); } static inline struct ip6_tnl __rcu **ip6gre_bucket(struct ip6gre_net *ign, const struct ip6_tnl *t) { return __ip6gre_bucket(ign, &t->parms); } static void ip6gre_tunnel_link(struct ip6gre_net *ign, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp = ip6gre_bucket(ign, t); rcu_assign_pointer(t->next, rtnl_dereference(*tp)); rcu_assign_pointer(*tp, t); } static void ip6gre_tunnel_unlink(struct ip6gre_net *ign, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp; struct ip6_tnl *iter; for (tp = ip6gre_bucket(ign, t); (iter = rtnl_dereference(*tp)) != NULL; tp = &iter->next) { if (t == iter) { rcu_assign_pointer(*tp, t->next); break; } } } static struct ip6_tnl *ip6gre_tunnel_find(struct net *net, const struct __ip6_tnl_parm *parms, int type) { const struct in6_addr *remote = &parms->raddr; const struct in6_addr *local = &parms->laddr; __be32 key = parms->i_key; int link = parms->link; struct ip6_tnl *t; struct ip6_tnl __rcu **tp; struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); for (tp = __ip6gre_bucket(ign, parms); (t = rtnl_dereference(*tp)) != NULL; tp = &t->next) if (ipv6_addr_equal(local, &t->parms.laddr) && ipv6_addr_equal(remote, &t->parms.raddr) && key == t->parms.i_key && link == t->parms.link && type == t->dev->type) break; return t; } static struct ip6_tnl *ip6gre_tunnel_locate(struct net *net, const struct __ip6_tnl_parm *parms, int create) { struct ip6_tnl *t, *nt; struct net_device *dev; char name[IFNAMSIZ]; struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); t = ip6gre_tunnel_find(net, parms, ARPHRD_IP6GRE); if (t && create) return NULL; if (t || !create) return t; if (parms->name[0]) { if (!dev_valid_name(parms->name)) return NULL; strscpy(name, parms->name, IFNAMSIZ); } else { strcpy(name, "ip6gre%d"); } dev = alloc_netdev(sizeof(*t), name, NET_NAME_UNKNOWN, ip6gre_tunnel_setup); if (!dev) return NULL; dev_net_set(dev, net); nt = netdev_priv(dev); nt->parms = *parms; dev->rtnl_link_ops = &ip6gre_link_ops; nt->dev = dev; nt->net = dev_net(dev); if (register_netdevice(dev) < 0) goto failed_free; ip6gre_tnl_link_config(nt, 1); ip6gre_tunnel_link(ign, nt); return nt; failed_free: free_netdev(dev); return NULL; } static void ip6erspan_tunnel_uninit(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct ip6gre_net *ign = net_generic(t->net, ip6gre_net_id); ip6erspan_tunnel_unlink_md(ign, t); ip6gre_tunnel_unlink(ign, t); dst_cache_reset(&t->dst_cache); netdev_put(dev, &t->dev_tracker); } static void ip6gre_tunnel_uninit(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct ip6gre_net *ign = net_generic(t->net, ip6gre_net_id); ip6gre_tunnel_unlink_md(ign, t); ip6gre_tunnel_unlink(ign, t); if (ign->fb_tunnel_dev == dev) WRITE_ONCE(ign->fb_tunnel_dev, NULL); dst_cache_reset(&t->dst_cache); netdev_put(dev, &t->dev_tracker); } static int ip6gre_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct net *net = dev_net(skb->dev); const struct ipv6hdr *ipv6h; struct tnl_ptk_info tpi; struct ip6_tnl *t; if (gre_parse_header(skb, &tpi, NULL, htons(ETH_P_IPV6), offset) < 0) return -EINVAL; ipv6h = (const struct ipv6hdr *)skb->data; t = ip6gre_tunnel_lookup(skb->dev, &ipv6h->daddr, &ipv6h->saddr, tpi.key, tpi.proto); if (!t) return -ENOENT; switch (type) { case ICMPV6_DEST_UNREACH: net_dbg_ratelimited("%s: Path to destination invalid or inactive!\n", t->parms.name); if (code != ICMPV6_PORT_UNREACH) break; return 0; case ICMPV6_TIME_EXCEED: if (code == ICMPV6_EXC_HOPLIMIT) { net_dbg_ratelimited("%s: Too small hop limit or routing loop in tunnel!\n", t->parms.name); break; } return 0; case ICMPV6_PARAMPROB: { struct ipv6_tlv_tnl_enc_lim *tel; __u32 teli; teli = 0; if (code == ICMPV6_HDR_FIELD) teli = ip6_tnl_parse_tlv_enc_lim(skb, skb->data); if (teli && teli == be32_to_cpu(info) - 2) { tel = (struct ipv6_tlv_tnl_enc_lim *) &skb->data[teli]; if (tel->encap_limit == 0) { net_dbg_ratelimited("%s: Too small encapsulation limit or routing loop in tunnel!\n", t->parms.name); } } else { net_dbg_ratelimited("%s: Recipient unable to parse tunneled packet!\n", t->parms.name); } return 0; } case ICMPV6_PKT_TOOBIG: ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); return 0; case NDISC_REDIRECT: ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); return 0; } if (time_before(jiffies, t->err_time + IP6TUNNEL_ERR_TIMEO)) t->err_count++; else t->err_count = 1; t->err_time = jiffies; return 0; } static int ip6gre_rcv(struct sk_buff *skb, const struct tnl_ptk_info *tpi) { const struct ipv6hdr *ipv6h; struct ip6_tnl *tunnel; ipv6h = ipv6_hdr(skb); tunnel = ip6gre_tunnel_lookup(skb->dev, &ipv6h->saddr, &ipv6h->daddr, tpi->key, tpi->proto); if (tunnel) { if (tunnel->parms.collect_md) { struct metadata_dst *tun_dst; __be64 tun_id; __be16 flags; flags = tpi->flags; tun_id = key32_to_tunnel_id(tpi->key); tun_dst = ipv6_tun_rx_dst(skb, flags, tun_id, 0); if (!tun_dst) return PACKET_REJECT; ip6_tnl_rcv(tunnel, skb, tpi, tun_dst, log_ecn_error); } else { ip6_tnl_rcv(tunnel, skb, tpi, NULL, log_ecn_error); } return PACKET_RCVD; } return PACKET_REJECT; } static int ip6erspan_rcv(struct sk_buff *skb, struct tnl_ptk_info *tpi, int gre_hdr_len) { struct erspan_base_hdr *ershdr; const struct ipv6hdr *ipv6h; struct erspan_md2 *md2; struct ip6_tnl *tunnel; u8 ver; ipv6h = ipv6_hdr(skb); ershdr = (struct erspan_base_hdr *)skb->data; ver = ershdr->ver; tunnel = ip6gre_tunnel_lookup(skb->dev, &ipv6h->saddr, &ipv6h->daddr, tpi->key, tpi->proto); if (tunnel) { int len = erspan_hdr_len(ver); if (unlikely(!pskb_may_pull(skb, len))) return PACKET_REJECT; if (__iptunnel_pull_header(skb, len, htons(ETH_P_TEB), false, false) < 0) return PACKET_REJECT; if (tunnel->parms.collect_md) { struct erspan_metadata *pkt_md, *md; struct metadata_dst *tun_dst; struct ip_tunnel_info *info; unsigned char *gh; __be64 tun_id; __be16 flags; tpi->flags |= TUNNEL_KEY; flags = tpi->flags; tun_id = key32_to_tunnel_id(tpi->key); tun_dst = ipv6_tun_rx_dst(skb, flags, tun_id, sizeof(*md)); if (!tun_dst) return PACKET_REJECT; /* skb can be uncloned in __iptunnel_pull_header, so * old pkt_md is no longer valid and we need to reset * it */ gh = skb_network_header(skb) + skb_network_header_len(skb); pkt_md = (struct erspan_metadata *)(gh + gre_hdr_len + sizeof(*ershdr)); info = &tun_dst->u.tun_info; md = ip_tunnel_info_opts(info); md->version = ver; md2 = &md->u.md2; memcpy(md2, pkt_md, ver == 1 ? ERSPAN_V1_MDSIZE : ERSPAN_V2_MDSIZE); info->key.tun_flags |= TUNNEL_ERSPAN_OPT; info->options_len = sizeof(*md); ip6_tnl_rcv(tunnel, skb, tpi, tun_dst, log_ecn_error); } else { ip6_tnl_rcv(tunnel, skb, tpi, NULL, log_ecn_error); } return PACKET_RCVD; } return PACKET_REJECT; } static int gre_rcv(struct sk_buff *skb) { struct tnl_ptk_info tpi; bool csum_err = false; int hdr_len; hdr_len = gre_parse_header(skb, &tpi, &csum_err, htons(ETH_P_IPV6), 0); if (hdr_len < 0) goto drop; if (iptunnel_pull_header(skb, hdr_len, tpi.proto, false)) goto drop; if (unlikely(tpi.proto == htons(ETH_P_ERSPAN) || tpi.proto == htons(ETH_P_ERSPAN2))) { if (ip6erspan_rcv(skb, &tpi, hdr_len) == PACKET_RCVD) return 0; goto out; } if (ip6gre_rcv(skb, &tpi) == PACKET_RCVD) return 0; out: icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } static int gre_handle_offloads(struct sk_buff *skb, bool csum) { return iptunnel_handle_offloads(skb, csum ? SKB_GSO_GRE_CSUM : SKB_GSO_GRE); } static void prepare_ip6gre_xmit_ipv4(struct sk_buff *skb, struct net_device *dev, struct flowi6 *fl6, __u8 *dsfield, int *encap_limit) { const struct iphdr *iph = ip_hdr(skb); struct ip6_tnl *t = netdev_priv(dev); if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) *encap_limit = t->parms.encap_limit; memcpy(fl6, &t->fl.u.ip6, sizeof(*fl6)); if (t->parms.flags & IP6_TNL_F_USE_ORIG_TCLASS) *dsfield = ipv4_get_dsfield(iph); else *dsfield = ip6_tclass(t->parms.flowinfo); if (t->parms.flags & IP6_TNL_F_USE_ORIG_FWMARK) fl6->flowi6_mark = skb->mark; else fl6->flowi6_mark = t->parms.fwmark; fl6->flowi6_uid = sock_net_uid(dev_net(dev), NULL); } static int prepare_ip6gre_xmit_ipv6(struct sk_buff *skb, struct net_device *dev, struct flowi6 *fl6, __u8 *dsfield, int *encap_limit) { struct ipv6hdr *ipv6h; struct ip6_tnl *t = netdev_priv(dev); __u16 offset; offset = ip6_tnl_parse_tlv_enc_lim(skb, skb_network_header(skb)); /* ip6_tnl_parse_tlv_enc_lim() might have reallocated skb->head */ ipv6h = ipv6_hdr(skb); if (offset > 0) { struct ipv6_tlv_tnl_enc_lim *tel; tel = (struct ipv6_tlv_tnl_enc_lim *)&skb_network_header(skb)[offset]; if (tel->encap_limit == 0) { icmpv6_ndo_send(skb, ICMPV6_PARAMPROB, ICMPV6_HDR_FIELD, offset + 2); return -1; } *encap_limit = tel->encap_limit - 1; } else if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) { *encap_limit = t->parms.encap_limit; } memcpy(fl6, &t->fl.u.ip6, sizeof(*fl6)); if (t->parms.flags & IP6_TNL_F_USE_ORIG_TCLASS) *dsfield = ipv6_get_dsfield(ipv6h); else *dsfield = ip6_tclass(t->parms.flowinfo); if (t->parms.flags & IP6_TNL_F_USE_ORIG_FLOWLABEL) fl6->flowlabel |= ip6_flowlabel(ipv6h); if (t->parms.flags & IP6_TNL_F_USE_ORIG_FWMARK) fl6->flowi6_mark = skb->mark; else fl6->flowi6_mark = t->parms.fwmark; fl6->flowi6_uid = sock_net_uid(dev_net(dev), NULL); return 0; } static int prepare_ip6gre_xmit_other(struct sk_buff *skb, struct net_device *dev, struct flowi6 *fl6, __u8 *dsfield, int *encap_limit) { struct ip6_tnl *t = netdev_priv(dev); if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) *encap_limit = t->parms.encap_limit; memcpy(fl6, &t->fl.u.ip6, sizeof(*fl6)); if (t->parms.flags & IP6_TNL_F_USE_ORIG_TCLASS) *dsfield = 0; else *dsfield = ip6_tclass(t->parms.flowinfo); if (t->parms.flags & IP6_TNL_F_USE_ORIG_FWMARK) fl6->flowi6_mark = skb->mark; else fl6->flowi6_mark = t->parms.fwmark; fl6->flowi6_uid = sock_net_uid(dev_net(dev), NULL); return 0; } static struct ip_tunnel_info *skb_tunnel_info_txcheck(struct sk_buff *skb) { struct ip_tunnel_info *tun_info; tun_info = skb_tunnel_info(skb); if (unlikely(!tun_info || !(tun_info->mode & IP_TUNNEL_INFO_TX))) return ERR_PTR(-EINVAL); return tun_info; } static netdev_tx_t __gre6_xmit(struct sk_buff *skb, struct net_device *dev, __u8 dsfield, struct flowi6 *fl6, int encap_limit, __u32 *pmtu, __be16 proto) { struct ip6_tnl *tunnel = netdev_priv(dev); __be16 protocol; __be16 flags; if (dev->type == ARPHRD_ETHER) IPCB(skb)->flags = 0; if (dev->header_ops && dev->type == ARPHRD_IP6GRE) fl6->daddr = ((struct ipv6hdr *)skb->data)->daddr; else fl6->daddr = tunnel->parms.raddr; /* Push GRE header. */ protocol = (dev->type == ARPHRD_ETHER) ? htons(ETH_P_TEB) : proto; if (tunnel->parms.collect_md) { struct ip_tunnel_info *tun_info; const struct ip_tunnel_key *key; int tun_hlen; tun_info = skb_tunnel_info_txcheck(skb); if (IS_ERR(tun_info) || unlikely(ip_tunnel_info_af(tun_info) != AF_INET6)) return -EINVAL; key = &tun_info->key; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = IPPROTO_GRE; fl6->daddr = key->u.ipv6.dst; fl6->flowlabel = key->label; fl6->flowi6_uid = sock_net_uid(dev_net(dev), NULL); fl6->fl6_gre_key = tunnel_id_to_key32(key->tun_id); dsfield = key->tos; flags = key->tun_flags & (TUNNEL_CSUM | TUNNEL_KEY | TUNNEL_SEQ); tun_hlen = gre_calc_hlen(flags); if (skb_cow_head(skb, dev->needed_headroom ?: tun_hlen + tunnel->encap_hlen)) return -ENOMEM; gre_build_header(skb, tun_hlen, flags, protocol, tunnel_id_to_key32(tun_info->key.tun_id), (flags & TUNNEL_SEQ) ? htonl(atomic_fetch_inc(&tunnel->o_seqno)) : 0); } else { if (skb_cow_head(skb, dev->needed_headroom ?: tunnel->hlen)) return -ENOMEM; flags = tunnel->parms.o_flags; gre_build_header(skb, tunnel->tun_hlen, flags, protocol, tunnel->parms.o_key, (flags & TUNNEL_SEQ) ? htonl(atomic_fetch_inc(&tunnel->o_seqno)) : 0); } return ip6_tnl_xmit(skb, dev, dsfield, fl6, encap_limit, pmtu, NEXTHDR_GRE); } static inline int ip6gre_xmit_ipv4(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); int encap_limit = -1; struct flowi6 fl6; __u8 dsfield = 0; __u32 mtu; int err; memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); if (!t->parms.collect_md) prepare_ip6gre_xmit_ipv4(skb, dev, &fl6, &dsfield, &encap_limit); err = gre_handle_offloads(skb, !!(t->parms.o_flags & TUNNEL_CSUM)); if (err) return -1; err = __gre6_xmit(skb, dev, dsfield, &fl6, encap_limit, &mtu, skb->protocol); if (err != 0) { /* XXX: send ICMP error even if DF is not set. */ if (err == -EMSGSIZE) icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); return -1; } return 0; } static inline int ip6gre_xmit_ipv6(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct ipv6hdr *ipv6h = ipv6_hdr(skb); int encap_limit = -1; struct flowi6 fl6; __u8 dsfield = 0; __u32 mtu; int err; if (ipv6_addr_equal(&t->parms.raddr, &ipv6h->saddr)) return -1; if (!t->parms.collect_md && prepare_ip6gre_xmit_ipv6(skb, dev, &fl6, &dsfield, &encap_limit)) return -1; if (gre_handle_offloads(skb, !!(t->parms.o_flags & TUNNEL_CSUM))) return -1; err = __gre6_xmit(skb, dev, dsfield, &fl6, encap_limit, &mtu, skb->protocol); if (err != 0) { if (err == -EMSGSIZE) icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); return -1; } return 0; } static int ip6gre_xmit_other(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); int encap_limit = -1; struct flowi6 fl6; __u8 dsfield = 0; __u32 mtu; int err; if (!t->parms.collect_md && prepare_ip6gre_xmit_other(skb, dev, &fl6, &dsfield, &encap_limit)) return -1; err = gre_handle_offloads(skb, !!(t->parms.o_flags & TUNNEL_CSUM)); if (err) return err; err = __gre6_xmit(skb, dev, dsfield, &fl6, encap_limit, &mtu, skb->protocol); return err; } static netdev_tx_t ip6gre_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); __be16 payload_protocol; int ret; if (!pskb_inet_may_pull(skb)) goto tx_err; if (!ip6_tnl_xmit_ctl(t, &t->parms.laddr, &t->parms.raddr)) goto tx_err; payload_protocol = skb_protocol(skb, true); switch (payload_protocol) { case htons(ETH_P_IP): ret = ip6gre_xmit_ipv4(skb, dev); break; case htons(ETH_P_IPV6): ret = ip6gre_xmit_ipv6(skb, dev); break; default: ret = ip6gre_xmit_other(skb, dev); break; } if (ret < 0) goto tx_err; return NETDEV_TX_OK; tx_err: if (!t->parms.collect_md || !IS_ERR(skb_tunnel_info_txcheck(skb))) DEV_STATS_INC(dev, tx_errors); DEV_STATS_INC(dev, tx_dropped); kfree_skb(skb); return NETDEV_TX_OK; } static netdev_tx_t ip6erspan_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip_tunnel_info *tun_info = NULL; struct ip6_tnl *t = netdev_priv(dev); struct dst_entry *dst = skb_dst(skb); bool truncate = false; int encap_limit = -1; __u8 dsfield = false; struct flowi6 fl6; int err = -EINVAL; __be16 proto; __u32 mtu; int nhoff; if (!pskb_inet_may_pull(skb)) goto tx_err; if (!ip6_tnl_xmit_ctl(t, &t->parms.laddr, &t->parms.raddr)) goto tx_err; if (gre_handle_offloads(skb, false)) goto tx_err; if (skb->len > dev->mtu + dev->hard_header_len) { if (pskb_trim(skb, dev->mtu + dev->hard_header_len)) goto tx_err; truncate = true; } nhoff = skb_network_offset(skb); if (skb->protocol == htons(ETH_P_IP) && (ntohs(ip_hdr(skb)->tot_len) > skb->len - nhoff)) truncate = true; if (skb->protocol == htons(ETH_P_IPV6)) { int thoff; if (skb_transport_header_was_set(skb)) thoff = skb_transport_offset(skb); else thoff = nhoff + sizeof(struct ipv6hdr); if (ntohs(ipv6_hdr(skb)->payload_len) > skb->len - thoff) truncate = true; } if (skb_cow_head(skb, dev->needed_headroom ?: t->hlen)) goto tx_err; t->parms.o_flags &= ~TUNNEL_KEY; IPCB(skb)->flags = 0; /* For collect_md mode, derive fl6 from the tunnel key, * for native mode, call prepare_ip6gre_xmit_{ipv4,ipv6}. */ if (t->parms.collect_md) { const struct ip_tunnel_key *key; struct erspan_metadata *md; __be32 tun_id; tun_info = skb_tunnel_info_txcheck(skb); if (IS_ERR(tun_info) || unlikely(ip_tunnel_info_af(tun_info) != AF_INET6)) goto tx_err; key = &tun_info->key; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = IPPROTO_GRE; fl6.daddr = key->u.ipv6.dst; fl6.flowlabel = key->label; fl6.flowi6_uid = sock_net_uid(dev_net(dev), NULL); fl6.fl6_gre_key = tunnel_id_to_key32(key->tun_id); dsfield = key->tos; if (!(tun_info->key.tun_flags & TUNNEL_ERSPAN_OPT)) goto tx_err; if (tun_info->options_len < sizeof(*md)) goto tx_err; md = ip_tunnel_info_opts(tun_info); tun_id = tunnel_id_to_key32(key->tun_id); if (md->version == 1) { erspan_build_header(skb, ntohl(tun_id), ntohl(md->u.index), truncate, false); proto = htons(ETH_P_ERSPAN); } else if (md->version == 2) { erspan_build_header_v2(skb, ntohl(tun_id), md->u.md2.dir, get_hwid(&md->u.md2), truncate, false); proto = htons(ETH_P_ERSPAN2); } else { goto tx_err; } } else { switch (skb->protocol) { case htons(ETH_P_IP): memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); prepare_ip6gre_xmit_ipv4(skb, dev, &fl6, &dsfield, &encap_limit); break; case htons(ETH_P_IPV6): if (ipv6_addr_equal(&t->parms.raddr, &ipv6_hdr(skb)->saddr)) goto tx_err; if (prepare_ip6gre_xmit_ipv6(skb, dev, &fl6, &dsfield, &encap_limit)) goto tx_err; break; default: memcpy(&fl6, &t->fl.u.ip6, sizeof(fl6)); break; } if (t->parms.erspan_ver == 1) { erspan_build_header(skb, ntohl(t->parms.o_key), t->parms.index, truncate, false); proto = htons(ETH_P_ERSPAN); } else if (t->parms.erspan_ver == 2) { erspan_build_header_v2(skb, ntohl(t->parms.o_key), t->parms.dir, t->parms.hwid, truncate, false); proto = htons(ETH_P_ERSPAN2); } else { goto tx_err; } fl6.daddr = t->parms.raddr; } /* Push GRE header. */ gre_build_header(skb, 8, TUNNEL_SEQ, proto, 0, htonl(atomic_fetch_inc(&t->o_seqno))); /* TooBig packet may have updated dst->dev's mtu */ if (!t->parms.collect_md && dst && dst_mtu(dst) > dst->dev->mtu) dst->ops->update_pmtu(dst, NULL, skb, dst->dev->mtu, false); err = ip6_tnl_xmit(skb, dev, dsfield, &fl6, encap_limit, &mtu, NEXTHDR_GRE); if (err != 0) { /* XXX: send ICMP error even if DF is not set. */ if (err == -EMSGSIZE) { if (skb->protocol == htons(ETH_P_IP)) icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); else icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); } goto tx_err; } return NETDEV_TX_OK; tx_err: if (!IS_ERR(tun_info)) DEV_STATS_INC(dev, tx_errors); DEV_STATS_INC(dev, tx_dropped); kfree_skb(skb); return NETDEV_TX_OK; } static void ip6gre_tnl_link_config_common(struct ip6_tnl *t) { struct net_device *dev = t->dev; struct __ip6_tnl_parm *p = &t->parms; struct flowi6 *fl6 = &t->fl.u.ip6; if (dev->type != ARPHRD_ETHER) { __dev_addr_set(dev, &p->laddr, sizeof(struct in6_addr)); memcpy(dev->broadcast, &p->raddr, sizeof(struct in6_addr)); } /* Set up flowi template */ fl6->saddr = p->laddr; fl6->daddr = p->raddr; fl6->flowi6_oif = p->link; fl6->flowlabel = 0; fl6->flowi6_proto = IPPROTO_GRE; fl6->fl6_gre_key = t->parms.o_key; if (!(p->flags&IP6_TNL_F_USE_ORIG_TCLASS)) fl6->flowlabel |= IPV6_TCLASS_MASK & p->flowinfo; if (!(p->flags&IP6_TNL_F_USE_ORIG_FLOWLABEL)) fl6->flowlabel |= IPV6_FLOWLABEL_MASK & p->flowinfo; p->flags &= ~(IP6_TNL_F_CAP_XMIT|IP6_TNL_F_CAP_RCV|IP6_TNL_F_CAP_PER_PACKET); p->flags |= ip6_tnl_get_cap(t, &p->laddr, &p->raddr); if (p->flags&IP6_TNL_F_CAP_XMIT && p->flags&IP6_TNL_F_CAP_RCV && dev->type != ARPHRD_ETHER) dev->flags |= IFF_POINTOPOINT; else dev->flags &= ~IFF_POINTOPOINT; } static void ip6gre_tnl_link_config_route(struct ip6_tnl *t, int set_mtu, int t_hlen) { const struct __ip6_tnl_parm *p = &t->parms; struct net_device *dev = t->dev; if (p->flags & IP6_TNL_F_CAP_XMIT) { int strict = (ipv6_addr_type(&p->raddr) & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL)); struct rt6_info *rt = rt6_lookup(t->net, &p->raddr, &p->laddr, p->link, NULL, strict); if (!rt) return; if (rt->dst.dev) { unsigned short dst_len = rt->dst.dev->hard_header_len + t_hlen; if (t->dev->header_ops) dev->hard_header_len = dst_len; else dev->needed_headroom = dst_len; if (set_mtu) { int mtu = rt->dst.dev->mtu - t_hlen; if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) mtu -= 8; if (dev->type == ARPHRD_ETHER) mtu -= ETH_HLEN; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; WRITE_ONCE(dev->mtu, mtu); } } ip6_rt_put(rt); } } static int ip6gre_calc_hlen(struct ip6_tnl *tunnel) { int t_hlen; tunnel->tun_hlen = gre_calc_hlen(tunnel->parms.o_flags); tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen; t_hlen = tunnel->hlen + sizeof(struct ipv6hdr); if (tunnel->dev->header_ops) tunnel->dev->hard_header_len = LL_MAX_HEADER + t_hlen; else tunnel->dev->needed_headroom = LL_MAX_HEADER + t_hlen; return t_hlen; } static void ip6gre_tnl_link_config(struct ip6_tnl *t, int set_mtu) { ip6gre_tnl_link_config_common(t); ip6gre_tnl_link_config_route(t, set_mtu, ip6gre_calc_hlen(t)); } static void ip6gre_tnl_copy_tnl_parm(struct ip6_tnl *t, const struct __ip6_tnl_parm *p) { t->parms.laddr = p->laddr; t->parms.raddr = p->raddr; t->parms.flags = p->flags; t->parms.hop_limit = p->hop_limit; t->parms.encap_limit = p->encap_limit; t->parms.flowinfo = p->flowinfo; t->parms.link = p->link; t->parms.proto = p->proto; t->parms.i_key = p->i_key; t->parms.o_key = p->o_key; t->parms.i_flags = p->i_flags; t->parms.o_flags = p->o_flags; t->parms.fwmark = p->fwmark; t->parms.erspan_ver = p->erspan_ver; t->parms.index = p->index; t->parms.dir = p->dir; t->parms.hwid = p->hwid; dst_cache_reset(&t->dst_cache); } static int ip6gre_tnl_change(struct ip6_tnl *t, const struct __ip6_tnl_parm *p, int set_mtu) { ip6gre_tnl_copy_tnl_parm(t, p); ip6gre_tnl_link_config(t, set_mtu); return 0; } static void ip6gre_tnl_parm_from_user(struct __ip6_tnl_parm *p, const struct ip6_tnl_parm2 *u) { p->laddr = u->laddr; p->raddr = u->raddr; p->flags = u->flags; p->hop_limit = u->hop_limit; p->encap_limit = u->encap_limit; p->flowinfo = u->flowinfo; p->link = u->link; p->i_key = u->i_key; p->o_key = u->o_key; p->i_flags = gre_flags_to_tnl_flags(u->i_flags); p->o_flags = gre_flags_to_tnl_flags(u->o_flags); memcpy(p->name, u->name, sizeof(u->name)); } static void ip6gre_tnl_parm_to_user(struct ip6_tnl_parm2 *u, const struct __ip6_tnl_parm *p) { u->proto = IPPROTO_GRE; u->laddr = p->laddr; u->raddr = p->raddr; u->flags = p->flags; u->hop_limit = p->hop_limit; u->encap_limit = p->encap_limit; u->flowinfo = p->flowinfo; u->link = p->link; u->i_key = p->i_key; u->o_key = p->o_key; u->i_flags = gre_tnl_flags_to_gre_flags(p->i_flags); u->o_flags = gre_tnl_flags_to_gre_flags(p->o_flags); memcpy(u->name, p->name, sizeof(u->name)); } static int ip6gre_tunnel_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { int err = 0; struct ip6_tnl_parm2 p; struct __ip6_tnl_parm p1; struct ip6_tnl *t = netdev_priv(dev); struct net *net = t->net; struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); memset(&p1, 0, sizeof(p1)); switch (cmd) { case SIOCGETTUNNEL: if (dev == ign->fb_tunnel_dev) { if (copy_from_user(&p, data, sizeof(p))) { err = -EFAULT; break; } ip6gre_tnl_parm_from_user(&p1, &p); t = ip6gre_tunnel_locate(net, &p1, 0); if (!t) t = netdev_priv(dev); } memset(&p, 0, sizeof(p)); ip6gre_tnl_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; break; case SIOCADDTUNNEL: case SIOCCHGTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto done; err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) goto done; err = -EINVAL; if ((p.i_flags|p.o_flags)&(GRE_VERSION|GRE_ROUTING)) goto done; if (!(p.i_flags&GRE_KEY)) p.i_key = 0; if (!(p.o_flags&GRE_KEY)) p.o_key = 0; ip6gre_tnl_parm_from_user(&p1, &p); t = ip6gre_tunnel_locate(net, &p1, cmd == SIOCADDTUNNEL); if (dev != ign->fb_tunnel_dev && cmd == SIOCCHGTUNNEL) { if (t) { if (t->dev != dev) { err = -EEXIST; break; } } else { t = netdev_priv(dev); ip6gre_tunnel_unlink(ign, t); synchronize_net(); ip6gre_tnl_change(t, &p1, 1); ip6gre_tunnel_link(ign, t); netdev_state_change(dev); } } if (t) { err = 0; memset(&p, 0, sizeof(p)); ip6gre_tnl_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; } else err = (cmd == SIOCADDTUNNEL ? -ENOBUFS : -ENOENT); break; case SIOCDELTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto done; if (dev == ign->fb_tunnel_dev) { err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) goto done; err = -ENOENT; ip6gre_tnl_parm_from_user(&p1, &p); t = ip6gre_tunnel_locate(net, &p1, 0); if (!t) goto done; err = -EPERM; if (t == netdev_priv(ign->fb_tunnel_dev)) goto done; dev = t->dev; } unregister_netdevice(dev); err = 0; break; default: err = -EINVAL; } done: return err; } static int ip6gre_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ip6_tnl *t = netdev_priv(dev); struct ipv6hdr *ipv6h; __be16 *p; ipv6h = skb_push(skb, t->hlen + sizeof(*ipv6h)); ip6_flow_hdr(ipv6h, 0, ip6_make_flowlabel(dev_net(dev), skb, t->fl.u.ip6.flowlabel, true, &t->fl.u.ip6)); ipv6h->hop_limit = t->parms.hop_limit; ipv6h->nexthdr = NEXTHDR_GRE; ipv6h->saddr = t->parms.laddr; ipv6h->daddr = t->parms.raddr; p = (__be16 *)(ipv6h + 1); p[0] = t->parms.o_flags; p[1] = htons(type); /* * Set the source hardware address. */ if (saddr) memcpy(&ipv6h->saddr, saddr, sizeof(struct in6_addr)); if (daddr) memcpy(&ipv6h->daddr, daddr, sizeof(struct in6_addr)); if (!ipv6_addr_any(&ipv6h->daddr)) return t->hlen; return -t->hlen; } static const struct header_ops ip6gre_header_ops = { .create = ip6gre_header, }; static const struct net_device_ops ip6gre_netdev_ops = { .ndo_init = ip6gre_tunnel_init, .ndo_uninit = ip6gre_tunnel_uninit, .ndo_start_xmit = ip6gre_tunnel_xmit, .ndo_siocdevprivate = ip6gre_tunnel_siocdevprivate, .ndo_change_mtu = ip6_tnl_change_mtu, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip6_tnl_get_iflink, }; static void ip6gre_dev_free(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); gro_cells_destroy(&t->gro_cells); dst_cache_destroy(&t->dst_cache); free_percpu(dev->tstats); } static void ip6gre_tunnel_setup(struct net_device *dev) { dev->netdev_ops = &ip6gre_netdev_ops; dev->needs_free_netdev = true; dev->priv_destructor = ip6gre_dev_free; dev->type = ARPHRD_IP6GRE; dev->flags |= IFF_NOARP; dev->addr_len = sizeof(struct in6_addr); netif_keep_dst(dev); /* This perm addr will be used as interface identifier by IPv6 */ dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->perm_addr); } #define GRE6_FEATURES (NETIF_F_SG | \ NETIF_F_FRAGLIST | \ NETIF_F_HIGHDMA | \ NETIF_F_HW_CSUM) static void ip6gre_tnl_init_features(struct net_device *dev) { struct ip6_tnl *nt = netdev_priv(dev); __be16 flags; dev->features |= GRE6_FEATURES | NETIF_F_LLTX; dev->hw_features |= GRE6_FEATURES; flags = nt->parms.o_flags; /* TCP offload with GRE SEQ is not supported, nor can we support 2 * levels of outer headers requiring an update. */ if (flags & TUNNEL_SEQ) return; if (flags & TUNNEL_CSUM && nt->encap.type != TUNNEL_ENCAP_NONE) return; dev->features |= NETIF_F_GSO_SOFTWARE; dev->hw_features |= NETIF_F_GSO_SOFTWARE; } static int ip6gre_tunnel_init_common(struct net_device *dev) { struct ip6_tnl *tunnel; int ret; int t_hlen; tunnel = netdev_priv(dev); tunnel->dev = dev; tunnel->net = dev_net(dev); strcpy(tunnel->parms.name, dev->name); dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; ret = dst_cache_init(&tunnel->dst_cache, GFP_KERNEL); if (ret) goto cleanup_alloc_pcpu_stats; ret = gro_cells_init(&tunnel->gro_cells, dev); if (ret) goto cleanup_dst_cache_init; t_hlen = ip6gre_calc_hlen(tunnel); dev->mtu = ETH_DATA_LEN - t_hlen; if (dev->type == ARPHRD_ETHER) dev->mtu -= ETH_HLEN; if (!(tunnel->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) dev->mtu -= 8; if (tunnel->parms.collect_md) { netif_keep_dst(dev); } ip6gre_tnl_init_features(dev); netdev_hold(dev, &tunnel->dev_tracker, GFP_KERNEL); return 0; cleanup_dst_cache_init: dst_cache_destroy(&tunnel->dst_cache); cleanup_alloc_pcpu_stats: free_percpu(dev->tstats); dev->tstats = NULL; return ret; } static int ip6gre_tunnel_init(struct net_device *dev) { struct ip6_tnl *tunnel; int ret; ret = ip6gre_tunnel_init_common(dev); if (ret) return ret; tunnel = netdev_priv(dev); if (tunnel->parms.collect_md) return 0; __dev_addr_set(dev, &tunnel->parms.laddr, sizeof(struct in6_addr)); memcpy(dev->broadcast, &tunnel->parms.raddr, sizeof(struct in6_addr)); if (ipv6_addr_any(&tunnel->parms.raddr)) dev->header_ops = &ip6gre_header_ops; return 0; } static void ip6gre_fb_tunnel_init(struct net_device *dev) { struct ip6_tnl *tunnel = netdev_priv(dev); tunnel->dev = dev; tunnel->net = dev_net(dev); strcpy(tunnel->parms.name, dev->name); tunnel->hlen = sizeof(struct ipv6hdr) + 4; } static struct inet6_protocol ip6gre_protocol __read_mostly = { .handler = gre_rcv, .err_handler = ip6gre_err, .flags = INET6_PROTO_FINAL, }; static void ip6gre_destroy_tunnels(struct net *net, struct list_head *head) { struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); struct net_device *dev, *aux; int prio; for_each_netdev_safe(net, dev, aux) if (dev->rtnl_link_ops == &ip6gre_link_ops || dev->rtnl_link_ops == &ip6gre_tap_ops || dev->rtnl_link_ops == &ip6erspan_tap_ops) unregister_netdevice_queue(dev, head); for (prio = 0; prio < 4; prio++) { int h; for (h = 0; h < IP6_GRE_HASH_SIZE; h++) { struct ip6_tnl *t; t = rtnl_dereference(ign->tunnels[prio][h]); while (t) { /* If dev is in the same netns, it has already * been added to the list by the previous loop. */ if (!net_eq(dev_net(t->dev), net)) unregister_netdevice_queue(t->dev, head); t = rtnl_dereference(t->next); } } } } static int __net_init ip6gre_init_net(struct net *net) { struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); struct net_device *ndev; int err; if (!net_has_fallback_tunnels(net)) return 0; ndev = alloc_netdev(sizeof(struct ip6_tnl), "ip6gre0", NET_NAME_UNKNOWN, ip6gre_tunnel_setup); if (!ndev) { err = -ENOMEM; goto err_alloc_dev; } ign->fb_tunnel_dev = ndev; dev_net_set(ign->fb_tunnel_dev, net); /* FB netdevice is special: we have one, and only one per netns. * Allowing to move it to another netns is clearly unsafe. */ ign->fb_tunnel_dev->features |= NETIF_F_NETNS_LOCAL; ip6gre_fb_tunnel_init(ign->fb_tunnel_dev); ign->fb_tunnel_dev->rtnl_link_ops = &ip6gre_link_ops; err = register_netdev(ign->fb_tunnel_dev); if (err) goto err_reg_dev; rcu_assign_pointer(ign->tunnels_wc[0], netdev_priv(ign->fb_tunnel_dev)); return 0; err_reg_dev: free_netdev(ndev); err_alloc_dev: return err; } static void __net_exit ip6gre_exit_batch_net(struct list_head *net_list) { struct net *net; LIST_HEAD(list); rtnl_lock(); list_for_each_entry(net, net_list, exit_list) ip6gre_destroy_tunnels(net, &list); unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations ip6gre_net_ops = { .init = ip6gre_init_net, .exit_batch = ip6gre_exit_batch_net, .id = &ip6gre_net_id, .size = sizeof(struct ip6gre_net), }; static int ip6gre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { __be16 flags; if (!data) return 0; flags = 0; if (data[IFLA_GRE_IFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); if (data[IFLA_GRE_OFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); if (flags & (GRE_VERSION|GRE_ROUTING)) return -EINVAL; return 0; } static int ip6gre_tap_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct in6_addr daddr; if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } if (!data) goto out; if (data[IFLA_GRE_REMOTE]) { daddr = nla_get_in6_addr(data[IFLA_GRE_REMOTE]); if (ipv6_addr_any(&daddr)) return -EINVAL; } out: return ip6gre_tunnel_validate(tb, data, extack); } static int ip6erspan_tap_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { __be16 flags = 0; int ret, ver = 0; if (!data) return 0; ret = ip6gre_tap_validate(tb, data, extack); if (ret) return ret; /* ERSPAN should only have GRE sequence and key flag */ if (data[IFLA_GRE_OFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); if (data[IFLA_GRE_IFLAGS]) flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); if (!data[IFLA_GRE_COLLECT_METADATA] && flags != (GRE_SEQ | GRE_KEY)) return -EINVAL; /* ERSPAN Session ID only has 10-bit. Since we reuse * 32-bit key field as ID, check it's range. */ if (data[IFLA_GRE_IKEY] && (ntohl(nla_get_be32(data[IFLA_GRE_IKEY])) & ~ID_MASK)) return -EINVAL; if (data[IFLA_GRE_OKEY] && (ntohl(nla_get_be32(data[IFLA_GRE_OKEY])) & ~ID_MASK)) return -EINVAL; if (data[IFLA_GRE_ERSPAN_VER]) { ver = nla_get_u8(data[IFLA_GRE_ERSPAN_VER]); if (ver != 1 && ver != 2) return -EINVAL; } if (ver == 1) { if (data[IFLA_GRE_ERSPAN_INDEX]) { u32 index = nla_get_u32(data[IFLA_GRE_ERSPAN_INDEX]); if (index & ~INDEX_MASK) return -EINVAL; } } else if (ver == 2) { if (data[IFLA_GRE_ERSPAN_DIR]) { u16 dir = nla_get_u8(data[IFLA_GRE_ERSPAN_DIR]); if (dir & ~(DIR_MASK >> DIR_OFFSET)) return -EINVAL; } if (data[IFLA_GRE_ERSPAN_HWID]) { u16 hwid = nla_get_u16(data[IFLA_GRE_ERSPAN_HWID]); if (hwid & ~(HWID_MASK >> HWID_OFFSET)) return -EINVAL; } } return 0; } static void ip6erspan_set_version(struct nlattr *data[], struct __ip6_tnl_parm *parms) { if (!data) return; parms->erspan_ver = 1; if (data[IFLA_GRE_ERSPAN_VER]) parms->erspan_ver = nla_get_u8(data[IFLA_GRE_ERSPAN_VER]); if (parms->erspan_ver == 1) { if (data[IFLA_GRE_ERSPAN_INDEX]) parms->index = nla_get_u32(data[IFLA_GRE_ERSPAN_INDEX]); } else if (parms->erspan_ver == 2) { if (data[IFLA_GRE_ERSPAN_DIR]) parms->dir = nla_get_u8(data[IFLA_GRE_ERSPAN_DIR]); if (data[IFLA_GRE_ERSPAN_HWID]) parms->hwid = nla_get_u16(data[IFLA_GRE_ERSPAN_HWID]); } } static void ip6gre_netlink_parms(struct nlattr *data[], struct __ip6_tnl_parm *parms) { memset(parms, 0, sizeof(*parms)); if (!data) return; if (data[IFLA_GRE_LINK]) parms->link = nla_get_u32(data[IFLA_GRE_LINK]); if (data[IFLA_GRE_IFLAGS]) parms->i_flags = gre_flags_to_tnl_flags( nla_get_be16(data[IFLA_GRE_IFLAGS])); if (data[IFLA_GRE_OFLAGS]) parms->o_flags = gre_flags_to_tnl_flags( nla_get_be16(data[IFLA_GRE_OFLAGS])); if (data[IFLA_GRE_IKEY]) parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]); if (data[IFLA_GRE_OKEY]) parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]); if (data[IFLA_GRE_LOCAL]) parms->laddr = nla_get_in6_addr(data[IFLA_GRE_LOCAL]); if (data[IFLA_GRE_REMOTE]) parms->raddr = nla_get_in6_addr(data[IFLA_GRE_REMOTE]); if (data[IFLA_GRE_TTL]) parms->hop_limit = nla_get_u8(data[IFLA_GRE_TTL]); if (data[IFLA_GRE_ENCAP_LIMIT]) parms->encap_limit = nla_get_u8(data[IFLA_GRE_ENCAP_LIMIT]); if (data[IFLA_GRE_FLOWINFO]) parms->flowinfo = nla_get_be32(data[IFLA_GRE_FLOWINFO]); if (data[IFLA_GRE_FLAGS]) parms->flags = nla_get_u32(data[IFLA_GRE_FLAGS]); if (data[IFLA_GRE_FWMARK]) parms->fwmark = nla_get_u32(data[IFLA_GRE_FWMARK]); if (data[IFLA_GRE_COLLECT_METADATA]) parms->collect_md = true; } static int ip6gre_tap_init(struct net_device *dev) { int ret; ret = ip6gre_tunnel_init_common(dev); if (ret) return ret; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; return 0; } static const struct net_device_ops ip6gre_tap_netdev_ops = { .ndo_init = ip6gre_tap_init, .ndo_uninit = ip6gre_tunnel_uninit, .ndo_start_xmit = ip6gre_tunnel_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = ip6_tnl_change_mtu, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip6_tnl_get_iflink, }; static int ip6erspan_calc_hlen(struct ip6_tnl *tunnel) { int t_hlen; tunnel->tun_hlen = 8; tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen + erspan_hdr_len(tunnel->parms.erspan_ver); t_hlen = tunnel->hlen + sizeof(struct ipv6hdr); tunnel->dev->needed_headroom = LL_MAX_HEADER + t_hlen; return t_hlen; } static int ip6erspan_tap_init(struct net_device *dev) { struct ip6_tnl *tunnel; int t_hlen; int ret; tunnel = netdev_priv(dev); tunnel->dev = dev; tunnel->net = dev_net(dev); strcpy(tunnel->parms.name, dev->name); dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; ret = dst_cache_init(&tunnel->dst_cache, GFP_KERNEL); if (ret) goto cleanup_alloc_pcpu_stats; ret = gro_cells_init(&tunnel->gro_cells, dev); if (ret) goto cleanup_dst_cache_init; t_hlen = ip6erspan_calc_hlen(tunnel); dev->mtu = ETH_DATA_LEN - t_hlen; if (dev->type == ARPHRD_ETHER) dev->mtu -= ETH_HLEN; if (!(tunnel->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) dev->mtu -= 8; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; ip6erspan_tnl_link_config(tunnel, 1); netdev_hold(dev, &tunnel->dev_tracker, GFP_KERNEL); return 0; cleanup_dst_cache_init: dst_cache_destroy(&tunnel->dst_cache); cleanup_alloc_pcpu_stats: free_percpu(dev->tstats); dev->tstats = NULL; return ret; } static const struct net_device_ops ip6erspan_netdev_ops = { .ndo_init = ip6erspan_tap_init, .ndo_uninit = ip6erspan_tunnel_uninit, .ndo_start_xmit = ip6erspan_tunnel_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = ip6_tnl_change_mtu, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip6_tnl_get_iflink, }; static void ip6gre_tap_setup(struct net_device *dev) { ether_setup(dev); dev->max_mtu = 0; dev->netdev_ops = &ip6gre_tap_netdev_ops; dev->needs_free_netdev = true; dev->priv_destructor = ip6gre_dev_free; dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; netif_keep_dst(dev); } static bool ip6gre_netlink_encap_parms(struct nlattr *data[], struct ip_tunnel_encap *ipencap) { bool ret = false; memset(ipencap, 0, sizeof(*ipencap)); if (!data) return ret; if (data[IFLA_GRE_ENCAP_TYPE]) { ret = true; ipencap->type = nla_get_u16(data[IFLA_GRE_ENCAP_TYPE]); } if (data[IFLA_GRE_ENCAP_FLAGS]) { ret = true; ipencap->flags = nla_get_u16(data[IFLA_GRE_ENCAP_FLAGS]); } if (data[IFLA_GRE_ENCAP_SPORT]) { ret = true; ipencap->sport = nla_get_be16(data[IFLA_GRE_ENCAP_SPORT]); } if (data[IFLA_GRE_ENCAP_DPORT]) { ret = true; ipencap->dport = nla_get_be16(data[IFLA_GRE_ENCAP_DPORT]); } return ret; } static int ip6gre_newlink_common(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *nt; struct ip_tunnel_encap ipencap; int err; nt = netdev_priv(dev); if (ip6gre_netlink_encap_parms(data, &ipencap)) { int err = ip6_tnl_encap_setup(nt, &ipencap); if (err < 0) return err; } if (dev->type == ARPHRD_ETHER && !tb[IFLA_ADDRESS]) eth_hw_addr_random(dev); nt->dev = dev; nt->net = dev_net(dev); err = register_netdevice(dev); if (err) goto out; if (tb[IFLA_MTU]) ip6_tnl_change_mtu(dev, nla_get_u32(tb[IFLA_MTU])); out: return err; } static int ip6gre_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *nt = netdev_priv(dev); struct net *net = dev_net(dev); struct ip6gre_net *ign; int err; ip6gre_netlink_parms(data, &nt->parms); ign = net_generic(net, ip6gre_net_id); if (nt->parms.collect_md) { if (rtnl_dereference(ign->collect_md_tun)) return -EEXIST; } else { if (ip6gre_tunnel_find(net, &nt->parms, dev->type)) return -EEXIST; } err = ip6gre_newlink_common(src_net, dev, tb, data, extack); if (!err) { ip6gre_tnl_link_config(nt, !tb[IFLA_MTU]); ip6gre_tunnel_link_md(ign, nt); ip6gre_tunnel_link(net_generic(net, ip6gre_net_id), nt); } return err; } static struct ip6_tnl * ip6gre_changelink_common(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct __ip6_tnl_parm *p_p, struct netlink_ext_ack *extack) { struct ip6_tnl *t, *nt = netdev_priv(dev); struct net *net = nt->net; struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); struct ip_tunnel_encap ipencap; if (dev == ign->fb_tunnel_dev) return ERR_PTR(-EINVAL); if (ip6gre_netlink_encap_parms(data, &ipencap)) { int err = ip6_tnl_encap_setup(nt, &ipencap); if (err < 0) return ERR_PTR(err); } ip6gre_netlink_parms(data, p_p); t = ip6gre_tunnel_locate(net, p_p, 0); if (t) { if (t->dev != dev) return ERR_PTR(-EEXIST); } else { t = nt; } return t; } static int ip6gre_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *t = netdev_priv(dev); struct ip6gre_net *ign = net_generic(t->net, ip6gre_net_id); struct __ip6_tnl_parm p; t = ip6gre_changelink_common(dev, tb, data, &p, extack); if (IS_ERR(t)) return PTR_ERR(t); ip6gre_tunnel_unlink_md(ign, t); ip6gre_tunnel_unlink(ign, t); ip6gre_tnl_change(t, &p, !tb[IFLA_MTU]); ip6gre_tunnel_link_md(ign, t); ip6gre_tunnel_link(ign, t); return 0; } static void ip6gre_dellink(struct net_device *dev, struct list_head *head) { struct net *net = dev_net(dev); struct ip6gre_net *ign = net_generic(net, ip6gre_net_id); if (dev != ign->fb_tunnel_dev) unregister_netdevice_queue(dev, head); } static size_t ip6gre_get_size(const struct net_device *dev) { return /* IFLA_GRE_LINK */ nla_total_size(4) + /* IFLA_GRE_IFLAGS */ nla_total_size(2) + /* IFLA_GRE_OFLAGS */ nla_total_size(2) + /* IFLA_GRE_IKEY */ nla_total_size(4) + /* IFLA_GRE_OKEY */ nla_total_size(4) + /* IFLA_GRE_LOCAL */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_GRE_REMOTE */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_GRE_TTL */ nla_total_size(1) + /* IFLA_GRE_ENCAP_LIMIT */ nla_total_size(1) + /* IFLA_GRE_FLOWINFO */ nla_total_size(4) + /* IFLA_GRE_FLAGS */ nla_total_size(4) + /* IFLA_GRE_ENCAP_TYPE */ nla_total_size(2) + /* IFLA_GRE_ENCAP_FLAGS */ nla_total_size(2) + /* IFLA_GRE_ENCAP_SPORT */ nla_total_size(2) + /* IFLA_GRE_ENCAP_DPORT */ nla_total_size(2) + /* IFLA_GRE_COLLECT_METADATA */ nla_total_size(0) + /* IFLA_GRE_FWMARK */ nla_total_size(4) + /* IFLA_GRE_ERSPAN_INDEX */ nla_total_size(4) + 0; } static int ip6gre_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct __ip6_tnl_parm *p = &t->parms; __be16 o_flags = p->o_flags; if (p->erspan_ver == 1 || p->erspan_ver == 2) { if (!p->collect_md) o_flags |= TUNNEL_KEY; if (nla_put_u8(skb, IFLA_GRE_ERSPAN_VER, p->erspan_ver)) goto nla_put_failure; if (p->erspan_ver == 1) { if (nla_put_u32(skb, IFLA_GRE_ERSPAN_INDEX, p->index)) goto nla_put_failure; } else { if (nla_put_u8(skb, IFLA_GRE_ERSPAN_DIR, p->dir)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_GRE_ERSPAN_HWID, p->hwid)) goto nla_put_failure; } } if (nla_put_u32(skb, IFLA_GRE_LINK, p->link) || nla_put_be16(skb, IFLA_GRE_IFLAGS, gre_tnl_flags_to_gre_flags(p->i_flags)) || nla_put_be16(skb, IFLA_GRE_OFLAGS, gre_tnl_flags_to_gre_flags(o_flags)) || nla_put_be32(skb, IFLA_GRE_IKEY, p->i_key) || nla_put_be32(skb, IFLA_GRE_OKEY, p->o_key) || nla_put_in6_addr(skb, IFLA_GRE_LOCAL, &p->laddr) || nla_put_in6_addr(skb, IFLA_GRE_REMOTE, &p->raddr) || nla_put_u8(skb, IFLA_GRE_TTL, p->hop_limit) || nla_put_u8(skb, IFLA_GRE_ENCAP_LIMIT, p->encap_limit) || nla_put_be32(skb, IFLA_GRE_FLOWINFO, p->flowinfo) || nla_put_u32(skb, IFLA_GRE_FLAGS, p->flags) || nla_put_u32(skb, IFLA_GRE_FWMARK, p->fwmark)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_GRE_ENCAP_TYPE, t->encap.type) || nla_put_be16(skb, IFLA_GRE_ENCAP_SPORT, t->encap.sport) || nla_put_be16(skb, IFLA_GRE_ENCAP_DPORT, t->encap.dport) || nla_put_u16(skb, IFLA_GRE_ENCAP_FLAGS, t->encap.flags)) goto nla_put_failure; if (p->collect_md) { if (nla_put_flag(skb, IFLA_GRE_COLLECT_METADATA)) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static const struct nla_policy ip6gre_policy[IFLA_GRE_MAX + 1] = { [IFLA_GRE_LINK] = { .type = NLA_U32 }, [IFLA_GRE_IFLAGS] = { .type = NLA_U16 }, [IFLA_GRE_OFLAGS] = { .type = NLA_U16 }, [IFLA_GRE_IKEY] = { .type = NLA_U32 }, [IFLA_GRE_OKEY] = { .type = NLA_U32 }, [IFLA_GRE_LOCAL] = { .len = sizeof_field(struct ipv6hdr, saddr) }, [IFLA_GRE_REMOTE] = { .len = sizeof_field(struct ipv6hdr, daddr) }, [IFLA_GRE_TTL] = { .type = NLA_U8 }, [IFLA_GRE_ENCAP_LIMIT] = { .type = NLA_U8 }, [IFLA_GRE_FLOWINFO] = { .type = NLA_U32 }, [IFLA_GRE_FLAGS] = { .type = NLA_U32 }, [IFLA_GRE_ENCAP_TYPE] = { .type = NLA_U16 }, [IFLA_GRE_ENCAP_FLAGS] = { .type = NLA_U16 }, [IFLA_GRE_ENCAP_SPORT] = { .type = NLA_U16 }, [IFLA_GRE_ENCAP_DPORT] = { .type = NLA_U16 }, [IFLA_GRE_COLLECT_METADATA] = { .type = NLA_FLAG }, [IFLA_GRE_FWMARK] = { .type = NLA_U32 }, [IFLA_GRE_ERSPAN_INDEX] = { .type = NLA_U32 }, [IFLA_GRE_ERSPAN_VER] = { .type = NLA_U8 }, [IFLA_GRE_ERSPAN_DIR] = { .type = NLA_U8 }, [IFLA_GRE_ERSPAN_HWID] = { .type = NLA_U16 }, }; static void ip6erspan_tap_setup(struct net_device *dev) { ether_setup(dev); dev->max_mtu = 0; dev->netdev_ops = &ip6erspan_netdev_ops; dev->needs_free_netdev = true; dev->priv_destructor = ip6gre_dev_free; dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; netif_keep_dst(dev); } static int ip6erspan_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *nt = netdev_priv(dev); struct net *net = dev_net(dev); struct ip6gre_net *ign; int err; ip6gre_netlink_parms(data, &nt->parms); ip6erspan_set_version(data, &nt->parms); ign = net_generic(net, ip6gre_net_id); if (nt->parms.collect_md) { if (rtnl_dereference(ign->collect_md_tun_erspan)) return -EEXIST; } else { if (ip6gre_tunnel_find(net, &nt->parms, dev->type)) return -EEXIST; } err = ip6gre_newlink_common(src_net, dev, tb, data, extack); if (!err) { ip6erspan_tnl_link_config(nt, !tb[IFLA_MTU]); ip6erspan_tunnel_link_md(ign, nt); ip6gre_tunnel_link(net_generic(net, ip6gre_net_id), nt); } return err; } static void ip6erspan_tnl_link_config(struct ip6_tnl *t, int set_mtu) { ip6gre_tnl_link_config_common(t); ip6gre_tnl_link_config_route(t, set_mtu, ip6erspan_calc_hlen(t)); } static int ip6erspan_tnl_change(struct ip6_tnl *t, const struct __ip6_tnl_parm *p, int set_mtu) { ip6gre_tnl_copy_tnl_parm(t, p); ip6erspan_tnl_link_config(t, set_mtu); return 0; } static int ip6erspan_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6gre_net *ign = net_generic(dev_net(dev), ip6gre_net_id); struct __ip6_tnl_parm p; struct ip6_tnl *t; t = ip6gre_changelink_common(dev, tb, data, &p, extack); if (IS_ERR(t)) return PTR_ERR(t); ip6erspan_set_version(data, &p); ip6gre_tunnel_unlink_md(ign, t); ip6gre_tunnel_unlink(ign, t); ip6erspan_tnl_change(t, &p, !tb[IFLA_MTU]); ip6erspan_tunnel_link_md(ign, t); ip6gre_tunnel_link(ign, t); return 0; } static struct rtnl_link_ops ip6gre_link_ops __read_mostly = { .kind = "ip6gre", .maxtype = IFLA_GRE_MAX, .policy = ip6gre_policy, .priv_size = sizeof(struct ip6_tnl), .setup = ip6gre_tunnel_setup, .validate = ip6gre_tunnel_validate, .newlink = ip6gre_newlink, .changelink = ip6gre_changelink, .dellink = ip6gre_dellink, .get_size = ip6gre_get_size, .fill_info = ip6gre_fill_info, .get_link_net = ip6_tnl_get_link_net, }; static struct rtnl_link_ops ip6gre_tap_ops __read_mostly = { .kind = "ip6gretap", .maxtype = IFLA_GRE_MAX, .policy = ip6gre_policy, .priv_size = sizeof(struct ip6_tnl), .setup = ip6gre_tap_setup, .validate = ip6gre_tap_validate, .newlink = ip6gre_newlink, .changelink = ip6gre_changelink, .get_size = ip6gre_get_size, .fill_info = ip6gre_fill_info, .get_link_net = ip6_tnl_get_link_net, }; static struct rtnl_link_ops ip6erspan_tap_ops __read_mostly = { .kind = "ip6erspan", .maxtype = IFLA_GRE_MAX, .policy = ip6gre_policy, .priv_size = sizeof(struct ip6_tnl), .setup = ip6erspan_tap_setup, .validate = ip6erspan_tap_validate, .newlink = ip6erspan_newlink, .changelink = ip6erspan_changelink, .get_size = ip6gre_get_size, .fill_info = ip6gre_fill_info, .get_link_net = ip6_tnl_get_link_net, }; /* * And now the modules code and kernel interface. */ static int __init ip6gre_init(void) { int err; pr_info("GRE over IPv6 tunneling driver\n"); err = register_pernet_device(&ip6gre_net_ops); if (err < 0) return err; err = inet6_add_protocol(&ip6gre_protocol, IPPROTO_GRE); if (err < 0) { pr_info("%s: can't add protocol\n", __func__); goto add_proto_failed; } err = rtnl_link_register(&ip6gre_link_ops); if (err < 0) goto rtnl_link_failed; err = rtnl_link_register(&ip6gre_tap_ops); if (err < 0) goto tap_ops_failed; err = rtnl_link_register(&ip6erspan_tap_ops); if (err < 0) goto erspan_link_failed; out: return err; erspan_link_failed: rtnl_link_unregister(&ip6gre_tap_ops); tap_ops_failed: rtnl_link_unregister(&ip6gre_link_ops); rtnl_link_failed: inet6_del_protocol(&ip6gre_protocol, IPPROTO_GRE); add_proto_failed: unregister_pernet_device(&ip6gre_net_ops); goto out; } static void __exit ip6gre_fini(void) { rtnl_link_unregister(&ip6gre_tap_ops); rtnl_link_unregister(&ip6gre_link_ops); rtnl_link_unregister(&ip6erspan_tap_ops); inet6_del_protocol(&ip6gre_protocol, IPPROTO_GRE); unregister_pernet_device(&ip6gre_net_ops); } module_init(ip6gre_init); module_exit(ip6gre_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("D. Kozlov ([email protected])"); MODULE_DESCRIPTION("GRE over IPv6 tunneling device"); MODULE_ALIAS_RTNL_LINK("ip6gre"); MODULE_ALIAS_RTNL_LINK("ip6gretap"); MODULE_ALIAS_RTNL_LINK("ip6erspan"); MODULE_ALIAS_NETDEV("ip6gre0");
linux-master
net/ipv6/ip6_gre.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 tunneling device * Linux INET6 implementation * * Authors: * Ville Nuorvala <[email protected]> * Yasuyuki Kozakai <[email protected]> * * Based on: * linux/net/ipv6/sit.c and linux/net/ipv4/ipip.c * * RFC 2473 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/sockios.h> #include <linux/icmp.h> #include <linux/if.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/route.h> #include <linux/rtnetlink.h> #include <linux/netfilter_ipv6.h> #include <linux/slab.h> #include <linux/hash.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/atomic.h> #include <net/icmp.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/ip6_tunnel.h> #include <net/xfrm.h> #include <net/dsfield.h> #include <net/inet_ecn.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/dst_metadata.h> MODULE_AUTHOR("Ville Nuorvala"); MODULE_DESCRIPTION("IPv6 tunneling device"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("ip6tnl"); MODULE_ALIAS_NETDEV("ip6tnl0"); #define IP6_TUNNEL_HASH_SIZE_SHIFT 5 #define IP6_TUNNEL_HASH_SIZE (1 << IP6_TUNNEL_HASH_SIZE_SHIFT) static bool log_ecn_error = true; module_param(log_ecn_error, bool, 0644); MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); static u32 HASH(const struct in6_addr *addr1, const struct in6_addr *addr2) { u32 hash = ipv6_addr_hash(addr1) ^ ipv6_addr_hash(addr2); return hash_32(hash, IP6_TUNNEL_HASH_SIZE_SHIFT); } static int ip6_tnl_dev_init(struct net_device *dev); static void ip6_tnl_dev_setup(struct net_device *dev); static struct rtnl_link_ops ip6_link_ops __read_mostly; static unsigned int ip6_tnl_net_id __read_mostly; struct ip6_tnl_net { /* the IPv6 tunnel fallback device */ struct net_device *fb_tnl_dev; /* lists for storing tunnels in use */ struct ip6_tnl __rcu *tnls_r_l[IP6_TUNNEL_HASH_SIZE]; struct ip6_tnl __rcu *tnls_wc[1]; struct ip6_tnl __rcu **tnls[2]; struct ip6_tnl __rcu *collect_md_tun; }; static inline int ip6_tnl_mpls_supported(void) { return IS_ENABLED(CONFIG_MPLS); } #define for_each_ip6_tunnel_rcu(start) \ for (t = rcu_dereference(start); t; t = rcu_dereference(t->next)) /** * ip6_tnl_lookup - fetch tunnel matching the end-point addresses * @net: network namespace * @link: ifindex of underlying interface * @remote: the address of the tunnel exit-point * @local: the address of the tunnel entry-point * * Return: * tunnel matching given end-points if found, * else fallback tunnel if its device is up, * else %NULL **/ static struct ip6_tnl * ip6_tnl_lookup(struct net *net, int link, const struct in6_addr *remote, const struct in6_addr *local) { unsigned int hash = HASH(remote, local); struct ip6_tnl *t, *cand = NULL; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); struct in6_addr any; for_each_ip6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (!ipv6_addr_equal(local, &t->parms.laddr) || !ipv6_addr_equal(remote, &t->parms.raddr) || !(t->dev->flags & IFF_UP)) continue; if (link == t->parms.link) return t; else cand = t; } memset(&any, 0, sizeof(any)); hash = HASH(&any, local); for_each_ip6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (!ipv6_addr_equal(local, &t->parms.laddr) || !ipv6_addr_any(&t->parms.raddr) || !(t->dev->flags & IFF_UP)) continue; if (link == t->parms.link) return t; else if (!cand) cand = t; } hash = HASH(remote, &any); for_each_ip6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (!ipv6_addr_equal(remote, &t->parms.raddr) || !ipv6_addr_any(&t->parms.laddr) || !(t->dev->flags & IFF_UP)) continue; if (link == t->parms.link) return t; else if (!cand) cand = t; } if (cand) return cand; t = rcu_dereference(ip6n->collect_md_tun); if (t && t->dev->flags & IFF_UP) return t; t = rcu_dereference(ip6n->tnls_wc[0]); if (t && (t->dev->flags & IFF_UP)) return t; return NULL; } /** * ip6_tnl_bucket - get head of list matching given tunnel parameters * @ip6n: the private data for ip6_vti in the netns * @p: parameters containing tunnel end-points * * Description: * ip6_tnl_bucket() returns the head of the list matching the * &struct in6_addr entries laddr and raddr in @p. * * Return: head of IPv6 tunnel list **/ static struct ip6_tnl __rcu ** ip6_tnl_bucket(struct ip6_tnl_net *ip6n, const struct __ip6_tnl_parm *p) { const struct in6_addr *remote = &p->raddr; const struct in6_addr *local = &p->laddr; unsigned int h = 0; int prio = 0; if (!ipv6_addr_any(remote) || !ipv6_addr_any(local)) { prio = 1; h = HASH(remote, local); } return &ip6n->tnls[prio][h]; } /** * ip6_tnl_link - add tunnel to hash table * @ip6n: the private data for ip6_vti in the netns * @t: tunnel to be added **/ static void ip6_tnl_link(struct ip6_tnl_net *ip6n, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp = ip6_tnl_bucket(ip6n, &t->parms); if (t->parms.collect_md) rcu_assign_pointer(ip6n->collect_md_tun, t); rcu_assign_pointer(t->next , rtnl_dereference(*tp)); rcu_assign_pointer(*tp, t); } /** * ip6_tnl_unlink - remove tunnel from hash table * @ip6n: the private data for ip6_vti in the netns * @t: tunnel to be removed **/ static void ip6_tnl_unlink(struct ip6_tnl_net *ip6n, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp; struct ip6_tnl *iter; if (t->parms.collect_md) rcu_assign_pointer(ip6n->collect_md_tun, NULL); for (tp = ip6_tnl_bucket(ip6n, &t->parms); (iter = rtnl_dereference(*tp)) != NULL; tp = &iter->next) { if (t == iter) { rcu_assign_pointer(*tp, t->next); break; } } } static void ip6_dev_free(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); gro_cells_destroy(&t->gro_cells); dst_cache_destroy(&t->dst_cache); free_percpu(dev->tstats); } static int ip6_tnl_create2(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = dev_net(dev); struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); int err; dev->rtnl_link_ops = &ip6_link_ops; err = register_netdevice(dev); if (err < 0) goto out; strcpy(t->parms.name, dev->name); ip6_tnl_link(ip6n, t); return 0; out: return err; } /** * ip6_tnl_create - create a new tunnel * @net: network namespace * @p: tunnel parameters * * Description: * Create tunnel matching given parameters. * * Return: * created tunnel or error pointer **/ static struct ip6_tnl *ip6_tnl_create(struct net *net, struct __ip6_tnl_parm *p) { struct net_device *dev; struct ip6_tnl *t; char name[IFNAMSIZ]; int err = -E2BIG; if (p->name[0]) { if (!dev_valid_name(p->name)) goto failed; strscpy(name, p->name, IFNAMSIZ); } else { sprintf(name, "ip6tnl%%d"); } err = -ENOMEM; dev = alloc_netdev(sizeof(*t), name, NET_NAME_UNKNOWN, ip6_tnl_dev_setup); if (!dev) goto failed; dev_net_set(dev, net); t = netdev_priv(dev); t->parms = *p; t->net = dev_net(dev); err = ip6_tnl_create2(dev); if (err < 0) goto failed_free; return t; failed_free: free_netdev(dev); failed: return ERR_PTR(err); } /** * ip6_tnl_locate - find or create tunnel matching given parameters * @net: network namespace * @p: tunnel parameters * @create: != 0 if allowed to create new tunnel if no match found * * Description: * ip6_tnl_locate() first tries to locate an existing tunnel * based on @parms. If this is unsuccessful, but @create is set a new * tunnel device is created and registered for use. * * Return: * matching tunnel or error pointer **/ static struct ip6_tnl *ip6_tnl_locate(struct net *net, struct __ip6_tnl_parm *p, int create) { const struct in6_addr *remote = &p->raddr; const struct in6_addr *local = &p->laddr; struct ip6_tnl __rcu **tp; struct ip6_tnl *t; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); for (tp = ip6_tnl_bucket(ip6n, p); (t = rtnl_dereference(*tp)) != NULL; tp = &t->next) { if (ipv6_addr_equal(local, &t->parms.laddr) && ipv6_addr_equal(remote, &t->parms.raddr) && p->link == t->parms.link) { if (create) return ERR_PTR(-EEXIST); return t; } } if (!create) return ERR_PTR(-ENODEV); return ip6_tnl_create(net, p); } /** * ip6_tnl_dev_uninit - tunnel device uninitializer * @dev: the device to be destroyed * * Description: * ip6_tnl_dev_uninit() removes tunnel from its list **/ static void ip6_tnl_dev_uninit(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = t->net; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); if (dev == ip6n->fb_tnl_dev) RCU_INIT_POINTER(ip6n->tnls_wc[0], NULL); else ip6_tnl_unlink(ip6n, t); dst_cache_reset(&t->dst_cache); netdev_put(dev, &t->dev_tracker); } /** * ip6_tnl_parse_tlv_enc_lim - handle encapsulation limit option * @skb: received socket buffer * @raw: the ICMPv6 error message data * * Return: * 0 if none was found, * else index to encapsulation limit **/ __u16 ip6_tnl_parse_tlv_enc_lim(struct sk_buff *skb, __u8 *raw) { const struct ipv6hdr *ipv6h = (const struct ipv6hdr *)raw; unsigned int nhoff = raw - skb->data; unsigned int off = nhoff + sizeof(*ipv6h); u8 next, nexthdr = ipv6h->nexthdr; while (ipv6_ext_hdr(nexthdr) && nexthdr != NEXTHDR_NONE) { struct ipv6_opt_hdr *hdr; u16 optlen; if (!pskb_may_pull(skb, off + sizeof(*hdr))) break; hdr = (struct ipv6_opt_hdr *)(skb->data + off); if (nexthdr == NEXTHDR_FRAGMENT) { struct frag_hdr *frag_hdr = (struct frag_hdr *) hdr; if (frag_hdr->frag_off) break; optlen = 8; } else if (nexthdr == NEXTHDR_AUTH) { optlen = ipv6_authlen(hdr); } else { optlen = ipv6_optlen(hdr); } /* cache hdr->nexthdr, since pskb_may_pull() might * invalidate hdr */ next = hdr->nexthdr; if (nexthdr == NEXTHDR_DEST) { u16 i = 2; /* Remember : hdr is no longer valid at this point. */ if (!pskb_may_pull(skb, off + optlen)) break; while (1) { struct ipv6_tlv_tnl_enc_lim *tel; /* No more room for encapsulation limit */ if (i + sizeof(*tel) > optlen) break; tel = (struct ipv6_tlv_tnl_enc_lim *)(skb->data + off + i); /* return index of option if found and valid */ if (tel->type == IPV6_TLV_TNL_ENCAP_LIMIT && tel->length == 1) return i + off - nhoff; /* else jump to next option */ if (tel->type) i += tel->length + 2; else i++; } } nexthdr = next; off += optlen; } return 0; } EXPORT_SYMBOL(ip6_tnl_parse_tlv_enc_lim); /* ip6_tnl_err() should handle errors in the tunnel according to the * specifications in RFC 2473. */ static int ip6_tnl_err(struct sk_buff *skb, __u8 ipproto, struct inet6_skb_parm *opt, u8 *type, u8 *code, int *msg, __u32 *info, int offset) { const struct ipv6hdr *ipv6h = (const struct ipv6hdr *)skb->data; struct net *net = dev_net(skb->dev); u8 rel_type = ICMPV6_DEST_UNREACH; u8 rel_code = ICMPV6_ADDR_UNREACH; __u32 rel_info = 0; struct ip6_tnl *t; int err = -ENOENT; int rel_msg = 0; u8 tproto; __u16 len; /* If the packet doesn't contain the original IPv6 header we are in trouble since we might need the source address for further processing of the error. */ rcu_read_lock(); t = ip6_tnl_lookup(dev_net(skb->dev), skb->dev->ifindex, &ipv6h->daddr, &ipv6h->saddr); if (!t) goto out; tproto = READ_ONCE(t->parms.proto); if (tproto != ipproto && tproto != 0) goto out; err = 0; switch (*type) { case ICMPV6_DEST_UNREACH: net_dbg_ratelimited("%s: Path to destination invalid or inactive!\n", t->parms.name); rel_msg = 1; break; case ICMPV6_TIME_EXCEED: if ((*code) == ICMPV6_EXC_HOPLIMIT) { net_dbg_ratelimited("%s: Too small hop limit or routing loop in tunnel!\n", t->parms.name); rel_msg = 1; } break; case ICMPV6_PARAMPROB: { struct ipv6_tlv_tnl_enc_lim *tel; __u32 teli; teli = 0; if ((*code) == ICMPV6_HDR_FIELD) teli = ip6_tnl_parse_tlv_enc_lim(skb, skb->data); if (teli && teli == *info - 2) { tel = (struct ipv6_tlv_tnl_enc_lim *) &skb->data[teli]; if (tel->encap_limit == 0) { net_dbg_ratelimited("%s: Too small encapsulation limit or routing loop in tunnel!\n", t->parms.name); rel_msg = 1; } } else { net_dbg_ratelimited("%s: Recipient unable to parse tunneled packet!\n", t->parms.name); } break; } case ICMPV6_PKT_TOOBIG: { __u32 mtu; ip6_update_pmtu(skb, net, htonl(*info), 0, 0, sock_net_uid(net, NULL)); mtu = *info - offset; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; len = sizeof(*ipv6h) + ntohs(ipv6h->payload_len); if (len > mtu) { rel_type = ICMPV6_PKT_TOOBIG; rel_code = 0; rel_info = mtu; rel_msg = 1; } break; } case NDISC_REDIRECT: ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); break; } *type = rel_type; *code = rel_code; *info = rel_info; *msg = rel_msg; out: rcu_read_unlock(); return err; } static int ip4ip6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { __u32 rel_info = ntohl(info); const struct iphdr *eiph; struct sk_buff *skb2; int err, rel_msg = 0; u8 rel_type = type; u8 rel_code = code; struct rtable *rt; struct flowi4 fl4; err = ip6_tnl_err(skb, IPPROTO_IPIP, opt, &rel_type, &rel_code, &rel_msg, &rel_info, offset); if (err < 0) return err; if (rel_msg == 0) return 0; switch (rel_type) { case ICMPV6_DEST_UNREACH: if (rel_code != ICMPV6_ADDR_UNREACH) return 0; rel_type = ICMP_DEST_UNREACH; rel_code = ICMP_HOST_UNREACH; break; case ICMPV6_PKT_TOOBIG: if (rel_code != 0) return 0; rel_type = ICMP_DEST_UNREACH; rel_code = ICMP_FRAG_NEEDED; break; default: return 0; } if (!pskb_may_pull(skb, offset + sizeof(struct iphdr))) return 0; skb2 = skb_clone(skb, GFP_ATOMIC); if (!skb2) return 0; skb_dst_drop(skb2); skb_pull(skb2, offset); skb_reset_network_header(skb2); eiph = ip_hdr(skb2); /* Try to guess incoming interface */ rt = ip_route_output_ports(dev_net(skb->dev), &fl4, NULL, eiph->saddr, 0, 0, 0, IPPROTO_IPIP, RT_TOS(eiph->tos), 0); if (IS_ERR(rt)) goto out; skb2->dev = rt->dst.dev; ip_rt_put(rt); /* route "incoming" packet */ if (rt->rt_flags & RTCF_LOCAL) { rt = ip_route_output_ports(dev_net(skb->dev), &fl4, NULL, eiph->daddr, eiph->saddr, 0, 0, IPPROTO_IPIP, RT_TOS(eiph->tos), 0); if (IS_ERR(rt) || rt->dst.dev->type != ARPHRD_TUNNEL6) { if (!IS_ERR(rt)) ip_rt_put(rt); goto out; } skb_dst_set(skb2, &rt->dst); } else { if (ip_route_input(skb2, eiph->daddr, eiph->saddr, eiph->tos, skb2->dev) || skb_dst(skb2)->dev->type != ARPHRD_TUNNEL6) goto out; } /* change mtu on this route */ if (rel_type == ICMP_DEST_UNREACH && rel_code == ICMP_FRAG_NEEDED) { if (rel_info > dst_mtu(skb_dst(skb2))) goto out; skb_dst_update_pmtu_no_confirm(skb2, rel_info); } icmp_send(skb2, rel_type, rel_code, htonl(rel_info)); out: kfree_skb(skb2); return 0; } static int ip6ip6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { __u32 rel_info = ntohl(info); int err, rel_msg = 0; u8 rel_type = type; u8 rel_code = code; err = ip6_tnl_err(skb, IPPROTO_IPV6, opt, &rel_type, &rel_code, &rel_msg, &rel_info, offset); if (err < 0) return err; if (rel_msg && pskb_may_pull(skb, offset + sizeof(struct ipv6hdr))) { struct rt6_info *rt; struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (!skb2) return 0; skb_dst_drop(skb2); skb_pull(skb2, offset); skb_reset_network_header(skb2); /* Try to guess incoming interface */ rt = rt6_lookup(dev_net(skb->dev), &ipv6_hdr(skb2)->saddr, NULL, 0, skb2, 0); if (rt && rt->dst.dev) skb2->dev = rt->dst.dev; icmpv6_send(skb2, rel_type, rel_code, rel_info); ip6_rt_put(rt); kfree_skb(skb2); } return 0; } static int mplsip6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { __u32 rel_info = ntohl(info); int err, rel_msg = 0; u8 rel_type = type; u8 rel_code = code; err = ip6_tnl_err(skb, IPPROTO_MPLS, opt, &rel_type, &rel_code, &rel_msg, &rel_info, offset); return err; } static int ip4ip6_dscp_ecn_decapsulate(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb) { __u8 dsfield = ipv6_get_dsfield(ipv6h) & ~INET_ECN_MASK; if (t->parms.flags & IP6_TNL_F_RCV_DSCP_COPY) ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, dsfield); return IP6_ECN_decapsulate(ipv6h, skb); } static int ip6ip6_dscp_ecn_decapsulate(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb) { if (t->parms.flags & IP6_TNL_F_RCV_DSCP_COPY) ipv6_copy_dscp(ipv6_get_dsfield(ipv6h), ipv6_hdr(skb)); return IP6_ECN_decapsulate(ipv6h, skb); } static inline int mplsip6_dscp_ecn_decapsulate(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb) { /* ECN is not supported in AF_MPLS */ return 0; } __u32 ip6_tnl_get_cap(struct ip6_tnl *t, const struct in6_addr *laddr, const struct in6_addr *raddr) { struct __ip6_tnl_parm *p = &t->parms; int ltype = ipv6_addr_type(laddr); int rtype = ipv6_addr_type(raddr); __u32 flags = 0; if (ltype == IPV6_ADDR_ANY || rtype == IPV6_ADDR_ANY) { flags = IP6_TNL_F_CAP_PER_PACKET; } else if (ltype & (IPV6_ADDR_UNICAST|IPV6_ADDR_MULTICAST) && rtype & (IPV6_ADDR_UNICAST|IPV6_ADDR_MULTICAST) && !((ltype|rtype) & IPV6_ADDR_LOOPBACK) && (!((ltype|rtype) & IPV6_ADDR_LINKLOCAL) || p->link)) { if (ltype&IPV6_ADDR_UNICAST) flags |= IP6_TNL_F_CAP_XMIT; if (rtype&IPV6_ADDR_UNICAST) flags |= IP6_TNL_F_CAP_RCV; } return flags; } EXPORT_SYMBOL(ip6_tnl_get_cap); /* called with rcu_read_lock() */ int ip6_tnl_rcv_ctl(struct ip6_tnl *t, const struct in6_addr *laddr, const struct in6_addr *raddr) { struct __ip6_tnl_parm *p = &t->parms; int ret = 0; struct net *net = t->net; if ((p->flags & IP6_TNL_F_CAP_RCV) || ((p->flags & IP6_TNL_F_CAP_PER_PACKET) && (ip6_tnl_get_cap(t, laddr, raddr) & IP6_TNL_F_CAP_RCV))) { struct net_device *ldev = NULL; if (p->link) ldev = dev_get_by_index_rcu(net, p->link); if ((ipv6_addr_is_multicast(laddr) || likely(ipv6_chk_addr_and_flags(net, laddr, ldev, false, 0, IFA_F_TENTATIVE))) && ((p->flags & IP6_TNL_F_ALLOW_LOCAL_REMOTE) || likely(!ipv6_chk_addr_and_flags(net, raddr, ldev, true, 0, IFA_F_TENTATIVE)))) ret = 1; } return ret; } EXPORT_SYMBOL_GPL(ip6_tnl_rcv_ctl); static int __ip6_tnl_rcv(struct ip6_tnl *tunnel, struct sk_buff *skb, const struct tnl_ptk_info *tpi, struct metadata_dst *tun_dst, int (*dscp_ecn_decapsulate)(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb), bool log_ecn_err) { const struct ipv6hdr *ipv6h = ipv6_hdr(skb); int err; if ((!(tpi->flags & TUNNEL_CSUM) && (tunnel->parms.i_flags & TUNNEL_CSUM)) || ((tpi->flags & TUNNEL_CSUM) && !(tunnel->parms.i_flags & TUNNEL_CSUM))) { DEV_STATS_INC(tunnel->dev, rx_crc_errors); DEV_STATS_INC(tunnel->dev, rx_errors); goto drop; } if (tunnel->parms.i_flags & TUNNEL_SEQ) { if (!(tpi->flags & TUNNEL_SEQ) || (tunnel->i_seqno && (s32)(ntohl(tpi->seq) - tunnel->i_seqno) < 0)) { DEV_STATS_INC(tunnel->dev, rx_fifo_errors); DEV_STATS_INC(tunnel->dev, rx_errors); goto drop; } tunnel->i_seqno = ntohl(tpi->seq) + 1; } skb->protocol = tpi->proto; /* Warning: All skb pointers will be invalidated! */ if (tunnel->dev->type == ARPHRD_ETHER) { if (!pskb_may_pull(skb, ETH_HLEN)) { DEV_STATS_INC(tunnel->dev, rx_length_errors); DEV_STATS_INC(tunnel->dev, rx_errors); goto drop; } ipv6h = ipv6_hdr(skb); skb->protocol = eth_type_trans(skb, tunnel->dev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); } else { skb->dev = tunnel->dev; skb_reset_mac_header(skb); } skb_reset_network_header(skb); memset(skb->cb, 0, sizeof(struct inet6_skb_parm)); __skb_tunnel_rx(skb, tunnel->dev, tunnel->net); err = dscp_ecn_decapsulate(tunnel, ipv6h, skb); if (unlikely(err)) { if (log_ecn_err) net_info_ratelimited("non-ECT from %pI6 with DS=%#x\n", &ipv6h->saddr, ipv6_get_dsfield(ipv6h)); if (err > 1) { DEV_STATS_INC(tunnel->dev, rx_frame_errors); DEV_STATS_INC(tunnel->dev, rx_errors); goto drop; } } dev_sw_netstats_rx_add(tunnel->dev, skb->len); skb_scrub_packet(skb, !net_eq(tunnel->net, dev_net(tunnel->dev))); if (tun_dst) skb_dst_set(skb, (struct dst_entry *)tun_dst); gro_cells_receive(&tunnel->gro_cells, skb); return 0; drop: if (tun_dst) dst_release((struct dst_entry *)tun_dst); kfree_skb(skb); return 0; } int ip6_tnl_rcv(struct ip6_tnl *t, struct sk_buff *skb, const struct tnl_ptk_info *tpi, struct metadata_dst *tun_dst, bool log_ecn_err) { int (*dscp_ecn_decapsulate)(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb); dscp_ecn_decapsulate = ip6ip6_dscp_ecn_decapsulate; if (tpi->proto == htons(ETH_P_IP)) dscp_ecn_decapsulate = ip4ip6_dscp_ecn_decapsulate; return __ip6_tnl_rcv(t, skb, tpi, tun_dst, dscp_ecn_decapsulate, log_ecn_err); } EXPORT_SYMBOL(ip6_tnl_rcv); static const struct tnl_ptk_info tpi_v6 = { /* no tunnel info required for ipxip6. */ .proto = htons(ETH_P_IPV6), }; static const struct tnl_ptk_info tpi_v4 = { /* no tunnel info required for ipxip6. */ .proto = htons(ETH_P_IP), }; static const struct tnl_ptk_info tpi_mpls = { /* no tunnel info required for mplsip6. */ .proto = htons(ETH_P_MPLS_UC), }; static int ipxip6_rcv(struct sk_buff *skb, u8 ipproto, const struct tnl_ptk_info *tpi, int (*dscp_ecn_decapsulate)(const struct ip6_tnl *t, const struct ipv6hdr *ipv6h, struct sk_buff *skb)) { struct ip6_tnl *t; const struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct metadata_dst *tun_dst = NULL; int ret = -1; rcu_read_lock(); t = ip6_tnl_lookup(dev_net(skb->dev), skb->dev->ifindex, &ipv6h->saddr, &ipv6h->daddr); if (t) { u8 tproto = READ_ONCE(t->parms.proto); if (tproto != ipproto && tproto != 0) goto drop; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) goto drop; ipv6h = ipv6_hdr(skb); if (!ip6_tnl_rcv_ctl(t, &ipv6h->daddr, &ipv6h->saddr)) goto drop; if (iptunnel_pull_header(skb, 0, tpi->proto, false)) goto drop; if (t->parms.collect_md) { tun_dst = ipv6_tun_rx_dst(skb, 0, 0, 0); if (!tun_dst) goto drop; } ret = __ip6_tnl_rcv(t, skb, tpi, tun_dst, dscp_ecn_decapsulate, log_ecn_error); } rcu_read_unlock(); return ret; drop: rcu_read_unlock(); kfree_skb(skb); return 0; } static int ip4ip6_rcv(struct sk_buff *skb) { return ipxip6_rcv(skb, IPPROTO_IPIP, &tpi_v4, ip4ip6_dscp_ecn_decapsulate); } static int ip6ip6_rcv(struct sk_buff *skb) { return ipxip6_rcv(skb, IPPROTO_IPV6, &tpi_v6, ip6ip6_dscp_ecn_decapsulate); } static int mplsip6_rcv(struct sk_buff *skb) { return ipxip6_rcv(skb, IPPROTO_MPLS, &tpi_mpls, mplsip6_dscp_ecn_decapsulate); } struct ipv6_tel_txoption { struct ipv6_txoptions ops; __u8 dst_opt[8]; }; static void init_tel_txopt(struct ipv6_tel_txoption *opt, __u8 encap_limit) { memset(opt, 0, sizeof(struct ipv6_tel_txoption)); opt->dst_opt[2] = IPV6_TLV_TNL_ENCAP_LIMIT; opt->dst_opt[3] = 1; opt->dst_opt[4] = encap_limit; opt->dst_opt[5] = IPV6_TLV_PADN; opt->dst_opt[6] = 1; opt->ops.dst1opt = (struct ipv6_opt_hdr *) opt->dst_opt; opt->ops.opt_nflen = 8; } /** * ip6_tnl_addr_conflict - compare packet addresses to tunnel's own * @t: the outgoing tunnel device * @hdr: IPv6 header from the incoming packet * * Description: * Avoid trivial tunneling loop by checking that tunnel exit-point * doesn't match source of incoming packet. * * Return: * 1 if conflict, * 0 else **/ static inline bool ip6_tnl_addr_conflict(const struct ip6_tnl *t, const struct ipv6hdr *hdr) { return ipv6_addr_equal(&t->parms.raddr, &hdr->saddr); } int ip6_tnl_xmit_ctl(struct ip6_tnl *t, const struct in6_addr *laddr, const struct in6_addr *raddr) { struct __ip6_tnl_parm *p = &t->parms; int ret = 0; struct net *net = t->net; if (t->parms.collect_md) return 1; if ((p->flags & IP6_TNL_F_CAP_XMIT) || ((p->flags & IP6_TNL_F_CAP_PER_PACKET) && (ip6_tnl_get_cap(t, laddr, raddr) & IP6_TNL_F_CAP_XMIT))) { struct net_device *ldev = NULL; rcu_read_lock(); if (p->link) ldev = dev_get_by_index_rcu(net, p->link); if (unlikely(!ipv6_chk_addr_and_flags(net, laddr, ldev, false, 0, IFA_F_TENTATIVE))) pr_warn_ratelimited("%s xmit: Local address not yet configured!\n", p->name); else if (!(p->flags & IP6_TNL_F_ALLOW_LOCAL_REMOTE) && !ipv6_addr_is_multicast(raddr) && unlikely(ipv6_chk_addr_and_flags(net, raddr, ldev, true, 0, IFA_F_TENTATIVE))) pr_warn_ratelimited("%s xmit: Routing loop! Remote address found on this node!\n", p->name); else ret = 1; rcu_read_unlock(); } return ret; } EXPORT_SYMBOL_GPL(ip6_tnl_xmit_ctl); /** * ip6_tnl_xmit - encapsulate packet and send * @skb: the outgoing socket buffer * @dev: the outgoing tunnel device * @dsfield: dscp code for outer header * @fl6: flow of tunneled packet * @encap_limit: encapsulation limit * @pmtu: Path MTU is stored if packet is too big * @proto: next header value * * Description: * Build new header and do some sanity checks on the packet before sending * it. * * Return: * 0 on success * -1 fail * %-EMSGSIZE message too big. return mtu in this case. **/ int ip6_tnl_xmit(struct sk_buff *skb, struct net_device *dev, __u8 dsfield, struct flowi6 *fl6, int encap_limit, __u32 *pmtu, __u8 proto) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = t->net; struct ipv6hdr *ipv6h; struct ipv6_tel_txoption opt; struct dst_entry *dst = NULL, *ndst = NULL; struct net_device *tdev; int mtu; unsigned int eth_hlen = t->dev->type == ARPHRD_ETHER ? ETH_HLEN : 0; unsigned int psh_hlen = sizeof(struct ipv6hdr) + t->encap_hlen; unsigned int max_headroom = psh_hlen; __be16 payload_protocol; bool use_cache = false; u8 hop_limit; int err = -1; payload_protocol = skb_protocol(skb, true); if (t->parms.collect_md) { hop_limit = skb_tunnel_info(skb)->key.ttl; goto route_lookup; } else { hop_limit = t->parms.hop_limit; } /* NBMA tunnel */ if (ipv6_addr_any(&t->parms.raddr)) { if (payload_protocol == htons(ETH_P_IPV6)) { struct in6_addr *addr6; struct neighbour *neigh; int addr_type; if (!skb_dst(skb)) goto tx_err_link_failure; neigh = dst_neigh_lookup(skb_dst(skb), &ipv6_hdr(skb)->daddr); if (!neigh) goto tx_err_link_failure; addr6 = (struct in6_addr *)&neigh->primary_key; addr_type = ipv6_addr_type(addr6); if (addr_type == IPV6_ADDR_ANY) addr6 = &ipv6_hdr(skb)->daddr; memcpy(&fl6->daddr, addr6, sizeof(fl6->daddr)); neigh_release(neigh); } else if (payload_protocol == htons(ETH_P_IP)) { const struct rtable *rt = skb_rtable(skb); if (!rt) goto tx_err_link_failure; if (rt->rt_gw_family == AF_INET6) memcpy(&fl6->daddr, &rt->rt_gw6, sizeof(fl6->daddr)); } } else if (t->parms.proto != 0 && !(t->parms.flags & (IP6_TNL_F_USE_ORIG_TCLASS | IP6_TNL_F_USE_ORIG_FWMARK))) { /* enable the cache only if neither the outer protocol nor the * routing decision depends on the current inner header value */ use_cache = true; } if (use_cache) dst = dst_cache_get(&t->dst_cache); if (!ip6_tnl_xmit_ctl(t, &fl6->saddr, &fl6->daddr)) goto tx_err_link_failure; if (!dst) { route_lookup: /* add dsfield to flowlabel for route lookup */ fl6->flowlabel = ip6_make_flowinfo(dsfield, fl6->flowlabel); dst = ip6_route_output(net, NULL, fl6); if (dst->error) goto tx_err_link_failure; dst = xfrm_lookup(net, dst, flowi6_to_flowi(fl6), NULL, 0); if (IS_ERR(dst)) { err = PTR_ERR(dst); dst = NULL; goto tx_err_link_failure; } if (t->parms.collect_md && ipv6_addr_any(&fl6->saddr) && ipv6_dev_get_saddr(net, ip6_dst_idev(dst)->dev, &fl6->daddr, 0, &fl6->saddr)) goto tx_err_link_failure; ndst = dst; } tdev = dst->dev; if (tdev == dev) { DEV_STATS_INC(dev, collisions); net_warn_ratelimited("%s: Local routing loop detected!\n", t->parms.name); goto tx_err_dst_release; } mtu = dst_mtu(dst) - eth_hlen - psh_hlen - t->tun_hlen; if (encap_limit >= 0) { max_headroom += 8; mtu -= 8; } mtu = max(mtu, skb->protocol == htons(ETH_P_IPV6) ? IPV6_MIN_MTU : IPV4_MIN_MTU); skb_dst_update_pmtu_no_confirm(skb, mtu); if (skb->len - t->tun_hlen - eth_hlen > mtu && !skb_is_gso(skb)) { *pmtu = mtu; err = -EMSGSIZE; goto tx_err_dst_release; } if (t->err_count > 0) { if (time_before(jiffies, t->err_time + IP6TUNNEL_ERR_TIMEO)) { t->err_count--; dst_link_failure(skb); } else { t->err_count = 0; } } skb_scrub_packet(skb, !net_eq(t->net, dev_net(dev))); /* * Okay, now see if we can stuff it in the buffer as-is. */ max_headroom += LL_RESERVED_SPACE(tdev); if (skb_headroom(skb) < max_headroom || skb_shared(skb) || (skb_cloned(skb) && !skb_clone_writable(skb, 0))) { struct sk_buff *new_skb; new_skb = skb_realloc_headroom(skb, max_headroom); if (!new_skb) goto tx_err_dst_release; if (skb->sk) skb_set_owner_w(new_skb, skb->sk); consume_skb(skb); skb = new_skb; } if (t->parms.collect_md) { if (t->encap.type != TUNNEL_ENCAP_NONE) goto tx_err_dst_release; } else { if (use_cache && ndst) dst_cache_set_ip6(&t->dst_cache, ndst, &fl6->saddr); } skb_dst_set(skb, dst); if (hop_limit == 0) { if (payload_protocol == htons(ETH_P_IP)) hop_limit = ip_hdr(skb)->ttl; else if (payload_protocol == htons(ETH_P_IPV6)) hop_limit = ipv6_hdr(skb)->hop_limit; else hop_limit = ip6_dst_hoplimit(dst); } /* Calculate max headroom for all the headers and adjust * needed_headroom if necessary. */ max_headroom = LL_RESERVED_SPACE(dst->dev) + sizeof(struct ipv6hdr) + dst->header_len + t->hlen; if (max_headroom > READ_ONCE(dev->needed_headroom)) WRITE_ONCE(dev->needed_headroom, max_headroom); err = ip6_tnl_encap(skb, t, &proto, fl6); if (err) return err; if (encap_limit >= 0) { init_tel_txopt(&opt, encap_limit); ipv6_push_frag_opts(skb, &opt.ops, &proto); } skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); ipv6h = ipv6_hdr(skb); ip6_flow_hdr(ipv6h, dsfield, ip6_make_flowlabel(net, skb, fl6->flowlabel, true, fl6)); ipv6h->hop_limit = hop_limit; ipv6h->nexthdr = proto; ipv6h->saddr = fl6->saddr; ipv6h->daddr = fl6->daddr; ip6tunnel_xmit(NULL, skb, dev); return 0; tx_err_link_failure: DEV_STATS_INC(dev, tx_carrier_errors); dst_link_failure(skb); tx_err_dst_release: dst_release(dst); return err; } EXPORT_SYMBOL(ip6_tnl_xmit); static inline int ipxip6_tnl_xmit(struct sk_buff *skb, struct net_device *dev, u8 protocol) { struct ip6_tnl *t = netdev_priv(dev); struct ipv6hdr *ipv6h; const struct iphdr *iph; int encap_limit = -1; __u16 offset; struct flowi6 fl6; __u8 dsfield, orig_dsfield; __u32 mtu; u8 tproto; int err; tproto = READ_ONCE(t->parms.proto); if (tproto != protocol && tproto != 0) return -1; if (t->parms.collect_md) { struct ip_tunnel_info *tun_info; const struct ip_tunnel_key *key; tun_info = skb_tunnel_info(skb); if (unlikely(!tun_info || !(tun_info->mode & IP_TUNNEL_INFO_TX) || ip_tunnel_info_af(tun_info) != AF_INET6)) return -1; key = &tun_info->key; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = protocol; fl6.saddr = key->u.ipv6.src; fl6.daddr = key->u.ipv6.dst; fl6.flowlabel = key->label; dsfield = key->tos; switch (protocol) { case IPPROTO_IPIP: iph = ip_hdr(skb); orig_dsfield = ipv4_get_dsfield(iph); break; case IPPROTO_IPV6: ipv6h = ipv6_hdr(skb); orig_dsfield = ipv6_get_dsfield(ipv6h); break; default: orig_dsfield = dsfield; break; } } else { if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) encap_limit = t->parms.encap_limit; if (protocol == IPPROTO_IPV6) { offset = ip6_tnl_parse_tlv_enc_lim(skb, skb_network_header(skb)); /* ip6_tnl_parse_tlv_enc_lim() might have * reallocated skb->head */ if (offset > 0) { struct ipv6_tlv_tnl_enc_lim *tel; tel = (void *)&skb_network_header(skb)[offset]; if (tel->encap_limit == 0) { icmpv6_ndo_send(skb, ICMPV6_PARAMPROB, ICMPV6_HDR_FIELD, offset + 2); return -1; } encap_limit = tel->encap_limit - 1; } } memcpy(&fl6, &t->fl.u.ip6, sizeof(fl6)); fl6.flowi6_proto = protocol; if (t->parms.flags & IP6_TNL_F_USE_ORIG_FWMARK) fl6.flowi6_mark = skb->mark; else fl6.flowi6_mark = t->parms.fwmark; switch (protocol) { case IPPROTO_IPIP: iph = ip_hdr(skb); orig_dsfield = ipv4_get_dsfield(iph); if (t->parms.flags & IP6_TNL_F_USE_ORIG_TCLASS) dsfield = orig_dsfield; else dsfield = ip6_tclass(t->parms.flowinfo); break; case IPPROTO_IPV6: ipv6h = ipv6_hdr(skb); orig_dsfield = ipv6_get_dsfield(ipv6h); if (t->parms.flags & IP6_TNL_F_USE_ORIG_TCLASS) dsfield = orig_dsfield; else dsfield = ip6_tclass(t->parms.flowinfo); if (t->parms.flags & IP6_TNL_F_USE_ORIG_FLOWLABEL) fl6.flowlabel |= ip6_flowlabel(ipv6h); break; default: orig_dsfield = dsfield = ip6_tclass(t->parms.flowinfo); break; } } fl6.flowi6_uid = sock_net_uid(dev_net(dev), NULL); dsfield = INET_ECN_encapsulate(dsfield, orig_dsfield); if (iptunnel_handle_offloads(skb, SKB_GSO_IPXIP6)) return -1; skb_set_inner_ipproto(skb, protocol); err = ip6_tnl_xmit(skb, dev, dsfield, &fl6, encap_limit, &mtu, protocol); if (err != 0) { /* XXX: send ICMP error even if DF is not set. */ if (err == -EMSGSIZE) switch (protocol) { case IPPROTO_IPIP: icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); break; case IPPROTO_IPV6: icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); break; default: break; } return -1; } return 0; } static netdev_tx_t ip6_tnl_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); u8 ipproto; int ret; if (!pskb_inet_may_pull(skb)) goto tx_err; switch (skb->protocol) { case htons(ETH_P_IP): ipproto = IPPROTO_IPIP; break; case htons(ETH_P_IPV6): if (ip6_tnl_addr_conflict(t, ipv6_hdr(skb))) goto tx_err; ipproto = IPPROTO_IPV6; break; case htons(ETH_P_MPLS_UC): ipproto = IPPROTO_MPLS; break; default: goto tx_err; } ret = ipxip6_tnl_xmit(skb, dev, ipproto); if (ret < 0) goto tx_err; return NETDEV_TX_OK; tx_err: DEV_STATS_INC(dev, tx_errors); DEV_STATS_INC(dev, tx_dropped); kfree_skb(skb); return NETDEV_TX_OK; } static void ip6_tnl_link_config(struct ip6_tnl *t) { struct net_device *dev = t->dev; struct net_device *tdev = NULL; struct __ip6_tnl_parm *p = &t->parms; struct flowi6 *fl6 = &t->fl.u.ip6; int t_hlen; int mtu; __dev_addr_set(dev, &p->laddr, sizeof(struct in6_addr)); memcpy(dev->broadcast, &p->raddr, sizeof(struct in6_addr)); /* Set up flowi template */ fl6->saddr = p->laddr; fl6->daddr = p->raddr; fl6->flowi6_oif = p->link; fl6->flowlabel = 0; if (!(p->flags&IP6_TNL_F_USE_ORIG_TCLASS)) fl6->flowlabel |= IPV6_TCLASS_MASK & p->flowinfo; if (!(p->flags&IP6_TNL_F_USE_ORIG_FLOWLABEL)) fl6->flowlabel |= IPV6_FLOWLABEL_MASK & p->flowinfo; p->flags &= ~(IP6_TNL_F_CAP_XMIT|IP6_TNL_F_CAP_RCV|IP6_TNL_F_CAP_PER_PACKET); p->flags |= ip6_tnl_get_cap(t, &p->laddr, &p->raddr); if (p->flags&IP6_TNL_F_CAP_XMIT && p->flags&IP6_TNL_F_CAP_RCV) dev->flags |= IFF_POINTOPOINT; else dev->flags &= ~IFF_POINTOPOINT; t->tun_hlen = 0; t->hlen = t->encap_hlen + t->tun_hlen; t_hlen = t->hlen + sizeof(struct ipv6hdr); if (p->flags & IP6_TNL_F_CAP_XMIT) { int strict = (ipv6_addr_type(&p->raddr) & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL)); struct rt6_info *rt = rt6_lookup(t->net, &p->raddr, &p->laddr, p->link, NULL, strict); if (rt) { tdev = rt->dst.dev; ip6_rt_put(rt); } if (!tdev && p->link) tdev = __dev_get_by_index(t->net, p->link); if (tdev) { dev->hard_header_len = tdev->hard_header_len + t_hlen; mtu = min_t(unsigned int, tdev->mtu, IP6_MAX_MTU); mtu = mtu - t_hlen; if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) mtu -= 8; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; WRITE_ONCE(dev->mtu, mtu); } } } /** * ip6_tnl_change - update the tunnel parameters * @t: tunnel to be changed * @p: tunnel configuration parameters * * Description: * ip6_tnl_change() updates the tunnel parameters **/ static void ip6_tnl_change(struct ip6_tnl *t, const struct __ip6_tnl_parm *p) { t->parms.laddr = p->laddr; t->parms.raddr = p->raddr; t->parms.flags = p->flags; t->parms.hop_limit = p->hop_limit; t->parms.encap_limit = p->encap_limit; t->parms.flowinfo = p->flowinfo; t->parms.link = p->link; t->parms.proto = p->proto; t->parms.fwmark = p->fwmark; dst_cache_reset(&t->dst_cache); ip6_tnl_link_config(t); } static void ip6_tnl_update(struct ip6_tnl *t, struct __ip6_tnl_parm *p) { struct net *net = t->net; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); ip6_tnl_unlink(ip6n, t); synchronize_net(); ip6_tnl_change(t, p); ip6_tnl_link(ip6n, t); netdev_state_change(t->dev); } static void ip6_tnl0_update(struct ip6_tnl *t, struct __ip6_tnl_parm *p) { /* for default tnl0 device allow to change only the proto */ t->parms.proto = p->proto; netdev_state_change(t->dev); } static void ip6_tnl_parm_from_user(struct __ip6_tnl_parm *p, const struct ip6_tnl_parm *u) { p->laddr = u->laddr; p->raddr = u->raddr; p->flags = u->flags; p->hop_limit = u->hop_limit; p->encap_limit = u->encap_limit; p->flowinfo = u->flowinfo; p->link = u->link; p->proto = u->proto; memcpy(p->name, u->name, sizeof(u->name)); } static void ip6_tnl_parm_to_user(struct ip6_tnl_parm *u, const struct __ip6_tnl_parm *p) { u->laddr = p->laddr; u->raddr = p->raddr; u->flags = p->flags; u->hop_limit = p->hop_limit; u->encap_limit = p->encap_limit; u->flowinfo = p->flowinfo; u->link = p->link; u->proto = p->proto; memcpy(u->name, p->name, sizeof(u->name)); } /** * ip6_tnl_siocdevprivate - configure ipv6 tunnels from userspace * @dev: virtual device associated with tunnel * @ifr: unused * @data: parameters passed from userspace * @cmd: command to be performed * * Description: * ip6_tnl_ioctl() is used for managing IPv6 tunnels * from userspace. * * The possible commands are the following: * %SIOCGETTUNNEL: get tunnel parameters for device * %SIOCADDTUNNEL: add tunnel matching given tunnel parameters * %SIOCCHGTUNNEL: change tunnel parameters to those given * %SIOCDELTUNNEL: delete tunnel * * The fallback device "ip6tnl0", created during module * initialization, can be used for creating other tunnel devices. * * Return: * 0 on success, * %-EFAULT if unable to copy data to or from userspace, * %-EPERM if current process hasn't %CAP_NET_ADMIN set * %-EINVAL if passed tunnel parameters are invalid, * %-EEXIST if changing a tunnel's parameters would cause a conflict * %-ENODEV if attempting to change or delete a nonexisting device **/ static int ip6_tnl_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { int err = 0; struct ip6_tnl_parm p; struct __ip6_tnl_parm p1; struct ip6_tnl *t = netdev_priv(dev); struct net *net = t->net; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); memset(&p1, 0, sizeof(p1)); switch (cmd) { case SIOCGETTUNNEL: if (dev == ip6n->fb_tnl_dev) { if (copy_from_user(&p, data, sizeof(p))) { err = -EFAULT; break; } ip6_tnl_parm_from_user(&p1, &p); t = ip6_tnl_locate(net, &p1, 0); if (IS_ERR(t)) t = netdev_priv(dev); } else { memset(&p, 0, sizeof(p)); } ip6_tnl_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; break; case SIOCADDTUNNEL: case SIOCCHGTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) break; err = -EINVAL; if (p.proto != IPPROTO_IPV6 && p.proto != IPPROTO_IPIP && p.proto != 0) break; ip6_tnl_parm_from_user(&p1, &p); t = ip6_tnl_locate(net, &p1, cmd == SIOCADDTUNNEL); if (cmd == SIOCCHGTUNNEL) { if (!IS_ERR(t)) { if (t->dev != dev) { err = -EEXIST; break; } } else t = netdev_priv(dev); if (dev == ip6n->fb_tnl_dev) ip6_tnl0_update(t, &p1); else ip6_tnl_update(t, &p1); } if (!IS_ERR(t)) { err = 0; ip6_tnl_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; } else { err = PTR_ERR(t); } break; case SIOCDELTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; if (dev == ip6n->fb_tnl_dev) { err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) break; err = -ENOENT; ip6_tnl_parm_from_user(&p1, &p); t = ip6_tnl_locate(net, &p1, 0); if (IS_ERR(t)) break; err = -EPERM; if (t->dev == ip6n->fb_tnl_dev) break; dev = t->dev; } err = 0; unregister_netdevice(dev); break; default: err = -EINVAL; } return err; } /** * ip6_tnl_change_mtu - change mtu manually for tunnel device * @dev: virtual device associated with tunnel * @new_mtu: the new mtu * * Return: * 0 on success, * %-EINVAL if mtu too small **/ int ip6_tnl_change_mtu(struct net_device *dev, int new_mtu) { struct ip6_tnl *tnl = netdev_priv(dev); if (tnl->parms.proto == IPPROTO_IPV6) { if (new_mtu < IPV6_MIN_MTU) return -EINVAL; } else { if (new_mtu < ETH_MIN_MTU) return -EINVAL; } if (tnl->parms.proto == IPPROTO_IPV6 || tnl->parms.proto == 0) { if (new_mtu > IP6_MAX_MTU - dev->hard_header_len) return -EINVAL; } else { if (new_mtu > IP_MAX_MTU - dev->hard_header_len) return -EINVAL; } dev->mtu = new_mtu; return 0; } EXPORT_SYMBOL(ip6_tnl_change_mtu); int ip6_tnl_get_iflink(const struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); return t->parms.link; } EXPORT_SYMBOL(ip6_tnl_get_iflink); int ip6_tnl_encap_add_ops(const struct ip6_tnl_encap_ops *ops, unsigned int num) { if (num >= MAX_IPTUN_ENCAP_OPS) return -ERANGE; return !cmpxchg((const struct ip6_tnl_encap_ops **) &ip6tun_encaps[num], NULL, ops) ? 0 : -1; } EXPORT_SYMBOL(ip6_tnl_encap_add_ops); int ip6_tnl_encap_del_ops(const struct ip6_tnl_encap_ops *ops, unsigned int num) { int ret; if (num >= MAX_IPTUN_ENCAP_OPS) return -ERANGE; ret = (cmpxchg((const struct ip6_tnl_encap_ops **) &ip6tun_encaps[num], ops, NULL) == ops) ? 0 : -1; synchronize_net(); return ret; } EXPORT_SYMBOL(ip6_tnl_encap_del_ops); int ip6_tnl_encap_setup(struct ip6_tnl *t, struct ip_tunnel_encap *ipencap) { int hlen; memset(&t->encap, 0, sizeof(t->encap)); hlen = ip6_encap_hlen(ipencap); if (hlen < 0) return hlen; t->encap.type = ipencap->type; t->encap.sport = ipencap->sport; t->encap.dport = ipencap->dport; t->encap.flags = ipencap->flags; t->encap_hlen = hlen; t->hlen = t->encap_hlen + t->tun_hlen; return 0; } EXPORT_SYMBOL_GPL(ip6_tnl_encap_setup); static const struct net_device_ops ip6_tnl_netdev_ops = { .ndo_init = ip6_tnl_dev_init, .ndo_uninit = ip6_tnl_dev_uninit, .ndo_start_xmit = ip6_tnl_start_xmit, .ndo_siocdevprivate = ip6_tnl_siocdevprivate, .ndo_change_mtu = ip6_tnl_change_mtu, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip6_tnl_get_iflink, }; #define IPXIPX_FEATURES (NETIF_F_SG | \ NETIF_F_FRAGLIST | \ NETIF_F_HIGHDMA | \ NETIF_F_GSO_SOFTWARE | \ NETIF_F_HW_CSUM) /** * ip6_tnl_dev_setup - setup virtual tunnel device * @dev: virtual device associated with tunnel * * Description: * Initialize function pointers and device parameters **/ static void ip6_tnl_dev_setup(struct net_device *dev) { dev->netdev_ops = &ip6_tnl_netdev_ops; dev->header_ops = &ip_tunnel_header_ops; dev->needs_free_netdev = true; dev->priv_destructor = ip6_dev_free; dev->type = ARPHRD_TUNNEL6; dev->flags |= IFF_NOARP; dev->addr_len = sizeof(struct in6_addr); dev->features |= NETIF_F_LLTX; netif_keep_dst(dev); dev->features |= IPXIPX_FEATURES; dev->hw_features |= IPXIPX_FEATURES; /* This perm addr will be used as interface identifier by IPv6 */ dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->perm_addr); } /** * ip6_tnl_dev_init_gen - general initializer for all tunnel devices * @dev: virtual device associated with tunnel **/ static inline int ip6_tnl_dev_init_gen(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); int ret; int t_hlen; t->dev = dev; t->net = dev_net(dev); dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; ret = dst_cache_init(&t->dst_cache, GFP_KERNEL); if (ret) goto free_stats; ret = gro_cells_init(&t->gro_cells, dev); if (ret) goto destroy_dst; t->tun_hlen = 0; t->hlen = t->encap_hlen + t->tun_hlen; t_hlen = t->hlen + sizeof(struct ipv6hdr); dev->type = ARPHRD_TUNNEL6; dev->hard_header_len = LL_MAX_HEADER + t_hlen; dev->mtu = ETH_DATA_LEN - t_hlen; if (!(t->parms.flags & IP6_TNL_F_IGN_ENCAP_LIMIT)) dev->mtu -= 8; dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = IP6_MAX_MTU - dev->hard_header_len; netdev_hold(dev, &t->dev_tracker, GFP_KERNEL); return 0; destroy_dst: dst_cache_destroy(&t->dst_cache); free_stats: free_percpu(dev->tstats); dev->tstats = NULL; return ret; } /** * ip6_tnl_dev_init - initializer for all non fallback tunnel devices * @dev: virtual device associated with tunnel **/ static int ip6_tnl_dev_init(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); int err = ip6_tnl_dev_init_gen(dev); if (err) return err; ip6_tnl_link_config(t); if (t->parms.collect_md) netif_keep_dst(dev); return 0; } /** * ip6_fb_tnl_dev_init - initializer for fallback tunnel device * @dev: fallback device * * Return: 0 **/ static int __net_init ip6_fb_tnl_dev_init(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = dev_net(dev); struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); t->parms.proto = IPPROTO_IPV6; rcu_assign_pointer(ip6n->tnls_wc[0], t); return 0; } static int ip6_tnl_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { u8 proto; if (!data || !data[IFLA_IPTUN_PROTO]) return 0; proto = nla_get_u8(data[IFLA_IPTUN_PROTO]); if (proto != IPPROTO_IPV6 && proto != IPPROTO_IPIP && proto != 0) return -EINVAL; return 0; } static void ip6_tnl_netlink_parms(struct nlattr *data[], struct __ip6_tnl_parm *parms) { memset(parms, 0, sizeof(*parms)); if (!data) return; if (data[IFLA_IPTUN_LINK]) parms->link = nla_get_u32(data[IFLA_IPTUN_LINK]); if (data[IFLA_IPTUN_LOCAL]) parms->laddr = nla_get_in6_addr(data[IFLA_IPTUN_LOCAL]); if (data[IFLA_IPTUN_REMOTE]) parms->raddr = nla_get_in6_addr(data[IFLA_IPTUN_REMOTE]); if (data[IFLA_IPTUN_TTL]) parms->hop_limit = nla_get_u8(data[IFLA_IPTUN_TTL]); if (data[IFLA_IPTUN_ENCAP_LIMIT]) parms->encap_limit = nla_get_u8(data[IFLA_IPTUN_ENCAP_LIMIT]); if (data[IFLA_IPTUN_FLOWINFO]) parms->flowinfo = nla_get_be32(data[IFLA_IPTUN_FLOWINFO]); if (data[IFLA_IPTUN_FLAGS]) parms->flags = nla_get_u32(data[IFLA_IPTUN_FLAGS]); if (data[IFLA_IPTUN_PROTO]) parms->proto = nla_get_u8(data[IFLA_IPTUN_PROTO]); if (data[IFLA_IPTUN_COLLECT_METADATA]) parms->collect_md = true; if (data[IFLA_IPTUN_FWMARK]) parms->fwmark = nla_get_u32(data[IFLA_IPTUN_FWMARK]); } static int ip6_tnl_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net *net = dev_net(dev); struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); struct ip_tunnel_encap ipencap; struct ip6_tnl *nt, *t; int err; nt = netdev_priv(dev); if (ip_tunnel_netlink_encap_parms(data, &ipencap)) { err = ip6_tnl_encap_setup(nt, &ipencap); if (err < 0) return err; } ip6_tnl_netlink_parms(data, &nt->parms); if (nt->parms.collect_md) { if (rtnl_dereference(ip6n->collect_md_tun)) return -EEXIST; } else { t = ip6_tnl_locate(net, &nt->parms, 0); if (!IS_ERR(t)) return -EEXIST; } err = ip6_tnl_create2(dev); if (!err && tb[IFLA_MTU]) ip6_tnl_change_mtu(dev, nla_get_u32(tb[IFLA_MTU])); return err; } static int ip6_tnl_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *t = netdev_priv(dev); struct __ip6_tnl_parm p; struct net *net = t->net; struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); struct ip_tunnel_encap ipencap; if (dev == ip6n->fb_tnl_dev) return -EINVAL; if (ip_tunnel_netlink_encap_parms(data, &ipencap)) { int err = ip6_tnl_encap_setup(t, &ipencap); if (err < 0) return err; } ip6_tnl_netlink_parms(data, &p); if (p.collect_md) return -EINVAL; t = ip6_tnl_locate(net, &p, 0); if (!IS_ERR(t)) { if (t->dev != dev) return -EEXIST; } else t = netdev_priv(dev); ip6_tnl_update(t, &p); return 0; } static void ip6_tnl_dellink(struct net_device *dev, struct list_head *head) { struct net *net = dev_net(dev); struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); if (dev != ip6n->fb_tnl_dev) unregister_netdevice_queue(dev, head); } static size_t ip6_tnl_get_size(const struct net_device *dev) { return /* IFLA_IPTUN_LINK */ nla_total_size(4) + /* IFLA_IPTUN_LOCAL */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_IPTUN_REMOTE */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_IPTUN_TTL */ nla_total_size(1) + /* IFLA_IPTUN_ENCAP_LIMIT */ nla_total_size(1) + /* IFLA_IPTUN_FLOWINFO */ nla_total_size(4) + /* IFLA_IPTUN_FLAGS */ nla_total_size(4) + /* IFLA_IPTUN_PROTO */ nla_total_size(1) + /* IFLA_IPTUN_ENCAP_TYPE */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_FLAGS */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_SPORT */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_DPORT */ nla_total_size(2) + /* IFLA_IPTUN_COLLECT_METADATA */ nla_total_size(0) + /* IFLA_IPTUN_FWMARK */ nla_total_size(4) + 0; } static int ip6_tnl_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct ip6_tnl *tunnel = netdev_priv(dev); struct __ip6_tnl_parm *parm = &tunnel->parms; if (nla_put_u32(skb, IFLA_IPTUN_LINK, parm->link) || nla_put_in6_addr(skb, IFLA_IPTUN_LOCAL, &parm->laddr) || nla_put_in6_addr(skb, IFLA_IPTUN_REMOTE, &parm->raddr) || nla_put_u8(skb, IFLA_IPTUN_TTL, parm->hop_limit) || nla_put_u8(skb, IFLA_IPTUN_ENCAP_LIMIT, parm->encap_limit) || nla_put_be32(skb, IFLA_IPTUN_FLOWINFO, parm->flowinfo) || nla_put_u32(skb, IFLA_IPTUN_FLAGS, parm->flags) || nla_put_u8(skb, IFLA_IPTUN_PROTO, parm->proto) || nla_put_u32(skb, IFLA_IPTUN_FWMARK, parm->fwmark)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_IPTUN_ENCAP_TYPE, tunnel->encap.type) || nla_put_be16(skb, IFLA_IPTUN_ENCAP_SPORT, tunnel->encap.sport) || nla_put_be16(skb, IFLA_IPTUN_ENCAP_DPORT, tunnel->encap.dport) || nla_put_u16(skb, IFLA_IPTUN_ENCAP_FLAGS, tunnel->encap.flags)) goto nla_put_failure; if (parm->collect_md) if (nla_put_flag(skb, IFLA_IPTUN_COLLECT_METADATA)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } struct net *ip6_tnl_get_link_net(const struct net_device *dev) { struct ip6_tnl *tunnel = netdev_priv(dev); return tunnel->net; } EXPORT_SYMBOL(ip6_tnl_get_link_net); static const struct nla_policy ip6_tnl_policy[IFLA_IPTUN_MAX + 1] = { [IFLA_IPTUN_LINK] = { .type = NLA_U32 }, [IFLA_IPTUN_LOCAL] = { .len = sizeof(struct in6_addr) }, [IFLA_IPTUN_REMOTE] = { .len = sizeof(struct in6_addr) }, [IFLA_IPTUN_TTL] = { .type = NLA_U8 }, [IFLA_IPTUN_ENCAP_LIMIT] = { .type = NLA_U8 }, [IFLA_IPTUN_FLOWINFO] = { .type = NLA_U32 }, [IFLA_IPTUN_FLAGS] = { .type = NLA_U32 }, [IFLA_IPTUN_PROTO] = { .type = NLA_U8 }, [IFLA_IPTUN_ENCAP_TYPE] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_FLAGS] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_SPORT] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_DPORT] = { .type = NLA_U16 }, [IFLA_IPTUN_COLLECT_METADATA] = { .type = NLA_FLAG }, [IFLA_IPTUN_FWMARK] = { .type = NLA_U32 }, }; static struct rtnl_link_ops ip6_link_ops __read_mostly = { .kind = "ip6tnl", .maxtype = IFLA_IPTUN_MAX, .policy = ip6_tnl_policy, .priv_size = sizeof(struct ip6_tnl), .setup = ip6_tnl_dev_setup, .validate = ip6_tnl_validate, .newlink = ip6_tnl_newlink, .changelink = ip6_tnl_changelink, .dellink = ip6_tnl_dellink, .get_size = ip6_tnl_get_size, .fill_info = ip6_tnl_fill_info, .get_link_net = ip6_tnl_get_link_net, }; static struct xfrm6_tunnel ip4ip6_handler __read_mostly = { .handler = ip4ip6_rcv, .err_handler = ip4ip6_err, .priority = 1, }; static struct xfrm6_tunnel ip6ip6_handler __read_mostly = { .handler = ip6ip6_rcv, .err_handler = ip6ip6_err, .priority = 1, }; static struct xfrm6_tunnel mplsip6_handler __read_mostly = { .handler = mplsip6_rcv, .err_handler = mplsip6_err, .priority = 1, }; static void __net_exit ip6_tnl_destroy_tunnels(struct net *net, struct list_head *list) { struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); struct net_device *dev, *aux; int h; struct ip6_tnl *t; for_each_netdev_safe(net, dev, aux) if (dev->rtnl_link_ops == &ip6_link_ops) unregister_netdevice_queue(dev, list); for (h = 0; h < IP6_TUNNEL_HASH_SIZE; h++) { t = rtnl_dereference(ip6n->tnls_r_l[h]); while (t) { /* If dev is in the same netns, it has already * been added to the list by the previous loop. */ if (!net_eq(dev_net(t->dev), net)) unregister_netdevice_queue(t->dev, list); t = rtnl_dereference(t->next); } } t = rtnl_dereference(ip6n->tnls_wc[0]); while (t) { /* If dev is in the same netns, it has already * been added to the list by the previous loop. */ if (!net_eq(dev_net(t->dev), net)) unregister_netdevice_queue(t->dev, list); t = rtnl_dereference(t->next); } } static int __net_init ip6_tnl_init_net(struct net *net) { struct ip6_tnl_net *ip6n = net_generic(net, ip6_tnl_net_id); struct ip6_tnl *t = NULL; int err; ip6n->tnls[0] = ip6n->tnls_wc; ip6n->tnls[1] = ip6n->tnls_r_l; if (!net_has_fallback_tunnels(net)) return 0; err = -ENOMEM; ip6n->fb_tnl_dev = alloc_netdev(sizeof(struct ip6_tnl), "ip6tnl0", NET_NAME_UNKNOWN, ip6_tnl_dev_setup); if (!ip6n->fb_tnl_dev) goto err_alloc_dev; dev_net_set(ip6n->fb_tnl_dev, net); ip6n->fb_tnl_dev->rtnl_link_ops = &ip6_link_ops; /* FB netdevice is special: we have one, and only one per netns. * Allowing to move it to another netns is clearly unsafe. */ ip6n->fb_tnl_dev->features |= NETIF_F_NETNS_LOCAL; err = ip6_fb_tnl_dev_init(ip6n->fb_tnl_dev); if (err < 0) goto err_register; err = register_netdev(ip6n->fb_tnl_dev); if (err < 0) goto err_register; t = netdev_priv(ip6n->fb_tnl_dev); strcpy(t->parms.name, ip6n->fb_tnl_dev->name); return 0; err_register: free_netdev(ip6n->fb_tnl_dev); err_alloc_dev: return err; } static void __net_exit ip6_tnl_exit_batch_net(struct list_head *net_list) { struct net *net; LIST_HEAD(list); rtnl_lock(); list_for_each_entry(net, net_list, exit_list) ip6_tnl_destroy_tunnels(net, &list); unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations ip6_tnl_net_ops = { .init = ip6_tnl_init_net, .exit_batch = ip6_tnl_exit_batch_net, .id = &ip6_tnl_net_id, .size = sizeof(struct ip6_tnl_net), }; /** * ip6_tunnel_init - register protocol and reserve needed resources * * Return: 0 on success **/ static int __init ip6_tunnel_init(void) { int err; if (!ipv6_mod_enabled()) return -EOPNOTSUPP; err = register_pernet_device(&ip6_tnl_net_ops); if (err < 0) goto out_pernet; err = xfrm6_tunnel_register(&ip4ip6_handler, AF_INET); if (err < 0) { pr_err("%s: can't register ip4ip6\n", __func__); goto out_ip4ip6; } err = xfrm6_tunnel_register(&ip6ip6_handler, AF_INET6); if (err < 0) { pr_err("%s: can't register ip6ip6\n", __func__); goto out_ip6ip6; } if (ip6_tnl_mpls_supported()) { err = xfrm6_tunnel_register(&mplsip6_handler, AF_MPLS); if (err < 0) { pr_err("%s: can't register mplsip6\n", __func__); goto out_mplsip6; } } err = rtnl_link_register(&ip6_link_ops); if (err < 0) goto rtnl_link_failed; return 0; rtnl_link_failed: if (ip6_tnl_mpls_supported()) xfrm6_tunnel_deregister(&mplsip6_handler, AF_MPLS); out_mplsip6: xfrm6_tunnel_deregister(&ip6ip6_handler, AF_INET6); out_ip6ip6: xfrm6_tunnel_deregister(&ip4ip6_handler, AF_INET); out_ip4ip6: unregister_pernet_device(&ip6_tnl_net_ops); out_pernet: return err; } /** * ip6_tunnel_cleanup - free resources and unregister protocol **/ static void __exit ip6_tunnel_cleanup(void) { rtnl_link_unregister(&ip6_link_ops); if (xfrm6_tunnel_deregister(&ip4ip6_handler, AF_INET)) pr_info("%s: can't deregister ip4ip6\n", __func__); if (xfrm6_tunnel_deregister(&ip6ip6_handler, AF_INET6)) pr_info("%s: can't deregister ip6ip6\n", __func__); if (ip6_tnl_mpls_supported() && xfrm6_tunnel_deregister(&mplsip6_handler, AF_MPLS)) pr_info("%s: can't deregister mplsip6\n", __func__); unregister_pernet_device(&ip6_tnl_net_ops); } module_init(ip6_tunnel_init); module_exit(ip6_tunnel_cleanup);
linux-master
net/ipv6/ip6_tunnel.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPV6 GSO/GRO offload support * Linux INET6 implementation */ #include <linux/kernel.h> #include <linux/socket.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/printk.h> #include <net/protocol.h> #include <net/ipv6.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/udp.h> #include <net/gro.h> #include <net/gso.h> #include "ip6_offload.h" /* All GRO functions are always builtin, except UDP over ipv6, which lays in * ipv6 module, as it depends on UDPv6 lookup function, so we need special care * when ipv6 is built as a module */ #if IS_BUILTIN(CONFIG_IPV6) #define INDIRECT_CALL_L4(f, f2, f1, ...) INDIRECT_CALL_2(f, f2, f1, __VA_ARGS__) #else #define INDIRECT_CALL_L4(f, f2, f1, ...) INDIRECT_CALL_1(f, f2, __VA_ARGS__) #endif #define indirect_call_gro_receive_l4(f2, f1, cb, head, skb) \ ({ \ unlikely(gro_recursion_inc_test(skb)) ? \ NAPI_GRO_CB(skb)->flush |= 1, NULL : \ INDIRECT_CALL_L4(cb, f2, f1, head, skb); \ }) static int ipv6_gso_pull_exthdrs(struct sk_buff *skb, int proto) { const struct net_offload *ops = NULL; for (;;) { struct ipv6_opt_hdr *opth; int len; if (proto != NEXTHDR_HOP) { ops = rcu_dereference(inet6_offloads[proto]); if (unlikely(!ops)) break; if (!(ops->flags & INET6_PROTO_GSO_EXTHDR)) break; } if (unlikely(!pskb_may_pull(skb, 8))) break; opth = (void *)skb->data; len = ipv6_optlen(opth); if (unlikely(!pskb_may_pull(skb, len))) break; opth = (void *)skb->data; proto = opth->nexthdr; __skb_pull(skb, len); } return proto; } static struct sk_buff *ipv6_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); struct ipv6hdr *ipv6h; const struct net_offload *ops; int proto, err; struct frag_hdr *fptr; unsigned int payload_len; u8 *prevhdr; int offset = 0; bool encap, udpfrag; int nhoff; bool gso_partial; skb_reset_network_header(skb); err = ipv6_hopopt_jumbo_remove(skb); if (err) return ERR_PTR(err); nhoff = skb_network_header(skb) - skb_mac_header(skb); if (unlikely(!pskb_may_pull(skb, sizeof(*ipv6h)))) goto out; encap = SKB_GSO_CB(skb)->encap_level > 0; if (encap) features &= skb->dev->hw_enc_features; SKB_GSO_CB(skb)->encap_level += sizeof(*ipv6h); ipv6h = ipv6_hdr(skb); __skb_pull(skb, sizeof(*ipv6h)); segs = ERR_PTR(-EPROTONOSUPPORT); proto = ipv6_gso_pull_exthdrs(skb, ipv6h->nexthdr); if (skb->encapsulation && skb_shinfo(skb)->gso_type & (SKB_GSO_IPXIP4 | SKB_GSO_IPXIP6)) udpfrag = proto == IPPROTO_UDP && encap && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP); else udpfrag = proto == IPPROTO_UDP && !skb->encapsulation && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP); ops = rcu_dereference(inet6_offloads[proto]); if (likely(ops && ops->callbacks.gso_segment)) { skb_reset_transport_header(skb); segs = ops->callbacks.gso_segment(skb, features); if (!segs) skb->network_header = skb_mac_header(skb) + nhoff - skb->head; } if (IS_ERR_OR_NULL(segs)) goto out; gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); for (skb = segs; skb; skb = skb->next) { ipv6h = (struct ipv6hdr *)(skb_mac_header(skb) + nhoff); if (gso_partial && skb_is_gso(skb)) payload_len = skb_shinfo(skb)->gso_size + SKB_GSO_CB(skb)->data_offset + skb->head - (unsigned char *)(ipv6h + 1); else payload_len = skb->len - nhoff - sizeof(*ipv6h); ipv6h->payload_len = htons(payload_len); skb->network_header = (u8 *)ipv6h - skb->head; skb_reset_mac_len(skb); if (udpfrag) { int err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) { kfree_skb_list(segs); return ERR_PTR(err); } fptr = (struct frag_hdr *)((u8 *)ipv6h + err); fptr->frag_off = htons(offset); if (skb->next) fptr->frag_off |= htons(IP6_MF); offset += (ntohs(ipv6h->payload_len) - sizeof(struct frag_hdr)); } if (encap) skb_reset_inner_headers(skb); } out: return segs; } /* Return the total length of all the extension hdrs, following the same * logic in ipv6_gso_pull_exthdrs() when parsing ext-hdrs. */ static int ipv6_exthdrs_len(struct ipv6hdr *iph, const struct net_offload **opps) { struct ipv6_opt_hdr *opth = (void *)iph; int len = 0, proto, optlen = sizeof(*iph); proto = iph->nexthdr; for (;;) { if (proto != NEXTHDR_HOP) { *opps = rcu_dereference(inet6_offloads[proto]); if (unlikely(!(*opps))) break; if (!((*opps)->flags & INET6_PROTO_GSO_EXTHDR)) break; } opth = (void *)opth + optlen; optlen = ipv6_optlen(opth); len += optlen; proto = opth->nexthdr; } return len; } INDIRECT_CALLABLE_SCOPE struct sk_buff *ipv6_gro_receive(struct list_head *head, struct sk_buff *skb) { const struct net_offload *ops; struct sk_buff *pp = NULL; struct sk_buff *p; struct ipv6hdr *iph; unsigned int nlen; unsigned int hlen; unsigned int off; u16 flush = 1; int proto; off = skb_gro_offset(skb); hlen = off + sizeof(*iph); iph = skb_gro_header(skb, hlen, off); if (unlikely(!iph)) goto out; skb_set_network_header(skb, off); skb_gro_pull(skb, sizeof(*iph)); skb_set_transport_header(skb, skb_gro_offset(skb)); flush += ntohs(iph->payload_len) != skb_gro_len(skb); proto = iph->nexthdr; ops = rcu_dereference(inet6_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) { pskb_pull(skb, skb_gro_offset(skb)); skb_gro_frag0_invalidate(skb); proto = ipv6_gso_pull_exthdrs(skb, proto); skb_gro_pull(skb, -skb_transport_offset(skb)); skb_reset_transport_header(skb); __skb_push(skb, skb_gro_offset(skb)); ops = rcu_dereference(inet6_offloads[proto]); if (!ops || !ops->callbacks.gro_receive) goto out; iph = ipv6_hdr(skb); } NAPI_GRO_CB(skb)->proto = proto; flush--; nlen = skb_network_header_len(skb); list_for_each_entry(p, head, list) { const struct ipv6hdr *iph2; __be32 first_word; /* <Version:4><Traffic_Class:8><Flow_Label:20> */ if (!NAPI_GRO_CB(p)->same_flow) continue; iph2 = (struct ipv6hdr *)(p->data + off); first_word = *(__be32 *)iph ^ *(__be32 *)iph2; /* All fields must match except length and Traffic Class. * XXX skbs on the gro_list have all been parsed and pulled * already so we don't need to compare nlen * (nlen != (sizeof(*iph2) + ipv6_exthdrs_len(iph2, &ops))) * memcmp() alone below is sufficient, right? */ if ((first_word & htonl(0xF00FFFFF)) || !ipv6_addr_equal(&iph->saddr, &iph2->saddr) || !ipv6_addr_equal(&iph->daddr, &iph2->daddr) || iph->nexthdr != iph2->nexthdr) { not_same_flow: NAPI_GRO_CB(p)->same_flow = 0; continue; } if (unlikely(nlen > sizeof(struct ipv6hdr))) { if (memcmp(iph + 1, iph2 + 1, nlen - sizeof(struct ipv6hdr))) goto not_same_flow; } /* flush if Traffic Class fields are different */ NAPI_GRO_CB(p)->flush |= !!((first_word & htonl(0x0FF00000)) | (__force __be32)(iph->hop_limit ^ iph2->hop_limit)); NAPI_GRO_CB(p)->flush |= flush; /* If the previous IP ID value was based on an atomic * datagram we can overwrite the value and ignore it. */ if (NAPI_GRO_CB(skb)->is_atomic) NAPI_GRO_CB(p)->flush_id = 0; } NAPI_GRO_CB(skb)->is_atomic = true; NAPI_GRO_CB(skb)->flush |= flush; skb_gro_postpull_rcsum(skb, iph, nlen); pp = indirect_call_gro_receive_l4(tcp6_gro_receive, udp6_gro_receive, ops->callbacks.gro_receive, head, skb); out: skb_gro_flush_final(skb, pp, flush); return pp; } static struct sk_buff *sit_ip6ip6_gro_receive(struct list_head *head, struct sk_buff *skb) { /* Common GRO receive for SIT and IP6IP6 */ if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return ipv6_gro_receive(head, skb); } static struct sk_buff *ip4ip6_gro_receive(struct list_head *head, struct sk_buff *skb) { /* Common GRO receive for SIT and IP6IP6 */ if (NAPI_GRO_CB(skb)->encap_mark) { NAPI_GRO_CB(skb)->flush = 1; return NULL; } NAPI_GRO_CB(skb)->encap_mark = 1; return inet_gro_receive(head, skb); } INDIRECT_CALLABLE_SCOPE int ipv6_gro_complete(struct sk_buff *skb, int nhoff) { const struct net_offload *ops; struct ipv6hdr *iph; int err = -ENOSYS; u32 payload_len; if (skb->encapsulation) { skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IPV6)); skb_set_inner_network_header(skb, nhoff); } payload_len = skb->len - nhoff - sizeof(*iph); if (unlikely(payload_len > IPV6_MAXPLEN)) { struct hop_jumbo_hdr *hop_jumbo; int hoplen = sizeof(*hop_jumbo); /* Move network header left */ memmove(skb_mac_header(skb) - hoplen, skb_mac_header(skb), skb->transport_header - skb->mac_header); skb->data -= hoplen; skb->len += hoplen; skb->mac_header -= hoplen; skb->network_header -= hoplen; iph = (struct ipv6hdr *)(skb->data + nhoff); hop_jumbo = (struct hop_jumbo_hdr *)(iph + 1); /* Build hop-by-hop options */ hop_jumbo->nexthdr = iph->nexthdr; hop_jumbo->hdrlen = 0; hop_jumbo->tlv_type = IPV6_TLV_JUMBO; hop_jumbo->tlv_len = 4; hop_jumbo->jumbo_payload_len = htonl(payload_len + hoplen); iph->nexthdr = NEXTHDR_HOP; iph->payload_len = 0; } else { iph = (struct ipv6hdr *)(skb->data + nhoff); iph->payload_len = htons(payload_len); } nhoff += sizeof(*iph) + ipv6_exthdrs_len(iph, &ops); if (WARN_ON(!ops || !ops->callbacks.gro_complete)) goto out; err = INDIRECT_CALL_L4(ops->callbacks.gro_complete, tcp6_gro_complete, udp6_gro_complete, skb, nhoff); out: return err; } static int sit_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; return ipv6_gro_complete(skb, nhoff); } static int ip6ip6_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6; return ipv6_gro_complete(skb, nhoff); } static int ip4ip6_gro_complete(struct sk_buff *skb, int nhoff) { skb->encapsulation = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6; return inet_gro_complete(skb, nhoff); } static struct packet_offload ipv6_packet_offload __read_mostly = { .type = cpu_to_be16(ETH_P_IPV6), .callbacks = { .gso_segment = ipv6_gso_segment, .gro_receive = ipv6_gro_receive, .gro_complete = ipv6_gro_complete, }, }; static struct sk_buff *sit_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) return ERR_PTR(-EINVAL); return ipv6_gso_segment(skb, features); } static struct sk_buff *ip4ip6_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP6)) return ERR_PTR(-EINVAL); return inet_gso_segment(skb, features); } static struct sk_buff *ip6ip6_gso_segment(struct sk_buff *skb, netdev_features_t features) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP6)) return ERR_PTR(-EINVAL); return ipv6_gso_segment(skb, features); } static const struct net_offload sit_offload = { .callbacks = { .gso_segment = sit_gso_segment, .gro_receive = sit_ip6ip6_gro_receive, .gro_complete = sit_gro_complete, }, }; static const struct net_offload ip4ip6_offload = { .callbacks = { .gso_segment = ip4ip6_gso_segment, .gro_receive = ip4ip6_gro_receive, .gro_complete = ip4ip6_gro_complete, }, }; static const struct net_offload ip6ip6_offload = { .callbacks = { .gso_segment = ip6ip6_gso_segment, .gro_receive = sit_ip6ip6_gro_receive, .gro_complete = ip6ip6_gro_complete, }, }; static int __init ipv6_offload_init(void) { if (tcpv6_offload_init() < 0) pr_crit("%s: Cannot add TCP protocol offload\n", __func__); if (ipv6_exthdrs_offload_init() < 0) pr_crit("%s: Cannot add EXTHDRS protocol offload\n", __func__); dev_add_offload(&ipv6_packet_offload); inet_add_offload(&sit_offload, IPPROTO_IPV6); inet6_add_offload(&ip6ip6_offload, IPPROTO_IPV6); inet6_add_offload(&ip4ip6_offload, IPPROTO_IPIP); return 0; } fs_initcall(ipv6_offload_init);
linux-master
net/ipv6/ip6_offload.c
// SPDX-License-Identifier: GPL-2.0-only /* * IPV6 GSO/GRO offload support * Linux INET implementation * * Copyright (C) 2016 secunet Security Networks AG * Author: Steffen Klassert <[email protected]> * * ESP GRO support */ #include <linux/skbuff.h> #include <linux/init.h> #include <net/protocol.h> #include <crypto/aead.h> #include <crypto/authenc.h> #include <linux/err.h> #include <linux/module.h> #include <net/gro.h> #include <net/gso.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/esp.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <net/ip6_route.h> #include <net/ipv6.h> #include <linux/icmpv6.h> static __u16 esp6_nexthdr_esp_offset(struct ipv6hdr *ipv6_hdr, int nhlen) { int off = sizeof(struct ipv6hdr); struct ipv6_opt_hdr *exthdr; if (likely(ipv6_hdr->nexthdr == NEXTHDR_ESP)) return offsetof(struct ipv6hdr, nexthdr); while (off < nhlen) { exthdr = (void *)ipv6_hdr + off; if (exthdr->nexthdr == NEXTHDR_ESP) return off; off += ipv6_optlen(exthdr); } return 0; } static struct sk_buff *esp6_gro_receive(struct list_head *head, struct sk_buff *skb) { int offset = skb_gro_offset(skb); struct xfrm_offload *xo; struct xfrm_state *x; __be32 seq; __be32 spi; int nhoff; if (!pskb_pull(skb, offset)) return NULL; if (xfrm_parse_spi(skb, IPPROTO_ESP, &spi, &seq) != 0) goto out; xo = xfrm_offload(skb); if (!xo || !(xo->flags & CRYPTO_DONE)) { struct sec_path *sp = secpath_set(skb); if (!sp) goto out; if (sp->len == XFRM_MAX_DEPTH) goto out_reset; x = xfrm_state_lookup(dev_net(skb->dev), skb->mark, (xfrm_address_t *)&ipv6_hdr(skb)->daddr, spi, IPPROTO_ESP, AF_INET6); if (!x) goto out_reset; skb->mark = xfrm_smark_get(skb->mark, x); sp->xvec[sp->len++] = x; sp->olen++; xo = xfrm_offload(skb); if (!xo) goto out_reset; } xo->flags |= XFRM_GRO; nhoff = esp6_nexthdr_esp_offset(ipv6_hdr(skb), offset); if (!nhoff) goto out; IP6CB(skb)->nhoff = nhoff; XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET6; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr); XFRM_SPI_SKB_CB(skb)->seq = seq; /* We don't need to handle errors from xfrm_input, it does all * the error handling and frees the resources on error. */ xfrm_input(skb, IPPROTO_ESP, spi, -2); return ERR_PTR(-EINPROGRESS); out_reset: secpath_reset(skb); out: skb_push(skb, offset); NAPI_GRO_CB(skb)->same_flow = 0; NAPI_GRO_CB(skb)->flush = 1; return NULL; } static void esp6_gso_encap(struct xfrm_state *x, struct sk_buff *skb) { struct ip_esp_hdr *esph; struct ipv6hdr *iph = ipv6_hdr(skb); struct xfrm_offload *xo = xfrm_offload(skb); u8 proto = iph->nexthdr; skb_push(skb, -skb_network_offset(skb)); if (x->outer_mode.encap == XFRM_MODE_TRANSPORT) { __be16 frag; ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &proto, &frag); } esph = ip_esp_hdr(skb); *skb_mac_header(skb) = IPPROTO_ESP; esph->spi = x->id.spi; esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); xo->proto = proto; } static struct sk_buff *xfrm6_tunnel_gso_segment(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features) { __be16 type = x->inner_mode.family == AF_INET ? htons(ETH_P_IP) : htons(ETH_P_IPV6); return skb_eth_gso_segment(skb, features, type); } static struct sk_buff *xfrm6_transport_gso_segment(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features) { const struct net_offload *ops; struct sk_buff *segs = ERR_PTR(-EINVAL); struct xfrm_offload *xo = xfrm_offload(skb); skb->transport_header += x->props.header_len; ops = rcu_dereference(inet6_offloads[xo->proto]); if (likely(ops && ops->callbacks.gso_segment)) segs = ops->callbacks.gso_segment(skb, features); return segs; } static struct sk_buff *xfrm6_beet_gso_segment(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features) { struct xfrm_offload *xo = xfrm_offload(skb); struct sk_buff *segs = ERR_PTR(-EINVAL); const struct net_offload *ops; u8 proto = xo->proto; skb->transport_header += x->props.header_len; if (x->sel.family != AF_INET6) { skb->transport_header -= (sizeof(struct ipv6hdr) - sizeof(struct iphdr)); if (proto == IPPROTO_BEETPH) { struct ip_beet_phdr *ph = (struct ip_beet_phdr *)skb->data; skb->transport_header += ph->hdrlen * 8; proto = ph->nexthdr; } else { skb->transport_header -= IPV4_BEET_PHMAXLEN; } if (proto == IPPROTO_TCP) skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV6; } else { __be16 frag; skb->transport_header += ipv6_skip_exthdr(skb, 0, &proto, &frag); } if (proto == IPPROTO_IPIP) skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP6; __skb_pull(skb, skb_transport_offset(skb)); ops = rcu_dereference(inet6_offloads[proto]); if (likely(ops && ops->callbacks.gso_segment)) segs = ops->callbacks.gso_segment(skb, features); return segs; } static struct sk_buff *xfrm6_outer_mode_gso_segment(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features) { switch (x->outer_mode.encap) { case XFRM_MODE_TUNNEL: return xfrm6_tunnel_gso_segment(x, skb, features); case XFRM_MODE_TRANSPORT: return xfrm6_transport_gso_segment(x, skb, features); case XFRM_MODE_BEET: return xfrm6_beet_gso_segment(x, skb, features); } return ERR_PTR(-EOPNOTSUPP); } static struct sk_buff *esp6_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct xfrm_state *x; struct ip_esp_hdr *esph; struct crypto_aead *aead; netdev_features_t esp_features = features; struct xfrm_offload *xo = xfrm_offload(skb); struct sec_path *sp; if (!xo) return ERR_PTR(-EINVAL); if (!(skb_shinfo(skb)->gso_type & SKB_GSO_ESP)) return ERR_PTR(-EINVAL); sp = skb_sec_path(skb); x = sp->xvec[sp->len - 1]; aead = x->data; esph = ip_esp_hdr(skb); if (esph->spi != x->id.spi) return ERR_PTR(-EINVAL); if (!pskb_may_pull(skb, sizeof(*esph) + crypto_aead_ivsize(aead))) return ERR_PTR(-EINVAL); __skb_pull(skb, sizeof(*esph) + crypto_aead_ivsize(aead)); skb->encap_hdr_csum = 1; if (!(features & NETIF_F_HW_ESP) || x->xso.dev != skb->dev) esp_features = features & ~(NETIF_F_SG | NETIF_F_CSUM_MASK | NETIF_F_SCTP_CRC); else if (!(features & NETIF_F_HW_ESP_TX_CSUM)) esp_features = features & ~(NETIF_F_CSUM_MASK | NETIF_F_SCTP_CRC); xo->flags |= XFRM_GSO_SEGMENT; return xfrm6_outer_mode_gso_segment(x, skb, esp_features); } static int esp6_input_tail(struct xfrm_state *x, struct sk_buff *skb) { struct crypto_aead *aead = x->data; struct xfrm_offload *xo = xfrm_offload(skb); if (!pskb_may_pull(skb, sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead))) return -EINVAL; if (!(xo->flags & CRYPTO_DONE)) skb->ip_summed = CHECKSUM_NONE; return esp6_input_done2(skb, 0); } static int esp6_xmit(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features) { int len; int err; int alen; int blksize; struct xfrm_offload *xo; struct crypto_aead *aead; struct esp_info esp; bool hw_offload = true; __u32 seq; esp.inplace = true; xo = xfrm_offload(skb); if (!xo) return -EINVAL; if (!(features & NETIF_F_HW_ESP) || x->xso.dev != skb->dev) { xo->flags |= CRYPTO_FALLBACK; hw_offload = false; } esp.proto = xo->proto; /* skb is pure payload to encrypt */ aead = x->data; alen = crypto_aead_authsize(aead); esp.tfclen = 0; /* XXX: Add support for tfc padding here. */ blksize = ALIGN(crypto_aead_blocksize(aead), 4); esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize); esp.plen = esp.clen - skb->len - esp.tfclen; esp.tailen = esp.tfclen + esp.plen + alen; if (!hw_offload || !skb_is_gso(skb)) { esp.nfrags = esp6_output_head(x, skb, &esp); if (esp.nfrags < 0) return esp.nfrags; } seq = xo->seq.low; esp.esph = ip_esp_hdr(skb); esp.esph->spi = x->id.spi; skb_push(skb, -skb_network_offset(skb)); if (xo->flags & XFRM_GSO_SEGMENT) { esp.esph->seq_no = htonl(seq); if (!skb_is_gso(skb)) xo->seq.low++; else xo->seq.low += skb_shinfo(skb)->gso_segs; } if (xo->seq.low < seq) xo->seq.hi++; esp.seqno = cpu_to_be64(xo->seq.low + ((u64)xo->seq.hi << 32)); len = skb->len - sizeof(struct ipv6hdr); if (len > IPV6_MAXPLEN) len = 0; ipv6_hdr(skb)->payload_len = htons(len); if (hw_offload) { if (!skb_ext_add(skb, SKB_EXT_SEC_PATH)) return -ENOMEM; xo = xfrm_offload(skb); if (!xo) return -EINVAL; xo->flags |= XFRM_XMIT; return 0; } err = esp6_output_tail(x, skb, &esp); if (err) return err; secpath_reset(skb); if (skb_needs_linearize(skb, skb->dev->features) && __skb_linearize(skb)) return -ENOMEM; return 0; } static const struct net_offload esp6_offload = { .callbacks = { .gro_receive = esp6_gro_receive, .gso_segment = esp6_gso_segment, }, }; static const struct xfrm_type_offload esp6_type_offload = { .owner = THIS_MODULE, .proto = IPPROTO_ESP, .input_tail = esp6_input_tail, .xmit = esp6_xmit, .encap = esp6_gso_encap, }; static int __init esp6_offload_init(void) { if (xfrm_register_type_offload(&esp6_type_offload, AF_INET6) < 0) { pr_info("%s: can't add xfrm type offload\n", __func__); return -EAGAIN; } return inet6_add_offload(&esp6_offload, IPPROTO_ESP); } static void __exit esp6_offload_exit(void) { xfrm_unregister_type_offload(&esp6_type_offload, AF_INET6); inet6_del_offload(&esp6_offload, IPPROTO_ESP); } module_init(esp6_offload_init); module_exit(esp6_offload_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert <[email protected]>"); MODULE_ALIAS_XFRM_OFFLOAD_TYPE(AF_INET6, XFRM_PROTO_ESP); MODULE_DESCRIPTION("IPV6 GSO/GRO offload support");
linux-master
net/ipv6/esp6_offload.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 fragment reassembly * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on: net/ipv4/ip_fragment.c */ /* * Fixes: * Andi Kleen Make it work with multiple hosts. * More RFC compliance. * * Horst von Brand Add missing #include <linux/string.h> * Alexey Kuznetsov SMP races, threading, cleanup. * Patrick McHardy LRU queue of frag heads for evictor. * Mitsuru KANDA @USAGI Register inet6_protocol{}. * David Stevens and * YOSHIFUJI,H. @USAGI Always remove fragment header to * calculate ICV correctly. */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/jiffies.h> #include <linux/net.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/random.h> #include <linux/jhash.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/tcp.h> #include <linux/udp.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ipv6_frag.h> #include <net/inet_ecn.h> static const char ip6_frag_cache_name[] = "ip6-frags"; static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) { return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK); } static struct inet_frags ip6_frags; static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev); static void ip6_frag_expire(struct timer_list *t) { struct inet_frag_queue *frag = from_timer(frag, t, timer); struct frag_queue *fq; fq = container_of(frag, struct frag_queue, q); ip6frag_expire_frag_queue(fq->q.fqdir->net, fq); } static struct frag_queue * fq_find(struct net *net, __be32 id, const struct ipv6hdr *hdr, int iif) { struct frag_v6_compare_key key = { .id = id, .saddr = hdr->saddr, .daddr = hdr->daddr, .user = IP6_DEFRAG_LOCAL_DELIVER, .iif = iif, }; struct inet_frag_queue *q; if (!(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL))) key.iif = 0; q = inet_frag_find(net->ipv6.fqdir, &key); if (!q) return NULL; return container_of(q, struct frag_queue, q); } static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, struct frag_hdr *fhdr, int nhoff, u32 *prob_offset) { struct net *net = dev_net(skb_dst(skb)->dev); int offset, end, fragsize; struct sk_buff *prev_tail; struct net_device *dev; int err = -ENOENT; SKB_DR(reason); u8 ecn; /* If reassembly is already done, @skb must be a duplicate frag. */ if (fq->q.flags & INET_FRAG_COMPLETE) { SKB_DR_SET(reason, DUP_FRAG); goto err; } err = -EINVAL; offset = ntohs(fhdr->frag_off) & ~0x7; end = offset + (ntohs(ipv6_hdr(skb)->payload_len) - ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1))); if ((unsigned int)end > IPV6_MAXPLEN) { *prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb); /* note that if prob_offset is set, the skb is freed elsewhere, * we do not free it here. */ return -1; } ecn = ip6_frag_ecn(ipv6_hdr(skb)); if (skb->ip_summed == CHECKSUM_COMPLETE) { const unsigned char *nh = skb_network_header(skb); skb->csum = csum_sub(skb->csum, csum_partial(nh, (u8 *)(fhdr + 1) - nh, 0)); } /* Is this the final fragment? */ if (!(fhdr->frag_off & htons(IP6_MF))) { /* If we already have some bits beyond end * or have different end, the segment is corrupted. */ if (end < fq->q.len || ((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) goto discard_fq; fq->q.flags |= INET_FRAG_LAST_IN; fq->q.len = end; } else { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. */ if (end & 0x7) { /* RFC2460 says always send parameter problem in * this case. -DaveM */ *prob_offset = offsetof(struct ipv6hdr, payload_len); return -1; } if (end > fq->q.len) { /* Some bits beyond end -> corruption. */ if (fq->q.flags & INET_FRAG_LAST_IN) goto discard_fq; fq->q.len = end; } } if (end == offset) goto discard_fq; err = -ENOMEM; /* Point into the IP datagram 'data' part. */ if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) goto discard_fq; err = pskb_trim_rcsum(skb, end - offset); if (err) goto discard_fq; /* Note : skb->rbnode and skb->dev share the same location. */ dev = skb->dev; /* Makes sure compiler wont do silly aliasing games */ barrier(); prev_tail = fq->q.fragments_tail; err = inet_frag_queue_insert(&fq->q, skb, offset, end); if (err) goto insert_error; if (dev) fq->iif = dev->ifindex; fq->q.stamp = skb->tstamp; fq->q.mono_delivery_time = skb->mono_delivery_time; fq->q.meat += skb->len; fq->ecn |= ecn; add_frag_mem_limit(fq->q.fqdir, skb->truesize); fragsize = -skb_network_offset(skb) + skb->len; if (fragsize > fq->q.max_size) fq->q.max_size = fragsize; /* The first fragment. * nhoffset is obtained from the first fragment, of course. */ if (offset == 0) { fq->nhoffset = nhoff; fq->q.flags |= INET_FRAG_FIRST_IN; } if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && fq->q.meat == fq->q.len) { unsigned long orefdst = skb->_skb_refdst; skb->_skb_refdst = 0UL; err = ip6_frag_reasm(fq, skb, prev_tail, dev); skb->_skb_refdst = orefdst; return err; } skb_dst_drop(skb); return -EINPROGRESS; insert_error: if (err == IPFRAG_DUP) { SKB_DR_SET(reason, DUP_FRAG); err = -EINVAL; goto err; } err = -EINVAL; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASM_OVERLAPS); discard_fq: inet_frag_kill(&fq->q); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); err: kfree_skb_reason(skb, reason); return err; } /* * Check if this packet is complete. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev) { struct net *net = fq->q.fqdir->net; unsigned int nhoff; void *reasm_data; int payload_len; u8 ecn; inet_frag_kill(&fq->q); ecn = ip_frag_ecn_table[fq->ecn]; if (unlikely(ecn == 0xff)) goto out_fail; reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail); if (!reasm_data) goto out_oom; payload_len = ((skb->data - skb_network_header(skb)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) goto out_oversize; /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ nhoff = fq->nhoffset; skb_network_header(skb)[nhoff] = skb_transport_header(skb)[0]; memmove(skb->head + sizeof(struct frag_hdr), skb->head, (skb->data - skb->head) - sizeof(struct frag_hdr)); if (skb_mac_header_was_set(skb)) skb->mac_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr); skb_reset_transport_header(skb); inet_frag_reasm_finish(&fq->q, skb, reasm_data, true); skb->dev = dev; ipv6_hdr(skb)->payload_len = htons(payload_len); ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn); IP6CB(skb)->nhoff = nhoff; IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = fq->q.max_size; /* Yes, and fold redundant checksum back. 8) */ skb_postpush_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; fq->q.last_run_head = NULL; return 1; out_oversize: net_dbg_ratelimited("ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: net_dbg_ratelimited("ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); inet_frag_kill(&fq->q); return -1; } static int ipv6_frag_rcv(struct sk_buff *skb) { struct frag_hdr *fhdr; struct frag_queue *fq; const struct ipv6hdr *hdr = ipv6_hdr(skb); struct net *net = dev_net(skb_dst(skb)->dev); u8 nexthdr; int iif; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED) goto fail_hdr; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMREQDS); /* Jumbo payload inhibits frag. header */ if (hdr->payload_len == 0) goto fail_hdr; if (!pskb_may_pull(skb, (skb_transport_offset(skb) + sizeof(struct frag_hdr)))) goto fail_hdr; hdr = ipv6_hdr(skb); fhdr = (struct frag_hdr *)skb_transport_header(skb); if (!(fhdr->frag_off & htons(IP6_OFFSET | IP6_MF))) { /* It is not a fragmented frame */ skb->transport_header += sizeof(struct frag_hdr); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMOKS); IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb); IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = ntohs(hdr->payload_len) + sizeof(struct ipv6hdr); return 1; } /* RFC 8200, Section 4.5 Fragment Header: * If the first fragment does not include all headers through an * Upper-Layer header, then that fragment should be discarded and * an ICMP Parameter Problem, Code 3, message should be sent to * the source of the fragment, with the Pointer field set to zero. */ nexthdr = hdr->nexthdr; if (ipv6frag_thdr_truncated(skb, skb_transport_offset(skb), &nexthdr)) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_INCOMP, 0); return -1; } iif = skb->dev ? skb->dev->ifindex : 0; fq = fq_find(net, fhdr->identification, hdr, iif); if (fq) { u32 prob_offset = 0; int ret; spin_lock(&fq->q.lock); fq->iif = iif; ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff, &prob_offset); spin_unlock(&fq->q.lock); inet_frag_put(&fq->q); if (prob_offset) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); /* icmpv6_param_prob() calls kfree_skb(skb) */ icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset); } return ret; } __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); kfree_skb(skb); return -1; fail_hdr: __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb_network_header_len(skb)); return -1; } static const struct inet6_protocol frag_protocol = { .handler = ipv6_frag_rcv, .flags = INET6_PROTO_NOPOLICY, }; #ifdef CONFIG_SYSCTL static struct ctl_table ip6_frags_ns_ctl_table[] = { { .procname = "ip6frag_high_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_low_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_time", .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { } }; /* secret interval has been deprecated */ static int ip6_frags_secret_interval_unused; static struct ctl_table ip6_frags_ctl_table[] = { { .procname = "ip6frag_secret_interval", .data = &ip6_frags_secret_interval_unused, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { } }; static int __net_init ip6_frags_ns_sysctl_register(struct net *net) { struct ctl_table *table; struct ctl_table_header *hdr; table = ip6_frags_ns_ctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(ip6_frags_ns_ctl_table), GFP_KERNEL); if (!table) goto err_alloc; } table[0].data = &net->ipv6.fqdir->high_thresh; table[0].extra1 = &net->ipv6.fqdir->low_thresh; table[1].data = &net->ipv6.fqdir->low_thresh; table[1].extra2 = &net->ipv6.fqdir->high_thresh; table[2].data = &net->ipv6.fqdir->timeout; hdr = register_net_sysctl_sz(net, "net/ipv6", table, ARRAY_SIZE(ip6_frags_ns_ctl_table)); if (!hdr) goto err_reg; net->ipv6.sysctl.frags_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void __net_exit ip6_frags_ns_sysctl_unregister(struct net *net) { struct ctl_table *table; table = net->ipv6.sysctl.frags_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv6.sysctl.frags_hdr); if (!net_eq(net, &init_net)) kfree(table); } static struct ctl_table_header *ip6_ctl_header; static int ip6_frags_sysctl_register(void) { ip6_ctl_header = register_net_sysctl(&init_net, "net/ipv6", ip6_frags_ctl_table); return ip6_ctl_header == NULL ? -ENOMEM : 0; } static void ip6_frags_sysctl_unregister(void) { unregister_net_sysctl_table(ip6_ctl_header); } #else static int ip6_frags_ns_sysctl_register(struct net *net) { return 0; } static void ip6_frags_ns_sysctl_unregister(struct net *net) { } static int ip6_frags_sysctl_register(void) { return 0; } static void ip6_frags_sysctl_unregister(void) { } #endif static int __net_init ipv6_frags_init_net(struct net *net) { int res; res = fqdir_init(&net->ipv6.fqdir, &ip6_frags, net); if (res < 0) return res; net->ipv6.fqdir->high_thresh = IPV6_FRAG_HIGH_THRESH; net->ipv6.fqdir->low_thresh = IPV6_FRAG_LOW_THRESH; net->ipv6.fqdir->timeout = IPV6_FRAG_TIMEOUT; res = ip6_frags_ns_sysctl_register(net); if (res < 0) fqdir_exit(net->ipv6.fqdir); return res; } static void __net_exit ipv6_frags_pre_exit_net(struct net *net) { fqdir_pre_exit(net->ipv6.fqdir); } static void __net_exit ipv6_frags_exit_net(struct net *net) { ip6_frags_ns_sysctl_unregister(net); fqdir_exit(net->ipv6.fqdir); } static struct pernet_operations ip6_frags_ops = { .init = ipv6_frags_init_net, .pre_exit = ipv6_frags_pre_exit_net, .exit = ipv6_frags_exit_net, }; static const struct rhashtable_params ip6_rhash_params = { .head_offset = offsetof(struct inet_frag_queue, node), .hashfn = ip6frag_key_hashfn, .obj_hashfn = ip6frag_obj_hashfn, .obj_cmpfn = ip6frag_obj_cmpfn, .automatic_shrinking = true, }; int __init ipv6_frag_init(void) { int ret; ip6_frags.constructor = ip6frag_init; ip6_frags.destructor = NULL; ip6_frags.qsize = sizeof(struct frag_queue); ip6_frags.frag_expire = ip6_frag_expire; ip6_frags.frags_cache_name = ip6_frag_cache_name; ip6_frags.rhash_params = ip6_rhash_params; ret = inet_frags_init(&ip6_frags); if (ret) goto out; ret = inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT); if (ret) goto err_protocol; ret = ip6_frags_sysctl_register(); if (ret) goto err_sysctl; ret = register_pernet_subsys(&ip6_frags_ops); if (ret) goto err_pernet; out: return ret; err_pernet: ip6_frags_sysctl_unregister(); err_sysctl: inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); err_protocol: inet_frags_fini(&ip6_frags); goto out; } void ipv6_frag_exit(void) { ip6_frags_sysctl_unregister(); unregister_pernet_subsys(&ip6_frags_ops); inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); inet_frags_fini(&ip6_frags); }
linux-master
net/ipv6/reassembly.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * PF_INET6 protocol dispatch tables. * * Authors: Pedro Roque <[email protected]> */ /* * Changes: * * Vince Laviano ([email protected]) 16 May 2001 * - Removed unused variable 'inet6_protocol_base' * - Modified inet6_del_protocol() to correctly maintain copy bit. */ #include <linux/module.h> #include <linux/netdevice.h> #include <linux/spinlock.h> #include <net/protocol.h> #if IS_ENABLED(CONFIG_IPV6) struct inet6_protocol __rcu *inet6_protos[MAX_INET_PROTOS] __read_mostly; EXPORT_SYMBOL(inet6_protos); int inet6_add_protocol(const struct inet6_protocol *prot, unsigned char protocol) { return !cmpxchg((const struct inet6_protocol **)&inet6_protos[protocol], NULL, prot) ? 0 : -1; } EXPORT_SYMBOL(inet6_add_protocol); int inet6_del_protocol(const struct inet6_protocol *prot, unsigned char protocol) { int ret; ret = (cmpxchg((const struct inet6_protocol **)&inet6_protos[protocol], prot, NULL) == prot) ? 0 : -1; synchronize_net(); return ret; } EXPORT_SYMBOL(inet6_del_protocol); #endif const struct net_offload __rcu *inet6_offloads[MAX_INET_PROTOS] __read_mostly; EXPORT_SYMBOL(inet6_offloads); int inet6_add_offload(const struct net_offload *prot, unsigned char protocol) { return !cmpxchg((const struct net_offload **)&inet6_offloads[protocol], NULL, prot) ? 0 : -1; } EXPORT_SYMBOL(inet6_add_offload); int inet6_del_offload(const struct net_offload *prot, unsigned char protocol) { int ret; ret = (cmpxchg((const struct net_offload **)&inet6_offloads[protocol], prot, NULL) == prot) ? 0 : -1; synchronize_net(); return ret; } EXPORT_SYMBOL(inet6_del_offload);
linux-master
net/ipv6/protocol.c
/* * IPv6 specific functions of netfilter core * * Rusty Russell (C) 2000 -- This code is GPL. * Patrick McHardy (C) 2006-2012 */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/ipv6.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/export.h> #include <net/addrconf.h> #include <net/dst.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/xfrm.h> #include <net/netfilter/nf_queue.h> #include <net/netfilter/nf_conntrack_bridge.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> #include "../bridge/br_private.h" int ip6_route_me_harder(struct net *net, struct sock *sk_partial, struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct sock *sk = sk_to_full_sk(sk_partial); struct net_device *dev = skb_dst(skb)->dev; struct flow_keys flkeys; unsigned int hh_len; struct dst_entry *dst; int strict = (ipv6_addr_type(&iph->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)); struct flowi6 fl6 = { .flowi6_l3mdev = l3mdev_master_ifindex(dev), .flowi6_mark = skb->mark, .flowi6_uid = sock_net_uid(net, sk), .daddr = iph->daddr, .saddr = iph->saddr, }; int err; if (sk && sk->sk_bound_dev_if) fl6.flowi6_oif = sk->sk_bound_dev_if; else if (strict) fl6.flowi6_oif = dev->ifindex; fib6_rules_early_flow_dissect(net, skb, &fl6, &flkeys); dst = ip6_route_output(net, sk, &fl6); err = dst->error; if (err) { IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); net_dbg_ratelimited("ip6_route_me_harder: No more route\n"); dst_release(dst); return err; } /* Drop old route. */ skb_dst_drop(skb); skb_dst_set(skb, dst); #ifdef CONFIG_XFRM if (!(IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) && xfrm_decode_session(skb, flowi6_to_flowi(&fl6), AF_INET6) == 0) { skb_dst_set(skb, NULL); dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), sk, 0); if (IS_ERR(dst)) return PTR_ERR(dst); skb_dst_set(skb, dst); } #endif /* Change in oif may mean change in hh_len. */ hh_len = skb_dst(skb)->dev->hard_header_len; if (skb_headroom(skb) < hh_len && pskb_expand_head(skb, HH_DATA_ALIGN(hh_len - skb_headroom(skb)), 0, GFP_ATOMIC)) return -ENOMEM; return 0; } EXPORT_SYMBOL(ip6_route_me_harder); static int nf_ip6_reroute(struct sk_buff *skb, const struct nf_queue_entry *entry) { struct ip6_rt_info *rt_info = nf_queue_entry_reroute(entry); if (entry->state.hook == NF_INET_LOCAL_OUT) { const struct ipv6hdr *iph = ipv6_hdr(skb); if (!ipv6_addr_equal(&iph->daddr, &rt_info->daddr) || !ipv6_addr_equal(&iph->saddr, &rt_info->saddr) || skb->mark != rt_info->mark) return ip6_route_me_harder(entry->state.net, entry->state.sk, skb); } return 0; } int __nf_ip6_route(struct net *net, struct dst_entry **dst, struct flowi *fl, bool strict) { static const struct ipv6_pinfo fake_pinfo; static const struct inet_sock fake_sk = { /* makes ip6_route_output set RT6_LOOKUP_F_IFACE: */ .sk.sk_bound_dev_if = 1, .pinet6 = (struct ipv6_pinfo *) &fake_pinfo, }; const void *sk = strict ? &fake_sk : NULL; struct dst_entry *result; int err; result = ip6_route_output(net, sk, &fl->u.ip6); err = result->error; if (err) dst_release(result); else *dst = result; return err; } EXPORT_SYMBOL_GPL(__nf_ip6_route); int br_ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, struct nf_bridge_frag_data *data, int (*output)(struct net *, struct sock *sk, const struct nf_bridge_frag_data *data, struct sk_buff *)) { int frag_max_size = BR_INPUT_SKB_CB(skb)->frag_max_size; bool mono_delivery_time = skb->mono_delivery_time; ktime_t tstamp = skb->tstamp; struct ip6_frag_state state; u8 *prevhdr, nexthdr = 0; unsigned int mtu, hlen; int hroom, err = 0; __be32 frag_id; err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) goto blackhole; hlen = err; nexthdr = *prevhdr; mtu = skb->dev->mtu; if (frag_max_size > mtu || frag_max_size < IPV6_MIN_MTU) goto blackhole; mtu = frag_max_size; if (mtu < hlen + sizeof(struct frag_hdr) + 8) goto blackhole; mtu -= hlen + sizeof(struct frag_hdr); frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr); if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto blackhole; hroom = LL_RESERVED_SPACE(skb->dev); if (skb_has_frag_list(skb)) { unsigned int first_len = skb_pagelen(skb); struct ip6_fraglist_iter iter; struct sk_buff *frag2; if (first_len - hlen > mtu || skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) goto blackhole; if (skb_cloned(skb)) goto slow_path; skb_walk_frags(skb, frag2) { if (frag2->len > mtu || skb_headroom(frag2) < (hlen + hroom + sizeof(struct frag_hdr))) goto blackhole; /* Partially cloned skb? */ if (skb_shared(frag2)) goto slow_path; } err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id, &iter); if (err < 0) goto blackhole; for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) ip6_fraglist_prepare(skb, &iter); skb_set_delivery_time(skb, tstamp, mono_delivery_time); err = output(net, sk, data, skb); if (err || !iter.frag) break; skb = ip6_fraglist_next(&iter); } kfree(iter.tmp_hdr); if (!err) return 0; kfree_skb_list(iter.frag); return err; } slow_path: /* This is a linearized skbuff, the original geometry is lost for us. * This may also be a clone skbuff, we could preserve the geometry for * the copies but probably not worth the effort. */ ip6_frag_init(skb, hlen, mtu, skb->dev->needed_tailroom, LL_RESERVED_SPACE(skb->dev), prevhdr, nexthdr, frag_id, &state); while (state.left > 0) { struct sk_buff *skb2; skb2 = ip6_frag_next(skb, &state); if (IS_ERR(skb2)) { err = PTR_ERR(skb2); goto blackhole; } skb_set_delivery_time(skb2, tstamp, mono_delivery_time); err = output(net, sk, data, skb2); if (err) goto blackhole; } consume_skb(skb); return err; blackhole: kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(br_ip6_fragment); static const struct nf_ipv6_ops ipv6ops = { #if IS_MODULE(CONFIG_IPV6) .chk_addr = ipv6_chk_addr, .route_me_harder = ip6_route_me_harder, .dev_get_saddr = ipv6_dev_get_saddr, .route = __nf_ip6_route, #if IS_ENABLED(CONFIG_SYN_COOKIES) .cookie_init_sequence = __cookie_v6_init_sequence, .cookie_v6_check = __cookie_v6_check, #endif #endif .route_input = ip6_route_input, .fragment = ip6_fragment, .reroute = nf_ip6_reroute, #if IS_MODULE(CONFIG_IPV6) .br_fragment = br_ip6_fragment, #endif }; int __init ipv6_netfilter_init(void) { RCU_INIT_POINTER(nf_ipv6_ops, &ipv6ops); return 0; } /* This can be called from inet6_init() on errors, so it cannot * be marked __exit. -DaveM */ void ipv6_netfilter_fini(void) { RCU_INIT_POINTER(nf_ipv6_ops, NULL); }
linux-master
net/ipv6/netfilter.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/errno.h> #include <linux/socket.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/udp.h> #include <linux/icmpv6.h> #include <linux/types.h> #include <linux/kernel.h> #include <net/fou.h> #include <net/ip.h> #include <net/ip6_tunnel.h> #include <net/ip6_checksum.h> #include <net/protocol.h> #include <net/udp.h> #include <net/udp_tunnel.h> #if IS_ENABLED(CONFIG_IPV6_FOU_TUNNEL) static void fou6_build_udp(struct sk_buff *skb, struct ip_tunnel_encap *e, struct flowi6 *fl6, u8 *protocol, __be16 sport) { struct udphdr *uh; skb_push(skb, sizeof(struct udphdr)); skb_reset_transport_header(skb); uh = udp_hdr(skb); uh->dest = e->dport; uh->source = sport; uh->len = htons(skb->len); udp6_set_csum(!(e->flags & TUNNEL_ENCAP_FLAG_CSUM6), skb, &fl6->saddr, &fl6->daddr, skb->len); *protocol = IPPROTO_UDP; } static int fou6_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, struct flowi6 *fl6) { __be16 sport; int err; int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM6 ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; err = __fou_build_header(skb, e, protocol, &sport, type); if (err) return err; fou6_build_udp(skb, e, fl6, protocol, sport); return 0; } static int gue6_build_header(struct sk_buff *skb, struct ip_tunnel_encap *e, u8 *protocol, struct flowi6 *fl6) { __be16 sport; int err; int type = e->flags & TUNNEL_ENCAP_FLAG_CSUM6 ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; err = __gue_build_header(skb, e, protocol, &sport, type); if (err) return err; fou6_build_udp(skb, e, fl6, protocol, sport); return 0; } static int gue6_err_proto_handler(int proto, struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { const struct inet6_protocol *ipprot; ipprot = rcu_dereference(inet6_protos[proto]); if (ipprot && ipprot->err_handler) { if (!ipprot->err_handler(skb, opt, type, code, offset, info)) return 0; } return -ENOENT; } static int gue6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { int transport_offset = skb_transport_offset(skb); struct guehdr *guehdr; size_t len, optlen; int ret; len = sizeof(struct udphdr) + sizeof(struct guehdr); if (!pskb_may_pull(skb, transport_offset + len)) return -EINVAL; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; switch (guehdr->version) { case 0: /* Full GUE header present */ break; case 1: { /* Direct encasulation of IPv4 or IPv6 */ skb_set_transport_header(skb, -(int)sizeof(struct icmp6hdr)); switch (((struct iphdr *)guehdr)->version) { case 4: ret = gue6_err_proto_handler(IPPROTO_IPIP, skb, opt, type, code, offset, info); goto out; case 6: ret = gue6_err_proto_handler(IPPROTO_IPV6, skb, opt, type, code, offset, info); goto out; default: ret = -EOPNOTSUPP; goto out; } } default: /* Undefined version */ return -EOPNOTSUPP; } if (guehdr->control) return -ENOENT; optlen = guehdr->hlen << 2; if (!pskb_may_pull(skb, transport_offset + len + optlen)) return -EINVAL; guehdr = (struct guehdr *)&udp_hdr(skb)[1]; if (validate_gue_flags(guehdr, optlen)) return -EINVAL; /* Handling exceptions for direct UDP encapsulation in GUE would lead to * recursion. Besides, this kind of encapsulation can't even be * configured currently. Discard this. */ if (guehdr->proto_ctype == IPPROTO_UDP || guehdr->proto_ctype == IPPROTO_UDPLITE) return -EOPNOTSUPP; skb_set_transport_header(skb, -(int)sizeof(struct icmp6hdr)); ret = gue6_err_proto_handler(guehdr->proto_ctype, skb, opt, type, code, offset, info); out: skb_set_transport_header(skb, transport_offset); return ret; } static const struct ip6_tnl_encap_ops fou_ip6tun_ops = { .encap_hlen = fou_encap_hlen, .build_header = fou6_build_header, .err_handler = gue6_err, }; static const struct ip6_tnl_encap_ops gue_ip6tun_ops = { .encap_hlen = gue_encap_hlen, .build_header = gue6_build_header, .err_handler = gue6_err, }; static int ip6_tnl_encap_add_fou_ops(void) { int ret; ret = ip6_tnl_encap_add_ops(&fou_ip6tun_ops, TUNNEL_ENCAP_FOU); if (ret < 0) { pr_err("can't add fou6 ops\n"); return ret; } ret = ip6_tnl_encap_add_ops(&gue_ip6tun_ops, TUNNEL_ENCAP_GUE); if (ret < 0) { pr_err("can't add gue6 ops\n"); ip6_tnl_encap_del_ops(&fou_ip6tun_ops, TUNNEL_ENCAP_FOU); return ret; } return 0; } static void ip6_tnl_encap_del_fou_ops(void) { ip6_tnl_encap_del_ops(&fou_ip6tun_ops, TUNNEL_ENCAP_FOU); ip6_tnl_encap_del_ops(&gue_ip6tun_ops, TUNNEL_ENCAP_GUE); } #else static int ip6_tnl_encap_add_fou_ops(void) { return 0; } static void ip6_tnl_encap_del_fou_ops(void) { } #endif static int __init fou6_init(void) { int ret; ret = ip6_tnl_encap_add_fou_ops(); return ret; } static void __exit fou6_fini(void) { ip6_tnl_encap_del_fou_ops(); } module_init(fou6_init); module_exit(fou6_fini); MODULE_AUTHOR("Tom Herbert <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Foo over UDP (IPv6)");
linux-master
net/ipv6/fou6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * PF_INET6 socket protocol family * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Adapted from linux/net/ipv4/af_inet.c * * Fixes: * piggy, Karl Knutson : Socket protocol table * Hideaki YOSHIFUJI : sin6_scope_id support * Arnaldo Melo : check proc_net_create return, cleanups */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/icmpv6.h> #include <linux/netfilter_ipv6.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/udp.h> #include <net/udplite.h> #include <net/tcp.h> #include <net/ping.h> #include <net/protocol.h> #include <net/inet_common.h> #include <net/route.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/ipv6_stubs.h> #include <net/ndisc.h> #ifdef CONFIG_IPV6_TUNNEL #include <net/ip6_tunnel.h> #endif #include <net/calipso.h> #include <net/seg6.h> #include <net/rpl.h> #include <net/compat.h> #include <net/xfrm.h> #include <net/ioam6.h> #include <net/rawv6.h> #include <linux/uaccess.h> #include <linux/mroute6.h> #include "ip6_offload.h" MODULE_AUTHOR("Cast of dozens"); MODULE_DESCRIPTION("IPv6 protocol stack for Linux"); MODULE_LICENSE("GPL"); /* The inetsw6 table contains everything that inet6_create needs to * build a new socket. */ static struct list_head inetsw6[SOCK_MAX]; static DEFINE_SPINLOCK(inetsw6_lock); struct ipv6_params ipv6_defaults = { .disable_ipv6 = 0, .autoconf = 1, }; static int disable_ipv6_mod; module_param_named(disable, disable_ipv6_mod, int, 0444); MODULE_PARM_DESC(disable, "Disable IPv6 module such that it is non-functional"); module_param_named(disable_ipv6, ipv6_defaults.disable_ipv6, int, 0444); MODULE_PARM_DESC(disable_ipv6, "Disable IPv6 on all interfaces"); module_param_named(autoconf, ipv6_defaults.autoconf, int, 0444); MODULE_PARM_DESC(autoconf, "Enable IPv6 address autoconfiguration on all interfaces"); bool ipv6_mod_enabled(void) { return disable_ipv6_mod == 0; } EXPORT_SYMBOL_GPL(ipv6_mod_enabled); static struct ipv6_pinfo *inet6_sk_generic(struct sock *sk) { const int offset = sk->sk_prot->ipv6_pinfo_offset; return (struct ipv6_pinfo *)(((u8 *)sk) + offset); } void inet6_sock_destruct(struct sock *sk) { inet6_cleanup_sock(sk); inet_sock_destruct(sk); } EXPORT_SYMBOL_GPL(inet6_sock_destruct); static int inet6_create(struct net *net, struct socket *sock, int protocol, int kern) { struct inet_sock *inet; struct ipv6_pinfo *np; struct sock *sk; struct inet_protosw *answer; struct proto *answer_prot; unsigned char answer_flags; int try_loading_module = 0; int err; if (protocol < 0 || protocol >= IPPROTO_MAX) return -EINVAL; /* Look for the requested type/protocol pair. */ lookup_protocol: err = -ESOCKTNOSUPPORT; rcu_read_lock(); list_for_each_entry_rcu(answer, &inetsw6[sock->type], list) { err = 0; /* Check the non-wild match. */ if (protocol == answer->protocol) { if (protocol != IPPROTO_IP) break; } else { /* Check for the two wild cases. */ if (IPPROTO_IP == protocol) { protocol = answer->protocol; break; } if (IPPROTO_IP == answer->protocol) break; } err = -EPROTONOSUPPORT; } if (err) { if (try_loading_module < 2) { rcu_read_unlock(); /* * Be more specific, e.g. net-pf-10-proto-132-type-1 * (net-pf-PF_INET6-proto-IPPROTO_SCTP-type-SOCK_STREAM) */ if (++try_loading_module == 1) request_module("net-pf-%d-proto-%d-type-%d", PF_INET6, protocol, sock->type); /* * Fall back to generic, e.g. net-pf-10-proto-132 * (net-pf-PF_INET6-proto-IPPROTO_SCTP) */ else request_module("net-pf-%d-proto-%d", PF_INET6, protocol); goto lookup_protocol; } else goto out_rcu_unlock; } err = -EPERM; if (sock->type == SOCK_RAW && !kern && !ns_capable(net->user_ns, CAP_NET_RAW)) goto out_rcu_unlock; sock->ops = answer->ops; answer_prot = answer->prot; answer_flags = answer->flags; rcu_read_unlock(); WARN_ON(!answer_prot->slab); err = -ENOBUFS; sk = sk_alloc(net, PF_INET6, GFP_KERNEL, answer_prot, kern); if (!sk) goto out; sock_init_data(sock, sk); err = 0; if (INET_PROTOSW_REUSE & answer_flags) sk->sk_reuse = SK_CAN_REUSE; inet = inet_sk(sk); inet_assign_bit(IS_ICSK, sk, INET_PROTOSW_ICSK & answer_flags); if (SOCK_RAW == sock->type) { inet->inet_num = protocol; if (IPPROTO_RAW == protocol) inet_set_bit(HDRINCL, sk); } sk->sk_destruct = inet6_sock_destruct; sk->sk_family = PF_INET6; sk->sk_protocol = protocol; sk->sk_backlog_rcv = answer->prot->backlog_rcv; inet_sk(sk)->pinet6 = np = inet6_sk_generic(sk); np->hop_limit = -1; np->mcast_hops = IPV6_DEFAULT_MCASTHOPS; np->mc_loop = 1; np->mc_all = 1; np->pmtudisc = IPV6_PMTUDISC_WANT; np->repflow = net->ipv6.sysctl.flowlabel_reflect & FLOWLABEL_REFLECT_ESTABLISHED; sk->sk_ipv6only = net->ipv6.sysctl.bindv6only; sk->sk_txrehash = READ_ONCE(net->core.sysctl_txrehash); /* Init the ipv4 part of the socket since we can have sockets * using v6 API for ipv4. */ inet->uc_ttl = -1; inet_set_bit(MC_LOOP, sk); inet->mc_ttl = 1; inet->mc_index = 0; RCU_INIT_POINTER(inet->mc_list, NULL); inet->rcv_tos = 0; if (READ_ONCE(net->ipv4.sysctl_ip_no_pmtu_disc)) inet->pmtudisc = IP_PMTUDISC_DONT; else inet->pmtudisc = IP_PMTUDISC_WANT; if (inet->inet_num) { /* It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically shares. */ inet->inet_sport = htons(inet->inet_num); err = sk->sk_prot->hash(sk); if (err) { sk_common_release(sk); goto out; } } if (sk->sk_prot->init) { err = sk->sk_prot->init(sk); if (err) { sk_common_release(sk); goto out; } } if (!kern) { err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); if (err) { sk_common_release(sk); goto out; } } out: return err; out_rcu_unlock: rcu_read_unlock(); goto out; } static int __inet6_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, u32 flags) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *)uaddr; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); __be32 v4addr = 0; unsigned short snum; bool saved_ipv6only; int addr_type = 0; int err = 0; if (addr->sin6_family != AF_INET6) return -EAFNOSUPPORT; addr_type = ipv6_addr_type(&addr->sin6_addr); if ((addr_type & IPV6_ADDR_MULTICAST) && sk->sk_type == SOCK_STREAM) return -EINVAL; snum = ntohs(addr->sin6_port); if (!(flags & BIND_NO_CAP_NET_BIND_SERVICE) && snum && inet_port_requires_bind_service(net, snum) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) return -EACCES; if (flags & BIND_WITH_LOCK) lock_sock(sk); /* Check these errors (active socket, double bind). */ if (sk->sk_state != TCP_CLOSE || inet->inet_num) { err = -EINVAL; goto out; } /* Check if the address belongs to the host. */ if (addr_type == IPV6_ADDR_MAPPED) { struct net_device *dev = NULL; int chk_addr_ret; /* Binding to v4-mapped address on a v6-only socket * makes no sense */ if (ipv6_only_sock(sk)) { err = -EINVAL; goto out; } rcu_read_lock(); if (sk->sk_bound_dev_if) { dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if); if (!dev) { err = -ENODEV; goto out_unlock; } } /* Reproduce AF_INET checks to make the bindings consistent */ v4addr = addr->sin6_addr.s6_addr32[3]; chk_addr_ret = inet_addr_type_dev_table(net, dev, v4addr); rcu_read_unlock(); if (!inet_addr_valid_or_nonlocal(net, inet, v4addr, chk_addr_ret)) { err = -EADDRNOTAVAIL; goto out; } } else { if (addr_type != IPV6_ADDR_ANY) { struct net_device *dev = NULL; rcu_read_lock(); if (__ipv6_addr_needs_scope_id(addr_type)) { if (addr_len >= sizeof(struct sockaddr_in6) && addr->sin6_scope_id) { /* Override any existing binding, if another one * is supplied by user. */ sk->sk_bound_dev_if = addr->sin6_scope_id; } /* Binding to link-local address requires an interface */ if (!sk->sk_bound_dev_if) { err = -EINVAL; goto out_unlock; } } if (sk->sk_bound_dev_if) { dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if); if (!dev) { err = -ENODEV; goto out_unlock; } } /* ipv4 addr of the socket is invalid. Only the * unspecified and mapped address have a v4 equivalent. */ v4addr = LOOPBACK4_IPV6; if (!(addr_type & IPV6_ADDR_MULTICAST)) { if (!ipv6_can_nonlocal_bind(net, inet) && !ipv6_chk_addr(net, &addr->sin6_addr, dev, 0)) { err = -EADDRNOTAVAIL; goto out_unlock; } } rcu_read_unlock(); } } inet->inet_rcv_saddr = v4addr; inet->inet_saddr = v4addr; sk->sk_v6_rcv_saddr = addr->sin6_addr; if (!(addr_type & IPV6_ADDR_MULTICAST)) np->saddr = addr->sin6_addr; saved_ipv6only = sk->sk_ipv6only; if (addr_type != IPV6_ADDR_ANY && addr_type != IPV6_ADDR_MAPPED) sk->sk_ipv6only = 1; /* Make sure we are allowed to bind here. */ if (snum || !(inet_test_bit(BIND_ADDRESS_NO_PORT, sk) || (flags & BIND_FORCE_ADDRESS_NO_PORT))) { err = sk->sk_prot->get_port(sk, snum); if (err) { sk->sk_ipv6only = saved_ipv6only; inet_reset_saddr(sk); goto out; } if (!(flags & BIND_FROM_BPF)) { err = BPF_CGROUP_RUN_PROG_INET6_POST_BIND(sk); if (err) { sk->sk_ipv6only = saved_ipv6only; inet_reset_saddr(sk); if (sk->sk_prot->put_port) sk->sk_prot->put_port(sk); goto out; } } } if (addr_type != IPV6_ADDR_ANY) sk->sk_userlocks |= SOCK_BINDADDR_LOCK; if (snum) sk->sk_userlocks |= SOCK_BINDPORT_LOCK; inet->inet_sport = htons(inet->inet_num); inet->inet_dport = 0; inet->inet_daddr = 0; out: if (flags & BIND_WITH_LOCK) release_sock(sk); return err; out_unlock: rcu_read_unlock(); goto out; } int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len) { u32 flags = BIND_WITH_LOCK; const struct proto *prot; int err = 0; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); /* If the socket has its own bind function then use it. */ if (prot->bind) return prot->bind(sk, uaddr, addr_len); if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; /* BPF prog is run before any checks are done so that if the prog * changes context in a wrong way it will be caught. */ err = BPF_CGROUP_RUN_PROG_INET_BIND_LOCK(sk, uaddr, CGROUP_INET6_BIND, &flags); if (err) return err; return __inet6_bind(sk, uaddr, addr_len, flags); } /* bind for INET6 API */ int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { return inet6_bind_sk(sock->sk, uaddr, addr_len); } EXPORT_SYMBOL(inet6_bind); int inet6_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return -EINVAL; /* Free mc lists */ ipv6_sock_mc_close(sk); /* Free ac lists */ ipv6_sock_ac_close(sk); return inet_release(sock); } EXPORT_SYMBOL(inet6_release); void inet6_cleanup_sock(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct sk_buff *skb; struct ipv6_txoptions *opt; /* Release rx options */ skb = xchg(&np->pktoptions, NULL); kfree_skb(skb); skb = xchg(&np->rxpmtu, NULL); kfree_skb(skb); /* Free flowlabels */ fl6_free_socklist(sk); /* Free tx options */ opt = xchg((__force struct ipv6_txoptions **)&np->opt, NULL); if (opt) { atomic_sub(opt->tot_len, &sk->sk_omem_alloc); txopt_put(opt); } } EXPORT_SYMBOL_GPL(inet6_cleanup_sock); /* * This does both peername and sockname. */ int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)uaddr; struct sock *sk = sock->sk; struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); sin->sin6_family = AF_INET6; sin->sin6_flowinfo = 0; sin->sin6_scope_id = 0; lock_sock(sk); if (peer) { if (!inet->inet_dport || (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && peer == 1)) { release_sock(sk); return -ENOTCONN; } sin->sin6_port = inet->inet_dport; sin->sin6_addr = sk->sk_v6_daddr; if (np->sndflow) sin->sin6_flowinfo = np->flow_label; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, CGROUP_INET6_GETPEERNAME); } else { if (ipv6_addr_any(&sk->sk_v6_rcv_saddr)) sin->sin6_addr = np->saddr; else sin->sin6_addr = sk->sk_v6_rcv_saddr; sin->sin6_port = inet->inet_sport; BPF_CGROUP_RUN_SA_PROG(sk, (struct sockaddr *)sin, CGROUP_INET6_GETSOCKNAME); } sin->sin6_scope_id = ipv6_iface_scope_id(&sin->sin6_addr, sk->sk_bound_dev_if); release_sock(sk); return sizeof(*sin); } EXPORT_SYMBOL(inet6_getname); int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct sock *sk = sock->sk; struct net *net = sock_net(sk); const struct proto *prot; switch (cmd) { case SIOCADDRT: case SIOCDELRT: { struct in6_rtmsg rtmsg; if (copy_from_user(&rtmsg, argp, sizeof(rtmsg))) return -EFAULT; return ipv6_route_ioctl(net, cmd, &rtmsg); } case SIOCSIFADDR: return addrconf_add_ifaddr(net, argp); case SIOCDIFADDR: return addrconf_del_ifaddr(net, argp); case SIOCSIFDSTADDR: return addrconf_set_dstaddr(net, argp); default: /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); if (!prot->ioctl) return -ENOIOCTLCMD; return sk_ioctl(sk, cmd, (void __user *)arg); } /*NOTREACHED*/ return 0; } EXPORT_SYMBOL(inet6_ioctl); #ifdef CONFIG_COMPAT struct compat_in6_rtmsg { struct in6_addr rtmsg_dst; struct in6_addr rtmsg_src; struct in6_addr rtmsg_gateway; u32 rtmsg_type; u16 rtmsg_dst_len; u16 rtmsg_src_len; u32 rtmsg_metric; u32 rtmsg_info; u32 rtmsg_flags; s32 rtmsg_ifindex; }; static int inet6_compat_routing_ioctl(struct sock *sk, unsigned int cmd, struct compat_in6_rtmsg __user *ur) { struct in6_rtmsg rt; if (copy_from_user(&rt.rtmsg_dst, &ur->rtmsg_dst, 3 * sizeof(struct in6_addr)) || get_user(rt.rtmsg_type, &ur->rtmsg_type) || get_user(rt.rtmsg_dst_len, &ur->rtmsg_dst_len) || get_user(rt.rtmsg_src_len, &ur->rtmsg_src_len) || get_user(rt.rtmsg_metric, &ur->rtmsg_metric) || get_user(rt.rtmsg_info, &ur->rtmsg_info) || get_user(rt.rtmsg_flags, &ur->rtmsg_flags) || get_user(rt.rtmsg_ifindex, &ur->rtmsg_ifindex)) return -EFAULT; return ipv6_route_ioctl(sock_net(sk), cmd, &rt); } int inet6_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; switch (cmd) { case SIOCADDRT: case SIOCDELRT: return inet6_compat_routing_ioctl(sk, cmd, argp); default: return -ENOIOCTLCMD; } } EXPORT_SYMBOL_GPL(inet6_compat_ioctl); #endif /* CONFIG_COMPAT */ INDIRECT_CALLABLE_DECLARE(int udpv6_sendmsg(struct sock *, struct msghdr *, size_t)); int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; const struct proto *prot; if (unlikely(inet_send_prepare(sk))) return -EAGAIN; /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); return INDIRECT_CALL_2(prot->sendmsg, tcp_sendmsg, udpv6_sendmsg, sk, msg, size); } INDIRECT_CALLABLE_DECLARE(int udpv6_recvmsg(struct sock *, struct msghdr *, size_t, int, int *)); int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; const struct proto *prot; int addr_len = 0; int err; if (likely(!(flags & MSG_ERRQUEUE))) sock_rps_record_flow(sk); /* IPV6_ADDRFORM can change sk->sk_prot under us. */ prot = READ_ONCE(sk->sk_prot); err = INDIRECT_CALL_2(prot->recvmsg, tcp_recvmsg, udpv6_recvmsg, sk, msg, size, flags, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } const struct proto_ops inet6_stream_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = inet6_bind, .connect = inet_stream_connect, /* ok */ .socketpair = sock_no_socketpair, /* a do nothing */ .accept = inet_accept, /* ok */ .getname = inet6_getname, .poll = tcp_poll, /* ok */ .ioctl = inet6_ioctl, /* must change */ .gettstamp = sock_gettstamp, .listen = inet_listen, /* ok */ .shutdown = inet_shutdown, /* ok */ .setsockopt = sock_common_setsockopt, /* ok */ .getsockopt = sock_common_getsockopt, /* ok */ .sendmsg = inet6_sendmsg, /* retpoline's sake */ .recvmsg = inet6_recvmsg, /* retpoline's sake */ #ifdef CONFIG_MMU .mmap = tcp_mmap, #endif .splice_eof = inet_splice_eof, .sendmsg_locked = tcp_sendmsg_locked, .splice_read = tcp_splice_read, .read_sock = tcp_read_sock, .read_skb = tcp_read_skb, .peek_len = tcp_peek_len, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif .set_rcvlowat = tcp_set_rcvlowat, }; const struct proto_ops inet6_dgram_ops = { .family = PF_INET6, .owner = THIS_MODULE, .release = inet6_release, .bind = inet6_bind, .connect = inet_dgram_connect, /* ok */ .socketpair = sock_no_socketpair, /* a do nothing */ .accept = sock_no_accept, /* a do nothing */ .getname = inet6_getname, .poll = udp_poll, /* ok */ .ioctl = inet6_ioctl, /* must change */ .gettstamp = sock_gettstamp, .listen = sock_no_listen, /* ok */ .shutdown = inet_shutdown, /* ok */ .setsockopt = sock_common_setsockopt, /* ok */ .getsockopt = sock_common_getsockopt, /* ok */ .sendmsg = inet6_sendmsg, /* retpoline's sake */ .recvmsg = inet6_recvmsg, /* retpoline's sake */ .read_skb = udp_read_skb, .mmap = sock_no_mmap, .set_peek_off = sk_set_peek_off, #ifdef CONFIG_COMPAT .compat_ioctl = inet6_compat_ioctl, #endif }; static const struct net_proto_family inet6_family_ops = { .family = PF_INET6, .create = inet6_create, .owner = THIS_MODULE, }; int inet6_register_protosw(struct inet_protosw *p) { struct list_head *lh; struct inet_protosw *answer; struct list_head *last_perm; int protocol = p->protocol; int ret; spin_lock_bh(&inetsw6_lock); ret = -EINVAL; if (p->type >= SOCK_MAX) goto out_illegal; /* If we are trying to override a permanent protocol, bail. */ answer = NULL; ret = -EPERM; last_perm = &inetsw6[p->type]; list_for_each(lh, &inetsw6[p->type]) { answer = list_entry(lh, struct inet_protosw, list); /* Check only the non-wild match. */ if (INET_PROTOSW_PERMANENT & answer->flags) { if (protocol == answer->protocol) break; last_perm = lh; } answer = NULL; } if (answer) goto out_permanent; /* Add the new entry after the last permanent entry if any, so that * the new entry does not override a permanent entry when matched with * a wild-card protocol. But it is allowed to override any existing * non-permanent entry. This means that when we remove this entry, the * system automatically returns to the old behavior. */ list_add_rcu(&p->list, last_perm); ret = 0; out: spin_unlock_bh(&inetsw6_lock); return ret; out_permanent: pr_err("Attempt to override permanent protocol %d\n", protocol); goto out; out_illegal: pr_err("Ignoring attempt to register invalid socket type %d\n", p->type); goto out; } EXPORT_SYMBOL(inet6_register_protosw); void inet6_unregister_protosw(struct inet_protosw *p) { if (INET_PROTOSW_PERMANENT & p->flags) { pr_err("Attempt to unregister permanent protocol %d\n", p->protocol); } else { spin_lock_bh(&inetsw6_lock); list_del_rcu(&p->list); spin_unlock_bh(&inetsw6_lock); synchronize_net(); } } EXPORT_SYMBOL(inet6_unregister_protosw); int inet6_sk_rebuild_header(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct dst_entry *dst; dst = __sk_dst_check(sk, np->dst_cookie); if (!dst) { struct inet_sock *inet = inet_sk(sk); struct in6_addr *final_p, final; struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = sk->sk_protocol; fl6.daddr = sk->sk_v6_daddr; fl6.saddr = np->saddr; fl6.flowlabel = np->flow_label; fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; fl6.fl6_dport = inet->inet_dport; fl6.fl6_sport = inet->inet_sport; fl6.flowi6_uid = sk->sk_uid; security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); rcu_read_lock(); final_p = fl6_update_dst(&fl6, rcu_dereference(np->opt), &final); rcu_read_unlock(); dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p); if (IS_ERR(dst)) { sk->sk_route_caps = 0; WRITE_ONCE(sk->sk_err_soft, -PTR_ERR(dst)); return PTR_ERR(dst); } ip6_dst_store(sk, dst, NULL, NULL); } return 0; } EXPORT_SYMBOL_GPL(inet6_sk_rebuild_header); bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb, const struct inet6_skb_parm *opt) { const struct ipv6_pinfo *np = inet6_sk(sk); if (np->rxopt.all) { if (((opt->flags & IP6SKB_HOPBYHOP) && (np->rxopt.bits.hopopts || np->rxopt.bits.ohopopts)) || (ip6_flowinfo((struct ipv6hdr *) skb_network_header(skb)) && np->rxopt.bits.rxflow) || (opt->srcrt && (np->rxopt.bits.srcrt || np->rxopt.bits.osrcrt)) || ((opt->dst1 || opt->dst0) && (np->rxopt.bits.dstopts || np->rxopt.bits.odstopts))) return true; } return false; } EXPORT_SYMBOL_GPL(ipv6_opt_accepted); static struct packet_type ipv6_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_IPV6), .func = ipv6_rcv, .list_func = ipv6_list_rcv, }; static int __init ipv6_packet_init(void) { dev_add_pack(&ipv6_packet_type); return 0; } static void ipv6_packet_cleanup(void) { dev_remove_pack(&ipv6_packet_type); } static int __net_init ipv6_init_mibs(struct net *net) { int i; net->mib.udp_stats_in6 = alloc_percpu(struct udp_mib); if (!net->mib.udp_stats_in6) return -ENOMEM; net->mib.udplite_stats_in6 = alloc_percpu(struct udp_mib); if (!net->mib.udplite_stats_in6) goto err_udplite_mib; net->mib.ipv6_statistics = alloc_percpu(struct ipstats_mib); if (!net->mib.ipv6_statistics) goto err_ip_mib; for_each_possible_cpu(i) { struct ipstats_mib *af_inet6_stats; af_inet6_stats = per_cpu_ptr(net->mib.ipv6_statistics, i); u64_stats_init(&af_inet6_stats->syncp); } net->mib.icmpv6_statistics = alloc_percpu(struct icmpv6_mib); if (!net->mib.icmpv6_statistics) goto err_icmp_mib; net->mib.icmpv6msg_statistics = kzalloc(sizeof(struct icmpv6msg_mib), GFP_KERNEL); if (!net->mib.icmpv6msg_statistics) goto err_icmpmsg_mib; return 0; err_icmpmsg_mib: free_percpu(net->mib.icmpv6_statistics); err_icmp_mib: free_percpu(net->mib.ipv6_statistics); err_ip_mib: free_percpu(net->mib.udplite_stats_in6); err_udplite_mib: free_percpu(net->mib.udp_stats_in6); return -ENOMEM; } static void ipv6_cleanup_mibs(struct net *net) { free_percpu(net->mib.udp_stats_in6); free_percpu(net->mib.udplite_stats_in6); free_percpu(net->mib.ipv6_statistics); free_percpu(net->mib.icmpv6_statistics); kfree(net->mib.icmpv6msg_statistics); } static int __net_init inet6_net_init(struct net *net) { int err = 0; net->ipv6.sysctl.bindv6only = 0; net->ipv6.sysctl.icmpv6_time = 1*HZ; net->ipv6.sysctl.icmpv6_echo_ignore_all = 0; net->ipv6.sysctl.icmpv6_echo_ignore_multicast = 0; net->ipv6.sysctl.icmpv6_echo_ignore_anycast = 0; net->ipv6.sysctl.icmpv6_error_anycast_as_unicast = 0; /* By default, rate limit error messages. * Except for pmtu discovery, it would break it. * proc_do_large_bitmap needs pointer to the bitmap. */ bitmap_set(net->ipv6.sysctl.icmpv6_ratemask, 0, ICMPV6_ERRMSG_MAX + 1); bitmap_clear(net->ipv6.sysctl.icmpv6_ratemask, ICMPV6_PKT_TOOBIG, 1); net->ipv6.sysctl.icmpv6_ratemask_ptr = net->ipv6.sysctl.icmpv6_ratemask; net->ipv6.sysctl.flowlabel_consistency = 1; net->ipv6.sysctl.auto_flowlabels = IP6_DEFAULT_AUTO_FLOW_LABELS; net->ipv6.sysctl.idgen_retries = 3; net->ipv6.sysctl.idgen_delay = 1 * HZ; net->ipv6.sysctl.flowlabel_state_ranges = 0; net->ipv6.sysctl.max_dst_opts_cnt = IP6_DEFAULT_MAX_DST_OPTS_CNT; net->ipv6.sysctl.max_hbh_opts_cnt = IP6_DEFAULT_MAX_HBH_OPTS_CNT; net->ipv6.sysctl.max_dst_opts_len = IP6_DEFAULT_MAX_DST_OPTS_LEN; net->ipv6.sysctl.max_hbh_opts_len = IP6_DEFAULT_MAX_HBH_OPTS_LEN; net->ipv6.sysctl.fib_notify_on_flag_change = 0; atomic_set(&net->ipv6.fib6_sernum, 1); net->ipv6.sysctl.ioam6_id = IOAM6_DEFAULT_ID; net->ipv6.sysctl.ioam6_id_wide = IOAM6_DEFAULT_ID_WIDE; err = ipv6_init_mibs(net); if (err) return err; #ifdef CONFIG_PROC_FS err = udp6_proc_init(net); if (err) goto out; err = tcp6_proc_init(net); if (err) goto proc_tcp6_fail; err = ac6_proc_init(net); if (err) goto proc_ac6_fail; #endif return err; #ifdef CONFIG_PROC_FS proc_ac6_fail: tcp6_proc_exit(net); proc_tcp6_fail: udp6_proc_exit(net); out: ipv6_cleanup_mibs(net); return err; #endif } static void __net_exit inet6_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS udp6_proc_exit(net); tcp6_proc_exit(net); ac6_proc_exit(net); #endif ipv6_cleanup_mibs(net); } static struct pernet_operations inet6_net_ops = { .init = inet6_net_init, .exit = inet6_net_exit, }; static int ipv6_route_input(struct sk_buff *skb) { ip6_route_input(skb); return skb_dst(skb)->error; } static const struct ipv6_stub ipv6_stub_impl = { .ipv6_sock_mc_join = ipv6_sock_mc_join, .ipv6_sock_mc_drop = ipv6_sock_mc_drop, .ipv6_dst_lookup_flow = ip6_dst_lookup_flow, .ipv6_route_input = ipv6_route_input, .fib6_get_table = fib6_get_table, .fib6_table_lookup = fib6_table_lookup, .fib6_lookup = fib6_lookup, .fib6_select_path = fib6_select_path, .ip6_mtu_from_fib6 = ip6_mtu_from_fib6, .fib6_nh_init = fib6_nh_init, .fib6_nh_release = fib6_nh_release, .fib6_nh_release_dsts = fib6_nh_release_dsts, .fib6_update_sernum = fib6_update_sernum_stub, .fib6_rt_update = fib6_rt_update, .ip6_del_rt = ip6_del_rt, .udpv6_encap_enable = udpv6_encap_enable, .ndisc_send_na = ndisc_send_na, #if IS_ENABLED(CONFIG_XFRM) .xfrm6_local_rxpmtu = xfrm6_local_rxpmtu, .xfrm6_udp_encap_rcv = xfrm6_udp_encap_rcv, .xfrm6_rcv_encap = xfrm6_rcv_encap, #endif .nd_tbl = &nd_tbl, .ipv6_fragment = ip6_fragment, .ipv6_dev_find = ipv6_dev_find, }; static const struct ipv6_bpf_stub ipv6_bpf_stub_impl = { .inet6_bind = __inet6_bind, .udp6_lib_lookup = __udp6_lib_lookup, .ipv6_setsockopt = do_ipv6_setsockopt, .ipv6_getsockopt = do_ipv6_getsockopt, }; static int __init inet6_init(void) { struct list_head *r; int err = 0; sock_skb_cb_check_size(sizeof(struct inet6_skb_parm)); /* Register the socket-side information for inet6_create. */ for (r = &inetsw6[0]; r < &inetsw6[SOCK_MAX]; ++r) INIT_LIST_HEAD(r); raw_hashinfo_init(&raw_v6_hashinfo); if (disable_ipv6_mod) { pr_info("Loaded, but administratively disabled, reboot required to enable\n"); goto out; } err = proto_register(&tcpv6_prot, 1); if (err) goto out; err = proto_register(&udpv6_prot, 1); if (err) goto out_unregister_tcp_proto; err = proto_register(&udplitev6_prot, 1); if (err) goto out_unregister_udp_proto; err = proto_register(&rawv6_prot, 1); if (err) goto out_unregister_udplite_proto; err = proto_register(&pingv6_prot, 1); if (err) goto out_unregister_raw_proto; /* We MUST register RAW sockets before we create the ICMP6, * IGMP6, or NDISC control sockets. */ err = rawv6_init(); if (err) goto out_unregister_ping_proto; /* Register the family here so that the init calls below will * be able to create sockets. (?? is this dangerous ??) */ err = sock_register(&inet6_family_ops); if (err) goto out_sock_register_fail; /* * ipngwg API draft makes clear that the correct semantics * for TCP and UDP is to consider one TCP and UDP instance * in a host available by both INET and INET6 APIs and * able to communicate via both network protocols. */ err = register_pernet_subsys(&inet6_net_ops); if (err) goto register_pernet_fail; err = ip6_mr_init(); if (err) goto ipmr_fail; err = icmpv6_init(); if (err) goto icmp_fail; err = ndisc_init(); if (err) goto ndisc_fail; err = igmp6_init(); if (err) goto igmp_fail; err = ipv6_netfilter_init(); if (err) goto netfilter_fail; /* Create /proc/foo6 entries. */ #ifdef CONFIG_PROC_FS err = -ENOMEM; if (raw6_proc_init()) goto proc_raw6_fail; if (udplite6_proc_init()) goto proc_udplite6_fail; if (ipv6_misc_proc_init()) goto proc_misc6_fail; if (if6_proc_init()) goto proc_if6_fail; #endif err = ip6_route_init(); if (err) goto ip6_route_fail; err = ndisc_late_init(); if (err) goto ndisc_late_fail; err = ip6_flowlabel_init(); if (err) goto ip6_flowlabel_fail; err = ipv6_anycast_init(); if (err) goto ipv6_anycast_fail; err = addrconf_init(); if (err) goto addrconf_fail; /* Init v6 extension headers. */ err = ipv6_exthdrs_init(); if (err) goto ipv6_exthdrs_fail; err = ipv6_frag_init(); if (err) goto ipv6_frag_fail; /* Init v6 transport protocols. */ err = udpv6_init(); if (err) goto udpv6_fail; err = udplitev6_init(); if (err) goto udplitev6_fail; err = udpv6_offload_init(); if (err) goto udpv6_offload_fail; err = tcpv6_init(); if (err) goto tcpv6_fail; err = ipv6_packet_init(); if (err) goto ipv6_packet_fail; err = pingv6_init(); if (err) goto pingv6_fail; err = calipso_init(); if (err) goto calipso_fail; err = seg6_init(); if (err) goto seg6_fail; err = rpl_init(); if (err) goto rpl_fail; err = ioam6_init(); if (err) goto ioam6_fail; err = igmp6_late_init(); if (err) goto igmp6_late_err; #ifdef CONFIG_SYSCTL err = ipv6_sysctl_register(); if (err) goto sysctl_fail; #endif /* ensure that ipv6 stubs are visible only after ipv6 is ready */ wmb(); ipv6_stub = &ipv6_stub_impl; ipv6_bpf_stub = &ipv6_bpf_stub_impl; out: return err; #ifdef CONFIG_SYSCTL sysctl_fail: igmp6_late_cleanup(); #endif igmp6_late_err: ioam6_exit(); ioam6_fail: rpl_exit(); rpl_fail: seg6_exit(); seg6_fail: calipso_exit(); calipso_fail: pingv6_exit(); pingv6_fail: ipv6_packet_cleanup(); ipv6_packet_fail: tcpv6_exit(); tcpv6_fail: udpv6_offload_exit(); udpv6_offload_fail: udplitev6_exit(); udplitev6_fail: udpv6_exit(); udpv6_fail: ipv6_frag_exit(); ipv6_frag_fail: ipv6_exthdrs_exit(); ipv6_exthdrs_fail: addrconf_cleanup(); addrconf_fail: ipv6_anycast_cleanup(); ipv6_anycast_fail: ip6_flowlabel_cleanup(); ip6_flowlabel_fail: ndisc_late_cleanup(); ndisc_late_fail: ip6_route_cleanup(); ip6_route_fail: #ifdef CONFIG_PROC_FS if6_proc_exit(); proc_if6_fail: ipv6_misc_proc_exit(); proc_misc6_fail: udplite6_proc_exit(); proc_udplite6_fail: raw6_proc_exit(); proc_raw6_fail: #endif ipv6_netfilter_fini(); netfilter_fail: igmp6_cleanup(); igmp_fail: ndisc_cleanup(); ndisc_fail: icmpv6_cleanup(); icmp_fail: ip6_mr_cleanup(); ipmr_fail: unregister_pernet_subsys(&inet6_net_ops); register_pernet_fail: sock_unregister(PF_INET6); rtnl_unregister_all(PF_INET6); out_sock_register_fail: rawv6_exit(); out_unregister_ping_proto: proto_unregister(&pingv6_prot); out_unregister_raw_proto: proto_unregister(&rawv6_prot); out_unregister_udplite_proto: proto_unregister(&udplitev6_prot); out_unregister_udp_proto: proto_unregister(&udpv6_prot); out_unregister_tcp_proto: proto_unregister(&tcpv6_prot); goto out; } module_init(inet6_init); MODULE_ALIAS_NETPROTO(PF_INET6);
linux-master
