python_code
stringlengths 0
1.8M
| repo_name
stringclasses 7
values | file_path
stringlengths 5
99
|
---|---|---|
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2019, Tessares SA.
*/
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include "protocol.h"
#define MPTCP_SYSCTL_PATH "net/mptcp"
static int mptcp_pernet_id;
#ifdef CONFIG_SYSCTL
static int mptcp_pm_type_max = __MPTCP_PM_TYPE_MAX;
#endif
struct mptcp_pernet {
#ifdef CONFIG_SYSCTL
struct ctl_table_header *ctl_table_hdr;
#endif
unsigned int add_addr_timeout;
unsigned int stale_loss_cnt;
u8 mptcp_enabled;
u8 checksum_enabled;
u8 allow_join_initial_addr_port;
u8 pm_type;
char scheduler[MPTCP_SCHED_NAME_MAX];
};
static struct mptcp_pernet *mptcp_get_pernet(const struct net *net)
{
return net_generic(net, mptcp_pernet_id);
}
int mptcp_is_enabled(const struct net *net)
{
return mptcp_get_pernet(net)->mptcp_enabled;
}
unsigned int mptcp_get_add_addr_timeout(const struct net *net)
{
return mptcp_get_pernet(net)->add_addr_timeout;
}
int mptcp_is_checksum_enabled(const struct net *net)
{
return mptcp_get_pernet(net)->checksum_enabled;
}
int mptcp_allow_join_id0(const struct net *net)
{
return mptcp_get_pernet(net)->allow_join_initial_addr_port;
}
unsigned int mptcp_stale_loss_cnt(const struct net *net)
{
return mptcp_get_pernet(net)->stale_loss_cnt;
}
int mptcp_get_pm_type(const struct net *net)
{
return mptcp_get_pernet(net)->pm_type;
}
const char *mptcp_get_scheduler(const struct net *net)
{
return mptcp_get_pernet(net)->scheduler;
}
static void mptcp_pernet_set_defaults(struct mptcp_pernet *pernet)
{
pernet->mptcp_enabled = 1;
pernet->add_addr_timeout = TCP_RTO_MAX;
pernet->checksum_enabled = 0;
pernet->allow_join_initial_addr_port = 1;
pernet->stale_loss_cnt = 4;
pernet->pm_type = MPTCP_PM_TYPE_KERNEL;
strcpy(pernet->scheduler, "default");
}
#ifdef CONFIG_SYSCTL
static struct ctl_table mptcp_sysctl_table[] = {
{
.procname = "enabled",
.maxlen = sizeof(u8),
.mode = 0644,
/* users with CAP_NET_ADMIN or root (not and) can change this
* value, same as other sysctl or the 'net' tree.
*/
.proc_handler = proc_dou8vec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE
},
{
.procname = "add_addr_timeout",
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "checksum_enabled",
.maxlen = sizeof(u8),
.mode = 0644,
.proc_handler = proc_dou8vec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE
},
{
.procname = "allow_join_initial_addr_port",
.maxlen = sizeof(u8),
.mode = 0644,
.proc_handler = proc_dou8vec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE
},
{
.procname = "stale_loss_cnt",
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_douintvec_minmax,
},
{
.procname = "pm_type",
.maxlen = sizeof(u8),
.mode = 0644,
.proc_handler = proc_dou8vec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &mptcp_pm_type_max
},
{
.procname = "scheduler",
.maxlen = MPTCP_SCHED_NAME_MAX,
.mode = 0644,
.proc_handler = proc_dostring,
},
{}
};
static int mptcp_pernet_new_table(struct net *net, struct mptcp_pernet *pernet)
{
struct ctl_table_header *hdr;
struct ctl_table *table;
table = mptcp_sysctl_table;
if (!net_eq(net, &init_net)) {
table = kmemdup(table, sizeof(mptcp_sysctl_table), GFP_KERNEL);
if (!table)
goto err_alloc;
}
table[0].data = &pernet->mptcp_enabled;
table[1].data = &pernet->add_addr_timeout;
table[2].data = &pernet->checksum_enabled;
table[3].data = &pernet->allow_join_initial_addr_port;
table[4].data = &pernet->stale_loss_cnt;
table[5].data = &pernet->pm_type;
table[6].data = &pernet->scheduler;
hdr = register_net_sysctl_sz(net, MPTCP_SYSCTL_PATH, table,
ARRAY_SIZE(mptcp_sysctl_table));
if (!hdr)
goto err_reg;
pernet->ctl_table_hdr = hdr;
return 0;
err_reg:
if (!net_eq(net, &init_net))
kfree(table);
err_alloc:
return -ENOMEM;
}
static void mptcp_pernet_del_table(struct mptcp_pernet *pernet)
{
struct ctl_table *table = pernet->ctl_table_hdr->ctl_table_arg;
unregister_net_sysctl_table(pernet->ctl_table_hdr);
kfree(table);
}
#else
static int mptcp_pernet_new_table(struct net *net, struct mptcp_pernet *pernet)
{
return 0;
}
static void mptcp_pernet_del_table(struct mptcp_pernet *pernet) {}
#endif /* CONFIG_SYSCTL */
static int __net_init mptcp_net_init(struct net *net)
{
struct mptcp_pernet *pernet = mptcp_get_pernet(net);
mptcp_pernet_set_defaults(pernet);
return mptcp_pernet_new_table(net, pernet);
}
/* Note: the callback will only be called per extra netns */
static void __net_exit mptcp_net_exit(struct net *net)
{
struct mptcp_pernet *pernet = mptcp_get_pernet(net);
mptcp_pernet_del_table(pernet);
}
static struct pernet_operations mptcp_pernet_ops = {
.init = mptcp_net_init,
.exit = mptcp_net_exit,
.id = &mptcp_pernet_id,
.size = sizeof(struct mptcp_pernet),
};
void __init mptcp_init(void)
{
mptcp_join_cookie_init();
mptcp_proto_init();
if (register_pernet_subsys(&mptcp_pernet_ops) < 0)
panic("Failed to register MPTCP pernet subsystem.\n");
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
int __init mptcpv6_init(void)
{
int err;
err = mptcp_proto_v6_init();
return err;
}
#endif
| linux-master | net/mptcp/ctrl.c |
// SPDX-License-Identifier: GPL-2.0
/* MPTCP Fast Open Mechanism
*
* Copyright (c) 2021-2022, Dmytro SHYTYI
*/
#include "protocol.h"
void mptcp_fastopen_subflow_synack_set_params(struct mptcp_subflow_context *subflow,
struct request_sock *req)
{
struct sock *sk, *ssk;
struct sk_buff *skb;
struct tcp_sock *tp;
/* on early fallback the subflow context is deleted by
* subflow_syn_recv_sock()
*/
if (!subflow)
return;
ssk = subflow->tcp_sock;
sk = subflow->conn;
tp = tcp_sk(ssk);
subflow->is_mptfo = 1;
skb = skb_peek(&ssk->sk_receive_queue);
if (WARN_ON_ONCE(!skb))
return;
/* dequeue the skb from sk receive queue */
__skb_unlink(skb, &ssk->sk_receive_queue);
skb_ext_reset(skb);
skb_orphan(skb);
/* We copy the fastopen data, but that don't belong to the mptcp sequence
* space, need to offset it in the subflow sequence, see mptcp_subflow_get_map_offset()
*/
tp->copied_seq += skb->len;
subflow->ssn_offset += skb->len;
/* initialize a dummy sequence number, we will update it at MPC
* completion, if needed
*/
MPTCP_SKB_CB(skb)->map_seq = -skb->len;
MPTCP_SKB_CB(skb)->end_seq = 0;
MPTCP_SKB_CB(skb)->offset = 0;
MPTCP_SKB_CB(skb)->has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
mptcp_data_lock(sk);
mptcp_set_owner_r(skb, sk);
__skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk);
mptcp_data_unlock(sk);
}
void mptcp_fastopen_gen_msk_ackseq(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow,
const struct mptcp_options_received *mp_opt)
{
struct sock *sk = (struct sock *)msk;
struct sk_buff *skb;
mptcp_data_lock(sk);
skb = skb_peek_tail(&sk->sk_receive_queue);
if (skb) {
WARN_ON_ONCE(MPTCP_SKB_CB(skb)->end_seq);
pr_debug("msk %p moving seq %llx -> %llx end_seq %llx -> %llx", sk,
MPTCP_SKB_CB(skb)->map_seq, MPTCP_SKB_CB(skb)->map_seq + msk->ack_seq,
MPTCP_SKB_CB(skb)->end_seq, MPTCP_SKB_CB(skb)->end_seq + msk->ack_seq);
MPTCP_SKB_CB(skb)->map_seq += msk->ack_seq;
MPTCP_SKB_CB(skb)->end_seq += msk->ack_seq;
}
pr_debug("msk=%p ack_seq=%llx", msk, msk->ack_seq);
mptcp_data_unlock(sk);
}
| linux-master | net/mptcp/fastopen.c |
// SPDX-License-Identifier: GPL-2.0
/* MPTCP socket monitoring support
*
* Copyright (c) 2019 Red Hat
*
* Author: Davide Caratti <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/inet_diag.h>
#include <net/netlink.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
static int subflow_get_info(const struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *sf;
struct nlattr *start;
u32 flags = 0;
int err;
start = nla_nest_start_noflag(skb, INET_ULP_INFO_MPTCP);
if (!start)
return -EMSGSIZE;
rcu_read_lock();
sf = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
if (!sf) {
err = 0;
goto nla_failure;
}
if (sf->mp_capable)
flags |= MPTCP_SUBFLOW_FLAG_MCAP_REM;
if (sf->request_mptcp)
flags |= MPTCP_SUBFLOW_FLAG_MCAP_LOC;
if (sf->mp_join)
flags |= MPTCP_SUBFLOW_FLAG_JOIN_REM;
if (sf->request_join)
flags |= MPTCP_SUBFLOW_FLAG_JOIN_LOC;
if (sf->backup)
flags |= MPTCP_SUBFLOW_FLAG_BKUP_REM;
if (sf->request_bkup)
flags |= MPTCP_SUBFLOW_FLAG_BKUP_LOC;
if (sf->fully_established)
flags |= MPTCP_SUBFLOW_FLAG_FULLY_ESTABLISHED;
if (sf->conn_finished)
flags |= MPTCP_SUBFLOW_FLAG_CONNECTED;
if (sf->map_valid)
flags |= MPTCP_SUBFLOW_FLAG_MAPVALID;
if (nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_REM, sf->remote_token) ||
nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_TOKEN_LOC, sf->token) ||
nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ,
sf->rel_write_seq) ||
nla_put_u64_64bit(skb, MPTCP_SUBFLOW_ATTR_MAP_SEQ, sf->map_seq,
MPTCP_SUBFLOW_ATTR_PAD) ||
nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_MAP_SFSEQ,
sf->map_subflow_seq) ||
nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_SSN_OFFSET, sf->ssn_offset) ||
nla_put_u16(skb, MPTCP_SUBFLOW_ATTR_MAP_DATALEN,
sf->map_data_len) ||
nla_put_u32(skb, MPTCP_SUBFLOW_ATTR_FLAGS, flags) ||
nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_REM, sf->remote_id) ||
nla_put_u8(skb, MPTCP_SUBFLOW_ATTR_ID_LOC, sf->local_id)) {
err = -EMSGSIZE;
goto nla_failure;
}
rcu_read_unlock();
nla_nest_end(skb, start);
return 0;
nla_failure:
rcu_read_unlock();
nla_nest_cancel(skb, start);
return err;
}
static size_t subflow_get_info_size(const struct sock *sk)
{
size_t size = 0;
size += nla_total_size(0) + /* INET_ULP_INFO_MPTCP */
nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_REM */
nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_TOKEN_LOC */
nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_RELWRITE_SEQ */
nla_total_size_64bit(8) + /* MPTCP_SUBFLOW_ATTR_MAP_SEQ */
nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_MAP_SFSEQ */
nla_total_size(2) + /* MPTCP_SUBFLOW_ATTR_SSN_OFFSET */
nla_total_size(2) + /* MPTCP_SUBFLOW_ATTR_MAP_DATALEN */
nla_total_size(4) + /* MPTCP_SUBFLOW_ATTR_FLAGS */
nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_REM */
nla_total_size(1) + /* MPTCP_SUBFLOW_ATTR_ID_LOC */
0;
return size;
}
void mptcp_diag_subflow_init(struct tcp_ulp_ops *ops)
{
ops->get_info = subflow_get_info;
ops->get_info_size = subflow_get_info_size;
}
| linux-master | net/mptcp/diag.c |
// SPDX-License-Identifier: GPL-2.0
#include <kunit/test.h>
#include "protocol.h"
static struct mptcp_subflow_request_sock *build_req_sock(struct kunit *test)
{
struct mptcp_subflow_request_sock *req;
req = kunit_kzalloc(test, sizeof(struct mptcp_subflow_request_sock),
GFP_USER);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, req);
mptcp_token_init_request((struct request_sock *)req);
sock_net_set((struct sock *)req, &init_net);
return req;
}
static void mptcp_token_test_req_basic(struct kunit *test)
{
struct mptcp_subflow_request_sock *req = build_req_sock(test);
struct mptcp_sock *null_msk = NULL;
KUNIT_ASSERT_EQ(test, 0,
mptcp_token_new_request((struct request_sock *)req));
KUNIT_EXPECT_NE(test, 0, (int)req->token);
KUNIT_EXPECT_PTR_EQ(test, null_msk, mptcp_token_get_sock(&init_net, req->token));
/* cleanup */
mptcp_token_destroy_request((struct request_sock *)req);
}
static struct inet_connection_sock *build_icsk(struct kunit *test)
{
struct inet_connection_sock *icsk;
icsk = kunit_kzalloc(test, sizeof(struct inet_connection_sock),
GFP_USER);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, icsk);
return icsk;
}
static struct mptcp_subflow_context *build_ctx(struct kunit *test)
{
struct mptcp_subflow_context *ctx;
ctx = kunit_kzalloc(test, sizeof(struct mptcp_subflow_context),
GFP_USER);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, ctx);
return ctx;
}
static struct mptcp_sock *build_msk(struct kunit *test)
{
struct mptcp_sock *msk;
msk = kunit_kzalloc(test, sizeof(struct mptcp_sock), GFP_USER);
KUNIT_EXPECT_NOT_ERR_OR_NULL(test, msk);
refcount_set(&((struct sock *)msk)->sk_refcnt, 1);
sock_net_set((struct sock *)msk, &init_net);
/* be sure the token helpers can dereference sk->sk_prot */
((struct sock *)msk)->sk_prot = &tcp_prot;
return msk;
}
static void mptcp_token_test_msk_basic(struct kunit *test)
{
struct inet_connection_sock *icsk = build_icsk(test);
struct mptcp_subflow_context *ctx = build_ctx(test);
struct mptcp_sock *msk = build_msk(test);
struct mptcp_sock *null_msk = NULL;
struct sock *sk;
rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
ctx->conn = (struct sock *)msk;
sk = (struct sock *)msk;
KUNIT_ASSERT_EQ(test, 0,
mptcp_token_new_connect((struct sock *)icsk));
KUNIT_EXPECT_NE(test, 0, (int)ctx->token);
KUNIT_EXPECT_EQ(test, ctx->token, msk->token);
KUNIT_EXPECT_PTR_EQ(test, msk, mptcp_token_get_sock(&init_net, ctx->token));
KUNIT_EXPECT_EQ(test, 2, (int)refcount_read(&sk->sk_refcnt));
mptcp_token_destroy(msk);
KUNIT_EXPECT_PTR_EQ(test, null_msk, mptcp_token_get_sock(&init_net, ctx->token));
}
static void mptcp_token_test_accept(struct kunit *test)
{
struct mptcp_subflow_request_sock *req = build_req_sock(test);
struct mptcp_sock *msk = build_msk(test);
KUNIT_ASSERT_EQ(test, 0,
mptcp_token_new_request((struct request_sock *)req));
msk->token = req->token;
mptcp_token_accept(req, msk);
KUNIT_EXPECT_PTR_EQ(test, msk, mptcp_token_get_sock(&init_net, msk->token));
/* this is now a no-op */
mptcp_token_destroy_request((struct request_sock *)req);
KUNIT_EXPECT_PTR_EQ(test, msk, mptcp_token_get_sock(&init_net, msk->token));
/* cleanup */
mptcp_token_destroy(msk);
}
static void mptcp_token_test_destroyed(struct kunit *test)
{
struct mptcp_subflow_request_sock *req = build_req_sock(test);
struct mptcp_sock *msk = build_msk(test);
struct mptcp_sock *null_msk = NULL;
struct sock *sk;
sk = (struct sock *)msk;
KUNIT_ASSERT_EQ(test, 0,
mptcp_token_new_request((struct request_sock *)req));
msk->token = req->token;
mptcp_token_accept(req, msk);
/* simulate race on removal */
refcount_set(&sk->sk_refcnt, 0);
KUNIT_EXPECT_PTR_EQ(test, null_msk, mptcp_token_get_sock(&init_net, msk->token));
/* cleanup */
mptcp_token_destroy(msk);
}
static struct kunit_case mptcp_token_test_cases[] = {
KUNIT_CASE(mptcp_token_test_req_basic),
KUNIT_CASE(mptcp_token_test_msk_basic),
KUNIT_CASE(mptcp_token_test_accept),
KUNIT_CASE(mptcp_token_test_destroyed),
{}
};
static struct kunit_suite mptcp_token_suite = {
.name = "mptcp-token",
.test_cases = mptcp_token_test_cases,
};
kunit_test_suite(mptcp_token_suite);
MODULE_LICENSE("GPL");
| linux-master | net/mptcp/token_test.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP token management
* Copyright (c) 2017 - 2019, Intel Corporation.
*
* Note: This code is based on mptcp_ctrl.c from multipath-tcp.org,
* authored by:
*
* Sébastien Barré <[email protected]>
* Christoph Paasch <[email protected]>
* Jaakko Korkeaniemi <[email protected]>
* Gregory Detal <[email protected]>
* Fabien Duchêne <[email protected]>
* Andreas Seelinger <[email protected]>
* Lavkesh Lahngir <[email protected]>
* Andreas Ripke <[email protected]>
* Vlad Dogaru <[email protected]>
* Octavian Purdila <[email protected]>
* John Ronan <[email protected]>
* Catalin Nicutar <[email protected]>
* Brandon Heller <[email protected]>
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/memblock.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/protocol.h>
#include <net/mptcp.h>
#include "protocol.h"
#define TOKEN_MAX_CHAIN_LEN 4
struct token_bucket {
spinlock_t lock;
int chain_len;
struct hlist_nulls_head req_chain;
struct hlist_nulls_head msk_chain;
};
static struct token_bucket *token_hash __read_mostly;
static unsigned int token_mask __read_mostly;
static struct token_bucket *token_bucket(u32 token)
{
return &token_hash[token & token_mask];
}
/* called with bucket lock held */
static struct mptcp_subflow_request_sock *
__token_lookup_req(struct token_bucket *t, u32 token)
{
struct mptcp_subflow_request_sock *req;
struct hlist_nulls_node *pos;
hlist_nulls_for_each_entry_rcu(req, pos, &t->req_chain, token_node)
if (req->token == token)
return req;
return NULL;
}
/* called with bucket lock held */
static struct mptcp_sock *
__token_lookup_msk(struct token_bucket *t, u32 token)
{
struct hlist_nulls_node *pos;
struct sock *sk;
sk_nulls_for_each_rcu(sk, pos, &t->msk_chain)
if (mptcp_sk(sk)->token == token)
return mptcp_sk(sk);
return NULL;
}
static bool __token_bucket_busy(struct token_bucket *t, u32 token)
{
return !token || t->chain_len >= TOKEN_MAX_CHAIN_LEN ||
__token_lookup_req(t, token) || __token_lookup_msk(t, token);
}
static void mptcp_crypto_key_gen_sha(u64 *key, u32 *token, u64 *idsn)
{
/* we might consider a faster version that computes the key as a
* hash of some information available in the MPTCP socket. Use
* random data at the moment, as it's probably the safest option
* in case multiple sockets are opened in different namespaces at
* the same time.
*/
get_random_bytes(key, sizeof(u64));
mptcp_crypto_key_sha(*key, token, idsn);
}
/**
* mptcp_token_new_request - create new key/idsn/token for subflow_request
* @req: the request socket
*
* This function is called when a new mptcp connection is coming in.
*
* It creates a unique token to identify the new mptcp connection,
* a secret local key and the initial data sequence number (idsn).
*
* Returns 0 on success.
*/
int mptcp_token_new_request(struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct token_bucket *bucket;
u32 token;
mptcp_crypto_key_sha(subflow_req->local_key,
&subflow_req->token,
&subflow_req->idsn);
pr_debug("req=%p local_key=%llu, token=%u, idsn=%llu\n",
req, subflow_req->local_key, subflow_req->token,
subflow_req->idsn);
token = subflow_req->token;
bucket = token_bucket(token);
spin_lock_bh(&bucket->lock);
if (__token_bucket_busy(bucket, token)) {
spin_unlock_bh(&bucket->lock);
return -EBUSY;
}
hlist_nulls_add_head_rcu(&subflow_req->token_node, &bucket->req_chain);
bucket->chain_len++;
spin_unlock_bh(&bucket->lock);
return 0;
}
/**
* mptcp_token_new_connect - create new key/idsn/token for subflow
* @ssk: the socket that will initiate a connection
*
* This function is called when a new outgoing mptcp connection is
* initiated.
*
* It creates a unique token to identify the new mptcp connection,
* a secret local key and the initial data sequence number (idsn).
*
* On success, the mptcp connection can be found again using
* the computed token at a later time, this is needed to process
* join requests.
*
* returns 0 on success.
*/
int mptcp_token_new_connect(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
int retries = MPTCP_TOKEN_MAX_RETRIES;
struct sock *sk = subflow->conn;
struct token_bucket *bucket;
again:
mptcp_crypto_key_gen_sha(&subflow->local_key, &subflow->token,
&subflow->idsn);
bucket = token_bucket(subflow->token);
spin_lock_bh(&bucket->lock);
if (__token_bucket_busy(bucket, subflow->token)) {
spin_unlock_bh(&bucket->lock);
if (!--retries)
return -EBUSY;
goto again;
}
pr_debug("ssk=%p, local_key=%llu, token=%u, idsn=%llu\n",
ssk, subflow->local_key, subflow->token, subflow->idsn);
WRITE_ONCE(msk->token, subflow->token);
__sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain);
bucket->chain_len++;
spin_unlock_bh(&bucket->lock);
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
return 0;
}
/**
* mptcp_token_accept - replace a req sk with full sock in token hash
* @req: the request socket to be removed
* @msk: the just cloned socket linked to the new connection
*
* Called when a SYN packet creates a new logical connection, i.e.
* is not a join request.
*/
void mptcp_token_accept(struct mptcp_subflow_request_sock *req,
struct mptcp_sock *msk)
{
struct mptcp_subflow_request_sock *pos;
struct sock *sk = (struct sock *)msk;
struct token_bucket *bucket;
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
bucket = token_bucket(req->token);
spin_lock_bh(&bucket->lock);
/* pedantic lookup check for the moved token */
pos = __token_lookup_req(bucket, req->token);
if (!WARN_ON_ONCE(pos != req))
hlist_nulls_del_init_rcu(&req->token_node);
__sk_nulls_add_node_rcu((struct sock *)msk, &bucket->msk_chain);
spin_unlock_bh(&bucket->lock);
}
bool mptcp_token_exists(u32 token)
{
struct hlist_nulls_node *pos;
struct token_bucket *bucket;
struct mptcp_sock *msk;
struct sock *sk;
rcu_read_lock();
bucket = token_bucket(token);
again:
sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) {
msk = mptcp_sk(sk);
if (READ_ONCE(msk->token) == token)
goto found;
}
if (get_nulls_value(pos) != (token & token_mask))
goto again;
rcu_read_unlock();
return false;
found:
rcu_read_unlock();
return true;
}
/**
* mptcp_token_get_sock - retrieve mptcp connection sock using its token
* @net: restrict to this namespace
* @token: token of the mptcp connection to retrieve
*
* This function returns the mptcp connection structure with the given token.
* A reference count on the mptcp socket returned is taken.
*
* returns NULL if no connection with the given token value exists.
*/
struct mptcp_sock *mptcp_token_get_sock(struct net *net, u32 token)
{
struct hlist_nulls_node *pos;
struct token_bucket *bucket;
struct mptcp_sock *msk;
struct sock *sk;
rcu_read_lock();
bucket = token_bucket(token);
again:
sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) {
msk = mptcp_sk(sk);
if (READ_ONCE(msk->token) != token ||
!net_eq(sock_net(sk), net))
continue;
if (!refcount_inc_not_zero(&sk->sk_refcnt))
goto not_found;
if (READ_ONCE(msk->token) != token ||
!net_eq(sock_net(sk), net)) {
sock_put(sk);
goto again;
}
goto found;
}
if (get_nulls_value(pos) != (token & token_mask))
goto again;
not_found:
msk = NULL;
found:
rcu_read_unlock();
return msk;
}
EXPORT_SYMBOL_GPL(mptcp_token_get_sock);
/**
* mptcp_token_iter_next - iterate over the token container from given pos
* @net: namespace to be iterated
* @s_slot: start slot number
* @s_num: start number inside the given lock
*
* This function returns the first mptcp connection structure found inside the
* token container starting from the specified position, or NULL.
*
* On successful iteration, the iterator is moved to the next position and
* a reference to the returned socket is acquired.
*/
struct mptcp_sock *mptcp_token_iter_next(const struct net *net, long *s_slot,
long *s_num)
{
struct mptcp_sock *ret = NULL;
struct hlist_nulls_node *pos;
int slot, num = 0;
for (slot = *s_slot; slot <= token_mask; *s_num = 0, slot++) {
struct token_bucket *bucket = &token_hash[slot];
struct sock *sk;
num = 0;
if (hlist_nulls_empty(&bucket->msk_chain))
continue;
rcu_read_lock();
sk_nulls_for_each_rcu(sk, pos, &bucket->msk_chain) {
++num;
if (!net_eq(sock_net(sk), net))
continue;
if (num <= *s_num)
continue;
if (!refcount_inc_not_zero(&sk->sk_refcnt))
continue;
if (!net_eq(sock_net(sk), net)) {
sock_put(sk);
continue;
}
ret = mptcp_sk(sk);
rcu_read_unlock();
goto out;
}
rcu_read_unlock();
}
out:
*s_slot = slot;
*s_num = num;
return ret;
}
EXPORT_SYMBOL_GPL(mptcp_token_iter_next);
/**
* mptcp_token_destroy_request - remove mptcp connection/token
* @req: mptcp request socket dropping the token
*
* Remove the token associated to @req.