net/ipv6/af_inet6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 output functions * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on linux/net/ipv4/ip_output.c * * Changes: * A.N.Kuznetsov : airthmetics in fragmentation. * extension headers are implemented. * route changes now work. * ip6_forward does not confuse sniffers. * etc. * * H. von Brand : Added missing #include <linux/string.h> * Imran Patel : frag id should be in NBO * Kazunori MIYAZAWA @USAGI * : add ip6_append_data and related functions * for datagram xmit */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/route.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/bpf-cgroup.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/gso.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/rawv6.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/checksum.h> #include <linux/mroute6.h> #include <net/l3mdev.h> #include <net/lwtunnel.h> #include <net/ip_tunnels.h> static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; struct inet6_dev *idev = ip6_dst_idev(dst); unsigned int hh_len = LL_RESERVED_SPACE(dev); const struct in6_addr *daddr, *nexthop; struct ipv6hdr *hdr; struct neighbour *neigh; int ret; /* Be paranoid, rather than too clever. */ if (unlikely(hh_len > skb_headroom(skb)) && dev->header_ops) { skb = skb_expand_head(skb, hh_len); if (!skb) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); return -ENOMEM; } } hdr = ipv6_hdr(skb); daddr = &hdr->daddr; if (ipv6_addr_is_multicast(daddr)) { if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && ((mroute6_is_socket(net, skb) && !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || ipv6_chk_mcast_addr(dev, daddr, &hdr->saddr))) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); /* Do not check for IFF_ALLMULTI; multicast routing is not supported in any case. */ if (newskb) NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, dev_loopback_xmit); if (hdr->hop_limit == 0) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } } IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len); if (IPV6_ADDR_MC_SCOPE(daddr) <= IPV6_ADDR_SCOPE_NODELOCAL && !(dev->flags & IFF_LOOPBACK)) { kfree_skb(skb); return 0; } } if (lwtunnel_xmit_redirect(dst->lwtstate)) { int res = lwtunnel_xmit(skb); if (res != LWTUNNEL_XMIT_CONTINUE) return res; } rcu_read_lock(); nexthop = rt6_nexthop((struct rt6_info *)dst, daddr); neigh = __ipv6_neigh_lookup_noref(dev, nexthop); if (unlikely(IS_ERR_OR_NULL(neigh))) { if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dev, false); if (IS_ERR(neigh)) { rcu_read_unlock(); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTNOROUTES); kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); return -EINVAL; } } sock_confirm_neigh(skb, neigh); ret = neigh_output(neigh, skb, false); rcu_read_unlock(); return ret; } static int ip6_finish_output_gso_slowpath_drop(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { struct sk_buff *segs, *nskb; netdev_features_t features; int ret = 0; /* Please see corresponding comment in ip_finish_output_gso * describing the cases where GSO segment length exceeds the * egress MTU. */ features = netif_skb_features(skb); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { kfree_skb(skb); return -ENOMEM; } consume_skb(skb); skb_list_walk_safe(segs, segs, nskb) { int err; skb_mark_not_on_list(segs); err = ip6_fragment(net, sk, segs, ip6_finish_output2); if (err && ret == 0) ret = err; } return ret; } static int __ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { unsigned int mtu; #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm) { IP6CB(skb)->flags |= IP6SKB_REROUTED; return dst_output(net, sk, skb); } #endif mtu = ip6_skb_dst_mtu(skb); if (skb_is_gso(skb) && !(IP6CB(skb)->flags & IP6SKB_FAKEJUMBO) && !skb_gso_validate_network_len(skb, mtu)) return ip6_finish_output_gso_slowpath_drop(net, sk, skb, mtu); if ((skb->len > mtu && !skb_is_gso(skb)) || dst_allfrag(skb_dst(skb)) || (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) return ip6_fragment(net, sk, skb, ip6_finish_output2); else return ip6_finish_output2(net, sk, skb); } static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { int ret; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_SUCCESS: case NET_XMIT_CN: return __ip6_finish_output(net, sk, skb) ? : ret; default: kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); return ret; } } int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; if (unlikely(idev->cnf.disable_ipv6)) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb_reason(skb, SKB_DROP_REASON_IPV6DISABLED); return 0; } return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, indev, dev, ip6_finish_output, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } EXPORT_SYMBOL(ip6_output); bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np) { if (!np->autoflowlabel_set) return ip6_default_np_autolabel(net); else return np->autoflowlabel; } /* * xmit an sk_buff (used by TCP, SCTP and DCCP) * Note : socket lock is not held for SYNACK packets, but might be modified * by calls to skb_set_owner_w() and ipv6_local_error(), * which are using proper atomic operations or spinlocks. */ int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority) { struct net *net = sock_net(sk); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *first_hop = &fl6->daddr; struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; struct inet6_dev *idev = ip6_dst_idev(dst); struct hop_jumbo_hdr *hop_jumbo; int hoplen = sizeof(*hop_jumbo); unsigned int head_room; struct ipv6hdr *hdr; u8 proto = fl6->flowi6_proto; int seg_len = skb->len; int hlimit = -1; u32 mtu; head_room = sizeof(struct ipv6hdr) + hoplen + LL_RESERVED_SPACE(dev); if (opt) head_room += opt->opt_nflen + opt->opt_flen; if (unlikely(head_room > skb_headroom(skb))) { skb = skb_expand_head(skb, head_room); if (!skb) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); return -ENOBUFS; } } if (opt) { seg_len += opt->opt_nflen + opt->opt_flen; if (opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop, &fl6->saddr); } if (unlikely(seg_len > IPV6_MAXPLEN)) { hop_jumbo = skb_push(skb, hoplen); hop_jumbo->nexthdr = proto; hop_jumbo->hdrlen = 0; hop_jumbo->tlv_type = IPV6_TLV_JUMBO; hop_jumbo->tlv_len = 4; hop_jumbo->jumbo_payload_len = htonl(seg_len + hoplen); proto = IPPROTO_HOPOPTS; seg_len = 0; IP6CB(skb)->flags |= IP6SKB_FAKEJUMBO; } skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); /* * Fill in the IPv6 header */ if (np) hlimit = np->hop_limit; if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, np), fl6)); hdr->payload_len = htons(seg_len); hdr->nexthdr = proto; hdr->hop_limit = hlimit; hdr->saddr = fl6->saddr; hdr->daddr = *first_hop; skb->protocol = htons(ETH_P_IPV6); skb->priority = priority; skb->mark = mark; mtu = dst_mtu(dst); if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out((struct sock *)sk, skb); if (unlikely(!skb)) return 0; /* hooks should never assume socket lock is held. * we promote our socket to non const */ return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, (struct sock *)sk, skb, NULL, dev, dst_output); } skb->dev = dev; /* ipv6_local_error() does not require socket lock, * we promote our socket to non const */ ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu); IP6_INC_STATS(net, idev, IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } EXPORT_SYMBOL(ip6_xmit); static int ip6_call_ra_chain(struct sk_buff *skb, int sel) { struct ip6_ra_chain *ra; struct sock *last = NULL; read_lock(&ip6_ra_lock); for (ra = ip6_ra_chain; ra; ra = ra->next) { struct sock *sk = ra->sk; if (sk && ra->sel == sel && (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == skb->dev->ifindex)) { struct ipv6_pinfo *np = inet6_sk(sk); if (np && np->rtalert_isolate && !net_eq(sock_net(sk), dev_net(skb->dev))) { continue; } if (last) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) rawv6_rcv(last, skb2); } last = sk; } } if (last) { rawv6_rcv(last, skb); read_unlock(&ip6_ra_lock); return 1; } read_unlock(&ip6_ra_lock); return 0; } static int ip6_forward_proxy_check(struct sk_buff *skb) { struct ipv6hdr *hdr = ipv6_hdr(skb); u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; if (ipv6_ext_hdr(nexthdr)) { offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) return 0; } else offset = sizeof(struct ipv6hdr); if (nexthdr == IPPROTO_ICMPV6) { struct icmp6hdr *icmp6; if (!pskb_may_pull(skb, (skb_network_header(skb) + offset + 1 - skb->data))) return 0; icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (icmp6->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: /* For reaction involving unicast neighbor discovery * message destined to the proxied address, pass it to * input function. */ return 1; default: break; } } /* * The proxying router can't forward traffic sent to a link-local * address, so signal the sender and discard the packet. This * behavior is clarified by the MIPv6 specification. */ if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { dst_link_failure(skb); return -1; } return 0; } static inline int ip6_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); #ifdef CONFIG_NET_SWITCHDEV if (skb->offload_l3_fwd_mark) { consume_skb(skb); return 0; } #endif skb_clear_tstamp(skb); return dst_output(net, sk, skb); } static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) { if (skb->len <= mtu) return false; /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) return true; if (skb->ignore_df) return false; if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu)) return false; return true; } int ip6_forward(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr = ipv6_hdr(skb); struct inet6_skb_parm *opt = IP6CB(skb); struct net *net = dev_net(dst->dev); struct inet6_dev *idev; SKB_DR(reason); u32 mtu; idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); if (net->ipv6.devconf_all->forwarding == 0) goto error; if (skb->pkt_type != PACKET_HOST) goto drop; if (unlikely(skb->sk)) goto drop; if (skb_warn_if_lro(skb)) goto drop; if (!net->ipv6.devconf_all->disable_policy && (!idev || !idev->cnf.disable_policy) && !xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } skb_forward_csum(skb); /* * We DO NOT make any processing on * RA packets, pushing them to user level AS IS * without ane WARRANTY that application will be able * to interpret them. The reason is that we * cannot make anything clever here. * * We are not end-node, so that if packet contains * AH/ESP, we cannot make anything. * Defragmentation also would be mistake, RA packets * cannot be fragmented, because there is no warranty * that different fragments will go along one path. --ANK */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { if (ip6_call_ra_chain(skb, ntohs(opt->ra))) return 0; } /* * check and decrement ttl */ if (hdr->hop_limit <= 1) { icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); kfree_skb_reason(skb, SKB_DROP_REASON_IP_INHDR); return -ETIMEDOUT; } /* XXX: idev->cnf.proxy_ndp? */ if (net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { int proxied = ip6_forward_proxy_check(skb); if (proxied > 0) { /* It's tempting to decrease the hop limit * here by 1, as we do at the end of the * function too. * * But that would be incorrect, as proxying is * not forwarding. The ip6_input function * will handle this packet locally, and it * depends on the hop limit being unchanged. * * One example is the NDP hop limit, that * always has to stay 255, but other would be * similar checks around RA packets, where the * user can even change the desired limit. */ return ip6_input(skb); } else if (proxied < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } } if (!xfrm6_route_forward(skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); SKB_DR_SET(reason, XFRM_POLICY); goto drop; } dst = skb_dst(skb); /* IPv6 specs say nothing about it, but it is clear that we cannot send redirects to source routed frames. We don't send redirects to frames decapsulated from IPsec. */ if (IP6CB(skb)->iif == dst->dev->ifindex && opt->srcrt == 0 && !skb_sec_path(skb)) { struct in6_addr *target = NULL; struct inet_peer *peer; struct rt6_info *rt; /* * incoming and outgoing devices are the same * send a redirect. */ rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) target = &rt->rt6i_gateway; else target = &hdr->daddr; peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1); /* Limit redirects both by destination (here) and by source (inside ndisc_send_redirect) */ if (inet_peer_xrlim_allow(peer, 1*HZ)) ndisc_send_redirect(skb, target); if (peer) inet_putpeer(peer); } else { int addrtype = ipv6_addr_type(&hdr->saddr); /* This check is security critical. */ if (addrtype == IPV6_ADDR_ANY || addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) goto error; if (addrtype & IPV6_ADDR_LINKLOCAL) { icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOT_NEIGHBOUR, 0); goto error; } } mtu = ip6_dst_mtu_maybe_forward(dst, true); if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; if (ip6_pkt_too_big(skb, mtu)) { /* Again, force OUTPUT device used as source address */ skb->dev = dst->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTOOBIGERRORS); __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS); kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG); return -EMSGSIZE; } if (skb_cow(skb, dst->dev->hard_header_len)) { __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS); goto drop; } hdr = ipv6_hdr(skb); /* Mangling hops number delayed to point after skb COW */ hdr->hop_limit--; return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, net, NULL, skb, skb->dev, dst->dev, ip6_forward_finish); error: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); SKB_DR_SET(reason, IP_INADDRERRORS); drop: kfree_skb_reason(skb, reason); return -EINVAL; } static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; skb_dst_drop(to); skb_dst_set(to, dst_clone(skb_dst(from))); to->dev = from->dev; to->mark = from->mark; skb_copy_hash(to, from); #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_ext_copy(to, from); skb_copy_secmark(to, from); } int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_fraglist_iter *iter) { unsigned int first_len; struct frag_hdr *fh; /* BUILD HEADER */ *prevhdr = NEXTHDR_FRAGMENT; iter->tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); if (!iter->tmp_hdr) return -ENOMEM; iter->frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); iter->offset = 0; iter->hlen = hlen; iter->frag_id = frag_id; iter->nexthdr = nexthdr; __skb_pull(skb, hlen); fh = __skb_push(skb, sizeof(struct frag_hdr)); __skb_push(skb, hlen); skb_reset_network_header(skb); memcpy(skb_network_header(skb), iter->tmp_hdr, hlen); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(IP6_MF); fh->identification = frag_id; first_len = skb_pagelen(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); return 0; } EXPORT_SYMBOL(ip6_fraglist_init); void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter) { struct sk_buff *frag = iter->frag; unsigned int hlen = iter->hlen; struct frag_hdr *fh; frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); fh = __skb_push(frag, sizeof(struct frag_hdr)); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iter->tmp_hdr, hlen); iter->offset += skb->len - hlen - sizeof(struct frag_hdr); fh->nexthdr = iter->nexthdr; fh->reserved = 0; fh->frag_off = htons(iter->offset); if (frag->next) fh->frag_off |= htons(IP6_MF); fh->identification = iter->frag_id; ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ip6_copy_metadata(frag, skb); } EXPORT_SYMBOL(ip6_fraglist_prepare); void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state) { state->prevhdr = prevhdr; state->nexthdr = nexthdr; state->frag_id = frag_id; state->hlen = hlen; state->mtu = mtu; state->left = skb->len - hlen; /* Space per frame */ state->ptr = hlen; /* Where to start from */ state->hroom = hdr_room; state->troom = needed_tailroom; state->offset = 0; } EXPORT_SYMBOL(ip6_frag_init); struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state) { u8 *prevhdr = state->prevhdr, *fragnexthdr_offset; struct sk_buff *frag; struct frag_hdr *fh; unsigned int len; len = state->left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > state->mtu) len = state->mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < state->left) len &= ~7; /* Allocate buffer */ frag = alloc_skb(len + state->hlen + sizeof(struct frag_hdr) + state->hroom + state->troom, GFP_ATOMIC); if (!frag) return ERR_PTR(-ENOMEM); /* * Set up data on packet */ ip6_copy_metadata(frag, skb); skb_reserve(frag, state->hroom); skb_put(frag, len + state->hlen + sizeof(struct frag_hdr)); skb_reset_network_header(frag); fh = (struct frag_hdr *)(skb_network_header(frag) + state->hlen); frag->transport_header = (frag->network_header + state->hlen + sizeof(struct frag_hdr)); /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(frag, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(frag), state->hlen); fragnexthdr_offset = skb_network_header(frag); fragnexthdr_offset += prevhdr - skb_network_header(skb); *fragnexthdr_offset = NEXTHDR_FRAGMENT; /* * Build fragment header. */ fh->nexthdr = state->nexthdr; fh->reserved = 0; fh->identification = state->frag_id; /* * Copy a block of the IP datagram. */ BUG_ON(skb_copy_bits(skb, state->ptr, skb_transport_header(frag), len)); state->left -= len; fh->frag_off = htons(state->offset); if (state->left > 0) fh->frag_off |= htons(IP6_MF); ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); state->ptr += len; state->offset += len; return frag; } EXPORT_SYMBOL(ip6_frag_next); int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct sk_buff *frag; struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; bool mono_delivery_time = skb->mono_delivery_time; struct ip6_frag_state state; unsigned int mtu, hlen, nexthdr_offset; ktime_t tstamp = skb->tstamp; int hroom, err = 0; __be32 frag_id; u8 *prevhdr, nexthdr = 0; err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) goto fail; hlen = err; nexthdr = *prevhdr; nexthdr_offset = prevhdr - skb_network_header(skb); mtu = ip6_skb_dst_mtu(skb); /* We must not fragment if the socket is set to force MTU discovery * or if the skb it not generated by a local socket. */ if (unlikely(!skb->ignore_df && skb->len > mtu)) goto fail_toobig; if (IP6CB(skb)->frag_max_size) { if (IP6CB(skb)->frag_max_size > mtu) goto fail_toobig; /* don't send fragments larger than what we received */ mtu = IP6CB(skb)->frag_max_size; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; } if (np && np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } if (mtu < hlen + sizeof(struct frag_hdr) + 8) goto fail_toobig; mtu -= hlen + sizeof(struct frag_hdr); frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr); if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto fail; prevhdr = skb_network_header(skb) + nexthdr_offset; hroom = LL_RESERVED_SPACE(rt->dst.dev); if (skb_has_frag_list(skb)) { unsigned int first_len = skb_pagelen(skb); struct ip6_fraglist_iter iter; struct sk_buff *frag2; if (first_len - hlen > mtu || ((first_len - hlen) & 7) || skb_cloned(skb) || skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id, &iter); if (err < 0) goto fail; /* We prevent @rt from being freed. */ rcu_read_lock(); for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) ip6_fraglist_prepare(skb, &iter); skb_set_delivery_time(skb, tstamp, mono_delivery_time); err = output(net, sk, skb); if (!err) IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGCREATES); if (err || !iter.frag) break; skb = ip6_fraglist_next(&iter); } kfree(iter.tmp_hdr); if (err == 0) { IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGOKS); rcu_read_unlock(); return 0; } kfree_skb_list(iter.frag); IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGFAILS); rcu_read_unlock(); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* * Fragment the datagram. */ ip6_frag_init(skb, hlen, mtu, rt->dst.dev->needed_tailroom, LL_RESERVED_SPACE(rt->dst.dev), prevhdr, nexthdr, frag_id, &state); /* * Keep copying data until we run out. */ while (state.left > 0) { frag = ip6_frag_next(skb, &state); if (IS_ERR(frag)) { err = PTR_ERR(frag); goto fail; } /* * Put this fragment into the sending queue. */ skb_set_delivery_time(frag, tstamp, mono_delivery_time); err = output(net, sk, frag); if (err) goto fail; IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGCREATES); } IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGOKS); consume_skb(skb); return err; fail_toobig: if (skb->sk && dst_allfrag(skb_dst(skb))) sk_gso_disable(skb->sk); icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); err = -EMSGSIZE; fail: IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return err; } static inline int ip6_rt_check(const struct rt6key *rt_key, const struct in6_addr *fl_addr, const struct in6_addr *addr_cache) { return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); } static struct dst_entry *ip6_sk_dst_check(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); struct rt6_info *rt; if (!dst) goto out; if (dst->ops->family != AF_INET6) { dst_release(dst); return NULL; } rt = (struct rt6_info *)dst; /* Yes, checking route validity in not connected * case is not very simple. Take into account, * that we do not support routing by source, TOS, * and MSG_DONTROUTE --ANK (980726) * * 1. ip6_rt_check(): If route was host route, * check that cached destination is current. * If it is network route, we still may * check its validity using saved pointer * to the last used address: daddr_cache. * We do not want to save whole address now, * (because main consumer of this service * is tcp, which has not this problem), * so that the last trick works only on connected * sockets. * 2. oif also should be the same. */ if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || #ifdef CONFIG_IPV6_SUBTREES ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || #endif (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex)) { dst_release(dst); dst = NULL; } out: return dst; } static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { #ifdef CONFIG_IPV6_OPTIMISTIC_DAD struct neighbour *n; struct rt6_info *rt; #endif int err; int flags = 0; /* The correct way to handle this would be to do * ip6_route_get_saddr, and then ip6_route_output; however, * the route-specific preferred source forces the * ip6_route_output call _before_ ip6_route_get_saddr. * * In source specific routing (no src=any default route), * ip6_route_output will fail given src=any saddr, though, so * that's why we try it again later. */ if (ipv6_addr_any(&fl6->saddr)) { struct fib6_info *from; struct rt6_info *rt; *dst = ip6_route_output(net, sk, fl6); rt = (*dst)->error ? NULL : (struct rt6_info *)*dst; rcu_read_lock(); from = rt ? rcu_dereference(rt->from) : NULL; err = ip6_route_get_saddr(net, from, &fl6->daddr, sk ? inet6_sk(sk)->srcprefs : 0, &fl6->saddr); rcu_read_unlock(); if (err) goto out_err_release; /* If we had an erroneous initial result, pretend it * never existed and let the SA-enabled version take * over. */ if ((*dst)->error) { dst_release(*dst); *dst = NULL; } if (fl6->flowi6_oif) flags |= RT6_LOOKUP_F_IFACE; } if (!*dst) *dst = ip6_route_output_flags(net, sk, fl6, flags); err = (*dst)->error; if (err) goto out_err_release; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * Here if the dst entry we've looked up * has a neighbour entry that is in the INCOMPLETE * state and the src address from the flow is * marked as OPTIMISTIC, we release the found * dst entry and replace it instead with the * dst entry of the nexthop router */ rt = (struct rt6_info *) *dst; rcu_read_lock(); n = __ipv6_neigh_lookup_noref(rt->dst.dev, rt6_nexthop(rt, &fl6->daddr)); err = n && !(READ_ONCE(n->nud_state) & NUD_VALID) ? -EINVAL : 0; rcu_read_unlock(); if (err) { struct inet6_ifaddr *ifp; struct flowi6 fl_gw6; int redirect; ifp = ipv6_get_ifaddr(net, &fl6->saddr, (*dst)->dev, 1); redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); if (ifp) in6_ifa_put(ifp); if (redirect) { /* * We need to get the dst entry for the * default router instead */ dst_release(*dst); memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); *dst = ip6_route_output(net, sk, &fl_gw6); err = (*dst)->error; if (err) goto out_err_release; } } #endif if (ipv6_addr_v4mapped(&fl6->saddr) && !(ipv6_addr_v4mapped(&fl6->daddr) || ipv6_addr_any(&fl6->daddr))) { err = -EAFNOSUPPORT; goto out_err_release; } return 0; out_err_release: dst_release(*dst); *dst = NULL; if (err == -ENETUNREACH) IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); return err; } /** * ip6_dst_lookup - perform route lookup on flow * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @dst: pointer to dst_entry * for result * @fl6: flow to lookup * * This function performs a route lookup on the given flow. * * It returns zero on success, or a standard errno code on error. */ int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { *dst = NULL; return ip6_dst_lookup_tail(net, sk, dst, fl6); } EXPORT_SYMBOL_GPL(ip6_dst_lookup); /** * ip6_dst_lookup_flow - perform route lookup on flow with ipsec * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * * This function performs a route lookup on the given flow. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { struct dst_entry *dst = NULL; int err; err = ip6_dst_lookup_tail(net, sk, &dst, fl6); if (err) return ERR_PTR(err); if (final_dst) fl6->daddr = *final_dst; return xfrm_lookup_route(net, dst, flowi6_to_flowi(fl6), sk, 0); } EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); /** * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow * @sk: socket which provides the dst cache and route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * @connected: whether @sk is connected or not * * This function performs a route lookup on the given flow with the * possibility of using the cached route in the socket if it is valid. * It will take the socket dst lock when operating on the dst cache. * As a result, this function can only be used in process context. * * In addition, for a connected socket, cache the dst in the socket * if the current cache is not valid. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst, bool connected) { struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); dst = ip6_sk_dst_check(sk, dst, fl6); if (dst) return dst; dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_dst); if (connected && !IS_ERR(dst)) ip6_sk_dst_store_flow(sk, dst_clone(dst), fl6); return dst; } EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); /** * ip6_dst_lookup_tunnel - perform route lookup on tunnel * @skb: Packet for which lookup is done * @dev: Tunnel device * @net: Network namespace of tunnel device * @sock: Socket which provides route info * @saddr: Memory to store the src ip address * @info: Tunnel information * @protocol: IP protocol * @use_cache: Flag to enable cache usage * This function performs a route lookup on a tunnel * * It returns a valid dst pointer and stores src address to be used in * tunnel in param saddr on success, else a pointer encoded error code. */ struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, struct socket *sock, struct in6_addr *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache) { struct dst_entry *dst = NULL; #ifdef CONFIG_DST_CACHE struct dst_cache *dst_cache; #endif struct flowi6 fl6; __u8 prio; #ifdef CONFIG_DST_CACHE dst_cache = (struct dst_cache *)&info->dst_cache; if (use_cache) { dst = dst_cache_get_ip6(dst_cache, saddr); if (dst) return dst; } #endif memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = protocol; fl6.daddr = info->key.u.ipv6.dst; fl6.saddr = info->key.u.ipv6.src; prio = info->key.tos; fl6.flowlabel = ip6_make_flowinfo(prio, info->key.label); dst = ipv6_stub->ipv6_dst_lookup_flow(net, sock->sk, &fl6, NULL); if (IS_ERR(dst)) { netdev_dbg(dev, "no route to %pI6\n", &fl6.daddr); return ERR_PTR(-ENETUNREACH); } if (dst->dev == dev) { /* is this necessary? */ netdev_dbg(dev, "circular route to %pI6\n", &fl6.daddr); dst_release(dst); return ERR_PTR(-ELOOP); } #ifdef CONFIG_DST_CACHE if (use_cache) dst_cache_set_ip6(dst_cache, dst, &fl6.saddr); #endif *saddr = fl6.saddr; return dst; } EXPORT_SYMBOL_GPL(ip6_dst_lookup_tunnel); static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static void ip6_append_data_mtu(unsigned int *mtu, int *maxfraglen, unsigned int fragheaderlen, struct sk_buff *skb, struct rt6_info *rt, unsigned int orig_mtu) { if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { if (!skb) { /* first fragment, reserve header_len */ *mtu = orig_mtu - rt->dst.header_len; } else { /* * this fragment is not first, the headers * space is regarded as data space. */ *mtu = orig_mtu; } *maxfraglen = ((*mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); } } static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6, struct rt6_info *rt) { struct ipv6_pinfo *np = inet6_sk(sk); unsigned int mtu; struct ipv6_txoptions *nopt, *opt = ipc6->opt; /* callers pass dst together with a reference, set it first so * ip6_cork_release() can put it down even in case of an error. */ cork->base.dst = &rt->dst; /* * setup for corking */ if (opt) { if (WARN_ON(v6_cork->opt)) return -EINVAL; nopt = v6_cork->opt = kzalloc(sizeof(*opt), sk->sk_allocation); if (unlikely(!nopt)) return -ENOBUFS; nopt->tot_len = sizeof(*opt); nopt->opt_flen = opt->opt_flen; nopt->opt_nflen = opt->opt_nflen; nopt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); if (opt->dst0opt && !nopt->dst0opt) return -ENOBUFS; nopt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); if (opt->dst1opt && !nopt->dst1opt) return -ENOBUFS; nopt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); if (opt->hopopt && !nopt->hopopt) return -ENOBUFS; nopt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); if (opt->srcrt && !nopt->srcrt) return -ENOBUFS; /* need source address above miyazawa*/ } v6_cork->hop_limit = ipc6->hlimit; v6_cork->tclass = ipc6->tclass; if (rt->dst.flags & DST_XFRM_TUNNEL) mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(&rt->dst); else mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(xfrm_dst_path(&rt->dst)); if (np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } cork->base.fragsize = mtu; cork->base.gso_size = ipc6->gso_size; cork->base.tx_flags = 0; cork->base.mark = ipc6->sockc.mark; sock_tx_timestamp(sk, ipc6->sockc.tsflags, &cork->base.tx_flags); if (dst_allfrag(xfrm_dst_path(&rt->dst))) cork->base.flags |= IPCORK_ALLFRAG; cork->base.length = 0; cork->base.transmit_time = ipc6->sockc.transmit_time; return 0; } static int __ip6_append_data(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork_full, struct inet6_cork *v6_cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, unsigned int flags, struct ipcm6_cookie *ipc6) { struct sk_buff *skb, *skb_prev = NULL; struct inet_cork *cork = &cork_full->base; struct flowi6 *fl6 = &cork_full->fl.u.ip6; unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu, pmtu; struct ubuf_info *uarg = NULL; int exthdrlen = 0; int dst_exthdrlen = 0; int hh_len; int copy; int err; int offset = 0; bool zc = false; u32 tskey = 0; struct rt6_info *rt = (struct rt6_info *)cork->dst; struct ipv6_txoptions *opt = v6_cork->opt; int csummode = CHECKSUM_NONE; unsigned int maxnonfragsize, headersize; unsigned int wmem_alloc_delta = 0; bool paged, extra_uref = false; skb = skb_peek_tail(queue); if (!skb) { exthdrlen = opt ? opt->opt_flen : 0; dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; } paged = !!cork->gso_size; mtu = cork->gso_size ? IP6_MAX_MTU : cork->fragsize; orig_mtu = mtu; if (cork->tx_flags & SKBTX_ANY_TSTAMP && READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) tskey = atomic_inc_return(&sk->sk_tskey) - 1; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); headersize = sizeof(struct ipv6hdr) + (opt ? opt->opt_flen + opt->opt_nflen : 0) + (dst_allfrag(&rt->dst) ? sizeof(struct frag_hdr) : 0) + rt->rt6i_nfheader_len; if (mtu <= fragheaderlen || ((mtu - fragheaderlen) & ~7) + fragheaderlen <= sizeof(struct frag_hdr)) goto emsgsize; maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); /* as per RFC 7112 section 5, the entire IPv6 Header Chain must fit * the first fragment */ if (headersize + transhdrlen > mtu) goto emsgsize; if (cork->length + length > mtu - headersize && ipc6->dontfrag && (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_ICMPV6 || sk->sk_protocol == IPPROTO_RAW)) { ipv6_local_rxpmtu(sk, fl6, mtu - headersize + sizeof(struct ipv6hdr)); goto emsgsize; } if (ip6_sk_ignore_df(sk)) maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; else maxnonfragsize = mtu; if (cork->length + length > maxnonfragsize - headersize) { emsgsize: pmtu = max_t(int, mtu - headersize + sizeof(struct ipv6hdr), 0); ipv6_local_error(sk, EMSGSIZE, fl6, pmtu); return -EMSGSIZE; } /* CHECKSUM_PARTIAL only with no extension headers and when * we are not going to fragment */ if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && headersize == sizeof(struct ipv6hdr) && length <= mtu - headersize && (!(flags & MSG_MORE) || cork->gso_size) && rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) csummode = CHECKSUM_PARTIAL; if ((flags & MSG_ZEROCOPY) && length) { struct msghdr *msg = from; if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) return -EINVAL; /* Leave uarg NULL if can't zerocopy, callers should * be able to handle it. */ if ((rt->dst.dev->features & NETIF_F_SG) && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; uarg = msg->msg_ubuf; } } else if (sock_flag(sk, SOCK_ZEROCOPY)) { uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); if (!uarg) return -ENOBUFS; extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ if (rt->dst.dev->features & NETIF_F_SG && csummode == CHECKSUM_PARTIAL) { paged = true; zc = true; } else { uarg_to_msgzc(uarg)->zerocopy = 0; skb_zcopy_set(skb, uarg, &extra_uref); } } } else if ((flags & MSG_SPLICE_PAGES) && length) { if (inet_test_bit(HDRINCL, sk)) return -EPERM; if (rt->dst.dev->features & NETIF_F_SG && getfrag == ip_generic_getfrag) /* We need an empty buffer to attach stuff to */ paged = true; else flags &= ~MSG_SPLICE_PAGES; } /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen, alloc_extra; unsigned int pagedlen; alloc_new_skb: /* There's no room in the current skb */ if (skb) fraggap = skb->len - maxfraglen; else fraggap = 0; /* update mtu and maxfraglen if necessary */ if (!skb || !skb_prev) ip6_append_data_mtu(&mtu, &maxfraglen, fragheaderlen, skb, rt, orig_mtu); skb_prev = skb; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; fraglen = datalen + fragheaderlen; pagedlen = 0; alloc_extra = hh_len; alloc_extra += dst_exthdrlen; alloc_extra += rt->dst.trailer_len; /* We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloc_extra += sizeof(struct frag_hdr); if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else if (!paged && (fraglen + alloc_extra < SKB_MAX_ALLOC || !(rt->dst.dev->features & NETIF_F_SG))) alloclen = fraglen; else { alloclen = fragheaderlen + transhdrlen; pagedlen = datalen - transhdrlen; } alloclen += alloc_extra; if (datalen != length + fraggap) { /* * this is not the last fragment, the trailer * space is regarded as data space. */ datalen += rt->dst.trailer_len; } fraglen = datalen + fragheaderlen; copy = datalen - transhdrlen - fraggap - pagedlen; /* [!] NOTE: copy may be negative if pagedlen>0 * because then the equation may reduces to -fraggap. */ if (copy < 0 && !(flags & MSG_SPLICE_PAGES)) { err = -EINVAL; goto error; } if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 2 * sk->sk_sndbuf) skb = alloc_skb(alloclen, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation and ipsec header */ skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + dst_exthdrlen); /* * Find where to start putting bytes */ data = skb_put(skb, fraglen - pagedlen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } else if (flags & MSG_SPLICE_PAGES) { copy = 0; } offset += copy; length -= copy + transhdrlen; transhdrlen = 0; exthdrlen = 0; dst_exthdrlen = 0; /* Only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = cork->tx_flags; cork->tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; skb_zcopy_set(skb, uarg, &extra_uref); if ((flags & MSG_CONFIRM) && !skb_prev) skb_set_dst_pending_confirm(skb, 1); /* * Put the packet on the pending queue */ if (!skb->destructor) { skb->destructor = sock_wfree; skb->sk = sk; wmem_alloc_delta += skb->truesize; } __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG) && skb_tailroom(skb) >= copy) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else if (flags & MSG_SPLICE_PAGES) { struct msghdr *msg = from; err = -EIO; if (WARN_ON_ONCE(copy > msg->msg_iter.count)) goto error; err = skb_splice_from_iter(skb, &msg->msg_iter, copy, sk->sk_allocation); if (err < 0) goto error; copy = err; wmem_alloc_delta += copy; } else if (!zc) { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; skb_zcopy_downgrade_managed(skb); if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; wmem_alloc_delta += copy; } else { err = skb_zerocopy_iter_dgram(skb, from, copy); if (err < 0) goto error; } offset += copy; length -= copy; } if (wmem_alloc_delta) refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return 0; error_efault: err = -EFAULT; error: net_zcopy_put_abort(uarg, extra_uref); cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return err; } int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); int exthdrlen; int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { /* * setup for corking */ dst_hold(&rt->dst); err = ip6_setup_cork(sk, &inet->cork, &np->cork, ipc6, rt); if (err) return err; inet->cork.fl.u.ip6 = *fl6; exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); length += exthdrlen; transhdrlen += exthdrlen; } else { transhdrlen = 0; } return __ip6_append_data(sk, &sk->sk_write_queue, &inet->cork, &np->cork, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags, ipc6); } EXPORT_SYMBOL_GPL(ip6_append_data); static void ip6_cork_steal_dst(struct sk_buff *skb, struct inet_cork_full *cork) { struct dst_entry *dst = cork->base.dst; cork->base.dst = NULL; cork->base.flags &= ~IPCORK_ALLFRAG; skb_dst_set(skb, dst); } static void ip6_cork_release(struct inet_cork_full *cork, struct inet6_cork *v6_cork) { if (v6_cork->opt) { struct ipv6_txoptions *opt = v6_cork->opt; kfree(opt->dst0opt); kfree(opt->dst1opt); kfree(opt->hopopt); kfree(opt->srcrt); kfree(opt); v6_cork->opt = NULL; } if (cork->base.dst) { dst_release(cork->base.dst); cork->base.dst = NULL; cork->base.flags &= ~IPCORK_ALLFRAG; } } struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct in6_addr *final_dst; struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); struct ipv6hdr *hdr; struct ipv6_txoptions *opt = v6_cork->opt; struct rt6_info *rt = (struct rt6_info *)cork->base.dst; struct flowi6 *fl6 = &cork->fl.u.ip6; unsigned char proto = fl6->flowi6_proto; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Allow local fragmentation. */ skb->ignore_df = ip6_sk_ignore_df(sk); __skb_pull(skb, skb_network_header_len(skb)); final_dst = &fl6->daddr; if (opt && opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt && opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr); skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, v6_cork->tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, np), fl6)); hdr->hop_limit = v6_cork->hop_limit; hdr->nexthdr = proto; hdr->saddr = fl6->saddr; hdr->daddr = *final_dst; skb->priority = sk->sk_priority; skb->mark = cork->base.mark; skb->tstamp = cork->base.transmit_time; ip6_cork_steal_dst(skb, cork); IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len); if (proto == IPPROTO_ICMPV6) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); u8 icmp6_type; if (sk->sk_socket->type == SOCK_RAW && !inet_test_bit(HDRINCL, sk)) icmp6_type = fl6->fl6_icmp_type; else icmp6_type = icmp6_hdr(skb)->icmp6_type; ICMP6MSGOUT_INC_STATS(net, idev, icmp6_type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } ip6_cork_release(cork, v6_cork); out: return skb; } int ip6_send_skb(struct sk_buff *skb) { struct net *net = sock_net(skb->sk); struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); int err; err = ip6_local_out(net, skb->sk, skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; skb = ip6_finish_skb(sk); if (!skb) return 0; return ip6_send_skb(skb); } EXPORT_SYMBOL_GPL(ip6_push_pending_frames); static void __ip6_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) { if (skb_dst(skb)) IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); } ip6_cork_release(cork, v6_cork); } void ip6_flush_pending_frames(struct sock *sk) { __ip6_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, size_t length, int transhdrlen, struct ipcm6_cookie *ipc6, struct rt6_info *rt, unsigned int flags, struct inet_cork_full *cork) { struct inet6_cork v6_cork; struct sk_buff_head queue; int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); int err; if (flags & MSG_PROBE) { dst_release(&rt->dst); return NULL; } __skb_queue_head_init(&queue); cork->base.flags = 0; cork->base.addr = 0; cork->base.opt = NULL; v6_cork.opt = NULL; err = ip6_setup_cork(sk, cork, &v6_cork, ipc6, rt); if (err) { ip6_cork_release(cork, &v6_cork); return ERR_PTR(err); } if (ipc6->dontfrag < 0) ipc6->dontfrag = inet6_sk(sk)->dontfrag; err = __ip6_append_data(sk, &queue, cork, &v6_cork, &current->task_frag, getfrag, from, length + exthdrlen, transhdrlen + exthdrlen, flags, ipc6); if (err) { __ip6_flush_pending_frames(sk, &queue, cork, &v6_cork); return ERR_PTR(err); } return __ip6_make_skb(sk, &queue, cork, &v6_cork); }
linux-master
net/ipv6/ip6_output.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2002 USAGI/WIDE Project * * Authors * * Mitsuru KANDA @USAGI : IPv6 Support * Kazunori MIYAZAWA @USAGI : * Kunihiro Ishiguro <[email protected]> * * This file is derived from net/ipv4/esp.c */ #define pr_fmt(fmt) "IPv6: " fmt #include <crypto/aead.h> #include <crypto/authenc.h> #include <linux/err.h> #include <linux/module.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/esp.h> #include <linux/scatterlist.h> #include <linux/kernel.h> #include <linux/pfkeyv2.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <net/ip6_checksum.h> #include <net/ip6_route.h> #include <net/icmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/udp.h> #include <linux/icmpv6.h> #include <net/tcp.h> #include <net/espintcp.h> #include <net/inet6_hashtables.h> #include <linux/highmem.h> struct esp_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; struct esp_output_extra { __be32 seqhi; u32 esphoff; }; #define ESP_SKB_CB(__skb) ((struct esp_skb_cb *)&((__skb)->cb[0])) /* * Allocate an AEAD request structure with extra space for SG and IV. * * For alignment considerations the upper 32 bits of the sequence number are * placed at the front, if present. Followed by the IV, the request and finally * the SG list. * * TODO: Use spare space in skb for this where possible. */ static void *esp_alloc_tmp(struct crypto_aead *aead, int nfrags, int seqihlen) { unsigned int len; len = seqihlen; len += crypto_aead_ivsize(aead); if (len) { len += crypto_aead_alignmask(aead) & ~(crypto_tfm_ctx_alignment() - 1); len = ALIGN(len, crypto_tfm_ctx_alignment()); } len += sizeof(struct aead_request) + crypto_aead_reqsize(aead); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline void *esp_tmp_extra(void *tmp) { return PTR_ALIGN(tmp, __alignof__(struct esp_output_extra)); } static inline u8 *esp_tmp_iv(struct crypto_aead *aead, void *tmp, int seqhilen) { return crypto_aead_ivsize(aead) ? PTR_ALIGN((u8 *)tmp + seqhilen, crypto_aead_alignmask(aead) + 1) : tmp + seqhilen; } static inline struct aead_request *esp_tmp_req(struct crypto_aead *aead, u8 *iv) { struct aead_request *req; req = (void *)PTR_ALIGN(iv + crypto_aead_ivsize(aead), crypto_tfm_ctx_alignment()); aead_request_set_tfm(req, aead); return req; } static inline struct scatterlist *esp_req_sg(struct crypto_aead *aead, struct aead_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_aead_reqsize(aead), __alignof__(struct scatterlist)); } static void esp_ssg_unref(struct xfrm_state *x, void *tmp) { struct crypto_aead *aead = x->data; int extralen = 0; u8 *iv; struct aead_request *req; struct scatterlist *sg; if (x->props.flags & XFRM_STATE_ESN) extralen += sizeof(struct esp_output_extra); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); /* Unref skb_frag_pages in the src scatterlist if necessary. * Skip the first sg which comes from skb->data. */ if (req->src != req->dst) for (sg = sg_next(req->src); sg; sg = sg_next(sg)) put_page(sg_page(sg)); } #ifdef CONFIG_INET6_ESPINTCP struct esp_tcp_sk { struct sock *sk; struct rcu_head rcu; }; static void esp_free_tcp_sk(struct rcu_head *head) { struct esp_tcp_sk *esk = container_of(head, struct esp_tcp_sk, rcu); sock_put(esk->sk); kfree(esk); } static struct sock *esp6_find_tcp_sk(struct xfrm_state *x) { struct xfrm_encap_tmpl *encap = x->encap; struct net *net = xs_net(x); struct esp_tcp_sk *esk; __be16 sport, dport; struct sock *nsk; struct sock *sk; sk = rcu_dereference(x->encap_sk); if (sk && sk->sk_state == TCP_ESTABLISHED) return sk; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; nsk = rcu_dereference_protected(x->encap_sk, lockdep_is_held(&x->lock)); if (sk && sk == nsk) { esk = kmalloc(sizeof(*esk), GFP_ATOMIC); if (!esk) { spin_unlock_bh(&x->lock); return ERR_PTR(-ENOMEM); } RCU_INIT_POINTER(x->encap_sk, NULL); esk->sk = sk; call_rcu(&esk->rcu, esp_free_tcp_sk); } spin_unlock_bh(&x->lock); sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &x->id.daddr.in6, dport, &x->props.saddr.in6, ntohs(sport), 0, 0); if (!sk) return ERR_PTR(-ENOENT); if (!tcp_is_ulp_esp(sk)) { sock_put(sk); return ERR_PTR(-EINVAL); } spin_lock_bh(&x->lock); nsk = rcu_dereference_protected(x->encap_sk, lockdep_is_held(&x->lock)); if (encap->encap_sport != sport || encap->encap_dport != dport) { sock_put(sk); sk = nsk ?: ERR_PTR(-EREMCHG); } else if (sk == nsk) { sock_put(sk); } else { rcu_assign_pointer(x->encap_sk, sk); } spin_unlock_bh(&x->lock); return sk; } static int esp_output_tcp_finish(struct xfrm_state *x, struct sk_buff *skb) { struct sock *sk; int err; rcu_read_lock(); sk = esp6_find_tcp_sk(x); err = PTR_ERR_OR_ZERO(sk); if (err) goto out; bh_lock_sock(sk); if (sock_owned_by_user(sk)) err = espintcp_queue_out(sk, skb); else err = espintcp_push_skb(sk, skb); bh_unlock_sock(sk); out: rcu_read_unlock(); return err; } static int esp_output_tcp_encap_cb(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct xfrm_state *x = dst->xfrm; return esp_output_tcp_finish(x, skb); } static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { int err; local_bh_disable(); err = xfrm_trans_queue_net(xs_net(x), skb, esp_output_tcp_encap_cb); local_bh_enable(); /* EINPROGRESS just happens to do the right thing. It * actually means that the skb has been consumed and * isn't coming back. */ return err ?: -EINPROGRESS; } #else static int esp_output_tail_tcp(struct xfrm_state *x, struct sk_buff *skb) { kfree_skb(skb); return -EOPNOTSUPP; } #endif static void esp_output_encap_csum(struct sk_buff *skb) { /* UDP encap with IPv6 requires a valid checksum */ if (*skb_mac_header(skb) == IPPROTO_UDP) { struct udphdr *uh = udp_hdr(skb); struct ipv6hdr *ip6h = ipv6_hdr(skb); int len = ntohs(uh->len); unsigned int offset = skb_transport_offset(skb); __wsum csum = skb_checksum(skb, offset, skb->len - offset, 0); uh->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, len, IPPROTO_UDP, csum); if (uh->check == 0) uh->check = CSUM_MANGLED_0; } } static void esp_output_done(void *data, int err) { struct sk_buff *skb = data; struct xfrm_offload *xo = xfrm_offload(skb); void *tmp; struct xfrm_state *x; if (xo && (xo->flags & XFRM_DEV_RESUME)) { struct sec_path *sp = skb_sec_path(skb); x = sp->xvec[sp->len - 1]; } else { x = skb_dst(skb)->xfrm; } tmp = ESP_SKB_CB(skb)->tmp; esp_ssg_unref(x, tmp); kfree(tmp); esp_output_encap_csum(skb); if (xo && (xo->flags & XFRM_DEV_RESUME)) { if (err) { XFRM_INC_STATS(xs_net(x), LINUX_MIB_XFRMOUTSTATEPROTOERROR); kfree_skb(skb); return; } skb_push(skb, skb->data - skb_mac_header(skb)); secpath_reset(skb); xfrm_dev_resume(skb); } else { if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) esp_output_tail_tcp(x, skb); else xfrm_output_resume(skb->sk, skb, err); } } /* Move ESP header back into place. */ static void esp_restore_header(struct sk_buff *skb, unsigned int offset) { struct ip_esp_hdr *esph = (void *)(skb->data + offset); void *tmp = ESP_SKB_CB(skb)->tmp; __be32 *seqhi = esp_tmp_extra(tmp); esph->seq_no = esph->spi; esph->spi = *seqhi; } static void esp_output_restore_header(struct sk_buff *skb) { void *tmp = ESP_SKB_CB(skb)->tmp; struct esp_output_extra *extra = esp_tmp_extra(tmp); esp_restore_header(skb, skb_transport_offset(skb) + extra->esphoff - sizeof(__be32)); } static struct ip_esp_hdr *esp_output_set_esn(struct sk_buff *skb, struct xfrm_state *x, struct ip_esp_hdr *esph, struct esp_output_extra *extra) { /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * encryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { __u32 seqhi; struct xfrm_offload *xo = xfrm_offload(skb); if (xo) seqhi = xo->seq.hi; else seqhi = XFRM_SKB_CB(skb)->seq.output.hi; extra->esphoff = (unsigned char *)esph - skb_transport_header(skb); esph = (struct ip_esp_hdr *)((unsigned char *)esph - 4); extra->seqhi = esph->spi; esph->seq_no = htonl(seqhi); } esph->spi = x->id.spi; return esph; } static void esp_output_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_output_restore_header(skb); esp_output_done(data, err); } static struct ip_esp_hdr *esp6_output_udp_encap(struct sk_buff *skb, int encap_type, struct esp_info *esp, __be16 sport, __be16 dport) { struct udphdr *uh; __be32 *udpdata32; unsigned int len; len = skb->len + esp->tailen - skb_transport_offset(skb); if (len > U16_MAX) return ERR_PTR(-EMSGSIZE); uh = (struct udphdr *)esp->esph; uh->source = sport; uh->dest = dport; uh->len = htons(len); uh->check = 0; *skb_mac_header(skb) = IPPROTO_UDP; if (encap_type == UDP_ENCAP_ESPINUDP_NON_IKE) { udpdata32 = (__be32 *)(uh + 1); udpdata32[0] = udpdata32[1] = 0; return (struct ip_esp_hdr *)(udpdata32 + 2); } return (struct ip_esp_hdr *)(uh + 1); } #ifdef CONFIG_INET6_ESPINTCP static struct ip_esp_hdr *esp6_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { __be16 *lenp = (void *)esp->esph; struct ip_esp_hdr *esph; unsigned int len; struct sock *sk; len = skb->len + esp->tailen - skb_transport_offset(skb); if (len > IP_MAX_MTU) return ERR_PTR(-EMSGSIZE); rcu_read_lock(); sk = esp6_find_tcp_sk(x); rcu_read_unlock(); if (IS_ERR(sk)) return ERR_CAST(sk); *lenp = htons(len); esph = (struct ip_esp_hdr *)(lenp + 1); return esph; } #else static struct ip_esp_hdr *esp6_output_tcp_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { return ERR_PTR(-EOPNOTSUPP); } #endif static int esp6_output_encap(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { struct xfrm_encap_tmpl *encap = x->encap; struct ip_esp_hdr *esph; __be16 sport, dport; int encap_type; spin_lock_bh(&x->lock); sport = encap->encap_sport; dport = encap->encap_dport; encap_type = encap->encap_type; spin_unlock_bh(&x->lock); switch (encap_type) { default: case UDP_ENCAP_ESPINUDP: case UDP_ENCAP_ESPINUDP_NON_IKE: esph = esp6_output_udp_encap(skb, encap_type, esp, sport, dport); break; case TCP_ENCAP_ESPINTCP: esph = esp6_output_tcp_encap(x, skb, esp); break; } if (IS_ERR(esph)) return PTR_ERR(esph); esp->esph = esph; return 0; } int esp6_output_head(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *tail; int nfrags; int esph_offset; struct page *page; struct sk_buff *trailer; int tailen = esp->tailen; if (x->encap) { int err = esp6_output_encap(x, skb, esp); if (err < 0) return err; } if (ALIGN(tailen, L1_CACHE_BYTES) > PAGE_SIZE || ALIGN(skb->data_len, L1_CACHE_BYTES) > PAGE_SIZE) goto cow; if (!skb_cloned(skb)) { if (tailen <= skb_tailroom(skb)) { nfrags = 1; trailer = skb; tail = skb_tail_pointer(trailer); goto skip_cow; } else if ((skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS) && !skb_has_frag_list(skb)) { int allocsize; struct sock *sk = skb->sk; struct page_frag *pfrag = &x->xfrag; esp->inplace = false; allocsize = ALIGN(tailen, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto cow; } page = pfrag->page; get_page(page); tail = page_address(page) + pfrag->offset; esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); nfrags = skb_shinfo(skb)->nr_frags; __skb_fill_page_desc(skb, nfrags, page, pfrag->offset, tailen); skb_shinfo(skb)->nr_frags = ++nfrags; pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); nfrags++; skb->len += tailen; skb->data_len += tailen; skb->truesize += tailen; if (sk && sk_fullsock(sk)) refcount_add(tailen, &sk->sk_wmem_alloc); goto out; } } cow: esph_offset = (unsigned char *)esp->esph - skb_transport_header(skb); nfrags = skb_cow_data(skb, tailen, &trailer); if (nfrags < 0) goto out; tail = skb_tail_pointer(trailer); esp->esph = (struct ip_esp_hdr *)(skb_transport_header(skb) + esph_offset); skip_cow: esp_output_fill_trailer(tail, esp->tfclen, esp->plen, esp->proto); pskb_put(skb, trailer, tailen); out: return nfrags; } EXPORT_SYMBOL_GPL(esp6_output_head); int esp6_output_tail(struct xfrm_state *x, struct sk_buff *skb, struct esp_info *esp) { u8 *iv; int alen; void *tmp; int ivlen; int assoclen; int extralen; struct page *page; struct ip_esp_hdr *esph; struct aead_request *req; struct crypto_aead *aead; struct scatterlist *sg, *dsg; struct esp_output_extra *extra; int err = -ENOMEM; assoclen = sizeof(struct ip_esp_hdr); extralen = 0; if (x->props.flags & XFRM_STATE_ESN) { extralen += sizeof(*extra); assoclen += sizeof(__be32); } aead = x->data; alen = crypto_aead_authsize(aead); ivlen = crypto_aead_ivsize(aead); tmp = esp_alloc_tmp(aead, esp->nfrags + 2, extralen); if (!tmp) goto error; extra = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, extralen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); if (esp->inplace) dsg = sg; else dsg = &sg[esp->nfrags]; esph = esp_output_set_esn(skb, x, esp->esph, extra); esp->esph = esph; sg_init_table(sg, esp->nfrags); err = skb_to_sgvec(skb, sg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; if (!esp->inplace) { int allocsize; struct page_frag *pfrag = &x->xfrag; allocsize = ALIGN(skb->data_len, L1_CACHE_BYTES); spin_lock_bh(&x->lock); if (unlikely(!skb_page_frag_refill(allocsize, pfrag, GFP_ATOMIC))) { spin_unlock_bh(&x->lock); goto error_free; } skb_shinfo(skb)->nr_frags = 1; page = pfrag->page; get_page(page); /* replace page frags in skb with new page */ __skb_fill_page_desc(skb, 0, page, pfrag->offset, skb->data_len); pfrag->offset = pfrag->offset + allocsize; spin_unlock_bh(&x->lock); sg_init_table(dsg, skb_shinfo(skb)->nr_frags + 1); err = skb_to_sgvec(skb, dsg, (unsigned char *)esph - skb->data, assoclen + ivlen + esp->clen + alen); if (unlikely(err < 0)) goto error_free; } if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_output_done_esn, skb); else aead_request_set_callback(req, 0, esp_output_done, skb); aead_request_set_crypt(req, sg, dsg, ivlen + esp->clen, iv); aead_request_set_ad(req, assoclen); memset(iv, 0, ivlen); memcpy(iv + ivlen - min(ivlen, 8), (u8 *)&esp->seqno + 8 - min(ivlen, 8), min(ivlen, 8)); ESP_SKB_CB(skb)->tmp = tmp; err = crypto_aead_encrypt(req); switch (err) { case -EINPROGRESS: goto error; case -ENOSPC: err = NET_XMIT_DROP; break; case 0: if ((x->props.flags & XFRM_STATE_ESN)) esp_output_restore_header(skb); esp_output_encap_csum(skb); } if (sg != dsg) esp_ssg_unref(x, tmp); if (!err && x->encap && x->encap->encap_type == TCP_ENCAP_ESPINTCP) err = esp_output_tail_tcp(x, skb); error_free: kfree(tmp); error: return err; } EXPORT_SYMBOL_GPL(esp6_output_tail); static int esp6_output(struct xfrm_state *x, struct sk_buff *skb) { int alen; int blksize; struct ip_esp_hdr *esph; struct crypto_aead *aead; struct esp_info esp; esp.inplace = true; esp.proto = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_ESP; /* skb is pure payload to encrypt */ aead = x->data; alen = crypto_aead_authsize(aead); esp.tfclen = 0; if (x->tfcpad) { struct xfrm_dst *dst = (struct xfrm_dst *)skb_dst(skb); u32 padto; padto = min(x->tfcpad, xfrm_state_mtu(x, dst->child_mtu_cached)); if (skb->len < padto) esp.tfclen = padto - skb->len; } blksize = ALIGN(crypto_aead_blocksize(aead), 4); esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize); esp.plen = esp.clen - skb->len - esp.tfclen; esp.tailen = esp.tfclen + esp.plen + alen; esp.esph = ip_esp_hdr(skb); esp.nfrags = esp6_output_head(x, skb, &esp); if (esp.nfrags < 0) return esp.nfrags; esph = esp.esph; esph->spi = x->id.spi; esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); esp.seqno = cpu_to_be64(XFRM_SKB_CB(skb)->seq.output.low + ((u64)XFRM_SKB_CB(skb)->seq.output.hi << 32)); skb_push(skb, -skb_network_offset(skb)); return esp6_output_tail(x, skb, &esp); } static inline int esp_remove_trailer(struct sk_buff *skb) { struct xfrm_state *x = xfrm_input_state(skb); struct crypto_aead *aead = x->data; int alen, hlen, elen; int padlen, trimlen; __wsum csumdiff; u8 nexthdr[2]; int ret; alen = crypto_aead_authsize(aead); hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); elen = skb->len - hlen; ret = skb_copy_bits(skb, skb->len - alen - 2, nexthdr, 2); BUG_ON(ret); ret = -EINVAL; padlen = nexthdr[0]; if (padlen + 2 + alen >= elen) { net_dbg_ratelimited("ipsec esp packet is garbage padlen=%d, elen=%d\n", padlen + 2, elen - alen); goto out; } trimlen = alen + padlen + 2; if (skb->ip_summed == CHECKSUM_COMPLETE) { csumdiff = skb_checksum(skb, skb->len - trimlen, trimlen, 0); skb->csum = csum_block_sub(skb->csum, csumdiff, skb->len - trimlen); } pskb_trim(skb, skb->len - trimlen); ret = nexthdr[1]; out: return ret; } int esp6_input_done2(struct sk_buff *skb, int err) { struct xfrm_state *x = xfrm_input_state(skb); struct xfrm_offload *xo = xfrm_offload(skb); struct crypto_aead *aead = x->data; int hlen = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); int hdr_len = skb_network_header_len(skb); if (!xo || !(xo->flags & CRYPTO_DONE)) kfree(ESP_SKB_CB(skb)->tmp); if (unlikely(err)) goto out; err = esp_remove_trailer(skb); if (unlikely(err < 0)) goto out; if (x->encap) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); int offset = skb_network_offset(skb) + sizeof(*ip6h); struct xfrm_encap_tmpl *encap = x->encap; u8 nexthdr = ip6h->nexthdr; __be16 frag_off, source; struct udphdr *uh; struct tcphdr *th; offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); if (offset == -1) { err = -EINVAL; goto out; } uh = (void *)(skb->data + offset); th = (void *)(skb->data + offset); hdr_len += offset; switch (x->encap->encap_type) { case TCP_ENCAP_ESPINTCP: source = th->source; break; case UDP_ENCAP_ESPINUDP: case UDP_ENCAP_ESPINUDP_NON_IKE: source = uh->source; break; default: WARN_ON_ONCE(1); err = -EINVAL; goto out; } /* * 1) if the NAT-T peer's IP or port changed then * advertize the change to the keying daemon. * This is an inbound SA, so just compare * SRC ports. */ if (!ipv6_addr_equal(&ip6h->saddr, &x->props.saddr.in6) || source != encap->encap_sport) { xfrm_address_t ipaddr; memcpy(&ipaddr.a6, &ip6h->saddr.s6_addr, sizeof(ipaddr.a6)); km_new_mapping(x, &ipaddr, source); /* XXX: perhaps add an extra * policy check here, to see * if we should allow or * reject a packet from a * different source * address/port. */ } /* * 2) ignore UDP/TCP checksums in case * of NAT-T in Transport Mode, or * perform other post-processing fixes * as per draft-ietf-ipsec-udp-encaps-06, * section 3.1.2 */ if (x->props.mode == XFRM_MODE_TRANSPORT) skb->ip_summed = CHECKSUM_UNNECESSARY; } skb_postpull_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); skb_pull_rcsum(skb, hlen); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -hdr_len); /* RFC4303: Drop dummy packets without any error */ if (err == IPPROTO_NONE) err = -EINVAL; out: return err; } EXPORT_SYMBOL_GPL(esp6_input_done2); static void esp_input_done(void *data, int err) { struct sk_buff *skb = data; xfrm_input_resume(skb, esp6_input_done2(skb, err)); } static void esp_input_restore_header(struct sk_buff *skb) { esp_restore_header(skb, 0); __skb_pull(skb, 4); } static void esp_input_set_header(struct sk_buff *skb, __be32 *seqhi) { struct xfrm_state *x = xfrm_input_state(skb); /* For ESN we move the header forward by 4 bytes to * accommodate the high bits. We will move it back after * decryption. */ if ((x->props.flags & XFRM_STATE_ESN)) { struct ip_esp_hdr *esph = skb_push(skb, 4); *seqhi = esph->spi; esph->spi = esph->seq_no; esph->seq_no = XFRM_SKB_CB(skb)->seq.input.hi; } } static void esp_input_done_esn(void *data, int err) { struct sk_buff *skb = data; esp_input_restore_header(skb); esp_input_done(data, err); } static int esp6_input(struct xfrm_state *x, struct sk_buff *skb) { struct crypto_aead *aead = x->data; struct aead_request *req; struct sk_buff *trailer; int ivlen = crypto_aead_ivsize(aead); int elen = skb->len - sizeof(struct ip_esp_hdr) - ivlen; int nfrags; int assoclen; int seqhilen; int ret = 0; void *tmp; __be32 *seqhi; u8 *iv; struct scatterlist *sg; if (!pskb_may_pull(skb, sizeof(struct ip_esp_hdr) + ivlen)) { ret = -EINVAL; goto out; } if (elen <= 0) { ret = -EINVAL; goto out; } assoclen = sizeof(struct ip_esp_hdr); seqhilen = 0; if (x->props.flags & XFRM_STATE_ESN) { seqhilen += sizeof(__be32); assoclen += seqhilen; } if (!skb_cloned(skb)) { if (!skb_is_nonlinear(skb)) { nfrags = 1; goto skip_cow; } else if (!skb_has_frag_list(skb)) { nfrags = skb_shinfo(skb)->nr_frags; nfrags++; goto skip_cow; } } nfrags = skb_cow_data(skb, 0, &trailer); if (nfrags < 0) { ret = -EINVAL; goto out; } skip_cow: ret = -ENOMEM; tmp = esp_alloc_tmp(aead, nfrags, seqhilen); if (!tmp) goto out; ESP_SKB_CB(skb)->tmp = tmp; seqhi = esp_tmp_extra(tmp); iv = esp_tmp_iv(aead, tmp, seqhilen); req = esp_tmp_req(aead, iv); sg = esp_req_sg(aead, req); esp_input_set_header(skb, seqhi); sg_init_table(sg, nfrags); ret = skb_to_sgvec(skb, sg, 0, skb->len); if (unlikely(ret < 0)) { kfree(tmp); goto out; } skb->ip_summed = CHECKSUM_NONE; if ((x->props.flags & XFRM_STATE_ESN)) aead_request_set_callback(req, 0, esp_input_done_esn, skb); else aead_request_set_callback(req, 0, esp_input_done, skb); aead_request_set_crypt(req, sg, sg, elen + ivlen, iv); aead_request_set_ad(req, assoclen); ret = crypto_aead_decrypt(req); if (ret == -EINPROGRESS) goto out; if ((x->props.flags & XFRM_STATE_ESN)) esp_input_restore_header(skb); ret = esp6_input_done2(skb, ret); out: return ret; } static int esp6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct net *net = dev_net(skb->dev); const struct ipv6hdr *iph = (const struct ipv6hdr *)skb->data; struct ip_esp_hdr *esph = (struct ip_esp_hdr *)(skb->data + offset); struct xfrm_state *x; if (type != ICMPV6_PKT_TOOBIG && type != NDISC_REDIRECT) return 0; x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, esph->spi, IPPROTO_ESP, AF_INET6); if (!x) return 0; if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); xfrm_state_put(x); return 0; } static void esp6_destroy(struct xfrm_state *x) { struct crypto_aead *aead = x->data; if (!aead) return; crypto_free_aead(aead); } static int esp_init_aead(struct xfrm_state *x, struct netlink_ext_ack *extack) { char aead_name[CRYPTO_MAX_ALG_NAME]; struct crypto_aead *aead; int err; if (snprintf(aead_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", x->geniv, x->aead->alg_name) >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); return -ENAMETOOLONG; } aead = crypto_alloc_aead(aead_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) goto error; x->data = aead; err = crypto_aead_setkey(aead, x->aead->alg_key, (x->aead->alg_key_len + 7) / 8); if (err) goto error; err = crypto_aead_setauthsize(aead, x->aead->alg_icv_len / 8); if (err) goto error; return 0; error: NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); return err; } static int esp_init_authenc(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; struct crypto_authenc_key_param *param; struct rtattr *rta; char *key; char *p; char authenc_name[CRYPTO_MAX_ALG_NAME]; unsigned int keylen; int err; err = -ENAMETOOLONG; if ((x->props.flags & XFRM_STATE_ESN)) { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthencesn(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } else { if (snprintf(authenc_name, CRYPTO_MAX_ALG_NAME, "%s%sauthenc(%s,%s)%s", x->geniv ?: "", x->geniv ? "(" : "", x->aalg ? x->aalg->alg_name : "digest_null", x->ealg->alg_name, x->geniv ? ")" : "") >= CRYPTO_MAX_ALG_NAME) { NL_SET_ERR_MSG(extack, "Algorithm name is too long"); goto error; } } aead = crypto_alloc_aead(authenc_name, 0, 0); err = PTR_ERR(aead); if (IS_ERR(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } x->data = aead; keylen = (x->aalg ? (x->aalg->alg_key_len + 7) / 8 : 0) + (x->ealg->alg_key_len + 7) / 8 + RTA_SPACE(sizeof(*param)); err = -ENOMEM; key = kmalloc(keylen, GFP_KERNEL); if (!key) goto error; p = key; rta = (void *)p; rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; rta->rta_len = RTA_LENGTH(sizeof(*param)); param = RTA_DATA(rta); p += RTA_SPACE(sizeof(*param)); if (x->aalg) { struct xfrm_algo_desc *aalg_desc; memcpy(p, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8); p += (x->aalg->alg_key_len + 7) / 8; aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); err = -EINVAL; if (aalg_desc->uinfo.auth.icv_fullbits / 8 != crypto_aead_authsize(aead)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } err = crypto_aead_setauthsize( aead, x->aalg->alg_trunc_len / 8); if (err) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto free_key; } } param->enckeylen = cpu_to_be32((x->ealg->alg_key_len + 7) / 8); memcpy(p, x->ealg->alg_key, (x->ealg->alg_key_len + 7) / 8); err = crypto_aead_setkey(aead, key, keylen); free_key: kfree(key); error: return err; } static int esp6_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct crypto_aead *aead; u32 align; int err; x->data = NULL; if (x->aead) { err = esp_init_aead(x, extack); } else if (x->ealg) { err = esp_init_authenc(x, extack); } else { NL_SET_ERR_MSG(extack, "ESP: AEAD or CRYPT must be provided"); err = -EINVAL; } if (err) goto error; aead = x->data; x->props.header_len = sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead); switch (x->props.mode) { case XFRM_MODE_BEET: if (x->sel.family != AF_INET6) x->props.header_len += IPV4_BEET_PHMAXLEN + (sizeof(struct ipv6hdr) - sizeof(struct iphdr)); break; default: case XFRM_MODE_TRANSPORT: break; case XFRM_MODE_TUNNEL: x->props.header_len += sizeof(struct ipv6hdr); break; } if (x->encap) { struct xfrm_encap_tmpl *encap = x->encap; switch (encap->encap_type) { default: NL_SET_ERR_MSG(extack, "Unsupported encapsulation type for ESP"); err = -EINVAL; goto error; case UDP_ENCAP_ESPINUDP: x->props.header_len += sizeof(struct udphdr); break; case UDP_ENCAP_ESPINUDP_NON_IKE: x->props.header_len += sizeof(struct udphdr) + 2 * sizeof(u32); break; #ifdef CONFIG_INET6_ESPINTCP case TCP_ENCAP_ESPINTCP: /* only the length field, TCP encap is done by * the socket */ x->props.header_len += 2; break; #endif } } align = ALIGN(crypto_aead_blocksize(aead), 4); x->props.trailer_len = align + 1 + crypto_aead_authsize(aead); error: return err; } static int esp6_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type esp6_type = { .owner = THIS_MODULE, .proto = IPPROTO_ESP, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = esp6_init_state, .destructor = esp6_destroy, .input = esp6_input, .output = esp6_output, }; static struct xfrm6_protocol esp6_protocol = { .handler = xfrm6_rcv, .input_handler = xfrm_input, .cb_handler = esp6_rcv_cb, .err_handler = esp6_err, .priority = 0, }; static int __init esp6_init(void) { if (xfrm_register_type(&esp6_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm6_protocol_register(&esp6_protocol, IPPROTO_ESP) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&esp6_type, AF_INET6); return -EAGAIN; } return 0; } static void __exit esp6_fini(void) { if (xfrm6_protocol_deregister(&esp6_protocol, IPPROTO_ESP) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&esp6_type, AF_INET6); } module_init(esp6_init); module_exit(esp6_fini); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_ESP);
linux-master
net/ipv6/esp6.c
// SPDX-License-Identifier: GPL-2.0-only /* * Authors: * (C) 2020 Alexander Aring <[email protected]> */ #include <linux/rpl_iptunnel.h> #include <net/dst_cache.h> #include <net/ip6_route.h> #include <net/lwtunnel.h> #include <net/ipv6.h> #include <net/rpl.h> struct rpl_iptunnel_encap { DECLARE_FLEX_ARRAY(struct ipv6_rpl_sr_hdr, srh); }; struct rpl_lwt { struct dst_cache cache; struct rpl_iptunnel_encap tuninfo; }; static inline struct rpl_lwt *rpl_lwt_lwtunnel(struct lwtunnel_state *lwt) { return (struct rpl_lwt *)lwt->data; } static inline struct rpl_iptunnel_encap * rpl_encap_lwtunnel(struct lwtunnel_state *lwt) { return &rpl_lwt_lwtunnel(lwt)->tuninfo; } static const struct nla_policy rpl_iptunnel_policy[RPL_IPTUNNEL_MAX + 1] = { [RPL_IPTUNNEL_SRH] = { .type = NLA_BINARY }, }; static bool rpl_validate_srh(struct net *net, struct ipv6_rpl_sr_hdr *srh, size_t seglen) { int err; if ((srh->hdrlen << 3) != seglen) return false; /* check at least one segment and seglen fit with segments_left */ if (!srh->segments_left || (srh->segments_left * sizeof(struct in6_addr)) != seglen) return false; if (srh->cmpri || srh->cmpre) return false; err = ipv6_chk_rpl_srh_loop(net, srh->rpl_segaddr, srh->segments_left); if (err) return false; if (ipv6_addr_type(&srh->rpl_segaddr[srh->segments_left - 1]) & IPV6_ADDR_MULTICAST) return false; return true; } static int rpl_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct nlattr *tb[RPL_IPTUNNEL_MAX + 1]; struct lwtunnel_state *newts; struct ipv6_rpl_sr_hdr *srh; struct rpl_lwt *rlwt; int err, srh_len; if (family != AF_INET6) return -EINVAL; err = nla_parse_nested(tb, RPL_IPTUNNEL_MAX, nla, rpl_iptunnel_policy, extack); if (err < 0) return err; if (!tb[RPL_IPTUNNEL_SRH]) return -EINVAL; srh = nla_data(tb[RPL_IPTUNNEL_SRH]); srh_len = nla_len(tb[RPL_IPTUNNEL_SRH]); if (srh_len < sizeof(*srh)) return -EINVAL; /* verify that SRH is consistent */ if (!rpl_validate_srh(net, srh, srh_len - sizeof(*srh))) return -EINVAL; newts = lwtunnel_state_alloc(srh_len + sizeof(*rlwt)); if (!newts) return -ENOMEM; rlwt = rpl_lwt_lwtunnel(newts); err = dst_cache_init(&rlwt->cache, GFP_ATOMIC); if (err) { kfree(newts); return err; } memcpy(&rlwt->tuninfo.srh, srh, srh_len); newts->type = LWTUNNEL_ENCAP_RPL; newts->flags |= LWTUNNEL_STATE_INPUT_REDIRECT; newts->flags |= LWTUNNEL_STATE_OUTPUT_REDIRECT; *ts = newts; return 0; } static void rpl_destroy_state(struct lwtunnel_state *lwt) { dst_cache_destroy(&rpl_lwt_lwtunnel(lwt)->cache); } static int rpl_do_srh_inline(struct sk_buff *skb, const struct rpl_lwt *rlwt, const struct ipv6_rpl_sr_hdr *srh) { struct ipv6_rpl_sr_hdr *isrh, *csrh; const struct ipv6hdr *oldhdr; struct ipv6hdr *hdr; unsigned char *buf; size_t hdrlen; int err; oldhdr = ipv6_hdr(skb); buf = kcalloc(struct_size(srh, segments.addr, srh->segments_left), 2, GFP_ATOMIC); if (!buf) return -ENOMEM; isrh = (struct ipv6_rpl_sr_hdr *)buf; csrh = (struct ipv6_rpl_sr_hdr *)(buf + ((srh->hdrlen + 1) << 3)); memcpy(isrh, srh, sizeof(*isrh)); memcpy(isrh->rpl_segaddr, &srh->rpl_segaddr[1], (srh->segments_left - 1) * 16); isrh->rpl_segaddr[srh->segments_left - 1] = oldhdr->daddr; ipv6_rpl_srh_compress(csrh, isrh, &srh->rpl_segaddr[0], isrh->segments_left - 1); hdrlen = ((csrh->hdrlen + 1) << 3); err = skb_cow_head(skb, hdrlen + skb->mac_len); if (unlikely(err)) { kfree(buf); return err; } skb_pull(skb, sizeof(struct ipv6hdr)); skb_postpull_rcsum(skb, skb_network_header(skb), sizeof(struct ipv6hdr)); skb_push(skb, sizeof(struct ipv6hdr) + hdrlen); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); memmove(hdr, oldhdr, sizeof(*hdr)); isrh = (void *)hdr + sizeof(*hdr); memcpy(isrh, csrh, hdrlen); isrh->nexthdr = hdr->nexthdr; hdr->nexthdr = NEXTHDR_ROUTING; hdr->daddr = srh->rpl_segaddr[0]; ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_set_transport_header(skb, sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, hdr, sizeof(struct ipv6hdr) + hdrlen); kfree(buf); return 0; } static int rpl_do_srh(struct sk_buff *skb, const struct rpl_lwt *rlwt) { struct dst_entry *dst = skb_dst(skb); struct rpl_iptunnel_encap *tinfo; if (skb->protocol != htons(ETH_P_IPV6)) return -EINVAL; tinfo = rpl_encap_lwtunnel(dst->lwtstate); return rpl_do_srh_inline(skb, rlwt, tinfo->srh); } static int rpl_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct rpl_lwt *rlwt; int err; rlwt = rpl_lwt_lwtunnel(orig_dst->lwtstate); err = rpl_do_srh(skb, rlwt); if (unlikely(err)) goto drop; preempt_disable(); dst = dst_cache_get(&rlwt->cache); preempt_enable(); if (unlikely(!dst)) { struct ipv6hdr *hdr = ipv6_hdr(skb); struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.daddr = hdr->daddr; fl6.saddr = hdr->saddr; fl6.flowlabel = ip6_flowinfo(hdr); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = hdr->nexthdr; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { err = dst->error; dst_release(dst); goto drop; } preempt_disable(); dst_cache_set_ip6(&rlwt->cache, dst, &fl6.saddr); preempt_enable(); } skb_dst_drop(skb); skb_dst_set(skb, dst); err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) goto drop; return dst_output(net, sk, skb); drop: kfree_skb(skb); return err; } static int rpl_input(struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct dst_entry *dst = NULL; struct rpl_lwt *rlwt; int err; rlwt = rpl_lwt_lwtunnel(orig_dst->lwtstate); err = rpl_do_srh(skb, rlwt); if (unlikely(err)) { kfree_skb(skb); return err; } preempt_disable(); dst = dst_cache_get(&rlwt->cache); preempt_enable(); if (!dst) { ip6_route_input(skb); dst = skb_dst(skb); if (!dst->error) { preempt_disable(); dst_cache_set_ip6(&rlwt->cache, dst, &ipv6_hdr(skb)->saddr); preempt_enable(); } } else { skb_dst_drop(skb); skb_dst_set(skb, dst); } err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) return err; return dst_input(skb); } static int nla_put_rpl_srh(struct sk_buff *skb, int attrtype, struct rpl_iptunnel_encap *tuninfo) { struct rpl_iptunnel_encap *data; struct nlattr *nla; int len; len = RPL_IPTUNNEL_SRH_SIZE(tuninfo->srh); nla = nla_reserve(skb, attrtype, len); if (!nla) return -EMSGSIZE; data = nla_data(nla); memcpy(data, tuninfo->srh, len); return 0; } static int rpl_fill_encap_info(struct sk_buff *skb, struct lwtunnel_state *lwtstate) { struct rpl_iptunnel_encap *tuninfo = rpl_encap_lwtunnel(lwtstate); if (nla_put_rpl_srh(skb, RPL_IPTUNNEL_SRH, tuninfo)) return -EMSGSIZE; return 0; } static int rpl_encap_nlsize(struct lwtunnel_state *lwtstate) { struct rpl_iptunnel_encap *tuninfo = rpl_encap_lwtunnel(lwtstate); return nla_total_size(RPL_IPTUNNEL_SRH_SIZE(tuninfo->srh)); } static int rpl_encap_cmp(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct rpl_iptunnel_encap *a_hdr = rpl_encap_lwtunnel(a); struct rpl_iptunnel_encap *b_hdr = rpl_encap_lwtunnel(b); int len = RPL_IPTUNNEL_SRH_SIZE(a_hdr->srh); if (len != RPL_IPTUNNEL_SRH_SIZE(b_hdr->srh)) return 1; return memcmp(a_hdr, b_hdr, len); } static const struct lwtunnel_encap_ops rpl_ops = { .build_state = rpl_build_state, .destroy_state = rpl_destroy_state, .output = rpl_output, .input = rpl_input, .fill_encap = rpl_fill_encap_info, .get_encap_size = rpl_encap_nlsize, .cmp_encap = rpl_encap_cmp, .owner = THIS_MODULE, }; int __init rpl_init(void) { int err; err = lwtunnel_encap_add_ops(&rpl_ops, LWTUNNEL_ENCAP_RPL); if (err) goto out; pr_info("RPL Segment Routing with IPv6\n"); return 0; out: return err; } void rpl_exit(void) { lwtunnel_encap_del_ops(&rpl_ops, LWTUNNEL_ENCAP_RPL); }
linux-master
net/ipv6/rpl_iptunnel.c
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2010: YOSHIFUJI Hideaki <[email protected]> * Copyright (C) 2015: Linus Lüssing <[email protected]> * * Based on the MLD support added to br_multicast.c by YOSHIFUJI Hideaki. */ #include <linux/skbuff.h> #include <net/ipv6.h> #include <net/mld.h> #include <net/addrconf.h> #include <net/ip6_checksum.h> static int ipv6_mc_check_ip6hdr(struct sk_buff *skb) { const struct ipv6hdr *ip6h; unsigned int len; unsigned int offset = skb_network_offset(skb) + sizeof(*ip6h); if (!pskb_may_pull(skb, offset)) return -EINVAL; ip6h = ipv6_hdr(skb); if (ip6h->version != 6) return -EINVAL; len = offset + ntohs(ip6h->payload_len); if (skb->len < len || len <= offset) return -EINVAL; skb_set_transport_header(skb, offset); return 0; } static int ipv6_mc_check_exthdrs(struct sk_buff *skb) { const struct ipv6hdr *ip6h; int offset; u8 nexthdr; __be16 frag_off; ip6h = ipv6_hdr(skb); if (ip6h->nexthdr != IPPROTO_HOPOPTS) return -ENOMSG; nexthdr = ip6h->nexthdr; offset = skb_network_offset(skb) + sizeof(*ip6h); offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); if (offset < 0) return -EINVAL; if (nexthdr != IPPROTO_ICMPV6) return -ENOMSG; skb_set_transport_header(skb, offset); return 0; } static int ipv6_mc_check_mld_reportv2(struct sk_buff *skb) { unsigned int len = skb_transport_offset(skb); len += sizeof(struct mld2_report); return ipv6_mc_may_pull(skb, len) ? 0 : -EINVAL; } static int ipv6_mc_check_mld_query(struct sk_buff *skb) { unsigned int transport_len = ipv6_transport_len(skb); struct mld_msg *mld; unsigned int len; /* RFC2710+RFC3810 (MLDv1+MLDv2) require link-local source addresses */ if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) return -EINVAL; /* MLDv1? */ if (transport_len != sizeof(struct mld_msg)) { /* or MLDv2? */ if (transport_len < sizeof(struct mld2_query)) return -EINVAL; len = skb_transport_offset(skb) + sizeof(struct mld2_query); if (!ipv6_mc_may_pull(skb, len)) return -EINVAL; } mld = (struct mld_msg *)skb_transport_header(skb); /* RFC2710+RFC3810 (MLDv1+MLDv2) require the multicast link layer * all-nodes destination address (ff02::1) for general queries */ if (ipv6_addr_any(&mld->mld_mca) && !ipv6_addr_is_ll_all_nodes(&ipv6_hdr(skb)->daddr)) return -EINVAL; return 0; } static int ipv6_mc_check_mld_msg(struct sk_buff *skb) { unsigned int len = skb_transport_offset(skb) + sizeof(struct mld_msg); struct mld_msg *mld; if (!ipv6_mc_may_pull(skb, len)) return -ENODATA; mld = (struct mld_msg *)skb_transport_header(skb); switch (mld->mld_type) { case ICMPV6_MGM_REDUCTION: case ICMPV6_MGM_REPORT: return 0; case ICMPV6_MLD2_REPORT: return ipv6_mc_check_mld_reportv2(skb); case ICMPV6_MGM_QUERY: return ipv6_mc_check_mld_query(skb); default: return -ENODATA; } } static inline __sum16 ipv6_mc_validate_checksum(struct sk_buff *skb) { return skb_checksum_validate(skb, IPPROTO_ICMPV6, ip6_compute_pseudo); } static int ipv6_mc_check_icmpv6(struct sk_buff *skb) { unsigned int len = skb_transport_offset(skb) + sizeof(struct icmp6hdr); unsigned int transport_len = ipv6_transport_len(skb); struct sk_buff *skb_chk; if (!ipv6_mc_may_pull(skb, len)) return -EINVAL; skb_chk = skb_checksum_trimmed(skb, transport_len, ipv6_mc_validate_checksum); if (!skb_chk) return -EINVAL; if (skb_chk != skb) kfree_skb(skb_chk); return 0; } /** * ipv6_mc_check_mld - checks whether this is a sane MLD packet * @skb: the skb to validate * * Checks whether an IPv6 packet is a valid MLD packet. If so sets * skb transport header accordingly and returns zero. * * -EINVAL: A broken packet was detected, i.e. it violates some internet * standard * -ENOMSG: IP header validation succeeded but it is not an ICMPv6 packet * with a hop-by-hop option. * -ENODATA: IP+ICMPv6 header with hop-by-hop option validation succeeded * but it is not an MLD packet. * -ENOMEM: A memory allocation failure happened. * * Caller needs to set the skb network header and free any returned skb if it * differs from the provided skb. */ int ipv6_mc_check_mld(struct sk_buff *skb) { int ret; ret = ipv6_mc_check_ip6hdr(skb); if (ret < 0) return ret; ret = ipv6_mc_check_exthdrs(skb); if (ret < 0) return ret; ret = ipv6_mc_check_icmpv6(skb); if (ret < 0) return ret; return ipv6_mc_check_mld_msg(skb); } EXPORT_SYMBOL(ipv6_mc_check_mld);
linux-master
net/ipv6/mcast_snoop.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Support for INET6 connection oriented protocols. * * Authors: See the TCPv6 sources */ #include <linux/module.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/jhash.h> #include <linux/slab.h> #include <net/addrconf.h> #include <net/inet_connection_sock.h> #include <net/inet_ecn.h> #include <net/inet_hashtables.h> #include <net/ip6_route.h> #include <net/sock.h> #include <net/inet6_connection_sock.h> #include <net/sock_reuseport.h> struct dst_entry *inet6_csk_route_req(const struct sock *sk, struct flowi6 *fl6, const struct request_sock *req, u8 proto) { struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *final_p, final; struct dst_entry *dst; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = proto; fl6->daddr = ireq->ir_v6_rmt_addr; rcu_read_lock(); final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final); rcu_read_unlock(); fl6->saddr = ireq->ir_v6_loc_addr; fl6->flowi6_oif = ireq->ir_iif; fl6->flowi6_mark = ireq->ir_mark; fl6->fl6_dport = ireq->ir_rmt_port; fl6->fl6_sport = htons(ireq->ir_num); fl6->flowi6_uid = sk->sk_uid; security_req_classify_flow(req, flowi6_to_flowi_common(fl6)); dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p); if (IS_ERR(dst)) return NULL; return dst; } EXPORT_SYMBOL(inet6_csk_route_req); void inet6_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) uaddr; sin6->sin6_family = AF_INET6; sin6->sin6_addr = sk->sk_v6_daddr; sin6->sin6_port = inet_sk(sk)->inet_dport; /* We do not store received flowlabel for TCP */ sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, sk->sk_bound_dev_if); } EXPORT_SYMBOL_GPL(inet6_csk_addr2sockaddr); static inline struct dst_entry *__inet6_csk_dst_check(struct sock *sk, u32 cookie) { return __sk_dst_check(sk, cookie); } static struct dst_entry *inet6_csk_route_socket(struct sock *sk, struct flowi6 *fl6) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *final_p, final; struct dst_entry *dst; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = sk->sk_protocol; fl6->daddr = sk->sk_v6_daddr; fl6->saddr = np->saddr; fl6->flowlabel = np->flow_label; IP6_ECN_flow_xmit(sk, fl6->flowlabel); fl6->flowi6_oif = sk->sk_bound_dev_if; fl6->flowi6_mark = sk->sk_mark; fl6->fl6_sport = inet->inet_sport; fl6->fl6_dport = inet->inet_dport; fl6->flowi6_uid = sk->sk_uid; security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6)); rcu_read_lock(); final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final); rcu_read_unlock(); dst = __inet6_csk_dst_check(sk, np->dst_cookie); if (!dst) { dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p); if (!IS_ERR(dst)) ip6_dst_store(sk, dst, NULL, NULL); } return dst; } int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl_unused) { struct ipv6_pinfo *np = inet6_sk(sk); struct flowi6 fl6; struct dst_entry *dst; int res; dst = inet6_csk_route_socket(sk, &fl6); if (IS_ERR(dst)) { WRITE_ONCE(sk->sk_err_soft, -PTR_ERR(dst)); sk->sk_route_caps = 0; kfree_skb(skb); return PTR_ERR(dst); } rcu_read_lock(); skb_dst_set_noref(skb, dst); /* Restore final destination back after routing done */ fl6.daddr = sk->sk_v6_daddr; res = ip6_xmit(sk, skb, &fl6, sk->sk_mark, rcu_dereference(np->opt), np->tclass, sk->sk_priority); rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(inet6_csk_xmit); struct dst_entry *inet6_csk_update_pmtu(struct sock *sk, u32 mtu) { struct flowi6 fl6; struct dst_entry *dst = inet6_csk_route_socket(sk, &fl6); if (IS_ERR(dst)) return NULL; dst->ops->update_pmtu(dst, sk, NULL, mtu, true); dst = inet6_csk_route_socket(sk, &fl6); return IS_ERR(dst) ? NULL : dst; } EXPORT_SYMBOL_GPL(inet6_csk_update_pmtu);
linux-master
net/ipv6/inet6_connection_sock.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * TCP over IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on: * linux/net/ipv4/tcp.c * linux/net/ipv4/tcp_input.c * linux/net/ipv4/tcp_output.c * * Fixes: * Hideaki YOSHIFUJI : sin6_scope_id support * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind * a single port at the same time. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/tcp6 to seq_file. */ #include <linux/bottom_half.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/jiffies.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/init.h> #include <linux/jhash.h> #include <linux/ipsec.h> #include <linux/times.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/random.h> #include <linux/indirect_call_wrapper.h> #include <net/tcp.h> #include <net/ndisc.h> #include <net/inet6_hashtables.h> #include <net/inet6_connection_sock.h> #include <net/ipv6.h> #include <net/transp_v6.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/ip6_checksum.h> #include <net/inet_ecn.h> #include <net/protocol.h> #include <net/xfrm.h> #include <net/snmp.h> #include <net/dsfield.h> #include <net/timewait_sock.h> #include <net/inet_common.h> #include <net/secure_seq.h> #include <net/busy_poll.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <crypto/hash.h> #include <linux/scatterlist.h> #include <trace/events/tcp.h> static void tcp_v6_send_reset(const struct sock *sk, struct sk_buff *skb); static void tcp_v6_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req); INDIRECT_CALLABLE_SCOPE int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb); static const struct inet_connection_sock_af_ops ipv6_mapped; const struct inet_connection_sock_af_ops ipv6_specific; #ifdef CONFIG_TCP_MD5SIG static const struct tcp_sock_af_ops tcp_sock_ipv6_specific; static const struct tcp_sock_af_ops tcp_sock_ipv6_mapped_specific; #else static struct tcp_md5sig_key *tcp_v6_md5_do_lookup(const struct sock *sk, const struct in6_addr *addr, int l3index) { return NULL; } #endif /* Helper returning the inet6 address from a given tcp socket. * It can be used in TCP stack instead of inet6_sk(sk). * This avoids a dereference and allow compiler optimizations. * It is a specialized version of inet6_sk_generic(). */ #define tcp_inet6_sk(sk) (&container_of_const(tcp_sk(sk), \ struct tcp6_sock, tcp)->inet6) static void inet6_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst_hold_safe(dst)) { const struct rt6_info *rt = (const struct rt6_info *)dst; rcu_assign_pointer(sk->sk_rx_dst, dst); sk->sk_rx_dst_ifindex = skb->skb_iif; sk->sk_rx_dst_cookie = rt6_get_cookie(rt); } } static u32 tcp_v6_init_seq(const struct sk_buff *skb) { return secure_tcpv6_seq(ipv6_hdr(skb)->daddr.s6_addr32, ipv6_hdr(skb)->saddr.s6_addr32, tcp_hdr(skb)->dest, tcp_hdr(skb)->source); } static u32 tcp_v6_init_ts_off(const struct net *net, const struct sk_buff *skb) { return secure_tcpv6_ts_off(net, ipv6_hdr(skb)->daddr.s6_addr32, ipv6_hdr(skb)->saddr.s6_addr32); } static int tcp_v6_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from tcp_v6_connect() and intended to * prevent BPF program called below from accessing bytes that are out * of the bound specified by user in addr_len. */ if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; sock_owned_by_me(sk); return BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr); } static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr; struct inet_connection_sock *icsk = inet_csk(sk); struct in6_addr *saddr = NULL, *final_p, final; struct inet_timewait_death_row *tcp_death_row; struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct inet_sock *inet = inet_sk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); struct ipv6_txoptions *opt; struct dst_entry *dst; struct flowi6 fl6; int addr_type; int err; if (addr_len < SIN6_LEN_RFC2133) return -EINVAL; if (usin->sin6_family != AF_INET6) return -EAFNOSUPPORT; memset(&fl6, 0, sizeof(fl6)); if (np->sndflow) { fl6.flowlabel = usin->sin6_flowinfo&IPV6_FLOWINFO_MASK; IP6_ECN_flow_init(fl6.flowlabel); if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) { struct ip6_flowlabel *flowlabel; flowlabel = fl6_sock_lookup(sk, fl6.flowlabel); if (IS_ERR(flowlabel)) return -EINVAL; fl6_sock_release(flowlabel); } } /* * connect() to INADDR_ANY means loopback (BSD'ism). */ if (ipv6_addr_any(&usin->sin6_addr)) { if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr)) ipv6_addr_set_v4mapped(htonl(INADDR_LOOPBACK), &usin->sin6_addr); else usin->sin6_addr = in6addr_loopback; } addr_type = ipv6_addr_type(&usin->sin6_addr); if (addr_type & IPV6_ADDR_MULTICAST) return -ENETUNREACH; if (addr_type&IPV6_ADDR_LINKLOCAL) { if (addr_len >= sizeof(struct sockaddr_in6) && usin->sin6_scope_id) { /* If interface is set while binding, indices * must coincide. */ if (!sk_dev_equal_l3scope(sk, usin->sin6_scope_id)) return -EINVAL; sk->sk_bound_dev_if = usin->sin6_scope_id; } /* Connect to link-local address requires an interface */ if (!sk->sk_bound_dev_if) return -EINVAL; } if (tp->rx_opt.ts_recent_stamp && !ipv6_addr_equal(&sk->sk_v6_daddr, &usin->sin6_addr)) { tp->rx_opt.ts_recent = 0; tp->rx_opt.ts_recent_stamp = 0; WRITE_ONCE(tp->write_seq, 0); } sk->sk_v6_daddr = usin->sin6_addr; np->flow_label = fl6.flowlabel; /* * TCP over IPv4 */ if (addr_type & IPV6_ADDR_MAPPED) { u32 exthdrlen = icsk->icsk_ext_hdr_len; struct sockaddr_in sin; if (ipv6_only_sock(sk)) return -ENETUNREACH; sin.sin_family = AF_INET; sin.sin_port = usin->sin6_port; sin.sin_addr.s_addr = usin->sin6_addr.s6_addr32[3]; /* Paired with READ_ONCE() in tcp_(get|set)sockopt() */ WRITE_ONCE(icsk->icsk_af_ops, &ipv6_mapped); if (sk_is_mptcp(sk)) mptcpv6_handle_mapped(sk, true); sk->sk_backlog_rcv = tcp_v4_do_rcv; #ifdef CONFIG_TCP_MD5SIG tp->af_specific = &tcp_sock_ipv6_mapped_specific; #endif err = tcp_v4_connect(sk, (struct sockaddr *)&sin, sizeof(sin)); if (err) { icsk->icsk_ext_hdr_len = exthdrlen; /* Paired with READ_ONCE() in tcp_(get|set)sockopt() */ WRITE_ONCE(icsk->icsk_af_ops, &ipv6_specific); if (sk_is_mptcp(sk)) mptcpv6_handle_mapped(sk, false); sk->sk_backlog_rcv = tcp_v6_do_rcv; #ifdef CONFIG_TCP_MD5SIG tp->af_specific = &tcp_sock_ipv6_specific; #endif goto failure; } np->saddr = sk->sk_v6_rcv_saddr; return err; } if (!ipv6_addr_any(&sk->sk_v6_rcv_saddr)) saddr = &sk->sk_v6_rcv_saddr; fl6.flowi6_proto = IPPROTO_TCP; fl6.daddr = sk->sk_v6_daddr; fl6.saddr = saddr ? *saddr : np->saddr; fl6.flowlabel = ip6_make_flowinfo(np->tclass, np->flow_label); fl6.flowi6_oif = sk->sk_bound_dev_if; fl6.flowi6_mark = sk->sk_mark; fl6.fl6_dport = usin->sin6_port; fl6.fl6_sport = inet->inet_sport; fl6.flowi6_uid = sk->sk_uid; opt = rcu_dereference_protected(np->opt, lockdep_sock_is_held(sk)); final_p = fl6_update_dst(&fl6, opt, &final); security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6)); dst = ip6_dst_lookup_flow(net, sk, &fl6, final_p); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto failure; } tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; if (!saddr) { saddr = &fl6.saddr; err = inet_bhash2_update_saddr(sk, saddr, AF_INET6); if (err) goto failure; } /* set the source address */ np->saddr = *saddr; inet->inet_rcv_saddr = LOOPBACK4_IPV6; sk->sk_gso_type = SKB_GSO_TCPV6; ip6_dst_store(sk, dst, NULL, NULL); icsk->icsk_ext_hdr_len = 0; if (opt) icsk->icsk_ext_hdr_len = opt->opt_flen + opt->opt_nflen; tp->rx_opt.mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr); inet->inet_dport = usin->sin6_port; tcp_set_state(sk, TCP_SYN_SENT); err = inet6_hash_connect(tcp_death_row, sk); if (err) goto late_failure; sk_set_txhash(sk); if (likely(!tp->repair)) { if (!tp->write_seq) WRITE_ONCE(tp->write_seq, secure_tcpv6_seq(np->saddr.s6_addr32, sk->sk_v6_daddr.s6_addr32, inet->inet_sport, inet->inet_dport)); tp->tsoffset = secure_tcpv6_ts_off(net, np->saddr.s6_addr32, sk->sk_v6_daddr.s6_addr32); } if (tcp_fastopen_defer_connect(sk, &err)) return err; if (err) goto late_failure; err = tcp_connect(sk); if (err) goto late_failure; return 0; late_failure: tcp_set_state(sk, TCP_CLOSE); inet_bhash2_reset_saddr(sk); failure: inet->inet_dport = 0; sk->sk_route_caps = 0; return err; } static void tcp_v6_mtu_reduced(struct sock *sk) { struct dst_entry *dst; u32 mtu; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) return; mtu = READ_ONCE(tcp_sk(sk)->mtu_info); /* Drop requests trying to increase our current mss. * Check done in __ip6_rt_update_pmtu() is too late. */ if (tcp_mtu_to_mss(sk, mtu) >= tcp_sk(sk)->mss_cache) return; dst = inet6_csk_update_pmtu(sk, mtu); if (!dst) return; if (inet_csk(sk)->icsk_pmtu_cookie > dst_mtu(dst)) { tcp_sync_mss(sk, dst_mtu(dst)); tcp_simple_retransmit(sk); } } static int tcp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { const struct ipv6hdr *hdr = (const struct ipv6hdr *)skb->data; const struct tcphdr *th = (struct tcphdr *)(skb->data+offset); struct net *net = dev_net(skb->dev); struct request_sock *fastopen; struct ipv6_pinfo *np; struct tcp_sock *tp; __u32 seq, snd_una; struct sock *sk; bool fatal; int err; sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &hdr->daddr, th->dest, &hdr->saddr, ntohs(th->source), skb->dev->ifindex, inet6_sdif(skb)); if (!sk) { __ICMP6_INC_STATS(net, __in6_dev_get(skb->dev), ICMP6_MIB_INERRORS); return -ENOENT; } if (sk->sk_state == TCP_TIME_WAIT) { inet_twsk_put(inet_twsk(sk)); return 0; } seq = ntohl(th->seq); fatal = icmpv6_err_convert(type, code, &err); if (sk->sk_state == TCP_NEW_SYN_RECV) { tcp_req_err(sk, seq, fatal); return 0; } bh_lock_sock(sk); if (sock_owned_by_user(sk) && type != ICMPV6_PKT_TOOBIG) __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); if (sk->sk_state == TCP_CLOSE) goto out; if (static_branch_unlikely(&ip6_min_hopcount)) { /* min_hopcount can be changed concurrently from do_ipv6_setsockopt() */ if (ipv6_hdr(skb)->hop_limit < READ_ONCE(tcp_inet6_sk(sk)->min_hopcount)) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); goto out; } } tp = tcp_sk(sk); /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ fastopen = rcu_dereference(tp->fastopen_rsk); snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; if (sk->sk_state != TCP_LISTEN && !between(seq, snd_una, tp->snd_nxt)) { __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); goto out; } np = tcp_inet6_sk(sk); if (type == NDISC_REDIRECT) { if (!sock_owned_by_user(sk)) { struct dst_entry *dst = __sk_dst_check(sk, np->dst_cookie); if (dst) dst->ops->redirect(dst, sk, skb); } goto out; } if (type == ICMPV6_PKT_TOOBIG) { u32 mtu = ntohl(info); /* We are not interested in TCP_LISTEN and open_requests * (SYN-ACKs send out by Linux are always <576bytes so * they should go through unfragmented). */ if (sk->sk_state == TCP_LISTEN) goto out; if (!ip6_sk_accept_pmtu(sk)) goto out; if (mtu < IPV6_MIN_MTU) goto out; WRITE_ONCE(tp->mtu_info, mtu); if (!sock_owned_by_user(sk)) tcp_v6_mtu_reduced(sk); else if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); goto out; } /* Might be for an request_sock */ switch (sk->sk_state) { case TCP_SYN_SENT: case TCP_SYN_RECV: /* Only in fast or simultaneous open. If a fast open socket is * already accepted it is treated as a connected one below. */ if (fastopen && !fastopen->sk) break; ipv6_icmp_error(sk, skb, err, th->dest, ntohl(info), (u8 *)th); if (!sock_owned_by_user(sk)) { WRITE_ONCE(sk->sk_err, err); sk_error_report(sk); /* Wake people up to see the error (see connect in sock.c) */ tcp_done(sk); } else { WRITE_ONCE(sk->sk_err_soft, err); } goto out; case TCP_LISTEN: break; default: /* check if this ICMP message allows revert of backoff. * (see RFC 6069) */ if (!fastopen && type == ICMPV6_DEST_UNREACH && code == ICMPV6_NOROUTE) tcp_ld_RTO_revert(sk, seq); } if (!sock_owned_by_user(sk) && np->recverr) { WRITE_ONCE(sk->sk_err, err); sk_error_report(sk); } else { WRITE_ONCE(sk->sk_err_soft, err); } out: bh_unlock_sock(sk); sock_put(sk); return 0; } static int tcp_v6_send_synack(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct ipv6_txoptions *opt; struct flowi6 *fl6 = &fl->u.ip6; struct sk_buff *skb; int err = -ENOMEM; u8 tclass; /* First, grab a route. */ if (!dst && (dst = inet6_csk_route_req(sk, fl6, req, IPPROTO_TCP)) == NULL) goto done; skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); if (skb) { __tcp_v6_send_check(skb, &ireq->ir_v6_loc_addr, &ireq->ir_v6_rmt_addr); fl6->daddr = ireq->ir_v6_rmt_addr; if (np->repflow && ireq->pktopts) fl6->flowlabel = ip6_flowlabel(ipv6_hdr(ireq->pktopts)); tclass = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) ? (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | (np->tclass & INET_ECN_MASK) : np->tclass; if (!INET_ECN_is_capable(tclass) && tcp_bpf_ca_needs_ecn((struct sock *)req)) tclass |= INET_ECN_ECT_0; rcu_read_lock(); opt = ireq->ipv6_opt; if (!opt) opt = rcu_dereference(np->opt); err = ip6_xmit(sk, skb, fl6, skb->mark ? : READ_ONCE(sk->sk_mark), opt, tclass, sk->sk_priority); rcu_read_unlock(); err = net_xmit_eval(err); } done: return err; } static void tcp_v6_reqsk_destructor(struct request_sock *req) { kfree(inet_rsk(req)->ipv6_opt); consume_skb(inet_rsk(req)->pktopts); } #ifdef CONFIG_TCP_MD5SIG static struct tcp_md5sig_key *tcp_v6_md5_do_lookup(const struct sock *sk, const struct in6_addr *addr, int l3index) { return tcp_md5_do_lookup(sk, l3index, (union tcp_md5_addr *)addr, AF_INET6); } static struct tcp_md5sig_key *tcp_v6_md5_lookup(const struct sock *sk, const struct sock *addr_sk) { int l3index; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), addr_sk->sk_bound_dev_if); return tcp_v6_md5_do_lookup(sk, &addr_sk->sk_v6_daddr, l3index); } static int tcp_v6_parse_md5_keys(struct sock *sk, int optname, sockptr_t optval, int optlen) { struct tcp_md5sig cmd; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.tcpm_addr; int l3index = 0; u8 prefixlen; u8 flags; if (optlen < sizeof(cmd)) return -EINVAL; if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) return -EFAULT; if (sin6->sin6_family != AF_INET6) return -EINVAL; flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; if (optname == TCP_MD5SIG_EXT && cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { prefixlen = cmd.tcpm_prefixlen; if (prefixlen > 128 || (ipv6_addr_v4mapped(&sin6->sin6_addr) && prefixlen > 32)) return -EINVAL; } else { prefixlen = ipv6_addr_v4mapped(&sin6->sin6_addr) ? 32 : 128; } if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); if (dev && netif_is_l3_master(dev)) l3index = dev->ifindex; rcu_read_unlock(); /* ok to reference set/not set outside of rcu; * right now device MUST be an L3 master */ if (!dev || !l3index) return -EINVAL; } if (!cmd.tcpm_keylen) { if (ipv6_addr_v4mapped(&sin6->sin6_addr)) return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin6->sin6_addr.s6_addr32[3], AF_INET, prefixlen, l3index, flags); return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin6->sin6_addr, AF_INET6, prefixlen, l3index, flags); } if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) return -EINVAL; if (ipv6_addr_v4mapped(&sin6->sin6_addr)) return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin6->sin6_addr.s6_addr32[3], AF_INET, prefixlen, l3index, flags, cmd.tcpm_key, cmd.tcpm_keylen); return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin6->sin6_addr, AF_INET6, prefixlen, l3index, flags, cmd.tcpm_key, cmd.tcpm_keylen); } static int tcp_v6_md5_hash_headers(struct tcp_md5sig_pool *hp, const struct in6_addr *daddr, const struct in6_addr *saddr, const struct tcphdr *th, int nbytes) { struct tcp6_pseudohdr *bp; struct scatterlist sg; struct tcphdr *_th; bp = hp->scratch; /* 1. TCP pseudo-header (RFC2460) */ bp->saddr = *saddr; bp->daddr = *daddr; bp->protocol = cpu_to_be32(IPPROTO_TCP); bp->len = cpu_to_be32(nbytes); _th = (struct tcphdr *)(bp + 1); memcpy(_th, th, sizeof(*th)); _th->check = 0; sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp) + sizeof(*th)); return crypto_ahash_update(hp->md5_req); } static int tcp_v6_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, const struct in6_addr *daddr, struct in6_addr *saddr, const struct tcphdr *th) { struct tcp_md5sig_pool *hp; struct ahash_request *req; hp = tcp_get_md5sig_pool(); if (!hp) goto clear_hash_noput; req = hp->md5_req; if (crypto_ahash_init(req)) goto clear_hash; if (tcp_v6_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(hp, key)) goto clear_hash; ahash_request_set_crypt(req, NULL, md5_hash, 0); if (crypto_ahash_final(req)) goto clear_hash; tcp_put_md5sig_pool(); return 0; clear_hash: tcp_put_md5sig_pool(); clear_hash_noput: memset(md5_hash, 0, 16); return 1; } static int tcp_v6_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb) { const struct in6_addr *saddr, *daddr; struct tcp_md5sig_pool *hp; struct ahash_request *req; const struct tcphdr *th = tcp_hdr(skb); if (sk) { /* valid for establish/request sockets */ saddr = &sk->sk_v6_rcv_saddr; daddr = &sk->sk_v6_daddr; } else { const struct ipv6hdr *ip6h = ipv6_hdr(skb); saddr = &ip6h->saddr; daddr = &ip6h->daddr; } hp = tcp_get_md5sig_pool(); if (!hp) goto clear_hash_noput; req = hp->md5_req; if (crypto_ahash_init(req)) goto clear_hash; if (tcp_v6_md5_hash_headers(hp, daddr, saddr, th, skb->len)) goto clear_hash; if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) goto clear_hash; if (tcp_md5_hash_key(hp, key)) goto clear_hash; ahash_request_set_crypt(req, NULL, md5_hash, 0); if (crypto_ahash_final(req)) goto clear_hash; tcp_put_md5sig_pool(); return 0; clear_hash: tcp_put_md5sig_pool(); clear_hash_noput: memset(md5_hash, 0, 16); return 1; } #endif static void tcp_v6_init_req(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = tcp_inet6_sk(sk_listener); ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr; ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr; /* So that link locals have meaning */ if ((!sk_listener->sk_bound_dev_if || l3_slave) && ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL) ireq->ir_iif = tcp_v6_iif(skb); if (!TCP_SKB_CB(skb)->tcp_tw_isn && (ipv6_opt_accepted(sk_listener, skb, &TCP_SKB_CB(skb)->header.h6) || np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo || np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim || np->repflow)) { refcount_inc(&skb->users); ireq->pktopts = skb; } } static struct dst_entry *tcp_v6_route_req(const struct sock *sk, struct sk_buff *skb, struct flowi *fl, struct request_sock *req) { tcp_v6_init_req(req, sk, skb); if (security_inet_conn_request(sk, skb, req)) return NULL; return inet6_csk_route_req(sk, &fl->u.ip6, req, IPPROTO_TCP); } struct request_sock_ops tcp6_request_sock_ops __read_mostly = { .family = AF_INET6, .obj_size = sizeof(struct tcp6_request_sock), .rtx_syn_ack = tcp_rtx_synack, .send_ack = tcp_v6_reqsk_send_ack, .destructor = tcp_v6_reqsk_destructor, .send_reset = tcp_v6_send_reset, .syn_ack_timeout = tcp_syn_ack_timeout, }; const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops = { .mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr), #ifdef CONFIG_TCP_MD5SIG .req_md5_lookup = tcp_v6_md5_lookup, .calc_md5_hash = tcp_v6_md5_hash_skb, #endif #ifdef CONFIG_SYN_COOKIES .cookie_init_seq = cookie_v6_init_sequence, #endif .route_req = tcp_v6_route_req, .init_seq = tcp_v6_init_seq, .init_ts_off = tcp_v6_init_ts_off, .send_synack = tcp_v6_send_synack, }; static void tcp_v6_send_response(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, struct tcp_md5sig_key *key, int rst, u8 tclass, __be32 label, u32 priority, u32 txhash) { const struct tcphdr *th = tcp_hdr(skb); struct tcphdr *t1; struct sk_buff *buff; struct flowi6 fl6; struct net *net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); struct sock *ctl_sk = net->ipv6.tcp_sk; unsigned int tot_len = sizeof(struct tcphdr); __be32 mrst = 0, *topt; struct dst_entry *dst; __u32 mark = 0; if (tsecr) tot_len += TCPOLEN_TSTAMP_ALIGNED; #ifdef CONFIG_TCP_MD5SIG if (key) tot_len += TCPOLEN_MD5SIG_ALIGNED; #endif #ifdef CONFIG_MPTCP if (rst && !key) { mrst = mptcp_reset_option(skb); if (mrst) tot_len += sizeof(__be32); } #endif buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); if (!buff) return; skb_reserve(buff, MAX_TCP_HEADER); t1 = skb_push(buff, tot_len); skb_reset_transport_header(buff); /* Swap the send and the receive. */ memset(t1, 0, sizeof(*t1)); t1->dest = th->source; t1->source = th->dest; t1->doff = tot_len / 4; t1->seq = htonl(seq); t1->ack_seq = htonl(ack); t1->ack = !rst || !th->ack; t1->rst = rst; t1->window = htons(win); topt = (__be32 *)(t1 + 1); if (tsecr) { *topt++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); *topt++ = htonl(tsval); *topt++ = htonl(tsecr); } if (mrst) *topt++ = mrst; #ifdef CONFIG_TCP_MD5SIG if (key) { *topt++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); tcp_v6_md5_hash_hdr((__u8 *)topt, key, &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, t1); } #endif memset(&fl6, 0, sizeof(fl6)); fl6.daddr = ipv6_hdr(skb)->saddr; fl6.saddr = ipv6_hdr(skb)->daddr; fl6.flowlabel = label; buff->ip_summed = CHECKSUM_PARTIAL; __tcp_v6_send_check(buff, &fl6.saddr, &fl6.daddr); fl6.flowi6_proto = IPPROTO_TCP; if (rt6_need_strict(&fl6.daddr) && !oif) fl6.flowi6_oif = tcp_v6_iif(skb); else { if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) oif = skb->skb_iif; fl6.flowi6_oif = oif; } if (sk) { if (sk->sk_state == TCP_TIME_WAIT) mark = inet_twsk(sk)->tw_mark; else mark = READ_ONCE(sk->sk_mark); skb_set_delivery_time(buff, tcp_transmit_time(sk), true); } if (txhash) { /* autoflowlabel/skb_get_hash_flowi6 rely on buff->hash */ skb_set_hash(buff, txhash, PKT_HASH_TYPE_L4); } fl6.flowi6_mark = IP6_REPLY_MARK(net, skb->mark) ?: mark; fl6.fl6_dport = t1->dest; fl6.fl6_sport = t1->source; fl6.flowi6_uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); security_skb_classify_flow(skb, flowi6_to_flowi_common(&fl6)); /* Pass a socket to ip6_dst_lookup either it is for RST * Underlying function will use this to retrieve the network * namespace */ if (sk && sk->sk_state != TCP_TIME_WAIT) dst = ip6_dst_lookup_flow(net, sk, &fl6, NULL); /*sk's xfrm_policy can be referred*/ else dst = ip6_dst_lookup_flow(net, ctl_sk, &fl6, NULL); if (!IS_ERR(dst)) { skb_dst_set(buff, dst); ip6_xmit(ctl_sk, buff, &fl6, fl6.flowi6_mark, NULL, tclass & ~INET_ECN_MASK, priority); TCP_INC_STATS(net, TCP_MIB_OUTSEGS); if (rst) TCP_INC_STATS(net, TCP_MIB_OUTRSTS); return; } kfree_skb(buff); } static void tcp_v6_send_reset(const struct sock *sk, struct sk_buff *skb) { const struct tcphdr *th = tcp_hdr(skb); struct ipv6hdr *ipv6h = ipv6_hdr(skb); u32 seq = 0, ack_seq = 0; struct tcp_md5sig_key *key = NULL; #ifdef CONFIG_TCP_MD5SIG const __u8 *hash_location = NULL; unsigned char newhash[16]; int genhash; struct sock *sk1 = NULL; #endif __be32 label = 0; u32 priority = 0; struct net *net; u32 txhash = 0; int oif = 0; if (th->rst) return; /* If sk not NULL, it means we did a successful lookup and incoming * route had to be correct. prequeue might have dropped our dst. */ if (!sk && !ipv6_unicast_destination(skb)) return; net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); #ifdef CONFIG_TCP_MD5SIG rcu_read_lock(); hash_location = tcp_parse_md5sig_option(th); if (sk && sk_fullsock(sk)) { int l3index; /* sdif set, means packet ingressed via a device * in an L3 domain and inet_iif is set to it. */ l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; key = tcp_v6_md5_do_lookup(sk, &ipv6h->saddr, l3index); } else if (hash_location) { int dif = tcp_v6_iif_l3_slave(skb); int sdif = tcp_v6_sdif(skb); int l3index; /* * active side is lost. Try to find listening socket through * source port, and then find md5 key through listening socket. * we are not loose security here: * Incoming packet is checked with md5 hash with finding key, * no RST generated if md5 hash doesn't match. */ sk1 = inet6_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, NULL, 0, &ipv6h->saddr, th->source, &ipv6h->daddr, ntohs(th->source), dif, sdif); if (!sk1) goto out; /* sdif set, means packet ingressed via a device * in an L3 domain and dif is set to it. */ l3index = tcp_v6_sdif(skb) ? dif : 0; key = tcp_v6_md5_do_lookup(sk1, &ipv6h->saddr, l3index); if (!key) goto out; genhash = tcp_v6_md5_hash_skb(newhash, key, NULL, skb); if (genhash || memcmp(hash_location, newhash, 16) != 0) goto out; } #endif if (th->ack) seq = ntohl(th->ack_seq); else ack_seq = ntohl(th->seq) + th->syn + th->fin + skb->len - (th->doff << 2); if (sk) { oif = sk->sk_bound_dev_if; if (sk_fullsock(sk)) { const struct ipv6_pinfo *np = tcp_inet6_sk(sk); trace_tcp_send_reset(sk, skb); if (np->repflow) label = ip6_flowlabel(ipv6h); priority = sk->sk_priority; txhash = sk->sk_txhash; } if (sk->sk_state == TCP_TIME_WAIT) { label = cpu_to_be32(inet_twsk(sk)->tw_flowlabel); priority = inet_twsk(sk)->tw_priority; txhash = inet_twsk(sk)->tw_txhash; } } else { if (net->ipv6.sysctl.flowlabel_reflect & FLOWLABEL_REFLECT_TCP_RESET) label = ip6_flowlabel(ipv6h); } tcp_v6_send_response(sk, skb, seq, ack_seq, 0, 0, 0, oif, key, 1, ipv6_get_dsfield(ipv6h), label, priority, txhash); #ifdef CONFIG_TCP_MD5SIG out: rcu_read_unlock(); #endif } static void tcp_v6_send_ack(const struct sock *sk, struct sk_buff *skb, u32 seq, u32 ack, u32 win, u32 tsval, u32 tsecr, int oif, struct tcp_md5sig_key *key, u8 tclass, __be32 label, u32 priority, u32 txhash) { tcp_v6_send_response(sk, skb, seq, ack, win, tsval, tsecr, oif, key, 0, tclass, label, priority, txhash); } static void tcp_v6_timewait_ack(struct sock *sk, struct sk_buff *skb) { struct inet_timewait_sock *tw = inet_twsk(sk); struct tcp_timewait_sock *tcptw = tcp_twsk(sk); tcp_v6_send_ack(sk, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcp_time_stamp_raw() + tcptw->tw_ts_offset, tcptw->tw_ts_recent, tw->tw_bound_dev_if, tcp_twsk_md5_key(tcptw), tw->tw_tclass, cpu_to_be32(tw->tw_flowlabel), tw->tw_priority, tw->tw_txhash); inet_twsk_put(tw); } static void tcp_v6_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { int l3index; l3index = tcp_v6_sdif(skb) ? tcp_v6_iif_l3_slave(skb) : 0; /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV * sk->sk_state == TCP_SYN_RECV -> for Fast Open. */ /* RFC 7323 2.3 * The window field (SEG.WND) of every outgoing segment, with the * exception of <SYN> segments, MUST be right-shifted by * Rcv.Wind.Shift bits: */ tcp_v6_send_ack(sk, skb, (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, READ_ONCE(req->ts_recent), sk->sk_bound_dev_if, tcp_v6_md5_do_lookup(sk, &ipv6_hdr(skb)->saddr, l3index), ipv6_get_dsfield(ipv6_hdr(skb)), 0, READ_ONCE(sk->sk_priority), READ_ONCE(tcp_rsk(req)->txhash)); } static struct sock *tcp_v6_cookie_check(struct sock *sk, struct sk_buff *skb) { #ifdef CONFIG_SYN_COOKIES const struct tcphdr *th = tcp_hdr(skb); if (!th->syn) sk = cookie_v6_check(sk, skb); #endif return sk; } u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, struct tcphdr *th, u32 *cookie) { u16 mss = 0; #ifdef CONFIG_SYN_COOKIES mss = tcp_get_syncookie_mss(&tcp6_request_sock_ops, &tcp_request_sock_ipv6_ops, sk, th); if (mss) { *cookie = __cookie_v6_init_sequence(iph, th, &mss); tcp_synq_overflow(sk); } #endif return mss; } static int tcp_v6_conn_request(struct sock *sk, struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) return tcp_v4_conn_request(sk, skb); if (!ipv6_unicast_destination(skb)) goto drop; if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) { __IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS); return 0; } return tcp_conn_request(&tcp6_request_sock_ops, &tcp_request_sock_ipv6_ops, sk, skb); drop: tcp_listendrop(sk); return 0; /* don't send reset */ } static void tcp_v6_restore_cb(struct sk_buff *skb) { /* We need to move header back to the beginning if xfrm6_policy_check() * and tcp_v6_fill_cb() are going to be called again. * ip6_datagram_recv_specific_ctl() also expects IP6CB to be there. */ memmove(IP6CB(skb), &TCP_SKB_CB(skb)->header.h6, sizeof(struct inet6_skb_parm)); } static struct sock *tcp_v6_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct inet_request_sock *ireq; struct ipv6_pinfo *newnp; const struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct ipv6_txoptions *opt; struct inet_sock *newinet; bool found_dup_sk = false; struct tcp_sock *newtp; struct sock *newsk; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *key; int l3index; #endif struct flowi6 fl6; if (skb->protocol == htons(ETH_P_IP)) { /* * v6 mapped */ newsk = tcp_v4_syn_recv_sock(sk, skb, req, dst, req_unhash, own_req); if (!newsk) return NULL; inet_sk(newsk)->pinet6 = tcp_inet6_sk(newsk); newnp = tcp_inet6_sk(newsk); newtp = tcp_sk(newsk); memcpy(newnp, np, sizeof(struct ipv6_pinfo)); newnp->saddr = newsk->sk_v6_rcv_saddr; inet_csk(newsk)->icsk_af_ops = &ipv6_mapped; if (sk_is_mptcp(newsk)) mptcpv6_handle_mapped(newsk, true); newsk->sk_backlog_rcv = tcp_v4_do_rcv; #ifdef CONFIG_TCP_MD5SIG newtp->af_specific = &tcp_sock_ipv6_mapped_specific; #endif newnp->ipv6_mc_list = NULL; newnp->ipv6_ac_list = NULL; newnp->ipv6_fl_list = NULL; newnp->pktoptions = NULL; newnp->opt = NULL; newnp->mcast_oif = inet_iif(skb); newnp->mcast_hops = ip_hdr(skb)->ttl; newnp->rcv_flowinfo = 0; if (np->repflow) newnp->flow_label = 0; /* * No need to charge this sock to the relevant IPv6 refcnt debug socks count * here, tcp_create_openreq_child now does this for us, see the comment in * that function for the gory details. -acme */ /* It is tricky place. Until this moment IPv4 tcp worked with IPv6 icsk.icsk_af_ops. Sync it now. */ tcp_sync_mss(newsk, inet_csk(newsk)->icsk_pmtu_cookie); return newsk; } ireq = inet_rsk(req); if (sk_acceptq_is_full(sk)) goto out_overflow; if (!dst) { dst = inet6_csk_route_req(sk, &fl6, req, IPPROTO_TCP); if (!dst) goto out; } newsk = tcp_create_openreq_child(sk, req, skb); if (!newsk) goto out_nonewsk; /* * No need to charge this sock to the relevant IPv6 refcnt debug socks * count here, tcp_create_openreq_child now does this for us, see the * comment in that function for the gory details. -acme */ newsk->sk_gso_type = SKB_GSO_TCPV6; ip6_dst_store(newsk, dst, NULL, NULL); inet6_sk_rx_dst_set(newsk, skb); inet_sk(newsk)->pinet6 = tcp_inet6_sk(newsk); newtp = tcp_sk(newsk); newinet = inet_sk(newsk); newnp = tcp_inet6_sk(newsk); memcpy(newnp, np, sizeof(struct ipv6_pinfo)); newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr; newnp->saddr = ireq->ir_v6_loc_addr; newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr; newsk->sk_bound_dev_if = ireq->ir_iif; /* Now IPv6 options... First: no IPv4 options. */ newinet->inet_opt = NULL; newnp->ipv6_mc_list = NULL; newnp->ipv6_ac_list = NULL; newnp->ipv6_fl_list = NULL; /* Clone RX bits */ newnp->rxopt.all = np->rxopt.all; newnp->pktoptions = NULL; newnp->opt = NULL; newnp->mcast_oif = tcp_v6_iif(skb); newnp->mcast_hops = ipv6_hdr(skb)->hop_limit; newnp->rcv_flowinfo = ip6_flowinfo(ipv6_hdr(skb)); if (np->repflow) newnp->flow_label = ip6_flowlabel(ipv6_hdr(skb)); /* Set ToS of the new socket based upon the value of incoming SYN. * ECT bits are set later in tcp_init_transfer(). */ if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) newnp->tclass = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; /* Clone native IPv6 options from listening socket (if any) Yes, keeping reference count would be much more clever, but we make one more one thing there: reattach optmem to newsk. */ opt = ireq->ipv6_opt; if (!opt) opt = rcu_dereference(np->opt); if (opt) { opt = ipv6_dup_options(newsk, opt); RCU_INIT_POINTER(newnp->opt, opt); } inet_csk(newsk)->icsk_ext_hdr_len = 0; if (opt) inet_csk(newsk)->icsk_ext_hdr_len = opt->opt_nflen + opt->opt_flen; tcp_ca_openreq_child(newsk, dst); tcp_sync_mss(newsk, dst_mtu(dst)); newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); tcp_initialize_rcv_mss(newsk); newinet->inet_daddr = newinet->inet_saddr = LOOPBACK4_IPV6; newinet->inet_rcv_saddr = LOOPBACK4_IPV6; #ifdef CONFIG_TCP_MD5SIG l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); /* Copy over the MD5 key from the original socket */ key = tcp_v6_md5_do_lookup(sk, &newsk->sk_v6_daddr, l3index); if (key) { const union tcp_md5_addr *addr; addr = (union tcp_md5_addr *)&newsk->sk_v6_daddr; if (tcp_md5_key_copy(newsk, addr, AF_INET6, 128, l3index, key)) { inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto out; } } #endif if (__inet_inherit_port(sk, newsk) < 0) { inet_csk_prepare_forced_close(newsk); tcp_done(newsk); goto out; } *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), &found_dup_sk); if (*own_req) { tcp_move_syn(newtp, req); /* Clone pktoptions received with SYN, if we own the req */ if (ireq->pktopts) { newnp->pktoptions = skb_clone_and_charge_r(ireq->pktopts, newsk); consume_skb(ireq->pktopts); ireq->pktopts = NULL; if (newnp->pktoptions) tcp_v6_restore_cb(newnp->pktoptions); } } else { if (!req_unhash && found_dup_sk) { /* This code path should only be executed in the * syncookie case only */ bh_unlock_sock(newsk); sock_put(newsk); newsk = NULL; } } return newsk; out_overflow: __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); out_nonewsk: dst_release(dst); out: tcp_listendrop(sk); return NULL; } INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, u32)); /* The socket must have it's spinlock held when we get * here, unless it is a TCP_LISTEN socket. * * We have a potential double-lock case here, so even when * doing backlog processing we use the BH locking scheme. * This is because we cannot sleep with the original spinlock * held. */ INDIRECT_CALLABLE_SCOPE int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb) { struct ipv6_pinfo *np = tcp_inet6_sk(sk); struct sk_buff *opt_skb = NULL; enum skb_drop_reason reason; struct tcp_sock *tp; /* Imagine: socket is IPv6. IPv4 packet arrives, goes to IPv4 receive handler and backlogged. From backlog it always goes here. Kerboom... Fortunately, tcp_rcv_established and rcv_established handle them correctly, but it is not case with tcp_v6_hnd_req and tcp_v6_send_reset(). --ANK */ if (skb->protocol == htons(ETH_P_IP)) return tcp_v4_do_rcv(sk, skb); /* * socket locking is here for SMP purposes as backlog rcv * is currently called with bh processing disabled. */ /* Do Stevens' IPV6_PKTOPTIONS. Yes, guys, it is the only place in our code, where we may make it not affecting IPv4. The rest of code is protocol independent, and I do not like idea to uglify IPv4. Actually, all the idea behind IPV6_PKTOPTIONS looks not very well thought. For now we latch options, received in the last packet, enqueued by tcp. Feel free to propose better solution. --ANK (980728) */ if (np->rxopt.all) opt_skb = skb_clone_and_charge_r(skb, sk); reason = SKB_DROP_REASON_NOT_SPECIFIED; if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ struct dst_entry *dst; dst = rcu_dereference_protected(sk->sk_rx_dst, lockdep_sock_is_held(sk)); sock_rps_save_rxhash(sk, skb); sk_mark_napi_id(sk, skb); if (dst) { if (sk->sk_rx_dst_ifindex != skb->skb_iif || INDIRECT_CALL_1(dst->ops->check, ip6_dst_check, dst, sk->sk_rx_dst_cookie) == NULL) { RCU_INIT_POINTER(sk->sk_rx_dst, NULL); dst_release(dst); } } tcp_rcv_established(sk, skb); if (opt_skb) goto ipv6_pktoptions; return 0; } if (tcp_checksum_complete(skb)) goto csum_err; if (sk->sk_state == TCP_LISTEN) { struct sock *nsk = tcp_v6_cookie_check(sk, skb); if (!nsk) goto discard; if (nsk != sk) { if (tcp_child_process(sk, nsk, skb)) goto reset; if (opt_skb) __kfree_skb(opt_skb); return 0; } } else sock_rps_save_rxhash(sk, skb); if (tcp_rcv_state_process(sk, skb)) goto reset; if (opt_skb) goto ipv6_pktoptions; return 0; reset: tcp_v6_send_reset(sk, skb); discard: if (opt_skb) __kfree_skb(opt_skb); kfree_skb_reason(skb, reason); return 0; csum_err: reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); goto discard; ipv6_pktoptions: /* Do you ask, what is it? 1. skb was enqueued by tcp. 2. skb is added to tail of read queue, rather than out of order. 3. socket is not in passive state. 4. Finally, it really contains options, which user wants to receive. */ tp = tcp_sk(sk); if (TCP_SKB_CB(opt_skb)->end_seq == tp->rcv_nxt && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { if (np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo) np->mcast_oif = tcp_v6_iif(opt_skb); if (np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) np->mcast_hops = ipv6_hdr(opt_skb)->hop_limit; if (np->rxopt.bits.rxflow || np->rxopt.bits.rxtclass) np->rcv_flowinfo = ip6_flowinfo(ipv6_hdr(opt_skb)); if (np->repflow) np->flow_label = ip6_flowlabel(ipv6_hdr(opt_skb)); if (ipv6_opt_accepted(sk, opt_skb, &TCP_SKB_CB(opt_skb)->header.h6)) { tcp_v6_restore_cb(opt_skb); opt_skb = xchg(&np->pktoptions, opt_skb); } else { __kfree_skb(opt_skb); opt_skb = xchg(&np->pktoptions, NULL); } } consume_skb(opt_skb); return 0; } static void tcp_v6_fill_cb(struct sk_buff *skb, const struct ipv6hdr *hdr, const struct tcphdr *th) { /* This is tricky: we move IP6CB at its correct location into * TCP_SKB_CB(). It must be done after xfrm6_policy_check(), because * _decode_session6() uses IP6CB(). * barrier() makes sure compiler won't play aliasing games. */ memmove(&TCP_SKB_CB(skb)->header.h6, IP6CB(skb), sizeof(struct inet6_skb_parm)); barrier(); TCP_SKB_CB(skb)->seq = ntohl(th->seq); TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + skb->len - th->doff*4); TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); TCP_SKB_CB(skb)->tcp_tw_isn = 0; TCP_SKB_CB(skb)->ip_dsfield = ipv6_get_dsfield(hdr); TCP_SKB_CB(skb)->sacked = 0; TCP_SKB_CB(skb)->has_rxtstamp = skb->tstamp || skb_hwtstamps(skb)->hwtstamp; } INDIRECT_CALLABLE_SCOPE int tcp_v6_rcv(struct sk_buff *skb) { enum skb_drop_reason drop_reason; int sdif = inet6_sdif(skb); int dif = inet6_iif(skb); const struct tcphdr *th; const struct ipv6hdr *hdr; bool refcounted; struct sock *sk; int ret; struct net *net = dev_net(skb->dev); drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; if (skb->pkt_type != PACKET_HOST) goto discard_it; /* * Count it even if it's bad. */ __TCP_INC_STATS(net, TCP_MIB_INSEGS); if (!pskb_may_pull(skb, sizeof(struct tcphdr))) goto discard_it; th = (const struct tcphdr *)skb->data; if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; goto bad_packet; } if (!pskb_may_pull(skb, th->doff*4)) goto discard_it; if (skb_checksum_init(skb, IPPROTO_TCP, ip6_compute_pseudo)) goto csum_error; th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); lookup: sk = __inet6_lookup_skb(net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), th->source, th->dest, inet6_iif(skb), sdif, &refcounted); if (!sk) goto no_tcp_socket; process: if (sk->sk_state == TCP_TIME_WAIT) goto do_time_wait; if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); bool req_stolen = false; struct sock *nsk; sk = req->rsk_listener; drop_reason = tcp_inbound_md5_hash(sk, skb, &hdr->saddr, &hdr->daddr, AF_INET6, dif, sdif); if (drop_reason) { sk_drops_add(sk, skb); reqsk_put(req); goto discard_it; } if (tcp_checksum_complete(skb)) { reqsk_put(req); goto csum_error; } if (unlikely(sk->sk_state != TCP_LISTEN)) { nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); if (!nsk) { inet_csk_reqsk_queue_drop_and_put(sk, req); goto lookup; } sk = nsk; /* reuseport_migrate_sock() has already held one sk_refcnt * before returning. */ } else { sock_hold(sk); } refcounted = true; nsk = NULL; if (!tcp_filter(sk, skb)) { th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); tcp_v6_fill_cb(skb, hdr, th); nsk = tcp_check_req(sk, skb, req, false, &req_stolen); } else { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; } if (!nsk) { reqsk_put(req); if (req_stolen) { /* Another cpu got exclusive access to req * and created a full blown socket. * Try to feed this packet to this socket * instead of discarding it. */ tcp_v6_restore_cb(skb); sock_put(sk); goto lookup; } goto discard_and_relse; } if (nsk == sk) { reqsk_put(req); tcp_v6_restore_cb(skb); } else if (tcp_child_process(sk, nsk, skb)) { tcp_v6_send_reset(nsk, skb); goto discard_and_relse; } else { sock_put(sk); return 0; } } if (static_branch_unlikely(&ip6_min_hopcount)) { /* min_hopcount can be changed concurrently from do_ipv6_setsockopt() */ if (unlikely(hdr->hop_limit < READ_ONCE(tcp_inet6_sk(sk)->min_hopcount))) { __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); drop_reason = SKB_DROP_REASON_TCP_MINTTL; goto discard_and_relse; } } if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; goto discard_and_relse; } drop_reason = tcp_inbound_md5_hash(sk, skb, &hdr->saddr, &hdr->daddr, AF_INET6, dif, sdif); if (drop_reason) goto discard_and_relse; nf_reset_ct(skb); if (tcp_filter(sk, skb)) { drop_reason = SKB_DROP_REASON_SOCKET_FILTER; goto discard_and_relse; } th = (const struct tcphdr *)skb->data; hdr = ipv6_hdr(skb); tcp_v6_fill_cb(skb, hdr, th); skb->dev = NULL; if (sk->sk_state == TCP_LISTEN) { ret = tcp_v6_do_rcv(sk, skb); goto put_and_return; } sk_incoming_cpu_update(sk); bh_lock_sock_nested(sk); tcp_segs_in(tcp_sk(sk), skb); ret = 0; if (!sock_owned_by_user(sk)) { ret = tcp_v6_do_rcv(sk, skb); } else { if (tcp_add_backlog(sk, skb, &drop_reason)) goto discard_and_relse; } bh_unlock_sock(sk); put_and_return: if (refcounted) sock_put(sk); return ret ? -1 : 0; no_tcp_socket: drop_reason = SKB_DROP_REASON_NO_SOCKET; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) goto discard_it; tcp_v6_fill_cb(skb, hdr, th); if (tcp_checksum_complete(skb)) { csum_error: drop_reason = SKB_DROP_REASON_TCP_CSUM; trace_tcp_bad_csum(skb); __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); bad_packet: __TCP_INC_STATS(net, TCP_MIB_INERRS); } else { tcp_v6_send_reset(NULL, skb); } discard_it: SKB_DR_OR(drop_reason, NOT_SPECIFIED); kfree_skb_reason(skb, drop_reason); return 0; discard_and_relse: sk_drops_add(sk, skb); if (refcounted) sock_put(sk); goto discard_it; do_time_wait: if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { drop_reason = SKB_DROP_REASON_XFRM_POLICY; inet_twsk_put(inet_twsk(sk)); goto discard_it; } tcp_v6_fill_cb(skb, hdr, th); if (tcp_checksum_complete(skb)) { inet_twsk_put(inet_twsk(sk)); goto csum_error; } switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { case TCP_TW_SYN: { struct sock *sk2; sk2 = inet6_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, skb, __tcp_hdrlen(th), &ipv6_hdr(skb)->saddr, th->source, &ipv6_hdr(skb)->daddr, ntohs(th->dest), tcp_v6_iif_l3_slave(skb), sdif); if (sk2) { struct inet_timewait_sock *tw = inet_twsk(sk); inet_twsk_deschedule_put(tw); sk = sk2; tcp_v6_restore_cb(skb); refcounted = false; goto process; } } /* to ACK */ fallthrough; case TCP_TW_ACK: tcp_v6_timewait_ack(sk, skb); break; case TCP_TW_RST: tcp_v6_send_reset(sk, skb); inet_twsk_deschedule_put(inet_twsk(sk)); goto discard_it; case TCP_TW_SUCCESS: ; } goto discard_it; } void tcp_v6_early_demux(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); const struct ipv6hdr *hdr; const struct tcphdr *th; struct sock *sk; if (skb->pkt_type != PACKET_HOST) return; if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) return; hdr = ipv6_hdr(skb); th = tcp_hdr(skb); if (th->doff < sizeof(struct tcphdr) / 4) return; /* Note : We use inet6_iif() here, not tcp_v6_iif() */ sk = __inet6_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, &hdr->saddr, th->source, &hdr->daddr, ntohs(th->dest), inet6_iif(skb), inet6_sdif(skb)); if (sk) { skb->sk = sk; skb->destructor = sock_edemux; if (sk_fullsock(sk)) { struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); if (dst) dst = dst_check(dst, sk->sk_rx_dst_cookie); if (dst && sk->sk_rx_dst_ifindex == skb->skb_iif) skb_dst_set_noref(skb, dst); } } } static struct timewait_sock_ops tcp6_timewait_sock_ops = { .twsk_obj_size = sizeof(struct tcp6_timewait_sock), .twsk_unique = tcp_twsk_unique, .twsk_destructor = tcp_twsk_destructor, }; INDIRECT_CALLABLE_SCOPE void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb) { __tcp_v6_send_check(skb, &sk->sk_v6_rcv_saddr, &sk->sk_v6_daddr); } const struct inet_connection_sock_af_ops ipv6_specific = { .queue_xmit = inet6_csk_xmit, .send_check = tcp_v6_send_check, .rebuild_header = inet6_sk_rebuild_header, .sk_rx_dst_set = inet6_sk_rx_dst_set, .conn_request = tcp_v6_conn_request, .syn_recv_sock = tcp_v6_syn_recv_sock, .net_header_len = sizeof(struct ipv6hdr), .net_frag_header_len = sizeof(struct frag_hdr), .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .addr2sockaddr = inet6_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in6), .mtu_reduced = tcp_v6_mtu_reduced, }; #ifdef CONFIG_TCP_MD5SIG static const struct tcp_sock_af_ops tcp_sock_ipv6_specific = { .md5_lookup = tcp_v6_md5_lookup, .calc_md5_hash = tcp_v6_md5_hash_skb, .md5_parse = tcp_v6_parse_md5_keys, }; #endif /* * TCP over IPv4 via INET6 API */ static const struct inet_connection_sock_af_ops ipv6_mapped = { .queue_xmit = ip_queue_xmit, .send_check = tcp_v4_send_check, .rebuild_header = inet_sk_rebuild_header, .sk_rx_dst_set = inet_sk_rx_dst_set, .conn_request = tcp_v6_conn_request, .syn_recv_sock = tcp_v6_syn_recv_sock, .net_header_len = sizeof(struct iphdr), .setsockopt = ipv6_setsockopt, .getsockopt = ipv6_getsockopt, .addr2sockaddr = inet6_csk_addr2sockaddr, .sockaddr_len = sizeof(struct sockaddr_in6), .mtu_reduced = tcp_v4_mtu_reduced, }; #ifdef CONFIG_TCP_MD5SIG static const struct tcp_sock_af_ops tcp_sock_ipv6_mapped_specific = { .md5_lookup = tcp_v4_md5_lookup, .calc_md5_hash = tcp_v4_md5_hash_skb, .md5_parse = tcp_v6_parse_md5_keys, }; #endif /* NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ static int tcp_v6_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_init_sock(sk); icsk->icsk_af_ops = &ipv6_specific; #ifdef CONFIG_TCP_MD5SIG tcp_sk(sk)->af_specific = &tcp_sock_ipv6_specific; #endif return 0; } #ifdef CONFIG_PROC_FS /* Proc filesystem TCPv6 sock list dumping. */ static void get_openreq6(struct seq_file *seq, const struct request_sock *req, int i) { long ttd = req->rsk_timer.expires - jiffies; const struct in6_addr *src = &inet_rsk(req)->ir_v6_loc_addr; const struct in6_addr *dest = &inet_rsk(req)->ir_v6_rmt_addr; if (ttd < 0) ttd = 0; seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5u %8d %d %d %pK\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], inet_rsk(req)->ir_num, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], ntohs(inet_rsk(req)->ir_rmt_port), TCP_SYN_RECV, 0, 0, /* could print option size, but that is af dependent. */ 1, /* timers active (only the expire timer) */ jiffies_to_clock_t(ttd), req->num_timeout, from_kuid_munged(seq_user_ns(seq), sock_i_uid(req->rsk_listener)), 0, /* non standard timer */ 0, /* open_requests have no inode */ 0, req); } static void get_tcp6_sock(struct seq_file *seq, struct sock *sp, int i) { const struct in6_addr *dest, *src; __u16 destp, srcp; int timer_active; unsigned long timer_expires; const struct inet_sock *inet = inet_sk(sp); const struct tcp_sock *tp = tcp_sk(sp); const struct inet_connection_sock *icsk = inet_csk(sp); const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; int rx_queue; int state; dest = &sp->sk_v6_daddr; src = &sp->sk_v6_rcv_saddr; destp = ntohs(inet->inet_dport); srcp = ntohs(inet->inet_sport); if (icsk->icsk_pending == ICSK_TIME_RETRANS || icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { timer_active = 1; timer_expires = icsk->icsk_timeout; } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { timer_active = 4; timer_expires = icsk->icsk_timeout; } else if (timer_pending(&sp->sk_timer)) { timer_active = 2; timer_expires = sp->sk_timer.expires; } else { timer_active = 0; timer_expires = jiffies; } state = inet_sk_state_load(sp); if (state == TCP_LISTEN) rx_queue = READ_ONCE(sp->sk_ack_backlog); else /* Because we don't lock the socket, * we might find a transient negative value. */ rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq), 0); seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %lu %lu %u %u %d\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], srcp, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], destp, state, READ_ONCE(tp->write_seq) - tp->snd_una, rx_queue, timer_active, jiffies_delta_to_clock_t(timer_expires - jiffies), icsk->icsk_retransmits, from_kuid_munged(seq_user_ns(seq), sock_i_uid(sp)), icsk->icsk_probes_out, sock_i_ino(sp), refcount_read(&sp->sk_refcnt), sp, jiffies_to_clock_t(icsk->icsk_rto), jiffies_to_clock_t(icsk->icsk_ack.ato), (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sp), tcp_snd_cwnd(tp), state == TCP_LISTEN ? fastopenq->max_qlen : (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh) ); } static void get_timewait6_sock(struct seq_file *seq, struct inet_timewait_sock *tw, int i) { long delta = tw->tw_timer.expires - jiffies; const struct in6_addr *dest, *src; __u16 destp, srcp; dest = &tw->tw_v6_daddr; src = &tw->tw_v6_rcv_saddr; destp = ntohs(tw->tw_dport); srcp = ntohs(tw->tw_sport); seq_printf(seq, "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X " "%02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK\n", i, src->s6_addr32[0], src->s6_addr32[1], src->s6_addr32[2], src->s6_addr32[3], srcp, dest->s6_addr32[0], dest->s6_addr32[1], dest->s6_addr32[2], dest->s6_addr32[3], destp, tw->tw_substate, 0, 0, 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, refcount_read(&tw->tw_refcnt), tw); } static int tcp6_seq_show(struct seq_file *seq, void *v) { struct tcp_iter_state *st; struct sock *sk = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, " sl " "local_address " "remote_address " "st tx_queue rx_queue tr tm->when retrnsmt" " uid timeout inode\n"); goto out; } st = seq->private; if (sk->sk_state == TCP_TIME_WAIT) get_timewait6_sock(seq, v, st->num); else if (sk->sk_state == TCP_NEW_SYN_RECV) get_openreq6(seq, v, st->num); else get_tcp6_sock(seq, v, st->num); out: return 0; } static const struct seq_operations tcp6_seq_ops = { .show = tcp6_seq_show, .start = tcp_seq_start, .next = tcp_seq_next, .stop = tcp_seq_stop, }; static struct tcp_seq_afinfo tcp6_seq_afinfo = { .family = AF_INET6, }; int __net_init tcp6_proc_init(struct net *net) { if (!proc_create_net_data("tcp6", 0444, net->proc_net, &tcp6_seq_ops, sizeof(struct tcp_iter_state), &tcp6_seq_afinfo)) return -ENOMEM; return 0; } void tcp6_proc_exit(struct net *net) { remove_proc_entry("tcp6", net->proc_net); } #endif struct proto tcpv6_prot = { .name = "TCPv6", .owner = THIS_MODULE, .close = tcp_close, .pre_connect = tcp_v6_pre_connect, .connect = tcp_v6_connect, .disconnect = tcp_disconnect, .accept = inet_csk_accept, .ioctl = tcp_ioctl, .init = tcp_v6_init_sock, .destroy = tcp_v4_destroy_sock, .shutdown = tcp_shutdown, .setsockopt = tcp_setsockopt, .getsockopt = tcp_getsockopt, .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, .keepalive = tcp_set_keepalive, .recvmsg = tcp_recvmsg, .sendmsg = tcp_sendmsg, .splice_eof = tcp_splice_eof, .backlog_rcv = tcp_v6_do_rcv, .release_cb = tcp_release_cb, .hash = inet6_hash, .unhash = inet_unhash, .get_port = inet_csk_get_port, .put_port = inet_put_port, #ifdef CONFIG_BPF_SYSCALL .psock_update_sk_prot = tcp_bpf_update_proto, #endif .enter_memory_pressure = tcp_enter_memory_pressure, .leave_memory_pressure = tcp_leave_memory_pressure, .stream_memory_free = tcp_stream_memory_free, .sockets_allocated = &tcp_sockets_allocated, .memory_allocated = &tcp_memory_allocated, .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, .memory_pressure = &tcp_memory_pressure, .orphan_count = &tcp_orphan_count, .sysctl_mem = sysctl_tcp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), .max_header = MAX_TCP_HEADER, .obj_size = sizeof(struct tcp6_sock), .ipv6_pinfo_offset = offsetof(struct tcp6_sock, inet6), .slab_flags = SLAB_TYPESAFE_BY_RCU, .twsk_prot = &tcp6_timewait_sock_ops, .rsk_prot = &tcp6_request_sock_ops, .h.hashinfo = NULL, .no_autobind = true, .diag_destroy = tcp_abort, }; EXPORT_SYMBOL_GPL(tcpv6_prot); static const struct inet6_protocol tcpv6_protocol = { .handler = tcp_v6_rcv, .err_handler = tcp_v6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static struct inet_protosw tcpv6_protosw = { .type = SOCK_STREAM, .protocol = IPPROTO_TCP, .prot = &tcpv6_prot, .ops = &inet6_stream_ops, .flags = INET_PROTOSW_PERMANENT | INET_PROTOSW_ICSK, }; static int __net_init tcpv6_net_init(struct net *net) { return inet_ctl_sock_create(&net->ipv6.tcp_sk, PF_INET6, SOCK_RAW, IPPROTO_TCP, net); } static void __net_exit tcpv6_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.tcp_sk); } static void __net_exit tcpv6_net_exit_batch(struct list_head *net_exit_list) { tcp_twsk_purge(net_exit_list, AF_INET6); } static struct pernet_operations tcpv6_net_ops = { .init = tcpv6_net_init, .exit = tcpv6_net_exit, .exit_batch = tcpv6_net_exit_batch, }; int __init tcpv6_init(void) { int ret; ret = inet6_add_protocol(&tcpv6_protocol, IPPROTO_TCP); if (ret) goto out; /* register inet6 protocol */ ret = inet6_register_protosw(&tcpv6_protosw); if (ret) goto out_tcpv6_protocol; ret = register_pernet_subsys(&tcpv6_net_ops); if (ret) goto out_tcpv6_protosw; ret = mptcpv6_init(); if (ret) goto out_tcpv6_pernet_subsys; out: return ret; out_tcpv6_pernet_subsys: unregister_pernet_subsys(&tcpv6_net_ops); out_tcpv6_protosw: inet6_unregister_protosw(&tcpv6_protosw); out_tcpv6_protocol: inet6_del_protocol(&tcpv6_protocol, IPPROTO_TCP); goto out; } void tcpv6_exit(void) { unregister_pernet_subsys(&tcpv6_net_ops); inet6_unregister_protosw(&tcpv6_protosw); inet6_del_protocol(&tcpv6_protocol, IPPROTO_TCP); }
linux-master
net/ipv6/tcp_ipv6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Internet Control Message Protocol (ICMPv6) * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * * Based on net/ipv4/icmp.c * * RFC 1885 */ /* * Changes: * * Andi Kleen : exception handling * Andi Kleen add rate limits. never reply to a icmp. * add more length checks and other fixes. * yoshfuji : ensure to sent parameter problem for * fragments. * YOSHIFUJI Hideaki @USAGI: added sysctl for icmp rate limit. * Randy Dunlap and * YOSHIFUJI Hideaki @USAGI: Per-interface statistics support * Kazunori MIYAZAWA @USAGI: change output process to use ip6_append_data */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/netfilter.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/icmpv6.h> #include <net/ip.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip6_checksum.h> #include <net/ping.h> #include <net/protocol.h> #include <net/raw.h> #include <net/rawv6.h> #include <net/seg6.h> #include <net/transp_v6.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/inet_common.h> #include <net/dsfield.h> #include <net/l3mdev.h> #include <linux/uaccess.h> static DEFINE_PER_CPU(struct sock *, ipv6_icmp_sk); static int icmpv6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { /* icmpv6_notify checks 8 bytes can be pulled, icmp6hdr is 8 bytes */ struct icmp6hdr *icmp6 = (struct icmp6hdr *) (skb->data + offset); struct net *net = dev_net(skb->dev); if (type == ICMPV6_PKT_TOOBIG) ip6_update_pmtu(skb, net, info, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); if (!(type & ICMPV6_INFOMSG_MASK)) if (icmp6->icmp6_type == ICMPV6_ECHO_REQUEST) ping_err(skb, offset, ntohl(info)); return 0; } static int icmpv6_rcv(struct sk_buff *skb); static const struct inet6_protocol icmpv6_protocol = { .handler = icmpv6_rcv, .err_handler = icmpv6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; /* Called with BH disabled */ static struct sock *icmpv6_xmit_lock(struct net *net) { struct sock *sk; sk = this_cpu_read(ipv6_icmp_sk); if (unlikely(!spin_trylock(&sk->sk_lock.slock))) { /* This can happen if the output path (f.e. SIT or * ip6ip6 tunnel) signals dst_link_failure() for an * outgoing ICMP6 packet. */ return NULL; } sock_net_set(sk, net); return sk; } static void icmpv6_xmit_unlock(struct sock *sk) { sock_net_set(sk, &init_net); spin_unlock(&sk->sk_lock.slock); } /* * Figure out, may we reply to this packet with icmp error. * * We do not reply, if: * - it was icmp error message. * - it is truncated, so that it is known, that protocol is ICMPV6 * (i.e. in the middle of some exthdr) * * --ANK (980726) */ static bool is_ineligible(const struct sk_buff *skb) { int ptr = (u8 *)(ipv6_hdr(skb) + 1) - skb->data; int len = skb->len - ptr; __u8 nexthdr = ipv6_hdr(skb)->nexthdr; __be16 frag_off; if (len < 0) return true; ptr = ipv6_skip_exthdr(skb, ptr, &nexthdr, &frag_off); if (ptr < 0) return false; if (nexthdr == IPPROTO_ICMPV6) { u8 _type, *tp; tp = skb_header_pointer(skb, ptr+offsetof(struct icmp6hdr, icmp6_type), sizeof(_type), &_type); /* Based on RFC 8200, Section 4.5 Fragment Header, return * false if this is a fragment packet with no icmp header info. */ if (!tp && frag_off != 0) return false; else if (!tp || !(*tp & ICMPV6_INFOMSG_MASK)) return true; } return false; } static bool icmpv6_mask_allow(struct net *net, int type) { if (type > ICMPV6_MSG_MAX) return true; /* Limit if icmp type is set in ratemask. */ if (!test_bit(type, net->ipv6.sysctl.icmpv6_ratemask)) return true; return false; } static bool icmpv6_global_allow(struct net *net, int type) { if (icmpv6_mask_allow(net, type)) return true; if (icmp_global_allow()) return true; __ICMP_INC_STATS(net, ICMP_MIB_RATELIMITGLOBAL); return false; } /* * Check the ICMP output rate limit */ static bool icmpv6_xrlim_allow(struct sock *sk, u8 type, struct flowi6 *fl6) { struct net *net = sock_net(sk); struct dst_entry *dst; bool res = false; if (icmpv6_mask_allow(net, type)) return true; /* * Look up the output route. * XXX: perhaps the expire for routing entries cloned by * this lookup should be more aggressive (not longer than timeout). */ dst = ip6_route_output(net, sk, fl6); if (dst->error) { IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); } else if (dst->dev && (dst->dev->flags&IFF_LOOPBACK)) { res = true; } else { struct rt6_info *rt = (struct rt6_info *)dst; int tmo = net->ipv6.sysctl.icmpv6_time; struct inet_peer *peer; /* Give more bandwidth to wider prefixes. */ if (rt->rt6i_dst.plen < 128) tmo >>= ((128 - rt->rt6i_dst.plen)>>5); peer = inet_getpeer_v6(net->ipv6.peers, &fl6->daddr, 1); res = inet_peer_xrlim_allow(peer, tmo); if (peer) inet_putpeer(peer); } if (!res) __ICMP6_INC_STATS(net, ip6_dst_idev(dst), ICMP6_MIB_RATELIMITHOST); dst_release(dst); return res; } static bool icmpv6_rt_has_prefsrc(struct sock *sk, u8 type, struct flowi6 *fl6) { struct net *net = sock_net(sk); struct dst_entry *dst; bool res = false; dst = ip6_route_output(net, sk, fl6); if (!dst->error) { struct rt6_info *rt = (struct rt6_info *)dst; struct in6_addr prefsrc; rt6_get_prefsrc(rt, &prefsrc); res = !ipv6_addr_any(&prefsrc); } dst_release(dst); return res; } /* * an inline helper for the "simple" if statement below * checks if parameter problem report is caused by an * unrecognized IPv6 option that has the Option Type * highest-order two bits set to 10 */ static bool opt_unrec(struct sk_buff *skb, __u32 offset) { u8 _optval, *op; offset += skb_network_offset(skb); op = skb_header_pointer(skb, offset, sizeof(_optval), &_optval); if (!op) return true; return (*op & 0xC0) == 0x80; } void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6, struct icmp6hdr *thdr, int len) { struct sk_buff *skb; struct icmp6hdr *icmp6h; skb = skb_peek(&sk->sk_write_queue); if (!skb) return; icmp6h = icmp6_hdr(skb); memcpy(icmp6h, thdr, sizeof(struct icmp6hdr)); icmp6h->icmp6_cksum = 0; if (skb_queue_len(&sk->sk_write_queue) == 1) { skb->csum = csum_partial(icmp6h, sizeof(struct icmp6hdr), skb->csum); icmp6h->icmp6_cksum = csum_ipv6_magic(&fl6->saddr, &fl6->daddr, len, fl6->flowi6_proto, skb->csum); } else { __wsum tmp_csum = 0; skb_queue_walk(&sk->sk_write_queue, skb) { tmp_csum = csum_add(tmp_csum, skb->csum); } tmp_csum = csum_partial(icmp6h, sizeof(struct icmp6hdr), tmp_csum); icmp6h->icmp6_cksum = csum_ipv6_magic(&fl6->saddr, &fl6->daddr, len, fl6->flowi6_proto, tmp_csum); } ip6_push_pending_frames(sk); } struct icmpv6_msg { struct sk_buff *skb; int offset; uint8_t type; }; static int icmpv6_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct icmpv6_msg *msg = (struct icmpv6_msg *) from; struct sk_buff *org_skb = msg->skb; __wsum csum; csum = skb_copy_and_csum_bits(org_skb, msg->offset + offset, to, len); skb->csum = csum_block_add(skb->csum, csum, odd); if (!(msg->type & ICMPV6_INFOMSG_MASK)) nf_ct_attach(skb, org_skb); return 0; } #if IS_ENABLED(CONFIG_IPV6_MIP6) static void mip6_addr_swap(struct sk_buff *skb, const struct inet6_skb_parm *opt) { struct ipv6hdr *iph = ipv6_hdr(skb); struct ipv6_destopt_hao *hao; int off; if (opt->dsthao) { off = ipv6_find_tlv(skb, opt->dsthao, IPV6_TLV_HAO); if (likely(off >= 0)) { hao = (struct ipv6_destopt_hao *) (skb_network_header(skb) + off); swap(iph->saddr, hao->addr); } } } #else static inline void mip6_addr_swap(struct sk_buff *skb, const struct inet6_skb_parm *opt) {} #endif static struct dst_entry *icmpv6_route_lookup(struct net *net, struct sk_buff *skb, struct sock *sk, struct flowi6 *fl6) { struct dst_entry *dst, *dst2; struct flowi6 fl2; int err; err = ip6_dst_lookup(net, sk, &dst, fl6); if (err) return ERR_PTR(err); /* * We won't send icmp if the destination is known * anycast unless we need to treat anycast as unicast. */ if (!READ_ONCE(net->ipv6.sysctl.icmpv6_error_anycast_as_unicast) && ipv6_anycast_destination(dst, &fl6->daddr)) { net_dbg_ratelimited("icmp6_send: acast source\n"); dst_release(dst); return ERR_PTR(-EINVAL); } /* No need to clone since we're just using its address. */ dst2 = dst; dst = xfrm_lookup(net, dst, flowi6_to_flowi(fl6), sk, 0); if (!IS_ERR(dst)) { if (dst != dst2) return dst; } else { if (PTR_ERR(dst) == -EPERM) dst = NULL; else return dst; } err = xfrm_decode_session_reverse(skb, flowi6_to_flowi(&fl2), AF_INET6); if (err) goto relookup_failed; err = ip6_dst_lookup(net, sk, &dst2, &fl2); if (err) goto relookup_failed; dst2 = xfrm_lookup(net, dst2, flowi6_to_flowi(&fl2), sk, XFRM_LOOKUP_ICMP); if (!IS_ERR(dst2)) { dst_release(dst); dst = dst2; } else { err = PTR_ERR(dst2); if (err == -EPERM) { dst_release(dst); return dst2; } else goto relookup_failed; } relookup_failed: if (dst) return dst; return ERR_PTR(err); } static struct net_device *icmp6_dev(const struct sk_buff *skb) { struct net_device *dev = skb->dev; /* for local traffic to local address, skb dev is the loopback * device. Check if there is a dst attached to the skb and if so * get the real device index. Same is needed for replies to a link * local address on a device enslaved to an L3 master device */ if (unlikely(dev->ifindex == LOOPBACK_IFINDEX || netif_is_l3_master(skb->dev))) { const struct rt6_info *rt6 = skb_rt6_info(skb); /* The destination could be an external IP in Ext Hdr (SRv6, RPL, etc.), * and ip6_null_entry could be set to skb if no route is found. */ if (rt6 && rt6->rt6i_idev) dev = rt6->rt6i_idev->dev; } return dev; } static int icmp6_iif(const struct sk_buff *skb) { return icmp6_dev(skb)->ifindex; } /* * Send an ICMP message in response to a packet in error */ void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm) { struct inet6_dev *idev = NULL; struct ipv6hdr *hdr = ipv6_hdr(skb); struct sock *sk; struct net *net; struct ipv6_pinfo *np; const struct in6_addr *saddr = NULL; struct dst_entry *dst; struct icmp6hdr tmp_hdr; struct flowi6 fl6; struct icmpv6_msg msg; struct ipcm6_cookie ipc6; int iif = 0; int addr_type = 0; int len; u32 mark; if ((u8 *)hdr < skb->head || (skb_network_header(skb) + sizeof(*hdr)) > skb_tail_pointer(skb)) return; if (!skb->dev) return; net = dev_net(skb->dev); mark = IP6_REPLY_MARK(net, skb->mark); /* * Make sure we respect the rules * i.e. RFC 1885 2.4(e) * Rule (e.1) is enforced by not using icmp6_send * in any code that processes icmp errors. */ addr_type = ipv6_addr_type(&hdr->daddr); if (ipv6_chk_addr(net, &hdr->daddr, skb->dev, 0) || ipv6_chk_acast_addr_src(net, skb->dev, &hdr->daddr)) saddr = &hdr->daddr; /* * Dest addr check */ if (addr_type & IPV6_ADDR_MULTICAST || skb->pkt_type != PACKET_HOST) { if (type != ICMPV6_PKT_TOOBIG && !(type == ICMPV6_PARAMPROB && code == ICMPV6_UNK_OPTION && (opt_unrec(skb, info)))) return; saddr = NULL; } addr_type = ipv6_addr_type(&hdr->saddr); /* * Source addr check */ if (__ipv6_addr_needs_scope_id(addr_type)) { iif = icmp6_iif(skb); } else { /* * The source device is used for looking up which routing table * to use for sending an ICMP error. */ iif = l3mdev_master_ifindex(skb->dev); } /* * Must not send error if the source does not uniquely * identify a single node (RFC2463 Section 2.4). * We check unspecified / multicast addresses here, * and anycast addresses will be checked later. */ if ((addr_type == IPV6_ADDR_ANY) || (addr_type & IPV6_ADDR_MULTICAST)) { net_dbg_ratelimited("icmp6_send: addr_any/mcast source [%pI6c > %pI6c]\n", &hdr->saddr, &hdr->daddr); return; } /* * Never answer to a ICMP packet. */ if (is_ineligible(skb)) { net_dbg_ratelimited("icmp6_send: no reply to icmp error [%pI6c > %pI6c]\n", &hdr->saddr, &hdr->daddr); return; } /* Needed by both icmp_global_allow and icmpv6_xmit_lock */ local_bh_disable(); /* Check global sysctl_icmp_msgs_per_sec ratelimit */ if (!(skb->dev->flags & IFF_LOOPBACK) && !icmpv6_global_allow(net, type)) goto out_bh_enable; mip6_addr_swap(skb, parm); sk = icmpv6_xmit_lock(net); if (!sk) goto out_bh_enable; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = IPPROTO_ICMPV6; fl6.daddr = hdr->saddr; if (force_saddr) saddr = force_saddr; if (saddr) { fl6.saddr = *saddr; } else if (!icmpv6_rt_has_prefsrc(sk, type, &fl6)) { /* select a more meaningful saddr from input if */ struct net_device *in_netdev; in_netdev = dev_get_by_index(net, parm->iif); if (in_netdev) { ipv6_dev_get_saddr(net, in_netdev, &fl6.daddr, inet6_sk(sk)->srcprefs, &fl6.saddr); dev_put(in_netdev); } } fl6.flowi6_mark = mark; fl6.flowi6_oif = iif; fl6.fl6_icmp_type = type; fl6.fl6_icmp_code = code; fl6.flowi6_uid = sock_net_uid(net, NULL); fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, NULL); security_skb_classify_flow(skb, flowi6_to_flowi_common(&fl6)); np = inet6_sk(sk); if (!icmpv6_xrlim_allow(sk, type, &fl6)) goto out; tmp_hdr.icmp6_type = type; tmp_hdr.icmp6_code = code; tmp_hdr.icmp6_cksum = 0; tmp_hdr.icmp6_pointer = htonl(info); if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = np->mcast_oif; else if (!fl6.flowi6_oif) fl6.flowi6_oif = np->ucast_oif; ipcm6_init_sk(&ipc6, np); ipc6.sockc.mark = mark; fl6.flowlabel = ip6_make_flowinfo(ipc6.tclass, fl6.flowlabel); dst = icmpv6_route_lookup(net, skb, sk, &fl6); if (IS_ERR(dst)) goto out; ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); msg.skb = skb; msg.offset = skb_network_offset(skb); msg.type = type; len = skb->len - msg.offset; len = min_t(unsigned int, len, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(struct icmp6hdr)); if (len < 0) { net_dbg_ratelimited("icmp: len problem [%pI6c > %pI6c]\n", &hdr->saddr, &hdr->daddr); goto out_dst_release; } rcu_read_lock(); idev = __in6_dev_get(skb->dev); if (ip6_append_data(sk, icmpv6_getfrag, &msg, len + sizeof(struct icmp6hdr), sizeof(struct icmp6hdr), &ipc6, &fl6, (struct rt6_info *)dst, MSG_DONTWAIT)) { ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTERRORS); ip6_flush_pending_frames(sk); } else { icmpv6_push_pending_frames(sk, &fl6, &tmp_hdr, len + sizeof(struct icmp6hdr)); } rcu_read_unlock(); out_dst_release: dst_release(dst); out: icmpv6_xmit_unlock(sk); out_bh_enable: local_bh_enable(); } EXPORT_SYMBOL(icmp6_send); /* Slightly more convenient version of icmp6_send with drop reasons. */ void icmpv6_param_prob_reason(struct sk_buff *skb, u8 code, int pos, enum skb_drop_reason reason) { icmp6_send(skb, ICMPV6_PARAMPROB, code, pos, NULL, IP6CB(skb)); kfree_skb_reason(skb, reason); } /* Generate icmpv6 with type/code ICMPV6_DEST_UNREACH/ICMPV6_ADDR_UNREACH * if sufficient data bytes are available * @nhs is the size of the tunnel header(s) : * Either an IPv4 header for SIT encap * an IPv4 header + GRE header for GRE encap */ int ip6_err_gen_icmpv6_unreach(struct sk_buff *skb, int nhs, int type, unsigned int data_len) { struct in6_addr temp_saddr; struct rt6_info *rt; struct sk_buff *skb2; u32 info = 0; if (!pskb_may_pull(skb, nhs + sizeof(struct ipv6hdr) + 8)) return 1; /* RFC 4884 (partial) support for ICMP extensions */ if (data_len < 128 || (data_len & 7) || skb->len < data_len) data_len = 0; skb2 = data_len ? skb_copy(skb, GFP_ATOMIC) : skb_clone(skb, GFP_ATOMIC); if (!skb2) return 1; skb_dst_drop(skb2); skb_pull(skb2, nhs); skb_reset_network_header(skb2); rt = rt6_lookup(dev_net(skb->dev), &ipv6_hdr(skb2)->saddr, NULL, 0, skb, 0); if (rt && rt->dst.dev) skb2->dev = rt->dst.dev; ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr, &temp_saddr); if (data_len) { /* RFC 4884 (partial) support : * insert 0 padding at the end, before the extensions */ __skb_push(skb2, nhs); skb_reset_network_header(skb2); memmove(skb2->data, skb2->data + nhs, data_len - nhs); memset(skb2->data + data_len - nhs, 0, nhs); /* RFC 4884 4.5 : Length is measured in 64-bit words, * and stored in reserved[0] */ info = (data_len/8) << 24; } if (type == ICMP_TIME_EXCEEDED) icmp6_send(skb2, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, info, &temp_saddr, IP6CB(skb2)); else icmp6_send(skb2, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, info, &temp_saddr, IP6CB(skb2)); if (rt) ip6_rt_put(rt); kfree_skb(skb2); return 0; } EXPORT_SYMBOL(ip6_err_gen_icmpv6_unreach); static enum skb_drop_reason icmpv6_echo_reply(struct sk_buff *skb) { struct net *net = dev_net(skb->dev); struct sock *sk; struct inet6_dev *idev; struct ipv6_pinfo *np; const struct in6_addr *saddr = NULL; struct icmp6hdr *icmph = icmp6_hdr(skb); struct icmp6hdr tmp_hdr; struct flowi6 fl6; struct icmpv6_msg msg; struct dst_entry *dst; struct ipcm6_cookie ipc6; u32 mark = IP6_REPLY_MARK(net, skb->mark); SKB_DR(reason); bool acast; u8 type; if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr) && net->ipv6.sysctl.icmpv6_echo_ignore_multicast) return reason; saddr = &ipv6_hdr(skb)->daddr; acast = ipv6_anycast_destination(skb_dst(skb), saddr); if (acast && net->ipv6.sysctl.icmpv6_echo_ignore_anycast) return reason; if (!ipv6_unicast_destination(skb) && !(net->ipv6.sysctl.anycast_src_echo_reply && acast)) saddr = NULL; if (icmph->icmp6_type == ICMPV6_EXT_ECHO_REQUEST) type = ICMPV6_EXT_ECHO_REPLY; else type = ICMPV6_ECHO_REPLY; memcpy(&tmp_hdr, icmph, sizeof(tmp_hdr)); tmp_hdr.icmp6_type = type; memset(&fl6, 0, sizeof(fl6)); if (net->ipv6.sysctl.flowlabel_reflect & FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES) fl6.flowlabel = ip6_flowlabel(ipv6_hdr(skb)); fl6.flowi6_proto = IPPROTO_ICMPV6; fl6.daddr = ipv6_hdr(skb)->saddr; if (saddr) fl6.saddr = *saddr; fl6.flowi6_oif = icmp6_iif(skb); fl6.fl6_icmp_type = type; fl6.flowi6_mark = mark; fl6.flowi6_uid = sock_net_uid(net, NULL); security_skb_classify_flow(skb, flowi6_to_flowi_common(&fl6)); local_bh_disable(); sk = icmpv6_xmit_lock(net); if (!sk) goto out_bh_enable; np = inet6_sk(sk); if (!fl6.flowi6_oif && ipv6_addr_is_multicast(&fl6.daddr)) fl6.flowi6_oif = np->mcast_oif; else if (!fl6.flowi6_oif) fl6.flowi6_oif = np->ucast_oif; if (ip6_dst_lookup(net, sk, &dst, &fl6)) goto out; dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), sk, 0); if (IS_ERR(dst)) goto out; /* Check the ratelimit */ if ((!(skb->dev->flags & IFF_LOOPBACK) && !icmpv6_global_allow(net, ICMPV6_ECHO_REPLY)) || !icmpv6_xrlim_allow(sk, ICMPV6_ECHO_REPLY, &fl6)) goto out_dst_release; idev = __in6_dev_get(skb->dev); msg.skb = skb; msg.offset = 0; msg.type = type; ipcm6_init_sk(&ipc6, np); ipc6.hlimit = ip6_sk_dst_hoplimit(np, &fl6, dst); ipc6.tclass = ipv6_get_dsfield(ipv6_hdr(skb)); ipc6.sockc.mark = mark; if (icmph->icmp6_type == ICMPV6_EXT_ECHO_REQUEST) if (!icmp_build_probe(skb, (struct icmphdr *)&tmp_hdr)) goto out_dst_release; if (ip6_append_data(sk, icmpv6_getfrag, &msg, skb->len + sizeof(struct icmp6hdr), sizeof(struct icmp6hdr), &ipc6, &fl6, (struct rt6_info *)dst, MSG_DONTWAIT)) { __ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTERRORS); ip6_flush_pending_frames(sk); } else { icmpv6_push_pending_frames(sk, &fl6, &tmp_hdr, skb->len + sizeof(struct icmp6hdr)); reason = SKB_CONSUMED; } out_dst_release: dst_release(dst); out: icmpv6_xmit_unlock(sk); out_bh_enable: local_bh_enable(); return reason; } enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info) { struct inet6_skb_parm *opt = IP6CB(skb); struct net *net = dev_net(skb->dev); const struct inet6_protocol *ipprot; enum skb_drop_reason reason; int inner_offset; __be16 frag_off; u8 nexthdr; reason = pskb_may_pull_reason(skb, sizeof(struct ipv6hdr)); if (reason != SKB_NOT_DROPPED_YET) goto out; seg6_icmp_srh(skb, opt); nexthdr = ((struct ipv6hdr *)skb->data)->nexthdr; if (ipv6_ext_hdr(nexthdr)) { /* now skip over extension headers */ inner_offset = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, &frag_off); if (inner_offset < 0) { SKB_DR_SET(reason, IPV6_BAD_EXTHDR); goto out; } } else { inner_offset = sizeof(struct ipv6hdr); } /* Checkin header including 8 bytes of inner protocol header. */ reason = pskb_may_pull_reason(skb, inner_offset + 8); if (reason != SKB_NOT_DROPPED_YET) goto out; /* BUGGG_FUTURE: we should try to parse exthdrs in this packet. Without this we will not able f.e. to make source routed pmtu discovery. Corresponding argument (opt) to notifiers is already added. --ANK (980726) */ ipprot = rcu_dereference(inet6_protos[nexthdr]); if (ipprot && ipprot->err_handler) ipprot->err_handler(skb, opt, type, code, inner_offset, info); raw6_icmp_error(skb, nexthdr, type, code, inner_offset, info); return SKB_CONSUMED; out: __ICMP6_INC_STATS(net, __in6_dev_get(skb->dev), ICMP6_MIB_INERRORS); return reason; } /* * Handle icmp messages */ static int icmpv6_rcv(struct sk_buff *skb) { enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; struct net *net = dev_net(skb->dev); struct net_device *dev = icmp6_dev(skb); struct inet6_dev *idev = __in6_dev_get(dev); const struct in6_addr *saddr, *daddr; struct icmp6hdr *hdr; u8 type; if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { struct sec_path *sp = skb_sec_path(skb); int nh; if (!(sp && sp->xvec[sp->len - 1]->props.flags & XFRM_STATE_ICMP)) { reason = SKB_DROP_REASON_XFRM_POLICY; goto drop_no_count; } if (!pskb_may_pull(skb, sizeof(*hdr) + sizeof(struct ipv6hdr))) goto drop_no_count; nh = skb_network_offset(skb); skb_set_network_header(skb, sizeof(*hdr)); if (!xfrm6_policy_check_reverse(NULL, XFRM_POLICY_IN, skb)) { reason = SKB_DROP_REASON_XFRM_POLICY; goto drop_no_count; } skb_set_network_header(skb, nh); } __ICMP6_INC_STATS(dev_net(dev), idev, ICMP6_MIB_INMSGS); saddr = &ipv6_hdr(skb)->saddr; daddr = &ipv6_hdr(skb)->daddr; if (skb_checksum_validate(skb, IPPROTO_ICMPV6, ip6_compute_pseudo)) { net_dbg_ratelimited("ICMPv6 checksum failed [%pI6c > %pI6c]\n", saddr, daddr); goto csum_error; } if (!pskb_pull(skb, sizeof(*hdr))) goto discard_it; hdr = icmp6_hdr(skb); type = hdr->icmp6_type; ICMP6MSGIN_INC_STATS(dev_net(dev), idev, type); switch (type) { case ICMPV6_ECHO_REQUEST: if (!net->ipv6.sysctl.icmpv6_echo_ignore_all) reason = icmpv6_echo_reply(skb); break; case ICMPV6_EXT_ECHO_REQUEST: if (!net->ipv6.sysctl.icmpv6_echo_ignore_all && READ_ONCE(net->ipv4.sysctl_icmp_echo_enable_probe)) reason = icmpv6_echo_reply(skb); break; case ICMPV6_ECHO_REPLY: reason = ping_rcv(skb); break; case ICMPV6_EXT_ECHO_REPLY: reason = ping_rcv(skb); break; case ICMPV6_PKT_TOOBIG: /* BUGGG_FUTURE: if packet contains rthdr, we cannot update standard destination cache. Seems, only "advanced" destination cache will allow to solve this problem --ANK (980726) */ if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto discard_it; hdr = icmp6_hdr(skb); /* to notify */ fallthrough; case ICMPV6_DEST_UNREACH: case ICMPV6_TIME_EXCEED: case ICMPV6_PARAMPROB: reason = icmpv6_notify(skb, type, hdr->icmp6_code, hdr->icmp6_mtu); break; case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: reason = ndisc_rcv(skb); break; case ICMPV6_MGM_QUERY: igmp6_event_query(skb); return 0; case ICMPV6_MGM_REPORT: igmp6_event_report(skb); return 0; case ICMPV6_MGM_REDUCTION: case ICMPV6_NI_QUERY: case ICMPV6_NI_REPLY: case ICMPV6_MLD2_REPORT: case ICMPV6_DHAAD_REQUEST: case ICMPV6_DHAAD_REPLY: case ICMPV6_MOBILE_PREFIX_SOL: case ICMPV6_MOBILE_PREFIX_ADV: break; default: /* informational */ if (type & ICMPV6_INFOMSG_MASK) break; net_dbg_ratelimited("icmpv6: msg of unknown type [%pI6c > %pI6c]\n", saddr, daddr); /* * error of unknown type. * must pass to upper level */ reason = icmpv6_notify(skb, type, hdr->icmp6_code, hdr->icmp6_mtu); } /* until the v6 path can be better sorted assume failure and * preserve the status quo behaviour for the rest of the paths to here */ if (reason) kfree_skb_reason(skb, reason); else consume_skb(skb); return 0; csum_error: reason = SKB_DROP_REASON_ICMP_CSUM; __ICMP6_INC_STATS(dev_net(dev), idev, ICMP6_MIB_CSUMERRORS); discard_it: __ICMP6_INC_STATS(dev_net(dev), idev, ICMP6_MIB_INERRORS); drop_no_count: kfree_skb_reason(skb, reason); return 0; } void icmpv6_flow_init(const struct sock *sk, struct flowi6 *fl6, u8 type, const struct in6_addr *saddr, const struct in6_addr *daddr, int oif) { memset(fl6, 0, sizeof(*fl6)); fl6->saddr = *saddr; fl6->daddr = *daddr; fl6->flowi6_proto = IPPROTO_ICMPV6; fl6->fl6_icmp_type = type; fl6->fl6_icmp_code = 0; fl6->flowi6_oif = oif; security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6)); } int __init icmpv6_init(void) { struct sock *sk; int err, i; for_each_possible_cpu(i) { err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, &init_net); if (err < 0) { pr_err("Failed to initialize the ICMP6 control socket (err %d)\n", err); return err; } per_cpu(ipv6_icmp_sk, i) = sk; /* Enough space for 2 64K ICMP packets, including * sk_buff struct overhead. */ sk->sk_sndbuf = 2 * SKB_TRUESIZE(64 * 1024); } err = -EAGAIN; if (inet6_add_protocol(&icmpv6_protocol, IPPROTO_ICMPV6) < 0) goto fail; err = inet6_register_icmp_sender(icmp6_send); if (err) goto sender_reg_err; return 0; sender_reg_err: inet6_del_protocol(&icmpv6_protocol, IPPROTO_ICMPV6); fail: pr_err("Failed to register ICMP6 protocol\n"); return err; } void icmpv6_cleanup(void) { inet6_unregister_icmp_sender(icmp6_send); inet6_del_protocol(&icmpv6_protocol, IPPROTO_ICMPV6); } static const struct icmp6_err { int err; int fatal; } tab_unreach[] = { { /* NOROUTE */ .err = ENETUNREACH, .fatal = 0, }, { /* ADM_PROHIBITED */ .err = EACCES, .fatal = 1, }, { /* Was NOT_NEIGHBOUR, now reserved */ .err = EHOSTUNREACH, .fatal = 0, }, { /* ADDR_UNREACH */ .err = EHOSTUNREACH, .fatal = 0, }, { /* PORT_UNREACH */ .err = ECONNREFUSED, .fatal = 1, }, { /* POLICY_FAIL */ .err = EACCES, .fatal = 1, }, { /* REJECT_ROUTE */ .err = EACCES, .fatal = 1, }, }; int icmpv6_err_convert(u8 type, u8 code, int *err) { int fatal = 0; *err = EPROTO; switch (type) { case ICMPV6_DEST_UNREACH: fatal = 1; if (code < ARRAY_SIZE(tab_unreach)) { *err = tab_unreach[code].err; fatal = tab_unreach[code].fatal; } break; case ICMPV6_PKT_TOOBIG: *err = EMSGSIZE; break; case ICMPV6_PARAMPROB: *err = EPROTO; fatal = 1; break; case ICMPV6_TIME_EXCEED: *err = EHOSTUNREACH; break; } return fatal; } EXPORT_SYMBOL(icmpv6_err_convert); #ifdef CONFIG_SYSCTL static struct ctl_table ipv6_icmp_table_template[] = { { .procname = "ratelimit", .data = &init_net.ipv6.sysctl.icmpv6_time, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_ms_jiffies, }, { .procname = "echo_ignore_all", .data = &init_net.ipv6.sysctl.icmpv6_echo_ignore_all, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "echo_ignore_multicast", .data = &init_net.ipv6.sysctl.icmpv6_echo_ignore_multicast, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "echo_ignore_anycast", .data = &init_net.ipv6.sysctl.icmpv6_echo_ignore_anycast, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, }, { .procname = "ratemask", .data = &init_net.ipv6.sysctl.icmpv6_ratemask_ptr, .maxlen = ICMPV6_MSG_MAX + 1, .mode = 0644, .proc_handler = proc_do_large_bitmap, }, { .procname = "error_anycast_as_unicast", .data = &init_net.ipv6.sysctl.icmpv6_error_anycast_as_unicast, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { }, }; struct ctl_table * __net_init ipv6_icmp_sysctl_init(struct net *net) { struct ctl_table *table; table = kmemdup(ipv6_icmp_table_template, sizeof(ipv6_icmp_table_template), GFP_KERNEL); if (table) { table[0].data = &net->ipv6.sysctl.icmpv6_time; table[1].data = &net->ipv6.sysctl.icmpv6_echo_ignore_all; table[2].data = &net->ipv6.sysctl.icmpv6_echo_ignore_multicast; table[3].data = &net->ipv6.sysctl.icmpv6_echo_ignore_anycast; table[4].data = &net->ipv6.sysctl.icmpv6_ratemask_ptr; table[5].data = &net->ipv6.sysctl.icmpv6_error_anycast_as_unicast; } return table; } size_t ipv6_icmp_sysctl_table_size(void) { return ARRAY_SIZE(ipv6_icmp_table_template); } #endif
linux-master
net/ipv6/icmp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * SR-IPv6 implementation * * Authors: * David Lebrun <[email protected]> * eBPF support: Mathieu Xhonneux <[email protected]> */ #include <linux/filter.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/module.h> #include <net/ip.h> #include <net/lwtunnel.h> #include <net/netevent.h> #include <net/netns/generic.h> #include <net/ip6_fib.h> #include <net/route.h> #include <net/seg6.h> #include <linux/seg6.h> #include <linux/seg6_local.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/dst_cache.h> #include <net/ip_tunnels.h> #ifdef CONFIG_IPV6_SEG6_HMAC #include <net/seg6_hmac.h> #endif #include <net/seg6_local.h> #include <linux/etherdevice.h> #include <linux/bpf.h> #include <linux/netfilter.h> #define SEG6_F_ATTR(i) BIT(i) struct seg6_local_lwt; /* callbacks used for customizing the creation and destruction of a behavior */ struct seg6_local_lwtunnel_ops { int (*build_state)(struct seg6_local_lwt *slwt, const void *cfg, struct netlink_ext_ack *extack); void (*destroy_state)(struct seg6_local_lwt *slwt); }; struct seg6_action_desc { int action; unsigned long attrs; /* The optattrs field is used for specifying all the optional * attributes supported by a specific behavior. * It means that if one of these attributes is not provided in the * netlink message during the behavior creation, no errors will be * returned to the userspace. * * Each attribute can be only of two types (mutually exclusive): * 1) required or 2) optional. * Every user MUST obey to this rule! If you set an attribute as * required the same attribute CANNOT be set as optional and vice * versa. */ unsigned long optattrs; int (*input)(struct sk_buff *skb, struct seg6_local_lwt *slwt); int static_headroom; struct seg6_local_lwtunnel_ops slwt_ops; }; struct bpf_lwt_prog { struct bpf_prog *prog; char *name; }; /* default length values (expressed in bits) for both Locator-Block and * Locator-Node Function. * * Both SEG6_LOCAL_LCBLOCK_DBITS and SEG6_LOCAL_LCNODE_FN_DBITS *must* be: * i) greater than 0; * ii) evenly divisible by 8. In other terms, the lengths of the * Locator-Block and Locator-Node Function must be byte-aligned (we can * relax this constraint in the future if really needed). * * Moreover, a third condition must hold: * iii) SEG6_LOCAL_LCBLOCK_DBITS + SEG6_LOCAL_LCNODE_FN_DBITS <= 128. * * The correctness of SEG6_LOCAL_LCBLOCK_DBITS and SEG6_LOCAL_LCNODE_FN_DBITS * values are checked during the kernel compilation. If the compilation stops, * check the value of these parameters to see if they meet conditions (i), (ii) * and (iii). */ #define SEG6_LOCAL_LCBLOCK_DBITS 32 #define SEG6_LOCAL_LCNODE_FN_DBITS 16 /* The following next_csid_chk_{cntr,lcblock,lcblock_fn}_bits macros can be * used directly to check whether the lengths (in bits) of Locator-Block and * Locator-Node Function are valid according to (i), (ii), (iii). */ #define next_csid_chk_cntr_bits(blen, flen) \ ((blen) + (flen) > 128) #define next_csid_chk_lcblock_bits(blen) \ ({ \ typeof(blen) __tmp = blen; \ (!__tmp || __tmp > 120 || (__tmp & 0x07)); \ }) #define next_csid_chk_lcnode_fn_bits(flen) \ next_csid_chk_lcblock_bits(flen) /* flag indicating that flavors are set up for a given End* behavior */ #define SEG6_F_LOCAL_FLAVORS SEG6_F_ATTR(SEG6_LOCAL_FLAVORS) #define SEG6_F_LOCAL_FLV_OP(flvname) BIT(SEG6_LOCAL_FLV_OP_##flvname) #define SEG6_F_LOCAL_FLV_NEXT_CSID SEG6_F_LOCAL_FLV_OP(NEXT_CSID) #define SEG6_F_LOCAL_FLV_PSP SEG6_F_LOCAL_FLV_OP(PSP) /* Supported RFC8986 Flavor operations are reported in this bitmask */ #define SEG6_LOCAL_FLV8986_SUPP_OPS SEG6_F_LOCAL_FLV_PSP #define SEG6_LOCAL_END_FLV_SUPP_OPS (SEG6_F_LOCAL_FLV_NEXT_CSID | \ SEG6_LOCAL_FLV8986_SUPP_OPS) #define SEG6_LOCAL_END_X_FLV_SUPP_OPS SEG6_F_LOCAL_FLV_NEXT_CSID struct seg6_flavors_info { /* Flavor operations */ __u32 flv_ops; /* Locator-Block length, expressed in bits */ __u8 lcblock_bits; /* Locator-Node Function length, expressed in bits*/ __u8 lcnode_func_bits; }; enum seg6_end_dt_mode { DT_INVALID_MODE = -EINVAL, DT_LEGACY_MODE = 0, DT_VRF_MODE = 1, }; struct seg6_end_dt_info { enum seg6_end_dt_mode mode; struct net *net; /* VRF device associated to the routing table used by the SRv6 * End.DT4/DT6 behavior for routing IPv4/IPv6 packets. */ int vrf_ifindex; int vrf_table; /* tunneled packet family (IPv4 or IPv6). * Protocol and header length are inferred from family. */ u16 family; }; struct pcpu_seg6_local_counters { u64_stats_t packets; u64_stats_t bytes; u64_stats_t errors; struct u64_stats_sync syncp; }; /* This struct groups all the SRv6 Behavior counters supported so far. * * put_nla_counters() makes use of this data structure to collect all counter * values after the per-CPU counter evaluation has been performed. * Finally, each counter value (in seg6_local_counters) is stored in the * corresponding netlink attribute and sent to user space. * * NB: we don't want to expose this structure to user space! */ struct seg6_local_counters { __u64 packets; __u64 bytes; __u64 errors; }; #define seg6_local_alloc_pcpu_counters(__gfp) \ __netdev_alloc_pcpu_stats(struct pcpu_seg6_local_counters, \ ((__gfp) | __GFP_ZERO)) #define SEG6_F_LOCAL_COUNTERS SEG6_F_ATTR(SEG6_LOCAL_COUNTERS) struct seg6_local_lwt { int action; struct ipv6_sr_hdr *srh; int table; struct in_addr nh4; struct in6_addr nh6; int iif; int oif; struct bpf_lwt_prog bpf; #ifdef CONFIG_NET_L3_MASTER_DEV struct seg6_end_dt_info dt_info; #endif struct seg6_flavors_info flv_info; struct pcpu_seg6_local_counters __percpu *pcpu_counters; int headroom; struct seg6_action_desc *desc; /* unlike the required attrs, we have to track the optional attributes * that have been effectively parsed. */ unsigned long parsed_optattrs; }; static struct seg6_local_lwt *seg6_local_lwtunnel(struct lwtunnel_state *lwt) { return (struct seg6_local_lwt *)lwt->data; } static struct ipv6_sr_hdr *get_and_validate_srh(struct sk_buff *skb) { struct ipv6_sr_hdr *srh; srh = seg6_get_srh(skb, IP6_FH_F_SKIP_RH); if (!srh) return NULL; #ifdef CONFIG_IPV6_SEG6_HMAC if (!seg6_hmac_validate_skb(skb)) return NULL; #endif return srh; } static bool decap_and_validate(struct sk_buff *skb, int proto) { struct ipv6_sr_hdr *srh; unsigned int off = 0; srh = seg6_get_srh(skb, 0); if (srh && srh->segments_left > 0) return false; #ifdef CONFIG_IPV6_SEG6_HMAC if (srh && !seg6_hmac_validate_skb(skb)) return false; #endif if (ipv6_find_hdr(skb, &off, proto, NULL, NULL) < 0) return false; if (!pskb_pull(skb, off)) return false; skb_postpull_rcsum(skb, skb_network_header(skb), off); skb_reset_network_header(skb); skb_reset_transport_header(skb); if (iptunnel_pull_offloads(skb)) return false; return true; } static void advance_nextseg(struct ipv6_sr_hdr *srh, struct in6_addr *daddr) { struct in6_addr *addr; srh->segments_left--; addr = srh->segments + srh->segments_left; *daddr = *addr; } static int seg6_lookup_any_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id, bool local_delivery) { struct net *net = dev_net(skb->dev); struct ipv6hdr *hdr = ipv6_hdr(skb); int flags = RT6_LOOKUP_F_HAS_SADDR; struct dst_entry *dst = NULL; struct rt6_info *rt; struct flowi6 fl6; int dev_flags = 0; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_iif = skb->dev->ifindex; fl6.daddr = nhaddr ? *nhaddr : hdr->daddr; fl6.saddr = hdr->saddr; fl6.flowlabel = ip6_flowinfo(hdr); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = hdr->nexthdr; if (nhaddr) fl6.flowi6_flags = FLOWI_FLAG_KNOWN_NH; if (!tbl_id) { dst = ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags); } else { struct fib6_table *table; table = fib6_get_table(net, tbl_id); if (!table) goto out; rt = ip6_pol_route(net, table, 0, &fl6, skb, flags); dst = &rt->dst; } /* we want to discard traffic destined for local packet processing, * if @local_delivery is set to false. */ if (!local_delivery) dev_flags |= IFF_LOOPBACK; if (dst && (dst->dev->flags & dev_flags) && !dst->error) { dst_release(dst); dst = NULL; } out: if (!dst) { rt = net->ipv6.ip6_blk_hole_entry; dst = &rt->dst; dst_hold(dst); } skb_dst_drop(skb); skb_dst_set(skb, dst); return dst->error; } int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id) { return seg6_lookup_any_nexthop(skb, nhaddr, tbl_id, false); } static __u8 seg6_flv_lcblock_octects(const struct seg6_flavors_info *finfo) { return finfo->lcblock_bits >> 3; } static __u8 seg6_flv_lcnode_func_octects(const struct seg6_flavors_info *finfo) { return finfo->lcnode_func_bits >> 3; } static bool seg6_next_csid_is_arg_zero(const struct in6_addr *addr, const struct seg6_flavors_info *finfo) { __u8 fnc_octects = seg6_flv_lcnode_func_octects(finfo); __u8 blk_octects = seg6_flv_lcblock_octects(finfo); __u8 arg_octects; int i; arg_octects = 16 - blk_octects - fnc_octects; for (i = 0; i < arg_octects; ++i) { if (addr->s6_addr[blk_octects + fnc_octects + i] != 0x00) return false; } return true; } /* assume that DA.Argument length > 0 */ static void seg6_next_csid_advance_arg(struct in6_addr *addr, const struct seg6_flavors_info *finfo) { __u8 fnc_octects = seg6_flv_lcnode_func_octects(finfo); __u8 blk_octects = seg6_flv_lcblock_octects(finfo); /* advance DA.Argument */ memmove(&addr->s6_addr[blk_octects], &addr->s6_addr[blk_octects + fnc_octects], 16 - blk_octects - fnc_octects); memset(&addr->s6_addr[16 - fnc_octects], 0x00, fnc_octects); } static int input_action_end_finish(struct sk_buff *skb, struct seg6_local_lwt *slwt) { seg6_lookup_nexthop(skb, NULL, 0); return dst_input(skb); } static int input_action_end_core(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; srh = get_and_validate_srh(skb); if (!srh) goto drop; advance_nextseg(srh, &ipv6_hdr(skb)->daddr); return input_action_end_finish(skb, slwt); drop: kfree_skb(skb); return -EINVAL; } static int end_next_csid_core(struct sk_buff *skb, struct seg6_local_lwt *slwt) { const struct seg6_flavors_info *finfo = &slwt->flv_info; struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; if (seg6_next_csid_is_arg_zero(daddr, finfo)) return input_action_end_core(skb, slwt); /* update DA */ seg6_next_csid_advance_arg(daddr, finfo); return input_action_end_finish(skb, slwt); } static int input_action_end_x_finish(struct sk_buff *skb, struct seg6_local_lwt *slwt) { seg6_lookup_nexthop(skb, &slwt->nh6, 0); return dst_input(skb); } static int input_action_end_x_core(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; srh = get_and_validate_srh(skb); if (!srh) goto drop; advance_nextseg(srh, &ipv6_hdr(skb)->daddr); return input_action_end_x_finish(skb, slwt); drop: kfree_skb(skb); return -EINVAL; } static int end_x_next_csid_core(struct sk_buff *skb, struct seg6_local_lwt *slwt) { const struct seg6_flavors_info *finfo = &slwt->flv_info; struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; if (seg6_next_csid_is_arg_zero(daddr, finfo)) return input_action_end_x_core(skb, slwt); /* update DA */ seg6_next_csid_advance_arg(daddr, finfo); return input_action_end_x_finish(skb, slwt); } static bool seg6_next_csid_enabled(__u32 fops) { return fops & SEG6_F_LOCAL_FLV_NEXT_CSID; } /* Processing of SRv6 End, End.X, and End.T behaviors can be extended through * the flavors framework. These behaviors must report the subset of (flavor) * operations they currently implement. In this way, if a user specifies a * flavor combination that is not supported by a given End* behavior, the * kernel refuses to instantiate the tunnel reporting the error. */ static int seg6_flv_supp_ops_by_action(int action, __u32 *fops) { switch (action) { case SEG6_LOCAL_ACTION_END: *fops = SEG6_LOCAL_END_FLV_SUPP_OPS; break; case SEG6_LOCAL_ACTION_END_X: *fops = SEG6_LOCAL_END_X_FLV_SUPP_OPS; break; default: return -EOPNOTSUPP; } return 0; } /* We describe the packet state in relation to the absence/presence of the SRH * and the Segment Left (SL) field. * For our purposes, it is not necessary to record the exact value of the SL * when the SID List consists of two or more segments. */ enum seg6_local_pktinfo { /* the order really matters! */ SEG6_LOCAL_PKTINFO_NOHDR = 0, SEG6_LOCAL_PKTINFO_SL_ZERO, SEG6_LOCAL_PKTINFO_SL_ONE, SEG6_LOCAL_PKTINFO_SL_MORE, __SEG6_LOCAL_PKTINFO_MAX, }; #define SEG6_LOCAL_PKTINFO_MAX (__SEG6_LOCAL_PKTINFO_MAX - 1) static enum seg6_local_pktinfo seg6_get_srh_pktinfo(struct ipv6_sr_hdr *srh) { __u8 sgl; if (!srh) return SEG6_LOCAL_PKTINFO_NOHDR; sgl = srh->segments_left; if (sgl < 2) return SEG6_LOCAL_PKTINFO_SL_ZERO + sgl; return SEG6_LOCAL_PKTINFO_SL_MORE; } enum seg6_local_flv_action { SEG6_LOCAL_FLV_ACT_UNSPEC = 0, SEG6_LOCAL_FLV_ACT_END, SEG6_LOCAL_FLV_ACT_PSP, SEG6_LOCAL_FLV_ACT_USP, SEG6_LOCAL_FLV_ACT_USD, __SEG6_LOCAL_FLV_ACT_MAX }; #define SEG6_LOCAL_FLV_ACT_MAX (__SEG6_LOCAL_FLV_ACT_MAX - 1) /* The action table for RFC8986 flavors (see the flv8986_act_tbl below) * contains the actions (i.e. processing operations) to be applied on packets * when flavors are configured for an End* behavior. * By combining the pkinfo data and from the flavors mask, the macro * computes the index used to access the elements (actions) stored in the * action table. The index is structured as follows: * * index * _______________/\________________ * / \ * +----------------+----------------+ * | pf | afm | * +----------------+----------------+ * ph-1 ... p1 p0 fk-1 ... f1 f0 * MSB LSB * * where: * - 'afm' (adjusted flavor mask) is the mask containing a combination of the * RFC8986 flavors currently supported. 'afm' corresponds to the @fm * argument of the macro whose value is righ-shifted by 1 bit. By doing so, * we discard the SEG6_LOCAL_FLV_OP_UNSPEC flag (bit 0 in @fm) which is * never used here; * - 'pf' encodes the packet info (pktinfo) regarding the presence/absence of * the SRH, SL = 0, etc. 'pf' is set with the value of @pf provided as * argument to the macro. */ #define flv8986_act_tbl_idx(pf, fm) \ ((((pf) << bits_per(SEG6_LOCAL_FLV8986_SUPP_OPS)) | \ ((fm) & SEG6_LOCAL_FLV8986_SUPP_OPS)) >> SEG6_LOCAL_FLV_OP_PSP) /* We compute the size of the action table by considering the RFC8986 flavors * actually supported by the kernel. In this way, the size is automatically * adjusted when new flavors are supported. */ #define FLV8986_ACT_TBL_SIZE \ roundup_pow_of_two(flv8986_act_tbl_idx(SEG6_LOCAL_PKTINFO_MAX, \ SEG6_LOCAL_FLV8986_SUPP_OPS)) /* tbl_cfg(act, pf, fm) macro is used to easily configure the action * table; it accepts 3 arguments: * i) @act, the suffix from SEG6_LOCAL_FLV_ACT_{act} representing * the action that should be applied on the packet; * ii) @pf, the suffix from SEG6_LOCAL_PKTINFO_{pf} reporting the packet * info about the lack/presence of SRH, SRH with SL = 0, etc; * iii) @fm, the mask of flavors. */ #define tbl_cfg(act, pf, fm) \ [flv8986_act_tbl_idx(SEG6_LOCAL_PKTINFO_##pf, \ (fm))] = SEG6_LOCAL_FLV_ACT_##act /* shorthand for improving readability */ #define F_PSP SEG6_F_LOCAL_FLV_PSP /* The table contains, for each combination of the pktinfo data and * flavors, the action that should be taken on a packet (e.g. * "standard" Endpoint processing, Penultimate Segment Pop, etc). * * By default, table entries not explicitly configured are initialized with the * SEG6_LOCAL_FLV_ACT_UNSPEC action, which generally has the effect of * discarding the processed packet. */ static const u8 flv8986_act_tbl[FLV8986_ACT_TBL_SIZE] = { /* PSP variant for packet where SRH with SL = 1 */ tbl_cfg(PSP, SL_ONE, F_PSP), /* End for packet where the SRH with SL > 1*/ tbl_cfg(END, SL_MORE, F_PSP), }; #undef F_PSP #undef tbl_cfg /* For each flavor defined in RFC8986 (or a combination of them) an action is * performed on the packet. The specific action depends on: * - info extracted from the packet (i.e. pktinfo data) regarding the * lack/presence of the SRH, and if the SRH is available, on the value of * Segment Left field; * - the mask of flavors configured for the specific SRv6 End* behavior. * * The function combines both the pkinfo and the flavors mask to evaluate the * corresponding action to be taken on the packet. */ static enum seg6_local_flv_action seg6_local_flv8986_act_lookup(enum seg6_local_pktinfo pinfo, __u32 flvmask) { unsigned long index; /* check if the provided mask of flavors is supported */ if (unlikely(flvmask & ~SEG6_LOCAL_FLV8986_SUPP_OPS)) return SEG6_LOCAL_FLV_ACT_UNSPEC; index = flv8986_act_tbl_idx(pinfo, flvmask); if (unlikely(index >= FLV8986_ACT_TBL_SIZE)) return SEG6_LOCAL_FLV_ACT_UNSPEC; return flv8986_act_tbl[index]; } /* skb->data must be aligned with skb->network_header */ static bool seg6_pop_srh(struct sk_buff *skb, int srhoff) { struct ipv6_sr_hdr *srh; struct ipv6hdr *iph; __u8 srh_nexthdr; int thoff = -1; int srhlen; int nhlen; if (unlikely(srhoff < sizeof(*iph) || !pskb_may_pull(skb, srhoff + sizeof(*srh)))) return false; srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srhlen = ipv6_optlen(srh); /* we are about to mangle the pkt, let's check if we can write on it */ if (unlikely(skb_ensure_writable(skb, srhoff + srhlen))) return false; /* skb_ensure_writable() may change skb pointers; evaluate srh again */ srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_nexthdr = srh->nexthdr; if (unlikely(!skb_transport_header_was_set(skb))) goto pull; nhlen = skb_network_header_len(skb); /* we have to deal with the transport header: it could be set before * the SRH, after the SRH, or within it (which is considered wrong, * however). */ if (likely(nhlen <= srhoff)) thoff = nhlen; else if (nhlen >= srhoff + srhlen) /* transport_header is set after the SRH */ thoff = nhlen - srhlen; else /* transport_header falls inside the SRH; hence, we can't * restore the transport_header pointer properly after * SRH removing operation. */ return false; pull: /* we need to pop the SRH: * 1) first of all, we pull out everything from IPv6 header up to SRH * (included) evaluating also the rcsum; * 2) we overwrite (and then remove) the SRH by properly moving the * IPv6 along with any extension header that precedes the SRH; * 3) At the end, we push back the pulled headers (except for SRH, * obviously). */ skb_pull_rcsum(skb, srhoff + srhlen); memmove(skb_network_header(skb) + srhlen, skb_network_header(skb), srhoff); skb_push(skb, srhoff); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); if (likely(thoff >= 0)) skb_set_transport_header(skb, thoff); iph = ipv6_hdr(skb); if (iph->nexthdr == NEXTHDR_ROUTING) { iph->nexthdr = srh_nexthdr; } else { /* we must look for the extension header (EXTH, for short) that * immediately precedes the SRH we have just removed. * Then, we update the value of the EXTH nexthdr with the one * contained in the SRH nexthdr. */ unsigned int off = sizeof(*iph); struct ipv6_opt_hdr *hp, _hdr; __u8 nexthdr = iph->nexthdr; for (;;) { if (unlikely(!ipv6_ext_hdr(nexthdr) || nexthdr == NEXTHDR_NONE)) return false; hp = skb_header_pointer(skb, off, sizeof(_hdr), &_hdr); if (unlikely(!hp)) return false; if (hp->nexthdr == NEXTHDR_ROUTING) { hp->nexthdr = srh_nexthdr; break; } switch (nexthdr) { case NEXTHDR_FRAGMENT: fallthrough; case NEXTHDR_AUTH: /* we expect SRH before FRAG and AUTH */ return false; default: off += ipv6_optlen(hp); break; } nexthdr = hp->nexthdr; } } iph->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_postpush_rcsum(skb, iph, srhoff); return true; } /* process the packet on the basis of the RFC8986 flavors set for the given * SRv6 End behavior instance. */ static int end_flv8986_core(struct sk_buff *skb, struct seg6_local_lwt *slwt) { const struct seg6_flavors_info *finfo = &slwt->flv_info; enum seg6_local_flv_action action; enum seg6_local_pktinfo pinfo; struct ipv6_sr_hdr *srh; __u32 flvmask; int srhoff; srh = seg6_get_srh(skb, 0); srhoff = srh ? ((unsigned char *)srh - skb->data) : 0; pinfo = seg6_get_srh_pktinfo(srh); #ifdef CONFIG_IPV6_SEG6_HMAC if (srh && !seg6_hmac_validate_skb(skb)) goto drop; #endif flvmask = finfo->flv_ops; if (unlikely(flvmask & ~SEG6_LOCAL_FLV8986_SUPP_OPS)) { pr_warn_once("seg6local: invalid RFC8986 flavors\n"); goto drop; } /* retrieve the action triggered by the combination of pktinfo data and * the flavors mask. */ action = seg6_local_flv8986_act_lookup(pinfo, flvmask); switch (action) { case SEG6_LOCAL_FLV_ACT_END: /* process the packet as the "standard" End behavior */ advance_nextseg(srh, &ipv6_hdr(skb)->daddr); break; case SEG6_LOCAL_FLV_ACT_PSP: advance_nextseg(srh, &ipv6_hdr(skb)->daddr); if (unlikely(!seg6_pop_srh(skb, srhoff))) goto drop; break; case SEG6_LOCAL_FLV_ACT_UNSPEC: fallthrough; default: /* by default, we drop the packet since we could not find a * suitable action. */ goto drop; } return input_action_end_finish(skb, slwt); drop: kfree_skb(skb); return -EINVAL; } /* regular endpoint function */ static int input_action_end(struct sk_buff *skb, struct seg6_local_lwt *slwt) { const struct seg6_flavors_info *finfo = &slwt->flv_info; __u32 fops = finfo->flv_ops; if (!fops) return input_action_end_core(skb, slwt); /* check for the presence of NEXT-C-SID since it applies first */ if (seg6_next_csid_enabled(fops)) return end_next_csid_core(skb, slwt); /* the specific processing function to be performed on the packet * depends on the combination of flavors defined in RFC8986 and some * information extracted from the packet, e.g. presence/absence of SRH, * Segment Left = 0, etc. */ return end_flv8986_core(skb, slwt); } /* regular endpoint, and forward to specified nexthop */ static int input_action_end_x(struct sk_buff *skb, struct seg6_local_lwt *slwt) { const struct seg6_flavors_info *finfo = &slwt->flv_info; __u32 fops = finfo->flv_ops; /* check for the presence of NEXT-C-SID since it applies first */ if (seg6_next_csid_enabled(fops)) return end_x_next_csid_core(skb, slwt); return input_action_end_x_core(skb, slwt); } static int input_action_end_t(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; srh = get_and_validate_srh(skb); if (!srh) goto drop; advance_nextseg(srh, &ipv6_hdr(skb)->daddr); seg6_lookup_nexthop(skb, NULL, slwt->table); return dst_input(skb); drop: kfree_skb(skb); return -EINVAL; } /* decapsulate and forward inner L2 frame on specified interface */ static int input_action_end_dx2(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct net *net = dev_net(skb->dev); struct net_device *odev; struct ethhdr *eth; if (!decap_and_validate(skb, IPPROTO_ETHERNET)) goto drop; if (!pskb_may_pull(skb, ETH_HLEN)) goto drop; skb_reset_mac_header(skb); eth = (struct ethhdr *)skb->data; /* To determine the frame's protocol, we assume it is 802.3. This avoids * a call to eth_type_trans(), which is not really relevant for our * use case. */ if (!eth_proto_is_802_3(eth->h_proto)) goto drop; odev = dev_get_by_index_rcu(net, slwt->oif); if (!odev) goto drop; /* As we accept Ethernet frames, make sure the egress device is of * the correct type. */ if (odev->type != ARPHRD_ETHER) goto drop; if (!(odev->flags & IFF_UP) || !netif_carrier_ok(odev)) goto drop; skb_orphan(skb); if (skb_warn_if_lro(skb)) goto drop; skb_forward_csum(skb); if (skb->len - ETH_HLEN > odev->mtu) goto drop; skb->dev = odev; skb->protocol = eth->h_proto; return dev_queue_xmit(skb); drop: kfree_skb(skb); return -EINVAL; } static int input_action_end_dx6_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct in6_addr *nhaddr = NULL; struct seg6_local_lwt *slwt; slwt = seg6_local_lwtunnel(orig_dst->lwtstate); /* The inner packet is not associated to any local interface, * so we do not call netif_rx(). * * If slwt->nh6 is set to ::, then lookup the nexthop for the * inner packet's DA. Otherwise, use the specified nexthop. */ if (!ipv6_addr_any(&slwt->nh6)) nhaddr = &slwt->nh6; seg6_lookup_nexthop(skb, nhaddr, 0); return dst_input(skb); } /* decapsulate and forward to specified nexthop */ static int input_action_end_dx6(struct sk_buff *skb, struct seg6_local_lwt *slwt) { /* this function accepts IPv6 encapsulated packets, with either * an SRH with SL=0, or no SRH. */ if (!decap_and_validate(skb, IPPROTO_IPV6)) goto drop; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); nf_reset_ct(skb); if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, dev_net(skb->dev), NULL, skb, NULL, skb_dst(skb)->dev, input_action_end_dx6_finish); return input_action_end_dx6_finish(dev_net(skb->dev), NULL, skb); drop: kfree_skb(skb); return -EINVAL; } static int input_action_end_dx4_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct seg6_local_lwt *slwt; struct iphdr *iph; __be32 nhaddr; int err; slwt = seg6_local_lwtunnel(orig_dst->lwtstate); iph = ip_hdr(skb); nhaddr = slwt->nh4.s_addr ?: iph->daddr; skb_dst_drop(skb); err = ip_route_input(skb, nhaddr, iph->saddr, 0, skb->dev); if (err) { kfree_skb(skb); return -EINVAL; } return dst_input(skb); } static int input_action_end_dx4(struct sk_buff *skb, struct seg6_local_lwt *slwt) { if (!decap_and_validate(skb, IPPROTO_IPIP)) goto drop; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto drop; skb->protocol = htons(ETH_P_IP); skb_set_transport_header(skb, sizeof(struct iphdr)); nf_reset_ct(skb); if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, dev_net(skb->dev), NULL, skb, NULL, skb_dst(skb)->dev, input_action_end_dx4_finish); return input_action_end_dx4_finish(dev_net(skb->dev), NULL, skb); drop: kfree_skb(skb); return -EINVAL; } #ifdef CONFIG_NET_L3_MASTER_DEV static struct net *fib6_config_get_net(const struct fib6_config *fib6_cfg) { const struct nl_info *nli = &fib6_cfg->fc_nlinfo; return nli->nl_net; } static int __seg6_end_dt_vrf_build(struct seg6_local_lwt *slwt, const void *cfg, u16 family, struct netlink_ext_ack *extack) { struct seg6_end_dt_info *info = &slwt->dt_info; int vrf_ifindex; struct net *net; net = fib6_config_get_net(cfg); /* note that vrf_table was already set by parse_nla_vrftable() */ vrf_ifindex = l3mdev_ifindex_lookup_by_table_id(L3MDEV_TYPE_VRF, net, info->vrf_table); if (vrf_ifindex < 0) { if (vrf_ifindex == -EPERM) { NL_SET_ERR_MSG(extack, "Strict mode for VRF is disabled"); } else if (vrf_ifindex == -ENODEV) { NL_SET_ERR_MSG(extack, "Table has no associated VRF device"); } else { pr_debug("seg6local: SRv6 End.DT* creation error=%d\n", vrf_ifindex); } return vrf_ifindex; } info->net = net; info->vrf_ifindex = vrf_ifindex; info->family = family; info->mode = DT_VRF_MODE; return 0; } /* The SRv6 End.DT4/DT6 behavior extracts the inner (IPv4/IPv6) packet and * routes the IPv4/IPv6 packet by looking at the configured routing table. * * In the SRv6 End.DT4/DT6 use case, we can receive traffic (IPv6+Segment * Routing Header packets) from several interfaces and the outer IPv6 * destination address (DA) is used for retrieving the specific instance of the * End.DT4/DT6 behavior that should process the packets. * * However, the inner IPv4/IPv6 packet is not really bound to any receiving * interface and thus the End.DT4/DT6 sets the VRF (associated with the * corresponding routing table) as the *receiving* interface. * In other words, the End.DT4/DT6 processes a packet as if it has been received * directly by the VRF (and not by one of its slave devices, if any). * In this way, the VRF interface is used for routing the IPv4/IPv6 packet in * according to the routing table configured by the End.DT4/DT6 instance. * * This design allows you to get some interesting features like: * 1) the statistics on rx packets; * 2) the possibility to install a packet sniffer on the receiving interface * (the VRF one) for looking at the incoming packets; * 3) the possibility to leverage the netfilter prerouting hook for the inner * IPv4 packet. * * This function returns: * - the sk_buff* when the VRF rcv handler has processed the packet correctly; * - NULL when the skb is consumed by the VRF rcv handler; * - a pointer which encodes a negative error number in case of error. * Note that in this case, the function takes care of freeing the skb. */ static struct sk_buff *end_dt_vrf_rcv(struct sk_buff *skb, u16 family, struct net_device *dev) { /* based on l3mdev_ip_rcv; we are only interested in the master */ if (unlikely(!netif_is_l3_master(dev) && !netif_has_l3_rx_handler(dev))) goto drop; if (unlikely(!dev->l3mdev_ops->l3mdev_l3_rcv)) goto drop; /* the decap packet IPv4/IPv6 does not come with any mac header info. * We must unset the mac header to allow the VRF device to rebuild it, * just in case there is a sniffer attached on the device. */ skb_unset_mac_header(skb); skb = dev->l3mdev_ops->l3mdev_l3_rcv(dev, skb, family); if (!skb) /* the skb buffer was consumed by the handler */ return NULL; /* when a packet is received by a VRF or by one of its slaves, the * master device reference is set into the skb. */ if (unlikely(skb->dev != dev || skb->skb_iif != dev->ifindex)) goto drop; return skb; drop: kfree_skb(skb); return ERR_PTR(-EINVAL); } static struct net_device *end_dt_get_vrf_rcu(struct sk_buff *skb, struct seg6_end_dt_info *info) { int vrf_ifindex = info->vrf_ifindex; struct net *net = info->net; if (unlikely(vrf_ifindex < 0)) goto error; if (unlikely(!net_eq(dev_net(skb->dev), net))) goto error; return dev_get_by_index_rcu(net, vrf_ifindex); error: return NULL; } static struct sk_buff *end_dt_vrf_core(struct sk_buff *skb, struct seg6_local_lwt *slwt, u16 family) { struct seg6_end_dt_info *info = &slwt->dt_info; struct net_device *vrf; __be16 protocol; int hdrlen; vrf = end_dt_get_vrf_rcu(skb, info); if (unlikely(!vrf)) goto drop; switch (family) { case AF_INET: protocol = htons(ETH_P_IP); hdrlen = sizeof(struct iphdr); break; case AF_INET6: protocol = htons(ETH_P_IPV6); hdrlen = sizeof(struct ipv6hdr); break; case AF_UNSPEC: fallthrough; default: goto drop; } if (unlikely(info->family != AF_UNSPEC && info->family != family)) { pr_warn_once("seg6local: SRv6 End.DT* family mismatch"); goto drop; } skb->protocol = protocol; skb_dst_drop(skb); skb_set_transport_header(skb, hdrlen); nf_reset_ct(skb); return end_dt_vrf_rcv(skb, family, vrf); drop: kfree_skb(skb); return ERR_PTR(-EINVAL); } static int input_action_end_dt4(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct iphdr *iph; int err; if (!decap_and_validate(skb, IPPROTO_IPIP)) goto drop; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto drop; skb = end_dt_vrf_core(skb, slwt, AF_INET); if (!skb) /* packet has been processed and consumed by the VRF */ return 0; if (IS_ERR(skb)) return PTR_ERR(skb); iph = ip_hdr(skb); err = ip_route_input(skb, iph->daddr, iph->saddr, 0, skb->dev); if (unlikely(err)) goto drop; return dst_input(skb); drop: kfree_skb(skb); return -EINVAL; } static int seg6_end_dt4_build(struct seg6_local_lwt *slwt, const void *cfg, struct netlink_ext_ack *extack) { return __seg6_end_dt_vrf_build(slwt, cfg, AF_INET, extack); } static enum seg6_end_dt_mode seg6_end_dt6_parse_mode(struct seg6_local_lwt *slwt) { unsigned long parsed_optattrs = slwt->parsed_optattrs; bool legacy, vrfmode; legacy = !!(parsed_optattrs & SEG6_F_ATTR(SEG6_LOCAL_TABLE)); vrfmode = !!(parsed_optattrs & SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE)); if (!(legacy ^ vrfmode)) /* both are absent or present: invalid DT6 mode */ return DT_INVALID_MODE; return legacy ? DT_LEGACY_MODE : DT_VRF_MODE; } static enum seg6_end_dt_mode seg6_end_dt6_get_mode(struct seg6_local_lwt *slwt) { struct seg6_end_dt_info *info = &slwt->dt_info; return info->mode; } static int seg6_end_dt6_build(struct seg6_local_lwt *slwt, const void *cfg, struct netlink_ext_ack *extack) { enum seg6_end_dt_mode mode = seg6_end_dt6_parse_mode(slwt); struct seg6_end_dt_info *info = &slwt->dt_info; switch (mode) { case DT_LEGACY_MODE: info->mode = DT_LEGACY_MODE; return 0; case DT_VRF_MODE: return __seg6_end_dt_vrf_build(slwt, cfg, AF_INET6, extack); default: NL_SET_ERR_MSG(extack, "table or vrftable must be specified"); return -EINVAL; } } #endif static int input_action_end_dt6(struct sk_buff *skb, struct seg6_local_lwt *slwt) { if (!decap_and_validate(skb, IPPROTO_IPV6)) goto drop; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; #ifdef CONFIG_NET_L3_MASTER_DEV if (seg6_end_dt6_get_mode(slwt) == DT_LEGACY_MODE) goto legacy_mode; /* DT6_VRF_MODE */ skb = end_dt_vrf_core(skb, slwt, AF_INET6); if (!skb) /* packet has been processed and consumed by the VRF */ return 0; if (IS_ERR(skb)) return PTR_ERR(skb); /* note: this time we do not need to specify the table because the VRF * takes care of selecting the correct table. */ seg6_lookup_any_nexthop(skb, NULL, 0, true); return dst_input(skb); legacy_mode: #endif skb_set_transport_header(skb, sizeof(struct ipv6hdr)); seg6_lookup_any_nexthop(skb, NULL, slwt->table, true); return dst_input(skb); drop: kfree_skb(skb); return -EINVAL; } #ifdef CONFIG_NET_L3_MASTER_DEV static int seg6_end_dt46_build(struct seg6_local_lwt *slwt, const void *cfg, struct netlink_ext_ack *extack) { return __seg6_end_dt_vrf_build(slwt, cfg, AF_UNSPEC, extack); } static int input_action_end_dt46(struct sk_buff *skb, struct seg6_local_lwt *slwt) { unsigned int off = 0; int nexthdr; nexthdr = ipv6_find_hdr(skb, &off, -1, NULL, NULL); if (unlikely(nexthdr < 0)) goto drop; switch (nexthdr) { case IPPROTO_IPIP: return input_action_end_dt4(skb, slwt); case IPPROTO_IPV6: return input_action_end_dt6(skb, slwt); } drop: kfree_skb(skb); return -EINVAL; } #endif /* push an SRH on top of the current one */ static int input_action_end_b6(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; int err = -EINVAL; srh = get_and_validate_srh(skb); if (!srh) goto drop; err = seg6_do_srh_inline(skb, slwt->srh); if (err) goto drop; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); seg6_lookup_nexthop(skb, NULL, 0); return dst_input(skb); drop: kfree_skb(skb); return err; } /* encapsulate within an outer IPv6 header and a specified SRH */ static int input_action_end_b6_encap(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; int err = -EINVAL; srh = get_and_validate_srh(skb); if (!srh) goto drop; advance_nextseg(srh, &ipv6_hdr(skb)->daddr); skb_reset_inner_headers(skb); skb->encapsulation = 1; err = seg6_do_srh_encap(skb, slwt->srh, IPPROTO_IPV6); if (err) goto drop; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); seg6_lookup_nexthop(skb, NULL, 0); return dst_input(skb); drop: kfree_skb(skb); return err; } DEFINE_PER_CPU(struct seg6_bpf_srh_state, seg6_bpf_srh_states); bool seg6_bpf_has_valid_srh(struct sk_buff *skb) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; if (unlikely(srh == NULL)) return false; if (unlikely(!srh_state->valid)) { if ((srh_state->hdrlen & 7) != 0) return false; srh->hdrlen = (u8)(srh_state->hdrlen >> 3); if (!seg6_validate_srh(srh, (srh->hdrlen + 1) << 3, true)) return false; srh_state->valid = true; } return true; } static int input_action_end_bpf(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh; int ret; srh = get_and_validate_srh(skb); if (!srh) { kfree_skb(skb); return -EINVAL; } advance_nextseg(srh, &ipv6_hdr(skb)->daddr); /* preempt_disable is needed to protect the per-CPU buffer srh_state, * which is also accessed by the bpf_lwt_seg6_* helpers */ preempt_disable(); srh_state->srh = srh; srh_state->hdrlen = srh->hdrlen << 3; srh_state->valid = true; rcu_read_lock(); bpf_compute_data_pointers(skb); ret = bpf_prog_run_save_cb(slwt->bpf.prog, skb); rcu_read_unlock(); switch (ret) { case BPF_OK: case BPF_REDIRECT: break; case BPF_DROP: goto drop; default: pr_warn_once("bpf-seg6local: Illegal return value %u\n", ret); goto drop; } if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) goto drop; preempt_enable(); if (ret != BPF_REDIRECT) seg6_lookup_nexthop(skb, NULL, 0); return dst_input(skb); drop: preempt_enable(); kfree_skb(skb); return -EINVAL; } static struct seg6_action_desc seg6_action_table[] = { { .action = SEG6_LOCAL_ACTION_END, .attrs = 0, .optattrs = SEG6_F_LOCAL_COUNTERS | SEG6_F_LOCAL_FLAVORS, .input = input_action_end, }, { .action = SEG6_LOCAL_ACTION_END_X, .attrs = SEG6_F_ATTR(SEG6_LOCAL_NH6), .optattrs = SEG6_F_LOCAL_COUNTERS | SEG6_F_LOCAL_FLAVORS, .input = input_action_end_x, }, { .action = SEG6_LOCAL_ACTION_END_T, .attrs = SEG6_F_ATTR(SEG6_LOCAL_TABLE), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_t, }, { .action = SEG6_LOCAL_ACTION_END_DX2, .attrs = SEG6_F_ATTR(SEG6_LOCAL_OIF), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_dx2, }, { .action = SEG6_LOCAL_ACTION_END_DX6, .attrs = SEG6_F_ATTR(SEG6_LOCAL_NH6), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_dx6, }, { .action = SEG6_LOCAL_ACTION_END_DX4, .attrs = SEG6_F_ATTR(SEG6_LOCAL_NH4), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_dx4, }, { .action = SEG6_LOCAL_ACTION_END_DT4, .attrs = SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE), .optattrs = SEG6_F_LOCAL_COUNTERS, #ifdef CONFIG_NET_L3_MASTER_DEV .input = input_action_end_dt4, .slwt_ops = { .build_state = seg6_end_dt4_build, }, #endif }, { .action = SEG6_LOCAL_ACTION_END_DT6, #ifdef CONFIG_NET_L3_MASTER_DEV .attrs = 0, .optattrs = SEG6_F_LOCAL_COUNTERS | SEG6_F_ATTR(SEG6_LOCAL_TABLE) | SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE), .slwt_ops = { .build_state = seg6_end_dt6_build, }, #else .attrs = SEG6_F_ATTR(SEG6_LOCAL_TABLE), .optattrs = SEG6_F_LOCAL_COUNTERS, #endif .input = input_action_end_dt6, }, { .action = SEG6_LOCAL_ACTION_END_DT46, .attrs = SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE), .optattrs = SEG6_F_LOCAL_COUNTERS, #ifdef CONFIG_NET_L3_MASTER_DEV .input = input_action_end_dt46, .slwt_ops = { .build_state = seg6_end_dt46_build, }, #endif }, { .action = SEG6_LOCAL_ACTION_END_B6, .attrs = SEG6_F_ATTR(SEG6_LOCAL_SRH), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_b6, }, { .action = SEG6_LOCAL_ACTION_END_B6_ENCAP, .attrs = SEG6_F_ATTR(SEG6_LOCAL_SRH), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_b6_encap, .static_headroom = sizeof(struct ipv6hdr), }, { .action = SEG6_LOCAL_ACTION_END_BPF, .attrs = SEG6_F_ATTR(SEG6_LOCAL_BPF), .optattrs = SEG6_F_LOCAL_COUNTERS, .input = input_action_end_bpf, }, }; static struct seg6_action_desc *__get_action_desc(int action) { struct seg6_action_desc *desc; int i, count; count = ARRAY_SIZE(seg6_action_table); for (i = 0; i < count; i++) { desc = &seg6_action_table[i]; if (desc->action == action) return desc; } return NULL; } static bool seg6_lwtunnel_counters_enabled(struct seg6_local_lwt *slwt) { return slwt->parsed_optattrs & SEG6_F_LOCAL_COUNTERS; } static void seg6_local_update_counters(struct seg6_local_lwt *slwt, unsigned int len, int err) { struct pcpu_seg6_local_counters *pcounters; pcounters = this_cpu_ptr(slwt->pcpu_counters); u64_stats_update_begin(&pcounters->syncp); if (likely(!err)) { u64_stats_inc(&pcounters->packets); u64_stats_add(&pcounters->bytes, len); } else { u64_stats_inc(&pcounters->errors); } u64_stats_update_end(&pcounters->syncp); } static int seg6_local_input_core(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct seg6_action_desc *desc; struct seg6_local_lwt *slwt; unsigned int len = skb->len; int rc; slwt = seg6_local_lwtunnel(orig_dst->lwtstate); desc = slwt->desc; rc = desc->input(skb, slwt); if (!seg6_lwtunnel_counters_enabled(slwt)) return rc; seg6_local_update_counters(slwt, len, rc); return rc; } static int seg6_local_input(struct sk_buff *skb) { if (skb->protocol != htons(ETH_P_IPV6)) { kfree_skb(skb); return -EINVAL; } if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_IN, dev_net(skb->dev), NULL, skb, skb->dev, NULL, seg6_local_input_core); return seg6_local_input_core(dev_net(skb->dev), NULL, skb); } static const struct nla_policy seg6_local_policy[SEG6_LOCAL_MAX + 1] = { [SEG6_LOCAL_ACTION] = { .type = NLA_U32 }, [SEG6_LOCAL_SRH] = { .type = NLA_BINARY }, [SEG6_LOCAL_TABLE] = { .type = NLA_U32 }, [SEG6_LOCAL_VRFTABLE] = { .type = NLA_U32 }, [SEG6_LOCAL_NH4] = { .type = NLA_BINARY, .len = sizeof(struct in_addr) }, [SEG6_LOCAL_NH6] = { .type = NLA_BINARY, .len = sizeof(struct in6_addr) }, [SEG6_LOCAL_IIF] = { .type = NLA_U32 }, [SEG6_LOCAL_OIF] = { .type = NLA_U32 }, [SEG6_LOCAL_BPF] = { .type = NLA_NESTED }, [SEG6_LOCAL_COUNTERS] = { .type = NLA_NESTED }, [SEG6_LOCAL_FLAVORS] = { .type = NLA_NESTED }, }; static int parse_nla_srh(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct ipv6_sr_hdr *srh; int len; srh = nla_data(attrs[SEG6_LOCAL_SRH]); len = nla_len(attrs[SEG6_LOCAL_SRH]); /* SRH must contain at least one segment */ if (len < sizeof(*srh) + sizeof(struct in6_addr)) return -EINVAL; if (!seg6_validate_srh(srh, len, false)) return -EINVAL; slwt->srh = kmemdup(srh, len, GFP_KERNEL); if (!slwt->srh) return -ENOMEM; slwt->headroom += len; return 0; } static int put_nla_srh(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct ipv6_sr_hdr *srh; struct nlattr *nla; int len; srh = slwt->srh; len = (srh->hdrlen + 1) << 3; nla = nla_reserve(skb, SEG6_LOCAL_SRH, len); if (!nla) return -EMSGSIZE; memcpy(nla_data(nla), srh, len); return 0; } static int cmp_nla_srh(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { int len = (a->srh->hdrlen + 1) << 3; if (len != ((b->srh->hdrlen + 1) << 3)) return 1; return memcmp(a->srh, b->srh, len); } static void destroy_attr_srh(struct seg6_local_lwt *slwt) { kfree(slwt->srh); } static int parse_nla_table(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { slwt->table = nla_get_u32(attrs[SEG6_LOCAL_TABLE]); return 0; } static int put_nla_table(struct sk_buff *skb, struct seg6_local_lwt *slwt) { if (nla_put_u32(skb, SEG6_LOCAL_TABLE, slwt->table)) return -EMSGSIZE; return 0; } static int cmp_nla_table(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { if (a->table != b->table) return 1; return 0; } static struct seg6_end_dt_info *seg6_possible_end_dt_info(struct seg6_local_lwt *slwt) { #ifdef CONFIG_NET_L3_MASTER_DEV return &slwt->dt_info; #else return ERR_PTR(-EOPNOTSUPP); #endif } static int parse_nla_vrftable(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct seg6_end_dt_info *info = seg6_possible_end_dt_info(slwt); if (IS_ERR(info)) return PTR_ERR(info); info->vrf_table = nla_get_u32(attrs[SEG6_LOCAL_VRFTABLE]); return 0; } static int put_nla_vrftable(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct seg6_end_dt_info *info = seg6_possible_end_dt_info(slwt); if (IS_ERR(info)) return PTR_ERR(info); if (nla_put_u32(skb, SEG6_LOCAL_VRFTABLE, info->vrf_table)) return -EMSGSIZE; return 0; } static int cmp_nla_vrftable(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { struct seg6_end_dt_info *info_a = seg6_possible_end_dt_info(a); struct seg6_end_dt_info *info_b = seg6_possible_end_dt_info(b); if (info_a->vrf_table != info_b->vrf_table) return 1; return 0; } static int parse_nla_nh4(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { memcpy(&slwt->nh4, nla_data(attrs[SEG6_LOCAL_NH4]), sizeof(struct in_addr)); return 0; } static int put_nla_nh4(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct nlattr *nla; nla = nla_reserve(skb, SEG6_LOCAL_NH4, sizeof(struct in_addr)); if (!nla) return -EMSGSIZE; memcpy(nla_data(nla), &slwt->nh4, sizeof(struct in_addr)); return 0; } static int cmp_nla_nh4(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { return memcmp(&a->nh4, &b->nh4, sizeof(struct in_addr)); } static int parse_nla_nh6(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { memcpy(&slwt->nh6, nla_data(attrs[SEG6_LOCAL_NH6]), sizeof(struct in6_addr)); return 0; } static int put_nla_nh6(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct nlattr *nla; nla = nla_reserve(skb, SEG6_LOCAL_NH6, sizeof(struct in6_addr)); if (!nla) return -EMSGSIZE; memcpy(nla_data(nla), &slwt->nh6, sizeof(struct in6_addr)); return 0; } static int cmp_nla_nh6(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { return memcmp(&a->nh6, &b->nh6, sizeof(struct in6_addr)); } static int parse_nla_iif(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { slwt->iif = nla_get_u32(attrs[SEG6_LOCAL_IIF]); return 0; } static int put_nla_iif(struct sk_buff *skb, struct seg6_local_lwt *slwt) { if (nla_put_u32(skb, SEG6_LOCAL_IIF, slwt->iif)) return -EMSGSIZE; return 0; } static int cmp_nla_iif(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { if (a->iif != b->iif) return 1; return 0; } static int parse_nla_oif(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { slwt->oif = nla_get_u32(attrs[SEG6_LOCAL_OIF]); return 0; } static int put_nla_oif(struct sk_buff *skb, struct seg6_local_lwt *slwt) { if (nla_put_u32(skb, SEG6_LOCAL_OIF, slwt->oif)) return -EMSGSIZE; return 0; } static int cmp_nla_oif(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { if (a->oif != b->oif) return 1; return 0; } #define MAX_PROG_NAME 256 static const struct nla_policy bpf_prog_policy[SEG6_LOCAL_BPF_PROG_MAX + 1] = { [SEG6_LOCAL_BPF_PROG] = { .type = NLA_U32, }, [SEG6_LOCAL_BPF_PROG_NAME] = { .type = NLA_NUL_STRING, .len = MAX_PROG_NAME }, }; static int parse_nla_bpf(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct nlattr *tb[SEG6_LOCAL_BPF_PROG_MAX + 1]; struct bpf_prog *p; int ret; u32 fd; ret = nla_parse_nested_deprecated(tb, SEG6_LOCAL_BPF_PROG_MAX, attrs[SEG6_LOCAL_BPF], bpf_prog_policy, NULL); if (ret < 0) return ret; if (!tb[SEG6_LOCAL_BPF_PROG] || !tb[SEG6_LOCAL_BPF_PROG_NAME]) return -EINVAL; slwt->bpf.name = nla_memdup(tb[SEG6_LOCAL_BPF_PROG_NAME], GFP_KERNEL); if (!slwt->bpf.name) return -ENOMEM; fd = nla_get_u32(tb[SEG6_LOCAL_BPF_PROG]); p = bpf_prog_get_type(fd, BPF_PROG_TYPE_LWT_SEG6LOCAL); if (IS_ERR(p)) { kfree(slwt->bpf.name); return PTR_ERR(p); } slwt->bpf.prog = p; return 0; } static int put_nla_bpf(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct nlattr *nest; if (!slwt->bpf.prog) return 0; nest = nla_nest_start_noflag(skb, SEG6_LOCAL_BPF); if (!nest) return -EMSGSIZE; if (nla_put_u32(skb, SEG6_LOCAL_BPF_PROG, slwt->bpf.prog->aux->id)) return -EMSGSIZE; if (slwt->bpf.name && nla_put_string(skb, SEG6_LOCAL_BPF_PROG_NAME, slwt->bpf.name)) return -EMSGSIZE; return nla_nest_end(skb, nest); } static int cmp_nla_bpf(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { if (!a->bpf.name && !b->bpf.name) return 0; if (!a->bpf.name || !b->bpf.name) return 1; return strcmp(a->bpf.name, b->bpf.name); } static void destroy_attr_bpf(struct seg6_local_lwt *slwt) { kfree(slwt->bpf.name); if (slwt->bpf.prog) bpf_prog_put(slwt->bpf.prog); } static const struct nla_policy seg6_local_counters_policy[SEG6_LOCAL_CNT_MAX + 1] = { [SEG6_LOCAL_CNT_PACKETS] = { .type = NLA_U64 }, [SEG6_LOCAL_CNT_BYTES] = { .type = NLA_U64 }, [SEG6_LOCAL_CNT_ERRORS] = { .type = NLA_U64 }, }; static int parse_nla_counters(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct pcpu_seg6_local_counters __percpu *pcounters; struct nlattr *tb[SEG6_LOCAL_CNT_MAX + 1]; int ret; ret = nla_parse_nested_deprecated(tb, SEG6_LOCAL_CNT_MAX, attrs[SEG6_LOCAL_COUNTERS], seg6_local_counters_policy, NULL); if (ret < 0) return ret; /* basic support for SRv6 Behavior counters requires at least: * packets, bytes and errors. */ if (!tb[SEG6_LOCAL_CNT_PACKETS] || !tb[SEG6_LOCAL_CNT_BYTES] || !tb[SEG6_LOCAL_CNT_ERRORS]) return -EINVAL; /* counters are always zero initialized */ pcounters = seg6_local_alloc_pcpu_counters(GFP_KERNEL); if (!pcounters) return -ENOMEM; slwt->pcpu_counters = pcounters; return 0; } static int seg6_local_fill_nla_counters(struct sk_buff *skb, struct seg6_local_counters *counters) { if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_PACKETS, counters->packets, SEG6_LOCAL_CNT_PAD)) return -EMSGSIZE; if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_BYTES, counters->bytes, SEG6_LOCAL_CNT_PAD)) return -EMSGSIZE; if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_ERRORS, counters->errors, SEG6_LOCAL_CNT_PAD)) return -EMSGSIZE; return 0; } static int put_nla_counters(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct seg6_local_counters counters = { 0, 0, 0 }; struct nlattr *nest; int rc, i; nest = nla_nest_start(skb, SEG6_LOCAL_COUNTERS); if (!nest) return -EMSGSIZE; for_each_possible_cpu(i) { struct pcpu_seg6_local_counters *pcounters; u64 packets, bytes, errors; unsigned int start; pcounters = per_cpu_ptr(slwt->pcpu_counters, i); do { start = u64_stats_fetch_begin(&pcounters->syncp); packets = u64_stats_read(&pcounters->packets); bytes = u64_stats_read(&pcounters->bytes); errors = u64_stats_read(&pcounters->errors); } while (u64_stats_fetch_retry(&pcounters->syncp, start)); counters.packets += packets; counters.bytes += bytes; counters.errors += errors; } rc = seg6_local_fill_nla_counters(skb, &counters); if (rc < 0) { nla_nest_cancel(skb, nest); return rc; } return nla_nest_end(skb, nest); } static int cmp_nla_counters(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { /* a and b are equal if both have pcpu_counters set or not */ return (!!((unsigned long)a->pcpu_counters)) ^ (!!((unsigned long)b->pcpu_counters)); } static void destroy_attr_counters(struct seg6_local_lwt *slwt) { free_percpu(slwt->pcpu_counters); } static const struct nla_policy seg6_local_flavors_policy[SEG6_LOCAL_FLV_MAX + 1] = { [SEG6_LOCAL_FLV_OPERATION] = { .type = NLA_U32 }, [SEG6_LOCAL_FLV_LCBLOCK_BITS] = { .type = NLA_U8 }, [SEG6_LOCAL_FLV_LCNODE_FN_BITS] = { .type = NLA_U8 }, }; /* check whether the lengths of the Locator-Block and Locator-Node Function * are compatible with the dimension of a C-SID container. */ static int seg6_chk_next_csid_cfg(__u8 block_len, __u8 func_len) { /* Locator-Block and Locator-Node Function cannot exceed 128 bits * (i.e. C-SID container lenghts). */ if (next_csid_chk_cntr_bits(block_len, func_len)) return -EINVAL; /* Locator-Block length must be greater than zero and evenly divisible * by 8. There must be room for a Locator-Node Function, at least. */ if (next_csid_chk_lcblock_bits(block_len)) return -EINVAL; /* Locator-Node Function length must be greater than zero and evenly * divisible by 8. There must be room for the Locator-Block. */ if (next_csid_chk_lcnode_fn_bits(func_len)) return -EINVAL; return 0; } static int seg6_parse_nla_next_csid_cfg(struct nlattr **tb, struct seg6_flavors_info *finfo, struct netlink_ext_ack *extack) { __u8 func_len = SEG6_LOCAL_LCNODE_FN_DBITS; __u8 block_len = SEG6_LOCAL_LCBLOCK_DBITS; int rc; if (tb[SEG6_LOCAL_FLV_LCBLOCK_BITS]) block_len = nla_get_u8(tb[SEG6_LOCAL_FLV_LCBLOCK_BITS]); if (tb[SEG6_LOCAL_FLV_LCNODE_FN_BITS]) func_len = nla_get_u8(tb[SEG6_LOCAL_FLV_LCNODE_FN_BITS]); rc = seg6_chk_next_csid_cfg(block_len, func_len); if (rc < 0) { NL_SET_ERR_MSG(extack, "Invalid Locator Block/Node Function lengths"); return rc; } finfo->lcblock_bits = block_len; finfo->lcnode_func_bits = func_len; return 0; } static int parse_nla_flavors(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct seg6_flavors_info *finfo = &slwt->flv_info; struct nlattr *tb[SEG6_LOCAL_FLV_MAX + 1]; int action = slwt->action; __u32 fops, supp_fops; int rc; rc = nla_parse_nested_deprecated(tb, SEG6_LOCAL_FLV_MAX, attrs[SEG6_LOCAL_FLAVORS], seg6_local_flavors_policy, NULL); if (rc < 0) return rc; /* this attribute MUST always be present since it represents the Flavor * operation(s) to be carried out. */ if (!tb[SEG6_LOCAL_FLV_OPERATION]) return -EINVAL; fops = nla_get_u32(tb[SEG6_LOCAL_FLV_OPERATION]); rc = seg6_flv_supp_ops_by_action(action, &supp_fops); if (rc < 0 || (fops & ~supp_fops)) { NL_SET_ERR_MSG(extack, "Unsupported Flavor operation(s)"); return -EOPNOTSUPP; } finfo->flv_ops = fops; if (seg6_next_csid_enabled(fops)) { /* Locator-Block and Locator-Node Function lengths can be * provided by the user space. Otherwise, default values are * applied. */ rc = seg6_parse_nla_next_csid_cfg(tb, finfo, extack); if (rc < 0) return rc; } return 0; } static int seg6_fill_nla_next_csid_cfg(struct sk_buff *skb, struct seg6_flavors_info *finfo) { if (nla_put_u8(skb, SEG6_LOCAL_FLV_LCBLOCK_BITS, finfo->lcblock_bits)) return -EMSGSIZE; if (nla_put_u8(skb, SEG6_LOCAL_FLV_LCNODE_FN_BITS, finfo->lcnode_func_bits)) return -EMSGSIZE; return 0; } static int put_nla_flavors(struct sk_buff *skb, struct seg6_local_lwt *slwt) { struct seg6_flavors_info *finfo = &slwt->flv_info; __u32 fops = finfo->flv_ops; struct nlattr *nest; int rc; nest = nla_nest_start(skb, SEG6_LOCAL_FLAVORS); if (!nest) return -EMSGSIZE; if (nla_put_u32(skb, SEG6_LOCAL_FLV_OPERATION, fops)) { rc = -EMSGSIZE; goto err; } if (seg6_next_csid_enabled(fops)) { rc = seg6_fill_nla_next_csid_cfg(skb, finfo); if (rc < 0) goto err; } return nla_nest_end(skb, nest); err: nla_nest_cancel(skb, nest); return rc; } static int seg6_cmp_nla_next_csid_cfg(struct seg6_flavors_info *finfo_a, struct seg6_flavors_info *finfo_b) { if (finfo_a->lcblock_bits != finfo_b->lcblock_bits) return 1; if (finfo_a->lcnode_func_bits != finfo_b->lcnode_func_bits) return 1; return 0; } static int cmp_nla_flavors(struct seg6_local_lwt *a, struct seg6_local_lwt *b) { struct seg6_flavors_info *finfo_a = &a->flv_info; struct seg6_flavors_info *finfo_b = &b->flv_info; if (finfo_a->flv_ops != finfo_b->flv_ops) return 1; if (seg6_next_csid_enabled(finfo_a->flv_ops)) { if (seg6_cmp_nla_next_csid_cfg(finfo_a, finfo_b)) return 1; } return 0; } static int encap_size_flavors(struct seg6_local_lwt *slwt) { struct seg6_flavors_info *finfo = &slwt->flv_info; int nlsize; nlsize = nla_total_size(0) + /* nest SEG6_LOCAL_FLAVORS */ nla_total_size(4); /* SEG6_LOCAL_FLV_OPERATION */ if (seg6_next_csid_enabled(finfo->flv_ops)) nlsize += nla_total_size(1) + /* SEG6_LOCAL_FLV_LCBLOCK_BITS */ nla_total_size(1); /* SEG6_LOCAL_FLV_LCNODE_FN_BITS */ return nlsize; } struct seg6_action_param { int (*parse)(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack); int (*put)(struct sk_buff *skb, struct seg6_local_lwt *slwt); int (*cmp)(struct seg6_local_lwt *a, struct seg6_local_lwt *b); /* optional destroy() callback useful for releasing resources which * have been previously acquired in the corresponding parse() * function. */ void (*destroy)(struct seg6_local_lwt *slwt); }; static struct seg6_action_param seg6_action_params[SEG6_LOCAL_MAX + 1] = { [SEG6_LOCAL_SRH] = { .parse = parse_nla_srh, .put = put_nla_srh, .cmp = cmp_nla_srh, .destroy = destroy_attr_srh }, [SEG6_LOCAL_TABLE] = { .parse = parse_nla_table, .put = put_nla_table, .cmp = cmp_nla_table }, [SEG6_LOCAL_NH4] = { .parse = parse_nla_nh4, .put = put_nla_nh4, .cmp = cmp_nla_nh4 }, [SEG6_LOCAL_NH6] = { .parse = parse_nla_nh6, .put = put_nla_nh6, .cmp = cmp_nla_nh6 }, [SEG6_LOCAL_IIF] = { .parse = parse_nla_iif, .put = put_nla_iif, .cmp = cmp_nla_iif }, [SEG6_LOCAL_OIF] = { .parse = parse_nla_oif, .put = put_nla_oif, .cmp = cmp_nla_oif }, [SEG6_LOCAL_BPF] = { .parse = parse_nla_bpf, .put = put_nla_bpf, .cmp = cmp_nla_bpf, .destroy = destroy_attr_bpf }, [SEG6_LOCAL_VRFTABLE] = { .parse = parse_nla_vrftable, .put = put_nla_vrftable, .cmp = cmp_nla_vrftable }, [SEG6_LOCAL_COUNTERS] = { .parse = parse_nla_counters, .put = put_nla_counters, .cmp = cmp_nla_counters, .destroy = destroy_attr_counters }, [SEG6_LOCAL_FLAVORS] = { .parse = parse_nla_flavors, .put = put_nla_flavors, .cmp = cmp_nla_flavors }, }; /* call the destroy() callback (if available) for each set attribute in * @parsed_attrs, starting from the first attribute up to the @max_parsed * (excluded) attribute. */ static void __destroy_attrs(unsigned long parsed_attrs, int max_parsed, struct seg6_local_lwt *slwt) { struct seg6_action_param *param; int i; /* Every required seg6local attribute is identified by an ID which is * encoded as a flag (i.e: 1 << ID) in the 'attrs' bitmask; * * We scan the 'parsed_attrs' bitmask, starting from the first attribute * up to the @max_parsed (excluded) attribute. * For each set attribute, we retrieve the corresponding destroy() * callback. If the callback is not available, then we skip to the next * attribute; otherwise, we call the destroy() callback. */ for (i = SEG6_LOCAL_SRH; i < max_parsed; ++i) { if (!(parsed_attrs & SEG6_F_ATTR(i))) continue; param = &seg6_action_params[i]; if (param->destroy) param->destroy(slwt); } } /* release all the resources that may have been acquired during parsing * operations. */ static void destroy_attrs(struct seg6_local_lwt *slwt) { unsigned long attrs = slwt->desc->attrs | slwt->parsed_optattrs; __destroy_attrs(attrs, SEG6_LOCAL_MAX + 1, slwt); } static int parse_nla_optional_attrs(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct seg6_action_desc *desc = slwt->desc; unsigned long parsed_optattrs = 0; struct seg6_action_param *param; int err, i; for (i = SEG6_LOCAL_SRH; i < SEG6_LOCAL_MAX + 1; ++i) { if (!(desc->optattrs & SEG6_F_ATTR(i)) || !attrs[i]) continue; /* once here, the i-th attribute is provided by the * userspace AND it is identified optional as well. */ param = &seg6_action_params[i]; err = param->parse(attrs, slwt, extack); if (err < 0) goto parse_optattrs_err; /* current attribute has been correctly parsed */ parsed_optattrs |= SEG6_F_ATTR(i); } /* store in the tunnel state all the optional attributed successfully * parsed. */ slwt->parsed_optattrs = parsed_optattrs; return 0; parse_optattrs_err: __destroy_attrs(parsed_optattrs, i, slwt); return err; } /* call the custom constructor of the behavior during its initialization phase * and after that all its attributes have been parsed successfully. */ static int seg6_local_lwtunnel_build_state(struct seg6_local_lwt *slwt, const void *cfg, struct netlink_ext_ack *extack) { struct seg6_action_desc *desc = slwt->desc; struct seg6_local_lwtunnel_ops *ops; ops = &desc->slwt_ops; if (!ops->build_state) return 0; return ops->build_state(slwt, cfg, extack); } /* call the custom destructor of the behavior which is invoked before the * tunnel is going to be destroyed. */ static void seg6_local_lwtunnel_destroy_state(struct seg6_local_lwt *slwt) { struct seg6_action_desc *desc = slwt->desc; struct seg6_local_lwtunnel_ops *ops; ops = &desc->slwt_ops; if (!ops->destroy_state) return; ops->destroy_state(slwt); } static int parse_nla_action(struct nlattr **attrs, struct seg6_local_lwt *slwt, struct netlink_ext_ack *extack) { struct seg6_action_param *param; struct seg6_action_desc *desc; unsigned long invalid_attrs; int i, err; desc = __get_action_desc(slwt->action); if (!desc) return -EINVAL; if (!desc->input) return -EOPNOTSUPP; slwt->desc = desc; slwt->headroom += desc->static_headroom; /* Forcing the desc->optattrs *set* and the desc->attrs *set* to be * disjoined, this allow us to release acquired resources by optional * attributes and by required attributes independently from each other * without any interference. * In other terms, we are sure that we do not release some the acquired * resources twice. * * Note that if an attribute is configured both as required and as * optional, it means that the user has messed something up in the * seg6_action_table. Therefore, this check is required for SRv6 * behaviors to work properly. */ invalid_attrs = desc->attrs & desc->optattrs; if (invalid_attrs) { WARN_ONCE(1, "An attribute cannot be both required AND optional"); return -EINVAL; } /* parse the required attributes */ for (i = SEG6_LOCAL_SRH; i < SEG6_LOCAL_MAX + 1; i++) { if (desc->attrs & SEG6_F_ATTR(i)) { if (!attrs[i]) return -EINVAL; param = &seg6_action_params[i]; err = param->parse(attrs, slwt, extack); if (err < 0) goto parse_attrs_err; } } /* parse the optional attributes, if any */ err = parse_nla_optional_attrs(attrs, slwt, extack); if (err < 0) goto parse_attrs_err; return 0; parse_attrs_err: /* release any resource that may have been acquired during the i-1 * parse() operations. */ __destroy_attrs(desc->attrs, i, slwt); return err; } static int seg6_local_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct nlattr *tb[SEG6_LOCAL_MAX + 1]; struct lwtunnel_state *newts; struct seg6_local_lwt *slwt; int err; if (family != AF_INET6) return -EINVAL; err = nla_parse_nested_deprecated(tb, SEG6_LOCAL_MAX, nla, seg6_local_policy, extack); if (err < 0) return err; if (!tb[SEG6_LOCAL_ACTION]) return -EINVAL; newts = lwtunnel_state_alloc(sizeof(*slwt)); if (!newts) return -ENOMEM; slwt = seg6_local_lwtunnel(newts); slwt->action = nla_get_u32(tb[SEG6_LOCAL_ACTION]); err = parse_nla_action(tb, slwt, extack); if (err < 0) goto out_free; err = seg6_local_lwtunnel_build_state(slwt, cfg, extack); if (err < 0) goto out_destroy_attrs; newts->type = LWTUNNEL_ENCAP_SEG6_LOCAL; newts->flags = LWTUNNEL_STATE_INPUT_REDIRECT; newts->headroom = slwt->headroom; *ts = newts; return 0; out_destroy_attrs: destroy_attrs(slwt); out_free: kfree(newts); return err; } static void seg6_local_destroy_state(struct lwtunnel_state *lwt) { struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt); seg6_local_lwtunnel_destroy_state(slwt); destroy_attrs(slwt); return; } static int seg6_local_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwt) { struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt); struct seg6_action_param *param; unsigned long attrs; int i, err; if (nla_put_u32(skb, SEG6_LOCAL_ACTION, slwt->action)) return -EMSGSIZE; attrs = slwt->desc->attrs | slwt->parsed_optattrs; for (i = SEG6_LOCAL_SRH; i < SEG6_LOCAL_MAX + 1; i++) { if (attrs & SEG6_F_ATTR(i)) { param = &seg6_action_params[i]; err = param->put(skb, slwt); if (err < 0) return err; } } return 0; } static int seg6_local_get_encap_size(struct lwtunnel_state *lwt) { struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt); unsigned long attrs; int nlsize; nlsize = nla_total_size(4); /* action */ attrs = slwt->desc->attrs | slwt->parsed_optattrs; if (attrs & SEG6_F_ATTR(SEG6_LOCAL_SRH)) nlsize += nla_total_size((slwt->srh->hdrlen + 1) << 3); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_TABLE)) nlsize += nla_total_size(4); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_NH4)) nlsize += nla_total_size(4); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_NH6)) nlsize += nla_total_size(16); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_IIF)) nlsize += nla_total_size(4); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_OIF)) nlsize += nla_total_size(4); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_BPF)) nlsize += nla_total_size(sizeof(struct nlattr)) + nla_total_size(MAX_PROG_NAME) + nla_total_size(4); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE)) nlsize += nla_total_size(4); if (attrs & SEG6_F_LOCAL_COUNTERS) nlsize += nla_total_size(0) + /* nest SEG6_LOCAL_COUNTERS */ /* SEG6_LOCAL_CNT_PACKETS */ nla_total_size_64bit(sizeof(__u64)) + /* SEG6_LOCAL_CNT_BYTES */ nla_total_size_64bit(sizeof(__u64)) + /* SEG6_LOCAL_CNT_ERRORS */ nla_total_size_64bit(sizeof(__u64)); if (attrs & SEG6_F_ATTR(SEG6_LOCAL_FLAVORS)) nlsize += encap_size_flavors(slwt); return nlsize; } static int seg6_local_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct seg6_local_lwt *slwt_a, *slwt_b; struct seg6_action_param *param; unsigned long attrs_a, attrs_b; int i; slwt_a = seg6_local_lwtunnel(a); slwt_b = seg6_local_lwtunnel(b); if (slwt_a->action != slwt_b->action) return 1; attrs_a = slwt_a->desc->attrs | slwt_a->parsed_optattrs; attrs_b = slwt_b->desc->attrs | slwt_b->parsed_optattrs; if (attrs_a != attrs_b) return 1; for (i = SEG6_LOCAL_SRH; i < SEG6_LOCAL_MAX + 1; i++) { if (attrs_a & SEG6_F_ATTR(i)) { param = &seg6_action_params[i]; if (param->cmp(slwt_a, slwt_b)) return 1; } } return 0; } static const struct lwtunnel_encap_ops seg6_local_ops = { .build_state = seg6_local_build_state, .destroy_state = seg6_local_destroy_state, .input = seg6_local_input, .fill_encap = seg6_local_fill_encap, .get_encap_size = seg6_local_get_encap_size, .cmp_encap = seg6_local_cmp_encap, .owner = THIS_MODULE, }; int __init seg6_local_init(void) { /* If the max total number of defined attributes is reached, then your * kernel build stops here. * * This check is required to avoid arithmetic overflows when processing * behavior attributes and the maximum number of defined attributes * exceeds the allowed value. */ BUILD_BUG_ON(SEG6_LOCAL_MAX + 1 > BITS_PER_TYPE(unsigned long)); /* Check whether the number of defined flavors exceeds the maximum * allowed value. */ BUILD_BUG_ON(SEG6_LOCAL_FLV_OP_MAX + 1 > BITS_PER_TYPE(__u32)); /* If the default NEXT-C-SID Locator-Block/Node Function lengths (in * bits) have been changed with invalid values, kernel build stops * here. */ BUILD_BUG_ON(next_csid_chk_cntr_bits(SEG6_LOCAL_LCBLOCK_DBITS, SEG6_LOCAL_LCNODE_FN_DBITS)); BUILD_BUG_ON(next_csid_chk_lcblock_bits(SEG6_LOCAL_LCBLOCK_DBITS)); BUILD_BUG_ON(next_csid_chk_lcnode_fn_bits(SEG6_LOCAL_LCNODE_FN_DBITS)); /* To be memory efficient, we use 'u8' to represent the different * actions related to RFC8986 flavors. If the kernel build stops here, * it means that it is not possible to correctly encode these actions * with the data type chosen for the action table. */ BUILD_BUG_ON(SEG6_LOCAL_FLV_ACT_MAX > (typeof(flv8986_act_tbl[0]))~0U); return lwtunnel_encap_add_ops(&seg6_local_ops, LWTUNNEL_ENCAP_SEG6_LOCAL); } void seg6_local_exit(void) { lwtunnel_encap_del_ops(&seg6_local_ops, LWTUNNEL_ENCAP_SEG6_LOCAL); }
linux-master
net/ipv6/seg6_local.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * This file implements the various access functions for the * PROC file system. This is very similar to the IPv4 version, * except it reports the sockets in the INET6 address family. * * Authors: David S. Miller ([email protected]) * YOSHIFUJI Hideaki <[email protected]> */ #include <linux/socket.h> #include <linux/net.h> #include <linux/ipv6.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stddef.h> #include <linux/export.h> #include <net/net_namespace.h> #include <net/ip.h> #include <net/sock.h> #include <net/tcp.h> #include <net/udp.h> #include <net/transp_v6.h> #include <net/ipv6.h> #define MAX4(a, b, c, d) \ max_t(u32, max_t(u32, a, b), max_t(u32, c, d)) #define SNMP_MIB_MAX MAX4(UDP_MIB_MAX, TCP_MIB_MAX, \ IPSTATS_MIB_MAX, ICMP_MIB_MAX) static int sockstat6_seq_show(struct seq_file *seq, void *v) { struct net *net = seq->private; seq_printf(seq, "TCP6: inuse %d\n", sock_prot_inuse_get(net, &tcpv6_prot)); seq_printf(seq, "UDP6: inuse %d\n", sock_prot_inuse_get(net, &udpv6_prot)); seq_printf(seq, "UDPLITE6: inuse %d\n", sock_prot_inuse_get(net, &udplitev6_prot)); seq_printf(seq, "RAW6: inuse %d\n", sock_prot_inuse_get(net, &rawv6_prot)); seq_printf(seq, "FRAG6: inuse %u memory %lu\n", atomic_read(&net->ipv6.fqdir->rhashtable.nelems), frag_mem_limit(net->ipv6.fqdir)); return 0; } static const struct snmp_mib snmp6_ipstats_list[] = { /* ipv6 mib according to RFC 2465 */ SNMP_MIB_ITEM("Ip6InReceives", IPSTATS_MIB_INPKTS), SNMP_MIB_ITEM("Ip6InHdrErrors", IPSTATS_MIB_INHDRERRORS), SNMP_MIB_ITEM("Ip6InTooBigErrors", IPSTATS_MIB_INTOOBIGERRORS), SNMP_MIB_ITEM("Ip6InNoRoutes", IPSTATS_MIB_INNOROUTES), SNMP_MIB_ITEM("Ip6InAddrErrors", IPSTATS_MIB_INADDRERRORS), SNMP_MIB_ITEM("Ip6InUnknownProtos", IPSTATS_MIB_INUNKNOWNPROTOS), SNMP_MIB_ITEM("Ip6InTruncatedPkts", IPSTATS_MIB_INTRUNCATEDPKTS), SNMP_MIB_ITEM("Ip6InDiscards", IPSTATS_MIB_INDISCARDS), SNMP_MIB_ITEM("Ip6InDelivers", IPSTATS_MIB_INDELIVERS), SNMP_MIB_ITEM("Ip6OutForwDatagrams", IPSTATS_MIB_OUTFORWDATAGRAMS), SNMP_MIB_ITEM("Ip6OutRequests", IPSTATS_MIB_OUTPKTS), SNMP_MIB_ITEM("Ip6OutDiscards", IPSTATS_MIB_OUTDISCARDS), SNMP_MIB_ITEM("Ip6OutNoRoutes", IPSTATS_MIB_OUTNOROUTES), SNMP_MIB_ITEM("Ip6ReasmTimeout", IPSTATS_MIB_REASMTIMEOUT), SNMP_MIB_ITEM("Ip6ReasmReqds", IPSTATS_MIB_REASMREQDS), SNMP_MIB_ITEM("Ip6ReasmOKs", IPSTATS_MIB_REASMOKS), SNMP_MIB_ITEM("Ip6ReasmFails", IPSTATS_MIB_REASMFAILS), SNMP_MIB_ITEM("Ip6FragOKs", IPSTATS_MIB_FRAGOKS), SNMP_MIB_ITEM("Ip6FragFails", IPSTATS_MIB_FRAGFAILS), SNMP_MIB_ITEM("Ip6FragCreates", IPSTATS_MIB_FRAGCREATES), SNMP_MIB_ITEM("Ip6InMcastPkts", IPSTATS_MIB_INMCASTPKTS), SNMP_MIB_ITEM("Ip6OutMcastPkts", IPSTATS_MIB_OUTMCASTPKTS), SNMP_MIB_ITEM("Ip6InOctets", IPSTATS_MIB_INOCTETS), SNMP_MIB_ITEM("Ip6OutOctets", IPSTATS_MIB_OUTOCTETS), SNMP_MIB_ITEM("Ip6InMcastOctets", IPSTATS_MIB_INMCASTOCTETS), SNMP_MIB_ITEM("Ip6OutMcastOctets", IPSTATS_MIB_OUTMCASTOCTETS), SNMP_MIB_ITEM("Ip6InBcastOctets", IPSTATS_MIB_INBCASTOCTETS), SNMP_MIB_ITEM("Ip6OutBcastOctets", IPSTATS_MIB_OUTBCASTOCTETS), /* IPSTATS_MIB_CSUMERRORS is not relevant in IPv6 (no checksum) */ SNMP_MIB_ITEM("Ip6InNoECTPkts", IPSTATS_MIB_NOECTPKTS), SNMP_MIB_ITEM("Ip6InECT1Pkts", IPSTATS_MIB_ECT1PKTS), SNMP_MIB_ITEM("Ip6InECT0Pkts", IPSTATS_MIB_ECT0PKTS), SNMP_MIB_ITEM("Ip6InCEPkts", IPSTATS_MIB_CEPKTS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp6_icmp6_list[] = { /* icmpv6 mib according to RFC 2466 */ SNMP_MIB_ITEM("Icmp6InMsgs", ICMP6_MIB_INMSGS), SNMP_MIB_ITEM("Icmp6InErrors", ICMP6_MIB_INERRORS), SNMP_MIB_ITEM("Icmp6OutMsgs", ICMP6_MIB_OUTMSGS), SNMP_MIB_ITEM("Icmp6OutErrors", ICMP6_MIB_OUTERRORS), SNMP_MIB_ITEM("Icmp6InCsumErrors", ICMP6_MIB_CSUMERRORS), SNMP_MIB_ITEM("Icmp6OutRateLimitHost", ICMP6_MIB_RATELIMITHOST), SNMP_MIB_SENTINEL }; /* RFC 4293 v6 ICMPMsgStatsTable; named items for RFC 2466 compatibility */ static const char *const icmp6type2name[256] = { [ICMPV6_DEST_UNREACH] = "DestUnreachs", [ICMPV6_PKT_TOOBIG] = "PktTooBigs", [ICMPV6_TIME_EXCEED] = "TimeExcds", [ICMPV6_PARAMPROB] = "ParmProblems", [ICMPV6_ECHO_REQUEST] = "Echos", [ICMPV6_ECHO_REPLY] = "EchoReplies", [ICMPV6_MGM_QUERY] = "GroupMembQueries", [ICMPV6_MGM_REPORT] = "GroupMembResponses", [ICMPV6_MGM_REDUCTION] = "GroupMembReductions", [ICMPV6_MLD2_REPORT] = "MLDv2Reports", [NDISC_ROUTER_ADVERTISEMENT] = "RouterAdvertisements", [NDISC_ROUTER_SOLICITATION] = "RouterSolicits", [NDISC_NEIGHBOUR_ADVERTISEMENT] = "NeighborAdvertisements", [NDISC_NEIGHBOUR_SOLICITATION] = "NeighborSolicits", [NDISC_REDIRECT] = "Redirects", }; static const struct snmp_mib snmp6_udp6_list[] = { SNMP_MIB_ITEM("Udp6InDatagrams", UDP_MIB_INDATAGRAMS), SNMP_MIB_ITEM("Udp6NoPorts", UDP_MIB_NOPORTS), SNMP_MIB_ITEM("Udp6InErrors", UDP_MIB_INERRORS), SNMP_MIB_ITEM("Udp6OutDatagrams", UDP_MIB_OUTDATAGRAMS), SNMP_MIB_ITEM("Udp6RcvbufErrors", UDP_MIB_RCVBUFERRORS), SNMP_MIB_ITEM("Udp6SndbufErrors", UDP_MIB_SNDBUFERRORS), SNMP_MIB_ITEM("Udp6InCsumErrors", UDP_MIB_CSUMERRORS), SNMP_MIB_ITEM("Udp6IgnoredMulti", UDP_MIB_IGNOREDMULTI), SNMP_MIB_ITEM("Udp6MemErrors", UDP_MIB_MEMERRORS), SNMP_MIB_SENTINEL }; static const struct snmp_mib snmp6_udplite6_list[] = { SNMP_MIB_ITEM("UdpLite6InDatagrams", UDP_MIB_INDATAGRAMS), SNMP_MIB_ITEM("UdpLite6NoPorts", UDP_MIB_NOPORTS), SNMP_MIB_ITEM("UdpLite6InErrors", UDP_MIB_INERRORS), SNMP_MIB_ITEM("UdpLite6OutDatagrams", UDP_MIB_OUTDATAGRAMS), SNMP_MIB_ITEM("UdpLite6RcvbufErrors", UDP_MIB_RCVBUFERRORS), SNMP_MIB_ITEM("UdpLite6SndbufErrors", UDP_MIB_SNDBUFERRORS), SNMP_MIB_ITEM("UdpLite6InCsumErrors", UDP_MIB_CSUMERRORS), SNMP_MIB_ITEM("UdpLite6MemErrors", UDP_MIB_MEMERRORS), SNMP_MIB_SENTINEL }; static void snmp6_seq_show_icmpv6msg(struct seq_file *seq, atomic_long_t *smib) { char name[32]; int i; /* print by name -- deprecated items */ for (i = 0; i < ICMP6MSG_MIB_MAX; i++) { int icmptype; const char *p; icmptype = i & 0xff; p = icmp6type2name[icmptype]; if (!p) /* don't print un-named types here */ continue; snprintf(name, sizeof(name), "Icmp6%s%s", i & 0x100 ? "Out" : "In", p); seq_printf(seq, "%-32s\t%lu\n", name, atomic_long_read(smib + i)); } /* print by number (nonzero only) - ICMPMsgStat format */ for (i = 0; i < ICMP6MSG_MIB_MAX; i++) { unsigned long val; val = atomic_long_read(smib + i); if (!val) continue; snprintf(name, sizeof(name), "Icmp6%sType%u", i & 0x100 ? "Out" : "In", i & 0xff); seq_printf(seq, "%-32s\t%lu\n", name, val); } } /* can be called either with percpu mib (pcpumib != NULL), * or shared one (smib != NULL) */ static void snmp6_seq_show_item(struct seq_file *seq, void __percpu *pcpumib, atomic_long_t *smib, const struct snmp_mib *itemlist) { unsigned long buff[SNMP_MIB_MAX]; int i; if (pcpumib) { memset(buff, 0, sizeof(unsigned long) * SNMP_MIB_MAX); snmp_get_cpu_field_batch(buff, itemlist, pcpumib); for (i = 0; itemlist[i].name; i++) seq_printf(seq, "%-32s\t%lu\n", itemlist[i].name, buff[i]); } else { for (i = 0; itemlist[i].name; i++) seq_printf(seq, "%-32s\t%lu\n", itemlist[i].name, atomic_long_read(smib + itemlist[i].entry)); } } static void snmp6_seq_show_item64(struct seq_file *seq, void __percpu *mib, const struct snmp_mib *itemlist, size_t syncpoff) { u64 buff64[SNMP_MIB_MAX]; int i; memset(buff64, 0, sizeof(u64) * SNMP_MIB_MAX); snmp_get_cpu_field64_batch(buff64, itemlist, mib, syncpoff); for (i = 0; itemlist[i].name; i++) seq_printf(seq, "%-32s\t%llu\n", itemlist[i].name, buff64[i]); } static int snmp6_seq_show(struct seq_file *seq, void *v) { struct net *net = (struct net *)seq->private; snmp6_seq_show_item64(seq, net->mib.ipv6_statistics, snmp6_ipstats_list, offsetof(struct ipstats_mib, syncp)); snmp6_seq_show_item(seq, net->mib.icmpv6_statistics, NULL, snmp6_icmp6_list); snmp6_seq_show_icmpv6msg(seq, net->mib.icmpv6msg_statistics->mibs); snmp6_seq_show_item(seq, net->mib.udp_stats_in6, NULL, snmp6_udp6_list); snmp6_seq_show_item(seq, net->mib.udplite_stats_in6, NULL, snmp6_udplite6_list); return 0; } static int snmp6_dev_seq_show(struct seq_file *seq, void *v) { struct inet6_dev *idev = (struct inet6_dev *)seq->private; seq_printf(seq, "%-32s\t%u\n", "ifIndex", idev->dev->ifindex); snmp6_seq_show_item64(seq, idev->stats.ipv6, snmp6_ipstats_list, offsetof(struct ipstats_mib, syncp)); snmp6_seq_show_item(seq, NULL, idev->stats.icmpv6dev->mibs, snmp6_icmp6_list); snmp6_seq_show_icmpv6msg(seq, idev->stats.icmpv6msgdev->mibs); return 0; } int snmp6_register_dev(struct inet6_dev *idev) { struct proc_dir_entry *p; struct net *net; if (!idev || !idev->dev) return -EINVAL; net = dev_net(idev->dev); if (!net->mib.proc_net_devsnmp6) return -ENOENT; p = proc_create_single_data(idev->dev->name, 0444, net->mib.proc_net_devsnmp6, snmp6_dev_seq_show, idev); if (!p) return -ENOMEM; idev->stats.proc_dir_entry = p; return 0; } int snmp6_unregister_dev(struct inet6_dev *idev) { struct net *net = dev_net(idev->dev); if (!net->mib.proc_net_devsnmp6) return -ENOENT; if (!idev->stats.proc_dir_entry) return -EINVAL; proc_remove(idev->stats.proc_dir_entry); idev->stats.proc_dir_entry = NULL; return 0; } static int __net_init ipv6_proc_init_net(struct net *net) { if (!proc_create_net_single("sockstat6", 0444, net->proc_net, sockstat6_seq_show, NULL)) return -ENOMEM; if (!proc_create_net_single("snmp6", 0444, net->proc_net, snmp6_seq_show, NULL)) goto proc_snmp6_fail; net->mib.proc_net_devsnmp6 = proc_mkdir("dev_snmp6", net->proc_net); if (!net->mib.proc_net_devsnmp6) goto proc_dev_snmp6_fail; return 0; proc_dev_snmp6_fail: remove_proc_entry("snmp6", net->proc_net); proc_snmp6_fail: remove_proc_entry("sockstat6", net->proc_net); return -ENOMEM; } static void __net_exit ipv6_proc_exit_net(struct net *net) { remove_proc_entry("sockstat6", net->proc_net); remove_proc_entry("dev_snmp6", net->proc_net); remove_proc_entry("snmp6", net->proc_net); } static struct pernet_operations ipv6_proc_ops = { .init = ipv6_proc_init_net, .exit = ipv6_proc_exit_net, }; int __init ipv6_misc_proc_init(void) { return register_pernet_subsys(&ipv6_proc_ops); } void ipv6_misc_proc_exit(void) { unregister_pernet_subsys(&ipv6_proc_ops); }
linux-master
net/ipv6/proc.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ip6_flowlabel.c IPv6 flowlabel manager. * * Authors: Alexey Kuznetsov, <[email protected]> */ #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/pid_namespace.h> #include <linux/jump_label_ratelimit.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/rawv6.h> #include <net/transp_v6.h> #include <linux/uaccess.h> #define FL_MIN_LINGER 6 /* Minimal linger. It is set to 6sec specified in old IPv6 RFC. Well, it was reasonable value. */ #define FL_MAX_LINGER 150 /* Maximal linger timeout */ /* FL hash table */ #define FL_MAX_PER_SOCK 32 #define FL_MAX_SIZE 4096 #define FL_HASH_MASK 255 #define FL_HASH(l) (ntohl(l)&FL_HASH_MASK) static atomic_t fl_size = ATOMIC_INIT(0); static struct ip6_flowlabel __rcu *fl_ht[FL_HASH_MASK+1]; static void ip6_fl_gc(struct timer_list *unused); static DEFINE_TIMER(ip6_fl_gc_timer, ip6_fl_gc); /* FL hash table lock: it protects only of GC */ static DEFINE_SPINLOCK(ip6_fl_lock); /* Big socket sock */ static DEFINE_SPINLOCK(ip6_sk_fl_lock); DEFINE_STATIC_KEY_DEFERRED_FALSE(ipv6_flowlabel_exclusive, HZ); EXPORT_SYMBOL(ipv6_flowlabel_exclusive); #define for_each_fl_rcu(hash, fl) \ for (fl = rcu_dereference(fl_ht[(hash)]); \ fl != NULL; \ fl = rcu_dereference(fl->next)) #define for_each_fl_continue_rcu(fl) \ for (fl = rcu_dereference(fl->next); \ fl != NULL; \ fl = rcu_dereference(fl->next)) #define for_each_sk_fl_rcu(np, sfl) \ for (sfl = rcu_dereference(np->ipv6_fl_list); \ sfl != NULL; \ sfl = rcu_dereference(sfl->next)) static inline struct ip6_flowlabel *__fl_lookup(struct net *net, __be32 label) { struct ip6_flowlabel *fl; for_each_fl_rcu(FL_HASH(label), fl) { if (fl->label == label && net_eq(fl->fl_net, net)) return fl; } return NULL; } static struct ip6_flowlabel *fl_lookup(struct net *net, __be32 label) { struct ip6_flowlabel *fl; rcu_read_lock(); fl = __fl_lookup(net, label); if (fl && !atomic_inc_not_zero(&fl->users)) fl = NULL; rcu_read_unlock(); return fl; } static bool fl_shared_exclusive(struct ip6_flowlabel *fl) { return fl->share == IPV6_FL_S_EXCL || fl->share == IPV6_FL_S_PROCESS || fl->share == IPV6_FL_S_USER; } static void fl_free_rcu(struct rcu_head *head) { struct ip6_flowlabel *fl = container_of(head, struct ip6_flowlabel, rcu); if (fl->share == IPV6_FL_S_PROCESS) put_pid(fl->owner.pid); kfree(fl->opt); kfree(fl); } static void fl_free(struct ip6_flowlabel *fl) { if (!fl) return; if (fl_shared_exclusive(fl) || fl->opt) static_branch_slow_dec_deferred(&ipv6_flowlabel_exclusive); call_rcu(&fl->rcu, fl_free_rcu); } static void fl_release(struct ip6_flowlabel *fl) { spin_lock_bh(&ip6_fl_lock); fl->lastuse = jiffies; if (atomic_dec_and_test(&fl->users)) { unsigned long ttd = fl->lastuse + fl->linger; if (time_after(ttd, fl->expires)) fl->expires = ttd; ttd = fl->expires; if (fl->opt && fl->share == IPV6_FL_S_EXCL) { struct ipv6_txoptions *opt = fl->opt; fl->opt = NULL; kfree(opt); } if (!timer_pending(&ip6_fl_gc_timer) || time_after(ip6_fl_gc_timer.expires, ttd)) mod_timer(&ip6_fl_gc_timer, ttd); } spin_unlock_bh(&ip6_fl_lock); } static void ip6_fl_gc(struct timer_list *unused) { int i; unsigned long now = jiffies; unsigned long sched = 0; spin_lock(&ip6_fl_lock); for (i = 0; i <= FL_HASH_MASK; i++) { struct ip6_flowlabel *fl; struct ip6_flowlabel __rcu **flp; flp = &fl_ht[i]; while ((fl = rcu_dereference_protected(*flp, lockdep_is_held(&ip6_fl_lock))) != NULL) { if (atomic_read(&fl->users) == 0) { unsigned long ttd = fl->lastuse + fl->linger; if (time_after(ttd, fl->expires)) fl->expires = ttd; ttd = fl->expires; if (time_after_eq(now, ttd)) { *flp = fl->next; fl_free(fl); atomic_dec(&fl_size); continue; } if (!sched || time_before(ttd, sched)) sched = ttd; } flp = &fl->next; } } if (!sched && atomic_read(&fl_size)) sched = now + FL_MAX_LINGER; if (sched) { mod_timer(&ip6_fl_gc_timer, sched); } spin_unlock(&ip6_fl_lock); } static void __net_exit ip6_fl_purge(struct net *net) { int i; spin_lock_bh(&ip6_fl_lock); for (i = 0; i <= FL_HASH_MASK; i++) { struct ip6_flowlabel *fl; struct ip6_flowlabel __rcu **flp; flp = &fl_ht[i]; while ((fl = rcu_dereference_protected(*flp, lockdep_is_held(&ip6_fl_lock))) != NULL) { if (net_eq(fl->fl_net, net) && atomic_read(&fl->users) == 0) { *flp = fl->next; fl_free(fl); atomic_dec(&fl_size); continue; } flp = &fl->next; } } spin_unlock_bh(&ip6_fl_lock); } static struct ip6_flowlabel *fl_intern(struct net *net, struct ip6_flowlabel *fl, __be32 label) { struct ip6_flowlabel *lfl; fl->label = label & IPV6_FLOWLABEL_MASK; rcu_read_lock(); spin_lock_bh(&ip6_fl_lock); if (label == 0) { for (;;) { fl->label = htonl(get_random_u32())&IPV6_FLOWLABEL_MASK; if (fl->label) { lfl = __fl_lookup(net, fl->label); if (!lfl) break; } } } else { /* * we dropper the ip6_fl_lock, so this entry could reappear * and we need to recheck with it. * * OTOH no need to search the active socket first, like it is * done in ipv6_flowlabel_opt - sock is locked, so new entry * with the same label can only appear on another sock */ lfl = __fl_lookup(net, fl->label); if (lfl) { atomic_inc(&lfl->users); spin_unlock_bh(&ip6_fl_lock); rcu_read_unlock(); return lfl; } } fl->lastuse = jiffies; fl->next = fl_ht[FL_HASH(fl->label)]; rcu_assign_pointer(fl_ht[FL_HASH(fl->label)], fl); atomic_inc(&fl_size); spin_unlock_bh(&ip6_fl_lock); rcu_read_unlock(); return NULL; } /* Socket flowlabel lists */ struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label) { struct ipv6_fl_socklist *sfl; struct ipv6_pinfo *np = inet6_sk(sk); label &= IPV6_FLOWLABEL_MASK; rcu_read_lock(); for_each_sk_fl_rcu(np, sfl) { struct ip6_flowlabel *fl = sfl->fl; if (fl->label == label && atomic_inc_not_zero(&fl->users)) { fl->lastuse = jiffies; rcu_read_unlock(); return fl; } } rcu_read_unlock(); return NULL; } EXPORT_SYMBOL_GPL(__fl6_sock_lookup); void fl6_free_socklist(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_fl_socklist *sfl; if (!rcu_access_pointer(np->ipv6_fl_list)) return; spin_lock_bh(&ip6_sk_fl_lock); while ((sfl = rcu_dereference_protected(np->ipv6_fl_list, lockdep_is_held(&ip6_sk_fl_lock))) != NULL) { np->ipv6_fl_list = sfl->next; spin_unlock_bh(&ip6_sk_fl_lock); fl_release(sfl->fl); kfree_rcu(sfl, rcu); spin_lock_bh(&ip6_sk_fl_lock); } spin_unlock_bh(&ip6_sk_fl_lock); } /* Service routines */ /* It is the only difficult place. flowlabel enforces equal headers before and including routing header, however user may supply options following rthdr. */ struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space, struct ip6_flowlabel *fl, struct ipv6_txoptions *fopt) { struct ipv6_txoptions *fl_opt = fl->opt; if (!fopt || fopt->opt_flen == 0) return fl_opt; if (fl_opt) { opt_space->hopopt = fl_opt->hopopt; opt_space->dst0opt = fl_opt->dst0opt; opt_space->srcrt = fl_opt->srcrt; opt_space->opt_nflen = fl_opt->opt_nflen; } else { if (fopt->opt_nflen == 0) return fopt; opt_space->hopopt = NULL; opt_space->dst0opt = NULL; opt_space->srcrt = NULL; opt_space->opt_nflen = 0; } opt_space->dst1opt = fopt->dst1opt; opt_space->opt_flen = fopt->opt_flen; opt_space->tot_len = fopt->tot_len; return opt_space; } EXPORT_SYMBOL_GPL(fl6_merge_options); static unsigned long check_linger(unsigned long ttl) { if (ttl < FL_MIN_LINGER) return FL_MIN_LINGER*HZ; if (ttl > FL_MAX_LINGER && !capable(CAP_NET_ADMIN)) return 0; return ttl*HZ; } static int fl6_renew(struct ip6_flowlabel *fl, unsigned long linger, unsigned long expires) { linger = check_linger(linger); if (!linger) return -EPERM; expires = check_linger(expires); if (!expires) return -EPERM; spin_lock_bh(&ip6_fl_lock); fl->lastuse = jiffies; if (time_before(fl->linger, linger)) fl->linger = linger; if (time_before(expires, fl->linger)) expires = fl->linger; if (time_before(fl->expires, fl->lastuse + expires)) fl->expires = fl->lastuse + expires; spin_unlock_bh(&ip6_fl_lock); return 0; } static struct ip6_flowlabel * fl_create(struct net *net, struct sock *sk, struct in6_flowlabel_req *freq, sockptr_t optval, int optlen, int *err_p) { struct ip6_flowlabel *fl = NULL; int olen; int addr_type; int err; olen = optlen - CMSG_ALIGN(sizeof(*freq)); err = -EINVAL; if (olen > 64 * 1024) goto done; err = -ENOMEM; fl = kzalloc(sizeof(*fl), GFP_KERNEL); if (!fl) goto done; if (olen > 0) { struct msghdr msg; struct flowi6 flowi6; struct ipcm6_cookie ipc6; err = -ENOMEM; fl->opt = kmalloc(sizeof(*fl->opt) + olen, GFP_KERNEL); if (!fl->opt) goto done; memset(fl->opt, 0, sizeof(*fl->opt)); fl->opt->tot_len = sizeof(*fl->opt) + olen; err = -EFAULT; if (copy_from_sockptr_offset(fl->opt + 1, optval, CMSG_ALIGN(sizeof(*freq)), olen)) goto done; msg.msg_controllen = olen; msg.msg_control = (void *)(fl->opt+1); memset(&flowi6, 0, sizeof(flowi6)); ipc6.opt = fl->opt; err = ip6_datagram_send_ctl(net, sk, &msg, &flowi6, &ipc6); if (err) goto done; err = -EINVAL; if (fl->opt->opt_flen) goto done; if (fl->opt->opt_nflen == 0) { kfree(fl->opt); fl->opt = NULL; } } fl->fl_net = net; fl->expires = jiffies; err = fl6_renew(fl, freq->flr_linger, freq->flr_expires); if (err) goto done; fl->share = freq->flr_share; addr_type = ipv6_addr_type(&freq->flr_dst); if ((addr_type & IPV6_ADDR_MAPPED) || addr_type == IPV6_ADDR_ANY) { err = -EINVAL; goto done; } fl->dst = freq->flr_dst; atomic_set(&fl->users, 1); switch (fl->share) { case IPV6_FL_S_EXCL: case IPV6_FL_S_ANY: break; case IPV6_FL_S_PROCESS: fl->owner.pid = get_task_pid(current, PIDTYPE_PID); break; case IPV6_FL_S_USER: fl->owner.uid = current_euid(); break; default: err = -EINVAL; goto done; } if (fl_shared_exclusive(fl) || fl->opt) { WRITE_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl, 1); static_branch_deferred_inc(&ipv6_flowlabel_exclusive); } return fl; done: if (fl) { kfree(fl->opt); kfree(fl); } *err_p = err; return NULL; } static int mem_check(struct sock *sk) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_fl_socklist *sfl; int room = FL_MAX_SIZE - atomic_read(&fl_size); int count = 0; if (room > FL_MAX_SIZE - FL_MAX_PER_SOCK) return 0; rcu_read_lock(); for_each_sk_fl_rcu(np, sfl) count++; rcu_read_unlock(); if (room <= 0 || ((count >= FL_MAX_PER_SOCK || (count > 0 && room < FL_MAX_SIZE/2) || room < FL_MAX_SIZE/4) && !capable(CAP_NET_ADMIN))) return -ENOBUFS; return 0; } static inline void fl_link(struct ipv6_pinfo *np, struct ipv6_fl_socklist *sfl, struct ip6_flowlabel *fl) { spin_lock_bh(&ip6_sk_fl_lock); sfl->fl = fl; sfl->next = np->ipv6_fl_list; rcu_assign_pointer(np->ipv6_fl_list, sfl); spin_unlock_bh(&ip6_sk_fl_lock); } int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq, int flags) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_fl_socklist *sfl; if (flags & IPV6_FL_F_REMOTE) { freq->flr_label = np->rcv_flowinfo & IPV6_FLOWLABEL_MASK; return 0; } if (np->repflow) { freq->flr_label = np->flow_label; return 0; } rcu_read_lock(); for_each_sk_fl_rcu(np, sfl) { if (sfl->fl->label == (np->flow_label & IPV6_FLOWLABEL_MASK)) { spin_lock_bh(&ip6_fl_lock); freq->flr_label = sfl->fl->label; freq->flr_dst = sfl->fl->dst; freq->flr_share = sfl->fl->share; freq->flr_expires = (sfl->fl->expires - jiffies) / HZ; freq->flr_linger = sfl->fl->linger / HZ; spin_unlock_bh(&ip6_fl_lock); rcu_read_unlock(); return 0; } } rcu_read_unlock(); return -ENOENT; } #define socklist_dereference(__sflp) \ rcu_dereference_protected(__sflp, lockdep_is_held(&ip6_sk_fl_lock)) static int ipv6_flowlabel_put(struct sock *sk, struct in6_flowlabel_req *freq) { struct ipv6_pinfo *np = inet6_sk(sk); struct ipv6_fl_socklist __rcu **sflp; struct ipv6_fl_socklist *sfl; if (freq->flr_flags & IPV6_FL_F_REFLECT) { if (sk->sk_protocol != IPPROTO_TCP) return -ENOPROTOOPT; if (!np->repflow) return -ESRCH; np->flow_label = 0; np->repflow = 0; return 0; } spin_lock_bh(&ip6_sk_fl_lock); for (sflp = &np->ipv6_fl_list; (sfl = socklist_dereference(*sflp)) != NULL; sflp = &sfl->next) { if (sfl->fl->label == freq->flr_label) goto found; } spin_unlock_bh(&ip6_sk_fl_lock); return -ESRCH; found: if (freq->flr_label == (np->flow_label & IPV6_FLOWLABEL_MASK)) np->flow_label &= ~IPV6_FLOWLABEL_MASK; *sflp = sfl->next; spin_unlock_bh(&ip6_sk_fl_lock); fl_release(sfl->fl); kfree_rcu(sfl, rcu); return 0; } static int ipv6_flowlabel_renew(struct sock *sk, struct in6_flowlabel_req *freq) { struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); struct ipv6_fl_socklist *sfl; int err; rcu_read_lock(); for_each_sk_fl_rcu(np, sfl) { if (sfl->fl->label == freq->flr_label) { err = fl6_renew(sfl->fl, freq->flr_linger, freq->flr_expires); rcu_read_unlock(); return err; } } rcu_read_unlock(); if (freq->flr_share == IPV6_FL_S_NONE && ns_capable(net->user_ns, CAP_NET_ADMIN)) { struct ip6_flowlabel *fl = fl_lookup(net, freq->flr_label); if (fl) { err = fl6_renew(fl, freq->flr_linger, freq->flr_expires); fl_release(fl); return err; } } return -ESRCH; } static int ipv6_flowlabel_get(struct sock *sk, struct in6_flowlabel_req *freq, sockptr_t optval, int optlen) { struct ipv6_fl_socklist *sfl, *sfl1 = NULL; struct ip6_flowlabel *fl, *fl1 = NULL; struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); int err; if (freq->flr_flags & IPV6_FL_F_REFLECT) { if (net->ipv6.sysctl.flowlabel_consistency) { net_info_ratelimited("Can not set IPV6_FL_F_REFLECT if flowlabel_consistency sysctl is enable\n"); return -EPERM; } if (sk->sk_protocol != IPPROTO_TCP) return -ENOPROTOOPT; np->repflow = 1; return 0; } if (freq->flr_label & ~IPV6_FLOWLABEL_MASK) return -EINVAL; if (net->ipv6.sysctl.flowlabel_state_ranges && (freq->flr_label & IPV6_FLOWLABEL_STATELESS_FLAG)) return -ERANGE; fl = fl_create(net, sk, freq, optval, optlen, &err); if (!fl) return err; sfl1 = kmalloc(sizeof(*sfl1), GFP_KERNEL); if (freq->flr_label) { err = -EEXIST; rcu_read_lock(); for_each_sk_fl_rcu(np, sfl) { if (sfl->fl->label == freq->flr_label) { if (freq->flr_flags & IPV6_FL_F_EXCL) { rcu_read_unlock(); goto done; } fl1 = sfl->fl; if (!atomic_inc_not_zero(&fl1->users)) fl1 = NULL; break; } } rcu_read_unlock(); if (!fl1) fl1 = fl_lookup(net, freq->flr_label); if (fl1) { recheck: err = -EEXIST; if (freq->flr_flags&IPV6_FL_F_EXCL) goto release; err = -EPERM; if (fl1->share == IPV6_FL_S_EXCL || fl1->share != fl->share || ((fl1->share == IPV6_FL_S_PROCESS) && (fl1->owner.pid != fl->owner.pid)) || ((fl1->share == IPV6_FL_S_USER) && !uid_eq(fl1->owner.uid, fl->owner.uid))) goto release; err = -ENOMEM; if (!sfl1) goto release; if (fl->linger > fl1->linger) fl1->linger = fl->linger; if ((long)(fl->expires - fl1->expires) > 0) fl1->expires = fl->expires; fl_link(np, sfl1, fl1); fl_free(fl); return 0; release: fl_release(fl1); goto done; } } err = -ENOENT; if (!(freq->flr_flags & IPV6_FL_F_CREATE)) goto done; err = -ENOMEM; if (!sfl1) goto done; err = mem_check(sk); if (err != 0) goto done; fl1 = fl_intern(net, fl, freq->flr_label); if (fl1) goto recheck; if (!freq->flr_label) { size_t offset = offsetof(struct in6_flowlabel_req, flr_label); if (copy_to_sockptr_offset(optval, offset, &fl->label, sizeof(fl->label))) { /* Intentionally ignore fault. */ } } fl_link(np, sfl1, fl); return 0; done: fl_free(fl); kfree(sfl1); return err; } int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen) { struct in6_flowlabel_req freq; if (optlen < sizeof(freq)) return -EINVAL; if (copy_from_sockptr(&freq, optval, sizeof(freq))) return -EFAULT; switch (freq.flr_action) { case IPV6_FL_A_PUT: return ipv6_flowlabel_put(sk, &freq); case IPV6_FL_A_RENEW: return ipv6_flowlabel_renew(sk, &freq); case IPV6_FL_A_GET: return ipv6_flowlabel_get(sk, &freq, optval, optlen); default: return -EINVAL; } } #ifdef CONFIG_PROC_FS struct ip6fl_iter_state { struct seq_net_private p; struct pid_namespace *pid_ns; int bucket; }; #define ip6fl_seq_private(seq) ((struct ip6fl_iter_state *)(seq)->private) static struct ip6_flowlabel *ip6fl_get_first(struct seq_file *seq) { struct ip6_flowlabel *fl = NULL; struct ip6fl_iter_state *state = ip6fl_seq_private(seq); struct net *net = seq_file_net(seq); for (state->bucket = 0; state->bucket <= FL_HASH_MASK; ++state->bucket) { for_each_fl_rcu(state->bucket, fl) { if (net_eq(fl->fl_net, net)) goto out; } } fl = NULL; out: return fl; } static struct ip6_flowlabel *ip6fl_get_next(struct seq_file *seq, struct ip6_flowlabel *fl) { struct ip6fl_iter_state *state = ip6fl_seq_private(seq); struct net *net = seq_file_net(seq); for_each_fl_continue_rcu(fl) { if (net_eq(fl->fl_net, net)) goto out; } try_again: if (++state->bucket <= FL_HASH_MASK) { for_each_fl_rcu(state->bucket, fl) { if (net_eq(fl->fl_net, net)) goto out; } goto try_again; } fl = NULL; out: return fl; } static struct ip6_flowlabel *ip6fl_get_idx(struct seq_file *seq, loff_t pos) { struct ip6_flowlabel *fl = ip6fl_get_first(seq); if (fl) while (pos && (fl = ip6fl_get_next(seq, fl)) != NULL) --pos; return pos ? NULL : fl; } static void *ip6fl_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { struct ip6fl_iter_state *state = ip6fl_seq_private(seq); state->pid_ns = proc_pid_ns(file_inode(seq->file)->i_sb); rcu_read_lock(); return *pos ? ip6fl_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *ip6fl_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct ip6_flowlabel *fl; if (v == SEQ_START_TOKEN) fl = ip6fl_get_first(seq); else fl = ip6fl_get_next(seq, v); ++*pos; return fl; } static void ip6fl_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int ip6fl_seq_show(struct seq_file *seq, void *v) { struct ip6fl_iter_state *state = ip6fl_seq_private(seq); if (v == SEQ_START_TOKEN) { seq_puts(seq, "Label S Owner Users Linger Expires Dst Opt\n"); } else { struct ip6_flowlabel *fl = v; seq_printf(seq, "%05X %-1d %-6d %-6d %-6ld %-8ld %pi6 %-4d\n", (unsigned int)ntohl(fl->label), fl->share, ((fl->share == IPV6_FL_S_PROCESS) ? pid_nr_ns(fl->owner.pid, state->pid_ns) : ((fl->share == IPV6_FL_S_USER) ? from_kuid_munged(seq_user_ns(seq), fl->owner.uid) : 0)), atomic_read(&fl->users), fl->linger/HZ, (long)(fl->expires - jiffies)/HZ, &fl->dst, fl->opt ? fl->opt->opt_nflen : 0); } return 0; } static const struct seq_operations ip6fl_seq_ops = { .start = ip6fl_seq_start, .next = ip6fl_seq_next, .stop = ip6fl_seq_stop, .show = ip6fl_seq_show, }; static int __net_init ip6_flowlabel_proc_init(struct net *net) { if (!proc_create_net("ip6_flowlabel", 0444, net->proc_net, &ip6fl_seq_ops, sizeof(struct ip6fl_iter_state))) return -ENOMEM; return 0; } static void __net_exit ip6_flowlabel_proc_fini(struct net *net) { remove_proc_entry("ip6_flowlabel", net->proc_net); } #else static inline int ip6_flowlabel_proc_init(struct net *net) { return 0; } static inline void ip6_flowlabel_proc_fini(struct net *net) { } #endif static void __net_exit ip6_flowlabel_net_exit(struct net *net) { ip6_fl_purge(net); ip6_flowlabel_proc_fini(net); } static struct pernet_operations ip6_flowlabel_net_ops = { .init = ip6_flowlabel_proc_init, .exit = ip6_flowlabel_net_exit, }; int ip6_flowlabel_init(void) { return register_pernet_subsys(&ip6_flowlabel_net_ops); } void ip6_flowlabel_cleanup(void) { static_key_deferred_flush(&ipv6_flowlabel_exclusive); del_timer(&ip6_fl_gc_timer); unregister_pernet_subsys(&ip6_flowlabel_net_ops); }
linux-master
net/ipv6/ip6_flowlabel.c
// SPDX-License-Identifier: GPL-2.0+ /* * IPv6 IOAM Lightweight Tunnel implementation * * Author: * Justin Iurman <[email protected]> */ #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/ioam6.h> #include <linux/ioam6_iptunnel.h> #include <net/dst.h> #include <net/sock.h> #include <net/lwtunnel.h> #include <net/ioam6.h> #include <net/netlink.h> #include <net/ipv6.h> #include <net/dst_cache.h> #include <net/ip6_route.h> #include <net/addrconf.h> #define IOAM6_MASK_SHORT_FIELDS 0xff100000 #define IOAM6_MASK_WIDE_FIELDS 0xe00000 struct ioam6_lwt_encap { struct ipv6_hopopt_hdr eh; u8 pad[2]; /* 2-octet padding for 4n-alignment */ struct ioam6_hdr ioamh; struct ioam6_trace_hdr traceh; } __packed; struct ioam6_lwt_freq { u32 k; u32 n; }; struct ioam6_lwt { struct dst_cache cache; struct ioam6_lwt_freq freq; atomic_t pkt_cnt; u8 mode; struct in6_addr tundst; struct ioam6_lwt_encap tuninfo; }; static struct netlink_range_validation freq_range = { .min = IOAM6_IPTUNNEL_FREQ_MIN, .max = IOAM6_IPTUNNEL_FREQ_MAX, }; static struct ioam6_lwt *ioam6_lwt_state(struct lwtunnel_state *lwt) { return (struct ioam6_lwt *)lwt->data; } static struct ioam6_lwt_encap *ioam6_lwt_info(struct lwtunnel_state *lwt) { return &ioam6_lwt_state(lwt)->tuninfo; } static struct ioam6_trace_hdr *ioam6_lwt_trace(struct lwtunnel_state *lwt) { return &(ioam6_lwt_state(lwt)->tuninfo.traceh); } static const struct nla_policy ioam6_iptunnel_policy[IOAM6_IPTUNNEL_MAX + 1] = { [IOAM6_IPTUNNEL_FREQ_K] = NLA_POLICY_FULL_RANGE(NLA_U32, &freq_range), [IOAM6_IPTUNNEL_FREQ_N] = NLA_POLICY_FULL_RANGE(NLA_U32, &freq_range), [IOAM6_IPTUNNEL_MODE] = NLA_POLICY_RANGE(NLA_U8, IOAM6_IPTUNNEL_MODE_MIN, IOAM6_IPTUNNEL_MODE_MAX), [IOAM6_IPTUNNEL_DST] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [IOAM6_IPTUNNEL_TRACE] = NLA_POLICY_EXACT_LEN(sizeof(struct ioam6_trace_hdr)), }; static bool ioam6_validate_trace_hdr(struct ioam6_trace_hdr *trace) { u32 fields; if (!trace->type_be32 || !trace->remlen || trace->remlen > IOAM6_TRACE_DATA_SIZE_MAX / 4 || trace->type.bit12 | trace->type.bit13 | trace->type.bit14 | trace->type.bit15 | trace->type.bit16 | trace->type.bit17 | trace->type.bit18 | trace->type.bit19 | trace->type.bit20 | trace->type.bit21) return false; trace->nodelen = 0; fields = be32_to_cpu(trace->type_be32); trace->nodelen += hweight32(fields & IOAM6_MASK_SHORT_FIELDS) * (sizeof(__be32) / 4); trace->nodelen += hweight32(fields & IOAM6_MASK_WIDE_FIELDS) * (sizeof(__be64) / 4); return true; } static int ioam6_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct nlattr *tb[IOAM6_IPTUNNEL_MAX + 1]; struct ioam6_lwt_encap *tuninfo; struct ioam6_trace_hdr *trace; struct lwtunnel_state *lwt; struct ioam6_lwt *ilwt; int len_aligned, err; u32 freq_k, freq_n; u8 mode; if (family != AF_INET6) return -EINVAL; err = nla_parse_nested(tb, IOAM6_IPTUNNEL_MAX, nla, ioam6_iptunnel_policy, extack); if (err < 0) return err; if ((!tb[IOAM6_IPTUNNEL_FREQ_K] && tb[IOAM6_IPTUNNEL_FREQ_N]) || (tb[IOAM6_IPTUNNEL_FREQ_K] && !tb[IOAM6_IPTUNNEL_FREQ_N])) { NL_SET_ERR_MSG(extack, "freq: missing parameter"); return -EINVAL; } else if (!tb[IOAM6_IPTUNNEL_FREQ_K] && !tb[IOAM6_IPTUNNEL_FREQ_N]) { freq_k = IOAM6_IPTUNNEL_FREQ_MIN; freq_n = IOAM6_IPTUNNEL_FREQ_MIN; } else { freq_k = nla_get_u32(tb[IOAM6_IPTUNNEL_FREQ_K]); freq_n = nla_get_u32(tb[IOAM6_IPTUNNEL_FREQ_N]); if (freq_k > freq_n) { NL_SET_ERR_MSG(extack, "freq: k > n is forbidden"); return -EINVAL; } } if (!tb[IOAM6_IPTUNNEL_MODE]) mode = IOAM6_IPTUNNEL_MODE_INLINE; else mode = nla_get_u8(tb[IOAM6_IPTUNNEL_MODE]); if (!tb[IOAM6_IPTUNNEL_DST] && mode != IOAM6_IPTUNNEL_MODE_INLINE) { NL_SET_ERR_MSG(extack, "this mode needs a tunnel destination"); return -EINVAL; } if (!tb[IOAM6_IPTUNNEL_TRACE]) { NL_SET_ERR_MSG(extack, "missing trace"); return -EINVAL; } trace = nla_data(tb[IOAM6_IPTUNNEL_TRACE]); if (!ioam6_validate_trace_hdr(trace)) { NL_SET_ERR_MSG_ATTR(extack, tb[IOAM6_IPTUNNEL_TRACE], "invalid trace validation"); return -EINVAL; } len_aligned = ALIGN(trace->remlen * 4, 8); lwt = lwtunnel_state_alloc(sizeof(*ilwt) + len_aligned); if (!lwt) return -ENOMEM; ilwt = ioam6_lwt_state(lwt); err = dst_cache_init(&ilwt->cache, GFP_ATOMIC); if (err) { kfree(lwt); return err; } atomic_set(&ilwt->pkt_cnt, 0); ilwt->freq.k = freq_k; ilwt->freq.n = freq_n; ilwt->mode = mode; if (tb[IOAM6_IPTUNNEL_DST]) ilwt->tundst = nla_get_in6_addr(tb[IOAM6_IPTUNNEL_DST]); tuninfo = ioam6_lwt_info(lwt); tuninfo->eh.hdrlen = ((sizeof(*tuninfo) + len_aligned) >> 3) - 1; tuninfo->pad[0] = IPV6_TLV_PADN; tuninfo->ioamh.type = IOAM6_TYPE_PREALLOC; tuninfo->ioamh.opt_type = IPV6_TLV_IOAM; tuninfo->ioamh.opt_len = sizeof(tuninfo->ioamh) - 2 + sizeof(*trace) + trace->remlen * 4; memcpy(&tuninfo->traceh, trace, sizeof(*trace)); if (len_aligned - trace->remlen * 4) { tuninfo->traceh.data[trace->remlen * 4] = IPV6_TLV_PADN; tuninfo->traceh.data[trace->remlen * 4 + 1] = 2; } lwt->type = LWTUNNEL_ENCAP_IOAM6; lwt->flags |= LWTUNNEL_STATE_OUTPUT_REDIRECT; *ts = lwt; return 0; } static int ioam6_do_fill(struct net *net, struct sk_buff *skb) { struct ioam6_trace_hdr *trace; struct ioam6_namespace *ns; trace = (struct ioam6_trace_hdr *)(skb_transport_header(skb) + sizeof(struct ipv6_hopopt_hdr) + 2 + sizeof(struct ioam6_hdr)); ns = ioam6_namespace(net, trace->namespace_id); if (ns) ioam6_fill_trace_data(skb, ns, trace, false); return 0; } static int ioam6_do_inline(struct net *net, struct sk_buff *skb, struct ioam6_lwt_encap *tuninfo) { struct ipv6hdr *oldhdr, *hdr; int hdrlen, err; hdrlen = (tuninfo->eh.hdrlen + 1) << 3; err = skb_cow_head(skb, hdrlen + skb->mac_len); if (unlikely(err)) return err; oldhdr = ipv6_hdr(skb); skb_pull(skb, sizeof(*oldhdr)); skb_postpull_rcsum(skb, skb_network_header(skb), sizeof(*oldhdr)); skb_push(skb, sizeof(*oldhdr) + hdrlen); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); hdr = ipv6_hdr(skb); memmove(hdr, oldhdr, sizeof(*oldhdr)); tuninfo->eh.nexthdr = hdr->nexthdr; skb_set_transport_header(skb, sizeof(*hdr)); skb_postpush_rcsum(skb, hdr, sizeof(*hdr) + hdrlen); memcpy(skb_transport_header(skb), (u8 *)tuninfo, hdrlen); hdr->nexthdr = NEXTHDR_HOP; hdr->payload_len = cpu_to_be16(skb->len - sizeof(*hdr)); return ioam6_do_fill(net, skb); } static int ioam6_do_encap(struct net *net, struct sk_buff *skb, struct ioam6_lwt_encap *tuninfo, struct in6_addr *tundst) { struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr, *inner_hdr; int hdrlen, len, err; hdrlen = (tuninfo->eh.hdrlen + 1) << 3; len = sizeof(*hdr) + hdrlen; err = skb_cow_head(skb, len + skb->mac_len); if (unlikely(err)) return err; inner_hdr = ipv6_hdr(skb); skb_push(skb, len); skb_reset_network_header(skb); skb_mac_header_rebuild(skb); skb_set_transport_header(skb, sizeof(*hdr)); tuninfo->eh.nexthdr = NEXTHDR_IPV6; memcpy(skb_transport_header(skb), (u8 *)tuninfo, hdrlen); hdr = ipv6_hdr(skb); memcpy(hdr, inner_hdr, sizeof(*hdr)); hdr->nexthdr = NEXTHDR_HOP; hdr->payload_len = cpu_to_be16(skb->len - sizeof(*hdr)); hdr->daddr = *tundst; ipv6_dev_get_saddr(net, dst->dev, &hdr->daddr, IPV6_PREFER_SRC_PUBLIC, &hdr->saddr); skb_postpush_rcsum(skb, hdr, len); return ioam6_do_fill(net, skb); } static int ioam6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct in6_addr orig_daddr; struct ioam6_lwt *ilwt; int err = -EINVAL; u32 pkt_cnt; if (skb->protocol != htons(ETH_P_IPV6)) goto drop; ilwt = ioam6_lwt_state(dst->lwtstate); /* Check for insertion frequency (i.e., "k over n" insertions) */ pkt_cnt = atomic_fetch_inc(&ilwt->pkt_cnt); if (pkt_cnt % ilwt->freq.n >= ilwt->freq.k) goto out; orig_daddr = ipv6_hdr(skb)->daddr; switch (ilwt->mode) { case IOAM6_IPTUNNEL_MODE_INLINE: do_inline: /* Direct insertion - if there is no Hop-by-Hop yet */ if (ipv6_hdr(skb)->nexthdr == NEXTHDR_HOP) goto out; err = ioam6_do_inline(net, skb, &ilwt->tuninfo); if (unlikely(err)) goto drop; break; case IOAM6_IPTUNNEL_MODE_ENCAP: do_encap: /* Encapsulation (ip6ip6) */ err = ioam6_do_encap(net, skb, &ilwt->tuninfo, &ilwt->tundst); if (unlikely(err)) goto drop; break; case IOAM6_IPTUNNEL_MODE_AUTO: /* Automatic (RFC8200 compliant): * - local packets -> INLINE mode * - in-transit packets -> ENCAP mode */ if (!skb->dev) goto do_inline; goto do_encap; default: goto drop; } err = skb_cow_head(skb, LL_RESERVED_SPACE(dst->dev)); if (unlikely(err)) goto drop; if (!ipv6_addr_equal(&orig_daddr, &ipv6_hdr(skb)->daddr)) { preempt_disable(); dst = dst_cache_get(&ilwt->cache); preempt_enable(); if (unlikely(!dst)) { struct ipv6hdr *hdr = ipv6_hdr(skb); struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); fl6.daddr = hdr->daddr; fl6.saddr = hdr->saddr; fl6.flowlabel = ip6_flowinfo(hdr); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = hdr->nexthdr; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { err = dst->error; dst_release(dst); goto drop; } preempt_disable(); dst_cache_set_ip6(&ilwt->cache, dst, &fl6.saddr); preempt_enable(); } skb_dst_drop(skb); skb_dst_set(skb, dst); return dst_output(net, sk, skb); } out: return dst->lwtstate->orig_output(net, sk, skb); drop: kfree_skb(skb); return err; } static void ioam6_destroy_state(struct lwtunnel_state *lwt) { dst_cache_destroy(&ioam6_lwt_state(lwt)->cache); } static int ioam6_fill_encap_info(struct sk_buff *skb, struct lwtunnel_state *lwtstate) { struct ioam6_lwt *ilwt = ioam6_lwt_state(lwtstate); int err; err = nla_put_u32(skb, IOAM6_IPTUNNEL_FREQ_K, ilwt->freq.k); if (err) goto ret; err = nla_put_u32(skb, IOAM6_IPTUNNEL_FREQ_N, ilwt->freq.n); if (err) goto ret; err = nla_put_u8(skb, IOAM6_IPTUNNEL_MODE, ilwt->mode); if (err) goto ret; if (ilwt->mode != IOAM6_IPTUNNEL_MODE_INLINE) { err = nla_put_in6_addr(skb, IOAM6_IPTUNNEL_DST, &ilwt->tundst); if (err) goto ret; } err = nla_put(skb, IOAM6_IPTUNNEL_TRACE, sizeof(ilwt->tuninfo.traceh), &ilwt->tuninfo.traceh); ret: return err; } static int ioam6_encap_nlsize(struct lwtunnel_state *lwtstate) { struct ioam6_lwt *ilwt = ioam6_lwt_state(lwtstate); int nlsize; nlsize = nla_total_size(sizeof(ilwt->freq.k)) + nla_total_size(sizeof(ilwt->freq.n)) + nla_total_size(sizeof(ilwt->mode)) + nla_total_size(sizeof(ilwt->tuninfo.traceh)); if (ilwt->mode != IOAM6_IPTUNNEL_MODE_INLINE) nlsize += nla_total_size(sizeof(ilwt->tundst)); return nlsize; } static int ioam6_encap_cmp(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct ioam6_trace_hdr *trace_a = ioam6_lwt_trace(a); struct ioam6_trace_hdr *trace_b = ioam6_lwt_trace(b); struct ioam6_lwt *ilwt_a = ioam6_lwt_state(a); struct ioam6_lwt *ilwt_b = ioam6_lwt_state(b); return (ilwt_a->freq.k != ilwt_b->freq.k || ilwt_a->freq.n != ilwt_b->freq.n || ilwt_a->mode != ilwt_b->mode || (ilwt_a->mode != IOAM6_IPTUNNEL_MODE_INLINE && !ipv6_addr_equal(&ilwt_a->tundst, &ilwt_b->tundst)) || trace_a->namespace_id != trace_b->namespace_id); } static const struct lwtunnel_encap_ops ioam6_iptun_ops = { .build_state = ioam6_build_state, .destroy_state = ioam6_destroy_state, .output = ioam6_output, .fill_encap = ioam6_fill_encap_info, .get_encap_size = ioam6_encap_nlsize, .cmp_encap = ioam6_encap_cmp, .owner = THIS_MODULE, }; int __init ioam6_iptunnel_init(void) { return lwtunnel_encap_add_ops(&ioam6_iptun_ops, LWTUNNEL_ENCAP_IOAM6); } void ioam6_iptunnel_exit(void) { lwtunnel_encap_del_ops(&ioam6_iptun_ops, LWTUNNEL_ENCAP_IOAM6); }
linux-master
net/ipv6/ioam6_iptunnel.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux INET6 implementation * FIB front-end. * * Authors: * Pedro Roque <[email protected]> */ /* Changes: * * YOSHIFUJI Hideaki @USAGI * reworked default router selection. * - respect outgoing interface * - select from (probably) reachable routers (i.e. * routers in REACHABLE, STALE, DELAY or PROBE states). * - always select the same router if it is (probably) * reachable. otherwise, round-robin the list. * Ville Nuorvala * Fixed routing subtrees. */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/capability.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/types.h> #include <linux/times.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/route.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/mroute6.h> #include <linux/init.h> #include <linux/if_arp.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/jhash.h> #include <linux/siphash.h> #include <net/net_namespace.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/tcp.h> #include <linux/rtnetlink.h> #include <net/dst.h> #include <net/dst_metadata.h> #include <net/xfrm.h> #include <net/netevent.h> #include <net/netlink.h> #include <net/rtnh.h> #include <net/lwtunnel.h> #include <net/ip_tunnels.h> #include <net/l3mdev.h> #include <net/ip.h> #include <linux/uaccess.h> #include <linux/btf_ids.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif static int ip6_rt_type_to_error(u8 fib6_type); #define CREATE_TRACE_POINTS #include <trace/events/fib6.h> EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); #undef CREATE_TRACE_POINTS enum rt6_nud_state { RT6_NUD_FAIL_HARD = -3, RT6_NUD_FAIL_PROBE = -2, RT6_NUD_FAIL_DO_RR = -1, RT6_NUD_SUCCEED = 1 }; INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); static unsigned int ip6_default_advmss(const struct dst_entry *dst); INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst); static struct dst_entry *ip6_negative_advice(struct dst_entry *); static void ip6_dst_destroy(struct dst_entry *); static void ip6_dst_ifdown(struct dst_entry *, struct net_device *dev); static void ip6_dst_gc(struct dst_ops *ops); static int ip6_pkt_discard(struct sk_buff *skb); static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); static int ip6_pkt_prohibit(struct sk_buff *skb); static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); static void ip6_link_failure(struct sk_buff *skb); static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, int strict); static size_t rt6_nlmsg_size(struct fib6_info *f6i); static int rt6_fill_node(struct net *net, struct sk_buff *skb, struct fib6_info *rt, struct dst_entry *dst, struct in6_addr *dest, struct in6_addr *src, int iif, int type, u32 portid, u32 seq, unsigned int flags); static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr); #ifdef CONFIG_IPV6_ROUTE_INFO static struct fib6_info *rt6_add_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref); static struct fib6_info *rt6_get_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev); #endif struct uncached_list { spinlock_t lock; struct list_head head; struct list_head quarantine; }; static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); void rt6_uncached_list_add(struct rt6_info *rt) { struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); rt->dst.rt_uncached_list = ul; spin_lock_bh(&ul->lock); list_add_tail(&rt->dst.rt_uncached, &ul->head); spin_unlock_bh(&ul->lock); } void rt6_uncached_list_del(struct rt6_info *rt) { if (!list_empty(&rt->dst.rt_uncached)) { struct uncached_list *ul = rt->dst.rt_uncached_list; spin_lock_bh(&ul->lock); list_del_init(&rt->dst.rt_uncached); spin_unlock_bh(&ul->lock); } } static void rt6_uncached_list_flush_dev(struct net_device *dev) { int cpu; for_each_possible_cpu(cpu) { struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); struct rt6_info *rt, *safe; if (list_empty(&ul->head)) continue; spin_lock_bh(&ul->lock); list_for_each_entry_safe(rt, safe, &ul->head, dst.rt_uncached) { struct inet6_dev *rt_idev = rt->rt6i_idev; struct net_device *rt_dev = rt->dst.dev; bool handled = false; if (rt_idev->dev == dev) { rt->rt6i_idev = in6_dev_get(blackhole_netdev); in6_dev_put(rt_idev); handled = true; } if (rt_dev == dev) { rt->dst.dev = blackhole_netdev; netdev_ref_replace(rt_dev, blackhole_netdev, &rt->dst.dev_tracker, GFP_ATOMIC); handled = true; } if (handled) list_move(&rt->dst.rt_uncached, &ul->quarantine); } spin_unlock_bh(&ul->lock); } } static inline const void *choose_neigh_daddr(const struct in6_addr *p, struct sk_buff *skb, const void *daddr) { if (!ipv6_addr_any(p)) return (const void *) p; else if (skb) return &ipv6_hdr(skb)->daddr; return daddr; } struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, struct net_device *dev, struct sk_buff *skb, const void *daddr) { struct neighbour *n; daddr = choose_neigh_daddr(gw, skb, daddr); n = __ipv6_neigh_lookup(dev, daddr); if (n) return n; n = neigh_create(&nd_tbl, daddr, dev); return IS_ERR(n) ? NULL : n; } static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr) { const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), dst->dev, skb, daddr); } static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) { struct net_device *dev = dst->dev; struct rt6_info *rt = (struct rt6_info *)dst; daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); if (!daddr) return; if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) return; if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) return; __ipv6_confirm_neigh(dev, daddr); } static struct dst_ops ip6_dst_ops_template = { .family = AF_INET6, .gc = ip6_dst_gc, .gc_thresh = 1024, .check = ip6_dst_check, .default_advmss = ip6_default_advmss, .mtu = ip6_mtu, .cow_metrics = dst_cow_metrics_generic, .destroy = ip6_dst_destroy, .ifdown = ip6_dst_ifdown, .negative_advice = ip6_negative_advice, .link_failure = ip6_link_failure, .update_pmtu = ip6_rt_update_pmtu, .redirect = rt6_do_redirect, .local_out = __ip6_local_out, .neigh_lookup = ip6_dst_neigh_lookup, .confirm_neigh = ip6_confirm_neigh, }; static struct dst_ops ip6_dst_blackhole_ops = { .family = AF_INET6, .default_advmss = ip6_default_advmss, .neigh_lookup = ip6_dst_neigh_lookup, .check = ip6_dst_check, .destroy = ip6_dst_destroy, .cow_metrics = dst_cow_metrics_generic, .update_pmtu = dst_blackhole_update_pmtu, .redirect = dst_blackhole_redirect, .mtu = dst_blackhole_mtu, }; static const u32 ip6_template_metrics[RTAX_MAX] = { [RTAX_HOPLIMIT - 1] = 0, }; static const struct fib6_info fib6_null_entry_template = { .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), .fib6_protocol = RTPROT_KERNEL, .fib6_metric = ~(u32)0, .fib6_ref = REFCOUNT_INIT(1), .fib6_type = RTN_UNREACHABLE, .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, }; static const struct rt6_info ip6_null_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -ENETUNREACH, .input = ip6_pkt_discard, .output = ip6_pkt_discard_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; #ifdef CONFIG_IPV6_MULTIPLE_TABLES static const struct rt6_info ip6_prohibit_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -EACCES, .input = ip6_pkt_prohibit, .output = ip6_pkt_prohibit_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; static const struct rt6_info ip6_blk_hole_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -EINVAL, .input = dst_discard, .output = dst_discard_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; #endif static void rt6_info_init(struct rt6_info *rt) { memset_after(rt, 0, dst); } /* allocate dst with ip6_dst_ops */ struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, int flags) { struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 1, DST_OBSOLETE_FORCE_CHK, flags); if (rt) { rt6_info_init(rt); atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); } return rt; } EXPORT_SYMBOL(ip6_dst_alloc); static void ip6_dst_destroy(struct dst_entry *dst) { struct rt6_info *rt = (struct rt6_info *)dst; struct fib6_info *from; struct inet6_dev *idev; ip_dst_metrics_put(dst); rt6_uncached_list_del(rt); idev = rt->rt6i_idev; if (idev) { rt->rt6i_idev = NULL; in6_dev_put(idev); } from = xchg((__force struct fib6_info **)&rt->from, NULL); fib6_info_release(from); } static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev) { struct rt6_info *rt = (struct rt6_info *)dst; struct inet6_dev *idev = rt->rt6i_idev; if (idev && idev->dev != blackhole_netdev) { struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); if (blackhole_idev) { rt->rt6i_idev = blackhole_idev; in6_dev_put(idev); } } } static bool __rt6_check_expired(const struct rt6_info *rt) { if (rt->rt6i_flags & RTF_EXPIRES) return time_after(jiffies, rt->dst.expires); else return false; } static bool rt6_check_expired(const struct rt6_info *rt) { struct fib6_info *from; from = rcu_dereference(rt->from); if (rt->rt6i_flags & RTF_EXPIRES) { if (time_after(jiffies, rt->dst.expires)) return true; } else if (from) { return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || fib6_check_expired(from); } return false; } void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict) { struct fib6_info *sibling, *next_sibling; struct fib6_info *match = res->f6i; if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) goto out; if (match->nh && have_oif_match && res->nh) return; if (skb) IP6CB(skb)->flags |= IP6SKB_MULTIPATH; /* We might have already computed the hash for ICMPv6 errors. In such * case it will always be non-zero. Otherwise now is the time to do it. */ if (!fl6->mp_hash && (!match->nh || nexthop_is_multipath(match->nh))) fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); if (unlikely(match->nh)) { nexthop_path_fib6_result(res, fl6->mp_hash); return; } if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) goto out; list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, fib6_siblings) { const struct fib6_nh *nh = sibling->fib6_nh; int nh_upper_bound; nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); if (fl6->mp_hash > nh_upper_bound) continue; if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) break; match = sibling; break; } out: res->f6i = match; res->nh = match->fib6_nh; } /* * Route lookup. rcu_read_lock() should be held. */ static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, const struct in6_addr *saddr, int oif, int flags) { const struct net_device *dev; if (nh->fib_nh_flags & RTNH_F_DEAD) return false; dev = nh->fib_nh_dev; if (oif) { if (dev->ifindex == oif) return true; } else { if (ipv6_chk_addr(net, saddr, dev, flags & RT6_LOOKUP_F_IFACE)) return true; } return false; } struct fib6_nh_dm_arg { struct net *net; const struct in6_addr *saddr; int oif; int flags; struct fib6_nh *nh; }; static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_dm_arg *arg = _arg; arg->nh = nh; return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, arg->flags); } /* returns fib6_nh from nexthop or NULL */ static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, struct fib6_result *res, const struct in6_addr *saddr, int oif, int flags) { struct fib6_nh_dm_arg arg = { .net = net, .saddr = saddr, .oif = oif, .flags = flags, }; if (nexthop_is_blackhole(nh)) return NULL; if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) return arg.nh; return NULL; } static void rt6_device_match(struct net *net, struct fib6_result *res, const struct in6_addr *saddr, int oif, int flags) { struct fib6_info *f6i = res->f6i; struct fib6_info *spf6i; struct fib6_nh *nh; if (!oif && ipv6_addr_any(saddr)) { if (unlikely(f6i->nh)) { nh = nexthop_fib6_nh(f6i->nh); if (nexthop_is_blackhole(f6i->nh)) goto out_blackhole; } else { nh = f6i->fib6_nh; } if (!(nh->fib_nh_flags & RTNH_F_DEAD)) goto out; } for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { bool matched = false; if (unlikely(spf6i->nh)) { nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, oif, flags); if (nh) matched = true; } else { nh = spf6i->fib6_nh; if (__rt6_device_match(net, nh, saddr, oif, flags)) matched = true; } if (matched) { res->f6i = spf6i; goto out; } } if (oif && flags & RT6_LOOKUP_F_IFACE) { res->f6i = net->ipv6.fib6_null_entry; nh = res->f6i->fib6_nh; goto out; } if (unlikely(f6i->nh)) { nh = nexthop_fib6_nh(f6i->nh); if (nexthop_is_blackhole(f6i->nh)) goto out_blackhole; } else { nh = f6i->fib6_nh; } if (nh->fib_nh_flags & RTNH_F_DEAD) { res->f6i = net->ipv6.fib6_null_entry; nh = res->f6i->fib6_nh; } out: res->nh = nh; res->fib6_type = res->f6i->fib6_type; res->fib6_flags = res->f6i->fib6_flags; return; out_blackhole: res->fib6_flags |= RTF_REJECT; res->fib6_type = RTN_BLACKHOLE; res->nh = nh; } #ifdef CONFIG_IPV6_ROUTER_PREF struct __rt6_probe_work { struct work_struct work; struct in6_addr target; struct net_device *dev; netdevice_tracker dev_tracker; }; static void rt6_probe_deferred(struct work_struct *w) { struct in6_addr mcaddr; struct __rt6_probe_work *work = container_of(w, struct __rt6_probe_work, work); addrconf_addr_solict_mult(&work->target, &mcaddr); ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); netdev_put(work->dev, &work->dev_tracker); kfree(work); } static void rt6_probe(struct fib6_nh *fib6_nh) { struct __rt6_probe_work *work = NULL; const struct in6_addr *nh_gw; unsigned long last_probe; struct neighbour *neigh; struct net_device *dev; struct inet6_dev *idev; /* * Okay, this does not seem to be appropriate * for now, however, we need to check if it * is really so; aka Router Reachability Probing. * * Router Reachability Probe MUST be rate-limited * to no more than one per minute. */ if (!fib6_nh->fib_nh_gw_family) return; nh_gw = &fib6_nh->fib_nh_gw6; dev = fib6_nh->fib_nh_dev; rcu_read_lock(); last_probe = READ_ONCE(fib6_nh->last_probe); idev = __in6_dev_get(dev); neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); if (neigh) { if (READ_ONCE(neigh->nud_state) & NUD_VALID) goto out; write_lock_bh(&neigh->lock); if (!(neigh->nud_state & NUD_VALID) && time_after(jiffies, neigh->updated + idev->cnf.rtr_probe_interval)) { work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) __neigh_set_probe_once(neigh); } write_unlock_bh(&neigh->lock); } else if (time_after(jiffies, last_probe + idev->cnf.rtr_probe_interval)) { work = kmalloc(sizeof(*work), GFP_ATOMIC); } if (!work || cmpxchg(&fib6_nh->last_probe, last_probe, jiffies) != last_probe) { kfree(work); } else { INIT_WORK(&work->work, rt6_probe_deferred); work->target = *nh_gw; netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC); work->dev = dev; schedule_work(&work->work); } out: rcu_read_unlock(); } #else static inline void rt6_probe(struct fib6_nh *fib6_nh) { } #endif /* * Default Router Selection (RFC 2461 6.3.6) */ static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) { enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; struct neighbour *neigh; rcu_read_lock(); neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, &fib6_nh->fib_nh_gw6); if (neigh) { u8 nud_state = READ_ONCE(neigh->nud_state); if (nud_state & NUD_VALID) ret = RT6_NUD_SUCCEED; #ifdef CONFIG_IPV6_ROUTER_PREF else if (!(nud_state & NUD_FAILED)) ret = RT6_NUD_SUCCEED; else ret = RT6_NUD_FAIL_PROBE; #endif } else { ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; } rcu_read_unlock(); return ret; } static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, int strict) { int m = 0; if (!oif || nh->fib_nh_dev->ifindex == oif) m = 2; if (!m && (strict & RT6_LOOKUP_F_IFACE)) return RT6_NUD_FAIL_HARD; #ifdef CONFIG_IPV6_ROUTER_PREF m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; #endif if ((strict & RT6_LOOKUP_F_REACHABLE) && !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { int n = rt6_check_neigh(nh); if (n < 0) return n; } return m; } static bool find_match(struct fib6_nh *nh, u32 fib6_flags, int oif, int strict, int *mpri, bool *do_rr) { bool match_do_rr = false; bool rc = false; int m; if (nh->fib_nh_flags & RTNH_F_DEAD) goto out; if (ip6_ignore_linkdown(nh->fib_nh_dev) && nh->fib_nh_flags & RTNH_F_LINKDOWN && !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) goto out; m = rt6_score_route(nh, fib6_flags, oif, strict); if (m == RT6_NUD_FAIL_DO_RR) { match_do_rr = true; m = 0; /* lowest valid score */ } else if (m == RT6_NUD_FAIL_HARD) { goto out; } if (strict & RT6_LOOKUP_F_REACHABLE) rt6_probe(nh); /* note that m can be RT6_NUD_FAIL_PROBE at this point */ if (m > *mpri) { *do_rr = match_do_rr; *mpri = m; rc = true; } out: return rc; } struct fib6_nh_frl_arg { u32 flags; int oif; int strict; int *mpri; bool *do_rr; struct fib6_nh *nh; }; static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_frl_arg *arg = _arg; arg->nh = nh; return find_match(nh, arg->flags, arg->oif, arg->strict, arg->mpri, arg->do_rr); } static void __find_rr_leaf(struct fib6_info *f6i_start, struct fib6_info *nomatch, u32 metric, struct fib6_result *res, struct fib6_info **cont, int oif, int strict, bool *do_rr, int *mpri) { struct fib6_info *f6i; for (f6i = f6i_start; f6i && f6i != nomatch; f6i = rcu_dereference(f6i->fib6_next)) { bool matched = false; struct fib6_nh *nh; if (cont && f6i->fib6_metric != metric) { *cont = f6i; return; } if (fib6_check_expired(f6i)) continue; if (unlikely(f6i->nh)) { struct fib6_nh_frl_arg arg = { .flags = f6i->fib6_flags, .oif = oif, .strict = strict, .mpri = mpri, .do_rr = do_rr }; if (nexthop_is_blackhole(f6i->nh)) { res->fib6_flags = RTF_REJECT; res->fib6_type = RTN_BLACKHOLE; res->f6i = f6i; res->nh = nexthop_fib6_nh(f6i->nh); return; } if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, &arg)) { matched = true; nh = arg.nh; } } else { nh = f6i->fib6_nh; if (find_match(nh, f6i->fib6_flags, oif, strict, mpri, do_rr)) matched = true; } if (matched) { res->f6i = f6i; res->nh = nh; res->fib6_flags = f6i->fib6_flags; res->fib6_type = f6i->fib6_type; } } } static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, struct fib6_info *rr_head, int oif, int strict, bool *do_rr, struct fib6_result *res) { u32 metric = rr_head->fib6_metric; struct fib6_info *cont = NULL; int mpri = -1; __find_rr_leaf(rr_head, NULL, metric, res, &cont, oif, strict, do_rr, &mpri); __find_rr_leaf(leaf, rr_head, metric, res, &cont, oif, strict, do_rr, &mpri); if (res->f6i || !cont) return; __find_rr_leaf(cont, NULL, metric, res, NULL, oif, strict, do_rr, &mpri); } static void rt6_select(struct net *net, struct fib6_node *fn, int oif, struct fib6_result *res, int strict) { struct fib6_info *leaf = rcu_dereference(fn->leaf); struct fib6_info *rt0; bool do_rr = false; int key_plen; /* make sure this function or its helpers sets f6i */ res->f6i = NULL; if (!leaf || leaf == net->ipv6.fib6_null_entry) goto out; rt0 = rcu_dereference(fn->rr_ptr); if (!rt0) rt0 = leaf; /* Double check to make sure fn is not an intermediate node * and fn->leaf does not points to its child's leaf * (This might happen if all routes under fn are deleted from * the tree and fib6_repair_tree() is called on the node.) */ key_plen = rt0->fib6_dst.plen; #ifdef CONFIG_IPV6_SUBTREES if (rt0->fib6_src.plen) key_plen = rt0->fib6_src.plen; #endif if (fn->fn_bit != key_plen) goto out; find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); if (do_rr) { struct fib6_info *next = rcu_dereference(rt0->fib6_next); /* no entries matched; do round-robin */ if (!next || next->fib6_metric != rt0->fib6_metric) next = leaf; if (next != rt0) { spin_lock_bh(&leaf->fib6_table->tb6_lock); /* make sure next is not being deleted from the tree */ if (next->fib6_node) rcu_assign_pointer(fn->rr_ptr, next); spin_unlock_bh(&leaf->fib6_table->tb6_lock); } } out: if (!res->f6i) { res->f6i = net->ipv6.fib6_null_entry; res->nh = res->f6i->fib6_nh; res->fib6_flags = res->f6i->fib6_flags; res->fib6_type = res->f6i->fib6_type; } } static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) { return (res->f6i->fib6_flags & RTF_NONEXTHOP) || res->nh->fib_nh_gw_family; } #ifdef CONFIG_IPV6_ROUTE_INFO int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, const struct in6_addr *gwaddr) { struct net *net = dev_net(dev); struct route_info *rinfo = (struct route_info *) opt; struct in6_addr prefix_buf, *prefix; unsigned int pref; unsigned long lifetime; struct fib6_info *rt; if (len < sizeof(struct route_info)) { return -EINVAL; } /* Sanity check for prefix_len and length */ if (rinfo->length > 3) { return -EINVAL; } else if (rinfo->prefix_len > 128) { return -EINVAL; } else if (rinfo->prefix_len > 64) { if (rinfo->length < 2) { return -EINVAL; } } else if (rinfo->prefix_len > 0) { if (rinfo->length < 1) { return -EINVAL; } } pref = rinfo->route_pref; if (pref == ICMPV6_ROUTER_PREF_INVALID) return -EINVAL; lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); if (rinfo->length == 3) prefix = (struct in6_addr *)rinfo->prefix; else { /* this function is safe */ ipv6_addr_prefix(&prefix_buf, (struct in6_addr *)rinfo->prefix, rinfo->prefix_len); prefix = &prefix_buf; } if (rinfo->prefix_len == 0) rt = rt6_get_dflt_router(net, gwaddr, dev); else rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev); if (rt && !lifetime) { ip6_del_rt(net, rt, false); rt = NULL; } if (!rt && lifetime) rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev, pref); else if (rt) rt->fib6_flags = RTF_ROUTEINFO | (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); if (rt) { if (!addrconf_finite_timeout(lifetime)) fib6_clean_expires(rt); else fib6_set_expires(rt, jiffies + HZ * lifetime); fib6_info_release(rt); } return 0; } #endif /* * Misc support functions */ /* called with rcu_lock held */ static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) { struct net_device *dev = res->nh->fib_nh_dev; if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { /* for copies of local routes, dst->dev needs to be the * device if it is a master device, the master device if * device is enslaved, and the loopback as the default */ if (netif_is_l3_slave(dev) && !rt6_need_strict(&res->f6i->fib6_dst.addr)) dev = l3mdev_master_dev_rcu(dev); else if (!netif_is_l3_master(dev)) dev = dev_net(dev)->loopback_dev; /* last case is netif_is_l3_master(dev) is true in which * case we want dev returned to be dev */ } return dev; } static const int fib6_prop[RTN_MAX + 1] = { [RTN_UNSPEC] = 0, [RTN_UNICAST] = 0, [RTN_LOCAL] = 0, [RTN_BROADCAST] = 0, [RTN_ANYCAST] = 0, [RTN_MULTICAST] = 0, [RTN_BLACKHOLE] = -EINVAL, [RTN_UNREACHABLE] = -EHOSTUNREACH, [RTN_PROHIBIT] = -EACCES, [RTN_THROW] = -EAGAIN, [RTN_NAT] = -EINVAL, [RTN_XRESOLVE] = -EINVAL, }; static int ip6_rt_type_to_error(u8 fib6_type) { return fib6_prop[fib6_type]; } static unsigned short fib6_info_dst_flags(struct fib6_info *rt) { unsigned short flags = 0; if (rt->dst_nocount) flags |= DST_NOCOUNT; if (rt->dst_nopolicy) flags |= DST_NOPOLICY; return flags; } static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) { rt->dst.error = ip6_rt_type_to_error(fib6_type); switch (fib6_type) { case RTN_BLACKHOLE: rt->dst.output = dst_discard_out; rt->dst.input = dst_discard; break; case RTN_PROHIBIT: rt->dst.output = ip6_pkt_prohibit_out; rt->dst.input = ip6_pkt_prohibit; break; case RTN_THROW: case RTN_UNREACHABLE: default: rt->dst.output = ip6_pkt_discard_out; rt->dst.input = ip6_pkt_discard; break; } } static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) { struct fib6_info *f6i = res->f6i; if (res->fib6_flags & RTF_REJECT) { ip6_rt_init_dst_reject(rt, res->fib6_type); return; } rt->dst.error = 0; rt->dst.output = ip6_output; if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { rt->dst.input = ip6_input; } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { rt->dst.input = ip6_mc_input; } else { rt->dst.input = ip6_forward; } if (res->nh->fib_nh_lws) { rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); lwtunnel_set_redirect(&rt->dst); } rt->dst.lastuse = jiffies; } /* Caller must already hold reference to @from */ static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) { rt->rt6i_flags &= ~RTF_EXPIRES; rcu_assign_pointer(rt->from, from); ip_dst_init_metrics(&rt->dst, from->fib6_metrics); } /* Caller must already hold reference to f6i in result */ static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) { const struct fib6_nh *nh = res->nh; const struct net_device *dev = nh->fib_nh_dev; struct fib6_info *f6i = res->f6i; ip6_rt_init_dst(rt, res); rt->rt6i_dst = f6i->fib6_dst; rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; rt->rt6i_flags = res->fib6_flags; if (nh->fib_nh_gw_family) { rt->rt6i_gateway = nh->fib_nh_gw6; rt->rt6i_flags |= RTF_GATEWAY; } rt6_set_from(rt, f6i); #ifdef CONFIG_IPV6_SUBTREES rt->rt6i_src = f6i->fib6_src; #endif } static struct fib6_node* fib6_backtrack(struct fib6_node *fn, struct in6_addr *saddr) { struct fib6_node *pn, *sn; while (1) { if (fn->fn_flags & RTN_TL_ROOT) return NULL; pn = rcu_dereference(fn->parent); sn = FIB6_SUBTREE(pn); if (sn && sn != fn) fn = fib6_node_lookup(sn, NULL, saddr); else fn = pn; if (fn->fn_flags & RTN_RTINFO) return fn; } } static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) { struct rt6_info *rt = *prt; if (dst_hold_safe(&rt->dst)) return true; if (net) { rt = net->ipv6.ip6_null_entry; dst_hold(&rt->dst); } else { rt = NULL; } *prt = rt; return false; } /* called with rcu_lock held */ static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) { struct net_device *dev = res->nh->fib_nh_dev; struct fib6_info *f6i = res->f6i; unsigned short flags; struct rt6_info *nrt; if (!fib6_info_hold_safe(f6i)) goto fallback; flags = fib6_info_dst_flags(f6i); nrt = ip6_dst_alloc(dev_net(dev), dev, flags); if (!nrt) { fib6_info_release(f6i); goto fallback; } ip6_rt_copy_init(nrt, res); return nrt; fallback: nrt = dev_net(dev)->ipv6.ip6_null_entry; dst_hold(&nrt->dst); return nrt; } INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct fib6_result res = {}; struct fib6_node *fn; struct rt6_info *rt; rcu_read_lock(); fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); restart: res.f6i = rcu_dereference(fn->leaf); if (!res.f6i) res.f6i = net->ipv6.fib6_null_entry; else rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, flags); if (res.f6i == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto restart; rt = net->ipv6.ip6_null_entry; dst_hold(&rt->dst); goto out; } else if (res.fib6_flags & RTF_REJECT) { goto do_create; } fib6_select_path(net, &res, fl6, fl6->flowi6_oif, fl6->flowi6_oif != 0, skb, flags); /* Search through exception table */ rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); if (rt) { if (ip6_hold_safe(net, &rt)) dst_use_noref(&rt->dst, jiffies); } else { do_create: rt = ip6_create_rt_rcu(&res); } out: trace_fib6_table_lookup(net, &res, table, fl6); rcu_read_unlock(); return rt; } struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); } EXPORT_SYMBOL_GPL(ip6_route_lookup); struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr, int oif, const struct sk_buff *skb, int strict) { struct flowi6 fl6 = { .flowi6_oif = oif, .daddr = *daddr, }; struct dst_entry *dst; int flags = strict ? RT6_LOOKUP_F_IFACE : 0; if (saddr) { memcpy(&fl6.saddr, saddr, sizeof(*saddr)); flags |= RT6_LOOKUP_F_HAS_SADDR; } dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); if (dst->error == 0) return (struct rt6_info *) dst; dst_release(dst); return NULL; } EXPORT_SYMBOL(rt6_lookup); /* ip6_ins_rt is called with FREE table->tb6_lock. * It takes new route entry, the addition fails by any reason the * route is released. * Caller must hold dst before calling it. */ static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack) { int err; struct fib6_table *table; table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); err = fib6_add(&table->tb6_root, rt, info, extack); spin_unlock_bh(&table->tb6_lock); return err; } int ip6_ins_rt(struct net *net, struct fib6_info *rt) { struct nl_info info = { .nl_net = net, }; return __ip6_ins_rt(rt, &info, NULL); } static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct fib6_info *f6i = res->f6i; struct net_device *dev; struct rt6_info *rt; /* * Clone the route. */ if (!fib6_info_hold_safe(f6i)) return NULL; dev = ip6_rt_get_dev_rcu(res); rt = ip6_dst_alloc(dev_net(dev), dev, 0); if (!rt) { fib6_info_release(f6i); return NULL; } ip6_rt_copy_init(rt, res); rt->rt6i_flags |= RTF_CACHE; rt->rt6i_dst.addr = *daddr; rt->rt6i_dst.plen = 128; if (!rt6_is_gw_or_nonexthop(res)) { if (f6i->fib6_dst.plen != 128 && ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) rt->rt6i_flags |= RTF_ANYCAST; #ifdef CONFIG_IPV6_SUBTREES if (rt->rt6i_src.plen && saddr) { rt->rt6i_src.addr = *saddr; rt->rt6i_src.plen = 128; } #endif } return rt; } static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) { struct fib6_info *f6i = res->f6i; unsigned short flags = fib6_info_dst_flags(f6i); struct net_device *dev; struct rt6_info *pcpu_rt; if (!fib6_info_hold_safe(f6i)) return NULL; rcu_read_lock(); dev = ip6_rt_get_dev_rcu(res); pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); rcu_read_unlock(); if (!pcpu_rt) { fib6_info_release(f6i); return NULL; } ip6_rt_copy_init(pcpu_rt, res); pcpu_rt->rt6i_flags |= RTF_PCPU; if (f6i->nh) pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); return pcpu_rt; } static bool rt6_is_valid(const struct rt6_info *rt6) { return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); } /* It should be called with rcu_read_lock() acquired */ static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) { struct rt6_info *pcpu_rt; pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { struct rt6_info *prev, **p; p = this_cpu_ptr(res->nh->rt6i_pcpu); prev = xchg(p, NULL); if (prev) { dst_dev_put(&prev->dst); dst_release(&prev->dst); } pcpu_rt = NULL; } return pcpu_rt; } static struct rt6_info *rt6_make_pcpu_route(struct net *net, const struct fib6_result *res) { struct rt6_info *pcpu_rt, *prev, **p; pcpu_rt = ip6_rt_pcpu_alloc(res); if (!pcpu_rt) return NULL; p = this_cpu_ptr(res->nh->rt6i_pcpu); prev = cmpxchg(p, NULL, pcpu_rt); BUG_ON(prev); if (res->f6i->fib6_destroying) { struct fib6_info *from; from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); fib6_info_release(from); } return pcpu_rt; } /* exception hash table implementation */ static DEFINE_SPINLOCK(rt6_exception_lock); /* Remove rt6_ex from hash table and free the memory * Caller must hold rt6_exception_lock */ static void rt6_remove_exception(struct rt6_exception_bucket *bucket, struct rt6_exception *rt6_ex) { struct fib6_info *from; struct net *net; if (!bucket || !rt6_ex) return; net = dev_net(rt6_ex->rt6i->dst.dev); net->ipv6.rt6_stats->fib_rt_cache--; /* purge completely the exception to allow releasing the held resources: * some [sk] cache may keep the dst around for unlimited time */ from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); fib6_info_release(from); dst_dev_put(&rt6_ex->rt6i->dst); hlist_del_rcu(&rt6_ex->hlist); dst_release(&rt6_ex->rt6i->dst); kfree_rcu(rt6_ex, rcu); WARN_ON_ONCE(!bucket->depth); bucket->depth--; } /* Remove oldest rt6_ex in bucket and free the memory * Caller must hold rt6_exception_lock */ static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) { struct rt6_exception *rt6_ex, *oldest = NULL; if (!bucket) return; hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) oldest = rt6_ex; } rt6_remove_exception(bucket, oldest); } static u32 rt6_exception_hash(const struct in6_addr *dst, const struct in6_addr *src) { static siphash_aligned_key_t rt6_exception_key; struct { struct in6_addr dst; struct in6_addr src; } __aligned(SIPHASH_ALIGNMENT) combined = { .dst = *dst, }; u64 val; net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); #ifdef CONFIG_IPV6_SUBTREES if (src) combined.src = *src; #endif val = siphash(&combined, sizeof(combined), &rt6_exception_key); return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); } /* Helper function to find the cached rt in the hash table * and update bucket pointer to point to the bucket for this * (daddr, saddr) pair * Caller must hold rt6_exception_lock */ static struct rt6_exception * __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct rt6_exception *rt6_ex; u32 hval; if (!(*bucket) || !daddr) return NULL; hval = rt6_exception_hash(daddr, saddr); *bucket += hval; hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { struct rt6_info *rt6 = rt6_ex->rt6i; bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); #ifdef CONFIG_IPV6_SUBTREES if (matched && saddr) matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); #endif if (matched) return rt6_ex; } return NULL; } /* Helper function to find the cached rt in the hash table * and update bucket pointer to point to the bucket for this * (daddr, saddr) pair * Caller must hold rcu_read_lock() */ static struct rt6_exception * __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct rt6_exception *rt6_ex; u32 hval; WARN_ON_ONCE(!rcu_read_lock_held()); if (!(*bucket) || !daddr) return NULL; hval = rt6_exception_hash(daddr, saddr); *bucket += hval; hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { struct rt6_info *rt6 = rt6_ex->rt6i; bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); #ifdef CONFIG_IPV6_SUBTREES if (matched && saddr) matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); #endif if (matched) return rt6_ex; } return NULL; } static unsigned int fib6_mtu(const struct fib6_result *res) { const struct fib6_nh *nh = res->nh; unsigned int mtu; if (res->f6i->fib6_pmtu) { mtu = res->f6i->fib6_pmtu; } else { struct net_device *dev = nh->fib_nh_dev; struct inet6_dev *idev; rcu_read_lock(); idev = __in6_dev_get(dev); mtu = idev->cnf.mtu6; rcu_read_unlock(); } mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); } #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL /* used when the flushed bit is not relevant, only access to the bucket * (ie., all bucket users except rt6_insert_exception); * * called under rcu lock; sometimes called with rt6_exception_lock held */ static struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, spinlock_t *lock) { struct rt6_exception_bucket *bucket; if (lock) bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(lock)); else bucket = rcu_dereference(nh->rt6i_exception_bucket); /* remove bucket flushed bit if set */ if (bucket) { unsigned long p = (unsigned long)bucket; p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; bucket = (struct rt6_exception_bucket *)p; } return bucket; } static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) { unsigned long p = (unsigned long)bucket; return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); } /* called with rt6_exception_lock held */ static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, spinlock_t *lock) { struct rt6_exception_bucket *bucket; unsigned long p; bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(lock)); p = (unsigned long)bucket; p |= FIB6_EXCEPTION_BUCKET_FLUSHED; bucket = (struct rt6_exception_bucket *)p; rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); } static int rt6_insert_exception(struct rt6_info *nrt, const struct fib6_result *res) { struct net *net = dev_net(nrt->dst.dev); struct rt6_exception_bucket *bucket; struct fib6_info *f6i = res->f6i; struct in6_addr *src_key = NULL; struct rt6_exception *rt6_ex; struct fib6_nh *nh = res->nh; int max_depth; int err = 0; spin_lock_bh(&rt6_exception_lock); bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(&rt6_exception_lock)); if (!bucket) { bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), GFP_ATOMIC); if (!bucket) { err = -ENOMEM; goto out; } rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); } else if (fib6_nh_excptn_bucket_flushed(bucket)) { err = -EINVAL; goto out; } #ifdef CONFIG_IPV6_SUBTREES /* fib6_src.plen != 0 indicates f6i is in subtree * and exception table is indexed by a hash of * both fib6_dst and fib6_src. * Otherwise, the exception table is indexed by * a hash of only fib6_dst. */ if (f6i->fib6_src.plen) src_key = &nrt->rt6i_src.addr; #endif /* rt6_mtu_change() might lower mtu on f6i. * Only insert this exception route if its mtu * is less than f6i's mtu value. */ if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { err = -EINVAL; goto out; } rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, src_key); if (rt6_ex) rt6_remove_exception(bucket, rt6_ex); rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); if (!rt6_ex) { err = -ENOMEM; goto out; } rt6_ex->rt6i = nrt; rt6_ex->stamp = jiffies; hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); bucket->depth++; net->ipv6.rt6_stats->fib_rt_cache++; /* Randomize max depth to avoid some side channels attacks. */ max_depth = FIB6_MAX_DEPTH + get_random_u32_below(FIB6_MAX_DEPTH); while (bucket->depth > max_depth) rt6_exception_remove_oldest(bucket); out: spin_unlock_bh(&rt6_exception_lock); /* Update fn->fn_sernum to invalidate all cached dst */ if (!err) { spin_lock_bh(&f6i->fib6_table->tb6_lock); fib6_update_sernum(net, f6i); spin_unlock_bh(&f6i->fib6_table->tb6_lock); fib6_force_start_gc(net); } return err; } static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (!bucket) goto out; /* Prevent rt6_insert_exception() to recreate the bucket list */ if (!from) fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { if (!from || rcu_access_pointer(rt6_ex->rt6i->from) == from) rt6_remove_exception(bucket, rt6_ex); } WARN_ON_ONCE(!from && bucket->depth); bucket++; } out: spin_unlock_bh(&rt6_exception_lock); } static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) { struct fib6_info *f6i = arg; fib6_nh_flush_exceptions(nh, f6i); return 0; } void rt6_flush_exceptions(struct fib6_info *f6i) { if (f6i->nh) nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, f6i); else fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); } /* Find cached rt in the hash table inside passed in rt * Caller has to hold rcu_read_lock() */ static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct rt6_info *ret = NULL; #ifdef CONFIG_IPV6_SUBTREES /* fib6i_src.plen != 0 indicates f6i is in subtree * and exception table is indexed by a hash of * both fib6_dst and fib6_src. * However, the src addr used to create the hash * might not be exactly the passed in saddr which * is a /128 addr from the flow. * So we need to use f6i->fib6_src to redo lookup * if the passed in saddr does not find anything. * (See the logic in ip6_rt_cache_alloc() on how * rt->rt6i_src is updated.) */ if (res->f6i->fib6_src.plen) src_key = saddr; find_ex: #endif bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) ret = rt6_ex->rt6i; #ifdef CONFIG_IPV6_SUBTREES /* Use fib6_src as src_key and redo lookup */ if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { src_key = &res->f6i->fib6_src.addr; goto find_ex; } #endif return ret; } /* Remove the passed in cached rt from the hash table that contains it */ static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, const struct rt6_info *rt) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int err; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return -ENOENT; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); #ifdef CONFIG_IPV6_SUBTREES /* rt6i_src.plen != 0 indicates 'from' is in subtree * and exception table is indexed by a hash of * both rt6i_dst and rt6i_src. * Otherwise, the exception table is indexed by * a hash of only rt6i_dst. */ if (plen) src_key = &rt->rt6i_src.addr; #endif rt6_ex = __rt6_find_exception_spinlock(&bucket, &rt->rt6i_dst.addr, src_key); if (rt6_ex) { rt6_remove_exception(bucket, rt6_ex); err = 0; } else { err = -ENOENT; } spin_unlock_bh(&rt6_exception_lock); return err; } struct fib6_nh_excptn_arg { struct rt6_info *rt; int plen; }; static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) { struct fib6_nh_excptn_arg *arg = _arg; int err; err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); if (err == 0) return 1; return 0; } static int rt6_remove_exception_rt(struct rt6_info *rt) { struct fib6_info *from; from = rcu_dereference(rt->from); if (!from || !(rt->rt6i_flags & RTF_CACHE)) return -EINVAL; if (from->nh) { struct fib6_nh_excptn_arg arg = { .rt = rt, .plen = from->fib6_src.plen }; int rc; /* rc = 1 means an entry was found */ rc = nexthop_for_each_fib6_nh(from->nh, rt6_nh_remove_exception_rt, &arg); return rc ? 0 : -ENOENT; } return fib6_nh_remove_exception(from->fib6_nh, from->fib6_src.plen, rt); } /* Find rt6_ex which contains the passed in rt cache and * refresh its stamp */ static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, const struct rt6_info *rt) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; bucket = fib6_nh_get_excptn_bucket(nh, NULL); #ifdef CONFIG_IPV6_SUBTREES /* rt6i_src.plen != 0 indicates 'from' is in subtree * and exception table is indexed by a hash of * both rt6i_dst and rt6i_src. * Otherwise, the exception table is indexed by * a hash of only rt6i_dst. */ if (plen) src_key = &rt->rt6i_src.addr; #endif rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); if (rt6_ex) rt6_ex->stamp = jiffies; } struct fib6_nh_match_arg { const struct net_device *dev; const struct in6_addr *gw; struct fib6_nh *match; }; /* determine if fib6_nh has given device and gateway */ static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_match_arg *arg = _arg; if (arg->dev != nh->fib_nh_dev || (arg->gw && !nh->fib_nh_gw_family) || (!arg->gw && nh->fib_nh_gw_family) || (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) return 0; arg->match = nh; /* found a match, break the loop */ return 1; } static void rt6_update_exception_stamp_rt(struct rt6_info *rt) { struct fib6_info *from; struct fib6_nh *fib6_nh; rcu_read_lock(); from = rcu_dereference(rt->from); if (!from || !(rt->rt6i_flags & RTF_CACHE)) goto unlock; if (from->nh) { struct fib6_nh_match_arg arg = { .dev = rt->dst.dev, .gw = &rt->rt6i_gateway, }; nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); if (!arg.match) goto unlock; fib6_nh = arg.match; } else { fib6_nh = from->fib6_nh; } fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); unlock: rcu_read_unlock(); } static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, struct rt6_info *rt, int mtu) { /* If the new MTU is lower than the route PMTU, this new MTU will be the * lowest MTU in the path: always allow updating the route PMTU to * reflect PMTU decreases. * * If the new MTU is higher, and the route PMTU is equal to the local * MTU, this means the old MTU is the lowest in the path, so allow * updating it: if other nodes now have lower MTUs, PMTU discovery will * handle this. */ if (dst_mtu(&rt->dst) >= mtu) return true; if (dst_mtu(&rt->dst) == idev->cnf.mtu6) return true; return false; } static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, const struct fib6_nh *nh, int mtu) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int i; bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (!bucket) return; for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { struct rt6_info *entry = rt6_ex->rt6i; /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected * route), the metrics of its rt->from have already * been updated. */ if (dst_metric_raw(&entry->dst, RTAX_MTU) && rt6_mtu_change_route_allowed(idev, entry, mtu)) dst_metric_set(&entry->dst, RTAX_MTU, mtu); } bucket++; } } #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, const struct in6_addr *gateway) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (bucket) { for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { struct rt6_info *entry = rt6_ex->rt6i; if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == RTF_CACHE_GATEWAY && ipv6_addr_equal(gateway, &entry->rt6i_gateway)) { rt6_remove_exception(bucket, rt6_ex); } } bucket++; } } spin_unlock_bh(&rt6_exception_lock); } static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, struct rt6_exception *rt6_ex, struct fib6_gc_args *gc_args, unsigned long now) { struct rt6_info *rt = rt6_ex->rt6i; /* we are pruning and obsoleting aged-out and non gateway exceptions * even if others have still references to them, so that on next * dst_check() such references can be dropped. * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when * expired, independently from their aging, as per RFC 8201 section 4 */ if (!(rt->rt6i_flags & RTF_EXPIRES)) { if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { RT6_TRACE("aging clone %p\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } } else if (time_after(jiffies, rt->dst.expires)) { RT6_TRACE("purging expired route %p\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } if (rt->rt6i_flags & RTF_GATEWAY) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); if (!(neigh && (neigh->flags & NTF_ROUTER))) { RT6_TRACE("purging route %p via non-router but gateway\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } } gc_args->more++; } static void fib6_nh_age_exceptions(const struct fib6_nh *nh, struct fib6_gc_args *gc_args, unsigned long now) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return; rcu_read_lock_bh(); spin_lock(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (bucket) { for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { rt6_age_examine_exception(bucket, rt6_ex, gc_args, now); } bucket++; } } spin_unlock(&rt6_exception_lock); rcu_read_unlock_bh(); } struct fib6_nh_age_excptn_arg { struct fib6_gc_args *gc_args; unsigned long now; }; static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) { struct fib6_nh_age_excptn_arg *arg = _arg; fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); return 0; } void rt6_age_exceptions(struct fib6_info *f6i, struct fib6_gc_args *gc_args, unsigned long now) { if (f6i->nh) { struct fib6_nh_age_excptn_arg arg = { .gc_args = gc_args, .now = now }; nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, &arg); } else { fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); } } /* must be called with rcu lock held */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict) { struct fib6_node *fn, *saved_fn; fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); saved_fn = fn; redo_rt6_select: rt6_select(net, fn, oif, res, strict); if (res->f6i == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto redo_rt6_select; else if (strict & RT6_LOOKUP_F_REACHABLE) { /* also consider unreachable route */ strict &= ~RT6_LOOKUP_F_REACHABLE; fn = saved_fn; goto redo_rt6_select; } } trace_fib6_table_lookup(net, res, table, fl6); return 0; } struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct fib6_result res = {}; struct rt6_info *rt = NULL; int strict = 0; WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && !rcu_read_lock_held()); strict |= flags & RT6_LOOKUP_F_IFACE; strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; if (net->ipv6.devconf_all->forwarding == 0) strict |= RT6_LOOKUP_F_REACHABLE; rcu_read_lock(); fib6_table_lookup(net, table, oif, fl6, &res, strict); if (res.f6i == net->ipv6.fib6_null_entry) goto out; fib6_select_path(net, &res, fl6, oif, false, skb, strict); /*Search through exception table */ rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); if (rt) { goto out; } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && !res.nh->fib_nh_gw_family)) { /* Create a RTF_CACHE clone which will not be * owned by the fib6 tree. It is for the special case where * the daddr in the skb during the neighbor look-up is different * from the fl6->daddr used to look-up route here. */ rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); if (rt) { /* 1 refcnt is taken during ip6_rt_cache_alloc(). * As rt6_uncached_list_add() does not consume refcnt, * this refcnt is always returned to the caller even * if caller sets RT6_LOOKUP_F_DST_NOREF flag. */ rt6_uncached_list_add(rt); rcu_read_unlock(); return rt; } } else { /* Get a percpu copy */ local_bh_disable(); rt = rt6_get_pcpu_route(&res); if (!rt) rt = rt6_make_pcpu_route(net, &res); local_bh_enable(); } out: if (!rt) rt = net->ipv6.ip6_null_entry; if (!(flags & RT6_LOOKUP_F_DST_NOREF)) ip6_hold_safe(net, &rt); rcu_read_unlock(); return rt; } EXPORT_SYMBOL_GPL(ip6_pol_route); INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); } struct dst_entry *ip6_route_input_lookup(struct net *net, struct net_device *dev, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) flags |= RT6_LOOKUP_F_IFACE; return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); } EXPORT_SYMBOL_GPL(ip6_route_input_lookup); static void ip6_multipath_l3_keys(const struct sk_buff *skb, struct flow_keys *keys, struct flow_keys *flkeys) { const struct ipv6hdr *outer_iph = ipv6_hdr(skb); const struct ipv6hdr *key_iph = outer_iph; struct flow_keys *_flkeys = flkeys; const struct ipv6hdr *inner_iph; const struct icmp6hdr *icmph; struct ipv6hdr _inner_iph; struct icmp6hdr _icmph; if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) goto out; icmph = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_icmph), &_icmph); if (!icmph) goto out; if (!icmpv6_is_err(icmph->icmp6_type)) goto out; inner_iph = skb_header_pointer(skb, skb_transport_offset(skb) + sizeof(*icmph), sizeof(_inner_iph), &_inner_iph); if (!inner_iph) goto out; key_iph = inner_iph; _flkeys = NULL; out: if (_flkeys) { keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; keys->tags.flow_label = _flkeys->tags.flow_label; keys->basic.ip_proto = _flkeys->basic.ip_proto; } else { keys->addrs.v6addrs.src = key_iph->saddr; keys->addrs.v6addrs.dst = key_iph->daddr; keys->tags.flow_label = ip6_flowlabel(key_iph); keys->basic.ip_proto = key_iph->nexthdr; } } static u32 rt6_multipath_custom_hash_outer(const struct net *net, const struct sk_buff *skb, bool *p_has_inner) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys keys, hash_keys; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) hash_keys.basic.ip_proto = keys.basic.ip_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) hash_keys.tags.flow_label = keys.tags.flow_label; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) hash_keys.ports.src = keys.ports.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) hash_keys.ports.dst = keys.ports.dst; *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); return flow_hash_from_keys(&hash_keys); } static u32 rt6_multipath_custom_hash_inner(const struct net *net, const struct sk_buff *skb, bool has_inner) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys keys, hash_keys; /* We assume the packet carries an encapsulation, but if none was * encountered during dissection of the outer flow, then there is no * point in calling the flow dissector again. */ if (!has_inner) return 0; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); skb_flow_dissect_flow_keys(skb, &keys, 0); if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) return 0; if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) hash_keys.tags.flow_label = keys.tags.flow_label; } if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) hash_keys.basic.ip_proto = keys.basic.ip_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) hash_keys.ports.src = keys.ports.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) hash_keys.ports.dst = keys.ports.dst; return flow_hash_from_keys(&hash_keys); } static u32 rt6_multipath_custom_hash_skb(const struct net *net, const struct sk_buff *skb) { u32 mhash, mhash_inner; bool has_inner = true; mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); return jhash_2words(mhash, mhash_inner, 0); } static u32 rt6_multipath_custom_hash_fl6(const struct net *net, const struct flowi6 *fl6) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys hash_keys; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) hash_keys.addrs.v6addrs.src = fl6->saddr; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) hash_keys.addrs.v6addrs.dst = fl6->daddr; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) hash_keys.basic.ip_proto = fl6->flowi6_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) hash_keys.ports.src = fl6->fl6_sport; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) hash_keys.ports.dst = fl6->fl6_dport; return flow_hash_from_keys(&hash_keys); } /* if skb is set it will be used and fl6 can be NULL */ u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, struct flow_keys *flkeys) { struct flow_keys hash_keys; u32 mhash = 0; switch (ip6_multipath_hash_policy(net)) { case 0: memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (skb) { ip6_multipath_l3_keys(skb, &hash_keys, flkeys); } else { hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 1: if (skb) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; struct flow_keys keys; /* short-circuit if we already have L4 hash present */ if (skb->l4_hash) return skb_get_hash_raw(skb) >> 1; memset(&hash_keys, 0, sizeof(hash_keys)); if (!flkeys) { skb_flow_dissect_flow_keys(skb, &keys, flag); flkeys = &keys; } hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; hash_keys.ports.src = flkeys->ports.src; hash_keys.ports.dst = flkeys->ports.dst; hash_keys.basic.ip_proto = flkeys->basic.ip_proto; } else { memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.ports.src = fl6->fl6_sport; hash_keys.ports.dst = fl6->fl6_dport; hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 2: memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (skb) { struct flow_keys keys; if (!flkeys) { skb_flow_dissect_flow_keys(skb, &keys, 0); flkeys = &keys; } /* Inner can be v4 or v6 */ if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; hash_keys.tags.flow_label = flkeys->tags.flow_label; hash_keys.basic.ip_proto = flkeys->basic.ip_proto; } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; ip6_multipath_l3_keys(skb, &hash_keys, flkeys); } } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 3: if (skb) mhash = rt6_multipath_custom_hash_skb(net, skb); else mhash = rt6_multipath_custom_hash_fl6(net, fl6); break; } return mhash >> 1; } /* Called with rcu held */ void ip6_route_input(struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct net *net = dev_net(skb->dev); int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; struct ip_tunnel_info *tun_info; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_mark = skb->mark, .flowi6_proto = iph->nexthdr, }; struct flow_keys *flkeys = NULL, _flkeys; tun_info = skb_tunnel_info(skb); if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) flkeys = &_flkeys; if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); skb_dst_drop(skb); skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags)); } INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); } static struct dst_entry *ip6_route_output_flags_noref(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags) { bool any_src; if (ipv6_addr_type(&fl6->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { struct dst_entry *dst; /* This function does not take refcnt on the dst */ dst = l3mdev_link_scope_lookup(net, fl6); if (dst) return dst; } fl6->flowi6_iif = LOOPBACK_IFINDEX; flags |= RT6_LOOKUP_F_DST_NOREF; any_src = ipv6_addr_any(&fl6->saddr); if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || (fl6->flowi6_oif && any_src)) flags |= RT6_LOOKUP_F_IFACE; if (!any_src) flags |= RT6_LOOKUP_F_HAS_SADDR; else if (sk) flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); } struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags) { struct dst_entry *dst; struct rt6_info *rt6; rcu_read_lock(); dst = ip6_route_output_flags_noref(net, sk, fl6, flags); rt6 = (struct rt6_info *)dst; /* For dst cached in uncached_list, refcnt is already taken. */ if (list_empty(&rt6->dst.rt_uncached) && !dst_hold_safe(dst)) { dst = &net->ipv6.ip6_null_entry->dst; dst_hold(dst); } rcu_read_unlock(); return dst; } EXPORT_SYMBOL_GPL(ip6_route_output_flags); struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) { struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; struct net_device *loopback_dev = net->loopback_dev; struct dst_entry *new = NULL; rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, DST_OBSOLETE_DEAD, 0); if (rt) { rt6_info_init(rt); atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); new = &rt->dst; new->__use = 1; new->input = dst_discard; new->output = dst_discard_out; dst_copy_metrics(new, &ort->dst); rt->rt6i_idev = in6_dev_get(loopback_dev); rt->rt6i_gateway = ort->rt6i_gateway; rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); #ifdef CONFIG_IPV6_SUBTREES memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); #endif } dst_release(dst_orig); return new ? new : ERR_PTR(-ENOMEM); } /* * Destination cache support functions */ static bool fib6_check(struct fib6_info *f6i, u32 cookie) { u32 rt_cookie = 0; if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) return false; if (fib6_check_expired(f6i)) return false; return true; } static struct dst_entry *rt6_check(struct rt6_info *rt, struct fib6_info *from, u32 cookie) { u32 rt_cookie = 0; if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || rt_cookie != cookie) return NULL; if (rt6_check_expired(rt)) return NULL; return &rt->dst; } static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, struct fib6_info *from, u32 cookie) { if (!__rt6_check_expired(rt) && rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && fib6_check(from, cookie)) return &rt->dst; else return NULL; } INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) { struct dst_entry *dst_ret; struct fib6_info *from; struct rt6_info *rt; rt = container_of(dst, struct rt6_info, dst); if (rt->sernum) return rt6_is_valid(rt) ? dst : NULL; rcu_read_lock(); /* All IPV6 dsts are created with ->obsolete set to the value * DST_OBSOLETE_FORCE_CHK which forces validation calls down * into this function always. */ from = rcu_dereference(rt->from); if (from && (rt->rt6i_flags & RTF_PCPU || unlikely(!list_empty(&rt->dst.rt_uncached)))) dst_ret = rt6_dst_from_check(rt, from, cookie); else dst_ret = rt6_check(rt, from, cookie); rcu_read_unlock(); return dst_ret; } EXPORT_INDIRECT_CALLABLE(ip6_dst_check); static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) { struct rt6_info *rt = (struct rt6_info *) dst; if (rt) { if (rt->rt6i_flags & RTF_CACHE) { rcu_read_lock(); if (rt6_check_expired(rt)) { rt6_remove_exception_rt(rt); dst = NULL; } rcu_read_unlock(); } else { dst_release(dst); dst = NULL; } } return dst; } static void ip6_link_failure(struct sk_buff *skb) { struct rt6_info *rt; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); rt = (struct rt6_info *) skb_dst(skb); if (rt) { rcu_read_lock(); if (rt->rt6i_flags & RTF_CACHE) { rt6_remove_exception_rt(rt); } else { struct fib6_info *from; struct fib6_node *fn; from = rcu_dereference(rt->from); if (from) { fn = rcu_dereference(from->fib6_node); if (fn && (rt->rt6i_flags & RTF_DEFAULT)) WRITE_ONCE(fn->fn_sernum, -1); } } rcu_read_unlock(); } } static void rt6_update_expires(struct rt6_info *rt0, int timeout) { if (!(rt0->rt6i_flags & RTF_EXPIRES)) { struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt0->from); if (from) rt0->dst.expires = from->expires; rcu_read_unlock(); } dst_set_expires(&rt0->dst, timeout); rt0->rt6i_flags |= RTF_EXPIRES; } static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) { struct net *net = dev_net(rt->dst.dev); dst_metric_set(&rt->dst, RTAX_MTU, mtu); rt->rt6i_flags |= RTF_MODIFIED; rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); } static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) { return !(rt->rt6i_flags & RTF_CACHE) && (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); } static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, const struct ipv6hdr *iph, u32 mtu, bool confirm_neigh) { const struct in6_addr *daddr, *saddr; struct rt6_info *rt6 = (struct rt6_info *)dst; /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. * [see also comment in rt6_mtu_change_route()] */ if (iph) { daddr = &iph->daddr; saddr = &iph->saddr; } else if (sk) { daddr = &sk->sk_v6_daddr; saddr = &inet6_sk(sk)->saddr; } else { daddr = NULL; saddr = NULL; } if (confirm_neigh) dst_confirm_neigh(dst, daddr); if (mtu < IPV6_MIN_MTU) return; if (mtu >= dst_mtu(dst)) return; if (!rt6_cache_allowed_for_pmtu(rt6)) { rt6_do_update_pmtu(rt6, mtu); /* update rt6_ex->stamp for cache */ if (rt6->rt6i_flags & RTF_CACHE) rt6_update_exception_stamp_rt(rt6); } else if (daddr) { struct fib6_result res = {}; struct rt6_info *nrt6; rcu_read_lock(); res.f6i = rcu_dereference(rt6->from); if (!res.f6i) goto out_unlock; res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; if (res.f6i->nh) { struct fib6_nh_match_arg arg = { .dev = dst->dev, .gw = &rt6->rt6i_gateway, }; nexthop_for_each_fib6_nh(res.f6i->nh, fib6_nh_find_match, &arg); /* fib6_info uses a nexthop that does not have fib6_nh * using the dst->dev + gw. Should be impossible. */ if (!arg.match) goto out_unlock; res.nh = arg.match; } else { res.nh = res.f6i->fib6_nh; } nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); if (nrt6) { rt6_do_update_pmtu(nrt6, mtu); if (rt6_insert_exception(nrt6, &res)) dst_release_immediate(&nrt6->dst); } out_unlock: rcu_read_unlock(); } } static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh) { __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, confirm_neigh); } void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, int oif, u32 mark, kuid_t uid) { const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_oif = oif, .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_uid = uid, }; dst = ip6_route_output(net, NULL, &fl6); if (!dst->error) __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); dst_release(dst); } EXPORT_SYMBOL_GPL(ip6_update_pmtu); void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) { int oif = sk->sk_bound_dev_if; struct dst_entry *dst; if (!oif && skb->dev) oif = l3mdev_master_ifindex(skb->dev); ip6_update_pmtu(skb, sock_net(sk), mtu, oif, READ_ONCE(sk->sk_mark), sk->sk_uid); dst = __sk_dst_get(sk); if (!dst || !dst->obsolete || dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) return; bh_lock_sock(sk); if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) ip6_datagram_dst_update(sk, false); bh_unlock_sock(sk); } EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { #ifdef CONFIG_IPV6_SUBTREES struct ipv6_pinfo *np = inet6_sk(sk); #endif ip6_dst_store(sk, dst, ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? &sk->sk_v6_daddr : NULL, #ifdef CONFIG_IPV6_SUBTREES ipv6_addr_equal(&fl6->saddr, &np->saddr) ? &np->saddr : #endif NULL); } static bool ip6_redirect_nh_match(const struct fib6_result *res, struct flowi6 *fl6, const struct in6_addr *gw, struct rt6_info **ret) { const struct fib6_nh *nh = res->nh; if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || fl6->flowi6_oif != nh->fib_nh_dev->ifindex) return false; /* rt_cache's gateway might be different from its 'parent' * in the case of an ip redirect. * So we keep searching in the exception table if the gateway * is different. */ if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { struct rt6_info *rt_cache; rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); if (rt_cache && ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { *ret = rt_cache; return true; } return false; } return true; } struct fib6_nh_rd_arg { struct fib6_result *res; struct flowi6 *fl6; const struct in6_addr *gw; struct rt6_info **ret; }; static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_rd_arg *arg = _arg; arg->res->nh = nh; return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); } /* Handle redirects */ struct ip6rd_flowi { struct flowi6 fl6; struct in6_addr gateway; }; INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; struct rt6_info *ret = NULL; struct fib6_result res = {}; struct fib6_nh_rd_arg arg = { .res = &res, .fl6 = fl6, .gw = &rdfl->gateway, .ret = &ret }; struct fib6_info *rt; struct fib6_node *fn; /* Get the "current" route for this destination and * check if the redirect has come from appropriate router. * * RFC 4861 specifies that redirects should only be * accepted if they come from the nexthop to the target. * Due to the way the routes are chosen, this notion * is a bit fuzzy and one might need to check all possible * routes. */ rcu_read_lock(); fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); restart: for_each_fib6_node_rt_rcu(fn) { res.f6i = rt; if (fib6_check_expired(rt)) continue; if (rt->fib6_flags & RTF_REJECT) break; if (unlikely(rt->nh)) { if (nexthop_is_blackhole(rt->nh)) continue; /* on match, res->nh is filled in and potentially ret */ if (nexthop_for_each_fib6_nh(rt->nh, fib6_nh_redirect_match, &arg)) goto out; } else { res.nh = rt->fib6_nh; if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, &ret)) goto out; } } if (!rt) rt = net->ipv6.fib6_null_entry; else if (rt->fib6_flags & RTF_REJECT) { ret = net->ipv6.ip6_null_entry; goto out; } if (rt == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto restart; } res.f6i = rt; res.nh = rt->fib6_nh; out: if (ret) { ip6_hold_safe(net, &ret); } else { res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; ret = ip6_create_rt_rcu(&res); } rcu_read_unlock(); trace_fib6_table_lookup(net, &res, table, fl6); return ret; }; static struct dst_entry *ip6_route_redirect(struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, const struct in6_addr *gateway) { int flags = RT6_LOOKUP_F_HAS_SADDR; struct ip6rd_flowi rdfl; rdfl.fl6 = *fl6; rdfl.gateway = *gateway; return fib6_rule_lookup(net, &rdfl.fl6, skb, flags, __ip6_route_redirect); } void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, kuid_t uid) { const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_oif = oif, .flowi6_mark = mark, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_uid = uid, }; dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); rt6_do_redirect(dst, NULL, skb); dst_release(dst); } EXPORT_SYMBOL_GPL(ip6_redirect); void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) { const struct ipv6hdr *iph = ipv6_hdr(skb); const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_oif = oif, .daddr = msg->dest, .saddr = iph->daddr, .flowi6_uid = sock_net_uid(net, NULL), }; dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); rt6_do_redirect(dst, NULL, skb); dst_release(dst); } void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) { ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, READ_ONCE(sk->sk_mark), sk->sk_uid); } EXPORT_SYMBOL_GPL(ip6_sk_redirect); static unsigned int ip6_default_advmss(const struct dst_entry *dst) { struct net_device *dev = dst->dev; unsigned int mtu = dst_mtu(dst); struct net *net = dev_net(dev); mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) mtu = net->ipv6.sysctl.ip6_rt_min_advmss; /* * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. * IPV6_MAXPLEN is also valid and means: "any MSS, * rely only on pmtu discovery" */ if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) mtu = IPV6_MAXPLEN; return mtu; } INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) { return ip6_dst_mtu_maybe_forward(dst, false); } EXPORT_INDIRECT_CALLABLE(ip6_mtu); /* MTU selection: * 1. mtu on route is locked - use it * 2. mtu from nexthop exception * 3. mtu from egress device * * based on ip6_dst_mtu_forward and exception logic of * rt6_find_cached_rt; called with rcu_read_lock */ u32 ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { const struct fib6_nh *nh = res->nh; struct fib6_info *f6i = res->f6i; struct inet6_dev *idev; struct rt6_info *rt; u32 mtu = 0; if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { mtu = f6i->fib6_pmtu; if (mtu) goto out; } rt = rt6_find_cached_rt(res, daddr, saddr); if (unlikely(rt)) { mtu = dst_metric_raw(&rt->dst, RTAX_MTU); } else { struct net_device *dev = nh->fib_nh_dev; mtu = IPV6_MIN_MTU; idev = __in6_dev_get(dev); if (idev && idev->cnf.mtu6 > mtu) mtu = idev->cnf.mtu6; } mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); out: return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); } struct dst_entry *icmp6_dst_alloc(struct net_device *dev, struct flowi6 *fl6) { struct dst_entry *dst; struct rt6_info *rt; struct inet6_dev *idev = in6_dev_get(dev); struct net *net = dev_net(dev); if (unlikely(!idev)) return ERR_PTR(-ENODEV); rt = ip6_dst_alloc(net, dev, 0); if (unlikely(!rt)) { in6_dev_put(idev); dst = ERR_PTR(-ENOMEM); goto out; } rt->dst.input = ip6_input; rt->dst.output = ip6_output; rt->rt6i_gateway = fl6->daddr; rt->rt6i_dst.addr = fl6->daddr; rt->rt6i_dst.plen = 128; rt->rt6i_idev = idev; dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); /* Add this dst into uncached_list so that rt6_disable_ip() can * do proper release of the net_device */ rt6_uncached_list_add(rt); dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); out: return dst; } static void ip6_dst_gc(struct dst_ops *ops) { struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; unsigned int val; int entries; if (time_after(rt_last_gc + rt_min_interval, jiffies)) goto out; fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true); entries = dst_entries_get_slow(ops); if (entries < ops->gc_thresh) atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1); out: val = atomic_read(&net->ipv6.ip6_rt_gc_expire); atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity)); } static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, const struct in6_addr *gw_addr, u32 tbid, int flags, struct fib6_result *res) { struct flowi6 fl6 = { .flowi6_oif = cfg->fc_ifindex, .daddr = *gw_addr, .saddr = cfg->fc_prefsrc, }; struct fib6_table *table; int err; table = fib6_get_table(net, tbid); if (!table) return -EINVAL; if (!ipv6_addr_any(&cfg->fc_prefsrc)) flags |= RT6_LOOKUP_F_HAS_SADDR; flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); if (!err && res->f6i != net->ipv6.fib6_null_entry) fib6_select_path(net, res, &fl6, cfg->fc_ifindex, cfg->fc_ifindex != 0, NULL, flags); return err; } static int ip6_route_check_nh_onlink(struct net *net, struct fib6_config *cfg, const struct net_device *dev, struct netlink_ext_ack *extack) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; const struct in6_addr *gw_addr = &cfg->fc_gateway; struct fib6_result res = {}; int err; err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); if (!err && !(res.fib6_flags & RTF_REJECT) && /* ignore match if it is the default route */ !ipv6_addr_any(&res.f6i->fib6_dst.addr) && (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { NL_SET_ERR_MSG(extack, "Nexthop has invalid gateway or device mismatch"); err = -EINVAL; } return err; } static int ip6_route_check_nh(struct net *net, struct fib6_config *cfg, struct net_device **_dev, netdevice_tracker *dev_tracker, struct inet6_dev **idev) { const struct in6_addr *gw_addr = &cfg->fc_gateway; struct net_device *dev = _dev ? *_dev : NULL; int flags = RT6_LOOKUP_F_IFACE; struct fib6_result res = {}; int err = -EHOSTUNREACH; if (cfg->fc_table) { err = ip6_nh_lookup_table(net, cfg, gw_addr, cfg->fc_table, flags, &res); /* gw_addr can not require a gateway or resolve to a reject * route. If a device is given, it must match the result. */ if (err || res.fib6_flags & RTF_REJECT || res.nh->fib_nh_gw_family || (dev && dev != res.nh->fib_nh_dev)) err = -EHOSTUNREACH; } if (err < 0) { struct flowi6 fl6 = { .flowi6_oif = cfg->fc_ifindex, .daddr = *gw_addr, }; err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); if (err || res.fib6_flags & RTF_REJECT || res.nh->fib_nh_gw_family) err = -EHOSTUNREACH; if (err) return err; fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, cfg->fc_ifindex != 0, NULL, flags); } err = 0; if (dev) { if (dev != res.nh->fib_nh_dev) err = -EHOSTUNREACH; } else { *_dev = dev = res.nh->fib_nh_dev; netdev_hold(dev, dev_tracker, GFP_ATOMIC); *idev = in6_dev_get(dev); } return err; } static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, struct net_device **_dev, netdevice_tracker *dev_tracker, struct inet6_dev **idev, struct netlink_ext_ack *extack) { const struct in6_addr *gw_addr = &cfg->fc_gateway; int gwa_type = ipv6_addr_type(gw_addr); bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; const struct net_device *dev = *_dev; bool need_addr_check = !dev; int err = -EINVAL; /* if gw_addr is local we will fail to detect this in case * address is still TENTATIVE (DAD in progress). rt6_lookup() * will return already-added prefix route via interface that * prefix route was assigned to, which might be non-loopback. */ if (dev && ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); goto out; } if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { /* IPv6 strictly inhibits using not link-local * addresses as nexthop address. * Otherwise, router will not able to send redirects. * It is very good, but in some (rare!) circumstances * (SIT, PtP, NBMA NOARP links) it is handy to allow * some exceptions. --ANK * We allow IPv4-mapped nexthops to support RFC4798-type * addressing */ if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { NL_SET_ERR_MSG(extack, "Invalid gateway address"); goto out; } rcu_read_lock(); if (cfg->fc_flags & RTNH_F_ONLINK) err = ip6_route_check_nh_onlink(net, cfg, dev, extack); else err = ip6_route_check_nh(net, cfg, _dev, dev_tracker, idev); rcu_read_unlock(); if (err) goto out; } /* reload in case device was changed */ dev = *_dev; err = -EINVAL; if (!dev) { NL_SET_ERR_MSG(extack, "Egress device not specified"); goto out; } else if (dev->flags & IFF_LOOPBACK) { NL_SET_ERR_MSG(extack, "Egress device can not be loopback device for this route"); goto out; } /* if we did not check gw_addr above, do so now that the * egress device has been resolved. */ if (need_addr_check && ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); goto out; } err = 0; out: return err; } static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) { if ((flags & RTF_REJECT) || (dev && (dev->flags & IFF_LOOPBACK) && !(addr_type & IPV6_ADDR_LOOPBACK) && !(flags & (RTF_ANYCAST | RTF_LOCAL)))) return true; return false; } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { netdevice_tracker *dev_tracker = &fib6_nh->fib_nh_dev_tracker; struct net_device *dev = NULL; struct inet6_dev *idev = NULL; int addr_type; int err; fib6_nh->fib_nh_family = AF_INET6; #ifdef CONFIG_IPV6_ROUTER_PREF fib6_nh->last_probe = jiffies; #endif if (cfg->fc_is_fdb) { fib6_nh->fib_nh_gw6 = cfg->fc_gateway; fib6_nh->fib_nh_gw_family = AF_INET6; return 0; } err = -ENODEV; if (cfg->fc_ifindex) { dev = netdev_get_by_index(net, cfg->fc_ifindex, dev_tracker, gfp_flags); if (!dev) goto out; idev = in6_dev_get(dev); if (!idev) goto out; } if (cfg->fc_flags & RTNH_F_ONLINK) { if (!dev) { NL_SET_ERR_MSG(extack, "Nexthop device required for onlink"); goto out; } if (!(dev->flags & IFF_UP)) { NL_SET_ERR_MSG(extack, "Nexthop device is not up"); err = -ENETDOWN; goto out; } fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; } fib6_nh->fib_nh_weight = 1; /* We cannot add true routes via loopback here, * they would result in kernel looping; promote them to reject routes */ addr_type = ipv6_addr_type(&cfg->fc_dst); if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { /* hold loopback dev/idev if we haven't done so. */ if (dev != net->loopback_dev) { if (dev) { netdev_put(dev, dev_tracker); in6_dev_put(idev); } dev = net->loopback_dev; netdev_hold(dev, dev_tracker, gfp_flags); idev = in6_dev_get(dev); if (!idev) { err = -ENODEV; goto out; } } goto pcpu_alloc; } if (cfg->fc_flags & RTF_GATEWAY) { err = ip6_validate_gw(net, cfg, &dev, dev_tracker, &idev, extack); if (err) goto out; fib6_nh->fib_nh_gw6 = cfg->fc_gateway; fib6_nh->fib_nh_gw_family = AF_INET6; } err = -ENODEV; if (!dev) goto out; if (idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); err = -EACCES; goto out; } if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { NL_SET_ERR_MSG(extack, "Nexthop device is not up"); err = -ENETDOWN; goto out; } if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && !netif_carrier_ok(dev)) fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, cfg->fc_encap_type, cfg, gfp_flags, extack); if (err) goto out; pcpu_alloc: fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); if (!fib6_nh->rt6i_pcpu) { err = -ENOMEM; goto out; } fib6_nh->fib_nh_dev = dev; fib6_nh->fib_nh_oif = dev->ifindex; err = 0; out: if (idev) in6_dev_put(idev); if (err) { lwtstate_put(fib6_nh->fib_nh_lws); fib6_nh->fib_nh_lws = NULL; netdev_put(dev, dev_tracker); } return err; } void fib6_nh_release(struct fib6_nh *fib6_nh) { struct rt6_exception_bucket *bucket; rcu_read_lock(); fib6_nh_flush_exceptions(fib6_nh, NULL); bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); if (bucket) { rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); kfree(bucket); } rcu_read_unlock(); fib6_nh_release_dsts(fib6_nh); free_percpu(fib6_nh->rt6i_pcpu); fib_nh_common_release(&fib6_nh->nh_common); } void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) { int cpu; if (!fib6_nh->rt6i_pcpu) return; for_each_possible_cpu(cpu) { struct rt6_info *pcpu_rt, **ppcpu_rt; ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); pcpu_rt = xchg(ppcpu_rt, NULL); if (pcpu_rt) { dst_dev_put(&pcpu_rt->dst); dst_release(&pcpu_rt->dst); } } } static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct net *net = cfg->fc_nlinfo.nl_net; struct fib6_info *rt = NULL; struct nexthop *nh = NULL; struct fib6_table *table; struct fib6_nh *fib6_nh; int err = -EINVAL; int addr_type; /* RTF_PCPU is an internal flag; can not be set by userspace */ if (cfg->fc_flags & RTF_PCPU) { NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); goto out; } /* RTF_CACHE is an internal flag; can not be set by userspace */ if (cfg->fc_flags & RTF_CACHE) { NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); goto out; } if (cfg->fc_type > RTN_MAX) { NL_SET_ERR_MSG(extack, "Invalid route type"); goto out; } if (cfg->fc_dst_len > 128) { NL_SET_ERR_MSG(extack, "Invalid prefix length"); goto out; } if (cfg->fc_src_len > 128) { NL_SET_ERR_MSG(extack, "Invalid source address length"); goto out; } #ifndef CONFIG_IPV6_SUBTREES if (cfg->fc_src_len) { NL_SET_ERR_MSG(extack, "Specifying source address requires IPV6_SUBTREES to be enabled"); goto out; } #endif if (cfg->fc_nh_id) { nh = nexthop_find_by_id(net, cfg->fc_nh_id); if (!nh) { NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); goto out; } err = fib6_check_nexthop(nh, cfg, extack); if (err) goto out; } err = -ENOBUFS; if (cfg->fc_nlinfo.nlh && !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { table = fib6_get_table(net, cfg->fc_table); if (!table) { pr_warn("NLM_F_CREATE should be specified when creating new route\n"); table = fib6_new_table(net, cfg->fc_table); } } else { table = fib6_new_table(net, cfg->fc_table); } if (!table) goto out; err = -ENOMEM; rt = fib6_info_alloc(gfp_flags, !nh); if (!rt) goto out; rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, extack); if (IS_ERR(rt->fib6_metrics)) { err = PTR_ERR(rt->fib6_metrics); /* Do not leave garbage there. */ rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; goto out_free; } if (cfg->fc_flags & RTF_ADDRCONF) rt->dst_nocount = true; if (cfg->fc_flags & RTF_EXPIRES) fib6_set_expires_locked(rt, jiffies + clock_t_to_jiffies(cfg->fc_expires)); else fib6_clean_expires_locked(rt); if (cfg->fc_protocol == RTPROT_UNSPEC) cfg->fc_protocol = RTPROT_BOOT; rt->fib6_protocol = cfg->fc_protocol; rt->fib6_table = table; rt->fib6_metric = cfg->fc_metric; rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); rt->fib6_dst.plen = cfg->fc_dst_len; #ifdef CONFIG_IPV6_SUBTREES ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); rt->fib6_src.plen = cfg->fc_src_len; #endif if (nh) { if (rt->fib6_src.plen) { NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); goto out_free; } if (!nexthop_get(nh)) { NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); goto out_free; } rt->nh = nh; fib6_nh = nexthop_fib6_nh(rt->nh); } else { err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); if (err) goto out; fib6_nh = rt->fib6_nh; /* We cannot add true routes via loopback here, they would * result in kernel looping; promote them to reject routes */ addr_type = ipv6_addr_type(&cfg->fc_dst); if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, addr_type)) rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; } if (!ipv6_addr_any(&cfg->fc_prefsrc)) { struct net_device *dev = fib6_nh->fib_nh_dev; if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { NL_SET_ERR_MSG(extack, "Invalid source address"); err = -EINVAL; goto out; } rt->fib6_prefsrc.addr = cfg->fc_prefsrc; rt->fib6_prefsrc.plen = 128; } else rt->fib6_prefsrc.plen = 0; return rt; out: fib6_info_release(rt); return ERR_PTR(err); out_free: ip_fib_metrics_put(rt->fib6_metrics); kfree(rt); return ERR_PTR(err); } int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct fib6_info *rt; int err; rt = ip6_route_info_create(cfg, gfp_flags, extack); if (IS_ERR(rt)) return PTR_ERR(rt); err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); fib6_info_release(rt); return err; } static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) { struct net *net = info->nl_net; struct fib6_table *table; int err; if (rt == net->ipv6.fib6_null_entry) { err = -ENOENT; goto out; } table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); err = fib6_del(rt, info); spin_unlock_bh(&table->tb6_lock); out: fib6_info_release(rt); return err; } int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) { struct nl_info info = { .nl_net = net, .skip_notify = skip_notify }; return __ip6_del_rt(rt, &info); } static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) { struct nl_info *info = &cfg->fc_nlinfo; struct net *net = info->nl_net; struct sk_buff *skb = NULL; struct fib6_table *table; int err = -ENOENT; if (rt == net->ipv6.fib6_null_entry) goto out_put; table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { struct fib6_info *sibling, *next_sibling; struct fib6_node *fn; /* prefer to send a single notification with all hops */ skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (skb) { u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; if (rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, RTM_DELROUTE, info->portid, seq, 0) < 0) { kfree_skb(skb); skb = NULL; } else info->skip_notify = 1; } /* 'rt' points to the first sibling route. If it is not the * leaf, then we do not need to send a notification. Otherwise, * we need to check if the last sibling has a next route or not * and emit a replace or delete notification, respectively. */ info->skip_notify_kernel = 1; fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&table->tb6_lock)); if (rcu_access_pointer(fn->leaf) == rt) { struct fib6_info *last_sibling, *replace_rt; last_sibling = list_last_entry(&rt->fib6_siblings, struct fib6_info, fib6_siblings); replace_rt = rcu_dereference_protected( last_sibling->fib6_next, lockdep_is_held(&table->tb6_lock)); if (replace_rt) call_fib6_entry_notifiers_replace(net, replace_rt); else call_fib6_multipath_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, rt->fib6_nsiblings, NULL); } list_for_each_entry_safe(sibling, next_sibling, &rt->fib6_siblings, fib6_siblings) { err = fib6_del(sibling, info); if (err) goto out_unlock; } } err = fib6_del(rt, info); out_unlock: spin_unlock_bh(&table->tb6_lock); out_put: fib6_info_release(rt); if (skb) { rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); } return err; } static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) { int rc = -ESRCH; if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) goto out; if (cfg->fc_flags & RTF_GATEWAY && !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) goto out; rc = rt6_remove_exception_rt(rt); out: return rc; } static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, struct fib6_nh *nh) { struct fib6_result res = { .f6i = rt, .nh = nh, }; struct rt6_info *rt_cache; rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); if (rt_cache) return __ip6_del_cached_rt(rt_cache, cfg); return 0; } struct fib6_nh_del_cached_rt_arg { struct fib6_config *cfg; struct fib6_info *f6i; }; static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) { struct fib6_nh_del_cached_rt_arg *arg = _arg; int rc; rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); return rc != -ESRCH ? rc : 0; } static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) { struct fib6_nh_del_cached_rt_arg arg = { .cfg = cfg, .f6i = f6i }; return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); } static int ip6_route_del(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_table *table; struct fib6_info *rt; struct fib6_node *fn; int err = -ESRCH; table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); if (!table) { NL_SET_ERR_MSG(extack, "FIB table does not exist"); return err; } rcu_read_lock(); fn = fib6_locate(&table->tb6_root, &cfg->fc_dst, cfg->fc_dst_len, &cfg->fc_src, cfg->fc_src_len, !(cfg->fc_flags & RTF_CACHE)); if (fn) { for_each_fib6_node_rt_rcu(fn) { struct fib6_nh *nh; if (rt->nh && cfg->fc_nh_id && rt->nh->id != cfg->fc_nh_id) continue; if (cfg->fc_flags & RTF_CACHE) { int rc = 0; if (rt->nh) { rc = ip6_del_cached_rt_nh(cfg, rt); } else if (cfg->fc_nh_id) { continue; } else { nh = rt->fib6_nh; rc = ip6_del_cached_rt(cfg, rt, nh); } if (rc != -ESRCH) { rcu_read_unlock(); return rc; } continue; } if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) continue; if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol) continue; if (rt->nh) { if (!fib6_info_hold_safe(rt)) continue; rcu_read_unlock(); return __ip6_del_rt(rt, &cfg->fc_nlinfo); } if (cfg->fc_nh_id) continue; nh = rt->fib6_nh; if (cfg->fc_ifindex && (!nh->fib_nh_dev || nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) continue; if (cfg->fc_flags & RTF_GATEWAY && !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) continue; if (!fib6_info_hold_safe(rt)) continue; rcu_read_unlock(); /* if gateway was specified only delete the one hop */ if (cfg->fc_flags & RTF_GATEWAY) return __ip6_del_rt(rt, &cfg->fc_nlinfo); return __ip6_del_rt_siblings(rt, cfg); } } rcu_read_unlock(); return err; } static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) { struct netevent_redirect netevent; struct rt6_info *rt, *nrt = NULL; struct fib6_result res = {}; struct ndisc_options ndopts; struct inet6_dev *in6_dev; struct neighbour *neigh; struct rd_msg *msg; int optlen, on_link; u8 *lladdr; optlen = skb_tail_pointer(skb) - skb_transport_header(skb); optlen -= sizeof(*msg); if (optlen < 0) { net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); return; } msg = (struct rd_msg *)icmp6_hdr(skb); if (ipv6_addr_is_multicast(&msg->dest)) { net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); return; } on_link = 0; if (ipv6_addr_equal(&msg->dest, &msg->target)) { on_link = 1; } else if (ipv6_addr_type(&msg->target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); return; } in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) return; if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) return; /* RFC2461 8.1: * The IP source address of the Redirect MUST be the same as the current * first-hop router for the specified ICMP Destination Address. */ if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); return; } lladdr = NULL; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, skb->dev); if (!lladdr) { net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); return; } } rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_REJECT) { net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); return; } /* Redirect received -> path was valid. * Look, redirects are sent only in response to data packets, * so that this nexthop apparently is reachable. --ANK */ dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); if (!neigh) return; /* * We have finally decided to accept it. */ ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER)), NDISC_REDIRECT, &ndopts); rcu_read_lock(); res.f6i = rcu_dereference(rt->from); if (!res.f6i) goto out; if (res.f6i->nh) { struct fib6_nh_match_arg arg = { .dev = dst->dev, .gw = &rt->rt6i_gateway, }; nexthop_for_each_fib6_nh(res.f6i->nh, fib6_nh_find_match, &arg); /* fib6_info uses a nexthop that does not have fib6_nh * using the dst->dev. Should be impossible */ if (!arg.match) goto out; res.nh = arg.match; } else { res.nh = res.f6i->fib6_nh; } res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); if (!nrt) goto out; nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; if (on_link) nrt->rt6i_flags &= ~RTF_GATEWAY; nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; /* rt6_insert_exception() will take care of duplicated exceptions */ if (rt6_insert_exception(nrt, &res)) { dst_release_immediate(&nrt->dst); goto out; } netevent.old = &rt->dst; netevent.new = &nrt->dst; netevent.daddr = &msg->dest; netevent.neigh = neigh; call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); out: rcu_read_unlock(); neigh_release(neigh); } #ifdef CONFIG_IPV6_ROUTE_INFO static struct fib6_info *rt6_get_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev) { u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; int ifindex = dev->ifindex; struct fib6_node *fn; struct fib6_info *rt = NULL; struct fib6_table *table; table = fib6_get_table(net, tb_id); if (!table) return NULL; rcu_read_lock(); fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); if (!fn) goto out; for_each_fib6_node_rt_rcu(fn) { /* these routes do not use nexthops */ if (rt->nh) continue; if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) continue; if (!(rt->fib6_flags & RTF_ROUTEINFO) || !rt->fib6_nh->fib_nh_gw_family) continue; if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) continue; if (!fib6_info_hold_safe(rt)) continue; break; } out: rcu_read_unlock(); return rt; } static struct fib6_info *rt6_add_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref) { struct fib6_config cfg = { .fc_metric = IP6_RT_PRIO_USER, .fc_ifindex = dev->ifindex, .fc_dst_len = prefixlen, .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | RTF_UP | RTF_PREF(pref), .fc_protocol = RTPROT_RA, .fc_type = RTN_UNICAST, .fc_nlinfo.portid = 0, .fc_nlinfo.nlh = NULL, .fc_nlinfo.nl_net = net, }; cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; cfg.fc_dst = *prefix; cfg.fc_gateway = *gwaddr; /* We should treat it as a default route if prefix length is 0. */ if (!prefixlen) cfg.fc_flags |= RTF_DEFAULT; ip6_route_add(&cfg, GFP_ATOMIC, NULL); return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); } #endif struct fib6_info *rt6_get_dflt_router(struct net *net, const struct in6_addr *addr, struct net_device *dev) { u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; struct fib6_info *rt; struct fib6_table *table; table = fib6_get_table(net, tb_id); if (!table) return NULL; rcu_read_lock(); for_each_fib6_node_rt_rcu(&table->tb6_root) { struct fib6_nh *nh; /* RA routes do not use nexthops */ if (rt->nh) continue; nh = rt->fib6_nh; if (dev == nh->fib_nh_dev && ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && ipv6_addr_equal(&nh->fib_nh_gw6, addr)) break; } if (rt && !fib6_info_hold_safe(rt)) rt = NULL; rcu_read_unlock(); return rt; } struct fib6_info *rt6_add_dflt_router(struct net *net, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref, u32 defrtr_usr_metric) { struct fib6_config cfg = { .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, .fc_metric = defrtr_usr_metric, .fc_ifindex = dev->ifindex, .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | RTF_UP | RTF_EXPIRES | RTF_PREF(pref), .fc_protocol = RTPROT_RA, .fc_type = RTN_UNICAST, .fc_nlinfo.portid = 0, .fc_nlinfo.nlh = NULL, .fc_nlinfo.nl_net = net, }; cfg.fc_gateway = *gwaddr; if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { struct fib6_table *table; table = fib6_get_table(dev_net(dev), cfg.fc_table); if (table) table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; } return rt6_get_dflt_router(net, gwaddr, dev); } static void __rt6_purge_dflt_routers(struct net *net, struct fib6_table *table) { struct fib6_info *rt; restart: rcu_read_lock(); for_each_fib6_node_rt_rcu(&table->tb6_root) { struct net_device *dev = fib6_info_nh_dev(rt); struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && (!idev || idev->cnf.accept_ra != 2) && fib6_info_hold_safe(rt)) { rcu_read_unlock(); ip6_del_rt(net, rt, false); goto restart; } } rcu_read_unlock(); table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; } void rt6_purge_dflt_routers(struct net *net) { struct fib6_table *table; struct hlist_head *head; unsigned int h; rcu_read_lock(); for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { head = &net->ipv6.fib_table_hash[h]; hlist_for_each_entry_rcu(table, head, tb6_hlist) { if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) __rt6_purge_dflt_routers(net, table); } } rcu_read_unlock(); } static void rtmsg_to_fib6_config(struct net *net, struct in6_rtmsg *rtmsg, struct fib6_config *cfg) { *cfg = (struct fib6_config){ .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? : RT6_TABLE_MAIN, .fc_ifindex = rtmsg->rtmsg_ifindex, .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, .fc_expires = rtmsg->rtmsg_info, .fc_dst_len = rtmsg->rtmsg_dst_len, .fc_src_len = rtmsg->rtmsg_src_len, .fc_flags = rtmsg->rtmsg_flags, .fc_type = rtmsg->rtmsg_type, .fc_nlinfo.nl_net = net, .fc_dst = rtmsg->rtmsg_dst, .fc_src = rtmsg->rtmsg_src, .fc_gateway = rtmsg->rtmsg_gateway, }; } int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) { struct fib6_config cfg; int err; if (cmd != SIOCADDRT && cmd != SIOCDELRT) return -EINVAL; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; rtmsg_to_fib6_config(net, rtmsg, &cfg); rtnl_lock(); switch (cmd) { case SIOCADDRT: err = ip6_route_add(&cfg, GFP_KERNEL, NULL); break; case SIOCDELRT: err = ip6_route_del(&cfg, NULL); break; } rtnl_unlock(); return err; } /* * Drop the packet on the floor */ static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct inet6_dev *idev; SKB_DR(reason); int type; if (netif_is_l3_master(skb->dev) || dst->dev == net->loopback_dev) idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); else idev = ip6_dst_idev(dst); switch (ipstats_mib_noroutes) { case IPSTATS_MIB_INNOROUTES: type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); if (type == IPV6_ADDR_ANY) { SKB_DR_SET(reason, IP_INADDRERRORS); IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); break; } SKB_DR_SET(reason, IP_INNOROUTES); fallthrough; case IPSTATS_MIB_OUTNOROUTES: SKB_DR_OR(reason, IP_OUTNOROUTES); IP6_INC_STATS(net, idev, ipstats_mib_noroutes); break; } /* Start over by dropping the dst for l3mdev case */ if (netif_is_l3_master(skb->dev)) skb_dst_drop(skb); icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); kfree_skb_reason(skb, reason); return 0; } static int ip6_pkt_discard(struct sk_buff *skb) { return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); } static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) { skb->dev = skb_dst(skb)->dev; return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); } static int ip6_pkt_prohibit(struct sk_buff *skb) { return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); } static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) { skb->dev = skb_dst(skb)->dev; return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); } /* * Allocate a dst for local (unicast / anycast) address. */ struct fib6_info *addrconf_f6i_alloc(struct net *net, struct inet6_dev *idev, const struct in6_addr *addr, bool anycast, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct fib6_config cfg = { .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, .fc_ifindex = idev->dev->ifindex, .fc_flags = RTF_UP | RTF_NONEXTHOP, .fc_dst = *addr, .fc_dst_len = 128, .fc_protocol = RTPROT_KERNEL, .fc_nlinfo.nl_net = net, .fc_ignore_dev_down = true, }; struct fib6_info *f6i; if (anycast) { cfg.fc_type = RTN_ANYCAST; cfg.fc_flags |= RTF_ANYCAST; } else { cfg.fc_type = RTN_LOCAL; cfg.fc_flags |= RTF_LOCAL; } f6i = ip6_route_info_create(&cfg, gfp_flags, extack); if (!IS_ERR(f6i)) { f6i->dst_nocount = true; if (!anycast && (net->ipv6.devconf_all->disable_policy || idev->cnf.disable_policy)) f6i->dst_nopolicy = true; } return f6i; } /* remove deleted ip from prefsrc entries */ struct arg_dev_net_ip { struct net *net; struct in6_addr *addr; }; static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) { struct net *net = ((struct arg_dev_net_ip *)arg)->net; struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; if (!rt->nh && rt != net->ipv6.fib6_null_entry && ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr) && !ipv6_chk_addr(net, addr, rt->fib6_nh->fib_nh_dev, 0)) { spin_lock_bh(&rt6_exception_lock); /* remove prefsrc entry */ rt->fib6_prefsrc.plen = 0; spin_unlock_bh(&rt6_exception_lock); } return 0; } void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) { struct net *net = dev_net(ifp->idev->dev); struct arg_dev_net_ip adni = { .net = net, .addr = &ifp->addr, }; fib6_clean_all(net, fib6_remove_prefsrc, &adni); } #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) /* Remove routers and update dst entries when gateway turn into host. */ static int fib6_clean_tohost(struct fib6_info *rt, void *arg) { struct in6_addr *gateway = (struct in6_addr *)arg; struct fib6_nh *nh; /* RA routes do not use nexthops */ if (rt->nh) return 0; nh = rt->fib6_nh; if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) return -1; /* Further clean up cached routes in exception table. * This is needed because cached route may have a different * gateway than its 'parent' in the case of an ip redirect. */ fib6_nh_exceptions_clean_tohost(nh, gateway); return 0; } void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) { fib6_clean_all(net, fib6_clean_tohost, gateway); } struct arg_netdev_event { const struct net_device *dev; union { unsigned char nh_flags; unsigned long event; }; }; static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) { struct fib6_info *iter; struct fib6_node *fn; fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&rt->fib6_table->tb6_lock)); iter = rcu_dereference_protected(fn->leaf, lockdep_is_held(&rt->fib6_table->tb6_lock)); while (iter) { if (iter->fib6_metric == rt->fib6_metric && rt6_qualify_for_ecmp(iter)) return iter; iter = rcu_dereference_protected(iter->fib6_next, lockdep_is_held(&rt->fib6_table->tb6_lock)); } return NULL; } /* only called for fib entries with builtin fib6_nh */ static bool rt6_is_dead(const struct fib6_info *rt) { if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) return true; return false; } static int rt6_multipath_total_weight(const struct fib6_info *rt) { struct fib6_info *iter; int total = 0; if (!rt6_is_dead(rt)) total += rt->fib6_nh->fib_nh_weight; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { if (!rt6_is_dead(iter)) total += iter->fib6_nh->fib_nh_weight; } return total; } static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) { int upper_bound = -1; if (!rt6_is_dead(rt)) { *weight += rt->fib6_nh->fib_nh_weight; upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, total) - 1; } atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); } static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) { struct fib6_info *iter; int weight = 0; rt6_upper_bound_set(rt, &weight, total); list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) rt6_upper_bound_set(iter, &weight, total); } void rt6_multipath_rebalance(struct fib6_info *rt) { struct fib6_info *first; int total; /* In case the entire multipath route was marked for flushing, * then there is no need to rebalance upon the removal of every * sibling route. */ if (!rt->fib6_nsiblings || rt->should_flush) return; /* During lookup routes are evaluated in order, so we need to * make sure upper bounds are assigned from the first sibling * onwards. */ first = rt6_multipath_first_sibling(rt); if (WARN_ON_ONCE(!first)) return; total = rt6_multipath_total_weight(first); rt6_multipath_upper_bound_set(first, total); } static int fib6_ifup(struct fib6_info *rt, void *p_arg) { const struct arg_netdev_event *arg = p_arg; struct net *net = dev_net(arg->dev); if (rt != net->ipv6.fib6_null_entry && !rt->nh && rt->fib6_nh->fib_nh_dev == arg->dev) { rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; fib6_update_sernum_upto_root(net, rt); rt6_multipath_rebalance(rt); } return 0; } void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) { struct arg_netdev_event arg = { .dev = dev, { .nh_flags = nh_flags, }, }; if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) arg.nh_flags |= RTNH_F_LINKDOWN; fib6_clean_all(dev_net(dev), fib6_ifup, &arg); } /* only called for fib entries with inline fib6_nh */ static bool rt6_multipath_uses_dev(const struct fib6_info *rt, const struct net_device *dev) { struct fib6_info *iter; if (rt->fib6_nh->fib_nh_dev == dev) return true; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == dev) return true; return false; } static void rt6_multipath_flush(struct fib6_info *rt) { struct fib6_info *iter; rt->should_flush = 1; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) iter->should_flush = 1; } static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, const struct net_device *down_dev) { struct fib6_info *iter; unsigned int dead = 0; if (rt->fib6_nh->fib_nh_dev == down_dev || rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) dead++; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == down_dev || iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) dead++; return dead; } static void rt6_multipath_nh_flags_set(struct fib6_info *rt, const struct net_device *dev, unsigned char nh_flags) { struct fib6_info *iter; if (rt->fib6_nh->fib_nh_dev == dev) rt->fib6_nh->fib_nh_flags |= nh_flags; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == dev) iter->fib6_nh->fib_nh_flags |= nh_flags; } /* called with write lock held for table with rt */ static int fib6_ifdown(struct fib6_info *rt, void *p_arg) { const struct arg_netdev_event *arg = p_arg; const struct net_device *dev = arg->dev; struct net *net = dev_net(dev); if (rt == net->ipv6.fib6_null_entry || rt->nh) return 0; switch (arg->event) { case NETDEV_UNREGISTER: return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; case NETDEV_DOWN: if (rt->should_flush) return -1; if (!rt->fib6_nsiblings) return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; if (rt6_multipath_uses_dev(rt, dev)) { unsigned int count; count = rt6_multipath_dead_count(rt, dev); if (rt->fib6_nsiblings + 1 == count) { rt6_multipath_flush(rt); return -1; } rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | RTNH_F_LINKDOWN); fib6_update_sernum(net, rt); rt6_multipath_rebalance(rt); } return -2; case NETDEV_CHANGE: if (rt->fib6_nh->fib_nh_dev != dev || rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) break; rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; rt6_multipath_rebalance(rt); break; } return 0; } void rt6_sync_down_dev(struct net_device *dev, unsigned long event) { struct arg_netdev_event arg = { .dev = dev, { .event = event, }, }; struct net *net = dev_net(dev); if (net->ipv6.sysctl.skip_notify_on_dev_down) fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); else fib6_clean_all(net, fib6_ifdown, &arg); } void rt6_disable_ip(struct net_device *dev, unsigned long event) { rt6_sync_down_dev(dev, event); rt6_uncached_list_flush_dev(dev); neigh_ifdown(&nd_tbl, dev); } struct rt6_mtu_change_arg { struct net_device *dev; unsigned int mtu; struct fib6_info *f6i; }; static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) { struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; struct fib6_info *f6i = arg->f6i; /* For administrative MTU increase, there is no way to discover * IPv6 PMTU increase, so PMTU increase should be updated here. * Since RFC 1981 doesn't include administrative MTU increase * update PMTU increase is a MUST. (i.e. jumbo frame) */ if (nh->fib_nh_dev == arg->dev) { struct inet6_dev *idev = __in6_dev_get(arg->dev); u32 mtu = f6i->fib6_pmtu; if (mtu >= arg->mtu || (mtu < arg->mtu && mtu == idev->cnf.mtu6)) fib6_metric_set(f6i, RTAX_MTU, arg->mtu); spin_lock_bh(&rt6_exception_lock); rt6_exceptions_update_pmtu(idev, nh, arg->mtu); spin_unlock_bh(&rt6_exception_lock); } return 0; } static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) { struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; struct inet6_dev *idev; /* In IPv6 pmtu discovery is not optional, so that RTAX_MTU lock cannot disable it. We still use this lock to block changes caused by addrconf/ndisc. */ idev = __in6_dev_get(arg->dev); if (!idev) return 0; if (fib6_metric_locked(f6i, RTAX_MTU)) return 0; arg->f6i = f6i; if (f6i->nh) { /* fib6_nh_mtu_change only returns 0, so this is safe */ return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, arg); } return fib6_nh_mtu_change(f6i->fib6_nh, arg); } void rt6_mtu_change(struct net_device *dev, unsigned int mtu) { struct rt6_mtu_change_arg arg = { .dev = dev, .mtu = mtu, }; fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); } static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, [RTA_OIF] = { .type = NLA_U32 }, [RTA_IIF] = { .type = NLA_U32 }, [RTA_PRIORITY] = { .type = NLA_U32 }, [RTA_METRICS] = { .type = NLA_NESTED }, [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, [RTA_PREF] = { .type = NLA_U8 }, [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, [RTA_ENCAP] = { .type = NLA_NESTED }, [RTA_EXPIRES] = { .type = NLA_U32 }, [RTA_UID] = { .type = NLA_U32 }, [RTA_MARK] = { .type = NLA_U32 }, [RTA_TABLE] = { .type = NLA_U32 }, [RTA_IP_PROTO] = { .type = NLA_U8 }, [RTA_SPORT] = { .type = NLA_U16 }, [RTA_DPORT] = { .type = NLA_U16 }, [RTA_NH_ID] = { .type = NLA_U32 }, }; static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct rtmsg *rtm; struct nlattr *tb[RTA_MAX+1]; unsigned int pref; int err; err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); if (err < 0) goto errout; err = -EINVAL; rtm = nlmsg_data(nlh); if (rtm->rtm_tos) { NL_SET_ERR_MSG(extack, "Invalid dsfield (tos): option not available for IPv6"); goto errout; } *cfg = (struct fib6_config){ .fc_table = rtm->rtm_table, .fc_dst_len = rtm->rtm_dst_len, .fc_src_len = rtm->rtm_src_len, .fc_flags = RTF_UP, .fc_protocol = rtm->rtm_protocol, .fc_type = rtm->rtm_type, .fc_nlinfo.portid = NETLINK_CB(skb).portid, .fc_nlinfo.nlh = nlh, .fc_nlinfo.nl_net = sock_net(skb->sk), }; if (rtm->rtm_type == RTN_UNREACHABLE || rtm->rtm_type == RTN_BLACKHOLE || rtm->rtm_type == RTN_PROHIBIT || rtm->rtm_type == RTN_THROW) cfg->fc_flags |= RTF_REJECT; if (rtm->rtm_type == RTN_LOCAL) cfg->fc_flags |= RTF_LOCAL; if (rtm->rtm_flags & RTM_F_CLONED) cfg->fc_flags |= RTF_CACHE; cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); if (tb[RTA_NH_ID]) { if (tb[RTA_GATEWAY] || tb[RTA_OIF] || tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { NL_SET_ERR_MSG(extack, "Nexthop specification and nexthop id are mutually exclusive"); goto errout; } cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); } if (tb[RTA_GATEWAY]) { cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); cfg->fc_flags |= RTF_GATEWAY; } if (tb[RTA_VIA]) { NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); goto errout; } if (tb[RTA_DST]) { int plen = (rtm->rtm_dst_len + 7) >> 3; if (nla_len(tb[RTA_DST]) < plen) goto errout; nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); } if (tb[RTA_SRC]) { int plen = (rtm->rtm_src_len + 7) >> 3; if (nla_len(tb[RTA_SRC]) < plen) goto errout; nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); } if (tb[RTA_PREFSRC]) cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); if (tb[RTA_OIF]) cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); if (tb[RTA_PRIORITY]) cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); if (tb[RTA_METRICS]) { cfg->fc_mx = nla_data(tb[RTA_METRICS]); cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); } if (tb[RTA_TABLE]) cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); if (tb[RTA_MULTIPATH]) { cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, cfg->fc_mp_len, extack); if (err < 0) goto errout; } if (tb[RTA_PREF]) { pref = nla_get_u8(tb[RTA_PREF]); if (pref != ICMPV6_ROUTER_PREF_LOW && pref != ICMPV6_ROUTER_PREF_HIGH) pref = ICMPV6_ROUTER_PREF_MEDIUM; cfg->fc_flags |= RTF_PREF(pref); } if (tb[RTA_ENCAP]) cfg->fc_encap = tb[RTA_ENCAP]; if (tb[RTA_ENCAP_TYPE]) { cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); if (err < 0) goto errout; } if (tb[RTA_EXPIRES]) { unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); if (addrconf_finite_timeout(timeout)) { cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); cfg->fc_flags |= RTF_EXPIRES; } } err = 0; errout: return err; } struct rt6_nh { struct fib6_info *fib6_info; struct fib6_config r_cfg; struct list_head next; }; static int ip6_route_info_append(struct net *net, struct list_head *rt6_nh_list, struct fib6_info *rt, struct fib6_config *r_cfg) { struct rt6_nh *nh; int err = -EEXIST; list_for_each_entry(nh, rt6_nh_list, next) { /* check if fib6_info already exists */ if (rt6_duplicate_nexthop(nh->fib6_info, rt)) return err; } nh = kzalloc(sizeof(*nh), GFP_KERNEL); if (!nh) return -ENOMEM; nh->fib6_info = rt; memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); list_add_tail(&nh->next, rt6_nh_list); return 0; } static void ip6_route_mpath_notify(struct fib6_info *rt, struct fib6_info *rt_last, struct nl_info *info, __u16 nlflags) { /* if this is an APPEND route, then rt points to the first route * inserted and rt_last points to last route inserted. Userspace * wants a consistent dump of the route which starts at the first * nexthop. Since sibling routes are always added at the end of * the list, find the first sibling of the last route appended */ if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { rt = list_first_entry(&rt_last->fib6_siblings, struct fib6_info, fib6_siblings); } if (rt) inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); } static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) { bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); bool should_notify = false; struct fib6_info *leaf; struct fib6_node *fn; rcu_read_lock(); fn = rcu_dereference(rt->fib6_node); if (!fn) goto out; leaf = rcu_dereference(fn->leaf); if (!leaf) goto out; if (rt == leaf || (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && rt6_qualify_for_ecmp(leaf))) should_notify = true; out: rcu_read_unlock(); return should_notify; } static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla, struct netlink_ext_ack *extack) { if (nla_len(nla) < sizeof(*gw)) { NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY"); return -EINVAL; } *gw = nla_get_in6_addr(nla); return 0; } static int ip6_route_multipath_add(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_info *rt_notif = NULL, *rt_last = NULL; struct nl_info *info = &cfg->fc_nlinfo; struct fib6_config r_cfg; struct rtnexthop *rtnh; struct fib6_info *rt; struct rt6_nh *err_nh; struct rt6_nh *nh, *nh_safe; __u16 nlflags; int remaining; int attrlen; int err = 1; int nhn = 0; int replace = (cfg->fc_nlinfo.nlh && (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); LIST_HEAD(rt6_nh_list); nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) nlflags |= NLM_F_APPEND; remaining = cfg->fc_mp_len; rtnh = (struct rtnexthop *)cfg->fc_mp; /* Parse a Multipath Entry and build a list (rt6_nh_list) of * fib6_info structs per nexthop */ while (rtnh_ok(rtnh, remaining)) { memcpy(&r_cfg, cfg, sizeof(*cfg)); if (rtnh->rtnh_ifindex) r_cfg.fc_ifindex = rtnh->rtnh_ifindex; attrlen = rtnh_attrlen(rtnh); if (attrlen > 0) { struct nlattr *nla, *attrs = rtnh_attrs(rtnh); nla = nla_find(attrs, attrlen, RTA_GATEWAY); if (nla) { err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, extack); if (err) goto cleanup; r_cfg.fc_flags |= RTF_GATEWAY; } r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); /* RTA_ENCAP_TYPE length checked in * lwtunnel_valid_encap_type_attr */ nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); if (nla) r_cfg.fc_encap_type = nla_get_u16(nla); } r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto cleanup; } if (!rt6_qualify_for_ecmp(rt)) { err = -EINVAL; NL_SET_ERR_MSG(extack, "Device only routes can not be added for IPv6 using the multipath API."); fib6_info_release(rt); goto cleanup; } rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; err = ip6_route_info_append(info->nl_net, &rt6_nh_list, rt, &r_cfg); if (err) { fib6_info_release(rt); goto cleanup; } rtnh = rtnh_next(rtnh, &remaining); } if (list_empty(&rt6_nh_list)) { NL_SET_ERR_MSG(extack, "Invalid nexthop configuration - no valid nexthops"); return -EINVAL; } /* for add and replace send one notification with all nexthops. * Skip the notification in fib6_add_rt2node and send one with * the full route when done */ info->skip_notify = 1; /* For add and replace, send one notification with all nexthops. For * append, send one notification with all appended nexthops. */ info->skip_notify_kernel = 1; err_nh = NULL; list_for_each_entry(nh, &rt6_nh_list, next) { err = __ip6_ins_rt(nh->fib6_info, info, extack); fib6_info_release(nh->fib6_info); if (!err) { /* save reference to last route successfully inserted */ rt_last = nh->fib6_info; /* save reference to first route for notification */ if (!rt_notif) rt_notif = nh->fib6_info; } /* nh->fib6_info is used or freed at this point, reset to NULL*/ nh->fib6_info = NULL; if (err) { if (replace && nhn) NL_SET_ERR_MSG_MOD(extack, "multipath route replace failed (check consistency of installed routes)"); err_nh = nh; goto add_errout; } /* Because each route is added like a single route we remove * these flags after the first nexthop: if there is a collision, * we have already failed to add the first nexthop: * fib6_add_rt2node() has rejected it; when replacing, old * nexthops have been replaced by first new, the rest should * be added to it. */ if (cfg->fc_nlinfo.nlh) { cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | NLM_F_REPLACE); cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; } nhn++; } /* An in-kernel notification should only be sent in case the new * multipath route is added as the first route in the node, or if * it was appended to it. We pass 'rt_notif' since it is the first * sibling and might allow us to skip some checks in the replace case. */ if (ip6_route_mpath_should_notify(rt_notif)) { enum fib_event_type fib_event; if (rt_notif->fib6_nsiblings != nhn - 1) fib_event = FIB_EVENT_ENTRY_APPEND; else fib_event = FIB_EVENT_ENTRY_REPLACE; err = call_fib6_multipath_entry_notifiers(info->nl_net, fib_event, rt_notif, nhn - 1, extack); if (err) { /* Delete all the siblings that were just added */ err_nh = NULL; goto add_errout; } } /* success ... tell user about new route */ ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); goto cleanup; add_errout: /* send notification for routes that were added so that * the delete notifications sent by ip6_route_del are * coherent */ if (rt_notif) ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); /* Delete routes that were already added */ list_for_each_entry(nh, &rt6_nh_list, next) { if (err_nh == nh) break; ip6_route_del(&nh->r_cfg, extack); } cleanup: list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { if (nh->fib6_info) fib6_info_release(nh->fib6_info); list_del(&nh->next); kfree(nh); } return err; } static int ip6_route_multipath_del(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_config r_cfg; struct rtnexthop *rtnh; int last_err = 0; int remaining; int attrlen; int err; remaining = cfg->fc_mp_len; rtnh = (struct rtnexthop *)cfg->fc_mp; /* Parse a Multipath Entry */ while (rtnh_ok(rtnh, remaining)) { memcpy(&r_cfg, cfg, sizeof(*cfg)); if (rtnh->rtnh_ifindex) r_cfg.fc_ifindex = rtnh->rtnh_ifindex; attrlen = rtnh_attrlen(rtnh); if (attrlen > 0) { struct nlattr *nla, *attrs = rtnh_attrs(rtnh); nla = nla_find(attrs, attrlen, RTA_GATEWAY); if (nla) { err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, extack); if (err) { last_err = err; goto next_rtnh; } r_cfg.fc_flags |= RTF_GATEWAY; } } err = ip6_route_del(&r_cfg, extack); if (err) last_err = err; next_rtnh: rtnh = rtnh_next(rtnh, &remaining); } return last_err; } static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct fib6_config cfg; int err; err = rtm_to_fib6_config(skb, nlh, &cfg, extack); if (err < 0) return err; if (cfg.fc_nh_id && !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); return -EINVAL; } if (cfg.fc_mp) return ip6_route_multipath_del(&cfg, extack); else { cfg.fc_delete_all_nh = 1; return ip6_route_del(&cfg, extack); } } static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct fib6_config cfg; int err; err = rtm_to_fib6_config(skb, nlh, &cfg, extack); if (err < 0) return err; if (cfg.fc_metric == 0) cfg.fc_metric = IP6_RT_PRIO_USER; if (cfg.fc_mp) return ip6_route_multipath_add(&cfg, extack); else return ip6_route_add(&cfg, GFP_KERNEL, extack); } /* add the overhead of this fib6_nh to nexthop_len */ static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) { int *nexthop_len = arg; *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ + NLA_ALIGN(sizeof(struct rtnexthop)) + nla_total_size(16); /* RTA_GATEWAY */ if (nh->fib_nh_lws) { /* RTA_ENCAP_TYPE */ *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); /* RTA_ENCAP */ *nexthop_len += nla_total_size(2); } return 0; } static size_t rt6_nlmsg_size(struct fib6_info *f6i) { int nexthop_len; if (f6i->nh) { nexthop_len = nla_total_size(4); /* RTA_NH_ID */ nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, &nexthop_len); } else { struct fib6_info *sibling, *next_sibling; struct fib6_nh *nh = f6i->fib6_nh; nexthop_len = 0; if (f6i->fib6_nsiblings) { rt6_nh_nlmsg_size(nh, &nexthop_len); list_for_each_entry_safe(sibling, next_sibling, &f6i->fib6_siblings, fib6_siblings) { rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); } } nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); } return NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(16) /* RTA_SRC */ + nla_total_size(16) /* RTA_DST */ + nla_total_size(16) /* RTA_GATEWAY */ + nla_total_size(16) /* RTA_PREFSRC */ + nla_total_size(4) /* RTA_TABLE */ + nla_total_size(4) /* RTA_IIF */ + nla_total_size(4) /* RTA_OIF */ + nla_total_size(4) /* RTA_PRIORITY */ + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ + nla_total_size(sizeof(struct rta_cacheinfo)) + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ + nla_total_size(1) /* RTA_PREF */ + nexthop_len; } static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, unsigned char *flags) { if (nexthop_is_multipath(nh)) { struct nlattr *mp; mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); if (!mp) goto nla_put_failure; if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) goto nla_put_failure; nla_nest_end(skb, mp); } else { struct fib6_nh *fib6_nh; fib6_nh = nexthop_fib6_nh(nh); if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, flags, false) < 0) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static int rt6_fill_node(struct net *net, struct sk_buff *skb, struct fib6_info *rt, struct dst_entry *dst, struct in6_addr *dest, struct in6_addr *src, int iif, int type, u32 portid, u32 seq, unsigned int flags) { struct rt6_info *rt6 = (struct rt6_info *)dst; struct rt6key *rt6_dst, *rt6_src; u32 *pmetrics, table, rt6_flags; unsigned char nh_flags = 0; struct nlmsghdr *nlh; struct rtmsg *rtm; long expires = 0; nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); if (!nlh) return -EMSGSIZE; if (rt6) { rt6_dst = &rt6->rt6i_dst; rt6_src = &rt6->rt6i_src; rt6_flags = rt6->rt6i_flags; } else { rt6_dst = &rt->fib6_dst; rt6_src = &rt->fib6_src; rt6_flags = rt->fib6_flags; } rtm = nlmsg_data(nlh); rtm->rtm_family = AF_INET6; rtm->rtm_dst_len = rt6_dst->plen; rtm->rtm_src_len = rt6_src->plen; rtm->rtm_tos = 0; if (rt->fib6_table) table = rt->fib6_table->tb6_id; else table = RT6_TABLE_UNSPEC; rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; if (nla_put_u32(skb, RTA_TABLE, table)) goto nla_put_failure; rtm->rtm_type = rt->fib6_type; rtm->rtm_flags = 0; rtm->rtm_scope = RT_SCOPE_UNIVERSE; rtm->rtm_protocol = rt->fib6_protocol; if (rt6_flags & RTF_CACHE) rtm->rtm_flags |= RTM_F_CLONED; if (dest) { if (nla_put_in6_addr(skb, RTA_DST, dest)) goto nla_put_failure; rtm->rtm_dst_len = 128; } else if (rtm->rtm_dst_len) if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) goto nla_put_failure; #ifdef CONFIG_IPV6_SUBTREES if (src) { if (nla_put_in6_addr(skb, RTA_SRC, src)) goto nla_put_failure; rtm->rtm_src_len = 128; } else if (rtm->rtm_src_len && nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) goto nla_put_failure; #endif if (iif) { #ifdef CONFIG_IPV6_MROUTE if (ipv6_addr_is_multicast(&rt6_dst->addr)) { int err = ip6mr_get_route(net, skb, rtm, portid); if (err == 0) return 0; if (err < 0) goto nla_put_failure; } else #endif if (nla_put_u32(skb, RTA_IIF, iif)) goto nla_put_failure; } else if (dest) { struct in6_addr saddr_buf; if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) goto nla_put_failure; } if (rt->fib6_prefsrc.plen) { struct in6_addr saddr_buf; saddr_buf = rt->fib6_prefsrc.addr; if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) goto nla_put_failure; } pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; if (rtnetlink_put_metrics(skb, pmetrics) < 0) goto nla_put_failure; if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) goto nla_put_failure; /* For multipath routes, walk the siblings list and add * each as a nexthop within RTA_MULTIPATH. */ if (rt6) { if (rt6_flags & RTF_GATEWAY && nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) goto nla_put_failure; if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) goto nla_put_failure; if (dst->lwtstate && lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) goto nla_put_failure; } else if (rt->fib6_nsiblings) { struct fib6_info *sibling, *next_sibling; struct nlattr *mp; mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); if (!mp) goto nla_put_failure; if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, rt->fib6_nh->fib_nh_weight, AF_INET6, 0) < 0) goto nla_put_failure; list_for_each_entry_safe(sibling, next_sibling, &rt->fib6_siblings, fib6_siblings) { if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, sibling->fib6_nh->fib_nh_weight, AF_INET6, 0) < 0) goto nla_put_failure; } nla_nest_end(skb, mp); } else if (rt->nh) { if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) goto nla_put_failure; if (nexthop_is_blackhole(rt->nh)) rtm->rtm_type = RTN_BLACKHOLE; if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) && rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) goto nla_put_failure; rtm->rtm_flags |= nh_flags; } else { if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, &nh_flags, false) < 0) goto nla_put_failure; rtm->rtm_flags |= nh_flags; } if (rt6_flags & RTF_EXPIRES) { expires = dst ? dst->expires : rt->expires; expires -= jiffies; } if (!dst) { if (READ_ONCE(rt->offload)) rtm->rtm_flags |= RTM_F_OFFLOAD; if (READ_ONCE(rt->trap)) rtm->rtm_flags |= RTM_F_TRAP; if (READ_ONCE(rt->offload_failed)) rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; } if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) goto nla_put_failure; if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) { const struct net_device *dev = arg; if (nh->fib_nh_dev == dev) return 1; return 0; } static bool fib6_info_uses_dev(const struct fib6_info *f6i, const struct net_device *dev) { if (f6i->nh) { struct net_device *_dev = (struct net_device *)dev; return !!nexthop_for_each_fib6_nh(f6i->nh, fib6_info_nh_uses_dev, _dev); } if (f6i->fib6_nh->fib_nh_dev == dev) return true; if (f6i->fib6_nsiblings) { struct fib6_info *sibling, *next_sibling; list_for_each_entry_safe(sibling, next_sibling, &f6i->fib6_siblings, fib6_siblings) { if (sibling->fib6_nh->fib_nh_dev == dev) return true; } } return false; } struct fib6_nh_exception_dump_walker { struct rt6_rtnl_dump_arg *dump; struct fib6_info *rt; unsigned int flags; unsigned int skip; unsigned int count; }; static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) { struct fib6_nh_exception_dump_walker *w = arg; struct rt6_rtnl_dump_arg *dump = w->dump; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int i, err; bucket = fib6_nh_get_excptn_bucket(nh, NULL); if (!bucket) return 0; for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { if (w->skip) { w->skip--; continue; } /* Expiration of entries doesn't bump sernum, insertion * does. Removal is triggered by insertion, so we can * rely on the fact that if entries change between two * partial dumps, this node is scanned again completely, * see rt6_insert_exception() and fib6_dump_table(). * * Count expired entries we go through as handled * entries that we'll skip next time, in case of partial * node dump. Otherwise, if entries expire meanwhile, * we'll skip the wrong amount. */ if (rt6_check_expired(rt6_ex->rt6i)) { w->count++; continue; } err = rt6_fill_node(dump->net, dump->skb, w->rt, &rt6_ex->rt6i->dst, NULL, NULL, 0, RTM_NEWROUTE, NETLINK_CB(dump->cb->skb).portid, dump->cb->nlh->nlmsg_seq, w->flags); if (err) return err; w->count++; } bucket++; } return 0; } /* Return -1 if done with node, number of handled routes on partial dump */ int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) { struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; struct fib_dump_filter *filter = &arg->filter; unsigned int flags = NLM_F_MULTI; struct net *net = arg->net; int count = 0; if (rt == net->ipv6.fib6_null_entry) return -1; if ((filter->flags & RTM_F_PREFIX) && !(rt->fib6_flags & RTF_PREFIX_RT)) { /* success since this is not a prefix route */ return -1; } if (filter->filter_set && ((filter->rt_type && rt->fib6_type != filter->rt_type) || (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || (filter->protocol && rt->fib6_protocol != filter->protocol))) { return -1; } if (filter->filter_set || !filter->dump_routes || !filter->dump_exceptions) { flags |= NLM_F_DUMP_FILTERED; } if (filter->dump_routes) { if (skip) { skip--; } else { if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, arg->cb->nlh->nlmsg_seq, flags)) { return 0; } count++; } } if (filter->dump_exceptions) { struct fib6_nh_exception_dump_walker w = { .dump = arg, .rt = rt, .flags = flags, .skip = skip, .count = 0 }; int err; rcu_read_lock(); if (rt->nh) { err = nexthop_for_each_fib6_nh(rt->nh, rt6_nh_dump_exceptions, &w); } else { err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); } rcu_read_unlock(); if (err) return count + w.count; } return -1; } static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int i, err; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { NL_SET_ERR_MSG_MOD(extack, "Invalid header for get route request"); return -EINVAL; } if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type) { NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); return -EINVAL; } if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { NL_SET_ERR_MSG_MOD(extack, "Invalid flags for get route request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); if (err) return err; if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); return -EINVAL; } for (i = 0; i <= RTA_MAX; i++) { if (!tb[i]) continue; switch (i) { case RTA_SRC: case RTA_DST: case RTA_IIF: case RTA_OIF: case RTA_MARK: case RTA_UID: case RTA_SPORT: case RTA_DPORT: case RTA_IP_PROTO: break; default: NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); return -EINVAL; } } return 0; } static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nlattr *tb[RTA_MAX+1]; int err, iif = 0, oif = 0; struct fib6_info *from; struct dst_entry *dst; struct rt6_info *rt; struct sk_buff *skb; struct rtmsg *rtm; struct flowi6 fl6 = {}; bool fibmatch; err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) goto errout; err = -EINVAL; rtm = nlmsg_data(nlh); fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); if (tb[RTA_SRC]) { if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) goto errout; fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); } if (tb[RTA_DST]) { if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) goto errout; fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); } if (tb[RTA_IIF]) iif = nla_get_u32(tb[RTA_IIF]); if (tb[RTA_OIF]) oif = nla_get_u32(tb[RTA_OIF]); if (tb[RTA_MARK]) fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); if (tb[RTA_UID]) fl6.flowi6_uid = make_kuid(current_user_ns(), nla_get_u32(tb[RTA_UID])); else fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); if (tb[RTA_SPORT]) fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); if (tb[RTA_DPORT]) fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); if (tb[RTA_IP_PROTO]) { err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], &fl6.flowi6_proto, AF_INET6, extack); if (err) goto errout; } if (iif) { struct net_device *dev; int flags = 0; rcu_read_lock(); dev = dev_get_by_index_rcu(net, iif); if (!dev) { rcu_read_unlock(); err = -ENODEV; goto errout; } fl6.flowi6_iif = iif; if (!ipv6_addr_any(&fl6.saddr)) flags |= RT6_LOOKUP_F_HAS_SADDR; dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); rcu_read_unlock(); } else { fl6.flowi6_oif = oif; dst = ip6_route_output(net, NULL, &fl6); } rt = container_of(dst, struct rt6_info, dst); if (rt->dst.error) { err = rt->dst.error; ip6_rt_put(rt); goto errout; } if (rt == net->ipv6.ip6_null_entry) { err = rt->dst.error; ip6_rt_put(rt); goto errout; } skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) { ip6_rt_put(rt); err = -ENOBUFS; goto errout; } skb_dst_set(skb, &rt->dst); rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { if (fibmatch) err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif, RTM_NEWROUTE, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0); else err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, &fl6.saddr, iif, RTM_NEWROUTE, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0); } else { err = -ENETUNREACH; } rcu_read_unlock(); if (err < 0) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout: return err; } void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int nlm_flags) { struct sk_buff *skb; struct net *net = info->nl_net; u32 seq; int err; err = -ENOBUFS; seq = info->nlh ? info->nlh->nlmsg_seq : 0; skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (!skb) goto errout; err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, event, info->portid, seq, nlm_flags); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info) { u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (!skb) goto errout; err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, bool offload, bool trap, bool offload_failed) { struct sk_buff *skb; int err; if (READ_ONCE(f6i->offload) == offload && READ_ONCE(f6i->trap) == trap && READ_ONCE(f6i->offload_failed) == offload_failed) return; WRITE_ONCE(f6i->offload, offload); WRITE_ONCE(f6i->trap, trap); /* 2 means send notifications only if offload_failed was changed. */ if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && READ_ONCE(f6i->offload_failed) == offload_failed) return; WRITE_ONCE(f6i->offload_failed, offload_failed); if (!rcu_access_pointer(f6i->fib6_node)) /* The route was removed from the tree, do not send * notification. */ return; if (!net->ipv6.sysctl.fib_notify_on_flag_change) return; skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); if (!skb) { err = -ENOBUFS; goto errout; } err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 0, 0); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); return; errout: rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } EXPORT_SYMBOL(fib6_info_hw_flags_set); static int ip6_route_dev_notify(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); if (!(dev->flags & IFF_LOOPBACK)) return NOTIFY_OK; if (event == NETDEV_REGISTER) { net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; net->ipv6.ip6_null_entry->dst.dev = dev; net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES net->ipv6.ip6_prohibit_entry->dst.dev = dev; net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); net->ipv6.ip6_blk_hole_entry->dst.dev = dev; net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); #endif } else if (event == NETDEV_UNREGISTER && dev->reg_state != NETREG_UNREGISTERED) { /* NETDEV_UNREGISTER could be fired for multiple times by * netdev_wait_allrefs(). Make sure we only call this once. */ in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); #endif } return NOTIFY_OK; } /* * /proc */ #ifdef CONFIG_PROC_FS static int rt6_stats_seq_show(struct seq_file *seq, void *v) { struct net *net = (struct net *)seq->private; seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", net->ipv6.rt6_stats->fib_nodes, net->ipv6.rt6_stats->fib_route_nodes, atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), net->ipv6.rt6_stats->fib_rt_entries, net->ipv6.rt6_stats->fib_rt_cache, dst_entries_get_slow(&net->ipv6.ip6_dst_ops), net->ipv6.rt6_stats->fib_discarded_routes); return 0; } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_SYSCTL static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net; int delay; int ret; if (!write) return -EINVAL; net = (struct net *)ctl->extra1; delay = net->ipv6.sysctl.flush_delay; ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (ret) return ret; fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); return 0; } static struct ctl_table ipv6_route_table_template[] = { { .procname = "max_size", .data = &init_net.ipv6.sysctl.ip6_rt_max_size, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "gc_thresh", .data = &ip6_dst_ops_template.gc_thresh, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "flush", .data = &init_net.ipv6.sysctl.flush_delay, .maxlen = sizeof(int), .mode = 0200, .proc_handler = ipv6_sysctl_rtcache_flush }, { .procname = "gc_min_interval", .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_timeout", .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_interval", .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_elasticity", .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "mtu_expires", .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "min_adv_mss", .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "gc_min_interval_ms", .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_ms_jiffies, }, { .procname = "skip_notify_on_dev_down", .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) { struct ctl_table *table; table = kmemdup(ipv6_route_table_template, sizeof(ipv6_route_table_template), GFP_KERNEL); if (table) { table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; table[2].data = &net->ipv6.sysctl.flush_delay; table[2].extra1 = net; table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) table[1].procname = NULL; } return table; } size_t ipv6_route_sysctl_table_size(struct net *net) { /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) return 1; return ARRAY_SIZE(ipv6_route_table_template); } #endif static int __net_init ip6_route_net_init(struct net *net) { int ret = -ENOMEM; memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, sizeof(net->ipv6.ip6_dst_ops)); if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) goto out_ip6_dst_ops; net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); if (!net->ipv6.fib6_null_entry) goto out_ip6_dst_entries; memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, sizeof(*net->ipv6.fib6_null_entry)); net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, sizeof(*net->ipv6.ip6_null_entry), GFP_KERNEL); if (!net->ipv6.ip6_null_entry) goto out_fib6_null_entry; net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_null_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->dst.rt_uncached); #ifdef CONFIG_IPV6_MULTIPLE_TABLES net->ipv6.fib6_has_custom_rules = false; net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, sizeof(*net->ipv6.ip6_prohibit_entry), GFP_KERNEL); if (!net->ipv6.ip6_prohibit_entry) goto out_ip6_null_entry; net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->dst.rt_uncached); net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, sizeof(*net->ipv6.ip6_blk_hole_entry), GFP_KERNEL); if (!net->ipv6.ip6_blk_hole_entry) goto out_ip6_prohibit_entry; net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->dst.rt_uncached); #ifdef CONFIG_IPV6_SUBTREES net->ipv6.fib6_routes_require_src = 0; #endif #endif net->ipv6.sysctl.flush_delay = 0; net->ipv6.sysctl.ip6_rt_max_size = INT_MAX; net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; net->ipv6.sysctl.skip_notify_on_dev_down = 0; atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ); ret = 0; out: return ret; #ifdef CONFIG_IPV6_MULTIPLE_TABLES out_ip6_prohibit_entry: kfree(net->ipv6.ip6_prohibit_entry); out_ip6_null_entry: kfree(net->ipv6.ip6_null_entry); #endif out_fib6_null_entry: kfree(net->ipv6.fib6_null_entry); out_ip6_dst_entries: dst_entries_destroy(&net->ipv6.ip6_dst_ops); out_ip6_dst_ops: goto out; } static void __net_exit ip6_route_net_exit(struct net *net) { kfree(net->ipv6.fib6_null_entry); kfree(net->ipv6.ip6_null_entry); #ifdef CONFIG_IPV6_MULTIPLE_TABLES kfree(net->ipv6.ip6_prohibit_entry); kfree(net->ipv6.ip6_blk_hole_entry); #endif dst_entries_destroy(&net->ipv6.ip6_dst_ops); } static int __net_init ip6_route_net_init_late(struct net *net) { #ifdef CONFIG_PROC_FS if (!proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, sizeof(struct ipv6_route_iter))) return -ENOMEM; if (!proc_create_net_single("rt6_stats", 0444, net->proc_net, rt6_stats_seq_show, NULL)) { remove_proc_entry("ipv6_route", net->proc_net); return -ENOMEM; } #endif return 0; } static void __net_exit ip6_route_net_exit_late(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("ipv6_route", net->proc_net); remove_proc_entry("rt6_stats", net->proc_net); #endif } static struct pernet_operations ip6_route_net_ops = { .init = ip6_route_net_init, .exit = ip6_route_net_exit, }; static int __net_init ipv6_inetpeer_init(struct net *net) { struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); if (!bp) return -ENOMEM; inet_peer_base_init(bp); net->ipv6.peers = bp; return 0; } static void __net_exit ipv6_inetpeer_exit(struct net *net) { struct inet_peer_base *bp = net->ipv6.peers; net->ipv6.peers = NULL; inetpeer_invalidate_tree(bp); kfree(bp); } static struct pernet_operations ipv6_inetpeer_ops = { .init = ipv6_inetpeer_init, .exit = ipv6_inetpeer_exit, }; static struct pernet_operations ip6_route_net_late_ops = { .init = ip6_route_net_init_late, .exit = ip6_route_net_exit_late, }; static struct notifier_block ip6_route_dev_notifier = { .notifier_call = ip6_route_dev_notify, .priority = ADDRCONF_NOTIFY_PRIORITY - 10, }; void __init ip6_route_init_special_entries(void) { /* Registering of the loopback is done before this portion of code, * the loopback reference in rt6_info will not be taken, do it * manually for init_net */ init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); #endif } #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) BTF_ID_LIST(btf_fib6_info_id) BTF_ID(struct, fib6_info) static const struct bpf_iter_seq_info ipv6_route_seq_info = { .seq_ops = &ipv6_route_seq_ops, .init_seq_private = bpf_iter_init_seq_net, .fini_seq_private = bpf_iter_fini_seq_net, .seq_priv_size = sizeof(struct ipv6_route_iter), }; static struct bpf_iter_reg ipv6_route_reg_info = { .target = "ipv6_route", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__ipv6_route, rt), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &ipv6_route_seq_info, }; static int __init bpf_iter_register(void) { ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; return bpf_iter_reg_target(&ipv6_route_reg_info); } static void bpf_iter_unregister(void) { bpf_iter_unreg_target(&ipv6_route_reg_info); } #endif #endif int __init ip6_route_init(void) { int ret; int cpu; ret = -ENOMEM; ip6_dst_ops_template.kmem_cachep = kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); if (!ip6_dst_ops_template.kmem_cachep) goto out; ret = dst_entries_init(&ip6_dst_blackhole_ops); if (ret) goto out_kmem_cache; ret = register_pernet_subsys(&ipv6_inetpeer_ops); if (ret) goto out_dst_entries; ret = register_pernet_subsys(&ip6_route_net_ops); if (ret) goto out_register_inetpeer; ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; ret = fib6_init(); if (ret) goto out_register_subsys; ret = xfrm6_init(); if (ret) goto out_fib6_init; ret = fib6_rules_init(); if (ret) goto xfrm6_init; ret = register_pernet_subsys(&ip6_route_net_late_ops); if (ret) goto fib6_rules_init; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL, 0); if (ret < 0) goto out_register_late_subsys; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL, 0); if (ret < 0) goto out_register_late_subsys; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL, RTNL_FLAG_DOIT_UNLOCKED); if (ret < 0) goto out_register_late_subsys; ret = register_netdevice_notifier(&ip6_route_dev_notifier); if (ret) goto out_register_late_subsys; #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) ret = bpf_iter_register(); if (ret) goto out_register_late_subsys; #endif #endif for_each_possible_cpu(cpu) { struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); INIT_LIST_HEAD(&ul->head); INIT_LIST_HEAD(&ul->quarantine); spin_lock_init(&ul->lock); } out: return ret; out_register_late_subsys: rtnl_unregister_all(PF_INET6); unregister_pernet_subsys(&ip6_route_net_late_ops); fib6_rules_init: fib6_rules_cleanup(); xfrm6_init: xfrm6_fini(); out_fib6_init: fib6_gc_cleanup(); out_register_subsys: unregister_pernet_subsys(&ip6_route_net_ops); out_register_inetpeer: unregister_pernet_subsys(&ipv6_inetpeer_ops); out_dst_entries: dst_entries_destroy(&ip6_dst_blackhole_ops); out_kmem_cache: kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); goto out; } void ip6_route_cleanup(void) { #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) bpf_iter_unregister(); #endif #endif unregister_netdevice_notifier(&ip6_route_dev_notifier); unregister_pernet_subsys(&ip6_route_net_late_ops); fib6_rules_cleanup(); xfrm6_fini(); fib6_gc_cleanup(); unregister_pernet_subsys(&ipv6_inetpeer_ops); unregister_pernet_subsys(&ip6_route_net_ops); dst_entries_destroy(&ip6_dst_blackhole_ops); kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); }