*/
void mptcp_token_destroy_request(struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_subflow_request_sock *pos;
struct token_bucket *bucket;
if (hlist_nulls_unhashed(&subflow_req->token_node))
return;
bucket = token_bucket(subflow_req->token);
spin_lock_bh(&bucket->lock);
pos = __token_lookup_req(bucket, subflow_req->token);
if (!WARN_ON_ONCE(pos != subflow_req)) {
hlist_nulls_del_init_rcu(&pos->token_node);
bucket->chain_len--;
}
spin_unlock_bh(&bucket->lock);
}
/**
* mptcp_token_destroy - remove mptcp connection/token
* @msk: mptcp connection dropping the token
*
* Remove the token associated to @msk
*/
void mptcp_token_destroy(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
struct token_bucket *bucket;
struct mptcp_sock *pos;
if (sk_unhashed((struct sock *)msk))
return;
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
bucket = token_bucket(msk->token);
spin_lock_bh(&bucket->lock);
pos = __token_lookup_msk(bucket, msk->token);
if (!WARN_ON_ONCE(pos != msk)) {
__sk_nulls_del_node_init_rcu((struct sock *)pos);
bucket->chain_len--;
}
spin_unlock_bh(&bucket->lock);
WRITE_ONCE(msk->token, 0);
}
void __init mptcp_token_init(void)
{
int i;
token_hash = alloc_large_system_hash("MPTCP token",
sizeof(struct token_bucket),
0,
20,/* one slot per 1MB of memory */
HASH_ZERO,
NULL,
&token_mask,
0,
64 * 1024);
for (i = 0; i < token_mask + 1; ++i) {
INIT_HLIST_NULLS_HEAD(&token_hash[i].req_chain, i);
INIT_HLIST_NULLS_HEAD(&token_hash[i].msk_chain, i);
spin_lock_init(&token_hash[i].lock);
}
}
#if IS_MODULE(CONFIG_MPTCP_KUNIT_TEST)
EXPORT_SYMBOL_GPL(mptcp_token_new_request);
EXPORT_SYMBOL_GPL(mptcp_token_new_connect);
EXPORT_SYMBOL_GPL(mptcp_token_accept);
EXPORT_SYMBOL_GPL(mptcp_token_destroy_request);
EXPORT_SYMBOL_GPL(mptcp_token_destroy);
#endif
| linux-master | net/mptcp/token.c |
// SPDX-License-Identifier: GPL-2.0
/* MPTCP socket monitoring support
*
* Copyright (c) 2020 Red Hat
*
* Author: Paolo Abeni <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/inet_diag.h>
#include <net/netlink.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
static int sk_diag_dump(struct sock *sk, struct sk_buff *skb,
struct netlink_callback *cb,
const struct inet_diag_req_v2 *req,
struct nlattr *bc, bool net_admin)
{
if (!inet_diag_bc_sk(bc, sk))
return 0;
return inet_sk_diag_fill(sk, inet_csk(sk), skb, cb, req, NLM_F_MULTI,
net_admin);
}
static int mptcp_diag_dump_one(struct netlink_callback *cb,
const struct inet_diag_req_v2 *req)
{
struct sk_buff *in_skb = cb->skb;
struct mptcp_sock *msk = NULL;
struct sk_buff *rep;
int err = -ENOENT;
struct net *net;
struct sock *sk;
net = sock_net(in_skb->sk);
msk = mptcp_token_get_sock(net, req->id.idiag_cookie[0]);
if (!msk)
goto out_nosk;
err = -ENOMEM;
sk = (struct sock *)msk;
rep = nlmsg_new(nla_total_size(sizeof(struct inet_diag_msg)) +
inet_diag_msg_attrs_size() +
nla_total_size(sizeof(struct mptcp_info)) +
nla_total_size(sizeof(struct inet_diag_meminfo)) + 64,
GFP_KERNEL);
if (!rep)
goto out;
err = inet_sk_diag_fill(sk, inet_csk(sk), rep, cb, req, 0,
netlink_net_capable(in_skb, CAP_NET_ADMIN));
if (err < 0) {
WARN_ON(err == -EMSGSIZE);
kfree_skb(rep);
goto out;
}
err = nlmsg_unicast(net->diag_nlsk, rep, NETLINK_CB(in_skb).portid);
out:
sock_put(sk);
out_nosk:
return err;
}
struct mptcp_diag_ctx {
long s_slot;
long s_num;
unsigned int l_slot;
unsigned int l_num;
};
static void mptcp_diag_dump_listeners(struct sk_buff *skb, struct netlink_callback *cb,
const struct inet_diag_req_v2 *r,
bool net_admin)
{
struct inet_diag_dump_data *cb_data = cb->data;
struct mptcp_diag_ctx *diag_ctx = (void *)cb->ctx;
struct nlattr *bc = cb_data->inet_diag_nla_bc;
struct net *net = sock_net(skb->sk);
struct inet_hashinfo *hinfo;
int i;
hinfo = net->ipv4.tcp_death_row.hashinfo;
for (i = diag_ctx->l_slot; i <= hinfo->lhash2_mask; i++) {
struct inet_listen_hashbucket *ilb;
struct hlist_nulls_node *node;
struct sock *sk;
int num = 0;
ilb = &hinfo->lhash2[i];
rcu_read_lock();
spin_lock(&ilb->lock);
sk_nulls_for_each(sk, node, &ilb->nulls_head) {
const struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(sk);
struct inet_sock *inet = inet_sk(sk);
int ret;
if (num < diag_ctx->l_num)
goto next_listen;
if (!ctx || strcmp(inet_csk(sk)->icsk_ulp_ops->name, "mptcp"))
goto next_listen;
sk = ctx->conn;
if (!sk || !net_eq(sock_net(sk), net))
goto next_listen;
if (r->sdiag_family != AF_UNSPEC &&
sk->sk_family != r->sdiag_family)
goto next_listen;
if (r->id.idiag_sport != inet->inet_sport &&
r->id.idiag_sport)
goto next_listen;
if (!refcount_inc_not_zero(&sk->sk_refcnt))
goto next_listen;
ret = sk_diag_dump(sk, skb, cb, r, bc, net_admin);
sock_put(sk);
if (ret < 0) {
spin_unlock(&ilb->lock);
rcu_read_unlock();
diag_ctx->l_slot = i;
diag_ctx->l_num = num;
return;
}
diag_ctx->l_num = num + 1;
num = 0;
next_listen:
++num;
}
spin_unlock(&ilb->lock);
rcu_read_unlock();
cond_resched();
diag_ctx->l_num = 0;
}
diag_ctx->l_num = 0;
diag_ctx->l_slot = i;
}
static void mptcp_diag_dump(struct sk_buff *skb, struct netlink_callback *cb,
const struct inet_diag_req_v2 *r)
{
bool net_admin = netlink_net_capable(cb->skb, CAP_NET_ADMIN);
struct mptcp_diag_ctx *diag_ctx = (void *)cb->ctx;
struct net *net = sock_net(skb->sk);
struct inet_diag_dump_data *cb_data;
struct mptcp_sock *msk;
struct nlattr *bc;
BUILD_BUG_ON(sizeof(cb->ctx) < sizeof(*diag_ctx));
cb_data = cb->data;
bc = cb_data->inet_diag_nla_bc;
while ((msk = mptcp_token_iter_next(net, &diag_ctx->s_slot,
&diag_ctx->s_num)) != NULL) {
struct inet_sock *inet = (struct inet_sock *)msk;
struct sock *sk = (struct sock *)msk;
int ret = 0;
if (!(r->idiag_states & (1 << sk->sk_state)))
goto next;
if (r->sdiag_family != AF_UNSPEC &&
sk->sk_family != r->sdiag_family)
goto next;
if (r->id.idiag_sport != inet->inet_sport &&
r->id.idiag_sport)
goto next;
if (r->id.idiag_dport != inet->inet_dport &&
r->id.idiag_dport)
goto next;
ret = sk_diag_dump(sk, skb, cb, r, bc, net_admin);
next:
sock_put(sk);
if (ret < 0) {
/* will retry on the same position */
diag_ctx->s_num--;
break;
}
cond_resched();
}
if ((r->idiag_states & TCPF_LISTEN) && r->id.idiag_dport == 0)
mptcp_diag_dump_listeners(skb, cb, r, net_admin);
}
static void mptcp_diag_get_info(struct sock *sk, struct inet_diag_msg *r,
void *_info)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_info *info = _info;
r->idiag_rqueue = sk_rmem_alloc_get(sk);
r->idiag_wqueue = sk_wmem_alloc_get(sk);
if (inet_sk_state_load(sk) == TCP_LISTEN) {
struct sock *lsk = READ_ONCE(msk->first);
if (lsk) {
/* override with settings from tcp listener,
* so Send-Q will show accept queue.
*/
r->idiag_rqueue = READ_ONCE(lsk->sk_ack_backlog);
r->idiag_wqueue = READ_ONCE(lsk->sk_max_ack_backlog);
}
}
if (!info)
return;
mptcp_diag_fill_info(msk, info);
}
static const struct inet_diag_handler mptcp_diag_handler = {
.dump = mptcp_diag_dump,
.dump_one = mptcp_diag_dump_one,
.idiag_get_info = mptcp_diag_get_info,
.idiag_type = IPPROTO_MPTCP,
.idiag_info_size = sizeof(struct mptcp_info),
};
static int __init mptcp_diag_init(void)
{
return inet_diag_register(&mptcp_diag_handler);
}
static void __exit mptcp_diag_exit(void)
{
inet_diag_unregister(&mptcp_diag_handler);
}
module_init(mptcp_diag_init);
module_exit(mptcp_diag_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 2-262 /* AF_INET - IPPROTO_MPTCP */);
| linux-master | net/mptcp/mptcp_diag.c |
// SPDX-License-Identifier: GPL-2.0
#include <kunit/test.h>
#include "protocol.h"
struct test_case {
char *key;
char *msg;
char *result;
};
/* we can't reuse RFC 4231 test vectors, as we have constraint on the
* input and key size.
*/
static struct test_case tests[] = {
{
.key = "0b0b0b0b0b0b0b0b",
.msg = "48692054",
.result = "8385e24fb4235ac37556b6b886db106284a1da671699f46db1f235ec622dcafa",
},
{
.key = "aaaaaaaaaaaaaaaa",
.msg = "dddddddd",
.result = "2c5e219164ff1dca1c4a92318d847bb6b9d44492984e1eb71aff9022f71046e9",
},
{
.key = "0102030405060708",
.msg = "cdcdcdcd",
.result = "e73b9ba9969969cefb04aa0d6df18ec2fcc075b6f23b4d8c4da736a5dbbc6e7d",
},
};
static void mptcp_crypto_test_basic(struct kunit *test)
{
char hmac[32], hmac_hex[65];
u32 nonce1, nonce2;
u64 key1, key2;
u8 msg[8];
int i, j;
for (i = 0; i < ARRAY_SIZE(tests); ++i) {
/* mptcp hmap will convert to be before computing the hmac */
key1 = be64_to_cpu(*((__be64 *)&tests[i].key[0]));
key2 = be64_to_cpu(*((__be64 *)&tests[i].key[8]));
nonce1 = be32_to_cpu(*((__be32 *)&tests[i].msg[0]));
nonce2 = be32_to_cpu(*((__be32 *)&tests[i].msg[4]));
put_unaligned_be32(nonce1, &msg[0]);
put_unaligned_be32(nonce2, &msg[4]);
mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac);
for (j = 0; j < 32; ++j)
sprintf(&hmac_hex[j << 1], "%02x", hmac[j] & 0xff);
hmac_hex[64] = 0;
KUNIT_EXPECT_STREQ(test, &hmac_hex[0], tests[i].result);
}
}
static struct kunit_case mptcp_crypto_test_cases[] = {
KUNIT_CASE(mptcp_crypto_test_basic),
{}
};
static struct kunit_suite mptcp_crypto_suite = {
.name = "mptcp-crypto",
.test_cases = mptcp_crypto_test_cases,
};
kunit_test_suite(mptcp_crypto_suite);
MODULE_LICENSE("GPL");
| linux-master | net/mptcp/crypto_test.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2017 - 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <crypto/algapi.h>
#include <crypto/sha2.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/protocol.h>
#include <net/tcp.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
#include <net/ip6_route.h>
#include <net/transp_v6.h>
#endif
#include <net/mptcp.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
#include "mib.h"
#include <trace/events/mptcp.h>
#include <trace/events/sock.h>
static void mptcp_subflow_ops_undo_override(struct sock *ssk);
static void SUBFLOW_REQ_INC_STATS(struct request_sock *req,
enum linux_mptcp_mib_field field)
{
MPTCP_INC_STATS(sock_net(req_to_sk(req)), field);
}
static void subflow_req_destructor(struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
pr_debug("subflow_req=%p", subflow_req);
if (subflow_req->msk)
sock_put((struct sock *)subflow_req->msk);
mptcp_token_destroy_request(req);
}
static void subflow_generate_hmac(u64 key1, u64 key2, u32 nonce1, u32 nonce2,
void *hmac)
{
u8 msg[8];
put_unaligned_be32(nonce1, &msg[0]);
put_unaligned_be32(nonce2, &msg[4]);
mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac);
}
static bool mptcp_can_accept_new_subflow(const struct mptcp_sock *msk)
{
return mptcp_is_fully_established((void *)msk) &&
((mptcp_pm_is_userspace(msk) &&
mptcp_userspace_pm_active(msk)) ||
READ_ONCE(msk->pm.accept_subflow));
}
/* validate received token and create truncated hmac and nonce for SYN-ACK */
static void subflow_req_create_thmac(struct mptcp_subflow_request_sock *subflow_req)
{
struct mptcp_sock *msk = subflow_req->msk;
u8 hmac[SHA256_DIGEST_SIZE];
get_random_bytes(&subflow_req->local_nonce, sizeof(u32));
subflow_generate_hmac(msk->local_key, msk->remote_key,
subflow_req->local_nonce,
subflow_req->remote_nonce, hmac);
subflow_req->thmac = get_unaligned_be64(hmac);
}
static struct mptcp_sock *subflow_token_join_request(struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_sock *msk;
int local_id;
msk = mptcp_token_get_sock(sock_net(req_to_sk(req)), subflow_req->token);
if (!msk) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINNOTOKEN);
return NULL;
}
local_id = mptcp_pm_get_local_id(msk, (struct sock_common *)req);
if (local_id < 0) {
sock_put((struct sock *)msk);
return NULL;
}
subflow_req->local_id = local_id;
return msk;
}
static void subflow_init_req(struct request_sock *req, const struct sock *sk_listener)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
subflow_req->mp_capable = 0;
subflow_req->mp_join = 0;
subflow_req->csum_reqd = mptcp_is_checksum_enabled(sock_net(sk_listener));
subflow_req->allow_join_id0 = mptcp_allow_join_id0(sock_net(sk_listener));
subflow_req->msk = NULL;
mptcp_token_init_request(req);
}
static bool subflow_use_different_sport(struct mptcp_sock *msk, const struct sock *sk)
{
return inet_sk(sk)->inet_sport != inet_sk((struct sock *)msk)->inet_sport;
}
static void subflow_add_reset_reason(struct sk_buff *skb, u8 reason)
{
struct mptcp_ext *mpext = skb_ext_add(skb, SKB_EXT_MPTCP);
if (mpext) {
memset(mpext, 0, sizeof(*mpext));
mpext->reset_reason = reason;
}
}
/* Init mptcp request socket.
*
* Returns an error code if a JOIN has failed and a TCP reset
* should be sent.
*/
static int subflow_check_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener);
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_options_received mp_opt;
bool opt_mp_capable, opt_mp_join;
pr_debug("subflow_req=%p, listener=%p", subflow_req, listener);
#ifdef CONFIG_TCP_MD5SIG
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
* TCP option space.
*/
if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info))
return -EINVAL;
#endif
mptcp_get_options(skb, &mp_opt);
opt_mp_capable = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPC);
opt_mp_join = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ);
if (opt_mp_capable) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEPASSIVE);
if (opt_mp_join)
return 0;
} else if (opt_mp_join) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNRX);
}
if (opt_mp_capable && listener->request_mptcp) {
int err, retries = MPTCP_TOKEN_MAX_RETRIES;
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
again:
do {
get_random_bytes(&subflow_req->local_key, sizeof(subflow_req->local_key));
} while (subflow_req->local_key == 0);
if (unlikely(req->syncookie)) {
mptcp_crypto_key_sha(subflow_req->local_key,
&subflow_req->token,
&subflow_req->idsn);
if (mptcp_token_exists(subflow_req->token)) {
if (retries-- > 0)
goto again;
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_TOKENFALLBACKINIT);
} else {
subflow_req->mp_capable = 1;
}
return 0;
}
err = mptcp_token_new_request(req);
if (err == 0)
subflow_req->mp_capable = 1;
else if (retries-- > 0)
goto again;
else
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_TOKENFALLBACKINIT);
} else if (opt_mp_join && listener->request_mptcp) {
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
subflow_req->mp_join = 1;
subflow_req->backup = mp_opt.backup;
subflow_req->remote_id = mp_opt.join_id;
subflow_req->token = mp_opt.token;
subflow_req->remote_nonce = mp_opt.nonce;
subflow_req->msk = subflow_token_join_request(req);
/* Can't fall back to TCP in this case. */
if (!subflow_req->msk) {
subflow_add_reset_reason(skb, MPTCP_RST_EMPTCP);
return -EPERM;
}
if (subflow_use_different_sport(subflow_req->msk, sk_listener)) {
pr_debug("syn inet_sport=%d %d",
ntohs(inet_sk(sk_listener)->inet_sport),
ntohs(inet_sk((struct sock *)subflow_req->msk)->inet_sport));
if (!mptcp_pm_sport_in_anno_list(subflow_req->msk, sk_listener)) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MISMATCHPORTSYNRX);
return -EPERM;
}
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINPORTSYNRX);
}
subflow_req_create_thmac(subflow_req);
if (unlikely(req->syncookie)) {
if (mptcp_can_accept_new_subflow(subflow_req->msk))
subflow_init_req_cookie_join_save(subflow_req, skb);
else
return -EPERM;
}
pr_debug("token=%u, remote_nonce=%u msk=%p", subflow_req->token,
subflow_req->remote_nonce, subflow_req->msk);
}
return 0;
}
int mptcp_subflow_init_cookie_req(struct request_sock *req,
const struct sock *sk_listener,
struct sk_buff *skb)
{
struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener);
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_options_received mp_opt;
bool opt_mp_capable, opt_mp_join;
int err;
subflow_init_req(req, sk_listener);
mptcp_get_options(skb, &mp_opt);
opt_mp_capable = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPC);
opt_mp_join = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ);
if (opt_mp_capable && opt_mp_join)
return -EINVAL;
if (opt_mp_capable && listener->request_mptcp) {
if (mp_opt.sndr_key == 0)
return -EINVAL;
subflow_req->local_key = mp_opt.rcvr_key;
err = mptcp_token_new_request(req);
if (err)
return err;
subflow_req->mp_capable = 1;
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1;
} else if (opt_mp_join && listener->request_mptcp) {
if (!mptcp_token_join_cookie_init_state(subflow_req, skb))
return -EINVAL;
subflow_req->mp_join = 1;
subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mptcp_subflow_init_cookie_req);
static struct dst_entry *subflow_v4_route_req(const struct sock *sk,
struct sk_buff *skb,
struct flowi *fl,
struct request_sock *req)
{
struct dst_entry *dst;
int err;
tcp_rsk(req)->is_mptcp = 1;
subflow_init_req(req, sk);
dst = tcp_request_sock_ipv4_ops.route_req(sk, skb, fl, req);
if (!dst)
return NULL;
err = subflow_check_req(req, sk, skb);
if (err == 0)
return dst;
dst_release(dst);
if (!req->syncookie)
tcp_request_sock_ops.send_reset(sk, skb);
return NULL;
}
static void subflow_prep_synack(const struct sock *sk, struct request_sock *req,
struct tcp_fastopen_cookie *foc,
enum tcp_synack_type synack_type)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct inet_request_sock *ireq = inet_rsk(req);
/* clear tstamp_ok, as needed depending on cookie */
if (foc && foc->len > -1)
ireq->tstamp_ok = 0;
if (synack_type == TCP_SYNACK_FASTOPEN)
mptcp_fastopen_subflow_synack_set_params(subflow, req);
}
static int subflow_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
struct flowi *fl,
struct request_sock *req,
struct tcp_fastopen_cookie *foc,
enum tcp_synack_type synack_type,
struct sk_buff *syn_skb)
{
subflow_prep_synack(sk, req, foc, synack_type);
return tcp_request_sock_ipv4_ops.send_synack(sk, dst, fl, req, foc,
synack_type, syn_skb);
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static int subflow_v6_send_synack(const struct sock *sk, struct dst_entry *dst,
struct flowi *fl,
struct request_sock *req,
struct tcp_fastopen_cookie *foc,
enum tcp_synack_type synack_type,
struct sk_buff *syn_skb)
{
subflow_prep_synack(sk, req, foc, synack_type);
return tcp_request_sock_ipv6_ops.send_synack(sk, dst, fl, req, foc,
synack_type, syn_skb);
}
static struct dst_entry *subflow_v6_route_req(const struct sock *sk,
struct sk_buff *skb,
struct flowi *fl,
struct request_sock *req)
{
struct dst_entry *dst;
int err;
tcp_rsk(req)->is_mptcp = 1;
subflow_init_req(req, sk);
dst = tcp_request_sock_ipv6_ops.route_req(sk, skb, fl, req);
if (!dst)
return NULL;
err = subflow_check_req(req, sk, skb);
if (err == 0)
return dst;
dst_release(dst);
if (!req->syncookie)
tcp6_request_sock_ops.send_reset(sk, skb);
return NULL;
}
#endif
/* validate received truncated hmac and create hmac for third ACK */
static bool subflow_thmac_valid(struct mptcp_subflow_context *subflow)
{
u8 hmac[SHA256_DIGEST_SIZE];
u64 thmac;
subflow_generate_hmac(subflow->remote_key, subflow->local_key,
subflow->remote_nonce, subflow->local_nonce,
hmac);
thmac = get_unaligned_be64(hmac);
pr_debug("subflow=%p, token=%u, thmac=%llu, subflow->thmac=%llu\n",
subflow, subflow->token, thmac, subflow->thmac);
return thmac == subflow->thmac;
}
void mptcp_subflow_reset(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = subflow->conn;
/* mptcp_mp_fail_no_response() can reach here on an already closed
* socket
*/
if (ssk->sk_state == TCP_CLOSE)
return;
/* must hold: tcp_done() could drop last reference on parent */
sock_hold(sk);
tcp_send_active_reset(ssk, GFP_ATOMIC);
tcp_done(ssk);
if (!test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &mptcp_sk(sk)->flags))
mptcp_schedule_work(sk);
sock_put(sk);
}
static bool subflow_use_different_dport(struct mptcp_sock *msk, const struct sock *sk)
{
return inet_sk(sk)->inet_dport != inet_sk((struct sock *)msk)->inet_dport;
}
void __mptcp_set_connected(struct sock *sk)
{
if (sk->sk_state == TCP_SYN_SENT) {
inet_sk_state_store(sk, TCP_ESTABLISHED);
sk->sk_state_change(sk);
}
}
static void mptcp_set_connected(struct sock *sk)
{
mptcp_data_lock(sk);
if (!sock_owned_by_user(sk))
__mptcp_set_connected(sk);
else
__set_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->cb_flags);
mptcp_data_unlock(sk);
}
static void subflow_set_remote_key(struct mptcp_sock *msk,
struct mptcp_subflow_context *subflow,
const struct mptcp_options_received *mp_opt)
{
/* active MPC subflow will reach here multiple times:
* at subflow_finish_connect() time and at 4th ack time
*/
if (subflow->remote_key_valid)
return;
subflow->remote_key_valid = 1;
subflow->remote_key = mp_opt->sndr_key;
mptcp_crypto_key_sha(subflow->remote_key, NULL, &subflow->iasn);
subflow->iasn++;
WRITE_ONCE(msk->remote_key, subflow->remote_key);
WRITE_ONCE(msk->ack_seq, subflow->iasn);
WRITE_ONCE(msk->can_ack, true);
atomic64_set(&msk->rcv_wnd_sent, subflow->iasn);
}
static void subflow_finish_connect(struct sock *sk, const struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_options_received mp_opt;
struct sock *parent = subflow->conn;
struct mptcp_sock *msk;
subflow->icsk_af_ops->sk_rx_dst_set(sk, skb);
/* be sure no special action on any packet other than syn-ack */
if (subflow->conn_finished)
return;
msk = mptcp_sk(parent);
mptcp_propagate_sndbuf(parent, sk);
subflow->rel_write_seq = 1;
subflow->conn_finished = 1;
subflow->ssn_offset = TCP_SKB_CB(skb)->seq;
pr_debug("subflow=%p synack seq=%x", subflow, subflow->ssn_offset);
mptcp_get_options(skb, &mp_opt);
if (subflow->request_mptcp) {
if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPC)) {
MPTCP_INC_STATS(sock_net(sk),
MPTCP_MIB_MPCAPABLEACTIVEFALLBACK);
mptcp_do_fallback(sk);
pr_fallback(msk);
goto fallback;
}
if (mp_opt.suboptions & OPTION_MPTCP_CSUMREQD)
WRITE_ONCE(msk->csum_enabled, true);
if (mp_opt.deny_join_id0)
WRITE_ONCE(msk->pm.remote_deny_join_id0, true);
subflow->mp_capable = 1;
subflow_set_remote_key(msk, subflow, &mp_opt);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVEACK);
mptcp_finish_connect(sk);
mptcp_set_connected(parent);
} else if (subflow->request_join) {
u8 hmac[SHA256_DIGEST_SIZE];
if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ)) {
subflow->reset_reason = MPTCP_RST_EMPTCP;
goto do_reset;
}
subflow->backup = mp_opt.backup;
subflow->thmac = mp_opt.thmac;
subflow->remote_nonce = mp_opt.nonce;
subflow->remote_id = mp_opt.join_id;
pr_debug("subflow=%p, thmac=%llu, remote_nonce=%u backup=%d",
subflow, subflow->thmac, subflow->remote_nonce,
subflow->backup);
if (!subflow_thmac_valid(subflow)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINACKMAC);
subflow->reset_reason = MPTCP_RST_EMPTCP;
goto do_reset;
}
if (!mptcp_finish_join(sk))
goto do_reset;
subflow_generate_hmac(subflow->local_key, subflow->remote_key,
subflow->local_nonce,
subflow->remote_nonce,
hmac);
memcpy(subflow->hmac, hmac, MPTCPOPT_HMAC_LEN);
subflow->mp_join = 1;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINSYNACKRX);
if (subflow_use_different_dport(msk, sk)) {
pr_debug("synack inet_dport=%d %d",
ntohs(inet_sk(sk)->inet_dport),
ntohs(inet_sk(parent)->inet_dport));
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINPORTSYNACKRX);
}
} else if (mptcp_check_fallback(sk)) {
fallback:
mptcp_rcv_space_init(msk, sk);
mptcp_set_connected(parent);
}
return;
do_reset:
subflow->reset_transient = 0;
mptcp_subflow_reset(sk);
}
static void subflow_set_local_id(struct mptcp_subflow_context *subflow, int local_id)
{
subflow->local_id = local_id;
subflow->local_id_valid = 1;
}
static int subflow_chk_local_id(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
int err;
if (likely(subflow->local_id_valid))
return 0;
err = mptcp_pm_get_local_id(msk, (struct sock_common *)sk);
if (err < 0)
return err;
subflow_set_local_id(subflow, err);
return 0;
}
static int subflow_rebuild_header(struct sock *sk)
{
int err = subflow_chk_local_id(sk);
if (unlikely(err < 0))
return err;
return inet_sk_rebuild_header(sk);
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static int subflow_v6_rebuild_header(struct sock *sk)
{
int err = subflow_chk_local_id(sk);
if (unlikely(err < 0))
return err;
return inet6_sk_rebuild_header(sk);
}
#endif
static struct request_sock_ops mptcp_subflow_v4_request_sock_ops __ro_after_init;
static struct tcp_request_sock_ops subflow_request_sock_ipv4_ops __ro_after_init;
static int subflow_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
pr_debug("subflow=%p", subflow);
/* Never answer to SYNs sent to broadcast or multicast */
if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
goto drop;
return tcp_conn_request(&mptcp_subflow_v4_request_sock_ops,
&subflow_request_sock_ipv4_ops,
sk, skb);
drop:
tcp_listendrop(sk);
return 0;
}
static void subflow_v4_req_destructor(struct request_sock *req)
{
subflow_req_destructor(req);
tcp_request_sock_ops.destructor(req);
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static struct request_sock_ops mptcp_subflow_v6_request_sock_ops __ro_after_init;
static struct tcp_request_sock_ops subflow_request_sock_ipv6_ops __ro_after_init;
static struct inet_connection_sock_af_ops subflow_v6_specific __ro_after_init;
static struct inet_connection_sock_af_ops subflow_v6m_specific __ro_after_init;
static struct proto tcpv6_prot_override __ro_after_init;
static int subflow_v6_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
pr_debug("subflow=%p", subflow);
if (skb->protocol == htons(ETH_P_IP))
return subflow_v4_conn_request(sk, skb);
if (!ipv6_unicast_destination(skb))
goto drop;
if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) {
__IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS);
return 0;
}
return tcp_conn_request(&mptcp_subflow_v6_request_sock_ops,
&subflow_request_sock_ipv6_ops, sk, skb);
drop:
tcp_listendrop(sk);
return 0; /* don't send reset */
}
static void subflow_v6_req_destructor(struct request_sock *req)
{
subflow_req_destructor(req);
tcp6_request_sock_ops.destructor(req);
}
#endif
struct request_sock *mptcp_subflow_reqsk_alloc(const struct request_sock_ops *ops,
struct sock *sk_listener,
bool attach_listener)
{
if (ops->family == AF_INET)
ops = &mptcp_subflow_v4_request_sock_ops;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (ops->family == AF_INET6)
ops = &mptcp_subflow_v6_request_sock_ops;
#endif
return inet_reqsk_alloc(ops, sk_listener, attach_listener);
}
EXPORT_SYMBOL(mptcp_subflow_reqsk_alloc);
/* validate hmac received in third ACK */
static bool subflow_hmac_valid(const struct request_sock *req,
const struct mptcp_options_received *mp_opt)
{
const struct mptcp_subflow_request_sock *subflow_req;
u8 hmac[SHA256_DIGEST_SIZE];
struct mptcp_sock *msk;
subflow_req = mptcp_subflow_rsk(req);
msk = subflow_req->msk;
if (!msk)
return false;
subflow_generate_hmac(msk->remote_key, msk->local_key,
subflow_req->remote_nonce,
subflow_req->local_nonce, hmac);
return !crypto_memneq(hmac, mp_opt->hmac, MPTCPOPT_HMAC_LEN);
}
static void subflow_ulp_fallback(struct sock *sk,
struct mptcp_subflow_context *old_ctx)
{
struct inet_connection_sock *icsk = inet_csk(sk);
mptcp_subflow_tcp_fallback(sk, old_ctx);
icsk->icsk_ulp_ops = NULL;
rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
tcp_sk(sk)->is_mptcp = 0;
mptcp_subflow_ops_undo_override(sk);
}
void mptcp_subflow_drop_ctx(struct sock *ssk)
{
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk);
if (!ctx)
return;
list_del(&mptcp_subflow_ctx(ssk)->node);
if (inet_csk(ssk)->icsk_ulp_ops) {
subflow_ulp_fallback(ssk, ctx);
if (ctx->conn)
sock_put(ctx->conn);
}
kfree_rcu(ctx, rcu);
}
void mptcp_subflow_fully_established(struct mptcp_subflow_context *subflow,
const struct mptcp_options_received *mp_opt)
{
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
subflow_set_remote_key(msk, subflow, mp_opt);
subflow->fully_established = 1;
WRITE_ONCE(msk->fully_established, true);
if (subflow->is_mptfo)
mptcp_fastopen_gen_msk_ackseq(msk, subflow, mp_opt);
}
static struct sock *subflow_syn_recv_sock(const struct sock *sk,
struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk);
struct mptcp_subflow_request_sock *subflow_req;
struct mptcp_options_received mp_opt;
bool fallback, fallback_is_fatal;
struct mptcp_sock *owner;
struct sock *child;
pr_debug("listener=%p, req=%p, conn=%p", listener, req, listener->conn);
/* After child creation we must look for MPC even when options
* are not parsed
*/
mp_opt.suboptions = 0;
/* hopefully temporary handling for MP_JOIN+syncookie */
subflow_req = mptcp_subflow_rsk(req);
fallback_is_fatal = tcp_rsk(req)->is_mptcp && subflow_req->mp_join;
fallback = !tcp_rsk(req)->is_mptcp;
if (fallback)
goto create_child;
/* if the sk is MP_CAPABLE, we try to fetch the client key */
if (subflow_req->mp_capable) {
/* we can receive and accept an in-window, out-of-order pkt,
* which may not carry the MP_CAPABLE opt even on mptcp enabled
* paths: always try to extract the peer key, and fallback
* for packets missing it.