linux-master
net/ipv6/route.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2003-2006 Helsinki University of Technology * Copyright (C)2003-2006 USAGI/WIDE Project */ /* * Authors: * Noriaki TAKAMIYA @USAGI * Masahide NAKAMURA @USAGI */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/time.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <net/sock.h> #include <net/ipv6.h> #include <net/ip6_checksum.h> #include <net/rawv6.h> #include <net/xfrm.h> #include <net/mip6.h> static inline unsigned int calc_padlen(unsigned int len, unsigned int n) { return (n - len + 16) & 0x7; } static inline void *mip6_padn(__u8 *data, __u8 padlen) { if (!data) return NULL; if (padlen == 1) { data[0] = IPV6_TLV_PAD1; } else if (padlen > 1) { data[0] = IPV6_TLV_PADN; data[1] = padlen - 2; if (padlen > 2) memset(data+2, 0, data[1]); } return data + padlen; } static inline void mip6_param_prob(struct sk_buff *skb, u8 code, int pos) { icmpv6_send(skb, ICMPV6_PARAMPROB, code, pos); } static int mip6_mh_len(int type) { int len = 0; switch (type) { case IP6_MH_TYPE_BRR: len = 0; break; case IP6_MH_TYPE_HOTI: case IP6_MH_TYPE_COTI: case IP6_MH_TYPE_BU: case IP6_MH_TYPE_BACK: len = 1; break; case IP6_MH_TYPE_HOT: case IP6_MH_TYPE_COT: case IP6_MH_TYPE_BERROR: len = 2; break; } return len; } static int mip6_mh_filter(struct sock *sk, struct sk_buff *skb) { struct ip6_mh _hdr; const struct ip6_mh *mh; mh = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_hdr), &_hdr); if (!mh) return -1; if (((mh->ip6mh_hdrlen + 1) << 3) > skb->len) return -1; if (mh->ip6mh_hdrlen < mip6_mh_len(mh->ip6mh_type)) { net_dbg_ratelimited("mip6: MH message too short: %d vs >=%d\n", mh->ip6mh_hdrlen, mip6_mh_len(mh->ip6mh_type)); mip6_param_prob(skb, 0, offsetof(struct ip6_mh, ip6mh_hdrlen) + skb_network_header_len(skb)); return -1; } if (mh->ip6mh_proto != IPPROTO_NONE) { net_dbg_ratelimited("mip6: MH invalid payload proto = %d\n", mh->ip6mh_proto); mip6_param_prob(skb, 0, offsetof(struct ip6_mh, ip6mh_proto) + skb_network_header_len(skb)); return -1; } return 0; } struct mip6_report_rate_limiter { spinlock_t lock; ktime_t stamp; int iif; struct in6_addr src; struct in6_addr dst; }; static struct mip6_report_rate_limiter mip6_report_rl = { .lock = __SPIN_LOCK_UNLOCKED(mip6_report_rl.lock) }; static int mip6_destopt_input(struct xfrm_state *x, struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct ipv6_destopt_hdr *destopt = (struct ipv6_destopt_hdr *)skb->data; int err = destopt->nexthdr; spin_lock(&x->lock); if (!ipv6_addr_equal(&iph->saddr, (struct in6_addr *)x->coaddr) && !ipv6_addr_any((struct in6_addr *)x->coaddr)) err = -ENOENT; spin_unlock(&x->lock); return err; } /* Destination Option Header is inserted. * IP Header's src address is replaced with Home Address Option in * Destination Option Header. */ static int mip6_destopt_output(struct xfrm_state *x, struct sk_buff *skb) { struct ipv6hdr *iph; struct ipv6_destopt_hdr *dstopt; struct ipv6_destopt_hao *hao; u8 nexthdr; int len; skb_push(skb, -skb_network_offset(skb)); iph = ipv6_hdr(skb); nexthdr = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_DSTOPTS; dstopt = (struct ipv6_destopt_hdr *)skb_transport_header(skb); dstopt->nexthdr = nexthdr; hao = mip6_padn((char *)(dstopt + 1), calc_padlen(sizeof(*dstopt), 6)); hao->type = IPV6_TLV_HAO; BUILD_BUG_ON(sizeof(*hao) != 18); hao->length = sizeof(*hao) - 2; len = ((char *)hao - (char *)dstopt) + sizeof(*hao); memcpy(&hao->addr, &iph->saddr, sizeof(hao->addr)); spin_lock_bh(&x->lock); memcpy(&iph->saddr, x->coaddr, sizeof(iph->saddr)); spin_unlock_bh(&x->lock); WARN_ON(len != x->props.header_len); dstopt->hdrlen = (x->props.header_len >> 3) - 1; return 0; } static inline int mip6_report_rl_allow(ktime_t stamp, const struct in6_addr *dst, const struct in6_addr *src, int iif) { int allow = 0; spin_lock_bh(&mip6_report_rl.lock); if (mip6_report_rl.stamp != stamp || mip6_report_rl.iif != iif || !ipv6_addr_equal(&mip6_report_rl.src, src) || !ipv6_addr_equal(&mip6_report_rl.dst, dst)) { mip6_report_rl.stamp = stamp; mip6_report_rl.iif = iif; mip6_report_rl.src = *src; mip6_report_rl.dst = *dst; allow = 1; } spin_unlock_bh(&mip6_report_rl.lock); return allow; } static int mip6_destopt_reject(struct xfrm_state *x, struct sk_buff *skb, const struct flowi *fl) { struct net *net = xs_net(x); struct inet6_skb_parm *opt = (struct inet6_skb_parm *)skb->cb; const struct flowi6 *fl6 = &fl->u.ip6; struct ipv6_destopt_hao *hao = NULL; struct xfrm_selector sel; int offset; ktime_t stamp; int err = 0; if (unlikely(fl6->flowi6_proto == IPPROTO_MH && fl6->fl6_mh_type <= IP6_MH_TYPE_MAX)) goto out; if (likely(opt->dsthao)) { offset = ipv6_find_tlv(skb, opt->dsthao, IPV6_TLV_HAO); if (likely(offset >= 0)) hao = (struct ipv6_destopt_hao *) (skb_network_header(skb) + offset); } stamp = skb_get_ktime(skb); if (!mip6_report_rl_allow(stamp, &ipv6_hdr(skb)->daddr, hao ? &hao->addr : &ipv6_hdr(skb)->saddr, opt->iif)) goto out; memset(&sel, 0, sizeof(sel)); memcpy(&sel.daddr, (xfrm_address_t *)&ipv6_hdr(skb)->daddr, sizeof(sel.daddr)); sel.prefixlen_d = 128; memcpy(&sel.saddr, (xfrm_address_t *)&ipv6_hdr(skb)->saddr, sizeof(sel.saddr)); sel.prefixlen_s = 128; sel.family = AF_INET6; sel.proto = fl6->flowi6_proto; sel.dport = xfrm_flowi_dport(fl, &fl6->uli); if (sel.dport) sel.dport_mask = htons(~0); sel.sport = xfrm_flowi_sport(fl, &fl6->uli); if (sel.sport) sel.sport_mask = htons(~0); sel.ifindex = fl6->flowi6_oif; err = km_report(net, IPPROTO_DSTOPTS, &sel, (hao ? (xfrm_address_t *)&hao->addr : NULL)); out: return err; } static int mip6_destopt_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { if (x->id.spi) { NL_SET_ERR_MSG(extack, "SPI must be 0"); return -EINVAL; } if (x->props.mode != XFRM_MODE_ROUTEOPTIMIZATION) { NL_SET_ERR_MSG(extack, "XFRM mode must be XFRM_MODE_ROUTEOPTIMIZATION"); return -EINVAL; } x->props.header_len = sizeof(struct ipv6_destopt_hdr) + calc_padlen(sizeof(struct ipv6_destopt_hdr), 6) + sizeof(struct ipv6_destopt_hao); WARN_ON(x->props.header_len != 24); return 0; } /* * Do nothing about destroying since it has no specific operation for * destination options header unlike IPsec protocols. */ static void mip6_destopt_destroy(struct xfrm_state *x) { } static const struct xfrm_type mip6_destopt_type = { .owner = THIS_MODULE, .proto = IPPROTO_DSTOPTS, .flags = XFRM_TYPE_NON_FRAGMENT | XFRM_TYPE_LOCAL_COADDR, .init_state = mip6_destopt_init_state, .destructor = mip6_destopt_destroy, .input = mip6_destopt_input, .output = mip6_destopt_output, .reject = mip6_destopt_reject, }; static int mip6_rthdr_input(struct xfrm_state *x, struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct rt2_hdr *rt2 = (struct rt2_hdr *)skb->data; int err = rt2->rt_hdr.nexthdr; spin_lock(&x->lock); if (!ipv6_addr_equal(&iph->daddr, (struct in6_addr *)x->coaddr) && !ipv6_addr_any((struct in6_addr *)x->coaddr)) err = -ENOENT; spin_unlock(&x->lock); return err; } /* Routing Header type 2 is inserted. * IP Header's dst address is replaced with Routing Header's Home Address. */ static int mip6_rthdr_output(struct xfrm_state *x, struct sk_buff *skb) { struct ipv6hdr *iph; struct rt2_hdr *rt2; u8 nexthdr; skb_push(skb, -skb_network_offset(skb)); iph = ipv6_hdr(skb); nexthdr = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_ROUTING; rt2 = (struct rt2_hdr *)skb_transport_header(skb); rt2->rt_hdr.nexthdr = nexthdr; rt2->rt_hdr.hdrlen = (x->props.header_len >> 3) - 1; rt2->rt_hdr.type = IPV6_SRCRT_TYPE_2; rt2->rt_hdr.segments_left = 1; memset(&rt2->reserved, 0, sizeof(rt2->reserved)); WARN_ON(rt2->rt_hdr.hdrlen != 2); memcpy(&rt2->addr, &iph->daddr, sizeof(rt2->addr)); spin_lock_bh(&x->lock); memcpy(&iph->daddr, x->coaddr, sizeof(iph->daddr)); spin_unlock_bh(&x->lock); return 0; } static int mip6_rthdr_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { if (x->id.spi) { NL_SET_ERR_MSG(extack, "SPI must be 0"); return -EINVAL; } if (x->props.mode != XFRM_MODE_ROUTEOPTIMIZATION) { NL_SET_ERR_MSG(extack, "XFRM mode must be XFRM_MODE_ROUTEOPTIMIZATION"); return -EINVAL; } x->props.header_len = sizeof(struct rt2_hdr); return 0; } /* * Do nothing about destroying since it has no specific operation for routing * header type 2 unlike IPsec protocols. */ static void mip6_rthdr_destroy(struct xfrm_state *x) { } static const struct xfrm_type mip6_rthdr_type = { .owner = THIS_MODULE, .proto = IPPROTO_ROUTING, .flags = XFRM_TYPE_NON_FRAGMENT | XFRM_TYPE_REMOTE_COADDR, .init_state = mip6_rthdr_init_state, .destructor = mip6_rthdr_destroy, .input = mip6_rthdr_input, .output = mip6_rthdr_output, }; static int __init mip6_init(void) { pr_info("Mobile IPv6\n"); if (xfrm_register_type(&mip6_destopt_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type(destopt)\n", __func__); goto mip6_destopt_xfrm_fail; } if (xfrm_register_type(&mip6_rthdr_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type(rthdr)\n", __func__); goto mip6_rthdr_xfrm_fail; } if (rawv6_mh_filter_register(mip6_mh_filter) < 0) { pr_info("%s: can't add rawv6 mh filter\n", __func__); goto mip6_rawv6_mh_fail; } return 0; mip6_rawv6_mh_fail: xfrm_unregister_type(&mip6_rthdr_type, AF_INET6); mip6_rthdr_xfrm_fail: xfrm_unregister_type(&mip6_destopt_type, AF_INET6); mip6_destopt_xfrm_fail: return -EAGAIN; } static void __exit mip6_fini(void) { if (rawv6_mh_filter_unregister(mip6_mh_filter) < 0) pr_info("%s: can't remove rawv6 mh filter\n", __func__); xfrm_unregister_type(&mip6_rthdr_type, AF_INET6); xfrm_unregister_type(&mip6_destopt_type, AF_INET6); } module_init(mip6_init); module_exit(mip6_fini); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_DSTOPTS); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_ROUTING);
linux-master
net/ipv6/mip6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic INET6 transport hashtables * * Authors: Lotsa people, from code originally in tcp, generalised here * by Arnaldo Carvalho de Melo <[email protected]> */ #include <linux/module.h> #include <linux/random.h> #include <net/addrconf.h> #include <net/inet_connection_sock.h> #include <net/inet_hashtables.h> #include <net/inet6_hashtables.h> #include <net/secure_seq.h> #include <net/ip.h> #include <net/sock_reuseport.h> u32 inet6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport) { static u32 inet6_ehash_secret __read_mostly; static u32 ipv6_hash_secret __read_mostly; u32 lhash, fhash; net_get_random_once(&inet6_ehash_secret, sizeof(inet6_ehash_secret)); net_get_random_once(&ipv6_hash_secret, sizeof(ipv6_hash_secret)); lhash = (__force u32)laddr->s6_addr32[3]; fhash = __ipv6_addr_jhash(faddr, ipv6_hash_secret); return __inet6_ehashfn(lhash, lport, fhash, fport, inet6_ehash_secret + net_hash_mix(net)); } EXPORT_SYMBOL_GPL(inet6_ehashfn); /* * Sockets in TCP_CLOSE state are _always_ taken out of the hash, so * we need not check it for TCP lookups anymore, thanks Alexey. -DaveM * * The sockhash lock must be held as a reader here. */ struct sock *__inet6_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, const int sdif) { struct sock *sk; const struct hlist_nulls_node *node; const __portpair ports = INET_COMBINED_PORTS(sport, hnum); /* Optimize here for direct hit, only listening connections can * have wildcards anyways. */ unsigned int hash = inet6_ehashfn(net, daddr, hnum, saddr, sport); unsigned int slot = hash & hashinfo->ehash_mask; struct inet_ehash_bucket *head = &hashinfo->ehash[slot]; begin: sk_nulls_for_each_rcu(sk, node, &head->chain) { if (sk->sk_hash != hash) continue; if (!inet6_match(net, sk, saddr, daddr, ports, dif, sdif)) continue; if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) goto out; if (unlikely(!inet6_match(net, sk, saddr, daddr, ports, dif, sdif))) { sock_gen_put(sk); goto begin; } goto found; } if (get_nulls_value(node) != slot) goto begin; out: sk = NULL; found: return sk; } EXPORT_SYMBOL(__inet6_lookup_established); static inline int compute_score(struct sock *sk, struct net *net, const unsigned short hnum, const struct in6_addr *daddr, const int dif, const int sdif) { int score = -1; if (net_eq(sock_net(sk), net) && inet_sk(sk)->inet_num == hnum && sk->sk_family == PF_INET6) { if (!ipv6_addr_equal(&sk->sk_v6_rcv_saddr, daddr)) return -1; if (!inet_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) return -1; score = sk->sk_bound_dev_if ? 2 : 1; if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) score++; } return score; } /** * inet6_lookup_reuseport() - execute reuseport logic on AF_INET6 socket if necessary. * @net: network namespace. * @sk: AF_INET6 socket, must be in TCP_LISTEN state for TCP or TCP_CLOSE for UDP. * @skb: context for a potential SK_REUSEPORT program. * @doff: header offset. * @saddr: source address. * @sport: source port. * @daddr: destination address. * @hnum: destination port in host byte order. * @ehashfn: hash function used to generate the fallback hash. * * Return: NULL if sk doesn't have SO_REUSEPORT set, otherwise a pointer to * the selected sock or an error. */ struct sock *inet6_lookup_reuseport(struct net *net, struct sock *sk, struct sk_buff *skb, int doff, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned short hnum, inet6_ehashfn_t *ehashfn) { struct sock *reuse_sk = NULL; u32 phash; if (sk->sk_reuseport) { phash = INDIRECT_CALL_INET(ehashfn, udp6_ehashfn, inet6_ehashfn, net, daddr, hnum, saddr, sport); reuse_sk = reuseport_select_sock(sk, phash, skb, doff); } return reuse_sk; } EXPORT_SYMBOL_GPL(inet6_lookup_reuseport); /* called with rcu_read_lock() */ static struct sock *inet6_lhash2_lookup(struct net *net, struct inet_listen_hashbucket *ilb2, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const unsigned short hnum, const int dif, const int sdif) { struct sock *sk, *result = NULL; struct hlist_nulls_node *node; int score, hiscore = 0; sk_nulls_for_each_rcu(sk, node, &ilb2->nulls_head) { score = compute_score(sk, net, hnum, daddr, dif, sdif); if (score > hiscore) { result = inet6_lookup_reuseport(net, sk, skb, doff, saddr, sport, daddr, hnum, inet6_ehashfn); if (result) return result; result = sk; hiscore = score; } } return result; } struct sock *inet6_lookup_run_sk_lookup(struct net *net, int protocol, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, inet6_ehashfn_t *ehashfn) { struct sock *sk, *reuse_sk; bool no_reuseport; no_reuseport = bpf_sk_lookup_run_v6(net, protocol, saddr, sport, daddr, hnum, dif, &sk); if (no_reuseport || IS_ERR_OR_NULL(sk)) return sk; reuse_sk = inet6_lookup_reuseport(net, sk, skb, doff, saddr, sport, daddr, hnum, ehashfn); if (reuse_sk) sk = reuse_sk; return sk; } EXPORT_SYMBOL_GPL(inet6_lookup_run_sk_lookup); struct sock *inet6_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const unsigned short hnum, const int dif, const int sdif) { struct inet_listen_hashbucket *ilb2; struct sock *result = NULL; unsigned int hash2; /* Lookup redirect from BPF */ if (static_branch_unlikely(&bpf_sk_lookup_enabled) && hashinfo == net->ipv4.tcp_death_row.hashinfo) { result = inet6_lookup_run_sk_lookup(net, IPPROTO_TCP, skb, doff, saddr, sport, daddr, hnum, dif, inet6_ehashfn); if (result) goto done; } hash2 = ipv6_portaddr_hash(net, daddr, hnum); ilb2 = inet_lhash2_bucket(hashinfo, hash2); result = inet6_lhash2_lookup(net, ilb2, skb, doff, saddr, sport, daddr, hnum, dif, sdif); if (result) goto done; /* Lookup lhash2 with in6addr_any */ hash2 = ipv6_portaddr_hash(net, &in6addr_any, hnum); ilb2 = inet_lhash2_bucket(hashinfo, hash2); result = inet6_lhash2_lookup(net, ilb2, skb, doff, saddr, sport, &in6addr_any, hnum, dif, sdif); done: if (IS_ERR(result)) return NULL; return result; } EXPORT_SYMBOL_GPL(inet6_lookup_listener); struct sock *inet6_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const __be16 dport, const int dif) { struct sock *sk; bool refcounted; sk = __inet6_lookup(net, hashinfo, skb, doff, saddr, sport, daddr, ntohs(dport), dif, 0, &refcounted); if (sk && !refcounted && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } EXPORT_SYMBOL_GPL(inet6_lookup); static int __inet6_check_established(struct inet_timewait_death_row *death_row, struct sock *sk, const __u16 lport, struct inet_timewait_sock **twp) { struct inet_hashinfo *hinfo = death_row->hashinfo; struct inet_sock *inet = inet_sk(sk); const struct in6_addr *daddr = &sk->sk_v6_rcv_saddr; const struct in6_addr *saddr = &sk->sk_v6_daddr; const int dif = sk->sk_bound_dev_if; struct net *net = sock_net(sk); const int sdif = l3mdev_master_ifindex_by_index(net, dif); const __portpair ports = INET_COMBINED_PORTS(inet->inet_dport, lport); const unsigned int hash = inet6_ehashfn(net, daddr, lport, saddr, inet->inet_dport); struct inet_ehash_bucket *head = inet_ehash_bucket(hinfo, hash); spinlock_t *lock = inet_ehash_lockp(hinfo, hash); struct sock *sk2; const struct hlist_nulls_node *node; struct inet_timewait_sock *tw = NULL; spin_lock(lock); sk_nulls_for_each(sk2, node, &head->chain) { if (sk2->sk_hash != hash) continue; if (likely(inet6_match(net, sk2, saddr, daddr, ports, dif, sdif))) { if (sk2->sk_state == TCP_TIME_WAIT) { tw = inet_twsk(sk2); if (twsk_unique(sk, sk2, twp)) break; } goto not_unique; } } /* Must record num and sport now. Otherwise we will see * in hash table socket with a funny identity. */ inet->inet_num = lport; inet->inet_sport = htons(lport); sk->sk_hash = hash; WARN_ON(!sk_unhashed(sk)); __sk_nulls_add_node_rcu(sk, &head->chain); if (tw) { sk_nulls_del_node_init_rcu((struct sock *)tw); __NET_INC_STATS(net, LINUX_MIB_TIMEWAITRECYCLED); } spin_unlock(lock); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); if (twp) { *twp = tw; } else if (tw) { /* Silly. Should hash-dance instead... */ inet_twsk_deschedule_put(tw); } return 0; not_unique: spin_unlock(lock); return -EADDRNOTAVAIL; } static u64 inet6_sk_port_offset(const struct sock *sk) { const struct inet_sock *inet = inet_sk(sk); return secure_ipv6_port_ephemeral(sk->sk_v6_rcv_saddr.s6_addr32, sk->sk_v6_daddr.s6_addr32, inet->inet_dport); } int inet6_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk) { u64 port_offset = 0; if (!inet_sk(sk)->inet_num) port_offset = inet6_sk_port_offset(sk); return __inet_hash_connect(death_row, sk, port_offset, __inet6_check_established); } EXPORT_SYMBOL_GPL(inet6_hash_connect); int inet6_hash(struct sock *sk) { int err = 0; if (sk->sk_state != TCP_CLOSE) err = __inet_hash(sk, NULL); return err; } EXPORT_SYMBOL_GPL(inet6_hash);
linux-master
net/ipv6/inet6_hashtables.c
// SPDX-License-Identifier: GPL-2.0 /* * xfrm6_state.c: based on xfrm4_state.c * * Authors: * Mitsuru KANDA @USAGI * Kazunori MIYAZAWA @USAGI * Kunihiro Ishiguro <[email protected]> * IPv6 support * YOSHIFUJI Hideaki @USAGI * Split up af-specific portion * */ #include <net/xfrm.h> static struct xfrm_state_afinfo xfrm6_state_afinfo = { .family = AF_INET6, .proto = IPPROTO_IPV6, .output = xfrm6_output, .transport_finish = xfrm6_transport_finish, .local_error = xfrm6_local_error, }; int __init xfrm6_state_init(void) { return xfrm_state_register_afinfo(&xfrm6_state_afinfo); } void xfrm6_state_fini(void) { xfrm_state_unregister_afinfo(&xfrm6_state_afinfo); }
linux-master
net/ipv6/xfrm6_state.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 over IPv4 tunnel device - Simple Internet Transition (SIT) * Linux INET6 implementation * * Authors: * Pedro Roque <[email protected]> * Alexey Kuznetsov <[email protected]> * * Changes: * Roger Venning <[email protected]>: 6to4 support * Nate Thompson <[email protected]>: 6to4 support * Fred Templin <[email protected]>: isatap support */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/icmp.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/init.h> #include <linux/netfilter_ipv4.h> #include <linux/if_ether.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ip.h> #include <net/udp.h> #include <net/icmp.h> #include <net/ip_tunnels.h> #include <net/inet_ecn.h> #include <net/xfrm.h> #include <net/dsfield.h> #include <net/net_namespace.h> #include <net/netns/generic.h> /* This version of net/ipv6/sit.c is cloned of net/ipv4/ip_gre.c For comments look at net/ipv4/ip_gre.c --ANK */ #define IP6_SIT_HASH_SIZE 16 #define HASH(addr) (((__force u32)addr^((__force u32)addr>>4))&0xF) static bool log_ecn_error = true; module_param(log_ecn_error, bool, 0644); MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); static int ipip6_tunnel_init(struct net_device *dev); static void ipip6_tunnel_setup(struct net_device *dev); static void ipip6_dev_free(struct net_device *dev); static bool check_6rd(struct ip_tunnel *tunnel, const struct in6_addr *v6dst, __be32 *v4dst); static struct rtnl_link_ops sit_link_ops __read_mostly; static unsigned int sit_net_id __read_mostly; struct sit_net { struct ip_tunnel __rcu *tunnels_r_l[IP6_SIT_HASH_SIZE]; struct ip_tunnel __rcu *tunnels_r[IP6_SIT_HASH_SIZE]; struct ip_tunnel __rcu *tunnels_l[IP6_SIT_HASH_SIZE]; struct ip_tunnel __rcu *tunnels_wc[1]; struct ip_tunnel __rcu **tunnels[4]; struct net_device *fb_tunnel_dev; }; static inline struct sit_net *dev_to_sit_net(struct net_device *dev) { struct ip_tunnel *t = netdev_priv(dev); return net_generic(t->net, sit_net_id); } /* * Must be invoked with rcu_read_lock */ static struct ip_tunnel *ipip6_tunnel_lookup(struct net *net, struct net_device *dev, __be32 remote, __be32 local, int sifindex) { unsigned int h0 = HASH(remote); unsigned int h1 = HASH(local); struct ip_tunnel *t; struct sit_net *sitn = net_generic(net, sit_net_id); int ifindex = dev ? dev->ifindex : 0; for_each_ip_tunnel_rcu(t, sitn->tunnels_r_l[h0 ^ h1]) { if (local == t->parms.iph.saddr && remote == t->parms.iph.daddr && (!dev || !t->parms.link || ifindex == t->parms.link || sifindex == t->parms.link) && (t->dev->flags & IFF_UP)) return t; } for_each_ip_tunnel_rcu(t, sitn->tunnels_r[h0]) { if (remote == t->parms.iph.daddr && (!dev || !t->parms.link || ifindex == t->parms.link || sifindex == t->parms.link) && (t->dev->flags & IFF_UP)) return t; } for_each_ip_tunnel_rcu(t, sitn->tunnels_l[h1]) { if (local == t->parms.iph.saddr && (!dev || !t->parms.link || ifindex == t->parms.link || sifindex == t->parms.link) && (t->dev->flags & IFF_UP)) return t; } t = rcu_dereference(sitn->tunnels_wc[0]); if (t && (t->dev->flags & IFF_UP)) return t; return NULL; } static struct ip_tunnel __rcu **__ipip6_bucket(struct sit_net *sitn, struct ip_tunnel_parm *parms) { __be32 remote = parms->iph.daddr; __be32 local = parms->iph.saddr; unsigned int h = 0; int prio = 0; if (remote) { prio |= 2; h ^= HASH(remote); } if (local) { prio |= 1; h ^= HASH(local); } return &sitn->tunnels[prio][h]; } static inline struct ip_tunnel __rcu **ipip6_bucket(struct sit_net *sitn, struct ip_tunnel *t) { return __ipip6_bucket(sitn, &t->parms); } static void ipip6_tunnel_unlink(struct sit_net *sitn, struct ip_tunnel *t) { struct ip_tunnel __rcu **tp; struct ip_tunnel *iter; for (tp = ipip6_bucket(sitn, t); (iter = rtnl_dereference(*tp)) != NULL; tp = &iter->next) { if (t == iter) { rcu_assign_pointer(*tp, t->next); break; } } } static void ipip6_tunnel_link(struct sit_net *sitn, struct ip_tunnel *t) { struct ip_tunnel __rcu **tp = ipip6_bucket(sitn, t); rcu_assign_pointer(t->next, rtnl_dereference(*tp)); rcu_assign_pointer(*tp, t); } static void ipip6_tunnel_clone_6rd(struct net_device *dev, struct sit_net *sitn) { #ifdef CONFIG_IPV6_SIT_6RD struct ip_tunnel *t = netdev_priv(dev); if (dev == sitn->fb_tunnel_dev || !sitn->fb_tunnel_dev) { ipv6_addr_set(&t->ip6rd.prefix, htonl(0x20020000), 0, 0, 0); t->ip6rd.relay_prefix = 0; t->ip6rd.prefixlen = 16; t->ip6rd.relay_prefixlen = 0; } else { struct ip_tunnel *t0 = netdev_priv(sitn->fb_tunnel_dev); memcpy(&t->ip6rd, &t0->ip6rd, sizeof(t->ip6rd)); } #endif } static int ipip6_tunnel_create(struct net_device *dev) { struct ip_tunnel *t = netdev_priv(dev); struct net *net = dev_net(dev); struct sit_net *sitn = net_generic(net, sit_net_id); int err; __dev_addr_set(dev, &t->parms.iph.saddr, 4); memcpy(dev->broadcast, &t->parms.iph.daddr, 4); if ((__force u16)t->parms.i_flags & SIT_ISATAP) dev->priv_flags |= IFF_ISATAP; dev->rtnl_link_ops = &sit_link_ops; err = register_netdevice(dev); if (err < 0) goto out; ipip6_tunnel_clone_6rd(dev, sitn); ipip6_tunnel_link(sitn, t); return 0; out: return err; } static struct ip_tunnel *ipip6_tunnel_locate(struct net *net, struct ip_tunnel_parm *parms, int create) { __be32 remote = parms->iph.daddr; __be32 local = parms->iph.saddr; struct ip_tunnel *t, *nt; struct ip_tunnel __rcu **tp; struct net_device *dev; char name[IFNAMSIZ]; struct sit_net *sitn = net_generic(net, sit_net_id); for (tp = __ipip6_bucket(sitn, parms); (t = rtnl_dereference(*tp)) != NULL; tp = &t->next) { if (local == t->parms.iph.saddr && remote == t->parms.iph.daddr && parms->link == t->parms.link) { if (create) return NULL; else return t; } } if (!create) goto failed; if (parms->name[0]) { if (!dev_valid_name(parms->name)) goto failed; strscpy(name, parms->name, IFNAMSIZ); } else { strcpy(name, "sit%d"); } dev = alloc_netdev(sizeof(*t), name, NET_NAME_UNKNOWN, ipip6_tunnel_setup); if (!dev) return NULL; dev_net_set(dev, net); nt = netdev_priv(dev); nt->parms = *parms; if (ipip6_tunnel_create(dev) < 0) goto failed_free; if (!parms->name[0]) strcpy(parms->name, dev->name); return nt; failed_free: free_netdev(dev); failed: return NULL; } #define for_each_prl_rcu(start) \ for (prl = rcu_dereference(start); \ prl; \ prl = rcu_dereference(prl->next)) static struct ip_tunnel_prl_entry * __ipip6_tunnel_locate_prl(struct ip_tunnel *t, __be32 addr) { struct ip_tunnel_prl_entry *prl; for_each_prl_rcu(t->prl) if (prl->addr == addr) break; return prl; } static int ipip6_tunnel_get_prl(struct net_device *dev, struct ip_tunnel_prl __user *a) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_prl kprl, *kp; struct ip_tunnel_prl_entry *prl; unsigned int cmax, c = 0, ca, len; int ret = 0; if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) return -EINVAL; if (copy_from_user(&kprl, a, sizeof(kprl))) return -EFAULT; cmax = kprl.datalen / sizeof(kprl); if (cmax > 1 && kprl.addr != htonl(INADDR_ANY)) cmax = 1; /* For simple GET or for root users, * we try harder to allocate. */ kp = (cmax <= 1 || capable(CAP_NET_ADMIN)) ? kcalloc(cmax, sizeof(*kp), GFP_KERNEL_ACCOUNT | __GFP_NOWARN) : NULL; ca = min(t->prl_count, cmax); if (!kp) { /* We don't try hard to allocate much memory for * non-root users. * For root users, retry allocating enough memory for * the answer. */ kp = kcalloc(ca, sizeof(*kp), GFP_ATOMIC | __GFP_ACCOUNT | __GFP_NOWARN); if (!kp) { ret = -ENOMEM; goto out; } } rcu_read_lock(); for_each_prl_rcu(t->prl) { if (c >= cmax) break; if (kprl.addr != htonl(INADDR_ANY) && prl->addr != kprl.addr) continue; kp[c].addr = prl->addr; kp[c].flags = prl->flags; c++; if (kprl.addr != htonl(INADDR_ANY)) break; } rcu_read_unlock(); len = sizeof(*kp) * c; ret = 0; if ((len && copy_to_user(a + 1, kp, len)) || put_user(len, &a->datalen)) ret = -EFAULT; kfree(kp); out: return ret; } static int ipip6_tunnel_add_prl(struct ip_tunnel *t, struct ip_tunnel_prl *a, int chg) { struct ip_tunnel_prl_entry *p; int err = 0; if (a->addr == htonl(INADDR_ANY)) return -EINVAL; ASSERT_RTNL(); for (p = rtnl_dereference(t->prl); p; p = rtnl_dereference(p->next)) { if (p->addr == a->addr) { if (chg) { p->flags = a->flags; goto out; } err = -EEXIST; goto out; } } if (chg) { err = -ENXIO; goto out; } p = kzalloc(sizeof(struct ip_tunnel_prl_entry), GFP_KERNEL); if (!p) { err = -ENOBUFS; goto out; } p->next = t->prl; p->addr = a->addr; p->flags = a->flags; t->prl_count++; rcu_assign_pointer(t->prl, p); out: return err; } static void prl_list_destroy_rcu(struct rcu_head *head) { struct ip_tunnel_prl_entry *p, *n; p = container_of(head, struct ip_tunnel_prl_entry, rcu_head); do { n = rcu_dereference_protected(p->next, 1); kfree(p); p = n; } while (p); } static int ipip6_tunnel_del_prl(struct ip_tunnel *t, struct ip_tunnel_prl *a) { struct ip_tunnel_prl_entry *x; struct ip_tunnel_prl_entry __rcu **p; int err = 0; ASSERT_RTNL(); if (a && a->addr != htonl(INADDR_ANY)) { for (p = &t->prl; (x = rtnl_dereference(*p)) != NULL; p = &x->next) { if (x->addr == a->addr) { *p = x->next; kfree_rcu(x, rcu_head); t->prl_count--; goto out; } } err = -ENXIO; } else { x = rtnl_dereference(t->prl); if (x) { t->prl_count = 0; call_rcu(&x->rcu_head, prl_list_destroy_rcu); t->prl = NULL; } } out: return err; } static int ipip6_tunnel_prl_ctl(struct net_device *dev, struct ip_tunnel_prl __user *data, int cmd) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_prl prl; int err; if (!ns_capable(t->net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) return -EINVAL; if (copy_from_user(&prl, data, sizeof(prl))) return -EFAULT; switch (cmd) { case SIOCDELPRL: err = ipip6_tunnel_del_prl(t, &prl); break; case SIOCADDPRL: case SIOCCHGPRL: err = ipip6_tunnel_add_prl(t, &prl, cmd == SIOCCHGPRL); break; } dst_cache_reset(&t->dst_cache); netdev_state_change(dev); return err; } static int isatap_chksrc(struct sk_buff *skb, const struct iphdr *iph, struct ip_tunnel *t) { struct ip_tunnel_prl_entry *p; int ok = 1; rcu_read_lock(); p = __ipip6_tunnel_locate_prl(t, iph->saddr); if (p) { if (p->flags & PRL_DEFAULT) skb->ndisc_nodetype = NDISC_NODETYPE_DEFAULT; else skb->ndisc_nodetype = NDISC_NODETYPE_NODEFAULT; } else { const struct in6_addr *addr6 = &ipv6_hdr(skb)->saddr; if (ipv6_addr_is_isatap(addr6) && (addr6->s6_addr32[3] == iph->saddr) && ipv6_chk_prefix(addr6, t->dev)) skb->ndisc_nodetype = NDISC_NODETYPE_HOST; else ok = 0; } rcu_read_unlock(); return ok; } static void ipip6_tunnel_uninit(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); struct sit_net *sitn = net_generic(tunnel->net, sit_net_id); if (dev == sitn->fb_tunnel_dev) { RCU_INIT_POINTER(sitn->tunnels_wc[0], NULL); } else { ipip6_tunnel_unlink(sitn, tunnel); ipip6_tunnel_del_prl(tunnel, NULL); } dst_cache_reset(&tunnel->dst_cache); netdev_put(dev, &tunnel->dev_tracker); } static int ipip6_err(struct sk_buff *skb, u32 info) { const struct iphdr *iph = (const struct iphdr *)skb->data; const int type = icmp_hdr(skb)->type; const int code = icmp_hdr(skb)->code; unsigned int data_len = 0; struct ip_tunnel *t; int sifindex; int err; switch (type) { default: case ICMP_PARAMETERPROB: return 0; case ICMP_DEST_UNREACH: switch (code) { case ICMP_SR_FAILED: /* Impossible event. */ return 0; default: /* All others are translated to HOST_UNREACH. rfc2003 contains "deep thoughts" about NET_UNREACH, I believe they are just ether pollution. --ANK */ break; } break; case ICMP_TIME_EXCEEDED: if (code != ICMP_EXC_TTL) return 0; data_len = icmp_hdr(skb)->un.reserved[1] * 4; /* RFC 4884 4.1 */ break; case ICMP_REDIRECT: break; } err = -ENOENT; sifindex = netif_is_l3_master(skb->dev) ? IPCB(skb)->iif : 0; t = ipip6_tunnel_lookup(dev_net(skb->dev), skb->dev, iph->daddr, iph->saddr, sifindex); if (!t) goto out; if (type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED) { ipv4_update_pmtu(skb, dev_net(skb->dev), info, t->parms.link, iph->protocol); err = 0; goto out; } if (type == ICMP_REDIRECT) { ipv4_redirect(skb, dev_net(skb->dev), t->parms.link, iph->protocol); err = 0; goto out; } err = 0; if (__in6_dev_get(skb->dev) && !ip6_err_gen_icmpv6_unreach(skb, iph->ihl * 4, type, data_len)) goto out; if (t->parms.iph.daddr == 0) goto out; if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED) goto out; if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO)) t->err_count++; else t->err_count = 1; t->err_time = jiffies; out: return err; } static inline bool is_spoofed_6rd(struct ip_tunnel *tunnel, const __be32 v4addr, const struct in6_addr *v6addr) { __be32 v4embed = 0; if (check_6rd(tunnel, v6addr, &v4embed) && v4addr != v4embed) return true; return false; } /* Checks if an address matches an address on the tunnel interface. * Used to detect the NAT of proto 41 packets and let them pass spoofing test. * Long story: * This function is called after we considered the packet as spoofed * in is_spoofed_6rd. * We may have a router that is doing NAT for proto 41 packets * for an internal station. Destination a.a.a.a/PREFIX:bbbb:bbbb * will be translated to n.n.n.n/PREFIX:bbbb:bbbb. And is_spoofed_6rd * function will return true, dropping the packet. * But, we can still check if is spoofed against the IP * addresses associated with the interface. */ static bool only_dnatted(const struct ip_tunnel *tunnel, const struct in6_addr *v6dst) { int prefix_len; #ifdef CONFIG_IPV6_SIT_6RD prefix_len = tunnel->ip6rd.prefixlen + 32 - tunnel->ip6rd.relay_prefixlen; #else prefix_len = 48; #endif return ipv6_chk_custom_prefix(v6dst, prefix_len, tunnel->dev); } /* Returns true if a packet is spoofed */ static bool packet_is_spoofed(struct sk_buff *skb, const struct iphdr *iph, struct ip_tunnel *tunnel) { const struct ipv6hdr *ipv6h; if (tunnel->dev->priv_flags & IFF_ISATAP) { if (!isatap_chksrc(skb, iph, tunnel)) return true; return false; } if (tunnel->dev->flags & IFF_POINTOPOINT) return false; ipv6h = ipv6_hdr(skb); if (unlikely(is_spoofed_6rd(tunnel, iph->saddr, &ipv6h->saddr))) { net_warn_ratelimited("Src spoofed %pI4/%pI6c -> %pI4/%pI6c\n", &iph->saddr, &ipv6h->saddr, &iph->daddr, &ipv6h->daddr); return true; } if (likely(!is_spoofed_6rd(tunnel, iph->daddr, &ipv6h->daddr))) return false; if (only_dnatted(tunnel, &ipv6h->daddr)) return false; net_warn_ratelimited("Dst spoofed %pI4/%pI6c -> %pI4/%pI6c\n", &iph->saddr, &ipv6h->saddr, &iph->daddr, &ipv6h->daddr); return true; } static int ipip6_rcv(struct sk_buff *skb) { const struct iphdr *iph = ip_hdr(skb); struct ip_tunnel *tunnel; int sifindex; int err; sifindex = netif_is_l3_master(skb->dev) ? IPCB(skb)->iif : 0; tunnel = ipip6_tunnel_lookup(dev_net(skb->dev), skb->dev, iph->saddr, iph->daddr, sifindex); if (tunnel) { if (tunnel->parms.iph.protocol != IPPROTO_IPV6 && tunnel->parms.iph.protocol != 0) goto out; skb->mac_header = skb->network_header; skb_reset_network_header(skb); IPCB(skb)->flags = 0; skb->dev = tunnel->dev; if (packet_is_spoofed(skb, iph, tunnel)) { DEV_STATS_INC(tunnel->dev, rx_errors); goto out; } if (iptunnel_pull_header(skb, 0, htons(ETH_P_IPV6), !net_eq(tunnel->net, dev_net(tunnel->dev)))) goto out; /* skb can be uncloned in iptunnel_pull_header, so * old iph is no longer valid */ iph = (const struct iphdr *)skb_mac_header(skb); skb_reset_mac_header(skb); err = IP_ECN_decapsulate(iph, skb); if (unlikely(err)) { if (log_ecn_error) net_info_ratelimited("non-ECT from %pI4 with TOS=%#x\n", &iph->saddr, iph->tos); if (err > 1) { DEV_STATS_INC(tunnel->dev, rx_frame_errors); DEV_STATS_INC(tunnel->dev, rx_errors); goto out; } } dev_sw_netstats_rx_add(tunnel->dev, skb->len); netif_rx(skb); return 0; } /* no tunnel matched, let upstream know, ipsec may handle it */ return 1; out: kfree_skb(skb); return 0; } static const struct tnl_ptk_info ipip_tpi = { /* no tunnel info required for ipip. */ .proto = htons(ETH_P_IP), }; #if IS_ENABLED(CONFIG_MPLS) static const struct tnl_ptk_info mplsip_tpi = { /* no tunnel info required for mplsip. */ .proto = htons(ETH_P_MPLS_UC), }; #endif static int sit_tunnel_rcv(struct sk_buff *skb, u8 ipproto) { const struct iphdr *iph; struct ip_tunnel *tunnel; int sifindex; sifindex = netif_is_l3_master(skb->dev) ? IPCB(skb)->iif : 0; iph = ip_hdr(skb); tunnel = ipip6_tunnel_lookup(dev_net(skb->dev), skb->dev, iph->saddr, iph->daddr, sifindex); if (tunnel) { const struct tnl_ptk_info *tpi; if (tunnel->parms.iph.protocol != ipproto && tunnel->parms.iph.protocol != 0) goto drop; if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) goto drop; #if IS_ENABLED(CONFIG_MPLS) if (ipproto == IPPROTO_MPLS) tpi = &mplsip_tpi; else #endif tpi = &ipip_tpi; if (iptunnel_pull_header(skb, 0, tpi->proto, false)) goto drop; skb_reset_mac_header(skb); return ip_tunnel_rcv(tunnel, skb, tpi, NULL, log_ecn_error); } return 1; drop: kfree_skb(skb); return 0; } static int ipip_rcv(struct sk_buff *skb) { return sit_tunnel_rcv(skb, IPPROTO_IPIP); } #if IS_ENABLED(CONFIG_MPLS) static int mplsip_rcv(struct sk_buff *skb) { return sit_tunnel_rcv(skb, IPPROTO_MPLS); } #endif /* * If the IPv6 address comes from 6rd / 6to4 (RFC 3056) addr space this function * stores the embedded IPv4 address in v4dst and returns true. */ static bool check_6rd(struct ip_tunnel *tunnel, const struct in6_addr *v6dst, __be32 *v4dst) { #ifdef CONFIG_IPV6_SIT_6RD if (ipv6_prefix_equal(v6dst, &tunnel->ip6rd.prefix, tunnel->ip6rd.prefixlen)) { unsigned int pbw0, pbi0; int pbi1; u32 d; pbw0 = tunnel->ip6rd.prefixlen >> 5; pbi0 = tunnel->ip6rd.prefixlen & 0x1f; d = tunnel->ip6rd.relay_prefixlen < 32 ? (ntohl(v6dst->s6_addr32[pbw0]) << pbi0) >> tunnel->ip6rd.relay_prefixlen : 0; pbi1 = pbi0 - tunnel->ip6rd.relay_prefixlen; if (pbi1 > 0) d |= ntohl(v6dst->s6_addr32[pbw0 + 1]) >> (32 - pbi1); *v4dst = tunnel->ip6rd.relay_prefix | htonl(d); return true; } #else if (v6dst->s6_addr16[0] == htons(0x2002)) { /* 6to4 v6 addr has 16 bits prefix, 32 v4addr, 16 SLA, ... */ memcpy(v4dst, &v6dst->s6_addr16[1], 4); return true; } #endif return false; } static inline __be32 try_6rd(struct ip_tunnel *tunnel, const struct in6_addr *v6dst) { __be32 dst = 0; check_6rd(tunnel, v6dst, &dst); return dst; } /* * This function assumes it is being called from dev_queue_xmit() * and that skb is filled properly by that function. */ static netdev_tx_t ipip6_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); const struct iphdr *tiph = &tunnel->parms.iph; const struct ipv6hdr *iph6 = ipv6_hdr(skb); u8 tos = tunnel->parms.iph.tos; __be16 df = tiph->frag_off; struct rtable *rt; /* Route to the other host */ struct net_device *tdev; /* Device to other host */ unsigned int max_headroom; /* The extra header space needed */ __be32 dst = tiph->daddr; struct flowi4 fl4; int mtu; const struct in6_addr *addr6; int addr_type; u8 ttl; u8 protocol = IPPROTO_IPV6; int t_hlen = tunnel->hlen + sizeof(struct iphdr); if (tos == 1) tos = ipv6_get_dsfield(iph6); /* ISATAP (RFC4214) - must come before 6to4 */ if (dev->priv_flags & IFF_ISATAP) { struct neighbour *neigh = NULL; bool do_tx_error = false; if (skb_dst(skb)) neigh = dst_neigh_lookup(skb_dst(skb), &iph6->daddr); if (!neigh) { net_dbg_ratelimited("nexthop == NULL\n"); goto tx_error; } addr6 = (const struct in6_addr *)&neigh->primary_key; addr_type = ipv6_addr_type(addr6); if ((addr_type & IPV6_ADDR_UNICAST) && ipv6_addr_is_isatap(addr6)) dst = addr6->s6_addr32[3]; else do_tx_error = true; neigh_release(neigh); if (do_tx_error) goto tx_error; } if (!dst) dst = try_6rd(tunnel, &iph6->daddr); if (!dst) { struct neighbour *neigh = NULL; bool do_tx_error = false; if (skb_dst(skb)) neigh = dst_neigh_lookup(skb_dst(skb), &iph6->daddr); if (!neigh) { net_dbg_ratelimited("nexthop == NULL\n"); goto tx_error; } addr6 = (const struct in6_addr *)&neigh->primary_key; addr_type = ipv6_addr_type(addr6); if (addr_type == IPV6_ADDR_ANY) { addr6 = &ipv6_hdr(skb)->daddr; addr_type = ipv6_addr_type(addr6); } if ((addr_type & IPV6_ADDR_COMPATv4) != 0) dst = addr6->s6_addr32[3]; else do_tx_error = true; neigh_release(neigh); if (do_tx_error) goto tx_error; } flowi4_init_output(&fl4, tunnel->parms.link, tunnel->fwmark, RT_TOS(tos), RT_SCOPE_UNIVERSE, IPPROTO_IPV6, 0, dst, tiph->saddr, 0, 0, sock_net_uid(tunnel->net, NULL)); rt = dst_cache_get_ip4(&tunnel->dst_cache, &fl4.saddr); if (!rt) { rt = ip_route_output_flow(tunnel->net, &fl4, NULL); if (IS_ERR(rt)) { DEV_STATS_INC(dev, tx_carrier_errors); goto tx_error_icmp; } dst_cache_set_ip4(&tunnel->dst_cache, &rt->dst, fl4.saddr); } if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { ip_rt_put(rt); DEV_STATS_INC(dev, tx_carrier_errors); goto tx_error_icmp; } tdev = rt->dst.dev; if (tdev == dev) { ip_rt_put(rt); DEV_STATS_INC(dev, collisions); goto tx_error; } if (iptunnel_handle_offloads(skb, SKB_GSO_IPXIP4)) { ip_rt_put(rt); goto tx_error; } if (df) { mtu = dst_mtu(&rt->dst) - t_hlen; if (mtu < IPV4_MIN_MTU) { DEV_STATS_INC(dev, collisions); ip_rt_put(rt); goto tx_error; } if (mtu < IPV6_MIN_MTU) { mtu = IPV6_MIN_MTU; df = 0; } if (tunnel->parms.iph.daddr) skb_dst_update_pmtu_no_confirm(skb, mtu); if (skb->len > mtu && !skb_is_gso(skb)) { icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); ip_rt_put(rt); goto tx_error; } } if (tunnel->err_count > 0) { if (time_before(jiffies, tunnel->err_time + IPTUNNEL_ERR_TIMEO)) { tunnel->err_count--; dst_link_failure(skb); } else tunnel->err_count = 0; } /* * Okay, now see if we can stuff it in the buffer as-is. */ max_headroom = LL_RESERVED_SPACE(tdev) + t_hlen; if (skb_headroom(skb) < max_headroom || skb_shared(skb) || (skb_cloned(skb) && !skb_clone_writable(skb, 0))) { struct sk_buff *new_skb = skb_realloc_headroom(skb, max_headroom); if (!new_skb) { ip_rt_put(rt); DEV_STATS_INC(dev, tx_dropped); kfree_skb(skb); return NETDEV_TX_OK; } if (skb->sk) skb_set_owner_w(new_skb, skb->sk); dev_kfree_skb(skb); skb = new_skb; iph6 = ipv6_hdr(skb); } ttl = tiph->ttl; if (ttl == 0) ttl = iph6->hop_limit; tos = INET_ECN_encapsulate(tos, ipv6_get_dsfield(iph6)); if (ip_tunnel_encap(skb, &tunnel->encap, &protocol, &fl4) < 0) { ip_rt_put(rt); goto tx_error; } skb_set_inner_ipproto(skb, IPPROTO_IPV6); iptunnel_xmit(NULL, rt, skb, fl4.saddr, fl4.daddr, protocol, tos, ttl, df, !net_eq(tunnel->net, dev_net(dev))); return NETDEV_TX_OK; tx_error_icmp: dst_link_failure(skb); tx_error: kfree_skb(skb); DEV_STATS_INC(dev, tx_errors); return NETDEV_TX_OK; } static netdev_tx_t sit_tunnel_xmit__(struct sk_buff *skb, struct net_device *dev, u8 ipproto) { struct ip_tunnel *tunnel = netdev_priv(dev); const struct iphdr *tiph = &tunnel->parms.iph; if (iptunnel_handle_offloads(skb, SKB_GSO_IPXIP4)) goto tx_error; skb_set_inner_ipproto(skb, ipproto); ip_tunnel_xmit(skb, dev, tiph, ipproto); return NETDEV_TX_OK; tx_error: kfree_skb(skb); DEV_STATS_INC(dev, tx_errors); return NETDEV_TX_OK; } static netdev_tx_t sit_tunnel_xmit(struct sk_buff *skb, struct net_device *dev) { if (!pskb_inet_may_pull(skb)) goto tx_err; switch (skb->protocol) { case htons(ETH_P_IP): sit_tunnel_xmit__(skb, dev, IPPROTO_IPIP); break; case htons(ETH_P_IPV6): ipip6_tunnel_xmit(skb, dev); break; #if IS_ENABLED(CONFIG_MPLS) case htons(ETH_P_MPLS_UC): sit_tunnel_xmit__(skb, dev, IPPROTO_MPLS); break; #endif default: goto tx_err; } return NETDEV_TX_OK; tx_err: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); return NETDEV_TX_OK; } static void ipip6_tunnel_bind_dev(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); int t_hlen = tunnel->hlen + sizeof(struct iphdr); struct net_device *tdev = NULL; int hlen = LL_MAX_HEADER; const struct iphdr *iph; struct flowi4 fl4; iph = &tunnel->parms.iph; if (iph->daddr) { struct rtable *rt = ip_route_output_ports(tunnel->net, &fl4, NULL, iph->daddr, iph->saddr, 0, 0, IPPROTO_IPV6, RT_TOS(iph->tos), tunnel->parms.link); if (!IS_ERR(rt)) { tdev = rt->dst.dev; ip_rt_put(rt); } dev->flags |= IFF_POINTOPOINT; } if (!tdev && tunnel->parms.link) tdev = __dev_get_by_index(tunnel->net, tunnel->parms.link); if (tdev && !netif_is_l3_master(tdev)) { int mtu; mtu = tdev->mtu - t_hlen; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; WRITE_ONCE(dev->mtu, mtu); hlen = tdev->hard_header_len + tdev->needed_headroom; } dev->needed_headroom = t_hlen + hlen; } static void ipip6_tunnel_update(struct ip_tunnel *t, struct ip_tunnel_parm *p, __u32 fwmark) { struct net *net = t->net; struct sit_net *sitn = net_generic(net, sit_net_id); ipip6_tunnel_unlink(sitn, t); synchronize_net(); t->parms.iph.saddr = p->iph.saddr; t->parms.iph.daddr = p->iph.daddr; __dev_addr_set(t->dev, &p->iph.saddr, 4); memcpy(t->dev->broadcast, &p->iph.daddr, 4); ipip6_tunnel_link(sitn, t); t->parms.iph.ttl = p->iph.ttl; t->parms.iph.tos = p->iph.tos; t->parms.iph.frag_off = p->iph.frag_off; if (t->parms.link != p->link || t->fwmark != fwmark) { t->parms.link = p->link; t->fwmark = fwmark; ipip6_tunnel_bind_dev(t->dev); } dst_cache_reset(&t->dst_cache); netdev_state_change(t->dev); } #ifdef CONFIG_IPV6_SIT_6RD static int ipip6_tunnel_update_6rd(struct ip_tunnel *t, struct ip_tunnel_6rd *ip6rd) { struct in6_addr prefix; __be32 relay_prefix; if (ip6rd->relay_prefixlen > 32 || ip6rd->prefixlen + (32 - ip6rd->relay_prefixlen) > 64) return -EINVAL; ipv6_addr_prefix(&prefix, &ip6rd->prefix, ip6rd->prefixlen); if (!ipv6_addr_equal(&prefix, &ip6rd->prefix)) return -EINVAL; if (ip6rd->relay_prefixlen) relay_prefix = ip6rd->relay_prefix & htonl(0xffffffffUL << (32 - ip6rd->relay_prefixlen)); else relay_prefix = 0; if (relay_prefix != ip6rd->relay_prefix) return -EINVAL; t->ip6rd.prefix = prefix; t->ip6rd.relay_prefix = relay_prefix; t->ip6rd.prefixlen = ip6rd->prefixlen; t->ip6rd.relay_prefixlen = ip6rd->relay_prefixlen; dst_cache_reset(&t->dst_cache); netdev_state_change(t->dev); return 0; } static int ipip6_tunnel_get6rd(struct net_device *dev, struct ip_tunnel_parm __user *data) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_6rd ip6rd; struct ip_tunnel_parm p; if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) { if (copy_from_user(&p, data, sizeof(p))) return -EFAULT; t = ipip6_tunnel_locate(t->net, &p, 0); } if (!t) t = netdev_priv(dev); ip6rd.prefix = t->ip6rd.prefix; ip6rd.relay_prefix = t->ip6rd.relay_prefix; ip6rd.prefixlen = t->ip6rd.prefixlen; ip6rd.relay_prefixlen = t->ip6rd.relay_prefixlen; if (copy_to_user(data, &ip6rd, sizeof(ip6rd))) return -EFAULT; return 0; } static int ipip6_tunnel_6rdctl(struct net_device *dev, struct ip_tunnel_6rd __user *data, int cmd) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_6rd ip6rd; int err; if (!ns_capable(t->net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ip6rd, data, sizeof(ip6rd))) return -EFAULT; if (cmd != SIOCDEL6RD) { err = ipip6_tunnel_update_6rd(t, &ip6rd); if (err < 0) return err; } else ipip6_tunnel_clone_6rd(dev, dev_to_sit_net(dev)); return 0; } #endif /* CONFIG_IPV6_SIT_6RD */ static bool ipip6_valid_ip_proto(u8 ipproto) { return ipproto == IPPROTO_IPV6 || ipproto == IPPROTO_IPIP || #if IS_ENABLED(CONFIG_MPLS) ipproto == IPPROTO_MPLS || #endif ipproto == 0; } static int __ipip6_tunnel_ioctl_validate(struct net *net, struct ip_tunnel_parm *p) { if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (!ipip6_valid_ip_proto(p->iph.protocol)) return -EINVAL; if (p->iph.version != 4 || p->iph.ihl != 5 || (p->iph.frag_off & htons(~IP_DF))) return -EINVAL; if (p->iph.ttl) p->iph.frag_off |= htons(IP_DF); return 0; } static int ipip6_tunnel_get(struct net_device *dev, struct ip_tunnel_parm *p) { struct ip_tunnel *t = netdev_priv(dev); if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) t = ipip6_tunnel_locate(t->net, p, 0); if (!t) t = netdev_priv(dev); memcpy(p, &t->parms, sizeof(*p)); return 0; } static int ipip6_tunnel_add(struct net_device *dev, struct ip_tunnel_parm *p) { struct ip_tunnel *t = netdev_priv(dev); int err; err = __ipip6_tunnel_ioctl_validate(t->net, p); if (err) return err; t = ipip6_tunnel_locate(t->net, p, 1); if (!t) return -ENOBUFS; return 0; } static int ipip6_tunnel_change(struct net_device *dev, struct ip_tunnel_parm *p) { struct ip_tunnel *t = netdev_priv(dev); int err; err = __ipip6_tunnel_ioctl_validate(t->net, p); if (err) return err; t = ipip6_tunnel_locate(t->net, p, 0); if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) { if (!t) return -ENOENT; } else { if (t) { if (t->dev != dev) return -EEXIST; } else { if (((dev->flags & IFF_POINTOPOINT) && !p->iph.daddr) || (!(dev->flags & IFF_POINTOPOINT) && p->iph.daddr)) return -EINVAL; t = netdev_priv(dev); } ipip6_tunnel_update(t, p, t->fwmark); } return 0; } static int ipip6_tunnel_del(struct net_device *dev, struct ip_tunnel_parm *p) { struct ip_tunnel *t = netdev_priv(dev); if (!ns_capable(t->net->user_ns, CAP_NET_ADMIN)) return -EPERM; if (dev == dev_to_sit_net(dev)->fb_tunnel_dev) { t = ipip6_tunnel_locate(t->net, p, 0); if (!t) return -ENOENT; if (t == netdev_priv(dev_to_sit_net(dev)->fb_tunnel_dev)) return -EPERM; dev = t->dev; } unregister_netdevice(dev); return 0; } static int ipip6_tunnel_ctl(struct net_device *dev, struct ip_tunnel_parm *p, int cmd) { switch (cmd) { case SIOCGETTUNNEL: return ipip6_tunnel_get(dev, p); case SIOCADDTUNNEL: return ipip6_tunnel_add(dev, p); case SIOCCHGTUNNEL: return ipip6_tunnel_change(dev, p); case SIOCDELTUNNEL: return ipip6_tunnel_del(dev, p); default: return -EINVAL; } } static int ipip6_tunnel_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { switch (cmd) { case SIOCGETTUNNEL: case SIOCADDTUNNEL: case SIOCCHGTUNNEL: case SIOCDELTUNNEL: return ip_tunnel_siocdevprivate(dev, ifr, data, cmd); case SIOCGETPRL: return ipip6_tunnel_get_prl(dev, data); case SIOCADDPRL: case SIOCDELPRL: case SIOCCHGPRL: return ipip6_tunnel_prl_ctl(dev, data, cmd); #ifdef CONFIG_IPV6_SIT_6RD case SIOCGET6RD: return ipip6_tunnel_get6rd(dev, data); case SIOCADD6RD: case SIOCCHG6RD: case SIOCDEL6RD: return ipip6_tunnel_6rdctl(dev, data, cmd); #endif default: return -EINVAL; } } static const struct net_device_ops ipip6_netdev_ops = { .ndo_init = ipip6_tunnel_init, .ndo_uninit = ipip6_tunnel_uninit, .ndo_start_xmit = sit_tunnel_xmit, .ndo_siocdevprivate = ipip6_tunnel_siocdevprivate, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip_tunnel_get_iflink, .ndo_tunnel_ctl = ipip6_tunnel_ctl, }; static void ipip6_dev_free(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); dst_cache_destroy(&tunnel->dst_cache); free_percpu(dev->tstats); } #define SIT_FEATURES (NETIF_F_SG | \ NETIF_F_FRAGLIST | \ NETIF_F_HIGHDMA | \ NETIF_F_GSO_SOFTWARE | \ NETIF_F_HW_CSUM) static void ipip6_tunnel_setup(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); int t_hlen = tunnel->hlen + sizeof(struct iphdr); dev->netdev_ops = &ipip6_netdev_ops; dev->header_ops = &ip_tunnel_header_ops; dev->needs_free_netdev = true; dev->priv_destructor = ipip6_dev_free; dev->type = ARPHRD_SIT; dev->mtu = ETH_DATA_LEN - t_hlen; dev->min_mtu = IPV6_MIN_MTU; dev->max_mtu = IP6_MAX_MTU - t_hlen; dev->flags = IFF_NOARP; netif_keep_dst(dev); dev->addr_len = 4; dev->features |= NETIF_F_LLTX; dev->features |= SIT_FEATURES; dev->hw_features |= SIT_FEATURES; } static int ipip6_tunnel_init(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); int err; tunnel->dev = dev; tunnel->net = dev_net(dev); strcpy(tunnel->parms.name, dev->name); ipip6_tunnel_bind_dev(dev); dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; err = dst_cache_init(&tunnel->dst_cache, GFP_KERNEL); if (err) { free_percpu(dev->tstats); dev->tstats = NULL; return err; } netdev_hold(dev, &tunnel->dev_tracker, GFP_KERNEL); return 0; } static void __net_init ipip6_fb_tunnel_init(struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); struct iphdr *iph = &tunnel->parms.iph; struct net *net = dev_net(dev); struct sit_net *sitn = net_generic(net, sit_net_id); iph->version = 4; iph->protocol = IPPROTO_IPV6; iph->ihl = 5; iph->ttl = 64; rcu_assign_pointer(sitn->tunnels_wc[0], tunnel); } static int ipip6_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { u8 proto; if (!data || !data[IFLA_IPTUN_PROTO]) return 0; proto = nla_get_u8(data[IFLA_IPTUN_PROTO]); if (!ipip6_valid_ip_proto(proto)) return -EINVAL; return 0; } static void ipip6_netlink_parms(struct nlattr *data[], struct ip_tunnel_parm *parms, __u32 *fwmark) { memset(parms, 0, sizeof(*parms)); parms->iph.version = 4; parms->iph.protocol = IPPROTO_IPV6; parms->iph.ihl = 5; parms->iph.ttl = 64; if (!data) return; ip_tunnel_netlink_parms(data, parms); if (data[IFLA_IPTUN_FWMARK]) *fwmark = nla_get_u32(data[IFLA_IPTUN_FWMARK]); } #ifdef CONFIG_IPV6_SIT_6RD /* This function returns true when 6RD attributes are present in the nl msg */ static bool ipip6_netlink_6rd_parms(struct nlattr *data[], struct ip_tunnel_6rd *ip6rd) { bool ret = false; memset(ip6rd, 0, sizeof(*ip6rd)); if (!data) return ret; if (data[IFLA_IPTUN_6RD_PREFIX]) { ret = true; ip6rd->prefix = nla_get_in6_addr(data[IFLA_IPTUN_6RD_PREFIX]); } if (data[IFLA_IPTUN_6RD_RELAY_PREFIX]) { ret = true; ip6rd->relay_prefix = nla_get_be32(data[IFLA_IPTUN_6RD_RELAY_PREFIX]); } if (data[IFLA_IPTUN_6RD_PREFIXLEN]) { ret = true; ip6rd->prefixlen = nla_get_u16(data[IFLA_IPTUN_6RD_PREFIXLEN]); } if (data[IFLA_IPTUN_6RD_RELAY_PREFIXLEN]) { ret = true; ip6rd->relay_prefixlen = nla_get_u16(data[IFLA_IPTUN_6RD_RELAY_PREFIXLEN]); } return ret; } #endif static int ipip6_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net *net = dev_net(dev); struct ip_tunnel *nt; struct ip_tunnel_encap ipencap; #ifdef CONFIG_IPV6_SIT_6RD struct ip_tunnel_6rd ip6rd; #endif int err; nt = netdev_priv(dev); if (ip_tunnel_netlink_encap_parms(data, &ipencap)) { err = ip_tunnel_encap_setup(nt, &ipencap); if (err < 0) return err; } ipip6_netlink_parms(data, &nt->parms, &nt->fwmark); if (ipip6_tunnel_locate(net, &nt->parms, 0)) return -EEXIST; err = ipip6_tunnel_create(dev); if (err < 0) return err; if (tb[IFLA_MTU]) { u32 mtu = nla_get_u32(tb[IFLA_MTU]); if (mtu >= IPV6_MIN_MTU && mtu <= IP6_MAX_MTU - dev->hard_header_len) dev->mtu = mtu; } #ifdef CONFIG_IPV6_SIT_6RD if (ipip6_netlink_6rd_parms(data, &ip6rd)) { err = ipip6_tunnel_update_6rd(nt, &ip6rd); if (err < 0) unregister_netdevice_queue(dev, NULL); } #endif return err; } static int ipip6_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip_tunnel *t = netdev_priv(dev); struct ip_tunnel_parm p; struct ip_tunnel_encap ipencap; struct net *net = t->net; struct sit_net *sitn = net_generic(net, sit_net_id); #ifdef CONFIG_IPV6_SIT_6RD struct ip_tunnel_6rd ip6rd; #endif __u32 fwmark = t->fwmark; int err; if (dev == sitn->fb_tunnel_dev) return -EINVAL; if (ip_tunnel_netlink_encap_parms(data, &ipencap)) { err = ip_tunnel_encap_setup(t, &ipencap); if (err < 0) return err; } ipip6_netlink_parms(data, &p, &fwmark); if (((dev->flags & IFF_POINTOPOINT) && !p.iph.daddr) || (!(dev->flags & IFF_POINTOPOINT) && p.iph.daddr)) return -EINVAL; t = ipip6_tunnel_locate(net, &p, 0); if (t) { if (t->dev != dev) return -EEXIST; } else t = netdev_priv(dev); ipip6_tunnel_update(t, &p, fwmark); #ifdef CONFIG_IPV6_SIT_6RD if (ipip6_netlink_6rd_parms(data, &ip6rd)) return ipip6_tunnel_update_6rd(t, &ip6rd); #endif return 0; } static size_t ipip6_get_size(const struct net_device *dev) { return /* IFLA_IPTUN_LINK */ nla_total_size(4) + /* IFLA_IPTUN_LOCAL */ nla_total_size(4) + /* IFLA_IPTUN_REMOTE */ nla_total_size(4) + /* IFLA_IPTUN_TTL */ nla_total_size(1) + /* IFLA_IPTUN_TOS */ nla_total_size(1) + /* IFLA_IPTUN_PMTUDISC */ nla_total_size(1) + /* IFLA_IPTUN_FLAGS */ nla_total_size(2) + /* IFLA_IPTUN_PROTO */ nla_total_size(1) + #ifdef CONFIG_IPV6_SIT_6RD /* IFLA_IPTUN_6RD_PREFIX */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_IPTUN_6RD_RELAY_PREFIX */ nla_total_size(4) + /* IFLA_IPTUN_6RD_PREFIXLEN */ nla_total_size(2) + /* IFLA_IPTUN_6RD_RELAY_PREFIXLEN */ nla_total_size(2) + #endif /* IFLA_IPTUN_ENCAP_TYPE */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_FLAGS */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_SPORT */ nla_total_size(2) + /* IFLA_IPTUN_ENCAP_DPORT */ nla_total_size(2) + /* IFLA_IPTUN_FWMARK */ nla_total_size(4) + 0; } static int ipip6_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct ip_tunnel *tunnel = netdev_priv(dev); struct ip_tunnel_parm *parm = &tunnel->parms; if (nla_put_u32(skb, IFLA_IPTUN_LINK, parm->link) || nla_put_in_addr(skb, IFLA_IPTUN_LOCAL, parm->iph.saddr) || nla_put_in_addr(skb, IFLA_IPTUN_REMOTE, parm->iph.daddr) || nla_put_u8(skb, IFLA_IPTUN_TTL, parm->iph.ttl) || nla_put_u8(skb, IFLA_IPTUN_TOS, parm->iph.tos) || nla_put_u8(skb, IFLA_IPTUN_PMTUDISC, !!(parm->iph.frag_off & htons(IP_DF))) || nla_put_u8(skb, IFLA_IPTUN_PROTO, parm->iph.protocol) || nla_put_be16(skb, IFLA_IPTUN_FLAGS, parm->i_flags) || nla_put_u32(skb, IFLA_IPTUN_FWMARK, tunnel->fwmark)) goto nla_put_failure; #ifdef CONFIG_IPV6_SIT_6RD if (nla_put_in6_addr(skb, IFLA_IPTUN_6RD_PREFIX, &tunnel->ip6rd.prefix) || nla_put_in_addr(skb, IFLA_IPTUN_6RD_RELAY_PREFIX, tunnel->ip6rd.relay_prefix) || nla_put_u16(skb, IFLA_IPTUN_6RD_PREFIXLEN, tunnel->ip6rd.prefixlen) || nla_put_u16(skb, IFLA_IPTUN_6RD_RELAY_PREFIXLEN, tunnel->ip6rd.relay_prefixlen)) goto nla_put_failure; #endif if (nla_put_u16(skb, IFLA_IPTUN_ENCAP_TYPE, tunnel->encap.type) || nla_put_be16(skb, IFLA_IPTUN_ENCAP_SPORT, tunnel->encap.sport) || nla_put_be16(skb, IFLA_IPTUN_ENCAP_DPORT, tunnel->encap.dport) || nla_put_u16(skb, IFLA_IPTUN_ENCAP_FLAGS, tunnel->encap.flags)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static const struct nla_policy ipip6_policy[IFLA_IPTUN_MAX + 1] = { [IFLA_IPTUN_LINK] = { .type = NLA_U32 }, [IFLA_IPTUN_LOCAL] = { .type = NLA_U32 }, [IFLA_IPTUN_REMOTE] = { .type = NLA_U32 }, [IFLA_IPTUN_TTL] = { .type = NLA_U8 }, [IFLA_IPTUN_TOS] = { .type = NLA_U8 }, [IFLA_IPTUN_PMTUDISC] = { .type = NLA_U8 }, [IFLA_IPTUN_FLAGS] = { .type = NLA_U16 }, [IFLA_IPTUN_PROTO] = { .type = NLA_U8 }, #ifdef CONFIG_IPV6_SIT_6RD [IFLA_IPTUN_6RD_PREFIX] = { .len = sizeof(struct in6_addr) }, [IFLA_IPTUN_6RD_RELAY_PREFIX] = { .type = NLA_U32 }, [IFLA_IPTUN_6RD_PREFIXLEN] = { .type = NLA_U16 }, [IFLA_IPTUN_6RD_RELAY_PREFIXLEN] = { .type = NLA_U16 }, #endif [IFLA_IPTUN_ENCAP_TYPE] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_FLAGS] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_SPORT] = { .type = NLA_U16 }, [IFLA_IPTUN_ENCAP_DPORT] = { .type = NLA_U16 }, [IFLA_IPTUN_FWMARK] = { .type = NLA_U32 }, }; static void ipip6_dellink(struct net_device *dev, struct list_head *head) { struct net *net = dev_net(dev); struct sit_net *sitn = net_generic(net, sit_net_id); if (dev != sitn->fb_tunnel_dev) unregister_netdevice_queue(dev, head); } static struct rtnl_link_ops sit_link_ops __read_mostly = { .kind = "sit", .maxtype = IFLA_IPTUN_MAX, .policy = ipip6_policy, .priv_size = sizeof(struct ip_tunnel), .setup = ipip6_tunnel_setup, .validate = ipip6_validate, .newlink = ipip6_newlink, .changelink = ipip6_changelink, .get_size = ipip6_get_size, .fill_info = ipip6_fill_info, .dellink = ipip6_dellink, .get_link_net = ip_tunnel_get_link_net, }; static struct xfrm_tunnel sit_handler __read_mostly = { .handler = ipip6_rcv, .err_handler = ipip6_err, .priority = 1, }; static struct xfrm_tunnel ipip_handler __read_mostly = { .handler = ipip_rcv, .err_handler = ipip6_err, .priority = 2, }; #if IS_ENABLED(CONFIG_MPLS) static struct xfrm_tunnel mplsip_handler __read_mostly = { .handler = mplsip_rcv, .err_handler = ipip6_err, .priority = 2, }; #endif static void __net_exit sit_destroy_tunnels(struct net *net, struct list_head *head) { struct sit_net *sitn = net_generic(net, sit_net_id); struct net_device *dev, *aux; int prio; for_each_netdev_safe(net, dev, aux) if (dev->rtnl_link_ops == &sit_link_ops) unregister_netdevice_queue(dev, head); for (prio = 0; prio < 4; prio++) { int h; for (h = 0; h < (prio ? IP6_SIT_HASH_SIZE : 1); h++) { struct ip_tunnel *t; t = rtnl_dereference(sitn->tunnels[prio][h]); while (t) { /* If dev is in the same netns, it has already * been added to the list by the previous loop. */ if (!net_eq(dev_net(t->dev), net)) unregister_netdevice_queue(t->dev, head); t = rtnl_dereference(t->next); } } } } static int __net_init sit_init_net(struct net *net) { struct sit_net *sitn = net_generic(net, sit_net_id); struct ip_tunnel *t; int err; sitn->tunnels[0] = sitn->tunnels_wc; sitn->tunnels[1] = sitn->tunnels_l; sitn->tunnels[2] = sitn->tunnels_r; sitn->tunnels[3] = sitn->tunnels_r_l; if (!net_has_fallback_tunnels(net)) return 0; sitn->fb_tunnel_dev = alloc_netdev(sizeof(struct ip_tunnel), "sit0", NET_NAME_UNKNOWN, ipip6_tunnel_setup); if (!sitn->fb_tunnel_dev) { err = -ENOMEM; goto err_alloc_dev; } dev_net_set(sitn->fb_tunnel_dev, net); sitn->fb_tunnel_dev->rtnl_link_ops = &sit_link_ops; /* FB netdevice is special: we have one, and only one per netns. * Allowing to move it to another netns is clearly unsafe. */ sitn->fb_tunnel_dev->features |= NETIF_F_NETNS_LOCAL; err = register_netdev(sitn->fb_tunnel_dev); if (err) goto err_reg_dev; ipip6_tunnel_clone_6rd(sitn->fb_tunnel_dev, sitn); ipip6_fb_tunnel_init(sitn->fb_tunnel_dev); t = netdev_priv(sitn->fb_tunnel_dev); strcpy(t->parms.name, sitn->fb_tunnel_dev->name); return 0; err_reg_dev: free_netdev(sitn->fb_tunnel_dev); err_alloc_dev: return err; } static void __net_exit sit_exit_batch_net(struct list_head *net_list) { LIST_HEAD(list); struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) sit_destroy_tunnels(net, &list); unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations sit_net_ops = { .init = sit_init_net, .exit_batch = sit_exit_batch_net, .id = &sit_net_id, .size = sizeof(struct sit_net), }; static void __exit sit_cleanup(void) { rtnl_link_unregister(&sit_link_ops); xfrm4_tunnel_deregister(&sit_handler, AF_INET6); xfrm4_tunnel_deregister(&ipip_handler, AF_INET); #if IS_ENABLED(CONFIG_MPLS) xfrm4_tunnel_deregister(&mplsip_handler, AF_MPLS); #endif unregister_pernet_device(&sit_net_ops); rcu_barrier(); /* Wait for completion of call_rcu()'s */ } static int __init sit_init(void) { int err; pr_info("IPv6, IPv4 and MPLS over IPv4 tunneling driver\n"); err = register_pernet_device(&sit_net_ops); if (err < 0) return err; err = xfrm4_tunnel_register(&sit_handler, AF_INET6); if (err < 0) { pr_info("%s: can't register ip6ip4\n", __func__); goto xfrm_tunnel_failed; } err = xfrm4_tunnel_register(&ipip_handler, AF_INET); if (err < 0) { pr_info("%s: can't register ip4ip4\n", __func__); goto xfrm_tunnel4_failed; } #if IS_ENABLED(CONFIG_MPLS) err = xfrm4_tunnel_register(&mplsip_handler, AF_MPLS); if (err < 0) { pr_info("%s: can't register mplsip\n", __func__); goto xfrm_tunnel_mpls_failed; } #endif err = rtnl_link_register(&sit_link_ops); if (err < 0) goto rtnl_link_failed; out: return err; rtnl_link_failed: #if IS_ENABLED(CONFIG_MPLS) xfrm4_tunnel_deregister(&mplsip_handler, AF_MPLS); xfrm_tunnel_mpls_failed: #endif xfrm4_tunnel_deregister(&ipip_handler, AF_INET); xfrm_tunnel4_failed: xfrm4_tunnel_deregister(&sit_handler, AF_INET6); xfrm_tunnel_failed: unregister_pernet_device(&sit_net_ops); goto out; } module_init(sit_init); module_exit(sit_cleanup); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("sit"); MODULE_ALIAS_NETDEV("sit0");
linux-master
net/ipv6/sit.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 virtual tunneling interface * * Copyright (C) 2013 secunet Security Networks AG * * Author: * Steffen Klassert <[email protected]> * * Based on: * net/ipv6/ip6_tunnel.c */ #include <linux/module.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/sockios.h> #include <linux/icmp.h> #include <linux/if.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/route.h> #include <linux/rtnetlink.h> #include <linux/netfilter_ipv6.h> #include <linux/slab.h> #include <linux/hash.h> #include <linux/uaccess.h> #include <linux/atomic.h> #include <net/icmp.h> #include <net/ip.h> #include <net/ip_tunnels.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/ip6_tunnel.h> #include <net/xfrm.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <linux/etherdevice.h> #define IP6_VTI_HASH_SIZE_SHIFT 5 #define IP6_VTI_HASH_SIZE (1 << IP6_VTI_HASH_SIZE_SHIFT) static u32 HASH(const struct in6_addr *addr1, const struct in6_addr *addr2) { u32 hash = ipv6_addr_hash(addr1) ^ ipv6_addr_hash(addr2); return hash_32(hash, IP6_VTI_HASH_SIZE_SHIFT); } static int vti6_dev_init(struct net_device *dev); static void vti6_dev_setup(struct net_device *dev); static struct rtnl_link_ops vti6_link_ops __read_mostly; static unsigned int vti6_net_id __read_mostly; struct vti6_net { /* the vti6 tunnel fallback device */ struct net_device *fb_tnl_dev; /* lists for storing tunnels in use */ struct ip6_tnl __rcu *tnls_r_l[IP6_VTI_HASH_SIZE]; struct ip6_tnl __rcu *tnls_wc[1]; struct ip6_tnl __rcu **tnls[2]; }; #define for_each_vti6_tunnel_rcu(start) \ for (t = rcu_dereference(start); t; t = rcu_dereference(t->next)) /** * vti6_tnl_lookup - fetch tunnel matching the end-point addresses * @net: network namespace * @remote: the address of the tunnel exit-point * @local: the address of the tunnel entry-point * * Return: * tunnel matching given end-points if found, * else fallback tunnel if its device is up, * else %NULL **/ static struct ip6_tnl * vti6_tnl_lookup(struct net *net, const struct in6_addr *remote, const struct in6_addr *local) { unsigned int hash = HASH(remote, local); struct ip6_tnl *t; struct vti6_net *ip6n = net_generic(net, vti6_net_id); struct in6_addr any; for_each_vti6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (ipv6_addr_equal(local, &t->parms.laddr) && ipv6_addr_equal(remote, &t->parms.raddr) && (t->dev->flags & IFF_UP)) return t; } memset(&any, 0, sizeof(any)); hash = HASH(&any, local); for_each_vti6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (ipv6_addr_equal(local, &t->parms.laddr) && (t->dev->flags & IFF_UP)) return t; } hash = HASH(remote, &any); for_each_vti6_tunnel_rcu(ip6n->tnls_r_l[hash]) { if (ipv6_addr_equal(remote, &t->parms.raddr) && (t->dev->flags & IFF_UP)) return t; } t = rcu_dereference(ip6n->tnls_wc[0]); if (t && (t->dev->flags & IFF_UP)) return t; return NULL; } /** * vti6_tnl_bucket - get head of list matching given tunnel parameters * @ip6n: the private data for ip6_vti in the netns * @p: parameters containing tunnel end-points * * Description: * vti6_tnl_bucket() returns the head of the list matching the * &struct in6_addr entries laddr and raddr in @p. * * Return: head of IPv6 tunnel list **/ static struct ip6_tnl __rcu ** vti6_tnl_bucket(struct vti6_net *ip6n, const struct __ip6_tnl_parm *p) { const struct in6_addr *remote = &p->raddr; const struct in6_addr *local = &p->laddr; unsigned int h = 0; int prio = 0; if (!ipv6_addr_any(remote) || !ipv6_addr_any(local)) { prio = 1; h = HASH(remote, local); } return &ip6n->tnls[prio][h]; } static void vti6_tnl_link(struct vti6_net *ip6n, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp = vti6_tnl_bucket(ip6n, &t->parms); rcu_assign_pointer(t->next, rtnl_dereference(*tp)); rcu_assign_pointer(*tp, t); } static void vti6_tnl_unlink(struct vti6_net *ip6n, struct ip6_tnl *t) { struct ip6_tnl __rcu **tp; struct ip6_tnl *iter; for (tp = vti6_tnl_bucket(ip6n, &t->parms); (iter = rtnl_dereference(*tp)) != NULL; tp = &iter->next) { if (t == iter) { rcu_assign_pointer(*tp, t->next); break; } } } static void vti6_dev_free(struct net_device *dev) { free_percpu(dev->tstats); } static int vti6_tnl_create2(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = dev_net(dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); int err; dev->rtnl_link_ops = &vti6_link_ops; err = register_netdevice(dev); if (err < 0) goto out; strcpy(t->parms.name, dev->name); vti6_tnl_link(ip6n, t); return 0; out: return err; } static struct ip6_tnl *vti6_tnl_create(struct net *net, struct __ip6_tnl_parm *p) { struct net_device *dev; struct ip6_tnl *t; char name[IFNAMSIZ]; int err; if (p->name[0]) { if (!dev_valid_name(p->name)) goto failed; strscpy(name, p->name, IFNAMSIZ); } else { sprintf(name, "ip6_vti%%d"); } dev = alloc_netdev(sizeof(*t), name, NET_NAME_UNKNOWN, vti6_dev_setup); if (!dev) goto failed; dev_net_set(dev, net); t = netdev_priv(dev); t->parms = *p; t->net = dev_net(dev); err = vti6_tnl_create2(dev); if (err < 0) goto failed_free; return t; failed_free: free_netdev(dev); failed: return NULL; } /** * vti6_locate - find or create tunnel matching given parameters * @net: network namespace * @p: tunnel parameters * @create: != 0 if allowed to create new tunnel if no match found * * Description: * vti6_locate() first tries to locate an existing tunnel * based on @parms. If this is unsuccessful, but @create is set a new * tunnel device is created and registered for use. * * Return: * matching tunnel or NULL **/ static struct ip6_tnl *vti6_locate(struct net *net, struct __ip6_tnl_parm *p, int create) { const struct in6_addr *remote = &p->raddr; const struct in6_addr *local = &p->laddr; struct ip6_tnl __rcu **tp; struct ip6_tnl *t; struct vti6_net *ip6n = net_generic(net, vti6_net_id); for (tp = vti6_tnl_bucket(ip6n, p); (t = rtnl_dereference(*tp)) != NULL; tp = &t->next) { if (ipv6_addr_equal(local, &t->parms.laddr) && ipv6_addr_equal(remote, &t->parms.raddr)) { if (create) return NULL; return t; } } if (!create) return NULL; return vti6_tnl_create(net, p); } /** * vti6_dev_uninit - tunnel device uninitializer * @dev: the device to be destroyed * * Description: * vti6_dev_uninit() removes tunnel from its list **/ static void vti6_dev_uninit(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct vti6_net *ip6n = net_generic(t->net, vti6_net_id); if (dev == ip6n->fb_tnl_dev) RCU_INIT_POINTER(ip6n->tnls_wc[0], NULL); else vti6_tnl_unlink(ip6n, t); netdev_put(dev, &t->dev_tracker); } static int vti6_input_proto(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type) { struct ip6_tnl *t; const struct ipv6hdr *ipv6h = ipv6_hdr(skb); rcu_read_lock(); t = vti6_tnl_lookup(dev_net(skb->dev), &ipv6h->saddr, &ipv6h->daddr); if (t) { if (t->parms.proto != IPPROTO_IPV6 && t->parms.proto != 0) { rcu_read_unlock(); goto discard; } if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) { rcu_read_unlock(); goto discard; } ipv6h = ipv6_hdr(skb); if (!ip6_tnl_rcv_ctl(t, &ipv6h->daddr, &ipv6h->saddr)) { DEV_STATS_INC(t->dev, rx_dropped); rcu_read_unlock(); goto discard; } rcu_read_unlock(); XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = t; XFRM_SPI_SKB_CB(skb)->family = AF_INET6; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr); return xfrm_input(skb, nexthdr, spi, encap_type); } rcu_read_unlock(); return -EINVAL; discard: kfree_skb(skb); return 0; } static int vti6_rcv(struct sk_buff *skb) { int nexthdr = skb_network_header(skb)[IP6CB(skb)->nhoff]; return vti6_input_proto(skb, nexthdr, 0, 0); } static int vti6_rcv_cb(struct sk_buff *skb, int err) { unsigned short family; struct net_device *dev; struct xfrm_state *x; const struct xfrm_mode *inner_mode; struct ip6_tnl *t = XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6; u32 orig_mark = skb->mark; int ret; if (!t) return 1; dev = t->dev; if (err) { DEV_STATS_INC(dev, rx_errors); DEV_STATS_INC(dev, rx_dropped); return 0; } x = xfrm_input_state(skb); inner_mode = &x->inner_mode; if (x->sel.family == AF_UNSPEC) { inner_mode = xfrm_ip2inner_mode(x, XFRM_MODE_SKB_CB(skb)->protocol); if (inner_mode == NULL) { XFRM_INC_STATS(dev_net(skb->dev), LINUX_MIB_XFRMINSTATEMODEERROR); return -EINVAL; } } family = inner_mode->family; skb->mark = be32_to_cpu(t->parms.i_key); ret = xfrm_policy_check(NULL, XFRM_POLICY_IN, skb, family); skb->mark = orig_mark; if (!ret) return -EPERM; skb_scrub_packet(skb, !net_eq(t->net, dev_net(skb->dev))); skb->dev = dev; dev_sw_netstats_rx_add(dev, skb->len); return 0; } /** * vti6_addr_conflict - compare packet addresses to tunnel's own * @t: the outgoing tunnel device * @hdr: IPv6 header from the incoming packet * * Description: * Avoid trivial tunneling loop by checking that tunnel exit-point * doesn't match source of incoming packet. * * Return: * 1 if conflict, * 0 else **/ static inline bool vti6_addr_conflict(const struct ip6_tnl *t, const struct ipv6hdr *hdr) { return ipv6_addr_equal(&t->parms.raddr, &hdr->saddr); } static bool vti6_state_check(const struct xfrm_state *x, const struct in6_addr *dst, const struct in6_addr *src) { xfrm_address_t *daddr = (xfrm_address_t *)dst; xfrm_address_t *saddr = (xfrm_address_t *)src; /* if there is no transform then this tunnel is not functional. * Or if the xfrm is not mode tunnel. */ if (!x || x->props.mode != XFRM_MODE_TUNNEL || x->props.family != AF_INET6) return false; if (ipv6_addr_any(dst)) return xfrm_addr_equal(saddr, &x->props.saddr, AF_INET6); if (!xfrm_state_addr_check(x, daddr, saddr, AF_INET6)) return false; return true; } /** * vti6_xmit - send a packet * @skb: the outgoing socket buffer * @dev: the outgoing tunnel device * @fl: the flow informations for the xfrm_lookup **/ static int vti6_xmit(struct sk_buff *skb, struct net_device *dev, struct flowi *fl) { struct ip6_tnl *t = netdev_priv(dev); struct dst_entry *dst = skb_dst(skb); struct net_device *tdev; struct xfrm_state *x; int pkt_len = skb->len; int err = -1; int mtu; if (!dst) { switch (skb->protocol) { case htons(ETH_P_IP): { struct rtable *rt; fl->u.ip4.flowi4_oif = dev->ifindex; fl->u.ip4.flowi4_flags |= FLOWI_FLAG_ANYSRC; rt = __ip_route_output_key(dev_net(dev), &fl->u.ip4); if (IS_ERR(rt)) goto tx_err_link_failure; dst = &rt->dst; skb_dst_set(skb, dst); break; } case htons(ETH_P_IPV6): fl->u.ip6.flowi6_oif = dev->ifindex; fl->u.ip6.flowi6_flags |= FLOWI_FLAG_ANYSRC; dst = ip6_route_output(dev_net(dev), NULL, &fl->u.ip6); if (dst->error) { dst_release(dst); dst = NULL; goto tx_err_link_failure; } skb_dst_set(skb, dst); break; default: goto tx_err_link_failure; } } dst_hold(dst); dst = xfrm_lookup_route(t->net, dst, fl, NULL, 0); if (IS_ERR(dst)) { err = PTR_ERR(dst); dst = NULL; goto tx_err_link_failure; } if (dst->flags & DST_XFRM_QUEUE) goto xmit; x = dst->xfrm; if (!vti6_state_check(x, &t->parms.raddr, &t->parms.laddr)) goto tx_err_link_failure; if (!ip6_tnl_xmit_ctl(t, (const struct in6_addr *)&x->props.saddr, (const struct in6_addr *)&x->id.daddr)) goto tx_err_link_failure; tdev = dst->dev; if (tdev == dev) { DEV_STATS_INC(dev, collisions); net_warn_ratelimited("%s: Local routing loop detected!\n", t->parms.name); goto tx_err_dst_release; } mtu = dst_mtu(dst); if (skb->len > mtu) { skb_dst_update_pmtu_no_confirm(skb, mtu); if (skb->protocol == htons(ETH_P_IPV6)) { if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); } else { if (!(ip_hdr(skb)->frag_off & htons(IP_DF))) goto xmit; icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); } err = -EMSGSIZE; goto tx_err_dst_release; } xmit: skb_scrub_packet(skb, !net_eq(t->net, dev_net(dev))); skb_dst_set(skb, dst); skb->dev = skb_dst(skb)->dev; err = dst_output(t->net, skb->sk, skb); if (net_xmit_eval(err) == 0) err = pkt_len; iptunnel_xmit_stats(dev, err); return 0; tx_err_link_failure: DEV_STATS_INC(dev, tx_carrier_errors); dst_link_failure(skb); tx_err_dst_release: dst_release(dst); return err; } static netdev_tx_t vti6_tnl_xmit(struct sk_buff *skb, struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct flowi fl; int ret; if (!pskb_inet_may_pull(skb)) goto tx_err; memset(&fl, 0, sizeof(fl)); switch (skb->protocol) { case htons(ETH_P_IPV6): if ((t->parms.proto != IPPROTO_IPV6 && t->parms.proto != 0) || vti6_addr_conflict(t, ipv6_hdr(skb))) goto tx_err; memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); xfrm_decode_session(skb, &fl, AF_INET6); break; case htons(ETH_P_IP): memset(IPCB(skb), 0, sizeof(*IPCB(skb))); xfrm_decode_session(skb, &fl, AF_INET); break; default: goto tx_err; } /* override mark with tunnel output key */ fl.flowi_mark = be32_to_cpu(t->parms.o_key); ret = vti6_xmit(skb, dev, &fl); if (ret < 0) goto tx_err; return NETDEV_TX_OK; tx_err: DEV_STATS_INC(dev, tx_errors); DEV_STATS_INC(dev, tx_dropped); kfree_skb(skb); return NETDEV_TX_OK; } static int vti6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { __be32 spi; __u32 mark; struct xfrm_state *x; struct ip6_tnl *t; struct ip_esp_hdr *esph; struct ip_auth_hdr *ah; struct ip_comp_hdr *ipch; struct net *net = dev_net(skb->dev); const struct ipv6hdr *iph = (const struct ipv6hdr *)skb->data; int protocol = iph->nexthdr; t = vti6_tnl_lookup(dev_net(skb->dev), &iph->daddr, &iph->saddr); if (!t) return -1; mark = be32_to_cpu(t->parms.o_key); switch (protocol) { case IPPROTO_ESP: esph = (struct ip_esp_hdr *)(skb->data + offset); spi = esph->spi; break; case IPPROTO_AH: ah = (struct ip_auth_hdr *)(skb->data + offset); spi = ah->spi; break; case IPPROTO_COMP: ipch = (struct ip_comp_hdr *)(skb->data + offset); spi = htonl(ntohs(ipch->cpi)); break; default: return 0; } if (type != ICMPV6_PKT_TOOBIG && type != NDISC_REDIRECT) return 0; x = xfrm_state_lookup(net, mark, (const xfrm_address_t *)&iph->daddr, spi, protocol, AF_INET6); if (!x) return 0; if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); xfrm_state_put(x); return 0; } static void vti6_link_config(struct ip6_tnl *t, bool keep_mtu) { struct net_device *dev = t->dev; struct __ip6_tnl_parm *p = &t->parms; struct net_device *tdev = NULL; int mtu; __dev_addr_set(dev, &p->laddr, sizeof(struct in6_addr)); memcpy(dev->broadcast, &p->raddr, sizeof(struct in6_addr)); p->flags &= ~(IP6_TNL_F_CAP_XMIT | IP6_TNL_F_CAP_RCV | IP6_TNL_F_CAP_PER_PACKET); p->flags |= ip6_tnl_get_cap(t, &p->laddr, &p->raddr); if (p->flags & IP6_TNL_F_CAP_XMIT && p->flags & IP6_TNL_F_CAP_RCV) dev->flags |= IFF_POINTOPOINT; else dev->flags &= ~IFF_POINTOPOINT; if (keep_mtu && dev->mtu) { dev->mtu = clamp(dev->mtu, dev->min_mtu, dev->max_mtu); return; } if (p->flags & IP6_TNL_F_CAP_XMIT) { int strict = (ipv6_addr_type(&p->raddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)); struct rt6_info *rt = rt6_lookup(t->net, &p->raddr, &p->laddr, p->link, NULL, strict); if (rt) tdev = rt->dst.dev; ip6_rt_put(rt); } if (!tdev && p->link) tdev = __dev_get_by_index(t->net, p->link); if (tdev) mtu = tdev->mtu - sizeof(struct ipv6hdr); else mtu = ETH_DATA_LEN - LL_MAX_HEADER - sizeof(struct ipv6hdr); dev->mtu = max_t(int, mtu, IPV4_MIN_MTU); } /** * vti6_tnl_change - update the tunnel parameters * @t: tunnel to be changed * @p: tunnel configuration parameters * @keep_mtu: MTU was set from userspace, don't re-compute it * * Description: * vti6_tnl_change() updates the tunnel parameters **/ static int vti6_tnl_change(struct ip6_tnl *t, const struct __ip6_tnl_parm *p, bool keep_mtu) { t->parms.laddr = p->laddr; t->parms.raddr = p->raddr; t->parms.link = p->link; t->parms.i_key = p->i_key; t->parms.o_key = p->o_key; t->parms.proto = p->proto; t->parms.fwmark = p->fwmark; dst_cache_reset(&t->dst_cache); vti6_link_config(t, keep_mtu); return 0; } static int vti6_update(struct ip6_tnl *t, struct __ip6_tnl_parm *p, bool keep_mtu) { struct net *net = dev_net(t->dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); int err; vti6_tnl_unlink(ip6n, t); synchronize_net(); err = vti6_tnl_change(t, p, keep_mtu); vti6_tnl_link(ip6n, t); netdev_state_change(t->dev); return err; } static void vti6_parm_from_user(struct __ip6_tnl_parm *p, const struct ip6_tnl_parm2 *u) { p->laddr = u->laddr; p->raddr = u->raddr; p->link = u->link; p->i_key = u->i_key; p->o_key = u->o_key; p->proto = u->proto; memcpy(p->name, u->name, sizeof(u->name)); } static void vti6_parm_to_user(struct ip6_tnl_parm2 *u, const struct __ip6_tnl_parm *p) { u->laddr = p->laddr; u->raddr = p->raddr; u->link = p->link; u->i_key = p->i_key; u->o_key = p->o_key; if (u->i_key) u->i_flags |= GRE_KEY; if (u->o_key) u->o_flags |= GRE_KEY; u->proto = p->proto; memcpy(u->name, p->name, sizeof(u->name)); } /** * vti6_siocdevprivate - configure vti6 tunnels from userspace * @dev: virtual device associated with tunnel * @ifr: unused * @data: parameters passed from userspace * @cmd: command to be performed * * Description: * vti6_siocdevprivate() is used for managing vti6 tunnels * from userspace. * * The possible commands are the following: * %SIOCGETTUNNEL: get tunnel parameters for device * %SIOCADDTUNNEL: add tunnel matching given tunnel parameters * %SIOCCHGTUNNEL: change tunnel parameters to those given * %SIOCDELTUNNEL: delete tunnel * * The fallback device "ip6_vti0", created during module * initialization, can be used for creating other tunnel devices. * * Return: * 0 on success, * %-EFAULT if unable to copy data to or from userspace, * %-EPERM if current process hasn't %CAP_NET_ADMIN set * %-EINVAL if passed tunnel parameters are invalid, * %-EEXIST if changing a tunnel's parameters would cause a conflict * %-ENODEV if attempting to change or delete a nonexisting device **/ static int vti6_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { int err = 0; struct ip6_tnl_parm2 p; struct __ip6_tnl_parm p1; struct ip6_tnl *t = NULL; struct net *net = dev_net(dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); memset(&p1, 0, sizeof(p1)); switch (cmd) { case SIOCGETTUNNEL: if (dev == ip6n->fb_tnl_dev) { if (copy_from_user(&p, data, sizeof(p))) { err = -EFAULT; break; } vti6_parm_from_user(&p1, &p); t = vti6_locate(net, &p1, 0); } else { memset(&p, 0, sizeof(p)); } if (!t) t = netdev_priv(dev); vti6_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; break; case SIOCADDTUNNEL: case SIOCCHGTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) break; err = -EINVAL; if (p.proto != IPPROTO_IPV6 && p.proto != 0) break; vti6_parm_from_user(&p1, &p); t = vti6_locate(net, &p1, cmd == SIOCADDTUNNEL); if (dev != ip6n->fb_tnl_dev && cmd == SIOCCHGTUNNEL) { if (t) { if (t->dev != dev) { err = -EEXIST; break; } } else t = netdev_priv(dev); err = vti6_update(t, &p1, false); } if (t) { err = 0; vti6_parm_to_user(&p, &t->parms); if (copy_to_user(data, &p, sizeof(p))) err = -EFAULT; } else err = (cmd == SIOCADDTUNNEL ? -ENOBUFS : -ENOENT); break; case SIOCDELTUNNEL: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; if (dev == ip6n->fb_tnl_dev) { err = -EFAULT; if (copy_from_user(&p, data, sizeof(p))) break; err = -ENOENT; vti6_parm_from_user(&p1, &p); t = vti6_locate(net, &p1, 0); if (!t) break; err = -EPERM; if (t->dev == ip6n->fb_tnl_dev) break; dev = t->dev; } err = 0; unregister_netdevice(dev); break; default: err = -EINVAL; } return err; } static const struct net_device_ops vti6_netdev_ops = { .ndo_init = vti6_dev_init, .ndo_uninit = vti6_dev_uninit, .ndo_start_xmit = vti6_tnl_xmit, .ndo_siocdevprivate = vti6_siocdevprivate, .ndo_get_stats64 = dev_get_tstats64, .ndo_get_iflink = ip6_tnl_get_iflink, }; /** * vti6_dev_setup - setup virtual tunnel device * @dev: virtual device associated with tunnel * * Description: * Initialize function pointers and device parameters **/ static void vti6_dev_setup(struct net_device *dev) { dev->netdev_ops = &vti6_netdev_ops; dev->header_ops = &ip_tunnel_header_ops; dev->needs_free_netdev = true; dev->priv_destructor = vti6_dev_free; dev->type = ARPHRD_TUNNEL6; dev->min_mtu = IPV4_MIN_MTU; dev->max_mtu = IP_MAX_MTU - sizeof(struct ipv6hdr); dev->flags |= IFF_NOARP; dev->addr_len = sizeof(struct in6_addr); netif_keep_dst(dev); /* This perm addr will be used as interface identifier by IPv6 */ dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->perm_addr); } /** * vti6_dev_init_gen - general initializer for all tunnel devices * @dev: virtual device associated with tunnel **/ static inline int vti6_dev_init_gen(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); t->dev = dev; t->net = dev_net(dev); dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) return -ENOMEM; netdev_hold(dev, &t->dev_tracker, GFP_KERNEL); return 0; } /** * vti6_dev_init - initializer for all non fallback tunnel devices * @dev: virtual device associated with tunnel **/ static int vti6_dev_init(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); int err = vti6_dev_init_gen(dev); if (err) return err; vti6_link_config(t, true); return 0; } /** * vti6_fb_tnl_dev_init - initializer for fallback tunnel device * @dev: fallback device * * Return: 0 **/ static int __net_init vti6_fb_tnl_dev_init(struct net_device *dev) { struct ip6_tnl *t = netdev_priv(dev); struct net *net = dev_net(dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); t->parms.proto = IPPROTO_IPV6; rcu_assign_pointer(ip6n->tnls_wc[0], t); return 0; } static int vti6_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { return 0; } static void vti6_netlink_parms(struct nlattr *data[], struct __ip6_tnl_parm *parms) { memset(parms, 0, sizeof(*parms)); if (!data) return; if (data[IFLA_VTI_LINK]) parms->link = nla_get_u32(data[IFLA_VTI_LINK]); if (data[IFLA_VTI_LOCAL]) parms->laddr = nla_get_in6_addr(data[IFLA_VTI_LOCAL]); if (data[IFLA_VTI_REMOTE]) parms->raddr = nla_get_in6_addr(data[IFLA_VTI_REMOTE]); if (data[IFLA_VTI_IKEY]) parms->i_key = nla_get_be32(data[IFLA_VTI_IKEY]); if (data[IFLA_VTI_OKEY]) parms->o_key = nla_get_be32(data[IFLA_VTI_OKEY]); if (data[IFLA_VTI_FWMARK]) parms->fwmark = nla_get_u32(data[IFLA_VTI_FWMARK]); } static int vti6_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net *net = dev_net(dev); struct ip6_tnl *nt; nt = netdev_priv(dev); vti6_netlink_parms(data, &nt->parms); nt->parms.proto = IPPROTO_IPV6; if (vti6_locate(net, &nt->parms, 0)) return -EEXIST; return vti6_tnl_create2(dev); } static void vti6_dellink(struct net_device *dev, struct list_head *head) { struct net *net = dev_net(dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); if (dev != ip6n->fb_tnl_dev) unregister_netdevice_queue(dev, head); } static int vti6_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct ip6_tnl *t; struct __ip6_tnl_parm p; struct net *net = dev_net(dev); struct vti6_net *ip6n = net_generic(net, vti6_net_id); if (dev == ip6n->fb_tnl_dev) return -EINVAL; vti6_netlink_parms(data, &p); t = vti6_locate(net, &p, 0); if (t) { if (t->dev != dev) return -EEXIST; } else t = netdev_priv(dev); return vti6_update(t, &p, tb && tb[IFLA_MTU]); } static size_t vti6_get_size(const struct net_device *dev) { return /* IFLA_VTI_LINK */ nla_total_size(4) + /* IFLA_VTI_LOCAL */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_VTI_REMOTE */ nla_total_size(sizeof(struct in6_addr)) + /* IFLA_VTI_IKEY */ nla_total_size(4) + /* IFLA_VTI_OKEY */ nla_total_size(4) + /* IFLA_VTI_FWMARK */ nla_total_size(4) + 0; } static int vti6_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct ip6_tnl *tunnel = netdev_priv(dev); struct __ip6_tnl_parm *parm = &tunnel->parms; if (nla_put_u32(skb, IFLA_VTI_LINK, parm->link) || nla_put_in6_addr(skb, IFLA_VTI_LOCAL, &parm->laddr) || nla_put_in6_addr(skb, IFLA_VTI_REMOTE, &parm->raddr) || nla_put_be32(skb, IFLA_VTI_IKEY, parm->i_key) || nla_put_be32(skb, IFLA_VTI_OKEY, parm->o_key) || nla_put_u32(skb, IFLA_VTI_FWMARK, parm->fwmark)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static const struct nla_policy vti6_policy[IFLA_VTI_MAX + 1] = { [IFLA_VTI_LINK] = { .type = NLA_U32 }, [IFLA_VTI_LOCAL] = { .len = sizeof(struct in6_addr) }, [IFLA_VTI_REMOTE] = { .len = sizeof(struct in6_addr) }, [IFLA_VTI_IKEY] = { .type = NLA_U32 }, [IFLA_VTI_OKEY] = { .type = NLA_U32 }, [IFLA_VTI_FWMARK] = { .type = NLA_U32 }, }; static struct rtnl_link_ops vti6_link_ops __read_mostly = { .kind = "vti6", .maxtype = IFLA_VTI_MAX, .policy = vti6_policy, .priv_size = sizeof(struct ip6_tnl), .setup = vti6_dev_setup, .validate = vti6_validate, .newlink = vti6_newlink, .dellink = vti6_dellink, .changelink = vti6_changelink, .get_size = vti6_get_size, .fill_info = vti6_fill_info, .get_link_net = ip6_tnl_get_link_net, }; static void __net_exit vti6_destroy_tunnels(struct vti6_net *ip6n, struct list_head *list) { int h; struct ip6_tnl *t; for (h = 0; h < IP6_VTI_HASH_SIZE; h++) { t = rtnl_dereference(ip6n->tnls_r_l[h]); while (t) { unregister_netdevice_queue(t->dev, list); t = rtnl_dereference(t->next); } } t = rtnl_dereference(ip6n->tnls_wc[0]); if (t) unregister_netdevice_queue(t->dev, list); } static int __net_init vti6_init_net(struct net *net) { struct vti6_net *ip6n = net_generic(net, vti6_net_id); struct ip6_tnl *t = NULL; int err; ip6n->tnls[0] = ip6n->tnls_wc; ip6n->tnls[1] = ip6n->tnls_r_l; if (!net_has_fallback_tunnels(net)) return 0; err = -ENOMEM; ip6n->fb_tnl_dev = alloc_netdev(sizeof(struct ip6_tnl), "ip6_vti0", NET_NAME_UNKNOWN, vti6_dev_setup); if (!ip6n->fb_tnl_dev) goto err_alloc_dev; dev_net_set(ip6n->fb_tnl_dev, net); ip6n->fb_tnl_dev->rtnl_link_ops = &vti6_link_ops; err = vti6_fb_tnl_dev_init(ip6n->fb_tnl_dev); if (err < 0) goto err_register; err = register_netdev(ip6n->fb_tnl_dev); if (err < 0) goto err_register; t = netdev_priv(ip6n->fb_tnl_dev); strcpy(t->parms.name, ip6n->fb_tnl_dev->name); return 0; err_register: free_netdev(ip6n->fb_tnl_dev); err_alloc_dev: return err; } static void __net_exit vti6_exit_batch_net(struct list_head *net_list) { struct vti6_net *ip6n; struct net *net; LIST_HEAD(list); rtnl_lock(); list_for_each_entry(net, net_list, exit_list) { ip6n = net_generic(net, vti6_net_id); vti6_destroy_tunnels(ip6n, &list); } unregister_netdevice_many(&list); rtnl_unlock(); } static struct pernet_operations vti6_net_ops = { .init = vti6_init_net, .exit_batch = vti6_exit_batch_net, .id = &vti6_net_id, .size = sizeof(struct vti6_net), }; static struct xfrm6_protocol vti_esp6_protocol __read_mostly = { .handler = vti6_rcv, .input_handler = vti6_input_proto, .cb_handler = vti6_rcv_cb, .err_handler = vti6_err, .priority = 100, }; static struct xfrm6_protocol vti_ah6_protocol __read_mostly = { .handler = vti6_rcv, .input_handler = vti6_input_proto, .cb_handler = vti6_rcv_cb, .err_handler = vti6_err, .priority = 100, }; static struct xfrm6_protocol vti_ipcomp6_protocol __read_mostly = { .handler = vti6_rcv, .input_handler = vti6_input_proto, .cb_handler = vti6_rcv_cb, .err_handler = vti6_err, .priority = 100, }; #if IS_REACHABLE(CONFIG_INET6_XFRM_TUNNEL) static int vti6_rcv_tunnel(struct sk_buff *skb) { const xfrm_address_t *saddr; __be32 spi; saddr = (const xfrm_address_t *)&ipv6_hdr(skb)->saddr; spi = xfrm6_tunnel_spi_lookup(dev_net(skb->dev), saddr); return vti6_input_proto(skb, IPPROTO_IPV6, spi, 0); } static struct xfrm6_tunnel vti_ipv6_handler __read_mostly = { .handler = vti6_rcv_tunnel, .cb_handler = vti6_rcv_cb, .err_handler = vti6_err, .priority = 0, }; static struct xfrm6_tunnel vti_ip6ip_handler __read_mostly = { .handler = vti6_rcv_tunnel, .cb_handler = vti6_rcv_cb, .err_handler = vti6_err, .priority = 0, }; #endif /** * vti6_tunnel_init - register protocol and reserve needed resources * * Return: 0 on success **/ static int __init vti6_tunnel_init(void) { const char *msg; int err; msg = "tunnel device"; err = register_pernet_device(&vti6_net_ops); if (err < 0) goto pernet_dev_failed; msg = "tunnel protocols"; err = xfrm6_protocol_register(&vti_esp6_protocol, IPPROTO_ESP); if (err < 0) goto xfrm_proto_esp_failed; err = xfrm6_protocol_register(&vti_ah6_protocol, IPPROTO_AH); if (err < 0) goto xfrm_proto_ah_failed; err = xfrm6_protocol_register(&vti_ipcomp6_protocol, IPPROTO_COMP); if (err < 0) goto xfrm_proto_comp_failed; #if IS_REACHABLE(CONFIG_INET6_XFRM_TUNNEL) msg = "ipv6 tunnel"; err = xfrm6_tunnel_register(&vti_ipv6_handler, AF_INET6); if (err < 0) goto vti_tunnel_ipv6_failed; err = xfrm6_tunnel_register(&vti_ip6ip_handler, AF_INET); if (err < 0) goto vti_tunnel_ip6ip_failed; #endif msg = "netlink interface"; err = rtnl_link_register(&vti6_link_ops); if (err < 0) goto rtnl_link_failed; return 0; rtnl_link_failed: #if IS_REACHABLE(CONFIG_INET6_XFRM_TUNNEL) err = xfrm6_tunnel_deregister(&vti_ip6ip_handler, AF_INET); vti_tunnel_ip6ip_failed: err = xfrm6_tunnel_deregister(&vti_ipv6_handler, AF_INET6); vti_tunnel_ipv6_failed: #endif xfrm6_protocol_deregister(&vti_ipcomp6_protocol, IPPROTO_COMP); xfrm_proto_comp_failed: xfrm6_protocol_deregister(&vti_ah6_protocol, IPPROTO_AH); xfrm_proto_ah_failed: xfrm6_protocol_deregister(&vti_esp6_protocol, IPPROTO_ESP); xfrm_proto_esp_failed: unregister_pernet_device(&vti6_net_ops); pernet_dev_failed: pr_err("vti6 init: failed to register %s\n", msg); return err; } /** * vti6_tunnel_cleanup - free resources and unregister protocol **/ static void __exit vti6_tunnel_cleanup(void) { rtnl_link_unregister(&vti6_link_ops); #if IS_REACHABLE(CONFIG_INET6_XFRM_TUNNEL) xfrm6_tunnel_deregister(&vti_ip6ip_handler, AF_INET); xfrm6_tunnel_deregister(&vti_ipv6_handler, AF_INET6); #endif xfrm6_protocol_deregister(&vti_ipcomp6_protocol, IPPROTO_COMP); xfrm6_protocol_deregister(&vti_ah6_protocol, IPPROTO_AH); xfrm6_protocol_deregister(&vti_esp6_protocol, IPPROTO_ESP); unregister_pernet_device(&vti6_net_ops); } module_init(vti6_tunnel_init); module_exit(vti6_tunnel_cleanup); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK("vti6"); MODULE_ALIAS_NETDEV("ip6_vti0"); MODULE_AUTHOR("Steffen Klassert"); MODULE_DESCRIPTION("IPv6 virtual tunnel interface");
linux-master
net/ipv6/ip6_vti.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2003,2004 USAGI/WIDE Project * * Authors Mitsuru KANDA <[email protected]> * YOSHIFUJI Hideaki <[email protected]> */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/xfrm.h> static struct xfrm6_tunnel __rcu *tunnel6_handlers __read_mostly; static struct xfrm6_tunnel __rcu *tunnel46_handlers __read_mostly; static struct xfrm6_tunnel __rcu *tunnelmpls6_handlers __read_mostly; static DEFINE_MUTEX(tunnel6_mutex); static inline int xfrm6_tunnel_mpls_supported(void) { return IS_ENABLED(CONFIG_MPLS); } int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family) { struct xfrm6_tunnel __rcu **pprev; struct xfrm6_tunnel *t; int ret = -EEXIST; int priority = handler->priority; mutex_lock(&tunnel6_mutex); switch (family) { case AF_INET6: pprev = &tunnel6_handlers; break; case AF_INET: pprev = &tunnel46_handlers; break; case AF_MPLS: pprev = &tunnelmpls6_handlers; break; default: goto err; } for (; (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel6_mutex))) != NULL; pprev = &t->next) { if (t->priority > priority) break; if (t->priority == priority) goto err; } handler->next = *pprev; rcu_assign_pointer(*pprev, handler); ret = 0; err: mutex_unlock(&tunnel6_mutex); return ret; } EXPORT_SYMBOL(xfrm6_tunnel_register); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family) { struct xfrm6_tunnel __rcu **pprev; struct xfrm6_tunnel *t; int ret = -ENOENT; mutex_lock(&tunnel6_mutex); switch (family) { case AF_INET6: pprev = &tunnel6_handlers; break; case AF_INET: pprev = &tunnel46_handlers; break; case AF_MPLS: pprev = &tunnelmpls6_handlers; break; default: goto err; } for (; (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel6_mutex))) != NULL; pprev = &t->next) { if (t == handler) { *pprev = handler->next; ret = 0; break; } } err: mutex_unlock(&tunnel6_mutex); synchronize_net(); return ret; } EXPORT_SYMBOL(xfrm6_tunnel_deregister); #define for_each_tunnel_rcu(head, handler) \ for (handler = rcu_dereference(head); \ handler != NULL; \ handler = rcu_dereference(handler->next)) \ static int tunnelmpls6_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; for_each_tunnel_rcu(tunnelmpls6_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } static int tunnel6_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; for_each_tunnel_rcu(tunnel6_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) static int tunnel6_rcv_cb(struct sk_buff *skb, u8 proto, int err) { struct xfrm6_tunnel __rcu *head; struct xfrm6_tunnel *handler; int ret; head = (proto == IPPROTO_IPV6) ? tunnel6_handlers : tunnel46_handlers; for_each_tunnel_rcu(head, handler) { if (handler->cb_handler) { ret = handler->cb_handler(skb, err); if (ret <= 0) return ret; } } return 0; } static const struct xfrm_input_afinfo tunnel6_input_afinfo = { .family = AF_INET6, .is_ipip = true, .callback = tunnel6_rcv_cb, }; #endif static int tunnel46_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto drop; for_each_tunnel_rcu(tunnel46_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } static int tunnel6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnel6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int tunnel46_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnel46_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int tunnelmpls6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnelmpls6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static const struct inet6_protocol tunnel6_protocol = { .handler = tunnel6_rcv, .err_handler = tunnel6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static const struct inet6_protocol tunnel46_protocol = { .handler = tunnel46_rcv, .err_handler = tunnel46_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static const struct inet6_protocol tunnelmpls6_protocol = { .handler = tunnelmpls6_rcv, .err_handler = tunnelmpls6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static int __init tunnel6_init(void) { if (inet6_add_protocol(&tunnel6_protocol, IPPROTO_IPV6)) { pr_err("%s: can't add protocol\n", __func__); return -EAGAIN; } if (inet6_add_protocol(&tunnel46_protocol, IPPROTO_IPIP)) { pr_err("%s: can't add protocol\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); return -EAGAIN; } if (xfrm6_tunnel_mpls_supported() && inet6_add_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS)) { pr_err("%s: can't add protocol\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP); return -EAGAIN; } #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) if (xfrm_input_register_afinfo(&tunnel6_input_afinfo)) { pr_err("%s: can't add input afinfo\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP); if (xfrm6_tunnel_mpls_supported()) inet6_del_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS); return -EAGAIN; } #endif return 0; } static void __exit tunnel6_fini(void) { #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) if (xfrm_input_unregister_afinfo(&tunnel6_input_afinfo)) pr_err("%s: can't remove input afinfo\n", __func__); #endif if (inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP)) pr_err("%s: can't remove protocol\n", __func__); if (inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6)) pr_err("%s: can't remove protocol\n", __func__); if (xfrm6_tunnel_mpls_supported() && inet6_del_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS)) pr_err("%s: can't remove protocol\n", __func__); } module_init(tunnel6_init); module_exit(tunnel6_fini); MODULE_LICENSE("GPL");
linux-master
net/ipv6/tunnel6.c
// SPDX-License-Identifier: GPL-2.0-only /* * IPv6 library code, needed by static components when full IPv6 support is * not configured or static. These functions are needed by GSO/GRO implementation. */ #include <linux/export.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/addrconf.h> #include <net/secure_seq.h> #include <linux/netfilter.h> static u32 __ipv6_select_ident(struct net *net, const struct in6_addr *dst, const struct in6_addr *src) { return get_random_u32_above(0); } /* This function exists only for tap drivers that must support broken * clients requesting UFO without specifying an IPv6 fragment ID. * * This is similar to ipv6_select_ident() but we use an independent hash * seed to limit information leakage. * * The network header must be set before calling this. */ __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb) { struct in6_addr buf[2]; struct in6_addr *addrs; u32 id; addrs = skb_header_pointer(skb, skb_network_offset(skb) + offsetof(struct ipv6hdr, saddr), sizeof(buf), buf); if (!addrs) return 0; id = __ipv6_select_ident(net, &addrs[1], &addrs[0]); return htonl(id); } EXPORT_SYMBOL_GPL(ipv6_proxy_select_ident); __be32 ipv6_select_ident(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr) { u32 id; id = __ipv6_select_ident(net, daddr, saddr); return htonl(id); } EXPORT_SYMBOL(ipv6_select_ident); int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr) { unsigned int offset = sizeof(struct ipv6hdr); unsigned int packet_len = skb_tail_pointer(skb) - skb_network_header(skb); int found_rhdr = 0; *nexthdr = &ipv6_hdr(skb)->nexthdr; while (offset <= packet_len) { struct ipv6_opt_hdr *exthdr; switch (**nexthdr) { case NEXTHDR_HOP: break; case NEXTHDR_ROUTING: found_rhdr = 1; break; case NEXTHDR_DEST: #if IS_ENABLED(CONFIG_IPV6_MIP6) if (ipv6_find_tlv(skb, offset, IPV6_TLV_HAO) >= 0) break; #endif if (found_rhdr) return offset; break; default: return offset; } if (offset + sizeof(struct ipv6_opt_hdr) > packet_len) return -EINVAL; exthdr = (struct ipv6_opt_hdr *)(skb_network_header(skb) + offset); offset += ipv6_optlen(exthdr); if (offset > IPV6_MAXPLEN) return -EINVAL; *nexthdr = &exthdr->nexthdr; } return -EINVAL; } EXPORT_SYMBOL(ip6_find_1stfragopt); #if IS_ENABLED(CONFIG_IPV6) int ip6_dst_hoplimit(struct dst_entry *dst) { int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); if (hoplimit == 0) { struct net_device *dev = dst->dev; struct inet6_dev *idev; rcu_read_lock(); idev = __in6_dev_get(dev); if (idev) hoplimit = idev->cnf.hop_limit; else hoplimit = dev_net(dev)->ipv6.devconf_all->hop_limit; rcu_read_unlock(); } return hoplimit; } EXPORT_SYMBOL(ip6_dst_hoplimit); #endif int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int len; len = skb->len - sizeof(struct ipv6hdr); if (len > IPV6_MAXPLEN) len = 0; ipv6_hdr(skb)->payload_len = htons(len); IP6CB(skb)->nhoff = offsetof(struct ipv6hdr, nexthdr); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out(sk, skb); if (unlikely(!skb)) return 0; skb->protocol = htons(ETH_P_IPV6); return nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); } EXPORT_SYMBOL_GPL(__ip6_local_out); int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = __ip6_local_out(net, sk, skb); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } EXPORT_SYMBOL_GPL(ip6_local_out);
linux-master
net/ipv6/output_core.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2002 USAGI/WIDE Project * * Authors * * Mitsuru KANDA @USAGI : IPv6 Support * Kazunori MIYAZAWA @USAGI : * Kunihiro Ishiguro <[email protected]> * * This file is derived from net/ipv4/ah.c. */ #define pr_fmt(fmt) "IPv6: " fmt #include <crypto/algapi.h> #include <crypto/hash.h> #include <linux/module.h> #include <linux/slab.h> #include <net/ip.h> #include <net/ah.h> #include <linux/crypto.h> #include <linux/pfkeyv2.h> #include <linux/string.h> #include <linux/scatterlist.h> #include <net/ip6_route.h> #include <net/icmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/xfrm.h> #define IPV6HDR_BASELEN 8 struct tmp_ext { #if IS_ENABLED(CONFIG_IPV6_MIP6) struct in6_addr saddr; #endif struct in6_addr daddr; char hdrs[]; }; struct ah_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; #define AH_SKB_CB(__skb) ((struct ah_skb_cb *)&((__skb)->cb[0])) static void *ah_alloc_tmp(struct crypto_ahash *ahash, int nfrags, unsigned int size) { unsigned int len; len = size + crypto_ahash_digestsize(ahash) + (crypto_ahash_alignmask(ahash) & ~(crypto_tfm_ctx_alignment() - 1)); len = ALIGN(len, crypto_tfm_ctx_alignment()); len += sizeof(struct ahash_request) + crypto_ahash_reqsize(ahash); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline struct tmp_ext *ah_tmp_ext(void *base) { return base + IPV6HDR_BASELEN; } static inline u8 *ah_tmp_auth(u8 *tmp, unsigned int offset) { return tmp + offset; } static inline u8 *ah_tmp_icv(struct crypto_ahash *ahash, void *tmp, unsigned int offset) { return PTR_ALIGN((u8 *)tmp + offset, crypto_ahash_alignmask(ahash) + 1); } static inline struct ahash_request *ah_tmp_req(struct crypto_ahash *ahash, u8 *icv) { struct ahash_request *req; req = (void *)PTR_ALIGN(icv + crypto_ahash_digestsize(ahash), crypto_tfm_ctx_alignment()); ahash_request_set_tfm(req, ahash); return req; } static inline struct scatterlist *ah_req_sg(struct crypto_ahash *ahash, struct ahash_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_ahash_reqsize(ahash), __alignof__(struct scatterlist)); } static bool zero_out_mutable_opts(struct ipv6_opt_hdr *opthdr) { u8 *opt = (u8 *)opthdr; int len = ipv6_optlen(opthdr); int off = 0; int optlen = 0; off += 2; len -= 2; while (len > 0) { switch (opt[off]) { case IPV6_TLV_PAD1: optlen = 1; break; default: if (len < 2) goto bad; optlen = opt[off+1]+2; if (len < optlen) goto bad; if (opt[off] & 0x20) memset(&opt[off+2], 0, opt[off+1]); break; } off += optlen; len -= optlen; } if (len == 0) return true; bad: return false; } #if IS_ENABLED(CONFIG_IPV6_MIP6) /** * ipv6_rearrange_destopt - rearrange IPv6 destination options header * @iph: IPv6 header * @destopt: destionation options header */ static void ipv6_rearrange_destopt(struct ipv6hdr *iph, struct ipv6_opt_hdr *destopt) { u8 *opt = (u8 *)destopt; int len = ipv6_optlen(destopt); int off = 0; int optlen = 0; off += 2; len -= 2; while (len > 0) { switch (opt[off]) { case IPV6_TLV_PAD1: optlen = 1; break; default: if (len < 2) goto bad; optlen = opt[off+1]+2; if (len < optlen) goto bad; /* Rearrange the source address in @iph and the * addresses in home address option for final source. * See 11.3.2 of RFC 3775 for details. */ if (opt[off] == IPV6_TLV_HAO) { struct ipv6_destopt_hao *hao; hao = (struct ipv6_destopt_hao *)&opt[off]; if (hao->length != sizeof(hao->addr)) { net_warn_ratelimited("destopt hao: invalid header length: %u\n", hao->length); goto bad; } swap(hao->addr, iph->saddr); } break; } off += optlen; len -= optlen; } /* Note: ok if len == 0 */ bad: return; } #else static void ipv6_rearrange_destopt(struct ipv6hdr *iph, struct ipv6_opt_hdr *destopt) {} #endif /** * ipv6_rearrange_rthdr - rearrange IPv6 routing header * @iph: IPv6 header * @rthdr: routing header * * Rearrange the destination address in @iph and the addresses in @rthdr * so that they appear in the order they will at the final destination. * See Appendix A2 of RFC 2402 for details. */ static void ipv6_rearrange_rthdr(struct ipv6hdr *iph, struct ipv6_rt_hdr *rthdr) { int segments, segments_left; struct in6_addr *addrs; struct in6_addr final_addr; segments_left = rthdr->segments_left; if (segments_left == 0) return; rthdr->segments_left = 0; /* The value of rthdr->hdrlen has been verified either by the system * call if it is locally generated, or by ipv6_rthdr_rcv() for incoming * packets. So we can assume that it is even and that segments is * greater than or equal to segments_left. * * For the same reason we can assume that this option is of type 0. */ segments = rthdr->hdrlen >> 1; addrs = ((struct rt0_hdr *)rthdr)->addr; final_addr = addrs[segments - 1]; addrs += segments - segments_left; memmove(addrs + 1, addrs, (segments_left - 1) * sizeof(*addrs)); addrs[0] = iph->daddr; iph->daddr = final_addr; } static int ipv6_clear_mutable_options(struct ipv6hdr *iph, int len, int dir) { union { struct ipv6hdr *iph; struct ipv6_opt_hdr *opth; struct ipv6_rt_hdr *rth; char *raw; } exthdr = { .iph = iph }; char *end = exthdr.raw + len; int nexthdr = iph->nexthdr; exthdr.iph++; while (exthdr.raw < end) { switch (nexthdr) { case NEXTHDR_DEST: if (dir == XFRM_POLICY_OUT) ipv6_rearrange_destopt(iph, exthdr.opth); fallthrough; case NEXTHDR_HOP: if (!zero_out_mutable_opts(exthdr.opth)) { net_dbg_ratelimited("overrun %sopts\n", nexthdr == NEXTHDR_HOP ? "hop" : "dest"); return -EINVAL; } break; case NEXTHDR_ROUTING: ipv6_rearrange_rthdr(iph, exthdr.rth); break; default: return 0; } nexthdr = exthdr.opth->nexthdr; exthdr.raw += ipv6_optlen(exthdr.opth); } return 0; } static void ah6_output_done(void *data, int err) { int extlen; u8 *iph_base; u8 *icv; struct sk_buff *skb = data; struct xfrm_state *x = skb_dst(skb)->xfrm; struct ah_data *ahp = x->data; struct ipv6hdr *top_iph = ipv6_hdr(skb); struct ip_auth_hdr *ah = ip_auth_hdr(skb); struct tmp_ext *iph_ext; extlen = skb_network_header_len(skb) - sizeof(struct ipv6hdr); if (extlen) extlen += sizeof(*iph_ext); iph_base = AH_SKB_CB(skb)->tmp; iph_ext = ah_tmp_ext(iph_base); icv = ah_tmp_icv(ahp->ahash, iph_ext, extlen); memcpy(ah->auth_data, icv, ahp->icv_trunc_len); memcpy(top_iph, iph_base, IPV6HDR_BASELEN); if (extlen) { #if IS_ENABLED(CONFIG_IPV6_MIP6) memcpy(&top_iph->saddr, iph_ext, extlen); #else memcpy(&top_iph->daddr, iph_ext, extlen); #endif } kfree(AH_SKB_CB(skb)->tmp); xfrm_output_resume(skb->sk, skb, err); } static int ah6_output(struct xfrm_state *x, struct sk_buff *skb) { int err; int nfrags; int extlen; u8 *iph_base; u8 *icv; u8 nexthdr; struct sk_buff *trailer; struct crypto_ahash *ahash; struct ahash_request *req; struct scatterlist *sg; struct ipv6hdr *top_iph; struct ip_auth_hdr *ah; struct ah_data *ahp; struct tmp_ext *iph_ext; int seqhi_len = 0; __be32 *seqhi; int sglists = 0; struct scatterlist *seqhisg; ahp = x->data; ahash = ahp->ahash; err = skb_cow_data(skb, 0, &trailer); if (err < 0) goto out; nfrags = err; skb_push(skb, -skb_network_offset(skb)); extlen = skb_network_header_len(skb) - sizeof(struct ipv6hdr); if (extlen) extlen += sizeof(*iph_ext); if (x->props.flags & XFRM_STATE_ESN) { sglists = 1; seqhi_len = sizeof(*seqhi); } err = -ENOMEM; iph_base = ah_alloc_tmp(ahash, nfrags + sglists, IPV6HDR_BASELEN + extlen + seqhi_len); if (!iph_base) goto out; iph_ext = ah_tmp_ext(iph_base); seqhi = (__be32 *)((char *)iph_ext + extlen); icv = ah_tmp_icv(ahash, seqhi, seqhi_len); req = ah_tmp_req(ahash, icv); sg = ah_req_sg(ahash, req); seqhisg = sg + nfrags; ah = ip_auth_hdr(skb); memset(ah->auth_data, 0, ahp->icv_trunc_len); top_iph = ipv6_hdr(skb); top_iph->payload_len = htons(skb->len - sizeof(*top_iph)); nexthdr = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_AH; /* When there are no extension headers, we only need to save the first * 8 bytes of the base IP header. */ memcpy(iph_base, top_iph, IPV6HDR_BASELEN); if (extlen) { #if IS_ENABLED(CONFIG_IPV6_MIP6) memcpy(iph_ext, &top_iph->saddr, extlen); #else memcpy(iph_ext, &top_iph->daddr, extlen); #endif err = ipv6_clear_mutable_options(top_iph, extlen - sizeof(*iph_ext) + sizeof(*top_iph), XFRM_POLICY_OUT); if (err) goto out_free; } ah->nexthdr = nexthdr; top_iph->priority = 0; top_iph->flow_lbl[0] = 0; top_iph->flow_lbl[1] = 0; top_iph->flow_lbl[2] = 0; top_iph->hop_limit = 0; ah->hdrlen = (XFRM_ALIGN8(sizeof(*ah) + ahp->icv_trunc_len) >> 2) - 2; ah->reserved = 0; ah->spi = x->id.spi; ah->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); sg_init_table(sg, nfrags + sglists); err = skb_to_sgvec_nomark(skb, sg, 0, skb->len); if (unlikely(err < 0)) goto out_free; if (x->props.flags & XFRM_STATE_ESN) { /* Attach seqhi sg right after packet payload */ *seqhi = htonl(XFRM_SKB_CB(skb)->seq.output.hi); sg_set_buf(seqhisg, seqhi, seqhi_len); } ahash_request_set_crypt(req, sg, icv, skb->len + seqhi_len); ahash_request_set_callback(req, 0, ah6_output_done, skb); AH_SKB_CB(skb)->tmp = iph_base; err = crypto_ahash_digest(req); if (err) { if (err == -EINPROGRESS) goto out; if (err == -ENOSPC) err = NET_XMIT_DROP; goto out_free; } memcpy(ah->auth_data, icv, ahp->icv_trunc_len); memcpy(top_iph, iph_base, IPV6HDR_BASELEN); if (extlen) { #if IS_ENABLED(CONFIG_IPV6_MIP6) memcpy(&top_iph->saddr, iph_ext, extlen); #else memcpy(&top_iph->daddr, iph_ext, extlen); #endif } out_free: kfree(iph_base); out: return err; } static void ah6_input_done(void *data, int err) { u8 *auth_data; u8 *icv; u8 *work_iph; struct sk_buff *skb = data; struct xfrm_state *x = xfrm_input_state(skb); struct ah_data *ahp = x->data; struct ip_auth_hdr *ah = ip_auth_hdr(skb); int hdr_len = skb_network_header_len(skb); int ah_hlen = ipv6_authlen(ah); if (err) goto out; work_iph = AH_SKB_CB(skb)->tmp; auth_data = ah_tmp_auth(work_iph, hdr_len); icv = ah_tmp_icv(ahp->ahash, auth_data, ahp->icv_trunc_len); err = crypto_memneq(icv, auth_data, ahp->icv_trunc_len) ? -EBADMSG : 0; if (err) goto out; err = ah->nexthdr; skb->network_header += ah_hlen; memcpy(skb_network_header(skb), work_iph, hdr_len); __skb_pull(skb, ah_hlen + hdr_len); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -hdr_len); out: kfree(AH_SKB_CB(skb)->tmp); xfrm_input_resume(skb, err); } static int ah6_input(struct xfrm_state *x, struct sk_buff *skb) { /* * Before process AH * [IPv6][Ext1][Ext2][AH][Dest][Payload] * |<-------------->| hdr_len * * To erase AH: * Keeping copy of cleared headers. After AH processing, * Moving the pointer of skb->network_header by using skb_pull as long * as AH header length. Then copy back the copy as long as hdr_len * If destination header following AH exists, copy it into after [Ext2]. * * |<>|[IPv6][Ext1][Ext2][Dest][Payload] * There is offset of AH before IPv6 header after the process. */ u8 *auth_data; u8 *icv; u8 *work_iph; struct sk_buff *trailer; struct crypto_ahash *ahash; struct ahash_request *req; struct scatterlist *sg; struct ip_auth_hdr *ah; struct ipv6hdr *ip6h; struct ah_data *ahp; u16 hdr_len; u16 ah_hlen; int nexthdr; int nfrags; int err = -ENOMEM; int seqhi_len = 0; __be32 *seqhi; int sglists = 0; struct scatterlist *seqhisg; if (!pskb_may_pull(skb, sizeof(struct ip_auth_hdr))) goto out; /* We are going to _remove_ AH header to keep sockets happy, * so... Later this can change. */ if (skb_unclone(skb, GFP_ATOMIC)) goto out; skb->ip_summed = CHECKSUM_NONE; hdr_len = skb_network_header_len(skb); ah = (struct ip_auth_hdr *)skb->data; ahp = x->data; ahash = ahp->ahash; nexthdr = ah->nexthdr; ah_hlen = ipv6_authlen(ah); if (ah_hlen != XFRM_ALIGN8(sizeof(*ah) + ahp->icv_full_len) && ah_hlen != XFRM_ALIGN8(sizeof(*ah) + ahp->icv_trunc_len)) goto out; if (!pskb_may_pull(skb, ah_hlen)) goto out; err = skb_cow_data(skb, 0, &trailer); if (err < 0) goto out; nfrags = err; ah = (struct ip_auth_hdr *)skb->data; ip6h = ipv6_hdr(skb); skb_push(skb, hdr_len); if (x->props.flags & XFRM_STATE_ESN) { sglists = 1; seqhi_len = sizeof(*seqhi); } work_iph = ah_alloc_tmp(ahash, nfrags + sglists, hdr_len + ahp->icv_trunc_len + seqhi_len); if (!work_iph) { err = -ENOMEM; goto out; } auth_data = ah_tmp_auth((u8 *)work_iph, hdr_len); seqhi = (__be32 *)(auth_data + ahp->icv_trunc_len); icv = ah_tmp_icv(ahash, seqhi, seqhi_len); req = ah_tmp_req(ahash, icv); sg = ah_req_sg(ahash, req); seqhisg = sg + nfrags; memcpy(work_iph, ip6h, hdr_len); memcpy(auth_data, ah->auth_data, ahp->icv_trunc_len); memset(ah->auth_data, 0, ahp->icv_trunc_len); err = ipv6_clear_mutable_options(ip6h, hdr_len, XFRM_POLICY_IN); if (err) goto out_free; ip6h->priority = 0; ip6h->flow_lbl[0] = 0; ip6h->flow_lbl[1] = 0; ip6h->flow_lbl[2] = 0; ip6h->hop_limit = 0; sg_init_table(sg, nfrags + sglists); err = skb_to_sgvec_nomark(skb, sg, 0, skb->len); if (unlikely(err < 0)) goto out_free; if (x->props.flags & XFRM_STATE_ESN) { /* Attach seqhi sg right after packet payload */ *seqhi = XFRM_SKB_CB(skb)->seq.input.hi; sg_set_buf(seqhisg, seqhi, seqhi_len); } ahash_request_set_crypt(req, sg, icv, skb->len + seqhi_len); ahash_request_set_callback(req, 0, ah6_input_done, skb); AH_SKB_CB(skb)->tmp = work_iph; err = crypto_ahash_digest(req); if (err) { if (err == -EINPROGRESS) goto out; goto out_free; } err = crypto_memneq(icv, auth_data, ahp->icv_trunc_len) ? -EBADMSG : 0; if (err) goto out_free; skb->network_header += ah_hlen; memcpy(skb_network_header(skb), work_iph, hdr_len); __skb_pull(skb, ah_hlen + hdr_len); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -hdr_len); err = nexthdr; out_free: kfree(work_iph); out: return err; } static int ah6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct net *net = dev_net(skb->dev); struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; struct ip_auth_hdr *ah = (struct ip_auth_hdr *)(skb->data+offset); struct xfrm_state *x; if (type != ICMPV6_PKT_TOOBIG && type != NDISC_REDIRECT) return 0; x = xfrm_state_lookup(net, skb->mark, (xfrm_address_t *)&iph->daddr, ah->spi, IPPROTO_AH, AF_INET6); if (!x) return 0; if (type == NDISC_REDIRECT) ip6_redirect(skb, net, skb->dev->ifindex, 0, sock_net_uid(net, NULL)); else ip6_update_pmtu(skb, net, info, 0, 0, sock_net_uid(net, NULL)); xfrm_state_put(x); return 0; } static int ah6_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct ah_data *ahp = NULL; struct xfrm_algo_desc *aalg_desc; struct crypto_ahash *ahash; if (!x->aalg) { NL_SET_ERR_MSG(extack, "AH requires a state with an AUTH algorithm"); goto error; } if (x->encap) { NL_SET_ERR_MSG(extack, "AH is not compatible with encapsulation"); goto error; } ahp = kzalloc(sizeof(*ahp), GFP_KERNEL); if (!ahp) return -ENOMEM; ahash = crypto_alloc_ahash(x->aalg->alg_name, 0, 0); if (IS_ERR(ahash)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } ahp->ahash = ahash; if (crypto_ahash_setkey(ahash, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } /* * Lookup the algorithm description maintained by xfrm_algo, * verify crypto transform properties, and store information * we need for AH processing. This lookup cannot fail here * after a successful crypto_alloc_hash(). */ aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); if (aalg_desc->uinfo.auth.icv_fullbits/8 != crypto_ahash_digestsize(ahash)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } ahp->icv_full_len = aalg_desc->uinfo.auth.icv_fullbits/8; ahp->icv_trunc_len = x->aalg->alg_trunc_len/8; x->props.header_len = XFRM_ALIGN8(sizeof(struct ip_auth_hdr) + ahp->icv_trunc_len); switch (x->props.mode) { case XFRM_MODE_BEET: case XFRM_MODE_TRANSPORT: break; case XFRM_MODE_TUNNEL: x->props.header_len += sizeof(struct ipv6hdr); break; default: NL_SET_ERR_MSG(extack, "Invalid mode requested for AH, must be one of TRANSPORT, TUNNEL, BEET"); goto error; } x->data = ahp; return 0; error: if (ahp) { crypto_free_ahash(ahp->ahash); kfree(ahp); } return -EINVAL; } static void ah6_destroy(struct xfrm_state *x) { struct ah_data *ahp = x->data; if (!ahp) return; crypto_free_ahash(ahp->ahash); kfree(ahp); } static int ah6_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type ah6_type = { .owner = THIS_MODULE, .proto = IPPROTO_AH, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = ah6_init_state, .destructor = ah6_destroy, .input = ah6_input, .output = ah6_output, }; static struct xfrm6_protocol ah6_protocol = { .handler = xfrm6_rcv, .input_handler = xfrm_input, .cb_handler = ah6_rcv_cb, .err_handler = ah6_err, .priority = 0, }; static int __init ah6_init(void) { if (xfrm_register_type(&ah6_type, AF_INET6) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm6_protocol_register(&ah6_protocol, IPPROTO_AH) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&ah6_type, AF_INET6); return -EAGAIN; } return 0; } static void __exit ah6_fini(void) { if (xfrm6_protocol_deregister(&ah6_protocol, IPPROTO_AH) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&ah6_type, AF_INET6); } module_init(ah6_init); module_exit(ah6_fini); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_AH);
linux-master
net/ipv6/ah6.c
// SPDX-License-Identifier: GPL-2.0-only /* * Authors: * (C) 2020 Alexander Aring <[email protected]> */ #include <net/ipv6.h> #include <net/rpl.h> #define IPV6_PFXTAIL_LEN(x) (sizeof(struct in6_addr) - (x)) #define IPV6_RPL_BEST_ADDR_COMPRESSION 15 static void ipv6_rpl_addr_decompress(struct in6_addr *dst, const struct in6_addr *daddr, const void *post, unsigned char pfx) { memcpy(dst, daddr, pfx); memcpy(&dst->s6_addr[pfx], post, IPV6_PFXTAIL_LEN(pfx)); } static void ipv6_rpl_addr_compress(void *dst, const struct in6_addr *addr, unsigned char pfx) { memcpy(dst, &addr->s6_addr[pfx], IPV6_PFXTAIL_LEN(pfx)); } static void *ipv6_rpl_segdata_pos(const struct ipv6_rpl_sr_hdr *hdr, int i) { return (void *)&hdr->rpl_segdata[i * IPV6_PFXTAIL_LEN(hdr->cmpri)]; } void ipv6_rpl_srh_decompress(struct ipv6_rpl_sr_hdr *outhdr, const struct ipv6_rpl_sr_hdr *inhdr, const struct in6_addr *daddr, unsigned char n) { int i; outhdr->nexthdr = inhdr->nexthdr; outhdr->hdrlen = (((n + 1) * sizeof(struct in6_addr)) >> 3); outhdr->pad = 0; outhdr->type = inhdr->type; outhdr->segments_left = inhdr->segments_left; outhdr->cmpri = 0; outhdr->cmpre = 0; for (i = 0; i < n; i++) ipv6_rpl_addr_decompress(&outhdr->rpl_segaddr[i], daddr, ipv6_rpl_segdata_pos(inhdr, i), inhdr->cmpri); ipv6_rpl_addr_decompress(&outhdr->rpl_segaddr[n], daddr, ipv6_rpl_segdata_pos(inhdr, n), inhdr->cmpre); } static unsigned char ipv6_rpl_srh_calc_cmpri(const struct ipv6_rpl_sr_hdr *inhdr, const struct in6_addr *daddr, unsigned char n) { unsigned char plen; int i; for (plen = 0; plen < sizeof(*daddr); plen++) { for (i = 0; i < n; i++) { if (daddr->s6_addr[plen] != inhdr->rpl_segaddr[i].s6_addr[plen]) return plen; } } return IPV6_RPL_BEST_ADDR_COMPRESSION; } static unsigned char ipv6_rpl_srh_calc_cmpre(const struct in6_addr *daddr, const struct in6_addr *last_segment) { unsigned int plen; for (plen = 0; plen < sizeof(*daddr); plen++) { if (daddr->s6_addr[plen] != last_segment->s6_addr[plen]) return plen; } return IPV6_RPL_BEST_ADDR_COMPRESSION; } void ipv6_rpl_srh_compress(struct ipv6_rpl_sr_hdr *outhdr, const struct ipv6_rpl_sr_hdr *inhdr, const struct in6_addr *daddr, unsigned char n) { unsigned char cmpri, cmpre; size_t seglen; int i; cmpri = ipv6_rpl_srh_calc_cmpri(inhdr, daddr, n); cmpre = ipv6_rpl_srh_calc_cmpre(daddr, &inhdr->rpl_segaddr[n]); outhdr->nexthdr = inhdr->nexthdr; seglen = (n * IPV6_PFXTAIL_LEN(cmpri)) + IPV6_PFXTAIL_LEN(cmpre); outhdr->hdrlen = seglen >> 3; if (seglen & 0x7) { outhdr->hdrlen++; outhdr->pad = 8 - (seglen & 0x7); } else { outhdr->pad = 0; } outhdr->type = inhdr->type; outhdr->segments_left = inhdr->segments_left; outhdr->cmpri = cmpri; outhdr->cmpre = cmpre; for (i = 0; i < n; i++) ipv6_rpl_addr_compress(ipv6_rpl_segdata_pos(outhdr, i), &inhdr->rpl_segaddr[i], cmpri); ipv6_rpl_addr_compress(ipv6_rpl_segdata_pos(outhdr, n), &inhdr->rpl_segaddr[n], cmpre); }
linux-master
net/ipv6/rpl.c
// SPDX-License-Identifier: GPL-2.0-only /* * net/ipv6/fib6_rules.c IPv6 Routing Policy Rules * * Copyright (C)2003-2006 Helsinki University of Technology * Copyright (C)2003-2006 USAGI/WIDE Project * * Authors * Thomas Graf <[email protected]> * Ville Nuorvala <[email protected]> */ #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/export.h> #include <linux/indirect_call_wrapper.h> #include <net/fib_rules.h> #include <net/inet_dscp.h> #include <net/ipv6.h> #include <net/addrconf.h> #include <net/ip6_route.h> #include <net/netlink.h> struct fib6_rule { struct fib_rule common; struct rt6key src; struct rt6key dst; dscp_t dscp; }; static bool fib6_rule_matchall(const struct fib_rule *rule) { struct fib6_rule *r = container_of(rule, struct fib6_rule, common); if (r->dst.plen || r->src.plen || r->dscp) return false; return fib_rule_matchall(rule); } bool fib6_rule_default(const struct fib_rule *rule) { if (!fib6_rule_matchall(rule) || rule->action != FR_ACT_TO_TBL || rule->l3mdev) return false; if (rule->table != RT6_TABLE_LOCAL && rule->table != RT6_TABLE_MAIN) return false; return true; } EXPORT_SYMBOL_GPL(fib6_rule_default); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return fib_rules_dump(net, nb, AF_INET6, extack); } unsigned int fib6_rules_seq_read(struct net *net) { return fib_rules_seq_read(net, AF_INET6); } /* called with rcu lock held; no reference taken on fib6_info */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags) { int err; if (net->ipv6.fib6_has_custom_rules) { struct fib_lookup_arg arg = { .lookup_ptr = fib6_table_lookup, .lookup_data = &oif, .result = res, .flags = FIB_LOOKUP_NOREF, }; l3mdev_update_flow(net, flowi6_to_flowi(fl6)); err = fib_rules_lookup(net->ipv6.fib6_rules_ops, flowi6_to_flowi(fl6), flags, &arg); } else { err = fib6_table_lookup(net, net->ipv6.fib6_local_tbl, oif, fl6, res, flags); if (err || res->f6i == net->ipv6.fib6_null_entry) err = fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, res, flags); } return err; } struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup) { if (net->ipv6.fib6_has_custom_rules) { struct fib6_result res = {}; struct fib_lookup_arg arg = { .lookup_ptr = lookup, .lookup_data = skb, .result = &res, .flags = FIB_LOOKUP_NOREF, }; /* update flow if oif or iif point to device enslaved to l3mdev */ l3mdev_update_flow(net, flowi6_to_flowi(fl6)); fib_rules_lookup(net->ipv6.fib6_rules_ops, flowi6_to_flowi(fl6), flags, &arg); if (res.rt6) return &res.rt6->dst; } else { struct rt6_info *rt; rt = pol_lookup_func(lookup, net, net->ipv6.fib6_local_tbl, fl6, skb, flags); if (rt != net->ipv6.ip6_null_entry && rt->dst.error != -EAGAIN) return &rt->dst; ip6_rt_put_flags(rt, flags); rt = pol_lookup_func(lookup, net, net->ipv6.fib6_main_tbl, fl6, skb, flags); if (rt->dst.error != -EAGAIN) return &rt->dst; ip6_rt_put_flags(rt, flags); } if (!(flags & RT6_LOOKUP_F_DST_NOREF)) dst_hold(&net->ipv6.ip6_null_entry->dst); return &net->ipv6.ip6_null_entry->dst; } static int fib6_rule_saddr(struct net *net, struct fib_rule *rule, int flags, struct flowi6 *flp6, const struct net_device *dev) { struct fib6_rule *r = (struct fib6_rule *)rule; /* If we need to find a source address for this traffic, * we check the result if it meets requirement of the rule. */ if ((rule->flags & FIB_RULE_FIND_SADDR) && r->src.plen && !(flags & RT6_LOOKUP_F_HAS_SADDR)) { struct in6_addr saddr; if (ipv6_dev_get_saddr(net, dev, &flp6->daddr, rt6_flags2srcprefs(flags), &saddr)) return -EAGAIN; if (!ipv6_prefix_equal(&saddr, &r->src.addr, r->src.plen)) return -EAGAIN; flp6->saddr = saddr; } return 0; } static int fib6_rule_action_alt(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { struct fib6_result *res = arg->result; struct flowi6 *flp6 = &flp->u.ip6; struct net *net = rule->fr_net; struct fib6_table *table; int err, *oif; u32 tb_id; switch (rule->action) { case FR_ACT_TO_TBL: break; case FR_ACT_UNREACHABLE: return -ENETUNREACH; case FR_ACT_PROHIBIT: return -EACCES; case FR_ACT_BLACKHOLE: default: return -EINVAL; } tb_id = fib_rule_get_table(rule, arg); table = fib6_get_table(net, tb_id); if (!table) return -EAGAIN; oif = (int *)arg->lookup_data; err = fib6_table_lookup(net, table, *oif, flp6, res, flags); if (!err && res->f6i != net->ipv6.fib6_null_entry) err = fib6_rule_saddr(net, rule, flags, flp6, res->nh->fib_nh_dev); else err = -EAGAIN; return err; } static int __fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { struct fib6_result *res = arg->result; struct flowi6 *flp6 = &flp->u.ip6; struct rt6_info *rt = NULL; struct fib6_table *table; struct net *net = rule->fr_net; pol_lookup_t lookup = arg->lookup_ptr; int err = 0; u32 tb_id; switch (rule->action) { case FR_ACT_TO_TBL: break; case FR_ACT_UNREACHABLE: err = -ENETUNREACH; rt = net->ipv6.ip6_null_entry; goto discard_pkt; default: case FR_ACT_BLACKHOLE: err = -EINVAL; rt = net->ipv6.ip6_blk_hole_entry; goto discard_pkt; case FR_ACT_PROHIBIT: err = -EACCES; rt = net->ipv6.ip6_prohibit_entry; goto discard_pkt; } tb_id = fib_rule_get_table(rule, arg); table = fib6_get_table(net, tb_id); if (!table) { err = -EAGAIN; goto out; } rt = pol_lookup_func(lookup, net, table, flp6, arg->lookup_data, flags); if (rt != net->ipv6.ip6_null_entry) { err = fib6_rule_saddr(net, rule, flags, flp6, ip6_dst_idev(&rt->dst)->dev); if (err == -EAGAIN) goto again; err = rt->dst.error; if (err != -EAGAIN) goto out; } again: ip6_rt_put_flags(rt, flags); err = -EAGAIN; rt = NULL; goto out; discard_pkt: if (!(flags & RT6_LOOKUP_F_DST_NOREF)) dst_hold(&rt->dst); out: res->rt6 = rt; return err; } INDIRECT_CALLABLE_SCOPE int fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg) { if (arg->lookup_ptr == fib6_table_lookup) return fib6_rule_action_alt(rule, flp, flags, arg); return __fib6_rule_action(rule, flp, flags, arg); } INDIRECT_CALLABLE_SCOPE bool fib6_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg) { struct fib6_result *res = arg->result; struct rt6_info *rt = res->rt6; struct net_device *dev = NULL; if (!rt) return false; if (rt->rt6i_idev) dev = rt->rt6i_idev->dev; /* do not accept result if the route does * not meet the required prefix length */ if (rt->rt6i_dst.plen <= rule->suppress_prefixlen) goto suppress_route; /* do not accept result if the route uses a device * belonging to a forbidden interface group */ if (rule->suppress_ifgroup != -1 && dev && dev->group == rule->suppress_ifgroup) goto suppress_route; return false; suppress_route: ip6_rt_put_flags(rt, flags); return true; } INDIRECT_CALLABLE_SCOPE int fib6_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) { struct fib6_rule *r = (struct fib6_rule *) rule; struct flowi6 *fl6 = &fl->u.ip6; if (r->dst.plen && !ipv6_prefix_equal(&fl6->daddr, &r->dst.addr, r->dst.plen)) return 0; /* * If FIB_RULE_FIND_SADDR is set and we do not have a * source address for the traffic, we defer check for * source address. */ if (r->src.plen) { if (flags & RT6_LOOKUP_F_HAS_SADDR) { if (!ipv6_prefix_equal(&fl6->saddr, &r->src.addr, r->src.plen)) return 0; } else if (!(r->common.flags & FIB_RULE_FIND_SADDR)) return 0; } if (r->dscp && r->dscp != ip6_dscp(fl6->flowlabel)) return 0; if (rule->ip_proto && (rule->ip_proto != fl6->flowi6_proto)) return 0; if (fib_rule_port_range_set(&rule->sport_range) && !fib_rule_port_inrange(&rule->sport_range, fl6->fl6_sport)) return 0; if (fib_rule_port_range_set(&rule->dport_range) && !fib_rule_port_inrange(&rule->dport_range, fl6->fl6_dport)) return 0; return 1; } static int fib6_rule_configure(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh, struct nlattr **tb, struct netlink_ext_ack *extack) { int err = -EINVAL; struct net *net = sock_net(skb->sk); struct fib6_rule *rule6 = (struct fib6_rule *) rule; if (!inet_validate_dscp(frh->tos)) { NL_SET_ERR_MSG(extack, "Invalid dsfield (tos): ECN bits must be 0"); goto errout; } rule6->dscp = inet_dsfield_to_dscp(frh->tos); if (rule->action == FR_ACT_TO_TBL && !rule->l3mdev) { if (rule->table == RT6_TABLE_UNSPEC) { NL_SET_ERR_MSG(extack, "Invalid table"); goto errout; } if (fib6_new_table(net, rule->table) == NULL) { err = -ENOBUFS; goto errout; } } if (frh->src_len) rule6->src.addr = nla_get_in6_addr(tb[FRA_SRC]); if (frh->dst_len) rule6->dst.addr = nla_get_in6_addr(tb[FRA_DST]); rule6->src.plen = frh->src_len; rule6->dst.plen = frh->dst_len; if (fib_rule_requires_fldissect(rule)) net->ipv6.fib6_rules_require_fldissect++; net->ipv6.fib6_has_custom_rules = true; err = 0; errout: return err; } static int fib6_rule_delete(struct fib_rule *rule) { struct net *net = rule->fr_net; if (net->ipv6.fib6_rules_require_fldissect && fib_rule_requires_fldissect(rule)) net->ipv6.fib6_rules_require_fldissect--; return 0; } static int fib6_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, struct nlattr **tb) { struct fib6_rule *rule6 = (struct fib6_rule *) rule; if (frh->src_len && (rule6->src.plen != frh->src_len)) return 0; if (frh->dst_len && (rule6->dst.plen != frh->dst_len)) return 0; if (frh->tos && inet_dscp_to_dsfield(rule6->dscp) != frh->tos) return 0; if (frh->src_len && nla_memcmp(tb[FRA_SRC], &rule6->src.addr, sizeof(struct in6_addr))) return 0; if (frh->dst_len && nla_memcmp(tb[FRA_DST], &rule6->dst.addr, sizeof(struct in6_addr))) return 0; return 1; } static int fib6_rule_fill(struct fib_rule *rule, struct sk_buff *skb, struct fib_rule_hdr *frh) { struct fib6_rule *rule6 = (struct fib6_rule *) rule; frh->dst_len = rule6->dst.plen; frh->src_len = rule6->src.plen; frh->tos = inet_dscp_to_dsfield(rule6->dscp); if ((rule6->dst.plen && nla_put_in6_addr(skb, FRA_DST, &rule6->dst.addr)) || (rule6->src.plen && nla_put_in6_addr(skb, FRA_SRC, &rule6->src.addr))) goto nla_put_failure; return 0; nla_put_failure: return -ENOBUFS; } static size_t fib6_rule_nlmsg_payload(struct fib_rule *rule) { return nla_total_size(16) /* dst */ + nla_total_size(16); /* src */ } static const struct fib_rules_ops __net_initconst fib6_rules_ops_template = { .family = AF_INET6, .rule_size = sizeof(struct fib6_rule), .addr_size = sizeof(struct in6_addr), .action = fib6_rule_action, .match = fib6_rule_match, .suppress = fib6_rule_suppress, .configure = fib6_rule_configure, .delete = fib6_rule_delete, .compare = fib6_rule_compare, .fill = fib6_rule_fill, .nlmsg_payload = fib6_rule_nlmsg_payload, .nlgroup = RTNLGRP_IPV6_RULE, .owner = THIS_MODULE, .fro_net = &init_net, }; static int __net_init fib6_rules_net_init(struct net *net) { struct fib_rules_ops *ops; int err; ops = fib_rules_register(&fib6_rules_ops_template, net); if (IS_ERR(ops)) return PTR_ERR(ops); err = fib_default_rule_add(ops, 0, RT6_TABLE_LOCAL, 0); if (err) goto out_fib6_rules_ops; err = fib_default_rule_add(ops, 0x7FFE, RT6_TABLE_MAIN, 0); if (err) goto out_fib6_rules_ops; net->ipv6.fib6_rules_ops = ops; net->ipv6.fib6_rules_require_fldissect = 0; out: return err; out_fib6_rules_ops: fib_rules_unregister(ops); goto out; } static void __net_exit fib6_rules_net_exit_batch(struct list_head *net_list) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) { fib_rules_unregister(net->ipv6.fib6_rules_ops); cond_resched(); } rtnl_unlock(); } static struct pernet_operations fib6_rules_net_ops = { .init = fib6_rules_net_init, .exit_batch = fib6_rules_net_exit_batch, }; int __init fib6_rules_init(void) { return register_pernet_subsys(&fib6_rules_net_ops); } void fib6_rules_cleanup(void) { unregister_pernet_subsys(&fib6_rules_net_ops); }
linux-master
net/ipv6/fib6_rules.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/jhash.h> #include <linux/netfilter.h> #include <linux/rcupdate.h> #include <linux/rhashtable.h> #include <linux/vmalloc.h> #include <net/genetlink.h> #include <net/netns/generic.h> #include <uapi/linux/genetlink.h> #include "ila.h" struct ila_xlat_params { struct ila_params ip; int ifindex; }; struct ila_map { struct ila_xlat_params xp; struct rhash_head node; struct ila_map __rcu *next; struct rcu_head rcu; }; #define MAX_LOCKS 1024 #define LOCKS_PER_CPU 10 static int alloc_ila_locks(struct ila_net *ilan) { return alloc_bucket_spinlocks(&ilan->xlat.locks, &ilan->xlat.locks_mask, MAX_LOCKS, LOCKS_PER_CPU, GFP_KERNEL); } static u32 hashrnd __read_mostly; static __always_inline void __ila_hash_secret_init(void) { net_get_random_once(&hashrnd, sizeof(hashrnd)); } static inline u32 ila_locator_hash(struct ila_locator loc) { u32 *v = (u32 *)loc.v32; __ila_hash_secret_init(); return jhash_2words(v[0], v[1], hashrnd); } static inline spinlock_t *ila_get_lock(struct ila_net *ilan, struct ila_locator loc) { return &ilan->xlat.locks[ila_locator_hash(loc) & ilan->xlat.locks_mask]; } static inline int ila_cmp_wildcards(struct ila_map *ila, struct ila_addr *iaddr, int ifindex) { return (ila->xp.ifindex && ila->xp.ifindex != ifindex); } static inline int ila_cmp_params(struct ila_map *ila, struct ila_xlat_params *xp) { return (ila->xp.ifindex != xp->ifindex); } static int ila_cmpfn(struct rhashtable_compare_arg *arg, const void *obj) { const struct ila_map *ila = obj; return (ila->xp.ip.locator_match.v64 != *(__be64 *)arg->key); } static inline int ila_order(struct ila_map *ila) { int score = 0; if (ila->xp.ifindex) score += 1 << 1; return score; } static const struct rhashtable_params rht_params = { .nelem_hint = 1024, .head_offset = offsetof(struct ila_map, node), .key_offset = offsetof(struct ila_map, xp.ip.locator_match), .key_len = sizeof(u64), /* identifier */ .max_size = 1048576, .min_size = 256, .automatic_shrinking = true, .obj_cmpfn = ila_cmpfn, }; static int parse_nl_config(struct genl_info *info, struct ila_xlat_params *xp) { memset(xp, 0, sizeof(*xp)); if (info->attrs[ILA_ATTR_LOCATOR]) xp->ip.locator.v64 = (__force __be64)nla_get_u64( info->attrs[ILA_ATTR_LOCATOR]); if (info->attrs[ILA_ATTR_LOCATOR_MATCH]) xp->ip.locator_match.v64 = (__force __be64)nla_get_u64( info->attrs[ILA_ATTR_LOCATOR_MATCH]); if (info->attrs[ILA_ATTR_CSUM_MODE]) xp->ip.csum_mode = nla_get_u8(info->attrs[ILA_ATTR_CSUM_MODE]); else xp->ip.csum_mode = ILA_CSUM_NO_ACTION; if (info->attrs[ILA_ATTR_IDENT_TYPE]) xp->ip.ident_type = nla_get_u8( info->attrs[ILA_ATTR_IDENT_TYPE]); else xp->ip.ident_type = ILA_ATYPE_USE_FORMAT; if (info->attrs[ILA_ATTR_IFINDEX]) xp->ifindex = nla_get_s32(info->attrs[ILA_ATTR_IFINDEX]); return 0; } /* Must be called with rcu readlock */ static inline struct ila_map *ila_lookup_wildcards(struct ila_addr *iaddr, int ifindex, struct ila_net *ilan) { struct ila_map *ila; ila = rhashtable_lookup_fast(&ilan->xlat.rhash_table, &iaddr->loc, rht_params); while (ila) { if (!ila_cmp_wildcards(ila, iaddr, ifindex)) return ila; ila = rcu_access_pointer(ila->next); } return NULL; } /* Must be called with rcu readlock */ static inline struct ila_map *ila_lookup_by_params(struct ila_xlat_params *xp, struct ila_net *ilan) { struct ila_map *ila; ila = rhashtable_lookup_fast(&ilan->xlat.rhash_table, &xp->ip.locator_match, rht_params); while (ila) { if (!ila_cmp_params(ila, xp)) return ila; ila = rcu_access_pointer(ila->next); } return NULL; } static inline void ila_release(struct ila_map *ila) { kfree_rcu(ila, rcu); } static void ila_free_node(struct ila_map *ila) { struct ila_map *next; /* Assume rcu_readlock held */ while (ila) { next = rcu_access_pointer(ila->next); ila_release(ila); ila = next; } } static void ila_free_cb(void *ptr, void *arg) { ila_free_node((struct ila_map *)ptr); } static int ila_xlat_addr(struct sk_buff *skb, bool sir2ila); static unsigned int ila_nf_input(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { ila_xlat_addr(skb, false); return NF_ACCEPT; } static const struct nf_hook_ops ila_nf_hook_ops[] = { { .hook = ila_nf_input, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = -1, }, }; static int ila_add_mapping(struct net *net, struct ila_xlat_params *xp) { struct ila_net *ilan = net_generic(net, ila_net_id); struct ila_map *ila, *head; spinlock_t *lock = ila_get_lock(ilan, xp->ip.locator_match); int err = 0, order; if (!ilan->xlat.hooks_registered) { /* We defer registering net hooks in the namespace until the * first mapping is added. */ err = nf_register_net_hooks(net, ila_nf_hook_ops, ARRAY_SIZE(ila_nf_hook_ops)); if (err) return err; ilan->xlat.hooks_registered = true; } ila = kzalloc(sizeof(*ila), GFP_KERNEL); if (!ila) return -ENOMEM; ila_init_saved_csum(&xp->ip); ila->xp = *xp; order = ila_order(ila); spin_lock(lock); head = rhashtable_lookup_fast(&ilan->xlat.rhash_table, &xp->ip.locator_match, rht_params); if (!head) { /* New entry for the rhash_table */ err = rhashtable_lookup_insert_fast(&ilan->xlat.rhash_table, &ila->node, rht_params); } else { struct ila_map *tila = head, *prev = NULL; do { if (!ila_cmp_params(tila, xp)) { err = -EEXIST; goto out; } if (order > ila_order(tila)) break; prev = tila; tila = rcu_dereference_protected(tila->next, lockdep_is_held(lock)); } while (tila); if (prev) { /* Insert in sub list of head */ RCU_INIT_POINTER(ila->next, tila); rcu_assign_pointer(prev->next, ila); } else { /* Make this ila new head */ RCU_INIT_POINTER(ila->next, head); err = rhashtable_replace_fast(&ilan->xlat.rhash_table, &head->node, &ila->node, rht_params); if (err) goto out; } } out: spin_unlock(lock); if (err) kfree(ila); return err; } static int ila_del_mapping(struct net *net, struct ila_xlat_params *xp) { struct ila_net *ilan = net_generic(net, ila_net_id); struct ila_map *ila, *head, *prev; spinlock_t *lock = ila_get_lock(ilan, xp->ip.locator_match); int err = -ENOENT; spin_lock(lock); head = rhashtable_lookup_fast(&ilan->xlat.rhash_table, &xp->ip.locator_match, rht_params); ila = head; prev = NULL; while (ila) { if (ila_cmp_params(ila, xp)) { prev = ila; ila = rcu_dereference_protected(ila->next, lockdep_is_held(lock)); continue; } err = 0; if (prev) { /* Not head, just delete from list */ rcu_assign_pointer(prev->next, ila->next); } else { /* It is the head. If there is something in the * sublist we need to make a new head. */ head = rcu_dereference_protected(ila->next, lockdep_is_held(lock)); if (head) { /* Put first entry in the sublist into the * table */ err = rhashtable_replace_fast( &ilan->xlat.rhash_table, &ila->node, &head->node, rht_params); if (err) goto out; } else { /* Entry no longer used */ err = rhashtable_remove_fast( &ilan->xlat.rhash_table, &ila->node, rht_params); } } ila_release(ila); break; } out: spin_unlock(lock); return err; } int ila_xlat_nl_cmd_add_mapping(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct ila_xlat_params p; int err; err = parse_nl_config(info, &p); if (err) return err; return ila_add_mapping(net, &p); } int ila_xlat_nl_cmd_del_mapping(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct ila_xlat_params xp; int err; err = parse_nl_config(info, &xp); if (err) return err; ila_del_mapping(net, &xp); return 0; } static inline spinlock_t *lock_from_ila_map(struct ila_net *ilan, struct ila_map *ila) { return ila_get_lock(ilan, ila->xp.ip.locator_match); } int ila_xlat_nl_cmd_flush(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct ila_net *ilan = net_generic(net, ila_net_id); struct rhashtable_iter iter; struct ila_map *ila; spinlock_t *lock; int ret = 0; rhashtable_walk_enter(&ilan->xlat.rhash_table, &iter); rhashtable_walk_start(&iter); for (;;) { ila = rhashtable_walk_next(&iter); if (IS_ERR(ila)) { if (PTR_ERR(ila) == -EAGAIN) continue; ret = PTR_ERR(ila); goto done; } else if (!ila) { break; } lock = lock_from_ila_map(ilan, ila); spin_lock(lock); ret = rhashtable_remove_fast(&ilan->xlat.rhash_table, &ila->node, rht_params); if (!ret) ila_free_node(ila); spin_unlock(lock); if (ret) break; } done: rhashtable_walk_stop(&iter); rhashtable_walk_exit(&iter); return ret; } static int ila_fill_info(struct ila_map *ila, struct sk_buff *msg) { if (nla_put_u64_64bit(msg, ILA_ATTR_LOCATOR, (__force u64)ila->xp.ip.locator.v64, ILA_ATTR_PAD) || nla_put_u64_64bit(msg, ILA_ATTR_LOCATOR_MATCH, (__force u64)ila->xp.ip.locator_match.v64, ILA_ATTR_PAD) || nla_put_s32(msg, ILA_ATTR_IFINDEX, ila->xp.ifindex) || nla_put_u8(msg, ILA_ATTR_CSUM_MODE, ila->xp.ip.csum_mode) || nla_put_u8(msg, ILA_ATTR_IDENT_TYPE, ila->xp.ip.ident_type)) return -1; return 0; } static int ila_dump_info(struct ila_map *ila, u32 portid, u32 seq, u32 flags, struct sk_buff *skb, u8 cmd) { void *hdr; hdr = genlmsg_put(skb, portid, seq, &ila_nl_family, flags, cmd); if (!hdr) return -ENOMEM; if (ila_fill_info(ila, skb) < 0) goto nla_put_failure; genlmsg_end(skb, hdr); return 0; nla_put_failure: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } int ila_xlat_nl_cmd_get_mapping(struct sk_buff *skb, struct genl_info *info) { struct net *net = genl_info_net(info); struct ila_net *ilan = net_generic(net, ila_net_id); struct sk_buff *msg; struct ila_xlat_params xp; struct ila_map *ila; int ret; ret = parse_nl_config(info, &xp); if (ret) return ret; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; rcu_read_lock(); ret = -ESRCH; ila = ila_lookup_by_params(&xp, ilan); if (ila) { ret = ila_dump_info(ila, info->snd_portid, info->snd_seq, 0, msg, info->genlhdr->cmd); } rcu_read_unlock(); if (ret < 0) goto out_free; return genlmsg_reply(msg, info); out_free: nlmsg_free(msg); return ret; } struct ila_dump_iter { struct rhashtable_iter rhiter; int skip; }; int ila_xlat_nl_dump_start(struct netlink_callback *cb) { struct net *net = sock_net(cb->skb->sk); struct ila_net *ilan = net_generic(net, ila_net_id); struct ila_dump_iter *iter; iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; rhashtable_walk_enter(&ilan->xlat.rhash_table, &iter->rhiter); iter->skip = 0; cb->args[0] = (long)iter; return 0; } int ila_xlat_nl_dump_done(struct netlink_callback *cb) { struct ila_dump_iter *iter = (struct ila_dump_iter *)cb->args[0]; rhashtable_walk_exit(&iter->rhiter); kfree(iter); return 0; } int ila_xlat_nl_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct ila_dump_iter *iter = (struct ila_dump_iter *)cb->args[0]; struct rhashtable_iter *rhiter = &iter->rhiter; int skip = iter->skip; struct ila_map *ila; int ret; rhashtable_walk_start(rhiter); /* Get first entry */ ila = rhashtable_walk_peek(rhiter); if (ila && !IS_ERR(ila) && skip) { /* Skip over visited entries */ while (ila && skip) { /* Skip over any ila entries in this list that we * have already dumped. */ ila = rcu_access_pointer(ila->next); skip--; } } skip = 0; for (;;) { if (IS_ERR(ila)) { ret = PTR_ERR(ila); if (ret == -EAGAIN) { /* Table has changed and iter has reset. Return * -EAGAIN to the application even if we have * written data to the skb. The application * needs to deal with this. */ goto out_ret; } else { break; } } else if (!ila) { ret = 0; break; } while (ila) { ret = ila_dump_info(ila, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, skb, ILA_CMD_GET); if (ret) goto out; skip++; ila = rcu_access_pointer(ila->next); } skip = 0; ila = rhashtable_walk_next(rhiter); } out: iter->skip = skip; ret = (skb->len ? : ret); out_ret: rhashtable_walk_stop(rhiter); return ret; } int ila_xlat_init_net(struct net *net) { struct ila_net *ilan = net_generic(net, ila_net_id); int err; err = alloc_ila_locks(ilan); if (err) return err; err = rhashtable_init(&ilan->xlat.rhash_table, &rht_params); if (err) { free_bucket_spinlocks(ilan->xlat.locks); return err; } return 0; } void ila_xlat_exit_net(struct net *net) { struct ila_net *ilan = net_generic(net, ila_net_id); rhashtable_free_and_destroy(&ilan->xlat.rhash_table, ila_free_cb, NULL); free_bucket_spinlocks(ilan->xlat.locks); if (ilan->xlat.hooks_registered) nf_unregister_net_hooks(net, ila_nf_hook_ops, ARRAY_SIZE(ila_nf_hook_ops)); } static int ila_xlat_addr(struct sk_buff *skb, bool sir2ila) { struct ila_map *ila; struct ipv6hdr *ip6h = ipv6_hdr(skb); struct net *net = dev_net(skb->dev); struct ila_net *ilan = net_generic(net, ila_net_id); struct ila_addr *iaddr = ila_a2i(&ip6h->daddr); /* Assumes skb contains a valid IPv6 header that is pulled */ /* No check here that ILA type in the mapping matches what is in the * address. We assume that whatever sender gaves us can be translated. * The checksum mode however is relevant. */ rcu_read_lock(); ila = ila_lookup_wildcards(iaddr, skb->dev->ifindex, ilan); if (ila) ila_update_ipv6_locator(skb, &ila->xp.ip, sir2ila); rcu_read_unlock(); return 0; }
linux-master
net/ipv6/ila/ila_xlat.c
#include <linux/errno.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ip.h> #include <net/ip6_fib.h> #include <net/lwtunnel.h> #include <net/protocol.h> #include <uapi/linux/ila.h> #include "ila.h" void ila_init_saved_csum(struct ila_params *p) { if (!p->locator_match.v64) return; p->csum_diff = compute_csum_diff8( (__be32 *)&p->locator, (__be32 *)&p->locator_match); } static __wsum get_csum_diff_iaddr(struct ila_addr *iaddr, struct ila_params *p) { if (p->locator_match.v64) return p->csum_diff; else return compute_csum_diff8((__be32 *)&p->locator, (__be32 *)&iaddr->loc); } static __wsum get_csum_diff(struct ipv6hdr *ip6h, struct ila_params *p) { return get_csum_diff_iaddr(ila_a2i(&ip6h->daddr), p); } static void ila_csum_do_neutral_fmt(struct ila_addr *iaddr, struct ila_params *p) { __sum16 *adjust = (__force __sum16 *)&iaddr->ident.v16[3]; __wsum diff, fval; diff = get_csum_diff_iaddr(iaddr, p); fval = (__force __wsum)(ila_csum_neutral_set(iaddr->ident) ? CSUM_NEUTRAL_FLAG : ~CSUM_NEUTRAL_FLAG); diff = csum_add(diff, fval); *adjust = ~csum_fold(csum_add(diff, csum_unfold(*adjust))); /* Flip the csum-neutral bit. Either we are doing a SIR->ILA * translation with ILA_CSUM_NEUTRAL_MAP as the csum_method * and the C-bit is not set, or we are doing an ILA-SIR * tranlsation and the C-bit is set. */ iaddr->ident.csum_neutral ^= 1; } static void ila_csum_do_neutral_nofmt(struct ila_addr *iaddr, struct ila_params *p) { __sum16 *adjust = (__force __sum16 *)&iaddr->ident.v16[3]; __wsum diff; diff = get_csum_diff_iaddr(iaddr, p); *adjust = ~csum_fold(csum_add(diff, csum_unfold(*adjust))); } static void ila_csum_adjust_transport(struct sk_buff *skb, struct ila_params *p) { size_t nhoff = sizeof(struct ipv6hdr); struct ipv6hdr *ip6h = ipv6_hdr(skb); __wsum diff; switch (ip6h->nexthdr) { case NEXTHDR_TCP: if (likely(pskb_may_pull(skb, nhoff + sizeof(struct tcphdr)))) { struct tcphdr *th = (struct tcphdr *) (skb_network_header(skb) + nhoff); diff = get_csum_diff(ip6h, p); inet_proto_csum_replace_by_diff(&th->check, skb, diff, true); } break; case NEXTHDR_UDP: if (likely(pskb_may_pull(skb, nhoff + sizeof(struct udphdr)))) { struct udphdr *uh = (struct udphdr *) (skb_network_header(skb) + nhoff); if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { diff = get_csum_diff(ip6h, p); inet_proto_csum_replace_by_diff(&uh->check, skb, diff, true); if (!uh->check) uh->check = CSUM_MANGLED_0; } } break; case NEXTHDR_ICMP: if (likely(pskb_may_pull(skb, nhoff + sizeof(struct icmp6hdr)))) { struct icmp6hdr *ih = (struct icmp6hdr *) (skb_network_header(skb) + nhoff); diff = get_csum_diff(ip6h, p); inet_proto_csum_replace_by_diff(&ih->icmp6_cksum, skb, diff, true); } break; } } void ila_update_ipv6_locator(struct sk_buff *skb, struct ila_params *p, bool sir2ila) { struct ipv6hdr *ip6h = ipv6_hdr(skb); struct ila_addr *iaddr = ila_a2i(&ip6h->daddr); switch (p->csum_mode) { case ILA_CSUM_ADJUST_TRANSPORT: ila_csum_adjust_transport(skb, p); break; case ILA_CSUM_NEUTRAL_MAP: if (sir2ila) { if (WARN_ON(ila_csum_neutral_set(iaddr->ident))) { /* Checksum flag should never be * set in a formatted SIR address. */ break; } } else if (!ila_csum_neutral_set(iaddr->ident)) { /* ILA to SIR translation and C-bit isn't * set so we're good. */ break; } ila_csum_do_neutral_fmt(iaddr, p); break; case ILA_CSUM_NEUTRAL_MAP_AUTO: ila_csum_do_neutral_nofmt(iaddr, p); break; case ILA_CSUM_NO_ACTION: break; } /* Now change destination address */ iaddr->loc = p->locator; }
linux-master
net/ipv6/ila/ila_common.c
// SPDX-License-Identifier: GPL-2.0 #include <net/genetlink.h> #include <net/netns/generic.h> #include <uapi/linux/genetlink.h> #include "ila.h" static const struct nla_policy ila_nl_policy[ILA_ATTR_MAX + 1] = { [ILA_ATTR_LOCATOR] = { .type = NLA_U64, }, [ILA_ATTR_LOCATOR_MATCH] = { .type = NLA_U64, }, [ILA_ATTR_IFINDEX] = { .type = NLA_U32, }, [ILA_ATTR_CSUM_MODE] = { .type = NLA_U8, }, [ILA_ATTR_IDENT_TYPE] = { .type = NLA_U8, }, }; static const struct genl_ops ila_nl_ops[] = { { .cmd = ILA_CMD_ADD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_add_mapping, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_del_mapping, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_FLUSH, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_flush, .flags = GENL_ADMIN_PERM, }, { .cmd = ILA_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ila_xlat_nl_cmd_get_mapping, .start = ila_xlat_nl_dump_start, .dumpit = ila_xlat_nl_dump, .done = ila_xlat_nl_dump_done, }, }; unsigned int ila_net_id; struct genl_family ila_nl_family __ro_after_init = { .hdrsize = 0, .name = ILA_GENL_NAME, .version = ILA_GENL_VERSION, .maxattr = ILA_ATTR_MAX, .policy = ila_nl_policy, .netnsok = true, .parallel_ops = true, .module = THIS_MODULE, .ops = ila_nl_ops, .n_ops = ARRAY_SIZE(ila_nl_ops), .resv_start_op = ILA_CMD_FLUSH + 1, }; static __net_init int ila_init_net(struct net *net) { int err; err = ila_xlat_init_net(net); if (err) goto ila_xlat_init_fail; return 0; ila_xlat_init_fail: return err; } static __net_exit void ila_exit_net(struct net *net) { ila_xlat_exit_net(net); } static struct pernet_operations ila_net_ops = { .init = ila_init_net, .exit = ila_exit_net, .id = &ila_net_id, .size = sizeof(struct ila_net), }; static int __init ila_init(void) { int ret; ret = register_pernet_device(&ila_net_ops); if (ret) goto register_device_fail; ret = genl_register_family(&ila_nl_family); if (ret) goto register_family_fail; ret = ila_lwt_init(); if (ret) goto fail_lwt; return 0; fail_lwt: genl_unregister_family(&ila_nl_family); register_family_fail: unregister_pernet_device(&ila_net_ops); register_device_fail: return ret; } static void __exit ila_fini(void) { ila_lwt_fini(); genl_unregister_family(&ila_nl_family); unregister_pernet_device(&ila_net_ops); } module_init(ila_init); module_exit(ila_fini); MODULE_AUTHOR("Tom Herbert <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IPv6: Identifier Locator Addressing (ILA)");
linux-master
net/ipv6/ila/ila_main.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/errno.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/types.h> #include <net/checksum.h> #include <net/dst_cache.h> #include <net/ip.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <net/lwtunnel.h> #include <net/protocol.h> #include <uapi/linux/ila.h> #include "ila.h" struct ila_lwt { struct ila_params p; struct dst_cache dst_cache; u32 connected : 1; u32 lwt_output : 1; }; static inline struct ila_lwt *ila_lwt_lwtunnel( struct lwtunnel_state *lwt) { return (struct ila_lwt *)lwt->data; } static inline struct ila_params *ila_params_lwtunnel( struct lwtunnel_state *lwt) { return &ila_lwt_lwtunnel(lwt)->p; } static int ila_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *orig_dst = skb_dst(skb); struct rt6_info *rt = (struct rt6_info *)orig_dst; struct ila_lwt *ilwt = ila_lwt_lwtunnel(orig_dst->lwtstate); struct dst_entry *dst; int err = -EINVAL; if (skb->protocol != htons(ETH_P_IPV6)) goto drop; if (ilwt->lwt_output) ila_update_ipv6_locator(skb, ila_params_lwtunnel(orig_dst->lwtstate), true); if (rt->rt6i_flags & (RTF_GATEWAY | RTF_CACHE)) { /* Already have a next hop address in route, no need for * dest cache route. */ return orig_dst->lwtstate->orig_output(net, sk, skb); } dst = dst_cache_get(&ilwt->dst_cache); if (unlikely(!dst)) { struct ipv6hdr *ip6h = ipv6_hdr(skb); struct flowi6 fl6; /* Lookup a route for the new destination. Take into * account that the base route may already have a gateway. */ memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_oif = orig_dst->dev->ifindex; fl6.flowi6_iif = LOOPBACK_IFINDEX; fl6.daddr = *rt6_nexthop((struct rt6_info *)orig_dst, &ip6h->daddr); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { err = -EHOSTUNREACH; dst_release(dst); goto drop; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) { err = PTR_ERR(dst); goto drop; } if (ilwt->connected) dst_cache_set_ip6(&ilwt->dst_cache, dst, &fl6.saddr); } skb_dst_set(skb, dst); return dst_output(net, sk, skb); drop: kfree_skb(skb); return err; } static int ila_input(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct ila_lwt *ilwt = ila_lwt_lwtunnel(dst->lwtstate); if (skb->protocol != htons(ETH_P_IPV6)) goto drop; if (!ilwt->lwt_output) ila_update_ipv6_locator(skb, ila_params_lwtunnel(dst->lwtstate), false); return dst->lwtstate->orig_input(skb); drop: kfree_skb(skb); return -EINVAL; } static const struct nla_policy ila_nl_policy[ILA_ATTR_MAX + 1] = { [ILA_ATTR_LOCATOR] = { .type = NLA_U64, }, [ILA_ATTR_CSUM_MODE] = { .type = NLA_U8, }, [ILA_ATTR_IDENT_TYPE] = { .type = NLA_U8, }, [ILA_ATTR_HOOK_TYPE] = { .type = NLA_U8, }, }; static int ila_build_state(struct net *net, struct nlattr *nla, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack) { struct ila_lwt *ilwt; struct ila_params *p; struct nlattr *tb[ILA_ATTR_MAX + 1]; struct lwtunnel_state *newts; const struct fib6_config *cfg6 = cfg; struct ila_addr *iaddr; u8 ident_type = ILA_ATYPE_USE_FORMAT; u8 hook_type = ILA_HOOK_ROUTE_OUTPUT; u8 csum_mode = ILA_CSUM_NO_ACTION; bool lwt_output = true; u8 eff_ident_type; int ret; if (family != AF_INET6) return -EINVAL; ret = nla_parse_nested_deprecated(tb, ILA_ATTR_MAX, nla, ila_nl_policy, extack); if (ret < 0) return ret; if (!tb[ILA_ATTR_LOCATOR]) return -EINVAL; iaddr = (struct ila_addr *)&cfg6->fc_dst; if (tb[ILA_ATTR_IDENT_TYPE]) ident_type = nla_get_u8(tb[ILA_ATTR_IDENT_TYPE]); if (ident_type == ILA_ATYPE_USE_FORMAT) { /* Infer identifier type from type field in formatted * identifier. */ if (cfg6->fc_dst_len < 8 * sizeof(struct ila_locator) + 3) { /* Need to have full locator and at least type field * included in destination */ return -EINVAL; } eff_ident_type = iaddr->ident.type; } else { eff_ident_type = ident_type; } switch (eff_ident_type) { case ILA_ATYPE_IID: /* Don't allow ILA for IID type */ return -EINVAL; case ILA_ATYPE_LUID: break; case ILA_ATYPE_VIRT_V4: case ILA_ATYPE_VIRT_UNI_V6: case ILA_ATYPE_VIRT_MULTI_V6: case ILA_ATYPE_NONLOCAL_ADDR: /* These ILA formats are not supported yet. */ default: return -EINVAL; } if (tb[ILA_ATTR_HOOK_TYPE]) hook_type = nla_get_u8(tb[ILA_ATTR_HOOK_TYPE]); switch (hook_type) { case ILA_HOOK_ROUTE_OUTPUT: lwt_output = true; break; case ILA_HOOK_ROUTE_INPUT: lwt_output = false; break; default: return -EINVAL; } if (tb[ILA_ATTR_CSUM_MODE]) csum_mode = nla_get_u8(tb[ILA_ATTR_CSUM_MODE]); if (csum_mode == ILA_CSUM_NEUTRAL_MAP && ila_csum_neutral_set(iaddr->ident)) { /* Don't allow translation if checksum neutral bit is * configured and it's set in the SIR address. */ return -EINVAL; } newts = lwtunnel_state_alloc(sizeof(*ilwt)); if (!newts) return -ENOMEM; ilwt = ila_lwt_lwtunnel(newts); ret = dst_cache_init(&ilwt->dst_cache, GFP_ATOMIC); if (ret) { kfree(newts); return ret; } ilwt->lwt_output = !!lwt_output; p = ila_params_lwtunnel(newts); p->csum_mode = csum_mode; p->ident_type = ident_type; p->locator.v64 = (__force __be64)nla_get_u64(tb[ILA_ATTR_LOCATOR]); /* Precompute checksum difference for translation since we * know both the old locator and the new one. */ p->locator_match = iaddr->loc; ila_init_saved_csum(p); newts->type = LWTUNNEL_ENCAP_ILA; newts->flags |= LWTUNNEL_STATE_OUTPUT_REDIRECT | LWTUNNEL_STATE_INPUT_REDIRECT; if (cfg6->fc_dst_len == 8 * sizeof(struct in6_addr)) ilwt->connected = 1; *ts = newts; return 0; } static void ila_destroy_state(struct lwtunnel_state *lwt) { dst_cache_destroy(&ila_lwt_lwtunnel(lwt)->dst_cache); } static int ila_fill_encap_info(struct sk_buff *skb, struct lwtunnel_state *lwtstate) { struct ila_params *p = ila_params_lwtunnel(lwtstate); struct ila_lwt *ilwt = ila_lwt_lwtunnel(lwtstate); if (nla_put_u64_64bit(skb, ILA_ATTR_LOCATOR, (__force u64)p->locator.v64, ILA_ATTR_PAD)) goto nla_put_failure; if (nla_put_u8(skb, ILA_ATTR_CSUM_MODE, (__force u8)p->csum_mode)) goto nla_put_failure; if (nla_put_u8(skb, ILA_ATTR_IDENT_TYPE, (__force u8)p->ident_type)) goto nla_put_failure; if (nla_put_u8(skb, ILA_ATTR_HOOK_TYPE, ilwt->lwt_output ? ILA_HOOK_ROUTE_OUTPUT : ILA_HOOK_ROUTE_INPUT)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static int ila_encap_nlsize(struct lwtunnel_state *lwtstate) { return nla_total_size_64bit(sizeof(u64)) + /* ILA_ATTR_LOCATOR */ nla_total_size(sizeof(u8)) + /* ILA_ATTR_CSUM_MODE */ nla_total_size(sizeof(u8)) + /* ILA_ATTR_IDENT_TYPE */ nla_total_size(sizeof(u8)) + /* ILA_ATTR_HOOK_TYPE */ 0; } static int ila_encap_cmp(struct lwtunnel_state *a, struct lwtunnel_state *b) { struct ila_params *a_p = ila_params_lwtunnel(a); struct ila_params *b_p = ila_params_lwtunnel(b); return (a_p->locator.v64 != b_p->locator.v64); } static const struct lwtunnel_encap_ops ila_encap_ops = { .build_state = ila_build_state, .destroy_state = ila_destroy_state, .output = ila_output, .input = ila_input, .fill_encap = ila_fill_encap_info, .get_encap_size = ila_encap_nlsize, .cmp_encap = ila_encap_cmp, .owner = THIS_MODULE, }; int ila_lwt_init(void) { return lwtunnel_encap_add_ops(&ila_encap_ops, LWTUNNEL_ENCAP_ILA); } void ila_lwt_fini(void) { lwtunnel_encap_del_ops(&ila_encap_ops, LWTUNNEL_ENCAP_ILA); }
linux-master
net/ipv6/ila/ila_lwt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2009 Patrick McHardy <[email protected]> * Copyright (c) 2013 Eric Leblond <[email protected]> * * Development of this code funded by Astaro AG (http://www.astaro.com/) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nft_reject.h> #include <net/netfilter/ipv6/nf_reject.h> static void nft_reject_ipv6_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct nft_reject *priv = nft_expr_priv(expr); switch (priv->type) { case NFT_REJECT_ICMP_UNREACH: nf_send_unreach6(nft_net(pkt), pkt->skb, priv->icmp_code, nft_hook(pkt)); break; case NFT_REJECT_TCP_RST: nf_send_reset6(nft_net(pkt), nft_sk(pkt), pkt->skb, nft_hook(pkt)); break; default: break; } regs->verdict.code = NF_DROP; } static struct nft_expr_type nft_reject_ipv6_type; static const struct nft_expr_ops nft_reject_ipv6_ops = { .type = &nft_reject_ipv6_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_reject)), .eval = nft_reject_ipv6_eval, .init = nft_reject_init, .dump = nft_reject_dump, .validate = nft_reject_validate, .reduce = NFT_REDUCE_READONLY, }; static struct nft_expr_type nft_reject_ipv6_type __read_mostly = { .family = NFPROTO_IPV6, .name = "reject", .ops = &nft_reject_ipv6_ops, .policy = nft_reject_policy, .maxattr = NFTA_REJECT_MAX, .owner = THIS_MODULE, }; static int __init nft_reject_ipv6_module_init(void) { return nft_register_expr(&nft_reject_ipv6_type); } static void __exit nft_reject_ipv6_module_exit(void) { nft_unregister_expr(&nft_reject_ipv6_type); } module_init(nft_reject_ipv6_module_init); module_exit(nft_reject_ipv6_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <[email protected]>"); MODULE_ALIAS_NFT_AF_EXPR(AF_INET6, "reject"); MODULE_DESCRIPTION("IPv6 packet rejection for nftables");
linux-master
net/ipv6/netfilter/nft_reject_ipv6.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * (C) 2007 by Sebastian Claßen <[email protected]> * (C) 2007-2010 by Jan Engelhardt <[email protected]> * * Extracted from xt_TEE.c */ #include <linux/module.h> #include <linux/percpu.h> #include <linux/skbuff.h> #include <linux/netfilter.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/netfilter/ipv6/nf_dup_ipv6.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #endif static bool nf_dup_ipv6_route(struct net *net, struct sk_buff *skb, const struct in6_addr *gw, int oif) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct dst_entry *dst; struct flowi6 fl6; memset(&fl6, 0, sizeof(fl6)); if (oif != -1) fl6.flowi6_oif = oif; fl6.daddr = *gw; fl6.flowlabel = (__force __be32)(((iph->flow_lbl[0] & 0xF) << 16) | (iph->flow_lbl[1] << 8) | iph->flow_lbl[2]); fl6.flowi6_flags = FLOWI_FLAG_KNOWN_NH; dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return false; } skb_dst_drop(skb); skb_dst_set(skb, dst); skb->dev = dst->dev; skb->protocol = htons(ETH_P_IPV6); return true; } void nf_dup_ipv6(struct net *net, struct sk_buff *skb, unsigned int hooknum, const struct in6_addr *gw, int oif) { if (this_cpu_read(nf_skb_duplicated)) return; skb = pskb_copy(skb, GFP_ATOMIC); if (skb == NULL) return; #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_reset_ct(skb); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); #endif if (hooknum == NF_INET_PRE_ROUTING || hooknum == NF_INET_LOCAL_IN) { struct ipv6hdr *iph = ipv6_hdr(skb); --iph->hop_limit; } if (nf_dup_ipv6_route(net, skb, gw, oif)) { __this_cpu_write(nf_skb_duplicated, true); ip6_local_out(net, skb->sk, skb); __this_cpu_write(nf_skb_duplicated, false); } else { kfree_skb(skb); } } EXPORT_SYMBOL_GPL(nf_dup_ipv6); MODULE_AUTHOR("Sebastian Claßen <[email protected]>"); MODULE_AUTHOR("Jan Engelhardt <[email protected]>"); MODULE_DESCRIPTION("nf_dup_ipv6: IPv6 packet duplication"); MODULE_LICENSE("GPL");
linux-master
net/ipv6/netfilter/nf_dup_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* * "security" table for IPv6 * * This is for use by Mandatory Access Control (MAC) security models, * which need to be able to manage security policy in separate context * to DAC. * * Based on iptable_mangle.c * * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2004 Netfilter Core Team <coreteam <at> netfilter.org> * Copyright (C) 2008 Red Hat, Inc., James Morris <jmorris <at> redhat.com> */ #include <linux/module.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("James Morris <jmorris <at> redhat.com>"); MODULE_DESCRIPTION("ip6tables security table, for MAC rules"); #define SECURITY_VALID_HOOKS (1 << NF_INET_LOCAL_IN) | \ (1 << NF_INET_FORWARD) | \ (1 << NF_INET_LOCAL_OUT) static const struct xt_table security_table = { .name = "security", .valid_hooks = SECURITY_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_SECURITY, }; static struct nf_hook_ops *sectbl_ops __read_mostly; static int ip6table_security_table_init(struct net *net) { struct ip6t_replace *repl; int ret; repl = ip6t_alloc_initial_table(&security_table); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, &security_table, repl, sectbl_ops); kfree(repl); return ret; } static void __net_exit ip6table_security_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "security"); } static void __net_exit ip6table_security_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "security"); } static struct pernet_operations ip6table_security_net_ops = { .pre_exit = ip6table_security_net_pre_exit, .exit = ip6table_security_net_exit, }; static int __init ip6table_security_init(void) { int ret = xt_register_template(&security_table, ip6table_security_table_init); if (ret < 0) return ret; sectbl_ops = xt_hook_ops_alloc(&security_table, ip6t_do_table); if (IS_ERR(sectbl_ops)) { xt_unregister_template(&security_table); return PTR_ERR(sectbl_ops); } ret = register_pernet_subsys(&ip6table_security_net_ops); if (ret < 0) { kfree(sectbl_ops); xt_unregister_template(&security_table); return ret; } return ret; } static void __exit ip6table_security_fini(void) { unregister_pernet_subsys(&ip6table_security_net_ops); xt_unregister_template(&security_table); kfree(sectbl_ops); } module_init(ip6table_security_init); module_exit(ip6table_security_fini);
linux-master
net/ipv6/netfilter/ip6table_security.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 fragment reassembly for connection tracking * * Copyright (C)2004 USAGI/WIDE Project * * Author: * Yasuyuki Kozakai @USAGI <[email protected]> * * Based on: net/ipv6/reassembly.c */ #define pr_fmt(fmt) "IPv6-nf: " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/string.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/ipv6.h> #include <linux/slab.h> #include <net/ipv6_frag.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> #include <linux/sysctl.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/kernel.h> #include <linux/module.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> #include <net/netns/generic.h> static const char nf_frags_cache_name[] = "nf-frags"; static unsigned int nf_frag_pernet_id __read_mostly; static struct inet_frags nf_frags; static struct nft_ct_frag6_pernet *nf_frag_pernet(struct net *net) { return net_generic(net, nf_frag_pernet_id); } #ifdef CONFIG_SYSCTL static struct ctl_table nf_ct_frag6_sysctl_table[] = { { .procname = "nf_conntrack_frag6_timeout", .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "nf_conntrack_frag6_low_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "nf_conntrack_frag6_high_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { } }; static int nf_ct_frag6_sysctl_register(struct net *net) { struct nft_ct_frag6_pernet *nf_frag; struct ctl_table *table; struct ctl_table_header *hdr; table = nf_ct_frag6_sysctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(nf_ct_frag6_sysctl_table), GFP_KERNEL); if (table == NULL) goto err_alloc; } nf_frag = nf_frag_pernet(net); table[0].data = &nf_frag->fqdir->timeout; table[1].data = &nf_frag->fqdir->low_thresh; table[1].extra2 = &nf_frag->fqdir->high_thresh; table[2].data = &nf_frag->fqdir->high_thresh; table[2].extra1 = &nf_frag->fqdir->low_thresh; hdr = register_net_sysctl_sz(net, "net/netfilter", table, ARRAY_SIZE(nf_ct_frag6_sysctl_table)); if (hdr == NULL) goto err_reg; nf_frag->nf_frag_frags_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net) { struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net); struct ctl_table *table; table = nf_frag->nf_frag_frags_hdr->ctl_table_arg; unregister_net_sysctl_table(nf_frag->nf_frag_frags_hdr); if (!net_eq(net, &init_net)) kfree(table); } #else static int nf_ct_frag6_sysctl_register(struct net *net) { return 0; } static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net) { } #endif static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev); static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) { return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK); } static void nf_ct_frag6_expire(struct timer_list *t) { struct inet_frag_queue *frag = from_timer(frag, t, timer); struct frag_queue *fq; fq = container_of(frag, struct frag_queue, q); ip6frag_expire_frag_queue(fq->q.fqdir->net, fq); } /* Creation primitives. */ static struct frag_queue *fq_find(struct net *net, __be32 id, u32 user, const struct ipv6hdr *hdr, int iif) { struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net); struct frag_v6_compare_key key = { .id = id, .saddr = hdr->saddr, .daddr = hdr->daddr, .user = user, .iif = iif, }; struct inet_frag_queue *q; q = inet_frag_find(nf_frag->fqdir, &key); if (!q) return NULL; return container_of(q, struct frag_queue, q); } static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb, const struct frag_hdr *fhdr, int nhoff) { unsigned int payload_len; struct net_device *dev; struct sk_buff *prev; int offset, end, err; u8 ecn; if (fq->q.flags & INET_FRAG_COMPLETE) { pr_debug("Already completed\n"); goto err; } payload_len = ntohs(ipv6_hdr(skb)->payload_len); offset = ntohs(fhdr->frag_off) & ~0x7; end = offset + (payload_len - ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1))); if ((unsigned int)end > IPV6_MAXPLEN) { pr_debug("offset is too large.\n"); return -EINVAL; } ecn = ip6_frag_ecn(ipv6_hdr(skb)); if (skb->ip_summed == CHECKSUM_COMPLETE) { const unsigned char *nh = skb_network_header(skb); skb->csum = csum_sub(skb->csum, csum_partial(nh, (u8 *)(fhdr + 1) - nh, 0)); } /* Is this the final fragment? */ if (!(fhdr->frag_off & htons(IP6_MF))) { /* If we already have some bits beyond end * or have different end, the segment is corrupted. */ if (end < fq->q.len || ((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) { pr_debug("already received last fragment\n"); goto err; } fq->q.flags |= INET_FRAG_LAST_IN; fq->q.len = end; } else { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. */ if (end & 0x7) { /* RFC2460 says always send parameter problem in * this case. -DaveM */ pr_debug("end of fragment not rounded to 8 bytes.\n"); inet_frag_kill(&fq->q); return -EPROTO; } if (end > fq->q.len) { /* Some bits beyond end -> corruption. */ if (fq->q.flags & INET_FRAG_LAST_IN) { pr_debug("last packet already reached.\n"); goto err; } fq->q.len = end; } } if (end == offset) goto err; /* Point into the IP datagram 'data' part. */ if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) { pr_debug("queue: message is too short.\n"); goto err; } if (pskb_trim_rcsum(skb, end - offset)) { pr_debug("Can't trim\n"); goto err; } /* Note : skb->rbnode and skb->dev share the same location. */ dev = skb->dev; /* Makes sure compiler wont do silly aliasing games */ barrier(); prev = fq->q.fragments_tail; err = inet_frag_queue_insert(&fq->q, skb, offset, end); if (err) { if (err == IPFRAG_DUP) { /* No error for duplicates, pretend they got queued. */ kfree_skb_reason(skb, SKB_DROP_REASON_DUP_FRAG); return -EINPROGRESS; } goto insert_error; } if (dev) fq->iif = dev->ifindex; fq->q.stamp = skb->tstamp; fq->q.mono_delivery_time = skb->mono_delivery_time; fq->q.meat += skb->len; fq->ecn |= ecn; if (payload_len > fq->q.max_size) fq->q.max_size = payload_len; add_frag_mem_limit(fq->q.fqdir, skb->truesize); /* The first fragment. * nhoffset is obtained from the first fragment, of course. */ if (offset == 0) { fq->nhoffset = nhoff; fq->q.flags |= INET_FRAG_FIRST_IN; } if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && fq->q.meat == fq->q.len) { unsigned long orefdst = skb->_skb_refdst; skb->_skb_refdst = 0UL; err = nf_ct_frag6_reasm(fq, skb, prev, dev); skb->_skb_refdst = orefdst; /* After queue has assumed skb ownership, only 0 or * -EINPROGRESS must be returned. */ return err ? -EINPROGRESS : 0; } skb_dst_drop(skb); return -EINPROGRESS; insert_error: inet_frag_kill(&fq->q); err: skb_dst_drop(skb); return -EINVAL; } /* * Check if this packet is complete. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev) { void *reasm_data; int payload_len; u8 ecn; inet_frag_kill(&fq->q); ecn = ip_frag_ecn_table[fq->ecn]; if (unlikely(ecn == 0xff)) goto err; reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail); if (!reasm_data) goto err; payload_len = ((skb->data - skb_network_header(skb)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) { net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n", payload_len); goto err; } /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ skb_network_header(skb)[fq->nhoffset] = skb_transport_header(skb)[0]; memmove(skb->head + sizeof(struct frag_hdr), skb->head, (skb->data - skb->head) - sizeof(struct frag_hdr)); skb->mac_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr); skb_reset_transport_header(skb); inet_frag_reasm_finish(&fq->q, skb, reasm_data, false); skb->ignore_df = 1; skb->dev = dev; ipv6_hdr(skb)->payload_len = htons(payload_len); ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn); IP6CB(skb)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size; IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; /* Yes, and fold redundant checksum back. 8) */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_partial(skb_network_header(skb), skb_network_header_len(skb), skb->csum); fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; fq->q.last_run_head = NULL; return 0; err: inet_frag_kill(&fq->q); return -EINVAL; } /* * find the header just before Fragment Header. * * if success return 0 and set ... * (*prevhdrp): the value of "Next Header Field" in the header * just before Fragment Header. * (*prevhoff): the offset of "Next Header Field" in the header * just before Fragment Header. * (*fhoff) : the offset of Fragment Header. * * Based on ipv6_skip_hdr() in net/ipv6/exthdr.c * */ static int find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff) { u8 nexthdr = ipv6_hdr(skb)->nexthdr; const int netoff = skb_network_offset(skb); u8 prev_nhoff = netoff + offsetof(struct ipv6hdr, nexthdr); int start = netoff + sizeof(struct ipv6hdr); int len = skb->len - start; u8 prevhdr = NEXTHDR_IPV6; while (nexthdr != NEXTHDR_FRAGMENT) { struct ipv6_opt_hdr hdr; int hdrlen; if (!ipv6_ext_hdr(nexthdr)) { return -1; } if (nexthdr == NEXTHDR_NONE) { pr_debug("next header is none\n"); return -1; } if (len < (int)sizeof(struct ipv6_opt_hdr)) { pr_debug("too short\n"); return -1; } if (skb_copy_bits(skb, start, &hdr, sizeof(hdr))) BUG(); if (nexthdr == NEXTHDR_AUTH) hdrlen = ipv6_authlen(&hdr); else hdrlen = ipv6_optlen(&hdr); prevhdr = nexthdr; prev_nhoff = start; nexthdr = hdr.nexthdr; len -= hdrlen; start += hdrlen; } if (len < 0) return -1; *prevhdrp = prevhdr; *prevhoff = prev_nhoff; *fhoff = start; return 0; } int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user) { u16 savethdr = skb->transport_header; u8 nexthdr = NEXTHDR_FRAGMENT; int fhoff, nhoff, ret; struct frag_hdr *fhdr; struct frag_queue *fq; struct ipv6hdr *hdr; u8 prevhdr; /* Jumbo payload inhibits frag. header */ if (ipv6_hdr(skb)->payload_len == 0) { pr_debug("payload len = 0\n"); return 0; } if (find_prev_fhdr(skb, &prevhdr, &nhoff, &fhoff) < 0) return 0; /* Discard the first fragment if it does not include all headers * RFC 8200, Section 4.5 */ if (ipv6frag_thdr_truncated(skb, fhoff, &nexthdr)) { pr_debug("Drop incomplete fragment\n"); return 0; } if (!pskb_may_pull(skb, fhoff + sizeof(*fhdr))) return -ENOMEM; skb_set_transport_header(skb, fhoff); hdr = ipv6_hdr(skb); fhdr = (struct frag_hdr *)skb_transport_header(skb); skb_orphan(skb); fq = fq_find(net, fhdr->identification, user, hdr, skb->dev ? skb->dev->ifindex : 0); if (fq == NULL) { pr_debug("Can't find and can't create new queue\n"); return -ENOMEM; } spin_lock_bh(&fq->q.lock); ret = nf_ct_frag6_queue(fq, skb, fhdr, nhoff); if (ret == -EPROTO) { skb->transport_header = savethdr; ret = 0; } spin_unlock_bh(&fq->q.lock); inet_frag_put(&fq->q); return ret; } EXPORT_SYMBOL_GPL(nf_ct_frag6_gather); static int nf_ct_net_init(struct net *net) { struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net); int res; res = fqdir_init(&nf_frag->fqdir, &nf_frags, net); if (res < 0) return res; nf_frag->fqdir->high_thresh = IPV6_FRAG_HIGH_THRESH; nf_frag->fqdir->low_thresh = IPV6_FRAG_LOW_THRESH; nf_frag->fqdir->timeout = IPV6_FRAG_TIMEOUT; res = nf_ct_frag6_sysctl_register(net); if (res < 0) fqdir_exit(nf_frag->fqdir); return res; } static void nf_ct_net_pre_exit(struct net *net) { struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net); fqdir_pre_exit(nf_frag->fqdir); } static void nf_ct_net_exit(struct net *net) { struct nft_ct_frag6_pernet *nf_frag = nf_frag_pernet(net); nf_ct_frags6_sysctl_unregister(net); fqdir_exit(nf_frag->fqdir); } static struct pernet_operations nf_ct_net_ops = { .init = nf_ct_net_init, .pre_exit = nf_ct_net_pre_exit, .exit = nf_ct_net_exit, .id = &nf_frag_pernet_id, .size = sizeof(struct nft_ct_frag6_pernet), }; static const struct rhashtable_params nfct_rhash_params = { .head_offset = offsetof(struct inet_frag_queue, node), .hashfn = ip6frag_key_hashfn, .obj_hashfn = ip6frag_obj_hashfn, .obj_cmpfn = ip6frag_obj_cmpfn, .automatic_shrinking = true, }; int nf_ct_frag6_init(void) { int ret = 0; nf_frags.constructor = ip6frag_init; nf_frags.destructor = NULL; nf_frags.qsize = sizeof(struct frag_queue); nf_frags.frag_expire = nf_ct_frag6_expire; nf_frags.frags_cache_name = nf_frags_cache_name; nf_frags.rhash_params = nfct_rhash_params; ret = inet_frags_init(&nf_frags); if (ret) goto out; ret = register_pernet_subsys(&nf_ct_net_ops); if (ret) inet_frags_fini(&nf_frags); out: return ret; } void nf_ct_frag6_cleanup(void) { unregister_pernet_subsys(&nf_ct_net_ops); inet_frags_fini(&nf_frags); }
linux-master
net/ipv6/netfilter/nf_conntrack_reasm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011, 2012 Patrick McHardy <[email protected]> */ #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_ipv6/ip6t_NPT.h> #include <linux/netfilter/x_tables.h> static int ip6t_npt_checkentry(const struct xt_tgchk_param *par) { struct ip6t_npt_tginfo *npt = par->targinfo; struct in6_addr pfx; __wsum src_sum, dst_sum; if (npt->src_pfx_len > 64 || npt->dst_pfx_len > 64) return -EINVAL; /* Ensure that LSB of prefix is zero */ ipv6_addr_prefix(&pfx, &npt->src_pfx.in6, npt->src_pfx_len); if (!ipv6_addr_equal(&pfx, &npt->src_pfx.in6)) return -EINVAL; ipv6_addr_prefix(&pfx, &npt->dst_pfx.in6, npt->dst_pfx_len); if (!ipv6_addr_equal(&pfx, &npt->dst_pfx.in6)) return -EINVAL; src_sum = csum_partial(&npt->src_pfx.in6, sizeof(npt->src_pfx.in6), 0); dst_sum = csum_partial(&npt->dst_pfx.in6, sizeof(npt->dst_pfx.in6), 0); npt->adjustment = ~csum_fold(csum_sub(src_sum, dst_sum)); return 0; } static bool ip6t_npt_map_pfx(const struct ip6t_npt_tginfo *npt, struct in6_addr *addr) { unsigned int pfx_len; unsigned int i, idx; __be32 mask; __sum16 sum; pfx_len = max(npt->src_pfx_len, npt->dst_pfx_len); for (i = 0; i < pfx_len; i += 32) { if (pfx_len - i >= 32) mask = 0; else mask = htonl((1 << (i - pfx_len + 32)) - 1); idx = i / 32; addr->s6_addr32[idx] &= mask; addr->s6_addr32[idx] |= ~mask & npt->dst_pfx.in6.s6_addr32[idx]; } if (pfx_len <= 48) idx = 3; else { for (idx = 4; idx < ARRAY_SIZE(addr->s6_addr16); idx++) { if ((__force __sum16)addr->s6_addr16[idx] != CSUM_MANGLED_0) break; } if (idx == ARRAY_SIZE(addr->s6_addr16)) return false; } sum = ~csum_fold(csum_add(csum_unfold((__force __sum16)addr->s6_addr16[idx]), csum_unfold(npt->adjustment))); if (sum == CSUM_MANGLED_0) sum = 0; *(__force __sum16 *)&addr->s6_addr16[idx] = sum; return true; } static struct ipv6hdr *icmpv6_bounced_ipv6hdr(struct sk_buff *skb, struct ipv6hdr *_bounced_hdr) { if (ipv6_hdr(skb)->nexthdr != IPPROTO_ICMPV6) return NULL; if (!icmpv6_is_err(icmp6_hdr(skb)->icmp6_type)) return NULL; return skb_header_pointer(skb, skb_transport_offset(skb) + sizeof(struct icmp6hdr), sizeof(struct ipv6hdr), _bounced_hdr); } static unsigned int ip6t_snpt_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct ip6t_npt_tginfo *npt = par->targinfo; struct ipv6hdr _bounced_hdr; struct ipv6hdr *bounced_hdr; struct in6_addr bounced_pfx; if (!ip6t_npt_map_pfx(npt, &ipv6_hdr(skb)->saddr)) { icmpv6_send(skb, ICMPV6_PARAMPROB, ICMPV6_HDR_FIELD, offsetof(struct ipv6hdr, saddr)); return NF_DROP; } /* rewrite dst addr of bounced packet which was sent to dst range */ bounced_hdr = icmpv6_bounced_ipv6hdr(skb, &_bounced_hdr); if (bounced_hdr) { ipv6_addr_prefix(&bounced_pfx, &bounced_hdr->daddr, npt->src_pfx_len); if (ipv6_addr_cmp(&bounced_pfx, &npt->src_pfx.in6) == 0) ip6t_npt_map_pfx(npt, &bounced_hdr->daddr); } return XT_CONTINUE; } static unsigned int ip6t_dnpt_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct ip6t_npt_tginfo *npt = par->targinfo; struct ipv6hdr _bounced_hdr; struct ipv6hdr *bounced_hdr; struct in6_addr bounced_pfx; if (!ip6t_npt_map_pfx(npt, &ipv6_hdr(skb)->daddr)) { icmpv6_send(skb, ICMPV6_PARAMPROB, ICMPV6_HDR_FIELD, offsetof(struct ipv6hdr, daddr)); return NF_DROP; } /* rewrite src addr of bounced packet which was sent from dst range */ bounced_hdr = icmpv6_bounced_ipv6hdr(skb, &_bounced_hdr); if (bounced_hdr) { ipv6_addr_prefix(&bounced_pfx, &bounced_hdr->saddr, npt->src_pfx_len); if (ipv6_addr_cmp(&bounced_pfx, &npt->src_pfx.in6) == 0) ip6t_npt_map_pfx(npt, &bounced_hdr->saddr); } return XT_CONTINUE; } static struct xt_target ip6t_npt_target_reg[] __read_mostly = { { .name = "SNPT", .table = "mangle", .target = ip6t_snpt_tg, .targetsize = sizeof(struct ip6t_npt_tginfo), .usersize = offsetof(struct ip6t_npt_tginfo, adjustment), .checkentry = ip6t_npt_checkentry, .family = NFPROTO_IPV6, .hooks = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_POST_ROUTING), .me = THIS_MODULE, }, { .name = "DNPT", .table = "mangle", .target = ip6t_dnpt_tg, .targetsize = sizeof(struct ip6t_npt_tginfo), .usersize = offsetof(struct ip6t_npt_tginfo, adjustment), .checkentry = ip6t_npt_checkentry, .family = NFPROTO_IPV6, .hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_OUT), .me = THIS_MODULE, }, }; static int __init ip6t_npt_init(void) { return xt_register_targets(ip6t_npt_target_reg, ARRAY_SIZE(ip6t_npt_target_reg)); } static void __exit ip6t_npt_exit(void) { xt_unregister_targets(ip6t_npt_target_reg, ARRAY_SIZE(ip6t_npt_target_reg)); } module_init(ip6t_npt_init); module_exit(ip6t_npt_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IPv6-to-IPv6 Network Prefix Translation (RFC 6296)"); MODULE_AUTHOR("Patrick McHardy <[email protected]>"); MODULE_ALIAS("ip6t_SNPT"); MODULE_ALIAS("ip6t_DNPT");
linux-master
net/ipv6/netfilter/ip6t_NPT.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C)2006 USAGI/WIDE Project * * Author: * Masahide NAKAMURA @USAGI <[email protected]> * * Based on net/netfilter/xt_tcpudp.c */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/module.h> #include <net/ip.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include <net/mip6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6t_mh.h> MODULE_DESCRIPTION("Xtables: IPv6 Mobility Header match"); MODULE_LICENSE("GPL"); /* Returns 1 if the type is matched by the range, 0 otherwise */ static inline bool type_match(u_int8_t min, u_int8_t max, u_int8_t type, bool invert) { return (type >= min && type <= max) ^ invert; } static bool mh_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct ip6_mh _mh; const struct ip6_mh *mh; const struct ip6t_mh *mhinfo = par->matchinfo; /* Must not be a fragment. */ if (par->fragoff != 0) return false; mh = skb_header_pointer(skb, par->thoff, sizeof(_mh), &_mh); if (mh == NULL) { /* We've been asked to examine this packet, and we can't. Hence, no choice but to drop. */ pr_debug("Dropping evil MH tinygram.\n"); par->hotdrop = true; return false; } if (mh->ip6mh_proto != IPPROTO_NONE) { pr_debug("Dropping invalid MH Payload Proto: %u\n", mh->ip6mh_proto); par->hotdrop = true; return false; } return type_match(mhinfo->types[0], mhinfo->types[1], mh->ip6mh_type, !!(mhinfo->invflags & IP6T_MH_INV_TYPE)); } static int mh_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_mh *mhinfo = par->matchinfo; /* Must specify no unknown invflags */ return (mhinfo->invflags & ~IP6T_MH_INV_MASK) ? -EINVAL : 0; } static struct xt_match mh_mt6_reg __read_mostly = { .name = "mh", .family = NFPROTO_IPV6, .checkentry = mh_mt6_check, .match = mh_mt6, .matchsize = sizeof(struct ip6t_mh), .proto = IPPROTO_MH, .me = THIS_MODULE, }; static int __init mh_mt6_init(void) { return xt_register_match(&mh_mt6_reg); } static void __exit mh_mt6_exit(void) { xt_unregister_match(&mh_mt6_reg); } module_init(mh_mt6_init); module_exit(mh_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_mh.c
// SPDX-License-Identifier: GPL-2.0-or-later /* Kernel module to match Segment Routing Header (SRH) parameters. */ /* Author: * Ahmed Abdelsalam <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/ipv6.h> #include <net/seg6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6t_srh.h> #include <linux/netfilter_ipv6/ip6_tables.h> /* Test a struct->mt_invflags and a boolean for inequality */ #define NF_SRH_INVF(ptr, flag, boolean) \ ((boolean) ^ !!((ptr)->mt_invflags & (flag))) static bool srh_mt6(const struct sk_buff *skb, struct xt_action_param *par) { const struct ip6t_srh *srhinfo = par->matchinfo; struct ipv6_sr_hdr *srh; struct ipv6_sr_hdr _srh; int hdrlen, srhoff = 0; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return false; srh = skb_header_pointer(skb, srhoff, sizeof(_srh), &_srh); if (!srh) return false; hdrlen = ipv6_optlen(srh); if (skb->len - srhoff < hdrlen) return false; if (srh->type != IPV6_SRCRT_TYPE_4) return false; if (srh->segments_left > srh->first_segment) return false; /* Next Header matching */ if (srhinfo->mt_flags & IP6T_SRH_NEXTHDR) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NEXTHDR, !(srh->nexthdr == srhinfo->next_hdr))) return false; /* Header Extension Length matching */ if (srhinfo->mt_flags & IP6T_SRH_LEN_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_EQ, !(srh->hdrlen == srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_GT, !(srh->hdrlen > srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_LT, !(srh->hdrlen < srhinfo->hdr_len))) return false; /* Segments Left matching */ if (srhinfo->mt_flags & IP6T_SRH_SEGS_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_EQ, !(srh->segments_left == srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_GT, !(srh->segments_left > srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_LT, !(srh->segments_left < srhinfo->segs_left))) return false; /** * Last Entry matching * Last_Entry field was introduced in revision 6 of the SRH draft. * It was called First_Segment in the previous revision */ if (srhinfo->mt_flags & IP6T_SRH_LAST_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_EQ, !(srh->first_segment == srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_GT, !(srh->first_segment > srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_LT, !(srh->first_segment < srhinfo->last_entry))) return false; /** * Tag matchig * Tag field was introduced in revision 6 of the SRH draft. */ if (srhinfo->mt_flags & IP6T_SRH_TAG) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_TAG, !(srh->tag == srhinfo->tag))) return false; return true; } static bool srh1_mt6(const struct sk_buff *skb, struct xt_action_param *par) { int hdrlen, psidoff, nsidoff, lsidoff, srhoff = 0; const struct ip6t_srh1 *srhinfo = par->matchinfo; struct in6_addr *psid, *nsid, *lsid; struct in6_addr _psid, _nsid, _lsid; struct ipv6_sr_hdr *srh; struct ipv6_sr_hdr _srh; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return false; srh = skb_header_pointer(skb, srhoff, sizeof(_srh), &_srh); if (!srh) return false; hdrlen = ipv6_optlen(srh); if (skb->len - srhoff < hdrlen) return false; if (srh->type != IPV6_SRCRT_TYPE_4) return false; if (srh->segments_left > srh->first_segment) return false; /* Next Header matching */ if (srhinfo->mt_flags & IP6T_SRH_NEXTHDR) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NEXTHDR, !(srh->nexthdr == srhinfo->next_hdr))) return false; /* Header Extension Length matching */ if (srhinfo->mt_flags & IP6T_SRH_LEN_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_EQ, !(srh->hdrlen == srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_GT, !(srh->hdrlen > srhinfo->hdr_len))) return false; if (srhinfo->mt_flags & IP6T_SRH_LEN_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LEN_LT, !(srh->hdrlen < srhinfo->hdr_len))) return false; /* Segments Left matching */ if (srhinfo->mt_flags & IP6T_SRH_SEGS_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_EQ, !(srh->segments_left == srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_GT, !(srh->segments_left > srhinfo->segs_left))) return false; if (srhinfo->mt_flags & IP6T_SRH_SEGS_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_SEGS_LT, !(srh->segments_left < srhinfo->segs_left))) return false; /** * Last Entry matching * Last_Entry field was introduced in revision 6 of the SRH draft. * It was called First_Segment in the previous revision */ if (srhinfo->mt_flags & IP6T_SRH_LAST_EQ) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_EQ, !(srh->first_segment == srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_GT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_GT, !(srh->first_segment > srhinfo->last_entry))) return false; if (srhinfo->mt_flags & IP6T_SRH_LAST_LT) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LAST_LT, !(srh->first_segment < srhinfo->last_entry))) return false; /** * Tag matchig * Tag field was introduced in revision 6 of the SRH draft */ if (srhinfo->mt_flags & IP6T_SRH_TAG) if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_TAG, !(srh->tag == srhinfo->tag))) return false; /* Previous SID matching */ if (srhinfo->mt_flags & IP6T_SRH_PSID) { if (srh->segments_left == srh->first_segment) return false; psidoff = srhoff + sizeof(struct ipv6_sr_hdr) + ((srh->segments_left + 1) * sizeof(struct in6_addr)); psid = skb_header_pointer(skb, psidoff, sizeof(_psid), &_psid); if (!psid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_PSID, ipv6_masked_addr_cmp(psid, &srhinfo->psid_msk, &srhinfo->psid_addr))) return false; } /* Next SID matching */ if (srhinfo->mt_flags & IP6T_SRH_NSID) { if (srh->segments_left == 0) return false; nsidoff = srhoff + sizeof(struct ipv6_sr_hdr) + ((srh->segments_left - 1) * sizeof(struct in6_addr)); nsid = skb_header_pointer(skb, nsidoff, sizeof(_nsid), &_nsid); if (!nsid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_NSID, ipv6_masked_addr_cmp(nsid, &srhinfo->nsid_msk, &srhinfo->nsid_addr))) return false; } /* Last SID matching */ if (srhinfo->mt_flags & IP6T_SRH_LSID) { lsidoff = srhoff + sizeof(struct ipv6_sr_hdr); lsid = skb_header_pointer(skb, lsidoff, sizeof(_lsid), &_lsid); if (!lsid) return false; if (NF_SRH_INVF(srhinfo, IP6T_SRH_INV_LSID, ipv6_masked_addr_cmp(lsid, &srhinfo->lsid_msk, &srhinfo->lsid_addr))) return false; } return true; } static int srh_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_srh *srhinfo = par->matchinfo; if (srhinfo->mt_flags & ~IP6T_SRH_MASK) { pr_info_ratelimited("unknown srh match flags %X\n", srhinfo->mt_flags); return -EINVAL; } if (srhinfo->mt_invflags & ~IP6T_SRH_INV_MASK) { pr_info_ratelimited("unknown srh invflags %X\n", srhinfo->mt_invflags); return -EINVAL; } return 0; } static int srh1_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_srh1 *srhinfo = par->matchinfo; if (srhinfo->mt_flags & ~IP6T_SRH_MASK) { pr_info_ratelimited("unknown srh match flags %X\n", srhinfo->mt_flags); return -EINVAL; } if (srhinfo->mt_invflags & ~IP6T_SRH_INV_MASK) { pr_info_ratelimited("unknown srh invflags %X\n", srhinfo->mt_invflags); return -EINVAL; } return 0; } static struct xt_match srh_mt6_reg[] __read_mostly = { { .name = "srh", .revision = 0, .family = NFPROTO_IPV6, .match = srh_mt6, .matchsize = sizeof(struct ip6t_srh), .checkentry = srh_mt6_check, .me = THIS_MODULE, }, { .name = "srh", .revision = 1, .family = NFPROTO_IPV6, .match = srh1_mt6, .matchsize = sizeof(struct ip6t_srh1), .checkentry = srh1_mt6_check, .me = THIS_MODULE, } }; static int __init srh_mt6_init(void) { return xt_register_matches(srh_mt6_reg, ARRAY_SIZE(srh_mt6_reg)); } static void __exit srh_mt6_exit(void) { xt_unregister_matches(srh_mt6_reg, ARRAY_SIZE(srh_mt6_reg)); } module_init(srh_mt6_init); module_exit(srh_mt6_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 Segment Routing Header match"); MODULE_AUTHOR("Ahmed Abdelsalam <[email protected]>");