* Even OoO DSS packets coming legitly after dropped or
* reordered MPC will cause fallback, but we don't have other
* options.
*/
mptcp_get_options(skb, &mp_opt);
if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPC))
fallback = true;
} else if (subflow_req->mp_join) {
mptcp_get_options(skb, &mp_opt);
if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ) ||
!subflow_hmac_valid(req, &mp_opt) ||
!mptcp_can_accept_new_subflow(subflow_req->msk)) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKMAC);
fallback = true;
}
}
create_child:
child = listener->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
req_unhash, own_req);
if (child && *own_req) {
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(child);
tcp_rsk(req)->drop_req = false;
/* we need to fallback on ctx allocation failure and on pre-reqs
* checking above. In the latter scenario we additionally need
* to reset the context to non MPTCP status.
*/
if (!ctx || fallback) {
if (fallback_is_fatal) {
subflow_add_reset_reason(skb, MPTCP_RST_EMPTCP);
goto dispose_child;
}
goto fallback;
}
/* ssk inherits options of listener sk */
ctx->setsockopt_seq = listener->setsockopt_seq;
if (ctx->mp_capable) {
ctx->conn = mptcp_sk_clone_init(listener->conn, &mp_opt, child, req);
if (!ctx->conn)
goto fallback;
ctx->subflow_id = 1;
owner = mptcp_sk(ctx->conn);
mptcp_pm_new_connection(owner, child, 1);
/* with OoO packets we can reach here without ingress
* mpc option
*/
if (mp_opt.suboptions & OPTION_MPTCP_MPC_ACK) {
mptcp_subflow_fully_established(ctx, &mp_opt);
mptcp_pm_fully_established(owner, child);
ctx->pm_notified = 1;
}
} else if (ctx->mp_join) {
owner = subflow_req->msk;
if (!owner) {
subflow_add_reset_reason(skb, MPTCP_RST_EPROHIBIT);
goto dispose_child;
}
/* move the msk reference ownership to the subflow */
subflow_req->msk = NULL;
ctx->conn = (struct sock *)owner;
if (subflow_use_different_sport(owner, sk)) {
pr_debug("ack inet_sport=%d %d",
ntohs(inet_sk(sk)->inet_sport),
ntohs(inet_sk((struct sock *)owner)->inet_sport));
if (!mptcp_pm_sport_in_anno_list(owner, sk)) {
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MISMATCHPORTACKRX);
goto dispose_child;
}
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINPORTACKRX);
}
if (!mptcp_finish_join(child))
goto dispose_child;
SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKRX);
tcp_rsk(req)->drop_req = true;
}
}
/* check for expected invariant - should never trigger, just help
* catching eariler subtle bugs
*/
WARN_ON_ONCE(child && *own_req && tcp_sk(child)->is_mptcp &&
(!mptcp_subflow_ctx(child) ||
!mptcp_subflow_ctx(child)->conn));
return child;
dispose_child:
mptcp_subflow_drop_ctx(child);
tcp_rsk(req)->drop_req = true;
inet_csk_prepare_for_destroy_sock(child);
tcp_done(child);
req->rsk_ops->send_reset(sk, skb);
/* The last child reference will be released by the caller */
return child;
fallback:
mptcp_subflow_drop_ctx(child);
return child;
}
static struct inet_connection_sock_af_ops subflow_specific __ro_after_init;
static struct proto tcp_prot_override __ro_after_init;
enum mapping_status {
MAPPING_OK,
MAPPING_INVALID,
MAPPING_EMPTY,
MAPPING_DATA_FIN,
MAPPING_DUMMY,
MAPPING_BAD_CSUM
};
static void dbg_bad_map(struct mptcp_subflow_context *subflow, u32 ssn)
{
pr_debug("Bad mapping: ssn=%d map_seq=%d map_data_len=%d",
ssn, subflow->map_subflow_seq, subflow->map_data_len);
}
static bool skb_is_fully_mapped(struct sock *ssk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
unsigned int skb_consumed;
skb_consumed = tcp_sk(ssk)->copied_seq - TCP_SKB_CB(skb)->seq;
if (WARN_ON_ONCE(skb_consumed >= skb->len))
return true;
return skb->len - skb_consumed <= subflow->map_data_len -
mptcp_subflow_get_map_offset(subflow);
}
static bool validate_mapping(struct sock *ssk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
u32 ssn = tcp_sk(ssk)->copied_seq - subflow->ssn_offset;
if (unlikely(before(ssn, subflow->map_subflow_seq))) {
/* Mapping covers data later in the subflow stream,
* currently unsupported.
*/
dbg_bad_map(subflow, ssn);
return false;
}
if (unlikely(!before(ssn, subflow->map_subflow_seq +
subflow->map_data_len))) {
/* Mapping does covers past subflow data, invalid */
dbg_bad_map(subflow, ssn);
return false;
}
return true;
}
static enum mapping_status validate_data_csum(struct sock *ssk, struct sk_buff *skb,
bool csum_reqd)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
u32 offset, seq, delta;
__sum16 csum;
int len;
if (!csum_reqd)
return MAPPING_OK;
/* mapping already validated on previous traversal */
if (subflow->map_csum_len == subflow->map_data_len)
return MAPPING_OK;
/* traverse the receive queue, ensuring it contains a full
* DSS mapping and accumulating the related csum.
* Preserve the accoumlate csum across multiple calls, to compute
* the csum only once
*/
delta = subflow->map_data_len - subflow->map_csum_len;
for (;;) {
seq = tcp_sk(ssk)->copied_seq + subflow->map_csum_len;
offset = seq - TCP_SKB_CB(skb)->seq;
/* if the current skb has not been accounted yet, csum its contents
* up to the amount covered by the current DSS
*/
if (offset < skb->len) {
__wsum csum;
len = min(skb->len - offset, delta);
csum = skb_checksum(skb, offset, len, 0);
subflow->map_data_csum = csum_block_add(subflow->map_data_csum, csum,
subflow->map_csum_len);
delta -= len;
subflow->map_csum_len += len;
}
if (delta == 0)
break;
if (skb_queue_is_last(&ssk->sk_receive_queue, skb)) {
/* if this subflow is closed, the partial mapping
* will be never completed; flush the pending skbs, so
* that subflow_sched_work_if_closed() can kick in
*/
if (unlikely(ssk->sk_state == TCP_CLOSE))
while ((skb = skb_peek(&ssk->sk_receive_queue)))
sk_eat_skb(ssk, skb);
/* not enough data to validate the csum */
return MAPPING_EMPTY;
}
/* the DSS mapping for next skbs will be validated later,
* when a get_mapping_status call will process such skb
*/
skb = skb->next;
}
/* note that 'map_data_len' accounts only for the carried data, does
* not include the eventual seq increment due to the data fin,
* while the pseudo header requires the original DSS data len,
* including that
*/
csum = __mptcp_make_csum(subflow->map_seq,
subflow->map_subflow_seq,
subflow->map_data_len + subflow->map_data_fin,
subflow->map_data_csum);
if (unlikely(csum)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DATACSUMERR);
return MAPPING_BAD_CSUM;
}
subflow->valid_csum_seen = 1;
return MAPPING_OK;
}
static enum mapping_status get_mapping_status(struct sock *ssk,
struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
bool csum_reqd = READ_ONCE(msk->csum_enabled);
struct mptcp_ext *mpext;
struct sk_buff *skb;
u16 data_len;
u64 map_seq;
skb = skb_peek(&ssk->sk_receive_queue);
if (!skb)
return MAPPING_EMPTY;
if (mptcp_check_fallback(ssk))
return MAPPING_DUMMY;
mpext = mptcp_get_ext(skb);
if (!mpext || !mpext->use_map) {
if (!subflow->map_valid && !skb->len) {
/* the TCP stack deliver 0 len FIN pkt to the receive
* queue, that is the only 0len pkts ever expected here,
* and we can admit no mapping only for 0 len pkts
*/
if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
WARN_ONCE(1, "0len seq %d:%d flags %x",
TCP_SKB_CB(skb)->seq,
TCP_SKB_CB(skb)->end_seq,
TCP_SKB_CB(skb)->tcp_flags);
sk_eat_skb(ssk, skb);
return MAPPING_EMPTY;
}
if (!subflow->map_valid)
return MAPPING_INVALID;
goto validate_seq;
}
trace_get_mapping_status(mpext);
data_len = mpext->data_len;
if (data_len == 0) {
pr_debug("infinite mapping received");
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPRX);
subflow->map_data_len = 0;
return MAPPING_INVALID;
}
if (mpext->data_fin == 1) {
if (data_len == 1) {
bool updated = mptcp_update_rcv_data_fin(msk, mpext->data_seq,
mpext->dsn64);
pr_debug("DATA_FIN with no payload seq=%llu", mpext->data_seq);
if (subflow->map_valid) {
/* A DATA_FIN might arrive in a DSS
* option before the previous mapping
* has been fully consumed. Continue
* handling the existing mapping.
*/
skb_ext_del(skb, SKB_EXT_MPTCP);
return MAPPING_OK;
} else {
if (updated)
mptcp_schedule_work((struct sock *)msk);
return MAPPING_DATA_FIN;
}
} else {
u64 data_fin_seq = mpext->data_seq + data_len - 1;
/* If mpext->data_seq is a 32-bit value, data_fin_seq
* must also be limited to 32 bits.
*/
if (!mpext->dsn64)
data_fin_seq &= GENMASK_ULL(31, 0);
mptcp_update_rcv_data_fin(msk, data_fin_seq, mpext->dsn64);
pr_debug("DATA_FIN with mapping seq=%llu dsn64=%d",
data_fin_seq, mpext->dsn64);
}
/* Adjust for DATA_FIN using 1 byte of sequence space */
data_len--;
}
map_seq = mptcp_expand_seq(READ_ONCE(msk->ack_seq), mpext->data_seq, mpext->dsn64);
WRITE_ONCE(mptcp_sk(subflow->conn)->use_64bit_ack, !!mpext->dsn64);
if (subflow->map_valid) {
/* Allow replacing only with an identical map */
if (subflow->map_seq == map_seq &&
subflow->map_subflow_seq == mpext->subflow_seq &&
subflow->map_data_len == data_len &&
subflow->map_csum_reqd == mpext->csum_reqd) {
skb_ext_del(skb, SKB_EXT_MPTCP);
goto validate_csum;
}
/* If this skb data are fully covered by the current mapping,
* the new map would need caching, which is not supported
*/
if (skb_is_fully_mapped(ssk, skb)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSNOMATCH);
return MAPPING_INVALID;
}
/* will validate the next map after consuming the current one */
goto validate_csum;
}
subflow->map_seq = map_seq;
subflow->map_subflow_seq = mpext->subflow_seq;
subflow->map_data_len = data_len;
subflow->map_valid = 1;
subflow->map_data_fin = mpext->data_fin;
subflow->mpc_map = mpext->mpc_map;
subflow->map_csum_reqd = mpext->csum_reqd;
subflow->map_csum_len = 0;
subflow->map_data_csum = csum_unfold(mpext->csum);
/* Cfr RFC 8684 Section 3.3.0 */
if (unlikely(subflow->map_csum_reqd != csum_reqd))
return MAPPING_INVALID;
pr_debug("new map seq=%llu subflow_seq=%u data_len=%u csum=%d:%u",
subflow->map_seq, subflow->map_subflow_seq,
subflow->map_data_len, subflow->map_csum_reqd,
subflow->map_data_csum);
validate_seq:
/* we revalidate valid mapping on new skb, because we must ensure
* the current skb is completely covered by the available mapping
*/
if (!validate_mapping(ssk, skb)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSTCPMISMATCH);
return MAPPING_INVALID;
}
skb_ext_del(skb, SKB_EXT_MPTCP);
validate_csum:
return validate_data_csum(ssk, skb, csum_reqd);
}
static void mptcp_subflow_discard_data(struct sock *ssk, struct sk_buff *skb,
u64 limit)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
bool fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
u32 incr;
incr = limit >= skb->len ? skb->len + fin : limit;
pr_debug("discarding=%d len=%d seq=%d", incr, skb->len,
subflow->map_subflow_seq);
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DUPDATA);
tcp_sk(ssk)->copied_seq += incr;
if (!before(tcp_sk(ssk)->copied_seq, TCP_SKB_CB(skb)->end_seq))
sk_eat_skb(ssk, skb);
if (mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len)
subflow->map_valid = 0;
}
/* sched mptcp worker to remove the subflow if no more data is pending */
static void subflow_sched_work_if_closed(struct mptcp_sock *msk, struct sock *ssk)
{
if (likely(ssk->sk_state != TCP_CLOSE))
return;
if (skb_queue_empty(&ssk->sk_receive_queue) &&
!test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
mptcp_schedule_work((struct sock *)msk);
}
static bool subflow_can_fallback(struct mptcp_subflow_context *subflow)
{
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
if (subflow->mp_join)
return false;
else if (READ_ONCE(msk->csum_enabled))
return !subflow->valid_csum_seen;
else
return !subflow->fully_established;
}
static void mptcp_subflow_fail(struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
unsigned long fail_tout;
/* greceful failure can happen only on the MPC subflow */
if (WARN_ON_ONCE(ssk != READ_ONCE(msk->first)))
return;
/* since the close timeout take precedence on the fail one,
* no need to start the latter when the first is already set
*/
if (sock_flag((struct sock *)msk, SOCK_DEAD))
return;
/* we don't need extreme accuracy here, use a zero fail_tout as special
* value meaning no fail timeout at all;
*/
fail_tout = jiffies + TCP_RTO_MAX;
if (!fail_tout)
fail_tout = 1;
WRITE_ONCE(subflow->fail_tout, fail_tout);
tcp_send_ack(ssk);
mptcp_reset_tout_timer(msk, subflow->fail_tout);
}
static bool subflow_check_data_avail(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
enum mapping_status status;
struct mptcp_sock *msk;
struct sk_buff *skb;
if (!skb_peek(&ssk->sk_receive_queue))
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);
if (subflow->data_avail)
return true;
msk = mptcp_sk(subflow->conn);
for (;;) {
u64 ack_seq;
u64 old_ack;
status = get_mapping_status(ssk, msk);
trace_subflow_check_data_avail(status, skb_peek(&ssk->sk_receive_queue));
if (unlikely(status == MAPPING_INVALID || status == MAPPING_DUMMY ||
status == MAPPING_BAD_CSUM))
goto fallback;
if (status != MAPPING_OK)
goto no_data;
skb = skb_peek(&ssk->sk_receive_queue);
if (WARN_ON_ONCE(!skb))
goto no_data;
if (unlikely(!READ_ONCE(msk->can_ack)))
goto fallback;
old_ack = READ_ONCE(msk->ack_seq);
ack_seq = mptcp_subflow_get_mapped_dsn(subflow);
pr_debug("msk ack_seq=%llx subflow ack_seq=%llx", old_ack,
ack_seq);
if (unlikely(before64(ack_seq, old_ack))) {
mptcp_subflow_discard_data(ssk, skb, old_ack - ack_seq);
continue;
}
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
break;
}
return true;
no_data:
subflow_sched_work_if_closed(msk, ssk);
return false;
fallback:
if (!__mptcp_check_fallback(msk)) {
/* RFC 8684 section 3.7. */
if (status == MAPPING_BAD_CSUM &&
(subflow->mp_join || subflow->valid_csum_seen)) {
subflow->send_mp_fail = 1;
if (!READ_ONCE(msk->allow_infinite_fallback)) {
subflow->reset_transient = 0;
subflow->reset_reason = MPTCP_RST_EMIDDLEBOX;
goto reset;
}
mptcp_subflow_fail(msk, ssk);
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
return true;
}
if (!subflow_can_fallback(subflow) && subflow->map_data_len) {
/* fatal protocol error, close the socket.
* subflow_error_report() will introduce the appropriate barriers
*/
subflow->reset_transient = 0;
subflow->reset_reason = MPTCP_RST_EMPTCP;
reset:
WRITE_ONCE(ssk->sk_err, EBADMSG);
tcp_set_state(ssk, TCP_CLOSE);
while ((skb = skb_peek(&ssk->sk_receive_queue)))
sk_eat_skb(ssk, skb);
tcp_send_active_reset(ssk, GFP_ATOMIC);
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);
return false;
}
mptcp_do_fallback(ssk);
}
skb = skb_peek(&ssk->sk_receive_queue);
subflow->map_valid = 1;
subflow->map_seq = READ_ONCE(msk->ack_seq);
subflow->map_data_len = skb->len;
subflow->map_subflow_seq = tcp_sk(ssk)->copied_seq - subflow->ssn_offset;
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
return true;
}
bool mptcp_subflow_data_available(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
/* check if current mapping is still valid */
if (subflow->map_valid &&
mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) {
subflow->map_valid = 0;
WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);
pr_debug("Done with mapping: seq=%u data_len=%u",
subflow->map_subflow_seq,
subflow->map_data_len);
}
return subflow_check_data_avail(sk);
}
/* If ssk has an mptcp parent socket, use the mptcp rcvbuf occupancy,
* not the ssk one.
*
* In mptcp, rwin is about the mptcp-level connection data.
*
* Data that is still on the ssk rx queue can thus be ignored,
* as far as mptcp peer is concerned that data is still inflight.
* DSS ACK is updated when skb is moved to the mptcp rx queue.
*/
void mptcp_space(const struct sock *ssk, int *space, int *full_space)
{
const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
const struct sock *sk = subflow->conn;
*space = __mptcp_space(sk);
*full_space = mptcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
}
static void subflow_error_report(struct sock *ssk)
{
struct sock *sk = mptcp_subflow_ctx(ssk)->conn;
/* bail early if this is a no-op, so that we avoid introducing a
* problematic lockdep dependency between TCP accept queue lock
* and msk socket spinlock
*/
if (!sk->sk_socket)
return;
mptcp_data_lock(sk);
if (!sock_owned_by_user(sk))
__mptcp_error_report(sk);
else
__set_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->cb_flags);
mptcp_data_unlock(sk);
}
static void subflow_data_ready(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
u16 state = 1 << inet_sk_state_load(sk);
struct sock *parent = subflow->conn;
struct mptcp_sock *msk;
trace_sk_data_ready(sk);
msk = mptcp_sk(parent);
if (state & TCPF_LISTEN) {
/* MPJ subflow are removed from accept queue before reaching here,
* avoid stray wakeups
*/
if (reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue))
return;
parent->sk_data_ready(parent);
return;
}
WARN_ON_ONCE(!__mptcp_check_fallback(msk) && !subflow->mp_capable &&
!subflow->mp_join && !(state & TCPF_CLOSE));
if (mptcp_subflow_data_available(sk))
mptcp_data_ready(parent, sk);
else if (unlikely(sk->sk_err))
subflow_error_report(sk);
}
static void subflow_write_space(struct sock *ssk)
{
struct sock *sk = mptcp_subflow_ctx(ssk)->conn;
mptcp_propagate_sndbuf(sk, ssk);
mptcp_write_space(sk);
}
static const struct inet_connection_sock_af_ops *
subflow_default_af_ops(struct sock *sk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (sk->sk_family == AF_INET6)
return &subflow_v6_specific;
#endif
return &subflow_specific;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
void mptcpv6_handle_mapped(struct sock *sk, bool mapped)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
const struct inet_connection_sock_af_ops *target;
target = mapped ? &subflow_v6m_specific : subflow_default_af_ops(sk);
pr_debug("subflow=%p family=%d ops=%p target=%p mapped=%d",
subflow, sk->sk_family, icsk->icsk_af_ops, target, mapped);
if (likely(icsk->icsk_af_ops == target))
return;
subflow->icsk_af_ops = icsk->icsk_af_ops;
icsk->icsk_af_ops = target;
}
#endif
void mptcp_info2sockaddr(const struct mptcp_addr_info *info,
struct sockaddr_storage *addr,
unsigned short family)
{
memset(addr, 0, sizeof(*addr));
addr->ss_family = family;
if (addr->ss_family == AF_INET) {
struct sockaddr_in *in_addr = (struct sockaddr_in *)addr;
if (info->family == AF_INET)
in_addr->sin_addr = info->addr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (ipv6_addr_v4mapped(&info->addr6))
in_addr->sin_addr.s_addr = info->addr6.s6_addr32[3];
#endif
in_addr->sin_port = info->port;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->ss_family == AF_INET6) {
struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)addr;
if (info->family == AF_INET)
ipv6_addr_set_v4mapped(info->addr.s_addr,
&in6_addr->sin6_addr);
else
in6_addr->sin6_addr = info->addr6;
in6_addr->sin6_port = info->port;
}
#endif
}
int __mptcp_subflow_connect(struct sock *sk, const struct mptcp_addr_info *loc,
const struct mptcp_addr_info *remote)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_subflow_context *subflow;
struct sockaddr_storage addr;
int remote_id = remote->id;
int local_id = loc->id;
int err = -ENOTCONN;
struct socket *sf;
struct sock *ssk;
u32 remote_token;
int addrlen;
int ifindex;
u8 flags;
if (!mptcp_is_fully_established(sk))
goto err_out;
err = mptcp_subflow_create_socket(sk, loc->family, &sf);
if (err)
goto err_out;
ssk = sf->sk;
subflow = mptcp_subflow_ctx(ssk);
do {
get_random_bytes(&subflow->local_nonce, sizeof(u32));
} while (!subflow->local_nonce);
if (local_id)
subflow_set_local_id(subflow, local_id);
mptcp_pm_get_flags_and_ifindex_by_id(msk, local_id,
&flags, &ifindex);
subflow->remote_key_valid = 1;
subflow->remote_key = msk->remote_key;
subflow->local_key = msk->local_key;
subflow->token = msk->token;
mptcp_info2sockaddr(loc, &addr, ssk->sk_family);
addrlen = sizeof(struct sockaddr_in);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (addr.ss_family == AF_INET6)
addrlen = sizeof(struct sockaddr_in6);
#endif
mptcp_sockopt_sync(msk, ssk);
ssk->sk_bound_dev_if = ifindex;
err = kernel_bind(sf, (struct sockaddr *)&addr, addrlen);
if (err)
goto failed;
mptcp_crypto_key_sha(subflow->remote_key, &remote_token, NULL);
pr_debug("msk=%p remote_token=%u local_id=%d remote_id=%d", msk,
remote_token, local_id, remote_id);
subflow->remote_token = remote_token;
subflow->remote_id = remote_id;
subflow->request_join = 1;
subflow->request_bkup = !!(flags & MPTCP_PM_ADDR_FLAG_BACKUP);
subflow->subflow_id = msk->subflow_id++;
mptcp_info2sockaddr(remote, &addr, ssk->sk_family);
sock_hold(ssk);
list_add_tail(&subflow->node, &msk->conn_list);
err = kernel_connect(sf, (struct sockaddr *)&addr, addrlen, O_NONBLOCK);
if (err && err != -EINPROGRESS)
goto failed_unlink;
/* discard the subflow socket */
mptcp_sock_graft(ssk, sk->sk_socket);
iput(SOCK_INODE(sf));
WRITE_ONCE(msk->allow_infinite_fallback, false);
mptcp_stop_tout_timer(sk);
return 0;
failed_unlink:
list_del(&subflow->node);
sock_put(mptcp_subflow_tcp_sock(subflow));
failed:
subflow->disposable = 1;
sock_release(sf);
err_out:
/* we account subflows before the creation, and this failures will not
* be caught by sk_state_change()
*/
mptcp_pm_close_subflow(msk);
return err;
}
static void mptcp_attach_cgroup(struct sock *parent, struct sock *child)
{
#ifdef CONFIG_SOCK_CGROUP_DATA
struct sock_cgroup_data *parent_skcd = &parent->sk_cgrp_data,
*child_skcd = &child->sk_cgrp_data;
/* only the additional subflows created by kworkers have to be modified */
if (cgroup_id(sock_cgroup_ptr(parent_skcd)) !=
cgroup_id(sock_cgroup_ptr(child_skcd))) {
#ifdef CONFIG_MEMCG
struct mem_cgroup *memcg = parent->sk_memcg;
mem_cgroup_sk_free(child);
if (memcg && css_tryget(&memcg->css))
child->sk_memcg = memcg;
#endif /* CONFIG_MEMCG */
cgroup_sk_free(child_skcd);
*child_skcd = *parent_skcd;
cgroup_sk_clone(child_skcd);
}
#endif /* CONFIG_SOCK_CGROUP_DATA */
}
static void mptcp_subflow_ops_override(struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (ssk->sk_prot == &tcpv6_prot)
ssk->sk_prot = &tcpv6_prot_override;
else
#endif
ssk->sk_prot = &tcp_prot_override;
}
static void mptcp_subflow_ops_undo_override(struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (ssk->sk_prot == &tcpv6_prot_override)
ssk->sk_prot = &tcpv6_prot;
else
#endif
ssk->sk_prot = &tcp_prot;
}
int mptcp_subflow_create_socket(struct sock *sk, unsigned short family,
struct socket **new_sock)
{
struct mptcp_subflow_context *subflow;
struct net *net = sock_net(sk);
struct socket *sf;
int err;
/* un-accepted server sockets can reach here - on bad configuration
* bail early to avoid greater trouble later
*/
if (unlikely(!sk->sk_socket))
return -EINVAL;
err = sock_create_kern(net, family, SOCK_STREAM, IPPROTO_TCP, &sf);
if (err)
return err;
lock_sock_nested(sf->sk, SINGLE_DEPTH_NESTING);
err = security_mptcp_add_subflow(sk, sf->sk);
if (err)
goto release_ssk;
/* the newly created socket has to be in the same cgroup as its parent */
mptcp_attach_cgroup(sk, sf->sk);
/* kernel sockets do not by default acquire net ref, but TCP timer
* needs it.
* Update ns_tracker to current stack trace and refcounted tracker.
*/
__netns_tracker_free(net, &sf->sk->ns_tracker, false);
sf->sk->sk_net_refcnt = 1;
get_net_track(net, &sf->sk->ns_tracker, GFP_KERNEL);
sock_inuse_add(net, 1);
err = tcp_set_ulp(sf->sk, "mptcp");
release_ssk:
release_sock(sf->sk);
if (err) {
sock_release(sf);
return err;
}
/* the newly created socket really belongs to the owning MPTCP master
* socket, even if for additional subflows the allocation is performed
* by a kernel workqueue. Adjust inode references, so that the
* procfs/diag interfaces really show this one belonging to the correct
* user.
*/
SOCK_INODE(sf)->i_ino = SOCK_INODE(sk->sk_socket)->i_ino;
SOCK_INODE(sf)->i_uid = SOCK_INODE(sk->sk_socket)->i_uid;
SOCK_INODE(sf)->i_gid = SOCK_INODE(sk->sk_socket)->i_gid;
subflow = mptcp_subflow_ctx(sf->sk);
pr_debug("subflow=%p", subflow);
*new_sock = sf;
sock_hold(sk);
subflow->conn = sk;
mptcp_subflow_ops_override(sf->sk);
return 0;
}
static struct mptcp_subflow_context *subflow_create_ctx(struct sock *sk,
gfp_t priority)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct mptcp_subflow_context *ctx;
ctx = kzalloc(sizeof(*ctx), priority);
if (!ctx)
return NULL;
rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
INIT_LIST_HEAD(&ctx->node);
INIT_LIST_HEAD(&ctx->delegated_node);
pr_debug("subflow=%p", ctx);
ctx->tcp_sock = sk;
return ctx;
}
static void __subflow_state_change(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
rcu_read_unlock();
}
static bool subflow_is_done(const struct sock *sk)
{
return sk->sk_shutdown & RCV_SHUTDOWN || sk->sk_state == TCP_CLOSE;
}
static void subflow_state_change(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct sock *parent = subflow->conn;
struct mptcp_sock *msk;
__subflow_state_change(sk);
msk = mptcp_sk(parent);
if (subflow_simultaneous_connect(sk)) {
mptcp_propagate_sndbuf(parent, sk);
mptcp_do_fallback(sk);
mptcp_rcv_space_init(msk, sk);
pr_fallback(msk);
subflow->conn_finished = 1;
mptcp_set_connected(parent);
}
/* as recvmsg() does not acquire the subflow socket for ssk selection
* a fin packet carrying a DSS can be unnoticed if we don't trigger
* the data available machinery here.
*/
if (mptcp_subflow_data_available(sk))
mptcp_data_ready(parent, sk);
else if (unlikely(sk->sk_err))
subflow_error_report(sk);
subflow_sched_work_if_closed(mptcp_sk(parent), sk);
/* when the fallback subflow closes the rx side, trigger a 'dummy'
* ingress data fin, so that the msk state will follow along
*/
if (__mptcp_check_fallback(msk) && subflow_is_done(sk) && msk->first == sk &&
mptcp_update_rcv_data_fin(msk, READ_ONCE(msk->ack_seq), true))
mptcp_schedule_work(parent);
}
void mptcp_subflow_queue_clean(struct sock *listener_sk, struct sock *listener_ssk)
{
struct request_sock_queue *queue = &inet_csk(listener_ssk)->icsk_accept_queue;
struct request_sock *req, *head, *tail;
struct mptcp_subflow_context *subflow;
struct sock *sk, *ssk;
/* Due to lock dependencies no relevant lock can be acquired under rskq_lock.
* Splice the req list, so that accept() can not reach the pending ssk after
* the listener socket is released below.
*/
spin_lock_bh(&queue->rskq_lock);
head = queue->rskq_accept_head;
tail = queue->rskq_accept_tail;
queue->rskq_accept_head = NULL;
queue->rskq_accept_tail = NULL;
spin_unlock_bh(&queue->rskq_lock);
if (!head)
return;
/* can't acquire the msk socket lock under the subflow one,
* or will cause ABBA deadlock
*/
release_sock(listener_ssk);
for (req = head; req; req = req->dl_next) {
ssk = req->sk;
if (!sk_is_mptcp(ssk))
continue;
subflow = mptcp_subflow_ctx(ssk);
if (!subflow || !subflow->conn)
continue;
sk = subflow->conn;
sock_hold(sk);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
__mptcp_unaccepted_force_close(sk);
release_sock(sk);
/* lockdep will report a false positive ABBA deadlock
* between cancel_work_sync and the listener socket.
* The involved locks belong to different sockets WRT
* the existing AB chain.
* Using a per socket key is problematic as key
* deregistration requires process context and must be
* performed at socket disposal time, in atomic
* context.
* Just tell lockdep to consider the listener socket
* released here.
*/
mutex_release(&listener_sk->sk_lock.dep_map, _RET_IP_);
mptcp_cancel_work(sk);
mutex_acquire(&listener_sk->sk_lock.dep_map, 0, 0, _RET_IP_);
sock_put(sk);
}
/* we are still under the listener msk socket lock */
lock_sock_nested(listener_ssk, SINGLE_DEPTH_NESTING);
/* restore the listener queue, to let the TCP code clean it up */
spin_lock_bh(&queue->rskq_lock);
WARN_ON_ONCE(queue->rskq_accept_head);
queue->rskq_accept_head = head;
queue->rskq_accept_tail = tail;
spin_unlock_bh(&queue->rskq_lock);
}
static int subflow_ulp_init(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct mptcp_subflow_context *ctx;
struct tcp_sock *tp = tcp_sk(sk);
int err = 0;
/* disallow attaching ULP to a socket unless it has been
* created with sock_create_kern()
*/
if (!sk->sk_kern_sock) {
err = -EOPNOTSUPP;
goto out;
}
ctx = subflow_create_ctx(sk, GFP_KERNEL);
if (!ctx) {
err = -ENOMEM;
goto out;
}
pr_debug("subflow=%p, family=%d", ctx, sk->sk_family);
tp->is_mptcp = 1;
ctx->icsk_af_ops = icsk->icsk_af_ops;
icsk->icsk_af_ops = subflow_default_af_ops(sk);
ctx->tcp_state_change = sk->sk_state_change;
ctx->tcp_error_report = sk->sk_error_report;
WARN_ON_ONCE(sk->sk_data_ready != sock_def_readable);
WARN_ON_ONCE(sk->sk_write_space != sk_stream_write_space);
sk->sk_data_ready = subflow_data_ready;
sk->sk_write_space = subflow_write_space;
sk->sk_state_change = subflow_state_change;
sk->sk_error_report = subflow_error_report;
out:
return err;
}
static void subflow_ulp_release(struct sock *ssk)
{
struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk);
bool release = true;
struct sock *sk;
if (!ctx)
return;
sk = ctx->conn;
if (sk) {
/* if the msk has been orphaned, keep the ctx
* alive, will be freed by __mptcp_close_ssk(),
* when the subflow is still unaccepted
*/
release = ctx->disposable || list_empty(&ctx->node);
/* inet_child_forget() does not call sk_state_change(),
* explicitly trigger the socket close machinery
*/
if (!release && !test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW,
&mptcp_sk(sk)->flags))
mptcp_schedule_work(sk);
sock_put(sk);
}
mptcp_subflow_ops_undo_override(ssk);
if (release)
kfree_rcu(ctx, rcu);
}
static void subflow_ulp_clone(const struct request_sock *req,
struct sock *newsk,
const gfp_t priority)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct mptcp_subflow_context *old_ctx = mptcp_subflow_ctx(newsk);
struct mptcp_subflow_context *new_ctx;
if (!tcp_rsk(req)->is_mptcp ||
(!subflow_req->mp_capable && !subflow_req->mp_join)) {
subflow_ulp_fallback(newsk, old_ctx);
return;
}
new_ctx = subflow_create_ctx(newsk, priority);
if (!new_ctx) {
subflow_ulp_fallback(newsk, old_ctx);
return;
}
new_ctx->conn_finished = 1;
new_ctx->icsk_af_ops = old_ctx->icsk_af_ops;
new_ctx->tcp_state_change = old_ctx->tcp_state_change;
new_ctx->tcp_error_report = old_ctx->tcp_error_report;
new_ctx->rel_write_seq = 1;
new_ctx->tcp_sock = newsk;
if (subflow_req->mp_capable) {
/* see comments in subflow_syn_recv_sock(), MPTCP connection
* is fully established only after we receive the remote key
*/
new_ctx->mp_capable = 1;
new_ctx->local_key = subflow_req->local_key;
new_ctx->token = subflow_req->token;
new_ctx->ssn_offset = subflow_req->ssn_offset;
new_ctx->idsn = subflow_req->idsn;
/* this is the first subflow, id is always 0 */
new_ctx->local_id_valid = 1;
} else if (subflow_req->mp_join) {
new_ctx->ssn_offset = subflow_req->ssn_offset;
new_ctx->mp_join = 1;
new_ctx->fully_established = 1;
new_ctx->remote_key_valid = 1;
new_ctx->backup = subflow_req->backup;
new_ctx->remote_id = subflow_req->remote_id;
new_ctx->token = subflow_req->token;
new_ctx->thmac = subflow_req->thmac;
/* the subflow req id is valid, fetched via subflow_check_req()
* and subflow_token_join_request()
*/
subflow_set_local_id(new_ctx, subflow_req->local_id);
}
}
static void tcp_release_cb_override(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
if (mptcp_subflow_has_delegated_action(subflow))
mptcp_subflow_process_delegated(ssk);
tcp_release_cb(ssk);
}
static struct tcp_ulp_ops subflow_ulp_ops __read_mostly = {
.name = "mptcp",
.owner = THIS_MODULE,
.init = subflow_ulp_init,
.release = subflow_ulp_release,
.clone = subflow_ulp_clone,
};
static int subflow_ops_init(struct request_sock_ops *subflow_ops)
{
subflow_ops->obj_size = sizeof(struct mptcp_subflow_request_sock);
subflow_ops->slab = kmem_cache_create(subflow_ops->slab_name,
subflow_ops->obj_size, 0,
SLAB_ACCOUNT |
SLAB_TYPESAFE_BY_RCU,
NULL);
if (!subflow_ops->slab)
return -ENOMEM;
return 0;
}
void __init mptcp_subflow_init(void)
{
mptcp_subflow_v4_request_sock_ops = tcp_request_sock_ops;
mptcp_subflow_v4_request_sock_ops.slab_name = "request_sock_subflow_v4";
mptcp_subflow_v4_request_sock_ops.destructor = subflow_v4_req_destructor;
if (subflow_ops_init(&mptcp_subflow_v4_request_sock_ops) != 0)
panic("MPTCP: failed to init subflow v4 request sock ops\n");
subflow_request_sock_ipv4_ops = tcp_request_sock_ipv4_ops;
subflow_request_sock_ipv4_ops.route_req = subflow_v4_route_req;
subflow_request_sock_ipv4_ops.send_synack = subflow_v4_send_synack;
subflow_specific = ipv4_specific;
subflow_specific.conn_request = subflow_v4_conn_request;
subflow_specific.syn_recv_sock = subflow_syn_recv_sock;
subflow_specific.sk_rx_dst_set = subflow_finish_connect;
subflow_specific.rebuild_header = subflow_rebuild_header;
tcp_prot_override = tcp_prot;
tcp_prot_override.release_cb = tcp_release_cb_override;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
/* In struct mptcp_subflow_request_sock, we assume the TCP request sock
* structures for v4 and v6 have the same size. It should not changed in
* the future but better to make sure to be warned if it is no longer
* the case.
*/
BUILD_BUG_ON(sizeof(struct tcp_request_sock) != sizeof(struct tcp6_request_sock));
mptcp_subflow_v6_request_sock_ops = tcp6_request_sock_ops;
mptcp_subflow_v6_request_sock_ops.slab_name = "request_sock_subflow_v6";
mptcp_subflow_v6_request_sock_ops.destructor = subflow_v6_req_destructor;
if (subflow_ops_init(&mptcp_subflow_v6_request_sock_ops) != 0)
panic("MPTCP: failed to init subflow v6 request sock ops\n");
subflow_request_sock_ipv6_ops = tcp_request_sock_ipv6_ops;
subflow_request_sock_ipv6_ops.route_req = subflow_v6_route_req;
subflow_request_sock_ipv6_ops.send_synack = subflow_v6_send_synack;
subflow_v6_specific = ipv6_specific;
subflow_v6_specific.conn_request = subflow_v6_conn_request;
subflow_v6_specific.syn_recv_sock = subflow_syn_recv_sock;
subflow_v6_specific.sk_rx_dst_set = subflow_finish_connect;
subflow_v6_specific.rebuild_header = subflow_v6_rebuild_header;
subflow_v6m_specific = subflow_v6_specific;
subflow_v6m_specific.queue_xmit = ipv4_specific.queue_xmit;
subflow_v6m_specific.send_check = ipv4_specific.send_check;
subflow_v6m_specific.net_header_len = ipv4_specific.net_header_len;
subflow_v6m_specific.mtu_reduced = ipv4_specific.mtu_reduced;
subflow_v6m_specific.net_frag_header_len = 0;
subflow_v6m_specific.rebuild_header = subflow_rebuild_header;
tcpv6_prot_override = tcpv6_prot;
tcpv6_prot_override.release_cb = tcp_release_cb_override;
#endif
mptcp_diag_subflow_init(&subflow_ulp_ops);
if (tcp_register_ulp(&subflow_ulp_ops) != 0)
panic("MPTCP: failed to register subflows to ULP\n");
}
| linux-master | net/mptcp/subflow.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2020, Red Hat, Inc.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/inet.h>
#include <linux/kernel.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <net/netns/generic.h>
#include <net/mptcp.h>
#include <net/genetlink.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
#include "mib.h"
/* forward declaration */
static struct genl_family mptcp_genl_family;
static int pm_nl_pernet_id;
struct mptcp_pm_add_entry {
struct list_head list;
struct mptcp_addr_info addr;
u8 retrans_times;
struct timer_list add_timer;
struct mptcp_sock *sock;
};
struct pm_nl_pernet {
/* protects pernet updates */
spinlock_t lock;
struct list_head local_addr_list;
unsigned int addrs;
unsigned int stale_loss_cnt;
unsigned int add_addr_signal_max;
unsigned int add_addr_accept_max;
unsigned int local_addr_max;
unsigned int subflows_max;
unsigned int next_id;
DECLARE_BITMAP(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
};
#define MPTCP_PM_ADDR_MAX 8
#define ADD_ADDR_RETRANS_MAX 3
static struct pm_nl_pernet *pm_nl_get_pernet(const struct net *net)
{
return net_generic(net, pm_nl_pernet_id);
}
static struct pm_nl_pernet *
pm_nl_get_pernet_from_msk(const struct mptcp_sock *msk)
{
return pm_nl_get_pernet(sock_net((struct sock *)msk));
}
bool mptcp_addresses_equal(const struct mptcp_addr_info *a,
const struct mptcp_addr_info *b, bool use_port)
{
bool addr_equals = false;
if (a->family == b->family) {
if (a->family == AF_INET)
addr_equals = a->addr.s_addr == b->addr.s_addr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else
addr_equals = !ipv6_addr_cmp(&a->addr6, &b->addr6);
} else if (a->family == AF_INET) {
if (ipv6_addr_v4mapped(&b->addr6))
addr_equals = a->addr.s_addr == b->addr6.s6_addr32[3];
} else if (b->family == AF_INET) {
if (ipv6_addr_v4mapped(&a->addr6))
addr_equals = a->addr6.s6_addr32[3] == b->addr.s_addr;
#endif
}
if (!addr_equals)
return false;
if (!use_port)
return true;
return a->port == b->port;
}
void mptcp_local_address(const struct sock_common *skc, struct mptcp_addr_info *addr)
{
addr->family = skc->skc_family;
addr->port = htons(skc->skc_num);
if (addr->family == AF_INET)
addr->addr.s_addr = skc->skc_rcv_saddr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6)
addr->addr6 = skc->skc_v6_rcv_saddr;
#endif
}
static void remote_address(const struct sock_common *skc,
struct mptcp_addr_info *addr)
{
addr->family = skc->skc_family;
addr->port = skc->skc_dport;
if (addr->family == AF_INET)
addr->addr.s_addr = skc->skc_daddr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6)
addr->addr6 = skc->skc_v6_daddr;
#endif
}
static bool lookup_subflow_by_saddr(const struct list_head *list,
const struct mptcp_addr_info *saddr)
{
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info cur;
struct sock_common *skc;
list_for_each_entry(subflow, list, node) {
skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow);
mptcp_local_address(skc, &cur);
if (mptcp_addresses_equal(&cur, saddr, saddr->port))
return true;
}
return false;
}
static bool lookup_subflow_by_daddr(const struct list_head *list,
const struct mptcp_addr_info *daddr)
{
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info cur;
struct sock_common *skc;
list_for_each_entry(subflow, list, node) {
skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow);
remote_address(skc, &cur);
if (mptcp_addresses_equal(&cur, daddr, daddr->port))
return true;
}
return false;
}
static struct mptcp_pm_addr_entry *
select_local_address(const struct pm_nl_pernet *pernet,
const struct mptcp_sock *msk)
{
struct mptcp_pm_addr_entry *entry, *ret = NULL;
msk_owned_by_me(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW))
continue;
if (!test_bit(entry->addr.id, msk->pm.id_avail_bitmap))
continue;
ret = entry;
break;
}
rcu_read_unlock();
return ret;
}
static struct mptcp_pm_addr_entry *
select_signal_address(struct pm_nl_pernet *pernet, const struct mptcp_sock *msk)
{
struct mptcp_pm_addr_entry *entry, *ret = NULL;
rcu_read_lock();
/* do not keep any additional per socket state, just signal
* the address list in order.
* Note: removal from the local address list during the msk life-cycle
* can lead to additional addresses not being announced.