linux-master
net/ipv6/netfilter/ip6t_srh.c
// SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team <[email protected]> */ #include <linux/module.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/ip6_fib.h> #include <net/ip6_checksum.h> #include <net/netfilter/ipv6/nf_reject.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_bridge.h> static bool nf_reject_v6_csum_ok(struct sk_buff *skb, int hook) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); int thoff; __be16 fo; u8 proto = ip6h->nexthdr; if (skb_csum_unnecessary(skb)) return true; if (ip6h->payload_len && pskb_trim_rcsum(skb, ntohs(ip6h->payload_len) + sizeof(*ip6h))) return false; ip6h = ipv6_hdr(skb); thoff = ipv6_skip_exthdr(skb, ((u8*)(ip6h+1) - skb->data), &proto, &fo); if (thoff < 0 || thoff >= skb->len || (fo & htons(~0x7)) != 0) return false; if (!nf_reject_verify_csum(skb, thoff, proto)) return true; return nf_ip6_checksum(skb, hook, thoff, proto) == 0; } static int nf_reject_ip6hdr_validate(struct sk_buff *skb) { struct ipv6hdr *hdr; u32 pkt_len; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) return 0; hdr = ipv6_hdr(skb); if (hdr->version != 6) return 0; pkt_len = ntohs(hdr->payload_len); if (pkt_len + sizeof(struct ipv6hdr) > skb->len) return 0; return 1; } struct sk_buff *nf_reject_skb_v6_tcp_reset(struct net *net, struct sk_buff *oldskb, const struct net_device *dev, int hook) { struct sk_buff *nskb; const struct tcphdr *oth; struct tcphdr _oth; unsigned int otcplen; struct ipv6hdr *nip6h; if (!nf_reject_ip6hdr_validate(oldskb)) return NULL; oth = nf_reject_ip6_tcphdr_get(oldskb, &_oth, &otcplen, hook); if (!oth) return NULL; nskb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + LL_MAX_HEADER, GFP_ATOMIC); if (!nskb) return NULL; nskb->dev = (struct net_device *)dev; skb_reserve(nskb, LL_MAX_HEADER); nip6h = nf_reject_ip6hdr_put(nskb, oldskb, IPPROTO_TCP, net->ipv6.devconf_all->hop_limit); nf_reject_ip6_tcphdr_put(nskb, oldskb, oth, otcplen); nip6h->payload_len = htons(nskb->len - sizeof(struct ipv6hdr)); return nskb; } EXPORT_SYMBOL_GPL(nf_reject_skb_v6_tcp_reset); struct sk_buff *nf_reject_skb_v6_unreach(struct net *net, struct sk_buff *oldskb, const struct net_device *dev, int hook, u8 code) { struct sk_buff *nskb; struct ipv6hdr *nip6h; struct icmp6hdr *icmp6h; unsigned int len; if (!nf_reject_ip6hdr_validate(oldskb)) return NULL; /* Include "As much of invoking packet as possible without the ICMPv6 * packet exceeding the minimum IPv6 MTU" in the ICMP payload. */ len = min_t(unsigned int, 1220, oldskb->len); if (!pskb_may_pull(oldskb, len)) return NULL; if (!nf_reject_v6_csum_ok(oldskb, hook)) return NULL; nskb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr) + LL_MAX_HEADER + len, GFP_ATOMIC); if (!nskb) return NULL; nskb->dev = (struct net_device *)dev; skb_reserve(nskb, LL_MAX_HEADER); nip6h = nf_reject_ip6hdr_put(nskb, oldskb, IPPROTO_ICMPV6, net->ipv6.devconf_all->hop_limit); skb_reset_transport_header(nskb); icmp6h = skb_put_zero(nskb, sizeof(struct icmp6hdr)); icmp6h->icmp6_type = ICMPV6_DEST_UNREACH; icmp6h->icmp6_code = code; skb_put_data(nskb, skb_network_header(oldskb), len); nip6h->payload_len = htons(nskb->len - sizeof(struct ipv6hdr)); icmp6h->icmp6_cksum = csum_ipv6_magic(&nip6h->saddr, &nip6h->daddr, nskb->len - sizeof(struct ipv6hdr), IPPROTO_ICMPV6, csum_partial(icmp6h, nskb->len - sizeof(struct ipv6hdr), 0)); return nskb; } EXPORT_SYMBOL_GPL(nf_reject_skb_v6_unreach); const struct tcphdr *nf_reject_ip6_tcphdr_get(struct sk_buff *oldskb, struct tcphdr *otcph, unsigned int *otcplen, int hook) { const struct ipv6hdr *oip6h = ipv6_hdr(oldskb); u8 proto; __be16 frag_off; int tcphoff; proto = oip6h->nexthdr; tcphoff = ipv6_skip_exthdr(oldskb, ((u8 *)(oip6h + 1) - oldskb->data), &proto, &frag_off); if ((tcphoff < 0) || (tcphoff > oldskb->len)) { pr_debug("Cannot get TCP header.\n"); return NULL; } *otcplen = oldskb->len - tcphoff; /* IP header checks: fragment, too short. */ if (proto != IPPROTO_TCP || *otcplen < sizeof(struct tcphdr)) { pr_debug("proto(%d) != IPPROTO_TCP or too short (len = %d)\n", proto, *otcplen); return NULL; } otcph = skb_header_pointer(oldskb, tcphoff, sizeof(struct tcphdr), otcph); if (otcph == NULL) return NULL; /* No RST for RST. */ if (otcph->rst) { pr_debug("RST is set\n"); return NULL; } /* Check checksum. */ if (nf_ip6_checksum(oldskb, hook, tcphoff, IPPROTO_TCP)) { pr_debug("TCP checksum is invalid\n"); return NULL; } return otcph; } EXPORT_SYMBOL_GPL(nf_reject_ip6_tcphdr_get); struct ipv6hdr *nf_reject_ip6hdr_put(struct sk_buff *nskb, const struct sk_buff *oldskb, __u8 protocol, int hoplimit) { struct ipv6hdr *ip6h; const struct ipv6hdr *oip6h = ipv6_hdr(oldskb); #define DEFAULT_TOS_VALUE 0x0U const __u8 tclass = DEFAULT_TOS_VALUE; skb_put(nskb, sizeof(struct ipv6hdr)); skb_reset_network_header(nskb); ip6h = ipv6_hdr(nskb); ip6_flow_hdr(ip6h, tclass, 0); ip6h->hop_limit = hoplimit; ip6h->nexthdr = protocol; ip6h->saddr = oip6h->daddr; ip6h->daddr = oip6h->saddr; nskb->protocol = htons(ETH_P_IPV6); return ip6h; } EXPORT_SYMBOL_GPL(nf_reject_ip6hdr_put); void nf_reject_ip6_tcphdr_put(struct sk_buff *nskb, const struct sk_buff *oldskb, const struct tcphdr *oth, unsigned int otcplen) { struct tcphdr *tcph; int needs_ack; skb_reset_transport_header(nskb); tcph = skb_put(nskb, sizeof(struct tcphdr)); /* Truncate to length (no data) */ tcph->doff = sizeof(struct tcphdr)/4; tcph->source = oth->dest; tcph->dest = oth->source; if (oth->ack) { needs_ack = 0; tcph->seq = oth->ack_seq; tcph->ack_seq = 0; } else { needs_ack = 1; tcph->ack_seq = htonl(ntohl(oth->seq) + oth->syn + oth->fin + otcplen - (oth->doff<<2)); tcph->seq = 0; } /* Reset flags */ ((u_int8_t *)tcph)[13] = 0; tcph->rst = 1; tcph->ack = needs_ack; tcph->window = 0; tcph->urg_ptr = 0; tcph->check = 0; /* Adjust TCP checksum */ tcph->check = csum_ipv6_magic(&ipv6_hdr(nskb)->saddr, &ipv6_hdr(nskb)->daddr, sizeof(struct tcphdr), IPPROTO_TCP, csum_partial(tcph, sizeof(struct tcphdr), 0)); } EXPORT_SYMBOL_GPL(nf_reject_ip6_tcphdr_put); static int nf_reject6_fill_skb_dst(struct sk_buff *skb_in) { struct dst_entry *dst = NULL; struct flowi fl; memset(&fl, 0, sizeof(struct flowi)); fl.u.ip6.daddr = ipv6_hdr(skb_in)->saddr; nf_ip6_route(dev_net(skb_in->dev), &dst, &fl, false); if (!dst) return -1; skb_dst_set(skb_in, dst); return 0; } void nf_send_reset6(struct net *net, struct sock *sk, struct sk_buff *oldskb, int hook) { struct net_device *br_indev __maybe_unused; struct sk_buff *nskb; struct tcphdr _otcph; const struct tcphdr *otcph; unsigned int otcplen, hh_len; const struct ipv6hdr *oip6h = ipv6_hdr(oldskb); struct ipv6hdr *ip6h; struct dst_entry *dst = NULL; struct flowi6 fl6; if ((!(ipv6_addr_type(&oip6h->saddr) & IPV6_ADDR_UNICAST)) || (!(ipv6_addr_type(&oip6h->daddr) & IPV6_ADDR_UNICAST))) { pr_debug("addr is not unicast.\n"); return; } otcph = nf_reject_ip6_tcphdr_get(oldskb, &_otcph, &otcplen, hook); if (!otcph) return; memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_proto = IPPROTO_TCP; fl6.saddr = oip6h->daddr; fl6.daddr = oip6h->saddr; fl6.fl6_sport = otcph->dest; fl6.fl6_dport = otcph->source; if (hook == NF_INET_PRE_ROUTING || hook == NF_INET_INGRESS) { nf_ip6_route(net, &dst, flowi6_to_flowi(&fl6), false); if (!dst) return; skb_dst_set(oldskb, dst); } fl6.flowi6_oif = l3mdev_master_ifindex(skb_dst(oldskb)->dev); fl6.flowi6_mark = IP6_REPLY_MARK(net, oldskb->mark); security_skb_classify_flow(oldskb, flowi6_to_flowi_common(&fl6)); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; hh_len = (dst->dev->hard_header_len + 15)&~15; nskb = alloc_skb(hh_len + 15 + dst->header_len + sizeof(struct ipv6hdr) + sizeof(struct tcphdr) + dst->trailer_len, GFP_ATOMIC); if (!nskb) { net_dbg_ratelimited("cannot alloc skb\n"); dst_release(dst); return; } skb_dst_set(nskb, dst); nskb->mark = fl6.flowi6_mark; skb_reserve(nskb, hh_len + dst->header_len); ip6h = nf_reject_ip6hdr_put(nskb, oldskb, IPPROTO_TCP, ip6_dst_hoplimit(dst)); nf_reject_ip6_tcphdr_put(nskb, oldskb, otcph, otcplen); nf_ct_attach(nskb, oldskb); nf_ct_set_closing(skb_nfct(oldskb)); #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) /* If we use ip6_local_out for bridged traffic, the MAC source on * the RST will be ours, instead of the destination's. This confuses * some routers/firewalls, and they drop the packet. So we need to * build the eth header using the original destination's MAC as the * source, and send the RST packet directly. */ br_indev = nf_bridge_get_physindev(oldskb); if (br_indev) { struct ethhdr *oeth = eth_hdr(oldskb); nskb->dev = br_indev; nskb->protocol = htons(ETH_P_IPV6); ip6h->payload_len = htons(sizeof(struct tcphdr)); if (dev_hard_header(nskb, nskb->dev, ntohs(nskb->protocol), oeth->h_source, oeth->h_dest, nskb->len) < 0) { kfree_skb(nskb); return; } dev_queue_xmit(nskb); } else #endif ip6_local_out(net, sk, nskb); } EXPORT_SYMBOL_GPL(nf_send_reset6); static bool reject6_csum_ok(struct sk_buff *skb, int hook) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); int thoff; __be16 fo; u8 proto; if (skb_csum_unnecessary(skb)) return true; proto = ip6h->nexthdr; thoff = ipv6_skip_exthdr(skb, ((u8 *)(ip6h + 1) - skb->data), &proto, &fo); if (thoff < 0 || thoff >= skb->len || (fo & htons(~0x7)) != 0) return false; if (!nf_reject_verify_csum(skb, thoff, proto)) return true; return nf_ip6_checksum(skb, hook, thoff, proto) == 0; } void nf_send_unreach6(struct net *net, struct sk_buff *skb_in, unsigned char code, unsigned int hooknum) { if (!reject6_csum_ok(skb_in, hooknum)) return; if (hooknum == NF_INET_LOCAL_OUT && skb_in->dev == NULL) skb_in->dev = net->loopback_dev; if ((hooknum == NF_INET_PRE_ROUTING || hooknum == NF_INET_INGRESS) && nf_reject6_fill_skb_dst(skb_in) < 0) return; icmpv6_send(skb_in, ICMPV6_DEST_UNREACH, code, 0); } EXPORT_SYMBOL_GPL(nf_send_unreach6); MODULE_LICENSE("GPL");
linux-master
net/ipv6/netfilter/nf_reject_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* ipv6header match - matches IPv6 packets based on whether they contain certain headers */ /* Original idea: Brad Chapman * Rewritten by: Andras Kis-Szabo <[email protected]> */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_ipv6/ip6t_ipv6header.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 header types match"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); static bool ipv6header_mt6(const struct sk_buff *skb, struct xt_action_param *par) { const struct ip6t_ipv6header_info *info = par->matchinfo; unsigned int temp; int len; u8 nexthdr; unsigned int ptr; /* Make sure this isn't an evil packet */ /* type of the 1st exthdr */ nexthdr = ipv6_hdr(skb)->nexthdr; /* pointer to the 1st exthdr */ ptr = sizeof(struct ipv6hdr); /* available length */ len = skb->len - ptr; temp = 0; while (nf_ip6_ext_hdr(nexthdr)) { const struct ipv6_opt_hdr *hp; struct ipv6_opt_hdr _hdr; int hdrlen; /* No more exthdr -> evaluate */ if (nexthdr == NEXTHDR_NONE) { temp |= MASK_NONE; break; } /* Is there enough space for the next ext header? */ if (len < (int)sizeof(struct ipv6_opt_hdr)) return false; /* ESP -> evaluate */ if (nexthdr == NEXTHDR_ESP) { temp |= MASK_ESP; break; } hp = skb_header_pointer(skb, ptr, sizeof(_hdr), &_hdr); if (!hp) { par->hotdrop = true; return false; } /* Calculate the header length */ if (nexthdr == NEXTHDR_FRAGMENT) hdrlen = 8; else if (nexthdr == NEXTHDR_AUTH) hdrlen = ipv6_authlen(hp); else hdrlen = ipv6_optlen(hp); /* set the flag */ switch (nexthdr) { case NEXTHDR_HOP: temp |= MASK_HOPOPTS; break; case NEXTHDR_ROUTING: temp |= MASK_ROUTING; break; case NEXTHDR_FRAGMENT: temp |= MASK_FRAGMENT; break; case NEXTHDR_AUTH: temp |= MASK_AH; break; case NEXTHDR_DEST: temp |= MASK_DSTOPTS; break; default: return false; } nexthdr = hp->nexthdr; len -= hdrlen; ptr += hdrlen; if (ptr > skb->len) break; } if (nexthdr != NEXTHDR_NONE && nexthdr != NEXTHDR_ESP) temp |= MASK_PROTO; if (info->modeflag) return !((temp ^ info->matchflags ^ info->invflags) & info->matchflags); else { if (info->invflags) return temp != info->matchflags; else return temp == info->matchflags; } } static int ipv6header_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_ipv6header_info *info = par->matchinfo; /* invflags is 0 or 0xff in hard mode */ if ((!info->modeflag) && info->invflags != 0x00 && info->invflags != 0xFF) return -EINVAL; return 0; } static struct xt_match ipv6header_mt6_reg __read_mostly = { .name = "ipv6header", .family = NFPROTO_IPV6, .match = ipv6header_mt6, .matchsize = sizeof(struct ip6t_ipv6header_info), .checkentry = ipv6header_mt6_check, .destroy = NULL, .me = THIS_MODULE, }; static int __init ipv6header_mt6_init(void) { return xt_register_match(&ipv6header_mt6_reg); } static void __exit ipv6header_mt6_exit(void) { xt_unregister_match(&ipv6header_mt6_reg); } module_init(ipv6header_mt6_init); module_exit(ipv6header_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_ipv6header.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2008 BalaBit IT Ltd. * Author: Krisztian Kovacs */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <net/tcp.h> #include <net/udp.h> #include <net/icmp.h> #include <net/sock.h> #include <net/inet_sock.h> #include <net/inet6_hashtables.h> #include <net/netfilter/nf_socket.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #endif static int extract_icmp6_fields(const struct sk_buff *skb, unsigned int outside_hdrlen, int *protocol, const struct in6_addr **raddr, const struct in6_addr **laddr, __be16 *rport, __be16 *lport, struct ipv6hdr *ipv6_var) { const struct ipv6hdr *inside_iph; struct icmp6hdr *icmph, _icmph; __be16 *ports, _ports[2]; u8 inside_nexthdr; __be16 inside_fragoff; int inside_hdrlen; icmph = skb_header_pointer(skb, outside_hdrlen, sizeof(_icmph), &_icmph); if (icmph == NULL) return 1; if (icmph->icmp6_type & ICMPV6_INFOMSG_MASK) return 1; inside_iph = skb_header_pointer(skb, outside_hdrlen + sizeof(_icmph), sizeof(*ipv6_var), ipv6_var); if (inside_iph == NULL) return 1; inside_nexthdr = inside_iph->nexthdr; inside_hdrlen = ipv6_skip_exthdr(skb, outside_hdrlen + sizeof(_icmph) + sizeof(*ipv6_var), &inside_nexthdr, &inside_fragoff); if (inside_hdrlen < 0) return 1; /* hjm: Packet has no/incomplete transport layer headers. */ if (inside_nexthdr != IPPROTO_TCP && inside_nexthdr != IPPROTO_UDP) return 1; ports = skb_header_pointer(skb, inside_hdrlen, sizeof(_ports), &_ports); if (ports == NULL) return 1; /* the inside IP packet is the one quoted from our side, thus * its saddr is the local address */ *protocol = inside_nexthdr; *laddr = &inside_iph->saddr; *lport = ports[0]; *raddr = &inside_iph->daddr; *rport = ports[1]; return 0; } static struct sock * nf_socket_get_sock_v6(struct net *net, struct sk_buff *skb, int doff, const u8 protocol, const struct in6_addr *saddr, const struct in6_addr *daddr, const __be16 sport, const __be16 dport, const struct net_device *in) { switch (protocol) { case IPPROTO_TCP: return inet6_lookup(net, net->ipv4.tcp_death_row.hashinfo, skb, doff, saddr, sport, daddr, dport, in->ifindex); case IPPROTO_UDP: return udp6_lib_lookup(net, saddr, sport, daddr, dport, in->ifindex); } return NULL; } struct sock *nf_sk_lookup_slow_v6(struct net *net, const struct sk_buff *skb, const struct net_device *indev) { __be16 dport, sport; const struct in6_addr *daddr = NULL, *saddr = NULL; struct ipv6hdr *iph = ipv6_hdr(skb), ipv6_var; struct sk_buff *data_skb = NULL; int doff = 0; int thoff = 0, tproto; tproto = ipv6_find_hdr(skb, &thoff, -1, NULL, NULL); if (tproto < 0) { pr_debug("unable to find transport header in IPv6 packet, dropping\n"); return NULL; } if (tproto == IPPROTO_UDP || tproto == IPPROTO_TCP) { struct tcphdr _hdr; struct udphdr *hp; hp = skb_header_pointer(skb, thoff, tproto == IPPROTO_UDP ? sizeof(*hp) : sizeof(_hdr), &_hdr); if (hp == NULL) return NULL; saddr = &iph->saddr; sport = hp->source; daddr = &iph->daddr; dport = hp->dest; data_skb = (struct sk_buff *)skb; doff = tproto == IPPROTO_TCP ? thoff + __tcp_hdrlen((struct tcphdr *)hp) : thoff + sizeof(*hp); } else if (tproto == IPPROTO_ICMPV6) { if (extract_icmp6_fields(skb, thoff, &tproto, &saddr, &daddr, &sport, &dport, &ipv6_var)) return NULL; } else { return NULL; } return nf_socket_get_sock_v6(net, data_skb, doff, tproto, saddr, daddr, sport, dport, indev); } EXPORT_SYMBOL_GPL(nf_sk_lookup_slow_v6); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Krisztian Kovacs, Balazs Scheidler"); MODULE_DESCRIPTION("Netfilter IPv6 socket lookup infrastructure");
linux-master
net/ipv6/netfilter/nf_socket_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match Hop-by-Hop and Destination parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <asm/byteorder.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_opts.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 Hop-By-Hop and Destination Header match"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); MODULE_ALIAS("ip6t_dst"); /* * (Type & 0xC0) >> 6 * 0 -> ignorable * 1 -> must drop the packet * 2 -> send ICMP PARM PROB regardless and drop packet * 3 -> Send ICMP if not a multicast address and drop packet * (Type & 0x20) >> 5 * 0 -> invariant * 1 -> can change the routing * (Type & 0x1F) Type * 0 -> Pad1 (only 1 byte!) * 1 -> PadN LENGTH info (total length = length + 2) * C0 | 2 -> JUMBO 4 x x x x ( xxxx > 64k ) * 5 -> RTALERT 2 x x */ static struct xt_match hbh_mt6_reg[] __read_mostly; static bool hbh_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct ipv6_opt_hdr _optsh; const struct ipv6_opt_hdr *oh; const struct ip6t_opts *optinfo = par->matchinfo; unsigned int temp; unsigned int ptr = 0; unsigned int hdrlen = 0; bool ret = false; u8 _opttype; u8 _optlen; const u_int8_t *tp = NULL; const u_int8_t *lp = NULL; unsigned int optlen; int err; err = ipv6_find_hdr(skb, &ptr, (par->match == &hbh_mt6_reg[0]) ? NEXTHDR_HOP : NEXTHDR_DEST, NULL, NULL); if (err < 0) { if (err != -ENOENT) par->hotdrop = true; return false; } oh = skb_header_pointer(skb, ptr, sizeof(_optsh), &_optsh); if (oh == NULL) { par->hotdrop = true; return false; } hdrlen = ipv6_optlen(oh); if (skb->len - ptr < hdrlen) { /* Packet smaller than it's length field */ return false; } pr_debug("IPv6 OPTS LEN %u %u ", hdrlen, oh->hdrlen); pr_debug("len %02X %04X %02X ", optinfo->hdrlen, hdrlen, (!(optinfo->flags & IP6T_OPTS_LEN) || ((optinfo->hdrlen == hdrlen) ^ !!(optinfo->invflags & IP6T_OPTS_INV_LEN)))); ret = (!(optinfo->flags & IP6T_OPTS_LEN) || ((optinfo->hdrlen == hdrlen) ^ !!(optinfo->invflags & IP6T_OPTS_INV_LEN))); ptr += 2; hdrlen -= 2; if (!(optinfo->flags & IP6T_OPTS_OPTS)) { return ret; } else { pr_debug("Strict "); pr_debug("#%d ", optinfo->optsnr); for (temp = 0; temp < optinfo->optsnr; temp++) { /* type field exists ? */ if (hdrlen < 1) break; tp = skb_header_pointer(skb, ptr, sizeof(_opttype), &_opttype); if (tp == NULL) break; /* Type check */ if (*tp != (optinfo->opts[temp] & 0xFF00) >> 8) { pr_debug("Tbad %02X %02X\n", *tp, (optinfo->opts[temp] & 0xFF00) >> 8); return false; } else { pr_debug("Tok "); } /* Length check */ if (*tp) { u16 spec_len; /* length field exists ? */ if (hdrlen < 2) break; lp = skb_header_pointer(skb, ptr + 1, sizeof(_optlen), &_optlen); if (lp == NULL) break; spec_len = optinfo->opts[temp] & 0x00FF; if (spec_len != 0x00FF && spec_len != *lp) { pr_debug("Lbad %02X %04X\n", *lp, spec_len); return false; } pr_debug("Lok "); optlen = *lp + 2; } else { pr_debug("Pad1\n"); optlen = 1; } /* Step to the next */ pr_debug("len%04X\n", optlen); if ((ptr > skb->len - optlen || hdrlen < optlen) && temp < optinfo->optsnr - 1) { pr_debug("new pointer is too large!\n"); break; } ptr += optlen; hdrlen -= optlen; } if (temp == optinfo->optsnr) return ret; else return false; } return false; } static int hbh_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_opts *optsinfo = par->matchinfo; if (optsinfo->invflags & ~IP6T_OPTS_INV_MASK) { pr_debug("unknown flags %X\n", optsinfo->invflags); return -EINVAL; } if (optsinfo->flags & IP6T_OPTS_NSTRICT) { pr_debug("Not strict - not implemented"); return -EINVAL; } return 0; } static struct xt_match hbh_mt6_reg[] __read_mostly = { { /* Note, hbh_mt6 relies on the order of hbh_mt6_reg */ .name = "hbh", .family = NFPROTO_IPV6, .match = hbh_mt6, .matchsize = sizeof(struct ip6t_opts), .checkentry = hbh_mt6_check, .me = THIS_MODULE, }, { .name = "dst", .family = NFPROTO_IPV6, .match = hbh_mt6, .matchsize = sizeof(struct ip6t_opts), .checkentry = hbh_mt6_check, .me = THIS_MODULE, }, }; static int __init hbh_mt6_init(void) { return xt_register_matches(hbh_mt6_reg, ARRAY_SIZE(hbh_mt6_reg)); } static void __exit hbh_mt6_exit(void) { xt_unregister_matches(hbh_mt6_reg, ARRAY_SIZE(hbh_mt6_reg)); } module_init(hbh_mt6_init); module_exit(hbh_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_hbh.c
// SPDX-License-Identifier: GPL-2.0-only /* * Packet matching code. * * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2005 Netfilter Core Team <[email protected]> * Copyright (c) 2006-2010 Patrick McHardy <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/capability.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/kmod.h> #include <linux/vmalloc.h> #include <linux/netdevice.h> #include <linux/module.h> #include <linux/poison.h> #include <net/ipv6.h> #include <net/compat.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/err.h> #include <linux/cpumask.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter/x_tables.h> #include <net/netfilter/nf_log.h> #include "../../netfilter/xt_repldata.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Netfilter Core Team <[email protected]>"); MODULE_DESCRIPTION("IPv6 packet filter"); void *ip6t_alloc_initial_table(const struct xt_table *info) { return xt_alloc_initial_table(ip6t, IP6T); } EXPORT_SYMBOL_GPL(ip6t_alloc_initial_table); /* Returns whether matches rule or not. */ /* Performance critical - called for every packet */ static inline bool ip6_packet_match(const struct sk_buff *skb, const char *indev, const char *outdev, const struct ip6t_ip6 *ip6info, unsigned int *protoff, u16 *fragoff, bool *hotdrop) { unsigned long ret; const struct ipv6hdr *ipv6 = ipv6_hdr(skb); if (NF_INVF(ip6info, IP6T_INV_SRCIP, ipv6_masked_addr_cmp(&ipv6->saddr, &ip6info->smsk, &ip6info->src)) || NF_INVF(ip6info, IP6T_INV_DSTIP, ipv6_masked_addr_cmp(&ipv6->daddr, &ip6info->dmsk, &ip6info->dst))) return false; ret = ifname_compare_aligned(indev, ip6info->iniface, ip6info->iniface_mask); if (NF_INVF(ip6info, IP6T_INV_VIA_IN, ret != 0)) return false; ret = ifname_compare_aligned(outdev, ip6info->outiface, ip6info->outiface_mask); if (NF_INVF(ip6info, IP6T_INV_VIA_OUT, ret != 0)) return false; /* ... might want to do something with class and flowlabel here ... */ /* look for the desired protocol header */ if (ip6info->flags & IP6T_F_PROTO) { int protohdr; unsigned short _frag_off; protohdr = ipv6_find_hdr(skb, protoff, -1, &_frag_off, NULL); if (protohdr < 0) { if (_frag_off == 0) *hotdrop = true; return false; } *fragoff = _frag_off; if (ip6info->proto == protohdr) { if (ip6info->invflags & IP6T_INV_PROTO) return false; return true; } /* We need match for the '-p all', too! */ if ((ip6info->proto != 0) && !(ip6info->invflags & IP6T_INV_PROTO)) return false; } return true; } /* should be ip6 safe */ static bool ip6_checkentry(const struct ip6t_ip6 *ipv6) { if (ipv6->flags & ~IP6T_F_MASK) return false; if (ipv6->invflags & ~IP6T_INV_MASK) return false; return true; } static unsigned int ip6t_error(struct sk_buff *skb, const struct xt_action_param *par) { net_info_ratelimited("error: `%s'\n", (const char *)par->targinfo); return NF_DROP; } static inline struct ip6t_entry * get_entry(const void *base, unsigned int offset) { return (struct ip6t_entry *)(base + offset); } /* All zeroes == unconditional rule. */ /* Mildly perf critical (only if packet tracing is on) */ static inline bool unconditional(const struct ip6t_entry *e) { static const struct ip6t_ip6 uncond; return e->target_offset == sizeof(struct ip6t_entry) && memcmp(&e->ipv6, &uncond, sizeof(uncond)) == 0; } static inline const struct xt_entry_target * ip6t_get_target_c(const struct ip6t_entry *e) { return ip6t_get_target((struct ip6t_entry *)e); } #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) /* This cries for unification! */ static const char *const hooknames[] = { [NF_INET_PRE_ROUTING] = "PREROUTING", [NF_INET_LOCAL_IN] = "INPUT", [NF_INET_FORWARD] = "FORWARD", [NF_INET_LOCAL_OUT] = "OUTPUT", [NF_INET_POST_ROUTING] = "POSTROUTING", }; enum nf_ip_trace_comments { NF_IP6_TRACE_COMMENT_RULE, NF_IP6_TRACE_COMMENT_RETURN, NF_IP6_TRACE_COMMENT_POLICY, }; static const char *const comments[] = { [NF_IP6_TRACE_COMMENT_RULE] = "rule", [NF_IP6_TRACE_COMMENT_RETURN] = "return", [NF_IP6_TRACE_COMMENT_POLICY] = "policy", }; static const struct nf_loginfo trace_loginfo = { .type = NF_LOG_TYPE_LOG, .u = { .log = { .level = LOGLEVEL_WARNING, .logflags = NF_LOG_DEFAULT_MASK, }, }, }; /* Mildly perf critical (only if packet tracing is on) */ static inline int get_chainname_rulenum(const struct ip6t_entry *s, const struct ip6t_entry *e, const char *hookname, const char **chainname, const char **comment, unsigned int *rulenum) { const struct xt_standard_target *t = (void *)ip6t_get_target_c(s); if (strcmp(t->target.u.kernel.target->name, XT_ERROR_TARGET) == 0) { /* Head of user chain: ERROR target with chainname */ *chainname = t->target.data; (*rulenum) = 0; } else if (s == e) { (*rulenum)++; if (unconditional(s) && strcmp(t->target.u.kernel.target->name, XT_STANDARD_TARGET) == 0 && t->verdict < 0) { /* Tail of chains: STANDARD target (return/policy) */ *comment = *chainname == hookname ? comments[NF_IP6_TRACE_COMMENT_POLICY] : comments[NF_IP6_TRACE_COMMENT_RETURN]; } return 1; } else (*rulenum)++; return 0; } static void trace_packet(struct net *net, const struct sk_buff *skb, unsigned int hook, const struct net_device *in, const struct net_device *out, const char *tablename, const struct xt_table_info *private, const struct ip6t_entry *e) { const struct ip6t_entry *root; const char *hookname, *chainname, *comment; const struct ip6t_entry *iter; unsigned int rulenum = 0; root = get_entry(private->entries, private->hook_entry[hook]); hookname = chainname = hooknames[hook]; comment = comments[NF_IP6_TRACE_COMMENT_RULE]; xt_entry_foreach(iter, root, private->size - private->hook_entry[hook]) if (get_chainname_rulenum(iter, e, hookname, &chainname, &comment, &rulenum) != 0) break; nf_log_trace(net, AF_INET6, hook, skb, in, out, &trace_loginfo, "TRACE: %s:%s:%s:%u ", tablename, chainname, comment, rulenum); } #endif static inline struct ip6t_entry * ip6t_next_entry(const struct ip6t_entry *entry) { return (void *)entry + entry->next_offset; } /* Returns one of the generic firewall policies, like NF_ACCEPT. */ unsigned int ip6t_do_table(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { const struct xt_table *table = priv; unsigned int hook = state->hook; static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long)))); /* Initializing verdict to NF_DROP keeps gcc happy. */ unsigned int verdict = NF_DROP; const char *indev, *outdev; const void *table_base; struct ip6t_entry *e, **jumpstack; unsigned int stackidx, cpu; const struct xt_table_info *private; struct xt_action_param acpar; unsigned int addend; /* Initialization */ stackidx = 0; indev = state->in ? state->in->name : nulldevname; outdev = state->out ? state->out->name : nulldevname; /* We handle fragments by dealing with the first fragment as * if it was a normal packet. All other fragments are treated * normally, except that they will NEVER match rules that ask * things we don't know, ie. tcp syn flag or ports). If the * rule is also a fragment-specific rule, non-fragments won't * match it. */ acpar.fragoff = 0; acpar.hotdrop = false; acpar.state = state; WARN_ON(!(table->valid_hooks & (1 << hook))); local_bh_disable(); addend = xt_write_recseq_begin(); private = READ_ONCE(table->private); /* Address dependency. */ cpu = smp_processor_id(); table_base = private->entries; jumpstack = (struct ip6t_entry **)private->jumpstack[cpu]; /* Switch to alternate jumpstack if we're being invoked via TEE. * TEE issues XT_CONTINUE verdict on original skb so we must not * clobber the jumpstack. * * For recursion via REJECT or SYNPROXY the stack will be clobbered * but it is no problem since absolute verdict is issued by these. */ if (static_key_false(&xt_tee_enabled)) jumpstack += private->stacksize * __this_cpu_read(nf_skb_duplicated); e = get_entry(table_base, private->hook_entry[hook]); do { const struct xt_entry_target *t; const struct xt_entry_match *ematch; struct xt_counters *counter; WARN_ON(!e); acpar.thoff = 0; if (!ip6_packet_match(skb, indev, outdev, &e->ipv6, &acpar.thoff, &acpar.fragoff, &acpar.hotdrop)) { no_match: e = ip6t_next_entry(e); continue; } xt_ematch_foreach(ematch, e) { acpar.match = ematch->u.kernel.match; acpar.matchinfo = ematch->data; if (!acpar.match->match(skb, &acpar)) goto no_match; } counter = xt_get_this_cpu_counter(&e->counters); ADD_COUNTER(*counter, skb->len, 1); t = ip6t_get_target_c(e); WARN_ON(!t->u.kernel.target); #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) /* The packet is traced: log it */ if (unlikely(skb->nf_trace)) trace_packet(state->net, skb, hook, state->in, state->out, table->name, private, e); #endif /* Standard target? */ if (!t->u.kernel.target->target) { int v; v = ((struct xt_standard_target *)t)->verdict; if (v < 0) { /* Pop from stack? */ if (v != XT_RETURN) { verdict = (unsigned int)(-v) - 1; break; } if (stackidx == 0) e = get_entry(table_base, private->underflow[hook]); else e = ip6t_next_entry(jumpstack[--stackidx]); continue; } if (table_base + v != ip6t_next_entry(e) && !(e->ipv6.flags & IP6T_F_GOTO)) { if (unlikely(stackidx >= private->stacksize)) { verdict = NF_DROP; break; } jumpstack[stackidx++] = e; } e = get_entry(table_base, v); continue; } acpar.target = t->u.kernel.target; acpar.targinfo = t->data; verdict = t->u.kernel.target->target(skb, &acpar); if (verdict == XT_CONTINUE) e = ip6t_next_entry(e); else /* Verdict */ break; } while (!acpar.hotdrop); xt_write_recseq_end(addend); local_bh_enable(); if (acpar.hotdrop) return NF_DROP; else return verdict; } /* Figures out from what hook each rule can be called: returns 0 if there are loops. Puts hook bitmask in comefrom. */ static int mark_source_chains(const struct xt_table_info *newinfo, unsigned int valid_hooks, void *entry0, unsigned int *offsets) { unsigned int hook; /* No recursion; use packet counter to save back ptrs (reset to 0 as we leave), and comefrom to save source hook bitmask */ for (hook = 0; hook < NF_INET_NUMHOOKS; hook++) { unsigned int pos = newinfo->hook_entry[hook]; struct ip6t_entry *e = entry0 + pos; if (!(valid_hooks & (1 << hook))) continue; /* Set initial back pointer. */ e->counters.pcnt = pos; for (;;) { const struct xt_standard_target *t = (void *)ip6t_get_target_c(e); int visited = e->comefrom & (1 << hook); if (e->comefrom & (1 << NF_INET_NUMHOOKS)) return 0; e->comefrom |= ((1 << hook) | (1 << NF_INET_NUMHOOKS)); /* Unconditional return/END. */ if ((unconditional(e) && (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0) && t->verdict < 0) || visited) { unsigned int oldpos, size; /* Return: backtrack through the last big jump. */ do { e->comefrom ^= (1<<NF_INET_NUMHOOKS); oldpos = pos; pos = e->counters.pcnt; e->counters.pcnt = 0; /* We're at the start. */ if (pos == oldpos) goto next; e = entry0 + pos; } while (oldpos == pos + e->next_offset); /* Move along one */ size = e->next_offset; e = entry0 + pos + size; if (pos + size >= newinfo->size) return 0; e->counters.pcnt = pos; pos += size; } else { int newpos = t->verdict; if (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0 && newpos >= 0) { /* This a jump; chase it. */ if (!xt_find_jump_offset(offsets, newpos, newinfo->number)) return 0; } else { /* ... this is a fallthru */ newpos = pos + e->next_offset; if (newpos >= newinfo->size) return 0; } e = entry0 + newpos; e->counters.pcnt = pos; pos = newpos; } } next: ; } return 1; } static void cleanup_match(struct xt_entry_match *m, struct net *net) { struct xt_mtdtor_param par; par.net = net; par.match = m->u.kernel.match; par.matchinfo = m->data; par.family = NFPROTO_IPV6; if (par.match->destroy != NULL) par.match->destroy(&par); module_put(par.match->me); } static int check_match(struct xt_entry_match *m, struct xt_mtchk_param *par) { const struct ip6t_ip6 *ipv6 = par->entryinfo; par->match = m->u.kernel.match; par->matchinfo = m->data; return xt_check_match(par, m->u.match_size - sizeof(*m), ipv6->proto, ipv6->invflags & IP6T_INV_PROTO); } static int find_check_match(struct xt_entry_match *m, struct xt_mtchk_param *par) { struct xt_match *match; int ret; match = xt_request_find_match(NFPROTO_IPV6, m->u.user.name, m->u.user.revision); if (IS_ERR(match)) return PTR_ERR(match); m->u.kernel.match = match; ret = check_match(m, par); if (ret) goto err; return 0; err: module_put(m->u.kernel.match->me); return ret; } static int check_target(struct ip6t_entry *e, struct net *net, const char *name) { struct xt_entry_target *t = ip6t_get_target(e); struct xt_tgchk_param par = { .net = net, .table = name, .entryinfo = e, .target = t->u.kernel.target, .targinfo = t->data, .hook_mask = e->comefrom, .family = NFPROTO_IPV6, }; return xt_check_target(&par, t->u.target_size - sizeof(*t), e->ipv6.proto, e->ipv6.invflags & IP6T_INV_PROTO); } static int find_check_entry(struct ip6t_entry *e, struct net *net, const char *name, unsigned int size, struct xt_percpu_counter_alloc_state *alloc_state) { struct xt_entry_target *t; struct xt_target *target; int ret; unsigned int j; struct xt_mtchk_param mtpar; struct xt_entry_match *ematch; if (!xt_percpu_counter_alloc(alloc_state, &e->counters)) return -ENOMEM; j = 0; memset(&mtpar, 0, sizeof(mtpar)); mtpar.net = net; mtpar.table = name; mtpar.entryinfo = &e->ipv6; mtpar.hook_mask = e->comefrom; mtpar.family = NFPROTO_IPV6; xt_ematch_foreach(ematch, e) { ret = find_check_match(ematch, &mtpar); if (ret != 0) goto cleanup_matches; ++j; } t = ip6t_get_target(e); target = xt_request_find_target(NFPROTO_IPV6, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { ret = PTR_ERR(target); goto cleanup_matches; } t->u.kernel.target = target; ret = check_target(e, net, name); if (ret) goto err; return 0; err: module_put(t->u.kernel.target->me); cleanup_matches: xt_ematch_foreach(ematch, e) { if (j-- == 0) break; cleanup_match(ematch, net); } xt_percpu_counter_free(&e->counters); return ret; } static bool check_underflow(const struct ip6t_entry *e) { const struct xt_entry_target *t; unsigned int verdict; if (!unconditional(e)) return false; t = ip6t_get_target_c(e); if (strcmp(t->u.user.name, XT_STANDARD_TARGET) != 0) return false; verdict = ((struct xt_standard_target *)t)->verdict; verdict = -verdict - 1; return verdict == NF_DROP || verdict == NF_ACCEPT; } static int check_entry_size_and_hooks(struct ip6t_entry *e, struct xt_table_info *newinfo, const unsigned char *base, const unsigned char *limit, const unsigned int *hook_entries, const unsigned int *underflows, unsigned int valid_hooks) { unsigned int h; int err; if ((unsigned long)e % __alignof__(struct ip6t_entry) != 0 || (unsigned char *)e + sizeof(struct ip6t_entry) >= limit || (unsigned char *)e + e->next_offset > limit) return -EINVAL; if (e->next_offset < sizeof(struct ip6t_entry) + sizeof(struct xt_entry_target)) return -EINVAL; if (!ip6_checkentry(&e->ipv6)) return -EINVAL; err = xt_check_entry_offsets(e, e->elems, e->target_offset, e->next_offset); if (err) return err; /* Check hooks & underflows */ for (h = 0; h < NF_INET_NUMHOOKS; h++) { if (!(valid_hooks & (1 << h))) continue; if ((unsigned char *)e - base == hook_entries[h]) newinfo->hook_entry[h] = hook_entries[h]; if ((unsigned char *)e - base == underflows[h]) { if (!check_underflow(e)) return -EINVAL; newinfo->underflow[h] = underflows[h]; } } /* Clear counters and comefrom */ e->counters = ((struct xt_counters) { 0, 0 }); e->comefrom = 0; return 0; } static void cleanup_entry(struct ip6t_entry *e, struct net *net) { struct xt_tgdtor_param par; struct xt_entry_target *t; struct xt_entry_match *ematch; /* Cleanup all matches */ xt_ematch_foreach(ematch, e) cleanup_match(ematch, net); t = ip6t_get_target(e); par.net = net; par.target = t->u.kernel.target; par.targinfo = t->data; par.family = NFPROTO_IPV6; if (par.target->destroy != NULL) par.target->destroy(&par); module_put(par.target->me); xt_percpu_counter_free(&e->counters); } /* Checks and translates the user-supplied table segment (held in newinfo) */ static int translate_table(struct net *net, struct xt_table_info *newinfo, void *entry0, const struct ip6t_replace *repl) { struct xt_percpu_counter_alloc_state alloc_state = { 0 }; struct ip6t_entry *iter; unsigned int *offsets; unsigned int i; int ret = 0; newinfo->size = repl->size; newinfo->number = repl->num_entries; /* Init all hooks to impossible value. */ for (i = 0; i < NF_INET_NUMHOOKS; i++) { newinfo->hook_entry[i] = 0xFFFFFFFF; newinfo->underflow[i] = 0xFFFFFFFF; } offsets = xt_alloc_entry_offsets(newinfo->number); if (!offsets) return -ENOMEM; i = 0; /* Walk through entries, checking offsets. */ xt_entry_foreach(iter, entry0, newinfo->size) { ret = check_entry_size_and_hooks(iter, newinfo, entry0, entry0 + repl->size, repl->hook_entry, repl->underflow, repl->valid_hooks); if (ret != 0) goto out_free; if (i < repl->num_entries) offsets[i] = (void *)iter - entry0; ++i; if (strcmp(ip6t_get_target(iter)->u.user.name, XT_ERROR_TARGET) == 0) ++newinfo->stacksize; } ret = -EINVAL; if (i != repl->num_entries) goto out_free; ret = xt_check_table_hooks(newinfo, repl->valid_hooks); if (ret) goto out_free; if (!mark_source_chains(newinfo, repl->valid_hooks, entry0, offsets)) { ret = -ELOOP; goto out_free; } kvfree(offsets); /* Finally, each sanity check must pass */ i = 0; xt_entry_foreach(iter, entry0, newinfo->size) { ret = find_check_entry(iter, net, repl->name, repl->size, &alloc_state); if (ret != 0) break; ++i; } if (ret != 0) { xt_entry_foreach(iter, entry0, newinfo->size) { if (i-- == 0) break; cleanup_entry(iter, net); } return ret; } return ret; out_free: kvfree(offsets); return ret; } static void get_counters(const struct xt_table_info *t, struct xt_counters counters[]) { struct ip6t_entry *iter; unsigned int cpu; unsigned int i; for_each_possible_cpu(cpu) { seqcount_t *s = &per_cpu(xt_recseq, cpu); i = 0; xt_entry_foreach(iter, t->entries, t->size) { struct xt_counters *tmp; u64 bcnt, pcnt; unsigned int start; tmp = xt_get_per_cpu_counter(&iter->counters, cpu); do { start = read_seqcount_begin(s); bcnt = tmp->bcnt; pcnt = tmp->pcnt; } while (read_seqcount_retry(s, start)); ADD_COUNTER(counters[i], bcnt, pcnt); ++i; cond_resched(); } } } static void get_old_counters(const struct xt_table_info *t, struct xt_counters counters[]) { struct ip6t_entry *iter; unsigned int cpu, i; for_each_possible_cpu(cpu) { i = 0; xt_entry_foreach(iter, t->entries, t->size) { const struct xt_counters *tmp; tmp = xt_get_per_cpu_counter(&iter->counters, cpu); ADD_COUNTER(counters[i], tmp->bcnt, tmp->pcnt); ++i; } cond_resched(); } } static struct xt_counters *alloc_counters(const struct xt_table *table) { unsigned int countersize; struct xt_counters *counters; const struct xt_table_info *private = table->private; /* We need atomic snapshot of counters: rest doesn't change (other than comefrom, which userspace doesn't care about). */ countersize = sizeof(struct xt_counters) * private->number; counters = vzalloc(countersize); if (counters == NULL) return ERR_PTR(-ENOMEM); get_counters(private, counters); return counters; } static int copy_entries_to_user(unsigned int total_size, const struct xt_table *table, void __user *userptr) { unsigned int off, num; const struct ip6t_entry *e; struct xt_counters *counters; const struct xt_table_info *private = table->private; int ret = 0; const void *loc_cpu_entry; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); loc_cpu_entry = private->entries; /* FIXME: use iterator macros --RR */ /* ... then go back and fix counters and names */ for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){ unsigned int i; const struct xt_entry_match *m; const struct xt_entry_target *t; e = loc_cpu_entry + off; if (copy_to_user(userptr + off, e, sizeof(*e))) { ret = -EFAULT; goto free_counters; } if (copy_to_user(userptr + off + offsetof(struct ip6t_entry, counters), &counters[num], sizeof(counters[num])) != 0) { ret = -EFAULT; goto free_counters; } for (i = sizeof(struct ip6t_entry); i < e->target_offset; i += m->u.match_size) { m = (void *)e + i; if (xt_match_to_user(m, userptr + off + i)) { ret = -EFAULT; goto free_counters; } } t = ip6t_get_target_c(e); if (xt_target_to_user(t, userptr + off + e->target_offset)) { ret = -EFAULT; goto free_counters; } } free_counters: vfree(counters); return ret; } #ifdef CONFIG_NETFILTER_XTABLES_COMPAT static void compat_standard_from_user(void *dst, const void *src) { int v = *(compat_int_t *)src; if (v > 0) v += xt_compat_calc_jump(AF_INET6, v); memcpy(dst, &v, sizeof(v)); } static int compat_standard_to_user(void __user *dst, const void *src) { compat_int_t cv = *(int *)src; if (cv > 0) cv -= xt_compat_calc_jump(AF_INET6, cv); return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0; } static int compat_calc_entry(const struct ip6t_entry *e, const struct xt_table_info *info, const void *base, struct xt_table_info *newinfo) { const struct xt_entry_match *ematch; const struct xt_entry_target *t; unsigned int entry_offset; int off, i, ret; off = sizeof(struct ip6t_entry) - sizeof(struct compat_ip6t_entry); entry_offset = (void *)e - base; xt_ematch_foreach(ematch, e) off += xt_compat_match_offset(ematch->u.kernel.match); t = ip6t_get_target_c(e); off += xt_compat_target_offset(t->u.kernel.target); newinfo->size -= off; ret = xt_compat_add_offset(AF_INET6, entry_offset, off); if (ret) return ret; for (i = 0; i < NF_INET_NUMHOOKS; i++) { if (info->hook_entry[i] && (e < (struct ip6t_entry *)(base + info->hook_entry[i]))) newinfo->hook_entry[i] -= off; if (info->underflow[i] && (e < (struct ip6t_entry *)(base + info->underflow[i]))) newinfo->underflow[i] -= off; } return 0; } static int compat_table_info(const struct xt_table_info *info, struct xt_table_info *newinfo) { struct ip6t_entry *iter; const void *loc_cpu_entry; int ret; if (!newinfo || !info) return -EINVAL; /* we dont care about newinfo->entries */ memcpy(newinfo, info, offsetof(struct xt_table_info, entries)); newinfo->initial_entries = 0; loc_cpu_entry = info->entries; ret = xt_compat_init_offsets(AF_INET6, info->number); if (ret) return ret; xt_entry_foreach(iter, loc_cpu_entry, info->size) { ret = compat_calc_entry(iter, info, loc_cpu_entry, newinfo); if (ret != 0) return ret; } return 0; } #endif static int get_info(struct net *net, void __user *user, const int *len) { char name[XT_TABLE_MAXNAMELEN]; struct xt_table *t; int ret; if (*len != sizeof(struct ip6t_getinfo)) return -EINVAL; if (copy_from_user(name, user, sizeof(name)) != 0) return -EFAULT; name[XT_TABLE_MAXNAMELEN-1] = '\0'; #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) xt_compat_lock(AF_INET6); #endif t = xt_request_find_table_lock(net, AF_INET6, name); if (!IS_ERR(t)) { struct ip6t_getinfo info; const struct xt_table_info *private = t->private; #ifdef CONFIG_NETFILTER_XTABLES_COMPAT struct xt_table_info tmp; if (in_compat_syscall()) { ret = compat_table_info(private, &tmp); xt_compat_flush_offsets(AF_INET6); private = &tmp; } #endif memset(&info, 0, sizeof(info)); info.valid_hooks = t->valid_hooks; memcpy(info.hook_entry, private->hook_entry, sizeof(info.hook_entry)); memcpy(info.underflow, private->underflow, sizeof(info.underflow)); info.num_entries = private->number; info.size = private->size; strcpy(info.name, name); if (copy_to_user(user, &info, *len) != 0) ret = -EFAULT; else ret = 0; xt_table_unlock(t); module_put(t->me); } else ret = PTR_ERR(t); #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) xt_compat_unlock(AF_INET6); #endif return ret; } static int get_entries(struct net *net, struct ip6t_get_entries __user *uptr, const int *len) { int ret; struct ip6t_get_entries get; struct xt_table *t; if (*len < sizeof(get)) return -EINVAL; if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct ip6t_get_entries) + get.size) return -EINVAL; get.name[sizeof(get.name) - 1] = '\0'; t = xt_find_table_lock(net, AF_INET6, get.name); if (!IS_ERR(t)) { struct xt_table_info *private = t->private; if (get.size == private->size) ret = copy_entries_to_user(private->size, t, uptr->entrytable); else ret = -EAGAIN; module_put(t->me); xt_table_unlock(t); } else ret = PTR_ERR(t); return ret; } static int __do_replace(struct net *net, const char *name, unsigned int valid_hooks, struct xt_table_info *newinfo, unsigned int num_counters, void __user *counters_ptr) { int ret; struct xt_table *t; struct xt_table_info *oldinfo; struct xt_counters *counters; struct ip6t_entry *iter; counters = xt_counters_alloc(num_counters); if (!counters) { ret = -ENOMEM; goto out; } t = xt_request_find_table_lock(net, AF_INET6, name); if (IS_ERR(t)) { ret = PTR_ERR(t); goto free_newinfo_counters_untrans; } /* You lied! */ if (valid_hooks != t->valid_hooks) { ret = -EINVAL; goto put_module; } oldinfo = xt_replace_table(t, num_counters, newinfo, &ret); if (!oldinfo) goto put_module; /* Update module usage count based on number of rules */ if ((oldinfo->number > oldinfo->initial_entries) || (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); if ((oldinfo->number > oldinfo->initial_entries) && (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); xt_table_unlock(t); get_old_counters(oldinfo, counters); /* Decrease module usage counts and free resource */ xt_entry_foreach(iter, oldinfo->entries, oldinfo->size) cleanup_entry(iter, net); xt_free_table_info(oldinfo); if (copy_to_user(counters_ptr, counters, sizeof(struct xt_counters) * num_counters) != 0) { /* Silent error, can't fail, new table is already in place */ net_warn_ratelimited("ip6tables: counters copy to user failed while replacing table\n"); } vfree(counters); return 0; put_module: module_put(t->me); xt_table_unlock(t); free_newinfo_counters_untrans: vfree(counters); out: return ret; } static int do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret; struct ip6t_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct ip6t_entry *iter; if (copy_from_sockptr(&tmp, arg, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; if (copy_from_sockptr_offset(loc_cpu_entry, arg, sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_table(net, newinfo, loc_cpu_entry, &tmp); if (ret != 0) goto free_newinfo; ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, tmp.counters); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); free_newinfo: xt_free_table_info(newinfo); return ret; } static int do_add_counters(struct net *net, sockptr_t arg, unsigned int len) { unsigned int i; struct xt_counters_info tmp; struct xt_counters *paddc; struct xt_table *t; const struct xt_table_info *private; int ret = 0; struct ip6t_entry *iter; unsigned int addend; paddc = xt_copy_counters(arg, len, &tmp); if (IS_ERR(paddc)) return PTR_ERR(paddc); t = xt_find_table_lock(net, AF_INET6, tmp.name); if (IS_ERR(t)) { ret = PTR_ERR(t); goto free; } local_bh_disable(); private = t->private; if (private->number != tmp.num_counters) { ret = -EINVAL; goto unlock_up_free; } i = 0; addend = xt_write_recseq_begin(); xt_entry_foreach(iter, private->entries, private->size) { struct xt_counters *tmp; tmp = xt_get_this_cpu_counter(&iter->counters); ADD_COUNTER(*tmp, paddc[i].bcnt, paddc[i].pcnt); ++i; } xt_write_recseq_end(addend); unlock_up_free: local_bh_enable(); xt_table_unlock(t); module_put(t->me); free: vfree(paddc); return ret; } #ifdef CONFIG_NETFILTER_XTABLES_COMPAT struct compat_ip6t_replace { char name[XT_TABLE_MAXNAMELEN]; u32 valid_hooks; u32 num_entries; u32 size; u32 hook_entry[NF_INET_NUMHOOKS]; u32 underflow[NF_INET_NUMHOOKS]; u32 num_counters; compat_uptr_t counters; /* struct xt_counters * */ struct compat_ip6t_entry entries[]; }; static int compat_copy_entry_to_user(struct ip6t_entry *e, void __user **dstptr, unsigned int *size, struct xt_counters *counters, unsigned int i) { struct xt_entry_target *t; struct compat_ip6t_entry __user *ce; u_int16_t target_offset, next_offset; compat_uint_t origsize; const struct xt_entry_match *ematch; int ret = 0; origsize = *size; ce = *dstptr; if (copy_to_user(ce, e, sizeof(struct ip6t_entry)) != 0 || copy_to_user(&ce->counters, &counters[i], sizeof(counters[i])) != 0) return -EFAULT; *dstptr += sizeof(struct compat_ip6t_entry); *size -= sizeof(struct ip6t_entry) - sizeof(struct compat_ip6t_entry); xt_ematch_foreach(ematch, e) { ret = xt_compat_match_to_user(ematch, dstptr, size); if (ret != 0) return ret; } target_offset = e->target_offset - (origsize - *size); t = ip6t_get_target(e); ret = xt_compat_target_to_user(t, dstptr, size); if (ret) return ret; next_offset = e->next_offset - (origsize - *size); if (put_user(target_offset, &ce->target_offset) != 0 || put_user(next_offset, &ce->next_offset) != 0) return -EFAULT; return 0; } static int compat_find_calc_match(struct xt_entry_match *m, const struct ip6t_ip6 *ipv6, int *size) { struct xt_match *match; match = xt_request_find_match(NFPROTO_IPV6, m->u.user.name, m->u.user.revision); if (IS_ERR(match)) return PTR_ERR(match); m->u.kernel.match = match; *size += xt_compat_match_offset(match); return 0; } static void compat_release_entry(struct compat_ip6t_entry *e) { struct xt_entry_target *t; struct xt_entry_match *ematch; /* Cleanup all matches */ xt_ematch_foreach(ematch, e) module_put(ematch->u.kernel.match->me); t = compat_ip6t_get_target(e); module_put(t->u.kernel.target->me); } static int check_compat_entry_size_and_hooks(struct compat_ip6t_entry *e, struct xt_table_info *newinfo, unsigned int *size, const unsigned char *base, const unsigned char *limit) { struct xt_entry_match *ematch; struct xt_entry_target *t; struct xt_target *target; unsigned int entry_offset; unsigned int j; int ret, off; if ((unsigned long)e % __alignof__(struct compat_ip6t_entry) != 0 || (unsigned char *)e + sizeof(struct compat_ip6t_entry) >= limit || (unsigned char *)e + e->next_offset > limit) return -EINVAL; if (e->next_offset < sizeof(struct compat_ip6t_entry) + sizeof(struct compat_xt_entry_target)) return -EINVAL; if (!ip6_checkentry(&e->ipv6)) return -EINVAL; ret = xt_compat_check_entry_offsets(e, e->elems, e->target_offset, e->next_offset); if (ret) return ret; off = sizeof(struct ip6t_entry) - sizeof(struct compat_ip6t_entry); entry_offset = (void *)e - (void *)base; j = 0; xt_ematch_foreach(ematch, e) { ret = compat_find_calc_match(ematch, &e->ipv6, &off); if (ret != 0) goto release_matches; ++j; } t = compat_ip6t_get_target(e); target = xt_request_find_target(NFPROTO_IPV6, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { ret = PTR_ERR(target); goto release_matches; } t->u.kernel.target = target; off += xt_compat_target_offset(target); *size += off; ret = xt_compat_add_offset(AF_INET6, entry_offset, off); if (ret) goto out; return 0; out: module_put(t->u.kernel.target->me); release_matches: xt_ematch_foreach(ematch, e) { if (j-- == 0) break; module_put(ematch->u.kernel.match->me); } return ret; } static void compat_copy_entry_from_user(struct compat_ip6t_entry *e, void **dstptr, unsigned int *size, struct xt_table_info *newinfo, unsigned char *base) { struct xt_entry_target *t; struct ip6t_entry *de; unsigned int origsize; int h; struct xt_entry_match *ematch; origsize = *size; de = *dstptr; memcpy(de, e, sizeof(struct ip6t_entry)); memcpy(&de->counters, &e->counters, sizeof(e->counters)); *dstptr += sizeof(struct ip6t_entry); *size += sizeof(struct ip6t_entry) - sizeof(struct compat_ip6t_entry); xt_ematch_foreach(ematch, e) xt_compat_match_from_user(ematch, dstptr, size); de->target_offset = e->target_offset - (origsize - *size); t = compat_ip6t_get_target(e); xt_compat_target_from_user(t, dstptr, size); de->next_offset = e->next_offset - (origsize - *size); for (h = 0; h < NF_INET_NUMHOOKS; h++) { if ((unsigned char *)de - base < newinfo->hook_entry[h]) newinfo->hook_entry[h] -= origsize - *size; if ((unsigned char *)de - base < newinfo->underflow[h]) newinfo->underflow[h] -= origsize - *size; } } static int translate_compat_table(struct net *net, struct xt_table_info **pinfo, void **pentry0, const struct compat_ip6t_replace *compatr) { unsigned int i, j; struct xt_table_info *newinfo, *info; void *pos, *entry0, *entry1; struct compat_ip6t_entry *iter0; struct ip6t_replace repl; unsigned int size; int ret; info = *pinfo; entry0 = *pentry0; size = compatr->size; info->number = compatr->num_entries; j = 0; xt_compat_lock(AF_INET6); ret = xt_compat_init_offsets(AF_INET6, compatr->num_entries); if (ret) goto out_unlock; /* Walk through entries, checking offsets. */ xt_entry_foreach(iter0, entry0, compatr->size) { ret = check_compat_entry_size_and_hooks(iter0, info, &size, entry0, entry0 + compatr->size); if (ret != 0) goto out_unlock; ++j; } ret = -EINVAL; if (j != compatr->num_entries) goto out_unlock; ret = -ENOMEM; newinfo = xt_alloc_table_info(size); if (!newinfo) goto out_unlock; memset(newinfo->entries, 0, size); newinfo->number = compatr->num_entries; for (i = 0; i < NF_INET_NUMHOOKS; i++) { newinfo->hook_entry[i] = compatr->hook_entry[i]; newinfo->underflow[i] = compatr->underflow[i]; } entry1 = newinfo->entries; pos = entry1; size = compatr->size; xt_entry_foreach(iter0, entry0, compatr->size) compat_copy_entry_from_user(iter0, &pos, &size, newinfo, entry1); /* all module references in entry0 are now gone. */ xt_compat_flush_offsets(AF_INET6); xt_compat_unlock(AF_INET6); memcpy(&repl, compatr, sizeof(*compatr)); for (i = 0; i < NF_INET_NUMHOOKS; i++) { repl.hook_entry[i] = newinfo->hook_entry[i]; repl.underflow[i] = newinfo->underflow[i]; } repl.num_counters = 0; repl.counters = NULL; repl.size = newinfo->size; ret = translate_table(net, newinfo, entry1, &repl); if (ret) goto free_newinfo; *pinfo = newinfo; *pentry0 = entry1; xt_free_table_info(info); return 0; free_newinfo: xt_free_table_info(newinfo); return ret; out_unlock: xt_compat_flush_offsets(AF_INET6); xt_compat_unlock(AF_INET6); xt_entry_foreach(iter0, entry0, compatr->size) { if (j-- == 0) break; compat_release_entry(iter0); } return ret; } static int compat_do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret; struct compat_ip6t_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct ip6t_entry *iter; if (copy_from_sockptr(&tmp, arg, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; if (copy_from_sockptr_offset(loc_cpu_entry, arg, sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_compat_table(net, &newinfo, &loc_cpu_entry, &tmp); if (ret != 0) goto free_newinfo; ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, compat_ptr(tmp.counters)); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); free_newinfo: xt_free_table_info(newinfo); return ret; } struct compat_ip6t_get_entries { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t size; struct compat_ip6t_entry entrytable[]; }; static int compat_copy_entries_to_user(unsigned int total_size, struct xt_table *table, void __user *userptr) { struct xt_counters *counters; const struct xt_table_info *private = table->private; void __user *pos; unsigned int size; int ret = 0; unsigned int i = 0; struct ip6t_entry *iter; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); pos = userptr; size = total_size; xt_entry_foreach(iter, private->entries, total_size) { ret = compat_copy_entry_to_user(iter, &pos, &size, counters, i++); if (ret != 0) break; } vfree(counters); return ret; } static int compat_get_entries(struct net *net, struct compat_ip6t_get_entries __user *uptr, int *len) { int ret; struct compat_ip6t_get_entries get; struct xt_table *t; if (*len < sizeof(get)) return -EINVAL; if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct compat_ip6t_get_entries) + get.size) return -EINVAL; get.name[sizeof(get.name) - 1] = '\0'; xt_compat_lock(AF_INET6); t = xt_find_table_lock(net, AF_INET6, get.name); if (!IS_ERR(t)) { const struct xt_table_info *private = t->private; struct xt_table_info info; ret = compat_table_info(private, &info); if (!ret && get.size == info.size) ret = compat_copy_entries_to_user(private->size, t, uptr->entrytable); else if (!ret) ret = -EAGAIN; xt_compat_flush_offsets(AF_INET6); module_put(t->me); xt_table_unlock(t); } else ret = PTR_ERR(t); xt_compat_unlock(AF_INET6); return ret; } #endif static int do_ip6t_set_ctl(struct sock *sk, int cmd, sockptr_t arg, unsigned int len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IP6T_SO_SET_REPLACE: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_do_replace(sock_net(sk), arg, len); else #endif ret = do_replace(sock_net(sk), arg, len); break; case IP6T_SO_SET_ADD_COUNTERS: ret = do_add_counters(sock_net(sk), arg, len); break; default: ret = -EINVAL; } return ret; } static int do_ip6t_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IP6T_SO_GET_INFO: ret = get_info(sock_net(sk), user, len); break; case IP6T_SO_GET_ENTRIES: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_get_entries(sock_net(sk), user, len); else #endif ret = get_entries(sock_net(sk), user, len); break; case IP6T_SO_GET_REVISION_MATCH: case IP6T_SO_GET_REVISION_TARGET: { struct xt_get_revision rev; int target; if (*len != sizeof(rev)) { ret = -EINVAL; break; } if (copy_from_user(&rev, user, sizeof(rev)) != 0) { ret = -EFAULT; break; } rev.name[sizeof(rev.name)-1] = 0; if (cmd == IP6T_SO_GET_REVISION_TARGET) target = 1; else target = 0; try_then_request_module(xt_find_revision(AF_INET6, rev.name, rev.revision, target, &ret), "ip6t_%s", rev.name); break; } default: ret = -EINVAL; } return ret; } static void __ip6t_unregister_table(struct net *net, struct xt_table *table) { struct xt_table_info *private; void *loc_cpu_entry; struct module *table_owner = table->me; struct ip6t_entry *iter; private = xt_unregister_table(table); /* Decrease module usage counts and free resources */ loc_cpu_entry = private->entries; xt_entry_foreach(iter, loc_cpu_entry, private->size) cleanup_entry(iter, net); if (private->number > private->initial_entries) module_put(table_owner); xt_free_table_info(private); } int ip6t_register_table(struct net *net, const struct xt_table *table, const struct ip6t_replace *repl, const struct nf_hook_ops *template_ops) { struct nf_hook_ops *ops; unsigned int num_ops; int ret, i; struct xt_table_info *newinfo; struct xt_table_info bootstrap = {0}; void *loc_cpu_entry; struct xt_table *new_table; newinfo = xt_alloc_table_info(repl->size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; memcpy(loc_cpu_entry, repl->entries, repl->size); ret = translate_table(net, newinfo, loc_cpu_entry, repl); if (ret != 0) { xt_free_table_info(newinfo); return ret; } new_table = xt_register_table(net, table, &bootstrap, newinfo); if (IS_ERR(new_table)) { struct ip6t_entry *iter; xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); xt_free_table_info(newinfo); return PTR_ERR(new_table); } if (!template_ops) return 0; num_ops = hweight32(table->valid_hooks); if (num_ops == 0) { ret = -EINVAL; goto out_free; } ops = kmemdup(template_ops, sizeof(*ops) * num_ops, GFP_KERNEL); if (!ops) { ret = -ENOMEM; goto out_free; } for (i = 0; i < num_ops; i++) ops[i].priv = new_table; new_table->ops = ops; ret = nf_register_net_hooks(net, ops, num_ops); if (ret != 0) goto out_free; return ret; out_free: __ip6t_unregister_table(net, new_table); return ret; } void ip6t_unregister_table_pre_exit(struct net *net, const char *name) { struct xt_table *table = xt_find_table(net, NFPROTO_IPV6, name); if (table) nf_unregister_net_hooks(net, table->ops, hweight32(table->valid_hooks)); } void ip6t_unregister_table_exit(struct net *net, const char *name) { struct xt_table *table = xt_find_table(net, NFPROTO_IPV6, name); if (table) __ip6t_unregister_table(net, table); } /* The built-in targets: standard (NULL) and error. */ static struct xt_target ip6t_builtin_tg[] __read_mostly = { { .name = XT_STANDARD_TARGET, .targetsize = sizeof(int), .family = NFPROTO_IPV6, #ifdef CONFIG_NETFILTER_XTABLES_COMPAT .compatsize = sizeof(compat_int_t), .compat_from_user = compat_standard_from_user, .compat_to_user = compat_standard_to_user, #endif }, { .name = XT_ERROR_TARGET, .target = ip6t_error, .targetsize = XT_FUNCTION_MAXNAMELEN, .family = NFPROTO_IPV6, }, }; static struct nf_sockopt_ops ip6t_sockopts = { .pf = PF_INET6, .set_optmin = IP6T_BASE_CTL, .set_optmax = IP6T_SO_SET_MAX+1, .set = do_ip6t_set_ctl, .get_optmin = IP6T_BASE_CTL, .get_optmax = IP6T_SO_GET_MAX+1, .get = do_ip6t_get_ctl, .owner = THIS_MODULE, }; static int __net_init ip6_tables_net_init(struct net *net) { return xt_proto_init(net, NFPROTO_IPV6); } static void __net_exit ip6_tables_net_exit(struct net *net) { xt_proto_fini(net, NFPROTO_IPV6); } static struct pernet_operations ip6_tables_net_ops = { .init = ip6_tables_net_init, .exit = ip6_tables_net_exit, }; static int __init ip6_tables_init(void) { int ret; ret = register_pernet_subsys(&ip6_tables_net_ops); if (ret < 0) goto err1; /* No one else will be downing sem now, so we won't sleep */ ret = xt_register_targets(ip6t_builtin_tg, ARRAY_SIZE(ip6t_builtin_tg)); if (ret < 0) goto err2; /* Register setsockopt */ ret = nf_register_sockopt(&ip6t_sockopts); if (ret < 0) goto err4; return 0; err4: xt_unregister_targets(ip6t_builtin_tg, ARRAY_SIZE(ip6t_builtin_tg)); err2: unregister_pernet_subsys(&ip6_tables_net_ops); err1: return ret; } static void __exit ip6_tables_fini(void) { nf_unregister_sockopt(&ip6t_sockopts); xt_unregister_targets(ip6t_builtin_tg, ARRAY_SIZE(ip6t_builtin_tg)); unregister_pernet_subsys(&ip6_tables_net_ops); } EXPORT_SYMBOL(ip6t_register_table); EXPORT_SYMBOL(ip6t_unregister_table_pre_exit); EXPORT_SYMBOL(ip6t_unregister_table_exit); EXPORT_SYMBOL(ip6t_do_table); module_init(ip6_tables_init); module_exit(ip6_tables_fini);
linux-master
net/ipv6/netfilter/ip6_tables.c
// SPDX-License-Identifier: GPL-2.0-only /* * IPv6 packet mangling table, a port of the IPv4 mangle table to IPv6 * * Copyright (C) 2000-2001 by Harald Welte <[email protected]> * Copyright (C) 2000-2004 Netfilter Core Team <[email protected]> */ #include <linux/module.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> #include <net/ipv6.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Netfilter Core Team <[email protected]>"); MODULE_DESCRIPTION("ip6tables mangle table"); #define MANGLE_VALID_HOOKS ((1 << NF_INET_PRE_ROUTING) | \ (1 << NF_INET_LOCAL_IN) | \ (1 << NF_INET_FORWARD) | \ (1 << NF_INET_LOCAL_OUT) | \ (1 << NF_INET_POST_ROUTING)) static const struct xt_table packet_mangler = { .name = "mangle", .valid_hooks = MANGLE_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_MANGLE, }; static unsigned int ip6t_mangle_out(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { unsigned int ret; struct in6_addr saddr, daddr; u_int8_t hop_limit; u_int32_t flowlabel, mark; int err; /* save source/dest address, mark, hoplimit, flowlabel, priority, */ memcpy(&saddr, &ipv6_hdr(skb)->saddr, sizeof(saddr)); memcpy(&daddr, &ipv6_hdr(skb)->daddr, sizeof(daddr)); mark = skb->mark; hop_limit = ipv6_hdr(skb)->hop_limit; /* flowlabel and prio (includes version, which shouldn't change either */ flowlabel = *((u_int32_t *)ipv6_hdr(skb)); ret = ip6t_do_table(priv, skb, state); if (ret != NF_DROP && ret != NF_STOLEN && (!ipv6_addr_equal(&ipv6_hdr(skb)->saddr, &saddr) || !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &daddr) || skb->mark != mark || ipv6_hdr(skb)->hop_limit != hop_limit || flowlabel != *((u_int32_t *)ipv6_hdr(skb)))) { err = ip6_route_me_harder(state->net, state->sk, skb); if (err < 0) ret = NF_DROP_ERR(err); } return ret; } /* The work comes in here from netfilter.c. */ static unsigned int ip6table_mangle_hook(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { if (state->hook == NF_INET_LOCAL_OUT) return ip6t_mangle_out(priv, skb, state); return ip6t_do_table(priv, skb, state); } static struct nf_hook_ops *mangle_ops __read_mostly; static int ip6table_mangle_table_init(struct net *net) { struct ip6t_replace *repl; int ret; repl = ip6t_alloc_initial_table(&packet_mangler); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, &packet_mangler, repl, mangle_ops); kfree(repl); return ret; } static void __net_exit ip6table_mangle_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "mangle"); } static void __net_exit ip6table_mangle_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "mangle"); } static struct pernet_operations ip6table_mangle_net_ops = { .pre_exit = ip6table_mangle_net_pre_exit, .exit = ip6table_mangle_net_exit, }; static int __init ip6table_mangle_init(void) { int ret = xt_register_template(&packet_mangler, ip6table_mangle_table_init); if (ret < 0) return ret; mangle_ops = xt_hook_ops_alloc(&packet_mangler, ip6table_mangle_hook); if (IS_ERR(mangle_ops)) { xt_unregister_template(&packet_mangler); return PTR_ERR(mangle_ops); } ret = register_pernet_subsys(&ip6table_mangle_net_ops); if (ret < 0) { xt_unregister_template(&packet_mangler); kfree(mangle_ops); return ret; } return ret; } static void __exit ip6table_mangle_fini(void) { unregister_pernet_subsys(&ip6table_mangle_net_ops); xt_unregister_template(&packet_mangler); kfree(mangle_ops); } module_init(ip6table_mangle_init); module_exit(ip6table_mangle_fini);
linux-master
net/ipv6/netfilter/ip6table_mangle.c
// SPDX-License-Identifier: GPL-2.0-only /* * IPv6 raw table, a port of the IPv4 raw table to IPv6 * * Copyright (C) 2003 Jozsef Kadlecsik <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> #define RAW_VALID_HOOKS ((1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_OUT)) static bool raw_before_defrag __read_mostly; MODULE_PARM_DESC(raw_before_defrag, "Enable raw table before defrag"); module_param(raw_before_defrag, bool, 0000); static const struct xt_table packet_raw = { .name = "raw", .valid_hooks = RAW_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_RAW, }; static const struct xt_table packet_raw_before_defrag = { .name = "raw", .valid_hooks = RAW_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_RAW_BEFORE_DEFRAG, }; static struct nf_hook_ops *rawtable_ops __read_mostly; static int ip6table_raw_table_init(struct net *net) { struct ip6t_replace *repl; const struct xt_table *table = &packet_raw; int ret; if (raw_before_defrag) table = &packet_raw_before_defrag; repl = ip6t_alloc_initial_table(table); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, table, repl, rawtable_ops); kfree(repl); return ret; } static void __net_exit ip6table_raw_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "raw"); } static void __net_exit ip6table_raw_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "raw"); } static struct pernet_operations ip6table_raw_net_ops = { .pre_exit = ip6table_raw_net_pre_exit, .exit = ip6table_raw_net_exit, }; static int __init ip6table_raw_init(void) { const struct xt_table *table = &packet_raw; int ret; if (raw_before_defrag) { table = &packet_raw_before_defrag; pr_info("Enabling raw table before defrag\n"); } ret = xt_register_template(table, ip6table_raw_table_init); if (ret < 0) return ret; /* Register hooks */ rawtable_ops = xt_hook_ops_alloc(table, ip6t_do_table); if (IS_ERR(rawtable_ops)) { xt_unregister_template(table); return PTR_ERR(rawtable_ops); } ret = register_pernet_subsys(&ip6table_raw_net_ops); if (ret < 0) { kfree(rawtable_ops); xt_unregister_template(table); return ret; } return ret; } static void __exit ip6table_raw_fini(void) { unregister_pernet_subsys(&ip6table_raw_net_ops); xt_unregister_template(&packet_raw); kfree(rawtable_ops); } module_init(ip6table_raw_init); module_exit(ip6table_raw_fini); MODULE_LICENSE("GPL");
linux-master
net/ipv6/netfilter/ip6table_raw.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015 Pablo Neira Ayuso <[email protected]> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/ipv6/nf_dup_ipv6.h> struct nft_dup_ipv6 { u8 sreg_addr; u8 sreg_dev; }; static void nft_dup_ipv6_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { struct nft_dup_ipv6 *priv = nft_expr_priv(expr); struct in6_addr *gw = (struct in6_addr *)&regs->data[priv->sreg_addr]; int oif = priv->sreg_dev ? regs->data[priv->sreg_dev] : -1; nf_dup_ipv6(nft_net(pkt), pkt->skb, nft_hook(pkt), gw, oif); } static int nft_dup_ipv6_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_dup_ipv6 *priv = nft_expr_priv(expr); int err; if (tb[NFTA_DUP_SREG_ADDR] == NULL) return -EINVAL; err = nft_parse_register_load(tb[NFTA_DUP_SREG_ADDR], &priv->sreg_addr, sizeof(struct in6_addr)); if (err < 0) return err; if (tb[NFTA_DUP_SREG_DEV]) err = nft_parse_register_load(tb[NFTA_DUP_SREG_DEV], &priv->sreg_dev, sizeof(int)); return err; } static int nft_dup_ipv6_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { struct nft_dup_ipv6 *priv = nft_expr_priv(expr); if (nft_dump_register(skb, NFTA_DUP_SREG_ADDR, priv->sreg_addr)) goto nla_put_failure; if (priv->sreg_dev && nft_dump_register(skb, NFTA_DUP_SREG_DEV, priv->sreg_dev)) goto nla_put_failure; return 0; nla_put_failure: return -1; } static struct nft_expr_type nft_dup_ipv6_type; static const struct nft_expr_ops nft_dup_ipv6_ops = { .type = &nft_dup_ipv6_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_dup_ipv6)), .eval = nft_dup_ipv6_eval, .init = nft_dup_ipv6_init, .dump = nft_dup_ipv6_dump, .reduce = NFT_REDUCE_READONLY, }; static const struct nla_policy nft_dup_ipv6_policy[NFTA_DUP_MAX + 1] = { [NFTA_DUP_SREG_ADDR] = { .type = NLA_U32 }, [NFTA_DUP_SREG_DEV] = { .type = NLA_U32 }, }; static struct nft_expr_type nft_dup_ipv6_type __read_mostly = { .family = NFPROTO_IPV6, .name = "dup", .ops = &nft_dup_ipv6_ops, .policy = nft_dup_ipv6_policy, .maxattr = NFTA_DUP_MAX, .owner = THIS_MODULE, }; static int __init nft_dup_ipv6_module_init(void) { return nft_register_expr(&nft_dup_ipv6_type); } static void __exit nft_dup_ipv6_module_exit(void) { nft_unregister_expr(&nft_dup_ipv6_type); } module_init(nft_dup_ipv6_module_init); module_exit(nft_dup_ipv6_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Pablo Neira Ayuso <[email protected]>"); MODULE_ALIAS_NFT_AF_EXPR(AF_INET6, "dup"); MODULE_DESCRIPTION("IPv6 nftables packet duplication support");
linux-master
net/ipv6/netfilter/nft_dup_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match EUI64 address parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/if_ether.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> MODULE_DESCRIPTION("Xtables: IPv6 EUI64 address match"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); static bool eui64_mt6(const struct sk_buff *skb, struct xt_action_param *par) { unsigned char eui64[8]; if (!(skb_mac_header(skb) >= skb->head && skb_mac_header(skb) + ETH_HLEN <= skb->data) && par->fragoff != 0) { par->hotdrop = true; return false; } memset(eui64, 0, sizeof(eui64)); if (eth_hdr(skb)->h_proto == htons(ETH_P_IPV6)) { if (ipv6_hdr(skb)->version == 0x6) { memcpy(eui64, eth_hdr(skb)->h_source, 3); memcpy(eui64 + 5, eth_hdr(skb)->h_source + 3, 3); eui64[3] = 0xff; eui64[4] = 0xfe; eui64[0] ^= 0x02; if (!memcmp(ipv6_hdr(skb)->saddr.s6_addr + 8, eui64, sizeof(eui64))) return true; } } return false; } static struct xt_match eui64_mt6_reg __read_mostly = { .name = "eui64", .family = NFPROTO_IPV6, .match = eui64_mt6, .matchsize = sizeof(int), .hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD), .me = THIS_MODULE, }; static int __init eui64_mt6_init(void) { return xt_register_match(&eui64_mt6_reg); } static void __exit eui64_mt6_exit(void) { xt_unregister_match(&eui64_mt6_reg); } module_init(eui64_mt6_init); module_exit(eui64_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_eui64.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * IP6 tables REJECT target module * Linux INET6 implementation * * Copyright (C)2003 USAGI/WIDE Project * * Authors: * Yasuyuki Kozakai <[email protected]> * * Copyright (c) 2005-2007 Patrick McHardy <[email protected]> * * Based on net/ipv4/netfilter/ipt_REJECT.c */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/gfp.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/icmpv6.h> #include <linux/netdevice.h> #include <net/icmp.h> #include <net/flow.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_REJECT.h> #include <net/netfilter/ipv6/nf_reject.h> MODULE_AUTHOR("Yasuyuki KOZAKAI <[email protected]>"); MODULE_DESCRIPTION("Xtables: packet \"rejection\" target for IPv6"); MODULE_LICENSE("GPL"); static unsigned int reject_tg6(struct sk_buff *skb, const struct xt_action_param *par) { const struct ip6t_reject_info *reject = par->targinfo; struct net *net = xt_net(par); switch (reject->with) { case IP6T_ICMP6_NO_ROUTE: nf_send_unreach6(net, skb, ICMPV6_NOROUTE, xt_hooknum(par)); break; case IP6T_ICMP6_ADM_PROHIBITED: nf_send_unreach6(net, skb, ICMPV6_ADM_PROHIBITED, xt_hooknum(par)); break; case IP6T_ICMP6_NOT_NEIGHBOUR: nf_send_unreach6(net, skb, ICMPV6_NOT_NEIGHBOUR, xt_hooknum(par)); break; case IP6T_ICMP6_ADDR_UNREACH: nf_send_unreach6(net, skb, ICMPV6_ADDR_UNREACH, xt_hooknum(par)); break; case IP6T_ICMP6_PORT_UNREACH: nf_send_unreach6(net, skb, ICMPV6_PORT_UNREACH, xt_hooknum(par)); break; case IP6T_ICMP6_ECHOREPLY: /* Do nothing */ break; case IP6T_TCP_RESET: nf_send_reset6(net, par->state->sk, skb, xt_hooknum(par)); break; case IP6T_ICMP6_POLICY_FAIL: nf_send_unreach6(net, skb, ICMPV6_POLICY_FAIL, xt_hooknum(par)); break; case IP6T_ICMP6_REJECT_ROUTE: nf_send_unreach6(net, skb, ICMPV6_REJECT_ROUTE, xt_hooknum(par)); break; } return NF_DROP; } static int reject_tg6_check(const struct xt_tgchk_param *par) { const struct ip6t_reject_info *rejinfo = par->targinfo; const struct ip6t_entry *e = par->entryinfo; if (rejinfo->with == IP6T_ICMP6_ECHOREPLY) { pr_info_ratelimited("ECHOREPLY is not supported\n"); return -EINVAL; } else if (rejinfo->with == IP6T_TCP_RESET) { /* Must specify that it's a TCP packet */ if (!(e->ipv6.flags & IP6T_F_PROTO) || e->ipv6.proto != IPPROTO_TCP || (e->ipv6.invflags & XT_INV_PROTO)) { pr_info_ratelimited("TCP_RESET illegal for non-tcp\n"); return -EINVAL; } } return 0; } static struct xt_target reject_tg6_reg __read_mostly = { .name = "REJECT", .family = NFPROTO_IPV6, .target = reject_tg6, .targetsize = sizeof(struct ip6t_reject_info), .table = "filter", .hooks = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD) | (1 << NF_INET_LOCAL_OUT), .checkentry = reject_tg6_check, .me = THIS_MODULE }; static int __init reject_tg6_init(void) { return xt_register_target(&reject_tg6_reg); } static void __exit reject_tg6_exit(void) { xt_unregister_target(&reject_tg6_reg); } module_init(reject_tg6_init); module_exit(reject_tg6_exit);
linux-master
net/ipv6/netfilter/ip6t_REJECT.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <linux/netfilter_ipv6.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nft_fib.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> static int get_ifindex(const struct net_device *dev) { return dev ? dev->ifindex : 0; } static int nft_fib6_flowi_init(struct flowi6 *fl6, const struct nft_fib *priv, const struct nft_pktinfo *pkt, const struct net_device *dev, struct ipv6hdr *iph) { int lookup_flags = 0; if (priv->flags & NFTA_FIB_F_DADDR) { fl6->daddr = iph->daddr; fl6->saddr = iph->saddr; } else { if (nft_hook(pkt) == NF_INET_FORWARD && priv->flags & NFTA_FIB_F_IIF) fl6->flowi6_iif = nft_out(pkt)->ifindex; fl6->daddr = iph->saddr; fl6->saddr = iph->daddr; } if (ipv6_addr_type(&fl6->daddr) & IPV6_ADDR_LINKLOCAL) { lookup_flags |= RT6_LOOKUP_F_IFACE; fl6->flowi6_oif = get_ifindex(dev ? dev : pkt->skb->dev); } else if (priv->flags & NFTA_FIB_F_IIF) { fl6->flowi6_l3mdev = l3mdev_master_ifindex_rcu(dev); } if (ipv6_addr_type(&fl6->saddr) & IPV6_ADDR_UNICAST) lookup_flags |= RT6_LOOKUP_F_HAS_SADDR; if (priv->flags & NFTA_FIB_F_MARK) fl6->flowi6_mark = pkt->skb->mark; fl6->flowlabel = (*(__be32 *)iph) & IPV6_FLOWINFO_MASK; return lookup_flags; } static u32 __nft_fib6_eval_type(const struct nft_fib *priv, const struct nft_pktinfo *pkt, struct ipv6hdr *iph) { const struct net_device *dev = NULL; int route_err, addrtype; struct rt6_info *rt; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_proto = pkt->tprot, .flowi6_uid = sock_net_uid(nft_net(pkt), NULL), }; u32 ret = 0; if (priv->flags & NFTA_FIB_F_IIF) dev = nft_in(pkt); else if (priv->flags & NFTA_FIB_F_OIF) dev = nft_out(pkt); nft_fib6_flowi_init(&fl6, priv, pkt, dev, iph); if (dev && nf_ipv6_chk_addr(nft_net(pkt), &fl6.daddr, dev, true)) ret = RTN_LOCAL; route_err = nf_ip6_route(nft_net(pkt), (struct dst_entry **)&rt, flowi6_to_flowi(&fl6), false); if (route_err) goto err; if (rt->rt6i_flags & RTF_REJECT) { route_err = rt->dst.error; dst_release(&rt->dst); goto err; } if (ipv6_anycast_destination((struct dst_entry *)rt, &fl6.daddr)) ret = RTN_ANYCAST; else if (!dev && rt->rt6i_flags & RTF_LOCAL) ret = RTN_LOCAL; dst_release(&rt->dst); if (ret) return ret; addrtype = ipv6_addr_type(&fl6.daddr); if (addrtype & IPV6_ADDR_MULTICAST) return RTN_MULTICAST; if (addrtype & IPV6_ADDR_UNICAST) return RTN_UNICAST; return RTN_UNSPEC; err: switch (route_err) { case -EINVAL: return RTN_BLACKHOLE; case -EACCES: return RTN_PROHIBIT; case -EAGAIN: return RTN_THROW; default: break; } return RTN_UNREACHABLE; } void nft_fib6_eval_type(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_fib *priv = nft_expr_priv(expr); int noff = skb_network_offset(pkt->skb); u32 *dest = &regs->data[priv->dreg]; struct ipv6hdr *iph, _iph; iph = skb_header_pointer(pkt->skb, noff, sizeof(_iph), &_iph); if (!iph) { regs->verdict.code = NFT_BREAK; return; } *dest = __nft_fib6_eval_type(priv, pkt, iph); } EXPORT_SYMBOL_GPL(nft_fib6_eval_type); static bool nft_fib_v6_skip_icmpv6(const struct sk_buff *skb, u8 next, const struct ipv6hdr *iph) { if (likely(next != IPPROTO_ICMPV6)) return false; if (ipv6_addr_type(&iph->saddr) != IPV6_ADDR_ANY) return false; return ipv6_addr_type(&iph->daddr) & IPV6_ADDR_LINKLOCAL; } void nft_fib6_eval(const struct nft_expr *expr, struct nft_regs *regs, const struct nft_pktinfo *pkt) { const struct nft_fib *priv = nft_expr_priv(expr); int noff = skb_network_offset(pkt->skb); const struct net_device *oif = NULL; u32 *dest = &regs->data[priv->dreg]; struct ipv6hdr *iph, _iph; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_proto = pkt->tprot, .flowi6_uid = sock_net_uid(nft_net(pkt), NULL), }; struct rt6_info *rt; int lookup_flags; if (priv->flags & NFTA_FIB_F_IIF) oif = nft_in(pkt); else if (priv->flags & NFTA_FIB_F_OIF) oif = nft_out(pkt); iph = skb_header_pointer(pkt->skb, noff, sizeof(_iph), &_iph); if (!iph) { regs->verdict.code = NFT_BREAK; return; } lookup_flags = nft_fib6_flowi_init(&fl6, priv, pkt, oif, iph); if (nft_hook(pkt) == NF_INET_PRE_ROUTING || nft_hook(pkt) == NF_INET_INGRESS) { if (nft_fib_is_loopback(pkt->skb, nft_in(pkt)) || nft_fib_v6_skip_icmpv6(pkt->skb, pkt->tprot, iph)) { nft_fib_store_result(dest, priv, nft_in(pkt)); return; } } *dest = 0; rt = (void *)ip6_route_lookup(nft_net(pkt), &fl6, pkt->skb, lookup_flags); if (rt->dst.error) goto put_rt_err; /* Should not see RTF_LOCAL here */ if (rt->rt6i_flags & (RTF_REJECT | RTF_ANYCAST | RTF_LOCAL)) goto put_rt_err; if (oif && oif != rt->rt6i_idev->dev && l3mdev_master_ifindex_rcu(rt->rt6i_idev->dev) != oif->ifindex) goto put_rt_err; nft_fib_store_result(dest, priv, rt->rt6i_idev->dev); put_rt_err: ip6_rt_put(rt); } EXPORT_SYMBOL_GPL(nft_fib6_eval); static struct nft_expr_type nft_fib6_type; static const struct nft_expr_ops nft_fib6_type_ops = { .type = &nft_fib6_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_fib)), .eval = nft_fib6_eval_type, .init = nft_fib_init, .dump = nft_fib_dump, .validate = nft_fib_validate, .reduce = nft_fib_reduce, }; static const struct nft_expr_ops nft_fib6_ops = { .type = &nft_fib6_type, .size = NFT_EXPR_SIZE(sizeof(struct nft_fib)), .eval = nft_fib6_eval, .init = nft_fib_init, .dump = nft_fib_dump, .validate = nft_fib_validate, .reduce = nft_fib_reduce, }; static const struct nft_expr_ops * nft_fib6_select_ops(const struct nft_ctx *ctx, const struct nlattr * const tb[]) { enum nft_fib_result result; if (!tb[NFTA_FIB_RESULT]) return ERR_PTR(-EINVAL); result = ntohl(nla_get_be32(tb[NFTA_FIB_RESULT])); switch (result) { case NFT_FIB_RESULT_OIF: return &nft_fib6_ops; case NFT_FIB_RESULT_OIFNAME: return &nft_fib6_ops; case NFT_FIB_RESULT_ADDRTYPE: return &nft_fib6_type_ops; default: return ERR_PTR(-EOPNOTSUPP); } } static struct nft_expr_type nft_fib6_type __read_mostly = { .name = "fib", .select_ops = nft_fib6_select_ops, .policy = nft_fib_policy, .maxattr = NFTA_FIB_MAX, .family = NFPROTO_IPV6, .owner = THIS_MODULE, }; static int __init nft_fib6_module_init(void) { return nft_register_expr(&nft_fib6_type); } static void __exit nft_fib6_module_exit(void) { nft_unregister_expr(&nft_fib6_type); } module_init(nft_fib6_module_init); module_exit(nft_fib6_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Florian Westphal <[email protected]>"); MODULE_ALIAS_NFT_AF_EXPR(10, "fib"); MODULE_DESCRIPTION("nftables fib / ipv6 route lookup support");
linux-master
net/ipv6/netfilter/nft_fib_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match AH parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_ah.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 IPsec-AH match"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); /* Returns 1 if the spi is matched by the range, 0 otherwise */ static inline bool spi_match(u_int32_t min, u_int32_t max, u_int32_t spi, bool invert) { bool r; pr_debug("spi_match:%c 0x%x <= 0x%x <= 0x%x\n", invert ? '!' : ' ', min, spi, max); r = (spi >= min && spi <= max) ^ invert; pr_debug(" result %s\n", r ? "PASS" : "FAILED"); return r; } static bool ah_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct ip_auth_hdr _ah; const struct ip_auth_hdr *ah; const struct ip6t_ah *ahinfo = par->matchinfo; unsigned int ptr = 0; unsigned int hdrlen = 0; int err; err = ipv6_find_hdr(skb, &ptr, NEXTHDR_AUTH, NULL, NULL); if (err < 0) { if (err != -ENOENT) par->hotdrop = true; return false; } ah = skb_header_pointer(skb, ptr, sizeof(_ah), &_ah); if (ah == NULL) { par->hotdrop = true; return false; } hdrlen = ipv6_authlen(ah); pr_debug("IPv6 AH LEN %u %u ", hdrlen, ah->hdrlen); pr_debug("RES %04X ", ah->reserved); pr_debug("SPI %u %08X\n", ntohl(ah->spi), ntohl(ah->spi)); pr_debug("IPv6 AH spi %02X ", spi_match(ahinfo->spis[0], ahinfo->spis[1], ntohl(ah->spi), !!(ahinfo->invflags & IP6T_AH_INV_SPI))); pr_debug("len %02X %04X %02X ", ahinfo->hdrlen, hdrlen, (!ahinfo->hdrlen || (ahinfo->hdrlen == hdrlen) ^ !!(ahinfo->invflags & IP6T_AH_INV_LEN))); pr_debug("res %02X %04X %02X\n", ahinfo->hdrres, ah->reserved, !(ahinfo->hdrres && ah->reserved)); return spi_match(ahinfo->spis[0], ahinfo->spis[1], ntohl(ah->spi), !!(ahinfo->invflags & IP6T_AH_INV_SPI)) && (!ahinfo->hdrlen || (ahinfo->hdrlen == hdrlen) ^ !!(ahinfo->invflags & IP6T_AH_INV_LEN)) && !(ahinfo->hdrres && ah->reserved); } static int ah_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_ah *ahinfo = par->matchinfo; if (ahinfo->invflags & ~IP6T_AH_INV_MASK) { pr_debug("unknown flags %X\n", ahinfo->invflags); return -EINVAL; } return 0; } static struct xt_match ah_mt6_reg __read_mostly = { .name = "ah", .family = NFPROTO_IPV6, .match = ah_mt6, .matchsize = sizeof(struct ip6t_ah), .checkentry = ah_mt6_check, .me = THIS_MODULE, }; static int __init ah_mt6_init(void) { return xt_register_match(&ah_mt6_reg); } static void __exit ah_mt6_exit(void) { xt_unregister_match(&ah_mt6_reg); } module_init(ah_mt6_init); module_exit(ah_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_ah.c
// SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match FRAG parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_frag.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 fragment match"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); /* Returns 1 if the id is matched by the range, 0 otherwise */ static inline bool id_match(u_int32_t min, u_int32_t max, u_int32_t id, bool invert) { bool r; pr_debug("id_match:%c 0x%x <= 0x%x <= 0x%x\n", invert ? '!' : ' ', min, id, max); r = (id >= min && id <= max) ^ invert; pr_debug(" result %s\n", r ? "PASS" : "FAILED"); return r; } static bool frag_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct frag_hdr _frag; const struct frag_hdr *fh; const struct ip6t_frag *fraginfo = par->matchinfo; unsigned int ptr = 0; int err; err = ipv6_find_hdr(skb, &ptr, NEXTHDR_FRAGMENT, NULL, NULL); if (err < 0) { if (err != -ENOENT) par->hotdrop = true; return false; } fh = skb_header_pointer(skb, ptr, sizeof(_frag), &_frag); if (fh == NULL) { par->hotdrop = true; return false; } pr_debug("INFO %04X ", fh->frag_off); pr_debug("OFFSET %04X ", ntohs(fh->frag_off) & ~0x7); pr_debug("RES %02X %04X", fh->reserved, ntohs(fh->frag_off) & 0x6); pr_debug("MF %04X ", fh->frag_off & htons(IP6_MF)); pr_debug("ID %u %08X\n", ntohl(fh->identification), ntohl(fh->identification)); pr_debug("IPv6 FRAG id %02X ", id_match(fraginfo->ids[0], fraginfo->ids[1], ntohl(fh->identification), !!(fraginfo->invflags & IP6T_FRAG_INV_IDS))); pr_debug("res %02X %02X%04X %02X ", fraginfo->flags & IP6T_FRAG_RES, fh->reserved, ntohs(fh->frag_off) & 0x6, !((fraginfo->flags & IP6T_FRAG_RES) && (fh->reserved || (ntohs(fh->frag_off) & 0x06)))); pr_debug("first %02X %02X %02X ", fraginfo->flags & IP6T_FRAG_FST, ntohs(fh->frag_off) & ~0x7, !((fraginfo->flags & IP6T_FRAG_FST) && (ntohs(fh->frag_off) & ~0x7))); pr_debug("mf %02X %02X %02X ", fraginfo->flags & IP6T_FRAG_MF, ntohs(fh->frag_off) & IP6_MF, !((fraginfo->flags & IP6T_FRAG_MF) && !((ntohs(fh->frag_off) & IP6_MF)))); pr_debug("last %02X %02X %02X\n", fraginfo->flags & IP6T_FRAG_NMF, ntohs(fh->frag_off) & IP6_MF, !((fraginfo->flags & IP6T_FRAG_NMF) && (ntohs(fh->frag_off) & IP6_MF))); return id_match(fraginfo->ids[0], fraginfo->ids[1], ntohl(fh->identification), !!(fraginfo->invflags & IP6T_FRAG_INV_IDS)) && !((fraginfo->flags & IP6T_FRAG_RES) && (fh->reserved || (ntohs(fh->frag_off) & 0x6))) && !((fraginfo->flags & IP6T_FRAG_FST) && (ntohs(fh->frag_off) & ~0x7)) && !((fraginfo->flags & IP6T_FRAG_MF) && !(ntohs(fh->frag_off) & IP6_MF)) && !((fraginfo->flags & IP6T_FRAG_NMF) && (ntohs(fh->frag_off) & IP6_MF)); } static int frag_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_frag *fraginfo = par->matchinfo; if (fraginfo->invflags & ~IP6T_FRAG_INV_MASK) { pr_debug("unknown flags %X\n", fraginfo->invflags); return -EINVAL; } return 0; } static struct xt_match frag_mt6_reg __read_mostly = { .name = "frag", .family = NFPROTO_IPV6, .match = frag_mt6, .matchsize = sizeof(struct ip6t_frag), .checkentry = frag_mt6_check, .me = THIS_MODULE, }; static int __init frag_mt6_init(void) { return xt_register_match(&frag_mt6_reg); } static void __exit frag_mt6_exit(void) { xt_unregister_match(&frag_mt6_reg); } module_init(frag_mt6_init); module_exit(frag_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_frag.c
// SPDX-License-Identifier: GPL-2.0-only #include <net/netfilter/nf_tproxy.h> #include <linux/module.h> #include <net/inet6_hashtables.h> #include <net/addrconf.h> #include <net/udp.h> #include <net/tcp.h> const struct in6_addr * nf_tproxy_laddr6(struct sk_buff *skb, const struct in6_addr *user_laddr, const struct in6_addr *daddr) { struct inet6_dev *indev; struct inet6_ifaddr *ifa; struct in6_addr *laddr; if (!ipv6_addr_any(user_laddr)) return user_laddr; laddr = NULL; indev = __in6_dev_get(skb->dev); if (indev) { read_lock_bh(&indev->lock); list_for_each_entry(ifa, &indev->addr_list, if_list) { if (ifa->flags & (IFA_F_TENTATIVE | IFA_F_DEPRECATED)) continue; laddr = &ifa->addr; break; } read_unlock_bh(&indev->lock); } return laddr ? laddr : daddr; } EXPORT_SYMBOL_GPL(nf_tproxy_laddr6); struct sock * nf_tproxy_handle_time_wait6(struct sk_buff *skb, int tproto, int thoff, struct net *net, const struct in6_addr *laddr, const __be16 lport, struct sock *sk) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct tcphdr _hdr, *hp; hp = skb_header_pointer(skb, thoff, sizeof(_hdr), &_hdr); if (hp == NULL) { inet_twsk_put(inet_twsk(sk)); return NULL; } if (hp->syn && !hp->rst && !hp->ack && !hp->fin) { /* SYN to a TIME_WAIT socket, we'd rather redirect it * to a listener socket if there's one */ struct sock *sk2; sk2 = nf_tproxy_get_sock_v6(net, skb, thoff, tproto, &iph->saddr, nf_tproxy_laddr6(skb, laddr, &iph->daddr), hp->source, lport ? lport : hp->dest, skb->dev, NF_TPROXY_LOOKUP_LISTENER); if (sk2) { nf_tproxy_twsk_deschedule_put(inet_twsk(sk)); sk = sk2; } } return sk; } EXPORT_SYMBOL_GPL(nf_tproxy_handle_time_wait6); struct sock * nf_tproxy_get_sock_v6(struct net *net, struct sk_buff *skb, int thoff, const u8 protocol, const struct in6_addr *saddr, const struct in6_addr *daddr, const __be16 sport, const __be16 dport, const struct net_device *in, const enum nf_tproxy_lookup_t lookup_type) { struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo; struct sock *sk; switch (protocol) { case IPPROTO_TCP: { struct tcphdr _hdr, *hp; hp = skb_header_pointer(skb, thoff, sizeof(struct tcphdr), &_hdr); if (hp == NULL) return NULL; switch (lookup_type) { case NF_TPROXY_LOOKUP_LISTENER: sk = inet6_lookup_listener(net, hinfo, skb, thoff + __tcp_hdrlen(hp), saddr, sport, daddr, ntohs(dport), in->ifindex, 0); if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; /* NOTE: we return listeners even if bound to * 0.0.0.0, those are filtered out in * xt_socket, since xt_TPROXY needs 0 bound * listeners too */ break; case NF_TPROXY_LOOKUP_ESTABLISHED: sk = __inet6_lookup_established(net, hinfo, saddr, sport, daddr, ntohs(dport), in->ifindex, 0); break; default: BUG(); } break; } case IPPROTO_UDP: sk = udp6_lib_lookup(net, saddr, sport, daddr, dport, in->ifindex); if (sk) { int connected = (sk->sk_state == TCP_ESTABLISHED); int wildcard = ipv6_addr_any(&sk->sk_v6_rcv_saddr); /* NOTE: we return listeners even if bound to * 0.0.0.0, those are filtered out in * xt_socket, since xt_TPROXY needs 0 bound * listeners too */ if ((lookup_type == NF_TPROXY_LOOKUP_ESTABLISHED && (!connected || wildcard)) || (lookup_type == NF_TPROXY_LOOKUP_LISTENER && connected)) { sock_put(sk); sk = NULL; } } break; default: WARN_ON(1); sk = NULL; } pr_debug("tproxy socket lookup: proto %u %pI6:%u -> %pI6:%u, lookup type: %d, sock %p\n", protocol, saddr, ntohs(sport), daddr, ntohs(dport), lookup_type, sk); return sk; } EXPORT_SYMBOL_GPL(nf_tproxy_get_sock_v6); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Balazs Scheidler, Krisztian Kovacs"); MODULE_DESCRIPTION("Netfilter IPv6 transparent proxy support");
linux-master
net/ipv6/netfilter/nf_tproxy_ipv6.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011 Florian Westphal <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/route.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <linux/netfilter/xt_rpfilter.h> #include <linux/netfilter/x_tables.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Florian Westphal <[email protected]>"); MODULE_DESCRIPTION("Xtables: IPv6 reverse path filter match"); static bool rpfilter_addr_unicast(const struct in6_addr *addr) { int addr_type = ipv6_addr_type(addr); return addr_type & IPV6_ADDR_UNICAST; } static bool rpfilter_addr_linklocal(const struct in6_addr *addr) { int addr_type = ipv6_addr_type(addr); return addr_type & IPV6_ADDR_LINKLOCAL; } static bool rpfilter_lookup_reverse6(struct net *net, const struct sk_buff *skb, const struct net_device *dev, u8 flags) { struct rt6_info *rt; struct ipv6hdr *iph = ipv6_hdr(skb); bool ret = false; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_l3mdev = l3mdev_master_ifindex_rcu(dev), .flowlabel = (* (__be32 *) iph) & IPV6_FLOWINFO_MASK, .flowi6_proto = iph->nexthdr, .flowi6_uid = sock_net_uid(net, NULL), .daddr = iph->saddr, }; int lookup_flags; if (rpfilter_addr_unicast(&iph->daddr)) { memcpy(&fl6.saddr, &iph->daddr, sizeof(struct in6_addr)); lookup_flags = RT6_LOOKUP_F_HAS_SADDR; } else { lookup_flags = 0; } fl6.flowi6_mark = flags & XT_RPFILTER_VALID_MARK ? skb->mark : 0; if (rpfilter_addr_linklocal(&iph->saddr)) { lookup_flags |= RT6_LOOKUP_F_IFACE; fl6.flowi6_oif = dev->ifindex; } else if ((flags & XT_RPFILTER_LOOSE) == 0) fl6.flowi6_oif = dev->ifindex; rt = (void *)ip6_route_lookup(net, &fl6, skb, lookup_flags); if (rt->dst.error) goto out; if (rt->rt6i_flags & (RTF_REJECT|RTF_ANYCAST)) goto out; if (rt->rt6i_flags & RTF_LOCAL) { ret = flags & XT_RPFILTER_ACCEPT_LOCAL; goto out; } if (rt->rt6i_idev->dev == dev || l3mdev_master_ifindex_rcu(rt->rt6i_idev->dev) == dev->ifindex || (flags & XT_RPFILTER_LOOSE)) ret = true; out: ip6_rt_put(rt); return ret; } static bool rpfilter_is_loopback(const struct sk_buff *skb, const struct net_device *in) { return skb->pkt_type == PACKET_LOOPBACK || in->flags & IFF_LOOPBACK; } static bool rpfilter_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_rpfilter_info *info = par->matchinfo; int saddrtype; struct ipv6hdr *iph; bool invert = info->flags & XT_RPFILTER_INVERT; if (rpfilter_is_loopback(skb, xt_in(par))) return true ^ invert; iph = ipv6_hdr(skb); saddrtype = ipv6_addr_type(&iph->saddr); if (unlikely(saddrtype == IPV6_ADDR_ANY)) return true ^ invert; /* not routable: forward path will drop it */ return rpfilter_lookup_reverse6(xt_net(par), skb, xt_in(par), info->flags) ^ invert; } static int rpfilter_check(const struct xt_mtchk_param *par) { const struct xt_rpfilter_info *info = par->matchinfo; unsigned int options = ~XT_RPFILTER_OPTION_MASK; if (info->flags & options) { pr_info_ratelimited("unknown options\n"); return -EINVAL; } if (strcmp(par->table, "mangle") != 0 && strcmp(par->table, "raw") != 0) { pr_info_ratelimited("only valid in \'raw\' or \'mangle\' table, not \'%s\'\n", par->table); return -EINVAL; } return 0; } static struct xt_match rpfilter_mt_reg __read_mostly = { .name = "rpfilter", .family = NFPROTO_IPV6, .checkentry = rpfilter_check, .match = rpfilter_mt, .matchsize = sizeof(struct xt_rpfilter_info), .hooks = (1 << NF_INET_PRE_ROUTING), .me = THIS_MODULE }; static int __init rpfilter_mt_init(void) { return xt_register_match(&rpfilter_mt_reg); } static void __exit rpfilter_mt_exit(void) { xt_unregister_match(&rpfilter_mt_reg); } module_init(rpfilter_mt_init); module_exit(rpfilter_mt_exit);
linux-master
net/ipv6/netfilter/ip6t_rpfilter.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013 Patrick McHardy <[email protected]> */ #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter/xt_SYNPROXY.h> #include <net/netfilter/nf_synproxy.h> static unsigned int synproxy_tg6(struct sk_buff *skb, const struct xt_action_param *par) { const struct xt_synproxy_info *info = par->targinfo; struct net *net = xt_net(par); struct synproxy_net *snet = synproxy_pernet(net); struct synproxy_options opts = {}; struct tcphdr *th, _th; if (nf_ip6_checksum(skb, xt_hooknum(par), par->thoff, IPPROTO_TCP)) return NF_DROP; th = skb_header_pointer(skb, par->thoff, sizeof(_th), &_th); if (th == NULL) return NF_DROP; if (!synproxy_parse_options(skb, par->thoff, th, &opts)) return NF_DROP; if (th->syn && !(th->ack || th->fin || th->rst)) { /* Initial SYN from client */ this_cpu_inc(snet->stats->syn_received); if (th->ece && th->cwr) opts.options |= XT_SYNPROXY_OPT_ECN; opts.options &= info->options; opts.mss_encode = opts.mss_option; opts.mss_option = info->mss; if (opts.options & XT_SYNPROXY_OPT_TIMESTAMP) synproxy_init_timestamp_cookie(info, &opts); else opts.options &= ~(XT_SYNPROXY_OPT_WSCALE | XT_SYNPROXY_OPT_SACK_PERM | XT_SYNPROXY_OPT_ECN); synproxy_send_client_synack_ipv6(net, skb, th, &opts); consume_skb(skb); return NF_STOLEN; } else if (th->ack && !(th->fin || th->rst || th->syn)) { /* ACK from client */ if (synproxy_recv_client_ack_ipv6(net, skb, th, &opts, ntohl(th->seq))) { consume_skb(skb); return NF_STOLEN; } else { return NF_DROP; } } return XT_CONTINUE; } static int synproxy_tg6_check(const struct xt_tgchk_param *par) { struct synproxy_net *snet = synproxy_pernet(par->net); const struct ip6t_entry *e = par->entryinfo; int err; if (!(e->ipv6.flags & IP6T_F_PROTO) || e->ipv6.proto != IPPROTO_TCP || e->ipv6.invflags & XT_INV_PROTO) return -EINVAL; err = nf_ct_netns_get(par->net, par->family); if (err) return err; err = nf_synproxy_ipv6_init(snet, par->net); if (err) { nf_ct_netns_put(par->net, par->family); return err; } return err; } static void synproxy_tg6_destroy(const struct xt_tgdtor_param *par) { struct synproxy_net *snet = synproxy_pernet(par->net); nf_synproxy_ipv6_fini(snet, par->net); nf_ct_netns_put(par->net, par->family); } static struct xt_target synproxy_tg6_reg __read_mostly = { .name = "SYNPROXY", .family = NFPROTO_IPV6, .hooks = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD), .target = synproxy_tg6, .targetsize = sizeof(struct xt_synproxy_info), .checkentry = synproxy_tg6_check, .destroy = synproxy_tg6_destroy, .me = THIS_MODULE, }; static int __init synproxy_tg6_init(void) { return xt_register_target(&synproxy_tg6_reg); } static void __exit synproxy_tg6_exit(void) { xt_unregister_target(&synproxy_tg6_reg); } module_init(synproxy_tg6_init); module_exit(synproxy_tg6_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <[email protected]>"); MODULE_DESCRIPTION("Intercept IPv6 TCP connections and establish them using syncookies");
linux-master
net/ipv6/netfilter/ip6t_SYNPROXY.c
// SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team <[email protected]> */ #include <linux/types.h> #include <linux/ipv6.h> #include <linux/in6.h> #include <linux/netfilter.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/icmp.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <net/ipv6_frag.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_bridge.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> #endif #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> static DEFINE_MUTEX(defrag6_mutex); static enum ip6_defrag_users nf_ct6_defrag_user(unsigned int hooknum, struct sk_buff *skb) { u16 zone_id = NF_CT_DEFAULT_ZONE_ID; #if IS_ENABLED(CONFIG_NF_CONNTRACK) if (skb_nfct(skb)) { enum ip_conntrack_info ctinfo; const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); zone_id = nf_ct_zone_id(nf_ct_zone(ct), CTINFO2DIR(ctinfo)); } #endif if (nf_bridge_in_prerouting(skb)) return IP6_DEFRAG_CONNTRACK_BRIDGE_IN + zone_id; if (hooknum == NF_INET_PRE_ROUTING) return IP6_DEFRAG_CONNTRACK_IN + zone_id; else return IP6_DEFRAG_CONNTRACK_OUT + zone_id; } static unsigned int ipv6_defrag(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { int err; #if IS_ENABLED(CONFIG_NF_CONNTRACK) /* Previously seen (loopback)? */ if (skb_nfct(skb) && !nf_ct_is_template((struct nf_conn *)skb_nfct(skb))) return NF_ACCEPT; if (skb->_nfct == IP_CT_UNTRACKED) return NF_ACCEPT; #endif err = nf_ct_frag6_gather(state->net, skb, nf_ct6_defrag_user(state->hook, skb)); /* queued */ if (err == -EINPROGRESS) return NF_STOLEN; return err == 0 ? NF_ACCEPT : NF_DROP; } static const struct nf_hook_ops ipv6_defrag_ops[] = { { .hook = ipv6_defrag, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_CONNTRACK_DEFRAG, }, { .hook = ipv6_defrag, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_CONNTRACK_DEFRAG, }, }; static void __net_exit defrag6_net_exit(struct net *net) { if (net->nf.defrag_ipv6_users) { nf_unregister_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); net->nf.defrag_ipv6_users = 0; } } static const struct nf_defrag_hook defrag_hook = { .owner = THIS_MODULE, .enable = nf_defrag_ipv6_enable, .disable = nf_defrag_ipv6_disable, }; static struct pernet_operations defrag6_net_ops = { .exit = defrag6_net_exit, }; static int __init nf_defrag_init(void) { int ret = 0; ret = nf_ct_frag6_init(); if (ret < 0) { pr_err("nf_defrag_ipv6: can't initialize frag6.\n"); return ret; } ret = register_pernet_subsys(&defrag6_net_ops); if (ret < 0) { pr_err("nf_defrag_ipv6: can't register pernet ops\n"); goto cleanup_frag6; } rcu_assign_pointer(nf_defrag_v6_hook, &defrag_hook); return ret; cleanup_frag6: nf_ct_frag6_cleanup(); return ret; } static void __exit nf_defrag_fini(void) { rcu_assign_pointer(nf_defrag_v6_hook, NULL); unregister_pernet_subsys(&defrag6_net_ops); nf_ct_frag6_cleanup(); } int nf_defrag_ipv6_enable(struct net *net) { int err = 0; mutex_lock(&defrag6_mutex); if (net->nf.defrag_ipv6_users == UINT_MAX) { err = -EOVERFLOW; goto out_unlock; } if (net->nf.defrag_ipv6_users) { net->nf.defrag_ipv6_users++; goto out_unlock; } err = nf_register_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); if (err == 0) net->nf.defrag_ipv6_users = 1; out_unlock: mutex_unlock(&defrag6_mutex); return err; } EXPORT_SYMBOL_GPL(nf_defrag_ipv6_enable); void nf_defrag_ipv6_disable(struct net *net) { mutex_lock(&defrag6_mutex); if (net->nf.defrag_ipv6_users) { net->nf.defrag_ipv6_users--; if (net->nf.defrag_ipv6_users == 0) nf_unregister_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); } mutex_unlock(&defrag6_mutex); } EXPORT_SYMBOL_GPL(nf_defrag_ipv6_disable); module_init(nf_defrag_init); module_exit(nf_defrag_fini); MODULE_LICENSE("GPL");
linux-master
net/ipv6/netfilter/nf_defrag_ipv6_hooks.c
// SPDX-License-Identifier: GPL-2.0-only /* * This is the 1999 rewrite of IP Firewalling, aiming for kernel 2.3.x. * * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2004 Netfilter Core Team <[email protected]> */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/slab.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Netfilter Core Team <[email protected]>"); MODULE_DESCRIPTION("ip6tables filter table"); #define FILTER_VALID_HOOKS ((1 << NF_INET_LOCAL_IN) | \ (1 << NF_INET_FORWARD) | \ (1 << NF_INET_LOCAL_OUT)) static const struct xt_table packet_filter = { .name = "filter", .valid_hooks = FILTER_VALID_HOOKS, .me = THIS_MODULE, .af = NFPROTO_IPV6, .priority = NF_IP6_PRI_FILTER, }; static struct nf_hook_ops *filter_ops __read_mostly; /* Default to forward because I got too much mail already. */ static bool forward = true; module_param(forward, bool, 0000); static int ip6table_filter_table_init(struct net *net) { struct ip6t_replace *repl; int err; repl = ip6t_alloc_initial_table(&packet_filter); if (repl == NULL) return -ENOMEM; /* Entry 1 is the FORWARD hook */ ((struct ip6t_standard *)repl->entries)[1].target.verdict = forward ? -NF_ACCEPT - 1 : -NF_DROP - 1; err = ip6t_register_table(net, &packet_filter, repl, filter_ops); kfree(repl); return err; } static int __net_init ip6table_filter_net_init(struct net *net) { if (!forward) return ip6table_filter_table_init(net); return 0; } static void __net_exit ip6table_filter_net_pre_exit(struct net *net) { ip6t_unregister_table_pre_exit(net, "filter"); } static void __net_exit ip6table_filter_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "filter"); } static struct pernet_operations ip6table_filter_net_ops = { .init = ip6table_filter_net_init, .pre_exit = ip6table_filter_net_pre_exit, .exit = ip6table_filter_net_exit, }; static int __init ip6table_filter_init(void) { int ret = xt_register_template(&packet_filter, ip6table_filter_table_init); if (ret < 0) return ret; filter_ops = xt_hook_ops_alloc(&packet_filter, ip6t_do_table); if (IS_ERR(filter_ops)) { xt_unregister_template(&packet_filter); return PTR_ERR(filter_ops); } ret = register_pernet_subsys(&ip6table_filter_net_ops); if (ret < 0) { xt_unregister_template(&packet_filter); kfree(filter_ops); return ret; } return ret; } static void __exit ip6table_filter_fini(void) { unregister_pernet_subsys(&ip6table_filter_net_ops); xt_unregister_template(&packet_filter); kfree(filter_ops); } module_init(ip6table_filter_init); module_exit(ip6table_filter_fini);
linux-master
net/ipv6/netfilter/ip6table_filter.c
// SPDX-License-Identifier: GPL-2.0-only /* Kernel module to match ROUTING parameters. */ /* (C) 2001-2002 Andras Kis-Szabo <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ipv6.h> #include <linux/types.h> #include <net/checksum.h> #include <net/ipv6.h> #include <asm/byteorder.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/netfilter_ipv6/ip6t_rt.h> MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Xtables: IPv6 Routing Header match"); MODULE_AUTHOR("Andras Kis-Szabo <[email protected]>"); /* Returns 1 if the id is matched by the range, 0 otherwise */ static inline bool segsleft_match(u_int32_t min, u_int32_t max, u_int32_t id, bool invert) { return (id >= min && id <= max) ^ invert; } static bool rt_mt6(const struct sk_buff *skb, struct xt_action_param *par) { struct ipv6_rt_hdr _route; const struct ipv6_rt_hdr *rh; const struct ip6t_rt *rtinfo = par->matchinfo; unsigned int temp; unsigned int ptr = 0; unsigned int hdrlen = 0; bool ret = false; struct in6_addr _addr; const struct in6_addr *ap; int err; err = ipv6_find_hdr(skb, &ptr, NEXTHDR_ROUTING, NULL, NULL); if (err < 0) { if (err != -ENOENT) par->hotdrop = true; return false; } rh = skb_header_pointer(skb, ptr, sizeof(_route), &_route); if (rh == NULL) { par->hotdrop = true; return false; } hdrlen = ipv6_optlen(rh); if (skb->len - ptr < hdrlen) { /* Pcket smaller than its length field */ return false; } ret = (segsleft_match(rtinfo->segsleft[0], rtinfo->segsleft[1], rh->segments_left, !!(rtinfo->invflags & IP6T_RT_INV_SGS))) && (!(rtinfo->flags & IP6T_RT_LEN) || ((rtinfo->hdrlen == hdrlen) ^ !!(rtinfo->invflags & IP6T_RT_INV_LEN))) && (!(rtinfo->flags & IP6T_RT_TYP) || ((rtinfo->rt_type == rh->type) ^ !!(rtinfo->invflags & IP6T_RT_INV_TYP))); if (ret && (rtinfo->flags & IP6T_RT_RES)) { const u_int32_t *rp; u_int32_t _reserved; rp = skb_header_pointer(skb, ptr + offsetof(struct rt0_hdr, reserved), sizeof(_reserved), &_reserved); if (!rp) { par->hotdrop = true; return false; } ret = (*rp == 0); } if (!(rtinfo->flags & IP6T_RT_FST)) { return ret; } else if (rtinfo->flags & IP6T_RT_FST_NSTRICT) { if (rtinfo->addrnr > (unsigned int)((hdrlen - 8) / 16)) { return false; } else { unsigned int i = 0; for (temp = 0; temp < (unsigned int)((hdrlen - 8) / 16); temp++) { ap = skb_header_pointer(skb, ptr + sizeof(struct rt0_hdr) + temp * sizeof(_addr), sizeof(_addr), &_addr); if (ap == NULL) { par->hotdrop = true; return false; } if (ipv6_addr_equal(ap, &rtinfo->addrs[i])) i++; if (i == rtinfo->addrnr) break; } if (i == rtinfo->addrnr) return ret; else return false; } } else { if (rtinfo->addrnr > (unsigned int)((hdrlen - 8) / 16)) { return false; } else { for (temp = 0; temp < rtinfo->addrnr; temp++) { ap = skb_header_pointer(skb, ptr + sizeof(struct rt0_hdr) + temp * sizeof(_addr), sizeof(_addr), &_addr); if (ap == NULL) { par->hotdrop = true; return false; } if (!ipv6_addr_equal(ap, &rtinfo->addrs[temp])) break; } if (temp == rtinfo->addrnr && temp == (unsigned int)((hdrlen - 8) / 16)) return ret; else return false; } } return false; } static int rt_mt6_check(const struct xt_mtchk_param *par) { const struct ip6t_rt *rtinfo = par->matchinfo; if (rtinfo->invflags & ~IP6T_RT_INV_MASK) { pr_debug("unknown flags %X\n", rtinfo->invflags); return -EINVAL; } if ((rtinfo->flags & (IP6T_RT_RES | IP6T_RT_FST_MASK)) && (!(rtinfo->flags & IP6T_RT_TYP) || (rtinfo->rt_type != 0) || (rtinfo->invflags & IP6T_RT_INV_TYP))) { pr_debug("`--rt-type 0' required before `--rt-0-*'"); return -EINVAL; } return 0; } static struct xt_match rt_mt6_reg __read_mostly = { .name = "rt", .family = NFPROTO_IPV6, .match = rt_mt6, .matchsize = sizeof(struct ip6t_rt), .checkentry = rt_mt6_check, .me = THIS_MODULE, }; static int __init rt_mt6_init(void) { return xt_register_match(&rt_mt6_reg); } static void __exit rt_mt6_exit(void) { xt_unregister_match(&rt_mt6_reg); } module_init(rt_mt6_init); module_exit(rt_mt6_exit);
linux-master
net/ipv6/netfilter/ip6t_rt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011 Patrick McHardy <[email protected]> * * Based on Rusty Russell's IPv4 NAT code. Development of IPv6 NAT * funded by Astaro. */ #include <linux/module.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include <net/netfilter/nf_nat.h> struct ip6table_nat_pernet { struct nf_hook_ops *nf_nat_ops; }; static unsigned int ip6table_nat_net_id __read_mostly; static const struct xt_table nf_nat_ipv6_table = { .name = "nat", .valid_hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_POST_ROUTING) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_LOCAL_IN), .me = THIS_MODULE, .af = NFPROTO_IPV6, }; static const struct nf_hook_ops nf_nat_ipv6_ops[] = { { .hook = ip6t_do_table, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_NAT_DST, }, { .hook = ip6t_do_table, .pf = NFPROTO_IPV6, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP6_PRI_NAT_SRC, }, { .hook = ip6t_do_table, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_NAT_DST, }, { .hook = ip6t_do_table, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = NF_IP6_PRI_NAT_SRC, }, }; static int ip6t_nat_register_lookups(struct net *net) { struct ip6table_nat_pernet *xt_nat_net; struct nf_hook_ops *ops; struct xt_table *table; int i, ret; table = xt_find_table(net, NFPROTO_IPV6, "nat"); if (WARN_ON_ONCE(!table)) return -ENOENT; xt_nat_net = net_generic(net, ip6table_nat_net_id); ops = kmemdup(nf_nat_ipv6_ops, sizeof(nf_nat_ipv6_ops), GFP_KERNEL); if (!ops) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(nf_nat_ipv6_ops); i++) { ops[i].priv = table; ret = nf_nat_ipv6_register_fn(net, &ops[i]); if (ret) { while (i) nf_nat_ipv6_unregister_fn(net, &ops[--i]); kfree(ops); return ret; } } xt_nat_net->nf_nat_ops = ops; return 0; } static void ip6t_nat_unregister_lookups(struct net *net) { struct ip6table_nat_pernet *xt_nat_net = net_generic(net, ip6table_nat_net_id); struct nf_hook_ops *ops = xt_nat_net->nf_nat_ops; int i; if (!ops) return; for (i = 0; i < ARRAY_SIZE(nf_nat_ipv6_ops); i++) nf_nat_ipv6_unregister_fn(net, &ops[i]); kfree(ops); } static int ip6table_nat_table_init(struct net *net) { struct ip6t_replace *repl; int ret; repl = ip6t_alloc_initial_table(&nf_nat_ipv6_table); if (repl == NULL) return -ENOMEM; ret = ip6t_register_table(net, &nf_nat_ipv6_table, repl, NULL); if (ret < 0) { kfree(repl); return ret; } ret = ip6t_nat_register_lookups(net); if (ret < 0) ip6t_unregister_table_exit(net, "nat"); kfree(repl); return ret; } static void __net_exit ip6table_nat_net_pre_exit(struct net *net) { ip6t_nat_unregister_lookups(net); } static void __net_exit ip6table_nat_net_exit(struct net *net) { ip6t_unregister_table_exit(net, "nat"); } static struct pernet_operations ip6table_nat_net_ops = { .pre_exit = ip6table_nat_net_pre_exit, .exit = ip6table_nat_net_exit, .id = &ip6table_nat_net_id, .size = sizeof(struct ip6table_nat_pernet), }; static int __init ip6table_nat_init(void) { int ret = xt_register_template(&nf_nat_ipv6_table, ip6table_nat_table_init); if (ret < 0) return ret; ret = register_pernet_subsys(&ip6table_nat_net_ops); if (ret) xt_unregister_template(&nf_nat_ipv6_table); return ret; } static void __exit ip6table_nat_exit(void) { unregister_pernet_subsys(&ip6table_nat_net_ops); xt_unregister_template(&nf_nat_ipv6_table); } module_init(ip6table_nat_init); module_exit(ip6table_nat_exit); MODULE_LICENSE("GPL");
linux-master
net/ipv6/netfilter/ip6table_nat.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2006, Johannes Berg <[email protected]> */ /* just for IFNAMSIZ */ #include <linux/if.h> #include <linux/slab.h> #include <linux/export.h> #include "led.h" void ieee80211_led_assoc(struct ieee80211_local *local, bool associated) { if (!atomic_read(&local->assoc_led_active)) return; if (associated) led_trigger_event(&local->assoc_led, LED_FULL); else led_trigger_event(&local->assoc_led, LED_OFF); } void ieee80211_led_radio(struct ieee80211_local *local, bool enabled) { if (!atomic_read(&local->radio_led_active)) return; if (enabled) led_trigger_event(&local->radio_led, LED_FULL); else led_trigger_event(&local->radio_led, LED_OFF); } void ieee80211_alloc_led_names(struct ieee80211_local *local) { local->rx_led.name = kasprintf(GFP_KERNEL, "%srx", wiphy_name(local->hw.wiphy)); local->tx_led.name = kasprintf(GFP_KERNEL, "%stx", wiphy_name(local->hw.wiphy)); local->assoc_led.name = kasprintf(GFP_KERNEL, "%sassoc", wiphy_name(local->hw.wiphy)); local->radio_led.name = kasprintf(GFP_KERNEL, "%sradio", wiphy_name(local->hw.wiphy)); } void ieee80211_free_led_names(struct ieee80211_local *local) { kfree(local->rx_led.name); kfree(local->tx_led.name); kfree(local->assoc_led.name); kfree(local->radio_led.name); } static int ieee80211_tx_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tx_led); atomic_inc(&local->tx_led_active); return 0; } static void ieee80211_tx_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tx_led); atomic_dec(&local->tx_led_active); } static int ieee80211_rx_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, rx_led); atomic_inc(&local->rx_led_active); return 0; } static void ieee80211_rx_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, rx_led); atomic_dec(&local->rx_led_active); } static int ieee80211_assoc_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, assoc_led); atomic_inc(&local->assoc_led_active); return 0; } static void ieee80211_assoc_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, assoc_led); atomic_dec(&local->assoc_led_active); } static int ieee80211_radio_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, radio_led); atomic_inc(&local->radio_led_active); return 0; } static void ieee80211_radio_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, radio_led); atomic_dec(&local->radio_led_active); } static int ieee80211_tpt_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tpt_led); atomic_inc(&local->tpt_led_active); return 0; } static void ieee80211_tpt_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tpt_led); atomic_dec(&local->tpt_led_active); } void ieee80211_led_init(struct ieee80211_local *local) { atomic_set(&local->rx_led_active, 0); local->rx_led.activate = ieee80211_rx_led_activate; local->rx_led.deactivate = ieee80211_rx_led_deactivate; if (local->rx_led.name && led_trigger_register(&local->rx_led)) { kfree(local->rx_led.name); local->rx_led.name = NULL; } atomic_set(&local->tx_led_active, 0); local->tx_led.activate = ieee80211_tx_led_activate; local->tx_led.deactivate = ieee80211_tx_led_deactivate; if (local->tx_led.name && led_trigger_register(&local->tx_led)) { kfree(local->tx_led.name); local->tx_led.name = NULL; } atomic_set(&local->assoc_led_active, 0); local->assoc_led.activate = ieee80211_assoc_led_activate; local->assoc_led.deactivate = ieee80211_assoc_led_deactivate; if (local->assoc_led.name && led_trigger_register(&local->assoc_led)) { kfree(local->assoc_led.name); local->assoc_led.name = NULL; } atomic_set(&local->radio_led_active, 0); local->radio_led.activate = ieee80211_radio_led_activate; local->radio_led.deactivate = ieee80211_radio_led_deactivate; if (local->radio_led.name && led_trigger_register(&local->radio_led)) { kfree(local->radio_led.name); local->radio_led.name = NULL; } atomic_set(&local->tpt_led_active, 0); if (local->tpt_led_trigger) { local->tpt_led.activate = ieee80211_tpt_led_activate; local->tpt_led.deactivate = ieee80211_tpt_led_deactivate; if (led_trigger_register(&local->tpt_led)) { kfree(local->tpt_led_trigger); local->tpt_led_trigger = NULL; } } } void ieee80211_led_exit(struct ieee80211_local *local) { if (local->radio_led.name) led_trigger_unregister(&local->radio_led); if (local->assoc_led.name) led_trigger_unregister(&local->assoc_led); if (local->tx_led.name) led_trigger_unregister(&local->tx_led); if (local->rx_led.name) led_trigger_unregister(&local->rx_led); if (local->tpt_led_trigger) { led_trigger_unregister(&local->tpt_led); kfree(local->tpt_led_trigger); } } const char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->radio_led.name; } EXPORT_SYMBOL(__ieee80211_get_radio_led_name); const char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->assoc_led.name; } EXPORT_SYMBOL(__ieee80211_get_assoc_led_name); const char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->tx_led.name; } EXPORT_SYMBOL(__ieee80211_get_tx_led_name); const char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->rx_led.name; } EXPORT_SYMBOL(__ieee80211_get_rx_led_name); static unsigned long tpt_trig_traffic(struct ieee80211_local *local, struct tpt_led_trigger *tpt_trig) { unsigned long traffic, delta; traffic = tpt_trig->tx_bytes + tpt_trig->rx_bytes; delta = traffic - tpt_trig->prev_traffic; tpt_trig->prev_traffic = traffic; return DIV_ROUND_UP(delta, 1024 / 8); } static void tpt_trig_timer(struct timer_list *t) { struct tpt_led_trigger *tpt_trig = from_timer(tpt_trig, t, timer); struct ieee80211_local *local = tpt_trig->local; unsigned long on, off, tpt; int i; if (!tpt_trig->running) return; mod_timer(&tpt_trig->timer, round_jiffies(jiffies + HZ)); tpt = tpt_trig_traffic(local, tpt_trig); /* default to just solid on */ on = 1; off = 0; for (i = tpt_trig->blink_table_len - 1; i >= 0; i--) { if (tpt_trig->blink_table[i].throughput < 0 || tpt > tpt_trig->blink_table[i].throughput) { off = tpt_trig->blink_table[i].blink_time / 2; on = tpt_trig->blink_table[i].blink_time - off; break; } } led_trigger_blink(&local->tpt_led, on, off); } const char * __ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, const struct ieee80211_tpt_blink *blink_table, unsigned int blink_table_len) { struct ieee80211_local *local = hw_to_local(hw); struct tpt_led_trigger *tpt_trig; if (WARN_ON(local->tpt_led_trigger)) return NULL; tpt_trig = kzalloc(sizeof(struct tpt_led_trigger), GFP_KERNEL); if (!tpt_trig) return NULL; snprintf(tpt_trig->name, sizeof(tpt_trig->name), "%stpt", wiphy_name(local->hw.wiphy)); local->tpt_led.name = tpt_trig->name; tpt_trig->blink_table = blink_table; tpt_trig->blink_table_len = blink_table_len; tpt_trig->want = flags; tpt_trig->local = local; timer_setup(&tpt_trig->timer, tpt_trig_timer, 0); local->tpt_led_trigger = tpt_trig; return tpt_trig->name; } EXPORT_SYMBOL(__ieee80211_create_tpt_led_trigger); static void ieee80211_start_tpt_led_trig(struct ieee80211_local *local) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; if (tpt_trig->running) return; /* reset traffic */ tpt_trig_traffic(local, tpt_trig); tpt_trig->running = true; tpt_trig_timer(&tpt_trig->timer); mod_timer(&tpt_trig->timer, round_jiffies(jiffies + HZ)); } static void ieee80211_stop_tpt_led_trig(struct ieee80211_local *local) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; if (!tpt_trig->running) return; tpt_trig->running = false; del_timer_sync(&tpt_trig->timer); led_trigger_event(&local->tpt_led, LED_OFF); } void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; bool allowed; WARN_ON(types_on & types_off); if (!tpt_trig) return; tpt_trig->active &= ~types_off; tpt_trig->active |= types_on; /* * Regardless of wanted state, we shouldn't blink when * the radio is disabled -- this can happen due to some * code ordering issues with __ieee80211_recalc_idle() * being called before the radio is started. */ allowed = tpt_trig->active & IEEE80211_TPT_LEDTRIG_FL_RADIO; if (!allowed || !(tpt_trig->active & tpt_trig->want)) ieee80211_stop_tpt_led_trig(local); else ieee80211_start_tpt_led_trig(local); }
linux-master
net/mac80211/led.c
// SPDX-License-Identifier: GPL-2.0-only /* * HE handling * * Copyright(c) 2017 Intel Deutschland GmbH * Copyright(c) 2019 - 2023 Intel Corporation */ #include "ieee80211_i.h" static void ieee80211_update_from_he_6ghz_capa(const struct ieee80211_he_6ghz_capa *he_6ghz_capa, struct link_sta_info *link_sta) { struct sta_info *sta = link_sta->sta; enum ieee80211_smps_mode smps_mode; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { switch (le16_get_bits(he_6ghz_capa->capa, IEEE80211_HE_6GHZ_CAP_SM_PS)) { case WLAN_HT_CAP_SM_PS_INVALID: case WLAN_HT_CAP_SM_PS_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_CAP_SM_PS_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; case WLAN_HT_CAP_SM_PS_DISABLED: smps_mode = IEEE80211_SMPS_OFF; break; } link_sta->pub->smps_mode = smps_mode; } else { link_sta->pub->smps_mode = IEEE80211_SMPS_OFF; } switch (le16_get_bits(he_6ghz_capa->capa, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN)) { case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_11454; break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_7991; break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895: default: link_sta->pub->agg.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_VHT_3895; break; } ieee80211_sta_recalc_aggregates(&sta->sta); link_sta->pub->he_6ghz_capa = *he_6ghz_capa; } static void ieee80211_he_mcs_disable(__le16 *he_mcs) { u32 i; for (i = 0; i < 8; i++) *he_mcs |= cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2); } static void ieee80211_he_mcs_intersection(__le16 *he_own_rx, __le16 *he_peer_rx, __le16 *he_own_tx, __le16 *he_peer_tx) { u32 i; u16 own_rx, own_tx, peer_rx, peer_tx; for (i = 0; i < 8; i++) { own_rx = le16_to_cpu(*he_own_rx); own_rx = (own_rx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED; own_tx = le16_to_cpu(*he_own_tx); own_tx = (own_tx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED; peer_rx = le16_to_cpu(*he_peer_rx); peer_rx = (peer_rx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED; peer_tx = le16_to_cpu(*he_peer_tx); peer_tx = (peer_tx >> i * 2) & IEEE80211_HE_MCS_NOT_SUPPORTED; if (peer_tx != IEEE80211_HE_MCS_NOT_SUPPORTED) { if (own_rx == IEEE80211_HE_MCS_NOT_SUPPORTED) peer_tx = IEEE80211_HE_MCS_NOT_SUPPORTED; else if (own_rx < peer_tx) peer_tx = own_rx; } if (peer_rx != IEEE80211_HE_MCS_NOT_SUPPORTED) { if (own_tx == IEEE80211_HE_MCS_NOT_SUPPORTED) peer_rx = IEEE80211_HE_MCS_NOT_SUPPORTED; else if (own_tx < peer_rx) peer_rx = own_tx; } *he_peer_rx &= ~cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2); *he_peer_rx |= cpu_to_le16(peer_rx << i * 2); *he_peer_tx &= ~cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << i * 2); *he_peer_tx |= cpu_to_le16(peer_tx << i * 2); } } void ieee80211_he_cap_ie_to_sta_he_cap(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const u8 *he_cap_ie, u8 he_cap_len, const struct ieee80211_he_6ghz_capa *he_6ghz_capa, struct link_sta_info *link_sta) { struct ieee80211_sta_he_cap *he_cap = &link_sta->pub->he_cap; const struct ieee80211_sta_he_cap *own_he_cap_ptr; struct ieee80211_sta_he_cap own_he_cap; struct ieee80211_he_cap_elem *he_cap_ie_elem = (void *)he_cap_ie; u8 he_ppe_size; u8 mcs_nss_size; u8 he_total_size; bool own_160, peer_160, own_80p80, peer_80p80; memset(he_cap, 0, sizeof(*he_cap)); if (!he_cap_ie) return; own_he_cap_ptr = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (!own_he_cap_ptr) return; own_he_cap = *own_he_cap_ptr; /* Make sure size is OK */ mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap_ie_elem); he_ppe_size = ieee80211_he_ppe_size(he_cap_ie[sizeof(he_cap->he_cap_elem) + mcs_nss_size], he_cap_ie_elem->phy_cap_info); he_total_size = sizeof(he_cap->he_cap_elem) + mcs_nss_size + he_ppe_size; if (he_cap_len < he_total_size) return; memcpy(&he_cap->he_cap_elem, he_cap_ie, sizeof(he_cap->he_cap_elem)); /* HE Tx/Rx HE MCS NSS Support Field */ memcpy(&he_cap->he_mcs_nss_supp, &he_cap_ie[sizeof(he_cap->he_cap_elem)], mcs_nss_size); /* Check if there are (optional) PPE Thresholds */ if (he_cap->he_cap_elem.phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) memcpy(he_cap->ppe_thres, &he_cap_ie[sizeof(he_cap->he_cap_elem) + mcs_nss_size], he_ppe_size); he_cap->has_he = true; link_sta->cur_max_bandwidth = ieee80211_sta_cap_rx_bw(link_sta); link_sta->pub->bandwidth = ieee80211_sta_cur_vht_bw(link_sta); if (sband->band == NL80211_BAND_6GHZ && he_6ghz_capa) ieee80211_update_from_he_6ghz_capa(he_6ghz_capa, link_sta); ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_80, &he_cap->he_mcs_nss_supp.rx_mcs_80, &own_he_cap.he_mcs_nss_supp.tx_mcs_80, &he_cap->he_mcs_nss_supp.tx_mcs_80); own_160 = own_he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; peer_160 = he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (peer_160 && own_160) { ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_160, &he_cap->he_mcs_nss_supp.rx_mcs_160, &own_he_cap.he_mcs_nss_supp.tx_mcs_160, &he_cap->he_mcs_nss_supp.tx_mcs_160); } else if (peer_160 && !own_160) { ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.rx_mcs_160); ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.tx_mcs_160); he_cap->he_cap_elem.phy_cap_info[0] &= ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; } own_80p80 = own_he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; peer_80p80 = he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; if (peer_80p80 && own_80p80) { ieee80211_he_mcs_intersection(&own_he_cap.he_mcs_nss_supp.rx_mcs_80p80, &he_cap->he_mcs_nss_supp.rx_mcs_80p80, &own_he_cap.he_mcs_nss_supp.tx_mcs_80p80, &he_cap->he_mcs_nss_supp.tx_mcs_80p80); } else if (peer_80p80 && !own_80p80) { ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.rx_mcs_80p80); ieee80211_he_mcs_disable(&he_cap->he_mcs_nss_supp.tx_mcs_80p80); he_cap->he_cap_elem.phy_cap_info[0] &= ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; } } void ieee80211_he_op_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_operation *he_op_ie) { memset(&vif->bss_conf.he_oper, 0, sizeof(vif->bss_conf.he_oper)); if (!he_op_ie) return; vif->bss_conf.he_oper.params = __le32_to_cpu(he_op_ie->he_oper_params); vif->bss_conf.he_oper.nss_set = __le16_to_cpu(he_op_ie->he_mcs_nss_set); } void ieee80211_he_spr_ie_to_bss_conf(struct ieee80211_vif *vif, const struct ieee80211_he_spr *he_spr_ie_elem) { struct ieee80211_he_obss_pd *he_obss_pd = &vif->bss_conf.he_obss_pd; const u8 *data; memset(he_obss_pd, 0, sizeof(*he_obss_pd)); if (!he_spr_ie_elem) return; data = he_spr_ie_elem->optional; if (he_spr_ie_elem->he_sr_control & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) data++; if (he_spr_ie_elem->he_sr_control & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) { he_obss_pd->max_offset = *data++; he_obss_pd->min_offset = *data++; he_obss_pd->enable = true; } }
linux-master
net/mac80211/he.c
// SPDX-License-Identifier: GPL-2.0 /* bug in tracepoint.h, it should include this */ #include <linux/module.h> /* sparse isn't too happy with all macros... */ #ifndef __CHECKER__ #include <net/cfg80211.h> #include "driver-ops.h" #include "debug.h" #define CREATE_TRACE_POINTS #include "trace.h" #include "trace_msg.h" #ifdef CONFIG_MAC80211_MESSAGE_TRACING void __sdata_info(const char *fmt, ...) { struct va_format vaf = { .fmt = fmt, }; va_list args; va_start(args, fmt); vaf.va = &args; pr_info("%pV", &vaf); trace_mac80211_info(&vaf); va_end(args); } void __sdata_dbg(bool print, const char *fmt, ...) { struct va_format vaf = { .fmt = fmt, }; va_list args; va_start(args, fmt); vaf.va = &args; if (print) pr_debug("%pV", &vaf); trace_mac80211_dbg(&vaf); va_end(args); } void __sdata_err(const char *fmt, ...) { struct va_format vaf = { .fmt = fmt, }; va_list args; va_start(args, fmt); vaf.va = &args; pr_err("%pV", &vaf); trace_mac80211_err(&vaf); va_end(args); } void __wiphy_dbg(struct wiphy *wiphy, bool print, const char *fmt, ...) { struct va_format vaf = { .fmt = fmt, }; va_list args; va_start(args, fmt); vaf.va = &args; if (print) wiphy_dbg(wiphy, "%pV", &vaf); trace_mac80211_dbg(&vaf); va_end(args); } #endif #endif
linux-master
net/mac80211/trace.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Felix Fietkau <[email protected]> */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/skbuff.h> #include <linux/debugfs.h> #include <linux/ieee80211.h> #include <linux/export.h> #include <net/mac80211.h> #include "rc80211_minstrel_ht.h" struct minstrel_debugfs_info { size_t len; char buf[]; }; static ssize_t minstrel_stats_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct minstrel_debugfs_info *ms; ms = file->private_data; return simple_read_from_buffer(buf, len, ppos, ms->buf, ms->len); } static int minstrel_stats_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } static bool minstrel_ht_is_sample_rate(struct minstrel_ht_sta *mi, int idx) { int type, i; for (type = 0; type < ARRAY_SIZE(mi->sample); type++) for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) if (mi->sample[type].cur_sample_rates[i] == idx) return true; return false; } static char * minstrel_ht_stats_dump(struct minstrel_ht_sta *mi, int i, char *p) { const struct mcs_group *mg; unsigned int j, tp_max, tp_avg, eprob, tx_time; char htmode = '2'; char gimode = 'L'; u32 gflags; if (!mi->supported[i]) return p; mg = &minstrel_mcs_groups[i]; gflags = mg->flags; if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) htmode = '4'; else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) htmode = '8'; if (gflags & IEEE80211_TX_RC_SHORT_GI) gimode = 'S'; for (j = 0; j < MCS_GROUP_RATES; j++) { struct minstrel_rate_stats *mrs = &mi->groups[i].rates[j]; int idx = MI_RATE(i, j); unsigned int duration; if (!(mi->supported[i] & BIT(j))) continue; if (gflags & IEEE80211_TX_RC_MCS) { p += sprintf(p, "HT%c0 ", htmode); p += sprintf(p, "%cGI ", gimode); p += sprintf(p, "%d ", mg->streams); } else if (gflags & IEEE80211_TX_RC_VHT_MCS) { p += sprintf(p, "VHT%c0 ", htmode); p += sprintf(p, "%cGI ", gimode); p += sprintf(p, "%d ", mg->streams); } else if (i == MINSTREL_OFDM_GROUP) { p += sprintf(p, "OFDM "); p += sprintf(p, "1 "); } else { p += sprintf(p, "CCK "); p += sprintf(p, "%cP ", j < 4 ? 'L' : 'S'); p += sprintf(p, "1 "); } *(p++) = (idx == mi->max_tp_rate[0]) ? 'A' : ' '; *(p++) = (idx == mi->max_tp_rate[1]) ? 'B' : ' '; *(p++) = (idx == mi->max_tp_rate[2]) ? 'C' : ' '; *(p++) = (idx == mi->max_tp_rate[3]) ? 'D' : ' '; *(p++) = (idx == mi->max_prob_rate) ? 'P' : ' '; *(p++) = minstrel_ht_is_sample_rate(mi, idx) ? 'S' : ' '; if (gflags & IEEE80211_TX_RC_MCS) { p += sprintf(p, " MCS%-2u", (mg->streams - 1) * 8 + j); } else if (gflags & IEEE80211_TX_RC_VHT_MCS) { p += sprintf(p, " MCS%-1u/%1u", j, mg->streams); } else { int r; if (i == MINSTREL_OFDM_GROUP) r = minstrel_ofdm_bitrates[j % 8]; else r = minstrel_cck_bitrates[j % 4]; p += sprintf(p, " %2u.%1uM", r / 10, r % 10); } p += sprintf(p, " %3u ", idx); /* tx_time[rate(i)] in usec */ duration = mg->duration[j]; duration <<= mg->shift; tx_time = DIV_ROUND_CLOSEST(duration, 1000); p += sprintf(p, "%6u ", tx_time); tp_max = minstrel_ht_get_tp_avg(mi, i, j, MINSTREL_FRAC(100, 100)); tp_avg = minstrel_ht_get_tp_avg(mi, i, j, mrs->prob_avg); eprob = MINSTREL_TRUNC(mrs->prob_avg * 1000); p += sprintf(p, "%4u.%1u %4u.%1u %3u.%1u" " %3u %3u %-3u " "%9llu %-9llu\n", tp_max / 10, tp_max % 10, tp_avg / 10, tp_avg % 10, eprob / 10, eprob % 10, mrs->retry_count, mrs->last_success, mrs->last_attempts, (unsigned long long)mrs->succ_hist, (unsigned long long)mrs->att_hist); } return p; } static int minstrel_ht_stats_open(struct inode *inode, struct file *file) { struct minstrel_ht_sta *mi = inode->i_private; struct minstrel_debugfs_info *ms; unsigned int i; char *p; ms = kmalloc(32768, GFP_KERNEL); if (!ms) return -ENOMEM; file->private_data = ms; p = ms->buf; p += sprintf(p, "\n"); p += sprintf(p, " best ____________rate__________ ____statistics___ _____last____ ______sum-of________\n"); p += sprintf(p, "mode guard # rate [name idx airtime max_tp] [avg(tp) avg(prob)] [retry|suc|att] [#success | #attempts]\n"); p = minstrel_ht_stats_dump(mi, MINSTREL_CCK_GROUP, p); for (i = 0; i < MINSTREL_CCK_GROUP; i++) p = minstrel_ht_stats_dump(mi, i, p); for (i++; i < ARRAY_SIZE(mi->groups); i++) p = minstrel_ht_stats_dump(mi, i, p); p += sprintf(p, "\nTotal packet count:: ideal %d " "lookaround %d\n", max(0, (int) mi->total_packets - (int) mi->sample_packets), mi->sample_packets); if (mi->avg_ampdu_len) p += sprintf(p, "Average # of aggregated frames per A-MPDU: %d.%d\n", MINSTREL_TRUNC(mi->avg_ampdu_len), MINSTREL_TRUNC(mi->avg_ampdu_len * 10) % 10); ms->len = p - ms->buf; WARN_ON(ms->len + sizeof(*ms) > 32768); return nonseekable_open(inode, file); } static const struct file_operations minstrel_ht_stat_fops = { .owner = THIS_MODULE, .open = minstrel_ht_stats_open, .read = minstrel_stats_read, .release = minstrel_stats_release, .llseek = no_llseek, }; static char * minstrel_ht_stats_csv_dump(struct minstrel_ht_sta *mi, int i, char *p) { const struct mcs_group *mg; unsigned int j, tp_max, tp_avg, eprob, tx_time; char htmode = '2'; char gimode = 'L'; u32 gflags; if (!mi->supported[i]) return p; mg = &minstrel_mcs_groups[i]; gflags = mg->flags; if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) htmode = '4'; else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) htmode = '8'; if (gflags & IEEE80211_TX_RC_SHORT_GI) gimode = 'S'; for (j = 0; j < MCS_GROUP_RATES; j++) { struct minstrel_rate_stats *mrs = &mi->groups[i].rates[j]; int idx = MI_RATE(i, j); unsigned int duration; if (!(mi->supported[i] & BIT(j))) continue; if (gflags & IEEE80211_TX_RC_MCS) { p += sprintf(p, "HT%c0,", htmode); p += sprintf(p, "%cGI,", gimode); p += sprintf(p, "%d,", mg->streams); } else if (gflags & IEEE80211_TX_RC_VHT_MCS) { p += sprintf(p, "VHT%c0,", htmode); p += sprintf(p, "%cGI,", gimode); p += sprintf(p, "%d,", mg->streams); } else if (i == MINSTREL_OFDM_GROUP) { p += sprintf(p, "OFDM,,1,"); } else { p += sprintf(p, "CCK,"); p += sprintf(p, "%cP,", j < 4 ? 'L' : 'S'); p += sprintf(p, "1,"); } p += sprintf(p, "%s" ,((idx == mi->max_tp_rate[0]) ? "A" : "")); p += sprintf(p, "%s" ,((idx == mi->max_tp_rate[1]) ? "B" : "")); p += sprintf(p, "%s" ,((idx == mi->max_tp_rate[2]) ? "C" : "")); p += sprintf(p, "%s" ,((idx == mi->max_tp_rate[3]) ? "D" : "")); p += sprintf(p, "%s" ,((idx == mi->max_prob_rate) ? "P" : "")); p += sprintf(p, "%s", (minstrel_ht_is_sample_rate(mi, idx) ? "S" : "")); if (gflags & IEEE80211_TX_RC_MCS) { p += sprintf(p, ",MCS%-2u,", (mg->streams - 1) * 8 + j); } else if (gflags & IEEE80211_TX_RC_VHT_MCS) { p += sprintf(p, ",MCS%-1u/%1u,", j, mg->streams); } else { int r; if (i == MINSTREL_OFDM_GROUP) r = minstrel_ofdm_bitrates[j % 8]; else r = minstrel_cck_bitrates[j % 4]; p += sprintf(p, ",%2u.%1uM,", r / 10, r % 10); } p += sprintf(p, "%u,", idx); duration = mg->duration[j]; duration <<= mg->shift; tx_time = DIV_ROUND_CLOSEST(duration, 1000); p += sprintf(p, "%u,", tx_time); tp_max = minstrel_ht_get_tp_avg(mi, i, j, MINSTREL_FRAC(100, 100)); tp_avg = minstrel_ht_get_tp_avg(mi, i, j, mrs->prob_avg); eprob = MINSTREL_TRUNC(mrs->prob_avg * 1000); p += sprintf(p, "%u.%u,%u.%u,%u.%u,%u,%u," "%u,%llu,%llu,", tp_max / 10, tp_max % 10, tp_avg / 10, tp_avg % 10, eprob / 10, eprob % 10, mrs->retry_count, mrs->last_success, mrs->last_attempts, (unsigned long long)mrs->succ_hist, (unsigned long long)mrs->att_hist); p += sprintf(p, "%d,%d,%d.%d\n", max(0, (int) mi->total_packets - (int) mi->sample_packets), mi->sample_packets, MINSTREL_TRUNC(mi->avg_ampdu_len), MINSTREL_TRUNC(mi->avg_ampdu_len * 10) % 10); } return p; } static int minstrel_ht_stats_csv_open(struct inode *inode, struct file *file) { struct minstrel_ht_sta *mi = inode->i_private; struct minstrel_debugfs_info *ms; unsigned int i; char *p; ms = kmalloc(32768, GFP_KERNEL); if (!ms) return -ENOMEM; file->private_data = ms; p = ms->buf; p = minstrel_ht_stats_csv_dump(mi, MINSTREL_CCK_GROUP, p); for (i = 0; i < MINSTREL_CCK_GROUP; i++) p = minstrel_ht_stats_csv_dump(mi, i, p); for (i++; i < ARRAY_SIZE(mi->groups); i++) p = minstrel_ht_stats_csv_dump(mi, i, p); ms->len = p - ms->buf; WARN_ON(ms->len + sizeof(*ms) > 32768); return nonseekable_open(inode, file); } static const struct file_operations minstrel_ht_stat_csv_fops = { .owner = THIS_MODULE, .open = minstrel_ht_stats_csv_open, .read = minstrel_stats_read, .release = minstrel_stats_release, .llseek = no_llseek, }; void minstrel_ht_add_sta_debugfs(void *priv, void *priv_sta, struct dentry *dir) { debugfs_create_file("rc_stats", 0444, dir, priv_sta, &minstrel_ht_stat_fops); debugfs_create_file("rc_stats_csv", 0444, dir, priv_sta, &minstrel_ht_stat_csv_fops); }
linux-master
net/mac80211/rc80211_minstrel_ht_debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * mac80211 - channel management * Copyright 2020 - 2022 Intel Corporation */ #include <linux/nl80211.h> #include <linux/export.h> #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" static int ieee80211_chanctx_num_assigned(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_link_data *link; int num = 0; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) num++; return num; } static int ieee80211_chanctx_num_reserved(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_link_data *link; int num = 0; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) num++; return num; } int ieee80211_chanctx_refcount(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { return ieee80211_chanctx_num_assigned(local, ctx) + ieee80211_chanctx_num_reserved(local, ctx); } static int ieee80211_num_chanctx(struct ieee80211_local *local) { struct ieee80211_chanctx *ctx; int num = 0; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) num++; return num; } static bool ieee80211_can_create_new_chanctx(struct ieee80211_local *local) { lockdep_assert_held(&local->chanctx_mtx); return ieee80211_num_chanctx(local) < ieee80211_max_num_channels(local); } static struct ieee80211_chanctx * ieee80211_link_get_chanctx(struct ieee80211_link_data *link) { struct ieee80211_local *local __maybe_unused = link->sdata->local; struct ieee80211_chanctx_conf *conf; conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (!conf) return NULL; return container_of(conf, struct ieee80211_chanctx, conf); } static const struct cfg80211_chan_def * ieee80211_chanctx_reserved_chandef(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, const struct cfg80211_chan_def *compat) { struct ieee80211_link_data *link; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) { if (!compat) compat = &link->reserved_chandef; compat = cfg80211_chandef_compatible(&link->reserved_chandef, compat); if (!compat) break; } return compat; } static const struct cfg80211_chan_def * ieee80211_chanctx_non_reserved_chandef(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, const struct cfg80211_chan_def *compat) { struct ieee80211_link_data *link; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { struct ieee80211_bss_conf *link_conf = link->conf; if (link->reserved_chanctx) continue; if (!compat) compat = &link_conf->chandef; compat = cfg80211_chandef_compatible( &link_conf->chandef, compat); if (!compat) break; } return compat; } static const struct cfg80211_chan_def * ieee80211_chanctx_combined_chandef(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, const struct cfg80211_chan_def *compat) { lockdep_assert_held(&local->chanctx_mtx); compat = ieee80211_chanctx_reserved_chandef(local, ctx, compat); if (!compat) return NULL; compat = ieee80211_chanctx_non_reserved_chandef(local, ctx, compat); if (!compat) return NULL; return compat; } static bool ieee80211_chanctx_can_reserve_chandef(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, const struct cfg80211_chan_def *def) { lockdep_assert_held(&local->chanctx_mtx); if (ieee80211_chanctx_combined_chandef(local, ctx, def)) return true; if (!list_empty(&ctx->reserved_links) && ieee80211_chanctx_reserved_chandef(local, ctx, def)) return true; return false; } static struct ieee80211_chanctx * ieee80211_find_reservation_chanctx(struct ieee80211_local *local, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode) { struct ieee80211_chanctx *ctx; lockdep_assert_held(&local->chanctx_mtx); if (mode == IEEE80211_CHANCTX_EXCLUSIVE) return NULL; list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) continue; if (!ieee80211_chanctx_can_reserve_chandef(local, ctx, chandef)) continue; return ctx; } return NULL; } static enum nl80211_chan_width ieee80211_get_sta_bw(struct sta_info *sta, unsigned int link_id) { enum ieee80211_sta_rx_bandwidth width; struct link_sta_info *link_sta; link_sta = rcu_dereference(sta->link[link_id]); /* no effect if this STA has no presence on this link */ if (!link_sta) return NL80211_CHAN_WIDTH_20_NOHT; width = ieee80211_sta_cap_rx_bw(link_sta); switch (width) { case IEEE80211_STA_RX_BW_20: if (link_sta->pub->ht_cap.ht_supported) return NL80211_CHAN_WIDTH_20; else return NL80211_CHAN_WIDTH_20_NOHT; case IEEE80211_STA_RX_BW_40: return NL80211_CHAN_WIDTH_40; case IEEE80211_STA_RX_BW_80: return NL80211_CHAN_WIDTH_80; case IEEE80211_STA_RX_BW_160: /* * This applied for both 160 and 80+80. since we use * the returned value to consider degradation of * ctx->conf.min_def, we have to make sure to take * the bigger one (NL80211_CHAN_WIDTH_160). * Otherwise we might try degrading even when not * needed, as the max required sta_bw returned (80+80) * might be smaller than the configured bw (160). */ return NL80211_CHAN_WIDTH_160; case IEEE80211_STA_RX_BW_320: return NL80211_CHAN_WIDTH_320; default: WARN_ON(1); return NL80211_CHAN_WIDTH_20; } } static enum nl80211_chan_width ieee80211_get_max_required_bw(struct ieee80211_sub_if_data *sdata, unsigned int link_id) { enum nl80211_chan_width max_bw = NL80211_CHAN_WIDTH_20_NOHT; struct sta_info *sta; list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) { if (sdata != sta->sdata && !(sta->sdata->bss && sta->sdata->bss == sdata->bss)) continue; max_bw = max(max_bw, ieee80211_get_sta_bw(sta, link_id)); } return max_bw; } static enum nl80211_chan_width ieee80211_get_chanctx_vif_max_required_bw(struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx, struct ieee80211_link_data *rsvd_for) { enum nl80211_chan_width max_bw = NL80211_CHAN_WIDTH_20_NOHT; struct ieee80211_vif *vif = &sdata->vif; int link_id; rcu_read_lock(); for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { enum nl80211_chan_width width = NL80211_CHAN_WIDTH_20_NOHT; struct ieee80211_link_data *link = rcu_dereference(sdata->link[link_id]); if (!link) continue; if (link != rsvd_for && rcu_access_pointer(link->conf->chanctx_conf) != &ctx->conf) continue; switch (vif->type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: width = ieee80211_get_max_required_bw(sdata, link_id); break; case NL80211_IFTYPE_STATION: /* * The ap's sta->bandwidth is not set yet at this * point, so take the width from the chandef, but * account also for TDLS peers */ width = max(link->conf->chandef.width, ieee80211_get_max_required_bw(sdata, link_id)); break; case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: continue; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_OCB: width = link->conf->chandef.width; break; case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: WARN_ON_ONCE(1); } max_bw = max(max_bw, width); } rcu_read_unlock(); return max_bw; } static enum nl80211_chan_width ieee80211_get_chanctx_max_required_bw(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_link_data *rsvd_for) { struct ieee80211_sub_if_data *sdata; enum nl80211_chan_width max_bw = NL80211_CHAN_WIDTH_20_NOHT; rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { enum nl80211_chan_width width; if (!ieee80211_sdata_running(sdata)) continue; width = ieee80211_get_chanctx_vif_max_required_bw(sdata, ctx, rsvd_for); max_bw = max(max_bw, width); } /* use the configured bandwidth in case of monitor interface */ sdata = rcu_dereference(local->monitor_sdata); if (sdata && rcu_access_pointer(sdata->vif.bss_conf.chanctx_conf) == &ctx->conf) max_bw = max(max_bw, ctx->conf.def.width); rcu_read_unlock(); return max_bw; } /* * recalc the min required chan width of the channel context, which is * the max of min required widths of all the interfaces bound to this * channel context. */ static u32 _ieee80211_recalc_chanctx_min_def(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_link_data *rsvd_for) { enum nl80211_chan_width max_bw; struct cfg80211_chan_def min_def; lockdep_assert_held(&local->chanctx_mtx); /* don't optimize non-20MHz based and radar_enabled confs */ if (ctx->conf.def.width == NL80211_CHAN_WIDTH_5 || ctx->conf.def.width == NL80211_CHAN_WIDTH_10 || ctx->conf.def.width == NL80211_CHAN_WIDTH_1 || ctx->conf.def.width == NL80211_CHAN_WIDTH_2 || ctx->conf.def.width == NL80211_CHAN_WIDTH_4 || ctx->conf.def.width == NL80211_CHAN_WIDTH_8 || ctx->conf.def.width == NL80211_CHAN_WIDTH_16 || ctx->conf.radar_enabled) { ctx->conf.min_def = ctx->conf.def; return 0; } max_bw = ieee80211_get_chanctx_max_required_bw(local, ctx, rsvd_for); /* downgrade chandef up to max_bw */ min_def = ctx->conf.def; while (min_def.width > max_bw) ieee80211_chandef_downgrade(&min_def); if (cfg80211_chandef_identical(&ctx->conf.min_def, &min_def)) return 0; ctx->conf.min_def = min_def; if (!ctx->driver_present) return 0; return IEEE80211_CHANCTX_CHANGE_MIN_WIDTH; } /* calling this function is assuming that station vif is updated to * lates changes by calling ieee80211_link_update_chandef */ static void ieee80211_chan_bw_change(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, bool narrowed) { struct sta_info *sta; struct ieee80211_supported_band *sband = local->hw.wiphy->bands[ctx->conf.def.chan->band]; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { struct ieee80211_sub_if_data *sdata = sta->sdata; enum ieee80211_sta_rx_bandwidth new_sta_bw; unsigned int link_id; if (!ieee80211_sdata_running(sta->sdata)) continue; for (link_id = 0; link_id < ARRAY_SIZE(sta->sdata->link); link_id++) { struct ieee80211_bss_conf *link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); struct link_sta_info *link_sta; if (!link_conf) continue; if (rcu_access_pointer(link_conf->chanctx_conf) != &ctx->conf) continue; link_sta = rcu_dereference(sta->link[link_id]); if (!link_sta) continue; new_sta_bw = ieee80211_sta_cur_vht_bw(link_sta); /* nothing change */ if (new_sta_bw == link_sta->pub->bandwidth) continue; /* vif changed to narrow BW and narrow BW for station wasn't * requested or vise versa */ if ((new_sta_bw < link_sta->pub->bandwidth) == !narrowed) continue; link_sta->pub->bandwidth = new_sta_bw; rate_control_rate_update(local, sband, sta, link_id, IEEE80211_RC_BW_CHANGED); } } rcu_read_unlock(); } /* * recalc the min required chan width of the channel context, which is * the max of min required widths of all the interfaces bound to this * channel context. */ void ieee80211_recalc_chanctx_min_def(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_link_data *rsvd_for) { u32 changed = _ieee80211_recalc_chanctx_min_def(local, ctx, rsvd_for); if (!changed) return; /* check is BW narrowed */ ieee80211_chan_bw_change(local, ctx, true); drv_change_chanctx(local, ctx, changed); /* check is BW wider */ ieee80211_chan_bw_change(local, ctx, false); } static void _ieee80211_change_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_chanctx *old_ctx, const struct cfg80211_chan_def *chandef, struct ieee80211_link_data *rsvd_for) { u32 changed; /* expected to handle only 20/40/80/160/320 channel widths */ switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_40: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_320: break; default: WARN_ON(1); } /* Check maybe BW narrowed - we do this _before_ calling recalc_chanctx_min_def * due to maybe not returning from it, e.g in case new context was added * first time with all parameters up to date. */ ieee80211_chan_bw_change(local, old_ctx, true); if (cfg80211_chandef_identical(&ctx->conf.def, chandef)) { ieee80211_recalc_chanctx_min_def(local, ctx, rsvd_for); return; } WARN_ON(!cfg80211_chandef_compatible(&ctx->conf.def, chandef)); ctx->conf.def = *chandef; /* check if min chanctx also changed */ changed = IEEE80211_CHANCTX_CHANGE_WIDTH | _ieee80211_recalc_chanctx_min_def(local, ctx, rsvd_for); drv_change_chanctx(local, ctx, changed); if (!local->use_chanctx) { local->_oper_chandef = *chandef; ieee80211_hw_config(local, 0); } /* check is BW wider */ ieee80211_chan_bw_change(local, old_ctx, false); } static void ieee80211_change_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, struct ieee80211_chanctx *old_ctx, const struct cfg80211_chan_def *chandef) { _ieee80211_change_chanctx(local, ctx, old_ctx, chandef, NULL); } static struct ieee80211_chanctx * ieee80211_find_chanctx(struct ieee80211_local *local, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode) { struct ieee80211_chanctx *ctx; lockdep_assert_held(&local->chanctx_mtx); if (mode == IEEE80211_CHANCTX_EXCLUSIVE) return NULL; list_for_each_entry(ctx, &local->chanctx_list, list) { const struct cfg80211_chan_def *compat; if (ctx->replace_state != IEEE80211_CHANCTX_REPLACE_NONE) continue; if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) continue; compat = cfg80211_chandef_compatible(&ctx->conf.def, chandef); if (!compat) continue; compat = ieee80211_chanctx_reserved_chandef(local, ctx, compat); if (!compat) continue; ieee80211_change_chanctx(local, ctx, ctx, compat); return ctx; } return NULL; } bool ieee80211_is_radar_required(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; lockdep_assert_held(&local->mtx); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { unsigned int link_id; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = rcu_dereference(sdata->link[link_id]); if (link && link->radar_required) { rcu_read_unlock(); return true; } } } rcu_read_unlock(); return false; } static bool ieee80211_chanctx_radar_required(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_chanctx_conf *conf = &ctx->conf; struct ieee80211_sub_if_data *sdata; bool required = false; lockdep_assert_held(&local->chanctx_mtx); lockdep_assert_held(&local->mtx); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { unsigned int link_id; if (!ieee80211_sdata_running(sdata)) continue; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = rcu_dereference(sdata->link[link_id]); if (!link) continue; if (rcu_access_pointer(link->conf->chanctx_conf) != conf) continue; if (!link->radar_required) continue; required = true; break; } if (required) break; } rcu_read_unlock(); return required; } static struct ieee80211_chanctx * ieee80211_alloc_chanctx(struct ieee80211_local *local, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode) { struct ieee80211_chanctx *ctx; lockdep_assert_held(&local->chanctx_mtx); ctx = kzalloc(sizeof(*ctx) + local->hw.chanctx_data_size, GFP_KERNEL); if (!ctx) return NULL; INIT_LIST_HEAD(&ctx->assigned_links); INIT_LIST_HEAD(&ctx->reserved_links); ctx->conf.def = *chandef; ctx->conf.rx_chains_static = 1; ctx->conf.rx_chains_dynamic = 1; ctx->mode = mode; ctx->conf.radar_enabled = false; _ieee80211_recalc_chanctx_min_def(local, ctx, NULL); return ctx; } static int ieee80211_add_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { u32 changed; int err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); if (!local->use_chanctx) local->hw.conf.radar_enabled = ctx->conf.radar_enabled; /* turn idle off *before* setting channel -- some drivers need that */ changed = ieee80211_idle_off(local); if (changed) ieee80211_hw_config(local, changed); if (!local->use_chanctx) { local->_oper_chandef = ctx->conf.def; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL); } else { err = drv_add_chanctx(local, ctx); if (err) { ieee80211_recalc_idle(local); return err; } } return 0; } static struct ieee80211_chanctx * ieee80211_new_chanctx(struct ieee80211_local *local, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode) { struct ieee80211_chanctx *ctx; int err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); ctx = ieee80211_alloc_chanctx(local, chandef, mode); if (!ctx) return ERR_PTR(-ENOMEM); err = ieee80211_add_chanctx(local, ctx); if (err) { kfree(ctx); return ERR_PTR(err); } list_add_rcu(&ctx->list, &local->chanctx_list); return ctx; } static void ieee80211_del_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { lockdep_assert_held(&local->chanctx_mtx); if (!local->use_chanctx) { struct cfg80211_chan_def *chandef = &local->_oper_chandef; /* S1G doesn't have 20MHz, so get the correct width for the * current channel. */ if (chandef->chan->band == NL80211_BAND_S1GHZ) chandef->width = ieee80211_s1g_channel_width(chandef->chan); else chandef->width = NL80211_CHAN_WIDTH_20_NOHT; chandef->center_freq1 = chandef->chan->center_freq; chandef->freq1_offset = chandef->chan->freq_offset; chandef->center_freq2 = 0; /* NOTE: Disabling radar is only valid here for * single channel context. To be sure, check it ... */ WARN_ON(local->hw.conf.radar_enabled && !list_empty(&local->chanctx_list)); local->hw.conf.radar_enabled = false; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL); } else { drv_remove_chanctx(local, ctx); } ieee80211_recalc_idle(local); } static void ieee80211_free_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { lockdep_assert_held(&local->chanctx_mtx); WARN_ON_ONCE(ieee80211_chanctx_refcount(local, ctx) != 0); list_del_rcu(&ctx->list); ieee80211_del_chanctx(local, ctx); kfree_rcu(ctx, rcu_head); } void ieee80211_recalc_chanctx_chantype(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_chanctx_conf *conf = &ctx->conf; struct ieee80211_sub_if_data *sdata; const struct cfg80211_chan_def *compat = NULL; struct sta_info *sta; lockdep_assert_held(&local->chanctx_mtx); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { int link_id; if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_bss_conf *link_conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!link_conf) continue; if (rcu_access_pointer(link_conf->chanctx_conf) != conf) continue; if (!compat) compat = &link_conf->chandef; compat = cfg80211_chandef_compatible(&link_conf->chandef, compat); if (WARN_ON_ONCE(!compat)) break; } } if (WARN_ON_ONCE(!compat)) { rcu_read_unlock(); return; } /* TDLS peers can sometimes affect the chandef width */ list_for_each_entry_rcu(sta, &local->sta_list, list) { if (!sta->uploaded || !test_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW) || !test_sta_flag(sta, WLAN_STA_AUTHORIZED) || !sta->tdls_chandef.chan) continue; compat = cfg80211_chandef_compatible(&sta->tdls_chandef, compat); if (WARN_ON_ONCE(!compat)) break; } rcu_read_unlock(); if (!compat) return; ieee80211_change_chanctx(local, ctx, ctx, compat); } static void ieee80211_recalc_radar_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx) { bool radar_enabled; lockdep_assert_held(&local->chanctx_mtx); /* for ieee80211_is_radar_required */ lockdep_assert_held(&local->mtx); radar_enabled = ieee80211_chanctx_radar_required(local, chanctx); if (radar_enabled == chanctx->conf.radar_enabled) return; chanctx->conf.radar_enabled = radar_enabled; if (!local->use_chanctx) { local->hw.conf.radar_enabled = chanctx->conf.radar_enabled; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_CHANNEL); } drv_change_chanctx(local, chanctx, IEEE80211_CHANCTX_CHANGE_RADAR); } static int ieee80211_assign_link_chanctx(struct ieee80211_link_data *link, struct ieee80211_chanctx *new_ctx) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *curr_ctx = NULL; int ret = 0; if (WARN_ON(sdata->vif.type == NL80211_IFTYPE_NAN)) return -ENOTSUPP; conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (conf) { curr_ctx = container_of(conf, struct ieee80211_chanctx, conf); drv_unassign_vif_chanctx(local, sdata, link->conf, curr_ctx); conf = NULL; list_del(&link->assigned_chanctx_list); } if (new_ctx) { /* recalc considering the link we'll use it for now */ ieee80211_recalc_chanctx_min_def(local, new_ctx, link); ret = drv_assign_vif_chanctx(local, sdata, link->conf, new_ctx); if (ret) goto out; conf = &new_ctx->conf; list_add(&link->assigned_chanctx_list, &new_ctx->assigned_links); } out: rcu_assign_pointer(link->conf->chanctx_conf, conf); sdata->vif.cfg.idle = !conf; if (curr_ctx && ieee80211_chanctx_num_assigned(local, curr_ctx) > 0) { ieee80211_recalc_chanctx_chantype(local, curr_ctx); ieee80211_recalc_smps_chanctx(local, curr_ctx); ieee80211_recalc_radar_chanctx(local, curr_ctx); ieee80211_recalc_chanctx_min_def(local, curr_ctx, NULL); } if (new_ctx && ieee80211_chanctx_num_assigned(local, new_ctx) > 0) { ieee80211_recalc_txpower(sdata, false); ieee80211_recalc_chanctx_min_def(local, new_ctx, NULL); } if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_MONITOR) ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_IDLE); ieee80211_check_fast_xmit_iface(sdata); return ret; } void ieee80211_recalc_smps_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *chanctx) { struct ieee80211_sub_if_data *sdata; u8 rx_chains_static, rx_chains_dynamic; lockdep_assert_held(&local->chanctx_mtx); rx_chains_static = 1; rx_chains_dynamic = 1; rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { u8 needed_static, needed_dynamic; unsigned int link_id; if (!ieee80211_sdata_running(sdata)) continue; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (!sdata->u.mgd.associated) continue; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_OCB: break; default: continue; } for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = rcu_dereference(sdata->link[link_id]); if (!link) continue; if (rcu_access_pointer(link->conf->chanctx_conf) != &chanctx->conf) continue; switch (link->smps_mode) { default: WARN_ONCE(1, "Invalid SMPS mode %d\n", link->smps_mode); fallthrough; case IEEE80211_SMPS_OFF: needed_static = link->needed_rx_chains; needed_dynamic = link->needed_rx_chains; break; case IEEE80211_SMPS_DYNAMIC: needed_static = 1; needed_dynamic = link->needed_rx_chains; break; case IEEE80211_SMPS_STATIC: needed_static = 1; needed_dynamic = 1; break; } rx_chains_static = max(rx_chains_static, needed_static); rx_chains_dynamic = max(rx_chains_dynamic, needed_dynamic); } } /* Disable SMPS for the monitor interface */ sdata = rcu_dereference(local->monitor_sdata); if (sdata && rcu_access_pointer(sdata->vif.bss_conf.chanctx_conf) == &chanctx->conf) rx_chains_dynamic = rx_chains_static = local->rx_chains; rcu_read_unlock(); if (!local->use_chanctx) { if (rx_chains_static > 1) local->smps_mode = IEEE80211_SMPS_OFF; else if (rx_chains_dynamic > 1) local->smps_mode = IEEE80211_SMPS_DYNAMIC; else local->smps_mode = IEEE80211_SMPS_STATIC; ieee80211_hw_config(local, 0); } if (rx_chains_static == chanctx->conf.rx_chains_static && rx_chains_dynamic == chanctx->conf.rx_chains_dynamic) return; chanctx->conf.rx_chains_static = rx_chains_static; chanctx->conf.rx_chains_dynamic = rx_chains_dynamic; drv_change_chanctx(local, chanctx, IEEE80211_CHANCTX_CHANGE_RX_CHAINS); } static void __ieee80211_link_copy_chanctx_to_vlans(struct ieee80211_link_data *link, bool clear) { struct ieee80211_sub_if_data *sdata = link->sdata; unsigned int link_id = link->link_id; struct ieee80211_bss_conf *link_conf = link->conf; struct ieee80211_local *local __maybe_unused = sdata->local; struct ieee80211_sub_if_data *vlan; struct ieee80211_chanctx_conf *conf; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP)) return; lockdep_assert_held(&local->mtx); /* Check that conf exists, even when clearing this function * must be called with the AP's channel context still there * as it would otherwise cause VLANs to have an invalid * channel context pointer for a while, possibly pointing * to a channel context that has already been freed. */ conf = rcu_dereference_protected(link_conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); WARN_ON(!conf); if (clear) conf = NULL; rcu_read_lock(); list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { struct ieee80211_bss_conf *vlan_conf; vlan_conf = rcu_dereference(vlan->vif.link_conf[link_id]); if (WARN_ON(!vlan_conf)) continue; rcu_assign_pointer(vlan_conf->chanctx_conf, conf); } rcu_read_unlock(); } void ieee80211_link_copy_chanctx_to_vlans(struct ieee80211_link_data *link, bool clear) { struct ieee80211_local *local = link->sdata->local; mutex_lock(&local->chanctx_mtx); __ieee80211_link_copy_chanctx_to_vlans(link, clear); mutex_unlock(&local->chanctx_mtx); } int ieee80211_link_unreserve_chanctx(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_chanctx *ctx = link->reserved_chanctx; lockdep_assert_held(&sdata->local->chanctx_mtx); if (WARN_ON(!ctx)) return -EINVAL; list_del(&link->reserved_chanctx_list); link->reserved_chanctx = NULL; if (ieee80211_chanctx_refcount(sdata->local, ctx) == 0) { if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) { if (WARN_ON(!ctx->replace_ctx)) return -EINVAL; WARN_ON(ctx->replace_ctx->replace_state != IEEE80211_CHANCTX_WILL_BE_REPLACED); WARN_ON(ctx->replace_ctx->replace_ctx != ctx); ctx->replace_ctx->replace_ctx = NULL; ctx->replace_ctx->replace_state = IEEE80211_CHANCTX_REPLACE_NONE; list_del_rcu(&ctx->list); kfree_rcu(ctx, rcu_head); } else { ieee80211_free_chanctx(sdata->local, ctx); } } return 0; } int ieee80211_link_reserve_chanctx(struct ieee80211_link_data *link, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode, bool radar_required) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx *new_ctx, *curr_ctx, *ctx; lockdep_assert_held(&local->chanctx_mtx); curr_ctx = ieee80211_link_get_chanctx(link); if (curr_ctx && local->use_chanctx && !local->ops->switch_vif_chanctx) return -ENOTSUPP; new_ctx = ieee80211_find_reservation_chanctx(local, chandef, mode); if (!new_ctx) { if (ieee80211_can_create_new_chanctx(local)) { new_ctx = ieee80211_new_chanctx(local, chandef, mode); if (IS_ERR(new_ctx)) return PTR_ERR(new_ctx); } else { if (!curr_ctx || (curr_ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) || !list_empty(&curr_ctx->reserved_links)) { /* * Another link already requested this context * for a reservation. Find another one hoping * all links assigned to it will also switch * soon enough. * * TODO: This needs a little more work as some * cases (more than 2 chanctx capable devices) * may fail which could otherwise succeed * provided some channel context juggling was * performed. * * Consider ctx1..3, link1..6, each ctx has 2 * links. link1 and link2 from ctx1 request new * different chandefs starting 2 in-place * reserations with ctx4 and ctx5 replacing * ctx1 and ctx2 respectively. Next link5 and * link6 from ctx3 reserve ctx4. If link3 and * link4 remain on ctx2 as they are then this * fails unless `replace_ctx` from ctx5 is * replaced with ctx3. */ list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state != IEEE80211_CHANCTX_REPLACE_NONE) continue; if (!list_empty(&ctx->reserved_links)) continue; curr_ctx = ctx; break; } } /* * If that's true then all available contexts already * have reservations and cannot be used. */ if (!curr_ctx || (curr_ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) || !list_empty(&curr_ctx->reserved_links)) return -EBUSY; new_ctx = ieee80211_alloc_chanctx(local, chandef, mode); if (!new_ctx) return -ENOMEM; new_ctx->replace_ctx = curr_ctx; new_ctx->replace_state = IEEE80211_CHANCTX_REPLACES_OTHER; curr_ctx->replace_ctx = new_ctx; curr_ctx->replace_state = IEEE80211_CHANCTX_WILL_BE_REPLACED; list_add_rcu(&new_ctx->list, &local->chanctx_list); } } list_add(&link->reserved_chanctx_list, &new_ctx->reserved_links); link->reserved_chanctx = new_ctx; link->reserved_chandef = *chandef; link->reserved_radar_required = radar_required; link->reserved_ready = false; return 0; } static void ieee80211_link_chanctx_reservation_complete(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_OCB: ieee80211_queue_work(&sdata->local->hw, &link->csa_finalize_work); break; case NL80211_IFTYPE_STATION: wiphy_delayed_work_queue(sdata->local->hw.wiphy, &link->u.mgd.chswitch_work, 0); break; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: case NUM_NL80211_IFTYPES: WARN_ON(1); break; } } static void ieee80211_link_update_chandef(struct ieee80211_link_data *link, const struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = link->sdata; unsigned int link_id = link->link_id; struct ieee80211_sub_if_data *vlan; link->conf->chandef = *chandef; if (sdata->vif.type != NL80211_IFTYPE_AP) return; rcu_read_lock(); list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { struct ieee80211_bss_conf *vlan_conf; vlan_conf = rcu_dereference(vlan->vif.link_conf[link_id]); if (WARN_ON(!vlan_conf)) continue; vlan_conf->chandef = *chandef; } rcu_read_unlock(); } static int ieee80211_link_use_reserved_reassign(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *link_conf = link->conf; struct ieee80211_local *local = sdata->local; struct ieee80211_vif_chanctx_switch vif_chsw[1] = {}; struct ieee80211_chanctx *old_ctx, *new_ctx; const struct cfg80211_chan_def *chandef; u64 changed = 0; int err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); new_ctx = link->reserved_chanctx; old_ctx = ieee80211_link_get_chanctx(link); if (WARN_ON(!link->reserved_ready)) return -EBUSY; if (WARN_ON(!new_ctx)) return -EINVAL; if (WARN_ON(!old_ctx)) return -EINVAL; if (WARN_ON(new_ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)) return -EINVAL; chandef = ieee80211_chanctx_non_reserved_chandef(local, new_ctx, &link->reserved_chandef); if (WARN_ON(!chandef)) return -EINVAL; if (link_conf->chandef.width != link->reserved_chandef.width) changed = BSS_CHANGED_BANDWIDTH; ieee80211_link_update_chandef(link, &link->reserved_chandef); _ieee80211_change_chanctx(local, new_ctx, old_ctx, chandef, link); vif_chsw[0].vif = &sdata->vif; vif_chsw[0].old_ctx = &old_ctx->conf; vif_chsw[0].new_ctx = &new_ctx->conf; vif_chsw[0].link_conf = link->conf; list_del(&link->reserved_chanctx_list); link->reserved_chanctx = NULL; err = drv_switch_vif_chanctx(local, vif_chsw, 1, CHANCTX_SWMODE_REASSIGN_VIF); if (err) { if (ieee80211_chanctx_refcount(local, new_ctx) == 0) ieee80211_free_chanctx(local, new_ctx); goto out; } list_move(&link->assigned_chanctx_list, &new_ctx->assigned_links); rcu_assign_pointer(link_conf->chanctx_conf, &new_ctx->conf); if (sdata->vif.type == NL80211_IFTYPE_AP) __ieee80211_link_copy_chanctx_to_vlans(link, false); ieee80211_check_fast_xmit_iface(sdata); if (ieee80211_chanctx_refcount(local, old_ctx) == 0) ieee80211_free_chanctx(local, old_ctx); ieee80211_recalc_chanctx_min_def(local, new_ctx, NULL); ieee80211_recalc_smps_chanctx(local, new_ctx); ieee80211_recalc_radar_chanctx(local, new_ctx); if (changed) ieee80211_link_info_change_notify(sdata, link, changed); out: ieee80211_link_chanctx_reservation_complete(link); return err; } static int ieee80211_link_use_reserved_assign(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx *old_ctx, *new_ctx; const struct cfg80211_chan_def *chandef; int err; old_ctx = ieee80211_link_get_chanctx(link); new_ctx = link->reserved_chanctx; if (WARN_ON(!link->reserved_ready)) return -EINVAL; if (WARN_ON(old_ctx)) return -EINVAL; if (WARN_ON(!new_ctx)) return -EINVAL; if (WARN_ON(new_ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)) return -EINVAL; chandef = ieee80211_chanctx_non_reserved_chandef(local, new_ctx, &link->reserved_chandef); if (WARN_ON(!chandef)) return -EINVAL; ieee80211_change_chanctx(local, new_ctx, new_ctx, chandef); list_del(&link->reserved_chanctx_list); link->reserved_chanctx = NULL; err = ieee80211_assign_link_chanctx(link, new_ctx); if (err) { if (ieee80211_chanctx_refcount(local, new_ctx) == 0) ieee80211_free_chanctx(local, new_ctx); goto out; } out: ieee80211_link_chanctx_reservation_complete(link); return err; } static bool ieee80211_link_has_in_place_reservation(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_chanctx *old_ctx, *new_ctx; lockdep_assert_held(&sdata->local->chanctx_mtx); new_ctx = link->reserved_chanctx; old_ctx = ieee80211_link_get_chanctx(link); if (!old_ctx) return false; if (WARN_ON(!new_ctx)) return false; if (old_ctx->replace_state != IEEE80211_CHANCTX_WILL_BE_REPLACED) return false; if (new_ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) return false; return true; } static int ieee80211_chsw_switch_hwconf(struct ieee80211_local *local, struct ieee80211_chanctx *new_ctx) { const struct cfg80211_chan_def *chandef; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); chandef = ieee80211_chanctx_reserved_chandef(local, new_ctx, NULL); if (WARN_ON(!chandef)) return -EINVAL; local->hw.conf.radar_enabled = new_ctx->conf.radar_enabled; local->_oper_chandef = *chandef; ieee80211_hw_config(local, 0); return 0; } static int ieee80211_chsw_switch_vifs(struct ieee80211_local *local, int n_vifs) { struct ieee80211_vif_chanctx_switch *vif_chsw; struct ieee80211_link_data *link; struct ieee80211_chanctx *ctx, *old_ctx; int i, err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); vif_chsw = kcalloc(n_vifs, sizeof(vif_chsw[0]), GFP_KERNEL); if (!vif_chsw) return -ENOMEM; i = 0; list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (WARN_ON(!ctx->replace_ctx)) { err = -EINVAL; goto out; } list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) { if (!ieee80211_link_has_in_place_reservation(link)) continue; old_ctx = ieee80211_link_get_chanctx(link); vif_chsw[i].vif = &link->sdata->vif; vif_chsw[i].old_ctx = &old_ctx->conf; vif_chsw[i].new_ctx = &ctx->conf; vif_chsw[i].link_conf = link->conf; i++; } } err = drv_switch_vif_chanctx(local, vif_chsw, n_vifs, CHANCTX_SWMODE_SWAP_CONTEXTS); out: kfree(vif_chsw); return err; } static int ieee80211_chsw_switch_ctxs(struct ieee80211_local *local) { struct ieee80211_chanctx *ctx; int err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (!list_empty(&ctx->replace_ctx->assigned_links)) continue; ieee80211_del_chanctx(local, ctx->replace_ctx); err = ieee80211_add_chanctx(local, ctx); if (err) goto err; } return 0; err: WARN_ON(ieee80211_add_chanctx(local, ctx)); list_for_each_entry_continue_reverse(ctx, &local->chanctx_list, list) { if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (!list_empty(&ctx->replace_ctx->assigned_links)) continue; ieee80211_del_chanctx(local, ctx); WARN_ON(ieee80211_add_chanctx(local, ctx->replace_ctx)); } return err; } static int ieee80211_vif_use_reserved_switch(struct ieee80211_local *local) { struct ieee80211_chanctx *ctx, *ctx_tmp, *old_ctx; struct ieee80211_chanctx *new_ctx = NULL; int err, n_assigned, n_reserved, n_ready; int n_ctx = 0, n_vifs_switch = 0, n_vifs_assign = 0, n_vifs_ctxless = 0; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); /* * If there are 2 independent pairs of channel contexts performing * cross-switch of their vifs this code will still wait until both are * ready even though it could be possible to switch one before the * other is ready. * * For practical reasons and code simplicity just do a single huge * switch. */ /* * Verify if the reservation is still feasible. * - if it's not then disconnect * - if it is but not all vifs necessary are ready then defer */ list_for_each_entry(ctx, &local->chanctx_list, list) { struct ieee80211_link_data *link; if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (WARN_ON(!ctx->replace_ctx)) { err = -EINVAL; goto err; } if (!local->use_chanctx) new_ctx = ctx; n_ctx++; n_assigned = 0; n_reserved = 0; n_ready = 0; list_for_each_entry(link, &ctx->replace_ctx->assigned_links, assigned_chanctx_list) { n_assigned++; if (link->reserved_chanctx) { n_reserved++; if (link->reserved_ready) n_ready++; } } if (n_assigned != n_reserved) { if (n_ready == n_reserved) { wiphy_info(local->hw.wiphy, "channel context reservation cannot be finalized because some interfaces aren't switching\n"); err = -EBUSY; goto err; } return -EAGAIN; } ctx->conf.radar_enabled = false; list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) { if (ieee80211_link_has_in_place_reservation(link) && !link->reserved_ready) return -EAGAIN; old_ctx = ieee80211_link_get_chanctx(link); if (old_ctx) { if (old_ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) n_vifs_switch++; else n_vifs_assign++; } else { n_vifs_ctxless++; } if (link->reserved_radar_required) ctx->conf.radar_enabled = true; } } if (WARN_ON(n_ctx == 0) || WARN_ON(n_vifs_switch == 0 && n_vifs_assign == 0 && n_vifs_ctxless == 0) || WARN_ON(n_ctx > 1 && !local->use_chanctx) || WARN_ON(!new_ctx && !local->use_chanctx)) { err = -EINVAL; goto err; } /* * All necessary vifs are ready. Perform the switch now depending on * reservations and driver capabilities. */ if (local->use_chanctx) { if (n_vifs_switch > 0) { err = ieee80211_chsw_switch_vifs(local, n_vifs_switch); if (err) goto err; } if (n_vifs_assign > 0 || n_vifs_ctxless > 0) { err = ieee80211_chsw_switch_ctxs(local); if (err) goto err; } } else { err = ieee80211_chsw_switch_hwconf(local, new_ctx); if (err) goto err; } /* * Update all structures, values and pointers to point to new channel * context(s). */ list_for_each_entry(ctx, &local->chanctx_list, list) { struct ieee80211_link_data *link, *link_tmp; if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; if (WARN_ON(!ctx->replace_ctx)) { err = -EINVAL; goto err; } list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *link_conf = link->conf; u64 changed = 0; if (!ieee80211_link_has_in_place_reservation(link)) continue; rcu_assign_pointer(link_conf->chanctx_conf, &ctx->conf); if (sdata->vif.type == NL80211_IFTYPE_AP) __ieee80211_link_copy_chanctx_to_vlans(link, false); ieee80211_check_fast_xmit_iface(sdata); link->radar_required = link->reserved_radar_required; if (link_conf->chandef.width != link->reserved_chandef.width) changed = BSS_CHANGED_BANDWIDTH; ieee80211_link_update_chandef(link, &link->reserved_chandef); if (changed) ieee80211_link_info_change_notify(sdata, link, changed); ieee80211_recalc_txpower(sdata, false); } ieee80211_recalc_chanctx_chantype(local, ctx); ieee80211_recalc_smps_chanctx(local, ctx); ieee80211_recalc_radar_chanctx(local, ctx); ieee80211_recalc_chanctx_min_def(local, ctx, NULL); list_for_each_entry_safe(link, link_tmp, &ctx->reserved_links, reserved_chanctx_list) { if (ieee80211_link_get_chanctx(link) != ctx) continue; list_del(&link->reserved_chanctx_list); list_move(&link->assigned_chanctx_list, &ctx->assigned_links); link->reserved_chanctx = NULL; ieee80211_link_chanctx_reservation_complete(link); } /* * This context might have been a dependency for an already * ready re-assign reservation interface that was deferred. Do * not propagate error to the caller though. The in-place * reservation for originally requested interface has already * succeeded at this point. */ list_for_each_entry_safe(link, link_tmp, &ctx->reserved_links, reserved_chanctx_list) { if (WARN_ON(ieee80211_link_has_in_place_reservation(link))) continue; if (WARN_ON(link->reserved_chanctx != ctx)) continue; if (!link->reserved_ready) continue; if (ieee80211_link_get_chanctx(link)) err = ieee80211_link_use_reserved_reassign(link); else err = ieee80211_link_use_reserved_assign(link); if (err) { link_info(link, "failed to finalize (re-)assign reservation (err=%d)\n", err); ieee80211_link_unreserve_chanctx(link); cfg80211_stop_iface(local->hw.wiphy, &link->sdata->wdev, GFP_KERNEL); } } } /* * Finally free old contexts */ list_for_each_entry_safe(ctx, ctx_tmp, &local->chanctx_list, list) { if (ctx->replace_state != IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; ctx->replace_ctx->replace_ctx = NULL; ctx->replace_ctx->replace_state = IEEE80211_CHANCTX_REPLACE_NONE; list_del_rcu(&ctx->list); kfree_rcu(ctx, rcu_head); } return 0; err: list_for_each_entry(ctx, &local->chanctx_list, list) { struct ieee80211_link_data *link, *link_tmp; if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) continue; list_for_each_entry_safe(link, link_tmp, &ctx->reserved_links, reserved_chanctx_list) { ieee80211_link_unreserve_chanctx(link); ieee80211_link_chanctx_reservation_complete(link); } } return err; } static void __ieee80211_link_release_channel(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *link_conf = link->conf; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; bool use_reserved_switch = false; lockdep_assert_held(&local->chanctx_mtx); conf = rcu_dereference_protected(link_conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (!conf) return; ctx = container_of(conf, struct ieee80211_chanctx, conf); if (link->reserved_chanctx) { if (link->reserved_chanctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && ieee80211_chanctx_num_reserved(local, link->reserved_chanctx) > 1) use_reserved_switch = true; ieee80211_link_unreserve_chanctx(link); } ieee80211_assign_link_chanctx(link, NULL); if (ieee80211_chanctx_refcount(local, ctx) == 0) ieee80211_free_chanctx(local, ctx); link->radar_required = false; /* Unreserving may ready an in-place reservation. */ if (use_reserved_switch) ieee80211_vif_use_reserved_switch(local); } int ieee80211_link_use_channel(struct ieee80211_link_data *link, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode mode) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx *ctx; u8 radar_detect_width = 0; int ret; lockdep_assert_held(&local->mtx); if (sdata->vif.active_links && !(sdata->vif.active_links & BIT(link->link_id))) { ieee80211_link_update_chandef(link, chandef); return 0; } mutex_lock(&local->chanctx_mtx); ret = cfg80211_chandef_dfs_required(local->hw.wiphy, chandef, sdata->wdev.iftype); if (ret < 0) goto out; if (ret > 0) radar_detect_width = BIT(chandef->width); link->radar_required = ret; ret = ieee80211_check_combinations(sdata, chandef, mode, radar_detect_width); if (ret < 0) goto out; __ieee80211_link_release_channel(link); ctx = ieee80211_find_chanctx(local, chandef, mode); if (!ctx) ctx = ieee80211_new_chanctx(local, chandef, mode); if (IS_ERR(ctx)) { ret = PTR_ERR(ctx); goto out; } ieee80211_link_update_chandef(link, chandef); ret = ieee80211_assign_link_chanctx(link, ctx); if (ret) { /* if assign fails refcount stays the same */ if (ieee80211_chanctx_refcount(local, ctx) == 0) ieee80211_free_chanctx(local, ctx); goto out; } ieee80211_recalc_smps_chanctx(local, ctx); ieee80211_recalc_radar_chanctx(local, ctx); out: if (ret) link->radar_required = false; mutex_unlock(&local->chanctx_mtx); return ret; } int ieee80211_link_use_reserved_context(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx *new_ctx; struct ieee80211_chanctx *old_ctx; int err; lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); new_ctx = link->reserved_chanctx; old_ctx = ieee80211_link_get_chanctx(link); if (WARN_ON(!new_ctx)) return -EINVAL; if (WARN_ON(new_ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) return -EINVAL; if (WARN_ON(link->reserved_ready)) return -EINVAL; link->reserved_ready = true; if (new_ctx->replace_state == IEEE80211_CHANCTX_REPLACE_NONE) { if (old_ctx) return ieee80211_link_use_reserved_reassign(link); return ieee80211_link_use_reserved_assign(link); } /* * In-place reservation may need to be finalized now either if: * a) sdata is taking part in the swapping itself and is the last one * b) sdata has switched with a re-assign reservation to an existing * context readying in-place switching of old_ctx * * In case of (b) do not propagate the error up because the requested * sdata already switched successfully. Just spill an extra warning. * The ieee80211_vif_use_reserved_switch() already stops all necessary * interfaces upon failure. */ if ((old_ctx && old_ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) || new_ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) { err = ieee80211_vif_use_reserved_switch(local); if (err && err != -EAGAIN) { if (new_ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) return err; wiphy_info(local->hw.wiphy, "depending in-place reservation failed (err=%d)\n", err); } } return 0; } int ieee80211_link_change_bandwidth(struct ieee80211_link_data *link, const struct cfg80211_chan_def *chandef, u64 *changed) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *link_conf = link->conf; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; const struct cfg80211_chan_def *compat; int ret; if (!cfg80211_chandef_usable(sdata->local->hw.wiphy, chandef, IEEE80211_CHAN_DISABLED)) return -EINVAL; mutex_lock(&local->chanctx_mtx); if (cfg80211_chandef_identical(chandef, &link_conf->chandef)) { ret = 0; goto out; } if (chandef->width == NL80211_CHAN_WIDTH_20_NOHT || link_conf->chandef.width == NL80211_CHAN_WIDTH_20_NOHT) { ret = -EINVAL; goto out; } conf = rcu_dereference_protected(link_conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (!conf) { ret = -EINVAL; goto out; } ctx = container_of(conf, struct ieee80211_chanctx, conf); compat = cfg80211_chandef_compatible(&conf->def, chandef); if (!compat) { ret = -EINVAL; goto out; } switch (ctx->replace_state) { case IEEE80211_CHANCTX_REPLACE_NONE: if (!ieee80211_chanctx_reserved_chandef(local, ctx, compat)) { ret = -EBUSY; goto out; } break; case IEEE80211_CHANCTX_WILL_BE_REPLACED: /* TODO: Perhaps the bandwidth change could be treated as a * reservation itself? */ ret = -EBUSY; goto out; case IEEE80211_CHANCTX_REPLACES_OTHER: /* channel context that is going to replace another channel * context doesn't really exist and shouldn't be assigned * anywhere yet */ WARN_ON(1); break; } ieee80211_link_update_chandef(link, chandef); ieee80211_recalc_chanctx_chantype(local, ctx); *changed |= BSS_CHANGED_BANDWIDTH; ret = 0; out: mutex_unlock(&local->chanctx_mtx); return ret; } void ieee80211_link_release_channel(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; mutex_lock(&sdata->local->chanctx_mtx); if (rcu_access_pointer(link->conf->chanctx_conf)) { lockdep_assert_held(&sdata->local->mtx); __ieee80211_link_release_channel(link); } mutex_unlock(&sdata->local->chanctx_mtx); } void ieee80211_link_vlan_copy_chanctx(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; unsigned int link_id = link->link_id; struct ieee80211_bss_conf *link_conf = link->conf; struct ieee80211_bss_conf *ap_conf; struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *ap; struct ieee80211_chanctx_conf *conf; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->bss)) return; ap = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); mutex_lock(&local->chanctx_mtx); rcu_read_lock(); ap_conf = rcu_dereference(ap->vif.link_conf[link_id]); conf = rcu_dereference_protected(ap_conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); rcu_assign_pointer(link_conf->chanctx_conf, conf); rcu_read_unlock(); mutex_unlock(&local->chanctx_mtx); } void ieee80211_iter_chan_contexts_atomic( struct ieee80211_hw *hw, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *chanctx_conf, void *data), void *iter_data) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_chanctx *ctx; rcu_read_lock(); list_for_each_entry_rcu(ctx, &local->chanctx_list, list) if (ctx->driver_present) iter(hw, &ctx->conf, iter_data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iter_chan_contexts_atomic);
linux-master
net/mac80211/chan.c
// SPDX-License-Identifier: GPL-2.0-only /* * AES-GMAC for IEEE 802.11 BIP-GMAC-128 and BIP-GMAC-256 * Copyright 2015, Qualcomm Atheros, Inc. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/err.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <net/mac80211.h> #include "key.h" #include "aes_gmac.h" int ieee80211_aes_gmac(struct crypto_aead *tfm, const u8 *aad, u8 *nonce, const u8 *data, size_t data_len, u8 *mic) { struct scatterlist sg[5]; u8 *zero, *__aad, iv[AES_BLOCK_SIZE]; struct aead_request *aead_req; int reqsize = sizeof(*aead_req) + crypto_aead_reqsize(tfm); const __le16 *fc; int ret; if (data_len < GMAC_MIC_LEN) return -EINVAL; aead_req = kzalloc(reqsize + GMAC_MIC_LEN + GMAC_AAD_LEN, GFP_ATOMIC); if (!aead_req) return -ENOMEM; zero = (u8 *)aead_req + reqsize; __aad = zero + GMAC_MIC_LEN; memcpy(__aad, aad, GMAC_AAD_LEN); fc = (const __le16 *)aad; if (ieee80211_is_beacon(*fc)) { /* mask Timestamp field to zero */ sg_init_table(sg, 5); sg_set_buf(&sg[0], __aad, GMAC_AAD_LEN); sg_set_buf(&sg[1], zero, 8); sg_set_buf(&sg[2], data + 8, data_len - 8 - GMAC_MIC_LEN); sg_set_buf(&sg[3], zero, GMAC_MIC_LEN); sg_set_buf(&sg[4], mic, GMAC_MIC_LEN); } else { sg_init_table(sg, 4); sg_set_buf(&sg[0], __aad, GMAC_AAD_LEN); sg_set_buf(&sg[1], data, data_len - GMAC_MIC_LEN); sg_set_buf(&sg[2], zero, GMAC_MIC_LEN); sg_set_buf(&sg[3], mic, GMAC_MIC_LEN); } memcpy(iv, nonce, GMAC_NONCE_LEN); memset(iv + GMAC_NONCE_LEN, 0, sizeof(iv) - GMAC_NONCE_LEN); iv[AES_BLOCK_SIZE - 1] = 0x01; aead_request_set_tfm(aead_req, tfm); aead_request_set_crypt(aead_req, sg, sg, 0, iv); aead_request_set_ad(aead_req, GMAC_AAD_LEN + data_len); ret = crypto_aead_encrypt(aead_req); kfree_sensitive(aead_req); return ret; } struct crypto_aead *ieee80211_aes_gmac_key_setup(const u8 key[], size_t key_len) { struct crypto_aead *tfm; int err; tfm = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) return tfm; err = crypto_aead_setkey(tfm, key, key_len); if (!err) err = crypto_aead_setauthsize(tfm, GMAC_MIC_LEN); if (!err) return tfm; crypto_free_aead(tfm); return ERR_PTR(err); } void ieee80211_aes_gmac_key_free(struct crypto_aead *tfm) { crypto_free_aead(tfm); }
linux-master
net/mac80211/aes_gmac.c