*/
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!test_bit(entry->addr.id, msk->pm.id_avail_bitmap))
continue;
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL))
continue;
ret = entry;
break;
}
rcu_read_unlock();
return ret;
}
unsigned int mptcp_pm_get_add_addr_signal_max(const struct mptcp_sock *msk)
{
const struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->add_addr_signal_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_add_addr_signal_max);
unsigned int mptcp_pm_get_add_addr_accept_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->add_addr_accept_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_add_addr_accept_max);
unsigned int mptcp_pm_get_subflows_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->subflows_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_subflows_max);
unsigned int mptcp_pm_get_local_addr_max(const struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
return READ_ONCE(pernet->local_addr_max);
}
EXPORT_SYMBOL_GPL(mptcp_pm_get_local_addr_max);
bool mptcp_pm_nl_check_work_pending(struct mptcp_sock *msk)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet_from_msk(msk);
if (msk->pm.subflows == mptcp_pm_get_subflows_max(msk) ||
(find_next_and_bit(pernet->id_bitmap, msk->pm.id_avail_bitmap,
MPTCP_PM_MAX_ADDR_ID + 1, 0) == MPTCP_PM_MAX_ADDR_ID + 1)) {
WRITE_ONCE(msk->pm.work_pending, false);
return false;
}
return true;
}
struct mptcp_pm_add_entry *
mptcp_lookup_anno_list_by_saddr(const struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *entry;
lockdep_assert_held(&msk->pm.lock);
list_for_each_entry(entry, &msk->pm.anno_list, list) {
if (mptcp_addresses_equal(&entry->addr, addr, true))
return entry;
}
return NULL;
}
bool mptcp_pm_sport_in_anno_list(struct mptcp_sock *msk, const struct sock *sk)
{
struct mptcp_pm_add_entry *entry;
struct mptcp_addr_info saddr;
bool ret = false;
mptcp_local_address((struct sock_common *)sk, &saddr);
spin_lock_bh(&msk->pm.lock);
list_for_each_entry(entry, &msk->pm.anno_list, list) {
if (mptcp_addresses_equal(&entry->addr, &saddr, true)) {
ret = true;
goto out;
}
}
out:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
static void mptcp_pm_add_timer(struct timer_list *timer)
{
struct mptcp_pm_add_entry *entry = from_timer(entry, timer, add_timer);
struct mptcp_sock *msk = entry->sock;
struct sock *sk = (struct sock *)msk;
pr_debug("msk=%p", msk);
if (!msk)
return;
if (inet_sk_state_load(sk) == TCP_CLOSE)
return;
if (!entry->addr.id)
return;
if (mptcp_pm_should_add_signal_addr(msk)) {
sk_reset_timer(sk, timer, jiffies + TCP_RTO_MAX / 8);
goto out;
}
spin_lock_bh(&msk->pm.lock);
if (!mptcp_pm_should_add_signal_addr(msk)) {
pr_debug("retransmit ADD_ADDR id=%d", entry->addr.id);
mptcp_pm_announce_addr(msk, &entry->addr, false);
mptcp_pm_add_addr_send_ack(msk);
entry->retrans_times++;
}
if (entry->retrans_times < ADD_ADDR_RETRANS_MAX)
sk_reset_timer(sk, timer,
jiffies + mptcp_get_add_addr_timeout(sock_net(sk)));
spin_unlock_bh(&msk->pm.lock);
if (entry->retrans_times == ADD_ADDR_RETRANS_MAX)
mptcp_pm_subflow_established(msk);
out:
__sock_put(sk);
}
struct mptcp_pm_add_entry *
mptcp_pm_del_add_timer(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr, bool check_id)
{
struct mptcp_pm_add_entry *entry;
struct sock *sk = (struct sock *)msk;
spin_lock_bh(&msk->pm.lock);
entry = mptcp_lookup_anno_list_by_saddr(msk, addr);
if (entry && (!check_id || entry->addr.id == addr->id))
entry->retrans_times = ADD_ADDR_RETRANS_MAX;
spin_unlock_bh(&msk->pm.lock);
if (entry && (!check_id || entry->addr.id == addr->id))
sk_stop_timer_sync(sk, &entry->add_timer);
return entry;
}
bool mptcp_pm_alloc_anno_list(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *add_entry = NULL;
struct sock *sk = (struct sock *)msk;
struct net *net = sock_net(sk);
lockdep_assert_held(&msk->pm.lock);
add_entry = mptcp_lookup_anno_list_by_saddr(msk, addr);
if (add_entry) {
if (mptcp_pm_is_kernel(msk))
return false;
sk_reset_timer(sk, &add_entry->add_timer,
jiffies + mptcp_get_add_addr_timeout(net));
return true;
}
add_entry = kmalloc(sizeof(*add_entry), GFP_ATOMIC);
if (!add_entry)
return false;
list_add(&add_entry->list, &msk->pm.anno_list);
add_entry->addr = *addr;
add_entry->sock = msk;
add_entry->retrans_times = 0;
timer_setup(&add_entry->add_timer, mptcp_pm_add_timer, 0);
sk_reset_timer(sk, &add_entry->add_timer,
jiffies + mptcp_get_add_addr_timeout(net));
return true;
}
void mptcp_pm_free_anno_list(struct mptcp_sock *msk)
{
struct mptcp_pm_add_entry *entry, *tmp;
struct sock *sk = (struct sock *)msk;
LIST_HEAD(free_list);
pr_debug("msk=%p", msk);
spin_lock_bh(&msk->pm.lock);
list_splice_init(&msk->pm.anno_list, &free_list);
spin_unlock_bh(&msk->pm.lock);
list_for_each_entry_safe(entry, tmp, &free_list, list) {
sk_stop_timer_sync(sk, &entry->add_timer);
kfree(entry);
}
}
static bool lookup_address_in_vec(const struct mptcp_addr_info *addrs, unsigned int nr,
const struct mptcp_addr_info *addr)
{
int i;
for (i = 0; i < nr; i++) {
if (addrs[i].id == addr->id)
return true;
}
return false;
}
/* Fill all the remote addresses into the array addrs[],
* and return the array size.
*/
static unsigned int fill_remote_addresses_vec(struct mptcp_sock *msk,
struct mptcp_addr_info *local,
bool fullmesh,
struct mptcp_addr_info *addrs)
{
bool deny_id0 = READ_ONCE(msk->pm.remote_deny_join_id0);
struct sock *sk = (struct sock *)msk, *ssk;
struct mptcp_subflow_context *subflow;
struct mptcp_addr_info remote = { 0 };
unsigned int subflows_max;
int i = 0;
subflows_max = mptcp_pm_get_subflows_max(msk);
remote_address((struct sock_common *)sk, &remote);
/* Non-fullmesh endpoint, fill in the single entry
* corresponding to the primary MPC subflow remote address
*/
if (!fullmesh) {
if (deny_id0)
return 0;
if (!mptcp_pm_addr_families_match(sk, local, &remote))
return 0;
msk->pm.subflows++;
addrs[i++] = remote;
} else {
mptcp_for_each_subflow(msk, subflow) {
ssk = mptcp_subflow_tcp_sock(subflow);
remote_address((struct sock_common *)ssk, &addrs[i]);
addrs[i].id = subflow->remote_id;
if (deny_id0 && !addrs[i].id)
continue;
if (!mptcp_pm_addr_families_match(sk, local, &addrs[i]))
continue;
if (!lookup_address_in_vec(addrs, i, &addrs[i]) &&
msk->pm.subflows < subflows_max) {
msk->pm.subflows++;
i++;
}
}
}
return i;
}
static void __mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow,
bool prio, bool backup)
{
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow;
pr_debug("send ack for %s",
prio ? "mp_prio" : (mptcp_pm_should_add_signal(msk) ? "add_addr" : "rm_addr"));
slow = lock_sock_fast(ssk);
if (prio) {
subflow->send_mp_prio = 1;
subflow->backup = backup;
subflow->request_bkup = backup;
}
__mptcp_subflow_send_ack(ssk);
unlock_sock_fast(ssk, slow);
}
static void mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow,
bool prio, bool backup)
{
spin_unlock_bh(&msk->pm.lock);
__mptcp_pm_send_ack(msk, subflow, prio, backup);
spin_lock_bh(&msk->pm.lock);
}
static struct mptcp_pm_addr_entry *
__lookup_addr_by_id(struct pm_nl_pernet *pernet, unsigned int id)
{
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, &pernet->local_addr_list, list) {
if (entry->addr.id == id)
return entry;
}
return NULL;
}
static struct mptcp_pm_addr_entry *
__lookup_addr(struct pm_nl_pernet *pernet, const struct mptcp_addr_info *info,
bool lookup_by_id)
{
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, &pernet->local_addr_list, list) {
if ((!lookup_by_id &&
mptcp_addresses_equal(&entry->addr, info, entry->addr.port)) ||
(lookup_by_id && entry->addr.id == info->id))
return entry;
}
return NULL;
}
static void mptcp_pm_create_subflow_or_signal_addr(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
struct mptcp_pm_addr_entry *local;
unsigned int add_addr_signal_max;
unsigned int local_addr_max;
struct pm_nl_pernet *pernet;
unsigned int subflows_max;
pernet = pm_nl_get_pernet(sock_net(sk));
add_addr_signal_max = mptcp_pm_get_add_addr_signal_max(msk);
local_addr_max = mptcp_pm_get_local_addr_max(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
/* do lazy endpoint usage accounting for the MPC subflows */
if (unlikely(!(msk->pm.status & BIT(MPTCP_PM_MPC_ENDPOINT_ACCOUNTED))) && msk->first) {
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(msk->first);
struct mptcp_pm_addr_entry *entry;
struct mptcp_addr_info mpc_addr;
bool backup = false;
mptcp_local_address((struct sock_common *)msk->first, &mpc_addr);
rcu_read_lock();
entry = __lookup_addr(pernet, &mpc_addr, false);
if (entry) {
__clear_bit(entry->addr.id, msk->pm.id_avail_bitmap);
msk->mpc_endpoint_id = entry->addr.id;
backup = !!(entry->flags & MPTCP_PM_ADDR_FLAG_BACKUP);
}
rcu_read_unlock();
if (backup)
mptcp_pm_send_ack(msk, subflow, true, backup);
msk->pm.status |= BIT(MPTCP_PM_MPC_ENDPOINT_ACCOUNTED);
}
pr_debug("local %d:%d signal %d:%d subflows %d:%d\n",
msk->pm.local_addr_used, local_addr_max,
msk->pm.add_addr_signaled, add_addr_signal_max,
msk->pm.subflows, subflows_max);
/* check first for announce */
if (msk->pm.add_addr_signaled < add_addr_signal_max) {
local = select_signal_address(pernet, msk);
/* due to racing events on both ends we can reach here while
* previous add address is still running: if we invoke now
* mptcp_pm_announce_addr(), that will fail and the
* corresponding id will be marked as used.
* Instead let the PM machinery reschedule us when the
* current address announce will be completed.
*/
if (msk->pm.addr_signal & BIT(MPTCP_ADD_ADDR_SIGNAL))
return;
if (local) {
if (mptcp_pm_alloc_anno_list(msk, &local->addr)) {
__clear_bit(local->addr.id, msk->pm.id_avail_bitmap);
msk->pm.add_addr_signaled++;
mptcp_pm_announce_addr(msk, &local->addr, false);
mptcp_pm_nl_addr_send_ack(msk);
}
}
}
/* check if should create a new subflow */
while (msk->pm.local_addr_used < local_addr_max &&
msk->pm.subflows < subflows_max) {
struct mptcp_addr_info addrs[MPTCP_PM_ADDR_MAX];
bool fullmesh;
int i, nr;
local = select_local_address(pernet, msk);
if (!local)
break;
fullmesh = !!(local->flags & MPTCP_PM_ADDR_FLAG_FULLMESH);
msk->pm.local_addr_used++;
__clear_bit(local->addr.id, msk->pm.id_avail_bitmap);
nr = fill_remote_addresses_vec(msk, &local->addr, fullmesh, addrs);
if (nr == 0)
continue;
spin_unlock_bh(&msk->pm.lock);
for (i = 0; i < nr; i++)
__mptcp_subflow_connect(sk, &local->addr, &addrs[i]);
spin_lock_bh(&msk->pm.lock);
}
mptcp_pm_nl_check_work_pending(msk);
}
static void mptcp_pm_nl_fully_established(struct mptcp_sock *msk)
{
mptcp_pm_create_subflow_or_signal_addr(msk);
}
static void mptcp_pm_nl_subflow_established(struct mptcp_sock *msk)
{
mptcp_pm_create_subflow_or_signal_addr(msk);
}
/* Fill all the local addresses into the array addrs[],
* and return the array size.
*/
static unsigned int fill_local_addresses_vec(struct mptcp_sock *msk,
struct mptcp_addr_info *remote,
struct mptcp_addr_info *addrs)
{
struct sock *sk = (struct sock *)msk;
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
unsigned int subflows_max;
int i = 0;
pernet = pm_nl_get_pernet_from_msk(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (!(entry->flags & MPTCP_PM_ADDR_FLAG_FULLMESH))
continue;
if (!mptcp_pm_addr_families_match(sk, &entry->addr, remote))
continue;
if (msk->pm.subflows < subflows_max) {
msk->pm.subflows++;
addrs[i++] = entry->addr;
}
}
rcu_read_unlock();
/* If the array is empty, fill in the single
* 'IPADDRANY' local address
*/
if (!i) {
struct mptcp_addr_info local;
memset(&local, 0, sizeof(local));
local.family =
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
remote->family == AF_INET6 &&
ipv6_addr_v4mapped(&remote->addr6) ? AF_INET :
#endif
remote->family;
if (!mptcp_pm_addr_families_match(sk, &local, remote))
return 0;
msk->pm.subflows++;
addrs[i++] = local;
}
return i;
}
static void mptcp_pm_nl_add_addr_received(struct mptcp_sock *msk)
{
struct mptcp_addr_info addrs[MPTCP_PM_ADDR_MAX];
struct sock *sk = (struct sock *)msk;
unsigned int add_addr_accept_max;
struct mptcp_addr_info remote;
unsigned int subflows_max;
int i, nr;
add_addr_accept_max = mptcp_pm_get_add_addr_accept_max(msk);
subflows_max = mptcp_pm_get_subflows_max(msk);
pr_debug("accepted %d:%d remote family %d",
msk->pm.add_addr_accepted, add_addr_accept_max,
msk->pm.remote.family);
remote = msk->pm.remote;
mptcp_pm_announce_addr(msk, &remote, true);
mptcp_pm_nl_addr_send_ack(msk);
if (lookup_subflow_by_daddr(&msk->conn_list, &remote))
return;
/* pick id 0 port, if none is provided the remote address */
if (!remote.port)
remote.port = sk->sk_dport;
/* connect to the specified remote address, using whatever
* local address the routing configuration will pick.
*/
nr = fill_local_addresses_vec(msk, &remote, addrs);
if (nr == 0)
return;
msk->pm.add_addr_accepted++;
if (msk->pm.add_addr_accepted >= add_addr_accept_max ||
msk->pm.subflows >= subflows_max)
WRITE_ONCE(msk->pm.accept_addr, false);
spin_unlock_bh(&msk->pm.lock);
for (i = 0; i < nr; i++)
__mptcp_subflow_connect(sk, &addrs[i], &remote);
spin_lock_bh(&msk->pm.lock);
}
void mptcp_pm_nl_addr_send_ack(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
msk_owned_by_me(msk);
lockdep_assert_held(&msk->pm.lock);
if (!mptcp_pm_should_add_signal(msk) &&
!mptcp_pm_should_rm_signal(msk))
return;
subflow = list_first_entry_or_null(&msk->conn_list, typeof(*subflow), node);
if (subflow)
mptcp_pm_send_ack(msk, subflow, false, false);
}
int mptcp_pm_nl_mp_prio_send_ack(struct mptcp_sock *msk,
struct mptcp_addr_info *addr,
struct mptcp_addr_info *rem,
u8 bkup)
{
struct mptcp_subflow_context *subflow;
pr_debug("bkup=%d", bkup);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
struct mptcp_addr_info local, remote;
mptcp_local_address((struct sock_common *)ssk, &local);
if (!mptcp_addresses_equal(&local, addr, addr->port))
continue;
if (rem && rem->family != AF_UNSPEC) {
remote_address((struct sock_common *)ssk, &remote);
if (!mptcp_addresses_equal(&remote, rem, rem->port))
continue;
}
__mptcp_pm_send_ack(msk, subflow, true, bkup);
return 0;
}
return -EINVAL;
}
static bool mptcp_local_id_match(const struct mptcp_sock *msk, u8 local_id, u8 id)
{
return local_id == id || (!local_id && msk->mpc_endpoint_id == id);
}
static void mptcp_pm_nl_rm_addr_or_subflow(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list,
enum linux_mptcp_mib_field rm_type)
{
struct mptcp_subflow_context *subflow, *tmp;
struct sock *sk = (struct sock *)msk;
u8 i;
pr_debug("%s rm_list_nr %d",
rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow", rm_list->nr);
msk_owned_by_me(msk);
if (sk->sk_state == TCP_LISTEN)
return;
if (!rm_list->nr)
return;
if (list_empty(&msk->conn_list))
return;
for (i = 0; i < rm_list->nr; i++) {
u8 rm_id = rm_list->ids[i];
bool removed = false;
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
int how = RCV_SHUTDOWN | SEND_SHUTDOWN;
u8 id = subflow->local_id;
if (rm_type == MPTCP_MIB_RMADDR && subflow->remote_id != rm_id)
continue;
if (rm_type == MPTCP_MIB_RMSUBFLOW && !mptcp_local_id_match(msk, id, rm_id))
continue;
pr_debug(" -> %s rm_list_ids[%d]=%u local_id=%u remote_id=%u mpc_id=%u",
rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow",
i, rm_id, subflow->local_id, subflow->remote_id,
msk->mpc_endpoint_id);
spin_unlock_bh(&msk->pm.lock);
mptcp_subflow_shutdown(sk, ssk, how);
/* the following takes care of updating the subflows counter */
mptcp_close_ssk(sk, ssk, subflow);
spin_lock_bh(&msk->pm.lock);
removed = true;
__MPTCP_INC_STATS(sock_net(sk), rm_type);
}
if (rm_type == MPTCP_MIB_RMSUBFLOW)
__set_bit(rm_id ? rm_id : msk->mpc_endpoint_id, msk->pm.id_avail_bitmap);
if (!removed)
continue;
if (!mptcp_pm_is_kernel(msk))
continue;
if (rm_type == MPTCP_MIB_RMADDR) {
msk->pm.add_addr_accepted--;
WRITE_ONCE(msk->pm.accept_addr, true);
} else if (rm_type == MPTCP_MIB_RMSUBFLOW) {
msk->pm.local_addr_used--;
}
}
}
static void mptcp_pm_nl_rm_addr_received(struct mptcp_sock *msk)
{
mptcp_pm_nl_rm_addr_or_subflow(msk, &msk->pm.rm_list_rx, MPTCP_MIB_RMADDR);
}
void mptcp_pm_nl_rm_subflow_received(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list)
{
mptcp_pm_nl_rm_addr_or_subflow(msk, rm_list, MPTCP_MIB_RMSUBFLOW);
}
void mptcp_pm_nl_work(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
msk_owned_by_me(msk);
if (!(pm->status & MPTCP_PM_WORK_MASK))
return;
spin_lock_bh(&msk->pm.lock);
pr_debug("msk=%p status=%x", msk, pm->status);
if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
mptcp_pm_nl_add_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_ADD_ADDR_SEND_ACK)) {
pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_SEND_ACK);
mptcp_pm_nl_addr_send_ack(msk);
}
if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED);
mptcp_pm_nl_rm_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
mptcp_pm_nl_fully_established(msk);
}
if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
mptcp_pm_nl_subflow_established(msk);
}
spin_unlock_bh(&msk->pm.lock);
}
static bool address_use_port(struct mptcp_pm_addr_entry *entry)
{
return (entry->flags &
(MPTCP_PM_ADDR_FLAG_SIGNAL | MPTCP_PM_ADDR_FLAG_SUBFLOW)) ==
MPTCP_PM_ADDR_FLAG_SIGNAL;
}
/* caller must ensure the RCU grace period is already elapsed */
static void __mptcp_pm_release_addr_entry(struct mptcp_pm_addr_entry *entry)
{
if (entry->lsk)
sock_release(entry->lsk);
kfree(entry);
}
static int mptcp_pm_nl_append_new_local_addr(struct pm_nl_pernet *pernet,
struct mptcp_pm_addr_entry *entry)
{
struct mptcp_pm_addr_entry *cur, *del_entry = NULL;
unsigned int addr_max;
int ret = -EINVAL;
spin_lock_bh(&pernet->lock);
/* to keep the code simple, don't do IDR-like allocation for address ID,
* just bail when we exceed limits
*/
if (pernet->next_id == MPTCP_PM_MAX_ADDR_ID)
pernet->next_id = 1;
if (pernet->addrs >= MPTCP_PM_ADDR_MAX) {
ret = -ERANGE;
goto out;
}
if (test_bit(entry->addr.id, pernet->id_bitmap)) {
ret = -EBUSY;
goto out;
}
/* do not insert duplicate address, differentiate on port only
* singled addresses
*/
if (!address_use_port(entry))
entry->addr.port = 0;
list_for_each_entry(cur, &pernet->local_addr_list, list) {
if (mptcp_addresses_equal(&cur->addr, &entry->addr,
cur->addr.port || entry->addr.port)) {
/* allow replacing the exiting endpoint only if such
* endpoint is an implicit one and the user-space
* did not provide an endpoint id
*/
if (!(cur->flags & MPTCP_PM_ADDR_FLAG_IMPLICIT)) {
ret = -EEXIST;
goto out;
}
if (entry->addr.id)
goto out;
pernet->addrs--;
entry->addr.id = cur->addr.id;
list_del_rcu(&cur->list);
del_entry = cur;
break;
}
}
if (!entry->addr.id) {
find_next:
entry->addr.id = find_next_zero_bit(pernet->id_bitmap,
MPTCP_PM_MAX_ADDR_ID + 1,
pernet->next_id);
if (!entry->addr.id && pernet->next_id != 1) {
pernet->next_id = 1;
goto find_next;
}
}
if (!entry->addr.id)
goto out;
__set_bit(entry->addr.id, pernet->id_bitmap);
if (entry->addr.id > pernet->next_id)
pernet->next_id = entry->addr.id;
if (entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL) {
addr_max = pernet->add_addr_signal_max;
WRITE_ONCE(pernet->add_addr_signal_max, addr_max + 1);
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) {
addr_max = pernet->local_addr_max;
WRITE_ONCE(pernet->local_addr_max, addr_max + 1);
}
pernet->addrs++;
if (!entry->addr.port)
list_add_tail_rcu(&entry->list, &pernet->local_addr_list);
else
list_add_rcu(&entry->list, &pernet->local_addr_list);
ret = entry->addr.id;
out:
spin_unlock_bh(&pernet->lock);
/* just replaced an existing entry, free it */
if (del_entry) {
synchronize_rcu();
__mptcp_pm_release_addr_entry(del_entry);
}
return ret;
}
static struct lock_class_key mptcp_slock_keys[2];
static struct lock_class_key mptcp_keys[2];
static int mptcp_pm_nl_create_listen_socket(struct sock *sk,
struct mptcp_pm_addr_entry *entry)
{
bool is_ipv6 = sk->sk_family == AF_INET6;
int addrlen = sizeof(struct sockaddr_in);
struct sockaddr_storage addr;
struct sock *newsk, *ssk;
int backlog = 1024;
int err;
err = sock_create_kern(sock_net(sk), entry->addr.family,
SOCK_STREAM, IPPROTO_MPTCP, &entry->lsk);
if (err)
return err;
newsk = entry->lsk->sk;
if (!newsk)
return -EINVAL;
/* The subflow socket lock is acquired in a nested to the msk one
* in several places, even by the TCP stack, and this msk is a kernel
* socket: lockdep complains. Instead of propagating the _nested
* modifiers in several places, re-init the lock class for the msk
* socket to an mptcp specific one.
*/
sock_lock_init_class_and_name(newsk,
is_ipv6 ? "mlock-AF_INET6" : "mlock-AF_INET",
&mptcp_slock_keys[is_ipv6],
is_ipv6 ? "msk_lock-AF_INET6" : "msk_lock-AF_INET",
&mptcp_keys[is_ipv6]);
lock_sock(newsk);
ssk = __mptcp_nmpc_sk(mptcp_sk(newsk));
release_sock(newsk);
if (IS_ERR(ssk))
return PTR_ERR(ssk);
mptcp_info2sockaddr(&entry->addr, &addr, entry->addr.family);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (entry->addr.family == AF_INET6)
addrlen = sizeof(struct sockaddr_in6);
#endif
if (ssk->sk_family == AF_INET)
err = inet_bind_sk(ssk, (struct sockaddr *)&addr, addrlen);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (ssk->sk_family == AF_INET6)
err = inet6_bind_sk(ssk, (struct sockaddr *)&addr, addrlen);
#endif
if (err)
return err;
inet_sk_state_store(newsk, TCP_LISTEN);
lock_sock(ssk);
err = __inet_listen_sk(ssk, backlog);
if (!err)
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
release_sock(ssk);
return err;
}
int mptcp_pm_nl_get_local_id(struct mptcp_sock *msk, struct mptcp_addr_info *skc)
{
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
int ret = -1;
pernet = pm_nl_get_pernet_from_msk(msk);
rcu_read_lock();
list_for_each_entry_rcu(entry, &pernet->local_addr_list, list) {
if (mptcp_addresses_equal(&entry->addr, skc, entry->addr.port)) {
ret = entry->addr.id;
break;
}
}
rcu_read_unlock();
if (ret >= 0)
return ret;
/* address not found, add to local list */
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
entry->addr = *skc;
entry->addr.id = 0;
entry->addr.port = 0;
entry->ifindex = 0;
entry->flags = MPTCP_PM_ADDR_FLAG_IMPLICIT;
entry->lsk = NULL;
ret = mptcp_pm_nl_append_new_local_addr(pernet, entry);
if (ret < 0)
kfree(entry);
return ret;
}
#define MPTCP_PM_CMD_GRP_OFFSET 0
#define MPTCP_PM_EV_GRP_OFFSET 1
static const struct genl_multicast_group mptcp_pm_mcgrps[] = {
[MPTCP_PM_CMD_GRP_OFFSET] = { .name = MPTCP_PM_CMD_GRP_NAME, },
[MPTCP_PM_EV_GRP_OFFSET] = { .name = MPTCP_PM_EV_GRP_NAME,
.flags = GENL_UNS_ADMIN_PERM,
},
};
static const struct nla_policy
mptcp_pm_addr_policy[MPTCP_PM_ADDR_ATTR_MAX + 1] = {
[MPTCP_PM_ADDR_ATTR_FAMILY] = { .type = NLA_U16, },
[MPTCP_PM_ADDR_ATTR_ID] = { .type = NLA_U8, },
[MPTCP_PM_ADDR_ATTR_ADDR4] = { .type = NLA_U32, },
[MPTCP_PM_ADDR_ATTR_ADDR6] =
NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
[MPTCP_PM_ADDR_ATTR_PORT] = { .type = NLA_U16 },
[MPTCP_PM_ADDR_ATTR_FLAGS] = { .type = NLA_U32 },
[MPTCP_PM_ADDR_ATTR_IF_IDX] = { .type = NLA_S32 },
};
static const struct nla_policy mptcp_pm_policy[MPTCP_PM_ATTR_MAX + 1] = {
[MPTCP_PM_ATTR_ADDR] =
NLA_POLICY_NESTED(mptcp_pm_addr_policy),
[MPTCP_PM_ATTR_RCV_ADD_ADDRS] = { .type = NLA_U32, },
[MPTCP_PM_ATTR_SUBFLOWS] = { .type = NLA_U32, },
[MPTCP_PM_ATTR_TOKEN] = { .type = NLA_U32, },
[MPTCP_PM_ATTR_LOC_ID] = { .type = NLA_U8, },
[MPTCP_PM_ATTR_ADDR_REMOTE] =
NLA_POLICY_NESTED(mptcp_pm_addr_policy),
};
void mptcp_pm_nl_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *iter, *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = (struct sock *)msk;
unsigned int active_max_loss_cnt;
struct net *net = sock_net(sk);
unsigned int stale_loss_cnt;
bool slow;
stale_loss_cnt = mptcp_stale_loss_cnt(net);
if (subflow->stale || !stale_loss_cnt || subflow->stale_count <= stale_loss_cnt)
return;
/* look for another available subflow not in loss state */
active_max_loss_cnt = max_t(int, stale_loss_cnt - 1, 1);
mptcp_for_each_subflow(msk, iter) {
if (iter != subflow && mptcp_subflow_active(iter) &&
iter->stale_count < active_max_loss_cnt) {
/* we have some alternatives, try to mark this subflow as idle ...*/
slow = lock_sock_fast(ssk);
if (!tcp_rtx_and_write_queues_empty(ssk)) {
subflow->stale = 1;
__mptcp_retransmit_pending_data(sk);
MPTCP_INC_STATS(net, MPTCP_MIB_SUBFLOWSTALE);
}
unlock_sock_fast(ssk, slow);
/* always try to push the pending data regardless of re-injections:
* we can possibly use backup subflows now, and subflow selection
* is cheap under the msk socket lock
*/
__mptcp_push_pending(sk, 0);
return;
}
}
}
static int mptcp_pm_family_to_addr(int family)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (family == AF_INET6)
return MPTCP_PM_ADDR_ATTR_ADDR6;
#endif
return MPTCP_PM_ADDR_ATTR_ADDR4;
}
static int mptcp_pm_parse_pm_addr_attr(struct nlattr *tb[],
const struct nlattr *attr,
struct genl_info *info,
struct mptcp_addr_info *addr,
bool require_family)
{
int err, addr_addr;
if (!attr) {
GENL_SET_ERR_MSG(info, "missing address info");
return -EINVAL;
}
/* no validation needed - was already done via nested policy */
err = nla_parse_nested_deprecated(tb, MPTCP_PM_ADDR_ATTR_MAX, attr,
mptcp_pm_addr_policy, info->extack);
if (err)
return err;
if (tb[MPTCP_PM_ADDR_ATTR_ID])
addr->id = nla_get_u8(tb[MPTCP_PM_ADDR_ATTR_ID]);
if (!tb[MPTCP_PM_ADDR_ATTR_FAMILY]) {
if (!require_family)
return 0;
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"missing family");
return -EINVAL;
}
addr->family = nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_FAMILY]);
if (addr->family != AF_INET
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
&& addr->family != AF_INET6
#endif
) {
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"unknown address family");
return -EINVAL;
}
addr_addr = mptcp_pm_family_to_addr(addr->family);
if (!tb[addr_addr]) {
NL_SET_ERR_MSG_ATTR(info->extack, attr,
"missing address data");
return -EINVAL;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (addr->family == AF_INET6)
addr->addr6 = nla_get_in6_addr(tb[addr_addr]);
else
#endif
addr->addr.s_addr = nla_get_in_addr(tb[addr_addr]);
if (tb[MPTCP_PM_ADDR_ATTR_PORT])
addr->port = htons(nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_PORT]));
return 0;
}
int mptcp_pm_parse_addr(struct nlattr *attr, struct genl_info *info,
struct mptcp_addr_info *addr)
{
struct nlattr *tb[MPTCP_PM_ADDR_ATTR_MAX + 1];
memset(addr, 0, sizeof(*addr));
return mptcp_pm_parse_pm_addr_attr(tb, attr, info, addr, true);
}
int mptcp_pm_parse_entry(struct nlattr *attr, struct genl_info *info,
bool require_family,
struct mptcp_pm_addr_entry *entry)
{
struct nlattr *tb[MPTCP_PM_ADDR_ATTR_MAX + 1];
int err;
memset(entry, 0, sizeof(*entry));
err = mptcp_pm_parse_pm_addr_attr(tb, attr, info, &entry->addr, require_family);
if (err)
return err;
if (tb[MPTCP_PM_ADDR_ATTR_IF_IDX]) {
u32 val = nla_get_s32(tb[MPTCP_PM_ADDR_ATTR_IF_IDX]);
entry->ifindex = val;
}
if (tb[MPTCP_PM_ADDR_ATTR_FLAGS])
entry->flags = nla_get_u32(tb[MPTCP_PM_ADDR_ATTR_FLAGS]);
if (tb[MPTCP_PM_ADDR_ATTR_PORT])
entry->addr.port = htons(nla_get_u16(tb[MPTCP_PM_ADDR_ATTR_PORT]));
return 0;
}
static struct pm_nl_pernet *genl_info_pm_nl(struct genl_info *info)
{
return pm_nl_get_pernet(genl_info_net(info));
}
static int mptcp_nl_add_subflow_or_signal_addr(struct net *net)
{
struct mptcp_sock *msk;
long s_slot = 0, s_num = 0;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (!READ_ONCE(msk->fully_established) ||
mptcp_pm_is_userspace(msk))
goto next;
lock_sock(sk);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_create_subflow_or_signal_addr(msk);
spin_unlock_bh(&msk->pm.lock);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
static int mptcp_nl_cmd_add_addr(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
int ret;
ret = mptcp_pm_parse_entry(attr, info, true, &addr);
if (ret < 0)
return ret;
if (addr.addr.port && !(addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) {
GENL_SET_ERR_MSG(info, "flags must have signal when using port");
return -EINVAL;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_SIGNAL &&
addr.flags & MPTCP_PM_ADDR_FLAG_FULLMESH) {
GENL_SET_ERR_MSG(info, "flags mustn't have both signal and fullmesh");
return -EINVAL;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_IMPLICIT) {
GENL_SET_ERR_MSG(info, "can't create IMPLICIT endpoint");
return -EINVAL;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL_ACCOUNT);
if (!entry) {
GENL_SET_ERR_MSG(info, "can't allocate addr");
return -ENOMEM;
}
*entry = addr;
if (entry->addr.port) {
ret = mptcp_pm_nl_create_listen_socket(skb->sk, entry);
if (ret) {
GENL_SET_ERR_MSG_FMT(info, "create listen socket error: %d", ret);
goto out_free;
}
}
ret = mptcp_pm_nl_append_new_local_addr(pernet, entry);
if (ret < 0) {
GENL_SET_ERR_MSG_FMT(info, "too many addresses or duplicate one: %d", ret);
goto out_free;
}
mptcp_nl_add_subflow_or_signal_addr(sock_net(skb->sk));
return 0;
out_free:
__mptcp_pm_release_addr_entry(entry);
return ret;
}
int mptcp_pm_nl_get_flags_and_ifindex_by_id(struct mptcp_sock *msk, unsigned int id,
u8 *flags, int *ifindex)
{
struct mptcp_pm_addr_entry *entry;
struct sock *sk = (struct sock *)msk;
struct net *net = sock_net(sk);
rcu_read_lock();
entry = __lookup_addr_by_id(pm_nl_get_pernet(net), id);
if (entry) {
*flags = entry->flags;
*ifindex = entry->ifindex;
}
rcu_read_unlock();
return 0;
}
static bool remove_anno_list_by_saddr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_add_entry *entry;
entry = mptcp_pm_del_add_timer(msk, addr, false);
if (entry) {
list_del(&entry->list);
kfree(entry);
return true;
}
return false;
}
static bool mptcp_pm_remove_anno_addr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr,
bool force)
{
struct mptcp_rm_list list = { .nr = 0 };
bool ret;
list.ids[list.nr++] = addr->id;
ret = remove_anno_list_by_saddr(msk, addr);
if (ret || force) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &list);
spin_unlock_bh(&msk->pm.lock);
}
return ret;
}
static int mptcp_nl_remove_subflow_and_signal_addr(struct net *net,
const struct mptcp_pm_addr_entry *entry)
{
const struct mptcp_addr_info *addr = &entry->addr;
struct mptcp_rm_list list = { .nr = 0 };
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
pr_debug("remove_id=%d", addr->id);
list.ids[list.nr++] = addr->id;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
bool remove_subflow;
if (mptcp_pm_is_userspace(msk))
goto next;
if (list_empty(&msk->conn_list)) {
mptcp_pm_remove_anno_addr(msk, addr, false);
goto next;
}
lock_sock(sk);
remove_subflow = lookup_subflow_by_saddr(&msk->conn_list, addr);
mptcp_pm_remove_anno_addr(msk, addr, remove_subflow &&
!(entry->flags & MPTCP_PM_ADDR_FLAG_IMPLICIT));
if (remove_subflow)
mptcp_pm_remove_subflow(msk, &list);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
static int mptcp_nl_remove_id_zero_address(struct net *net,
struct mptcp_addr_info *addr)
{
struct mptcp_rm_list list = { .nr = 0 };
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
list.ids[list.nr++] = 0;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
struct mptcp_addr_info msk_local;
if (list_empty(&msk->conn_list) || mptcp_pm_is_userspace(msk))
goto next;
mptcp_local_address((struct sock_common *)msk, &msk_local);
if (!mptcp_addresses_equal(&msk_local, addr, addr->port))
goto next;
lock_sock(sk);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &list);
mptcp_pm_nl_rm_subflow_received(msk, &list);
spin_unlock_bh(&msk->pm.lock);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return 0;
}
static int mptcp_nl_cmd_del_addr(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
unsigned int addr_max;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
/* the zero id address is special: the first address used by the msk
* always gets such an id, so different subflows can have different zero
* id addresses. Additionally zero id is not accounted for in id_bitmap.
* Let's use an 'mptcp_rm_list' instead of the common remove code.
*/
if (addr.addr.id == 0)
return mptcp_nl_remove_id_zero_address(sock_net(skb->sk), &addr.addr);
spin_lock_bh(&pernet->lock);
entry = __lookup_addr_by_id(pernet, addr.addr.id);
if (!entry) {
GENL_SET_ERR_MSG(info, "address not found");
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL) {
addr_max = pernet->add_addr_signal_max;
WRITE_ONCE(pernet->add_addr_signal_max, addr_max - 1);
}
if (entry->flags & MPTCP_PM_ADDR_FLAG_SUBFLOW) {
addr_max = pernet->local_addr_max;
WRITE_ONCE(pernet->local_addr_max, addr_max - 1);
}
pernet->addrs--;
list_del_rcu(&entry->list);
__clear_bit(entry->addr.id, pernet->id_bitmap);
spin_unlock_bh(&pernet->lock);
mptcp_nl_remove_subflow_and_signal_addr(sock_net(skb->sk), entry);
synchronize_rcu();
__mptcp_pm_release_addr_entry(entry);
return ret;
}
void mptcp_pm_remove_addrs(struct mptcp_sock *msk, struct list_head *rm_list)
{
struct mptcp_rm_list alist = { .nr = 0 };
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, rm_list, list) {
remove_anno_list_by_saddr(msk, &entry->addr);
if (alist.nr < MPTCP_RM_IDS_MAX)
alist.ids[alist.nr++] = entry->addr.id;
}
if (alist.nr) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &alist);
spin_unlock_bh(&msk->pm.lock);
}
}
void mptcp_pm_remove_addrs_and_subflows(struct mptcp_sock *msk,
struct list_head *rm_list)
{
struct mptcp_rm_list alist = { .nr = 0 }, slist = { .nr = 0 };
struct mptcp_pm_addr_entry *entry;
list_for_each_entry(entry, rm_list, list) {
if (lookup_subflow_by_saddr(&msk->conn_list, &entry->addr) &&
slist.nr < MPTCP_RM_IDS_MAX)
slist.ids[slist.nr++] = entry->addr.id;
if (remove_anno_list_by_saddr(msk, &entry->addr) &&
alist.nr < MPTCP_RM_IDS_MAX)
alist.ids[alist.nr++] = entry->addr.id;
}
if (alist.nr) {
spin_lock_bh(&msk->pm.lock);
mptcp_pm_remove_addr(msk, &alist);
spin_unlock_bh(&msk->pm.lock);
}
if (slist.nr)
mptcp_pm_remove_subflow(msk, &slist);
}
static void mptcp_nl_remove_addrs_list(struct net *net,
struct list_head *rm_list)
{
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
if (list_empty(rm_list))
return;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (!mptcp_pm_is_userspace(msk)) {
lock_sock(sk);
mptcp_pm_remove_addrs_and_subflows(msk, rm_list);
release_sock(sk);
}
sock_put(sk);
cond_resched();
}
}
/* caller must ensure the RCU grace period is already elapsed */
static void __flush_addrs(struct list_head *list)
{
while (!list_empty(list)) {
struct mptcp_pm_addr_entry *cur;
cur = list_entry(list->next,
struct mptcp_pm_addr_entry, list);
list_del_rcu(&cur->list);
__mptcp_pm_release_addr_entry(cur);
}
}
static void __reset_counters(struct pm_nl_pernet *pernet)
{
WRITE_ONCE(pernet->add_addr_signal_max, 0);
WRITE_ONCE(pernet->add_addr_accept_max, 0);
WRITE_ONCE(pernet->local_addr_max, 0);
pernet->addrs = 0;
}
static int mptcp_nl_cmd_flush_addrs(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
LIST_HEAD(free_list);
spin_lock_bh(&pernet->lock);
list_splice_init(&pernet->local_addr_list, &free_list);
__reset_counters(pernet);
pernet->next_id = 1;
bitmap_zero(pernet->id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
spin_unlock_bh(&pernet->lock);
mptcp_nl_remove_addrs_list(sock_net(skb->sk), &free_list);
synchronize_rcu();
__flush_addrs(&free_list);
return 0;
}
static int mptcp_nl_fill_addr(struct sk_buff *skb,
struct mptcp_pm_addr_entry *entry)
{
struct mptcp_addr_info *addr = &entry->addr;
struct nlattr *attr;
attr = nla_nest_start(skb, MPTCP_PM_ATTR_ADDR);
if (!attr)
return -EMSGSIZE;
if (nla_put_u16(skb, MPTCP_PM_ADDR_ATTR_FAMILY, addr->family))
goto nla_put_failure;
if (nla_put_u16(skb, MPTCP_PM_ADDR_ATTR_PORT, ntohs(addr->port)))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_PM_ADDR_ATTR_ID, addr->id))
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_PM_ADDR_ATTR_FLAGS, entry->flags))
goto nla_put_failure;
if (entry->ifindex &&
nla_put_s32(skb, MPTCP_PM_ADDR_ATTR_IF_IDX, entry->ifindex))
goto nla_put_failure;
if (addr->family == AF_INET &&
nla_put_in_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR4,
addr->addr.s_addr))
goto nla_put_failure;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6 &&
nla_put_in6_addr(skb, MPTCP_PM_ADDR_ATTR_ADDR6, &addr->addr6))
goto nla_put_failure;
#endif
nla_nest_end(skb, attr);
return 0;
nla_put_failure:
nla_nest_cancel(skb, attr);
return -EMSGSIZE;
}
static int mptcp_nl_cmd_get_addr(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct mptcp_pm_addr_entry addr, *entry;
struct sk_buff *msg;
void *reply;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0,
info->genlhdr->cmd);
if (!reply) {
GENL_SET_ERR_MSG(info, "not enough space in Netlink message");
ret = -EMSGSIZE;
goto fail;
}
spin_lock_bh(&pernet->lock);
entry = __lookup_addr_by_id(pernet, addr.addr.id);
if (!entry) {
GENL_SET_ERR_MSG(info, "address not found");
ret = -EINVAL;
goto unlock_fail;
}
ret = mptcp_nl_fill_addr(msg, entry);
if (ret)
goto unlock_fail;
genlmsg_end(msg, reply);
ret = genlmsg_reply(msg, info);
spin_unlock_bh(&pernet->lock);
return ret;
unlock_fail:
spin_unlock_bh(&pernet->lock);
fail:
nlmsg_free(msg);
return ret;
}
static int mptcp_nl_cmd_dump_addrs(struct sk_buff *msg,
struct netlink_callback *cb)
{
struct net *net = sock_net(msg->sk);
struct mptcp_pm_addr_entry *entry;
struct pm_nl_pernet *pernet;
int id = cb->args[0];
void *hdr;
int i;
pernet = pm_nl_get_pernet(net);
spin_lock_bh(&pernet->lock);
for (i = id; i < MPTCP_PM_MAX_ADDR_ID + 1; i++) {
if (test_bit(i, pernet->id_bitmap)) {
entry = __lookup_addr_by_id(pernet, i);
if (!entry)
break;
if (entry->addr.id <= id)
continue;
hdr = genlmsg_put(msg, NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, &mptcp_genl_family,
NLM_F_MULTI, MPTCP_PM_CMD_GET_ADDR);
if (!hdr)
break;
if (mptcp_nl_fill_addr(msg, entry) < 0) {
genlmsg_cancel(msg, hdr);
break;
}
id = entry->addr.id;
genlmsg_end(msg, hdr);
}
}
spin_unlock_bh(&pernet->lock);
cb->args[0] = id;
return msg->len;
}
static int parse_limit(struct genl_info *info, int id, unsigned int *limit)
{
struct nlattr *attr = info->attrs[id];
if (!attr)
return 0;
*limit = nla_get_u32(attr);
if (*limit > MPTCP_PM_ADDR_MAX) {
GENL_SET_ERR_MSG(info, "limit greater than maximum");
return -EINVAL;
}
return 0;
}
static int
mptcp_nl_cmd_set_limits(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
unsigned int rcv_addrs, subflows;
int ret;
spin_lock_bh(&pernet->lock);
rcv_addrs = pernet->add_addr_accept_max;
ret = parse_limit(info, MPTCP_PM_ATTR_RCV_ADD_ADDRS, &rcv_addrs);
if (ret)
goto unlock;
subflows = pernet->subflows_max;
ret = parse_limit(info, MPTCP_PM_ATTR_SUBFLOWS, &subflows);
if (ret)
goto unlock;
WRITE_ONCE(pernet->add_addr_accept_max, rcv_addrs);
WRITE_ONCE(pernet->subflows_max, subflows);
unlock:
spin_unlock_bh(&pernet->lock);
return ret;
}
static int
mptcp_nl_cmd_get_limits(struct sk_buff *skb, struct genl_info *info)
{
struct pm_nl_pernet *pernet = genl_info_pm_nl(info);
struct sk_buff *msg;
void *reply;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
reply = genlmsg_put_reply(msg, info, &mptcp_genl_family, 0,
MPTCP_PM_CMD_GET_LIMITS);
if (!reply)
goto fail;
if (nla_put_u32(msg, MPTCP_PM_ATTR_RCV_ADD_ADDRS,
READ_ONCE(pernet->add_addr_accept_max)))
goto fail;
if (nla_put_u32(msg, MPTCP_PM_ATTR_SUBFLOWS,
READ_ONCE(pernet->subflows_max)))
goto fail;
genlmsg_end(msg, reply);
return genlmsg_reply(msg, info);
fail:
GENL_SET_ERR_MSG(info, "not enough space in Netlink message");
nlmsg_free(msg);
return -EMSGSIZE;
}
static void mptcp_pm_nl_fullmesh(struct mptcp_sock *msk,
struct mptcp_addr_info *addr)
{
struct mptcp_rm_list list = { .nr = 0 };
list.ids[list.nr++] = addr->id;
spin_lock_bh(&msk->pm.lock);
mptcp_pm_nl_rm_subflow_received(msk, &list);
mptcp_pm_create_subflow_or_signal_addr(msk);
spin_unlock_bh(&msk->pm.lock);
}
static int mptcp_nl_set_flags(struct net *net,
struct mptcp_addr_info *addr,
u8 bkup, u8 changed)
{
long s_slot = 0, s_num = 0;
struct mptcp_sock *msk;
int ret = -EINVAL;
while ((msk = mptcp_token_iter_next(net, &s_slot, &s_num)) != NULL) {
struct sock *sk = (struct sock *)msk;
if (list_empty(&msk->conn_list) || mptcp_pm_is_userspace(msk))
goto next;
lock_sock(sk);
if (changed & MPTCP_PM_ADDR_FLAG_BACKUP)
ret = mptcp_pm_nl_mp_prio_send_ack(msk, addr, NULL, bkup);
if (changed & MPTCP_PM_ADDR_FLAG_FULLMESH)
mptcp_pm_nl_fullmesh(msk, addr);
release_sock(sk);
next:
sock_put(sk);
cond_resched();
}
return ret;
}
int mptcp_pm_nl_set_flags(struct net *net, struct mptcp_pm_addr_entry *addr, u8 bkup)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
u8 changed, mask = MPTCP_PM_ADDR_FLAG_BACKUP |
MPTCP_PM_ADDR_FLAG_FULLMESH;
struct mptcp_pm_addr_entry *entry;
u8 lookup_by_id = 0;
if (addr->addr.family == AF_UNSPEC) {
lookup_by_id = 1;
if (!addr->addr.id)
return -EOPNOTSUPP;
}
spin_lock_bh(&pernet->lock);
entry = __lookup_addr(pernet, &addr->addr, lookup_by_id);
if (!entry) {
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
if ((addr->flags & MPTCP_PM_ADDR_FLAG_FULLMESH) &&
(entry->flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) {
spin_unlock_bh(&pernet->lock);
return -EINVAL;
}
changed = (addr->flags ^ entry->flags) & mask;
entry->flags = (entry->flags & ~mask) | (addr->flags & mask);
*addr = *entry;
spin_unlock_bh(&pernet->lock);
mptcp_nl_set_flags(net, &addr->addr, bkup, changed);
return 0;
}
static int mptcp_nl_cmd_set_flags(struct sk_buff *skb, struct genl_info *info)
{
struct mptcp_pm_addr_entry remote = { .addr = { .family = AF_UNSPEC }, };
struct mptcp_pm_addr_entry addr = { .addr = { .family = AF_UNSPEC }, };
struct nlattr *attr_rem = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE];
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *attr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct net *net = sock_net(skb->sk);
u8 bkup = 0;
int ret;
ret = mptcp_pm_parse_entry(attr, info, false, &addr);
if (ret < 0)
return ret;
if (attr_rem) {
ret = mptcp_pm_parse_entry(attr_rem, info, false, &remote);
if (ret < 0)
return ret;
}
if (addr.flags & MPTCP_PM_ADDR_FLAG_BACKUP)
bkup = 1;
return mptcp_pm_set_flags(net, token, &addr, &remote, bkup);
}
static void mptcp_nl_mcast_send(struct net *net, struct sk_buff *nlskb, gfp_t gfp)
{
genlmsg_multicast_netns(&mptcp_genl_family, net,
nlskb, 0, MPTCP_PM_EV_GRP_OFFSET, gfp);
}
bool mptcp_userspace_pm_active(const struct mptcp_sock *msk)
{
return genl_has_listeners(&mptcp_genl_family,
sock_net((const struct sock *)msk),
MPTCP_PM_EV_GRP_OFFSET);
}
static int mptcp_event_add_subflow(struct sk_buff *skb, const struct sock *ssk)
{
const struct inet_sock *issk = inet_sk(ssk);
const struct mptcp_subflow_context *sf;
if (nla_put_u16(skb, MPTCP_ATTR_FAMILY, ssk->sk_family))
return -EMSGSIZE;
switch (ssk->sk_family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_SADDR4, issk->inet_saddr))
return -EMSGSIZE;
if (nla_put_in_addr(skb, MPTCP_ATTR_DADDR4, issk->inet_daddr))
return -EMSGSIZE;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6: {
const struct ipv6_pinfo *np = inet6_sk(ssk);
if (nla_put_in6_addr(skb, MPTCP_ATTR_SADDR6, &np->saddr))
return -EMSGSIZE;
if (nla_put_in6_addr(skb, MPTCP_ATTR_DADDR6, &ssk->sk_v6_daddr))
return -EMSGSIZE;
break;
}
#endif
default:
WARN_ON_ONCE(1);
return -EMSGSIZE;
}
if (nla_put_be16(skb, MPTCP_ATTR_SPORT, issk->inet_sport))
return -EMSGSIZE;
if (nla_put_be16(skb, MPTCP_ATTR_DPORT, issk->inet_dport))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (WARN_ON_ONCE(!sf))
return -EINVAL;
if (nla_put_u8(skb, MPTCP_ATTR_LOC_ID, sf->local_id))
return -EMSGSIZE;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, sf->remote_id))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_put_token_and_ssk(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
const struct sock *sk = (const struct sock *)msk;
const struct mptcp_subflow_context *sf;
u8 sk_err;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
return -EMSGSIZE;
if (mptcp_event_add_subflow(skb, ssk))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (WARN_ON_ONCE(!sf))
return -EINVAL;
if (nla_put_u8(skb, MPTCP_ATTR_BACKUP, sf->backup))
return -EMSGSIZE;
if (ssk->sk_bound_dev_if &&
nla_put_s32(skb, MPTCP_ATTR_IF_IDX, ssk->sk_bound_dev_if))
return -EMSGSIZE;
sk_err = READ_ONCE(ssk->sk_err);
if (sk_err && sk->sk_state == TCP_ESTABLISHED &&
nla_put_u8(skb, MPTCP_ATTR_ERROR, sk_err))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_sub_established(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
return mptcp_event_put_token_and_ssk(skb, msk, ssk);
}
static int mptcp_event_sub_closed(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
const struct mptcp_subflow_context *sf;
if (mptcp_event_put_token_and_ssk(skb, msk, ssk))
return -EMSGSIZE;
sf = mptcp_subflow_ctx(ssk);
if (!sf->reset_seen)
return 0;
if (nla_put_u32(skb, MPTCP_ATTR_RESET_REASON, sf->reset_reason))
return -EMSGSIZE;
if (nla_put_u32(skb, MPTCP_ATTR_RESET_FLAGS, sf->reset_transient))
return -EMSGSIZE;
return 0;
}
static int mptcp_event_created(struct sk_buff *skb,
const struct mptcp_sock *msk,
const struct sock *ssk)
{
int err = nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token);
if (err)
return err;
if (nla_put_u8(skb, MPTCP_ATTR_SERVER_SIDE, READ_ONCE(msk->pm.server_side)))
return -EMSGSIZE;
return mptcp_event_add_subflow(skb, ssk);
}
void mptcp_event_addr_removed(const struct mptcp_sock *msk, uint8_t id)
{
struct net *net = sock_net((const struct sock *)msk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, MPTCP_EVENT_REMOVED);
if (!nlh)
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, id))
goto nla_put_failure;
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_ATOMIC);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event_addr_announced(const struct sock *ssk,
const struct mptcp_addr_info *info)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct net *net = sock_net(ssk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0,
MPTCP_EVENT_ANNOUNCED);
if (!nlh)
goto nla_put_failure;
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token))
goto nla_put_failure;
if (nla_put_u8(skb, MPTCP_ATTR_REM_ID, info->id))
goto nla_put_failure;
if (nla_put_be16(skb, MPTCP_ATTR_DPORT,
info->port == 0 ?