// SPDX-License-Identifier: GPL-2.0-only /* * Interface handling * * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <[email protected]> * Copyright 2008, Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (c) 2016 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/kcov.h> #include <net/mac80211.h> #include <net/ieee80211_radiotap.h> #include "ieee80211_i.h" #include "sta_info.h" #include "debugfs_netdev.h" #include "mesh.h" #include "led.h" #include "driver-ops.h" #include "wme.h" #include "rate.h" /** * DOC: Interface list locking * * The interface list in each struct ieee80211_local is protected * three-fold: * * (1) modifications may only be done under the RTNL * (2) modifications and readers are protected against each other by * the iflist_mtx. * (3) modifications are done in an RCU manner so atomic readers * can traverse the list in RCU-safe blocks. * * As a consequence, reads (traversals) of the list can be protected * by either the RTNL, the iflist_mtx or RCU. */ static void ieee80211_iface_work(struct wiphy *wiphy, struct wiphy_work *work); bool __ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata) { struct ieee80211_chanctx_conf *chanctx_conf; int power; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return false; } power = ieee80211_chandef_max_power(&chanctx_conf->def); rcu_read_unlock(); if (sdata->deflink.user_power_level != IEEE80211_UNSET_POWER_LEVEL) power = min(power, sdata->deflink.user_power_level); if (sdata->deflink.ap_power_level != IEEE80211_UNSET_POWER_LEVEL) power = min(power, sdata->deflink.ap_power_level); if (power != sdata->vif.bss_conf.txpower) { sdata->vif.bss_conf.txpower = power; ieee80211_hw_config(sdata->local, 0); return true; } return false; } void ieee80211_recalc_txpower(struct ieee80211_sub_if_data *sdata, bool update_bss) { if (__ieee80211_recalc_txpower(sdata) || (update_bss && ieee80211_sdata_running(sdata))) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_TXPOWER); } static u32 __ieee80211_idle_off(struct ieee80211_local *local) { if (!(local->hw.conf.flags & IEEE80211_CONF_IDLE)) return 0; local->hw.conf.flags &= ~IEEE80211_CONF_IDLE; return IEEE80211_CONF_CHANGE_IDLE; } static u32 __ieee80211_idle_on(struct ieee80211_local *local) { if (local->hw.conf.flags & IEEE80211_CONF_IDLE) return 0; ieee80211_flush_queues(local, NULL, false); local->hw.conf.flags |= IEEE80211_CONF_IDLE; return IEEE80211_CONF_CHANGE_IDLE; } static u32 __ieee80211_recalc_idle(struct ieee80211_local *local, bool force_active) { bool working, scanning, active; unsigned int led_trig_start = 0, led_trig_stop = 0; lockdep_assert_held(&local->mtx); active = force_active || !list_empty(&local->chanctx_list) || local->monitors; working = !local->ops->remain_on_channel && !list_empty(&local->roc_list); scanning = test_bit(SCAN_SW_SCANNING, &local->scanning) || test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning); if (working || scanning) led_trig_start |= IEEE80211_TPT_LEDTRIG_FL_WORK; else led_trig_stop |= IEEE80211_TPT_LEDTRIG_FL_WORK; if (active) led_trig_start |= IEEE80211_TPT_LEDTRIG_FL_CONNECTED; else led_trig_stop |= IEEE80211_TPT_LEDTRIG_FL_CONNECTED; ieee80211_mod_tpt_led_trig(local, led_trig_start, led_trig_stop); if (working || scanning || active) return __ieee80211_idle_off(local); return __ieee80211_idle_on(local); } u32 ieee80211_idle_off(struct ieee80211_local *local) { return __ieee80211_recalc_idle(local, true); } void ieee80211_recalc_idle(struct ieee80211_local *local) { u32 change = __ieee80211_recalc_idle(local, false); if (change) ieee80211_hw_config(local, change); } static int ieee80211_verify_mac(struct ieee80211_sub_if_data *sdata, u8 *addr, bool check_dup) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *iter; u64 new, mask, tmp; u8 *m; int ret = 0; if (is_zero_ether_addr(local->hw.wiphy->addr_mask)) return 0; m = addr; new = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) | ((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) | ((u64)m[4] << 1*8) | ((u64)m[5] << 0*8); m = local->hw.wiphy->addr_mask; mask = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) | ((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) | ((u64)m[4] << 1*8) | ((u64)m[5] << 0*8); if (!check_dup) return ret; mutex_lock(&local->iflist_mtx); list_for_each_entry(iter, &local->interfaces, list) { if (iter == sdata) continue; if (iter->vif.type == NL80211_IFTYPE_MONITOR && !(iter->u.mntr.flags & MONITOR_FLAG_ACTIVE)) continue; m = iter->vif.addr; tmp = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) | ((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) | ((u64)m[4] << 1*8) | ((u64)m[5] << 0*8); if ((new & ~mask) != (tmp & ~mask)) { ret = -EINVAL; break; } } mutex_unlock(&local->iflist_mtx); return ret; } static int ieee80211_can_powered_addr_change(struct ieee80211_sub_if_data *sdata) { struct ieee80211_roc_work *roc; struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *scan_sdata; int ret = 0; /* To be the most flexible here we want to only limit changing the * address if the specific interface is doing offchannel work or * scanning. */ if (netif_carrier_ok(sdata->dev)) return -EBUSY; mutex_lock(&local->mtx); /* First check no ROC work is happening on this iface */ list_for_each_entry(roc, &local->roc_list, list) { if (roc->sdata != sdata) continue; if (roc->started) { ret = -EBUSY; goto unlock; } } /* And if this iface is scanning */ if (local->scanning) { scan_sdata = rcu_dereference_protected(local->scan_sdata, lockdep_is_held(&local->mtx)); if (sdata == scan_sdata) ret = -EBUSY; } switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: /* More interface types could be added here but changing the * address while powered makes the most sense in client modes. */ break; default: ret = -EOPNOTSUPP; } unlock: mutex_unlock(&local->mtx); return ret; } static int ieee80211_change_mac(struct net_device *dev, void *addr) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sockaddr *sa = addr; bool check_dup = true; bool live = false; int ret; if (ieee80211_sdata_running(sdata)) { ret = ieee80211_can_powered_addr_change(sdata); if (ret) return ret; live = true; } if (sdata->vif.type == NL80211_IFTYPE_MONITOR && !(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) check_dup = false; ret = ieee80211_verify_mac(sdata, sa->sa_data, check_dup); if (ret) return ret; if (live) drv_remove_interface(local, sdata); ret = eth_mac_addr(dev, sa); if (ret == 0) { memcpy(sdata->vif.addr, sa->sa_data, ETH_ALEN); ether_addr_copy(sdata->vif.bss_conf.addr, sdata->vif.addr); } /* Regardless of eth_mac_addr() return we still want to add the * interface back. This should not fail... */ if (live) WARN_ON(drv_add_interface(local, sdata)); return ret; } static inline int identical_mac_addr_allowed(int type1, int type2) { return type1 == NL80211_IFTYPE_MONITOR || type2 == NL80211_IFTYPE_MONITOR || type1 == NL80211_IFTYPE_P2P_DEVICE || type2 == NL80211_IFTYPE_P2P_DEVICE || (type1 == NL80211_IFTYPE_AP && type2 == NL80211_IFTYPE_AP_VLAN) || (type1 == NL80211_IFTYPE_AP_VLAN && (type2 == NL80211_IFTYPE_AP || type2 == NL80211_IFTYPE_AP_VLAN)); } static int ieee80211_check_concurrent_iface(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype iftype) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *nsdata; int ret; ASSERT_RTNL(); /* we hold the RTNL here so can safely walk the list */ list_for_each_entry(nsdata, &local->interfaces, list) { if (nsdata != sdata && ieee80211_sdata_running(nsdata)) { /* * Only OCB and monitor mode may coexist */ if ((sdata->vif.type == NL80211_IFTYPE_OCB && nsdata->vif.type != NL80211_IFTYPE_MONITOR) || (sdata->vif.type != NL80211_IFTYPE_MONITOR && nsdata->vif.type == NL80211_IFTYPE_OCB)) return -EBUSY; /* * Allow only a single IBSS interface to be up at any * time. This is restricted because beacon distribution * cannot work properly if both are in the same IBSS. * * To remove this restriction we'd have to disallow them * from setting the same SSID on different IBSS interfaces * belonging to the same hardware. Then, however, we're * faced with having to adopt two different TSF timers... */ if (iftype == NL80211_IFTYPE_ADHOC && nsdata->vif.type == NL80211_IFTYPE_ADHOC) return -EBUSY; /* * will not add another interface while any channel * switch is active. */ if (nsdata->vif.bss_conf.csa_active) return -EBUSY; /* * The remaining checks are only performed for interfaces * with the same MAC address. */ if (!ether_addr_equal(sdata->vif.addr, nsdata->vif.addr)) continue; /* * check whether it may have the same address */ if (!identical_mac_addr_allowed(iftype, nsdata->vif.type)) return -ENOTUNIQ; /* No support for VLAN with MLO yet */ if (iftype == NL80211_IFTYPE_AP_VLAN && sdata->wdev.use_4addr && nsdata->vif.type == NL80211_IFTYPE_AP && nsdata->vif.valid_links) return -EOPNOTSUPP; /* * can only add VLANs to enabled APs */ if (iftype == NL80211_IFTYPE_AP_VLAN && nsdata->vif.type == NL80211_IFTYPE_AP) sdata->bss = &nsdata->u.ap; } } mutex_lock(&local->chanctx_mtx); ret = ieee80211_check_combinations(sdata, NULL, 0, 0); mutex_unlock(&local->chanctx_mtx); return ret; } static int ieee80211_check_queues(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype iftype) { int n_queues = sdata->local->hw.queues; int i; if (iftype == NL80211_IFTYPE_NAN) return 0; if (iftype != NL80211_IFTYPE_P2P_DEVICE) { for (i = 0; i < IEEE80211_NUM_ACS; i++) { if (WARN_ON_ONCE(sdata->vif.hw_queue[i] == IEEE80211_INVAL_HW_QUEUE)) return -EINVAL; if (WARN_ON_ONCE(sdata->vif.hw_queue[i] >= n_queues)) return -EINVAL; } } if ((iftype != NL80211_IFTYPE_AP && iftype != NL80211_IFTYPE_P2P_GO && iftype != NL80211_IFTYPE_MESH_POINT) || !ieee80211_hw_check(&sdata->local->hw, QUEUE_CONTROL)) { sdata->vif.cab_queue = IEEE80211_INVAL_HW_QUEUE; return 0; } if (WARN_ON_ONCE(sdata->vif.cab_queue == IEEE80211_INVAL_HW_QUEUE)) return -EINVAL; if (WARN_ON_ONCE(sdata->vif.cab_queue >= n_queues)) return -EINVAL; return 0; } static int ieee80211_open(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int err; /* fail early if user set an invalid address */ if (!is_valid_ether_addr(dev->dev_addr)) return -EADDRNOTAVAIL; err = ieee80211_check_concurrent_iface(sdata, sdata->vif.type); if (err) return err; wiphy_lock(sdata->local->hw.wiphy); err = ieee80211_do_open(&sdata->wdev, true); wiphy_unlock(sdata->local->hw.wiphy); return err; } static void ieee80211_do_stop(struct ieee80211_sub_if_data *sdata, bool going_down) { struct ieee80211_local *local = sdata->local; unsigned long flags; struct sk_buff *skb, *tmp; u32 hw_reconf_flags = 0; int i, flushed; struct ps_data *ps; struct cfg80211_chan_def chandef; bool cancel_scan; struct cfg80211_nan_func *func; clear_bit(SDATA_STATE_RUNNING, &sdata->state); synchronize_rcu(); /* flush _ieee80211_wake_txqs() */ cancel_scan = rcu_access_pointer(local->scan_sdata) == sdata; if (cancel_scan) ieee80211_scan_cancel(local); ieee80211_roc_purge(local, sdata); switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: ieee80211_mgd_stop(sdata); break; case NL80211_IFTYPE_ADHOC: ieee80211_ibss_stop(sdata); break; case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) break; list_del_rcu(&sdata->u.mntr.list); break; default: break; } /* * Remove all stations associated with this interface. * * This must be done before calling ops->remove_interface() * because otherwise we can later invoke ops->sta_notify() * whenever the STAs are removed, and that invalidates driver * assumptions about always getting a vif pointer that is valid * (because if we remove a STA after ops->remove_interface() * the driver will have removed the vif info already!) * * For AP_VLANs stations may exist since there's nothing else that * would have removed them, but in other modes there shouldn't * be any stations. */ flushed = sta_info_flush(sdata); WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_AP_VLAN && flushed > 0); /* don't count this interface for allmulti while it is down */ if (sdata->flags & IEEE80211_SDATA_ALLMULTI) atomic_dec(&local->iff_allmultis); if (sdata->vif.type == NL80211_IFTYPE_AP) { local->fif_pspoll--; local->fif_probe_req--; } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { local->fif_probe_req--; } if (sdata->dev) { netif_addr_lock_bh(sdata->dev); spin_lock_bh(&local->filter_lock); __hw_addr_unsync(&local->mc_list, &sdata->dev->mc, sdata->dev->addr_len); spin_unlock_bh(&local->filter_lock); netif_addr_unlock_bh(sdata->dev); } del_timer_sync(&local->dynamic_ps_timer); cancel_work_sync(&local->dynamic_ps_enable_work); cancel_work_sync(&sdata->recalc_smps); sdata_lock(sdata); WARN(ieee80211_vif_is_mld(&sdata->vif), "destroying interface with valid links 0x%04x\n", sdata->vif.valid_links); mutex_lock(&local->mtx); sdata->vif.bss_conf.csa_active = false; if (sdata->vif.type == NL80211_IFTYPE_STATION) sdata->deflink.u.mgd.csa_waiting_bcn = false; if (sdata->deflink.csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); sdata->deflink.csa_block_tx = false; } mutex_unlock(&local->mtx); sdata_unlock(sdata); cancel_work_sync(&sdata->deflink.csa_finalize_work); cancel_work_sync(&sdata->deflink.color_change_finalize_work); cancel_delayed_work_sync(&sdata->deflink.dfs_cac_timer_work); if (sdata->wdev.cac_started) { chandef = sdata->vif.bss_conf.chandef; WARN_ON(local->suspended); mutex_lock(&local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&local->mtx); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL); } if (sdata->vif.type == NL80211_IFTYPE_AP) { WARN_ON(!list_empty(&sdata->u.ap.vlans)); } else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { /* remove all packets in parent bc_buf pointing to this dev */ ps = &sdata->bss->ps; spin_lock_irqsave(&ps->bc_buf.lock, flags); skb_queue_walk_safe(&ps->bc_buf, skb, tmp) { if (skb->dev == sdata->dev) { __skb_unlink(skb, &ps->bc_buf); local->total_ps_buffered--; ieee80211_free_txskb(&local->hw, skb); } } spin_unlock_irqrestore(&ps->bc_buf.lock, flags); } if (going_down) local->open_count--; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: mutex_lock(&local->mtx); list_del(&sdata->u.vlan.list); mutex_unlock(&local->mtx); RCU_INIT_POINTER(sdata->vif.bss_conf.chanctx_conf, NULL); /* see comment in the default case below */ ieee80211_free_keys(sdata, true); /* no need to tell driver */ break; case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) { local->cooked_mntrs--; break; } local->monitors--; if (local->monitors == 0) { local->hw.conf.flags &= ~IEEE80211_CONF_MONITOR; hw_reconf_flags |= IEEE80211_CONF_CHANGE_MONITOR; } ieee80211_adjust_monitor_flags(sdata, -1); break; case NL80211_IFTYPE_NAN: /* clean all the functions */ spin_lock_bh(&sdata->u.nan.func_lock); idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, i) { idr_remove(&sdata->u.nan.function_inst_ids, i); cfg80211_free_nan_func(func); } idr_destroy(&sdata->u.nan.function_inst_ids); spin_unlock_bh(&sdata->u.nan.func_lock); break; case NL80211_IFTYPE_P2P_DEVICE: /* relies on synchronize_rcu() below */ RCU_INIT_POINTER(local->p2p_sdata, NULL); fallthrough; default: wiphy_work_cancel(sdata->local->hw.wiphy, &sdata->work); /* * When we get here, the interface is marked down. * Free the remaining keys, if there are any * (which can happen in AP mode if userspace sets * keys before the interface is operating) * * Force the key freeing to always synchronize_net() * to wait for the RX path in case it is using this * interface enqueuing frames at this very time on * another CPU. */ ieee80211_free_keys(sdata, true); skb_queue_purge(&sdata->skb_queue); skb_queue_purge(&sdata->status_queue); } spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (i = 0; i < IEEE80211_MAX_QUEUES; i++) { skb_queue_walk_safe(&local->pending[i], skb, tmp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (info->control.vif == &sdata->vif) { __skb_unlink(skb, &local->pending[i]); ieee80211_free_txskb(&local->hw, skb); } } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ieee80211_txq_remove_vlan(local, sdata); sdata->bss = NULL; if (local->open_count == 0) ieee80211_clear_tx_pending(local); sdata->vif.bss_conf.beacon_int = 0; /* * If the interface goes down while suspended, presumably because * the device was unplugged and that happens before our resume, * then the driver is already unconfigured and the remainder of * this function isn't needed. * XXX: what about WoWLAN? If the device has software state, e.g. * memory allocated, it might expect teardown commands from * mac80211 here? */ if (local->suspended) { WARN_ON(local->wowlan); WARN_ON(rcu_access_pointer(local->monitor_sdata)); return; } switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: break; case NL80211_IFTYPE_MONITOR: if (local->monitors == 0) ieee80211_del_virtual_monitor(local); mutex_lock(&local->mtx); ieee80211_recalc_idle(local); mutex_unlock(&local->mtx); if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) break; fallthrough; default: if (going_down) drv_remove_interface(local, sdata); } ieee80211_recalc_ps(local); if (cancel_scan) flush_delayed_work(&local->scan_work); if (local->open_count == 0) { ieee80211_stop_device(local); /* no reconfiguring after stop! */ return; } /* do after stop to avoid reconfiguring when we stop anyway */ ieee80211_configure_filter(local); ieee80211_hw_config(local, hw_reconf_flags); if (local->monitors == local->open_count) ieee80211_add_virtual_monitor(local); } static void ieee80211_stop_mbssid(struct ieee80211_sub_if_data *sdata) { struct ieee80211_sub_if_data *tx_sdata, *non_tx_sdata, *tmp_sdata; struct ieee80211_vif *tx_vif = sdata->vif.mbssid_tx_vif; if (!tx_vif) return; tx_sdata = vif_to_sdata(tx_vif); sdata->vif.mbssid_tx_vif = NULL; list_for_each_entry_safe(non_tx_sdata, tmp_sdata, &tx_sdata->local->interfaces, list) { if (non_tx_sdata != sdata && non_tx_sdata != tx_sdata && non_tx_sdata->vif.mbssid_tx_vif == tx_vif && ieee80211_sdata_running(non_tx_sdata)) { non_tx_sdata->vif.mbssid_tx_vif = NULL; dev_close(non_tx_sdata->wdev.netdev); } } if (sdata != tx_sdata && ieee80211_sdata_running(tx_sdata)) { tx_sdata->vif.mbssid_tx_vif = NULL; dev_close(tx_sdata->wdev.netdev); } } static int ieee80211_stop(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); /* close dependent VLAN and MBSSID interfaces before locking wiphy */ if (sdata->vif.type == NL80211_IFTYPE_AP) { struct ieee80211_sub_if_data *vlan, *tmpsdata; list_for_each_entry_safe(vlan, tmpsdata, &sdata->u.ap.vlans, u.vlan.list) dev_close(vlan->dev); ieee80211_stop_mbssid(sdata); } cancel_work_sync(&sdata->activate_links_work); wiphy_lock(sdata->local->hw.wiphy); ieee80211_do_stop(sdata, true); wiphy_unlock(sdata->local->hw.wiphy); return 0; } static void ieee80211_set_multicast_list(struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; int allmulti, sdata_allmulti; allmulti = !!(dev->flags & IFF_ALLMULTI); sdata_allmulti = !!(sdata->flags & IEEE80211_SDATA_ALLMULTI); if (allmulti != sdata_allmulti) { if (dev->flags & IFF_ALLMULTI) atomic_inc(&local->iff_allmultis); else atomic_dec(&local->iff_allmultis); sdata->flags ^= IEEE80211_SDATA_ALLMULTI; } spin_lock_bh(&local->filter_lock); __hw_addr_sync(&local->mc_list, &dev->mc, dev->addr_len); spin_unlock_bh(&local->filter_lock); ieee80211_queue_work(&local->hw, &local->reconfig_filter); } /* * Called when the netdev is removed or, by the code below, before * the interface type changes. */ static void ieee80211_teardown_sdata(struct ieee80211_sub_if_data *sdata) { /* free extra data */ ieee80211_free_keys(sdata, false); ieee80211_debugfs_remove_netdev(sdata); ieee80211_destroy_frag_cache(&sdata->frags); if (ieee80211_vif_is_mesh(&sdata->vif)) ieee80211_mesh_teardown_sdata(sdata); ieee80211_vif_clear_links(sdata); ieee80211_link_stop(&sdata->deflink); } static void ieee80211_uninit(struct net_device *dev) { ieee80211_teardown_sdata(IEEE80211_DEV_TO_SUB_IF(dev)); } static void ieee80211_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { dev_fetch_sw_netstats(stats, dev->tstats); } static int ieee80211_netdev_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; return drv_net_setup_tc(local, sdata, dev, type, type_data); } static const struct net_device_ops ieee80211_dataif_ops = { .ndo_open = ieee80211_open, .ndo_stop = ieee80211_stop, .ndo_uninit = ieee80211_uninit, .ndo_start_xmit = ieee80211_subif_start_xmit, .ndo_set_rx_mode = ieee80211_set_multicast_list, .ndo_set_mac_address = ieee80211_change_mac, .ndo_get_stats64 = ieee80211_get_stats64, .ndo_setup_tc = ieee80211_netdev_setup_tc, }; static u16 ieee80211_monitor_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; int len_rthdr; if (local->hw.queues < IEEE80211_NUM_ACS) return 0; /* reset flags and info before parsing radiotap header */ memset(info, 0, sizeof(*info)); if (!ieee80211_parse_tx_radiotap(skb, dev)) return 0; /* doesn't matter, frame will be dropped */ len_rthdr = ieee80211_get_radiotap_len(skb->data); hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); if (skb->len < len_rthdr + 2 || skb->len < len_rthdr + ieee80211_hdrlen(hdr->frame_control)) return 0; /* doesn't matter, frame will be dropped */ return ieee80211_select_queue_80211(sdata, skb, hdr); } static const struct net_device_ops ieee80211_monitorif_ops = { .ndo_open = ieee80211_open, .ndo_stop = ieee80211_stop, .ndo_uninit = ieee80211_uninit, .ndo_start_xmit = ieee80211_monitor_start_xmit, .ndo_set_rx_mode = ieee80211_set_multicast_list, .ndo_set_mac_address = ieee80211_change_mac, .ndo_select_queue = ieee80211_monitor_select_queue, .ndo_get_stats64 = ieee80211_get_stats64, }; static int ieee80211_netdev_fill_forward_path(struct net_device_path_ctx *ctx, struct net_device_path *path) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local; struct sta_info *sta; int ret = -ENOENT; sdata = IEEE80211_DEV_TO_SUB_IF(ctx->dev); local = sdata->local; if (!local->ops->net_fill_forward_path) return -EOPNOTSUPP; rcu_read_lock(); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: sta = rcu_dereference(sdata->u.vlan.sta); if (sta) break; if (sdata->wdev.use_4addr) goto out; if (is_multicast_ether_addr(ctx->daddr)) goto out; sta = sta_info_get_bss(sdata, ctx->daddr); break; case NL80211_IFTYPE_AP: if (is_multicast_ether_addr(ctx->daddr)) goto out; sta = sta_info_get(sdata, ctx->daddr); break; case NL80211_IFTYPE_STATION: if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { sta = sta_info_get(sdata, ctx->daddr); if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) goto out; break; } } sta = sta_info_get(sdata, sdata->deflink.u.mgd.bssid); break; default: goto out; } if (!sta) goto out; ret = drv_net_fill_forward_path(local, sdata, &sta->sta, ctx, path); out: rcu_read_unlock(); return ret; } static const struct net_device_ops ieee80211_dataif_8023_ops = { .ndo_open = ieee80211_open, .ndo_stop = ieee80211_stop, .ndo_uninit = ieee80211_uninit, .ndo_start_xmit = ieee80211_subif_start_xmit_8023, .ndo_set_rx_mode = ieee80211_set_multicast_list, .ndo_set_mac_address = ieee80211_change_mac, .ndo_get_stats64 = ieee80211_get_stats64, .ndo_fill_forward_path = ieee80211_netdev_fill_forward_path, .ndo_setup_tc = ieee80211_netdev_setup_tc, }; static bool ieee80211_iftype_supports_hdr_offload(enum nl80211_iftype iftype) { switch (iftype) { /* P2P GO and client are mapped to AP/STATION types */ case NL80211_IFTYPE_AP: case NL80211_IFTYPE_STATION: return true; default: return false; } } static bool ieee80211_set_sdata_offload_flags(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; u32 flags; flags = sdata->vif.offload_flags; if (ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD) && ieee80211_iftype_supports_hdr_offload(sdata->vif.type)) { flags |= IEEE80211_OFFLOAD_ENCAP_ENABLED; if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG) && local->hw.wiphy->frag_threshold != (u32)-1) flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; if (local->monitors) flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; } else { flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; } if (ieee80211_hw_check(&local->hw, SUPPORTS_RX_DECAP_OFFLOAD) && ieee80211_iftype_supports_hdr_offload(sdata->vif.type)) { flags |= IEEE80211_OFFLOAD_DECAP_ENABLED; if (local->monitors && !ieee80211_hw_check(&local->hw, SUPPORTS_CONC_MON_RX_DECAP)) flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED; } else { flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED; } if (sdata->vif.offload_flags == flags) return false; sdata->vif.offload_flags = flags; ieee80211_check_fast_rx_iface(sdata); return true; } static void ieee80211_set_vif_encap_ops(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *bss = sdata; bool enabled; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!sdata->bss) return; bss = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); } if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD) || !ieee80211_iftype_supports_hdr_offload(bss->vif.type)) return; enabled = bss->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED; if (sdata->wdev.use_4addr && !(bss->vif.offload_flags & IEEE80211_OFFLOAD_ENCAP_4ADDR)) enabled = false; sdata->dev->netdev_ops = enabled ? &ieee80211_dataif_8023_ops : &ieee80211_dataif_ops; } static void ieee80211_recalc_sdata_offload(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *vsdata; if (ieee80211_set_sdata_offload_flags(sdata)) { drv_update_vif_offload(local, sdata); ieee80211_set_vif_encap_ops(sdata); } list_for_each_entry(vsdata, &local->interfaces, list) { if (vsdata->vif.type != NL80211_IFTYPE_AP_VLAN || vsdata->bss != &sdata->u.ap) continue; ieee80211_set_vif_encap_ops(vsdata); } } void ieee80211_recalc_offload(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; if (!ieee80211_hw_check(&local->hw, SUPPORTS_TX_ENCAP_OFFLOAD)) return; mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; ieee80211_recalc_sdata_offload(sdata); } mutex_unlock(&local->iflist_mtx); } void ieee80211_adjust_monitor_flags(struct ieee80211_sub_if_data *sdata, const int offset) { struct ieee80211_local *local = sdata->local; u32 flags = sdata->u.mntr.flags; #define ADJUST(_f, _s) do { \ if (flags & MONITOR_FLAG_##_f) \ local->fif_##_s += offset; \ } while (0) ADJUST(FCSFAIL, fcsfail); ADJUST(PLCPFAIL, plcpfail); ADJUST(CONTROL, control); ADJUST(CONTROL, pspoll); ADJUST(OTHER_BSS, other_bss); #undef ADJUST } static void ieee80211_set_default_queues(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; int i; for (i = 0; i < IEEE80211_NUM_ACS; i++) { if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) sdata->vif.hw_queue[i] = IEEE80211_INVAL_HW_QUEUE; else if (local->hw.queues >= IEEE80211_NUM_ACS) sdata->vif.hw_queue[i] = i; else sdata->vif.hw_queue[i] = 0; } sdata->vif.cab_queue = IEEE80211_INVAL_HW_QUEUE; } static void ieee80211_sdata_init(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { sdata->local = local; /* * Initialize the default link, so we can use link_id 0 for non-MLD, * and that continues to work for non-MLD-aware drivers that use just * vif.bss_conf instead of vif.link_conf. * * Note that we never change this, so if link ID 0 isn't used in an * MLD connection, we get a separate allocation for it. */ ieee80211_link_init(sdata, -1, &sdata->deflink, &sdata->vif.bss_conf); } int ieee80211_add_virtual_monitor(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; int ret; if (!ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) return 0; ASSERT_RTNL(); lockdep_assert_wiphy(local->hw.wiphy); if (local->monitor_sdata) return 0; sdata = kzalloc(sizeof(*sdata) + local->hw.vif_data_size, GFP_KERNEL); if (!sdata) return -ENOMEM; /* set up data */ sdata->vif.type = NL80211_IFTYPE_MONITOR; snprintf(sdata->name, IFNAMSIZ, "%s-monitor", wiphy_name(local->hw.wiphy)); sdata->wdev.iftype = NL80211_IFTYPE_MONITOR; mutex_init(&sdata->wdev.mtx); ieee80211_sdata_init(local, sdata); ieee80211_set_default_queues(sdata); ret = drv_add_interface(local, sdata); if (WARN_ON(ret)) { /* ok .. stupid driver, it asked for this! */ kfree(sdata); return ret; } set_bit(SDATA_STATE_RUNNING, &sdata->state); ret = ieee80211_check_queues(sdata, NL80211_IFTYPE_MONITOR); if (ret) { kfree(sdata); return ret; } mutex_lock(&local->iflist_mtx); rcu_assign_pointer(local->monitor_sdata, sdata); mutex_unlock(&local->iflist_mtx); sdata_lock(sdata); mutex_lock(&local->mtx); ret = ieee80211_link_use_channel(&sdata->deflink, &local->monitor_chandef, IEEE80211_CHANCTX_EXCLUSIVE); mutex_unlock(&local->mtx); sdata_unlock(sdata); if (ret) { mutex_lock(&local->iflist_mtx); RCU_INIT_POINTER(local->monitor_sdata, NULL); mutex_unlock(&local->iflist_mtx); synchronize_net(); drv_remove_interface(local, sdata); mutex_destroy(&sdata->wdev.mtx); kfree(sdata); return ret; } skb_queue_head_init(&sdata->skb_queue); skb_queue_head_init(&sdata->status_queue); wiphy_work_init(&sdata->work, ieee80211_iface_work); return 0; } void ieee80211_del_virtual_monitor(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; if (!ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) return; ASSERT_RTNL(); lockdep_assert_wiphy(local->hw.wiphy); mutex_lock(&local->iflist_mtx); sdata = rcu_dereference_protected(local->monitor_sdata, lockdep_is_held(&local->iflist_mtx)); if (!sdata) { mutex_unlock(&local->iflist_mtx); return; } RCU_INIT_POINTER(local->monitor_sdata, NULL); mutex_unlock(&local->iflist_mtx); synchronize_net(); sdata_lock(sdata); mutex_lock(&local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&local->mtx); sdata_unlock(sdata); drv_remove_interface(local, sdata); mutex_destroy(&sdata->wdev.mtx); kfree(sdata); } /* * NOTE: Be very careful when changing this function, it must NOT return * an error on interface type changes that have been pre-checked, so most * checks should be in ieee80211_check_concurrent_iface. */ int ieee80211_do_open(struct wireless_dev *wdev, bool coming_up) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct net_device *dev = wdev->netdev; struct ieee80211_local *local = sdata->local; u64 changed = 0; int res; u32 hw_reconf_flags = 0; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: { struct ieee80211_sub_if_data *master; if (!sdata->bss) return -ENOLINK; mutex_lock(&local->mtx); list_add(&sdata->u.vlan.list, &sdata->bss->vlans); mutex_unlock(&local->mtx); master = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); sdata->control_port_protocol = master->control_port_protocol; sdata->control_port_no_encrypt = master->control_port_no_encrypt; sdata->control_port_over_nl80211 = master->control_port_over_nl80211; sdata->control_port_no_preauth = master->control_port_no_preauth; sdata->vif.cab_queue = master->vif.cab_queue; memcpy(sdata->vif.hw_queue, master->vif.hw_queue, sizeof(sdata->vif.hw_queue)); sdata->vif.bss_conf.chandef = master->vif.bss_conf.chandef; mutex_lock(&local->key_mtx); sdata->crypto_tx_tailroom_needed_cnt += master->crypto_tx_tailroom_needed_cnt; mutex_unlock(&local->key_mtx); break; } case NL80211_IFTYPE_AP: sdata->bss = &sdata->u.ap; break; case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_NAN: /* no special treatment */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_WDS: /* cannot happen */ WARN_ON(1); break; } if (local->open_count == 0) { /* here we can consider everything in good order (again) */ local->reconfig_failure = false; res = drv_start(local); if (res) goto err_del_bss; /* we're brought up, everything changes */ hw_reconf_flags = ~0; ieee80211_led_radio(local, true); ieee80211_mod_tpt_led_trig(local, IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); } /* * Copy the hopefully now-present MAC address to * this interface, if it has the special null one. */ if (dev && is_zero_ether_addr(dev->dev_addr)) { eth_hw_addr_set(dev, local->hw.wiphy->perm_addr); memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); if (!is_valid_ether_addr(dev->dev_addr)) { res = -EADDRNOTAVAIL; goto err_stop; } } switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: /* no need to tell driver, but set carrier and chanctx */ if (sdata->bss->active) { ieee80211_link_vlan_copy_chanctx(&sdata->deflink); netif_carrier_on(dev); ieee80211_set_vif_encap_ops(sdata); } else { netif_carrier_off(dev); } break; case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) { local->cooked_mntrs++; break; } if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { res = drv_add_interface(local, sdata); if (res) goto err_stop; } else if (local->monitors == 0 && local->open_count == 0) { res = ieee80211_add_virtual_monitor(local); if (res) goto err_stop; } /* must be before the call to ieee80211_configure_filter */ local->monitors++; if (local->monitors == 1) { local->hw.conf.flags |= IEEE80211_CONF_MONITOR; hw_reconf_flags |= IEEE80211_CONF_CHANGE_MONITOR; } ieee80211_adjust_monitor_flags(sdata, 1); ieee80211_configure_filter(local); ieee80211_recalc_offload(local); mutex_lock(&local->mtx); ieee80211_recalc_idle(local); mutex_unlock(&local->mtx); netif_carrier_on(dev); break; default: if (coming_up) { ieee80211_del_virtual_monitor(local); ieee80211_set_sdata_offload_flags(sdata); res = drv_add_interface(local, sdata); if (res) goto err_stop; ieee80211_set_vif_encap_ops(sdata); res = ieee80211_check_queues(sdata, ieee80211_vif_type_p2p(&sdata->vif)); if (res) goto err_del_interface; } if (sdata->vif.type == NL80211_IFTYPE_AP) { local->fif_pspoll++; local->fif_probe_req++; ieee80211_configure_filter(local); } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { local->fif_probe_req++; } if (sdata->vif.probe_req_reg) drv_config_iface_filter(local, sdata, FIF_PROBE_REQ, FIF_PROBE_REQ); if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) changed |= ieee80211_reset_erp_info(sdata); ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_OCB: netif_carrier_off(dev); break; case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: break; default: /* not reached */ WARN_ON(1); } /* * Set default queue parameters so drivers don't * need to initialise the hardware if the hardware * doesn't start up with sane defaults. * Enable QoS for anything but station interfaces. */ ieee80211_set_wmm_default(&sdata->deflink, true, sdata->vif.type != NL80211_IFTYPE_STATION); } switch (sdata->vif.type) { case NL80211_IFTYPE_P2P_DEVICE: rcu_assign_pointer(local->p2p_sdata, sdata); break; case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) break; list_add_tail_rcu(&sdata->u.mntr.list, &local->mon_list); break; default: break; } /* * set_multicast_list will be invoked by the networking core * which will check whether any increments here were done in * error and sync them down to the hardware as filter flags. */ if (sdata->flags & IEEE80211_SDATA_ALLMULTI) atomic_inc(&local->iff_allmultis); if (coming_up) local->open_count++; if (hw_reconf_flags) ieee80211_hw_config(local, hw_reconf_flags); ieee80211_recalc_ps(local); set_bit(SDATA_STATE_RUNNING, &sdata->state); return 0; err_del_interface: drv_remove_interface(local, sdata); err_stop: if (!local->open_count) drv_stop(local); err_del_bss: sdata->bss = NULL; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { mutex_lock(&local->mtx); list_del(&sdata->u.vlan.list); mutex_unlock(&local->mtx); } /* might already be clear but that doesn't matter */ clear_bit(SDATA_STATE_RUNNING, &sdata->state); return res; } static void ieee80211_if_free(struct net_device *dev) { free_percpu(dev->tstats); } static void ieee80211_if_setup(struct net_device *dev) { ether_setup(dev); dev->priv_flags &= ~IFF_TX_SKB_SHARING; dev->priv_flags |= IFF_NO_QUEUE; dev->netdev_ops = &ieee80211_dataif_ops; dev->needs_free_netdev = true; dev->priv_destructor = ieee80211_if_free; } static void ieee80211_iface_process_skb(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_BACK) { struct sta_info *sta; int len = skb->len; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mgmt->sa); if (sta) { switch (mgmt->u.action.u.addba_req.action_code) { case WLAN_ACTION_ADDBA_REQ: ieee80211_process_addba_request(local, sta, mgmt, len); break; case WLAN_ACTION_ADDBA_RESP: ieee80211_process_addba_resp(local, sta, mgmt, len); break; case WLAN_ACTION_DELBA: ieee80211_process_delba(sdata, sta, mgmt, len); break; default: WARN_ON(1); break; } } mutex_unlock(&local->sta_mtx); } else if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_VHT) { switch (mgmt->u.action.u.vht_group_notif.action_code) { case WLAN_VHT_ACTION_OPMODE_NOTIF: { struct ieee80211_rx_status *status; enum nl80211_band band; struct sta_info *sta; u8 opmode; status = IEEE80211_SKB_RXCB(skb); band = status->band; opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mgmt->sa); if (sta) ieee80211_vht_handle_opmode(sdata, &sta->deflink, opmode, band); mutex_unlock(&local->sta_mtx); break; } case WLAN_VHT_ACTION_GROUPID_MGMT: ieee80211_process_mu_groups(sdata, &sdata->deflink, mgmt); break; default: WARN_ON(1); break; } } else if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_S1G) { switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_TEARDOWN: case WLAN_S1G_TWT_SETUP: ieee80211_s1g_rx_twt_action(sdata, skb); break; default: break; } } else if (ieee80211_is_ext(mgmt->frame_control)) { if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_rx_queued_ext(sdata, skb); else WARN_ON(1); } else if (ieee80211_is_data_qos(mgmt->frame_control)) { struct ieee80211_hdr *hdr = (void *)mgmt; struct sta_info *sta; /* * So the frame isn't mgmt, but frame_control * is at the right place anyway, of course, so * the if statement is correct. * * Warn if we have other data frame types here, * they must not get here. */ WARN_ON(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)); WARN_ON(!(hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG))); /* * This was a fragment of a frame, received while * a block-ack session was active. That cannot be * right, so terminate the session. */ mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mgmt->sa); if (sta) { u16 tid = ieee80211_get_tid(hdr); __ieee80211_stop_rx_ba_session( sta, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_REQUIRE_SETUP, true); } mutex_unlock(&local->sta_mtx); } else switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: ieee80211_sta_rx_queued_mgmt(sdata, skb); break; case NL80211_IFTYPE_ADHOC: ieee80211_ibss_rx_queued_mgmt(sdata, skb); break; case NL80211_IFTYPE_MESH_POINT: if (!ieee80211_vif_is_mesh(&sdata->vif)) break; ieee80211_mesh_rx_queued_mgmt(sdata, skb); break; default: WARN(1, "frame for unexpected interface type"); break; } } static void ieee80211_iface_process_status(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (ieee80211_is_action(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_S1G) { switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_TEARDOWN: case WLAN_S1G_TWT_SETUP: ieee80211_s1g_status_twt_action(sdata, skb); break; default: break; } } } static void ieee80211_iface_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, work); struct ieee80211_local *local = sdata->local; struct sk_buff *skb; if (!ieee80211_sdata_running(sdata)) return; if (test_bit(SCAN_SW_SCANNING, &local->scanning)) return; if (!ieee80211_can_run_worker(local)) return; /* first process frames */ while ((skb = skb_dequeue(&sdata->skb_queue))) { kcov_remote_start_common(skb_get_kcov_handle(skb)); if (skb->protocol == cpu_to_be16(ETH_P_TDLS)) ieee80211_process_tdls_channel_switch(sdata, skb); else ieee80211_iface_process_skb(local, sdata, skb); kfree_skb(skb); kcov_remote_stop(); } /* process status queue */ while ((skb = skb_dequeue(&sdata->status_queue))) { kcov_remote_start_common(skb_get_kcov_handle(skb)); ieee80211_iface_process_status(sdata, skb); kfree_skb(skb); kcov_remote_stop(); } /* then other type-dependent work */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: ieee80211_sta_work(sdata); break; case NL80211_IFTYPE_ADHOC: ieee80211_ibss_work(sdata); break; case NL80211_IFTYPE_MESH_POINT: if (!ieee80211_vif_is_mesh(&sdata->vif)) break; ieee80211_mesh_work(sdata); break; case NL80211_IFTYPE_OCB: ieee80211_ocb_work(sdata); break; default: break; } } static void ieee80211_recalc_smps_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, recalc_smps); ieee80211_recalc_smps(sdata, &sdata->deflink); } static void ieee80211_activate_links_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, activate_links_work); ieee80211_set_active_links(&sdata->vif, sdata->desired_active_links); } /* * Helper function to initialise an interface to a specific type. */ static void ieee80211_setup_sdata(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type) { static const u8 bssid_wildcard[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; /* clear type-dependent unions */ memset(&sdata->u, 0, sizeof(sdata->u)); memset(&sdata->deflink.u, 0, sizeof(sdata->deflink.u)); /* and set some type-dependent values */ sdata->vif.type = type; sdata->vif.p2p = false; sdata->wdev.iftype = type; sdata->control_port_protocol = cpu_to_be16(ETH_P_PAE); sdata->control_port_no_encrypt = false; sdata->control_port_over_nl80211 = false; sdata->control_port_no_preauth = false; sdata->vif.cfg.idle = true; sdata->vif.bss_conf.txpower = INT_MIN; /* unset */ sdata->noack_map = 0; /* only monitor/p2p-device differ */ if (sdata->dev) { sdata->dev->netdev_ops = &ieee80211_dataif_ops; sdata->dev->type = ARPHRD_ETHER; } skb_queue_head_init(&sdata->skb_queue); skb_queue_head_init(&sdata->status_queue); wiphy_work_init(&sdata->work, ieee80211_iface_work); INIT_WORK(&sdata->recalc_smps, ieee80211_recalc_smps_work); INIT_WORK(&sdata->activate_links_work, ieee80211_activate_links_work); switch (type) { case NL80211_IFTYPE_P2P_GO: type = NL80211_IFTYPE_AP; sdata->vif.type = type; sdata->vif.p2p = true; fallthrough; case NL80211_IFTYPE_AP: skb_queue_head_init(&sdata->u.ap.ps.bc_buf); INIT_LIST_HEAD(&sdata->u.ap.vlans); sdata->vif.bss_conf.bssid = sdata->vif.addr; break; case NL80211_IFTYPE_P2P_CLIENT: type = NL80211_IFTYPE_STATION; sdata->vif.type = type; sdata->vif.p2p = true; fallthrough; case NL80211_IFTYPE_STATION: sdata->vif.bss_conf.bssid = sdata->deflink.u.mgd.bssid; ieee80211_sta_setup_sdata(sdata); break; case NL80211_IFTYPE_OCB: sdata->vif.bss_conf.bssid = bssid_wildcard; ieee80211_ocb_setup_sdata(sdata); break; case NL80211_IFTYPE_ADHOC: sdata->vif.bss_conf.bssid = sdata->u.ibss.bssid; ieee80211_ibss_setup_sdata(sdata); break; case NL80211_IFTYPE_MESH_POINT: if (ieee80211_vif_is_mesh(&sdata->vif)) ieee80211_mesh_init_sdata(sdata); break; case NL80211_IFTYPE_MONITOR: sdata->dev->type = ARPHRD_IEEE80211_RADIOTAP; sdata->dev->netdev_ops = &ieee80211_monitorif_ops; sdata->u.mntr.flags = MONITOR_FLAG_CONTROL | MONITOR_FLAG_OTHER_BSS; break; case NL80211_IFTYPE_NAN: idr_init(&sdata->u.nan.function_inst_ids); spin_lock_init(&sdata->u.nan.func_lock); sdata->vif.bss_conf.bssid = sdata->vif.addr; break; case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: sdata->vif.bss_conf.bssid = sdata->vif.addr; break; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_WDS: case NUM_NL80211_IFTYPES: WARN_ON(1); break; } /* need to do this after the switch so vif.type is correct */ ieee80211_link_setup(&sdata->deflink); ieee80211_debugfs_add_netdev(sdata); } static int ieee80211_runtime_change_iftype(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type) { struct ieee80211_local *local = sdata->local; int ret, err; enum nl80211_iftype internal_type = type; bool p2p = false; ASSERT_RTNL(); if (!local->ops->change_interface) return -EBUSY; /* for now, don't support changing while links exist */ if (ieee80211_vif_is_mld(&sdata->vif)) return -EBUSY; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: if (!list_empty(&sdata->u.ap.vlans)) return -EBUSY; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_OCB: /* * Could maybe also all others here? * Just not sure how that interacts * with the RX/config path e.g. for * mesh. */ break; default: return -EBUSY; } switch (type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_OCB: /* * Could probably support everything * but here. */ break; case NL80211_IFTYPE_P2P_CLIENT: p2p = true; internal_type = NL80211_IFTYPE_STATION; break; case NL80211_IFTYPE_P2P_GO: p2p = true; internal_type = NL80211_IFTYPE_AP; break; default: return -EBUSY; } ret = ieee80211_check_concurrent_iface(sdata, internal_type); if (ret) return ret; ieee80211_stop_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE); /* do_stop will synchronize_rcu() first thing */ ieee80211_do_stop(sdata, false); ieee80211_teardown_sdata(sdata); ieee80211_set_sdata_offload_flags(sdata); ret = drv_change_interface(local, sdata, internal_type, p2p); if (ret) type = ieee80211_vif_type_p2p(&sdata->vif); /* * Ignore return value here, there's not much we can do since * the driver changed the interface type internally already. * The warnings will hopefully make driver authors fix it :-) */ ieee80211_check_queues(sdata, type); ieee80211_setup_sdata(sdata, type); ieee80211_set_vif_encap_ops(sdata); err = ieee80211_do_open(&sdata->wdev, false); WARN(err, "type change: do_open returned %d", err); ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_IFTYPE_CHANGE); return ret; } int ieee80211_if_change_type(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type) { int ret; ASSERT_RTNL(); if (type == ieee80211_vif_type_p2p(&sdata->vif)) return 0; if (ieee80211_sdata_running(sdata)) { ret = ieee80211_runtime_change_iftype(sdata, type); if (ret) return ret; } else { /* Purge and reset type-dependent state. */ ieee80211_teardown_sdata(sdata); ieee80211_setup_sdata(sdata, type); } /* reset some values that shouldn't be kept across type changes */ if (type == NL80211_IFTYPE_STATION) sdata->u.mgd.use_4addr = false; return 0; } static void ieee80211_assign_perm_addr(struct ieee80211_local *local, u8 *perm_addr, enum nl80211_iftype type) { struct ieee80211_sub_if_data *sdata; u64 mask, start, addr, val, inc; u8 *m; u8 tmp_addr[ETH_ALEN]; int i; /* default ... something at least */ memcpy(perm_addr, local->hw.wiphy->perm_addr, ETH_ALEN); if (is_zero_ether_addr(local->hw.wiphy->addr_mask) && local->hw.wiphy->n_addresses <= 1) return; mutex_lock(&local->iflist_mtx); switch (type) { case NL80211_IFTYPE_MONITOR: /* doesn't matter */ break; case NL80211_IFTYPE_AP_VLAN: /* match up with an AP interface */ list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_AP) continue; memcpy(perm_addr, sdata->vif.addr, ETH_ALEN); break; } /* keep default if no AP interface present */ break; case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: if (ieee80211_hw_check(&local->hw, P2P_DEV_ADDR_FOR_INTF)) { list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) continue; if (!ieee80211_sdata_running(sdata)) continue; memcpy(perm_addr, sdata->vif.addr, ETH_ALEN); goto out_unlock; } } fallthrough; default: /* assign a new address if possible -- try n_addresses first */ for (i = 0; i < local->hw.wiphy->n_addresses; i++) { bool used = false; list_for_each_entry(sdata, &local->interfaces, list) { if (ether_addr_equal(local->hw.wiphy->addresses[i].addr, sdata->vif.addr)) { used = true; break; } } if (!used) { memcpy(perm_addr, local->hw.wiphy->addresses[i].addr, ETH_ALEN); break; } } /* try mask if available */ if (is_zero_ether_addr(local->hw.wiphy->addr_mask)) break; m = local->hw.wiphy->addr_mask; mask = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) | ((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) | ((u64)m[4] << 1*8) | ((u64)m[5] << 0*8); if (__ffs64(mask) + hweight64(mask) != fls64(mask)) { /* not a contiguous mask ... not handled now! */ pr_info("not contiguous\n"); break; } /* * Pick address of existing interface in case user changed * MAC address manually, default to perm_addr. */ m = local->hw.wiphy->perm_addr; list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR) continue; m = sdata->vif.addr; break; } start = ((u64)m[0] << 5*8) | ((u64)m[1] << 4*8) | ((u64)m[2] << 3*8) | ((u64)m[3] << 2*8) | ((u64)m[4] << 1*8) | ((u64)m[5] << 0*8); inc = 1ULL<<__ffs64(mask); val = (start & mask); addr = (start & ~mask) | (val & mask); do { bool used = false; tmp_addr[5] = addr >> 0*8; tmp_addr[4] = addr >> 1*8; tmp_addr[3] = addr >> 2*8; tmp_addr[2] = addr >> 3*8; tmp_addr[1] = addr >> 4*8; tmp_addr[0] = addr >> 5*8; val += inc; list_for_each_entry(sdata, &local->interfaces, list) { if (ether_addr_equal(tmp_addr, sdata->vif.addr)) { used = true; break; } } if (!used) { memcpy(perm_addr, tmp_addr, ETH_ALEN); break; } addr = (start & ~mask) | (val & mask); } while (addr != start); break; } out_unlock: mutex_unlock(&local->iflist_mtx); } int ieee80211_if_add(struct ieee80211_local *local, const char *name, unsigned char name_assign_type, struct wireless_dev **new_wdev, enum nl80211_iftype type, struct vif_params *params) { struct net_device *ndev = NULL; struct ieee80211_sub_if_data *sdata = NULL; struct txq_info *txqi; int ret, i; ASSERT_RTNL(); if (type == NL80211_IFTYPE_P2P_DEVICE || type == NL80211_IFTYPE_NAN) { struct wireless_dev *wdev; sdata = kzalloc(sizeof(*sdata) + local->hw.vif_data_size, GFP_KERNEL); if (!sdata) return -ENOMEM; wdev = &sdata->wdev; sdata->dev = NULL; strscpy(sdata->name, name, IFNAMSIZ); ieee80211_assign_perm_addr(local, wdev->address, type); memcpy(sdata->vif.addr, wdev->address, ETH_ALEN); ether_addr_copy(sdata->vif.bss_conf.addr, sdata->vif.addr); } else { int size = ALIGN(sizeof(*sdata) + local->hw.vif_data_size, sizeof(void *)); int txq_size = 0; if (type != NL80211_IFTYPE_AP_VLAN && (type != NL80211_IFTYPE_MONITOR || (params->flags & MONITOR_FLAG_ACTIVE))) txq_size += sizeof(struct txq_info) + local->hw.txq_data_size; ndev = alloc_netdev_mqs(size + txq_size, name, name_assign_type, ieee80211_if_setup, 1, 1); if (!ndev) return -ENOMEM; dev_net_set(ndev, wiphy_net(local->hw.wiphy)); ndev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!ndev->tstats) { free_netdev(ndev); return -ENOMEM; } ndev->needed_headroom = local->tx_headroom + 4*6 /* four MAC addresses */ + 2 + 2 + 2 + 2 /* ctl, dur, seq, qos */ + 6 /* mesh */ + 8 /* rfc1042/bridge tunnel */ - ETH_HLEN /* ethernet hard_header_len */ + IEEE80211_ENCRYPT_HEADROOM; ndev->needed_tailroom = IEEE80211_ENCRYPT_TAILROOM; ret = dev_alloc_name(ndev, ndev->name); if (ret < 0) { ieee80211_if_free(ndev); free_netdev(ndev); return ret; } ieee80211_assign_perm_addr(local, ndev->perm_addr, type); if (is_valid_ether_addr(params->macaddr)) eth_hw_addr_set(ndev, params->macaddr); else eth_hw_addr_set(ndev, ndev->perm_addr); SET_NETDEV_DEV(ndev, wiphy_dev(local->hw.wiphy)); /* don't use IEEE80211_DEV_TO_SUB_IF -- it checks too much */ sdata = netdev_priv(ndev); ndev->ieee80211_ptr = &sdata->wdev; memcpy(sdata->vif.addr, ndev->dev_addr, ETH_ALEN); ether_addr_copy(sdata->vif.bss_conf.addr, sdata->vif.addr); memcpy(sdata->name, ndev->name, IFNAMSIZ); if (txq_size) { txqi = netdev_priv(ndev) + size; ieee80211_txq_init(sdata, NULL, txqi, 0); } sdata->dev = ndev; } /* initialise type-independent data */ sdata->wdev.wiphy = local->hw.wiphy; ieee80211_sdata_init(local, sdata); ieee80211_init_frag_cache(&sdata->frags); INIT_LIST_HEAD(&sdata->key_list); INIT_DELAYED_WORK(&sdata->dec_tailroom_needed_wk, ieee80211_delayed_tailroom_dec); for (i = 0; i < NUM_NL80211_BANDS; i++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[i]; sdata->rc_rateidx_mask[i] = sband ? (1 << sband->n_bitrates) - 1 : 0; if (sband) { __le16 cap; u16 *vht_rate_mask; memcpy(sdata->rc_rateidx_mcs_mask[i], sband->ht_cap.mcs.rx_mask, sizeof(sdata->rc_rateidx_mcs_mask[i])); cap = sband->vht_cap.vht_mcs.rx_mcs_map; vht_rate_mask = sdata->rc_rateidx_vht_mcs_mask[i]; ieee80211_get_vht_mask_from_cap(cap, vht_rate_mask); } else { memset(sdata->rc_rateidx_mcs_mask[i], 0, sizeof(sdata->rc_rateidx_mcs_mask[i])); memset(sdata->rc_rateidx_vht_mcs_mask[i], 0, sizeof(sdata->rc_rateidx_vht_mcs_mask[i])); } } ieee80211_set_default_queues(sdata); sdata->deflink.ap_power_level = IEEE80211_UNSET_POWER_LEVEL; sdata->deflink.user_power_level = local->user_power_level; /* setup type-dependent data */ ieee80211_setup_sdata(sdata, type); if (ndev) { ndev->ieee80211_ptr->use_4addr = params->use_4addr; if (type == NL80211_IFTYPE_STATION) sdata->u.mgd.use_4addr = params->use_4addr; ndev->features |= local->hw.netdev_features; ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE; ndev->hw_features |= ndev->features & MAC80211_SUPPORTED_FEATURES_TX; sdata->vif.netdev_features = local->hw.netdev_features; netdev_set_default_ethtool_ops(ndev, &ieee80211_ethtool_ops); /* MTU range is normally 256 - 2304, where the upper limit is * the maximum MSDU size. Monitor interfaces send and receive * MPDU and A-MSDU frames which may be much larger so we do * not impose an upper limit in that case. */ ndev->min_mtu = 256; if (type == NL80211_IFTYPE_MONITOR) ndev->max_mtu = 0; else ndev->max_mtu = local->hw.max_mtu; ret = cfg80211_register_netdevice(ndev); if (ret) { free_netdev(ndev); return ret; } } mutex_lock(&local->iflist_mtx); list_add_tail_rcu(&sdata->list, &local->interfaces); mutex_unlock(&local->iflist_mtx); if (new_wdev) *new_wdev = &sdata->wdev; return 0; } void ieee80211_if_remove(struct ieee80211_sub_if_data *sdata) { ASSERT_RTNL(); mutex_lock(&sdata->local->iflist_mtx); list_del_rcu(&sdata->list); mutex_unlock(&sdata->local->iflist_mtx); if (sdata->vif.txq) ieee80211_txq_purge(sdata->local, to_txq_info(sdata->vif.txq)); synchronize_rcu(); cfg80211_unregister_wdev(&sdata->wdev); if (!sdata->dev) { ieee80211_teardown_sdata(sdata); kfree(sdata); } } void ieee80211_sdata_stop(struct ieee80211_sub_if_data *sdata) { if (WARN_ON_ONCE(!test_bit(SDATA_STATE_RUNNING, &sdata->state))) return; ieee80211_do_stop(sdata, true); } void ieee80211_remove_interfaces(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata, *tmp; LIST_HEAD(unreg_list); ASSERT_RTNL(); /* Before destroying the interfaces, make sure they're all stopped so * that the hardware is stopped. Otherwise, the driver might still be * iterating the interfaces during the shutdown, e.g. from a worker * or from RX processing or similar, and if it does so (using atomic * iteration) while we're manipulating the list, the iteration will * crash. * * After this, the hardware should be stopped and the driver should * have stopped all of its activities, so that we can do RCU-unaware * manipulations of the interface list below. */ cfg80211_shutdown_all_interfaces(local->hw.wiphy); WARN(local->open_count, "%s: open count remains %d\n", wiphy_name(local->hw.wiphy), local->open_count); ieee80211_txq_teardown_flows(local); mutex_lock(&local->iflist_mtx); list_splice_init(&local->interfaces, &unreg_list); mutex_unlock(&local->iflist_mtx); wiphy_lock(local->hw.wiphy); list_for_each_entry_safe(sdata, tmp, &unreg_list, list) { bool netdev = sdata->dev; list_del(&sdata->list); cfg80211_unregister_wdev(&sdata->wdev); if (!netdev) kfree(sdata); } wiphy_unlock(local->hw.wiphy); } static int netdev_notify(struct notifier_block *nb, unsigned long state, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct ieee80211_sub_if_data *sdata; if (state != NETDEV_CHANGENAME) return NOTIFY_DONE; if (!dev->ieee80211_ptr || !dev->ieee80211_ptr->wiphy) return NOTIFY_DONE; if (dev->ieee80211_ptr->wiphy->privid != mac80211_wiphy_privid) return NOTIFY_DONE; sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(sdata->name, dev->name, IFNAMSIZ); ieee80211_debugfs_rename_netdev(sdata); return NOTIFY_OK; } static struct notifier_block mac80211_netdev_notifier = { .notifier_call = netdev_notify, }; int ieee80211_iface_init(void) { return register_netdevice_notifier(&mac80211_netdev_notifier); } void ieee80211_iface_exit(void) { unregister_netdevice_notifier(&mac80211_netdev_notifier); } void ieee80211_vif_inc_num_mcast(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP) atomic_inc(&sdata->u.ap.num_mcast_sta); else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) atomic_inc(&sdata->u.vlan.num_mcast_sta); } void ieee80211_vif_dec_num_mcast(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP) atomic_dec(&sdata->u.ap.num_mcast_sta); else if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) atomic_dec(&sdata->u.vlan.num_mcast_sta); }
linux-master
net/mac80211/iface.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007-2010 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/jiffies.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <linux/kcov.h> #include <linux/bitops.h> #include <net/mac80211.h> #include <net/ieee80211_radiotap.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "tkip.h" #include "wme.h" #include "rate.h" /* * monitor mode reception * * This function cleans up the SKB, i.e. it removes all the stuff * only useful for monitoring. */ static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, unsigned int present_fcs_len, unsigned int rtap_space) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; unsigned int hdrlen; __le16 fc; if (present_fcs_len) __pskb_trim(skb, skb->len - present_fcs_len); pskb_pull(skb, rtap_space); /* After pulling radiotap header, clear all flags that indicate * info in skb->data. */ status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | RX_FLAG_RADIOTAP_LSIG | RX_FLAG_RADIOTAP_HE_MU | RX_FLAG_RADIOTAP_HE); hdr = (void *)skb->data; fc = hdr->frame_control; /* * Remove the HT-Control field (if present) on management * frames after we've sent the frame to monitoring. We * (currently) don't need it, and don't properly parse * frames with it present, due to the assumption of a * fixed management header length. */ if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) return skb; hdrlen = ieee80211_hdrlen(fc); hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); if (!pskb_may_pull(skb, hdrlen)) { dev_kfree_skb(skb); return NULL; } memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, hdrlen - IEEE80211_HT_CTL_LEN); pskb_pull(skb, IEEE80211_HT_CTL_LEN); return skb; } static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, unsigned int rtap_space) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr; hdr = (void *)(skb->data + rtap_space); if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC | RX_FLAG_ONLY_MONITOR | RX_FLAG_NO_PSDU)) return true; if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) return true; if (ieee80211_is_ctl(hdr->frame_control) && !ieee80211_is_pspoll(hdr->frame_control) && !ieee80211_is_back_req(hdr->frame_control)) return true; return false; } static int ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, struct ieee80211_rx_status *status, struct sk_buff *skb) { int len; /* always present fields */ len = sizeof(struct ieee80211_radiotap_header) + 8; /* allocate extra bitmaps */ if (status->chains) len += 4 * hweight8(status->chains); if (ieee80211_have_rx_timestamp(status)) { len = ALIGN(len, 8); len += 8; } if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) len += 1; /* antenna field, if we don't have per-chain info */ if (!status->chains) len += 1; /* padding for RX_FLAGS if necessary */ len = ALIGN(len, 2); if (status->encoding == RX_ENC_HT) /* HT info */ len += 3; if (status->flag & RX_FLAG_AMPDU_DETAILS) { len = ALIGN(len, 4); len += 8; } if (status->encoding == RX_ENC_VHT) { len = ALIGN(len, 2); len += 12; } if (local->hw.radiotap_timestamp.units_pos >= 0) { len = ALIGN(len, 8); len += 12; } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE) { len = ALIGN(len, 2); len += 12; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE_MU) { len = ALIGN(len, 2); len += 12; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); } if (status->flag & RX_FLAG_NO_PSDU) len += 1; if (status->flag & RX_FLAG_RADIOTAP_LSIG) { len = ALIGN(len, 2); len += 4; BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); } if (status->chains) { /* antenna and antenna signal fields */ len += 2 * hweight8(status->chains); } if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { int tlv_offset = 0; /* * The position to look at depends on the existence (or non- * existence) of other elements, so take that into account... */ if (status->flag & RX_FLAG_RADIOTAP_HE) tlv_offset += sizeof(struct ieee80211_radiotap_he); if (status->flag & RX_FLAG_RADIOTAP_HE_MU) tlv_offset += sizeof(struct ieee80211_radiotap_he_mu); if (status->flag & RX_FLAG_RADIOTAP_LSIG) tlv_offset += sizeof(struct ieee80211_radiotap_lsig); /* ensure 4 byte alignment for TLV */ len = ALIGN(len, 4); /* TLVs until the mac header */ len += skb_mac_header(skb) - &skb->data[tlv_offset]; } return len; } static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, int link_id, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); if (link_id >= 0) { status->link_valid = 1; status->link_id = link_id; } else { status->link_valid = 0; } skb_queue_tail(&sdata->skb_queue, skb); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); if (sta) sta->deflink.rx_stats.packets++; } static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, int link_id, struct sta_info *sta, struct sk_buff *skb) { skb->protocol = 0; __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); } static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int rtap_space) { struct { struct ieee80211_hdr_3addr hdr; u8 category; u8 action_code; } __packed __aligned(2) action; if (!sdata) return; BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); if (skb->len < rtap_space + sizeof(action) + VHT_MUMIMO_GROUPS_DATA_LEN) return; if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) return; skb_copy_bits(skb, rtap_space, &action, sizeof(action)); if (!ieee80211_is_action(action.hdr.frame_control)) return; if (action.category != WLAN_CATEGORY_VHT) return; if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) return; if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) return; skb = skb_copy(skb, GFP_ATOMIC); if (!skb) return; ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); } /* * ieee80211_add_rx_radiotap_header - add radiotap header * * add a radiotap header containing all the fields which the hardware provided. */ static void ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_rate *rate, int rtap_len, bool has_fcs) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_radiotap_header *rthdr; unsigned char *pos; __le32 *it_present; u32 it_present_val; u16 rx_flags = 0; u16 channel_flags = 0; u32 tlvs_len = 0; int mpdulen, chain; unsigned long chains = status->chains; struct ieee80211_radiotap_he he = {}; struct ieee80211_radiotap_he_mu he_mu = {}; struct ieee80211_radiotap_lsig lsig = {}; if (status->flag & RX_FLAG_RADIOTAP_HE) { he = *(struct ieee80211_radiotap_he *)skb->data; skb_pull(skb, sizeof(he)); WARN_ON_ONCE(status->encoding != RX_ENC_HE); } if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; skb_pull(skb, sizeof(he_mu)); } if (status->flag & RX_FLAG_RADIOTAP_LSIG) { lsig = *(struct ieee80211_radiotap_lsig *)skb->data; skb_pull(skb, sizeof(lsig)); } if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { /* data is pointer at tlv all other info was pulled off */ tlvs_len = skb_mac_header(skb) - skb->data; } mpdulen = skb->len; if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) mpdulen += FCS_LEN; rthdr = skb_push(skb, rtap_len - tlvs_len); memset(rthdr, 0, rtap_len - tlvs_len); it_present = &rthdr->it_present; /* radiotap header, set always present flags */ rthdr->it_len = cpu_to_le16(rtap_len); it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | BIT(IEEE80211_RADIOTAP_CHANNEL) | BIT(IEEE80211_RADIOTAP_RX_FLAGS); if (!status->chains) it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { it_present_val |= BIT(IEEE80211_RADIOTAP_EXT) | BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); put_unaligned_le32(it_present_val, it_present); it_present++; it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); } if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); put_unaligned_le32(it_present_val, it_present); /* This references through an offset into it_optional[] rather * than via it_present otherwise later uses of pos will cause * the compiler to think we have walked past the end of the * struct member. */ pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; /* the order of the following fields is important */ /* IEEE80211_RADIOTAP_TSFT */ if (ieee80211_have_rx_timestamp(status)) { /* padding */ while ((pos - (u8 *)rthdr) & 7) *pos++ = 0; put_unaligned_le64( ieee80211_calculate_rx_timestamp(local, status, mpdulen, 0), pos); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); pos += 8; } /* IEEE80211_RADIOTAP_FLAGS */ if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) *pos |= IEEE80211_RADIOTAP_F_FCS; if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) *pos |= IEEE80211_RADIOTAP_F_BADFCS; if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; pos++; /* IEEE80211_RADIOTAP_RATE */ if (!rate || status->encoding != RX_ENC_LEGACY) { /* * Without rate information don't add it. If we have, * MCS information is a separate field in radiotap, * added below. The byte here is needed as padding * for the channel though, so initialise it to 0. */ *pos = 0; } else { int shift = 0; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); if (status->bw == RATE_INFO_BW_10) shift = 1; else if (status->bw == RATE_INFO_BW_5) shift = 2; *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); } pos++; /* IEEE80211_RADIOTAP_CHANNEL */ /* TODO: frequency offset in KHz */ put_unaligned_le16(status->freq, pos); pos += 2; if (status->bw == RATE_INFO_BW_10) channel_flags |= IEEE80211_CHAN_HALF; else if (status->bw == RATE_INFO_BW_5) channel_flags |= IEEE80211_CHAN_QUARTER; if (status->band == NL80211_BAND_5GHZ || status->band == NL80211_BAND_6GHZ) channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; else if (status->encoding != RX_ENC_LEGACY) channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; else if (rate && rate->flags & IEEE80211_RATE_ERP_G) channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; else if (rate) channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; else channel_flags |= IEEE80211_CHAN_2GHZ; put_unaligned_le16(channel_flags, pos); pos += 2; /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { *pos = status->signal; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); pos++; } /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ if (!status->chains) { /* IEEE80211_RADIOTAP_ANTENNA */ *pos = status->antenna; pos++; } /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ /* IEEE80211_RADIOTAP_RX_FLAGS */ /* ensure 2 byte alignment for the 2 byte field as required */ if ((pos - (u8 *)rthdr) & 1) *pos++ = 0; if (status->flag & RX_FLAG_FAILED_PLCP_CRC) rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; put_unaligned_le16(rx_flags, pos); pos += 2; if (status->encoding == RX_ENC_HT) { unsigned int stbc; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); *pos = local->hw.radiotap_mcs_details; if (status->enc_flags & RX_ENC_FLAG_HT_GF) *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; pos++; *pos = 0; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) *pos |= IEEE80211_RADIOTAP_MCS_SGI; if (status->bw == RATE_INFO_BW_40) *pos |= IEEE80211_RADIOTAP_MCS_BW_40; if (status->enc_flags & RX_ENC_FLAG_HT_GF) *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; pos++; *pos++ = status->rate_idx; } if (status->flag & RX_FLAG_AMPDU_DETAILS) { u16 flags = 0; /* ensure 4 byte alignment */ while ((pos - (u8 *)rthdr) & 3) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); put_unaligned_le32(status->ampdu_reference, pos); pos += 4; if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; if (status->flag & RX_FLAG_AMPDU_IS_LAST) flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; if (status->flag & RX_FLAG_AMPDU_EOF_BIT) flags |= IEEE80211_RADIOTAP_AMPDU_EOF; put_unaligned_le16(flags, pos); pos += 2; if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) *pos++ = status->ampdu_delimiter_crc; else *pos++ = 0; *pos++ = 0; } if (status->encoding == RX_ENC_VHT) { u16 known = local->hw.radiotap_vht_details; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); put_unaligned_le16(known, pos); pos += 2; /* flags */ if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; /* in VHT, STBC is binary */ if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; if (status->enc_flags & RX_ENC_FLAG_BF) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; pos++; /* bandwidth */ switch (status->bw) { case RATE_INFO_BW_80: *pos++ = 4; break; case RATE_INFO_BW_160: *pos++ = 11; break; case RATE_INFO_BW_40: *pos++ = 1; break; default: *pos++ = 0; } /* MCS/NSS */ *pos = (status->rate_idx << 4) | status->nss; pos += 4; /* coding field */ if (status->enc_flags & RX_ENC_FLAG_LDPC) *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; pos++; /* group ID */ pos++; /* partial_aid */ pos += 2; } if (local->hw.radiotap_timestamp.units_pos >= 0) { u16 accuracy = 0; u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); /* ensure 8 byte alignment */ while ((pos - (u8 *)rthdr) & 7) pos++; put_unaligned_le64(status->device_timestamp, pos); pos += sizeof(u64); if (local->hw.radiotap_timestamp.accuracy >= 0) { accuracy = local->hw.radiotap_timestamp.accuracy; flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; } put_unaligned_le16(accuracy, pos); pos += sizeof(u16); *pos++ = local->hw.radiotap_timestamp.units_pos; *pos++ = flags; } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE) { #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { he.data6 |= HE_PREP(DATA6_NSTS, FIELD_GET(RX_ENC_FLAG_STBC_MASK, status->enc_flags)); he.data3 |= HE_PREP(DATA3_STBC, 1); } else { he.data6 |= HE_PREP(DATA6_NSTS, status->nss); } #define CHECK_GI(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ (int)NL80211_RATE_INFO_HE_GI_##s) CHECK_GI(0_8); CHECK_GI(1_6); CHECK_GI(3_2); he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); he.data3 |= HE_PREP(DATA3_CODING, !!(status->enc_flags & RX_ENC_FLAG_LDPC)); he.data5 |= HE_PREP(DATA5_GI, status->he_gi); switch (status->bw) { case RATE_INFO_BW_20: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); break; case RATE_INFO_BW_40: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); break; case RATE_INFO_BW_80: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); break; case RATE_INFO_BW_160: he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); break; case RATE_INFO_BW_HE_RU: #define CHECK_RU_ALLOC(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) CHECK_RU_ALLOC(26); CHECK_RU_ALLOC(52); CHECK_RU_ALLOC(106); CHECK_RU_ALLOC(242); CHECK_RU_ALLOC(484); CHECK_RU_ALLOC(996); CHECK_RU_ALLOC(2x996); he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, status->he_ru + 4); break; default: WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); } /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); memcpy(pos, &he, sizeof(he)); pos += sizeof(he); } if (status->encoding == RX_ENC_HE && status->flag & RX_FLAG_RADIOTAP_HE_MU) { /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); memcpy(pos, &he_mu, sizeof(he_mu)); pos += sizeof(he_mu); } if (status->flag & RX_FLAG_NO_PSDU) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); *pos++ = status->zero_length_psdu_type; } if (status->flag & RX_FLAG_RADIOTAP_LSIG) { /* ensure 2 byte alignment */ while ((pos - (u8 *)rthdr) & 1) pos++; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); memcpy(pos, &lsig, sizeof(lsig)); pos += sizeof(lsig); } for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { *pos++ = status->chain_signal[chain]; *pos++ = chain; } } static struct sk_buff * ieee80211_make_monitor_skb(struct ieee80211_local *local, struct sk_buff **origskb, struct ieee80211_rate *rate, int rtap_space, bool use_origskb) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); int rt_hdrlen, needed_headroom; struct sk_buff *skb; /* room for the radiotap header based on driver features */ rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); needed_headroom = rt_hdrlen - rtap_space; if (use_origskb) { /* only need to expand headroom if necessary */ skb = *origskb; *origskb = NULL; /* * This shouldn't trigger often because most devices have an * RX header they pull before we get here, and that should * be big enough for our radiotap information. We should * probably export the length to drivers so that we can have * them allocate enough headroom to start with. */ if (skb_headroom(skb) < needed_headroom && pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { dev_kfree_skb(skb); return NULL; } } else { /* * Need to make a copy and possibly remove radiotap header * and FCS from the original. */ skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 0, GFP_ATOMIC); if (!skb) return NULL; } /* prepend radiotap information */ ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); return skb; } /* * This function copies a received frame to all monitor interfaces and * returns a cleaned-up SKB that no longer includes the FCS nor the * radiotap header the driver might have added. */ static struct sk_buff * ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, struct ieee80211_rate *rate) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); struct ieee80211_sub_if_data *sdata; struct sk_buff *monskb = NULL; int present_fcs_len = 0; unsigned int rtap_space = 0; struct ieee80211_sub_if_data *monitor_sdata = rcu_dereference(local->monitor_sdata); bool only_monitor = false; unsigned int min_head_len; if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && !skb_mac_header_was_set(origskb))) { /* with this skb no way to know where frame payload starts */ dev_kfree_skb(origskb); return NULL; } if (status->flag & RX_FLAG_RADIOTAP_HE) rtap_space += sizeof(struct ieee80211_radiotap_he); if (status->flag & RX_FLAG_RADIOTAP_HE_MU) rtap_space += sizeof(struct ieee80211_radiotap_he_mu); if (status->flag & RX_FLAG_RADIOTAP_LSIG) rtap_space += sizeof(struct ieee80211_radiotap_lsig); if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; min_head_len = rtap_space; /* * First, we may need to make a copy of the skb because * (1) we need to modify it for radiotap (if not present), and * (2) the other RX handlers will modify the skb we got. * * We don't need to, of course, if we aren't going to return * the SKB because it has a bad FCS/PLCP checksum. */ if (!(status->flag & RX_FLAG_NO_PSDU)) { if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { /* driver bug */ WARN_ON(1); dev_kfree_skb(origskb); return NULL; } present_fcs_len = FCS_LEN; } /* also consider the hdr->frame_control */ min_head_len += 2; } /* ensure that the expected data elements are in skb head */ if (!pskb_may_pull(origskb, min_head_len)) { dev_kfree_skb(origskb); return NULL; } only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { if (only_monitor) { dev_kfree_skb(origskb); return NULL; } return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); } ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { bool last_monitor = list_is_last(&sdata->u.mntr.list, &local->mon_list); if (!monskb) monskb = ieee80211_make_monitor_skb(local, &origskb, rate, rtap_space, only_monitor && last_monitor); if (monskb) { struct sk_buff *skb; if (last_monitor) { skb = monskb; monskb = NULL; } else { skb = skb_clone(monskb, GFP_ATOMIC); } if (skb) { skb->dev = sdata->dev; dev_sw_netstats_rx_add(skb->dev, skb->len); netif_receive_skb(skb); } } if (last_monitor) break; } /* this happens if last_monitor was erroneously false */ dev_kfree_skb(monskb); /* ditto */ if (!origskb) return NULL; return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); } static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); int tid, seqno_idx, security_idx; /* does the frame have a qos control field? */ if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); /* frame has qos control */ tid = *qc & IEEE80211_QOS_CTL_TID_MASK; if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) status->rx_flags |= IEEE80211_RX_AMSDU; seqno_idx = tid; security_idx = tid; } else { /* * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): * * Sequence numbers for management frames, QoS data * frames with a broadcast/multicast address in the * Address 1 field, and all non-QoS data frames sent * by QoS STAs are assigned using an additional single * modulo-4096 counter, [...] * * We also use that counter for non-QoS STAs. */ seqno_idx = IEEE80211_NUM_TIDS; security_idx = 0; if (ieee80211_is_mgmt(hdr->frame_control)) security_idx = IEEE80211_NUM_TIDS; tid = 0; } rx->seqno_idx = seqno_idx; rx->security_idx = security_idx; /* Set skb->priority to 1d tag if highest order bit of TID is not set. * For now, set skb->priority to 0 for other cases. */ rx->skb->priority = (tid > 7) ? 0 : tid; } /** * DOC: Packet alignment * * Drivers always need to pass packets that are aligned to two-byte boundaries * to the stack. * * Additionally, should, if possible, align the payload data in a way that * guarantees that the contained IP header is aligned to a four-byte * boundary. In the case of regular frames, this simply means aligning the * payload to a four-byte boundary (because either the IP header is directly * contained, or IV/RFC1042 headers that have a length divisible by four are * in front of it). If the payload data is not properly aligned and the * architecture doesn't support efficient unaligned operations, mac80211 * will align the data. * * With A-MSDU frames, however, the payload data address must yield two modulo * four because there are 14-byte 802.3 headers within the A-MSDU frames that * push the IP header further back to a multiple of four again. Thankfully, the * specs were sane enough this time around to require padding each A-MSDU * subframe to a length that is a multiple of four. * * Padding like Atheros hardware adds which is between the 802.11 header and * the payload is not supported, the driver is required to move the 802.11 * header to be directly in front of the payload in that case. */ static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG WARN_ON_ONCE((unsigned long)rx->skb->data & 1); #endif } /* rx handlers */ static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (is_multicast_ether_addr(hdr->addr1)) return 0; return ieee80211_is_robust_mgmt_frame(skb); } static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (!is_multicast_ether_addr(hdr->addr1)) return 0; return ieee80211_is_robust_mgmt_frame(skb); } /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) { struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; struct ieee80211_mmie *mmie; struct ieee80211_mmie_16 *mmie16; if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) return -1; if (!ieee80211_is_robust_mgmt_frame(skb) && !ieee80211_is_beacon(hdr->frame_control)) return -1; /* not a robust management frame */ mmie = (struct ieee80211_mmie *) (skb->data + skb->len - sizeof(*mmie)); if (mmie->element_id == WLAN_EID_MMIE && mmie->length == sizeof(*mmie) - 2) return le16_to_cpu(mmie->key_id); mmie16 = (struct ieee80211_mmie_16 *) (skb->data + skb->len - sizeof(*mmie16)); if (skb->len >= 24 + sizeof(*mmie16) && mmie16->element_id == WLAN_EID_MMIE && mmie16->length == sizeof(*mmie16) - 2) return le16_to_cpu(mmie16->key_id); return -1; } static int ieee80211_get_keyid(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; int hdrlen = ieee80211_hdrlen(fc); u8 keyid; /* WEP, TKIP, CCMP and GCMP */ if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) return -EINVAL; skb_copy_bits(skb, hdrlen + 3, &keyid, 1); keyid >>= 6; return keyid; } static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; char *dev_addr = rx->sdata->vif.addr; if (ieee80211_is_data(hdr->frame_control)) { if (is_multicast_ether_addr(hdr->addr1)) { if (ieee80211_has_tods(hdr->frame_control) || !ieee80211_has_fromds(hdr->frame_control)) return RX_DROP_MONITOR; if (ether_addr_equal(hdr->addr3, dev_addr)) return RX_DROP_MONITOR; } else { if (!ieee80211_has_a4(hdr->frame_control)) return RX_DROP_MONITOR; if (ether_addr_equal(hdr->addr4, dev_addr)) return RX_DROP_MONITOR; } } /* If there is not an established peer link and this is not a peer link * establisment frame, beacon or probe, drop the frame. */ if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { struct ieee80211_mgmt *mgmt; if (!ieee80211_is_mgmt(hdr->frame_control)) return RX_DROP_MONITOR; if (ieee80211_is_action(hdr->frame_control)) { u8 category; /* make sure category field is present */ if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) return RX_DROP_MONITOR; mgmt = (struct ieee80211_mgmt *)hdr; category = mgmt->u.action.category; if (category != WLAN_CATEGORY_MESH_ACTION && category != WLAN_CATEGORY_SELF_PROTECTED) return RX_DROP_MONITOR; return RX_CONTINUE; } if (ieee80211_is_probe_req(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_auth(hdr->frame_control)) return RX_CONTINUE; return RX_DROP_MONITOR; } return RX_CONTINUE; } static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, int index) { struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; struct sk_buff *tail = skb_peek_tail(frames); struct ieee80211_rx_status *status; if (tid_agg_rx->reorder_buf_filtered && tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) return true; if (!tail) return false; status = IEEE80211_SKB_RXCB(tail); if (status->flag & RX_FLAG_AMSDU_MORE) return false; return true; } static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, int index, struct sk_buff_head *frames) { struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; struct sk_buff *skb; struct ieee80211_rx_status *status; lockdep_assert_held(&tid_agg_rx->reorder_lock); if (skb_queue_empty(skb_list)) goto no_frame; if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { __skb_queue_purge(skb_list); goto no_frame; } /* release frames from the reorder ring buffer */ tid_agg_rx->stored_mpdu_num--; while ((skb = __skb_dequeue(skb_list))) { status = IEEE80211_SKB_RXCB(skb); status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; __skb_queue_tail(frames, skb); } no_frame: if (tid_agg_rx->reorder_buf_filtered) tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); } static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, u16 head_seq_num, struct sk_buff_head *frames) { int index; lockdep_assert_held(&tid_agg_rx->reorder_lock); while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, frames); } } /* * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If * the skb was added to the buffer longer than this time ago, the earlier * frames that have not yet been received are assumed to be lost and the skb * can be released for processing. This may also release other skb's from the * reorder buffer if there are no additional gaps between the frames. * * Callers must hold tid_agg_rx->reorder_lock. */ #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff_head *frames) { int index, i, j; lockdep_assert_held(&tid_agg_rx->reorder_lock); /* release the buffer until next missing frame */ index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && tid_agg_rx->stored_mpdu_num) { /* * No buffers ready to be released, but check whether any * frames in the reorder buffer have timed out. */ int skipped = 1; for (j = (index + 1) % tid_agg_rx->buf_size; j != index; j = (j + 1) % tid_agg_rx->buf_size) { if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { skipped++; continue; } if (skipped && !time_after(jiffies, tid_agg_rx->reorder_time[j] + HT_RX_REORDER_BUF_TIMEOUT)) goto set_release_timer; /* don't leave incomplete A-MSDUs around */ for (i = (index + 1) % tid_agg_rx->buf_size; i != j; i = (i + 1) % tid_agg_rx->buf_size) __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); ht_dbg_ratelimited(sdata, "release an RX reorder frame due to timeout on earlier frames\n"); ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, frames); /* * Increment the head seq# also for the skipped slots. */ tid_agg_rx->head_seq_num = (tid_agg_rx->head_seq_num + skipped) & IEEE80211_SN_MASK; skipped = 0; } } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, frames); index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; } if (tid_agg_rx->stored_mpdu_num) { j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; for (; j != (index - 1) % tid_agg_rx->buf_size; j = (j + 1) % tid_agg_rx->buf_size) { if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) break; } set_release_timer: if (!tid_agg_rx->removed) mod_timer(&tid_agg_rx->reorder_timer, tid_agg_rx->reorder_time[j] + 1 + HT_RX_REORDER_BUF_TIMEOUT); } else { del_timer(&tid_agg_rx->reorder_timer); } } /* * As this function belongs to the RX path it must be under * rcu_read_lock protection. It returns false if the frame * can be processed immediately, true if it was consumed. */ static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff *skb, struct sk_buff_head *frames) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u16 sc = le16_to_cpu(hdr->seq_ctrl); u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; u16 head_seq_num, buf_size; int index; bool ret = true; spin_lock(&tid_agg_rx->reorder_lock); /* * Offloaded BA sessions have no known starting sequence number so pick * one from first Rxed frame for this tid after BA was started. */ if (unlikely(tid_agg_rx->auto_seq)) { tid_agg_rx->auto_seq = false; tid_agg_rx->ssn = mpdu_seq_num; tid_agg_rx->head_seq_num = mpdu_seq_num; } buf_size = tid_agg_rx->buf_size; head_seq_num = tid_agg_rx->head_seq_num; /* * If the current MPDU's SN is smaller than the SSN, it shouldn't * be reordered. */ if (unlikely(!tid_agg_rx->started)) { if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { ret = false; goto out; } tid_agg_rx->started = true; } /* frame with out of date sequence number */ if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { dev_kfree_skb(skb); goto out; } /* * If frame the sequence number exceeds our buffering window * size release some previous frames to make room for this one. */ if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { head_seq_num = ieee80211_sn_inc( ieee80211_sn_sub(mpdu_seq_num, buf_size)); /* release stored frames up to new head to stack */ ieee80211_release_reorder_frames(sdata, tid_agg_rx, head_seq_num, frames); } /* Now the new frame is always in the range of the reordering buffer */ index = mpdu_seq_num % tid_agg_rx->buf_size; /* check if we already stored this frame */ if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { dev_kfree_skb(skb); goto out; } /* * If the current MPDU is in the right order and nothing else * is stored we can process it directly, no need to buffer it. * If it is first but there's something stored, we may be able * to release frames after this one. */ if (mpdu_seq_num == tid_agg_rx->head_seq_num && tid_agg_rx->stored_mpdu_num == 0) { if (!(status->flag & RX_FLAG_AMSDU_MORE)) tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); ret = false; goto out; } /* put the frame in the reordering buffer */ __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); if (!(status->flag & RX_FLAG_AMSDU_MORE)) { tid_agg_rx->reorder_time[index] = jiffies; tid_agg_rx->stored_mpdu_num++; ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); } out: spin_unlock(&tid_agg_rx->reorder_lock); return ret; } /* * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns * true if the MPDU was buffered, false if it should be processed. */ static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct sta_info *sta = rx->sta; struct tid_ampdu_rx *tid_agg_rx; u16 sc; u8 tid, ack_policy; if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) goto dont_reorder; /* * filter the QoS data rx stream according to * STA/TID and check if this STA/TID is on aggregation */ if (!sta) goto dont_reorder; ack_policy = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_ACK_POLICY_MASK; tid = ieee80211_get_tid(hdr); tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) { if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_REQUIRE_SETUP); goto dont_reorder; } /* qos null data frames are excluded */ if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) goto dont_reorder; /* not part of a BA session */ if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) goto dont_reorder; /* new, potentially un-ordered, ampdu frame - process it */ /* reset session timer */ if (tid_agg_rx->timeout) tid_agg_rx->last_rx = jiffies; /* if this mpdu is fragmented - terminate rx aggregation session */ sc = le16_to_cpu(hdr->seq_ctrl); if (sc & IEEE80211_SCTL_FRAG) { ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); return; } /* * No locking needed -- we will only ever process one * RX packet at a time, and thus own tid_agg_rx. All * other code manipulating it needs to (and does) make * sure that we cannot get to it any more before doing * anything with it. */ if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, frames)) return; dont_reorder: __skb_queue_tail(frames, skb); } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (status->flag & RX_FLAG_DUP_VALIDATED) return RX_CONTINUE; /* * Drop duplicate 802.11 retransmissions * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") */ if (rx->skb->len < 24) return RX_CONTINUE; if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_any_nullfunc(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) return RX_CONTINUE; if (!rx->sta) return RX_CONTINUE; if (unlikely(ieee80211_has_retry(hdr->frame_control) && rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); rx->link_sta->rx_stats.num_duplicates++; return RX_DROP_UNUSABLE; } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check(struct ieee80211_rx_data *rx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; /* Drop disallowed frame classes based on STA auth/assoc state; * IEEE 802.11, Chap 5.5. * * mac80211 filters only based on association state, i.e. it drops * Class 3 frames from not associated stations. hostapd sends * deauth/disassoc frames when needed. In addition, hostapd is * responsible for filtering on both auth and assoc states. */ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) return ieee80211_rx_mesh_check(rx); if (unlikely((ieee80211_is_data(hdr->frame_control) || ieee80211_is_pspoll(hdr->frame_control)) && rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && rx->sdata->vif.type != NL80211_IFTYPE_OCB && (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { /* * accept port control frames from the AP even when it's not * yet marked ASSOC to prevent a race where we don't set the * assoc bit quickly enough before it sends the first frame */ if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && ieee80211_is_data_present(hdr->frame_control)) { unsigned int hdrlen; __be16 ethertype; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (rx->skb->len < hdrlen + 8) return RX_DROP_MONITOR; skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2); if (ethertype == rx->sdata->control_port_protocol) return RX_CONTINUE; } if (rx->sdata->vif.type == NL80211_IFTYPE_AP && cfg80211_rx_spurious_frame(rx->sdata->dev, hdr->addr2, GFP_ATOMIC)) return RX_DROP_UNUSABLE; return RX_DROP_MONITOR; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) { struct ieee80211_local *local; struct ieee80211_hdr *hdr; struct sk_buff *skb; local = rx->local; skb = rx->skb; hdr = (struct ieee80211_hdr *) skb->data; if (!local->pspolling) return RX_CONTINUE; if (!ieee80211_has_fromds(hdr->frame_control)) /* this is not from AP */ return RX_CONTINUE; if (!ieee80211_is_data(hdr->frame_control)) return RX_CONTINUE; if (!ieee80211_has_moredata(hdr->frame_control)) { /* AP has no more frames buffered for us */ local->pspolling = false; return RX_CONTINUE; } /* more data bit is set, let's request a new frame from the AP */ ieee80211_send_pspoll(local, rx->sdata); return RX_CONTINUE; } static void sta_ps_start(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ps_data *ps; int tid; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ps = &sdata->bss->ps; else return; atomic_inc(&ps->num_sta_ps); set_sta_flag(sta, WLAN_STA_PS_STA); if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", sta->sta.addr, sta->sta.aid); ieee80211_clear_fast_xmit(sta); for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi = to_txq_info(txq); spin_lock(&local->active_txq_lock[txq->ac]); if (!list_empty(&txqi->schedule_order)) list_del_init(&txqi->schedule_order); spin_unlock(&local->active_txq_lock[txq->ac]); if (txq_has_queue(txq)) set_bit(tid, &sta->txq_buffered_tids); else clear_bit(tid, &sta->txq_buffered_tids); } } static void sta_ps_end(struct sta_info *sta) { ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", sta->sta.addr, sta->sta.aid); if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { /* * Clear the flag only if the other one is still set * so that the TX path won't start TX'ing new frames * directly ... In the case that the driver flag isn't * set ieee80211_sta_ps_deliver_wakeup() will clear it. */ clear_sta_flag(sta, WLAN_STA_PS_STA); ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", sta->sta.addr, sta->sta.aid); return; } set_sta_flag(sta, WLAN_STA_PS_DELIVER); clear_sta_flag(sta, WLAN_STA_PS_STA); ieee80211_sta_ps_deliver_wakeup(sta); } int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); bool in_ps; WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); /* Don't let the same PS state be set twice */ in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); if ((start && in_ps) || (!start && !in_ps)) return -EINVAL; if (start) sta_ps_start(sta); else sta_ps_end(sta); return 0; } EXPORT_SYMBOL(ieee80211_sta_ps_transition); void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); if (test_sta_flag(sta, WLAN_STA_SP)) return; if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) ieee80211_sta_ps_deliver_poll_response(sta); else set_sta_flag(sta, WLAN_STA_PSPOLL); } EXPORT_SYMBOL(ieee80211_sta_pspoll); void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); int ac = ieee80211_ac_from_tid(tid); /* * If this AC is not trigger-enabled do nothing unless the * driver is calling us after it already checked. * * NB: This could/should check a separate bitmap of trigger- * enabled queues, but for now we only implement uAPSD w/o * TSPEC changes to the ACs, so they're always the same. */ if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && tid != IEEE80211_NUM_TIDS) return; /* if we are in a service period, do nothing */ if (test_sta_flag(sta, WLAN_STA_SP)) return; if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) ieee80211_sta_ps_deliver_uapsd(sta); else set_sta_flag(sta, WLAN_STA_UAPSD); } EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); static ieee80211_rx_result debug_noinline ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (!rx->sta) return RX_CONTINUE; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_AP_VLAN) return RX_CONTINUE; /* * The device handles station powersave, so don't do anything about * uAPSD and PS-Poll frames (the latter shouldn't even come up from * it to mac80211 since they're handled.) */ if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) return RX_CONTINUE; /* * Don't do anything if the station isn't already asleep. In * the uAPSD case, the station will probably be marked asleep, * in the PS-Poll case the station must be confused ... */ if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) return RX_CONTINUE; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { ieee80211_sta_pspoll(&rx->sta->sta); /* Free PS Poll skb here instead of returning RX_DROP that would * count as an dropped frame. */ dev_kfree_skb(rx->skb); return RX_QUEUED; } else if (!ieee80211_has_morefrags(hdr->frame_control) && !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && ieee80211_has_pm(hdr->frame_control) && (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control))) { u8 tid = ieee80211_get_tid(hdr); ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) { struct sta_info *sta = rx->sta; struct link_sta_info *link_sta = rx->link_sta; struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int i; if (!sta || !link_sta) return RX_CONTINUE; /* * Update last_rx only for IBSS packets which are for the current * BSSID and for station already AUTHORIZED to avoid keeping the * current IBSS network alive in cases where other STAs start * using different BSSID. This will also give the station another * chance to restart the authentication/authorization in case * something went wrong the first time. */ if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, NL80211_IFTYPE_ADHOC); if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { link_sta->rx_stats.last_rx = jiffies; if (ieee80211_is_data_present(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1)) link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); } } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { link_sta->rx_stats.last_rx = jiffies; } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1)) { /* * Mesh beacons will update last_rx when if they are found to * match the current local configuration when processed. */ link_sta->rx_stats.last_rx = jiffies; if (ieee80211_is_data_present(hdr->frame_control)) link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); } link_sta->rx_stats.fragments++; u64_stats_update_begin(&link_sta->rx_stats.syncp); link_sta->rx_stats.bytes += rx->skb->len; u64_stats_update_end(&link_sta->rx_stats.syncp); if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { link_sta->rx_stats.last_signal = status->signal; ewma_signal_add(&link_sta->rx_stats_avg.signal, -status->signal); } if (status->chains) { link_sta->rx_stats.chains = status->chains; for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { int signal = status->chain_signal[i]; if (!(status->chains & BIT(i))) continue; link_sta->rx_stats.chain_signal_last[i] = signal; ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], -signal); } } if (ieee80211_is_s1g_beacon(hdr->frame_control)) return RX_CONTINUE; /* * Change STA power saving mode only at the end of a frame * exchange sequence, and only for a data or management * frame as specified in IEEE 802.11-2016 11.2.3.2 */ if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && !ieee80211_has_morefrags(hdr->frame_control) && !is_multicast_ether_addr(hdr->addr1) && (ieee80211_is_mgmt(hdr->frame_control) || ieee80211_is_data(hdr->frame_control)) && !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && (rx->sdata->vif.type == NL80211_IFTYPE_AP || rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { if (test_sta_flag(sta, WLAN_STA_PS_STA)) { if (!ieee80211_has_pm(hdr->frame_control)) sta_ps_end(sta); } else { if (ieee80211_has_pm(hdr->frame_control)) sta_ps_start(sta); } } /* mesh power save support */ if (ieee80211_vif_is_mesh(&rx->sdata->vif)) ieee80211_mps_rx_h_sta_process(sta, hdr); /* * Drop (qos-)data::nullfunc frames silently, since they * are used only to control station power saving mode. */ if (ieee80211_is_any_nullfunc(hdr->frame_control)) { I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); /* * If we receive a 4-addr nullfunc frame from a STA * that was not moved to a 4-addr STA vlan yet send * the event to userspace and for older hostapd drop * the frame to the monitor interface. */ if (ieee80211_has_a4(hdr->frame_control) && (rx->sdata->vif.type == NL80211_IFTYPE_AP || (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !rx->sdata->u.vlan.sta))) { if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) cfg80211_rx_unexpected_4addr_frame( rx->sdata->dev, sta->sta.addr, GFP_ATOMIC); return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; } /* * Update counter and free packet here to avoid * counting this as a dropped packed. */ link_sta->rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } return RX_CONTINUE; } /* ieee80211_rx_h_sta_process */ static struct ieee80211_key * ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) { struct ieee80211_key *key = NULL; int idx2; /* Make sure key gets set if either BIGTK key index is set so that * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected * Beacon frames and Beacon frames that claim to use another BIGTK key * index (i.e., a key that we do not have). */ if (idx < 0) { idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; idx2 = idx + 1; } else { if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) idx2 = idx + 1; else idx2 = idx - 1; } if (rx->link_sta) key = rcu_dereference(rx->link_sta->gtk[idx]); if (!key) key = rcu_dereference(rx->link->gtk[idx]); if (!key && rx->link_sta) key = rcu_dereference(rx->link_sta->gtk[idx2]); if (!key) key = rcu_dereference(rx->link->gtk[idx2]); return key; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int keyidx; ieee80211_rx_result result = RX_DROP_UNUSABLE; struct ieee80211_key *sta_ptk = NULL; struct ieee80211_key *ptk_idx = NULL; int mmie_keyidx = -1; __le16 fc; if (ieee80211_is_ext(hdr->frame_control)) return RX_CONTINUE; /* * Key selection 101 * * There are five types of keys: * - GTK (group keys) * - IGTK (group keys for management frames) * - BIGTK (group keys for Beacon frames) * - PTK (pairwise keys) * - STK (station-to-station pairwise keys) * * When selecting a key, we have to distinguish between multicast * (including broadcast) and unicast frames, the latter can only * use PTKs and STKs while the former always use GTKs, IGTKs, and * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, * then unicast frames can also use key indices like GTKs. Hence, if we * don't have a PTK/STK we check the key index for a WEP key. * * Note that in a regular BSS, multicast frames are sent by the * AP only, associated stations unicast the frame to the AP first * which then multicasts it on their behalf. * * There is also a slight problem in IBSS mode: GTKs are negotiated * with each station, that is something we don't currently handle. * The spec seems to expect that one negotiates the same key with * every station but there's no such requirement; VLANs could be * possible. */ /* start without a key */ rx->key = NULL; fc = hdr->frame_control; if (rx->sta) { int keyid = rx->sta->ptk_idx; sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); if (ieee80211_has_protected(fc) && !(status->flag & RX_FLAG_IV_STRIPPED)) { keyid = ieee80211_get_keyid(rx->skb); if (unlikely(keyid < 0)) return RX_DROP_UNUSABLE; ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); } } if (!ieee80211_has_protected(fc)) mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { rx->key = ptk_idx ? ptk_idx : sta_ptk; if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; /* Skip decryption if the frame is not protected. */ if (!ieee80211_has_protected(fc)) return RX_CONTINUE; } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { /* Broadcast/multicast robust management frame / BIP */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS) { if (rx->sdata->dev) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, skb->data, skb->len); return RX_DROP_M_BAD_BCN_KEYIDX; } rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); if (!rx->key) return RX_CONTINUE; /* Beacon protection not in use */ } else if (mmie_keyidx >= 0) { /* Broadcast/multicast robust management frame / BIP */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; if (mmie_keyidx < NUM_DEFAULT_KEYS || mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ if (rx->link_sta) { if (ieee80211_is_group_privacy_action(skb) && test_sta_flag(rx->sta, WLAN_STA_MFP)) return RX_DROP_MONITOR; rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); } if (!rx->key) rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); } else if (!ieee80211_has_protected(fc)) { /* * The frame was not protected, so skip decryption. However, we * need to set rx->key if there is a key that could have been * used so that the frame may be dropped if encryption would * have been expected. */ struct ieee80211_key *key = NULL; int i; if (ieee80211_is_beacon(fc)) { key = ieee80211_rx_get_bigtk(rx, -1); } else if (ieee80211_is_mgmt(fc) && is_multicast_ether_addr(hdr->addr1)) { key = rcu_dereference(rx->link->default_mgmt_key); } else { if (rx->link_sta) { for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = rcu_dereference(rx->link_sta->gtk[i]); if (key) break; } } if (!key) { for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = rcu_dereference(rx->link->gtk[i]); if (key) break; } } } if (key) rx->key = key; return RX_CONTINUE; } else { /* * The device doesn't give us the IV so we won't be * able to look up the key. That's ok though, we * don't need to decrypt the frame, we just won't * be able to keep statistics accurate. * Except for key threshold notifications, should * we somehow allow the driver to tell us which key * the hardware used if this flag is set? */ if ((status->flag & RX_FLAG_DECRYPTED) && (status->flag & RX_FLAG_IV_STRIPPED)) return RX_CONTINUE; keyidx = ieee80211_get_keyid(rx->skb); if (unlikely(keyidx < 0)) return RX_DROP_UNUSABLE; /* check per-station GTK first, if multicast packet */ if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); /* if not found, try default key */ if (!rx->key) { if (is_multicast_ether_addr(hdr->addr1)) rx->key = rcu_dereference(rx->link->gtk[keyidx]); if (!rx->key) rx->key = rcu_dereference(rx->sdata->keys[keyidx]); /* * RSNA-protected unicast frames should always be * sent with pairwise or station-to-station keys, * but for WEP we allow using a key index as well. */ if (rx->key && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && !is_multicast_ether_addr(hdr->addr1)) rx->key = NULL; } } if (rx->key) { if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) return RX_DROP_MONITOR; /* TODO: add threshold stuff again */ } else { return RX_DROP_MONITOR; } switch (rx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: result = ieee80211_crypto_wep_decrypt(rx); break; case WLAN_CIPHER_SUITE_TKIP: result = ieee80211_crypto_tkip_decrypt(rx); break; case WLAN_CIPHER_SUITE_CCMP: result = ieee80211_crypto_ccmp_decrypt( rx, IEEE80211_CCMP_MIC_LEN); break; case WLAN_CIPHER_SUITE_CCMP_256: result = ieee80211_crypto_ccmp_decrypt( rx, IEEE80211_CCMP_256_MIC_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: result = ieee80211_crypto_aes_cmac_decrypt(rx); break; case WLAN_CIPHER_SUITE_BIP_CMAC_256: result = ieee80211_crypto_aes_cmac_256_decrypt(rx); break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: result = ieee80211_crypto_aes_gmac_decrypt(rx); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: result = ieee80211_crypto_gcmp_decrypt(rx); break; default: result = RX_DROP_UNUSABLE; } /* the hdr variable is invalid after the decrypt handlers */ /* either the frame has been decrypted or will be dropped */ status->flag |= RX_FLAG_DECRYPTED; if (unlikely(ieee80211_is_beacon(fc) && (result & RX_DROP_UNUSABLE) && rx->sdata->dev)) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, skb->data, skb->len); return result; } void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) { int i; for (i = 0; i < ARRAY_SIZE(cache->entries); i++) skb_queue_head_init(&cache->entries[i].skb_list); } void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) { int i; for (i = 0; i < ARRAY_SIZE(cache->entries); i++) __skb_queue_purge(&cache->entries[i].skb_list); } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, unsigned int frag, unsigned int seq, int rx_queue, struct sk_buff **skb) { struct ieee80211_fragment_entry *entry; entry = &cache->entries[cache->next++]; if (cache->next >= IEEE80211_FRAGMENT_MAX) cache->next = 0; __skb_queue_purge(&entry->skb_list); __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ *skb = NULL; entry->first_frag_time = jiffies; entry->seq = seq; entry->rx_queue = rx_queue; entry->last_frag = frag; entry->check_sequential_pn = false; entry->extra_len = 0; return entry; } static inline struct ieee80211_fragment_entry * ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, unsigned int frag, unsigned int seq, int rx_queue, struct ieee80211_hdr *hdr) { struct ieee80211_fragment_entry *entry; int i, idx; idx = cache->next; for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { struct ieee80211_hdr *f_hdr; struct sk_buff *f_skb; idx--; if (idx < 0) idx = IEEE80211_FRAGMENT_MAX - 1; entry = &cache->entries[idx]; if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || entry->rx_queue != rx_queue || entry->last_frag + 1 != frag) continue; f_skb = __skb_peek(&entry->skb_list); f_hdr = (struct ieee80211_hdr *) f_skb->data; /* * Check ftype and addresses are equal, else check next fragment */ if (((hdr->frame_control ^ f_hdr->frame_control) & cpu_to_le16(IEEE80211_FCTL_FTYPE)) || !ether_addr_equal(hdr->addr1, f_hdr->addr1) || !ether_addr_equal(hdr->addr2, f_hdr->addr2)) continue; if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { __skb_queue_purge(&entry->skb_list); continue; } return entry; } return NULL; } static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) { return rx->key && (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && ieee80211_has_protected(fc); } static ieee80211_rx_result debug_noinline ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) { struct ieee80211_fragment_cache *cache = &rx->sdata->frags; struct ieee80211_hdr *hdr; u16 sc; __le16 fc; unsigned int frag, seq; struct ieee80211_fragment_entry *entry; struct sk_buff *skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); hdr = (struct ieee80211_hdr *)rx->skb->data; fc = hdr->frame_control; if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) return RX_CONTINUE; sc = le16_to_cpu(hdr->seq_ctrl); frag = sc & IEEE80211_SCTL_FRAG; if (rx->sta) cache = &rx->sta->frags; if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) goto out; if (is_multicast_ether_addr(hdr->addr1)) return RX_DROP_MONITOR; I802_DEBUG_INC(rx->local->rx_handlers_fragments); if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; /* * skb_linearize() might change the skb->data and * previously cached variables (in this case, hdr) need to * be refreshed with the new data. */ hdr = (struct ieee80211_hdr *)rx->skb->data; seq = (sc & IEEE80211_SCTL_SEQ) >> 4; if (frag == 0) { /* This is the first fragment of a new frame. */ entry = ieee80211_reassemble_add(cache, frag, seq, rx->seqno_idx, &(rx->skb)); if (requires_sequential_pn(rx, fc)) { int queue = rx->security_idx; /* Store CCMP/GCMP PN so that we can verify that the * next fragment has a sequential PN value. */ entry->check_sequential_pn = true; entry->is_protected = true; entry->key_color = rx->key->color; memcpy(entry->last_pn, rx->key->u.ccmp.rx_pn[queue], IEEE80211_CCMP_PN_LEN); BUILD_BUG_ON(offsetof(struct ieee80211_key, u.ccmp.rx_pn) != offsetof(struct ieee80211_key, u.gcmp.rx_pn)); BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != sizeof(rx->key->u.gcmp.rx_pn[queue])); BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); } else if (rx->key && (ieee80211_has_protected(fc) || (status->flag & RX_FLAG_DECRYPTED))) { entry->is_protected = true; entry->key_color = rx->key->color; } return RX_QUEUED; } /* This is a fragment for a frame that should already be pending in * fragment cache. Add this fragment to the end of the pending entry. */ entry = ieee80211_reassemble_find(cache, frag, seq, rx->seqno_idx, hdr); if (!entry) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); return RX_DROP_MONITOR; } /* "The receiver shall discard MSDUs and MMPDUs whose constituent * MPDU PN values are not incrementing in steps of 1." * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) */ if (entry->check_sequential_pn) { int i; u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; if (!requires_sequential_pn(rx, fc)) return RX_DROP_UNUSABLE; /* Prevent mixed key and fragment cache attacks */ if (entry->key_color != rx->key->color) return RX_DROP_UNUSABLE; memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { pn[i]++; if (pn[i]) break; } rpn = rx->ccm_gcm.pn; if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) return RX_DROP_UNUSABLE; memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); } else if (entry->is_protected && (!rx->key || (!ieee80211_has_protected(fc) && !(status->flag & RX_FLAG_DECRYPTED)) || rx->key->color != entry->key_color)) { /* Drop this as a mixed key or fragment cache attack, even * if for TKIP Michael MIC should protect us, and WEP is a * lost cause anyway. */ return RX_DROP_UNUSABLE; } else if (entry->is_protected && rx->key && entry->key_color != rx->key->color && (status->flag & RX_FLAG_DECRYPTED)) { return RX_DROP_UNUSABLE; } skb_pull(rx->skb, ieee80211_hdrlen(fc)); __skb_queue_tail(&entry->skb_list, rx->skb); entry->last_frag = frag; entry->extra_len += rx->skb->len; if (ieee80211_has_morefrags(fc)) { rx->skb = NULL; return RX_QUEUED; } rx->skb = __skb_dequeue(&entry->skb_list); if (skb_tailroom(rx->skb) < entry->extra_len) { I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, GFP_ATOMIC))) { I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); __skb_queue_purge(&entry->skb_list); return RX_DROP_UNUSABLE; } } while ((skb = __skb_dequeue(&entry->skb_list))) { skb_put_data(rx->skb, skb->data, skb->len); dev_kfree_skb(skb); } out: ieee80211_led_rx(rx->local); if (rx->sta) rx->link_sta->rx_stats.packets++; return RX_CONTINUE; } static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) { if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) return -EACCES; return 0; } static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); /* * Pass through unencrypted frames if the hardware has * decrypted them already. */ if (status->flag & RX_FLAG_DECRYPTED) return 0; /* Drop unencrypted frames if key is set. */ if (unlikely(!ieee80211_has_protected(fc) && !ieee80211_is_any_nullfunc(fc) && ieee80211_is_data(fc) && rx->key)) return -EACCES; return 0; } static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; __le16 fc = mgmt->frame_control; /* * Pass through unencrypted frames if the hardware has * decrypted them already. */ if (status->flag & RX_FLAG_DECRYPTED) return 0; /* drop unicast protected dual (that wasn't protected) */ if (ieee80211_is_action(fc) && mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) return -EACCES; if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { if (unlikely(!ieee80211_has_protected(fc) && ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { if (ieee80211_is_deauth(fc) || ieee80211_is_disassoc(fc)) { /* * Permit unprotected deauth/disassoc frames * during 4-way-HS (key is installed after HS). */ if (!rx->key) return 0; cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); } return -EACCES; } /* BIP does not use Protected field, so need to check MMIE */ if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && ieee80211_get_mmie_keyidx(rx->skb) < 0)) { if (ieee80211_is_deauth(fc) || ieee80211_is_disassoc(fc)) cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); return -EACCES; } if (unlikely(ieee80211_is_beacon(fc) && rx->key && ieee80211_get_mmie_keyidx(rx->skb) < 0)) { cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, rx->skb->data, rx->skb->len); return -EACCES; } /* * When using MFP, Action frames are not allowed prior to * having configured keys. */ if (unlikely(ieee80211_is_action(fc) && !rx->key && ieee80211_is_robust_mgmt_frame(rx->skb))) return -EACCES; /* drop unicast public action frames when using MPF */ if (is_unicast_ether_addr(mgmt->da) && ieee80211_is_public_action((void *)rx->skb->data, rx->skb->len)) return -EACCES; } return 0; } static int __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; bool check_port_control = false; struct ethhdr *ehdr; int ret; *port_control = false; if (ieee80211_has_a4(hdr->frame_control) && sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) return -1; if (sdata->vif.type == NL80211_IFTYPE_STATION && !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { if (!sdata->u.mgd.use_4addr) return -1; else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) check_port_control = true; } if (is_multicast_ether_addr(hdr->addr1) && sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) return -1; ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); if (ret < 0) return ret; ehdr = (struct ethhdr *) rx->skb->data; if (ehdr->h_proto == rx->sdata->control_port_protocol) *port_control = true; else if (check_port_control) return -1; return 0; } bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr, int *out_link_id) { unsigned int link_id; /* non-MLO, or MLD address replaced by hardware */ if (ether_addr_equal(sdata->vif.addr, addr)) return true; if (!ieee80211_vif_is_mld(&sdata->vif)) return false; for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { struct ieee80211_bss_conf *conf; conf = rcu_dereference(sdata->vif.link_conf[link_id]); if (!conf) continue; if (ether_addr_equal(conf->addr, addr)) { if (out_link_id) *out_link_id = link_id; return true; } } return false; } /* * requires that rx->skb is a frame with ethernet header */ static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) { static const u8 pae_group_addr[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; /* * Allow EAPOL frames to us/the PAE group address regardless of * whether the frame was encrypted or not, and always disallow * all other destination addresses for them. */ if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || ether_addr_equal(ehdr->h_dest, pae_group_addr); if (ieee80211_802_1x_port_control(rx) || ieee80211_drop_unencrypted(rx, fc)) return false; return true; } static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct net_device *dev = sdata->dev; if (unlikely((skb->protocol == sdata->control_port_protocol || (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && !sdata->control_port_no_preauth)) && sdata->control_port_over_nl80211)) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); dev_kfree_skb(skb); } else { struct ethhdr *ehdr = (void *)skb_mac_header(skb); memset(skb->cb, 0, sizeof(skb->cb)); /* * 802.1X over 802.11 requires that the authenticator address * be used for EAPOL frames. However, 802.1X allows the use of * the PAE group address instead. If the interface is part of * a bridge and we pass the frame with the PAE group address, * then the bridge will forward it to the network (even if the * client was not associated yet), which isn't supposed to * happen. * To avoid that, rewrite the destination address to our own * address, so that the authenticator (e.g. hostapd) will see * the frame, but bridge won't forward it anywhere else. Note * that due to earlier filtering, the only other address can * be the PAE group address, unless the hardware allowed them * through in 802.3 offloaded mode. */ if (unlikely(skb->protocol == sdata->control_port_protocol && !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) ether_addr_copy(ehdr->h_dest, sdata->vif.addr); /* deliver to local stack */ if (rx->list) list_add_tail(&skb->list, rx->list); else netif_receive_skb(skb); } } /* * requires that rx->skb is a frame with ethernet header */ static void ieee80211_deliver_skb(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct net_device *dev = sdata->dev; struct sk_buff *skb, *xmit_skb; struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; struct sta_info *dsta; skb = rx->skb; xmit_skb = NULL; dev_sw_netstats_rx_add(dev, skb->len); if (rx->sta) { /* The seqno index has the same property as needed * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS * for non-QoS-data frames. Here we know it's a data * frame, so count MSDUs. */ u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; u64_stats_update_end(&rx->link_sta->rx_stats.syncp); } if ((sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && ehdr->h_proto != rx->sdata->control_port_protocol && (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { if (is_multicast_ether_addr(ehdr->h_dest) && ieee80211_vif_get_num_mcast_if(sdata) != 0) { /* * send multicast frames both to higher layers in * local net stack and back to the wireless medium */ xmit_skb = skb_copy(skb, GFP_ATOMIC); if (!xmit_skb) net_info_ratelimited("%s: failed to clone multicast frame\n", dev->name); } else if (!is_multicast_ether_addr(ehdr->h_dest) && !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { dsta = sta_info_get(sdata, ehdr->h_dest); if (dsta) { /* * The destination station is associated to * this AP (in this VLAN), so send the frame * directly to it and do not pass it to local * net stack. */ xmit_skb = skb; skb = NULL; } } } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (skb) { /* 'align' will only take the values 0 or 2 here since all * frames are required to be aligned to 2-byte boundaries * when being passed to mac80211; the code here works just * as well if that isn't true, but mac80211 assumes it can * access fields as 2-byte aligned (e.g. for ether_addr_equal) */ int align; align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; if (align) { if (WARN_ON(skb_headroom(skb) < 3)) { dev_kfree_skb(skb); skb = NULL; } else { u8 *data = skb->data; size_t len = skb_headlen(skb); skb->data -= align; memmove(skb->data, data, len); skb_set_tail_pointer(skb, len); } } } #endif if (skb) { skb->protocol = eth_type_trans(skb, dev); ieee80211_deliver_skb_to_local_stack(skb, rx); } if (xmit_skb) { /* * Send to wireless media and increase priority by 256 to * keep the received priority instead of reclassifying * the frame (see cfg80211_classify8021d). */ xmit_skb->priority += 256; xmit_skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(xmit_skb); skb_reset_mac_header(xmit_skb); dev_queue_xmit(xmit_skb); } } #ifdef CONFIG_MAC80211_MESH static bool ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int hdrlen) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_mesh_fast_tx *entry = NULL; struct ieee80211s_hdr *mesh_hdr; struct tid_ampdu_tx *tid_tx; struct sta_info *sta; struct ethhdr eth; u8 tid; mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) entry = mesh_fast_tx_get(sdata, mesh_hdr->eaddr1); else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) entry = mesh_fast_tx_get(sdata, skb->data); if (!entry) return false; sta = rcu_dereference(entry->mpath->next_hop); if (!sta) return false; if (skb_linearize(skb)) return false; tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } ieee80211_aggr_check(sdata, sta, skb); if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, &skb->protocol)) hdrlen += ETH_ALEN; else skb->protocol = htons(skb->len - hdrlen); skb_set_network_header(skb, hdrlen + 2); skb->dev = sdata->dev; memcpy(&eth, skb->data, ETH_HLEN - 2); skb_pull(skb, 2); __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, eth.h_dest, eth.h_source); IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); return true; } #endif static ieee80211_rx_result ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { #ifdef CONFIG_MAC80211_MESH struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; struct ieee80211_local *local = sdata->local; uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; struct ieee80211_hdr hdr = { .frame_control = cpu_to_le16(fc) }; struct ieee80211_hdr *fwd_hdr; struct ieee80211s_hdr *mesh_hdr; struct ieee80211_tx_info *info; struct sk_buff *fwd_skb; struct ethhdr *eth; bool multicast; int tailroom = 0; int hdrlen, mesh_hdrlen; u8 *qos; if (!ieee80211_vif_is_mesh(&sdata->vif)) return RX_CONTINUE; if (!pskb_may_pull(skb, sizeof(*eth) + 6)) return RX_DROP_MONITOR; mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) return RX_DROP_MONITOR; eth = (struct ethhdr *)skb->data; multicast = is_multicast_ether_addr(eth->h_dest); mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); if (!mesh_hdr->ttl) return RX_DROP_MONITOR; /* frame is in RMC, don't forward */ if (is_multicast_ether_addr(eth->h_dest) && mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) return RX_DROP_MONITOR; /* forward packet */ if (sdata->crypto_tx_tailroom_needed_cnt) tailroom = IEEE80211_ENCRYPT_TAILROOM; if (mesh_hdr->flags & MESH_FLAGS_AE) { struct mesh_path *mppath; char *proxied_addr; bool update = false; if (multicast) proxied_addr = mesh_hdr->eaddr1; else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) /* has_a4 already checked in ieee80211_rx_mesh_check */ proxied_addr = mesh_hdr->eaddr2; else return RX_DROP_MONITOR; rcu_read_lock(); mppath = mpp_path_lookup(sdata, proxied_addr); if (!mppath) { mpp_path_add(sdata, proxied_addr, eth->h_source); } else { spin_lock_bh(&mppath->state_lock); if (!ether_addr_equal(mppath->mpp, eth->h_source)) { memcpy(mppath->mpp, eth->h_source, ETH_ALEN); update = true; } mppath->exp_time = jiffies; spin_unlock_bh(&mppath->state_lock); } /* flush fast xmit cache if the address path changed */ if (update) mesh_fast_tx_flush_addr(sdata, proxied_addr); rcu_read_unlock(); } /* Frame has reached destination. Don't forward */ if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) goto rx_accept; if (!--mesh_hdr->ttl) { if (multicast) goto rx_accept; IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); return RX_DROP_MONITOR; } if (!ifmsh->mshcfg.dot11MeshForwarding) { if (is_multicast_ether_addr(eth->h_dest)) goto rx_accept; return RX_DROP_MONITOR; } skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); if (!multicast && ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) return RX_QUEUED; ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, eth->h_dest, eth->h_source); hdrlen = ieee80211_hdrlen(hdr.frame_control); if (multicast) { int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + IEEE80211_ENCRYPT_HEADROOM, tailroom, GFP_ATOMIC); if (!fwd_skb) goto rx_accept; } else { fwd_skb = skb; skb = NULL; if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) return RX_DROP_UNUSABLE; if (skb_linearize(fwd_skb)) return RX_DROP_UNUSABLE; } fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); memcpy(fwd_hdr, &hdr, hdrlen - 2); qos = ieee80211_get_qos_ctl(fwd_hdr); qos[0] = qos[1] = 0; skb_reset_mac_header(fwd_skb); hdrlen += mesh_hdrlen; if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, &fwd_skb->protocol)) hdrlen += ETH_ALEN; else fwd_skb->protocol = htons(fwd_skb->len - hdrlen); skb_set_network_header(fwd_skb, hdrlen + 2); info = IEEE80211_SKB_CB(fwd_skb); memset(info, 0, sizeof(*info)); info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->control.vif = &sdata->vif; info->control.jiffies = jiffies; fwd_skb->dev = sdata->dev; if (multicast) { IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); /* update power mode indication when forwarding */ ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { /* mesh power mode flags updated in mesh_nexthop_lookup */ IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); } else { /* unable to resolve next hop */ if (sta) mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, hdr.addr3, 0, WLAN_REASON_MESH_PATH_NOFORWARD, sta->sta.addr); IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); kfree_skb(fwd_skb); goto rx_accept; } IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); ieee80211_add_pending_skb(local, fwd_skb); rx_accept: if (!skb) return RX_QUEUED; ieee80211_strip_8023_mesh_hdr(skb); #endif return RX_CONTINUE; } static ieee80211_rx_result debug_noinline __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) { struct net_device *dev = rx->sdata->dev; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; struct sk_buff_head frame_list; ieee80211_rx_result res; struct ethhdr ethhdr; const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; if (unlikely(ieee80211_has_a4(hdr->frame_control))) { check_da = NULL; check_sa = NULL; } else switch (rx->sdata->vif.type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: check_da = NULL; break; case NL80211_IFTYPE_STATION: if (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) check_sa = NULL; break; case NL80211_IFTYPE_MESH_POINT: check_sa = NULL; check_da = NULL; break; default: break; } skb->dev = dev; __skb_queue_head_init(&frame_list); if (ieee80211_data_to_8023_exthdr(skb, &ethhdr, rx->sdata->vif.addr, rx->sdata->vif.type, data_offset, true)) return RX_DROP_UNUSABLE; if (rx->sta->amsdu_mesh_control < 0) { s8 valid = -1; int i; for (i = 0; i <= 2; i++) { if (!ieee80211_is_valid_amsdu(skb, i)) continue; if (valid >= 0) { /* ambiguous */ valid = -1; break; } valid = i; } rx->sta->amsdu_mesh_control = valid; } ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, rx->sdata->vif.type, rx->local->hw.extra_tx_headroom, check_da, check_sa, rx->sta->amsdu_mesh_control); while (!skb_queue_empty(&frame_list)) { rx->skb = __skb_dequeue(&frame_list); res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); switch (res) { case RX_QUEUED: continue; case RX_CONTINUE: break; default: goto free; } if (!ieee80211_frame_allowed(rx, fc)) goto free; ieee80211_deliver_skb(rx); continue; free: dev_kfree_skb(rx->skb); } return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; if (!(status->rx_flags & IEEE80211_RX_AMSDU)) return RX_CONTINUE; if (unlikely(!ieee80211_is_data(fc))) return RX_CONTINUE; if (unlikely(!ieee80211_is_data_present(fc))) return RX_DROP_MONITOR; if (unlikely(ieee80211_has_a4(hdr->frame_control))) { switch (rx->sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (!rx->sdata->u.vlan.sta) return RX_DROP_UNUSABLE; break; case NL80211_IFTYPE_STATION: if (!rx->sdata->u.mgd.use_4addr) return RX_DROP_UNUSABLE; break; case NL80211_IFTYPE_MESH_POINT: break; default: return RX_DROP_UNUSABLE; } } if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) return RX_DROP_UNUSABLE; if (rx->key) { /* * We should not receive A-MSDUs on pre-HT connections, * and HT connections cannot use old ciphers. Thus drop * them, as in those cases we couldn't even have SPP * A-MSDUs or such. */ switch (rx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: return RX_DROP_UNUSABLE; default: break; } } return __ieee80211_rx_h_amsdu(rx, 0); } static ieee80211_rx_result debug_noinline ieee80211_rx_h_data(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_local *local = rx->local; struct net_device *dev = sdata->dev; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; __le16 fc = hdr->frame_control; ieee80211_rx_result res; bool port_control; int err; if (unlikely(!ieee80211_is_data(hdr->frame_control))) return RX_CONTINUE; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return RX_DROP_MONITOR; /* * Send unexpected-4addr-frame event to hostapd. For older versions, * also drop the frame to cooked monitor interfaces. */ if (ieee80211_has_a4(hdr->frame_control) && sdata->vif.type == NL80211_IFTYPE_AP) { if (rx->sta && !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) cfg80211_rx_unexpected_4addr_frame( rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); return RX_DROP_MONITOR; } err = __ieee80211_data_to_8023(rx, &port_control); if (unlikely(err)) return RX_DROP_UNUSABLE; res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); if (res != RX_CONTINUE) return res; if (!ieee80211_frame_allowed(rx, fc)) return RX_DROP_MONITOR; /* directly handle TDLS channel switch requests/responses */ if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == cpu_to_be16(ETH_P_TDLS))) { struct ieee80211_tdls_data *tf = (void *)rx->skb->data; if (pskb_may_pull(rx->skb, offsetof(struct ieee80211_tdls_data, u)) && tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && tf->category == WLAN_CATEGORY_TDLS && (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); __ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); return RX_QUEUED; } } if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && unlikely(port_control) && sdata->bss) { sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); dev = sdata->dev; rx->sdata = sdata; } rx->skb->dev = dev; if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && !is_multicast_ether_addr( ((struct ethhdr *)rx->skb->data)->h_dest) && (!local->scanning && !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); ieee80211_deliver_skb(rx); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { struct sk_buff *skb = rx->skb; struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; struct tid_ampdu_rx *tid_agg_rx; u16 start_seq_num; u16 tid; if (likely(!ieee80211_is_ctl(bar->frame_control))) return RX_CONTINUE; if (ieee80211_is_back_req(bar->frame_control)) { struct { __le16 control, start_seq_num; } __packed bar_data; struct ieee80211_event event = { .type = BAR_RX_EVENT, }; if (!rx->sta) return RX_DROP_MONITOR; if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), &bar_data, sizeof(bar_data))) return RX_DROP_MONITOR; tid = le16_to_cpu(bar_data.control) >> 12; if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, WLAN_BACK_RECIPIENT, WLAN_REASON_QSTA_REQUIRE_SETUP); tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) return RX_DROP_MONITOR; start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; event.u.ba.tid = tid; event.u.ba.ssn = start_seq_num; event.u.ba.sta = &rx->sta->sta; /* reset session timer */ if (tid_agg_rx->timeout) mod_timer(&tid_agg_rx->session_timer, TU_TO_EXP_TIME(tid_agg_rx->timeout)); spin_lock(&tid_agg_rx->reorder_lock); /* release stored frames up to start of BAR */ ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, start_seq_num, frames); spin_unlock(&tid_agg_rx->reorder_lock); drv_event_callback(rx->local, rx->sdata, &event); kfree_skb(skb); return RX_QUEUED; } /* * After this point, we only want management frames, * so we can drop all remaining control frames to * cooked monitor interfaces. */ return RX_DROP_MONITOR; } static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *resp; if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { /* Not to own unicast address */ return; } if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { /* Not from the current AP or not associated yet. */ return; } if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { /* Too short SA Query request frame */ return; } skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); if (skb == NULL) return; skb_reserve(skb, local->hw.extra_tx_headroom); resp = skb_put_zero(skb, 24); memcpy(resp->da, mgmt->sa, ETH_ALEN); memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); resp->u.action.category = WLAN_CATEGORY_SA_QUERY; resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; memcpy(resp->u.action.u.sa_query.trans_id, mgmt->u.action.u.sa_query.trans_id, WLAN_SA_QUERY_TR_ID_LEN); ieee80211_tx_skb(sdata, skb); } static void ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; const struct element *ie; size_t baselen; if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, NL80211_EXT_FEATURE_BSS_COLOR)) return; if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) return; if (rx->sdata->vif.bss_conf.csa_active) return; baselen = mgmt->u.beacon.variable - rx->skb->data; if (baselen > rx->skb->len) return; ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, mgmt->u.beacon.variable, rx->skb->len - baselen); if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; const struct ieee80211_he_operation *he_oper; u8 color; he_oper = (void *)(ie->data + 1); if (le32_get_bits(he_oper->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) return; color = le32_get_bits(he_oper->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_MASK); if (color == bss_conf->he_bss_color.color) ieee80211_obss_color_collision_notify(&rx->sdata->vif, BIT_ULL(color), GFP_ATOMIC); } } static ieee80211_rx_result debug_noinline ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) return RX_CONTINUE; /* * From here on, look only at management frames. * Data and control frames are already handled, * and unknown (reserved) frames are useless. */ if (rx->skb->len < 24) return RX_DROP_MONITOR; if (!ieee80211_is_mgmt(mgmt->frame_control)) return RX_DROP_MONITOR; /* drop too small action frames */ if (ieee80211_is_action(mgmt->frame_control) && rx->skb->len < IEEE80211_MIN_ACTION_SIZE) return RX_DROP_UNUSABLE; if (rx->sdata->vif.type == NL80211_IFTYPE_AP && ieee80211_is_beacon(mgmt->frame_control) && !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { int sig = 0; /* sw bss color collision detection */ ieee80211_rx_check_bss_color_collision(rx); if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) sig = status->signal; cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, rx->skb->data, rx->skb->len, ieee80211_rx_status_to_khz(status), sig); rx->flags |= IEEE80211_RX_BEACON_REPORTED; } if (ieee80211_drop_unencrypted_mgmt(rx)) return RX_DROP_UNUSABLE; return RX_CONTINUE; } static bool ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; struct ieee80211_sub_if_data *sdata = rx->sdata; /* TWT actions are only supported in AP for the moment */ if (sdata->vif.type != NL80211_IFTYPE_AP) return false; if (!rx->local->ops->add_twt_setup) return false; if (!sdata->vif.bss_conf.twt_responder) return false; if (!rx->sta) return false; switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: { struct ieee80211_twt_setup *twt; if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 1 + /* action code */ sizeof(struct ieee80211_twt_setup) + 2 /* TWT req_type agrt */) break; twt = (void *)mgmt->u.action.u.s1g.variable; if (twt->element_id != WLAN_EID_S1G_TWT) break; if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 4 + /* action code + token + tlv */ twt->length) break; return true; /* queue the frame */ } case WLAN_S1G_TWT_TEARDOWN: if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) break; return true; /* queue the frame */ default: break; } return false; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action(struct ieee80211_rx_data *rx) { struct ieee80211_local *local = rx->local; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); int len = rx->skb->len; if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) return RX_DROP_UNUSABLE; switch (mgmt->u.action.category) { case WLAN_CATEGORY_HT: /* reject HT action frames from stations not supporting HT */ if (!rx->link_sta->pub->ht_cap.ht_supported) goto invalid; if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action & smps_control/chanwidth are present */ if (len < IEEE80211_MIN_ACTION_SIZE + 2) goto invalid; switch (mgmt->u.action.u.ht_smps.action) { case WLAN_HT_ACTION_SMPS: { struct ieee80211_supported_band *sband; enum ieee80211_smps_mode smps_mode; struct sta_opmode_info sta_opmode = {}; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_AP_VLAN) goto handled; /* convert to HT capability */ switch (mgmt->u.action.u.ht_smps.smps_control) { case WLAN_HT_SMPS_CONTROL_DISABLED: smps_mode = IEEE80211_SMPS_OFF; break; case WLAN_HT_SMPS_CONTROL_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; default: goto invalid; } /* if no change do nothing */ if (rx->link_sta->pub->smps_mode == smps_mode) goto handled; rx->link_sta->pub->smps_mode = smps_mode; sta_opmode.smps_mode = ieee80211_smps_mode_to_smps_mode(smps_mode); sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; sband = rx->local->hw.wiphy->bands[status->band]; rate_control_rate_update(local, sband, rx->sta, 0, IEEE80211_RC_SMPS_CHANGED); cfg80211_sta_opmode_change_notify(sdata->dev, rx->sta->addr, &sta_opmode, GFP_ATOMIC); goto handled; } case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { struct ieee80211_supported_band *sband; u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; enum ieee80211_sta_rx_bandwidth max_bw, new_bw; struct sta_opmode_info sta_opmode = {}; /* If it doesn't support 40 MHz it can't change ... */ if (!(rx->link_sta->pub->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) goto handled; if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) max_bw = IEEE80211_STA_RX_BW_20; else max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); /* set cur_max_bandwidth and recalc sta bw */ rx->link_sta->cur_max_bandwidth = max_bw; new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); if (rx->link_sta->pub->bandwidth == new_bw) goto handled; rx->link_sta->pub->bandwidth = new_bw; sband = rx->local->hw.wiphy->bands[status->band]; sta_opmode.bw = ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; rate_control_rate_update(local, sband, rx->sta, 0, IEEE80211_RC_BW_CHANGED); cfg80211_sta_opmode_change_notify(sdata->dev, rx->sta->addr, &sta_opmode, GFP_ATOMIC); goto handled; } default: goto invalid; } break; case WLAN_CATEGORY_PUBLIC: if (len < IEEE80211_MIN_ACTION_SIZE + 1) goto invalid; if (sdata->vif.type != NL80211_IFTYPE_STATION) break; if (!rx->sta) break; if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) break; if (mgmt->u.action.u.ext_chan_switch.action_code != WLAN_PUB_ACTION_EXT_CHANSW_ANN) break; if (len < offsetof(struct ieee80211_mgmt, u.action.u.ext_chan_switch.variable)) goto invalid; goto queue; case WLAN_CATEGORY_VHT: if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) goto invalid; switch (mgmt->u.action.u.vht_opmode_notif.action_code) { case WLAN_VHT_ACTION_OPMODE_NOTIF: { /* verify opmode is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 2) goto invalid; goto queue; } case WLAN_VHT_ACTION_GROUPID_MGMT: { if (len < IEEE80211_MIN_ACTION_SIZE + 25) goto invalid; goto queue; } default: break; } break; case WLAN_CATEGORY_BACK: if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC) break; /* verify action_code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) break; switch (mgmt->u.action.u.addba_req.action_code) { case WLAN_ACTION_ADDBA_REQ: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_req))) goto invalid; break; case WLAN_ACTION_ADDBA_RESP: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.addba_resp))) goto invalid; break; case WLAN_ACTION_DELBA: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.delba))) goto invalid; break; default: goto invalid; } goto queue; case WLAN_CATEGORY_SPECTRUM_MGMT: /* verify action_code is present */ if (len < IEEE80211_MIN_ACTION_SIZE + 1) break; switch (mgmt->u.action.u.measurement.action_code) { case WLAN_ACTION_SPCT_MSR_REQ: if (status->band != NL80211_BAND_5GHZ) break; if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.measurement))) break; if (sdata->vif.type != NL80211_IFTYPE_STATION) break; ieee80211_process_measurement_req(sdata, mgmt, len); goto handled; case WLAN_ACTION_SPCT_CHL_SWITCH: { u8 *bssid; if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.chan_switch))) break; if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) break; if (sdata->vif.type == NL80211_IFTYPE_STATION) bssid = sdata->deflink.u.mgd.bssid; else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) bssid = sdata->u.ibss.bssid; else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) bssid = mgmt->sa; else break; if (!ether_addr_equal(mgmt->bssid, bssid)) break; goto queue; } } break; case WLAN_CATEGORY_SELF_PROTECTED: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.self_prot.action_code))) break; switch (mgmt->u.action.u.self_prot.action_code) { case WLAN_SP_MESH_PEERING_OPEN: case WLAN_SP_MESH_PEERING_CLOSE: case WLAN_SP_MESH_PEERING_CONFIRM: if (!ieee80211_vif_is_mesh(&sdata->vif)) goto invalid; if (sdata->u.mesh.user_mpm) /* userspace handles this frame */ break; goto queue; case WLAN_SP_MGK_INFORM: case WLAN_SP_MGK_ACK: if (!ieee80211_vif_is_mesh(&sdata->vif)) goto invalid; break; } break; case WLAN_CATEGORY_MESH_ACTION: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.mesh_action.action_code))) break; if (!ieee80211_vif_is_mesh(&sdata->vif)) break; if (mesh_action_is_path_sel(mgmt) && !mesh_path_sel_is_hwmp(sdata)) break; goto queue; case WLAN_CATEGORY_S1G: if (len < offsetofend(typeof(*mgmt), u.action.u.s1g.action_code)) break; switch (mgmt->u.action.u.s1g.action_code) { case WLAN_S1G_TWT_SETUP: case WLAN_S1G_TWT_TEARDOWN: if (ieee80211_process_rx_twt_action(rx)) goto queue; break; default: break; } break; } return RX_CONTINUE; invalid: status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; /* will return in the next handlers */ return RX_CONTINUE; handled: if (rx->sta) rx->link_sta->rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; queue: ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); struct cfg80211_rx_info info = { .freq = ieee80211_rx_status_to_khz(status), .buf = rx->skb->data, .len = rx->skb->len, .link_id = rx->link_id, .have_link_id = rx->link_id >= 0, }; /* skip known-bad action frames and return them in the next handler */ if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) return RX_CONTINUE; /* * Getting here means the kernel doesn't know how to handle * it, but maybe userspace does ... include returned frames * so userspace can register for those to know whether ones * it transmitted were processed or returned. */ if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) info.sig_dbm = status->signal; if (ieee80211_is_timing_measurement(rx->skb) || ieee80211_is_ftm(rx->skb)) { info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); } if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { if (rx->sta) rx->link_sta->rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } return RX_CONTINUE; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; int len = rx->skb->len; if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; switch (mgmt->u.action.category) { case WLAN_CATEGORY_SA_QUERY: if (len < (IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.sa_query))) break; switch (mgmt->u.action.u.sa_query.action) { case WLAN_ACTION_SA_QUERY_REQUEST: if (sdata->vif.type != NL80211_IFTYPE_STATION) break; ieee80211_process_sa_query_req(sdata, mgmt, len); goto handled; } break; } return RX_CONTINUE; handled: if (rx->sta) rx->link_sta->rx_stats.packets++; dev_kfree_skb(rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) { struct ieee80211_local *local = rx->local; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; struct sk_buff *nskb; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); if (!ieee80211_is_action(mgmt->frame_control)) return RX_CONTINUE; /* * For AP mode, hostapd is responsible for handling any action * frames that we didn't handle, including returning unknown * ones. For all other modes we will return them to the sender, * setting the 0x80 bit in the action category, as required by * 802.11-2012 9.24.4. * Newer versions of hostapd shall also use the management frame * registration mechanisms, but older ones still use cooked * monitor interfaces so push all frames there. */ if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) return RX_DROP_MONITOR; if (is_multicast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* do not return rejected action frames */ if (mgmt->u.action.category & 0x80) return RX_DROP_UNUSABLE; nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, GFP_ATOMIC); if (nskb) { struct ieee80211_mgmt *nmgmt = (void *)nskb->data; nmgmt->u.action.category |= 0x80; memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); memset(nskb->cb, 0, sizeof(nskb->cb)); if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | IEEE80211_TX_INTFL_OFFCHAN_TX_OK | IEEE80211_TX_CTL_NO_CCK_RATE; if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = local->hw.offchannel_tx_hw_queue; } __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, status->band); } dev_kfree_skb(rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)rx->skb->data; if (!ieee80211_is_ext(hdr->frame_control)) return RX_CONTINUE; if (sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; /* for now only beacons are ext, so queue them */ ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); return RX_QUEUED; } static ieee80211_rx_result debug_noinline ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; __le16 stype; stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); if (!ieee80211_vif_is_mesh(&sdata->vif) && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_OCB && sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; switch (stype) { case cpu_to_le16(IEEE80211_STYPE_AUTH): case cpu_to_le16(IEEE80211_STYPE_BEACON): case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): /* process for all: mesh, mlme, ibss */ break; case cpu_to_le16(IEEE80211_STYPE_DEAUTH): if (is_multicast_ether_addr(mgmt->da) && !is_broadcast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* process only for station/IBSS */ if (sdata->vif.type != NL80211_IFTYPE_STATION && sdata->vif.type != NL80211_IFTYPE_ADHOC) return RX_DROP_MONITOR; break; case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): case cpu_to_le16(IEEE80211_STYPE_DISASSOC): if (is_multicast_ether_addr(mgmt->da) && !is_broadcast_ether_addr(mgmt->da)) return RX_DROP_MONITOR; /* process only for station */ if (sdata->vif.type != NL80211_IFTYPE_STATION) return RX_DROP_MONITOR; break; case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): /* process only for ibss and mesh */ if (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) return RX_DROP_MONITOR; break; default: return RX_DROP_MONITOR; } ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); return RX_QUEUED; } static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, struct ieee80211_rate *rate, ieee80211_rx_result reason) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local = rx->local; struct sk_buff *skb = rx->skb, *skb2; struct net_device *prev_dev = NULL; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); int needed_headroom; /* * If cooked monitor has been processed already, then * don't do it again. If not, set the flag. */ if (rx->flags & IEEE80211_RX_CMNTR) goto out_free_skb; rx->flags |= IEEE80211_RX_CMNTR; /* If there are no cooked monitor interfaces, just free the SKB */ if (!local->cooked_mntrs) goto out_free_skb; /* room for the radiotap header based on driver features */ needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); if (skb_headroom(skb) < needed_headroom && pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) goto out_free_skb; /* prepend radiotap information */ ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, false); skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type != NL80211_IFTYPE_MONITOR || !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) continue; if (prev_dev) { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) { skb2->dev = prev_dev; netif_receive_skb(skb2); } } prev_dev = sdata->dev; dev_sw_netstats_rx_add(sdata->dev, skb->len); } if (prev_dev) { skb->dev = prev_dev; netif_receive_skb(skb); return; } out_free_skb: kfree_skb_reason(skb, (__force u32)reason); } static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, ieee80211_rx_result res) { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); struct ieee80211_supported_band *sband; struct ieee80211_rate *rate = NULL; if (res == RX_QUEUED) { I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); return; } if (res != RX_CONTINUE) { I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); if (rx->sta) rx->link_sta->rx_stats.dropped++; } if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { kfree_skb_reason(rx->skb, (__force u32)res); return; } sband = rx->local->hw.wiphy->bands[status->band]; if (status->encoding == RX_ENC_LEGACY) rate = &sband->bitrates[status->rate_idx]; ieee80211_rx_cooked_monitor(rx, rate, res); } static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) { ieee80211_rx_result res = RX_DROP_MONITOR; struct sk_buff *skb; #define CALL_RXH(rxh) \ do { \ res = rxh(rx); \ if (res != RX_CONTINUE) \ goto rxh_next; \ } while (0) /* Lock here to avoid hitting all of the data used in the RX * path (e.g. key data, station data, ...) concurrently when * a frame is released from the reorder buffer due to timeout * from the timer, potentially concurrently with RX from the * driver. */ spin_lock_bh(&rx->local->rx_path_lock); while ((skb = __skb_dequeue(frames))) { /* * all the other fields are valid across frames * that belong to an aMPDU since they are on the * same TID from the same station */ rx->skb = skb; if (WARN_ON_ONCE(!rx->link)) goto rxh_next; CALL_RXH(ieee80211_rx_h_check_more_data); CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); CALL_RXH(ieee80211_rx_h_sta_process); CALL_RXH(ieee80211_rx_h_decrypt); CALL_RXH(ieee80211_rx_h_defragment); CALL_RXH(ieee80211_rx_h_michael_mic_verify); /* must be after MMIC verify so header is counted in MPDU mic */ CALL_RXH(ieee80211_rx_h_amsdu); CALL_RXH(ieee80211_rx_h_data); /* special treatment -- needs the queue */ res = ieee80211_rx_h_ctrl(rx, frames); if (res != RX_CONTINUE) goto rxh_next; CALL_RXH(ieee80211_rx_h_mgmt_check); CALL_RXH(ieee80211_rx_h_action); CALL_RXH(ieee80211_rx_h_userspace_mgmt); CALL_RXH(ieee80211_rx_h_action_post_userspace); CALL_RXH(ieee80211_rx_h_action_return); CALL_RXH(ieee80211_rx_h_ext); CALL_RXH(ieee80211_rx_h_mgmt); rxh_next: ieee80211_rx_handlers_result(rx, res); #undef CALL_RXH } spin_unlock_bh(&rx->local->rx_path_lock); } static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) { struct sk_buff_head reorder_release; ieee80211_rx_result res = RX_DROP_MONITOR; __skb_queue_head_init(&reorder_release); #define CALL_RXH(rxh) \ do { \ res = rxh(rx); \ if (res != RX_CONTINUE) \ goto rxh_next; \ } while (0) CALL_RXH(ieee80211_rx_h_check_dup); CALL_RXH(ieee80211_rx_h_check); ieee80211_rx_reorder_ampdu(rx, &reorder_release); ieee80211_rx_handlers(rx, &reorder_release); return; rxh_next: ieee80211_rx_handlers_result(rx, res); #undef CALL_RXH } static bool ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) { return !!(sta->valid_links & BIT(link_id)); } static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, u8 link_id) { rx->link_id = link_id; rx->link = rcu_dereference(rx->sdata->link[link_id]); if (!rx->sta) return rx->link; if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) return false; rx->link_sta = rcu_dereference(rx->sta->link[link_id]); return rx->link && rx->link_sta; } static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, struct sta_info *sta, int link_id) { rx->link_id = link_id; rx->sta = sta; if (sta) { rx->local = sta->sdata->local; if (!rx->sdata) rx->sdata = sta->sdata; rx->link_sta = &sta->deflink; } else { rx->link_sta = NULL; } if (link_id < 0) rx->link = &rx->sdata->deflink; else if (!ieee80211_rx_data_set_link(rx, link_id)) return false; return true; } /* * This function makes calls into the RX path, therefore * it has to be invoked under RCU read lock. */ void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) { struct sk_buff_head frames; struct ieee80211_rx_data rx = { /* This is OK -- must be QoS data frame */ .security_idx = tid, .seqno_idx = tid, }; struct tid_ampdu_rx *tid_agg_rx; int link_id = -1; /* FIXME: statistics won't be right with this */ if (sta->sta.valid_links) link_id = ffs(sta->sta.valid_links) - 1; if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) return; tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) return; __skb_queue_head_init(&frames); spin_lock(&tid_agg_rx->reorder_lock); ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); spin_unlock(&tid_agg_rx->reorder_lock); if (!skb_queue_empty(&frames)) { struct ieee80211_event event = { .type = BA_FRAME_TIMEOUT, .u.ba.tid = tid, .u.ba.sta = &sta->sta, }; drv_event_callback(rx.local, rx.sdata, &event); } ieee80211_rx_handlers(&rx, &frames); } void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, u16 ssn, u64 filtered, u16 received_mpdus) { struct ieee80211_local *local; struct sta_info *sta; struct tid_ampdu_rx *tid_agg_rx; struct sk_buff_head frames; struct ieee80211_rx_data rx = { /* This is OK -- must be QoS data frame */ .security_idx = tid, .seqno_idx = tid, }; int i, diff; if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) return; __skb_queue_head_init(&frames); sta = container_of(pubsta, struct sta_info, sta); local = sta->sdata->local; WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", local->hw.max_rx_aggregation_subframes); if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) return; rcu_read_lock(); tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); if (!tid_agg_rx) goto out; spin_lock_bh(&tid_agg_rx->reorder_lock); if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { int release; /* release all frames in the reorder buffer */ release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % IEEE80211_SN_MODULO; ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, release, &frames); /* update ssn to match received ssn */ tid_agg_rx->head_seq_num = ssn; } else { ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, &frames); } /* handle the case that received ssn is behind the mac ssn. * it can be tid_agg_rx->buf_size behind and still be valid */ diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; if (diff >= tid_agg_rx->buf_size) { tid_agg_rx->reorder_buf_filtered = 0; goto release; } filtered = filtered >> diff; ssn += diff; /* update bitmap */ for (i = 0; i < tid_agg_rx->buf_size; i++) { int index = (ssn + i) % tid_agg_rx->buf_size; tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); if (filtered & BIT_ULL(i)) tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); } /* now process also frames that the filter marking released */ ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); release: spin_unlock_bh(&tid_agg_rx->reorder_lock); ieee80211_rx_handlers(&rx, &frames); out: rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); /* main receive path */ static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) { return ether_addr_equal(raddr, addr) || is_broadcast_ether_addr(raddr); } static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) { struct ieee80211_sub_if_data *sdata = rx->sdata; struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); bool multicast = is_multicast_ether_addr(hdr->addr1) || ieee80211_is_s1g_beacon(hdr->frame_control); switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (!bssid && !sdata->u.mgd.use_4addr) return false; if (ieee80211_is_first_frag(hdr->seq_ctrl) && ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) return false; if (multicast) return true; return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); case NL80211_IFTYPE_ADHOC: if (!bssid) return false; if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || !is_valid_ether_addr(hdr->addr2)) return false; if (ieee80211_is_beacon(hdr->frame_control)) return true; if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) return false; if (!multicast && !ether_addr_equal(sdata->vif.addr, hdr->addr1)) return false; if (!rx->sta) { int rate_idx; if (status->encoding != RX_ENC_LEGACY) rate_idx = 0; /* TODO: HT/VHT rates */ else rate_idx = status->rate_idx; ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, BIT(rate_idx)); } return true; case NL80211_IFTYPE_OCB: if (!bssid) return false; if (!ieee80211_is_data_present(hdr->frame_control)) return false; if (!is_broadcast_ether_addr(bssid)) return false; if (!multicast && !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) return false; if (!rx->sta) { int rate_idx; if (status->encoding != RX_ENC_LEGACY) rate_idx = 0; /* TODO: HT rates */ else rate_idx = status->rate_idx; ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, BIT(rate_idx)); } return true; case NL80211_IFTYPE_MESH_POINT: if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) return false; if (multicast) return true; return ether_addr_equal(sdata->vif.addr, hdr->addr1); case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: if (!bssid) return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); if (!is_broadcast_ether_addr(bssid) && !ieee80211_is_our_addr(sdata, bssid, NULL)) { /* * Accept public action frames even when the * BSSID doesn't match, this is used for P2P * and location updates. Note that mac80211 * itself never looks at these frames. */ if (!multicast && !ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id)) return false; if (ieee80211_is_public_action(hdr, skb->len)) return true; return ieee80211_is_beacon(hdr->frame_control); } if (!ieee80211_has_tods(hdr->frame_control)) { /* ignore data frames to TDLS-peers */ if (ieee80211_is_data(hdr->frame_control)) return false; /* ignore action frames to TDLS-peers */ if (ieee80211_is_action(hdr->frame_control) && !is_broadcast_ether_addr(bssid) && !ether_addr_equal(bssid, hdr->addr1)) return false; } /* * 802.11-2016 Table 9-26 says that for data frames, A1 must be * the BSSID - we've checked that already but may have accepted * the wildcard (ff:ff:ff:ff:ff:ff). * * It also says: * The BSSID of the Data frame is determined as follows: * a) If the STA is contained within an AP or is associated * with an AP, the BSSID is the address currently in use * by the STA contained in the AP. * * So we should not accept data frames with an address that's * multicast. * * Accepting it also opens a security problem because stations * could encrypt it with the GTK and inject traffic that way. */ if (ieee80211_is_data(hdr->frame_control) && multicast) return false; return true; case NL80211_IFTYPE_P2P_DEVICE: return ieee80211_is_public_action(hdr, skb->len) || ieee80211_is_probe_req(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control); case NL80211_IFTYPE_NAN: /* Currently no frames on NAN interface are allowed */ return false; default: break; } WARN_ON_ONCE(1); return false; } void ieee80211_check_fast_rx(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; struct ieee80211_fast_rx fastrx = { .dev = sdata->dev, .vif_type = sdata->vif.type, .control_port_protocol = sdata->control_port_protocol, }, *old, *new = NULL; u32 offload_flags; bool set_offload = false; bool assign = false; bool offload; /* use sparse to check that we don't return without updating */ __acquire(check_fast_rx); BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); /* fast-rx doesn't do reordering */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) goto clear; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (sta->sta.tdls) { fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); fastrx.expected_ds_bits = 0; } else { fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS); } if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { fastrx.expected_ds_bits |= cpu_to_le16(IEEE80211_FCTL_TODS); fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); } if (!sdata->u.mgd.powersave) break; /* software powersave is a huge mess, avoid all of it */ if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) goto clear; if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) goto clear; break; case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: /* parallel-rx requires this, at least with calls to * ieee80211_sta_ps_transition() */ if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) goto clear; fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); fastrx.internal_forward = !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) { fastrx.expected_ds_bits |= cpu_to_le16(IEEE80211_FCTL_FROMDS); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); fastrx.internal_forward = 0; } break; case NL80211_IFTYPE_MESH_POINT: fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); break; default: goto clear; } if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) goto clear; rcu_read_lock(); key = rcu_dereference(sta->ptk[sta->ptk_idx]); if (!key) key = rcu_dereference(sdata->default_unicast_key); if (key) { switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: /* we don't want to deal with MMIC in fast-rx */ goto clear_rcu; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: break; default: /* We also don't want to deal with * WEP or cipher scheme. */ goto clear_rcu; } fastrx.key = true; fastrx.icv_len = key->conf.icv_len; } assign = true; clear_rcu: rcu_read_unlock(); clear: __release(check_fast_rx); if (assign) new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); offload_flags = get_bss_sdata(sdata)->vif.offload_flags; offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; if (assign && offload) set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); else set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); if (set_offload) drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); spin_lock_bh(&sta->lock); old = rcu_dereference_protected(sta->fast_rx, true); rcu_assign_pointer(sta->fast_rx, new); spin_unlock_bh(&sta->lock); if (old) kfree_rcu(old, rcu_head); } void ieee80211_clear_fast_rx(struct sta_info *sta) { struct ieee80211_fast_rx *old; spin_lock_bh(&sta->lock); old = rcu_dereference_protected(sta->fast_rx, true); RCU_INIT_POINTER(sta->fast_rx, NULL); spin_unlock_bh(&sta->lock); if (old) kfree_rcu(old, rcu_head); } void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; lockdep_assert_held(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_rx(sta); } } void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; mutex_lock(&local->sta_mtx); __ieee80211_check_fast_rx_iface(sdata); mutex_unlock(&local->sta_mtx); } static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, struct ieee80211_fast_rx *fast_rx, int orig_len) { struct ieee80211_sta_rx_stats *stats; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); struct sta_info *sta = rx->sta; struct link_sta_info *link_sta; struct sk_buff *skb = rx->skb; void *sa = skb->data + ETH_ALEN; void *da = skb->data; if (rx->link_id >= 0) { link_sta = rcu_dereference(sta->link[rx->link_id]); if (WARN_ON_ONCE(!link_sta)) { dev_kfree_skb(rx->skb); return; } } else { link_sta = &sta->deflink; } stats = &link_sta->rx_stats; if (fast_rx->uses_rss) stats = this_cpu_ptr(link_sta->pcpu_rx_stats); /* statistics part of ieee80211_rx_h_sta_process() */ if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { stats->last_signal = status->signal; if (!fast_rx->uses_rss) ewma_signal_add(&link_sta->rx_stats_avg.signal, -status->signal); } if (status->chains) { int i; stats->chains = status->chains; for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { int signal = status->chain_signal[i]; if (!(status->chains & BIT(i))) continue; stats->chain_signal_last[i] = signal; if (!fast_rx->uses_rss) ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], -signal); } } /* end of statistics */ stats->last_rx = jiffies; stats->last_rate = sta_stats_encode_rate(status); stats->fragments++; stats->packets++; skb->dev = fast_rx->dev; dev_sw_netstats_rx_add(fast_rx->dev, skb->len); /* The seqno index has the same property as needed * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS * for non-QoS-data frames. Here we know it's a data * frame, so count MSDUs. */ u64_stats_update_begin(&stats->syncp); stats->msdu[rx->seqno_idx]++; stats->bytes += orig_len; u64_stats_update_end(&stats->syncp); if (fast_rx->internal_forward) { struct sk_buff *xmit_skb = NULL; if (is_multicast_ether_addr(da)) { xmit_skb = skb_copy(skb, GFP_ATOMIC); } else if (!ether_addr_equal(da, sa) && sta_info_get(rx->sdata, da)) { xmit_skb = skb; skb = NULL; } if (xmit_skb) { /* * Send to wireless media and increase priority by 256 * to keep the received priority instead of * reclassifying the frame (see cfg80211_classify8021d). */ xmit_skb->priority += 256; xmit_skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(xmit_skb); skb_reset_mac_header(xmit_skb); dev_queue_xmit(xmit_skb); } if (!skb) return; } /* deliver to local stack */ skb->protocol = eth_type_trans(skb, fast_rx->dev); ieee80211_deliver_skb_to_local_stack(skb, rx); } static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, struct ieee80211_fast_rx *fast_rx) { struct sk_buff *skb = rx->skb; struct ieee80211_hdr *hdr = (void *)skb->data; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); static ieee80211_rx_result res; int orig_len = skb->len; int hdrlen = ieee80211_hdrlen(hdr->frame_control); int snap_offs = hdrlen; struct { u8 snap[sizeof(rfc1042_header)]; __be16 proto; } *payload __aligned(2); struct { u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; } addrs __aligned(2); struct ieee80211_sta_rx_stats *stats; /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write * to a common data structure; drivers can implement that per queue * but we don't have that information in mac80211 */ if (!(status->flag & RX_FLAG_DUP_VALIDATED)) return false; #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) /* If using encryption, we also need to have: * - PN_VALIDATED: similar, but the implementation is tricky * - DECRYPTED: necessary for PN_VALIDATED */ if (fast_rx->key && (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) return false; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return false; if (unlikely(ieee80211_is_frag(hdr))) return false; /* Since our interface address cannot be multicast, this * implicitly also rejects multicast frames without the * explicit check. * * We shouldn't get any *data* frames not addressed to us * (AP mode will accept multicast *management* frames), but * punting here will make it go through the full checks in * ieee80211_accept_frame(). */ if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) return false; if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) != fast_rx->expected_ds_bits) return false; /* assign the key to drop unencrypted frames (later) * and strip the IV/MIC if necessary */ if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { /* GCMP header length is the same */ snap_offs += IEEE80211_CCMP_HDR_LEN; } if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && !(status->rx_flags & IEEE80211_RX_AMSDU)) { if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) return false; payload = (void *)(skb->data + snap_offs); if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) return false; /* Don't handle these here since they require special code. * Accept AARP and IPX even though they should come with a * bridge-tunnel header - but if we get them this way then * there's little point in discarding them. */ if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || payload->proto == fast_rx->control_port_protocol)) return false; } /* after this point, don't punt to the slowpath! */ if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && pskb_trim(skb, skb->len - fast_rx->icv_len)) goto drop; if (rx->key && !ieee80211_has_protected(hdr->frame_control)) goto drop; if (status->rx_flags & IEEE80211_RX_AMSDU) { if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != RX_QUEUED) goto drop; return true; } /* do the header conversion - first grab the addresses */ ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { skb_pull(skb, snap_offs - 2); put_unaligned_be16(skb->len - 2, skb->data); } else { skb_postpull_rcsum(skb, skb->data + snap_offs, sizeof(rfc1042_header) + 2); /* remove the SNAP but leave the ethertype */ skb_pull(skb, snap_offs + sizeof(rfc1042_header)); } /* push the addresses in front */ memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); switch (res) { case RX_QUEUED: return true; case RX_CONTINUE: break; default: goto drop; } ieee80211_rx_8023(rx, fast_rx, orig_len); return true; drop: dev_kfree_skb(skb); if (fast_rx->uses_rss) stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); else stats = &rx->link_sta->rx_stats; stats->dropped++; return true; } /* * This function returns whether or not the SKB * was destined for RX processing or not, which, * if consume is true, is equivalent to whether * or not the skb was consumed. */ static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, struct sk_buff *skb, bool consume) { struct ieee80211_local *local = rx->local; struct ieee80211_sub_if_data *sdata = rx->sdata; struct ieee80211_hdr *hdr = (void *)skb->data; struct link_sta_info *link_sta = rx->link_sta; struct ieee80211_link_data *link = rx->link; rx->skb = skb; /* See if we can do fast-rx; if we have to copy we already lost, * so punt in that case. We should never have to deliver a data * frame to multiple interfaces anyway. * * We skip the ieee80211_accept_frame() call and do the necessary * checking inside ieee80211_invoke_fast_rx(). */ if (consume && rx->sta) { struct ieee80211_fast_rx *fast_rx; fast_rx = rcu_dereference(rx->sta->fast_rx); if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) return true; } if (!ieee80211_accept_frame(rx)) return false; if (!consume) { struct skb_shared_hwtstamps *shwt; rx->skb = skb_copy(skb, GFP_ATOMIC); if (!rx->skb) { if (net_ratelimit()) wiphy_debug(local->hw.wiphy, "failed to copy skb for %s\n", sdata->name); return true; } /* skb_copy() does not copy the hw timestamps, so copy it * explicitly */ shwt = skb_hwtstamps(rx->skb); shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; /* Update the hdr pointer to the new skb for translation below */ hdr = (struct ieee80211_hdr *)rx->skb->data; } if (unlikely(rx->sta && rx->sta->sta.mlo) && is_unicast_ether_addr(hdr->addr1) && !ieee80211_is_probe_resp(hdr->frame_control) && !ieee80211_is_beacon(hdr->frame_control)) { /* translate to MLD addresses */ if (ether_addr_equal(link->conf->addr, hdr->addr1)) ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); if (ether_addr_equal(link_sta->addr, hdr->addr2)) ether_addr_copy(hdr->addr2, rx->sta->addr); /* translate A3 only if it's the BSSID */ if (!ieee80211_has_tods(hdr->frame_control) && !ieee80211_has_fromds(hdr->frame_control)) { if (ether_addr_equal(link_sta->addr, hdr->addr3)) ether_addr_copy(hdr->addr3, rx->sta->addr); else if (ether_addr_equal(link->conf->addr, hdr->addr3)) ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); } /* not needed for A4 since it can only carry the SA */ } ieee80211_invoke_rx_handlers(rx); return true; } static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_fast_rx *fast_rx; struct ieee80211_rx_data rx; struct sta_info *sta; int link_id = -1; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; rx.list = list; rx.link_id = -1; I802_DEBUG_INC(local->dot11ReceivedFragmentCount); /* drop frame if too short for header */ if (skb->len < sizeof(struct ethhdr)) goto drop; if (!pubsta) goto drop; if (status->link_valid) link_id = status->link_id; /* * TODO: Should the frame be dropped if the right link_id is not * available? Or may be it is fine in the current form to proceed with * the frame processing because with frame being in 802.3 format, * link_id is used only for stats purpose and updating the stats on * the deflink is fine? */ sta = container_of(pubsta, struct sta_info, sta); if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) goto drop; fast_rx = rcu_dereference(rx.sta->fast_rx); if (!fast_rx) goto drop; ieee80211_rx_8023(&rx, fast_rx, skb->len); return; drop: dev_kfree_skb(skb); } static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, struct sk_buff *skb, bool consume) { struct link_sta_info *link_sta; struct ieee80211_hdr *hdr = (void *)skb->data; struct sta_info *sta; int link_id = -1; /* * Look up link station first, in case there's a * chance that they might have a link address that * is identical to the MLD address, that way we'll * have the link information if needed. */ link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); if (link_sta) { sta = link_sta->sta; link_id = link_sta->link_id; } else { struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); sta = sta_info_get_bss(rx->sdata, hdr->addr2); if (status->link_valid) link_id = status->link_id; } if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) return false; return ieee80211_prepare_and_rx_handle(rx, skb, consume); } /* * This is the actual Rx frames handler. as it belongs to Rx path it must * be called with rcu_read_lock protection. */ static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_sub_if_data *sdata; struct ieee80211_hdr *hdr; __le16 fc; struct ieee80211_rx_data rx; struct ieee80211_sub_if_data *prev; struct rhlist_head *tmp; int err = 0; fc = ((struct ieee80211_hdr *)skb->data)->frame_control; memset(&rx, 0, sizeof(rx)); rx.skb = skb; rx.local = local; rx.list = list; rx.link_id = -1; if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) I802_DEBUG_INC(local->dot11ReceivedFragmentCount); if (ieee80211_is_mgmt(fc)) { /* drop frame if too short for header */ if (skb->len < ieee80211_hdrlen(fc)) err = -ENOBUFS; else err = skb_linearize(skb); } else { err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); } if (err) { dev_kfree_skb(skb); return; } hdr = (struct ieee80211_hdr *)skb->data; ieee80211_parse_qos(&rx); ieee80211_verify_alignment(&rx); if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_s1g_beacon(hdr->frame_control))) ieee80211_scan_rx(local, skb); if (ieee80211_is_data(fc)) { struct sta_info *sta, *prev_sta; int link_id = -1; if (status->link_valid) link_id = status->link_id; if (pubsta) { sta = container_of(pubsta, struct sta_info, sta); if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) goto out; /* * In MLO connection, fetch the link_id using addr2 * when the driver does not pass link_id in status. * When the address translation is already performed by * driver/hw, the valid link_id must be passed in * status. */ if (!status->link_valid && pubsta->mlo) { struct ieee80211_hdr *hdr = (void *)skb->data; struct link_sta_info *link_sta; link_sta = link_sta_info_get_bss(rx.sdata, hdr->addr2); if (!link_sta) goto out; ieee80211_rx_data_set_link(&rx, link_sta->link_id); } if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) return; goto out; } prev_sta = NULL; for_each_sta_info(local, hdr->addr2, sta, tmp) { if (!prev_sta) { prev_sta = sta; continue; } rx.sdata = prev_sta->sdata; if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) goto out; if (!status->link_valid && prev_sta->sta.mlo) continue; ieee80211_prepare_and_rx_handle(&rx, skb, false); prev_sta = sta; } if (prev_sta) { rx.sdata = prev_sta->sdata; if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) goto out; if (!status->link_valid && prev_sta->sta.mlo) goto out; if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) return; goto out; } } prev = NULL; list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_MONITOR || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) continue; /* * frame is destined for this interface, but if it's * not also for the previous one we handle that after * the loop to avoid copying the SKB once too much */ if (!prev) { prev = sdata; continue; } rx.sdata = prev; ieee80211_rx_for_interface(&rx, skb, false); prev = sdata; } if (prev) { rx.sdata = prev; if (ieee80211_rx_for_interface(&rx, skb, true)) return; } out: dev_kfree_skb(skb); } /* * This is the receive path handler. It is called by a low level driver when an * 802.11 MPDU is received from the hardware. */ void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct list_head *list) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate = NULL; struct ieee80211_supported_band *sband; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; WARN_ON_ONCE(softirq_count() == 0); if (WARN_ON(status->band >= NUM_NL80211_BANDS)) goto drop; sband = local->hw.wiphy->bands[status->band]; if (WARN_ON(!sband)) goto drop; /* * If we're suspending, it is possible although not too likely * that we'd be receiving frames after having already partially * quiesced the stack. We can't process such frames then since * that might, for example, cause stations to be added or other * driver callbacks be invoked. */ if (unlikely(local->quiescing || local->suspended)) goto drop; /* We might be during a HW reconfig, prevent Rx for the same reason */ if (unlikely(local->in_reconfig)) goto drop; /* * The same happens when we're not even started, * but that's worth a warning. */ if (WARN_ON(!local->started)) goto drop; if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { /* * Validate the rate, unless a PLCP error means that * we probably can't have a valid rate here anyway. */ switch (status->encoding) { case RX_ENC_HT: /* * rate_idx is MCS index, which can be [0-76] * as documented on: * * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n * * Anything else would be some sort of driver or * hardware error. The driver should catch hardware * errors. */ if (WARN(status->rate_idx > 76, "Rate marked as an HT rate but passed " "status->rate_idx is not " "an MCS index [0-76]: %d (0x%02x)\n", status->rate_idx, status->rate_idx)) goto drop; break; case RX_ENC_VHT: if (WARN_ONCE(status->rate_idx > 11 || !status->nss || status->nss > 8, "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", status->rate_idx, status->nss)) goto drop; break; case RX_ENC_HE: if (WARN_ONCE(status->rate_idx > 11 || !status->nss || status->nss > 8, "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", status->rate_idx, status->nss)) goto drop; break; case RX_ENC_EHT: if (WARN_ONCE(status->rate_idx > 15 || !status->nss || status->nss > 8 || status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", status->rate_idx, status->nss, status->eht.gi)) goto drop; break; default: WARN_ON_ONCE(1); fallthrough; case RX_ENC_LEGACY: if (WARN_ON(status->rate_idx >= sband->n_bitrates)) goto drop; rate = &sband->bitrates[status->rate_idx]; } } if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) goto drop; status->rx_flags = 0; kcov_remote_start_common(skb_get_kcov_handle(skb)); /* * Frames with failed FCS/PLCP checksum are not returned, * all other frames are returned without radiotap header * if it was previously present. * Also, frames with less than 16 bytes are dropped. */ if (!(status->flag & RX_FLAG_8023)) skb = ieee80211_rx_monitor(local, skb, rate); if (skb) { if ((status->flag & RX_FLAG_8023) || ieee80211_is_data_present(hdr->frame_control)) ieee80211_tpt_led_trig_rx(local, skb->len); if (status->flag & RX_FLAG_8023) __ieee80211_rx_handle_8023(hw, pubsta, skb, list); else __ieee80211_rx_handle_packet(hw, pubsta, skb, list); } kcov_remote_stop(); return; drop: kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_rx_list); void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct sk_buff *skb, struct napi_struct *napi) { struct sk_buff *tmp; LIST_HEAD(list); /* * key references and virtual interfaces are protected using RCU * and this requires that we are in a read-side RCU section during * receive processing */ rcu_read_lock(); ieee80211_rx_list(hw, pubsta, skb, &list); rcu_read_unlock(); if (!napi) { netif_receive_skb_list(&list); return; } list_for_each_entry_safe(skb, tmp, &list, list) { skb_list_del_init(skb); napi_gro_receive(napi, skb); } } EXPORT_SYMBOL(ieee80211_rx_napi); /* This is a version of the rx handler that can be called from hard irq * context. Post the skb on the queue and schedule the tasklet */ void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); skb->pkt_type = IEEE80211_RX_MSG; skb_queue_tail(&local->skb_queue, skb); tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_rx_irqsafe);
linux-master