inet_sk(ssk)->inet_dport :
info->port))
goto nla_put_failure;
switch (info->family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_DADDR4, info->addr.s_addr))
goto nla_put_failure;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6:
if (nla_put_in6_addr(skb, MPTCP_ATTR_DADDR6, &info->addr6))
goto nla_put_failure;
break;
#endif
default:
WARN_ON_ONCE(1);
goto nla_put_failure;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_ATOMIC);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event_pm_listener(const struct sock *ssk,
enum mptcp_event_type event)
{
const struct inet_sock *issk = inet_sk(ssk);
struct net *net = sock_net(ssk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, event);
if (!nlh)
goto nla_put_failure;
if (nla_put_u16(skb, MPTCP_ATTR_FAMILY, ssk->sk_family))
goto nla_put_failure;
if (nla_put_be16(skb, MPTCP_ATTR_SPORT, issk->inet_sport))
goto nla_put_failure;
switch (ssk->sk_family) {
case AF_INET:
if (nla_put_in_addr(skb, MPTCP_ATTR_SADDR4, issk->inet_saddr))
goto nla_put_failure;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6: {
const struct ipv6_pinfo *np = inet6_sk(ssk);
if (nla_put_in6_addr(skb, MPTCP_ATTR_SADDR6, &np->saddr))
goto nla_put_failure;
break;
}
#endif
default:
WARN_ON_ONCE(1);
goto nla_put_failure;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, GFP_KERNEL);
return;
nla_put_failure:
nlmsg_free(skb);
}
void mptcp_event(enum mptcp_event_type type, const struct mptcp_sock *msk,
const struct sock *ssk, gfp_t gfp)
{
struct net *net = sock_net((const struct sock *)msk);
struct nlmsghdr *nlh;
struct sk_buff *skb;
if (!genl_has_listeners(&mptcp_genl_family, net, MPTCP_PM_EV_GRP_OFFSET))
return;
skb = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!skb)
return;
nlh = genlmsg_put(skb, 0, 0, &mptcp_genl_family, 0, type);
if (!nlh)
goto nla_put_failure;
switch (type) {
case MPTCP_EVENT_UNSPEC:
WARN_ON_ONCE(1);
break;
case MPTCP_EVENT_CREATED:
case MPTCP_EVENT_ESTABLISHED:
if (mptcp_event_created(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_CLOSED:
if (nla_put_u32(skb, MPTCP_ATTR_TOKEN, msk->token) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_ANNOUNCED:
case MPTCP_EVENT_REMOVED:
/* call mptcp_event_addr_announced()/removed instead */
WARN_ON_ONCE(1);
break;
case MPTCP_EVENT_SUB_ESTABLISHED:
case MPTCP_EVENT_SUB_PRIORITY:
if (mptcp_event_sub_established(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_SUB_CLOSED:
if (mptcp_event_sub_closed(skb, msk, ssk) < 0)
goto nla_put_failure;
break;
case MPTCP_EVENT_LISTENER_CREATED:
case MPTCP_EVENT_LISTENER_CLOSED:
break;
}
genlmsg_end(skb, nlh);
mptcp_nl_mcast_send(net, skb, gfp);
return;
nla_put_failure:
nlmsg_free(skb);
}
static const struct genl_small_ops mptcp_pm_ops[] = {
{
.cmd = MPTCP_PM_CMD_ADD_ADDR,
.doit = mptcp_nl_cmd_add_addr,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_DEL_ADDR,
.doit = mptcp_nl_cmd_del_addr,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_FLUSH_ADDRS,
.doit = mptcp_nl_cmd_flush_addrs,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_GET_ADDR,
.doit = mptcp_nl_cmd_get_addr,
.dumpit = mptcp_nl_cmd_dump_addrs,
},
{
.cmd = MPTCP_PM_CMD_SET_LIMITS,
.doit = mptcp_nl_cmd_set_limits,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_GET_LIMITS,
.doit = mptcp_nl_cmd_get_limits,
},
{
.cmd = MPTCP_PM_CMD_SET_FLAGS,
.doit = mptcp_nl_cmd_set_flags,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_ANNOUNCE,
.doit = mptcp_nl_cmd_announce,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_REMOVE,
.doit = mptcp_nl_cmd_remove,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_SUBFLOW_CREATE,
.doit = mptcp_nl_cmd_sf_create,
.flags = GENL_UNS_ADMIN_PERM,
},
{
.cmd = MPTCP_PM_CMD_SUBFLOW_DESTROY,
.doit = mptcp_nl_cmd_sf_destroy,
.flags = GENL_UNS_ADMIN_PERM,
},
};
static struct genl_family mptcp_genl_family __ro_after_init = {
.name = MPTCP_PM_NAME,
.version = MPTCP_PM_VER,
.maxattr = MPTCP_PM_ATTR_MAX,
.policy = mptcp_pm_policy,
.netnsok = true,
.module = THIS_MODULE,
.small_ops = mptcp_pm_ops,
.n_small_ops = ARRAY_SIZE(mptcp_pm_ops),
.resv_start_op = MPTCP_PM_CMD_SUBFLOW_DESTROY + 1,
.mcgrps = mptcp_pm_mcgrps,
.n_mcgrps = ARRAY_SIZE(mptcp_pm_mcgrps),
};
static int __net_init pm_nl_init_net(struct net *net)
{
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
INIT_LIST_HEAD_RCU(&pernet->local_addr_list);
/* Cit. 2 subflows ought to be enough for anybody. */
pernet->subflows_max = 2;
pernet->next_id = 1;
pernet->stale_loss_cnt = 4;
spin_lock_init(&pernet->lock);
/* No need to initialize other pernet fields, the struct is zeroed at
* allocation time.
*/
return 0;
}
static void __net_exit pm_nl_exit_net(struct list_head *net_list)
{
struct net *net;
list_for_each_entry(net, net_list, exit_list) {
struct pm_nl_pernet *pernet = pm_nl_get_pernet(net);
/* net is removed from namespace list, can't race with
* other modifiers, also netns core already waited for a
* RCU grace period.
*/
__flush_addrs(&pernet->local_addr_list);
}
}
static struct pernet_operations mptcp_pm_pernet_ops = {
.init = pm_nl_init_net,
.exit_batch = pm_nl_exit_net,
.id = &pm_nl_pernet_id,
.size = sizeof(struct pm_nl_pernet),
};
void __init mptcp_pm_nl_init(void)
{
if (register_pernet_subsys(&mptcp_pm_pernet_ops) < 0)
panic("Failed to register MPTCP PM pernet subsystem.\n");
if (genl_register_family(&mptcp_genl_family))
panic("Failed to register MPTCP PM netlink family\n");
}
| linux-master | net/mptcp/pm_netlink.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <net/tcp.h>
#include <net/mptcp.h>
#include "protocol.h"
#include "mib.h"
/* path manager command handlers */
int mptcp_pm_announce_addr(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr,
bool echo)
{
u8 add_addr = READ_ONCE(msk->pm.addr_signal);
pr_debug("msk=%p, local_id=%d, echo=%d", msk, addr->id, echo);
lockdep_assert_held(&msk->pm.lock);
if (add_addr &
(echo ? BIT(MPTCP_ADD_ADDR_ECHO) : BIT(MPTCP_ADD_ADDR_SIGNAL))) {
MPTCP_INC_STATS(sock_net((struct sock *)msk),
echo ? MPTCP_MIB_ECHOADDTXDROP : MPTCP_MIB_ADDADDRTXDROP);
return -EINVAL;
}
if (echo) {
msk->pm.remote = *addr;
add_addr |= BIT(MPTCP_ADD_ADDR_ECHO);
} else {
msk->pm.local = *addr;
add_addr |= BIT(MPTCP_ADD_ADDR_SIGNAL);
}
WRITE_ONCE(msk->pm.addr_signal, add_addr);
return 0;
}
int mptcp_pm_remove_addr(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list)
{
u8 rm_addr = READ_ONCE(msk->pm.addr_signal);
pr_debug("msk=%p, rm_list_nr=%d", msk, rm_list->nr);
if (rm_addr) {
MPTCP_ADD_STATS(sock_net((struct sock *)msk),
MPTCP_MIB_RMADDRTXDROP, rm_list->nr);
return -EINVAL;
}
msk->pm.rm_list_tx = *rm_list;
rm_addr |= BIT(MPTCP_RM_ADDR_SIGNAL);
WRITE_ONCE(msk->pm.addr_signal, rm_addr);
mptcp_pm_nl_addr_send_ack(msk);
return 0;
}
int mptcp_pm_remove_subflow(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list)
{
pr_debug("msk=%p, rm_list_nr=%d", msk, rm_list->nr);
spin_lock_bh(&msk->pm.lock);
mptcp_pm_nl_rm_subflow_received(msk, rm_list);
spin_unlock_bh(&msk->pm.lock);
return 0;
}
/* path manager event handlers */
void mptcp_pm_new_connection(struct mptcp_sock *msk, const struct sock *ssk, int server_side)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p, token=%u side=%d", msk, msk->token, server_side);
WRITE_ONCE(pm->server_side, server_side);
mptcp_event(MPTCP_EVENT_CREATED, msk, ssk, GFP_ATOMIC);
}
bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
unsigned int subflows_max;
int ret = 0;
if (mptcp_pm_is_userspace(msk)) {
if (mptcp_userspace_pm_active(msk)) {
spin_lock_bh(&pm->lock);
pm->subflows++;
spin_unlock_bh(&pm->lock);
return true;
}
return false;
}
subflows_max = mptcp_pm_get_subflows_max(msk);
pr_debug("msk=%p subflows=%d max=%d allow=%d", msk, pm->subflows,
subflows_max, READ_ONCE(pm->accept_subflow));
/* try to avoid acquiring the lock below */
if (!READ_ONCE(pm->accept_subflow))
return false;
spin_lock_bh(&pm->lock);
if (READ_ONCE(pm->accept_subflow)) {
ret = pm->subflows < subflows_max;
if (ret && ++pm->subflows == subflows_max)
WRITE_ONCE(pm->accept_subflow, false);
}
spin_unlock_bh(&pm->lock);
return ret;
}
/* return true if the new status bit is currently cleared, that is, this event
* can be server, eventually by an already scheduled work
*/
static bool mptcp_pm_schedule_work(struct mptcp_sock *msk,
enum mptcp_pm_status new_status)
{
pr_debug("msk=%p status=%x new=%lx", msk, msk->pm.status,
BIT(new_status));
if (msk->pm.status & BIT(new_status))
return false;
msk->pm.status |= BIT(new_status);
mptcp_schedule_work((struct sock *)msk);
return true;
}
void mptcp_pm_fully_established(struct mptcp_sock *msk, const struct sock *ssk)
{
struct mptcp_pm_data *pm = &msk->pm;
bool announce = false;
pr_debug("msk=%p", msk);
spin_lock_bh(&pm->lock);
/* mptcp_pm_fully_established() can be invoked by multiple
* racing paths - accept() and check_fully_established()
* be sure to serve this event only once.
*/
if (READ_ONCE(pm->work_pending) &&
!(msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)))
mptcp_pm_schedule_work(msk, MPTCP_PM_ESTABLISHED);
if ((msk->pm.status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)) == 0)
announce = true;
msk->pm.status |= BIT(MPTCP_PM_ALREADY_ESTABLISHED);
spin_unlock_bh(&pm->lock);
if (announce)
mptcp_event(MPTCP_EVENT_ESTABLISHED, msk, ssk, GFP_ATOMIC);
}
void mptcp_pm_connection_closed(struct mptcp_sock *msk)
{
pr_debug("msk=%p", msk);
}
void mptcp_pm_subflow_established(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p", msk);
if (!READ_ONCE(pm->work_pending))
return;
spin_lock_bh(&pm->lock);
if (READ_ONCE(pm->work_pending))
mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_subflow_check_next(struct mptcp_sock *msk, const struct sock *ssk,
const struct mptcp_subflow_context *subflow)
{
struct mptcp_pm_data *pm = &msk->pm;
bool update_subflows;
update_subflows = subflow->request_join || subflow->mp_join;
if (mptcp_pm_is_userspace(msk)) {
if (update_subflows) {
spin_lock_bh(&pm->lock);
pm->subflows--;
spin_unlock_bh(&pm->lock);
}
return;
}
if (!READ_ONCE(pm->work_pending) && !update_subflows)
return;
spin_lock_bh(&pm->lock);
if (update_subflows)
__mptcp_pm_close_subflow(msk);
/* Even if this subflow is not really established, tell the PM to try
* to pick the next ones, if possible.
*/
if (mptcp_pm_nl_check_work_pending(msk))
mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_add_addr_received(const struct sock *ssk,
const struct mptcp_addr_info *addr)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p remote_id=%d accept=%d", msk, addr->id,
READ_ONCE(pm->accept_addr));
mptcp_event_addr_announced(ssk, addr);
spin_lock_bh(&pm->lock);
if (mptcp_pm_is_userspace(msk)) {
if (mptcp_userspace_pm_active(msk)) {
mptcp_pm_announce_addr(msk, addr, true);
mptcp_pm_add_addr_send_ack(msk);
} else {
__MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP);
}
} else if (!READ_ONCE(pm->accept_addr)) {
mptcp_pm_announce_addr(msk, addr, true);
mptcp_pm_add_addr_send_ack(msk);
} else if (mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_RECEIVED)) {
pm->remote = *addr;
} else {
__MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP);
}
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_add_addr_echoed(struct mptcp_sock *msk,
const struct mptcp_addr_info *addr)
{
struct mptcp_pm_data *pm = &msk->pm;
pr_debug("msk=%p", msk);
spin_lock_bh(&pm->lock);
if (mptcp_lookup_anno_list_by_saddr(msk, addr) && READ_ONCE(pm->work_pending))
mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_add_addr_send_ack(struct mptcp_sock *msk)
{
if (!mptcp_pm_should_add_signal(msk))
return;
mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_SEND_ACK);
}
void mptcp_pm_rm_addr_received(struct mptcp_sock *msk,
const struct mptcp_rm_list *rm_list)
{
struct mptcp_pm_data *pm = &msk->pm;
u8 i;
pr_debug("msk=%p remote_ids_nr=%d", msk, rm_list->nr);
for (i = 0; i < rm_list->nr; i++)
mptcp_event_addr_removed(msk, rm_list->ids[i]);
spin_lock_bh(&pm->lock);
if (mptcp_pm_schedule_work(msk, MPTCP_PM_RM_ADDR_RECEIVED))
pm->rm_list_rx = *rm_list;
else
__MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_RMADDRDROP);
spin_unlock_bh(&pm->lock);
}
void mptcp_pm_mp_prio_received(struct sock *ssk, u8 bkup)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = subflow->conn;
struct mptcp_sock *msk;
pr_debug("subflow->backup=%d, bkup=%d\n", subflow->backup, bkup);
msk = mptcp_sk(sk);
if (subflow->backup != bkup)
subflow->backup = bkup;
mptcp_event(MPTCP_EVENT_SUB_PRIORITY, msk, ssk, GFP_ATOMIC);
}
void mptcp_pm_mp_fail_received(struct sock *sk, u64 fail_seq)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
pr_debug("fail_seq=%llu", fail_seq);
if (!READ_ONCE(msk->allow_infinite_fallback))
return;
if (!subflow->fail_tout) {
pr_debug("send MP_FAIL response and infinite map");
subflow->send_mp_fail = 1;
subflow->send_infinite_map = 1;
tcp_send_ack(sk);
} else {
pr_debug("MP_FAIL response received");
WRITE_ONCE(subflow->fail_tout, 0);
}
}
/* path manager helpers */
bool mptcp_pm_add_addr_signal(struct mptcp_sock *msk, const struct sk_buff *skb,
unsigned int opt_size, unsigned int remaining,
struct mptcp_addr_info *addr, bool *echo,
bool *drop_other_suboptions)
{
int ret = false;
u8 add_addr;
u8 family;
bool port;
spin_lock_bh(&msk->pm.lock);
/* double check after the lock is acquired */
if (!mptcp_pm_should_add_signal(msk))
goto out_unlock;
/* always drop every other options for pure ack ADD_ADDR; this is a
* plain dup-ack from TCP perspective. The other MPTCP-relevant info,
* if any, will be carried by the 'original' TCP ack
*/
if (skb && skb_is_tcp_pure_ack(skb)) {
remaining += opt_size;
*drop_other_suboptions = true;
}
*echo = mptcp_pm_should_add_signal_echo(msk);
port = !!(*echo ? msk->pm.remote.port : msk->pm.local.port);
family = *echo ? msk->pm.remote.family : msk->pm.local.family;
if (remaining < mptcp_add_addr_len(family, *echo, port))
goto out_unlock;
if (*echo) {
*addr = msk->pm.remote;
add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_ECHO);
} else {
*addr = msk->pm.local;
add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_SIGNAL);
}
WRITE_ONCE(msk->pm.addr_signal, add_addr);
ret = true;
out_unlock:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
bool mptcp_pm_rm_addr_signal(struct mptcp_sock *msk, unsigned int remaining,
struct mptcp_rm_list *rm_list)
{
int ret = false, len;
u8 rm_addr;
spin_lock_bh(&msk->pm.lock);
/* double check after the lock is acquired */
if (!mptcp_pm_should_rm_signal(msk))
goto out_unlock;
rm_addr = msk->pm.addr_signal & ~BIT(MPTCP_RM_ADDR_SIGNAL);
len = mptcp_rm_addr_len(&msk->pm.rm_list_tx);
if (len < 0) {
WRITE_ONCE(msk->pm.addr_signal, rm_addr);
goto out_unlock;
}
if (remaining < len)
goto out_unlock;
*rm_list = msk->pm.rm_list_tx;
WRITE_ONCE(msk->pm.addr_signal, rm_addr);
ret = true;
out_unlock:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc)
{
struct mptcp_addr_info skc_local;
struct mptcp_addr_info msk_local;
if (WARN_ON_ONCE(!msk))
return -1;
/* The 0 ID mapping is defined by the first subflow, copied into the msk
* addr
*/
mptcp_local_address((struct sock_common *)msk, &msk_local);
mptcp_local_address((struct sock_common *)skc, &skc_local);
if (mptcp_addresses_equal(&msk_local, &skc_local, false))
return 0;
if (mptcp_pm_is_userspace(msk))
return mptcp_userspace_pm_get_local_id(msk, &skc_local);
return mptcp_pm_nl_get_local_id(msk, &skc_local);
}
int mptcp_pm_get_flags_and_ifindex_by_id(struct mptcp_sock *msk, unsigned int id,
u8 *flags, int *ifindex)
{
*flags = 0;
*ifindex = 0;
if (!id)
return 0;
if (mptcp_pm_is_userspace(msk))
return mptcp_userspace_pm_get_flags_and_ifindex_by_id(msk, id, flags, ifindex);
return mptcp_pm_nl_get_flags_and_ifindex_by_id(msk, id, flags, ifindex);
}
int mptcp_pm_set_flags(struct net *net, struct nlattr *token,
struct mptcp_pm_addr_entry *loc,
struct mptcp_pm_addr_entry *rem, u8 bkup)
{
if (token)
return mptcp_userspace_pm_set_flags(net, token, loc, rem, bkup);
return mptcp_pm_nl_set_flags(net, loc, bkup);
}
void mptcp_pm_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
u32 rcv_tstamp = READ_ONCE(tcp_sk(ssk)->rcv_tstamp);
/* keep track of rtx periods with no progress */
if (!subflow->stale_count) {
subflow->stale_rcv_tstamp = rcv_tstamp;
subflow->stale_count++;
} else if (subflow->stale_rcv_tstamp == rcv_tstamp) {
if (subflow->stale_count < U8_MAX)
subflow->stale_count++;
mptcp_pm_nl_subflow_chk_stale(msk, ssk);
} else {
subflow->stale_count = 0;
mptcp_subflow_set_active(subflow);
}
}
/* if sk is ipv4 or ipv6_only allows only same-family local and remote addresses,
* otherwise allow any matching local/remote pair
*/
bool mptcp_pm_addr_families_match(const struct sock *sk,
const struct mptcp_addr_info *loc,
const struct mptcp_addr_info *rem)
{
bool mptcp_is_v4 = sk->sk_family == AF_INET;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
bool loc_is_v4 = loc->family == AF_INET || ipv6_addr_v4mapped(&loc->addr6);
bool rem_is_v4 = rem->family == AF_INET || ipv6_addr_v4mapped(&rem->addr6);
if (mptcp_is_v4)
return loc_is_v4 && rem_is_v4;
if (ipv6_only_sock(sk))
return !loc_is_v4 && !rem_is_v4;
return loc_is_v4 == rem_is_v4;
#else
return mptcp_is_v4 && loc->family == AF_INET && rem->family == AF_INET;
#endif
}
void mptcp_pm_data_reset(struct mptcp_sock *msk)
{
u8 pm_type = mptcp_get_pm_type(sock_net((struct sock *)msk));
struct mptcp_pm_data *pm = &msk->pm;
pm->add_addr_signaled = 0;
pm->add_addr_accepted = 0;
pm->local_addr_used = 0;
pm->subflows = 0;
pm->rm_list_tx.nr = 0;
pm->rm_list_rx.nr = 0;
WRITE_ONCE(pm->pm_type, pm_type);
if (pm_type == MPTCP_PM_TYPE_KERNEL) {
bool subflows_allowed = !!mptcp_pm_get_subflows_max(msk);
/* pm->work_pending must be only be set to 'true' when
* pm->pm_type is set to MPTCP_PM_TYPE_KERNEL
*/
WRITE_ONCE(pm->work_pending,
(!!mptcp_pm_get_local_addr_max(msk) &&
subflows_allowed) ||
!!mptcp_pm_get_add_addr_signal_max(msk));
WRITE_ONCE(pm->accept_addr,
!!mptcp_pm_get_add_addr_accept_max(msk) &&
subflows_allowed);
WRITE_ONCE(pm->accept_subflow, subflows_allowed);
} else {
WRITE_ONCE(pm->work_pending, 0);
WRITE_ONCE(pm->accept_addr, 0);
WRITE_ONCE(pm->accept_subflow, 0);
}
WRITE_ONCE(pm->addr_signal, 0);
WRITE_ONCE(pm->remote_deny_join_id0, false);
pm->status = 0;
bitmap_fill(msk->pm.id_avail_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
}
void mptcp_pm_data_init(struct mptcp_sock *msk)
{
spin_lock_init(&msk->pm.lock);
INIT_LIST_HEAD(&msk->pm.anno_list);
INIT_LIST_HEAD(&msk->pm.userspace_pm_local_addr_list);
mptcp_pm_data_reset(msk);
}
void __init mptcp_pm_init(void)
{
mptcp_pm_nl_init();
}
| linux-master | net/mptcp/pm.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2021, Red Hat.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <net/sock.h>
#include <net/protocol.h>
#include <net/tcp.h>
#include <net/mptcp.h>
#include "protocol.h"
#define MIN_INFO_OPTLEN_SIZE 16
#define MIN_FULL_INFO_OPTLEN_SIZE 40
static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
{
msk_owned_by_me(msk);
if (likely(!__mptcp_check_fallback(msk)))
return NULL;
return msk->first;
}
static u32 sockopt_seq_reset(const struct sock *sk)
{
sock_owned_by_me(sk);
/* Highbits contain state. Allows to distinguish sockopt_seq
* of listener and established:
* s0 = new_listener()
* sockopt(s0) - seq is 1
* s1 = accept(s0) - s1 inherits seq 1 if listener sk (s0)
* sockopt(s0) - seq increments to 2 on s0
* sockopt(s1) // seq increments to 2 on s1 (different option)
* new ssk completes join, inherits options from s0 // seq 2
* Needs sync from mptcp join logic, but ssk->seq == msk->seq
*
* Set High order bits to sk_state so ssk->seq == msk->seq test
* will fail.