net/mac80211/rx.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation * * utilities for mac80211 */ #include <net/mac80211.h> #include <linux/netdevice.h> #include <linux/export.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/bitmap.h> #include <linux/crc32.h> #include <net/net_namespace.h> #include <net/cfg80211.h> #include <net/rtnetlink.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "mesh.h" #include "wme.h" #include "led.h" #include "wep.h" /* privid for wiphys to determine whether they belong to us or not */ const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) { struct ieee80211_local *local; local = wiphy_priv(wiphy); return &local->hw; } EXPORT_SYMBOL(wiphy_to_ieee80211_hw); u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, enum nl80211_iftype type) { __le16 fc = hdr->frame_control; if (ieee80211_is_data(fc)) { if (len < 24) /* drop incorrect hdr len (data) */ return NULL; if (ieee80211_has_a4(fc)) return NULL; if (ieee80211_has_tods(fc)) return hdr->addr1; if (ieee80211_has_fromds(fc)) return hdr->addr2; return hdr->addr3; } if (ieee80211_is_s1g_beacon(fc)) { struct ieee80211_ext *ext = (void *) hdr; return ext->u.s1g_beacon.sa; } if (ieee80211_is_mgmt(fc)) { if (len < 24) /* drop incorrect hdr len (mgmt) */ return NULL; return hdr->addr3; } if (ieee80211_is_ctl(fc)) { if (ieee80211_is_pspoll(fc)) return hdr->addr1; if (ieee80211_is_back_req(fc)) { switch (type) { case NL80211_IFTYPE_STATION: return hdr->addr2; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: return hdr->addr1; default: break; /* fall through to the return */ } } } return NULL; } EXPORT_SYMBOL(ieee80211_get_bssid); void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; skb_queue_walk(&tx->skbs, skb) { hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } } int ieee80211_frame_duration(enum nl80211_band band, size_t len, int rate, int erp, int short_preamble, int shift) { int dur; /* calculate duration (in microseconds, rounded up to next higher * integer if it includes a fractional microsecond) to send frame of * len bytes (does not include FCS) at the given rate. Duration will * also include SIFS. * * rate is in 100 kbps, so divident is multiplied by 10 in the * DIV_ROUND_UP() operations. * * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and * is assumed to be 0 otherwise. */ if (band == NL80211_BAND_5GHZ || erp) { /* * OFDM: * * N_DBPS = DATARATE x 4 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) * (16 = SIGNAL time, 6 = tail bits) * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext * * T_SYM = 4 usec * 802.11a - 18.5.2: aSIFSTime = 16 usec * 802.11g - 19.8.4: aSIFSTime = 10 usec + * signal ext = 6 usec */ dur = 16; /* SIFS + signal ext */ dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ /* IEEE 802.11-2012 18.3.2.4: all values above are: * * times 4 for 5 MHz * * times 2 for 10 MHz */ dur *= 1 << shift; /* rates should already consider the channel bandwidth, * don't apply divisor again. */ dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 4 * rate); /* T_SYM x N_SYM */ } else { /* * 802.11b or 802.11g with 802.11b compatibility: * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. * * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 * aSIFSTime = 10 usec * aPreambleLength = 144 usec or 72 usec with short preamble * aPLCPHeaderLength = 48 usec or 24 usec with short preamble */ dur = 10; /* aSIFSTime = 10 usec */ dur += short_preamble ? (72 + 24) : (144 + 48); dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); } return dur; } /* Exported duration function for driver use */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_band band, size_t frame_len, struct ieee80211_rate *rate) { struct ieee80211_sub_if_data *sdata; u16 dur; int erp, shift = 0; bool short_preamble = false; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, short_preamble, shift); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_generic_frame_duration); __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, shift = 0, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); /* CTS duration */ dur = ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); /* Data frame duration */ dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble, shift); /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_rts_duration); __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_rate *rate; struct ieee80211_sub_if_data *sdata; bool short_preamble; int erp, shift = 0, bitrate; u16 dur; struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[frame_txctl->band]; short_preamble = false; rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; erp = 0; if (vif) { sdata = vif_to_sdata(vif); short_preamble = sdata->vif.bss_conf.use_short_preamble; if (sdata->deflink.operating_11g_mode) erp = rate->flags & IEEE80211_RATE_ERP_G; shift = ieee80211_vif_get_shift(vif); } bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); /* Data frame duration */ dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, erp, short_preamble, shift); if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { /* ACK duration */ dur += ieee80211_frame_duration(sband->band, 10, bitrate, erp, short_preamble, shift); } return cpu_to_le16(dur); } EXPORT_SYMBOL(ieee80211_ctstoself_duration); static void wake_tx_push_queue(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_txq *queue) { struct ieee80211_tx_control control = { .sta = queue->sta, }; struct sk_buff *skb; while (1) { skb = ieee80211_tx_dequeue(&local->hw, queue); if (!skb) break; drv_tx(local, &control, skb); } } /* wake_tx_queue handler for driver not implementing a custom one*/ void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); struct ieee80211_txq *queue; spin_lock(&local->handle_wake_tx_queue_lock); /* Use ieee80211_next_txq() for airtime fairness accounting */ ieee80211_txq_schedule_start(hw, txq->ac); while ((queue = ieee80211_next_txq(hw, txq->ac))) { wake_tx_push_queue(local, sdata, queue); ieee80211_return_txq(hw, queue, false); } ieee80211_txq_schedule_end(hw, txq->ac); spin_unlock(&local->handle_wake_tx_queue_lock); } EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif *vif = &sdata->vif; struct fq *fq = &local->fq; struct ps_data *ps = NULL; struct txq_info *txqi; struct sta_info *sta; int i; local_bh_disable(); spin_lock(&fq->lock); if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct ieee80211_txq *txq = sta->sta.txq[i]; if (!txq) continue; txqi = to_txq_info(txq); if (ac != txq->ac) continue; if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags)) continue; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); spin_lock(&fq->lock); } } if (!vif->txq) goto out; txqi = to_txq_info(vif->txq); if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) goto out; spin_unlock(&fq->lock); drv_wake_tx_queue(local, txqi); local_bh_enable(); return; out: spin_unlock(&fq->lock); local_bh_enable(); } static void __releases(&local->queue_stop_reason_lock) __acquires(&local->queue_stop_reason_lock) _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) { struct ieee80211_sub_if_data *sdata; int n_acs = IEEE80211_NUM_ACS; int i; rcu_read_lock(); if (local->hw.queues < IEEE80211_NUM_ACS) n_acs = 1; for (i = 0; i < local->hw.queues; i++) { if (local->queue_stop_reasons[i]) continue; spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); list_for_each_entry_rcu(sdata, &local->interfaces, list) { int ac; for (ac = 0; ac < n_acs; ac++) { int ac_queue = sdata->vif.hw_queue[ac]; if (ac_queue == i || sdata->vif.cab_queue == i) __ieee80211_wake_txqs(sdata, ac); } } spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); } rcu_read_unlock(); } void ieee80211_wake_txqs(struct tasklet_struct *t) { struct ieee80211_local *local = from_tasklet(local, t, wake_txqs_tasklet); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); _ieee80211_wake_txqs(local, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted, unsigned long *flags) { struct ieee80211_local *local = hw_to_local(hw); trace_wake_queue(local, queue, reason); if (WARN_ON(queue >= hw->queues)) return; if (!test_bit(reason, &local->queue_stop_reasons[queue])) return; if (!refcounted) { local->q_stop_reasons[queue][reason] = 0; } else { local->q_stop_reasons[queue][reason]--; if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) local->q_stop_reasons[queue][reason] = 0; } if (local->q_stop_reasons[queue][reason] == 0) __clear_bit(reason, &local->queue_stop_reasons[queue]); if (local->queue_stop_reasons[queue] != 0) /* someone still has this queue stopped */ return; if (!skb_queue_empty(&local->pending[queue])) tasklet_schedule(&local->tx_pending_tasklet); /* * Calling _ieee80211_wake_txqs here can be a problem because it may * release queue_stop_reason_lock which has been taken by * __ieee80211_wake_queue's caller. It is certainly not very nice to * release someone's lock, but it is fine because all the callers of * __ieee80211_wake_queue call it right before releasing the lock. */ if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) tasklet_schedule(&local->wake_txqs_tasklet); else _ieee80211_wake_txqs(local, flags); } void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) { ieee80211_wake_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queue); static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); trace_stop_queue(local, queue, reason); if (WARN_ON(queue >= hw->queues)) return; if (!refcounted) local->q_stop_reasons[queue][reason] = 1; else local->q_stop_reasons[queue][reason]++; set_bit(reason, &local->queue_stop_reasons[queue]); } void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) { ieee80211_stop_queue_by_reason(hw, queue, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queue); void ieee80211_add_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_hw *hw = &local->hw; unsigned long flags; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int queue = info->hw_queue; if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); return; } spin_lock_irqsave(&local->queue_stop_reason_lock, flags); __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_add_pending_skbs(struct ieee80211_local *local, struct sk_buff_head *skbs) { struct ieee80211_hw *hw = &local->hw; struct sk_buff *skb; unsigned long flags; int queue, i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); while ((skb = skb_dequeue(skbs))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } queue = info->hw_queue; __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false); __skb_queue_tail(&local->pending[queue], skb); } for (i = 0; i < hw->queues; i++) __ieee80211_wake_queue(hw, i, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, false, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_stop_queue(hw, i, reason, refcounted); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_stop_queues(struct ieee80211_hw *hw) { ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_stop_queues); int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int ret; if (WARN_ON(queue >= hw->queues)) return true; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, &local->queue_stop_reasons[queue]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return ret; } EXPORT_SYMBOL(ieee80211_queue_stopped); void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, unsigned long queues, enum queue_stop_reason reason, bool refcounted) { struct ieee80211_local *local = hw_to_local(hw); unsigned long flags; int i; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for_each_set_bit(i, &queues, hw->queues) __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } void ieee80211_wake_queues(struct ieee80211_hw *hw) { ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_DRIVER, false); } EXPORT_SYMBOL(ieee80211_wake_queues); static unsigned int ieee80211_get_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { unsigned int queues; if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { int ac; queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) queues |= BIT(sdata->vif.hw_queue[ac]); if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) queues |= BIT(sdata->vif.cab_queue); } else { /* all queues */ queues = BIT(local->hw.queues) - 1; } return queues; } void __ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int queues, bool drop) { if (!local->ops->flush) return; /* * If no queue was set, or if the HW doesn't support * IEEE80211_HW_QUEUE_CONTROL - flush all queues */ if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) queues = ieee80211_get_vif_queues(local, sdata); ieee80211_stop_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); drv_flush(local, sdata, queues, drop); ieee80211_wake_queues_by_reason(&local->hw, queues, IEEE80211_QUEUE_STOP_REASON_FLUSH, false); } void ieee80211_flush_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool drop) { __ieee80211_flush_queues(local, sdata, 0, drop); } void ieee80211_stop_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_stop_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } void ieee80211_wake_vif_queues(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum queue_stop_reason reason) { ieee80211_wake_queues_by_reason(&local->hw, ieee80211_get_vif_queues(local, sdata), reason, true); } static void __iterate_interfaces(struct ieee80211_local *local, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_sub_if_data *sdata; bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; list_for_each_entry_rcu(sdata, &local->interfaces, list) { switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) continue; break; case NL80211_IFTYPE_AP_VLAN: continue; default: break; } if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) continue; if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) continue; if (ieee80211_sdata_running(sdata) || !active_only) iterator(data, sdata->vif.addr, &sdata->vif); } sdata = rcu_dereference_check(local->monitor_sdata, lockdep_is_held(&local->iflist_mtx) || lockdep_is_held(&local->hw.wiphy->mtx)); if (sdata && (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || sdata->flags & IEEE80211_SDATA_IN_DRIVER)) iterator(data, sdata->vif.addr, &sdata->vif); } void ieee80211_iterate_interfaces( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); mutex_lock(&local->iflist_mtx); __iterate_interfaces(local, iter_flags, iterator, data); mutex_unlock(&local->iflist_mtx); } EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); void ieee80211_iterate_active_interfaces_atomic( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); void ieee80211_iterate_active_interfaces_mtx( struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { struct ieee80211_local *local = hw_to_local(hw); lockdep_assert_wiphy(hw->wiphy); __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); } EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); static void __iterate_stations(struct ieee80211_local *local, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct sta_info *sta; list_for_each_entry_rcu(sta, &local->sta_list, list) { if (!sta->uploaded) continue; iterator(data, &sta->sta); } } void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data) { struct ieee80211_local *local = hw_to_local(hw); rcu_read_lock(); __iterate_stations(local, iterator, data); rcu_read_unlock(); } EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (!ieee80211_sdata_running(sdata) || !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) return NULL; return &sdata->vif; } EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) { if (!vif) return NULL; return &vif_to_sdata(vif)->wdev; } EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); /* * Nothing should have been stuffed into the workqueue during * the suspend->resume cycle. Since we can't check each caller * of this function if we are already quiescing / suspended, * check here and don't WARN since this can actually happen when * the rx path (for example) is racing against __ieee80211_suspend * and suspending / quiescing was set after the rx path checked * them. */ static bool ieee80211_can_queue_work(struct ieee80211_local *local) { if (local->quiescing || (local->suspended && !local->resuming)) { pr_warn("queueing ieee80211 work while going to suspend\n"); return false; } return true; } void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_work(local->workqueue, work); } EXPORT_SYMBOL(ieee80211_queue_work); void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, struct delayed_work *dwork, unsigned long delay) { struct ieee80211_local *local = hw_to_local(hw); if (!ieee80211_can_queue_work(local)) return; queue_delayed_work(local->workqueue, dwork, delay); } EXPORT_SYMBOL(ieee80211_queue_delayed_work); static void ieee80211_parse_extension_element(u32 *crc, const struct element *elem, struct ieee802_11_elems *elems, struct ieee80211_elems_parse_params *params) { const void *data = elem->data + 1; bool calc_crc = false; u8 len; if (!elem->datalen) return; len = elem->datalen - 1; switch (elem->data[0]) { case WLAN_EID_EXT_HE_MU_EDCA: calc_crc = true; if (len >= sizeof(*elems->mu_edca_param_set)) elems->mu_edca_param_set = data; break; case WLAN_EID_EXT_HE_CAPABILITY: if (ieee80211_he_capa_size_ok(data, len)) { elems->he_cap = data; elems->he_cap_len = len; } break; case WLAN_EID_EXT_HE_OPERATION: calc_crc = true; if (len >= sizeof(*elems->he_operation) && len >= ieee80211_he_oper_size(data) - 1) elems->he_operation = data; break; case WLAN_EID_EXT_UORA: if (len >= 1) elems->uora_element = data; break; case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: if (len == 3) elems->max_channel_switch_time = data; break; case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: if (len >= sizeof(*elems->mbssid_config_ie)) elems->mbssid_config_ie = data; break; case WLAN_EID_EXT_HE_SPR: if (len >= sizeof(*elems->he_spr) && len >= ieee80211_he_spr_size(data)) elems->he_spr = data; break; case WLAN_EID_EXT_HE_6GHZ_CAPA: if (len >= sizeof(*elems->he_6ghz_capa)) elems->he_6ghz_capa = data; break; case WLAN_EID_EXT_EHT_CAPABILITY: if (ieee80211_eht_capa_size_ok(elems->he_cap, data, len, params->from_ap)) { elems->eht_cap = data; elems->eht_cap_len = len; } break; case WLAN_EID_EXT_EHT_OPERATION: if (ieee80211_eht_oper_size_ok(data, len)) elems->eht_operation = data; calc_crc = true; break; case WLAN_EID_EXT_EHT_MULTI_LINK: calc_crc = true; if (ieee80211_mle_size_ok(data, len)) { const struct ieee80211_multi_link_elem *mle = (void *)data; switch (le16_get_bits(mle->control, IEEE80211_ML_CONTROL_TYPE)) { case IEEE80211_ML_CONTROL_TYPE_BASIC: elems->ml_basic_elem = (void *)elem; elems->ml_basic = data; elems->ml_basic_len = len; break; case IEEE80211_ML_CONTROL_TYPE_RECONF: elems->ml_reconf_elem = (void *)elem; elems->ml_reconf = data; elems->ml_reconf_len = len; break; default: break; } } break; } if (crc && calc_crc) *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); } static u32 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, struct ieee802_11_elems *elems, const struct element *check_inherit) { const struct element *elem; bool calc_crc = params->filter != 0; DECLARE_BITMAP(seen_elems, 256); u32 crc = params->crc; const u8 *ie; bitmap_zero(seen_elems, 256); for_each_element(elem, params->start, params->len) { bool elem_parse_failed; u8 id = elem->id; u8 elen = elem->datalen; const u8 *pos = elem->data; if (check_inherit && !cfg80211_is_element_inherited(elem, check_inherit)) continue; switch (id) { case WLAN_EID_SSID: case WLAN_EID_SUPP_RATES: case WLAN_EID_FH_PARAMS: case WLAN_EID_DS_PARAMS: case WLAN_EID_CF_PARAMS: case WLAN_EID_TIM: case WLAN_EID_IBSS_PARAMS: case WLAN_EID_CHALLENGE: case WLAN_EID_RSN: case WLAN_EID_ERP_INFO: case WLAN_EID_EXT_SUPP_RATES: case WLAN_EID_HT_CAPABILITY: case WLAN_EID_HT_OPERATION: case WLAN_EID_VHT_CAPABILITY: case WLAN_EID_VHT_OPERATION: case WLAN_EID_MESH_ID: case WLAN_EID_MESH_CONFIG: case WLAN_EID_PEER_MGMT: case WLAN_EID_PREQ: case WLAN_EID_PREP: case WLAN_EID_PERR: case WLAN_EID_RANN: case WLAN_EID_CHANNEL_SWITCH: case WLAN_EID_EXT_CHANSWITCH_ANN: case WLAN_EID_COUNTRY: case WLAN_EID_PWR_CONSTRAINT: case WLAN_EID_TIMEOUT_INTERVAL: case WLAN_EID_SECONDARY_CHANNEL_OFFSET: case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: case WLAN_EID_CHAN_SWITCH_PARAM: case WLAN_EID_EXT_CAPABILITY: case WLAN_EID_CHAN_SWITCH_TIMING: case WLAN_EID_LINK_ID: case WLAN_EID_BSS_MAX_IDLE_PERIOD: case WLAN_EID_RSNX: case WLAN_EID_S1G_BCN_COMPAT: case WLAN_EID_S1G_CAPABILITIES: case WLAN_EID_S1G_OPERATION: case WLAN_EID_AID_RESPONSE: case WLAN_EID_S1G_SHORT_BCN_INTERVAL: /* * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible * that if the content gets bigger it might be needed more than once */ if (test_bit(id, seen_elems)) { elems->parse_error = true; continue; } break; } if (calc_crc && id < 64 && (params->filter & (1ULL << id))) crc = crc32_be(crc, pos - 2, elen + 2); elem_parse_failed = false; switch (id) { case WLAN_EID_LINK_ID: if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { elem_parse_failed = true; break; } elems->lnk_id = (void *)(pos - 2); break; case WLAN_EID_CHAN_SWITCH_TIMING: if (elen < sizeof(struct ieee80211_ch_switch_timing)) { elem_parse_failed = true; break; } elems->ch_sw_timing = (void *)pos; break; case WLAN_EID_EXT_CAPABILITY: elems->ext_capab = pos; elems->ext_capab_len = elen; break; case WLAN_EID_SSID: elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_DS_PARAMS: if (elen >= 1) elems->ds_params = pos; else elem_parse_failed = true; break; case WLAN_EID_TIM: if (elen >= sizeof(struct ieee80211_tim_ie)) { elems->tim = (void *)pos; elems->tim_len = elen; } else elem_parse_failed = true; break; case WLAN_EID_VENDOR_SPECIFIC: if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && pos[2] == 0xf2) { /* Microsoft OUI (00:50:F2) */ if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); if (elen >= 5 && pos[3] == 2) { /* OUI Type 2 - WMM IE */ if (pos[4] == 0) { elems->wmm_info = pos; elems->wmm_info_len = elen; } else if (pos[4] == 1) { elems->wmm_param = pos; elems->wmm_param_len = elen; } } } break; case WLAN_EID_RSN: elems->rsn = pos; elems->rsn_len = elen; break; case WLAN_EID_ERP_INFO: if (elen >= 1) elems->erp_info = pos; else elem_parse_failed = true; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_HT_CAPABILITY: if (elen >= sizeof(struct ieee80211_ht_cap)) elems->ht_cap_elem = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_HT_OPERATION: if (elen >= sizeof(struct ieee80211_ht_operation)) elems->ht_operation = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_VHT_CAPABILITY: if (elen >= sizeof(struct ieee80211_vht_cap)) elems->vht_cap_elem = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_VHT_OPERATION: if (elen >= sizeof(struct ieee80211_vht_operation)) { elems->vht_operation = (void *)pos; if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); break; } elem_parse_failed = true; break; case WLAN_EID_OPMODE_NOTIF: if (elen > 0) { elems->opmode_notif = pos; if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); break; } elem_parse_failed = true; break; case WLAN_EID_MESH_ID: elems->mesh_id = pos; elems->mesh_id_len = elen; break; case WLAN_EID_MESH_CONFIG: if (elen >= sizeof(struct ieee80211_meshconf_ie)) elems->mesh_config = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_PEER_MGMT: elems->peering = pos; elems->peering_len = elen; break; case WLAN_EID_MESH_AWAKE_WINDOW: if (elen >= 2) elems->awake_window = (void *)pos; break; case WLAN_EID_PREQ: elems->preq = pos; elems->preq_len = elen; break; case WLAN_EID_PREP: elems->prep = pos; elems->prep_len = elen; break; case WLAN_EID_PERR: elems->perr = pos; elems->perr_len = elen; break; case WLAN_EID_RANN: if (elen >= sizeof(struct ieee80211_rann_ie)) elems->rann = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_CHANNEL_SWITCH: if (elen != sizeof(struct ieee80211_channel_sw_ie)) { elem_parse_failed = true; break; } elems->ch_switch_ie = (void *)pos; break; case WLAN_EID_EXT_CHANSWITCH_ANN: if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { elem_parse_failed = true; break; } elems->ext_chansw_ie = (void *)pos; break; case WLAN_EID_SECONDARY_CHANNEL_OFFSET: if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { elem_parse_failed = true; break; } elems->sec_chan_offs = (void *)pos; break; case WLAN_EID_CHAN_SWITCH_PARAM: if (elen < sizeof(*elems->mesh_chansw_params_ie)) { elem_parse_failed = true; break; } elems->mesh_chansw_params_ie = (void *)pos; break; case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: if (!params->action || elen < sizeof(*elems->wide_bw_chansw_ie)) { elem_parse_failed = true; break; } elems->wide_bw_chansw_ie = (void *)pos; break; case WLAN_EID_CHANNEL_SWITCH_WRAPPER: if (params->action) { elem_parse_failed = true; break; } /* * This is a bit tricky, but as we only care about * the wide bandwidth channel switch element, so * just parse it out manually. */ ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, pos, elen); if (ie) { if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) elems->wide_bw_chansw_ie = (void *)(ie + 2); else elem_parse_failed = true; } break; case WLAN_EID_COUNTRY: elems->country_elem = pos; elems->country_elem_len = elen; break; case WLAN_EID_PWR_CONSTRAINT: if (elen != 1) { elem_parse_failed = true; break; } elems->pwr_constr_elem = pos; break; case WLAN_EID_CISCO_VENDOR_SPECIFIC: /* Lots of different options exist, but we only care * about the Dynamic Transmit Power Control element. * First check for the Cisco OUI, then for the DTPC * tag (0x00). */ if (elen < 4) { elem_parse_failed = true; break; } if (pos[0] != 0x00 || pos[1] != 0x40 || pos[2] != 0x96 || pos[3] != 0x00) break; if (elen != 6) { elem_parse_failed = true; break; } if (calc_crc) crc = crc32_be(crc, pos - 2, elen + 2); elems->cisco_dtpc_elem = pos; break; case WLAN_EID_ADDBA_EXT: if (elen < sizeof(struct ieee80211_addba_ext_ie)) { elem_parse_failed = true; break; } elems->addba_ext_ie = (void *)pos; break; case WLAN_EID_TIMEOUT_INTERVAL: if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) elems->timeout_int = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_BSS_MAX_IDLE_PERIOD: if (elen >= sizeof(*elems->max_idle_period_ie)) elems->max_idle_period_ie = (void *)pos; break; case WLAN_EID_RSNX: elems->rsnx = pos; elems->rsnx_len = elen; break; case WLAN_EID_TX_POWER_ENVELOPE: if (elen < 1 || elen > sizeof(struct ieee80211_tx_pwr_env)) break; if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) break; elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; elems->tx_pwr_env_num++; break; case WLAN_EID_EXTENSION: ieee80211_parse_extension_element(calc_crc ? &crc : NULL, elem, elems, params); break; case WLAN_EID_S1G_CAPABILITIES: if (elen >= sizeof(*elems->s1g_capab)) elems->s1g_capab = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_S1G_OPERATION: if (elen == sizeof(*elems->s1g_oper)) elems->s1g_oper = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_S1G_BCN_COMPAT: if (elen == sizeof(*elems->s1g_bcn_compat)) elems->s1g_bcn_compat = (void *)pos; else elem_parse_failed = true; break; case WLAN_EID_AID_RESPONSE: if (elen == sizeof(struct ieee80211_aid_response_ie)) elems->aid_resp = (void *)pos; else elem_parse_failed = true; break; default: break; } if (elem_parse_failed) elems->parse_error = true; else __set_bit(id, seen_elems); } if (!for_each_element_completed(elem, params->start, params->len)) elems->parse_error = true; return crc; } static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, struct ieee802_11_elems *elems, struct cfg80211_bss *bss, u8 *nontransmitted_profile) { const struct element *elem, *sub; size_t profile_len = 0; bool found = false; if (!bss || !bss->transmitted_bss) return profile_len; for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { if (elem->datalen < 2) continue; if (elem->data[0] < 1 || elem->data[0] > 8) continue; for_each_element(sub, elem->data + 1, elem->datalen - 1) { u8 new_bssid[ETH_ALEN]; const u8 *index; if (sub->id != 0 || sub->datalen < 4) { /* not a valid BSS profile */ continue; } if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || sub->data[1] != 2) { /* The first element of the * Nontransmitted BSSID Profile is not * the Nontransmitted BSSID Capability * element. */ continue; } memset(nontransmitted_profile, 0, len); profile_len = cfg80211_merge_profile(start, len, elem, sub, nontransmitted_profile, len); /* found a Nontransmitted BSSID Profile */ index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, nontransmitted_profile, profile_len); if (!index || index[1] < 1 || index[2] == 0) { /* Invalid MBSSID Index element */ continue; } cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, elem->data[0], index[2], new_bssid); if (ether_addr_equal(new_bssid, bss->bssid)) { found = true; elems->bssid_index_len = index[1]; elems->bssid_index = (void *)&index[2]; break; } } } return found ? profile_len : 0; } static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, u8 link_id) { const struct ieee80211_multi_link_elem *ml = elems->ml_basic; ssize_t ml_len = elems->ml_basic_len; const struct element *sub; if (!ml || !ml_len) return; if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != IEEE80211_ML_CONTROL_TYPE_BASIC) return; for_each_mle_subelement(sub, (u8 *)ml, ml_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; ssize_t sta_prof_len; u16 control; if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) continue; if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, sub->datalen)) return; control = le16_to_cpu(prof->control); if (link_id != u16_get_bits(control, IEEE80211_MLE_STA_CONTROL_LINK_ID)) continue; if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) return; /* the sub element can be fragmented */ sta_prof_len = cfg80211_defragment_element(sub, (u8 *)ml, ml_len, elems->scratch_pos, elems->scratch + elems->scratch_len - elems->scratch_pos, IEEE80211_MLE_SUBELEM_FRAGMENT); if (sta_prof_len < 0) return; elems->prof = (void *)elems->scratch_pos; elems->sta_prof_len = sta_prof_len; elems->scratch_pos += sta_prof_len; return; } } static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, struct ieee80211_elems_parse_params *params) { struct ieee80211_mle_per_sta_profile *prof; struct ieee80211_elems_parse_params sub = { .action = params->action, .from_ap = params->from_ap, .link_id = -1, }; ssize_t ml_len = elems->ml_basic_len; const struct element *non_inherit = NULL; const u8 *end; if (params->link_id == -1) return; ml_len = cfg80211_defragment_element(elems->ml_basic_elem, elems->ie_start, elems->total_len, elems->scratch_pos, elems->scratch + elems->scratch_len - elems->scratch_pos, WLAN_EID_FRAGMENT); if (ml_len < 0) return; elems->ml_basic = (const void *)elems->scratch_pos; elems->ml_basic_len = ml_len; ieee80211_mle_get_sta_prof(elems, params->link_id); prof = elems->prof; if (!prof) return; /* check if we have the 4 bytes for the fixed part in assoc response */ if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { elems->prof = NULL; elems->sta_prof_len = 0; return; } /* * Skip the capability information and the status code that are expected * as part of the station profile in association response frames. Note * the -1 is because the 'sta_info_len' is accounted to as part of the * per-STA profile, but not part of the 'u8 variable[]' portion. */ sub.start = prof->variable + prof->sta_info_len - 1 + 4; end = (const u8 *)prof + elems->sta_prof_len; sub.len = end - sub.start; non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, sub.start, sub.len); _ieee802_11_parse_elems_full(&sub, elems, non_inherit); } struct ieee802_11_elems * ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) { struct ieee802_11_elems *elems; const struct element *non_inherit = NULL; u8 *nontransmitted_profile; int nontransmitted_profile_len = 0; size_t scratch_len = 3 * params->len; elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); if (!elems) return NULL; elems->ie_start = params->start; elems->total_len = params->len; elems->scratch_len = scratch_len; elems->scratch_pos = elems->scratch; nontransmitted_profile = elems->scratch_pos; nontransmitted_profile_len = ieee802_11_find_bssid_profile(params->start, params->len, elems, params->bss, nontransmitted_profile); elems->scratch_pos += nontransmitted_profile_len; elems->scratch_len -= nontransmitted_profile_len; non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, nontransmitted_profile, nontransmitted_profile_len); elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); /* Override with nontransmitted profile, if found */ if (nontransmitted_profile_len) { struct ieee80211_elems_parse_params sub = { .start = nontransmitted_profile, .len = nontransmitted_profile_len, .action = params->action, .link_id = params->link_id, }; _ieee802_11_parse_elems_full(&sub, elems, NULL); } ieee80211_mle_parse_link(elems, params); if (elems->tim && !elems->parse_error) { const struct ieee80211_tim_ie *tim_ie = elems->tim; elems->dtim_period = tim_ie->dtim_period; elems->dtim_count = tim_ie->dtim_count; } /* Override DTIM period and count if needed */ if (elems->bssid_index && elems->bssid_index_len >= offsetofend(struct ieee80211_bssid_index, dtim_period)) elems->dtim_period = elems->bssid_index->dtim_period; if (elems->bssid_index && elems->bssid_index_len >= offsetofend(struct ieee80211_bssid_index, dtim_count)) elems->dtim_count = elems->bssid_index->dtim_count; return elems; } void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_queue_params *qparam, int ac) { struct ieee80211_chanctx_conf *chanctx_conf; const struct ieee80211_reg_rule *rrule; const struct ieee80211_wmm_ac *wmm_ac; u16 center_freq = 0; if (sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_STATION) return; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (chanctx_conf) center_freq = chanctx_conf->def.chan->center_freq; if (!center_freq) { rcu_read_unlock(); return; } rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { rcu_read_unlock(); return; } if (sdata->vif.type == NL80211_IFTYPE_AP) wmm_ac = &rrule->wmm_rule.ap[ac]; else wmm_ac = &rrule->wmm_rule.client[ac]; qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); rcu_read_unlock(); } void ieee80211_set_wmm_default(struct ieee80211_link_data *link, bool bss_notify, bool enable_qos) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_tx_queue_params qparam; struct ieee80211_chanctx_conf *chanctx_conf; int ac; bool use_11b; bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ int aCWmin, aCWmax; if (!local->ops->conf_tx) return; if (local->hw.queues < IEEE80211_NUM_ACS) return; memset(&qparam, 0, sizeof(qparam)); rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); use_11b = (chanctx_conf && chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && !link->operating_11g_mode; rcu_read_unlock(); is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); /* Set defaults according to 802.11-2007 Table 7-37 */ aCWmax = 1023; if (use_11b) aCWmin = 31; else aCWmin = 15; /* Confiure old 802.11b/g medium access rules. */ qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; qparam.aifs = 2; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { /* Update if QoS is enabled. */ if (enable_qos) { switch (ac) { case IEEE80211_AC_BK: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 9; else qparam.aifs = 7; break; /* never happens but let's not leave undefined */ default: case IEEE80211_AC_BE: qparam.cw_max = aCWmax; qparam.cw_min = aCWmin; qparam.txop = 0; if (is_ocb) qparam.aifs = 6; else qparam.aifs = 3; break; case IEEE80211_AC_VI: qparam.cw_max = aCWmin; qparam.cw_min = (aCWmin + 1) / 2 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 6016/32; else qparam.txop = 3008/32; if (is_ocb) qparam.aifs = 3; else qparam.aifs = 2; break; case IEEE80211_AC_VO: qparam.cw_max = (aCWmin + 1) / 2 - 1; qparam.cw_min = (aCWmin + 1) / 4 - 1; if (is_ocb) qparam.txop = 0; else if (use_11b) qparam.txop = 3264/32; else qparam.txop = 1504/32; qparam.aifs = 2; break; } } ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); qparam.uapsd = false; link->tx_conf[ac] = qparam; drv_conf_tx(local, link, ac, &qparam); } if (sdata->vif.type != NL80211_IFTYPE_MONITOR && sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && sdata->vif.type != NL80211_IFTYPE_NAN) { link->conf->qos = enable_qos; if (bss_notify) ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_QOS); } } void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *da, const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; bool multi_link = ieee80211_vif_is_mld(&sdata->vif); struct { u8 id; u8 len; u8 ext_id; struct ieee80211_multi_link_elem ml; struct ieee80211_mle_basic_common_info basic; } __packed mle = { .id = WLAN_EID_EXTENSION, .len = sizeof(mle) - 2, .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), .basic.len = sizeof(mle.basic), }; int err; memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + multi_link * sizeof(mle)); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); mgmt = skb_put_zero(skb, 24 + 6); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); mgmt->u.auth.status_code = cpu_to_le16(status); if (extra) skb_put_data(skb, extra, extra_len); if (multi_link) skb_put_data(skb, &mle, sizeof(mle)); if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); if (WARN_ON(err)) { kfree_skb(skb); return; } } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | tx_flags; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, const u8 *da, const u8 *bssid, u16 stype, u16 reason, bool send_frame, u8 *frame_buf) { struct ieee80211_local *local = sdata->local; struct sk_buff *skb; struct ieee80211_mgmt *mgmt = (void *)frame_buf; /* build frame */ mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); mgmt->duration = 0; /* initialize only */ mgmt->seq_ctrl = 0; /* initialize only */ memcpy(mgmt->da, da, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, bssid, ETH_ALEN); /* u.deauth.reason_code == u.disassoc.reason_code */ mgmt->u.deauth.reason_code = cpu_to_le16(reason); if (send_frame) { skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_DEAUTH_FRAME_LEN); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); /* copy in frame */ skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); if (sdata->vif.type != NL80211_IFTYPE_STATION || !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } } u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) { if ((end - pos) < 5) return pos; *pos++ = WLAN_EID_EXTENSION; *pos++ = 1 + sizeof(cap); *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; memcpy(pos, &cap, sizeof(cap)); return pos + 2; } static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, const u8 *ie, size_t ie_len, enum nl80211_band band, u32 rate_mask, struct cfg80211_chan_def *chandef, size_t *offset, u32 flags) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; u8 *pos = buffer, *end = buffer + buffer_len; size_t noffset; int supp_rates_len, i; u8 rates[32]; int num_rates; int ext_rates_len; int shift; u32 rate_flags; bool have_80mhz = false; *offset = 0; sband = local->hw.wiphy->bands[band]; if (WARN_ON_ONCE(!sband)) return 0; rate_flags = ieee80211_chandef_rate_flags(chandef); shift = ieee80211_chandef_get_shift(chandef); /* For direct scan add S1G IE and consider its override bits */ if (band == NL80211_BAND_S1GHZ) { if (end - pos < 2 + sizeof(struct ieee80211_s1g_cap)) goto out_err; pos = ieee80211_ie_build_s1g_cap(pos, &sband->s1g_cap); goto done; } num_rates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((BIT(i) & rate_mask) == 0) continue; /* skip rate */ if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; rates[num_rates++] = (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, (1 << shift) * 5); } supp_rates_len = min_t(int, num_rates, 8); if (end - pos < 2 + supp_rates_len) goto out_err; *pos++ = WLAN_EID_SUPP_RATES; *pos++ = supp_rates_len; memcpy(pos, rates, supp_rates_len); pos += supp_rates_len; /* insert "request information" if in custom IEs */ if (ie && ie_len) { static const u8 before_extrates[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_REQUEST, }; noffset = ieee80211_ie_split(ie, ie_len, before_extrates, ARRAY_SIZE(before_extrates), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } ext_rates_len = num_rates - supp_rates_len; if (ext_rates_len > 0) { if (end - pos < 2 + ext_rates_len) goto out_err; *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = ext_rates_len; memcpy(pos, rates + supp_rates_len, ext_rates_len); pos += ext_rates_len; } if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { if (end - pos < 3) goto out_err; *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel( chandef->chan->center_freq); } if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) goto done; /* insert custom IEs that go before HT */ if (ie && ie_len) { static const u8 before_ht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_DS_PARAMS, WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; noffset = ieee80211_ie_split(ie, ie_len, before_ht, ARRAY_SIZE(before_ht), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } if (sband->ht_cap.ht_supported) { if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) goto out_err; pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, sband->ht_cap.cap); } /* insert custom IEs that go before VHT */ if (ie && ie_len) { static const u8 before_vht[] = { /* * no need to list the ones split off already * (or generated here) */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_SSID_LIST, WLAN_EID_CHANNEL_USAGE, WLAN_EID_INTERWORKING, WLAN_EID_MESH_ID, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; noffset = ieee80211_ie_split(ie, ie_len, before_vht, ARRAY_SIZE(before_vht), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } /* Check if any channel in this sband supports at least 80 MHz */ for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (sband->vht_cap.vht_supported && have_80mhz) { if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) goto out_err; pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); } /* insert custom IEs that go before HE */ if (ie && ie_len) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, WLAN_EID_AP_CSN, /* TODO: add 11ah/11aj/11ak elements */ }; noffset = ieee80211_ie_split(ie, ie_len, before_he, ARRAY_SIZE(before_he), *offset); if (end - pos < noffset - *offset) goto out_err; memcpy(pos, ie + *offset, noffset - *offset); pos += noffset - *offset; *offset = noffset; } he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (he_cap && cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), IEEE80211_CHAN_NO_HE)) { pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); if (!pos) goto out_err; } eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); if (eht_cap && cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), IEEE80211_CHAN_NO_HE | IEEE80211_CHAN_NO_EHT)) { pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, sdata->vif.type == NL80211_IFTYPE_AP); if (!pos) goto out_err; } if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(NL80211_BAND_6GHZ), IEEE80211_CHAN_NO_HE)) { struct ieee80211_supported_band *sband6; sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; he_cap = ieee80211_get_he_iftype_cap_vif(sband6, &sdata->vif); if (he_cap) { enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); pos = ieee80211_write_he_6ghz_cap(pos, cap, end); } } /* * If adding more here, adjust code in main.c * that calculates local->scan_ies_len. */ return pos - buffer; out_err: WARN_ONCE(1, "not enough space for preq IEs\n"); done: return pos - buffer; } int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, size_t buffer_len, struct ieee80211_scan_ies *ie_desc, const u8 *ie, size_t ie_len, u8 bands_used, u32 *rate_masks, struct cfg80211_chan_def *chandef, u32 flags) { size_t pos = 0, old_pos = 0, custom_ie_offset = 0; int i; memset(ie_desc, 0, sizeof(*ie_desc)); for (i = 0; i < NUM_NL80211_BANDS; i++) { if (bands_used & BIT(i)) { pos += ieee80211_build_preq_ies_band(sdata, buffer + pos, buffer_len - pos, ie, ie_len, i, rate_masks[i], chandef, &custom_ie_offset, flags); ie_desc->ies[i] = buffer + old_pos; ie_desc->len[i] = pos - old_pos; old_pos = pos; } } /* add any remaining custom IEs */ if (ie && ie_len) { if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, "not enough space for preq custom IEs\n")) return pos; memcpy(buffer + pos, ie + custom_ie_offset, ie_len - custom_ie_offset); ie_desc->common_ies = buffer + pos; ie_desc->common_ie_len = ie_len - custom_ie_offset; pos += ie_len - custom_ie_offset; } return pos; }; struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, u32 ratemask, struct ieee80211_channel *chan, const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 flags) { struct ieee80211_local *local = sdata->local; struct cfg80211_chan_def chandef; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; int ies_len; u32 rate_masks[NUM_NL80211_BANDS] = {}; struct ieee80211_scan_ies dummy_ie_desc; /* * Do not send DS Channel parameter for directed probe requests * in order to maximize the chance that we get a response. Some * badly-behaved APs don't respond when this parameter is included. */ chandef.width = sdata->vif.bss_conf.chandef.width; if (flags & IEEE80211_PROBE_FLAG_DIRECTED) chandef.chan = NULL; else chandef.chan = chan; skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, local->scan_ies_len + ie_len); if (!skb) return NULL; rate_masks[chan->band] = ratemask; ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), skb_tailroom(skb), &dummy_ie_desc, ie, ie_len, BIT(chan->band), rate_masks, &chandef, flags); skb_put(skb, ies_len); if (dst) { mgmt = (struct ieee80211_mgmt *) skb->data; memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); } IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; return skb; } u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, enum nl80211_band band, u32 *basic_rates) { struct ieee80211_supported_band *sband; size_t num_rates; u32 supp_rates, rate_flags; int i, j, shift; sband = sdata->local->hw.wiphy->bands[band]; if (WARN_ON(!sband)) return 1; rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); shift = ieee80211_vif_get_shift(&sdata->vif); num_rates = sband->n_bitrates; supp_rates = 0; for (i = 0; i < elems->supp_rates_len + elems->ext_supp_rates_len; i++) { u8 rate = 0; int own_rate; bool is_basic; if (i < elems->supp_rates_len) rate = elems->supp_rates[i]; else if (elems->ext_supp_rates) rate = elems->ext_supp_rates [i - elems->supp_rates_len]; own_rate = 5 * (rate & 0x7f); is_basic = !!(rate & 0x80); if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) continue; for (j = 0; j < num_rates; j++) { int brate; if ((rate_flags & sband->bitrates[j].flags) != rate_flags) continue; brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1 << shift); if (brate == own_rate) { supp_rates |= BIT(j); if (basic_rates && is_basic) *basic_rates |= BIT(j); } } } return supp_rates; } void ieee80211_stop_device(struct ieee80211_local *local) { ieee80211_led_radio(local, false); ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); cancel_work_sync(&local->reconfig_filter); flush_workqueue(local->workqueue); drv_stop(local); } static void ieee80211_flush_completed_scan(struct ieee80211_local *local, bool aborted) { /* It's possible that we don't handle the scan completion in * time during suspend, so if it's still marked as completed * here, queue the work and flush it to clean things up. * Instead of calling the worker function directly here, we * really queue it to avoid potential races with other flows * scheduling the same work. */ if (test_bit(SCAN_COMPLETED, &local->scanning)) { /* If coming from reconfiguration failure, abort the scan so * we don't attempt to continue a partial HW scan - which is * possible otherwise if (e.g.) the 2.4 GHz portion was the * completed scan, and a 5 GHz portion is still pending. */ if (aborted) set_bit(SCAN_ABORTED, &local->scanning); ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); flush_delayed_work(&local->scan_work); } } static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; /* * We get here if during resume the device can't be restarted properly. * We might also get here if this happens during HW reset, which is a * slightly different situation and we need to drop all connections in * the latter case. * * Ask cfg80211 to turn off all interfaces, this will result in more * warnings but at least we'll then get into a clean stopped state. */ local->resuming = false; local->suspended = false; local->in_reconfig = false; local->reconfig_failure = true; ieee80211_flush_completed_scan(local, true); /* scheduled scan clearly can't be running any more, but tell * cfg80211 and clear local state */ ieee80211_sched_scan_end(local); list_for_each_entry(sdata, &local->interfaces, list) sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; /* Mark channel contexts as not being in the driver any more to avoid * removing them from the driver during the shutdown process... */ mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) ctx->driver_present = false; mutex_unlock(&local->chanctx_mtx); } static void ieee80211_assign_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *ctx; if (!local->use_chanctx) return; mutex_lock(&local->chanctx_mtx); conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (conf) { ctx = container_of(conf, struct ieee80211_chanctx, conf); drv_assign_vif_chanctx(local, sdata, link->conf, ctx); } mutex_unlock(&local->chanctx_mtx); } static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; /* add STAs back */ mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { enum ieee80211_sta_state state; if (!sta->uploaded || sta->sdata != sdata) continue; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) WARN_ON(drv_sta_state(local, sta->sdata, sta, state, state + 1)); } mutex_unlock(&local->sta_mtx); } static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) { struct cfg80211_nan_func *func, **funcs; int res, id, i = 0; res = drv_start_nan(sdata->local, sdata, &sdata->u.nan.conf); if (WARN_ON(res)) return res; funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, sizeof(*funcs), GFP_KERNEL); if (!funcs) return -ENOMEM; /* Add all the functions: * This is a little bit ugly. We need to call a potentially sleeping * callback for each NAN function, so we can't hold the spinlock. */ spin_lock_bh(&sdata->u.nan.func_lock); idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) funcs[i++] = func; spin_unlock_bh(&sdata->u.nan.func_lock); for (i = 0; funcs[i]; i++) { res = drv_add_nan_func(sdata->local, sdata, funcs[i]); if (WARN_ON(res)) ieee80211_nan_func_terminated(&sdata->vif, funcs[i]->instance_id, NL80211_NAN_FUNC_TERM_REASON_ERROR, GFP_KERNEL); } kfree(funcs); return 0; } static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 changed) { int link_id; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; if (!(sdata->vif.active_links & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; if (rcu_access_pointer(link->u.ap.beacon)) drv_start_ap(local, sdata, link->conf); if (!link->conf->enable_beacon) continue; changed |= BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED; ieee80211_link_info_change_notify(sdata, link, changed); } } int ieee80211_reconfig(struct ieee80211_local *local) { struct ieee80211_hw *hw = &local->hw; struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; struct sta_info *sta; int res, i; bool reconfig_due_to_wowlan = false; struct ieee80211_sub_if_data *sched_scan_sdata; struct cfg80211_sched_scan_request *sched_scan_req; bool sched_scan_stopped = false; bool suspended = local->suspended; bool in_reconfig = false; /* nothing to do if HW shouldn't run */ if (!local->open_count) goto wake_up; #ifdef CONFIG_PM if (suspended) local->resuming = true; if (local->wowlan) { /* * In the wowlan case, both mac80211 and the device * are functional when the resume op is called, so * clear local->suspended so the device could operate * normally (e.g. pass rx frames). */ local->suspended = false; res = drv_resume(local); local->wowlan = false; if (res < 0) { local->resuming = false; return res; } if (res == 0) goto wake_up; WARN_ON(res > 1); /* * res is 1, which means the driver requested * to go through a regular reset on wakeup. * restore local->suspended in this case. */ reconfig_due_to_wowlan = true; local->suspended = true; } #endif /* * In case of hw_restart during suspend (without wowlan), * cancel restart work, as we are reconfiguring the device * anyway. * Note that restart_work is scheduled on a frozen workqueue, * so we can't deadlock in this case. */ if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) cancel_work_sync(&local->restart_work); local->started = false; /* * Upon resume hardware can sometimes be goofy due to * various platform / driver / bus issues, so restarting * the device may at times not work immediately. Propagate * the error. */ res = drv_start(local); if (res) { if (suspended) WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); else WARN(1, "Hardware became unavailable during restart.\n"); ieee80211_handle_reconfig_failure(local); return res; } /* setup fragmentation threshold */ drv_set_frag_threshold(local, hw->wiphy->frag_threshold); /* setup RTS threshold */ drv_set_rts_threshold(local, hw->wiphy->rts_threshold); /* reset coverage class */ drv_set_coverage_class(local, hw->wiphy->coverage_class); ieee80211_led_radio(local, true); ieee80211_mod_tpt_led_trig(local, IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); /* add interfaces */ sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata) { /* in HW restart it exists already */ WARN_ON(local->resuming); res = drv_add_interface(local, sdata); if (WARN_ON(res)) { RCU_INIT_POINTER(local->monitor_sdata, NULL); synchronize_net(); kfree(sdata); } } list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_MONITOR && ieee80211_sdata_running(sdata)) { res = drv_add_interface(local, sdata); if (WARN_ON(res)) break; } } /* If adding any of the interfaces failed above, roll back and * report failure. */ if (res) { list_for_each_entry_continue_reverse(sdata, &local->interfaces, list) if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_MONITOR && ieee80211_sdata_running(sdata)) drv_remove_interface(local, sdata); ieee80211_handle_reconfig_failure(local); return res; } /* add channel contexts */ if (local->use_chanctx) { mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) WARN_ON(drv_add_chanctx(local, ctx)); mutex_unlock(&local->chanctx_mtx); sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata && ieee80211_sdata_running(sdata)) ieee80211_assign_chanctx(local, sdata, &sdata->deflink); } /* reconfigure hardware */ ieee80211_hw_config(local, ~0); ieee80211_configure_filter(local); /* Finally also reconfigure all the BSS information */ list_for_each_entry(sdata, &local->interfaces, list) { /* common change flags for all interface types - link only */ u64 changed = BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_BSSID | BSS_CHANGED_CQM | BSS_CHANGED_QOS | BSS_CHANGED_TXPOWER | BSS_CHANGED_MCAST_RATE; struct ieee80211_link_data *link = NULL; unsigned int link_id; u32 active_links = 0; if (!ieee80211_sdata_running(sdata)) continue; sdata_lock(sdata); if (ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { [0] = &sdata->vif.bss_conf, }; if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* start with a single active link */ active_links = sdata->vif.active_links; link_id = ffs(active_links) - 1; sdata->vif.active_links = BIT(link_id); } drv_change_vif_links(local, sdata, 0, sdata->vif.active_links, old); } for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { if (ieee80211_vif_is_mld(&sdata->vif) && !(sdata->vif.active_links & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; ieee80211_assign_chanctx(local, sdata, link); } switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: break; case NL80211_IFTYPE_ADHOC: if (sdata->vif.cfg.ibss_joined) WARN_ON(drv_join_ibss(local, sdata)); fallthrough; default: ieee80211_reconfig_stations(sdata); fallthrough; case NL80211_IFTYPE_AP: /* AP stations are handled later */ for (i = 0; i < IEEE80211_NUM_ACS; i++) drv_conf_tx(local, &sdata->deflink, i, &sdata->deflink.tx_conf[i]); break; } if (sdata->vif.bss_conf.mu_mimo_owner) changed |= BSS_CHANGED_MU_GROUPS; if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= BSS_CHANGED_IDLE; switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (!ieee80211_vif_is_mld(&sdata->vif)) { changed |= BSS_CHANGED_ASSOC | BSS_CHANGED_ARP_FILTER | BSS_CHANGED_PS; /* Re-send beacon info report to the driver */ if (sdata->deflink.u.mgd.have_beacon) changed |= BSS_CHANGED_BEACON_INFO; if (sdata->vif.bss_conf.max_idle_period || sdata->vif.bss_conf.protected_keep_alive) changed |= BSS_CHANGED_KEEP_ALIVE; if (sdata->vif.bss_conf.eht_puncturing) changed |= BSS_CHANGED_EHT_PUNCTURING; ieee80211_bss_info_change_notify(sdata, changed); } else if (!WARN_ON(!link)) { ieee80211_link_info_change_notify(sdata, link, changed); changed = BSS_CHANGED_ASSOC | BSS_CHANGED_IDLE | BSS_CHANGED_PS | BSS_CHANGED_ARP_FILTER; ieee80211_vif_cfg_change_notify(sdata, changed); } break; case NL80211_IFTYPE_OCB: changed |= BSS_CHANGED_OCB; ieee80211_bss_info_change_notify(sdata, changed); break; case NL80211_IFTYPE_ADHOC: changed |= BSS_CHANGED_IBSS; fallthrough; case NL80211_IFTYPE_AP: changed |= BSS_CHANGED_P2P_PS; if (ieee80211_vif_is_mld(&sdata->vif)) ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_SSID); else changed |= BSS_CHANGED_SSID; if (sdata->vif.bss_conf.ftm_responder == 1 && wiphy_ext_feature_isset(sdata->local->hw.wiphy, NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) changed |= BSS_CHANGED_FTM_RESPONDER; if (sdata->vif.type == NL80211_IFTYPE_AP) { changed |= BSS_CHANGED_AP_PROBE_RESP; if (ieee80211_vif_is_mld(&sdata->vif)) { ieee80211_reconfig_ap_links(local, sdata, changed); break; } if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) drv_start_ap(local, sdata, sdata->deflink.conf); } fallthrough; case NL80211_IFTYPE_MESH_POINT: if (sdata->vif.bss_conf.enable_beacon) { changed |= BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED; ieee80211_bss_info_change_notify(sdata, changed); } break; case NL80211_IFTYPE_NAN: res = ieee80211_reconfig_nan(sdata); if (res < 0) { sdata_unlock(sdata); ieee80211_handle_reconfig_failure(local); return res; } break; case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: /* nothing to do */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_WDS: WARN_ON(1); break; } sdata_unlock(sdata); if (active_links) ieee80211_set_active_links(&sdata->vif, active_links); } ieee80211_recalc_ps(local); /* * The sta might be in psm against the ap (e.g. because * this was the state before a hw restart), so we * explicitly send a null packet in order to make sure * it'll sync against the ap (and get out of psm). */ if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; if (!sdata->u.mgd.associated) continue; ieee80211_send_nullfunc(local, sdata, false); } } /* APs are now beaconing, add back stations */ list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; sdata_lock(sdata); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_AP: ieee80211_reconfig_stations(sdata); break; default: break; } sdata_unlock(sdata); } /* add back keys */ list_for_each_entry(sdata, &local->interfaces, list) ieee80211_reenable_keys(sdata); /* Reconfigure sched scan if it was interrupted by FW restart */ mutex_lock(&local->mtx); sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, lockdep_is_held(&local->mtx)); sched_scan_req = rcu_dereference_protected(local->sched_scan_req, lockdep_is_held(&local->mtx)); if (sched_scan_sdata && sched_scan_req) /* * Sched scan stopped, but we don't want to report it. Instead, * we're trying to reschedule. However, if more than one scan * plan was set, we cannot reschedule since we don't know which * scan plan was currently running (and some scan plans may have * already finished). */ if (sched_scan_req->n_scan_plans > 1 || __ieee80211_request_sched_scan_start(sched_scan_sdata, sched_scan_req)) { RCU_INIT_POINTER(local->sched_scan_sdata, NULL); RCU_INIT_POINTER(local->sched_scan_req, NULL); sched_scan_stopped = true; } mutex_unlock(&local->mtx); if (sched_scan_stopped) cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); wake_up: if (local->monitors == local->open_count && local->monitors > 0) ieee80211_add_virtual_monitor(local); /* * Clear the WLAN_STA_BLOCK_BA flag so new aggregation * sessions can be established after a resume. * * Also tear down aggregation sessions since reconfiguring * them in a hardware restart scenario is not easily done * right now, and the hardware will have lost information * about the sessions, but we and the AP still think they * are active. This is really a workaround though. */ if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { if (!local->resuming) ieee80211_sta_tear_down_BA_sessions( sta, AGG_STOP_LOCAL_REQUEST); clear_sta_flag(sta, WLAN_STA_BLOCK_BA); } mutex_unlock(&local->sta_mtx); } /* * If this is for hw restart things are still running. * We may want to change that later, however. */ if (local->open_count && (!suspended || reconfig_due_to_wowlan)) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); if (local->in_reconfig) { in_reconfig = local->in_reconfig; local->in_reconfig = false; barrier(); /* Restart deferred ROCs */ mutex_lock(&local->mtx); ieee80211_start_next_roc(local); mutex_unlock(&local->mtx); /* Requeue all works */ list_for_each_entry(sdata, &local->interfaces, list) wiphy_work_queue(local->hw.wiphy, &sdata->work); } ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_SUSPEND, false); if (in_reconfig) { list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_restart(sdata); } } if (!suspended) return 0; #ifdef CONFIG_PM /* first set suspended false, then resuming */ local->suspended = false; mb(); local->resuming = false; ieee80211_flush_completed_scan(local, false); if (local->open_count && !reconfig_due_to_wowlan) drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_sta_restart(sdata); } mod_timer(&local->sta_cleanup, jiffies + 1); #else WARN_ON(1); #endif return 0; } static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) { struct ieee80211_sub_if_data *sdata; struct ieee80211_local *local; struct ieee80211_key *key; if (WARN_ON(!vif)) return; sdata = vif_to_sdata(vif); local = sdata->local; if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && !local->resuming)) return; if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && !local->in_reconfig)) return; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return; sdata->flags |= flag; mutex_lock(&local->key_mtx); list_for_each_entry(key, &sdata->key_list, list) key->flags |= KEY_FLAG_TAINTED; mutex_unlock(&local->key_mtx); } void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) { ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); } EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); void ieee80211_resume_disconnect(struct ieee80211_vif *vif) { ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); } EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; mutex_lock(&local->chanctx_mtx); chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); /* * This function can be called from a work, thus it may be possible * that the chanctx_conf is removed (due to a disconnection, for * example). * So nothing should be done in such case. */ if (!chanctx_conf) goto unlock; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_smps_chanctx(local, chanctx); unlock: mutex_unlock(&local->chanctx_mtx); } void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, int link_id) { struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_chanctx *chanctx; int i; mutex_lock(&local->chanctx_mtx); for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { struct ieee80211_bss_conf *bss_conf; if (link_id >= 0 && link_id != i) continue; rcu_read_lock(); bss_conf = rcu_dereference(sdata->vif.link_conf[i]); if (!bss_conf) { rcu_read_unlock(); continue; } chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); /* * Since we hold the chanctx_mtx (checked above) * we can take the chanctx_conf pointer out of the * RCU critical section, it cannot go away without * the mutex. Just the way we reached it could - in * theory - go away, but we don't really care and * it really shouldn't happen anyway. */ rcu_read_unlock(); if (!chanctx_conf) goto unlock; chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); } unlock: mutex_unlock(&local->chanctx_mtx); } size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) { size_t pos = offset; while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) pos += 2 + ies[pos + 1]; return pos; } u8 *ieee80211_ie_build_s1g_cap(u8 *pos, struct ieee80211_sta_s1g_cap *s1g_cap) { *pos++ = WLAN_EID_S1G_CAPABILITIES; *pos++ = sizeof(struct ieee80211_s1g_cap); memset(pos, 0, sizeof(struct ieee80211_s1g_cap)); memcpy(pos, &s1g_cap->cap, sizeof(s1g_cap->cap)); pos += sizeof(s1g_cap->cap); memcpy(pos, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); pos += sizeof(s1g_cap->nss_mcs); return pos; } u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, u16 cap) { __le16 tmp; *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_cap); memset(pos, 0, sizeof(struct ieee80211_ht_cap)); /* capability flags */ tmp = cpu_to_le16(cap); memcpy(pos, &tmp, sizeof(u16)); pos += sizeof(u16); /* AMPDU parameters */ *pos++ = ht_cap->ampdu_factor | (ht_cap->ampdu_density << IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); /* MCS set */ memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); pos += sizeof(ht_cap->mcs); /* extended capabilities */ pos += sizeof(__le16); /* BF capabilities */ pos += sizeof(__le32); /* antenna selection */ pos += sizeof(u8); return pos; } u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, u32 cap) { __le32 tmp; *pos++ = WLAN_EID_VHT_CAPABILITY; *pos++ = sizeof(struct ieee80211_vht_cap); memset(pos, 0, sizeof(struct ieee80211_vht_cap)); /* capability flags */ tmp = cpu_to_le32(cap); memcpy(pos, &tmp, sizeof(u32)); pos += sizeof(u32); /* VHT MCS set */ memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); pos += sizeof(vht_cap->vht_mcs); return pos; } u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) { const struct ieee80211_sta_he_cap *he_cap; struct ieee80211_supported_band *sband; u8 n; sband = ieee80211_get_sband(sdata); if (!sband) return 0; he_cap = ieee80211_get_he_iftype_cap(sband, iftype); if (!he_cap) return 0; n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); return 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); } u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, const struct ieee80211_sta_he_cap *he_cap, u8 *end) { struct ieee80211_he_cap_elem elem; u8 n; u8 ie_len; u8 *orig_pos = pos; /* Make sure we have place for the IE */ /* * TODO: the 1 added is because this temporarily is under the EXTENSION * IE. Get rid of it when it moves. */ if (!he_cap) return orig_pos; /* modify on stack first to calculate 'n' and 'ie_len' correctly */ elem = he_cap->he_cap_elem; if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) elem.phy_cap_info[0] &= ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) elem.phy_cap_info[0] &= ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) elem.phy_cap_info[0] &= ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; n = ieee80211_he_mcs_nss_size(&elem); ie_len = 2 + 1 + sizeof(he_cap->he_cap_elem) + n + ieee80211_he_ppe_size(he_cap->ppe_thres[0], he_cap->he_cap_elem.phy_cap_info); if ((end - pos) < ie_len) return orig_pos; *pos++ = WLAN_EID_EXTENSION; pos++; /* We'll set the size later below */ *pos++ = WLAN_EID_EXT_HE_CAPABILITY; /* Fixed data */ memcpy(pos, &elem, sizeof(elem)); pos += sizeof(elem); memcpy(pos, &he_cap->he_mcs_nss_supp, n); pos += n; /* Check if PPE Threshold should be present */ if ((he_cap->he_cap_elem.phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) goto end; /* * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) */ n = hweight8(he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); /* Copy PPE Thresholds */ memcpy(pos, &he_cap->ppe_thres, n); pos += n; end: orig_pos[1] = (pos - orig_pos) - 2; return pos; } void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, enum ieee80211_smps_mode smps_mode, struct sk_buff *skb) { struct ieee80211_supported_band *sband; const struct ieee80211_sband_iftype_data *iftd; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); u8 *pos; u16 cap; if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, BIT(NL80211_BAND_6GHZ), IEEE80211_CHAN_NO_HE)) return; sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (!iftd) return; /* Check for device HE 6 GHz capability before adding element */ if (!iftd->he_6ghz_capa.capa) return; cap = le16_to_cpu(iftd->he_6ghz_capa.capa); cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; switch (smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_STATIC: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; case IEEE80211_SMPS_DYNAMIC: cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, IEEE80211_HE_6GHZ_CAP_SM_PS); break; } pos = skb_put(skb, 2 + 1 + sizeof(cap)); ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), pos + 2 + 1 + sizeof(cap)); } u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, const struct cfg80211_chan_def *chandef, u16 prot_mode, bool rifs_mode) { struct ieee80211_ht_operation *ht_oper; /* Build HT Information */ *pos++ = WLAN_EID_HT_OPERATION; *pos++ = sizeof(struct ieee80211_ht_operation); ht_oper = (struct ieee80211_ht_operation *)pos; ht_oper->primary_chan = ieee80211_frequency_to_channel( chandef->chan->center_freq); switch (chandef->width) { case NL80211_CHAN_WIDTH_160: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 > chandef->chan->center_freq) ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; break; case NL80211_CHAN_WIDTH_320: /* HT information element should not be included on 6GHz */ WARN_ON(1); return pos; default: ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; break; } if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && chandef->width != NL80211_CHAN_WIDTH_20_NOHT && chandef->width != NL80211_CHAN_WIDTH_20) ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; if (rifs_mode) ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; ht_oper->operation_mode = cpu_to_le16(prot_mode); ht_oper->stbc_param = 0x0000; /* It seems that Basic MCS set and Supported MCS set are identical for the first 10 bytes */ memset(&ht_oper->basic_set, 0, 16); memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); return pos + sizeof(struct ieee80211_ht_operation); } void ieee80211_ie_build_wide_bw_cs(u8 *pos, const struct cfg80211_chan_def *chandef) { *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ /* New channel width */ switch (chandef->width) { case NL80211_CHAN_WIDTH_80: *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_160: *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80P80: *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; break; case NL80211_CHAN_WIDTH_320: /* The behavior is not defined for 320 MHz channels */ WARN_ON(1); fallthrough; default: *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; } /* new center frequency segment 0 */ *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); /* new center frequency segment 1 */ if (chandef->center_freq2) *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); else *pos++ = 0; } u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, const struct cfg80211_chan_def *chandef) { struct ieee80211_vht_operation *vht_oper; *pos++ = WLAN_EID_VHT_OPERATION; *pos++ = sizeof(struct ieee80211_vht_operation); vht_oper = (struct ieee80211_vht_operation *)pos; vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( chandef->center_freq1); if (chandef->center_freq2) vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel(chandef->center_freq2); else vht_oper->center_freq_seg1_idx = 0x00; switch (chandef->width) { case NL80211_CHAN_WIDTH_160: /* * Convert 160 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; if (chandef->chan->center_freq < chandef->center_freq1) vht_oper->center_freq_seg0_idx -= 8; else vht_oper->center_freq_seg0_idx += 8; break; case NL80211_CHAN_WIDTH_80P80: /* * Convert 80+80 MHz channel width to new style as interop * workaround. */ vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_80: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_320: /* VHT information element should not be included on 6GHz */ WARN_ON(1); return pos; default: vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; break; } /* don't require special VHT peer rates */ vht_oper->basic_mcs_set = cpu_to_le16(0xffff); return pos + sizeof(struct ieee80211_vht_operation); } u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) { struct ieee80211_he_operation *he_oper; struct ieee80211_he_6ghz_oper *he_6ghz_op; u32 he_oper_params; u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); if (chandef->chan->band == NL80211_BAND_6GHZ) ie_len += sizeof(struct ieee80211_he_6ghz_oper); *pos++ = WLAN_EID_EXTENSION; *pos++ = ie_len; *pos++ = WLAN_EID_EXT_HE_OPERATION; he_oper_params = 0; he_oper_params |= u32_encode_bits(1023, /* disabled */ IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_ER_SU_DISABLE); he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (chandef->chan->band == NL80211_BAND_6GHZ) he_oper_params |= u32_encode_bits(1, IEEE80211_HE_OPERATION_6GHZ_OP_INFO); he_oper = (struct ieee80211_he_operation *)pos; he_oper->he_oper_params = cpu_to_le32(he_oper_params); /* don't require special HE peer rates */ he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); pos += sizeof(struct ieee80211_he_operation); if (chandef->chan->band != NL80211_BAND_6GHZ) goto out; /* TODO add VHT operational */ he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; he_6ghz_op->minrate = 6; /* 6 Mbps */ he_6ghz_op->primary = ieee80211_frequency_to_channel(chandef->chan->center_freq); he_6ghz_op->ccfs0 = ieee80211_frequency_to_channel(chandef->center_freq1); if (chandef->center_freq2) he_6ghz_op->ccfs1 = ieee80211_frequency_to_channel(chandef->center_freq2); else he_6ghz_op->ccfs1 = 0; switch (chandef->width) { case NL80211_CHAN_WIDTH_320: /* * TODO: mesh operation is not defined over 6GHz 320 MHz * channels. */ WARN_ON(1); break; case NL80211_CHAN_WIDTH_160: /* Convert 160 MHz channel width to new style as interop * workaround. */ he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) he_6ghz_op->ccfs0 -= 8; else he_6ghz_op->ccfs0 += 8; fallthrough; case NL80211_CHAN_WIDTH_80P80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_40: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; break; default: he_6ghz_op->control = IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; break; } pos += sizeof(struct ieee80211_he_6ghz_oper); out: return pos; } u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, const struct ieee80211_sta_eht_cap *eht_cap) { const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = &eht_cap->eht_mcs_nss_supp.only_20mhz; struct ieee80211_eht_operation *eht_oper; struct ieee80211_eht_operation_info *eht_oper_info; u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); u8 eht_oper_info_len = offsetof(struct ieee80211_eht_operation_info, optional); u8 chan_width = 0; *pos++ = WLAN_EID_EXTENSION; *pos++ = 1 + eht_oper_len + eht_oper_info_len; *pos++ = WLAN_EID_EXT_EHT_OPERATION; eht_oper = (struct ieee80211_eht_operation *)pos; memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; pos += eht_oper_len; eht_oper_info = (struct ieee80211_eht_operation_info *)eht_oper->optional; eht_oper_info->ccfs0 = ieee80211_frequency_to_channel(chandef->center_freq1); if (chandef->center_freq2) eht_oper_info->ccfs1 = ieee80211_frequency_to_channel(chandef->center_freq2); else eht_oper_info->ccfs1 = 0; switch (chandef->width) { case NL80211_CHAN_WIDTH_320: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; eht_oper_info->ccfs1 = eht_oper_info->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) eht_oper_info->ccfs0 -= 16; else eht_oper_info->ccfs0 += 16; break; case NL80211_CHAN_WIDTH_160: eht_oper_info->ccfs1 = eht_oper_info->ccfs0; if (chandef->chan->center_freq < chandef->center_freq1) eht_oper_info->ccfs0 -= 8; else eht_oper_info->ccfs0 += 8; fallthrough; case NL80211_CHAN_WIDTH_80P80: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; break; case NL80211_CHAN_WIDTH_80: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; break; case NL80211_CHAN_WIDTH_40: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; break; default: chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; break; } eht_oper_info->control = chan_width; pos += eht_oper_info_len; /* TODO: eht_oper_info->optional */ return pos; } bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, struct cfg80211_chan_def *chandef) { enum nl80211_channel_type channel_type; if (!ht_oper) return false; switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_NONE: channel_type = NL80211_CHAN_HT20; break; case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: channel_type = NL80211_CHAN_HT40PLUS; break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: channel_type = NL80211_CHAN_HT40MINUS; break; default: return false; } cfg80211_chandef_create(chandef, chandef->chan, channel_type); return true; } bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, const struct ieee80211_vht_operation *oper, const struct ieee80211_ht_operation *htop, struct cfg80211_chan_def *chandef) { struct cfg80211_chan_def new = *chandef; int cf0, cf1; int ccfs0, ccfs1, ccfs2; int ccf0, ccf1; u32 vht_cap; bool support_80_80 = false; bool support_160 = false; u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); u8 supp_chwidth = u32_get_bits(vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); if (!oper || !htop) return false; vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); support_80_80 = ((vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); ccfs0 = oper->center_freq_seg0_idx; ccfs1 = oper->center_freq_seg1_idx; ccfs2 = (le16_to_cpu(htop->operation_mode) & IEEE80211_HT_OP_MODE_CCFS2_MASK) >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; ccf0 = ccfs0; /* if not supported, parse as though we didn't understand it */ if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) ext_nss_bw_supp = 0; /* * Cf. IEEE 802.11 Table 9-250 * * We really just consider that because it's inefficient to connect * at a higher bandwidth than we'll actually be able to use. */ switch ((supp_chwidth << 4) | ext_nss_bw_supp) { default: case 0x00: ccf1 = 0; support_160 = false; support_80_80 = false; break; case 0x01: support_80_80 = false; fallthrough; case 0x02: case 0x03: ccf1 = ccfs2; break; case 0x10: ccf1 = ccfs1; break; case 0x11: case 0x12: if (!ccfs1) ccf1 = ccfs2; else ccf1 = ccfs1; break; case 0x13: case 0x20: case 0x23: ccf1 = ccfs1; break; } cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); switch (oper->chan_width) { case IEEE80211_VHT_CHANWIDTH_USE_HT: /* just use HT information directly */ break; case IEEE80211_VHT_CHANWIDTH_80MHZ: new.width = NL80211_CHAN_WIDTH_80; new.center_freq1 = cf0; /* If needed, adjust based on the newer interop workaround. */ if (ccf1) { unsigned int diff; diff = abs(ccf1 - ccf0); if ((diff == 8) && support_160) { new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf1; } else if ((diff > 8) && support_80_80) { new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq2 = cf1; } } break; case IEEE80211_VHT_CHANWIDTH_160MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_160; new.center_freq1 = cf0; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: /* deprecated encoding */ new.width = NL80211_CHAN_WIDTH_80P80; new.center_freq1 = cf0; new.center_freq2 = cf1; break; default: return false; } if (!cfg80211_chandef_valid(&new)) return false; *chandef = new; return true; } void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, bool support_160, bool support_320, struct cfg80211_chan_def *chandef) { struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs0, chandef->chan->band); switch (u8_get_bits(info->control, IEEE80211_EHT_OPER_CHAN_WIDTH)) { case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: chandef->width = NL80211_CHAN_WIDTH_20; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: chandef->width = NL80211_CHAN_WIDTH_40; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: chandef->width = NL80211_CHAN_WIDTH_80; break; case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: if (support_160) { chandef->width = NL80211_CHAN_WIDTH_160; chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs1, chandef->chan->band); } else { chandef->width = NL80211_CHAN_WIDTH_80; } break; case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: if (support_320) { chandef->width = NL80211_CHAN_WIDTH_320; chandef->center_freq1 = ieee80211_channel_to_frequency(info->ccfs1, chandef->chan->band); } else if (support_160) { chandef->width = NL80211_CHAN_WIDTH_160; } else { chandef->width = NL80211_CHAN_WIDTH_80; if (chandef->center_freq1 > chandef->chan->center_freq) chandef->center_freq1 -= 40; else chandef->center_freq1 += 40; } break; } } bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, const struct ieee80211_he_operation *he_oper, const struct ieee80211_eht_operation *eht_oper, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct cfg80211_chan_def he_chandef = *chandef; const struct ieee80211_he_6ghz_oper *he_6ghz_oper; struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; bool support_80_80, support_160, support_320; u8 he_phy_cap, eht_phy_cap; u32 freq; if (chandef->chan->band != NL80211_BAND_6GHZ) return true; sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; he_cap = ieee80211_get_he_iftype_cap(sband, iftype); if (!he_cap) { sdata_info(sdata, "Missing iftype sband data/HE cap"); return false; } he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; support_160 = he_phy_cap & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; support_80_80 = he_phy_cap & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; if (!he_oper) { sdata_info(sdata, "HE is not advertised on (on %d MHz), expect issues\n", chandef->chan->center_freq); return false; } eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); if (!eht_cap) eht_oper = NULL; he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); if (!he_6ghz_oper) { sdata_info(sdata, "HE 6GHz operation missing (on %d MHz), expect issues\n", chandef->chan->center_freq); return false; } /* * The EHT operation IE does not contain the primary channel so the * primary channel frequency should be taken from the 6 GHz operation * information. */ freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, NL80211_BAND_6GHZ); he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); switch (u8_get_bits(he_6ghz_oper->control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { case IEEE80211_6GHZ_CTRL_REG_LPI_AP: bss_conf->power_type = IEEE80211_REG_LPI_AP; break; case IEEE80211_6GHZ_CTRL_REG_SP_AP: bss_conf->power_type = IEEE80211_REG_SP_AP; break; default: bss_conf->power_type = IEEE80211_REG_UNSET_AP; break; } if (!eht_oper || !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { switch (u8_get_bits(he_6ghz_oper->control, IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: he_chandef.width = NL80211_CHAN_WIDTH_20; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: he_chandef.width = NL80211_CHAN_WIDTH_40; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; break; case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: he_chandef.width = NL80211_CHAN_WIDTH_80; if (!he_6ghz_oper->ccfs1) break; if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { if (support_160) he_chandef.width = NL80211_CHAN_WIDTH_160; } else { if (support_80_80) he_chandef.width = NL80211_CHAN_WIDTH_80P80; } break; } if (he_chandef.width == NL80211_CHAN_WIDTH_160) { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } else { he_chandef.center_freq1 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, NL80211_BAND_6GHZ); if (support_80_80 || support_160) he_chandef.center_freq2 = ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, NL80211_BAND_6GHZ); } } else { eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; support_320 = eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; ieee80211_chandef_eht_oper(eht_oper, support_160, support_320, &he_chandef); } if (!cfg80211_chandef_valid(&he_chandef)) { sdata_info(sdata, "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", he_chandef.chan ? he_chandef.chan->center_freq : 0, he_chandef.width, he_chandef.center_freq1, he_chandef.center_freq2); return false; } *chandef = he_chandef; return true; } bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, struct cfg80211_chan_def *chandef) { u32 oper_freq; if (!oper) return false; switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { case IEEE80211_S1G_CHANWIDTH_1MHZ: chandef->width = NL80211_CHAN_WIDTH_1; break; case IEEE80211_S1G_CHANWIDTH_2MHZ: chandef->width = NL80211_CHAN_WIDTH_2; break; case IEEE80211_S1G_CHANWIDTH_4MHZ: chandef->width = NL80211_CHAN_WIDTH_4; break; case IEEE80211_S1G_CHANWIDTH_8MHZ: chandef->width = NL80211_CHAN_WIDTH_8; break; case IEEE80211_S1G_CHANWIDTH_16MHZ: chandef->width = NL80211_CHAN_WIDTH_16; break; default: return false; } oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, NL80211_BAND_S1GHZ); chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); chandef->freq1_offset = oper_freq % 1000; return true; } int ieee80211_parse_bitrates(enum nl80211_chan_width width, const struct ieee80211_supported_band *sband, const u8 *srates, int srates_len, u32 *rates) { u32 rate_flags = ieee80211_chanwidth_rate_flags(width); int shift = ieee80211_chanwidth_get_shift(width); struct ieee80211_rate *br; int brate, rate, i, j, count = 0; *rates = 0; for (i = 0; i < srates_len; i++) { rate = srates[i] & 0x7f; for (j = 0; j < sband->n_bitrates; j++) { br = &sband->bitrates[j]; if ((rate_flags & br->flags) != rate_flags) continue; brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); if (brate == rate) { *rates |= BIT(j); count++; break; } } } return count; } int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; int rate, shift; u8 i, rates, *pos; u32 basic_rates = sdata->vif.bss_conf.basic_rates; u32 rate_flags; shift = ieee80211_vif_get_shift(&sdata->vif); rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); sband = local->hw.wiphy->bands[band]; rates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; rates++; } if (rates > 8) rates = 8; if (skb_tailroom(skb) < rates + 2) return -ENOMEM; pos = skb_put(skb, rates + 2); *pos++ = WLAN_EID_SUPP_RATES; *pos++ = rates; for (i = 0; i < rates; i++) { u8 basic = 0; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (need_basic && basic_rates & BIT(i)) basic = 0x80; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = basic | (u8) rate; } return 0; } int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, bool need_basic, enum nl80211_band band) { struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; int rate, shift; u8 i, exrates, *pos; u32 basic_rates = sdata->vif.bss_conf.basic_rates; u32 rate_flags; rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); shift = ieee80211_vif_get_shift(&sdata->vif); sband = local->hw.wiphy->bands[band]; exrates = 0; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; exrates++; } if (exrates > 8) exrates -= 8; else exrates = 0; if (skb_tailroom(skb) < exrates + 2) return -ENOMEM; if (exrates) { pos = skb_put(skb, exrates + 2); *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = exrates; for (i = 8; i < sband->n_bitrates; i++) { u8 basic = 0; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (need_basic && basic_rates & BIT(i)) basic = 0x80; rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5 * (1 << shift)); *pos++ = basic | (u8) rate; } } return 0; } int ieee80211_ave_rssi(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) return 0; return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); } EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) { if (!mcs) return 1; /* TODO: consider rx_highest */ if (mcs->rx_mask[3]) return 4; if (mcs->rx_mask[2]) return 3; if (mcs->rx_mask[1]) return 2; return 1; } /** * ieee80211_calculate_rx_timestamp - calculate timestamp in frame * @local: mac80211 hw info struct * @status: RX status * @mpdu_len: total MPDU length (including FCS) * @mpdu_offset: offset into MPDU to calculate timestamp at * * This function calculates the RX timestamp at the given MPDU offset, taking * into account what the RX timestamp was. An offset of 0 will just normalize * the timestamp to TSF at beginning of MPDU reception. */ u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, struct ieee80211_rx_status *status, unsigned int mpdu_len, unsigned int mpdu_offset) { u64 ts = status->mactime; struct rate_info ri; u16 rate; u8 n_ltf; if (WARN_ON(!ieee80211_have_rx_timestamp(status))) return 0; memset(&ri, 0, sizeof(ri)); ri.bw = status->bw; /* Fill cfg80211 rate info */ switch (status->encoding) { case RX_ENC_EHT: ri.flags |= RATE_INFO_FLAGS_EHT_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; ri.eht_ru_alloc = status->eht.ru; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* TODO/FIXME: is this right? handle other PPDUs */ if (status->flag & RX_FLAG_MACTIME_PLCP_START) { mpdu_offset += 2; ts += 36; } break; case RX_ENC_HE: ri.flags |= RATE_INFO_FLAGS_HE_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; ri.he_ru_alloc = status->he_ru; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11ax_D6.0, section 27.3.4 for * VHT PPDU format. */ if (status->flag & RX_FLAG_MACTIME_PLCP_START) { mpdu_offset += 2; ts += 36; /* * TODO: * For HE MU PPDU, add the HE-SIG-B. * For HE ER PPDU, add 8us for the HE-SIG-A. * For HE TB PPDU, add 4us for the HE-STF. * Add the HE-LTF durations - variable. */ } break; case RX_ENC_HT: ri.mcs = status->rate_idx; ri.flags |= RATE_INFO_FLAGS_MCS; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11REVmd_D3.0, section 19.3.2 for * HT PPDU format. */ if (status->flag & RX_FLAG_MACTIME_PLCP_START) { mpdu_offset += 2; if (status->enc_flags & RX_ENC_FLAG_HT_GF) ts += 24; else ts += 32; /* * Add Data HT-LTFs per streams * TODO: add Extension HT-LTFs, 4us per LTF */ n_ltf = ((ri.mcs >> 3) & 3) + 1; n_ltf = n_ltf == 3 ? 4 : n_ltf; ts += n_ltf * 4; } break; case RX_ENC_VHT: ri.flags |= RATE_INFO_FLAGS_VHT_MCS; ri.mcs = status->rate_idx; ri.nss = status->nss; if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) ri.flags |= RATE_INFO_FLAGS_SHORT_GI; /* * See P802.11REVmd_D3.0, section 21.3.2 for * VHT PPDU format. */ if (status->flag & RX_FLAG_MACTIME_PLCP_START) { mpdu_offset += 2; ts += 36; /* * Add VHT-LTFs per streams */ n_ltf = (ri.nss != 1) && (ri.nss % 2) ? ri.nss + 1 : ri.nss; ts += 4 * n_ltf; } break; default: WARN_ON(1); fallthrough; case RX_ENC_LEGACY: { struct ieee80211_supported_band *sband; int shift = 0; int bitrate; switch (status->bw) { case RATE_INFO_BW_10: shift = 1; break; case RATE_INFO_BW_5: shift = 2; break; } sband = local->hw.wiphy->bands[status->band]; bitrate = sband->bitrates[status->rate_idx].bitrate; ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); if (status->flag & RX_FLAG_MACTIME_PLCP_START) { if (status->band == NL80211_BAND_5GHZ) { ts += 20 << shift; mpdu_offset += 2; } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { ts += 96; } else { ts += 192; } } break; } } rate = cfg80211_calculate_bitrate(&ri); if (WARN_ONCE(!rate, "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", (unsigned long long)status->flag, status->rate_idx, status->nss)) return 0; /* rewind from end of MPDU */ if (status->flag & RX_FLAG_MACTIME_END) ts -= mpdu_len * 8 * 10 / rate; ts += mpdu_offset * 8 * 10 / rate; return ts; } void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct cfg80211_chan_def chandef; /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ lockdep_assert_wiphy(local->hw.wiphy); mutex_lock(&local->mtx); list_for_each_entry(sdata, &local->interfaces, list) { /* it might be waiting for the local->mtx, but then * by the time it gets it, sdata->wdev.cac_started * will no longer be true */ cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); if (sdata->wdev.cac_started) { chandef = sdata->vif.bss_conf.chandef; ieee80211_link_release_channel(&sdata->deflink); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL); } } mutex_unlock(&local->mtx); } void ieee80211_dfs_radar_detected_work(struct work_struct *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, radar_detected_work); struct cfg80211_chan_def chandef = local->hw.conf.chandef; struct ieee80211_chanctx *ctx; int num_chanctx = 0; mutex_lock(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) continue; num_chanctx++; chandef = ctx->conf.def; } mutex_unlock(&local->chanctx_mtx); wiphy_lock(local->hw.wiphy); ieee80211_dfs_cac_cancel(local); wiphy_unlock(local->hw.wiphy); if (num_chanctx > 1) /* XXX: multi-channel is not supported yet */ WARN_ON(1); else cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); } void ieee80211_radar_detected(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); trace_api_radar_detected(local); schedule_work(&local->radar_detected_work); } EXPORT_SYMBOL(ieee80211_radar_detected); ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) { ieee80211_conn_flags_t ret; int tmp; switch (c->width) { case NL80211_CHAN_WIDTH_20: c->width = NL80211_CHAN_WIDTH_20_NOHT; ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_40: c->width = NL80211_CHAN_WIDTH_20; c->center_freq1 = c->chan->center_freq; ret = IEEE80211_CONN_DISABLE_40MHZ | IEEE80211_CONN_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_80: tmp = (30 + c->chan->center_freq - c->center_freq1)/20; /* n_P40 */ tmp /= 2; /* freq_P40 */ c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; c->width = NL80211_CHAN_WIDTH_40; ret = IEEE80211_CONN_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_80P80: c->center_freq2 = 0; c->width = NL80211_CHAN_WIDTH_80; ret = IEEE80211_CONN_DISABLE_80P80MHZ | IEEE80211_CONN_DISABLE_160MHZ; break; case NL80211_CHAN_WIDTH_160: /* n_P20 */ tmp = (70 + c->chan->center_freq - c->center_freq1)/20; /* n_P80 */ tmp /= 4; c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; c->width = NL80211_CHAN_WIDTH_80; ret = IEEE80211_CONN_DISABLE_80P80MHZ | IEEE80211_CONN_DISABLE_160MHZ; break; case NL80211_CHAN_WIDTH_320: /* n_P20 */ tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; /* n_P160 */ tmp /= 8; c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; c->width = NL80211_CHAN_WIDTH_160; ret = IEEE80211_CONN_DISABLE_320MHZ; break; default: case NL80211_CHAN_WIDTH_20_NOHT: WARN_ON_ONCE(1); c->width = NL80211_CHAN_WIDTH_20_NOHT; ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; break; case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: WARN_ON_ONCE(1); /* keep c->width */ ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; break; } WARN_ON_ONCE(!cfg80211_chandef_valid(c)); return ret; } /* * Returns true if smps_mode_new is strictly more restrictive than * smps_mode_old. */ bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, enum ieee80211_smps_mode smps_mode_new) { if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) return false; switch (smps_mode_old) { case IEEE80211_SMPS_STATIC: return false; case IEEE80211_SMPS_DYNAMIC: return smps_mode_new == IEEE80211_SMPS_STATIC; case IEEE80211_SMPS_OFF: return smps_mode_new != IEEE80211_SMPS_OFF; default: WARN_ON(1); } return false; } int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings) { struct sk_buff *skb; struct ieee80211_mgmt *mgmt; struct ieee80211_local *local = sdata->local; int freq; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.chan_switch); u8 *pos; if (sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT) return -EOPNOTSUPP; skb = dev_alloc_skb(local->tx_headroom + hdr_len + 5 + /* channel switch announcement element */ 3 + /* secondary channel offset element */ 5 + /* wide bandwidth channel switch announcement */ 8); /* mesh channel switch parameters element */ if (!skb) return -ENOMEM; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); if (ieee80211_vif_is_mesh(&sdata->vif)) { memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); } else { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); } mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; pos = skb_put(skb, 5); *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ *pos++ = 3; /* IE length */ *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ freq = csa_settings->chandef.chan->center_freq; *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ *pos++ = csa_settings->count; /* count */ if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { enum nl80211_channel_type ch_type; skb_put(skb, 3); *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ *pos++ = 1; /* IE length */ ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); if (ch_type == NL80211_CHAN_HT40PLUS) *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; else *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; } if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; skb_put(skb, 8); *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ *pos++ = 6; /* IE length */ *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; *pos++ |= csa_settings->block_tx ? WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ pos += 2; put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ pos += 2; } if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { skb_put(skb, 5); ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); } ieee80211_tx_skb(sdata, skb); return 0; } static bool ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) { s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); int skip; if (end > 0) return false; /* One shot NOA */ if (data->count[i] == 1) return false; if (data->desc[i].interval == 0) return false; /* End time is in the past, check for repetitions */ skip = DIV_ROUND_UP(-end, data->desc[i].interval); if (data->count[i] < 255) { if (data->count[i] <= skip) { data->count[i] = 0; return false; } data->count[i] -= skip; } data->desc[i].start += skip * data->desc[i].interval; return true; } static bool ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, s32 *offset) { bool ret = false; int i; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 cur; if (!data->count[i]) continue; if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) ret = true; cur = data->desc[i].start - tsf; if (cur > *offset) continue; cur = data->desc[i].start + data->desc[i].duration - tsf; if (cur > *offset) *offset = cur; } return ret; } static u32 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) { s32 offset = 0; int tries = 0; /* * arbitrary limit, used to avoid infinite loops when combined NoA * descriptors cover the full time period. */ int max_tries = 5; ieee80211_extend_absent_time(data, tsf, &offset); do { if (!ieee80211_extend_absent_time(data, tsf, &offset)) break; tries++; } while (tries < max_tries); return offset; } void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) { u32 next_offset = BIT(31) - 1; int i; data->absent = 0; data->has_next_tsf = false; for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { s32 start; if (!data->count[i]) continue; ieee80211_extend_noa_desc(data, tsf, i); start = data->desc[i].start - tsf; if (start <= 0) data->absent |= BIT(i); if (next_offset > start) next_offset = start; data->has_next_tsf = true; } if (data->absent) next_offset = ieee80211_get_noa_absent_time(data, tsf); data->next_tsf = tsf + next_offset; } EXPORT_SYMBOL(ieee80211_update_p2p_noa); int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, struct ieee80211_noa_data *data, u32 tsf) { int ret = 0; int i; memset(data, 0, sizeof(*data)); for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; if (!desc->count || !desc->duration) continue; data->count[i] = desc->count; data->desc[i].start = le32_to_cpu(desc->start_time); data->desc[i].duration = le32_to_cpu(desc->duration); data->desc[i].interval = le32_to_cpu(desc->interval); if (data->count[i] > 1 && data->desc[i].interval < data->desc[i].duration) continue; ieee80211_extend_noa_desc(data, tsf, i); ret++; } if (ret) ieee80211_update_p2p_noa(data, tsf); return ret; } EXPORT_SYMBOL(ieee80211_parse_p2p_noa); void ieee80211_recalc_dtim(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { u64 tsf = drv_get_tsf(local, sdata); u64 dtim_count = 0; u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; u8 dtim_period = sdata->vif.bss_conf.dtim_period; struct ps_data *ps; u8 bcns_from_dtim; if (tsf == -1ULL || !beacon_int || !dtim_period) return; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!sdata->bss) return; ps = &sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { return; } /* * actually finds last dtim_count, mac80211 will update in * __beacon_add_tim(). * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period */ do_div(tsf, beacon_int); bcns_from_dtim = do_div(tsf, dtim_period); /* just had a DTIM */ if (!bcns_from_dtim) dtim_count = 0; else dtim_count = dtim_period - bcns_from_dtim; ps->dtim_count = dtim_count; } static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { struct ieee80211_link_data *link; u8 radar_detect = 0; lockdep_assert_held(&local->chanctx_mtx); if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) return 0; list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) if (link->reserved_radar_required) radar_detect |= BIT(link->reserved_chandef.width); /* * An in-place reservation context should not have any assigned vifs * until it replaces the other context. */ WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && !list_empty(&ctx->assigned_links)); list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { if (!link->radar_required) continue; radar_detect |= BIT(link->conf->chandef.width); } return radar_detect; } int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, enum ieee80211_chanctx_mode chanmode, u8 radar_detect) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *sdata_iter; enum nl80211_iftype iftype = sdata->wdev.iftype; struct ieee80211_chanctx *ctx; int total = 1; struct iface_combination_params params = { .radar_detect = radar_detect, }; lockdep_assert_held(&local->chanctx_mtx); if (WARN_ON(hweight32(radar_detect) > 1)) return -EINVAL; if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && !chandef->chan)) return -EINVAL; if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) return -EINVAL; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { /* * always passing this is harmless, since it'll be the * same value that cfg80211 finds if it finds the same * interface ... and that's always allowed */ params.new_beacon_int = sdata->vif.bss_conf.beacon_int; } /* Always allow software iftypes */ if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { if (radar_detect) return -EINVAL; return 0; } if (chandef) params.num_different_channels = 1; if (iftype != NL80211_IFTYPE_UNSPECIFIED) params.iftype_num[iftype] = 1; list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; params.radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { params.num_different_channels++; continue; } if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && cfg80211_chandef_compatible(chandef, &ctx->conf.def)) continue; params.num_different_channels++; } list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { struct wireless_dev *wdev_iter; wdev_iter = &sdata_iter->wdev; if (sdata_iter == sdata || !ieee80211_sdata_running(sdata_iter) || cfg80211_iftype_allowed(local->hw.wiphy, wdev_iter->iftype, 0, 1)) continue; params.iftype_num[wdev_iter->iftype]++; total++; } if (total == 1 && !params.radar_detect) return 0; return cfg80211_check_combinations(local->hw.wiphy, &params); } static void ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, void *data) { u32 *max_num_different_channels = data; *max_num_different_channels = max(*max_num_different_channels, c->num_different_channels); } int ieee80211_max_num_channels(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; struct ieee80211_chanctx *ctx; u32 max_num_different_channels = 1; int err; struct iface_combination_params params = {0}; lockdep_assert_held(&local->chanctx_mtx); list_for_each_entry(ctx, &local->chanctx_list, list) { if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) continue; params.num_different_channels++; params.radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); } list_for_each_entry_rcu(sdata, &local->interfaces, list) params.iftype_num[sdata->wdev.iftype]++; err = cfg80211_iter_combinations(local->hw.wiphy, &params, ieee80211_iter_max_chans, &max_num_different_channels); if (err < 0) return err; return max_num_different_channels; } void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta_s1g_cap *caps, struct sk_buff *skb) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_s1g_cap s1g_capab; u8 *pos; int i; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; if (!caps->s1g) return; memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); /* override the capability info */ for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; s1g_capab.capab_info[i] &= ~mask; s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; } /* then MCS and NSS set */ for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; s1g_capab.supp_mcs_nss[i] &= ~mask; s1g_capab.supp_mcs_nss[i] |= ifmgd->s1g_capa.supp_mcs_nss[i] & mask; } pos = skb_put(skb, 2 + sizeof(s1g_capab)); *pos++ = WLAN_EID_S1G_CAPABILITIES; *pos++ = sizeof(s1g_capab); memcpy(pos, &s1g_capab, sizeof(s1g_capab)); } void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { u8 *pos = skb_put(skb, 3); *pos++ = WLAN_EID_AID_REQUEST; *pos++ = 1; *pos++ = 0; } u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) { *buf++ = WLAN_EID_VENDOR_SPECIFIC; *buf++ = 7; /* len */ *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ *buf++ = 0x50; *buf++ = 0xf2; *buf++ = 2; /* WME */ *buf++ = 0; /* WME info */ *buf++ = 1; /* WME ver */ *buf++ = qosinfo; /* U-APSD no in use */ return buf; } void ieee80211_txq_get_depth(struct ieee80211_txq *txq, unsigned long *frame_cnt, unsigned long *byte_cnt) { struct txq_info *txqi = to_txq_info(txq); u32 frag_cnt = 0, frag_bytes = 0; struct sk_buff *skb; skb_queue_walk(&txqi->frags, skb) { frag_cnt++; frag_bytes += skb->len; } if (frame_cnt) *frame_cnt = txqi->tin.backlog_packets + frag_cnt; if (byte_cnt) *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; } EXPORT_SYMBOL(ieee80211_txq_get_depth); const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, IEEE80211_WMM_IE_STA_QOSINFO_AC_BK }; u16 ieee80211_encode_usf(int listen_interval) { static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; u16 ui, usf = 0; /* find greatest USF */ while (usf < IEEE80211_MAX_USF) { if (listen_interval % listen_int_usf[usf + 1]) break; usf += 1; } ui = listen_interval / listen_int_usf[usf]; /* error if there is a remainder. Should've been checked by user */ WARN_ON_ONCE(ui > IEEE80211_MAX_UI); listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | FIELD_PREP(LISTEN_INT_UI, ui); return (u16) listen_interval; } u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) { const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_supported_band *sband; bool is_ap; u8 n; sband = ieee80211_get_sband(sdata); if (!sband) return 0; he_cap = ieee80211_get_he_iftype_cap(sband, iftype); eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); if (!he_cap || !eht_cap) return 0; is_ap = iftype == NL80211_IFTYPE_AP || iftype == NL80211_IFTYPE_P2P_GO; n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, is_ap); return 2 + 1 + sizeof(eht_cap->eht_cap_elem) + n + ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], eht_cap->eht_cap_elem.phy_cap_info); return 0; } u8 *ieee80211_ie_build_eht_cap(u8 *pos, const struct ieee80211_sta_he_cap *he_cap, const struct ieee80211_sta_eht_cap *eht_cap, u8 *end, bool for_ap) { u8 mcs_nss_len, ppet_len; u8 ie_len; u8 *orig_pos = pos; /* Make sure we have place for the IE */ if (!he_cap || !eht_cap) return orig_pos; mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, &eht_cap->eht_cap_elem, for_ap); ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], eht_cap->eht_cap_elem.phy_cap_info); ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; if ((end - pos) < ie_len) return orig_pos; *pos++ = WLAN_EID_EXTENSION; *pos++ = ie_len - 2; *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; /* Fixed data */ memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); pos += sizeof(eht_cap->eht_cap_elem); memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); pos += mcs_nss_len; if (ppet_len) { memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); pos += ppet_len; } return pos; } void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) { unsigned int elem_len; if (!len_pos) return; elem_len = skb->data + skb->len - len_pos - 1; while (elem_len > 255) { /* this one is 255 */ *len_pos = 255; /* remaining data gets smaller */ elem_len -= 255; /* make space for the fragment ID/len in SKB */ skb_put(skb, 2); /* shift back the remaining data to place fragment ID/len */ memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); /* place the fragment ID */ len_pos += 255 + 1; *len_pos = frag_id; /* and point to fragment length to update later */ len_pos++; } *len_pos = elem_len; }
linux-master
net/mac80211/util.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <[email protected]> * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2022 Intel Corporation */ #include <linux/kernel.h> #include <linux/rtnetlink.h> #include <linux/module.h> #include <linux/slab.h> #include "rate.h" #include "ieee80211_i.h" #include "debugfs.h" struct rate_control_alg { struct list_head list; const struct rate_control_ops *ops; }; static LIST_HEAD(rate_ctrl_algs); static DEFINE_MUTEX(rate_ctrl_mutex); static char *ieee80211_default_rc_algo = CONFIG_MAC80211_RC_DEFAULT; module_param(ieee80211_default_rc_algo, charp, 0644); MODULE_PARM_DESC(ieee80211_default_rc_algo, "Default rate control algorithm for mac80211 to use"); void rate_control_rate_init(struct sta_info *sta) { struct ieee80211_local *local = sta->sdata->local; struct rate_control_ref *ref = sta->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; struct ieee80211_supported_band *sband; struct ieee80211_chanctx_conf *chanctx_conf; ieee80211_sta_set_rx_nss(&sta->deflink); if (!ref) return; rcu_read_lock(); chanctx_conf = rcu_dereference(sta->sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return; } sband = local->hw.wiphy->bands[chanctx_conf->def.chan->band]; /* TODO: check for minstrel_s1g ? */ if (sband->band == NL80211_BAND_S1GHZ) { ieee80211_s1g_sta_rate_init(sta); rcu_read_unlock(); return; } spin_lock_bh(&sta->rate_ctrl_lock); ref->ops->rate_init(ref->priv, sband, &chanctx_conf->def, ista, priv_sta); spin_unlock_bh(&sta->rate_ctrl_lock); rcu_read_unlock(); set_sta_flag(sta, WLAN_STA_RATE_CONTROL); } void rate_control_tx_status(struct ieee80211_local *local, struct ieee80211_tx_status *st) { struct rate_control_ref *ref = local->rate_ctrl; struct sta_info *sta = container_of(st->sta, struct sta_info, sta); void *priv_sta = sta->rate_ctrl_priv; struct ieee80211_supported_band *sband; if (!ref || !test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) return; sband = local->hw.wiphy->bands[st->info->band]; spin_lock_bh(&sta->rate_ctrl_lock); if (ref->ops->tx_status_ext) ref->ops->tx_status_ext(ref->priv, sband, priv_sta, st); else if (st->skb) ref->ops->tx_status(ref->priv, sband, st->sta, priv_sta, st->skb); else WARN_ON_ONCE(1); spin_unlock_bh(&sta->rate_ctrl_lock); } void rate_control_rate_update(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct sta_info *sta, unsigned int link_id, u32 changed) { struct rate_control_ref *ref = local->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; struct ieee80211_chanctx_conf *chanctx_conf; WARN_ON(link_id != 0); if (ref && ref->ops->rate_update) { rcu_read_lock(); chanctx_conf = rcu_dereference(sta->sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); return; } spin_lock_bh(&sta->rate_ctrl_lock); ref->ops->rate_update(ref->priv, sband, &chanctx_conf->def, ista, priv_sta, changed); spin_unlock_bh(&sta->rate_ctrl_lock); rcu_read_unlock(); } drv_sta_rc_update(local, sta->sdata, &sta->sta, changed); } int ieee80211_rate_control_register(const struct rate_control_ops *ops) { struct rate_control_alg *alg; if (!ops->name) return -EINVAL; mutex_lock(&rate_ctrl_mutex); list_for_each_entry(alg, &rate_ctrl_algs, list) { if (!strcmp(alg->ops->name, ops->name)) { /* don't register an algorithm twice */ WARN_ON(1); mutex_unlock(&rate_ctrl_mutex); return -EALREADY; } } alg = kzalloc(sizeof(*alg), GFP_KERNEL); if (alg == NULL) { mutex_unlock(&rate_ctrl_mutex); return -ENOMEM; } alg->ops = ops; list_add_tail(&alg->list, &rate_ctrl_algs); mutex_unlock(&rate_ctrl_mutex); return 0; } EXPORT_SYMBOL(ieee80211_rate_control_register); void ieee80211_rate_control_unregister(const struct rate_control_ops *ops) { struct rate_control_alg *alg; mutex_lock(&rate_ctrl_mutex); list_for_each_entry(alg, &rate_ctrl_algs, list) { if (alg->ops == ops) { list_del(&alg->list); kfree(alg); break; } } mutex_unlock(&rate_ctrl_mutex); } EXPORT_SYMBOL(ieee80211_rate_control_unregister); static const struct rate_control_ops * ieee80211_try_rate_control_ops_get(const char *name) { struct rate_control_alg *alg; const struct rate_control_ops *ops = NULL; if (!name) return NULL; mutex_lock(&rate_ctrl_mutex); list_for_each_entry(alg, &rate_ctrl_algs, list) { if (!strcmp(alg->ops->name, name)) { ops = alg->ops; break; } } mutex_unlock(&rate_ctrl_mutex); return ops; } /* Get the rate control algorithm. */ static const struct rate_control_ops * ieee80211_rate_control_ops_get(const char *name) { const struct rate_control_ops *ops; const char *alg_name; kernel_param_lock(THIS_MODULE); if (!name) alg_name = ieee80211_default_rc_algo; else alg_name = name; ops = ieee80211_try_rate_control_ops_get(alg_name); if (!ops && name) /* try default if specific alg requested but not found */ ops = ieee80211_try_rate_control_ops_get(ieee80211_default_rc_algo); /* Note: check for > 0 is intentional to avoid clang warning */ if (!ops && (strlen(CONFIG_MAC80211_RC_DEFAULT) > 0)) /* try built-in one if specific alg requested but not found */ ops = ieee80211_try_rate_control_ops_get(CONFIG_MAC80211_RC_DEFAULT); kernel_param_unlock(THIS_MODULE); return ops; } #ifdef CONFIG_MAC80211_DEBUGFS static ssize_t rcname_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct rate_control_ref *ref = file->private_data; int len = strlen(ref->ops->name); return simple_read_from_buffer(userbuf, count, ppos, ref->ops->name, len); } const struct file_operations rcname_ops = { .read = rcname_read, .open = simple_open, .llseek = default_llseek, }; #endif static struct rate_control_ref * rate_control_alloc(const char *name, struct ieee80211_local *local) { struct rate_control_ref *ref; ref = kmalloc(sizeof(struct rate_control_ref), GFP_KERNEL); if (!ref) return NULL; ref->ops = ieee80211_rate_control_ops_get(name); if (!ref->ops) goto free; ref->priv = ref->ops->alloc(&local->hw); if (!ref->priv) goto free; return ref; free: kfree(ref); return NULL; } static void rate_control_free(struct ieee80211_local *local, struct rate_control_ref *ctrl_ref) { ctrl_ref->ops->free(ctrl_ref->priv); #ifdef CONFIG_MAC80211_DEBUGFS debugfs_remove_recursive(local->debugfs.rcdir); local->debugfs.rcdir = NULL; #endif kfree(ctrl_ref); } void ieee80211_check_rate_mask(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; u32 user_mask, basic_rates = link->conf->basic_rates; enum nl80211_band band; if (WARN_ON(!link->conf->chandef.chan)) return; band = link->conf->chandef.chan->band; if (band == NL80211_BAND_S1GHZ) { /* TODO */ return; } if (WARN_ON_ONCE(!basic_rates)) return; user_mask = sdata->rc_rateidx_mask[band]; sband = local->hw.wiphy->bands[band]; if (user_mask & basic_rates) return; sdata_dbg(sdata, "no overlap between basic rates (0x%x) and user mask (0x%x on band %d) - clearing the latter", basic_rates, user_mask, band); sdata->rc_rateidx_mask[band] = (1 << sband->n_bitrates) - 1; } static bool rc_no_data_or_no_ack_use_min(struct ieee80211_tx_rate_control *txrc) { struct sk_buff *skb = txrc->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); return (info->flags & (IEEE80211_TX_CTL_NO_ACK | IEEE80211_TX_CTL_USE_MINRATE)) || !ieee80211_is_tx_data(skb); } static void rc_send_low_basicrate(struct ieee80211_tx_rate *rate, u32 basic_rates, struct ieee80211_supported_band *sband) { u8 i; if (sband->band == NL80211_BAND_S1GHZ) { /* TODO */ rate->flags |= IEEE80211_TX_RC_S1G_MCS; rate->idx = 0; return; } if (basic_rates == 0) return; /* assume basic rates unknown and accept rate */ if (rate->idx < 0) return; if (basic_rates & (1 << rate->idx)) return; /* selected rate is a basic rate */ for (i = rate->idx + 1; i <= sband->n_bitrates; i++) { if (basic_rates & (1 << i)) { rate->idx = i; return; } } /* could not find a basic rate; use original selection */ } static void __rate_control_send_low(struct ieee80211_hw *hw, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, struct ieee80211_tx_info *info, u32 rate_mask) { int i; u32 rate_flags = ieee80211_chandef_rate_flags(&hw->conf.chandef); if (sband->band == NL80211_BAND_S1GHZ) { info->control.rates[0].flags |= IEEE80211_TX_RC_S1G_MCS; info->control.rates[0].idx = 0; return; } if ((sband->band == NL80211_BAND_2GHZ) && (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)) rate_flags |= IEEE80211_RATE_ERP_G; info->control.rates[0].idx = 0; for (i = 0; i < sband->n_bitrates; i++) { if (!(rate_mask & BIT(i))) continue; if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (!rate_supported(sta, sband->band, i)) continue; info->control.rates[0].idx = i; break; } WARN_ONCE(i == sband->n_bitrates, "no supported rates for sta %pM (0x%x, band %d) in rate_mask 0x%x with flags 0x%x\n", sta ? sta->addr : NULL, sta ? sta->deflink.supp_rates[sband->band] : -1, sband->band, rate_mask, rate_flags); info->control.rates[0].count = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 1 : hw->max_rate_tries; info->control.skip_table = 1; } static bool rate_control_send_low(struct ieee80211_sta *pubsta, struct ieee80211_tx_rate_control *txrc) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); struct ieee80211_supported_band *sband = txrc->sband; struct sta_info *sta; int mcast_rate; bool use_basicrate = false; if (!pubsta || rc_no_data_or_no_ack_use_min(txrc)) { __rate_control_send_low(txrc->hw, sband, pubsta, info, txrc->rate_idx_mask); if (!pubsta && txrc->bss) { mcast_rate = txrc->bss_conf->mcast_rate[sband->band]; if (mcast_rate > 0) { info->control.rates[0].idx = mcast_rate - 1; return true; } use_basicrate = true; } else if (pubsta) { sta = container_of(pubsta, struct sta_info, sta); if (ieee80211_vif_is_mesh(&sta->sdata->vif)) use_basicrate = true; } if (use_basicrate) rc_send_low_basicrate(&info->control.rates[0], txrc->bss_conf->basic_rates, sband); return true; } return false; } static bool rate_idx_match_legacy_mask(s8 *rate_idx, int n_bitrates, u32 mask) { int j; /* See whether the selected rate or anything below it is allowed. */ for (j = *rate_idx; j >= 0; j--) { if (mask & (1 << j)) { /* Okay, found a suitable rate. Use it. */ *rate_idx = j; return true; } } /* Try to find a higher rate that would be allowed */ for (j = *rate_idx + 1; j < n_bitrates; j++) { if (mask & (1 << j)) { /* Okay, found a suitable rate. Use it. */ *rate_idx = j; return true; } } return false; } static bool rate_idx_match_mcs_mask(s8 *rate_idx, u8 *mcs_mask) { int i, j; int ridx, rbit; ridx = *rate_idx / 8; rbit = *rate_idx % 8; /* sanity check */ if (ridx < 0 || ridx >= IEEE80211_HT_MCS_MASK_LEN) return false; /* See whether the selected rate or anything below it is allowed. */ for (i = ridx; i >= 0; i--) { for (j = rbit; j >= 0; j--) if (mcs_mask[i] & BIT(j)) { *rate_idx = i * 8 + j; return true; } rbit = 7; } /* Try to find a higher rate that would be allowed */ ridx = (*rate_idx + 1) / 8; rbit = (*rate_idx + 1) % 8; for (i = ridx; i < IEEE80211_HT_MCS_MASK_LEN; i++) { for (j = rbit; j < 8; j++) if (mcs_mask[i] & BIT(j)) { *rate_idx = i * 8 + j; return true; } rbit = 0; } return false; } static bool rate_idx_match_vht_mcs_mask(s8 *rate_idx, u16 *vht_mask) { int i, j; int ridx, rbit; ridx = *rate_idx >> 4; rbit = *rate_idx & 0xf; if (ridx < 0 || ridx >= NL80211_VHT_NSS_MAX) return false; /* See whether the selected rate or anything below it is allowed. */ for (i = ridx; i >= 0; i--) { for (j = rbit; j >= 0; j--) { if (vht_mask[i] & BIT(j)) { *rate_idx = (i << 4) | j; return true; } } rbit = 15; } /* Try to find a higher rate that would be allowed */ ridx = (*rate_idx + 1) >> 4; rbit = (*rate_idx + 1) & 0xf; for (i = ridx; i < NL80211_VHT_NSS_MAX; i++) { for (j = rbit; j < 16; j++) { if (vht_mask[i] & BIT(j)) { *rate_idx = (i << 4) | j; return true; } } rbit = 0; } return false; } static void rate_idx_match_mask(s8 *rate_idx, u16 *rate_flags, struct ieee80211_supported_band *sband, enum nl80211_chan_width chan_width, u32 mask, u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN], u16 vht_mask[NL80211_VHT_NSS_MAX]) { if (*rate_flags & IEEE80211_TX_RC_VHT_MCS) { /* handle VHT rates */ if (rate_idx_match_vht_mcs_mask(rate_idx, vht_mask)) return; *rate_idx = 0; /* keep protection flags */ *rate_flags &= (IEEE80211_TX_RC_USE_RTS_CTS | IEEE80211_TX_RC_USE_CTS_PROTECT | IEEE80211_TX_RC_USE_SHORT_PREAMBLE); *rate_flags |= IEEE80211_TX_RC_MCS; if (chan_width == NL80211_CHAN_WIDTH_40) *rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (rate_idx_match_mcs_mask(rate_idx, mcs_mask)) return; /* also try the legacy rates. */ *rate_flags &= ~(IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_40_MHZ_WIDTH); if (rate_idx_match_legacy_mask(rate_idx, sband->n_bitrates, mask)) return; } else if (*rate_flags & IEEE80211_TX_RC_MCS) { /* handle HT rates */ if (rate_idx_match_mcs_mask(rate_idx, mcs_mask)) return; /* also try the legacy rates. */ *rate_idx = 0; /* keep protection flags */ *rate_flags &= (IEEE80211_TX_RC_USE_RTS_CTS | IEEE80211_TX_RC_USE_CTS_PROTECT | IEEE80211_TX_RC_USE_SHORT_PREAMBLE); if (rate_idx_match_legacy_mask(rate_idx, sband->n_bitrates, mask)) return; } else { /* handle legacy rates */ if (rate_idx_match_legacy_mask(rate_idx, sband->n_bitrates, mask)) return; /* if HT BSS, and we handle a data frame, also try HT rates */ switch (chan_width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: return; default: break; } *rate_idx = 0; /* keep protection flags */ *rate_flags &= (IEEE80211_TX_RC_USE_RTS_CTS | IEEE80211_TX_RC_USE_CTS_PROTECT | IEEE80211_TX_RC_USE_SHORT_PREAMBLE); *rate_flags |= IEEE80211_TX_RC_MCS; if (chan_width == NL80211_CHAN_WIDTH_40) *rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; if (rate_idx_match_mcs_mask(rate_idx, mcs_mask)) return; } /* * Uh.. No suitable rate exists. This should not really happen with * sane TX rate mask configurations. However, should someone manage to * configure supported rates and TX rate mask in incompatible way, * allow the frame to be transmitted with whatever the rate control * selected. */ } static void rate_fixup_ratelist(struct ieee80211_vif *vif, struct ieee80211_supported_band *sband, struct ieee80211_tx_info *info, struct ieee80211_tx_rate *rates, int max_rates) { struct ieee80211_rate *rate; bool inval = false; int i; /* * Set up the RTS/CTS rate as the fastest basic rate * that is not faster than the data rate unless there * is no basic rate slower than the data rate, in which * case we pick the slowest basic rate * * XXX: Should this check all retry rates? */ if (!(rates[0].flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) { u32 basic_rates = vif->bss_conf.basic_rates; s8 baserate = basic_rates ? ffs(basic_rates) - 1 : 0; rate = &sband->bitrates[rates[0].idx]; for (i = 0; i < sband->n_bitrates; i++) { /* must be a basic rate */ if (!(basic_rates & BIT(i))) continue; /* must not be faster than the data rate */ if (sband->bitrates[i].bitrate > rate->bitrate) continue; /* maximum */ if (sband->bitrates[baserate].bitrate < sband->bitrates[i].bitrate) baserate = i; } info->control.rts_cts_rate_idx = baserate; } for (i = 0; i < max_rates; i++) { /* * make sure there's no valid rate following * an invalid one, just in case drivers don't * take the API seriously to stop at -1. */ if (inval) { rates[i].idx = -1; continue; } if (rates[i].idx < 0) { inval = true; continue; } /* * For now assume MCS is already set up correctly, this * needs to be fixed. */ if (rates[i].flags & IEEE80211_TX_RC_MCS) { WARN_ON(rates[i].idx > 76); if (!(rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) && info->control.use_cts_prot) rates[i].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT; continue; } if (rates[i].flags & IEEE80211_TX_RC_VHT_MCS) { WARN_ON(ieee80211_rate_get_vht_mcs(&rates[i]) > 9); continue; } /* set up RTS protection if desired */ if (info->control.use_rts) { rates[i].flags |= IEEE80211_TX_RC_USE_RTS_CTS; info->control.use_cts_prot = false; } /* RC is busted */ if (WARN_ON_ONCE(rates[i].idx >= sband->n_bitrates)) { rates[i].idx = -1; continue; } rate = &sband->bitrates[rates[i].idx]; /* set up short preamble */ if (info->control.short_preamble && rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) rates[i].flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE; /* set up G protection */ if (!(rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) && info->control.use_cts_prot && rate->flags & IEEE80211_RATE_ERP_G) rates[i].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT; } } static void rate_control_fill_sta_table(struct ieee80211_sta *sta, struct ieee80211_tx_info *info, struct ieee80211_tx_rate *rates, int max_rates) { struct ieee80211_sta_rates *ratetbl = NULL; int i; if (sta && !info->control.skip_table) ratetbl = rcu_dereference(sta->rates); /* Fill remaining rate slots with data from the sta rate table. */ max_rates = min_t(int, max_rates, IEEE80211_TX_RATE_TABLE_SIZE); for (i = 0; i < max_rates; i++) { if (i < ARRAY_SIZE(info->control.rates) && info->control.rates[i].idx >= 0 && info->control.rates[i].count) { if (rates != info->control.rates) rates[i] = info->control.rates[i]; } else if (ratetbl) { rates[i].idx = ratetbl->rate[i].idx; rates[i].flags = ratetbl->rate[i].flags; if (info->control.use_rts) rates[i].count = ratetbl->rate[i].count_rts; else if (info->control.use_cts_prot) rates[i].count = ratetbl->rate[i].count_cts; else rates[i].count = ratetbl->rate[i].count; } else { rates[i].idx = -1; rates[i].count = 0; } if (rates[i].idx < 0 || !rates[i].count) break; } } static bool rate_control_cap_mask(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, u32 *mask, u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN], u16 vht_mask[NL80211_VHT_NSS_MAX]) { u32 i, flags; *mask = sdata->rc_rateidx_mask[sband->band]; flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); for (i = 0; i < sband->n_bitrates; i++) { if ((flags & sband->bitrates[i].flags) != flags) *mask &= ~BIT(i); } if (*mask == (1 << sband->n_bitrates) - 1 && !sdata->rc_has_mcs_mask[sband->band] && !sdata->rc_has_vht_mcs_mask[sband->band]) return false; if (sdata->rc_has_mcs_mask[sband->band]) memcpy(mcs_mask, sdata->rc_rateidx_mcs_mask[sband->band], IEEE80211_HT_MCS_MASK_LEN); else memset(mcs_mask, 0xff, IEEE80211_HT_MCS_MASK_LEN); if (sdata->rc_has_vht_mcs_mask[sband->band]) memcpy(vht_mask, sdata->rc_rateidx_vht_mcs_mask[sband->band], sizeof(u16) * NL80211_VHT_NSS_MAX); else memset(vht_mask, 0xff, sizeof(u16) * NL80211_VHT_NSS_MAX); if (sta) { __le16 sta_vht_cap; u16 sta_vht_mask[NL80211_VHT_NSS_MAX]; /* Filter out rates that the STA does not support */ *mask &= sta->deflink.supp_rates[sband->band]; for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) mcs_mask[i] &= sta->deflink.ht_cap.mcs.rx_mask[i]; sta_vht_cap = sta->deflink.vht_cap.vht_mcs.rx_mcs_map; ieee80211_get_vht_mask_from_cap(sta_vht_cap, sta_vht_mask); for (i = 0; i < NL80211_VHT_NSS_MAX; i++) vht_mask[i] &= sta_vht_mask[i]; } return true; } static void rate_control_apply_mask_ratetbl(struct sta_info *sta, struct ieee80211_supported_band *sband, struct ieee80211_sta_rates *rates) { int i; u32 mask; u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN]; u16 vht_mask[NL80211_VHT_NSS_MAX]; enum nl80211_chan_width chan_width; if (!rate_control_cap_mask(sta->sdata, sband, &sta->sta, &mask, mcs_mask, vht_mask)) return; chan_width = sta->sdata->vif.bss_conf.chandef.width; for (i = 0; i < IEEE80211_TX_RATE_TABLE_SIZE; i++) { if (rates->rate[i].idx < 0) break; rate_idx_match_mask(&rates->rate[i].idx, &rates->rate[i].flags, sband, chan_width, mask, mcs_mask, vht_mask); } } static void rate_control_apply_mask(struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_supported_band *sband, struct ieee80211_tx_rate *rates, int max_rates) { enum nl80211_chan_width chan_width; u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN]; u32 mask; u16 rate_flags, vht_mask[NL80211_VHT_NSS_MAX]; int i; /* * Try to enforce the rateidx mask the user wanted. skip this if the * default mask (allow all rates) is used to save some processing for * the common case. */ if (!rate_control_cap_mask(sdata, sband, sta, &mask, mcs_mask, vht_mask)) return; /* * Make sure the rate index selected for each TX rate is * included in the configured mask and change the rate indexes * if needed. */ chan_width = sdata->vif.bss_conf.chandef.width; for (i = 0; i < max_rates; i++) { /* Skip invalid rates */ if (rates[i].idx < 0) break; rate_flags = rates[i].flags; rate_idx_match_mask(&rates[i].idx, &rate_flags, sband, chan_width, mask, mcs_mask, vht_mask); rates[i].flags = rate_flags; } } void ieee80211_get_tx_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct sk_buff *skb, struct ieee80211_tx_rate *dest, int max_rates) { struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_supported_band *sband; rate_control_fill_sta_table(sta, info, dest, max_rates); if (!vif) return; sdata = vif_to_sdata(vif); sband = sdata->local->hw.wiphy->bands[info->band]; if (ieee80211_is_tx_data(skb)) rate_control_apply_mask(sdata, sta, sband, dest, max_rates); if (dest[0].idx < 0) __rate_control_send_low(&sdata->local->hw, sband, sta, info, sdata->rc_rateidx_mask[info->band]); if (sta) rate_fixup_ratelist(vif, sband, info, dest, max_rates); } EXPORT_SYMBOL(ieee80211_get_tx_rates); void rate_control_get_rate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_tx_rate_control *txrc) { struct rate_control_ref *ref = sdata->local->rate_ctrl; void *priv_sta = NULL; struct ieee80211_sta *ista = NULL; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); int i; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { info->control.rates[i].idx = -1; info->control.rates[i].flags = 0; info->control.rates[i].count = 0; } if (rate_control_send_low(sta ? &sta->sta : NULL, txrc)) return; if (ieee80211_hw_check(&sdata->local->hw, HAS_RATE_CONTROL)) return; if (sta && test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) { ista = &sta->sta; priv_sta = sta->rate_ctrl_priv; } if (ista) { spin_lock_bh(&sta->rate_ctrl_lock); ref->ops->get_rate(ref->priv, ista, priv_sta, txrc); spin_unlock_bh(&sta->rate_ctrl_lock); } else { rate_control_send_low(NULL, txrc); } if (ieee80211_hw_check(&sdata->local->hw, SUPPORTS_RC_TABLE)) return; ieee80211_get_tx_rates(&sdata->vif, ista, txrc->skb, info->control.rates, ARRAY_SIZE(info->control.rates)); } int rate_control_set_rates(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct ieee80211_sta_rates *rates) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sta_rates *old; struct ieee80211_supported_band *sband; sband = ieee80211_get_sband(sta->sdata); if (!sband) return -EINVAL; rate_control_apply_mask_ratetbl(sta, sband, rates); /* * mac80211 guarantees that this function will not be called * concurrently, so the following RCU access is safe, even without * extra locking. This can not be checked easily, so we just set * the condition to true. */ old = rcu_dereference_protected(pubsta->rates, true); rcu_assign_pointer(pubsta->rates, rates); if (old) kfree_rcu(old, rcu_head); if (sta->uploaded) drv_sta_rate_tbl_update(hw_to_local(hw), sta->sdata, pubsta); ieee80211_sta_set_expected_throughput(pubsta, sta_get_expected_throughput(sta)); return 0; } EXPORT_SYMBOL(rate_control_set_rates); int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name) { struct rate_control_ref *ref; ASSERT_RTNL(); if (local->open_count) return -EBUSY; if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { if (WARN_ON(!local->ops->set_rts_threshold)) return -EINVAL; return 0; } ref = rate_control_alloc(name, local); if (!ref) { wiphy_warn(local->hw.wiphy, "Failed to select rate control algorithm\n"); return -ENOENT; } WARN_ON(local->rate_ctrl); local->rate_ctrl = ref; wiphy_debug(local->hw.wiphy, "Selected rate control algorithm '%s'\n", ref->ops->name); return 0; } void rate_control_deinitialize(struct ieee80211_local *local) { struct rate_control_ref *ref; ref = local->rate_ctrl; if (!ref) return; local->rate_ctrl = NULL; rate_control_free(local, ref); }
linux-master
net/mac80211/rate.c
// SPDX-License-Identifier: GPL-2.0-only /* * IBSS mode implementation * Copyright 2003-2008, Jouni Malinen <[email protected]> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2007, Michael Wu <[email protected]> * Copyright 2009, Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * Copyright(c) 2018-2023 Intel Corporation */ #include <linux/delay.h> #include <linux/slab.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #define IEEE80211_SCAN_INTERVAL (2 * HZ) #define IEEE80211_IBSS_JOIN_TIMEOUT (7 * HZ) #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ) #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ) #define IEEE80211_IBSS_RSN_INACTIVITY_LIMIT (10 * HZ) #define IEEE80211_IBSS_MAX_STA_ENTRIES 128 static struct beacon_data * ieee80211_ibss_build_presp(struct ieee80211_sub_if_data *sdata, const int beacon_int, const u32 basic_rates, const u16 capability, u64 tsf, struct cfg80211_chan_def *chandef, bool *have_higher_than_11mbit, struct cfg80211_csa_settings *csa_settings) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; int rates_n = 0, i, ri; struct ieee80211_mgmt *mgmt; u8 *pos; struct ieee80211_supported_band *sband; u32 rate_flags, rates = 0, rates_added = 0; struct beacon_data *presp; int frame_len; int shift; /* Build IBSS probe response */ frame_len = sizeof(struct ieee80211_hdr_3addr) + 12 /* struct ieee80211_mgmt.u.beacon */ + 2 + IEEE80211_MAX_SSID_LEN /* max SSID */ + 2 + 8 /* max Supported Rates */ + 3 /* max DS params */ + 4 /* IBSS params */ + 5 /* Channel Switch Announcement */ + 2 + (IEEE80211_MAX_SUPP_RATES - 8) + 2 + sizeof(struct ieee80211_ht_cap) + 2 + sizeof(struct ieee80211_ht_operation) + 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) + ifibss->ie_len; presp = kzalloc(sizeof(*presp) + frame_len, GFP_KERNEL); if (!presp) return NULL; presp->head = (void *)(presp + 1); mgmt = (void *) presp->head; mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); eth_broadcast_addr(mgmt->da); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); mgmt->u.beacon.beacon_int = cpu_to_le16(beacon_int); mgmt->u.beacon.timestamp = cpu_to_le64(tsf); mgmt->u.beacon.capab_info = cpu_to_le16(capability); pos = (u8 *)mgmt + offsetof(struct ieee80211_mgmt, u.beacon.variable); *pos++ = WLAN_EID_SSID; *pos++ = ifibss->ssid_len; memcpy(pos, ifibss->ssid, ifibss->ssid_len); pos += ifibss->ssid_len; sband = local->hw.wiphy->bands[chandef->chan->band]; rate_flags = ieee80211_chandef_rate_flags(chandef); shift = ieee80211_chandef_get_shift(chandef); rates_n = 0; if (have_higher_than_11mbit) *have_higher_than_11mbit = false; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) continue; if (sband->bitrates[i].bitrate > 110 && have_higher_than_11mbit) *have_higher_than_11mbit = true; rates |= BIT(i); rates_n++; } *pos++ = WLAN_EID_SUPP_RATES; *pos++ = min_t(int, 8, rates_n); for (ri = 0; ri < sband->n_bitrates; ri++) { int rate = DIV_ROUND_UP(sband->bitrates[ri].bitrate, 5 * (1 << shift)); u8 basic = 0; if (!(rates & BIT(ri))) continue; if (basic_rates & BIT(ri)) basic = 0x80; *pos++ = basic | (u8) rate; if (++rates_added == 8) { ri++; /* continue at next rate for EXT_SUPP_RATES */ break; } } if (sband->band == NL80211_BAND_2GHZ) { *pos++ = WLAN_EID_DS_PARAMS; *pos++ = 1; *pos++ = ieee80211_frequency_to_channel( chandef->chan->center_freq); } *pos++ = WLAN_EID_IBSS_PARAMS; *pos++ = 2; /* FIX: set ATIM window based on scan results */ *pos++ = 0; *pos++ = 0; if (csa_settings) { *pos++ = WLAN_EID_CHANNEL_SWITCH; *pos++ = 3; *pos++ = csa_settings->block_tx ? 1 : 0; *pos++ = ieee80211_frequency_to_channel( csa_settings->chandef.chan->center_freq); presp->cntdwn_counter_offsets[0] = (pos - presp->head); *pos++ = csa_settings->count; presp->cntdwn_current_counter = csa_settings->count; } /* put the remaining rates in WLAN_EID_EXT_SUPP_RATES */ if (rates_n > 8) { *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos++ = rates_n - 8; for (; ri < sband->n_bitrates; ri++) { int rate = DIV_ROUND_UP(sband->bitrates[ri].bitrate, 5 * (1 << shift)); u8 basic = 0; if (!(rates & BIT(ri))) continue; if (basic_rates & BIT(ri)) basic = 0x80; *pos++ = basic | (u8) rate; } } if (ifibss->ie_len) { memcpy(pos, ifibss->ie, ifibss->ie_len); pos += ifibss->ie_len; } /* add HT capability and information IEs */ if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT && chandef->width != NL80211_CHAN_WIDTH_5 && chandef->width != NL80211_CHAN_WIDTH_10 && sband->ht_cap.ht_supported) { struct ieee80211_sta_ht_cap ht_cap; memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap)); ieee80211_apply_htcap_overrides(sdata, &ht_cap); pos = ieee80211_ie_build_ht_cap(pos, &ht_cap, ht_cap.cap); /* * Note: According to 802.11n-2009 9.13.3.1, HT Protection * field and RIFS Mode are reserved in IBSS mode, therefore * keep them at 0 */ pos = ieee80211_ie_build_ht_oper(pos, &sband->ht_cap, chandef, 0, false); /* add VHT capability and information IEs */ if (chandef->width != NL80211_CHAN_WIDTH_20 && chandef->width != NL80211_CHAN_WIDTH_40 && sband->vht_cap.vht_supported) { pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, sband->vht_cap.cap); pos = ieee80211_ie_build_vht_oper(pos, &sband->vht_cap, chandef); } } if (local->hw.queues >= IEEE80211_NUM_ACS) pos = ieee80211_add_wmm_info_ie(pos, 0); /* U-APSD not in use */ presp->head_len = pos - presp->head; if (WARN_ON(presp->head_len > frame_len)) goto error; return presp; error: kfree(presp); return NULL; } static void __ieee80211_sta_join_ibss(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const int beacon_int, struct cfg80211_chan_def *req_chandef, const u32 basic_rates, const u16 capability, u64 tsf, bool creator) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct cfg80211_bss *bss; u64 bss_change; struct cfg80211_chan_def chandef; struct ieee80211_channel *chan; struct beacon_data *presp; struct cfg80211_inform_bss bss_meta = {}; bool have_higher_than_11mbit; bool radar_required; int err; sdata_assert_lock(sdata); /* Reset own TSF to allow time synchronization work. */ drv_reset_tsf(local, sdata); if (!ether_addr_equal(ifibss->bssid, bssid)) sta_info_flush(sdata); /* if merging, indicate to driver that we leave the old IBSS */ if (sdata->vif.cfg.ibss_joined) { sdata->vif.cfg.ibss_joined = false; sdata->vif.cfg.ibss_creator = false; sdata->vif.bss_conf.enable_beacon = false; netif_carrier_off(sdata->dev); ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_IBSS | BSS_CHANGED_BEACON_ENABLED); drv_leave_ibss(local, sdata); } presp = sdata_dereference(ifibss->presp, sdata); RCU_INIT_POINTER(ifibss->presp, NULL); if (presp) kfree_rcu(presp, rcu_head); /* make a copy of the chandef, it could be modified below. */ chandef = *req_chandef; chan = chandef.chan; if (!cfg80211_reg_can_beacon(local->hw.wiphy, &chandef, NL80211_IFTYPE_ADHOC)) { if (chandef.width == NL80211_CHAN_WIDTH_5 || chandef.width == NL80211_CHAN_WIDTH_10 || chandef.width == NL80211_CHAN_WIDTH_20_NOHT || chandef.width == NL80211_CHAN_WIDTH_20) { sdata_info(sdata, "Failed to join IBSS, beacons forbidden\n"); return; } chandef.width = NL80211_CHAN_WIDTH_20; chandef.center_freq1 = chan->center_freq; /* check again for downgraded chandef */ if (!cfg80211_reg_can_beacon(local->hw.wiphy, &chandef, NL80211_IFTYPE_ADHOC)) { sdata_info(sdata, "Failed to join IBSS, beacons forbidden\n"); return; } } err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &chandef, NL80211_IFTYPE_ADHOC); if (err < 0) { sdata_info(sdata, "Failed to join IBSS, invalid chandef\n"); return; } if (err > 0 && !ifibss->userspace_handles_dfs) { sdata_info(sdata, "Failed to join IBSS, DFS channel without control program\n"); return; } radar_required = err; mutex_lock(&local->mtx); if (ieee80211_link_use_channel(&sdata->deflink, &chandef, ifibss->fixed_channel ? IEEE80211_CHANCTX_SHARED : IEEE80211_CHANCTX_EXCLUSIVE)) { sdata_info(sdata, "Failed to join IBSS, no channel context\n"); mutex_unlock(&local->mtx); return; } sdata->deflink.radar_required = radar_required; mutex_unlock(&local->mtx); memcpy(ifibss->bssid, bssid, ETH_ALEN); presp = ieee80211_ibss_build_presp(sdata, beacon_int, basic_rates, capability, tsf, &chandef, &have_higher_than_11mbit, NULL); if (!presp) return; rcu_assign_pointer(ifibss->presp, presp); mgmt = (void *)presp->head; sdata->vif.bss_conf.enable_beacon = true; sdata->vif.bss_conf.beacon_int = beacon_int; sdata->vif.bss_conf.basic_rates = basic_rates; sdata->vif.cfg.ssid_len = ifibss->ssid_len; memcpy(sdata->vif.cfg.ssid, ifibss->ssid, ifibss->ssid_len); bss_change = BSS_CHANGED_BEACON_INT; bss_change |= ieee80211_reset_erp_info(sdata); bss_change |= BSS_CHANGED_BSSID; bss_change |= BSS_CHANGED_BEACON; bss_change |= BSS_CHANGED_BEACON_ENABLED; bss_change |= BSS_CHANGED_BASIC_RATES; bss_change |= BSS_CHANGED_HT; bss_change |= BSS_CHANGED_IBSS; bss_change |= BSS_CHANGED_SSID; /* * In 5 GHz/802.11a, we can always use short slot time. * (IEEE 802.11-2012 18.3.8.7) * * In 2.4GHz, we must always use long slots in IBSS for compatibility * reasons. * (IEEE 802.11-2012 19.4.5) * * HT follows these specifications (IEEE 802.11-2012 20.3.18) */ sdata->vif.bss_conf.use_short_slot = chan->band == NL80211_BAND_5GHZ; bss_change |= BSS_CHANGED_ERP_SLOT; /* cf. IEEE 802.11 9.2.12 */ sdata->deflink.operating_11g_mode = chan->band == NL80211_BAND_2GHZ && have_higher_than_11mbit; ieee80211_set_wmm_default(&sdata->deflink, true, false); sdata->vif.cfg.ibss_joined = true; sdata->vif.cfg.ibss_creator = creator; err = drv_join_ibss(local, sdata); if (err) { sdata->vif.cfg.ibss_joined = false; sdata->vif.cfg.ibss_creator = false; sdata->vif.bss_conf.enable_beacon = false; sdata->vif.cfg.ssid_len = 0; RCU_INIT_POINTER(ifibss->presp, NULL); kfree_rcu(presp, rcu_head); mutex_lock(&local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&local->mtx); sdata_info(sdata, "Failed to join IBSS, driver failure: %d\n", err); return; } ieee80211_bss_info_change_notify(sdata, bss_change); ifibss->state = IEEE80211_IBSS_MLME_JOINED; mod_timer(&ifibss->timer, round_jiffies(jiffies + IEEE80211_IBSS_MERGE_INTERVAL)); bss_meta.chan = chan; bss_meta.scan_width = cfg80211_chandef_to_scan_width(&chandef); bss = cfg80211_inform_bss_frame_data(local->hw.wiphy, &bss_meta, mgmt, presp->head_len, GFP_KERNEL); cfg80211_put_bss(local->hw.wiphy, bss); netif_carrier_on(sdata->dev); cfg80211_ibss_joined(sdata->dev, ifibss->bssid, chan, GFP_KERNEL); } static void ieee80211_sta_join_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss *bss) { struct cfg80211_bss *cbss = container_of((void *)bss, struct cfg80211_bss, priv); struct ieee80211_supported_band *sband; struct cfg80211_chan_def chandef; u32 basic_rates; int i, j; u16 beacon_int = cbss->beacon_interval; const struct cfg80211_bss_ies *ies; enum nl80211_channel_type chan_type; u64 tsf; u32 rate_flags; int shift; sdata_assert_lock(sdata); if (beacon_int < 10) beacon_int = 10; switch (sdata->u.ibss.chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_40: chan_type = cfg80211_get_chandef_type(&sdata->u.ibss.chandef); cfg80211_chandef_create(&chandef, cbss->channel, chan_type); break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: cfg80211_chandef_create(&chandef, cbss->channel, NL80211_CHAN_NO_HT); chandef.width = sdata->u.ibss.chandef.width; break; case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: chandef = sdata->u.ibss.chandef; chandef.chan = cbss->channel; break; default: /* fall back to 20 MHz for unsupported modes */ cfg80211_chandef_create(&chandef, cbss->channel, NL80211_CHAN_NO_HT); break; } sband = sdata->local->hw.wiphy->bands[cbss->channel->band]; rate_flags = ieee80211_chandef_rate_flags(&sdata->u.ibss.chandef); shift = ieee80211_vif_get_shift(&sdata->vif); basic_rates = 0; for (i = 0; i < bss->supp_rates_len; i++) { int rate = bss->supp_rates[i] & 0x7f; bool is_basic = !!(bss->supp_rates[i] & 0x80); for (j = 0; j < sband->n_bitrates; j++) { int brate; if ((rate_flags & sband->bitrates[j].flags) != rate_flags) continue; brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 5 * (1 << shift)); if (brate == rate) { if (is_basic) basic_rates |= BIT(j); break; } } } rcu_read_lock(); ies = rcu_dereference(cbss->ies); tsf = ies->tsf; rcu_read_unlock(); __ieee80211_sta_join_ibss(sdata, cbss->bssid, beacon_int, &chandef, basic_rates, cbss->capability, tsf, false); } int ieee80211_ibss_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *csa_settings, u64 *changed) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct beacon_data *presp, *old_presp; struct cfg80211_bss *cbss; const struct cfg80211_bss_ies *ies; u16 capability = WLAN_CAPABILITY_IBSS; u64 tsf; sdata_assert_lock(sdata); if (ifibss->privacy) capability |= WLAN_CAPABILITY_PRIVACY; cbss = cfg80211_get_bss(sdata->local->hw.wiphy, ifibss->chandef.chan, ifibss->bssid, ifibss->ssid, ifibss->ssid_len, IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY(ifibss->privacy)); if (WARN_ON(!cbss)) return -EINVAL; rcu_read_lock(); ies = rcu_dereference(cbss->ies); tsf = ies->tsf; rcu_read_unlock(); cfg80211_put_bss(sdata->local->hw.wiphy, cbss); old_presp = sdata_dereference(ifibss->presp, sdata); presp = ieee80211_ibss_build_presp(sdata, sdata->vif.bss_conf.beacon_int, sdata->vif.bss_conf.basic_rates, capability, tsf, &ifibss->chandef, NULL, csa_settings); if (!presp) return -ENOMEM; rcu_assign_pointer(ifibss->presp, presp); if (old_presp) kfree_rcu(old_presp, rcu_head); *changed |= BSS_CHANGED_BEACON; return 0; } int ieee80211_ibss_finish_csa(struct ieee80211_sub_if_data *sdata, u64 *changed) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct cfg80211_bss *cbss; sdata_assert_lock(sdata); /* When not connected/joined, sending CSA doesn't make sense. */ if (ifibss->state != IEEE80211_IBSS_MLME_JOINED) return -ENOLINK; /* update cfg80211 bss information with the new channel */ if (!is_zero_ether_addr(ifibss->bssid)) { cbss = cfg80211_get_bss(sdata->local->hw.wiphy, ifibss->chandef.chan, ifibss->bssid, ifibss->ssid, ifibss->ssid_len, IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY(ifibss->privacy)); /* XXX: should not really modify cfg80211 data */ if (cbss) { cbss->channel = sdata->deflink.csa_chandef.chan; cfg80211_put_bss(sdata->local->hw.wiphy, cbss); } } ifibss->chandef = sdata->deflink.csa_chandef; /* generate the beacon */ return ieee80211_ibss_csa_beacon(sdata, NULL, changed); } void ieee80211_ibss_stop(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; wiphy_work_cancel(sdata->local->hw.wiphy, &ifibss->csa_connection_drop_work); } static struct sta_info *ieee80211_ibss_finish_sta(struct sta_info *sta) __acquires(RCU) { struct ieee80211_sub_if_data *sdata = sta->sdata; u8 addr[ETH_ALEN]; memcpy(addr, sta->sta.addr, ETH_ALEN); ibss_dbg(sdata, "Adding new IBSS station %pM\n", addr); sta_info_pre_move_state(sta, IEEE80211_STA_AUTH); sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC); /* authorize the station only if the network is not RSN protected. If * not wait for the userspace to authorize it */ if (!sta->sdata->u.ibss.control_port) sta_info_pre_move_state(sta, IEEE80211_STA_AUTHORIZED); rate_control_rate_init(sta); /* If it fails, maybe we raced another insertion? */ if (sta_info_insert_rcu(sta)) return sta_info_get(sdata, addr); return sta; } static struct sta_info * ieee80211_ibss_add_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates) __acquires(RCU) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; enum nl80211_bss_scan_width scan_width; int band; /* * XXX: Consider removing the least recently used entry and * allow new one to be added. */ if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) { net_info_ratelimited("%s: No room for a new IBSS STA entry %pM\n", sdata->name, addr); rcu_read_lock(); return NULL; } if (ifibss->state == IEEE80211_IBSS_MLME_SEARCH) { rcu_read_lock(); return NULL; } if (!ether_addr_equal(bssid, sdata->u.ibss.bssid)) { rcu_read_lock(); return NULL; } rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON_ONCE(!chanctx_conf)) return NULL; band = chanctx_conf->def.chan->band; scan_width = cfg80211_chandef_to_scan_width(&chanctx_conf->def); rcu_read_unlock(); sta = sta_info_alloc(sdata, addr, GFP_KERNEL); if (!sta) { rcu_read_lock(); return NULL; } /* make sure mandatory rates are always added */ sband = local->hw.wiphy->bands[band]; sta->sta.deflink.supp_rates[band] = supp_rates | ieee80211_mandatory_rates(sband, scan_width); return ieee80211_ibss_finish_sta(sta); } static int ieee80211_sta_active_ibss(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; int active = 0; struct sta_info *sta; sdata_assert_lock(sdata); rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { unsigned long last_active = ieee80211_sta_last_active(sta); if (sta->sdata == sdata && time_is_after_jiffies(last_active + IEEE80211_IBSS_MERGE_INTERVAL)) { active++; break; } } rcu_read_unlock(); return active; } static void ieee80211_ibss_disconnect(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct cfg80211_bss *cbss; struct beacon_data *presp; struct sta_info *sta; if (!is_zero_ether_addr(ifibss->bssid)) { cbss = cfg80211_get_bss(local->hw.wiphy, ifibss->chandef.chan, ifibss->bssid, ifibss->ssid, ifibss->ssid_len, IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY(ifibss->privacy)); if (cbss) { cfg80211_unlink_bss(local->hw.wiphy, cbss); cfg80211_put_bss(sdata->local->hw.wiphy, cbss); } } ifibss->state = IEEE80211_IBSS_MLME_SEARCH; sta_info_flush(sdata); spin_lock_bh(&ifibss->incomplete_lock); while (!list_empty(&ifibss->incomplete_stations)) { sta = list_first_entry(&ifibss->incomplete_stations, struct sta_info, list); list_del(&sta->list); spin_unlock_bh(&ifibss->incomplete_lock); sta_info_free(local, sta); spin_lock_bh(&ifibss->incomplete_lock); } spin_unlock_bh(&ifibss->incomplete_lock); netif_carrier_off(sdata->dev); sdata->vif.cfg.ibss_joined = false; sdata->vif.cfg.ibss_creator = false; sdata->vif.bss_conf.enable_beacon = false; sdata->vif.cfg.ssid_len = 0; /* remove beacon */ presp = sdata_dereference(ifibss->presp, sdata); RCU_INIT_POINTER(sdata->u.ibss.presp, NULL); if (presp) kfree_rcu(presp, rcu_head); clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_IBSS); drv_leave_ibss(local, sdata); mutex_lock(&local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&local->mtx); } static void ieee80211_csa_connection_drop_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.ibss.csa_connection_drop_work); sdata_lock(sdata); ieee80211_ibss_disconnect(sdata); synchronize_rcu(); skb_queue_purge(&sdata->skb_queue); /* trigger a scan to find another IBSS network to join */ wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); sdata_unlock(sdata); } static void ieee80211_ibss_csa_mark_radar(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; int err; /* if the current channel is a DFS channel, mark the channel as * unavailable. */ err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &ifibss->chandef, NL80211_IFTYPE_ADHOC); if (err > 0) cfg80211_radar_event(sdata->local->hw.wiphy, &ifibss->chandef, GFP_ATOMIC); } static bool ieee80211_ibss_process_chanswitch(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, bool beacon) { struct cfg80211_csa_settings params; struct ieee80211_csa_ie csa_ie; struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; enum nl80211_channel_type ch_type; int err; ieee80211_conn_flags_t conn_flags; u32 vht_cap_info = 0; sdata_assert_lock(sdata); conn_flags = IEEE80211_CONN_DISABLE_VHT; switch (ifibss->chandef.width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20_NOHT: conn_flags |= IEEE80211_CONN_DISABLE_HT; fallthrough; case NL80211_CHAN_WIDTH_20: conn_flags |= IEEE80211_CONN_DISABLE_40MHZ; break; default: break; } if (elems->vht_cap_elem) vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); memset(&params, 0, sizeof(params)); err = ieee80211_parse_ch_switch_ie(sdata, elems, ifibss->chandef.chan->band, vht_cap_info, conn_flags, ifibss->bssid, &csa_ie); /* can't switch to destination channel, fail */ if (err < 0) goto disconnect; /* did not contain a CSA */ if (err) return false; /* channel switch is not supported, disconnect */ if (!(sdata->local->hw.wiphy->flags & WIPHY_FLAG_HAS_CHANNEL_SWITCH)) goto disconnect; params.count = csa_ie.count; params.chandef = csa_ie.chandef; switch (ifibss->chandef.width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_40: /* keep our current HT mode (HT20/HT40+/HT40-), even if * another mode has been announced. The mode is not adopted * within the beacon while doing CSA and we should therefore * keep the mode which we announce. */ ch_type = cfg80211_get_chandef_type(&ifibss->chandef); cfg80211_chandef_create(&params.chandef, params.chandef.chan, ch_type); break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: if (params.chandef.width != ifibss->chandef.width) { sdata_info(sdata, "IBSS %pM received channel switch from incompatible channel width (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n", ifibss->bssid, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); goto disconnect; } break; default: /* should not happen, conn_flags should prevent VHT modes. */ WARN_ON(1); goto disconnect; } if (!cfg80211_reg_can_beacon(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_ADHOC)) { sdata_info(sdata, "IBSS %pM switches to unsupported channel (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n", ifibss->bssid, params.chandef.chan->center_freq, params.chandef.width, params.chandef.center_freq1, params.chandef.center_freq2); goto disconnect; } err = cfg80211_chandef_dfs_required(sdata->local->hw.wiphy, &params.chandef, NL80211_IFTYPE_ADHOC); if (err < 0) goto disconnect; if (err > 0 && !ifibss->userspace_handles_dfs) { /* IBSS-DFS only allowed with a control program */ goto disconnect; } params.radar_required = err; if (cfg80211_chandef_identical(&params.chandef, &sdata->vif.bss_conf.chandef)) { ibss_dbg(sdata, "received csa with an identical chandef, ignoring\n"); return true; } /* all checks done, now perform the channel switch. */ ibss_dbg(sdata, "received channel switch announcement to go to channel %d MHz\n", params.chandef.chan->center_freq); params.block_tx = !!csa_ie.mode; if (ieee80211_channel_switch(sdata->local->hw.wiphy, sdata->dev, &params)) goto disconnect; ieee80211_ibss_csa_mark_radar(sdata); return true; disconnect: ibss_dbg(sdata, "Can't handle channel switch, disconnect\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifibss->csa_connection_drop_work); ieee80211_ibss_csa_mark_radar(sdata); return true; } static void ieee80211_rx_mgmt_spectrum_mgmt(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status, struct ieee802_11_elems *elems) { int required_len; if (len < IEEE80211_MIN_ACTION_SIZE + 1) return; /* CSA is the only action we handle for now */ if (mgmt->u.action.u.measurement.action_code != WLAN_ACTION_SPCT_CHL_SWITCH) return; required_len = IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.chan_switch); if (len < required_len) return; if (!sdata->vif.bss_conf.csa_active) ieee80211_ibss_process_chanswitch(sdata, elems, false); } static void ieee80211_rx_mgmt_deauth_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { u16 reason = le16_to_cpu(mgmt->u.deauth.reason_code); if (len < IEEE80211_DEAUTH_FRAME_LEN) return; ibss_dbg(sdata, "RX DeAuth SA=%pM DA=%pM\n", mgmt->sa, mgmt->da); ibss_dbg(sdata, "\tBSSID=%pM (reason: %d)\n", mgmt->bssid, reason); sta_info_destroy_addr(sdata, mgmt->sa); } static void ieee80211_rx_mgmt_auth_ibss(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { u16 auth_alg, auth_transaction; sdata_assert_lock(sdata); if (len < 24 + 6) return; auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); ibss_dbg(sdata, "RX Auth SA=%pM DA=%pM\n", mgmt->sa, mgmt->da); ibss_dbg(sdata, "\tBSSID=%pM (auth_transaction=%d)\n", mgmt->bssid, auth_transaction); if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) return; /* * IEEE 802.11 standard does not require authentication in IBSS * networks and most implementations do not seem to use it. * However, try to reply to authentication attempts if someone * has actually implemented this. */ ieee80211_send_auth(sdata, 2, WLAN_AUTH_OPEN, 0, NULL, 0, mgmt->sa, sdata->u.ibss.bssid, NULL, 0, 0, 0); } static void ieee80211_update_sta_info(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status, struct ieee802_11_elems *elems, struct ieee80211_channel *channel) { struct sta_info *sta; enum nl80211_band band = rx_status->band; enum nl80211_bss_scan_width scan_width; struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; bool rates_updated = false; u32 supp_rates = 0; if (sdata->vif.type != NL80211_IFTYPE_ADHOC) return; if (!ether_addr_equal(mgmt->bssid, sdata->u.ibss.bssid)) return; sband = local->hw.wiphy->bands[band]; if (WARN_ON(!sband)) return; rcu_read_lock(); sta = sta_info_get(sdata, mgmt->sa); if (elems->supp_rates) { supp_rates = ieee80211_sta_get_rates(sdata, elems, band, NULL); if (sta) { u32 prev_rates; prev_rates = sta->sta.deflink.supp_rates[band]; /* make sure mandatory rates are always added */ scan_width = NL80211_BSS_CHAN_WIDTH_20; if (rx_status->bw == RATE_INFO_BW_5) scan_width = NL80211_BSS_CHAN_WIDTH_5; else if (rx_status->bw == RATE_INFO_BW_10) scan_width = NL80211_BSS_CHAN_WIDTH_10; sta->sta.deflink.supp_rates[band] = supp_rates | ieee80211_mandatory_rates(sband, scan_width); if (sta->sta.deflink.supp_rates[band] != prev_rates) { ibss_dbg(sdata, "updated supp_rates set for %pM based on beacon/probe_resp (0x%x -> 0x%x)\n", sta->sta.addr, prev_rates, sta->sta.deflink.supp_rates[band]); rates_updated = true; } } else { rcu_read_unlock(); sta = ieee80211_ibss_add_sta(sdata, mgmt->bssid, mgmt->sa, supp_rates); } } if (sta && !sta->sta.wme && (elems->wmm_info || elems->s1g_capab) && local->hw.queues >= IEEE80211_NUM_ACS) { sta->sta.wme = true; ieee80211_check_fast_xmit(sta); } if (sta && elems->ht_operation && elems->ht_cap_elem && sdata->u.ibss.chandef.width != NL80211_CHAN_WIDTH_20_NOHT && sdata->u.ibss.chandef.width != NL80211_CHAN_WIDTH_5 && sdata->u.ibss.chandef.width != NL80211_CHAN_WIDTH_10) { /* we both use HT */ struct ieee80211_ht_cap htcap_ie; struct cfg80211_chan_def chandef; enum ieee80211_sta_rx_bandwidth bw = sta->sta.deflink.bandwidth; cfg80211_chandef_create(&chandef, channel, NL80211_CHAN_NO_HT); ieee80211_chandef_ht_oper(elems->ht_operation, &chandef); memcpy(&htcap_ie, elems->ht_cap_elem, sizeof(htcap_ie)); rates_updated |= ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, &htcap_ie, &sta->deflink); if (elems->vht_operation && elems->vht_cap_elem && sdata->u.ibss.chandef.width != NL80211_CHAN_WIDTH_20 && sdata->u.ibss.chandef.width != NL80211_CHAN_WIDTH_40) { /* we both use VHT */ struct ieee80211_vht_cap cap_ie; struct ieee80211_sta_vht_cap cap = sta->sta.deflink.vht_cap; u32 vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); ieee80211_chandef_vht_oper(&local->hw, vht_cap_info, elems->vht_operation, elems->ht_operation, &chandef); memcpy(&cap_ie, elems->vht_cap_elem, sizeof(cap_ie)); ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, &cap_ie, &sta->deflink); if (memcmp(&cap, &sta->sta.deflink.vht_cap, sizeof(cap))) rates_updated |= true; } if (bw != sta->sta.deflink.bandwidth) rates_updated |= true; if (!cfg80211_chandef_compatible(&sdata->u.ibss.chandef, &chandef)) WARN_ON_ONCE(1); } if (sta && rates_updated) { u32 changed = IEEE80211_RC_SUPP_RATES_CHANGED; u8 rx_nss = sta->sta.deflink.rx_nss; /* Force rx_nss recalculation */ sta->sta.deflink.rx_nss = 0; rate_control_rate_init(sta); if (sta->sta.deflink.rx_nss != rx_nss) changed |= IEEE80211_RC_NSS_CHANGED; drv_sta_rc_update(local, sdata, &sta->sta, changed); } rcu_read_unlock(); } static void ieee80211_rx_bss_info(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status, struct ieee802_11_elems *elems) { struct ieee80211_local *local = sdata->local; struct cfg80211_bss *cbss; struct ieee80211_bss *bss; struct ieee80211_channel *channel; u64 beacon_timestamp, rx_timestamp; u32 supp_rates = 0; enum nl80211_band band = rx_status->band; channel = ieee80211_get_channel(local->hw.wiphy, rx_status->freq); if (!channel) return; ieee80211_update_sta_info(sdata, mgmt, len, rx_status, elems, channel); bss = ieee80211_bss_info_update(local, rx_status, mgmt, len, channel); if (!bss) return; cbss = container_of((void *)bss, struct cfg80211_bss, priv); /* same for beacon and probe response */ beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp); /* check if we need to merge IBSS */ /* not an IBSS */ if (!(cbss->capability & WLAN_CAPABILITY_IBSS)) goto put_bss; /* different channel */ if (sdata->u.ibss.fixed_channel && sdata->u.ibss.chandef.chan != cbss->channel) goto put_bss; /* different SSID */ if (elems->ssid_len != sdata->u.ibss.ssid_len || memcmp(elems->ssid, sdata->u.ibss.ssid, sdata->u.ibss.ssid_len)) goto put_bss; /* process channel switch */ if (sdata->vif.bss_conf.csa_active || ieee80211_ibss_process_chanswitch(sdata, elems, true)) goto put_bss; /* same BSSID */ if (ether_addr_equal(cbss->bssid, sdata->u.ibss.bssid)) goto put_bss; /* we use a fixed BSSID */ if (sdata->u.ibss.fixed_bssid) goto put_bss; if (ieee80211_have_rx_timestamp(rx_status)) { /* time when timestamp field was received */ rx_timestamp = ieee80211_calculate_rx_timestamp(local, rx_status, len + FCS_LEN, 24); } else { /* * second best option: get current TSF * (will return -1 if not supported) */ rx_timestamp = drv_get_tsf(local, sdata); } ibss_dbg(sdata, "RX beacon SA=%pM BSSID=%pM TSF=0x%llx\n", mgmt->sa, mgmt->bssid, (unsigned long long)rx_timestamp); ibss_dbg(sdata, "\tBCN=0x%llx diff=%lld @%lu\n", (unsigned long long)beacon_timestamp, (unsigned long long)(rx_timestamp - beacon_timestamp), jiffies); if (beacon_timestamp > rx_timestamp) { ibss_dbg(sdata, "beacon TSF higher than local TSF - IBSS merge with BSSID %pM\n", mgmt->bssid); ieee80211_sta_join_ibss(sdata, bss); supp_rates = ieee80211_sta_get_rates(sdata, elems, band, NULL); ieee80211_ibss_add_sta(sdata, mgmt->bssid, mgmt->sa, supp_rates); rcu_read_unlock(); } put_bss: ieee80211_rx_bss_put(local, bss); } void ieee80211_ibss_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct sta_info *sta; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; enum nl80211_bss_scan_width scan_width; int band; /* * XXX: Consider removing the least recently used entry and * allow new one to be added. */ if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) { net_info_ratelimited("%s: No room for a new IBSS STA entry %pM\n", sdata->name, addr); return; } if (ifibss->state == IEEE80211_IBSS_MLME_SEARCH) return; if (!ether_addr_equal(bssid, sdata->u.ibss.bssid)) return; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON_ONCE(!chanctx_conf)) { rcu_read_unlock(); return; } band = chanctx_conf->def.chan->band; scan_width = cfg80211_chandef_to_scan_width(&chanctx_conf->def); rcu_read_unlock(); sta = sta_info_alloc(sdata, addr, GFP_ATOMIC); if (!sta) return; /* make sure mandatory rates are always added */ sband = local->hw.wiphy->bands[band]; sta->sta.deflink.supp_rates[band] = supp_rates | ieee80211_mandatory_rates(sband, scan_width); spin_lock(&ifibss->incomplete_lock); list_add(&sta->list, &ifibss->incomplete_stations); spin_unlock(&ifibss->incomplete_lock); wiphy_work_queue(local->hw.wiphy, &sdata->work); } static void ieee80211_ibss_sta_expire(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; unsigned long exp_time = IEEE80211_IBSS_INACTIVITY_LIMIT; unsigned long exp_rsn = IEEE80211_IBSS_RSN_INACTIVITY_LIMIT; mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { unsigned long last_active = ieee80211_sta_last_active(sta); if (sdata != sta->sdata) continue; if (time_is_before_jiffies(last_active + exp_time) || (time_is_before_jiffies(last_active + exp_rsn) && sta->sta_state != IEEE80211_STA_AUTHORIZED)) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sta_dbg(sta->sdata, "expiring inactive %sSTA %pM\n", sta->sta_state != IEEE80211_STA_AUTHORIZED ? "not authorized " : "", sta->sta.addr); ieee80211_send_deauth_disassoc(sdata, sta->sta.addr, ifibss->bssid, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, true, frame_buf); WARN_ON(__sta_info_destroy(sta)); } } mutex_unlock(&local->sta_mtx); } /* * This function is called with state == IEEE80211_IBSS_MLME_JOINED */ static void ieee80211_sta_merge_ibss(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; enum nl80211_bss_scan_width scan_width; sdata_assert_lock(sdata); mod_timer(&ifibss->timer, round_jiffies(jiffies + IEEE80211_IBSS_MERGE_INTERVAL)); ieee80211_ibss_sta_expire(sdata); if (time_before(jiffies, ifibss->last_scan_completed + IEEE80211_IBSS_MERGE_INTERVAL)) return; if (ieee80211_sta_active_ibss(sdata)) return; if (ifibss->fixed_channel) return; sdata_info(sdata, "No active IBSS STAs - trying to scan for other IBSS networks with same SSID (merge)\n"); scan_width = cfg80211_chandef_to_scan_width(&ifibss->chandef); ieee80211_request_ibss_scan(sdata, ifibss->ssid, ifibss->ssid_len, NULL, 0, scan_width); } static void ieee80211_sta_create_ibss(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; u8 bssid[ETH_ALEN]; u16 capability; int i; sdata_assert_lock(sdata); if (ifibss->fixed_bssid) { memcpy(bssid, ifibss->bssid, ETH_ALEN); } else { /* Generate random, not broadcast, locally administered BSSID. Mix in * own MAC address to make sure that devices that do not have proper * random number generator get different BSSID. */ get_random_bytes(bssid, ETH_ALEN); for (i = 0; i < ETH_ALEN; i++) bssid[i] ^= sdata->vif.addr[i]; bssid[0] &= ~0x01; bssid[0] |= 0x02; } sdata_info(sdata, "Creating new IBSS network, BSSID %pM\n", bssid); capability = WLAN_CAPABILITY_IBSS; if (ifibss->privacy) capability |= WLAN_CAPABILITY_PRIVACY; __ieee80211_sta_join_ibss(sdata, bssid, sdata->vif.bss_conf.beacon_int, &ifibss->chandef, ifibss->basic_rates, capability, 0, true); } static unsigned int ibss_setup_channels(struct wiphy *wiphy, struct ieee80211_channel **channels, unsigned int channels_max, u32 center_freq, u32 width) { struct ieee80211_channel *chan = NULL; unsigned int n_chan = 0; u32 start_freq, end_freq, freq; if (width <= 20) { start_freq = center_freq; end_freq = center_freq; } else { start_freq = center_freq - width / 2 + 10; end_freq = center_freq + width / 2 - 10; } for (freq = start_freq; freq <= end_freq; freq += 20) { chan = ieee80211_get_channel(wiphy, freq); if (!chan) continue; if (n_chan >= channels_max) return n_chan; channels[n_chan] = chan; n_chan++; } return n_chan; } static unsigned int ieee80211_ibss_setup_scan_channels(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, struct ieee80211_channel **channels, unsigned int channels_max) { unsigned int n_chan = 0; u32 width, cf1, cf2 = 0; switch (chandef->width) { case NL80211_CHAN_WIDTH_40: width = 40; break; case NL80211_CHAN_WIDTH_80P80: cf2 = chandef->center_freq2; fallthrough; case NL80211_CHAN_WIDTH_80: width = 80; break; case NL80211_CHAN_WIDTH_160: width = 160; break; default: width = 20; break; } cf1 = chandef->center_freq1; n_chan = ibss_setup_channels(wiphy, channels, channels_max, cf1, width); if (cf2) n_chan += ibss_setup_channels(wiphy, &channels[n_chan], channels_max - n_chan, cf2, width); return n_chan; } /* * This function is called with state == IEEE80211_IBSS_MLME_SEARCH */ static void ieee80211_sta_find_ibss(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; struct cfg80211_bss *cbss; struct ieee80211_channel *chan = NULL; const u8 *bssid = NULL; enum nl80211_bss_scan_width scan_width; int active_ibss; sdata_assert_lock(sdata); active_ibss = ieee80211_sta_active_ibss(sdata); ibss_dbg(sdata, "sta_find_ibss (active_ibss=%d)\n", active_ibss); if (active_ibss) return; if (ifibss->fixed_bssid) bssid = ifibss->bssid; if (ifibss->fixed_channel) chan = ifibss->chandef.chan; if (!is_zero_ether_addr(ifibss->bssid)) bssid = ifibss->bssid; cbss = cfg80211_get_bss(local->hw.wiphy, chan, bssid, ifibss->ssid, ifibss->ssid_len, IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY(ifibss->privacy)); if (cbss) { struct ieee80211_bss *bss; bss = (void *)cbss->priv; ibss_dbg(sdata, "sta_find_ibss: selected %pM current %pM\n", cbss->bssid, ifibss->bssid); sdata_info(sdata, "Selected IBSS BSSID %pM based on configured SSID\n", cbss->bssid); ieee80211_sta_join_ibss(sdata, bss); ieee80211_rx_bss_put(local, bss); return; } /* if a fixed bssid and a fixed freq have been provided create the IBSS * directly and do not waste time scanning */ if (ifibss->fixed_bssid && ifibss->fixed_channel) { sdata_info(sdata, "Created IBSS using preconfigured BSSID %pM\n", bssid); ieee80211_sta_create_ibss(sdata); return; } ibss_dbg(sdata, "sta_find_ibss: did not try to join ibss\n"); /* Selected IBSS not found in current scan results - try to scan */ if (time_after(jiffies, ifibss->last_scan_completed + IEEE80211_SCAN_INTERVAL)) { struct ieee80211_channel *channels[8]; unsigned int num; sdata_info(sdata, "Trigger new scan to find an IBSS to join\n"); scan_width = cfg80211_chandef_to_scan_width(&ifibss->chandef); if (ifibss->fixed_channel) { num = ieee80211_ibss_setup_scan_channels(local->hw.wiphy, &ifibss->chandef, channels, ARRAY_SIZE(channels)); ieee80211_request_ibss_scan(sdata, ifibss->ssid, ifibss->ssid_len, channels, num, scan_width); } else { ieee80211_request_ibss_scan(sdata, ifibss->ssid, ifibss->ssid_len, NULL, 0, scan_width); } } else { int interval = IEEE80211_SCAN_INTERVAL; if (time_after(jiffies, ifibss->ibss_join_req + IEEE80211_IBSS_JOIN_TIMEOUT)) ieee80211_sta_create_ibss(sdata); mod_timer(&ifibss->timer, round_jiffies(jiffies + interval)); } } static void ieee80211_rx_mgmt_probe_req(struct ieee80211_sub_if_data *sdata, struct sk_buff *req) { struct ieee80211_mgmt *mgmt = (void *)req->data; struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_local *local = sdata->local; int tx_last_beacon, len = req->len; struct sk_buff *skb; struct beacon_data *presp; u8 *pos, *end; sdata_assert_lock(sdata); presp = sdata_dereference(ifibss->presp, sdata); if (ifibss->state != IEEE80211_IBSS_MLME_JOINED || len < 24 + 2 || !presp) return; tx_last_beacon = drv_tx_last_beacon(local); ibss_dbg(sdata, "RX ProbeReq SA=%pM DA=%pM\n", mgmt->sa, mgmt->da); ibss_dbg(sdata, "\tBSSID=%pM (tx_last_beacon=%d)\n", mgmt->bssid, tx_last_beacon); if (!tx_last_beacon && is_multicast_ether_addr(mgmt->da)) return; if (!ether_addr_equal(mgmt->bssid, ifibss->bssid) && !is_broadcast_ether_addr(mgmt->bssid)) return; end = ((u8 *) mgmt) + len; pos = mgmt->u.probe_req.variable; if (pos[0] != WLAN_EID_SSID || pos + 2 + pos[1] > end) { ibss_dbg(sdata, "Invalid SSID IE in ProbeReq from %pM\n", mgmt->sa); return; } if (pos[1] != 0 && (pos[1] != ifibss->ssid_len || memcmp(pos + 2, ifibss->ssid, ifibss->ssid_len))) { /* Ignore ProbeReq for foreign SSID */ return; } /* Reply with ProbeResp */ skb = dev_alloc_skb(local->tx_headroom + presp->head_len); if (!skb) return; skb_reserve(skb, local->tx_headroom); skb_put_data(skb, presp->head, presp->head_len); memcpy(((struct ieee80211_mgmt *) skb->data)->da, mgmt->sa, ETH_ALEN); ibss_dbg(sdata, "Sending ProbeResp to %pM\n", mgmt->sa); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; /* avoid excessive retries for probe request to wildcard SSIDs */ if (pos[1] == 0) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_NO_ACK; ieee80211_tx_skb(sdata, skb); } static void ieee80211_rx_mgmt_probe_beacon(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { size_t baselen; struct ieee802_11_elems *elems; BUILD_BUG_ON(offsetof(typeof(mgmt->u.probe_resp), variable) != offsetof(typeof(mgmt->u.beacon), variable)); /* * either beacon or probe_resp but the variable field is at the * same offset */ baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; elems = ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, false, NULL); if (elems) { ieee80211_rx_bss_info(sdata, mgmt, len, rx_status, elems); kfree(elems); } } void ieee80211_ibss_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_rx_status *rx_status; struct ieee80211_mgmt *mgmt; u16 fc; struct ieee802_11_elems *elems; int ies_len; rx_status = IEEE80211_SKB_RXCB(skb); mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); sdata_lock(sdata); if (!sdata->u.ibss.ssid_len) goto mgmt_out; /* not ready to merge yet */ switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_PROBE_REQ: ieee80211_rx_mgmt_probe_req(sdata, skb); break; case IEEE80211_STYPE_PROBE_RESP: case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_probe_beacon(sdata, mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth_ibss(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth_ibss(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: switch (mgmt->u.action.category) { case WLAN_CATEGORY_SPECTRUM_MGMT: ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); if (ies_len < 0) break; elems = ieee802_11_parse_elems( mgmt->u.action.u.chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) ieee80211_rx_mgmt_spectrum_mgmt(sdata, mgmt, skb->len, rx_status, elems); kfree(elems); break; } } mgmt_out: sdata_unlock(sdata); } void ieee80211_ibss_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct sta_info *sta; sdata_lock(sdata); /* * Work could be scheduled after scan or similar * when we aren't even joined (or trying) with a * network. */ if (!ifibss->ssid_len) goto out; spin_lock_bh(&ifibss->incomplete_lock); while (!list_empty(&ifibss->incomplete_stations)) { sta = list_first_entry(&ifibss->incomplete_stations, struct sta_info, list); list_del(&sta->list); spin_unlock_bh(&ifibss->incomplete_lock); ieee80211_ibss_finish_sta(sta); rcu_read_unlock(); spin_lock_bh(&ifibss->incomplete_lock); } spin_unlock_bh(&ifibss->incomplete_lock); switch (ifibss->state) { case IEEE80211_IBSS_MLME_SEARCH: ieee80211_sta_find_ibss(sdata); break; case IEEE80211_IBSS_MLME_JOINED: ieee80211_sta_merge_ibss(sdata); break; default: WARN_ON(1); break; } out: sdata_unlock(sdata); } static void ieee80211_ibss_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.ibss.timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_ibss_setup_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; timer_setup(&ifibss->timer, ieee80211_ibss_timer, 0); INIT_LIST_HEAD(&ifibss->incomplete_stations); spin_lock_init(&ifibss->incomplete_lock); wiphy_work_init(&ifibss->csa_connection_drop_work, ieee80211_csa_connection_drop_work); } /* scan finished notification */ void ieee80211_ibss_notify_scan_completed(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type != NL80211_IFTYPE_ADHOC) continue; sdata->u.ibss.last_scan_completed = jiffies; } mutex_unlock(&local->iflist_mtx); } int ieee80211_ibss_join(struct ieee80211_sub_if_data *sdata, struct cfg80211_ibss_params *params) { u64 changed = 0; u32 rate_flags; struct ieee80211_supported_band *sband; enum ieee80211_chanctx_mode chanmode; struct ieee80211_local *local = sdata->local; int radar_detect_width = 0; int i; int ret; if (params->chandef.chan->freq_offset) { /* this may work, but is untested */ return -EOPNOTSUPP; } ret = cfg80211_chandef_dfs_required(local->hw.wiphy, &params->chandef, sdata->wdev.iftype); if (ret < 0) return ret; if (ret > 0) { if (!params->userspace_handles_dfs) return -EINVAL; radar_detect_width = BIT(params->chandef.width); } chanmode = (params->channel_fixed && !ret) ? IEEE80211_CHANCTX_SHARED : IEEE80211_CHANCTX_EXCLUSIVE; mutex_lock(&local->chanctx_mtx); ret = ieee80211_check_combinations(sdata, &params->chandef, chanmode, radar_detect_width); mutex_unlock(&local->chanctx_mtx); if (ret < 0) return ret; if (params->bssid) { memcpy(sdata->u.ibss.bssid, params->bssid, ETH_ALEN); sdata->u.ibss.fixed_bssid = true; } else sdata->u.ibss.fixed_bssid = false; sdata->u.ibss.privacy = params->privacy; sdata->u.ibss.control_port = params->control_port; sdata->u.ibss.userspace_handles_dfs = params->userspace_handles_dfs; sdata->u.ibss.basic_rates = params->basic_rates; sdata->u.ibss.last_scan_completed = jiffies; /* fix basic_rates if channel does not support these rates */ rate_flags = ieee80211_chandef_rate_flags(&params->chandef); sband = local->hw.wiphy->bands[params->chandef.chan->band]; for (i = 0; i < sband->n_bitrates; i++) { if ((rate_flags & sband->bitrates[i].flags) != rate_flags) sdata->u.ibss.basic_rates &= ~BIT(i); } memcpy(sdata->vif.bss_conf.mcast_rate, params->mcast_rate, sizeof(params->mcast_rate)); sdata->vif.bss_conf.beacon_int = params->beacon_interval; sdata->u.ibss.chandef = params->chandef; sdata->u.ibss.fixed_channel = params->channel_fixed; if (params->ie) { sdata->u.ibss.ie = kmemdup(params->ie, params->ie_len, GFP_KERNEL); if (sdata->u.ibss.ie) sdata->u.ibss.ie_len = params->ie_len; } sdata->u.ibss.state = IEEE80211_IBSS_MLME_SEARCH; sdata->u.ibss.ibss_join_req = jiffies; memcpy(sdata->u.ibss.ssid, params->ssid, params->ssid_len); sdata->u.ibss.ssid_len = params->ssid_len; memcpy(&sdata->u.ibss.ht_capa, &params->ht_capa, sizeof(sdata->u.ibss.ht_capa)); memcpy(&sdata->u.ibss.ht_capa_mask, &params->ht_capa_mask, sizeof(sdata->u.ibss.ht_capa_mask)); /* * 802.11n-2009 9.13.3.1: In an IBSS, the HT Protection field is * reserved, but an HT STA shall protect HT transmissions as though * the HT Protection field were set to non-HT mixed mode. * * In an IBSS, the RIFS Mode field of the HT Operation element is * also reserved, but an HT STA shall operate as though this field * were set to 1. */ sdata->vif.bss_conf.ht_operation_mode |= IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED | IEEE80211_HT_PARAM_RIFS_MODE; changed |= BSS_CHANGED_HT | BSS_CHANGED_MCAST_RATE; ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; sdata->deflink.needed_rx_chains = local->rx_chains; sdata->control_port_over_nl80211 = params->control_port_over_nl80211; wiphy_work_queue(local->hw.wiphy, &sdata->work); return 0; } int ieee80211_ibss_leave(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; ieee80211_ibss_disconnect(sdata); ifibss->ssid_len = 0; eth_zero_addr(ifibss->bssid); /* remove beacon */ kfree(sdata->u.ibss.ie); sdata->u.ibss.ie = NULL; sdata->u.ibss.ie_len = 0; /* on the next join, re-program HT parameters */ memset(&ifibss->ht_capa, 0, sizeof(ifibss->ht_capa)); memset(&ifibss->ht_capa_mask, 0, sizeof(ifibss->ht_capa_mask)); synchronize_rcu(); skb_queue_purge(&sdata->skb_queue); del_timer_sync(&sdata->u.ibss.timer); return 0; }
linux-master
net/mac80211/ibss.c
// SPDX-License-Identifier: GPL-2.0-only /* * Michael MIC implementation - optimized for TKIP MIC operations * Copyright 2002-2003, Instant802 Networks, Inc. */ #include <linux/types.h> #include <linux/bitops.h> #include <linux/ieee80211.h> #include <asm/unaligned.h> #include "michael.h" static void michael_block(struct michael_mic_ctx *mctx, u32 val) { mctx->l ^= val; mctx->r ^= rol32(mctx->l, 17); mctx->l += mctx->r; mctx->r ^= ((mctx->l & 0xff00ff00) >> 8) | ((mctx->l & 0x00ff00ff) << 8); mctx->l += mctx->r; mctx->r ^= rol32(mctx->l, 3); mctx->l += mctx->r; mctx->r ^= ror32(mctx->l, 2); mctx->l += mctx->r; } static void michael_mic_hdr(struct michael_mic_ctx *mctx, const u8 *key, struct ieee80211_hdr *hdr) { u8 *da, *sa, tid; da = ieee80211_get_DA(hdr); sa = ieee80211_get_SA(hdr); if (ieee80211_is_data_qos(hdr->frame_control)) tid = ieee80211_get_tid(hdr); else tid = 0; mctx->l = get_unaligned_le32(key); mctx->r = get_unaligned_le32(key + 4); /* * A pseudo header (DA, SA, Priority, 0, 0, 0) is used in Michael MIC * calculation, but it is _not_ transmitted */ michael_block(mctx, get_unaligned_le32(da)); michael_block(mctx, get_unaligned_le16(&da[4]) | (get_unaligned_le16(sa) << 16)); michael_block(mctx, get_unaligned_le32(&sa[2])); michael_block(mctx, tid); } void michael_mic(const u8 *key, struct ieee80211_hdr *hdr, const u8 *data, size_t data_len, u8 *mic) { u32 val; size_t block, blocks, left; struct michael_mic_ctx mctx; michael_mic_hdr(&mctx, key, hdr); /* Real data */ blocks = data_len / 4; left = data_len % 4; for (block = 0; block < blocks; block++) michael_block(&mctx, get_unaligned_le32(&data[block * 4])); /* Partial block of 0..3 bytes and padding: 0x5a + 4..7 zeros to make * total length a multiple of 4. */ val = 0x5a; while (left > 0) { val <<= 8; left--; val |= data[blocks * 4 + left]; } michael_block(&mctx, val); michael_block(&mctx, 0); put_unaligned_le32(mctx.l, mic); put_unaligned_le32(mctx.r, mic + 4); }
linux-master
net/mac80211/michael.c
// SPDX-License-Identifier: GPL-2.0-only /* * mac80211 debugfs for wireless PHYs * * Copyright 2007 Johannes Berg <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2018 - 2019, 2021-2022 Intel Corporation */ #include <linux/debugfs.h> #include <linux/rtnetlink.h> #include <linux/vmalloc.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "debugfs.h" #define DEBUGFS_FORMAT_BUFFER_SIZE 100 int mac80211_format_buffer(char __user *userbuf, size_t count, loff_t *ppos, char *fmt, ...) { va_list args; char buf[DEBUGFS_FORMAT_BUFFER_SIZE]; int res; va_start(args, fmt); res = vscnprintf(buf, sizeof(buf), fmt, args); va_end(args); return simple_read_from_buffer(userbuf, count, ppos, buf, res); } #define DEBUGFS_READONLY_FILE_FN(name, fmt, value...) \ static ssize_t name## _read(struct file *file, char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct ieee80211_local *local = file->private_data; \ \ return mac80211_format_buffer(userbuf, count, ppos, \ fmt "\n", ##value); \ } #define DEBUGFS_READONLY_FILE_OPS(name) \ static const struct file_operations name## _ops = { \ .read = name## _read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_READONLY_FILE(name, fmt, value...) \ DEBUGFS_READONLY_FILE_FN(name, fmt, value) \ DEBUGFS_READONLY_FILE_OPS(name) #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, phyd, local, &name## _ops) #define DEBUGFS_ADD_MODE(name, mode) \ debugfs_create_file(#name, mode, phyd, local, &name## _ops); DEBUGFS_READONLY_FILE(hw_conf, "%x", local->hw.conf.flags); DEBUGFS_READONLY_FILE(user_power, "%d", local->user_power_level); DEBUGFS_READONLY_FILE(power, "%d", local->hw.conf.power_level); DEBUGFS_READONLY_FILE(total_ps_buffered, "%d", local->total_ps_buffered); DEBUGFS_READONLY_FILE(wep_iv, "%#08x", local->wep_iv & 0xffffff); DEBUGFS_READONLY_FILE(rate_ctrl_alg, "%s", local->rate_ctrl ? local->rate_ctrl->ops->name : "hw/driver"); static ssize_t aqm_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; struct fq *fq = &local->fq; char buf[200]; int len = 0; spin_lock_bh(&local->fq.lock); rcu_read_lock(); len = scnprintf(buf, sizeof(buf), "access name value\n" "R fq_flows_cnt %u\n" "R fq_backlog %u\n" "R fq_overlimit %u\n" "R fq_overmemory %u\n" "R fq_collisions %u\n" "R fq_memory_usage %u\n" "RW fq_memory_limit %u\n" "RW fq_limit %u\n" "RW fq_quantum %u\n", fq->flows_cnt, fq->backlog, fq->overmemory, fq->overlimit, fq->collisions, fq->memory_usage, fq->memory_limit, fq->limit, fq->quantum); rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t aqm_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[100]; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (sscanf(buf, "fq_limit %u", &local->fq.limit) == 1) return count; else if (sscanf(buf, "fq_memory_limit %u", &local->fq.memory_limit) == 1) return count; else if (sscanf(buf, "fq_quantum %u", &local->fq.quantum) == 1) return count; return -EINVAL; } static const struct file_operations aqm_ops = { .write = aqm_write, .read = aqm_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t airtime_flags_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[128] = {}, *pos, *end; pos = buf; end = pos + sizeof(buf) - 1; if (local->airtime_flags & AIRTIME_USE_TX) pos += scnprintf(pos, end - pos, "AIRTIME_TX\t(%lx)\n", AIRTIME_USE_TX); if (local->airtime_flags & AIRTIME_USE_RX) pos += scnprintf(pos, end - pos, "AIRTIME_RX\t(%lx)\n", AIRTIME_USE_RX); return simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); } static ssize_t airtime_flags_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[16]; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (kstrtou16(buf, 0, &local->airtime_flags)) return -EINVAL; return count; } static const struct file_operations airtime_flags_ops = { .write = airtime_flags_write, .read = airtime_flags_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t aql_pending_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[400]; int len = 0; len = scnprintf(buf, sizeof(buf), "AC AQL pending\n" "VO %u us\n" "VI %u us\n" "BE %u us\n" "BK %u us\n" "total %u us\n", atomic_read(&local->aql_ac_pending_airtime[IEEE80211_AC_VO]), atomic_read(&local->aql_ac_pending_airtime[IEEE80211_AC_VI]), atomic_read(&local->aql_ac_pending_airtime[IEEE80211_AC_BE]), atomic_read(&local->aql_ac_pending_airtime[IEEE80211_AC_BK]), atomic_read(&local->aql_total_pending_airtime)); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static const struct file_operations aql_pending_ops = { .read = aql_pending_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t aql_txq_limit_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[400]; int len = 0; len = scnprintf(buf, sizeof(buf), "AC AQL limit low AQL limit high\n" "VO %u %u\n" "VI %u %u\n" "BE %u %u\n" "BK %u %u\n", local->aql_txq_limit_low[IEEE80211_AC_VO], local->aql_txq_limit_high[IEEE80211_AC_VO], local->aql_txq_limit_low[IEEE80211_AC_VI], local->aql_txq_limit_high[IEEE80211_AC_VI], local->aql_txq_limit_low[IEEE80211_AC_BE], local->aql_txq_limit_high[IEEE80211_AC_BE], local->aql_txq_limit_low[IEEE80211_AC_BK], local->aql_txq_limit_high[IEEE80211_AC_BK]); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t aql_txq_limit_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[100]; u32 ac, q_limit_low, q_limit_high, q_limit_low_old, q_limit_high_old; struct sta_info *sta; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (sscanf(buf, "%u %u %u", &ac, &q_limit_low, &q_limit_high) != 3) return -EINVAL; if (ac >= IEEE80211_NUM_ACS) return -EINVAL; q_limit_low_old = local->aql_txq_limit_low[ac]; q_limit_high_old = local->aql_txq_limit_high[ac]; local->aql_txq_limit_low[ac] = q_limit_low; local->aql_txq_limit_high[ac] = q_limit_high; mutex_lock(&local->sta_mtx); list_for_each_entry(sta, &local->sta_list, list) { /* If a sta has customized queue limits, keep it */ if (sta->airtime[ac].aql_limit_low == q_limit_low_old && sta->airtime[ac].aql_limit_high == q_limit_high_old) { sta->airtime[ac].aql_limit_low = q_limit_low; sta->airtime[ac].aql_limit_high = q_limit_high; } } mutex_unlock(&local->sta_mtx); return count; } static const struct file_operations aql_txq_limit_ops = { .write = aql_txq_limit_write, .read = aql_txq_limit_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t aql_enable_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[3]; int len; len = scnprintf(buf, sizeof(buf), "%d\n", !static_key_false(&aql_disable.key)); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t aql_enable_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { bool aql_disabled = static_key_false(&aql_disable.key); char buf[3]; size_t len; if (count > sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; buf[sizeof(buf) - 1] = '\0'; len = strlen(buf); if (len > 0 && buf[len - 1] == '\n') buf[len - 1] = 0; if (buf[0] == '0' && buf[1] == '\0') { if (!aql_disabled) static_branch_inc(&aql_disable); } else if (buf[0] == '1' && buf[1] == '\0') { if (aql_disabled) static_branch_dec(&aql_disable); } else { return -EINVAL; } return count; } static const struct file_operations aql_enable_ops = { .write = aql_enable_write, .read = aql_enable_read, .open = simple_open, .llseek = default_llseek, }; static ssize_t force_tx_status_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[3]; int len = 0; len = scnprintf(buf, sizeof(buf), "%d\n", (int)local->force_tx_status); return simple_read_from_buffer(user_buf, count, ppos, buf, len); } static ssize_t force_tx_status_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; char buf[3]; if (count >= sizeof(buf)) return -EINVAL; if (copy_from_user(buf, user_buf, count)) return -EFAULT; if (count && buf[count - 1] == '\n') buf[count - 1] = '\0'; else buf[count] = '\0'; if (buf[0] == '0' && buf[1] == '\0') local->force_tx_status = 0; else if (buf[0] == '1' && buf[1] == '\0') local->force_tx_status = 1; else return -EINVAL; return count; } static const struct file_operations force_tx_status_ops = { .write = force_tx_status_write, .read = force_tx_status_read, .open = simple_open, .llseek = default_llseek, }; #ifdef CONFIG_PM static ssize_t reset_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; int ret; rtnl_lock(); wiphy_lock(local->hw.wiphy); __ieee80211_suspend(&local->hw, NULL); ret = __ieee80211_resume(&local->hw); wiphy_unlock(local->hw.wiphy); if (ret) cfg80211_shutdown_all_interfaces(local->hw.wiphy); rtnl_unlock(); return count; } static const struct file_operations reset_ops = { .write = reset_write, .open = simple_open, .llseek = noop_llseek, }; #endif static const char *hw_flag_names[] = { #define FLAG(F) [IEEE80211_HW_##F] = #F FLAG(HAS_RATE_CONTROL), FLAG(RX_INCLUDES_FCS), FLAG(HOST_BROADCAST_PS_BUFFERING), FLAG(SIGNAL_UNSPEC), FLAG(SIGNAL_DBM), FLAG(NEED_DTIM_BEFORE_ASSOC), FLAG(SPECTRUM_MGMT), FLAG(AMPDU_AGGREGATION), FLAG(SUPPORTS_PS), FLAG(PS_NULLFUNC_STACK), FLAG(SUPPORTS_DYNAMIC_PS), FLAG(MFP_CAPABLE), FLAG(WANT_MONITOR_VIF), FLAG(NO_AUTO_VIF), FLAG(SW_CRYPTO_CONTROL), FLAG(SUPPORT_FAST_XMIT), FLAG(REPORTS_TX_ACK_STATUS), FLAG(CONNECTION_MONITOR), FLAG(QUEUE_CONTROL), FLAG(SUPPORTS_PER_STA_GTK), FLAG(AP_LINK_PS), FLAG(TX_AMPDU_SETUP_IN_HW), FLAG(SUPPORTS_RC_TABLE), FLAG(P2P_DEV_ADDR_FOR_INTF), FLAG(TIMING_BEACON_ONLY), FLAG(SUPPORTS_HT_CCK_RATES), FLAG(CHANCTX_STA_CSA), FLAG(SUPPORTS_CLONED_SKBS), FLAG(SINGLE_SCAN_ON_ALL_BANDS), FLAG(TDLS_WIDER_BW), FLAG(SUPPORTS_AMSDU_IN_AMPDU), FLAG(BEACON_TX_STATUS), FLAG(NEEDS_UNIQUE_STA_ADDR), FLAG(SUPPORTS_REORDERING_BUFFER), FLAG(USES_RSS), FLAG(TX_AMSDU), FLAG(TX_FRAG_LIST), FLAG(REPORTS_LOW_ACK), FLAG(SUPPORTS_TX_FRAG), FLAG(SUPPORTS_TDLS_BUFFER_STA), FLAG(DEAUTH_NEED_MGD_TX_PREP), FLAG(DOESNT_SUPPORT_QOS_NDP), FLAG(BUFF_MMPDU_TXQ), FLAG(SUPPORTS_VHT_EXT_NSS_BW), FLAG(STA_MMPDU_TXQ), FLAG(TX_STATUS_NO_AMPDU_LEN), FLAG(SUPPORTS_MULTI_BSSID), FLAG(SUPPORTS_ONLY_HE_MULTI_BSSID), FLAG(AMPDU_KEYBORDER_SUPPORT), FLAG(SUPPORTS_TX_ENCAP_OFFLOAD), FLAG(SUPPORTS_RX_DECAP_OFFLOAD), FLAG(SUPPORTS_CONC_MON_RX_DECAP), FLAG(DETECTS_COLOR_COLLISION), FLAG(MLO_MCAST_MULTI_LINK_TX), #undef FLAG }; static ssize_t hwflags_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; size_t bufsz = 30 * NUM_IEEE80211_HW_FLAGS; char *buf = kzalloc(bufsz, GFP_KERNEL); char *pos = buf, *end = buf + bufsz - 1; ssize_t rv; int i; if (!buf) return -ENOMEM; /* fail compilation if somebody adds or removes * a flag without updating the name array above */ BUILD_BUG_ON(ARRAY_SIZE(hw_flag_names) != NUM_IEEE80211_HW_FLAGS); for (i = 0; i < NUM_IEEE80211_HW_FLAGS; i++) { if (test_bit(i, local->hw.flags)) pos += scnprintf(pos, end - pos, "%s\n", hw_flag_names[i]); } rv = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); kfree(buf); return rv; } static ssize_t misc_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; /* Max len of each line is 16 characters, plus 9 for 'pending:\n' */ size_t bufsz = IEEE80211_MAX_QUEUES * 16 + 9; char *buf; char *pos, *end; ssize_t rv; int i; int ln; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; pos = buf; end = buf + bufsz - 1; pos += scnprintf(pos, end - pos, "pending:\n"); for (i = 0; i < IEEE80211_MAX_QUEUES; i++) { ln = skb_queue_len(&local->pending[i]); pos += scnprintf(pos, end - pos, "[%i] %d\n", i, ln); } rv = simple_read_from_buffer(user_buf, count, ppos, buf, strlen(buf)); kfree(buf); return rv; } static ssize_t queues_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct ieee80211_local *local = file->private_data; unsigned long flags; char buf[IEEE80211_MAX_QUEUES * 20]; int q, res = 0; spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (q = 0; q < local->hw.queues; q++) res += sprintf(buf + res, "%02d: %#.8lx/%d\n", q, local->queue_stop_reasons[q], skb_queue_len(&local->pending[q])); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return simple_read_from_buffer(user_buf, count, ppos, buf, res); } DEBUGFS_READONLY_FILE_OPS(hwflags); DEBUGFS_READONLY_FILE_OPS(queues); DEBUGFS_READONLY_FILE_OPS(misc); /* statistics stuff */ static ssize_t format_devstat_counter(struct ieee80211_local *local, char __user *userbuf, size_t count, loff_t *ppos, int (*printvalue)(struct ieee80211_low_level_stats *stats, char *buf, int buflen)) { struct ieee80211_low_level_stats stats; char buf[20]; int res; rtnl_lock(); res = drv_get_stats(local, &stats); rtnl_unlock(); if (res) return res; res = printvalue(&stats, buf, sizeof(buf)); return simple_read_from_buffer(userbuf, count, ppos, buf, res); } #define DEBUGFS_DEVSTATS_FILE(name) \ static int print_devstats_##name(struct ieee80211_low_level_stats *stats,\ char *buf, int buflen) \ { \ return scnprintf(buf, buflen, "%u\n", stats->name); \ } \ static ssize_t stats_ ##name## _read(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ return format_devstat_counter(file->private_data, \ userbuf, \ count, \ ppos, \ print_devstats_##name); \ } \ \ static const struct file_operations stats_ ##name## _ops = { \ .read = stats_ ##name## _read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #ifdef CONFIG_MAC80211_DEBUG_COUNTERS #define DEBUGFS_STATS_ADD(name) \ debugfs_create_u32(#name, 0400, statsd, &local->name); #endif #define DEBUGFS_DEVSTATS_ADD(name) \ debugfs_create_file(#name, 0400, statsd, local, &stats_ ##name## _ops); DEBUGFS_DEVSTATS_FILE(dot11ACKFailureCount); DEBUGFS_DEVSTATS_FILE(dot11RTSFailureCount); DEBUGFS_DEVSTATS_FILE(dot11FCSErrorCount); DEBUGFS_DEVSTATS_FILE(dot11RTSSuccessCount); void debugfs_hw_add(struct ieee80211_local *local) { struct dentry *phyd = local->hw.wiphy->debugfsdir; struct dentry *statsd; if (!phyd) return; local->debugfs.keys = debugfs_create_dir("keys", phyd); DEBUGFS_ADD(total_ps_buffered); DEBUGFS_ADD(wep_iv); DEBUGFS_ADD(rate_ctrl_alg); DEBUGFS_ADD(queues); DEBUGFS_ADD(misc); #ifdef CONFIG_PM DEBUGFS_ADD_MODE(reset, 0200); #endif DEBUGFS_ADD(hwflags); DEBUGFS_ADD(user_power); DEBUGFS_ADD(power); DEBUGFS_ADD(hw_conf); DEBUGFS_ADD_MODE(force_tx_status, 0600); DEBUGFS_ADD_MODE(aql_enable, 0600); DEBUGFS_ADD(aql_pending); DEBUGFS_ADD_MODE(aqm, 0600); DEBUGFS_ADD_MODE(airtime_flags, 0600); DEBUGFS_ADD(aql_txq_limit); debugfs_create_u32("aql_threshold", 0600, phyd, &local->aql_threshold); statsd = debugfs_create_dir("statistics", phyd); #ifdef CONFIG_MAC80211_DEBUG_COUNTERS DEBUGFS_STATS_ADD(dot11TransmittedFragmentCount); DEBUGFS_STATS_ADD(dot11MulticastTransmittedFrameCount); DEBUGFS_STATS_ADD(dot11FailedCount); DEBUGFS_STATS_ADD(dot11RetryCount); DEBUGFS_STATS_ADD(dot11MultipleRetryCount); DEBUGFS_STATS_ADD(dot11FrameDuplicateCount); DEBUGFS_STATS_ADD(dot11ReceivedFragmentCount); DEBUGFS_STATS_ADD(dot11MulticastReceivedFrameCount); DEBUGFS_STATS_ADD(dot11TransmittedFrameCount); DEBUGFS_STATS_ADD(tx_handlers_drop); DEBUGFS_STATS_ADD(tx_handlers_queued); DEBUGFS_STATS_ADD(tx_handlers_drop_wep); DEBUGFS_STATS_ADD(tx_handlers_drop_not_assoc); DEBUGFS_STATS_ADD(tx_handlers_drop_unauth_port); DEBUGFS_STATS_ADD(rx_handlers_drop); DEBUGFS_STATS_ADD(rx_handlers_queued); DEBUGFS_STATS_ADD(rx_handlers_drop_nullfunc); DEBUGFS_STATS_ADD(rx_handlers_drop_defrag); DEBUGFS_STATS_ADD(tx_expand_skb_head); DEBUGFS_STATS_ADD(tx_expand_skb_head_cloned); DEBUGFS_STATS_ADD(rx_expand_skb_head_defrag); DEBUGFS_STATS_ADD(rx_handlers_fragments); DEBUGFS_STATS_ADD(tx_status_drop); #endif DEBUGFS_DEVSTATS_ADD(dot11ACKFailureCount); DEBUGFS_DEVSTATS_ADD(dot11RTSFailureCount); DEBUGFS_DEVSTATS_ADD(dot11FCSErrorCount); DEBUGFS_DEVSTATS_ADD(dot11RTSSuccessCount); }
linux-master
net/mac80211/debugfs.c
// SPDX-License-Identifier: GPL-2.0-only /* * Software WEP encryption implementation * Copyright 2002, Jouni Malinen <[email protected]> * Copyright 2003, Instant802 Networks, Inc. */ #include <linux/netdevice.h> #include <linux/types.h> #include <linux/random.h> #include <linux/compiler.h> #include <linux/crc32.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <asm/unaligned.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "wep.h" void ieee80211_wep_init(struct ieee80211_local *local) { /* start WEP IV from a random value */ get_random_bytes(&local->wep_iv, IEEE80211_WEP_IV_LEN); } static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen) { /* * Fluhrer, Mantin, and Shamir have reported weaknesses in the * key scheduling algorithm of RC4. At least IVs (KeyByte + 3, * 0xff, N) can be used to speedup attacks, so avoid using them. */ if ((iv & 0xff00) == 0xff00) { u8 B = (iv >> 16) & 0xff; if (B >= 3 && B < 3 + keylen) return true; } return false; } static void ieee80211_wep_get_iv(struct ieee80211_local *local, int keylen, int keyidx, u8 *iv) { local->wep_iv++; if (ieee80211_wep_weak_iv(local->wep_iv, keylen)) local->wep_iv += 0x0100; if (!iv) return; *iv++ = (local->wep_iv >> 16) & 0xff; *iv++ = (local->wep_iv >> 8) & 0xff; *iv++ = local->wep_iv & 0xff; *iv++ = keyidx << 6; } static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local, struct sk_buff *skb, int keylen, int keyidx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); unsigned int hdrlen; u8 *newhdr; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); if (WARN_ON(skb_headroom(skb) < IEEE80211_WEP_IV_LEN)) return NULL; hdrlen = ieee80211_hdrlen(hdr->frame_control); newhdr = skb_push(skb, IEEE80211_WEP_IV_LEN); memmove(newhdr, newhdr + IEEE80211_WEP_IV_LEN, hdrlen); /* the HW only needs room for the IV, but not the actual IV */ if (info->control.hw_key && (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) return newhdr + hdrlen; ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen); return newhdr + hdrlen; } static void ieee80211_wep_remove_iv(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_key *key) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; unsigned int hdrlen; hdrlen = ieee80211_hdrlen(hdr->frame_control); memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_WEP_IV_LEN); } /* Perform WEP encryption using given key. data buffer must have tailroom * for 4-byte ICV. data_len must not include this ICV. Note: this function * does _not_ add IV. data = RC4(data | CRC32(data)) */ int ieee80211_wep_encrypt_data(struct arc4_ctx *ctx, u8 *rc4key, size_t klen, u8 *data, size_t data_len) { __le32 icv; icv = cpu_to_le32(~crc32_le(~0, data, data_len)); put_unaligned(icv, (__le32 *)(data + data_len)); arc4_setkey(ctx, rc4key, klen); arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN); memzero_explicit(ctx, sizeof(*ctx)); return 0; } /* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the * beginning of the buffer 4 bytes of extra space (ICV) in the end of the * buffer will be added. Both IV and ICV will be transmitted, so the * payload length increases with 8 bytes. * * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) */ int ieee80211_wep_encrypt(struct ieee80211_local *local, struct sk_buff *skb, const u8 *key, int keylen, int keyidx) { u8 *iv; size_t len; u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; if (WARN_ON(skb_tailroom(skb) < IEEE80211_WEP_ICV_LEN)) return -1; iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx); if (!iv) return -1; len = skb->len - (iv + IEEE80211_WEP_IV_LEN - skb->data); /* Prepend 24-bit IV to RC4 key */ memcpy(rc4key, iv, 3); /* Copy rest of the WEP key (the secret part) */ memcpy(rc4key + 3, key, keylen); /* Add room for ICV */ skb_put(skb, IEEE80211_WEP_ICV_LEN); return ieee80211_wep_encrypt_data(&local->wep_tx_ctx, rc4key, keylen + 3, iv + IEEE80211_WEP_IV_LEN, len); } /* Perform WEP decryption using given key. data buffer includes encrypted * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV. * Return 0 on success and -1 on ICV mismatch. */ int ieee80211_wep_decrypt_data(struct arc4_ctx *ctx, u8 *rc4key, size_t klen, u8 *data, size_t data_len) { __le32 crc; arc4_setkey(ctx, rc4key, klen); arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN); memzero_explicit(ctx, sizeof(*ctx)); crc = cpu_to_le32(~crc32_le(~0, data, data_len)); if (memcmp(&crc, data + data_len, IEEE80211_WEP_ICV_LEN) != 0) /* ICV mismatch */ return -1; return 0; } /* Perform WEP decryption on given skb. Buffer includes whole WEP part of * the frame: IV (4 bytes), encrypted payload (including SNAP header), * ICV (4 bytes). skb->len includes both IV and ICV. * * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload * is moved to the beginning of the skb and skb length will be reduced. */ static int ieee80211_wep_decrypt(struct ieee80211_local *local, struct sk_buff *skb, struct ieee80211_key *key) { u32 klen; u8 rc4key[3 + WLAN_KEY_LEN_WEP104]; u8 keyidx; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; unsigned int hdrlen; size_t len; int ret = 0; if (!ieee80211_has_protected(hdr->frame_control)) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < hdrlen + IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN) return -1; len = skb->len - hdrlen - IEEE80211_WEP_IV_LEN - IEEE80211_WEP_ICV_LEN; keyidx = skb->data[hdrlen + 3] >> 6; if (!key || keyidx != key->conf.keyidx) return -1; klen = 3 + key->conf.keylen; /* Prepend 24-bit IV to RC4 key */ memcpy(rc4key, skb->data + hdrlen, 3); /* Copy rest of the WEP key (the secret part) */ memcpy(rc4key + 3, key->conf.key, key->conf.keylen); if (ieee80211_wep_decrypt_data(&local->wep_rx_ctx, rc4key, klen, skb->data + hdrlen + IEEE80211_WEP_IV_LEN, len)) ret = -1; /* Trim ICV */ skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); /* Remove IV */ memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen); skb_pull(skb, IEEE80211_WEP_IV_LEN); return ret; } ieee80211_rx_result ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx) { struct sk_buff *skb = rx->skb; struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; __le16 fc = hdr->frame_control; if (!ieee80211_is_data(fc) && !ieee80211_is_auth(fc)) return RX_CONTINUE; if (!(status->flag & RX_FLAG_DECRYPTED)) { if (skb_linearize(rx->skb)) return RX_DROP_UNUSABLE; if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) return RX_DROP_UNUSABLE; } else if (!(status->flag & RX_FLAG_IV_STRIPPED)) { if (!pskb_may_pull(rx->skb, ieee80211_hdrlen(fc) + IEEE80211_WEP_IV_LEN)) return RX_DROP_UNUSABLE; ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); /* remove ICV */ if (!(status->flag & RX_FLAG_ICV_STRIPPED) && pskb_trim(rx->skb, rx->skb->len - IEEE80211_WEP_ICV_LEN)) return RX_DROP_UNUSABLE; } return RX_CONTINUE; } static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_key_conf *hw_key = info->control.hw_key; if (!hw_key) { if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key, tx->key->conf.keylen, tx->key->conf.keyidx)) return -1; } else if ((hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) || (hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) { if (!ieee80211_wep_add_iv(tx->local, skb, tx->key->conf.keylen, tx->key->conf.keyidx)) return -1; } return 0; } ieee80211_tx_result ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx) { struct sk_buff *skb; ieee80211_tx_set_protected(tx); skb_queue_walk(&tx->skbs, skb) { if (wep_encrypt_skb(tx, skb) < 0) { I802_DEBUG_INC(tx->local->tx_handlers_drop_wep); return TX_DROP; } } return TX_CONTINUE; }
linux-master
net/mac80211/wep.c
// SPDX-License-Identifier: GPL-2.0-only /* * MLO link handling * * Copyright (C) 2022-2023 Intel Corporation */ #include <linux/slab.h> #include <linux/kernel.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "key.h" #include "debugfs_netdev.h" void ieee80211_link_setup(struct ieee80211_link_data *link) { if (link->sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_mgd_setup_link(link); } void ieee80211_link_init(struct ieee80211_sub_if_data *sdata, int link_id, struct ieee80211_link_data *link, struct ieee80211_bss_conf *link_conf) { bool deflink = link_id < 0; if (link_id < 0) link_id = 0; rcu_assign_pointer(sdata->vif.link_conf[link_id], link_conf); rcu_assign_pointer(sdata->link[link_id], link); link->sdata = sdata; link->link_id = link_id; link->conf = link_conf; link_conf->link_id = link_id; link_conf->vif = &sdata->vif; INIT_WORK(&link->csa_finalize_work, ieee80211_csa_finalize_work); INIT_WORK(&link->color_change_finalize_work, ieee80211_color_change_finalize_work); INIT_DELAYED_WORK(&link->color_collision_detect_work, ieee80211_color_collision_detection_work); INIT_LIST_HEAD(&link->assigned_chanctx_list); INIT_LIST_HEAD(&link->reserved_chanctx_list); INIT_DELAYED_WORK(&link->dfs_cac_timer_work, ieee80211_dfs_cac_timer_work); if (!deflink) { switch (sdata->vif.type) { case NL80211_IFTYPE_AP: ether_addr_copy(link_conf->addr, sdata->wdev.links[link_id].addr); link_conf->bssid = link_conf->addr; WARN_ON(!(sdata->wdev.valid_links & BIT(link_id))); break; case NL80211_IFTYPE_STATION: /* station sets the bssid in ieee80211_mgd_setup_link */ break; default: WARN_ON(1); } ieee80211_link_debugfs_add(link); } } void ieee80211_link_stop(struct ieee80211_link_data *link) { if (link->sdata->vif.type == NL80211_IFTYPE_STATION) ieee80211_mgd_stop_link(link); cancel_delayed_work_sync(&link->color_collision_detect_work); ieee80211_link_release_channel(link); } struct link_container { struct ieee80211_link_data data; struct ieee80211_bss_conf conf; }; static void ieee80211_tear_down_links(struct ieee80211_sub_if_data *sdata, struct link_container **links, u16 mask) { struct ieee80211_link_data *link; LIST_HEAD(keys); unsigned int link_id; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!(mask & BIT(link_id))) continue; link = &links[link_id]->data; if (link_id == 0 && !link) link = &sdata->deflink; if (WARN_ON(!link)) continue; ieee80211_remove_link_keys(link, &keys); ieee80211_link_debugfs_remove(link); ieee80211_link_stop(link); } synchronize_rcu(); ieee80211_free_key_list(sdata->local, &keys); } static void ieee80211_free_links(struct ieee80211_sub_if_data *sdata, struct link_container **links) { unsigned int link_id; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) kfree(links[link_id]); } static int ieee80211_check_dup_link_addrs(struct ieee80211_sub_if_data *sdata) { unsigned int i, j; for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) { struct ieee80211_link_data *link1; link1 = sdata_dereference(sdata->link[i], sdata); if (!link1) continue; for (j = i + 1; j < IEEE80211_MLD_MAX_NUM_LINKS; j++) { struct ieee80211_link_data *link2; link2 = sdata_dereference(sdata->link[j], sdata); if (!link2) continue; if (ether_addr_equal(link1->conf->addr, link2->conf->addr)) return -EALREADY; } } return 0; } static void ieee80211_set_vif_links_bitmaps(struct ieee80211_sub_if_data *sdata, u16 valid_links, u16 dormant_links) { sdata->vif.valid_links = valid_links; sdata->vif.dormant_links = dormant_links; if (!valid_links || WARN((~valid_links & dormant_links) || !(valid_links & ~dormant_links), "Invalid links: valid=0x%x, dormant=0x%x", valid_links, dormant_links)) { sdata->vif.active_links = 0; sdata->vif.dormant_links = 0; return; } switch (sdata->vif.type) { case NL80211_IFTYPE_AP: /* in an AP all links are always active */ sdata->vif.active_links = valid_links; /* AP links are not expected to be disabled */ WARN_ON(dormant_links); break; case NL80211_IFTYPE_STATION: if (sdata->vif.active_links) break; sdata->vif.active_links = valid_links & ~dormant_links; WARN_ON(hweight16(sdata->vif.active_links) > 1); break; default: WARN_ON(1); } } static int ieee80211_vif_update_links(struct ieee80211_sub_if_data *sdata, struct link_container **to_free, u16 new_links, u16 dormant_links) { u16 old_links = sdata->vif.valid_links; u16 old_active = sdata->vif.active_links; unsigned long add = new_links & ~old_links; unsigned long rem = old_links & ~new_links; unsigned int link_id; int ret; struct link_container *links[IEEE80211_MLD_MAX_NUM_LINKS] = {}, *link; struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS]; struct ieee80211_link_data *old_data[IEEE80211_MLD_MAX_NUM_LINKS]; bool use_deflink = old_links == 0; /* set for error case */ sdata_assert_lock(sdata); memset(to_free, 0, sizeof(links)); if (old_links == new_links) return 0; /* if there were no old links, need to clear the pointers to deflink */ if (!old_links) rem |= BIT(0); /* allocate new link structures first */ for_each_set_bit(link_id, &add, IEEE80211_MLD_MAX_NUM_LINKS) { link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { ret = -ENOMEM; goto free; } links[link_id] = link; } /* keep track of the old pointers for the driver */ BUILD_BUG_ON(sizeof(old) != sizeof(sdata->vif.link_conf)); memcpy(old, sdata->vif.link_conf, sizeof(old)); /* and for us in error cases */ BUILD_BUG_ON(sizeof(old_data) != sizeof(sdata->link)); memcpy(old_data, sdata->link, sizeof(old_data)); /* grab old links to free later */ for_each_set_bit(link_id, &rem, IEEE80211_MLD_MAX_NUM_LINKS) { if (rcu_access_pointer(sdata->link[link_id]) != &sdata->deflink) { /* * we must have allocated the data through this path so * we know we can free both at the same time */ to_free[link_id] = container_of(rcu_access_pointer(sdata->link[link_id]), typeof(*links[link_id]), data); } RCU_INIT_POINTER(sdata->link[link_id], NULL); RCU_INIT_POINTER(sdata->vif.link_conf[link_id], NULL); } /* link them into data structures */ for_each_set_bit(link_id, &add, IEEE80211_MLD_MAX_NUM_LINKS) { WARN_ON(!use_deflink && rcu_access_pointer(sdata->link[link_id]) == &sdata->deflink); link = links[link_id]; ieee80211_link_init(sdata, link_id, &link->data, &link->conf); ieee80211_link_setup(&link->data); } if (new_links == 0) ieee80211_link_init(sdata, -1, &sdata->deflink, &sdata->vif.bss_conf); ret = ieee80211_check_dup_link_addrs(sdata); if (!ret) { /* for keys we will not be able to undo this */ ieee80211_tear_down_links(sdata, to_free, rem); ieee80211_set_vif_links_bitmaps(sdata, new_links, dormant_links); /* tell the driver */ ret = drv_change_vif_links(sdata->local, sdata, old_links & old_active, new_links & sdata->vif.active_links, old); } if (ret) { /* restore config */ memcpy(sdata->link, old_data, sizeof(old_data)); memcpy(sdata->vif.link_conf, old, sizeof(old)); ieee80211_set_vif_links_bitmaps(sdata, old_links, dormant_links); /* and free (only) the newly allocated links */ memset(to_free, 0, sizeof(links)); goto free; } /* use deflink/bss_conf again if and only if there are no more links */ use_deflink = new_links == 0; goto deinit; free: /* if we failed during allocation, only free all */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { kfree(links[link_id]); links[link_id] = NULL; } deinit: if (use_deflink) ieee80211_link_init(sdata, -1, &sdata->deflink, &sdata->vif.bss_conf); return ret; } int ieee80211_vif_set_links(struct ieee80211_sub_if_data *sdata, u16 new_links, u16 dormant_links) { struct link_container *links[IEEE80211_MLD_MAX_NUM_LINKS]; int ret; ret = ieee80211_vif_update_links(sdata, links, new_links, dormant_links); ieee80211_free_links(sdata, links); return ret; } void ieee80211_vif_clear_links(struct ieee80211_sub_if_data *sdata) { struct link_container *links[IEEE80211_MLD_MAX_NUM_LINKS]; /* * The locking here is different because when we free links * in the station case we need to be able to cancel_work_sync() * something that also takes the lock. */ sdata_lock(sdata); ieee80211_vif_update_links(sdata, links, 0, 0); sdata_unlock(sdata); ieee80211_free_links(sdata, links); } static int _ieee80211_set_active_links(struct ieee80211_sub_if_data *sdata, u16 active_links) { struct ieee80211_bss_conf *link_confs[IEEE80211_MLD_MAX_NUM_LINKS]; struct ieee80211_local *local = sdata->local; u16 old_active = sdata->vif.active_links; unsigned long rem = old_active & ~active_links; unsigned long add = active_links & ~old_active; struct sta_info *sta; unsigned int link_id; int ret, i; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EINVAL; if (active_links & ~ieee80211_vif_usable_links(&sdata->vif)) return -EINVAL; /* nothing to do */ if (old_active == active_links) return 0; for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) link_confs[i] = sdata_dereference(sdata->vif.link_conf[i], sdata); if (add) { sdata->vif.active_links |= active_links; ret = drv_change_vif_links(local, sdata, old_active, sdata->vif.active_links, link_confs); if (ret) { sdata->vif.active_links = old_active; return ret; } } for_each_set_bit(link_id, &rem, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); /* FIXME: kill TDLS connections on the link */ ieee80211_link_release_channel(link); } list_for_each_entry(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; /* this is very temporary, but do it anyway */ __ieee80211_sta_recalc_aggregates(sta, old_active | active_links); ret = drv_change_sta_links(local, sdata, &sta->sta, old_active, old_active | active_links); WARN_ON_ONCE(ret); } ret = ieee80211_key_switch_links(sdata, rem, add); WARN_ON_ONCE(ret); list_for_each_entry(sta, &local->sta_list, list) { if (sdata != sta->sdata) continue; __ieee80211_sta_recalc_aggregates(sta, active_links); ret = drv_change_sta_links(local, sdata, &sta->sta, old_active | active_links, active_links); WARN_ON_ONCE(ret); /* * Do it again, just in case - the driver might very * well have called ieee80211_sta_recalc_aggregates() * from there when filling in the new links, which * would set it wrong since the vif's active links are * not switched yet... */ __ieee80211_sta_recalc_aggregates(sta, active_links); } for_each_set_bit(link_id, &add, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); ret = ieee80211_link_use_channel(link, &link->conf->chandef, IEEE80211_CHANCTX_SHARED); WARN_ON_ONCE(ret); ieee80211_mgd_set_link_qos_params(link); ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT | BSS_CHANGED_HT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BSSID | BSS_CHANGED_CQM | BSS_CHANGED_QOS | BSS_CHANGED_TXPOWER | BSS_CHANGED_BANDWIDTH | BSS_CHANGED_TWT | BSS_CHANGED_HE_OBSS_PD | BSS_CHANGED_HE_BSS_COLOR); } old_active = sdata->vif.active_links; sdata->vif.active_links = active_links; if (rem) { ret = drv_change_vif_links(local, sdata, old_active, active_links, link_confs); WARN_ON_ONCE(ret); } return 0; } int __ieee80211_set_active_links(struct ieee80211_vif *vif, u16 active_links) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; u16 old_active; int ret; sdata_assert_lock(sdata); mutex_lock(&local->sta_mtx); mutex_lock(&local->mtx); mutex_lock(&local->key_mtx); old_active = sdata->vif.active_links; if (old_active & active_links) { /* * if there's at least one link that stays active across * the change then switch to it (to those) first, and * then enable the additional links */ ret = _ieee80211_set_active_links(sdata, old_active & active_links); if (!ret) ret = _ieee80211_set_active_links(sdata, active_links); } else { /* otherwise switch directly */ ret = _ieee80211_set_active_links(sdata, active_links); } mutex_unlock(&local->key_mtx); mutex_unlock(&local->mtx); mutex_unlock(&local->sta_mtx); return ret; } int ieee80211_set_active_links(struct ieee80211_vif *vif, u16 active_links) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); int ret; sdata_lock(sdata); ret = __ieee80211_set_active_links(vif, active_links); sdata_unlock(sdata); return ret; } EXPORT_SYMBOL_GPL(ieee80211_set_active_links); void ieee80211_set_active_links_async(struct ieee80211_vif *vif, u16 active_links) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (!ieee80211_sdata_running(sdata)) return; if (sdata->vif.type != NL80211_IFTYPE_STATION) return; if (active_links & ~ieee80211_vif_usable_links(&sdata->vif)) return; /* nothing to do */ if (sdata->vif.active_links == active_links) return; sdata->desired_active_links = active_links; schedule_work(&sdata->activate_links_work); } EXPORT_SYMBOL_GPL(ieee80211_set_active_links_async);
linux-master
net/mac80211/link.c
// SPDX-License-Identifier: GPL-2.0-only /* * mac80211 configuration hooks for cfg80211 * * Copyright 2006-2010 Johannes Berg <[email protected]> * Copyright 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH * Copyright (C) 2018-2022 Intel Corporation */ #include <linux/ieee80211.h> #include <linux/nl80211.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <net/net_namespace.h> #include <linux/rcupdate.h> #include <linux/fips.h> #include <linux/if_ether.h> #include <net/cfg80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "mesh.h" #include "wme.h" static struct ieee80211_link_data * ieee80211_link_or_deflink(struct ieee80211_sub_if_data *sdata, int link_id, bool require_valid) { struct ieee80211_link_data *link; if (link_id < 0) { /* * For keys, if sdata is not an MLD, we might not use * the return value at all (if it's not a pairwise key), * so in that case (require_valid==false) don't error. */ if (require_valid && ieee80211_vif_is_mld(&sdata->vif)) return ERR_PTR(-EINVAL); return &sdata->deflink; } link = sdata_dereference(sdata->link[link_id], sdata); if (!link) return ERR_PTR(-ENOLINK); return link; } static void ieee80211_set_mu_mimo_follow(struct ieee80211_sub_if_data *sdata, struct vif_params *params) { bool mu_mimo_groups = false; bool mu_mimo_follow = false; if (params->vht_mumimo_groups) { u64 membership; BUILD_BUG_ON(sizeof(membership) != WLAN_MEMBERSHIP_LEN); memcpy(sdata->vif.bss_conf.mu_group.membership, params->vht_mumimo_groups, WLAN_MEMBERSHIP_LEN); memcpy(sdata->vif.bss_conf.mu_group.position, params->vht_mumimo_groups + WLAN_MEMBERSHIP_LEN, WLAN_USER_POSITION_LEN); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_MU_GROUPS); /* don't care about endianness - just check for 0 */ memcpy(&membership, params->vht_mumimo_groups, WLAN_MEMBERSHIP_LEN); mu_mimo_groups = membership != 0; } if (params->vht_mumimo_follow_addr) { mu_mimo_follow = is_valid_ether_addr(params->vht_mumimo_follow_addr); ether_addr_copy(sdata->u.mntr.mu_follow_addr, params->vht_mumimo_follow_addr); } sdata->vif.bss_conf.mu_mimo_owner = mu_mimo_groups || mu_mimo_follow; } static int ieee80211_set_mon_options(struct ieee80211_sub_if_data *sdata, struct vif_params *params) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *monitor_sdata; /* check flags first */ if (params->flags && ieee80211_sdata_running(sdata)) { u32 mask = MONITOR_FLAG_COOK_FRAMES | MONITOR_FLAG_ACTIVE; /* * Prohibit MONITOR_FLAG_COOK_FRAMES and * MONITOR_FLAG_ACTIVE to be changed while the * interface is up. * Else we would need to add a lot of cruft * to update everything: * cooked_mntrs, monitor and all fif_* counters * reconfigure hardware */ if ((params->flags & mask) != (sdata->u.mntr.flags & mask)) return -EBUSY; } /* also validate MU-MIMO change */ monitor_sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (!monitor_sdata && (params->vht_mumimo_groups || params->vht_mumimo_follow_addr)) return -EOPNOTSUPP; /* apply all changes now - no failures allowed */ if (monitor_sdata) ieee80211_set_mu_mimo_follow(monitor_sdata, params); if (params->flags) { if (ieee80211_sdata_running(sdata)) { ieee80211_adjust_monitor_flags(sdata, -1); sdata->u.mntr.flags = params->flags; ieee80211_adjust_monitor_flags(sdata, 1); ieee80211_configure_filter(local); } else { /* * Because the interface is down, ieee80211_do_stop * and ieee80211_do_open take care of "everything" * mentioned in the comment above. */ sdata->u.mntr.flags = params->flags; } } return 0; } static int ieee80211_set_ap_mbssid_options(struct ieee80211_sub_if_data *sdata, struct cfg80211_mbssid_config params, struct ieee80211_bss_conf *link_conf) { struct ieee80211_sub_if_data *tx_sdata; sdata->vif.mbssid_tx_vif = NULL; link_conf->bssid_index = 0; link_conf->nontransmitted = false; link_conf->ema_ap = false; link_conf->bssid_indicator = 0; if (sdata->vif.type != NL80211_IFTYPE_AP || !params.tx_wdev) return -EINVAL; tx_sdata = IEEE80211_WDEV_TO_SUB_IF(params.tx_wdev); if (!tx_sdata) return -EINVAL; if (tx_sdata == sdata) { sdata->vif.mbssid_tx_vif = &sdata->vif; } else { sdata->vif.mbssid_tx_vif = &tx_sdata->vif; link_conf->nontransmitted = true; link_conf->bssid_index = params.index; } if (params.ema) link_conf->ema_ap = true; return 0; } static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy, const char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct wireless_dev *wdev; struct ieee80211_sub_if_data *sdata; int err; err = ieee80211_if_add(local, name, name_assign_type, &wdev, type, params); if (err) return ERR_PTR(err); sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (type == NL80211_IFTYPE_MONITOR) { err = ieee80211_set_mon_options(sdata, params); if (err) { ieee80211_if_remove(sdata); return NULL; } } return wdev; } static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev)); return 0; } static int ieee80211_change_iface(struct wiphy *wiphy, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret; ret = ieee80211_if_change_type(sdata, type); if (ret) return ret; if (type == NL80211_IFTYPE_AP_VLAN && params->use_4addr == 0) { RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); ieee80211_check_fast_rx_iface(sdata); } else if (type == NL80211_IFTYPE_STATION && params->use_4addr >= 0) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (params->use_4addr == ifmgd->use_4addr) return 0; /* FIXME: no support for 4-addr MLO yet */ if (ieee80211_vif_is_mld(&sdata->vif)) return -EOPNOTSUPP; sdata->u.mgd.use_4addr = params->use_4addr; if (!ifmgd->associated) return 0; mutex_lock(&local->sta_mtx); sta = sta_info_get(sdata, sdata->deflink.u.mgd.bssid); if (sta) drv_sta_set_4addr(local, sdata, &sta->sta, params->use_4addr); mutex_unlock(&local->sta_mtx); if (params->use_4addr) ieee80211_send_4addr_nullfunc(local, sdata); } if (sdata->vif.type == NL80211_IFTYPE_MONITOR) { ret = ieee80211_set_mon_options(sdata, params); if (ret) return ret; } return 0; } static int ieee80211_start_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); int ret; mutex_lock(&sdata->local->chanctx_mtx); ret = ieee80211_check_combinations(sdata, NULL, 0, 0); mutex_unlock(&sdata->local->chanctx_mtx); if (ret < 0) return ret; return ieee80211_do_open(wdev, true); } static void ieee80211_stop_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev)); } static int ieee80211_start_nan(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); int ret; mutex_lock(&sdata->local->chanctx_mtx); ret = ieee80211_check_combinations(sdata, NULL, 0, 0); mutex_unlock(&sdata->local->chanctx_mtx); if (ret < 0) return ret; ret = ieee80211_do_open(wdev, true); if (ret) return ret; ret = drv_start_nan(sdata->local, sdata, conf); if (ret) ieee80211_sdata_stop(sdata); sdata->u.nan.conf = *conf; return ret; } static void ieee80211_stop_nan(struct wiphy *wiphy, struct wireless_dev *wdev) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); drv_stop_nan(sdata->local, sdata); ieee80211_sdata_stop(sdata); } static int ieee80211_nan_change_conf(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct cfg80211_nan_conf new_conf; int ret = 0; if (sdata->vif.type != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; new_conf = sdata->u.nan.conf; if (changes & CFG80211_NAN_CONF_CHANGED_PREF) new_conf.master_pref = conf->master_pref; if (changes & CFG80211_NAN_CONF_CHANGED_BANDS) new_conf.bands = conf->bands; ret = drv_nan_change_conf(sdata->local, sdata, &new_conf, changes); if (!ret) sdata->u.nan.conf = new_conf; return ret; } static int ieee80211_add_nan_func(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); int ret; if (sdata->vif.type != NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; spin_lock_bh(&sdata->u.nan.func_lock); ret = idr_alloc(&sdata->u.nan.function_inst_ids, nan_func, 1, sdata->local->hw.max_nan_de_entries + 1, GFP_ATOMIC); spin_unlock_bh(&sdata->u.nan.func_lock); if (ret < 0) return ret; nan_func->instance_id = ret; WARN_ON(nan_func->instance_id == 0); ret = drv_add_nan_func(sdata->local, sdata, nan_func); if (ret) { spin_lock_bh(&sdata->u.nan.func_lock); idr_remove(&sdata->u.nan.function_inst_ids, nan_func->instance_id); spin_unlock_bh(&sdata->u.nan.func_lock); } return ret; } static struct cfg80211_nan_func * ieee80211_find_nan_func_by_cookie(struct ieee80211_sub_if_data *sdata, u64 cookie) { struct cfg80211_nan_func *func; int id; lockdep_assert_held(&sdata->u.nan.func_lock); idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) { if (func->cookie == cookie) return func; } return NULL; } static void ieee80211_del_nan_func(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct cfg80211_nan_func *func; u8 instance_id = 0; if (sdata->vif.type != NL80211_IFTYPE_NAN || !ieee80211_sdata_running(sdata)) return; spin_lock_bh(&sdata->u.nan.func_lock); func = ieee80211_find_nan_func_by_cookie(sdata, cookie); if (func) instance_id = func->instance_id; spin_unlock_bh(&sdata->u.nan.func_lock); if (instance_id) drv_del_nan_func(sdata->local, sdata, instance_id); } static int ieee80211_set_noack_map(struct wiphy *wiphy, struct net_device *dev, u16 noack_map) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->noack_map = noack_map; ieee80211_check_fast_xmit_iface(sdata); return 0; } static int ieee80211_set_tx(struct ieee80211_sub_if_data *sdata, const u8 *mac_addr, u8 key_idx) { struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; struct sta_info *sta; int ret = -EINVAL; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID)) return -EINVAL; sta = sta_info_get_bss(sdata, mac_addr); if (!sta) return -EINVAL; if (sta->ptk_idx == key_idx) return 0; mutex_lock(&local->key_mtx); key = key_mtx_dereference(local, sta->ptk[key_idx]); if (key && key->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) ret = ieee80211_set_tx_key(key); mutex_unlock(&local->key_mtx); return ret; } static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link = ieee80211_link_or_deflink(sdata, link_id, false); struct ieee80211_local *local = sdata->local; struct sta_info *sta = NULL; struct ieee80211_key *key; int err; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; if (IS_ERR(link)) return PTR_ERR(link); if (pairwise && params->mode == NL80211_KEY_SET_TX) return ieee80211_set_tx(sdata, mac_addr, key_idx); /* reject WEP and TKIP keys if WEP failed to initialize */ switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_WEP104: if (link_id >= 0) return -EINVAL; if (WARN_ON_ONCE(fips_enabled)) return -EINVAL; break; default: break; } key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len, params->key, params->seq_len, params->seq); if (IS_ERR(key)) return PTR_ERR(key); key->conf.link_id = link_id; if (pairwise) key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE; if (params->mode == NL80211_KEY_NO_TX) key->conf.flags |= IEEE80211_KEY_FLAG_NO_AUTO_TX; mutex_lock(&local->sta_mtx); if (mac_addr) { sta = sta_info_get_bss(sdata, mac_addr); /* * The ASSOC test makes sure the driver is ready to * receive the key. When wpa_supplicant has roamed * using FT, it attempts to set the key before * association has completed, this rejects that attempt * so it will set the key again after association. * * TODO: accept the key if we have a station entry and * add it to the device after the station. */ if (!sta || !test_sta_flag(sta, WLAN_STA_ASSOC)) { ieee80211_key_free_unused(key); err = -ENOENT; goto out_unlock; } } switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: /* Keys without a station are used for TX only */ if (sta && test_sta_flag(sta, WLAN_STA_MFP)) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; case NL80211_IFTYPE_ADHOC: /* no MFP (yet) */ break; case NL80211_IFTYPE_MESH_POINT: #ifdef CONFIG_MAC80211_MESH if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; break; #endif case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_OCB: /* shouldn't happen */ WARN_ON_ONCE(1); break; } err = ieee80211_key_link(key, link, sta); out_unlock: mutex_unlock(&local->sta_mtx); return err; } static struct ieee80211_key * ieee80211_lookup_key(struct ieee80211_sub_if_data *sdata, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct ieee80211_local *local __maybe_unused = sdata->local; struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_key *key; if (link_id >= 0) { link = rcu_dereference_check(sdata->link[link_id], lockdep_is_held(&sdata->wdev.mtx)); if (!link) return NULL; } if (mac_addr) { struct sta_info *sta; struct link_sta_info *link_sta; sta = sta_info_get_bss(sdata, mac_addr); if (!sta) return NULL; if (link_id >= 0) { link_sta = rcu_dereference_check(sta->link[link_id], lockdep_is_held(&local->sta_mtx)); if (!link_sta) return NULL; } else { link_sta = &sta->deflink; } if (pairwise && key_idx < NUM_DEFAULT_KEYS) return rcu_dereference_check_key_mtx(local, sta->ptk[key_idx]); if (!pairwise && key_idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS) return rcu_dereference_check_key_mtx(local, link_sta->gtk[key_idx]); return NULL; } if (pairwise && key_idx < NUM_DEFAULT_KEYS) return rcu_dereference_check_key_mtx(local, sdata->keys[key_idx]); key = rcu_dereference_check_key_mtx(local, link->gtk[key_idx]); if (key) return key; /* or maybe it was a WEP key */ if (key_idx < NUM_DEFAULT_KEYS) return rcu_dereference_check_key_mtx(local, sdata->keys[key_idx]); return NULL; } static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; int ret; mutex_lock(&local->sta_mtx); mutex_lock(&local->key_mtx); key = ieee80211_lookup_key(sdata, link_id, key_idx, pairwise, mac_addr); if (!key) { ret = -ENOENT; goto out_unlock; } ieee80211_key_free(key, sdata->vif.type == NL80211_IFTYPE_STATION); ret = 0; out_unlock: mutex_unlock(&local->key_mtx); mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params *params)) { struct ieee80211_sub_if_data *sdata; u8 seq[6] = {0}; struct key_params params; struct ieee80211_key *key; u64 pn64; u32 iv32; u16 iv16; int err = -ENOENT; struct ieee80211_key_seq kseq = {}; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); key = ieee80211_lookup_key(sdata, link_id, key_idx, pairwise, mac_addr); if (!key) goto out; memset(&params, 0, sizeof(params)); params.cipher = key->conf.cipher; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: pn64 = atomic64_read(&key->conf.tx_pn); iv32 = TKIP_PN_TO_IV32(pn64); iv16 = TKIP_PN_TO_IV16(pn64); if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && !(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) { drv_get_key_seq(sdata->local, key, &kseq); iv32 = kseq.tkip.iv32; iv16 = kseq.tkip.iv16; } seq[0] = iv16 & 0xff; seq[1] = (iv16 >> 8) & 0xff; seq[2] = iv32 & 0xff; seq[3] = (iv32 >> 8) & 0xff; seq[4] = (iv32 >> 16) & 0xff; seq[5] = (iv32 >> 24) & 0xff; params.seq = seq; params.seq_len = 6; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) != offsetof(typeof(kseq), aes_cmac)); fallthrough; case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) != offsetof(typeof(kseq), aes_gmac)); fallthrough; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: BUILD_BUG_ON(offsetof(typeof(kseq), ccmp) != offsetof(typeof(kseq), gcmp)); if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && !(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) { drv_get_key_seq(sdata->local, key, &kseq); memcpy(seq, kseq.ccmp.pn, 6); } else { pn64 = atomic64_read(&key->conf.tx_pn); seq[0] = pn64; seq[1] = pn64 >> 8; seq[2] = pn64 >> 16; seq[3] = pn64 >> 24; seq[4] = pn64 >> 32; seq[5] = pn64 >> 40; } params.seq = seq; params.seq_len = 6; break; default: if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) break; if (WARN_ON(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) break; drv_get_key_seq(sdata->local, key, &kseq); params.seq = kseq.hw.seq; params.seq_len = kseq.hw.seq_len; break; } params.key = key->conf.key; params.key_len = key->conf.keylen; callback(cookie, &params); err = 0; out: rcu_read_unlock(); return err; } static int ieee80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx, bool uni, bool multi) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link = ieee80211_link_or_deflink(sdata, link_id, false); if (IS_ERR(link)) return PTR_ERR(link); ieee80211_set_default_key(link, key_idx, uni, multi); return 0; } static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link = ieee80211_link_or_deflink(sdata, link_id, true); if (IS_ERR(link)) return PTR_ERR(link); ieee80211_set_default_mgmt_key(link, key_idx); return 0; } static int ieee80211_config_default_beacon_key(struct wiphy *wiphy, struct net_device *dev, int link_id, u8 key_idx) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link = ieee80211_link_or_deflink(sdata, link_id, true); if (IS_ERR(link)) return PTR_ERR(link); ieee80211_set_default_beacon_key(link, key_idx); return 0; } void sta_set_rate_info_tx(struct sta_info *sta, const struct ieee80211_tx_rate *rate, struct rate_info *rinfo) { rinfo->flags = 0; if (rate->flags & IEEE80211_TX_RC_MCS) { rinfo->flags |= RATE_INFO_FLAGS_MCS; rinfo->mcs = rate->idx; } else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS; rinfo->mcs = ieee80211_rate_get_vht_mcs(rate); rinfo->nss = ieee80211_rate_get_vht_nss(rate); } else { struct ieee80211_supported_band *sband; int shift = ieee80211_vif_get_shift(&sta->sdata->vif); u16 brate; sband = ieee80211_get_sband(sta->sdata); WARN_ON_ONCE(sband && !sband->bitrates); if (sband && sband->bitrates) { brate = sband->bitrates[rate->idx].bitrate; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); } } if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) rinfo->bw = RATE_INFO_BW_40; else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH) rinfo->bw = RATE_INFO_BW_80; else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH) rinfo->bw = RATE_INFO_BW_160; else rinfo->bw = RATE_INFO_BW_20; if (rate->flags & IEEE80211_TX_RC_SHORT_GI) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; } static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret = -ENOENT; mutex_lock(&local->sta_mtx); sta = sta_info_get_by_idx(sdata, idx); if (sta) { ret = 0; memcpy(mac, sta->sta.addr, ETH_ALEN); sta_set_sinfo(sta, sinfo, true); } mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev, int idx, struct survey_info *survey) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); return drv_get_survey(local, idx, survey); } static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct sta_info *sta; int ret = -ENOENT; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mac); if (sta) { ret = 0; sta_set_sinfo(sta, sinfo, true); } mutex_unlock(&local->sta_mtx); return ret; } static int ieee80211_set_monitor_channel(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata; int ret = 0; if (cfg80211_chandef_identical(&local->monitor_chandef, chandef)) return 0; if (local->use_chanctx) { sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata) { sdata_lock(sdata); mutex_lock(&local->mtx); ieee80211_link_release_channel(&sdata->deflink); ret = ieee80211_link_use_channel(&sdata->deflink, chandef, IEEE80211_CHANCTX_EXCLUSIVE); mutex_unlock(&local->mtx); sdata_unlock(sdata); } } else { mutex_lock(&local->mtx); if (local->open_count == local->monitors) { local->_oper_chandef = *chandef; ieee80211_hw_config(local, 0); } mutex_unlock(&local->mtx); } if (ret == 0) local->monitor_chandef = *chandef; return ret; } static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata, const u8 *resp, size_t resp_len, const struct ieee80211_csa_settings *csa, const struct ieee80211_color_change_settings *cca, struct ieee80211_link_data *link) { struct probe_resp *new, *old; if (!resp || !resp_len) return 1; old = sdata_dereference(link->u.ap.probe_resp, sdata); new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL); if (!new) return -ENOMEM; new->len = resp_len; memcpy(new->data, resp, resp_len); if (csa) memcpy(new->cntdwn_counter_offsets, csa->counter_offsets_presp, csa->n_counter_offsets_presp * sizeof(new->cntdwn_counter_offsets[0])); else if (cca) new->cntdwn_counter_offsets[0] = cca->counter_offset_presp; rcu_assign_pointer(link->u.ap.probe_resp, new); if (old) kfree_rcu(old, rcu_head); return 0; } static int ieee80211_set_fils_discovery(struct ieee80211_sub_if_data *sdata, struct cfg80211_fils_discovery *params, struct ieee80211_link_data *link, struct ieee80211_bss_conf *link_conf) { struct fils_discovery_data *new, *old = NULL; struct ieee80211_fils_discovery *fd; if (!params->tmpl || !params->tmpl_len) return -EINVAL; fd = &link_conf->fils_discovery; fd->min_interval = params->min_interval; fd->max_interval = params->max_interval; old = sdata_dereference(link->u.ap.fils_discovery, sdata); new = kzalloc(sizeof(*new) + params->tmpl_len, GFP_KERNEL); if (!new) return -ENOMEM; new->len = params->tmpl_len; memcpy(new->data, params->tmpl, params->tmpl_len); rcu_assign_pointer(link->u.ap.fils_discovery, new); if (old) kfree_rcu(old, rcu_head); return 0; } static int ieee80211_set_unsol_bcast_probe_resp(struct ieee80211_sub_if_data *sdata, struct cfg80211_unsol_bcast_probe_resp *params, struct ieee80211_link_data *link, struct ieee80211_bss_conf *link_conf) { struct unsol_bcast_probe_resp_data *new, *old = NULL; if (!params->tmpl || !params->tmpl_len) return -EINVAL; old = sdata_dereference(link->u.ap.unsol_bcast_probe_resp, sdata); new = kzalloc(sizeof(*new) + params->tmpl_len, GFP_KERNEL); if (!new) return -ENOMEM; new->len = params->tmpl_len; memcpy(new->data, params->tmpl, params->tmpl_len); rcu_assign_pointer(link->u.ap.unsol_bcast_probe_resp, new); if (old) kfree_rcu(old, rcu_head); link_conf->unsol_bcast_probe_resp_interval = params->interval; return 0; } static int ieee80211_set_ftm_responder_params( struct ieee80211_sub_if_data *sdata, const u8 *lci, size_t lci_len, const u8 *civicloc, size_t civicloc_len, struct ieee80211_bss_conf *link_conf) { struct ieee80211_ftm_responder_params *new, *old; u8 *pos; int len; if (!lci_len && !civicloc_len) return 0; old = link_conf->ftmr_params; len = lci_len + civicloc_len; new = kzalloc(sizeof(*new) + len, GFP_KERNEL); if (!new) return -ENOMEM; pos = (u8 *)(new + 1); if (lci_len) { new->lci_len = lci_len; new->lci = pos; memcpy(pos, lci, lci_len); pos += lci_len; } if (civicloc_len) { new->civicloc_len = civicloc_len; new->civicloc = pos; memcpy(pos, civicloc, civicloc_len); pos += civicloc_len; } link_conf->ftmr_params = new; kfree(old); return 0; } static int ieee80211_copy_mbssid_beacon(u8 *pos, struct cfg80211_mbssid_elems *dst, struct cfg80211_mbssid_elems *src) { int i, offset = 0; for (i = 0; i < src->cnt; i++) { memcpy(pos + offset, src->elem[i].data, src->elem[i].len); dst->elem[i].len = src->elem[i].len; dst->elem[i].data = pos + offset; offset += dst->elem[i].len; } dst->cnt = src->cnt; return offset; } static int ieee80211_copy_rnr_beacon(u8 *pos, struct cfg80211_rnr_elems *dst, struct cfg80211_rnr_elems *src) { int i, offset = 0; for (i = 0; i < src->cnt; i++) { memcpy(pos + offset, src->elem[i].data, src->elem[i].len); dst->elem[i].len = src->elem[i].len; dst->elem[i].data = pos + offset; offset += dst->elem[i].len; } dst->cnt = src->cnt; return offset; } static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, struct cfg80211_beacon_data *params, const struct ieee80211_csa_settings *csa, const struct ieee80211_color_change_settings *cca, u64 *changed) { struct cfg80211_mbssid_elems *mbssid = NULL; struct cfg80211_rnr_elems *rnr = NULL; struct beacon_data *new, *old; int new_head_len, new_tail_len; int size, err; u64 _changed = BSS_CHANGED_BEACON; struct ieee80211_bss_conf *link_conf = link->conf; old = sdata_dereference(link->u.ap.beacon, sdata); /* Need to have a beacon head if we don't have one yet */ if (!params->head && !old) return -EINVAL; /* new or old head? */ if (params->head) new_head_len = params->head_len; else new_head_len = old->head_len; /* new or old tail? */ if (params->tail || !old) /* params->tail_len will be zero for !params->tail */ new_tail_len = params->tail_len; else new_tail_len = old->tail_len; size = sizeof(*new) + new_head_len + new_tail_len; /* new or old multiple BSSID elements? */ if (params->mbssid_ies) { mbssid = params->mbssid_ies; size += struct_size(new->mbssid_ies, elem, mbssid->cnt); if (params->rnr_ies) { rnr = params->rnr_ies; size += struct_size(new->rnr_ies, elem, rnr->cnt); } size += ieee80211_get_mbssid_beacon_len(mbssid, rnr, mbssid->cnt); } else if (old && old->mbssid_ies) { mbssid = old->mbssid_ies; size += struct_size(new->mbssid_ies, elem, mbssid->cnt); if (old && old->rnr_ies) { rnr = old->rnr_ies; size += struct_size(new->rnr_ies, elem, rnr->cnt); } size += ieee80211_get_mbssid_beacon_len(mbssid, rnr, mbssid->cnt); } new = kzalloc(size, GFP_KERNEL); if (!new) return -ENOMEM; /* start filling the new info now */ /* * pointers go into the block we allocated, * memory is | beacon_data | head | tail | mbssid_ies | rnr_ies */ new->head = ((u8 *) new) + sizeof(*new); new->tail = new->head + new_head_len; new->head_len = new_head_len; new->tail_len = new_tail_len; /* copy in optional mbssid_ies */ if (mbssid) { u8 *pos = new->tail + new->tail_len; new->mbssid_ies = (void *)pos; pos += struct_size(new->mbssid_ies, elem, mbssid->cnt); pos += ieee80211_copy_mbssid_beacon(pos, new->mbssid_ies, mbssid); if (rnr) { new->rnr_ies = (void *)pos; pos += struct_size(new->rnr_ies, elem, rnr->cnt); ieee80211_copy_rnr_beacon(pos, new->rnr_ies, rnr); } /* update bssid_indicator */ link_conf->bssid_indicator = ilog2(__roundup_pow_of_two(mbssid->cnt + 1)); } if (csa) { new->cntdwn_current_counter = csa->count; memcpy(new->cntdwn_counter_offsets, csa->counter_offsets_beacon, csa->n_counter_offsets_beacon * sizeof(new->cntdwn_counter_offsets[0])); } else if (cca) { new->cntdwn_current_counter = cca->count; new->cntdwn_counter_offsets[0] = cca->counter_offset_beacon; } /* copy in head */ if (params->head) memcpy(new->head, params->head, new_head_len); else memcpy(new->head, old->head, new_head_len); /* copy in optional tail */ if (params->tail) memcpy(new->tail, params->tail, new_tail_len); else if (old) memcpy(new->tail, old->tail, new_tail_len); err = ieee80211_set_probe_resp(sdata, params->probe_resp, params->probe_resp_len, csa, cca, link); if (err < 0) { kfree(new); return err; } if (err == 0) _changed |= BSS_CHANGED_AP_PROBE_RESP; if (params->ftm_responder != -1) { link_conf->ftm_responder = params->ftm_responder; err = ieee80211_set_ftm_responder_params(sdata, params->lci, params->lci_len, params->civicloc, params->civicloc_len, link_conf); if (err < 0) { kfree(new); return err; } _changed |= BSS_CHANGED_FTM_RESPONDER; } rcu_assign_pointer(link->u.ap.beacon, new); sdata->u.ap.active = true; if (old) kfree_rcu(old, rcu_head); *changed |= _changed; return 0; } static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ap_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct beacon_data *old; struct ieee80211_sub_if_data *vlan; u64 changed = BSS_CHANGED_BEACON_INT | BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | BSS_CHANGED_P2P_PS | BSS_CHANGED_TXPOWER | BSS_CHANGED_TWT; int i, err; int prev_beacon_int; unsigned int link_id = params->beacon.link_id; struct ieee80211_link_data *link; struct ieee80211_bss_conf *link_conf; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) return -ENOLINK; link_conf = link->conf; old = sdata_dereference(link->u.ap.beacon, sdata); if (old) return -EALREADY; if (params->smps_mode != NL80211_SMPS_OFF) return -ENOTSUPP; link->smps_mode = IEEE80211_SMPS_OFF; link->needed_rx_chains = sdata->local->rx_chains; prev_beacon_int = link_conf->beacon_int; link_conf->beacon_int = params->beacon_interval; if (params->ht_cap) link_conf->ht_ldpc = params->ht_cap->cap_info & cpu_to_le16(IEEE80211_HT_CAP_LDPC_CODING); if (params->vht_cap) { link_conf->vht_ldpc = params->vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_RXLDPC); link_conf->vht_su_beamformer = params->vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); link_conf->vht_su_beamformee = params->vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); link_conf->vht_mu_beamformer = params->vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); link_conf->vht_mu_beamformee = params->vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); } if (params->he_cap && params->he_oper) { link_conf->he_support = true; link_conf->htc_trig_based_pkt_ext = le32_get_bits(params->he_oper->he_oper_params, IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK); link_conf->frame_time_rts_th = le32_get_bits(params->he_oper->he_oper_params, IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); changed |= BSS_CHANGED_HE_OBSS_PD; if (params->beacon.he_bss_color.enabled) changed |= BSS_CHANGED_HE_BSS_COLOR; } if (params->he_cap) { link_conf->he_ldpc = params->he_cap->phy_cap_info[1] & IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD; link_conf->he_su_beamformer = params->he_cap->phy_cap_info[3] & IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER; link_conf->he_su_beamformee = params->he_cap->phy_cap_info[4] & IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE; link_conf->he_mu_beamformer = params->he_cap->phy_cap_info[4] & IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; link_conf->he_full_ul_mumimo = params->he_cap->phy_cap_info[2] & IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO; } if (params->eht_cap) { if (!link_conf->he_support) return -EOPNOTSUPP; link_conf->eht_support = true; link_conf->eht_puncturing = params->punct_bitmap; changed |= BSS_CHANGED_EHT_PUNCTURING; link_conf->eht_su_beamformer = params->eht_cap->fixed.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER; link_conf->eht_su_beamformee = params->eht_cap->fixed.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE; link_conf->eht_mu_beamformer = params->eht_cap->fixed.phy_cap_info[7] & (IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ); } else { link_conf->eht_su_beamformer = false; link_conf->eht_su_beamformee = false; link_conf->eht_mu_beamformer = false; } if (sdata->vif.type == NL80211_IFTYPE_AP && params->mbssid_config.tx_wdev) { err = ieee80211_set_ap_mbssid_options(sdata, params->mbssid_config, link_conf); if (err) return err; } mutex_lock(&local->mtx); err = ieee80211_link_use_channel(link, &params->chandef, IEEE80211_CHANCTX_SHARED); if (!err) ieee80211_link_copy_chanctx_to_vlans(link, false); mutex_unlock(&local->mtx); if (err) { link_conf->beacon_int = prev_beacon_int; return err; } /* * Apply control port protocol, this allows us to * not encrypt dynamic WEP control frames. */ sdata->control_port_protocol = params->crypto.control_port_ethertype; sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt; sdata->control_port_over_nl80211 = params->crypto.control_port_over_nl80211; sdata->control_port_no_preauth = params->crypto.control_port_no_preauth; list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { vlan->control_port_protocol = params->crypto.control_port_ethertype; vlan->control_port_no_encrypt = params->crypto.control_port_no_encrypt; vlan->control_port_over_nl80211 = params->crypto.control_port_over_nl80211; vlan->control_port_no_preauth = params->crypto.control_port_no_preauth; } link_conf->dtim_period = params->dtim_period; link_conf->enable_beacon = true; link_conf->allow_p2p_go_ps = sdata->vif.p2p; link_conf->twt_responder = params->twt_responder; link_conf->he_obss_pd = params->he_obss_pd; link_conf->he_bss_color = params->beacon.he_bss_color; sdata->vif.cfg.s1g = params->chandef.chan->band == NL80211_BAND_S1GHZ; sdata->vif.cfg.ssid_len = params->ssid_len; if (params->ssid_len) memcpy(sdata->vif.cfg.ssid, params->ssid, params->ssid_len); link_conf->hidden_ssid = (params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE); memset(&link_conf->p2p_noa_attr, 0, sizeof(link_conf->p2p_noa_attr)); link_conf->p2p_noa_attr.oppps_ctwindow = params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK; if (params->p2p_opp_ps) link_conf->p2p_noa_attr.oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; sdata->beacon_rate_set = false; if (wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY)) { for (i = 0; i < NUM_NL80211_BANDS; i++) { sdata->beacon_rateidx_mask[i] = params->beacon_rate.control[i].legacy; if (sdata->beacon_rateidx_mask[i]) sdata->beacon_rate_set = true; } } if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) link_conf->beacon_tx_rate = params->beacon_rate; err = ieee80211_assign_beacon(sdata, link, &params->beacon, NULL, NULL, &changed); if (err < 0) goto error; if (params->fils_discovery.max_interval) { err = ieee80211_set_fils_discovery(sdata, &params->fils_discovery, link, link_conf); if (err < 0) goto error; changed |= BSS_CHANGED_FILS_DISCOVERY; } if (params->unsol_bcast_probe_resp.interval) { err = ieee80211_set_unsol_bcast_probe_resp(sdata, &params->unsol_bcast_probe_resp, link, link_conf); if (err < 0) goto error; changed |= BSS_CHANGED_UNSOL_BCAST_PROBE_RESP; } err = drv_start_ap(sdata->local, sdata, link_conf); if (err) { old = sdata_dereference(link->u.ap.beacon, sdata); if (old) kfree_rcu(old, rcu_head); RCU_INIT_POINTER(link->u.ap.beacon, NULL); sdata->u.ap.active = false; goto error; } ieee80211_recalc_dtim(local, sdata); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_SSID); ieee80211_link_info_change_notify(sdata, link, changed); netif_carrier_on(dev); list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) netif_carrier_on(vlan->dev); return 0; error: mutex_lock(&local->mtx); ieee80211_link_release_channel(link); mutex_unlock(&local->mtx); return err; } static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_beacon_data *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link; struct beacon_data *old; int err; struct ieee80211_bss_conf *link_conf; u64 changed = 0; sdata_assert_lock(sdata); link = sdata_dereference(sdata->link[params->link_id], sdata); if (!link) return -ENOLINK; link_conf = link->conf; /* don't allow changing the beacon while a countdown is in place - offset * of channel switch counter may change */ if (link_conf->csa_active || link_conf->color_change_active) return -EBUSY; old = sdata_dereference(link->u.ap.beacon, sdata); if (!old) return -ENOENT; err = ieee80211_assign_beacon(sdata, link, params, NULL, NULL, &changed); if (err < 0) return err; if (params->he_bss_color_valid && params->he_bss_color.enabled != link_conf->he_bss_color.enabled) { link_conf->he_bss_color.enabled = params->he_bss_color.enabled; changed |= BSS_CHANGED_HE_BSS_COLOR; } ieee80211_link_info_change_notify(sdata, link, changed); return 0; } static void ieee80211_free_next_beacon(struct ieee80211_link_data *link) { if (!link->u.ap.next_beacon) return; kfree(link->u.ap.next_beacon->mbssid_ies); kfree(link->u.ap.next_beacon->rnr_ies); kfree(link->u.ap.next_beacon); link->u.ap.next_beacon = NULL; } static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_sub_if_data *vlan; struct ieee80211_local *local = sdata->local; struct beacon_data *old_beacon; struct probe_resp *old_probe_resp; struct fils_discovery_data *old_fils_discovery; struct unsol_bcast_probe_resp_data *old_unsol_bcast_probe_resp; struct cfg80211_chan_def chandef; struct ieee80211_link_data *link = sdata_dereference(sdata->link[link_id], sdata); struct ieee80211_bss_conf *link_conf = link->conf; sdata_assert_lock(sdata); old_beacon = sdata_dereference(link->u.ap.beacon, sdata); if (!old_beacon) return -ENOENT; old_probe_resp = sdata_dereference(link->u.ap.probe_resp, sdata); old_fils_discovery = sdata_dereference(link->u.ap.fils_discovery, sdata); old_unsol_bcast_probe_resp = sdata_dereference(link->u.ap.unsol_bcast_probe_resp, sdata); /* abort any running channel switch or color change */ mutex_lock(&local->mtx); link_conf->csa_active = false; link_conf->color_change_active = false; if (link->csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); link->csa_block_tx = false; } mutex_unlock(&local->mtx); ieee80211_free_next_beacon(link); /* turn off carrier for this interface and dependent VLANs */ list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) netif_carrier_off(vlan->dev); netif_carrier_off(dev); /* remove beacon and probe response */ sdata->u.ap.active = false; RCU_INIT_POINTER(link->u.ap.beacon, NULL); RCU_INIT_POINTER(link->u.ap.probe_resp, NULL); RCU_INIT_POINTER(link->u.ap.fils_discovery, NULL); RCU_INIT_POINTER(link->u.ap.unsol_bcast_probe_resp, NULL); kfree_rcu(old_beacon, rcu_head); if (old_probe_resp) kfree_rcu(old_probe_resp, rcu_head); if (old_fils_discovery) kfree_rcu(old_fils_discovery, rcu_head); if (old_unsol_bcast_probe_resp) kfree_rcu(old_unsol_bcast_probe_resp, rcu_head); kfree(link_conf->ftmr_params); link_conf->ftmr_params = NULL; sdata->vif.mbssid_tx_vif = NULL; link_conf->bssid_index = 0; link_conf->nontransmitted = false; link_conf->ema_ap = false; link_conf->bssid_indicator = 0; __sta_info_flush(sdata, true); ieee80211_free_keys(sdata, true); link_conf->enable_beacon = false; sdata->beacon_rate_set = false; sdata->vif.cfg.ssid_len = 0; clear_bit(SDATA_STATE_OFFCHANNEL_BEACON_STOPPED, &sdata->state); ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_BEACON_ENABLED); if (sdata->wdev.cac_started) { chandef = link_conf->chandef; cancel_delayed_work_sync(&link->dfs_cac_timer_work); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_ABORTED, GFP_KERNEL); } drv_stop_ap(sdata->local, sdata, link_conf); /* free all potentially still buffered bcast frames */ local->total_ps_buffered -= skb_queue_len(&sdata->u.ap.ps.bc_buf); ieee80211_purge_tx_queue(&local->hw, &sdata->u.ap.ps.bc_buf); mutex_lock(&local->mtx); ieee80211_link_copy_chanctx_to_vlans(link, true); ieee80211_link_release_channel(link); mutex_unlock(&local->mtx); return 0; } static int sta_apply_auth_flags(struct ieee80211_local *local, struct sta_info *sta, u32 mask, u32 set) { int ret; if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) && set & BIT(NL80211_STA_FLAG_AUTHENTICATED) && !test_sta_flag(sta, WLAN_STA_AUTH)) { ret = sta_info_move_state(sta, IEEE80211_STA_AUTH); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) && set & BIT(NL80211_STA_FLAG_ASSOCIATED) && !test_sta_flag(sta, WLAN_STA_ASSOC)) { /* * When peer becomes associated, init rate control as * well. Some drivers require rate control initialized * before drv_sta_state() is called. */ if (!test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) rate_control_rate_init(sta); ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) { if (set & BIT(NL80211_STA_FLAG_AUTHORIZED)) ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); else ret = 0; if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_ASSOCIATED) && !(set & BIT(NL80211_STA_FLAG_ASSOCIATED)) && test_sta_flag(sta, WLAN_STA_ASSOC)) { ret = sta_info_move_state(sta, IEEE80211_STA_AUTH); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED) && !(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) && test_sta_flag(sta, WLAN_STA_AUTH)) { ret = sta_info_move_state(sta, IEEE80211_STA_NONE); if (ret) return ret; } return 0; } static void sta_apply_mesh_params(struct ieee80211_local *local, struct sta_info *sta, struct station_parameters *params) { #ifdef CONFIG_MAC80211_MESH struct ieee80211_sub_if_data *sdata = sta->sdata; u64 changed = 0; if (params->sta_modify_mask & STATION_PARAM_APPLY_PLINK_STATE) { switch (params->plink_state) { case NL80211_PLINK_ESTAB: if (sta->mesh->plink_state != NL80211_PLINK_ESTAB) changed = mesh_plink_inc_estab_count(sdata); sta->mesh->plink_state = params->plink_state; sta->mesh->aid = params->peer_aid; ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, sdata->u.mesh.mshcfg.power_mode); ewma_mesh_tx_rate_avg_init(&sta->mesh->tx_rate_avg); /* init at low value */ ewma_mesh_tx_rate_avg_add(&sta->mesh->tx_rate_avg, 10); break; case NL80211_PLINK_LISTEN: case NL80211_PLINK_BLOCKED: case NL80211_PLINK_OPN_SNT: case NL80211_PLINK_OPN_RCVD: case NL80211_PLINK_CNF_RCVD: case NL80211_PLINK_HOLDING: if (sta->mesh->plink_state == NL80211_PLINK_ESTAB) changed = mesh_plink_dec_estab_count(sdata); sta->mesh->plink_state = params->plink_state; ieee80211_mps_sta_status_update(sta); changed |= ieee80211_mps_set_sta_local_pm(sta, NL80211_MESH_POWER_UNKNOWN); break; default: /* nothing */ break; } } switch (params->plink_action) { case NL80211_PLINK_ACTION_NO_ACTION: /* nothing */ break; case NL80211_PLINK_ACTION_OPEN: changed |= mesh_plink_open(sta); break; case NL80211_PLINK_ACTION_BLOCK: changed |= mesh_plink_block(sta); break; } if (params->local_pm) changed |= ieee80211_mps_set_sta_local_pm(sta, params->local_pm); ieee80211_mbss_info_change_notify(sdata, changed); #endif } static int sta_link_apply_parameters(struct ieee80211_local *local, struct sta_info *sta, bool new_link, struct link_station_parameters *params) { int ret = 0; struct ieee80211_supported_band *sband; struct ieee80211_sub_if_data *sdata = sta->sdata; u32 link_id = params->link_id < 0 ? 0 : params->link_id; struct ieee80211_link_data *link = sdata_dereference(sdata->link[link_id], sdata); struct link_sta_info *link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->sta_mtx)); /* * If there are no changes, then accept a link that doesn't exist, * unless it's a new link. */ if (params->link_id < 0 && !new_link && !params->link_mac && !params->txpwr_set && !params->supported_rates_len && !params->ht_capa && !params->vht_capa && !params->he_capa && !params->eht_capa && !params->opmode_notif_used) return 0; if (!link || !link_sta) return -EINVAL; sband = ieee80211_get_link_sband(link); if (!sband) return -EINVAL; if (params->link_mac) { if (new_link) { memcpy(link_sta->addr, params->link_mac, ETH_ALEN); memcpy(link_sta->pub->addr, params->link_mac, ETH_ALEN); } else if (!ether_addr_equal(link_sta->addr, params->link_mac)) { return -EINVAL; } } else if (new_link) { return -EINVAL; } if (params->txpwr_set) { link_sta->pub->txpwr.type = params->txpwr.type; if (params->txpwr.type == NL80211_TX_POWER_LIMITED) link_sta->pub->txpwr.power = params->txpwr.power; ret = drv_sta_set_txpwr(local, sdata, sta); if (ret) return ret; } if (params->supported_rates && params->supported_rates_len) { ieee80211_parse_bitrates(link->conf->chandef.width, sband, params->supported_rates, params->supported_rates_len, &link_sta->pub->supp_rates[sband->band]); } if (params->ht_capa) ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, params->ht_capa, link_sta); /* VHT can override some HT caps such as the A-MSDU max length */ if (params->vht_capa) ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, params->vht_capa, link_sta); if (params->he_capa) ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband, (void *)params->he_capa, params->he_capa_len, (void *)params->he_6ghz_capa, link_sta); if (params->he_capa && params->eht_capa) ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband, (u8 *)params->he_capa, params->he_capa_len, params->eht_capa, params->eht_capa_len, link_sta); if (params->opmode_notif_used) { /* returned value is only needed for rc update, but the * rc isn't initialized here yet, so ignore it */ __ieee80211_vht_handle_opmode(sdata, link_sta, params->opmode_notif, sband->band); } return ret; } static int sta_apply_parameters(struct ieee80211_local *local, struct sta_info *sta, struct station_parameters *params) { struct ieee80211_sub_if_data *sdata = sta->sdata; u32 mask, set; int ret = 0; mask = params->sta_flags_mask; set = params->sta_flags_set; if (ieee80211_vif_is_mesh(&sdata->vif)) { /* * In mesh mode, ASSOCIATED isn't part of the nl80211 * API but must follow AUTHENTICATED for driver state. */ if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) mask |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) set |= BIT(NL80211_STA_FLAG_ASSOCIATED); } else if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* * TDLS -- everything follows authorized, but * only becoming authorized is possible, not * going back */ if (set & BIT(NL80211_STA_FLAG_AUTHORIZED)) { set |= BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED); mask |= BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED); } } if (mask & BIT(NL80211_STA_FLAG_WME) && local->hw.queues >= IEEE80211_NUM_ACS) sta->sta.wme = set & BIT(NL80211_STA_FLAG_WME); /* auth flags will be set later for TDLS, * and for unassociated stations that move to associated */ if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER) && !((mask & BIT(NL80211_STA_FLAG_ASSOCIATED)) && (set & BIT(NL80211_STA_FLAG_ASSOCIATED)))) { ret = sta_apply_auth_flags(local, sta, mask, set); if (ret) return ret; } if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) { if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE); else clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE); } if (mask & BIT(NL80211_STA_FLAG_MFP)) { sta->sta.mfp = !!(set & BIT(NL80211_STA_FLAG_MFP)); if (set & BIT(NL80211_STA_FLAG_MFP)) set_sta_flag(sta, WLAN_STA_MFP); else clear_sta_flag(sta, WLAN_STA_MFP); } if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) { if (set & BIT(NL80211_STA_FLAG_TDLS_PEER)) set_sta_flag(sta, WLAN_STA_TDLS_PEER); else clear_sta_flag(sta, WLAN_STA_TDLS_PEER); } /* mark TDLS channel switch support, if the AP allows it */ if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && !sdata->deflink.u.mgd.tdls_chan_switch_prohibited && params->ext_capab_len >= 4 && params->ext_capab[3] & WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH) set_sta_flag(sta, WLAN_STA_TDLS_CHAN_SWITCH); if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && !sdata->u.mgd.tdls_wider_bw_prohibited && ieee80211_hw_check(&local->hw, TDLS_WIDER_BW) && params->ext_capab_len >= 8 && params->ext_capab[7] & WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED) set_sta_flag(sta, WLAN_STA_TDLS_WIDER_BW); if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) { sta->sta.uapsd_queues = params->uapsd_queues; sta->sta.max_sp = params->max_sp; } ieee80211_sta_set_max_amsdu_subframes(sta, params->ext_capab, params->ext_capab_len); /* * cfg80211 validates this (1-2007) and allows setting the AID * only when creating a new station entry */ if (params->aid) sta->sta.aid = params->aid; /* * Some of the following updates would be racy if called on an * existing station, via ieee80211_change_station(). However, * all such changes are rejected by cfg80211 except for updates * changing the supported rates on an existing but not yet used * TDLS peer. */ if (params->listen_interval >= 0) sta->listen_interval = params->listen_interval; ret = sta_link_apply_parameters(local, sta, false, &params->link_sta_params); if (ret) return ret; if (params->support_p2p_ps >= 0) sta->sta.support_p2p_ps = params->support_p2p_ps; if (ieee80211_vif_is_mesh(&sdata->vif)) sta_apply_mesh_params(local, sta, params); if (params->airtime_weight) sta->airtime_weight = params->airtime_weight; /* set the STA state after all sta info from usermode has been set */ if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) || set & BIT(NL80211_STA_FLAG_ASSOCIATED)) { ret = sta_apply_auth_flags(local, sta, mask, set); if (ret) return ret; } /* Mark the STA as MLO if MLD MAC address is available */ if (params->link_sta_params.mld_mac) sta->sta.mlo = true; return 0; } static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct sta_info *sta; struct ieee80211_sub_if_data *sdata; int err; if (params->vlan) { sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan); if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && sdata->vif.type != NL80211_IFTYPE_AP) return -EINVAL; } else sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (ether_addr_equal(mac, sdata->vif.addr)) return -EINVAL; if (!is_valid_ether_addr(mac)) return -EINVAL; if (params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER) && sdata->vif.type == NL80211_IFTYPE_STATION && !sdata->u.mgd.associated) return -EINVAL; /* * If we have a link ID, it can be a non-MLO station on an AP MLD, * but we need to have a link_mac in that case as well, so use the * STA's MAC address in that case. */ if (params->link_sta_params.link_id >= 0) sta = sta_info_alloc_with_link(sdata, mac, params->link_sta_params.link_id, params->link_sta_params.link_mac ?: mac, GFP_KERNEL); else sta = sta_info_alloc(sdata, mac, GFP_KERNEL); if (!sta) return -ENOMEM; if (params->sta_flags_set & BIT(NL80211_STA_FLAG_TDLS_PEER)) sta->sta.tdls = true; /* Though the mutex is not needed here (since the station is not * visible yet), sta_apply_parameters (and inner functions) require * the mutex due to other paths. */ mutex_lock(&local->sta_mtx); err = sta_apply_parameters(local, sta, params); mutex_unlock(&local->sta_mtx); if (err) { sta_info_free(local, sta); return err; } /* * for TDLS and for unassociated station, rate control should be * initialized only when rates are known and station is marked * authorized/associated */ if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER) && test_sta_flag(sta, WLAN_STA_ASSOC)) rate_control_rate_init(sta); return sta_info_insert(sta); } static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev, struct station_del_parameters *params) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (params->mac) return sta_info_destroy_addr_bss(sdata, params->mac); sta_info_flush(sdata); return 0; } static int ieee80211_change_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wiphy_priv(wiphy); struct sta_info *sta; struct ieee80211_sub_if_data *vlansdata; enum cfg80211_station_type statype; int err; mutex_lock(&local->sta_mtx); sta = sta_info_get_bss(sdata, mac); if (!sta) { err = -ENOENT; goto out_err; } switch (sdata->vif.type) { case NL80211_IFTYPE_MESH_POINT: if (sdata->u.mesh.user_mpm) statype = CFG80211_STA_MESH_PEER_USER; else statype = CFG80211_STA_MESH_PEER_KERNEL; break; case NL80211_IFTYPE_ADHOC: statype = CFG80211_STA_IBSS; break; case NL80211_IFTYPE_STATION: if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { statype = CFG80211_STA_AP_STA; break; } if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) statype = CFG80211_STA_TDLS_PEER_ACTIVE; else statype = CFG80211_STA_TDLS_PEER_SETUP; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: if (test_sta_flag(sta, WLAN_STA_ASSOC)) statype = CFG80211_STA_AP_CLIENT; else statype = CFG80211_STA_AP_CLIENT_UNASSOC; break; default: err = -EOPNOTSUPP; goto out_err; } err = cfg80211_check_station_change(wiphy, params, statype); if (err) goto out_err; if (params->vlan && params->vlan != sta->sdata->dev) { vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan); if (params->vlan->ieee80211_ptr->use_4addr) { if (vlansdata->u.vlan.sta) { err = -EBUSY; goto out_err; } rcu_assign_pointer(vlansdata->u.vlan.sta, sta); __ieee80211_check_fast_rx_iface(vlansdata); drv_sta_set_4addr(local, sta->sdata, &sta->sta, true); } if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sta->sdata->u.vlan.sta) { ieee80211_clear_fast_rx(sta); RCU_INIT_POINTER(sta->sdata->u.vlan.sta, NULL); } if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) ieee80211_vif_dec_num_mcast(sta->sdata); sta->sdata = vlansdata; ieee80211_check_fast_xmit(sta); if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { ieee80211_vif_inc_num_mcast(sta->sdata); cfg80211_send_layer2_update(sta->sdata->dev, sta->sta.addr); } } /* we use sta_info_get_bss() so this might be different */ if (sdata != sta->sdata) { mutex_lock_nested(&sta->sdata->wdev.mtx, 1); err = sta_apply_parameters(local, sta, params); mutex_unlock(&sta->sdata->wdev.mtx); } else { err = sta_apply_parameters(local, sta, params); } if (err) goto out_err; mutex_unlock(&local->sta_mtx); if (sdata->vif.type == NL80211_IFTYPE_STATION && params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) { ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); } return 0; out_err: mutex_unlock(&local->sta_mtx); return err; } #ifdef CONFIG_MAC80211_MESH static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev, const u8 *dst, const u8 *next_hop) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); sta = sta_info_get(sdata, next_hop); if (!sta) { rcu_read_unlock(); return -ENOENT; } mpath = mesh_path_add(sdata, dst); if (IS_ERR(mpath)) { rcu_read_unlock(); return PTR_ERR(mpath); } mesh_path_fix_nexthop(mpath, sta); rcu_read_unlock(); return 0; } static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev, const u8 *dst) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (dst) return mesh_path_del(sdata, dst); mesh_path_flush_by_iface(sdata); return 0; } static int ieee80211_change_mpath(struct wiphy *wiphy, struct net_device *dev, const u8 *dst, const u8 *next_hop) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; struct sta_info *sta; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); sta = sta_info_get(sdata, next_hop); if (!sta) { rcu_read_unlock(); return -ENOENT; } mpath = mesh_path_lookup(sdata, dst); if (!mpath) { rcu_read_unlock(); return -ENOENT; } mesh_path_fix_nexthop(mpath, sta); rcu_read_unlock(); return 0; } static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop, struct mpath_info *pinfo) { struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop); if (next_hop_sta) memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN); else eth_zero_addr(next_hop); memset(pinfo, 0, sizeof(*pinfo)); pinfo->generation = mpath->sdata->u.mesh.mesh_paths_generation; pinfo->filled = MPATH_INFO_FRAME_QLEN | MPATH_INFO_SN | MPATH_INFO_METRIC | MPATH_INFO_EXPTIME | MPATH_INFO_DISCOVERY_TIMEOUT | MPATH_INFO_DISCOVERY_RETRIES | MPATH_INFO_FLAGS | MPATH_INFO_HOP_COUNT | MPATH_INFO_PATH_CHANGE; pinfo->frame_qlen = mpath->frame_queue.qlen; pinfo->sn = mpath->sn; pinfo->metric = mpath->metric; if (time_before(jiffies, mpath->exp_time)) pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies); pinfo->discovery_timeout = jiffies_to_msecs(mpath->discovery_timeout); pinfo->discovery_retries = mpath->discovery_retries; if (mpath->flags & MESH_PATH_ACTIVE) pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE; if (mpath->flags & MESH_PATH_RESOLVING) pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING; if (mpath->flags & MESH_PATH_SN_VALID) pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID; if (mpath->flags & MESH_PATH_FIXED) pinfo->flags |= NL80211_MPATH_FLAG_FIXED; if (mpath->flags & MESH_PATH_RESOLVED) pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED; pinfo->hop_count = mpath->hop_count; pinfo->path_change_count = mpath->path_change_count; } static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mesh_path_lookup(sdata, dst); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpath_set_pinfo(mpath, next_hop, pinfo); rcu_read_unlock(); return 0; } static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mesh_path_lookup_by_idx(sdata, idx); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpath_set_pinfo(mpath, next_hop, pinfo); rcu_read_unlock(); return 0; } static void mpp_set_pinfo(struct mesh_path *mpath, u8 *mpp, struct mpath_info *pinfo) { memset(pinfo, 0, sizeof(*pinfo)); memcpy(mpp, mpath->mpp, ETH_ALEN); pinfo->generation = mpath->sdata->u.mesh.mpp_paths_generation; } static int ieee80211_get_mpp(struct wiphy *wiphy, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mpp_path_lookup(sdata, dst); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpp_set_pinfo(mpath, mpp, pinfo); rcu_read_unlock(); return 0; } static int ieee80211_dump_mpp(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { struct ieee80211_sub_if_data *sdata; struct mesh_path *mpath; sdata = IEEE80211_DEV_TO_SUB_IF(dev); rcu_read_lock(); mpath = mpp_path_lookup_by_idx(sdata, idx); if (!mpath) { rcu_read_unlock(); return -ENOENT; } memcpy(dst, mpath->dst, ETH_ALEN); mpp_set_pinfo(mpath, mpp, pinfo); rcu_read_unlock(); return 0; } static int ieee80211_get_mesh_config(struct wiphy *wiphy, struct net_device *dev, struct mesh_config *conf) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config)); return 0; } static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask) { return (mask >> (parm-1)) & 0x1; } static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh, const struct mesh_setup *setup) { u8 *new_ie; struct ieee80211_sub_if_data *sdata = container_of(ifmsh, struct ieee80211_sub_if_data, u.mesh); int i; /* allocate information elements */ new_ie = NULL; if (setup->ie_len) { new_ie = kmemdup(setup->ie, setup->ie_len, GFP_KERNEL); if (!new_ie) return -ENOMEM; } ifmsh->ie_len = setup->ie_len; ifmsh->ie = new_ie; /* now copy the rest of the setup parameters */ ifmsh->mesh_id_len = setup->mesh_id_len; memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len); ifmsh->mesh_sp_id = setup->sync_method; ifmsh->mesh_pp_id = setup->path_sel_proto; ifmsh->mesh_pm_id = setup->path_metric; ifmsh->user_mpm = setup->user_mpm; ifmsh->mesh_auth_id = setup->auth_id; ifmsh->security = IEEE80211_MESH_SEC_NONE; ifmsh->userspace_handles_dfs = setup->userspace_handles_dfs; if (setup->is_authenticated) ifmsh->security |= IEEE80211_MESH_SEC_AUTHED; if (setup->is_secure) ifmsh->security |= IEEE80211_MESH_SEC_SECURED; /* mcast rate setting in Mesh Node */ memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate, sizeof(setup->mcast_rate)); sdata->vif.bss_conf.basic_rates = setup->basic_rates; sdata->vif.bss_conf.beacon_int = setup->beacon_interval; sdata->vif.bss_conf.dtim_period = setup->dtim_period; sdata->beacon_rate_set = false; if (wiphy_ext_feature_isset(sdata->local->hw.wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY)) { for (i = 0; i < NUM_NL80211_BANDS; i++) { sdata->beacon_rateidx_mask[i] = setup->beacon_rate.control[i].legacy; if (sdata->beacon_rateidx_mask[i]) sdata->beacon_rate_set = true; } } return 0; } static int ieee80211_update_mesh_config(struct wiphy *wiphy, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { struct mesh_config *conf; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_mesh *ifmsh; sdata = IEEE80211_DEV_TO_SUB_IF(dev); ifmsh = &sdata->u.mesh; /* Set the config options which we are interested in setting */ conf = &(sdata->u.mesh.mshcfg); if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask)) conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask)) conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask)) conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask)) conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks; if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask)) conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries; if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask)) conf->dot11MeshTTL = nconf->dot11MeshTTL; if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask)) conf->element_ttl = nconf->element_ttl; if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask)) { if (ifmsh->user_mpm) return -EBUSY; conf->auto_open_plinks = nconf->auto_open_plinks; } if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask)) conf->dot11MeshNbrOffsetMaxNeighbor = nconf->dot11MeshNbrOffsetMaxNeighbor; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask)) conf->dot11MeshHWMPmaxPREQretries = nconf->dot11MeshHWMPmaxPREQretries; if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask)) conf->path_refresh_time = nconf->path_refresh_time; if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask)) conf->min_discovery_timeout = nconf->min_discovery_timeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask)) conf->dot11MeshHWMPactivePathTimeout = nconf->dot11MeshHWMPactivePathTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask)) conf->dot11MeshHWMPpreqMinInterval = nconf->dot11MeshHWMPpreqMinInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask)) conf->dot11MeshHWMPperrMinInterval = nconf->dot11MeshHWMPperrMinInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME, mask)) conf->dot11MeshHWMPnetDiameterTraversalTime = nconf->dot11MeshHWMPnetDiameterTraversalTime; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) { conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode; ieee80211_mesh_root_setup(ifmsh); } if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) { /* our current gate announcement implementation rides on root * announcements, so require this ifmsh to also be a root node * */ if (nconf->dot11MeshGateAnnouncementProtocol && !(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) { conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN; ieee80211_mesh_root_setup(ifmsh); } conf->dot11MeshGateAnnouncementProtocol = nconf->dot11MeshGateAnnouncementProtocol; } if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask)) conf->dot11MeshHWMPRannInterval = nconf->dot11MeshHWMPRannInterval; if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask)) conf->dot11MeshForwarding = nconf->dot11MeshForwarding; if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) { /* our RSSI threshold implementation is supported only for * devices that report signal in dBm. */ if (!ieee80211_hw_check(&sdata->local->hw, SIGNAL_DBM)) return -ENOTSUPP; conf->rssi_threshold = nconf->rssi_threshold; } if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) { conf->ht_opmode = nconf->ht_opmode; sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode; ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_HT); } if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask)) conf->dot11MeshHWMPactivePathToRootTimeout = nconf->dot11MeshHWMPactivePathToRootTimeout; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask)) conf->dot11MeshHWMProotInterval = nconf->dot11MeshHWMProotInterval; if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask)) conf->dot11MeshHWMPconfirmationInterval = nconf->dot11MeshHWMPconfirmationInterval; if (_chg_mesh_attr(NL80211_MESHCONF_POWER_MODE, mask)) { conf->power_mode = nconf->power_mode; ieee80211_mps_local_status_update(sdata); } if (_chg_mesh_attr(NL80211_MESHCONF_AWAKE_WINDOW, mask)) conf->dot11MeshAwakeWindowDuration = nconf->dot11MeshAwakeWindowDuration; if (_chg_mesh_attr(NL80211_MESHCONF_PLINK_TIMEOUT, mask)) conf->plink_timeout = nconf->plink_timeout; if (_chg_mesh_attr(NL80211_MESHCONF_CONNECTED_TO_GATE, mask)) conf->dot11MeshConnectedToMeshGate = nconf->dot11MeshConnectedToMeshGate; if (_chg_mesh_attr(NL80211_MESHCONF_NOLEARN, mask)) conf->dot11MeshNolearn = nconf->dot11MeshNolearn; if (_chg_mesh_attr(NL80211_MESHCONF_CONNECTED_TO_AS, mask)) conf->dot11MeshConnectedToAuthServer = nconf->dot11MeshConnectedToAuthServer; ieee80211_mbss_info_change_notify(sdata, BSS_CHANGED_BEACON); return 0; } static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; int err; memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config)); err = copy_mesh_setup(ifmsh, setup); if (err) return err; sdata->control_port_over_nl80211 = setup->control_port_over_nl80211; /* can mesh use other SMPS modes? */ sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; sdata->deflink.needed_rx_chains = sdata->local->rx_chains; mutex_lock(&sdata->local->mtx); err = ieee80211_link_use_channel(&sdata->deflink, &setup->chandef, IEEE80211_CHANCTX_SHARED); mutex_unlock(&sdata->local->mtx); if (err) return err; return ieee80211_start_mesh(sdata); } static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); ieee80211_stop_mesh(sdata); mutex_lock(&sdata->local->mtx); ieee80211_link_release_channel(&sdata->deflink); kfree(sdata->u.mesh.ie); mutex_unlock(&sdata->local->mtx); return 0; } #endif static int ieee80211_change_bss(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link; struct ieee80211_supported_band *sband; u64 changed = 0; link = ieee80211_link_or_deflink(sdata, params->link_id, true); if (IS_ERR(link)) return PTR_ERR(link); if (!sdata_dereference(link->u.ap.beacon, sdata)) return -ENOENT; sband = ieee80211_get_link_sband(link); if (!sband) return -EINVAL; if (params->basic_rates) { if (!ieee80211_parse_bitrates(link->conf->chandef.width, wiphy->bands[sband->band], params->basic_rates, params->basic_rates_len, &link->conf->basic_rates)) return -EINVAL; changed |= BSS_CHANGED_BASIC_RATES; ieee80211_check_rate_mask(link); } if (params->use_cts_prot >= 0) { link->conf->use_cts_prot = params->use_cts_prot; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (params->use_short_preamble >= 0) { link->conf->use_short_preamble = params->use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } if (!link->conf->use_short_slot && (sband->band == NL80211_BAND_5GHZ || sband->band == NL80211_BAND_6GHZ)) { link->conf->use_short_slot = true; changed |= BSS_CHANGED_ERP_SLOT; } if (params->use_short_slot_time >= 0) { link->conf->use_short_slot = params->use_short_slot_time; changed |= BSS_CHANGED_ERP_SLOT; } if (params->ap_isolate >= 0) { if (params->ap_isolate) sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS; else sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS; ieee80211_check_fast_rx_iface(sdata); } if (params->ht_opmode >= 0) { link->conf->ht_operation_mode = (u16)params->ht_opmode; changed |= BSS_CHANGED_HT; } if (params->p2p_ctwindow >= 0) { link->conf->p2p_noa_attr.oppps_ctwindow &= ~IEEE80211_P2P_OPPPS_CTWINDOW_MASK; link->conf->p2p_noa_attr.oppps_ctwindow |= params->p2p_ctwindow & IEEE80211_P2P_OPPPS_CTWINDOW_MASK; changed |= BSS_CHANGED_P2P_PS; } if (params->p2p_opp_ps > 0) { link->conf->p2p_noa_attr.oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; changed |= BSS_CHANGED_P2P_PS; } else if (params->p2p_opp_ps == 0) { link->conf->p2p_noa_attr.oppps_ctwindow &= ~IEEE80211_P2P_OPPPS_ENABLE_BIT; changed |= BSS_CHANGED_P2P_PS; } ieee80211_link_info_change_notify(sdata, link, changed); return 0; } static int ieee80211_set_txq_params(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_txq_params *params) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link = ieee80211_link_or_deflink(sdata, params->link_id, true); struct ieee80211_tx_queue_params p; if (!local->ops->conf_tx) return -EOPNOTSUPP; if (local->hw.queues < IEEE80211_NUM_ACS) return -EOPNOTSUPP; if (IS_ERR(link)) return PTR_ERR(link); memset(&p, 0, sizeof(p)); p.aifs = params->aifs; p.cw_max = params->cwmax; p.cw_min = params->cwmin; p.txop = params->txop; /* * Setting tx queue params disables u-apsd because it's only * called in master mode. */ p.uapsd = false; ieee80211_regulatory_limit_wmm_params(sdata, &p, params->ac); link->tx_conf[params->ac] = p; if (drv_conf_tx(local, link, params->ac, &p)) { wiphy_debug(local->hw.wiphy, "failed to set TX queue parameters for AC %d\n", params->ac); return -EINVAL; } ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_QOS); return 0; } #ifdef CONFIG_PM static int ieee80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wowlan) { return __ieee80211_suspend(wiphy_priv(wiphy), wowlan); } static int ieee80211_resume(struct wiphy *wiphy) { return __ieee80211_resume(wiphy_priv(wiphy)); } #else #define ieee80211_suspend NULL #define ieee80211_resume NULL #endif static int ieee80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *req) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev); switch (ieee80211_vif_type_p2p(&sdata->vif)) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_DEVICE: break; case NL80211_IFTYPE_P2P_GO: if (sdata->local->ops->hw_scan) break; /* * FIXME: implement NoA while scanning in software, * for now fall through to allow scanning only when * beaconing hasn't been configured yet */ fallthrough; case NL80211_IFTYPE_AP: /* * If the scan has been forced (and the driver supports * forcing), don't care about being beaconing already. * This will create problems to the attached stations (e.g. all * the frames sent while scanning on other channel will be * lost) */ if (sdata->deflink.u.ap.beacon && (!(wiphy->features & NL80211_FEATURE_AP_SCAN) || !(req->flags & NL80211_SCAN_FLAG_AP))) return -EOPNOTSUPP; break; case NL80211_IFTYPE_NAN: default: return -EOPNOTSUPP; } return ieee80211_request_scan(sdata, req); } static void ieee80211_abort_scan(struct wiphy *wiphy, struct wireless_dev *wdev) { ieee80211_scan_cancel(wiphy_priv(wiphy)); } static int ieee80211_sched_scan_start(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *req) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!sdata->local->ops->sched_scan_start) return -EOPNOTSUPP; return ieee80211_request_sched_scan_start(sdata, req); } static int ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev, u64 reqid) { struct ieee80211_local *local = wiphy_priv(wiphy); if (!local->ops->sched_scan_stop) return -EOPNOTSUPP; return ieee80211_request_sched_scan_stop(local); } static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_auth_request *req) { return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_assoc_request *req) { return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_deauth_request *req) { return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_disassoc_request *req) { return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req); } static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params); } static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev)); } static int ieee80211_join_ocb(struct wiphy *wiphy, struct net_device *dev, struct ocb_setup *setup) { return ieee80211_ocb_join(IEEE80211_DEV_TO_SUB_IF(dev), setup); } static int ieee80211_leave_ocb(struct wiphy *wiphy, struct net_device *dev) { return ieee80211_ocb_leave(IEEE80211_DEV_TO_SUB_IF(dev)); } static int ieee80211_set_mcast_rate(struct wiphy *wiphy, struct net_device *dev, int rate[NUM_NL80211_BANDS]) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); memcpy(sdata->vif.bss_conf.mcast_rate, rate, sizeof(int) * NUM_NL80211_BANDS); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_MCAST_RATE); return 0; } static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct ieee80211_local *local = wiphy_priv(wiphy); int err; if (changed & WIPHY_PARAM_FRAG_THRESHOLD) { ieee80211_check_fast_xmit_all(local); err = drv_set_frag_threshold(local, wiphy->frag_threshold); if (err) { ieee80211_check_fast_xmit_all(local); return err; } } if ((changed & WIPHY_PARAM_COVERAGE_CLASS) || (changed & WIPHY_PARAM_DYN_ACK)) { s16 coverage_class; coverage_class = changed & WIPHY_PARAM_COVERAGE_CLASS ? wiphy->coverage_class : -1; err = drv_set_coverage_class(local, coverage_class); if (err) return err; } if (changed & WIPHY_PARAM_RTS_THRESHOLD) { err = drv_set_rts_threshold(local, wiphy->rts_threshold); if (err) return err; } if (changed & WIPHY_PARAM_RETRY_SHORT) { if (wiphy->retry_short > IEEE80211_MAX_TX_RETRY) return -EINVAL; local->hw.conf.short_frame_max_tx_count = wiphy->retry_short; } if (changed & WIPHY_PARAM_RETRY_LONG) { if (wiphy->retry_long > IEEE80211_MAX_TX_RETRY) return -EINVAL; local->hw.conf.long_frame_max_tx_count = wiphy->retry_long; } if (changed & (WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG)) ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS); if (changed & (WIPHY_PARAM_TXQ_LIMIT | WIPHY_PARAM_TXQ_MEMORY_LIMIT | WIPHY_PARAM_TXQ_QUANTUM)) ieee80211_txq_set_params(local); return 0; } static int ieee80211_set_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata; enum nl80211_tx_power_setting txp_type = type; bool update_txp_type = false; bool has_monitor = false; if (wdev) { sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (sdata->vif.type == NL80211_IFTYPE_MONITOR) { sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (!sdata) return -EOPNOTSUPP; } switch (type) { case NL80211_TX_POWER_AUTOMATIC: sdata->deflink.user_power_level = IEEE80211_UNSET_POWER_LEVEL; txp_type = NL80211_TX_POWER_LIMITED; break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0 || (mbm % 100)) return -EOPNOTSUPP; sdata->deflink.user_power_level = MBM_TO_DBM(mbm); break; } if (txp_type != sdata->vif.bss_conf.txpower_type) { update_txp_type = true; sdata->vif.bss_conf.txpower_type = txp_type; } ieee80211_recalc_txpower(sdata, update_txp_type); return 0; } switch (type) { case NL80211_TX_POWER_AUTOMATIC: local->user_power_level = IEEE80211_UNSET_POWER_LEVEL; txp_type = NL80211_TX_POWER_LIMITED; break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (mbm < 0 || (mbm % 100)) return -EOPNOTSUPP; local->user_power_level = MBM_TO_DBM(mbm); break; } mutex_lock(&local->iflist_mtx); list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR) { has_monitor = true; continue; } sdata->deflink.user_power_level = local->user_power_level; if (txp_type != sdata->vif.bss_conf.txpower_type) update_txp_type = true; sdata->vif.bss_conf.txpower_type = txp_type; } list_for_each_entry(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR) continue; ieee80211_recalc_txpower(sdata, update_txp_type); } mutex_unlock(&local->iflist_mtx); if (has_monitor) { sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); if (sdata) { sdata->deflink.user_power_level = local->user_power_level; if (txp_type != sdata->vif.bss_conf.txpower_type) update_txp_type = true; sdata->vif.bss_conf.txpower_type = txp_type; ieee80211_recalc_txpower(sdata, update_txp_type); } } return 0; } static int ieee80211_get_tx_power(struct wiphy *wiphy, struct wireless_dev *wdev, int *dbm) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (local->ops->get_txpower) return drv_get_txpower(local, sdata, dbm); if (!local->use_chanctx) *dbm = local->hw.conf.power_level; else *dbm = sdata->vif.bss_conf.txpower; return 0; } static void ieee80211_rfkill_poll(struct wiphy *wiphy) { struct ieee80211_local *local = wiphy_priv(wiphy); drv_rfkill_poll(local); } #ifdef CONFIG_NL80211_TESTMODE static int ieee80211_testmode_cmd(struct wiphy *wiphy, struct wireless_dev *wdev, void *data, int len) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_vif *vif = NULL; if (!local->ops->testmode_cmd) return -EOPNOTSUPP; if (wdev) { struct ieee80211_sub_if_data *sdata; sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (sdata->flags & IEEE80211_SDATA_IN_DRIVER) vif = &sdata->vif; } return local->ops->testmode_cmd(&local->hw, vif, data, len); } static int ieee80211_testmode_dump(struct wiphy *wiphy, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { struct ieee80211_local *local = wiphy_priv(wiphy); if (!local->ops->testmode_dump) return -EOPNOTSUPP; return local->ops->testmode_dump(&local->hw, skb, cb, data, len); } #endif int __ieee80211_request_smps_mgd(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, enum ieee80211_smps_mode smps_mode) { const u8 *ap; enum ieee80211_smps_mode old_req; int err; struct sta_info *sta; bool tdls_peer_found = false; lockdep_assert_held(&sdata->wdev.mtx); if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) return -EINVAL; old_req = link->u.mgd.req_smps; link->u.mgd.req_smps = smps_mode; if (old_req == smps_mode && smps_mode != IEEE80211_SMPS_AUTOMATIC) return 0; /* * If not associated, or current association is not an HT * association, there's no need to do anything, just store * the new value until we associate. */ if (!sdata->u.mgd.associated || link->conf->chandef.width == NL80211_CHAN_WIDTH_20_NOHT) return 0; ap = link->u.mgd.bssid; rcu_read_lock(); list_for_each_entry_rcu(sta, &sdata->local->sta_list, list) { if (!sta->sta.tdls || sta->sdata != sdata || !sta->uploaded || !test_sta_flag(sta, WLAN_STA_AUTHORIZED)) continue; tdls_peer_found = true; break; } rcu_read_unlock(); if (smps_mode == IEEE80211_SMPS_AUTOMATIC) { if (tdls_peer_found || !sdata->u.mgd.powersave) smps_mode = IEEE80211_SMPS_OFF; else smps_mode = IEEE80211_SMPS_DYNAMIC; } /* send SM PS frame to AP */ err = ieee80211_send_smps_action(sdata, smps_mode, ap, ap); if (err) link->u.mgd.req_smps = old_req; else if (smps_mode != IEEE80211_SMPS_OFF && tdls_peer_found) ieee80211_teardown_tdls_peers(sdata); return err; } static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); unsigned int link_id; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) return -EOPNOTSUPP; if (enabled == sdata->u.mgd.powersave && timeout == local->dynamic_ps_forced_timeout) return 0; sdata->u.mgd.powersave = enabled; local->dynamic_ps_forced_timeout = timeout; /* no change, but if automatic follow powersave */ sdata_lock(sdata); for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; __ieee80211_request_smps_mgd(sdata, link, link->u.mgd.req_smps); } sdata_unlock(sdata); if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); ieee80211_check_fast_rx_iface(sdata); return 0; } static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_vif *vif = &sdata->vif; struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; if (rssi_thold == bss_conf->cqm_rssi_thold && rssi_hyst == bss_conf->cqm_rssi_hyst) return 0; if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER && !(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)) return -EOPNOTSUPP; bss_conf->cqm_rssi_thold = rssi_thold; bss_conf->cqm_rssi_hyst = rssi_hyst; bss_conf->cqm_rssi_low = 0; bss_conf->cqm_rssi_high = 0; sdata->deflink.u.mgd.last_cqm_event_signal = 0; /* tell the driver upon association, unless already associated */ if (sdata->u.mgd.associated && sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_CQM); return 0; } static int ieee80211_set_cqm_rssi_range_config(struct wiphy *wiphy, struct net_device *dev, s32 rssi_low, s32 rssi_high) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_vif *vif = &sdata->vif; struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return -EOPNOTSUPP; bss_conf->cqm_rssi_low = rssi_low; bss_conf->cqm_rssi_high = rssi_high; bss_conf->cqm_rssi_thold = 0; bss_conf->cqm_rssi_hyst = 0; sdata->deflink.u.mgd.last_cqm_event_signal = 0; /* tell the driver upon association, unless already associated */ if (sdata->u.mgd.associated && sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_CQM); return 0; } static int ieee80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *dev, unsigned int link_id, const u8 *addr, const struct cfg80211_bitrate_mask *mask) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); int i, ret; if (!ieee80211_sdata_running(sdata)) return -ENETDOWN; /* * If active validate the setting and reject it if it doesn't leave * at least one basic rate usable, since we really have to be able * to send something, and if we're an AP we have to be able to do * so at a basic rate so that all clients can receive it. */ if (rcu_access_pointer(sdata->vif.bss_conf.chanctx_conf) && sdata->vif.bss_conf.chandef.chan) { u32 basic_rates = sdata->vif.bss_conf.basic_rates; enum nl80211_band band = sdata->vif.bss_conf.chandef.chan->band; if (!(mask->control[band].legacy & basic_rates)) return -EINVAL; } if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { ret = drv_set_bitrate_mask(local, sdata, mask); if (ret) return ret; } for (i = 0; i < NUM_NL80211_BANDS; i++) { struct ieee80211_supported_band *sband = wiphy->bands[i]; int j; sdata->rc_rateidx_mask[i] = mask->control[i].legacy; memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].ht_mcs, sizeof(mask->control[i].ht_mcs)); memcpy(sdata->rc_rateidx_vht_mcs_mask[i], mask->control[i].vht_mcs, sizeof(mask->control[i].vht_mcs)); sdata->rc_has_mcs_mask[i] = false; sdata->rc_has_vht_mcs_mask[i] = false; if (!sband) continue; for (j = 0; j < IEEE80211_HT_MCS_MASK_LEN; j++) { if (sdata->rc_rateidx_mcs_mask[i][j] != 0xff) { sdata->rc_has_mcs_mask[i] = true; break; } } for (j = 0; j < NL80211_VHT_NSS_MAX; j++) { if (sdata->rc_rateidx_vht_mcs_mask[i][j] != 0xffff) { sdata->rc_has_vht_mcs_mask[i] = true; break; } } } return 0; } static int ieee80211_start_radar_detection(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; int err; mutex_lock(&local->mtx); if (!list_empty(&local->roc_list) || local->scanning) { err = -EBUSY; goto out_unlock; } /* whatever, but channel contexts should not complain about that one */ sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; sdata->deflink.needed_rx_chains = local->rx_chains; err = ieee80211_link_use_channel(&sdata->deflink, chandef, IEEE80211_CHANCTX_SHARED); if (err) goto out_unlock; ieee80211_queue_delayed_work(&sdata->local->hw, &sdata->deflink.dfs_cac_timer_work, msecs_to_jiffies(cac_time_ms)); out_unlock: mutex_unlock(&local->mtx); return err; } static void ieee80211_end_cac(struct wiphy *wiphy, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; mutex_lock(&local->mtx); list_for_each_entry(sdata, &local->interfaces, list) { /* it might be waiting for the local->mtx, but then * by the time it gets it, sdata->wdev.cac_started * will no longer be true */ cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); if (sdata->wdev.cac_started) { ieee80211_link_release_channel(&sdata->deflink); sdata->wdev.cac_started = false; } } mutex_unlock(&local->mtx); } static struct cfg80211_beacon_data * cfg80211_beacon_dup(struct cfg80211_beacon_data *beacon) { struct cfg80211_beacon_data *new_beacon; u8 *pos; int len; len = beacon->head_len + beacon->tail_len + beacon->beacon_ies_len + beacon->proberesp_ies_len + beacon->assocresp_ies_len + beacon->probe_resp_len + beacon->lci_len + beacon->civicloc_len; if (beacon->mbssid_ies) len += ieee80211_get_mbssid_beacon_len(beacon->mbssid_ies, beacon->rnr_ies, beacon->mbssid_ies->cnt); new_beacon = kzalloc(sizeof(*new_beacon) + len, GFP_KERNEL); if (!new_beacon) return NULL; if (beacon->mbssid_ies && beacon->mbssid_ies->cnt) { new_beacon->mbssid_ies = kzalloc(struct_size(new_beacon->mbssid_ies, elem, beacon->mbssid_ies->cnt), GFP_KERNEL); if (!new_beacon->mbssid_ies) { kfree(new_beacon); return NULL; } if (beacon->rnr_ies && beacon->rnr_ies->cnt) { new_beacon->rnr_ies = kzalloc(struct_size(new_beacon->rnr_ies, elem, beacon->rnr_ies->cnt), GFP_KERNEL); if (!new_beacon->rnr_ies) { kfree(new_beacon->mbssid_ies); kfree(new_beacon); return NULL; } } } pos = (u8 *)(new_beacon + 1); if (beacon->head_len) { new_beacon->head_len = beacon->head_len; new_beacon->head = pos; memcpy(pos, beacon->head, beacon->head_len); pos += beacon->head_len; } if (beacon->tail_len) { new_beacon->tail_len = beacon->tail_len; new_beacon->tail = pos; memcpy(pos, beacon->tail, beacon->tail_len); pos += beacon->tail_len; } if (beacon->beacon_ies_len) { new_beacon->beacon_ies_len = beacon->beacon_ies_len; new_beacon->beacon_ies = pos; memcpy(pos, beacon->beacon_ies, beacon->beacon_ies_len); pos += beacon->beacon_ies_len; } if (beacon->proberesp_ies_len) { new_beacon->proberesp_ies_len = beacon->proberesp_ies_len; new_beacon->proberesp_ies = pos; memcpy(pos, beacon->proberesp_ies, beacon->proberesp_ies_len); pos += beacon->proberesp_ies_len; } if (beacon->assocresp_ies_len) { new_beacon->assocresp_ies_len = beacon->assocresp_ies_len; new_beacon->assocresp_ies = pos; memcpy(pos, beacon->assocresp_ies, beacon->assocresp_ies_len); pos += beacon->assocresp_ies_len; } if (beacon->probe_resp_len) { new_beacon->probe_resp_len = beacon->probe_resp_len; new_beacon->probe_resp = pos; memcpy(pos, beacon->probe_resp, beacon->probe_resp_len); pos += beacon->probe_resp_len; } if (beacon->mbssid_ies && beacon->mbssid_ies->cnt) { pos += ieee80211_copy_mbssid_beacon(pos, new_beacon->mbssid_ies, beacon->mbssid_ies); if (beacon->rnr_ies && beacon->rnr_ies->cnt) pos += ieee80211_copy_rnr_beacon(pos, new_beacon->rnr_ies, beacon->rnr_ies); } /* might copy -1, meaning no changes requested */ new_beacon->ftm_responder = beacon->ftm_responder; if (beacon->lci) { new_beacon->lci_len = beacon->lci_len; new_beacon->lci = pos; memcpy(pos, beacon->lci, beacon->lci_len); pos += beacon->lci_len; } if (beacon->civicloc) { new_beacon->civicloc_len = beacon->civicloc_len; new_beacon->civicloc = pos; memcpy(pos, beacon->civicloc, beacon->civicloc_len); pos += beacon->civicloc_len; } return new_beacon; } void ieee80211_csa_finish(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; rcu_read_lock(); if (vif->mbssid_tx_vif == vif) { /* Trigger ieee80211_csa_finish() on the non-transmitting * interfaces when channel switch is received on * transmitting interface */ struct ieee80211_sub_if_data *iter; list_for_each_entry_rcu(iter, &local->interfaces, list) { if (!ieee80211_sdata_running(iter)) continue; if (iter == sdata || iter->vif.mbssid_tx_vif != vif) continue; ieee80211_queue_work(&iter->local->hw, &iter->deflink.csa_finalize_work); } } ieee80211_queue_work(&local->hw, &sdata->deflink.csa_finalize_work); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_csa_finish); void ieee80211_channel_switch_disconnect(struct ieee80211_vif *vif, bool block_tx) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; sdata->deflink.csa_block_tx = block_tx; sdata_info(sdata, "channel switch failed, disconnecting\n"); wiphy_work_queue(local->hw.wiphy, &ifmgd->csa_connection_drop_work); } EXPORT_SYMBOL(ieee80211_channel_switch_disconnect); static int ieee80211_set_after_csa_beacon(struct ieee80211_sub_if_data *sdata, u64 *changed) { int err; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: if (!sdata->deflink.u.ap.next_beacon) return -EINVAL; err = ieee80211_assign_beacon(sdata, &sdata->deflink, sdata->deflink.u.ap.next_beacon, NULL, NULL, changed); ieee80211_free_next_beacon(&sdata->deflink); if (err < 0) return err; break; case NL80211_IFTYPE_ADHOC: err = ieee80211_ibss_finish_csa(sdata, changed); if (err < 0) return err; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: err = ieee80211_mesh_finish_csa(sdata, changed); if (err < 0) return err; break; #endif default: WARN_ON(1); return -EINVAL; } return 0; } static int __ieee80211_csa_finalize(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; u64 changed = 0; int err; sdata_assert_lock(sdata); lockdep_assert_held(&local->mtx); lockdep_assert_held(&local->chanctx_mtx); /* * using reservation isn't immediate as it may be deferred until later * with multi-vif. once reservation is complete it will re-schedule the * work with no reserved_chanctx so verify chandef to check if it * completed successfully */ if (sdata->deflink.reserved_chanctx) { /* * with multi-vif csa driver may call ieee80211_csa_finish() * many times while waiting for other interfaces to use their * reservations */ if (sdata->deflink.reserved_ready) return 0; return ieee80211_link_use_reserved_context(&sdata->deflink); } if (!cfg80211_chandef_identical(&sdata->vif.bss_conf.chandef, &sdata->deflink.csa_chandef)) return -EINVAL; sdata->vif.bss_conf.csa_active = false; err = ieee80211_set_after_csa_beacon(sdata, &changed); if (err) return err; if (sdata->vif.bss_conf.eht_puncturing != sdata->vif.bss_conf.csa_punct_bitmap) { sdata->vif.bss_conf.eht_puncturing = sdata->vif.bss_conf.csa_punct_bitmap; changed |= BSS_CHANGED_EHT_PUNCTURING; } ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); if (sdata->deflink.csa_block_tx) { ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); sdata->deflink.csa_block_tx = false; } err = drv_post_channel_switch(sdata); if (err) return err; cfg80211_ch_switch_notify(sdata->dev, &sdata->deflink.csa_chandef, 0, sdata->vif.bss_conf.eht_puncturing); return 0; } static void ieee80211_csa_finalize(struct ieee80211_sub_if_data *sdata) { if (__ieee80211_csa_finalize(sdata)) { sdata_info(sdata, "failed to finalize CSA, disconnecting\n"); cfg80211_stop_iface(sdata->local->hw.wiphy, &sdata->wdev, GFP_KERNEL); } } void ieee80211_csa_finalize_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, deflink.csa_finalize_work); struct ieee80211_local *local = sdata->local; sdata_lock(sdata); mutex_lock(&local->mtx); mutex_lock(&local->chanctx_mtx); /* AP might have been stopped while waiting for the lock. */ if (!sdata->vif.bss_conf.csa_active) goto unlock; if (!ieee80211_sdata_running(sdata)) goto unlock; ieee80211_csa_finalize(sdata); unlock: mutex_unlock(&local->chanctx_mtx); mutex_unlock(&local->mtx); sdata_unlock(sdata); } static int ieee80211_set_csa_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_csa_settings *params, u64 *changed) { struct ieee80211_csa_settings csa = {}; int err; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: sdata->deflink.u.ap.next_beacon = cfg80211_beacon_dup(&params->beacon_after); if (!sdata->deflink.u.ap.next_beacon) return -ENOMEM; /* * With a count of 0, we don't have to wait for any * TBTT before switching, so complete the CSA * immediately. In theory, with a count == 1 we * should delay the switch until just before the next * TBTT, but that would complicate things so we switch * immediately too. If we would delay the switch * until the next TBTT, we would have to set the probe * response here. * * TODO: A channel switch with count <= 1 without * sending a CSA action frame is kind of useless, * because the clients won't know we're changing * channels. The action frame must be implemented * either here or in the userspace. */ if (params->count <= 1) break; if ((params->n_counter_offsets_beacon > IEEE80211_MAX_CNTDWN_COUNTERS_NUM) || (params->n_counter_offsets_presp > IEEE80211_MAX_CNTDWN_COUNTERS_NUM)) { ieee80211_free_next_beacon(&sdata->deflink); return -EINVAL; } csa.counter_offsets_beacon = params->counter_offsets_beacon; csa.counter_offsets_presp = params->counter_offsets_presp; csa.n_counter_offsets_beacon = params->n_counter_offsets_beacon; csa.n_counter_offsets_presp = params->n_counter_offsets_presp; csa.count = params->count; err = ieee80211_assign_beacon(sdata, &sdata->deflink, &params->beacon_csa, &csa, NULL, changed); if (err < 0) { ieee80211_free_next_beacon(&sdata->deflink); return err; } break; case NL80211_IFTYPE_ADHOC: if (!sdata->vif.cfg.ibss_joined) return -EINVAL; if (params->chandef.width != sdata->u.ibss.chandef.width) return -EINVAL; switch (params->chandef.width) { case NL80211_CHAN_WIDTH_40: if (cfg80211_get_chandef_type(&params->chandef) != cfg80211_get_chandef_type(&sdata->u.ibss.chandef)) return -EINVAL; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: break; default: return -EINVAL; } /* changes into another band are not supported */ if (sdata->u.ibss.chandef.chan->band != params->chandef.chan->band) return -EINVAL; /* see comments in the NL80211_IFTYPE_AP block */ if (params->count > 1) { err = ieee80211_ibss_csa_beacon(sdata, params, changed); if (err < 0) return err; } ieee80211_send_action_csa(sdata, params); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; /* changes into another band are not supported */ if (sdata->vif.bss_conf.chandef.chan->band != params->chandef.chan->band) return -EINVAL; if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_NONE) { ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_INIT; if (!ifmsh->pre_value) ifmsh->pre_value = 1; else ifmsh->pre_value++; } /* see comments in the NL80211_IFTYPE_AP block */ if (params->count > 1) { err = ieee80211_mesh_csa_beacon(sdata, params, changed); if (err < 0) { ifmsh->csa_role = IEEE80211_MESH_CSA_ROLE_NONE; return err; } } if (ifmsh->csa_role == IEEE80211_MESH_CSA_ROLE_INIT) ieee80211_send_action_csa(sdata, params); break; } #endif default: return -EOPNOTSUPP; } return 0; } static void ieee80211_color_change_abort(struct ieee80211_sub_if_data *sdata) { sdata->vif.bss_conf.color_change_active = false; ieee80211_free_next_beacon(&sdata->deflink); cfg80211_color_change_aborted_notify(sdata->dev); } static int __ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_channel_switch ch_switch; struct ieee80211_chanctx_conf *conf; struct ieee80211_chanctx *chanctx; u64 changed = 0; int err; sdata_assert_lock(sdata); lockdep_assert_held(&local->mtx); if (!list_empty(&local->roc_list) || local->scanning) return -EBUSY; if (sdata->wdev.cac_started) return -EBUSY; if (cfg80211_chandef_identical(&params->chandef, &sdata->vif.bss_conf.chandef)) return -EINVAL; /* don't allow another channel switch if one is already active. */ if (sdata->vif.bss_conf.csa_active) return -EBUSY; mutex_lock(&local->chanctx_mtx); conf = rcu_dereference_protected(sdata->vif.bss_conf.chanctx_conf, lockdep_is_held(&local->chanctx_mtx)); if (!conf) { err = -EBUSY; goto out; } if (params->chandef.chan->freq_offset) { /* this may work, but is untested */ err = -EOPNOTSUPP; goto out; } chanctx = container_of(conf, struct ieee80211_chanctx, conf); ch_switch.timestamp = 0; ch_switch.device_timestamp = 0; ch_switch.block_tx = params->block_tx; ch_switch.chandef = params->chandef; ch_switch.count = params->count; err = drv_pre_channel_switch(sdata, &ch_switch); if (err) goto out; err = ieee80211_link_reserve_chanctx(&sdata->deflink, &params->chandef, chanctx->mode, params->radar_required); if (err) goto out; /* if reservation is invalid then this will fail */ err = ieee80211_check_combinations(sdata, NULL, chanctx->mode, 0); if (err) { ieee80211_link_unreserve_chanctx(&sdata->deflink); goto out; } /* if there is a color change in progress, abort it */ if (sdata->vif.bss_conf.color_change_active) ieee80211_color_change_abort(sdata); err = ieee80211_set_csa_beacon(sdata, params, &changed); if (err) { ieee80211_link_unreserve_chanctx(&sdata->deflink); goto out; } if (params->punct_bitmap && !sdata->vif.bss_conf.eht_support) goto out; sdata->deflink.csa_chandef = params->chandef; sdata->deflink.csa_block_tx = params->block_tx; sdata->vif.bss_conf.csa_active = true; sdata->vif.bss_conf.csa_punct_bitmap = params->punct_bitmap; if (sdata->deflink.csa_block_tx) ieee80211_stop_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_CSA); cfg80211_ch_switch_started_notify(sdata->dev, &sdata->deflink.csa_chandef, 0, params->count, params->block_tx, sdata->vif.bss_conf.csa_punct_bitmap); if (changed) { ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); drv_channel_switch_beacon(sdata, &params->chandef); } else { /* if the beacon didn't change, we can finalize immediately */ ieee80211_csa_finalize(sdata); } out: mutex_unlock(&local->chanctx_mtx); return err; } int ieee80211_channel_switch(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_csa_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; int err; mutex_lock(&local->mtx); err = __ieee80211_channel_switch(wiphy, dev, params); mutex_unlock(&local->mtx); return err; } u64 ieee80211_mgmt_tx_cookie(struct ieee80211_local *local) { lockdep_assert_held(&local->mtx); local->roc_cookie_counter++; /* wow, you wrapped 64 bits ... more likely a bug */ if (WARN_ON(local->roc_cookie_counter == 0)) local->roc_cookie_counter++; return local->roc_cookie_counter; } int ieee80211_attach_ack_skb(struct ieee80211_local *local, struct sk_buff *skb, u64 *cookie, gfp_t gfp) { unsigned long spin_flags; struct sk_buff *ack_skb; int id; ack_skb = skb_copy(skb, gfp); if (!ack_skb) return -ENOMEM; spin_lock_irqsave(&local->ack_status_lock, spin_flags); id = idr_alloc(&local->ack_status_frames, ack_skb, 1, 0x2000, GFP_ATOMIC); spin_unlock_irqrestore(&local->ack_status_lock, spin_flags); if (id < 0) { kfree_skb(ack_skb); return -ENOMEM; } IEEE80211_SKB_CB(skb)->ack_frame_id = id; *cookie = ieee80211_mgmt_tx_cookie(local); IEEE80211_SKB_CB(ack_skb)->ack.cookie = *cookie; return 0; } static void ieee80211_update_mgmt_frame_registrations(struct wiphy *wiphy, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); u32 preq_mask = BIT(IEEE80211_STYPE_PROBE_REQ >> 4); u32 action_mask = BIT(IEEE80211_STYPE_ACTION >> 4); bool global_change, intf_change; global_change = (local->probe_req_reg != !!(upd->global_stypes & preq_mask)) || (local->rx_mcast_action_reg != !!(upd->global_mcast_stypes & action_mask)); local->probe_req_reg = upd->global_stypes & preq_mask; local->rx_mcast_action_reg = upd->global_mcast_stypes & action_mask; intf_change = (sdata->vif.probe_req_reg != !!(upd->interface_stypes & preq_mask)) || (sdata->vif.rx_mcast_action_reg != !!(upd->interface_mcast_stypes & action_mask)); sdata->vif.probe_req_reg = upd->interface_stypes & preq_mask; sdata->vif.rx_mcast_action_reg = upd->interface_mcast_stypes & action_mask; if (!local->open_count) return; if (intf_change && ieee80211_sdata_running(sdata)) drv_config_iface_filter(local, sdata, sdata->vif.probe_req_reg ? FIF_PROBE_REQ : 0, FIF_PROBE_REQ); if (global_change) ieee80211_configure_filter(local); } static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant) { struct ieee80211_local *local = wiphy_priv(wiphy); if (local->started) return -EOPNOTSUPP; return drv_set_antenna(local, tx_ant, rx_ant); } static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant) { struct ieee80211_local *local = wiphy_priv(wiphy); return drv_get_antenna(local, tx_ant, rx_ant); } static int ieee80211_set_rekey_data(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); if (!local->ops->set_rekey_data) return -EOPNOTSUPP; drv_set_rekey_data(local, sdata, data); return 0; } static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64 *cookie) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; struct ieee80211_qos_hdr *nullfunc; struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; bool qos; struct ieee80211_tx_info *info; struct sta_info *sta; struct ieee80211_chanctx_conf *chanctx_conf; enum nl80211_band band; int ret; /* the lock is needed to assign the cookie later */ mutex_lock(&local->mtx); rcu_read_lock(); sta = sta_info_get_bss(sdata, peer); if (!sta) { ret = -ENOLINK; goto unlock; } qos = sta->sta.wme; chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { ret = -EINVAL; goto unlock; } band = chanctx_conf->def.chan->band; if (qos) { fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_FCTL_FROMDS); } else { size -= 2; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS); } skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); if (!skb) { ret = -ENOMEM; goto unlock; } skb->dev = dev; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put(skb, size); nullfunc->frame_control = fc; nullfunc->duration_id = 0; memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); nullfunc->seq_ctrl = 0; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_NL80211_FRAME_TX; info->band = band; skb_set_queue_mapping(skb, IEEE80211_AC_VO); skb->priority = 7; if (qos) nullfunc->qos_ctrl = cpu_to_le16(7); ret = ieee80211_attach_ack_skb(local, skb, cookie, GFP_ATOMIC); if (ret) { kfree_skb(skb); goto unlock; } local_bh_disable(); ieee80211_xmit(sdata, sta, skb); local_bh_enable(); ret = 0; unlock: rcu_read_unlock(); mutex_unlock(&local->mtx); return ret; } static int ieee80211_cfg_get_channel(struct wiphy *wiphy, struct wireless_dev *wdev, unsigned int link_id, struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_link_data *link; int ret = -ENODATA; rcu_read_lock(); link = rcu_dereference(sdata->link[link_id]); if (!link) { ret = -ENOLINK; goto out; } chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (chanctx_conf) { *chandef = link->conf->chandef; ret = 0; } else if (local->open_count > 0 && local->open_count == local->monitors && sdata->vif.type == NL80211_IFTYPE_MONITOR) { if (local->use_chanctx) *chandef = local->monitor_chandef; else *chandef = local->_oper_chandef; ret = 0; } out: rcu_read_unlock(); return ret; } #ifdef CONFIG_PM static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled) { drv_set_wakeup(wiphy_priv(wiphy), enabled); } #endif static int ieee80211_set_qos_map(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_qos_map *qos_map) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct mac80211_qos_map *new_qos_map, *old_qos_map; if (qos_map) { new_qos_map = kzalloc(sizeof(*new_qos_map), GFP_KERNEL); if (!new_qos_map) return -ENOMEM; memcpy(&new_qos_map->qos_map, qos_map, sizeof(*qos_map)); } else { /* A NULL qos_map was passed to disable QoS mapping */ new_qos_map = NULL; } old_qos_map = sdata_dereference(sdata->qos_map, sdata); rcu_assign_pointer(sdata->qos_map, new_qos_map); if (old_qos_map) kfree_rcu(old_qos_map, rcu_head); return 0; } static int ieee80211_set_ap_chanwidth(struct wiphy *wiphy, struct net_device *dev, unsigned int link_id, struct cfg80211_chan_def *chandef) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_link_data *link; int ret; u64 changed = 0; link = sdata_dereference(sdata->link[link_id], sdata); ret = ieee80211_link_change_bandwidth(link, chandef, &changed); if (ret == 0) ieee80211_link_info_change_notify(sdata, link, changed); return ret; } static int ieee80211_add_tx_ts(struct wiphy *wiphy, struct net_device *dev, u8 tsid, const u8 *peer, u8 up, u16 admitted_time) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ac = ieee802_1d_to_ac[up]; if (sdata->vif.type != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (!(sdata->wmm_acm & BIT(up))) return -EINVAL; if (ifmgd->tx_tspec[ac].admitted_time) return -EBUSY; if (admitted_time) { ifmgd->tx_tspec[ac].admitted_time = 32 * admitted_time; ifmgd->tx_tspec[ac].tsid = tsid; ifmgd->tx_tspec[ac].up = up; } return 0; } static int ieee80211_del_tx_ts(struct wiphy *wiphy, struct net_device *dev, u8 tsid, const u8 *peer) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = wiphy_priv(wiphy); int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac]; /* skip unused entries */ if (!tx_tspec->admitted_time) continue; if (tx_tspec->tsid != tsid) continue; /* due to this new packets will be reassigned to non-ACM ACs */ tx_tspec->up = -1; /* Make sure that all packets have been sent to avoid to * restore the QoS params on packets that are still on the * queues. */ synchronize_net(); ieee80211_flush_queues(local, sdata, false); /* restore the normal QoS parameters * (unconditionally to avoid races) */ tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; tx_tspec->downgraded = false; ieee80211_sta_handle_tspec_ac_params(sdata); /* finally clear all the data */ memset(tx_tspec, 0, sizeof(*tx_tspec)); return 0; } return -ENOENT; } void ieee80211_nan_func_terminated(struct ieee80211_vif *vif, u8 inst_id, enum nl80211_nan_func_term_reason reason, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct cfg80211_nan_func *func; u64 cookie; if (WARN_ON(vif->type != NL80211_IFTYPE_NAN)) return; spin_lock_bh(&sdata->u.nan.func_lock); func = idr_find(&sdata->u.nan.function_inst_ids, inst_id); if (WARN_ON(!func)) { spin_unlock_bh(&sdata->u.nan.func_lock); return; } cookie = func->cookie; idr_remove(&sdata->u.nan.function_inst_ids, inst_id); spin_unlock_bh(&sdata->u.nan.func_lock); cfg80211_free_nan_func(func); cfg80211_nan_func_terminated(ieee80211_vif_to_wdev(vif), inst_id, reason, cookie, gfp); } EXPORT_SYMBOL(ieee80211_nan_func_terminated); void ieee80211_nan_func_match(struct ieee80211_vif *vif, struct cfg80211_nan_match_params *match, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct cfg80211_nan_func *func; if (WARN_ON(vif->type != NL80211_IFTYPE_NAN)) return; spin_lock_bh(&sdata->u.nan.func_lock); func = idr_find(&sdata->u.nan.function_inst_ids, match->inst_id); if (WARN_ON(!func)) { spin_unlock_bh(&sdata->u.nan.func_lock); return; } match->cookie = func->cookie; spin_unlock_bh(&sdata->u.nan.func_lock); cfg80211_nan_match(ieee80211_vif_to_wdev(vif), match, gfp); } EXPORT_SYMBOL(ieee80211_nan_func_match); static int ieee80211_set_multicast_to_unicast(struct wiphy *wiphy, struct net_device *dev, const bool enabled) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); sdata->u.ap.multicast_to_unicast = enabled; return 0; } void ieee80211_fill_txq_stats(struct cfg80211_txq_stats *txqstats, struct txq_info *txqi) { if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_BACKLOG_BYTES))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_BACKLOG_BYTES); txqstats->backlog_bytes = txqi->tin.backlog_bytes; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_BACKLOG_PACKETS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_BACKLOG_PACKETS); txqstats->backlog_packets = txqi->tin.backlog_packets; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_FLOWS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_FLOWS); txqstats->flows = txqi->tin.flows; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_DROPS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_DROPS); txqstats->drops = txqi->cstats.drop_count; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_ECN_MARKS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_ECN_MARKS); txqstats->ecn_marks = txqi->cstats.ecn_mark; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_OVERLIMIT))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_OVERLIMIT); txqstats->overlimit = txqi->tin.overlimit; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_COLLISIONS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_COLLISIONS); txqstats->collisions = txqi->tin.collisions; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_TX_BYTES))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_TX_BYTES); txqstats->tx_bytes = txqi->tin.tx_bytes; } if (!(txqstats->filled & BIT(NL80211_TXQ_STATS_TX_PACKETS))) { txqstats->filled |= BIT(NL80211_TXQ_STATS_TX_PACKETS); txqstats->tx_packets = txqi->tin.tx_packets; } } static int ieee80211_get_txq_stats(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata; int ret = 0; spin_lock_bh(&local->fq.lock); rcu_read_lock(); if (wdev) { sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); if (!sdata->vif.txq) { ret = 1; goto out; } ieee80211_fill_txq_stats(txqstats, to_txq_info(sdata->vif.txq)); } else { /* phy stats */ txqstats->filled |= BIT(NL80211_TXQ_STATS_BACKLOG_PACKETS) | BIT(NL80211_TXQ_STATS_BACKLOG_BYTES) | BIT(NL80211_TXQ_STATS_OVERLIMIT) | BIT(NL80211_TXQ_STATS_OVERMEMORY) | BIT(NL80211_TXQ_STATS_COLLISIONS) | BIT(NL80211_TXQ_STATS_MAX_FLOWS); txqstats->backlog_packets = local->fq.backlog; txqstats->backlog_bytes = local->fq.memory_usage; txqstats->overlimit = local->fq.overlimit; txqstats->overmemory = local->fq.overmemory; txqstats->collisions = local->fq.collisions; txqstats->max_flows = local->fq.flows_cnt; } out: rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); return ret; } static int ieee80211_get_ftm_responder_stats(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); return drv_get_ftm_responder_stats(local, sdata, ftm_stats); } static int ieee80211_start_pmsr(struct wiphy *wiphy, struct wireless_dev *dev, struct cfg80211_pmsr_request *request) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(dev); return drv_start_pmsr(local, sdata, request); } static void ieee80211_abort_pmsr(struct wiphy *wiphy, struct wireless_dev *dev, struct cfg80211_pmsr_request *request) { struct ieee80211_local *local = wiphy_priv(wiphy); struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(dev); return drv_abort_pmsr(local, sdata, request); } static int ieee80211_set_tid_config(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sta_info *sta; int ret; if (!sdata->local->ops->set_tid_config) return -EOPNOTSUPP; if (!tid_conf->peer) return drv_set_tid_config(sdata->local, sdata, NULL, tid_conf); mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get_bss(sdata, tid_conf->peer); if (!sta) { mutex_unlock(&sdata->local->sta_mtx); return -ENOENT; } ret = drv_set_tid_config(sdata->local, sdata, &sta->sta, tid_conf); mutex_unlock(&sdata->local->sta_mtx); return ret; } static int ieee80211_reset_tid_config(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u8 tids) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sta_info *sta; int ret; if (!sdata->local->ops->reset_tid_config) return -EOPNOTSUPP; if (!peer) return drv_reset_tid_config(sdata->local, sdata, NULL, tids); mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get_bss(sdata, peer); if (!sta) { mutex_unlock(&sdata->local->sta_mtx); return -ENOENT; } ret = drv_reset_tid_config(sdata->local, sdata, &sta->sta, tids); mutex_unlock(&sdata->local->sta_mtx); return ret; } static int ieee80211_set_sar_specs(struct wiphy *wiphy, struct cfg80211_sar_specs *sar) { struct ieee80211_local *local = wiphy_priv(wiphy); if (!local->ops->set_sar_specs) return -EOPNOTSUPP; return local->ops->set_sar_specs(&local->hw, sar); } static int ieee80211_set_after_color_change_beacon(struct ieee80211_sub_if_data *sdata, u64 *changed) { switch (sdata->vif.type) { case NL80211_IFTYPE_AP: { int ret; if (!sdata->deflink.u.ap.next_beacon) return -EINVAL; ret = ieee80211_assign_beacon(sdata, &sdata->deflink, sdata->deflink.u.ap.next_beacon, NULL, NULL, changed); ieee80211_free_next_beacon(&sdata->deflink); if (ret < 0) return ret; break; } default: WARN_ON_ONCE(1); return -EINVAL; } return 0; } static int ieee80211_set_color_change_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_color_change_settings *params, u64 *changed) { struct ieee80211_color_change_settings color_change = {}; int err; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: sdata->deflink.u.ap.next_beacon = cfg80211_beacon_dup(&params->beacon_next); if (!sdata->deflink.u.ap.next_beacon) return -ENOMEM; if (params->count <= 1) break; color_change.counter_offset_beacon = params->counter_offset_beacon; color_change.counter_offset_presp = params->counter_offset_presp; color_change.count = params->count; err = ieee80211_assign_beacon(sdata, &sdata->deflink, &params->beacon_color_change, NULL, &color_change, changed); if (err < 0) { ieee80211_free_next_beacon(&sdata->deflink); return err; } break; default: return -EOPNOTSUPP; } return 0; } static void ieee80211_color_change_bss_config_notify(struct ieee80211_sub_if_data *sdata, u8 color, int enable, u64 changed) { sdata->vif.bss_conf.he_bss_color.color = color; sdata->vif.bss_conf.he_bss_color.enabled = enable; changed |= BSS_CHANGED_HE_BSS_COLOR; ieee80211_link_info_change_notify(sdata, &sdata->deflink, changed); if (!sdata->vif.bss_conf.nontransmitted && sdata->vif.mbssid_tx_vif) { struct ieee80211_sub_if_data *child; mutex_lock(&sdata->local->iflist_mtx); list_for_each_entry(child, &sdata->local->interfaces, list) { if (child != sdata && child->vif.mbssid_tx_vif == &sdata->vif) { child->vif.bss_conf.he_bss_color.color = color; child->vif.bss_conf.he_bss_color.enabled = enable; ieee80211_link_info_change_notify(child, &child->deflink, BSS_CHANGED_HE_BSS_COLOR); } } mutex_unlock(&sdata->local->iflist_mtx); } } static int ieee80211_color_change_finalize(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; u64 changed = 0; int err; sdata_assert_lock(sdata); lockdep_assert_held(&local->mtx); sdata->vif.bss_conf.color_change_active = false; err = ieee80211_set_after_color_change_beacon(sdata, &changed); if (err) { cfg80211_color_change_aborted_notify(sdata->dev); return err; } ieee80211_color_change_bss_config_notify(sdata, sdata->vif.bss_conf.color_change_color, 1, changed); cfg80211_color_change_notify(sdata->dev); return 0; } void ieee80211_color_change_finalize_work(struct work_struct *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, deflink.color_change_finalize_work); struct ieee80211_local *local = sdata->local; sdata_lock(sdata); mutex_lock(&local->mtx); /* AP might have been stopped while waiting for the lock. */ if (!sdata->vif.bss_conf.color_change_active) goto unlock; if (!ieee80211_sdata_running(sdata)) goto unlock; ieee80211_color_change_finalize(sdata); unlock: mutex_unlock(&local->mtx); sdata_unlock(sdata); } void ieee80211_color_collision_detection_work(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct ieee80211_link_data *link = container_of(delayed_work, struct ieee80211_link_data, color_collision_detect_work); struct ieee80211_sub_if_data *sdata = link->sdata; sdata_lock(sdata); cfg80211_obss_color_collision_notify(sdata->dev, link->color_bitmap); sdata_unlock(sdata); } void ieee80211_color_change_finish(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); ieee80211_queue_work(&sdata->local->hw, &sdata->deflink.color_change_finalize_work); } EXPORT_SYMBOL_GPL(ieee80211_color_change_finish); void ieee80211_obss_color_collision_notify(struct ieee80211_vif *vif, u64 color_bitmap, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_link_data *link = &sdata->deflink; if (sdata->vif.bss_conf.color_change_active || sdata->vif.bss_conf.csa_active) return; if (delayed_work_pending(&link->color_collision_detect_work)) return; link->color_bitmap = color_bitmap; /* queue the color collision detection event every 500 ms in order to * avoid sending too much netlink messages to userspace. */ ieee80211_queue_delayed_work(&sdata->local->hw, &link->color_collision_detect_work, msecs_to_jiffies(500)); } EXPORT_SYMBOL_GPL(ieee80211_obss_color_collision_notify); static int ieee80211_color_change(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_color_change_settings *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; u64 changed = 0; int err; sdata_assert_lock(sdata); if (sdata->vif.bss_conf.nontransmitted) return -EINVAL; mutex_lock(&local->mtx); /* don't allow another color change if one is already active or if csa * is active */ if (sdata->vif.bss_conf.color_change_active || sdata->vif.bss_conf.csa_active) { err = -EBUSY; goto out; } err = ieee80211_set_color_change_beacon(sdata, params, &changed); if (err) goto out; sdata->vif.bss_conf.color_change_active = true; sdata->vif.bss_conf.color_change_color = params->color; cfg80211_color_change_started_notify(sdata->dev, params->count); if (changed) ieee80211_color_change_bss_config_notify(sdata, 0, 0, changed); else /* if the beacon didn't change, we can finalize immediately */ ieee80211_color_change_finalize(sdata); out: mutex_unlock(&local->mtx); return err; } static int ieee80211_set_radar_background(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = wiphy_priv(wiphy); if (!local->ops->set_radar_background) return -EOPNOTSUPP; return local->ops->set_radar_background(&local->hw, chandef); } static int ieee80211_add_intf_link(struct wiphy *wiphy, struct wireless_dev *wdev, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); int res; if (wdev->use_4addr) return -EOPNOTSUPP; mutex_lock(&sdata->local->mtx); res = ieee80211_vif_set_links(sdata, wdev->valid_links, 0); mutex_unlock(&sdata->local->mtx); return res; } static void ieee80211_del_intf_link(struct wiphy *wiphy, struct wireless_dev *wdev, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); mutex_lock(&sdata->local->mtx); ieee80211_vif_set_links(sdata, wdev->valid_links, 0); mutex_unlock(&sdata->local->mtx); } static int sta_add_link_station(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct link_station_parameters *params) { struct sta_info *sta; int ret; sta = sta_info_get_bss(sdata, params->mld_mac); if (!sta) return -ENOENT; if (!sta->sta.valid_links) return -EINVAL; if (sta->sta.valid_links & BIT(params->link_id)) return -EALREADY; ret = ieee80211_sta_allocate_link(sta, params->link_id); if (ret) return ret; ret = sta_link_apply_parameters(local, sta, true, params); if (ret) { ieee80211_sta_free_link(sta, params->link_id); return ret; } /* ieee80211_sta_activate_link frees the link upon failure */ return ieee80211_sta_activate_link(sta, params->link_id); } static int ieee80211_add_link_station(struct wiphy *wiphy, struct net_device *dev, struct link_station_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wiphy_priv(wiphy); int ret; mutex_lock(&sdata->local->sta_mtx); ret = sta_add_link_station(local, sdata, params); mutex_unlock(&sdata->local->sta_mtx); return ret; } static int sta_mod_link_station(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct link_station_parameters *params) { struct sta_info *sta; sta = sta_info_get_bss(sdata, params->mld_mac); if (!sta) return -ENOENT; if (!(sta->sta.valid_links & BIT(params->link_id))) return -EINVAL; return sta_link_apply_parameters(local, sta, false, params); } static int ieee80211_mod_link_station(struct wiphy *wiphy, struct net_device *dev, struct link_station_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = wiphy_priv(wiphy); int ret; mutex_lock(&sdata->local->sta_mtx); ret = sta_mod_link_station(local, sdata, params); mutex_unlock(&sdata->local->sta_mtx); return ret; } static int sta_del_link_station(struct ieee80211_sub_if_data *sdata, struct link_station_del_parameters *params) { struct sta_info *sta; sta = sta_info_get_bss(sdata, params->mld_mac); if (!sta) return -ENOENT; if (!(sta->sta.valid_links & BIT(params->link_id))) return -EINVAL; /* must not create a STA without links */ if (sta->sta.valid_links == BIT(params->link_id)) return -EINVAL; ieee80211_sta_remove_link(sta, params->link_id); return 0; } static int ieee80211_del_link_station(struct wiphy *wiphy, struct net_device *dev, struct link_station_del_parameters *params) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); int ret; mutex_lock(&sdata->local->sta_mtx); ret = sta_del_link_station(sdata, params); mutex_unlock(&sdata->local->sta_mtx); return ret; } static int ieee80211_set_hw_timestamp(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_set_hw_timestamp *hwts) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; if (!local->ops->set_hw_timestamp) return -EOPNOTSUPP; if (!check_sdata_in_driver(sdata)) return -EIO; return local->ops->set_hw_timestamp(&local->hw, &sdata->vif, hwts); } const struct cfg80211_ops mac80211_config_ops = { .add_virtual_intf = ieee80211_add_iface, .del_virtual_intf = ieee80211_del_iface, .change_virtual_intf = ieee80211_change_iface, .start_p2p_device = ieee80211_start_p2p_device, .stop_p2p_device = ieee80211_stop_p2p_device, .add_key = ieee80211_add_key, .del_key = ieee80211_del_key, .get_key = ieee80211_get_key, .set_default_key = ieee80211_config_default_key, .set_default_mgmt_key = ieee80211_config_default_mgmt_key, .set_default_beacon_key = ieee80211_config_default_beacon_key, .start_ap = ieee80211_start_ap, .change_beacon = ieee80211_change_beacon, .stop_ap = ieee80211_stop_ap, .add_station = ieee80211_add_station, .del_station = ieee80211_del_station, .change_station = ieee80211_change_station, .get_station = ieee80211_get_station, .dump_station = ieee80211_dump_station, .dump_survey = ieee80211_dump_survey, #ifdef CONFIG_MAC80211_MESH .add_mpath = ieee80211_add_mpath, .del_mpath = ieee80211_del_mpath, .change_mpath = ieee80211_change_mpath, .get_mpath = ieee80211_get_mpath, .dump_mpath = ieee80211_dump_mpath, .get_mpp = ieee80211_get_mpp, .dump_mpp = ieee80211_dump_mpp, .update_mesh_config = ieee80211_update_mesh_config, .get_mesh_config = ieee80211_get_mesh_config, .join_mesh = ieee80211_join_mesh, .leave_mesh = ieee80211_leave_mesh, #endif .join_ocb = ieee80211_join_ocb, .leave_ocb = ieee80211_leave_ocb, .change_bss = ieee80211_change_bss, .inform_bss = ieee80211_inform_bss, .set_txq_params = ieee80211_set_txq_params, .set_monitor_channel = ieee80211_set_monitor_channel, .suspend = ieee80211_suspend, .resume = ieee80211_resume, .scan = ieee80211_scan, .abort_scan = ieee80211_abort_scan, .sched_scan_start = ieee80211_sched_scan_start, .sched_scan_stop = ieee80211_sched_scan_stop, .auth = ieee80211_auth, .assoc = ieee80211_assoc, .deauth = ieee80211_deauth, .disassoc = ieee80211_disassoc, .join_ibss = ieee80211_join_ibss, .leave_ibss = ieee80211_leave_ibss, .set_mcast_rate = ieee80211_set_mcast_rate, .set_wiphy_params = ieee80211_set_wiphy_params, .set_tx_power = ieee80211_set_tx_power, .get_tx_power = ieee80211_get_tx_power, .rfkill_poll = ieee80211_rfkill_poll, CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd) CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump) .set_power_mgmt = ieee80211_set_power_mgmt, .set_bitrate_mask = ieee80211_set_bitrate_mask, .remain_on_channel = ieee80211_remain_on_channel, .cancel_remain_on_channel = ieee80211_cancel_remain_on_channel, .mgmt_tx = ieee80211_mgmt_tx, .mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait, .set_cqm_rssi_config = ieee80211_set_cqm_rssi_config, .set_cqm_rssi_range_config = ieee80211_set_cqm_rssi_range_config, .update_mgmt_frame_registrations = ieee80211_update_mgmt_frame_registrations, .set_antenna = ieee80211_set_antenna, .get_antenna = ieee80211_get_antenna, .set_rekey_data = ieee80211_set_rekey_data, .tdls_oper = ieee80211_tdls_oper, .tdls_mgmt = ieee80211_tdls_mgmt, .tdls_channel_switch = ieee80211_tdls_channel_switch, .tdls_cancel_channel_switch = ieee80211_tdls_cancel_channel_switch, .probe_client = ieee80211_probe_client, .set_noack_map = ieee80211_set_noack_map, #ifdef CONFIG_PM .set_wakeup = ieee80211_set_wakeup, #endif .get_channel = ieee80211_cfg_get_channel, .start_radar_detection = ieee80211_start_radar_detection, .end_cac = ieee80211_end_cac, .channel_switch = ieee80211_channel_switch, .set_qos_map = ieee80211_set_qos_map, .set_ap_chanwidth = ieee80211_set_ap_chanwidth, .add_tx_ts = ieee80211_add_tx_ts, .del_tx_ts = ieee80211_del_tx_ts, .start_nan = ieee80211_start_nan, .stop_nan = ieee80211_stop_nan, .nan_change_conf = ieee80211_nan_change_conf, .add_nan_func = ieee80211_add_nan_func, .del_nan_func = ieee80211_del_nan_func, .set_multicast_to_unicast = ieee80211_set_multicast_to_unicast, .tx_control_port = ieee80211_tx_control_port, .get_txq_stats = ieee80211_get_txq_stats, .get_ftm_responder_stats = ieee80211_get_ftm_responder_stats, .start_pmsr = ieee80211_start_pmsr, .abort_pmsr = ieee80211_abort_pmsr, .probe_mesh_link = ieee80211_probe_mesh_link, .set_tid_config = ieee80211_set_tid_config, .reset_tid_config = ieee80211_reset_tid_config, .set_sar_specs = ieee80211_set_sar_specs, .color_change = ieee80211_color_change, .set_radar_background = ieee80211_set_radar_background, .add_intf_link = ieee80211_add_intf_link, .del_intf_link = ieee80211_del_intf_link, .add_link_station = ieee80211_add_link_station, .mod_link_station = ieee80211_mod_link_station, .del_link_station = ieee80211_del_link_station, .set_hw_timestamp = ieee80211_set_hw_timestamp, };
linux-master
net/mac80211/cfg.c
// SPDX-License-Identifier: GPL-2.0-only /* * OCB mode implementation * * Copyright: (c) 2014 Czech Technical University in Prague * (c) 2014 Volkswagen Group Research * Copyright (C) 2022 - 2023 Intel Corporation * Author: Rostislav Lisovy <[email protected]> * Funded by: Volkswagen Group Research */ #include <linux/delay.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <net/mac80211.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #define IEEE80211_OCB_HOUSEKEEPING_INTERVAL (60 * HZ) #define IEEE80211_OCB_PEER_INACTIVITY_LIMIT (240 * HZ) #define IEEE80211_OCB_MAX_STA_ENTRIES 128 /** * enum ocb_deferred_task_flags - mac80211 OCB deferred tasks * @OCB_WORK_HOUSEKEEPING: run the periodic OCB housekeeping tasks * * These flags are used in @wrkq_flags field of &struct ieee80211_if_ocb */ enum ocb_deferred_task_flags { OCB_WORK_HOUSEKEEPING, }; void ieee80211_ocb_rx_no_sta(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *addr, u32 supp_rates) { struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; enum nl80211_bss_scan_width scan_width; struct sta_info *sta; int band; /* XXX: Consider removing the least recently used entry and * allow new one to be added. */ if (local->num_sta >= IEEE80211_OCB_MAX_STA_ENTRIES) { net_info_ratelimited("%s: No room for a new OCB STA entry %pM\n", sdata->name, addr); return; } ocb_dbg(sdata, "Adding new OCB station %pM\n", addr); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON_ONCE(!chanctx_conf)) { rcu_read_unlock(); return; } band = chanctx_conf->def.chan->band; scan_width = cfg80211_chandef_to_scan_width(&chanctx_conf->def); rcu_read_unlock(); sta = sta_info_alloc(sdata, addr, GFP_ATOMIC); if (!sta) return; /* Add only mandatory rates for now */ sband = local->hw.wiphy->bands[band]; sta->sta.deflink.supp_rates[band] = ieee80211_mandatory_rates(sband, scan_width); spin_lock(&ifocb->incomplete_lock); list_add(&sta->list, &ifocb->incomplete_stations); spin_unlock(&ifocb->incomplete_lock); wiphy_work_queue(local->hw.wiphy, &sdata->work); } static struct sta_info *ieee80211_ocb_finish_sta(struct sta_info *sta) __acquires(RCU) { struct ieee80211_sub_if_data *sdata = sta->sdata; u8 addr[ETH_ALEN]; memcpy(addr, sta->sta.addr, ETH_ALEN); ocb_dbg(sdata, "Adding new IBSS station %pM (dev=%s)\n", addr, sdata->name); sta_info_move_state(sta, IEEE80211_STA_AUTH); sta_info_move_state(sta, IEEE80211_STA_ASSOC); sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); rate_control_rate_init(sta); /* If it fails, maybe we raced another insertion? */ if (sta_info_insert_rcu(sta)) return sta_info_get(sdata, addr); return sta; } static void ieee80211_ocb_housekeeping(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; ocb_dbg(sdata, "Running ocb housekeeping\n"); ieee80211_sta_expire(sdata, IEEE80211_OCB_PEER_INACTIVITY_LIMIT); mod_timer(&ifocb->housekeeping_timer, round_jiffies(jiffies + IEEE80211_OCB_HOUSEKEEPING_INTERVAL)); } void ieee80211_ocb_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; struct sta_info *sta; if (ifocb->joined != true) return; sdata_lock(sdata); spin_lock_bh(&ifocb->incomplete_lock); while (!list_empty(&ifocb->incomplete_stations)) { sta = list_first_entry(&ifocb->incomplete_stations, struct sta_info, list); list_del(&sta->list); spin_unlock_bh(&ifocb->incomplete_lock); ieee80211_ocb_finish_sta(sta); rcu_read_unlock(); spin_lock_bh(&ifocb->incomplete_lock); } spin_unlock_bh(&ifocb->incomplete_lock); if (test_and_clear_bit(OCB_WORK_HOUSEKEEPING, &ifocb->wrkq_flags)) ieee80211_ocb_housekeeping(sdata); sdata_unlock(sdata); } static void ieee80211_ocb_housekeeping_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.ocb.housekeeping_timer); struct ieee80211_local *local = sdata->local; struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; set_bit(OCB_WORK_HOUSEKEEPING, &ifocb->wrkq_flags); wiphy_work_queue(local->hw.wiphy, &sdata->work); } void ieee80211_ocb_setup_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; timer_setup(&ifocb->housekeeping_timer, ieee80211_ocb_housekeeping_timer, 0); INIT_LIST_HEAD(&ifocb->incomplete_stations); spin_lock_init(&ifocb->incomplete_lock); } int ieee80211_ocb_join(struct ieee80211_sub_if_data *sdata, struct ocb_setup *setup) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; u64 changed = BSS_CHANGED_OCB | BSS_CHANGED_BSSID; int err; if (ifocb->joined == true) return -EINVAL; sdata->deflink.operating_11g_mode = true; sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; sdata->deflink.needed_rx_chains = sdata->local->rx_chains; mutex_lock(&sdata->local->mtx); err = ieee80211_link_use_channel(&sdata->deflink, &setup->chandef, IEEE80211_CHANCTX_SHARED); mutex_unlock(&sdata->local->mtx); if (err) return err; ieee80211_bss_info_change_notify(sdata, changed); ifocb->joined = true; set_bit(OCB_WORK_HOUSEKEEPING, &ifocb->wrkq_flags); wiphy_work_queue(local->hw.wiphy, &sdata->work); netif_carrier_on(sdata->dev); return 0; } int ieee80211_ocb_leave(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_ocb *ifocb = &sdata->u.ocb; struct ieee80211_local *local = sdata->local; struct sta_info *sta; ifocb->joined = false; sta_info_flush(sdata); spin_lock_bh(&ifocb->incomplete_lock); while (!list_empty(&ifocb->incomplete_stations)) { sta = list_first_entry(&ifocb->incomplete_stations, struct sta_info, list); list_del(&sta->list); spin_unlock_bh(&ifocb->incomplete_lock); sta_info_free(local, sta); spin_lock_bh(&ifocb->incomplete_lock); } spin_unlock_bh(&ifocb->incomplete_lock); netif_carrier_off(sdata->dev); clear_bit(SDATA_STATE_OFFCHANNEL, &sdata->state); ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_OCB); mutex_lock(&sdata->local->mtx); ieee80211_link_release_channel(&sdata->deflink); mutex_unlock(&sdata->local->mtx); skb_queue_purge(&sdata->skb_queue); del_timer_sync(&sdata->u.ocb.housekeeping_timer); /* If the timer fired while we waited for it, it will have * requeued the work. Now the work will be running again * but will not rearm the timer again because it checks * whether we are connected to the network or not -- at this * point we shouldn't be anymore. */ return 0; }
linux-master
net/mac80211/ocb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2006-2007 Jiri Benc <[email protected]> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include <linux/module.h> #include <linux/init.h> #include <linux/etherdevice.h> #include <linux/netdevice.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/timer.h> #include <linux/rtnetlink.h> #include <net/codel.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "sta_info.h" #include "debugfs_sta.h" #include "mesh.h" #include "wme.h" /** * DOC: STA information lifetime rules * * STA info structures (&struct sta_info) are managed in a hash table * for faster lookup and a list for iteration. They are managed using * RCU, i.e. access to the list and hash table is protected by RCU. * * Upon allocating a STA info structure with sta_info_alloc(), the caller * owns that structure. It must then insert it into the hash table using * either sta_info_insert() or sta_info_insert_rcu(); only in the latter * case (which acquires an rcu read section but must not be called from * within one) will the pointer still be valid after the call. Note that * the caller may not do much with the STA info before inserting it, in * particular, it may not start any mesh peer link management or add * encryption keys. * * When the insertion fails (sta_info_insert()) returns non-zero), the * structure will have been freed by sta_info_insert()! * * Station entries are added by mac80211 when you establish a link with a * peer. This means different things for the different type of interfaces * we support. For a regular station this mean we add the AP sta when we * receive an association response from the AP. For IBSS this occurs when * get to know about a peer on the same IBSS. For WDS we add the sta for * the peer immediately upon device open. When using AP mode we add stations * for each respective station upon request from userspace through nl80211. * * In order to remove a STA info structure, various sta_info_destroy_*() * calls are available. * * There is no concept of ownership on a STA entry, each structure is * owned by the global hash table/list until it is removed. All users of * the structure need to be RCU protected so that the structure won't be * freed before they are done using it. */ struct sta_link_alloc { struct link_sta_info info; struct ieee80211_link_sta sta; struct rcu_head rcu_head; }; static const struct rhashtable_params sta_rht_params = { .nelem_hint = 3, /* start small */ .automatic_shrinking = true, .head_offset = offsetof(struct sta_info, hash_node), .key_offset = offsetof(struct sta_info, addr), .key_len = ETH_ALEN, .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, }; static const struct rhashtable_params link_sta_rht_params = { .nelem_hint = 3, /* start small */ .automatic_shrinking = true, .head_offset = offsetof(struct link_sta_info, link_hash_node), .key_offset = offsetof(struct link_sta_info, addr), .key_len = ETH_ALEN, .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, }; /* Caller must hold local->sta_mtx */ static int sta_info_hash_del(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_remove(&local->sta_hash, &sta->hash_node, sta_rht_params); } static int link_sta_info_hash_add(struct ieee80211_local *local, struct link_sta_info *link_sta) { lockdep_assert_held(&local->sta_mtx); return rhltable_insert(&local->link_sta_hash, &link_sta->link_hash_node, link_sta_rht_params); } static int link_sta_info_hash_del(struct ieee80211_local *local, struct link_sta_info *link_sta) { lockdep_assert_held(&local->sta_mtx); return rhltable_remove(&local->link_sta_hash, &link_sta->link_hash_node, link_sta_rht_params); } static void __cleanup_single_sta(struct sta_info *sta) { int ac, i; struct tid_ampdu_tx *tid_tx; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ps_data *ps; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_PS_STA); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); clear_sta_flag(sta, WLAN_STA_PS_DELIVER); atomic_dec(&ps->num_sta_ps); } for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txqi; if (!sta->sta.txq[i]) continue; txqi = to_txq_info(sta->sta.txq[i]); ieee80211_txq_purge(local, txqi); } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); } if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_sta_cleanup(sta); cancel_work_sync(&sta->drv_deliver_wk); /* * Destroy aggregation state here. It would be nice to wait for the * driver to finish aggregation stop and then clean up, but for now * drivers have to handle aggregation stop being requested, followed * directly by station destruction. */ for (i = 0; i < IEEE80211_NUM_TIDS; i++) { kfree(sta->ampdu_mlme.tid_start_tx[i]); tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); if (!tid_tx) continue; ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); kfree(tid_tx); } } static void cleanup_single_sta(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; __cleanup_single_sta(sta); sta_info_free(local, sta); } struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr) { return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); } /* protected by RCU */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } /* * Get sta info either from the specified interface * or from one of its vlans */ struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata || (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } struct rhlist_head *link_sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr) { return rhltable_lookup(&local->link_sta_hash, addr, link_sta_rht_params); } struct link_sta_info * link_sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct link_sta_info *link_sta; rcu_read_lock(); for_each_link_sta_info(local, addr, link_sta, tmp) { struct sta_info *sta = link_sta->sta; if (sta->sdata == sdata || (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return link_sta; } } rcu_read_unlock(); return NULL; } struct ieee80211_sta * ieee80211_find_sta_by_link_addrs(struct ieee80211_hw *hw, const u8 *addr, const u8 *localaddr, unsigned int *link_id) { struct ieee80211_local *local = hw_to_local(hw); struct link_sta_info *link_sta; struct rhlist_head *tmp; for_each_link_sta_info(local, addr, link_sta, tmp) { struct sta_info *sta = link_sta->sta; struct ieee80211_link_data *link; u8 _link_id = link_sta->link_id; if (!localaddr) { if (link_id) *link_id = _link_id; return &sta->sta; } link = rcu_dereference(sta->sdata->link[_link_id]); if (!link) continue; if (memcmp(link->conf->addr, localaddr, ETH_ALEN)) continue; if (link_id) *link_id = _link_id; return &sta->sta; } return NULL; } EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_link_addrs); struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, const u8 *sta_addr, const u8 *vif_addr) { struct rhlist_head *tmp; struct sta_info *sta; for_each_sta_info(local, sta_addr, sta, tmp) { if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) return sta; } return NULL; } struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; int i = 0; list_for_each_entry_rcu(sta, &local->sta_list, list, lockdep_is_held(&local->sta_mtx)) { if (sdata != sta->sdata) continue; if (i < idx) { ++i; continue; } return sta; } return NULL; } static void sta_info_free_link(struct link_sta_info *link_sta) { free_percpu(link_sta->pcpu_rx_stats); } static void sta_remove_link(struct sta_info *sta, unsigned int link_id, bool unhash) { struct sta_link_alloc *alloc = NULL; struct link_sta_info *link_sta; link_sta = rcu_access_pointer(sta->link[link_id]); if (link_sta != &sta->deflink) lockdep_assert_held(&sta->local->sta_mtx); if (WARN_ON(!link_sta)) return; if (unhash) link_sta_info_hash_del(sta->local, link_sta); if (test_sta_flag(sta, WLAN_STA_INSERTED)) ieee80211_link_sta_debugfs_remove(link_sta); if (link_sta != &sta->deflink) alloc = container_of(link_sta, typeof(*alloc), info); sta->sta.valid_links &= ~BIT(link_id); RCU_INIT_POINTER(sta->link[link_id], NULL); RCU_INIT_POINTER(sta->sta.link[link_id], NULL); if (alloc) { sta_info_free_link(&alloc->info); kfree_rcu(alloc, rcu_head); } ieee80211_sta_recalc_aggregates(&sta->sta); } /** * sta_info_free - free STA * * @local: pointer to the global information * @sta: STA info to free * * This function must undo everything done by sta_info_alloc() * that may happen before sta_info_insert(). It may only be * called when sta_info_insert() has not been attempted (and * if that fails, the station is freed anyway.) */ void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) { int i; for (i = 0; i < ARRAY_SIZE(sta->link); i++) { if (!(sta->sta.valid_links & BIT(i))) continue; sta_remove_link(sta, i, false); } /* * If we had used sta_info_pre_move_state() then we might not * have gone through the state transitions down again, so do * it here now (and warn if it's inserted). * * This will clear state such as fast TX/RX that may have been * allocated during state transitions. */ while (sta->sta_state > IEEE80211_STA_NONE) { int ret; WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); ret = sta_info_move_state(sta, sta->sta_state - 1); if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) break; } if (sta->rate_ctrl) rate_control_free_sta(sta); sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); kfree(to_txq_info(sta->sta.txq[0])); kfree(rcu_dereference_raw(sta->sta.rates)); #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif sta_info_free_link(&sta->deflink); kfree(sta); } /* Caller must hold local->sta_mtx */ static int sta_info_hash_add(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_insert(&local->sta_hash, &sta->hash_node, sta_rht_params); } static void sta_deliver_ps_frames(struct work_struct *wk) { struct sta_info *sta; sta = container_of(wk, struct sta_info, drv_deliver_wk); if (sta->dead) return; local_bh_disable(); if (!test_sta_flag(sta, WLAN_STA_PS_STA)) ieee80211_sta_ps_deliver_wakeup(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) ieee80211_sta_ps_deliver_poll_response(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) ieee80211_sta_ps_deliver_uapsd(sta); local_bh_enable(); } static int sta_prepare_rate_control(struct ieee80211_local *local, struct sta_info *sta, gfp_t gfp) { if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) return 0; sta->rate_ctrl = local->rate_ctrl; sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, sta, gfp); if (!sta->rate_ctrl_priv) return -ENOMEM; return 0; } static int sta_info_alloc_link(struct ieee80211_local *local, struct link_sta_info *link_info, gfp_t gfp) { struct ieee80211_hw *hw = &local->hw; int i; if (ieee80211_hw_check(hw, USES_RSS)) { link_info->pcpu_rx_stats = alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); if (!link_info->pcpu_rx_stats) return -ENOMEM; } link_info->rx_stats.last_rx = jiffies; u64_stats_init(&link_info->rx_stats.syncp); ewma_signal_init(&link_info->rx_stats_avg.signal); ewma_avg_signal_init(&link_info->status_stats.avg_ack_signal); for (i = 0; i < ARRAY_SIZE(link_info->rx_stats_avg.chain_signal); i++) ewma_signal_init(&link_info->rx_stats_avg.chain_signal[i]); return 0; } static void sta_info_add_link(struct sta_info *sta, unsigned int link_id, struct link_sta_info *link_info, struct ieee80211_link_sta *link_sta) { link_info->sta = sta; link_info->link_id = link_id; link_info->pub = link_sta; link_info->pub->sta = &sta->sta; link_sta->link_id = link_id; rcu_assign_pointer(sta->link[link_id], link_info); rcu_assign_pointer(sta->sta.link[link_id], link_sta); link_sta->smps_mode = IEEE80211_SMPS_OFF; link_sta->agg.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; } static struct sta_info * __sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, int link_id, const u8 *link_addr, gfp_t gfp) { struct ieee80211_local *local = sdata->local; struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; void *txq_data; int size; int i; sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); if (!sta) return NULL; sta->local = local; sta->sdata = sdata; if (sta_info_alloc_link(local, &sta->deflink, gfp)) goto free; if (link_id >= 0) { sta_info_add_link(sta, link_id, &sta->deflink, &sta->sta.deflink); sta->sta.valid_links = BIT(link_id); } else { sta_info_add_link(sta, 0, &sta->deflink, &sta->sta.deflink); } sta->sta.cur = &sta->sta.deflink.agg; spin_lock_init(&sta->lock); spin_lock_init(&sta->ps_lock); INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); mutex_init(&sta->ampdu_mlme.mtx); #ifdef CONFIG_MAC80211_MESH if (ieee80211_vif_is_mesh(&sdata->vif)) { sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); if (!sta->mesh) goto free; sta->mesh->plink_sta = sta; spin_lock_init(&sta->mesh->plink_lock); if (!sdata->u.mesh.user_mpm) timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 0); sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; } #endif memcpy(sta->addr, addr, ETH_ALEN); memcpy(sta->sta.addr, addr, ETH_ALEN); memcpy(sta->deflink.addr, link_addr, ETH_ALEN); memcpy(sta->sta.deflink.addr, link_addr, ETH_ALEN); sta->sta.max_rx_aggregation_subframes = local->hw.max_rx_aggregation_subframes; /* TODO link specific alloc and assignments for MLO Link STA */ /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. * The Tx path starts to use a key as soon as the key slot ptk_idx * references to is not NULL. To not use the initial Rx-only key * prematurely for Tx initialize ptk_idx to an impossible PTK keyid * which always will refer to a NULL key. */ BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); sta->ptk_idx = INVALID_PTK_KEYIDX; ieee80211_init_frag_cache(&sta->frags); sta->sta_state = IEEE80211_STA_NONE; if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) sta->amsdu_mesh_control = -1; /* Mark TID as unreserved */ sta->reserved_tid = IEEE80211_TID_UNRESERVED; sta->last_connected = ktime_get_seconds(); size = sizeof(struct txq_info) + ALIGN(hw->txq_data_size, sizeof(void *)); txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); if (!txq_data) goto free; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txq = txq_data + i * size; /* might not do anything for the (bufferable) MMPDU TXQ */ ieee80211_txq_init(sdata, sta, txq, i); } if (sta_prepare_rate_control(local, sta, gfp)) goto free_txq; sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; for (i = 0; i < IEEE80211_NUM_ACS; i++) { skb_queue_head_init(&sta->ps_tx_buf[i]); skb_queue_head_init(&sta->tx_filtered[i]); sta->airtime[i].deficit = sta->airtime_weight; atomic_set(&sta->airtime[i].aql_tx_pending, 0); sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; } for (i = 0; i < IEEE80211_NUM_TIDS; i++) sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); for (i = 0; i < NUM_NL80211_BANDS; i++) { u32 mandatory = 0; int r; if (!hw->wiphy->bands[i]) continue; switch (i) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: /* * We use both here, even if we cannot really know for * sure the station will support both, but the only use * for this is when we don't know anything yet and send * management frames, and then we'll pick the lowest * possible rate anyway. * If we don't include _G here, we cannot find a rate * in P2P, and thus trigger the WARN_ONCE() in rate.c */ mandatory = IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; break; case NL80211_BAND_5GHZ: mandatory = IEEE80211_RATE_MANDATORY_A; break; case NL80211_BAND_60GHZ: WARN_ON(1); mandatory = 0; break; } for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { struct ieee80211_rate *rate; rate = &hw->wiphy->bands[i]->bitrates[r]; if (!(rate->flags & mandatory)) continue; sta->sta.deflink.supp_rates[i] |= BIT(r); } } sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; sta->cparams.ce_threshold_selector = 0; sta->cparams.ce_threshold_mask = 0; sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); return sta; free_txq: kfree(to_txq_info(sta->sta.txq[0])); free: sta_info_free_link(&sta->deflink); #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif kfree(sta); return NULL; } struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp) { return __sta_info_alloc(sdata, addr, -1, addr, gfp); } struct sta_info *sta_info_alloc_with_link(struct ieee80211_sub_if_data *sdata, const u8 *mld_addr, unsigned int link_id, const u8 *link_addr, gfp_t gfp) { return __sta_info_alloc(sdata, mld_addr, link_id, link_addr, gfp); } static int sta_info_insert_check(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; /* * Can't be a WARN_ON because it can be triggered through a race: * something inserts a STA (on one CPU) without holding the RTNL * and another CPU turns off the net device. */ if (unlikely(!ieee80211_sdata_running(sdata))) return -ENETDOWN; if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || !is_valid_ether_addr(sta->sta.addr))) return -EINVAL; /* The RCU read lock is required by rhashtable due to * asynchronous resize/rehash. We also require the mutex * for correctness. */ rcu_read_lock(); lockdep_assert_held(&sdata->local->sta_mtx); if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { rcu_read_unlock(); return -ENOTUNIQ; } rcu_read_unlock(); return 0; } static int sta_info_insert_drv_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { enum ieee80211_sta_state state; int err = 0; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { err = drv_sta_state(local, sdata, sta, state, state + 1); if (err) break; } if (!err) { /* * Drivers using legacy sta_add/sta_remove callbacks only * get uploaded set to true after sta_add is called. */ if (!local->ops->sta_add) sta->uploaded = true; return 0; } if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { sdata_info(sdata, "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", sta->sta.addr, state + 1, err); err = 0; } /* unwind on error */ for (; state > IEEE80211_STA_NOTEXIST; state--) WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); return err; } static void ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; bool allow_p2p_go_ps = sdata->vif.p2p; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata || !test_sta_flag(sta, WLAN_STA_ASSOC)) continue; if (!sta->sta.support_p2p_ps) { allow_p2p_go_ps = false; break; } } rcu_read_unlock(); if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_P2P_PS); } } /* * should be called with sta_mtx locked * this function replaces the mutex lock * with a RCU lock */ static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo = NULL; int err = 0; lockdep_assert_held(&local->sta_mtx); /* check if STA exists already */ if (sta_info_get_bss(sdata, sta->sta.addr)) { err = -EEXIST; goto out_cleanup; } sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); if (!sinfo) { err = -ENOMEM; goto out_cleanup; } local->num_sta++; local->sta_generation++; smp_mb(); /* simplify things and don't accept BA sessions yet */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); /* make the station visible */ err = sta_info_hash_add(local, sta); if (err) goto out_drop_sta; if (sta->sta.valid_links) { err = link_sta_info_hash_add(local, &sta->deflink); if (err) { sta_info_hash_del(local, sta); goto out_drop_sta; } } list_add_tail_rcu(&sta->list, &local->sta_list); /* update channel context before notifying the driver about state * change, this enables driver using the updated channel context right away. */ if (sta->sta_state >= IEEE80211_STA_ASSOC) { ieee80211_recalc_min_chandef(sta->sdata, -1); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } /* notify driver */ err = sta_info_insert_drv_state(local, sdata, sta); if (err) goto out_remove; set_sta_flag(sta, WLAN_STA_INSERTED); /* accept BA sessions now */ clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_debugfs_add(sta); rate_control_add_sta_debugfs(sta); if (sta->sta.valid_links) { int i; for (i = 0; i < ARRAY_SIZE(sta->link); i++) { struct link_sta_info *link_sta; link_sta = rcu_dereference_protected(sta->link[i], lockdep_is_held(&local->sta_mtx)); if (!link_sta) continue; ieee80211_link_sta_debugfs_add(link_sta); if (sdata->vif.active_links & BIT(i)) ieee80211_link_sta_debugfs_drv_add(link_sta); } } else { ieee80211_link_sta_debugfs_add(&sta->deflink); ieee80211_link_sta_debugfs_drv_add(&sta->deflink); } sinfo->generation = local->sta_generation; cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); /* move reference to rcu-protected */ rcu_read_lock(); mutex_unlock(&local->sta_mtx); if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_accept_plinks_update(sdata); return 0; out_remove: if (sta->sta.valid_links) link_sta_info_hash_del(local, &sta->deflink); sta_info_hash_del(local, sta); list_del_rcu(&sta->list); out_drop_sta: local->num_sta--; synchronize_net(); out_cleanup: cleanup_single_sta(sta); mutex_unlock(&local->sta_mtx); kfree(sinfo); rcu_read_lock(); return err; } int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; int err; might_sleep(); mutex_lock(&local->sta_mtx); err = sta_info_insert_check(sta); if (err) { sta_info_free(local, sta); mutex_unlock(&local->sta_mtx); rcu_read_lock(); return err; } return sta_info_insert_finish(sta); } int sta_info_insert(struct sta_info *sta) { int err = sta_info_insert_rcu(sta); rcu_read_unlock(); return err; } static inline void __bss_tim_set(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __set_bit() format. */ tim[id / 8] |= (1 << (id % 8)); } static inline void __bss_tim_clear(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __clear_bit() format. */ tim[id / 8] &= ~(1 << (id % 8)); } static inline bool __bss_tim_get(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the test_bit() format. */ return tim[id / 8] & (1 << (id % 8)); } static unsigned long ieee80211_tids_for_ac(int ac) { /* If we ever support TIDs > 7, this obviously needs to be adjusted */ switch (ac) { case IEEE80211_AC_VO: return BIT(6) | BIT(7); case IEEE80211_AC_VI: return BIT(4) | BIT(5); case IEEE80211_AC_BE: return BIT(0) | BIT(3); case IEEE80211_AC_BK: return BIT(1) | BIT(2); default: WARN_ON(1); return 0; } } static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) { struct ieee80211_local *local = sta->local; struct ps_data *ps; bool indicate_tim = false; u8 ignore_for_tim = sta->sta.uapsd_queues; int ac; u16 id = sta->sta.aid; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (WARN_ON_ONCE(!sta->sdata->bss)) return; ps = &sta->sdata->bss->ps; #ifdef CONFIG_MAC80211_MESH } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { ps = &sta->sdata->u.mesh.ps; #endif } else { return; } /* No need to do anything if the driver does all */ if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) return; if (sta->dead) goto done; /* * If all ACs are delivery-enabled then we should build * the TIM bit for all ACs anyway; if only some are then * we ignore those and build the TIM bit using only the * non-enabled ones. */ if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_tim = 0; if (ignore_pending) ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) continue; indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac]); if (indicate_tim) break; tids = ieee80211_tids_for_ac(ac); indicate_tim |= sta->driver_buffered_tids & tids; indicate_tim |= sta->txq_buffered_tids & tids; } done: spin_lock_bh(&local->tim_lock); if (indicate_tim == __bss_tim_get(ps->tim, id)) goto out_unlock; if (indicate_tim) __bss_tim_set(ps->tim, id); else __bss_tim_clear(ps->tim, id); if (local->ops->set_tim && !WARN_ON(sta->dead)) { local->tim_in_locked_section = true; drv_set_tim(local, &sta->sta, indicate_tim); local->tim_in_locked_section = false; } out_unlock: spin_unlock_bh(&local->tim_lock); } void sta_info_recalc_tim(struct sta_info *sta) { __sta_info_recalc_tim(sta, false); } static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info; int timeout; if (!skb) return false; info = IEEE80211_SKB_CB(skb); /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ timeout = (sta->listen_interval * sta->sdata->vif.bss_conf.beacon_int * 32 / 15625) * HZ; if (timeout < STA_TX_BUFFER_EXPIRE) timeout = STA_TX_BUFFER_EXPIRE; return time_after(jiffies, info->control.jiffies + timeout); } static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, struct sta_info *sta, int ac) { unsigned long flags; struct sk_buff *skb; /* * First check for frames that should expire on the filtered * queue. Frames here were rejected by the driver and are on * a separate queue to avoid reordering with normal PS-buffered * frames. They also aren't accounted for right now in the * total_ps_buffered counter. */ for (;;) { spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb = skb_peek(&sta->tx_filtered[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->tx_filtered[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); /* * Frames are queued in order, so if this one * hasn't expired yet we can stop testing. If * we actually reached the end of the queue we * also need to stop, of course. */ if (!skb) break; ieee80211_free_txskb(&local->hw, skb); } /* * Now also check the normal PS-buffered queue, this will * only find something if the filtered queue was emptied * since the filtered frames are all before the normal PS * buffered frames. */ for (;;) { spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb = skb_peek(&sta->ps_tx_buf[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->ps_tx_buf[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); /* * frames are queued in order, so if this one * hasn't expired yet (or we reached the end of * the queue) we can stop testing */ if (!skb) break; local->total_ps_buffered--; ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", sta->sta.addr); ieee80211_free_txskb(&local->hw, skb); } /* * Finally, recalculate the TIM bit for this station -- it might * now be clear because the station was too slow to retrieve its * frames. */ sta_info_recalc_tim(sta); /* * Return whether there are any frames still buffered, this is * used to check whether the cleanup timer still needs to run, * if there are no frames we don't need to rearm the timer. */ return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && skb_queue_empty(&sta->tx_filtered[ac])); } static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, struct sta_info *sta) { bool have_buffered = false; int ac; /* This is only necessary for stations on BSS/MBSS interfaces */ if (!sta->sdata->bss && !ieee80211_vif_is_mesh(&sta->sdata->vif)) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) have_buffered |= sta_info_cleanup_expire_buffered_ac(local, sta, ac); return have_buffered; } static int __must_check __sta_info_destroy_part1(struct sta_info *sta) { struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int ret, i; might_sleep(); if (!sta) return -ENOENT; local = sta->local; sdata = sta->sdata; lockdep_assert_held(&local->sta_mtx); /* * Before removing the station from the driver and * rate control, it might still start new aggregation * sessions -- block that to make sure the tear-down * will be sufficient. */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); /* * Before removing the station from the driver there might be pending * rx frames on RSS queues sent prior to the disassociation - wait for * all such frames to be processed. */ drv_sync_rx_queues(local, sta); for (i = 0; i < ARRAY_SIZE(sta->link); i++) { struct link_sta_info *link_sta; if (!(sta->sta.valid_links & BIT(i))) continue; link_sta = rcu_dereference_protected(sta->link[i], lockdep_is_held(&local->sta_mtx)); link_sta_info_hash_del(local, link_sta); } ret = sta_info_hash_del(local, sta); if (WARN_ON(ret)) return ret; /* * for TDLS peers, make sure to return to the base channel before * removal. */ if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); } list_del_rcu(&sta->list); sta->removed = true; if (sta->uploaded) drv_sta_pre_rcu_remove(local, sta->sdata, sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && rcu_access_pointer(sdata->u.vlan.sta) == sta) RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); return 0; } static int _sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state, bool recalc) { might_sleep(); if (sta->sta_state == new_state) return 0; /* check allowed transitions first */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state != IEEE80211_STA_AUTH) return -EINVAL; break; case IEEE80211_STA_AUTH: if (sta->sta_state != IEEE80211_STA_NONE && sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; case IEEE80211_STA_ASSOC: if (sta->sta_state != IEEE80211_STA_AUTH && sta->sta_state != IEEE80211_STA_AUTHORIZED) return -EINVAL; break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; default: WARN(1, "invalid state %d", new_state); return -EINVAL; } sta_dbg(sta->sdata, "moving STA %pM to state %d\n", sta->sta.addr, new_state); /* notify the driver before the actual changes so it can * fail the transition */ if (test_sta_flag(sta, WLAN_STA_INSERTED)) { int err = drv_sta_state(sta->local, sta->sdata, sta, sta->sta_state, new_state); if (err) return err; } /* reflect the change in all state variables */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state == IEEE80211_STA_AUTH) clear_bit(WLAN_STA_AUTH, &sta->_flags); break; case IEEE80211_STA_AUTH: if (sta->sta_state == IEEE80211_STA_NONE) { set_bit(WLAN_STA_AUTH, &sta->_flags); } else if (sta->sta_state == IEEE80211_STA_ASSOC) { clear_bit(WLAN_STA_ASSOC, &sta->_flags); if (recalc) { ieee80211_recalc_min_chandef(sta->sdata, -1); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } } break; case IEEE80211_STA_ASSOC: if (sta->sta_state == IEEE80211_STA_AUTH) { set_bit(WLAN_STA_ASSOC, &sta->_flags); sta->assoc_at = ktime_get_boottime_ns(); if (recalc) { ieee80211_recalc_min_chandef(sta->sdata, -1); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { ieee80211_vif_dec_num_mcast(sta->sdata); clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_clear_fast_xmit(sta); ieee80211_clear_fast_rx(sta); } break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state == IEEE80211_STA_ASSOC) { ieee80211_vif_inc_num_mcast(sta->sdata); set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_check_fast_xmit(sta); ieee80211_check_fast_rx(sta); } if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sta->sdata->vif.type == NL80211_IFTYPE_AP) cfg80211_send_layer2_update(sta->sdata->dev, sta->sta.addr); break; default: break; } sta->sta_state = new_state; return 0; } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { return _sta_info_move_state(sta, new_state, true); } static void __sta_info_destroy_part2(struct sta_info *sta, bool recalc) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo; int ret; /* * NOTE: This assumes at least synchronize_net() was done * after _part1 and before _part2! */ might_sleep(); lockdep_assert_held(&local->sta_mtx); if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { ret = _sta_info_move_state(sta, IEEE80211_STA_ASSOC, recalc); WARN_ON_ONCE(ret); } /* Flush queues before removing keys, as that might remove them * from hardware, and then depending on the offload method, any * frames sitting on hardware queues might be sent out without * any encryption at all. */ if (local->ops->set_key) { if (local->ops->flush_sta) drv_flush_sta(local, sta->sdata, sta); else ieee80211_flush_queues(local, sta->sdata, false); } /* now keys can no longer be reached */ ieee80211_free_sta_keys(local, sta); /* disable TIM bit - last chance to tell driver */ __sta_info_recalc_tim(sta, true); sta->dead = true; local->num_sta--; local->sta_generation++; while (sta->sta_state > IEEE80211_STA_NONE) { ret = _sta_info_move_state(sta, sta->sta_state - 1, recalc); if (ret) { WARN_ON_ONCE(1); break; } } if (sta->uploaded) { ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); WARN_ON_ONCE(ret != 0); } sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); if (sinfo) sta_set_sinfo(sta, sinfo, true); cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); ieee80211_sta_debugfs_remove(sta); ieee80211_destroy_frag_cache(&sta->frags); cleanup_single_sta(sta); } int __must_check __sta_info_destroy(struct sta_info *sta) { int err = __sta_info_destroy_part1(sta); if (err) return err; synchronize_net(); __sta_info_destroy_part2(sta, true); return 0; } int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get_bss(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } static void sta_info_cleanup(struct timer_list *t) { struct ieee80211_local *local = from_timer(local, t, sta_cleanup); struct sta_info *sta; bool timer_needed = false; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) if (sta_info_cleanup_expire_buffered(local, sta)) timer_needed = true; rcu_read_unlock(); if (local->quiescing) return; if (!timer_needed) return; mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); } int sta_info_init(struct ieee80211_local *local) { int err; err = rhltable_init(&local->sta_hash, &sta_rht_params); if (err) return err; err = rhltable_init(&local->link_sta_hash, &link_sta_rht_params); if (err) { rhltable_destroy(&local->sta_hash); return err; } spin_lock_init(&local->tim_lock); mutex_init(&local->sta_mtx); INIT_LIST_HEAD(&local->sta_list); timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); return 0; } void sta_info_stop(struct ieee80211_local *local) { del_timer_sync(&local->sta_cleanup); rhltable_destroy(&local->sta_hash); rhltable_destroy(&local->link_sta_hash); } int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; LIST_HEAD(free_list); int ret = 0; might_sleep(); WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); WARN_ON(vlans && !sdata->bss); mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { if (sdata == sta->sdata || (vlans && sdata->bss == sta->sdata->bss)) { if (!WARN_ON(__sta_info_destroy_part1(sta))) list_add(&sta->free_list, &free_list); ret++; } } if (!list_empty(&free_list)) { bool support_p2p_ps = true; synchronize_net(); list_for_each_entry_safe(sta, tmp, &free_list, free_list) { if (!sta->sta.support_p2p_ps) support_p2p_ps = false; __sta_info_destroy_part2(sta, false); } ieee80211_recalc_min_chandef(sdata, -1); if (!support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sdata); } mutex_unlock(&local->sta_mtx); return ret; } void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { unsigned long last_active = ieee80211_sta_last_active(sta); if (sdata != sta->sdata) continue; if (time_is_before_jiffies(last_active + exp_time)) { sta_dbg(sta->sdata, "expiring inactive STA %pM\n", sta->sta.addr); if (ieee80211_vif_is_mesh(&sdata->vif) && test_sta_flag(sta, WLAN_STA_PS_STA)) atomic_dec(&sdata->u.mesh.ps.num_sta_ps); WARN_ON(__sta_info_destroy(sta)); } } mutex_unlock(&local->sta_mtx); } struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, const u8 *addr, const u8 *localaddr) { struct ieee80211_local *local = hw_to_local(hw); struct rhlist_head *tmp; struct sta_info *sta; /* * Just return a random station if localaddr is NULL * ... first in list. */ for_each_sta_info(local, addr, sta, tmp) { if (localaddr && !ether_addr_equal(sta->sdata->vif.addr, localaddr)) continue; if (!sta->uploaded) return NULL; return &sta->sta; } return NULL; } EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, const u8 *addr) { struct sta_info *sta; if (!vif) return NULL; sta = sta_info_get_bss(vif_to_sdata(vif), addr); if (!sta) return NULL; if (!sta->uploaded) return NULL; return &sta->sta; } EXPORT_SYMBOL(ieee80211_find_sta); /* powersave support code */ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct sk_buff_head pending; int filtered = 0, buffered = 0, ac, i; unsigned long flags; struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_SP); BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); sta->driver_buffered_tids = 0; sta->txq_buffered_tids = 0; if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) continue; schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); } skb_queue_head_init(&pending); /* sync with ieee80211_tx_h_unicast_ps_buf */ spin_lock(&sta->ps_lock); /* Send all buffered frames to the station */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { int count = skb_queue_len(&pending), tmp; spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); tmp = skb_queue_len(&pending); filtered += tmp - count; count = tmp; spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); tmp = skb_queue_len(&pending); buffered += tmp - count; } ieee80211_add_pending_skbs(local, &pending); /* now we're no longer in the deliver code */ clear_sta_flag(sta, WLAN_STA_PS_DELIVER); /* The station might have polled and then woken up before we responded, * so clear these flags now to avoid them sticking around. */ clear_sta_flag(sta, WLAN_STA_PSPOLL); clear_sta_flag(sta, WLAN_STA_UAPSD); spin_unlock(&sta->ps_lock); atomic_dec(&ps->num_sta_ps); local->total_ps_buffered -= buffered; sta_info_recalc_tim(sta); ps_dbg(sdata, "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", sta->sta.addr, sta->sta.aid, filtered, buffered); ieee80211_check_fast_xmit(sta); } static void ieee80211_send_null_response(struct sta_info *sta, int tid, enum ieee80211_frame_release_type reason, bool call_driver, bool more_data) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_qos_hdr *nullfunc; struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; bool qos = sta->sta.wme; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; if (qos) { fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_FCTL_FROMDS); } else { size -= 2; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS); } skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put(skb, size); nullfunc->frame_control = fc; nullfunc->duration_id = 0; memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); nullfunc->seq_ctrl = 0; skb->priority = tid; skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); if (qos) { nullfunc->qos_ctrl = cpu_to_le16(tid); if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { nullfunc->qos_ctrl |= cpu_to_le16(IEEE80211_QOS_CTL_EOSP); if (more_data) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } } info = IEEE80211_SKB_CB(skb); /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. Also set EOSP to indicate this packet * ends the poll/service period. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; if (call_driver) drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false); skb->dev = sdata->dev; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } info->band = chanctx_conf->def.chan->band; ieee80211_xmit(sdata, sta, skb); rcu_read_unlock(); } static int find_highest_prio_tid(unsigned long tids) { /* lower 3 TIDs aren't ordered perfectly */ if (tids & 0xF8) return fls(tids) - 1; /* TID 0 is BE just like TID 3 */ if (tids & BIT(0)) return 0; return fls(tids) - 1; } /* Indicates if the MORE_DATA bit should be set in the last * frame obtained by ieee80211_sta_ps_get_frames. * Note that driver_release_tids is relevant only if * reason = IEEE80211_FRAME_RELEASE_PSPOLL */ static bool ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, enum ieee80211_frame_release_type reason, unsigned long driver_release_tids) { int ac; /* If the driver has data on more than one TID then * certainly there's more data if we release just a * single frame now (from a single TID). This will * only happen for PS-Poll. */ if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && hweight16(driver_release_tids) > 1) return true; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) return true; } return false; } static void ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason, struct sk_buff_head *frames, unsigned long *driver_release_tids) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ac; /* Get response frame(s) and more data bit for the last one. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; tids = ieee80211_tids_for_ac(ac); /* if we already have frames from software, then we can't also * release from hardware queues */ if (skb_queue_empty(frames)) { *driver_release_tids |= sta->driver_buffered_tids & tids; *driver_release_tids |= sta->txq_buffered_tids & tids; } if (!*driver_release_tids) { struct sk_buff *skb; while (n_frames > 0) { skb = skb_dequeue(&sta->tx_filtered[ac]); if (!skb) { skb = skb_dequeue( &sta->ps_tx_buf[ac]); if (skb) local->total_ps_buffered--; } if (!skb) break; n_frames--; __skb_queue_tail(frames, skb); } } /* If we have more frames buffered on this AC, then abort the * loop since we can't send more data from other ACs before * the buffered frames from this. */ if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) break; } } static void ieee80211_sta_ps_deliver_response(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; unsigned long driver_release_tids = 0; struct sk_buff_head frames; bool more_data; /* Service or PS-Poll period starts */ set_sta_flag(sta, WLAN_STA_SP); __skb_queue_head_init(&frames); ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, &frames, &driver_release_tids); more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) driver_release_tids = BIT(find_highest_prio_tid(driver_release_tids)); if (skb_queue_empty(&frames) && !driver_release_tids) { int tid, ac; /* * For PS-Poll, this can only happen due to a race condition * when we set the TIM bit and the station notices it, but * before it can poll for the frame we expire it. * * For uAPSD, this is said in the standard (11.2.1.5 h): * At each unscheduled SP for a non-AP STA, the AP shall * attempt to transmit at least one MSDU or MMPDU, but no * more than the value specified in the Max SP Length field * in the QoS Capability element from delivery-enabled ACs, * that are destined for the non-AP STA. * * Since we have no other MSDU/MMPDU, transmit a QoS null frame. */ /* This will evaluate to 1, 3, 5 or 7. */ for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) break; tid = 7 - 2 * ac; ieee80211_send_null_response(sta, tid, reason, true, false); } else if (!driver_release_tids) { struct sk_buff_head pending; struct sk_buff *skb; int num = 0; u16 tids = 0; bool need_null = false; skb_queue_head_init(&pending); while ((skb = __skb_dequeue(&frames))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *) skb->data; u8 *qoshdr = NULL; num++; /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; /* * Use MoreData flag to indicate whether there are * more buffered frames for this STA */ if (more_data || !skb_queue_empty(&frames)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); else hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); if (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control)) qoshdr = ieee80211_get_qos_ctl(hdr); tids |= BIT(skb->priority); __skb_queue_tail(&pending, skb); /* end service period after last frame or add one */ if (!skb_queue_empty(&frames)) continue; if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { /* for PS-Poll, there's only one frame */ info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; break; } /* For uAPSD, things are a bit more complicated. If the * last frame has a QoS header (i.e. is a QoS-data or * QoS-nulldata frame) then just set the EOSP bit there * and be done. * If the frame doesn't have a QoS header (which means * it should be a bufferable MMPDU) then we can't set * the EOSP bit in the QoS header; add a QoS-nulldata * frame to the list to send it after the MMPDU. * * Note that this code is only in the mac80211-release * code path, we assume that the driver will not buffer * anything but QoS-data frames, or if it does, will * create the QoS-nulldata frame by itself if needed. * * Cf. 802.11-2012 10.2.1.10 (c). */ if (qoshdr) { *qoshdr |= IEEE80211_QOS_CTL_EOSP; info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; } else { /* The standard isn't completely clear on this * as it says the more-data bit should be set * if there are more BUs. The QoS-Null frame * we're about to send isn't buffered yet, we * only create it below, but let's pretend it * was buffered just in case some clients only * expect more-data=0 when eosp=1. */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); need_null = true; num++; } break; } drv_allow_buffered_frames(local, sta, tids, num, reason, more_data); ieee80211_add_pending_skbs(local, &pending); if (need_null) ieee80211_send_null_response( sta, find_highest_prio_tid(tids), reason, false, false); sta_info_recalc_tim(sta); } else { int tid; /* * We need to release a frame that is buffered somewhere in the * driver ... it'll have to handle that. * Note that the driver also has to check the number of frames * on the TIDs we're releasing from - if there are more than * n_frames it has to set the more-data bit (if we didn't ask * it to set it anyway due to other buffered frames); if there * are fewer than n_frames it has to make sure to adjust that * to allow the service period to end properly. */ drv_release_buffered_frames(local, sta, driver_release_tids, n_frames, reason, more_data); /* * Note that we don't recalculate the TIM bit here as it would * most likely have no effect at all unless the driver told us * that the TID(s) became empty before returning here from the * release function. * Either way, however, when the driver tells us that the TID(s) * became empty or we find that a txq became empty, we'll do the * TIM recalculation. */ for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { if (!sta->sta.txq[tid] || !(driver_release_tids & BIT(tid)) || txq_has_queue(sta->sta.txq[tid])) continue; sta_info_recalc_tim(sta); break; } } } void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) { u8 ignore_for_response = sta->sta.uapsd_queues; /* * If all ACs are delivery-enabled then we should reply * from any of them, if only some are enabled we reply * only from the non-enabled ones. */ if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_response = 0; ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, IEEE80211_FRAME_RELEASE_PSPOLL); } void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) { int n_frames = sta->sta.max_sp; u8 delivery_enabled = sta->sta.uapsd_queues; /* * If we ever grow support for TSPEC this might happen if * the TSPEC update from hostapd comes in between a trigger * frame setting WLAN_STA_UAPSD in the RX path and this * actually getting called. */ if (!delivery_enabled) return; switch (sta->sta.max_sp) { case 1: n_frames = 2; break; case 2: n_frames = 4; break; case 3: n_frames = 6; break; case 0: /* XXX: what is a good value? */ n_frames = 128; break; } ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, IEEE80211_FRAME_RELEASE_UAPSD); } void ieee80211_sta_block_awake(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, bool block) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); trace_api_sta_block_awake(sta->local, pubsta, block); if (block) { set_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_clear_fast_xmit(sta); return; } if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) return; if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { set_sta_flag(sta, WLAN_STA_PS_DELIVER); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || test_sta_flag(sta, WLAN_STA_UAPSD)) { /* must be asleep in this case */ clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else { clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_check_fast_xmit(sta); } } EXPORT_SYMBOL(ieee80211_sta_block_awake); void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_local *local = sta->local; trace_api_eosp(local, pubsta); clear_sta_flag(sta, WLAN_STA_SP); } EXPORT_SYMBOL(ieee80211_sta_eosp); void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); enum ieee80211_frame_release_type reason; bool more_data; trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); reason = IEEE80211_FRAME_RELEASE_UAPSD; more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, reason, 0); ieee80211_send_null_response(sta, tid, reason, false, more_data); } EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, u8 tid, bool buffered) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) return; trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); if (buffered) set_bit(tid, &sta->driver_buffered_tids); else clear_bit(tid, &sta->driver_buffered_tids); sta_info_recalc_tim(sta); } EXPORT_SYMBOL(ieee80211_sta_set_buffered); void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, u32 tx_airtime, u32 rx_airtime) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_local *local = sta->sdata->local; u8 ac = ieee80211_ac_from_tid(tid); u32 airtime = 0; u32 diff; if (sta->local->airtime_flags & AIRTIME_USE_TX) airtime += tx_airtime; if (sta->local->airtime_flags & AIRTIME_USE_RX) airtime += rx_airtime; spin_lock_bh(&local->active_txq_lock[ac]); sta->airtime[ac].tx_airtime += tx_airtime; sta->airtime[ac].rx_airtime += rx_airtime; diff = (u32)jiffies - sta->airtime[ac].last_active; if (diff <= AIRTIME_ACTIVE_DURATION) sta->airtime[ac].deficit -= airtime; spin_unlock_bh(&local->active_txq_lock[ac]); } EXPORT_SYMBOL(ieee80211_sta_register_airtime); void __ieee80211_sta_recalc_aggregates(struct sta_info *sta, u16 active_links) { bool first = true; int link_id; if (!sta->sta.valid_links || !sta->sta.mlo) { sta->sta.cur = &sta->sta.deflink.agg; return; } rcu_read_lock(); for (link_id = 0; link_id < ARRAY_SIZE((sta)->link); link_id++) { struct ieee80211_link_sta *link_sta; int i; if (!(active_links & BIT(link_id))) continue; link_sta = rcu_dereference(sta->sta.link[link_id]); if (!link_sta) continue; if (first) { sta->cur = sta->sta.deflink.agg; first = false; continue; } sta->cur.max_amsdu_len = min(sta->cur.max_amsdu_len, link_sta->agg.max_amsdu_len); sta->cur.max_rc_amsdu_len = min(sta->cur.max_rc_amsdu_len, link_sta->agg.max_rc_amsdu_len); for (i = 0; i < ARRAY_SIZE(sta->cur.max_tid_amsdu_len); i++) sta->cur.max_tid_amsdu_len[i] = min(sta->cur.max_tid_amsdu_len[i], link_sta->agg.max_tid_amsdu_len[i]); } rcu_read_unlock(); sta->sta.cur = &sta->cur; } void ieee80211_sta_recalc_aggregates(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); __ieee80211_sta_recalc_aggregates(sta, sta->sdata->vif.active_links); } EXPORT_SYMBOL(ieee80211_sta_recalc_aggregates); void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, struct sta_info *sta, u8 ac, u16 tx_airtime, bool tx_completed) { int tx_pending; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return; if (!tx_completed) { if (sta) atomic_add(tx_airtime, &sta->airtime[ac].aql_tx_pending); atomic_add(tx_airtime, &local->aql_total_pending_airtime); atomic_add(tx_airtime, &local->aql_ac_pending_airtime[ac]); return; } if (sta) { tx_pending = atomic_sub_return(tx_airtime, &sta->airtime[ac].aql_tx_pending); if (tx_pending < 0) atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, tx_pending, 0); } atomic_sub(tx_airtime, &local->aql_total_pending_airtime); tx_pending = atomic_sub_return(tx_airtime, &local->aql_ac_pending_airtime[ac]); if (WARN_ONCE(tx_pending < 0, "Device %s AC %d pending airtime underflow: %u, %u", wiphy_name(local->hw.wiphy), ac, tx_pending, tx_airtime)) { atomic_cmpxchg(&local->aql_ac_pending_airtime[ac], tx_pending, 0); atomic_sub(tx_pending, &local->aql_total_pending_airtime); } } static struct ieee80211_sta_rx_stats * sta_get_last_rx_stats(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats; int cpu; if (!sta->deflink.pcpu_rx_stats) return stats; for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpustats; cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); if (time_after(cpustats->last_rx, stats->last_rx)) stats = cpustats; } return stats; } static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, struct rate_info *rinfo) { rinfo->bw = STA_STATS_GET(BW, rate); switch (STA_STATS_GET(TYPE, rate)) { case STA_STATS_RATE_TYPE_VHT: rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); rinfo->nss = STA_STATS_GET(VHT_NSS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_HT: rinfo->flags = RATE_INFO_FLAGS_MCS; rinfo->mcs = STA_STATS_GET(HT_MCS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_LEGACY: { struct ieee80211_supported_band *sband; u16 brate; unsigned int shift; int band = STA_STATS_GET(LEGACY_BAND, rate); int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); sband = local->hw.wiphy->bands[band]; if (WARN_ON_ONCE(!sband->bitrates)) break; brate = sband->bitrates[rate_idx].bitrate; if (rinfo->bw == RATE_INFO_BW_5) shift = 2; else if (rinfo->bw == RATE_INFO_BW_10) shift = 1; else shift = 0; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); break; } case STA_STATS_RATE_TYPE_HE: rinfo->flags = RATE_INFO_FLAGS_HE_MCS; rinfo->mcs = STA_STATS_GET(HE_MCS, rate); rinfo->nss = STA_STATS_GET(HE_NSS, rate); rinfo->he_gi = STA_STATS_GET(HE_GI, rate); rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); break; case STA_STATS_RATE_TYPE_EHT: rinfo->flags = RATE_INFO_FLAGS_EHT_MCS; rinfo->mcs = STA_STATS_GET(EHT_MCS, rate); rinfo->nss = STA_STATS_GET(EHT_NSS, rate); rinfo->eht_gi = STA_STATS_GET(EHT_GI, rate); rinfo->eht_ru_alloc = STA_STATS_GET(EHT_RU, rate); break; } } static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) { u32 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); if (rate == STA_STATS_RATE_INVALID) return -EINVAL; sta_stats_decode_rate(sta->local, rate, rinfo); return 0; } static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, int tid) { unsigned int start; u64 value; do { start = u64_stats_fetch_begin(&rxstats->syncp); value = rxstats->msdu[tid]; } while (u64_stats_fetch_retry(&rxstats->syncp, start)); return value; } static void sta_set_tidstats(struct sta_info *sta, struct cfg80211_tid_stats *tidstats, int tid) { struct ieee80211_local *local = sta->local; int cpu; if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats, tid); if (sta->deflink.pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); tidstats->rx_msdu += sta_get_tidstats_msdu(cpurxs, tid); } } tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid]; } if (tid < IEEE80211_NUM_TIDS) { spin_lock_bh(&local->fq.lock); rcu_read_lock(); tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); ieee80211_fill_txq_stats(&tidstats->txq_stats, to_txq_info(sta->sta.txq[tid])); rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); } } static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) { unsigned int start; u64 value; do { start = u64_stats_fetch_begin(&rxstats->syncp); value = rxstats->bytes; } while (u64_stats_fetch_retry(&rxstats->syncp, start)); return value; } void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, bool tidstats) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; u32 thr = 0; int i, ac, cpu; struct ieee80211_sta_rx_stats *last_rxstats; last_rxstats = sta_get_last_rx_stats(sta); sinfo->generation = sdata->local->sta_generation; /* do before driver, so beacon filtering drivers have a * chance to e.g. just add the number of filtered beacons * (or just modify the value entirely, of course) */ if (sdata->vif.type == NL80211_IFTYPE_STATION) sinfo->rx_beacon = sdata->deflink.u.mgd.count_beacon_signal; drv_sta_statistics(local, sdata, &sta->sta, sinfo); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sinfo->beacon_loss_count = sdata->deflink.u.mgd.beacon_loss_count; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); } sinfo->connected_time = ktime_get_seconds() - sta->last_connected; sinfo->assoc_at = sta->assoc_at; sinfo->inactive_time = jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { sinfo->tx_bytes = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac]; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { sinfo->tx_packets = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_packets += sta->deflink.tx_stats.packets[ac]; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); } if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats); if (sta->deflink.pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); } } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { sinfo->rx_packets = sta->deflink.rx_stats.packets; if (sta->deflink.pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); sinfo->rx_packets += cpurxs->packets; } } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { sinfo->tx_retries = sta->deflink.status_stats.retry_count; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { sinfo->tx_failed = sta->deflink.status_stats.retry_failed; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->rx_duration += sta->airtime[ac].rx_airtime; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_duration += sta->airtime[ac].tx_airtime; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { sinfo->airtime_weight = sta->airtime_weight; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); } sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped; if (sta->deflink.pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu); sinfo->rx_dropped_misc += cpurxs->dropped; } } if (sdata->vif.type == NL80211_IFTYPE_STATION && !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); } if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { sinfo->signal = (s8)last_rxstats->last_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); } if (!sta->deflink.pcpu_rx_stats && !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { sinfo->signal_avg = -ewma_signal_read(&sta->deflink.rx_stats_avg.signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); } } /* for the average - if pcpu_rx_stats isn't set - rxstats must point to * the sta->rx_stats struct, so the check here is fine with and without * pcpu statistics */ if (last_rxstats->chains && !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); if (!sta->deflink.pcpu_rx_stats) sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); sinfo->chains = last_rxstats->chains; for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { sinfo->chain_signal[i] = last_rxstats->chain_signal_last[i]; sinfo->chain_signal_avg[i] = -ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]); } } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) && !sta->sta.valid_links) { sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate, &sinfo->txrate); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) && !sta->sta.valid_links) { if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); } if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) sta_set_tidstats(sta, &sinfo->pertid[i], i); } if (ieee80211_vif_is_mesh(&sdata->vif)) { #ifdef CONFIG_MAC80211_MESH sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | BIT_ULL(NL80211_STA_INFO_PLID) | BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | BIT_ULL(NL80211_STA_INFO_PEER_PM) | BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); sinfo->llid = sta->mesh->llid; sinfo->plid = sta->mesh->plid; sinfo->plink_state = sta->mesh->plink_state; if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); sinfo->t_offset = sta->mesh->t_offset; } sinfo->local_pm = sta->mesh->local_pm; sinfo->peer_pm = sta->mesh->peer_pm; sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; sinfo->connected_to_gate = sta->mesh->connected_to_gate; sinfo->connected_to_as = sta->mesh->connected_to_as; #endif } sinfo->bss_param.flags = 0; if (sdata->vif.bss_conf.use_cts_prot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (sdata->vif.bss_conf.use_short_preamble) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (sdata->vif.bss_conf.use_short_slot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; sinfo->sta_flags.set = 0; sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_TDLS_PEER); if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); if (sta->sta.wme) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); if (test_sta_flag(sta, WLAN_STA_MFP)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); if (test_sta_flag(sta, WLAN_STA_AUTH)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (test_sta_flag(sta, WLAN_STA_ASSOC)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); thr = sta_get_expected_throughput(sta); if (thr != 0) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); sinfo->expected_throughput = thr; } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && sta->deflink.status_stats.ack_signal_filled) { sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && sta->deflink.status_stats.ack_signal_filled) { sinfo->avg_ack_signal = -(s8)ewma_avg_signal_read( &sta->deflink.status_stats.avg_ack_signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); } if (ieee80211_vif_is_mesh(&sdata->vif)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); sinfo->airtime_link_metric = airtime_link_metric_get(local, sta); } } u32 sta_get_expected_throughput(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct rate_control_ref *ref = NULL; u32 thr = 0; if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) ref = local->rate_ctrl; /* check if the driver has a SW RC implementation */ if (ref && ref->ops->get_expected_throughput) thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); else thr = drv_get_expected_throughput(local, sta); return thr; } unsigned long ieee80211_sta_last_active(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); if (!sta->deflink.status_stats.last_ack || time_after(stats->last_rx, sta->deflink.status_stats.last_ack)) return stats->last_rx; return sta->deflink.status_stats.last_ack; } static void sta_update_codel_params(struct sta_info *sta, u32 thr) { if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { sta->cparams.target = MS2TIME(50); sta->cparams.interval = MS2TIME(300); sta->cparams.ecn = false; } else { sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; } } void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, u32 thr) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); sta_update_codel_params(sta, thr); } int ieee80211_sta_allocate_link(struct sta_info *sta, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct sta_link_alloc *alloc; int ret; lockdep_assert_held(&sdata->local->sta_mtx); /* must represent an MLD from the start */ if (WARN_ON(!sta->sta.valid_links)) return -EINVAL; if (WARN_ON(sta->sta.valid_links & BIT(link_id) || sta->link[link_id])) return -EBUSY; alloc = kzalloc(sizeof(*alloc), GFP_KERNEL); if (!alloc) return -ENOMEM; ret = sta_info_alloc_link(sdata->local, &alloc->info, GFP_KERNEL); if (ret) { kfree(alloc); return ret; } sta_info_add_link(sta, link_id, &alloc->info, &alloc->sta); ieee80211_link_sta_debugfs_add(&alloc->info); return 0; } void ieee80211_sta_free_link(struct sta_info *sta, unsigned int link_id) { lockdep_assert_held(&sta->sdata->local->sta_mtx); sta_remove_link(sta, link_id, false); } int ieee80211_sta_activate_link(struct sta_info *sta, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct link_sta_info *link_sta; u16 old_links = sta->sta.valid_links; u16 new_links = old_links | BIT(link_id); int ret; link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&sdata->local->sta_mtx)); if (WARN_ON(old_links == new_links || !link_sta)) return -EINVAL; rcu_read_lock(); if (link_sta_info_hash_lookup(sdata->local, link_sta->addr)) { rcu_read_unlock(); return -EALREADY; } /* we only modify under the mutex so this is fine */ rcu_read_unlock(); sta->sta.valid_links = new_links; if (!test_sta_flag(sta, WLAN_STA_INSERTED)) goto hash; ieee80211_recalc_min_chandef(sdata, link_id); /* Ensure the values are updated for the driver, * redone by sta_remove_link on failure. */ ieee80211_sta_recalc_aggregates(&sta->sta); ret = drv_change_sta_links(sdata->local, sdata, &sta->sta, old_links, new_links); if (ret) { sta->sta.valid_links = old_links; sta_remove_link(sta, link_id, false); return ret; } hash: ret = link_sta_info_hash_add(sdata->local, link_sta); WARN_ON(ret); return 0; } void ieee80211_sta_remove_link(struct sta_info *sta, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = sta->sdata; u16 old_links = sta->sta.valid_links; lockdep_assert_held(&sdata->local->sta_mtx); sta->sta.valid_links &= ~BIT(link_id); if (test_sta_flag(sta, WLAN_STA_INSERTED)) drv_change_sta_links(sdata->local, sdata, &sta->sta, old_links, sta->sta.valid_links); sta_remove_link(sta, link_id, true); } void ieee80211_sta_set_max_amsdu_subframes(struct sta_info *sta, const u8 *ext_capab, unsigned int ext_capab_len) { u8 val; sta->sta.max_amsdu_subframes = 0; if (ext_capab_len < 8) return; /* The sender might not have sent the last bit, consider it to be 0 */ val = u8_get_bits(ext_capab[7], WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB); /* we did get all the bits, take the MSB as well */ if (ext_capab_len >= 9) val |= u8_get_bits(ext_capab[8], WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB) << 1; if (val) sta->sta.max_amsdu_subframes = 4 << val; } #ifdef CONFIG_LOCKDEP bool lockdep_sta_mutex_held(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); return lockdep_is_held(&sta->local->sta_mtx); } EXPORT_SYMBOL(lockdep_sta_mutex_held); #endif
linux-master
net/mac80211/sta_info.c