*/
return (u32)sk->sk_state << 24u;
}
static void sockopt_seq_inc(struct mptcp_sock *msk)
{
u32 seq = (msk->setsockopt_seq + 1) & 0x00ffffff;
msk->setsockopt_seq = sockopt_seq_reset((struct sock *)msk) + seq;
}
static int mptcp_get_int_option(struct mptcp_sock *msk, sockptr_t optval,
unsigned int optlen, int *val)
{
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(val, optval, sizeof(*val)))
return -EFAULT;
return 0;
}
static void mptcp_sol_socket_sync_intval(struct mptcp_sock *msk, int optname, int val)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
lock_sock(sk);
sockopt_seq_inc(msk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast(ssk);
switch (optname) {
case SO_DEBUG:
sock_valbool_flag(ssk, SOCK_DBG, !!val);
break;
case SO_KEEPALIVE:
if (ssk->sk_prot->keepalive)
ssk->sk_prot->keepalive(ssk, !!val);
sock_valbool_flag(ssk, SOCK_KEEPOPEN, !!val);
break;
case SO_PRIORITY:
ssk->sk_priority = val;
break;
case SO_SNDBUF:
case SO_SNDBUFFORCE:
ssk->sk_userlocks |= SOCK_SNDBUF_LOCK;
WRITE_ONCE(ssk->sk_sndbuf, sk->sk_sndbuf);
break;
case SO_RCVBUF:
case SO_RCVBUFFORCE:
ssk->sk_userlocks |= SOCK_RCVBUF_LOCK;
WRITE_ONCE(ssk->sk_rcvbuf, sk->sk_rcvbuf);
break;
case SO_MARK:
if (READ_ONCE(ssk->sk_mark) != sk->sk_mark) {
WRITE_ONCE(ssk->sk_mark, sk->sk_mark);
sk_dst_reset(ssk);
}
break;
case SO_INCOMING_CPU:
WRITE_ONCE(ssk->sk_incoming_cpu, val);
break;
}
subflow->setsockopt_seq = msk->setsockopt_seq;
unlock_sock_fast(ssk, slow);
}
release_sock(sk);
}
static int mptcp_sol_socket_intval(struct mptcp_sock *msk, int optname, int val)
{
sockptr_t optval = KERNEL_SOCKPTR(&val);
struct sock *sk = (struct sock *)msk;
int ret;
ret = sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname,
optval, sizeof(val));
if (ret)
return ret;
mptcp_sol_socket_sync_intval(msk, optname, val);
return 0;
}
static void mptcp_so_incoming_cpu(struct mptcp_sock *msk, int val)
{
struct sock *sk = (struct sock *)msk;
WRITE_ONCE(sk->sk_incoming_cpu, val);
mptcp_sol_socket_sync_intval(msk, SO_INCOMING_CPU, val);
}
static int mptcp_setsockopt_sol_socket_tstamp(struct mptcp_sock *msk, int optname, int val)
{
sockptr_t optval = KERNEL_SOCKPTR(&val);
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int ret;
ret = sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname,
optval, sizeof(val));
if (ret)
return ret;
lock_sock(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast(ssk);
sock_set_timestamp(sk, optname, !!val);
unlock_sock_fast(ssk, slow);
}
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_sol_socket_int(struct mptcp_sock *msk, int optname,
sockptr_t optval,
unsigned int optlen)
{
int val, ret;
ret = mptcp_get_int_option(msk, optval, optlen, &val);
if (ret)
return ret;
switch (optname) {
case SO_KEEPALIVE:
mptcp_sol_socket_sync_intval(msk, optname, val);
return 0;
case SO_DEBUG:
case SO_MARK:
case SO_PRIORITY:
case SO_SNDBUF:
case SO_SNDBUFFORCE:
case SO_RCVBUF:
case SO_RCVBUFFORCE:
return mptcp_sol_socket_intval(msk, optname, val);
case SO_INCOMING_CPU:
mptcp_so_incoming_cpu(msk, val);
return 0;
case SO_TIMESTAMP_OLD:
case SO_TIMESTAMP_NEW:
case SO_TIMESTAMPNS_OLD:
case SO_TIMESTAMPNS_NEW:
return mptcp_setsockopt_sol_socket_tstamp(msk, optname, val);
}
return -ENOPROTOOPT;
}
static int mptcp_setsockopt_sol_socket_timestamping(struct mptcp_sock *msk,
int optname,
sockptr_t optval,
unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
struct so_timestamping timestamping;
int ret;
if (optlen == sizeof(timestamping)) {
if (copy_from_sockptr(×tamping, optval,
sizeof(timestamping)))
return -EFAULT;
} else if (optlen == sizeof(int)) {
memset(×tamping, 0, sizeof(timestamping));
if (copy_from_sockptr(×tamping.flags, optval, sizeof(int)))
return -EFAULT;
} else {
return -EINVAL;
}
ret = sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname,
KERNEL_SOCKPTR(×tamping),
sizeof(timestamping));
if (ret)
return ret;
lock_sock(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast(ssk);
sock_set_timestamping(sk, optname, timestamping);
unlock_sock_fast(ssk, slow);
}
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_sol_socket_linger(struct mptcp_sock *msk, sockptr_t optval,
unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
struct linger ling;
sockptr_t kopt;
int ret;
if (optlen < sizeof(ling))
return -EINVAL;
if (copy_from_sockptr(&ling, optval, sizeof(ling)))
return -EFAULT;
kopt = KERNEL_SOCKPTR(&ling);
ret = sock_setsockopt(sk->sk_socket, SOL_SOCKET, SO_LINGER, kopt, sizeof(ling));
if (ret)
return ret;
lock_sock(sk);
sockopt_seq_inc(msk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast(ssk);
if (!ling.l_onoff) {
sock_reset_flag(ssk, SOCK_LINGER);
} else {
ssk->sk_lingertime = sk->sk_lingertime;
sock_set_flag(ssk, SOCK_LINGER);
}
subflow->setsockopt_seq = msk->setsockopt_seq;
unlock_sock_fast(ssk, slow);
}
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
struct sock *ssk;
int ret;
switch (optname) {
case SO_REUSEPORT:
case SO_REUSEADDR:
case SO_BINDTODEVICE:
case SO_BINDTOIFINDEX:
lock_sock(sk);
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
release_sock(sk);
return PTR_ERR(ssk);
}
ret = sk_setsockopt(ssk, SOL_SOCKET, optname, optval, optlen);
if (ret == 0) {
if (optname == SO_REUSEPORT)
sk->sk_reuseport = ssk->sk_reuseport;
else if (optname == SO_REUSEADDR)
sk->sk_reuse = ssk->sk_reuse;
else if (optname == SO_BINDTODEVICE)
sk->sk_bound_dev_if = ssk->sk_bound_dev_if;
else if (optname == SO_BINDTOIFINDEX)
sk->sk_bound_dev_if = ssk->sk_bound_dev_if;
}
release_sock(sk);
return ret;
case SO_KEEPALIVE:
case SO_PRIORITY:
case SO_SNDBUF:
case SO_SNDBUFFORCE:
case SO_RCVBUF:
case SO_RCVBUFFORCE:
case SO_MARK:
case SO_INCOMING_CPU:
case SO_DEBUG:
case SO_TIMESTAMP_OLD:
case SO_TIMESTAMP_NEW:
case SO_TIMESTAMPNS_OLD:
case SO_TIMESTAMPNS_NEW:
return mptcp_setsockopt_sol_socket_int(msk, optname, optval,
optlen);
case SO_TIMESTAMPING_OLD:
case SO_TIMESTAMPING_NEW:
return mptcp_setsockopt_sol_socket_timestamping(msk, optname,
optval, optlen);
case SO_LINGER:
return mptcp_setsockopt_sol_socket_linger(msk, optval, optlen);
case SO_RCVLOWAT:
case SO_RCVTIMEO_OLD:
case SO_RCVTIMEO_NEW:
case SO_SNDTIMEO_OLD:
case SO_SNDTIMEO_NEW:
case SO_BUSY_POLL:
case SO_PREFER_BUSY_POLL:
case SO_BUSY_POLL_BUDGET:
/* No need to copy: only relevant for msk */
return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
case SO_NO_CHECK:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_BSDCOMPAT:
case SO_PASSCRED:
case SO_PASSPIDFD:
case SO_PASSSEC:
case SO_RXQ_OVFL:
case SO_WIFI_STATUS:
case SO_NOFCS:
case SO_SELECT_ERR_QUEUE:
return 0;
}
/* SO_OOBINLINE is not supported, let's avoid the related mess
* SO_ATTACH_FILTER, SO_ATTACH_BPF, SO_ATTACH_REUSEPORT_CBPF,
* SO_DETACH_REUSEPORT_BPF, SO_DETACH_FILTER, SO_LOCK_FILTER,
* we must be careful with subflows
*
* SO_ATTACH_REUSEPORT_EBPF is not supported, at it checks
* explicitly the sk_protocol field
*
* SO_PEEK_OFF is unsupported, as it is for plain TCP
* SO_MAX_PACING_RATE is unsupported, we must be careful with subflows
* SO_CNX_ADVICE is currently unsupported, could possibly be relevant,
* but likely needs careful design
*
* SO_ZEROCOPY is currently unsupported, TODO in sndmsg
* SO_TXTIME is currently unsupported
*/
return -EOPNOTSUPP;
}
static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
int ret = -EOPNOTSUPP;
struct sock *ssk;
switch (optname) {
case IPV6_V6ONLY:
case IPV6_TRANSPARENT:
case IPV6_FREEBIND:
lock_sock(sk);
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
release_sock(sk);
return PTR_ERR(ssk);
}
ret = tcp_setsockopt(ssk, SOL_IPV6, optname, optval, optlen);
if (ret != 0) {
release_sock(sk);
return ret;
}
sockopt_seq_inc(msk);
switch (optname) {
case IPV6_V6ONLY:
sk->sk_ipv6only = ssk->sk_ipv6only;
break;
case IPV6_TRANSPARENT:
inet_assign_bit(TRANSPARENT, sk,
inet_test_bit(TRANSPARENT, ssk));
break;
case IPV6_FREEBIND:
inet_assign_bit(FREEBIND, sk,
inet_test_bit(FREEBIND, ssk));
break;
}
release_sock(sk);
break;
}
return ret;
}
static bool mptcp_supported_sockopt(int level, int optname)
{
if (level == SOL_IP) {
switch (optname) {
/* should work fine */
case IP_FREEBIND:
case IP_TRANSPARENT:
/* the following are control cmsg related */
case IP_PKTINFO:
case IP_RECVTTL:
case IP_RECVTOS:
case IP_RECVOPTS:
case IP_RETOPTS:
case IP_PASSSEC:
case IP_RECVORIGDSTADDR:
case IP_CHECKSUM:
case IP_RECVFRAGSIZE:
/* common stuff that need some love */
case IP_TOS:
case IP_TTL:
case IP_BIND_ADDRESS_NO_PORT:
case IP_MTU_DISCOVER:
case IP_RECVERR:
/* possibly less common may deserve some love */
case IP_MINTTL:
/* the following is apparently a no-op for plain TCP */
case IP_RECVERR_RFC4884:
return true;
}
/* IP_OPTIONS is not supported, needs subflow care */
/* IP_HDRINCL, IP_NODEFRAG are not supported, RAW specific */
/* IP_MULTICAST_TTL, IP_MULTICAST_LOOP, IP_UNICAST_IF,
* IP_ADD_MEMBERSHIP, IP_ADD_SOURCE_MEMBERSHIP, IP_DROP_MEMBERSHIP,
* IP_DROP_SOURCE_MEMBERSHIP, IP_BLOCK_SOURCE, IP_UNBLOCK_SOURCE,
* MCAST_JOIN_GROUP, MCAST_LEAVE_GROUP MCAST_JOIN_SOURCE_GROUP,
* MCAST_LEAVE_SOURCE_GROUP, MCAST_BLOCK_SOURCE, MCAST_UNBLOCK_SOURCE,
* MCAST_MSFILTER, IP_MULTICAST_ALL are not supported, better not deal
* with mcast stuff
*/
/* IP_IPSEC_POLICY, IP_XFRM_POLICY are nut supported, unrelated here */
return false;
}
if (level == SOL_IPV6) {
switch (optname) {
case IPV6_V6ONLY:
/* the following are control cmsg related */
case IPV6_RECVPKTINFO:
case IPV6_2292PKTINFO:
case IPV6_RECVHOPLIMIT:
case IPV6_2292HOPLIMIT:
case IPV6_RECVRTHDR:
case IPV6_2292RTHDR:
case IPV6_RECVHOPOPTS:
case IPV6_2292HOPOPTS:
case IPV6_RECVDSTOPTS:
case IPV6_2292DSTOPTS:
case IPV6_RECVTCLASS:
case IPV6_FLOWINFO:
case IPV6_RECVPATHMTU:
case IPV6_RECVORIGDSTADDR:
case IPV6_RECVFRAGSIZE:
/* the following ones need some love but are quite common */
case IPV6_TCLASS:
case IPV6_TRANSPARENT:
case IPV6_FREEBIND:
case IPV6_PKTINFO:
case IPV6_2292PKTOPTIONS:
case IPV6_UNICAST_HOPS:
case IPV6_MTU_DISCOVER:
case IPV6_MTU:
case IPV6_RECVERR:
case IPV6_FLOWINFO_SEND:
case IPV6_FLOWLABEL_MGR:
case IPV6_MINHOPCOUNT:
case IPV6_DONTFRAG:
case IPV6_AUTOFLOWLABEL:
/* the following one is a no-op for plain TCP */
case IPV6_RECVERR_RFC4884:
return true;
}
/* IPV6_HOPOPTS, IPV6_RTHDRDSTOPTS, IPV6_RTHDR, IPV6_DSTOPTS are
* not supported
*/
/* IPV6_MULTICAST_HOPS, IPV6_MULTICAST_LOOP, IPV6_UNICAST_IF,
* IPV6_MULTICAST_IF, IPV6_ADDRFORM,
* IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP, IPV6_JOIN_ANYCAST,
* IPV6_LEAVE_ANYCAST, IPV6_MULTICAST_ALL, MCAST_JOIN_GROUP, MCAST_LEAVE_GROUP,
* MCAST_JOIN_SOURCE_GROUP, MCAST_LEAVE_SOURCE_GROUP,
* MCAST_BLOCK_SOURCE, MCAST_UNBLOCK_SOURCE, MCAST_MSFILTER
* are not supported better not deal with mcast
*/
/* IPV6_ROUTER_ALERT, IPV6_ROUTER_ALERT_ISOLATE are not supported, since are evil */
/* IPV6_IPSEC_POLICY, IPV6_XFRM_POLICY are not supported */
/* IPV6_ADDR_PREFERENCES is not supported, we must be careful with subflows */
return false;
}
if (level == SOL_TCP) {
switch (optname) {
/* the following are no-op or should work just fine */
case TCP_THIN_DUPACK:
case TCP_DEFER_ACCEPT:
/* the following need some love */
case TCP_MAXSEG:
case TCP_NODELAY:
case TCP_THIN_LINEAR_TIMEOUTS:
case TCP_CONGESTION:
case TCP_CORK:
case TCP_KEEPIDLE:
case TCP_KEEPINTVL:
case TCP_KEEPCNT:
case TCP_SYNCNT:
case TCP_SAVE_SYN:
case TCP_LINGER2:
case TCP_WINDOW_CLAMP:
case TCP_QUICKACK:
case TCP_USER_TIMEOUT:
case TCP_TIMESTAMP:
case TCP_NOTSENT_LOWAT:
case TCP_TX_DELAY:
case TCP_INQ:
case TCP_FASTOPEN:
case TCP_FASTOPEN_CONNECT:
case TCP_FASTOPEN_KEY:
case TCP_FASTOPEN_NO_COOKIE:
return true;
}
/* TCP_MD5SIG, TCP_MD5SIG_EXT are not supported, MD5 is not compatible with MPTCP */
/* TCP_REPAIR, TCP_REPAIR_QUEUE, TCP_QUEUE_SEQ, TCP_REPAIR_OPTIONS,
* TCP_REPAIR_WINDOW are not supported, better avoid this mess
*/
}
return false;
}
static int mptcp_setsockopt_sol_tcp_congestion(struct mptcp_sock *msk, sockptr_t optval,
unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
char name[TCP_CA_NAME_MAX];
bool cap_net_admin;
int ret;
if (optlen < 1)
return -EINVAL;
ret = strncpy_from_sockptr(name, optval,
min_t(long, TCP_CA_NAME_MAX - 1, optlen));
if (ret < 0)
return -EFAULT;
name[ret] = 0;
cap_net_admin = ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN);
ret = 0;
lock_sock(sk);
sockopt_seq_inc(msk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
int err;
lock_sock(ssk);
err = tcp_set_congestion_control(ssk, name, true, cap_net_admin);
if (err < 0 && ret == 0)
ret = err;
subflow->setsockopt_seq = msk->setsockopt_seq;
release_sock(ssk);
}
if (ret == 0)
strcpy(msk->ca_name, name);
release_sock(sk);
return ret;
}
static int mptcp_setsockopt_sol_tcp_cork(struct mptcp_sock *msk, sockptr_t optval,
unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(val)))
return -EFAULT;
lock_sock(sk);
sockopt_seq_inc(msk);
msk->cork = !!val;
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
lock_sock(ssk);
__tcp_sock_set_cork(ssk, !!val);
release_sock(ssk);
}
if (!val)
mptcp_check_and_set_pending(sk);
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_sol_tcp_nodelay(struct mptcp_sock *msk, sockptr_t optval,
unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int val;
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(val)))
return -EFAULT;
lock_sock(sk);
sockopt_seq_inc(msk);
msk->nodelay = !!val;
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
lock_sock(ssk);
__tcp_sock_set_nodelay(ssk, !!val);
release_sock(ssk);
}
if (val)
mptcp_check_and_set_pending(sk);
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_sol_ip_set_transparent(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
struct sock *ssk;
int err;
err = ip_setsockopt(sk, SOL_IP, optname, optval, optlen);
if (err != 0)
return err;
lock_sock(sk);
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
release_sock(sk);
return PTR_ERR(ssk);
}
switch (optname) {
case IP_FREEBIND:
inet_assign_bit(FREEBIND, ssk, inet_test_bit(FREEBIND, sk));
break;
case IP_TRANSPARENT:
inet_assign_bit(TRANSPARENT, ssk,
inet_test_bit(TRANSPARENT, sk));
break;
default:
release_sock(sk);
WARN_ON_ONCE(1);
return -EOPNOTSUPP;
}
sockopt_seq_inc(msk);
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_v4_set_tos(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int err, val;
err = ip_setsockopt(sk, SOL_IP, optname, optval, optlen);
if (err != 0)
return err;
lock_sock(sk);
sockopt_seq_inc(msk);
val = inet_sk(sk)->tos;
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
__ip_sock_set_tos(ssk, val);
}
release_sock(sk);
return 0;
}
static int mptcp_setsockopt_v4(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
switch (optname) {
case IP_FREEBIND:
case IP_TRANSPARENT:
return mptcp_setsockopt_sol_ip_set_transparent(msk, optname, optval, optlen);
case IP_TOS:
return mptcp_setsockopt_v4_set_tos(msk, optname, optval, optlen);
}
return -EOPNOTSUPP;
}
static int mptcp_setsockopt_first_sf_only(struct mptcp_sock *msk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
struct sock *ssk;
int ret;
/* Limit to first subflow, before the connection establishment */
lock_sock(sk);
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
ret = PTR_ERR(ssk);
goto unlock;
}
ret = tcp_setsockopt(ssk, level, optname, optval, optlen);
unlock:
release_sock(sk);
return ret;
}
static int mptcp_setsockopt_sol_tcp(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (void *)msk;
int ret, val;
switch (optname) {
case TCP_INQ:
ret = mptcp_get_int_option(msk, optval, optlen, &val);
if (ret)
return ret;
if (val < 0 || val > 1)
return -EINVAL;
lock_sock(sk);
msk->recvmsg_inq = !!val;
release_sock(sk);
return 0;
case TCP_ULP:
return -EOPNOTSUPP;
case TCP_CONGESTION:
return mptcp_setsockopt_sol_tcp_congestion(msk, optval, optlen);
case TCP_CORK:
return mptcp_setsockopt_sol_tcp_cork(msk, optval, optlen);
case TCP_NODELAY:
return mptcp_setsockopt_sol_tcp_nodelay(msk, optval, optlen);
case TCP_DEFER_ACCEPT:
/* See tcp.c: TCP_DEFER_ACCEPT does not fail */
mptcp_setsockopt_first_sf_only(msk, SOL_TCP, optname, optval, optlen);
return 0;
case TCP_FASTOPEN:
case TCP_FASTOPEN_CONNECT:
case TCP_FASTOPEN_KEY:
case TCP_FASTOPEN_NO_COOKIE:
return mptcp_setsockopt_first_sf_only(msk, SOL_TCP, optname,
optval, optlen);
}
return -EOPNOTSUPP;
}
int mptcp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
pr_debug("msk=%p", msk);
if (level == SOL_SOCKET)
return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
if (!mptcp_supported_sockopt(level, optname))
return -ENOPROTOOPT;
/* @@ the meaning of setsockopt() when the socket is connected and
* there are multiple subflows is not yet defined. It is up to the
* MPTCP-level socket to configure the subflows until the subflow
* is in TCP fallback, when TCP socket options are passed through
* to the one remaining subflow.
*/
lock_sock(sk);
ssk = __mptcp_tcp_fallback(msk);
release_sock(sk);
if (ssk)
return tcp_setsockopt(ssk, level, optname, optval, optlen);
if (level == SOL_IP)
return mptcp_setsockopt_v4(msk, optname, optval, optlen);
if (level == SOL_IPV6)
return mptcp_setsockopt_v6(msk, optname, optval, optlen);
if (level == SOL_TCP)
return mptcp_setsockopt_sol_tcp(msk, optname, optval, optlen);
return -EOPNOTSUPP;
}
static int mptcp_getsockopt_first_sf_only(struct mptcp_sock *msk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = (struct sock *)msk;
struct sock *ssk;
int ret;
lock_sock(sk);
ssk = msk->first;
if (ssk) {
ret = tcp_getsockopt(ssk, level, optname, optval, optlen);
goto out;
}
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
ret = PTR_ERR(ssk);
goto out;
}
ret = tcp_getsockopt(ssk, level, optname, optval, optlen);
out:
release_sock(sk);
return ret;
}
void mptcp_diag_fill_info(struct mptcp_sock *msk, struct mptcp_info *info)
{
struct sock *sk = (struct sock *)msk;
u32 flags = 0;
bool slow;
memset(info, 0, sizeof(*info));
info->mptcpi_subflows = READ_ONCE(msk->pm.subflows);
info->mptcpi_add_addr_signal = READ_ONCE(msk->pm.add_addr_signaled);
info->mptcpi_add_addr_accepted = READ_ONCE(msk->pm.add_addr_accepted);
info->mptcpi_local_addr_used = READ_ONCE(msk->pm.local_addr_used);
if (inet_sk_state_load(sk) == TCP_LISTEN)
return;
/* The following limits only make sense for the in-kernel PM */
if (mptcp_pm_is_kernel(msk)) {
info->mptcpi_subflows_max =
mptcp_pm_get_subflows_max(msk);
info->mptcpi_add_addr_signal_max =
mptcp_pm_get_add_addr_signal_max(msk);
info->mptcpi_add_addr_accepted_max =
mptcp_pm_get_add_addr_accept_max(msk);
info->mptcpi_local_addr_max =
mptcp_pm_get_local_addr_max(msk);
}
if (test_bit(MPTCP_FALLBACK_DONE, &msk->flags))
flags |= MPTCP_INFO_FLAG_FALLBACK;
if (READ_ONCE(msk->can_ack))
flags |= MPTCP_INFO_FLAG_REMOTE_KEY_RECEIVED;
info->mptcpi_flags = flags;
mptcp_data_lock(sk);
info->mptcpi_snd_una = msk->snd_una;
info->mptcpi_rcv_nxt = msk->ack_seq;
info->mptcpi_bytes_acked = msk->bytes_acked;
mptcp_data_unlock(sk);
slow = lock_sock_fast(sk);
info->mptcpi_csum_enabled = msk->csum_enabled;
info->mptcpi_token = msk->token;
info->mptcpi_write_seq = msk->write_seq;
info->mptcpi_retransmits = inet_csk(sk)->icsk_retransmits;
info->mptcpi_bytes_sent = msk->bytes_sent;
info->mptcpi_bytes_received = msk->bytes_received;
info->mptcpi_bytes_retrans = msk->bytes_retrans;
unlock_sock_fast(sk, slow);
}
EXPORT_SYMBOL_GPL(mptcp_diag_fill_info);
static int mptcp_getsockopt_info(struct mptcp_sock *msk, char __user *optval, int __user *optlen)
{
struct mptcp_info m_info;
int len;
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, sizeof(struct mptcp_info));
mptcp_diag_fill_info(msk, &m_info);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &m_info, len))
return -EFAULT;
return 0;
}
static int mptcp_put_subflow_data(struct mptcp_subflow_data *sfd,
char __user *optval,
u32 copied,
int __user *optlen)
{
u32 copylen = min_t(u32, sfd->size_subflow_data, sizeof(*sfd));
if (copied)
copied += sfd->size_subflow_data;
else
copied = copylen;
if (put_user(copied, optlen))
return -EFAULT;
if (copy_to_user(optval, sfd, copylen))
return -EFAULT;
return 0;
}
static int mptcp_get_subflow_data(struct mptcp_subflow_data *sfd,
char __user *optval,
int __user *optlen)
{
int len, copylen;
if (get_user(len, optlen))
return -EFAULT;
/* if mptcp_subflow_data size is changed, need to adjust
* this function to deal with programs using old version.
*/
BUILD_BUG_ON(sizeof(*sfd) != MIN_INFO_OPTLEN_SIZE);
if (len < MIN_INFO_OPTLEN_SIZE)
return -EINVAL;
memset(sfd, 0, sizeof(*sfd));
copylen = min_t(unsigned int, len, sizeof(*sfd));
if (copy_from_user(sfd, optval, copylen))
return -EFAULT;
/* size_subflow_data is u32, but len is signed */
if (sfd->size_subflow_data > INT_MAX ||
sfd->size_user > INT_MAX)
return -EINVAL;
if (sfd->size_subflow_data < MIN_INFO_OPTLEN_SIZE ||
sfd->size_subflow_data > len)
return -EINVAL;
if (sfd->num_subflows || sfd->size_kernel)
return -EINVAL;
return len - sfd->size_subflow_data;
}
static int mptcp_getsockopt_tcpinfo(struct mptcp_sock *msk, char __user *optval,
int __user *optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
unsigned int sfcount = 0, copied = 0;
struct mptcp_subflow_data sfd;
char __user *infoptr;
int len;
len = mptcp_get_subflow_data(&sfd, optval, optlen);
if (len < 0)
return len;
sfd.size_kernel = sizeof(struct tcp_info);
sfd.size_user = min_t(unsigned int, sfd.size_user,
sizeof(struct tcp_info));
infoptr = optval + sfd.size_subflow_data;
lock_sock(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
++sfcount;
if (len && len >= sfd.size_user) {
struct tcp_info info;
tcp_get_info(ssk, &info);
if (copy_to_user(infoptr, &info, sfd.size_user)) {
release_sock(sk);
return -EFAULT;
}
infoptr += sfd.size_user;
copied += sfd.size_user;
len -= sfd.size_user;
}
}
release_sock(sk);
sfd.num_subflows = sfcount;
if (mptcp_put_subflow_data(&sfd, optval, copied, optlen))
return -EFAULT;
return 0;
}
static void mptcp_get_sub_addrs(const struct sock *sk, struct mptcp_subflow_addrs *a)
{
const struct inet_sock *inet = inet_sk(sk);
memset(a, 0, sizeof(*a));
if (sk->sk_family == AF_INET) {
a->sin_local.sin_family = AF_INET;
a->sin_local.sin_port = inet->inet_sport;
a->sin_local.sin_addr.s_addr = inet->inet_rcv_saddr;
if (!a->sin_local.sin_addr.s_addr)
a->sin_local.sin_addr.s_addr = inet->inet_saddr;
a->sin_remote.sin_family = AF_INET;
a->sin_remote.sin_port = inet->inet_dport;
a->sin_remote.sin_addr.s_addr = inet->inet_daddr;
#if IS_ENABLED(CONFIG_IPV6)
} else if (sk->sk_family == AF_INET6) {
const struct ipv6_pinfo *np = inet6_sk(sk);
if (WARN_ON_ONCE(!np))
return;
a->sin6_local.sin6_family = AF_INET6;
a->sin6_local.sin6_port = inet->inet_sport;
if (ipv6_addr_any(&sk->sk_v6_rcv_saddr))
a->sin6_local.sin6_addr = np->saddr;
else
a->sin6_local.sin6_addr = sk->sk_v6_rcv_saddr;
a->sin6_remote.sin6_family = AF_INET6;
a->sin6_remote.sin6_port = inet->inet_dport;
a->sin6_remote.sin6_addr = sk->sk_v6_daddr;
#endif
}
}
static int mptcp_getsockopt_subflow_addrs(struct mptcp_sock *msk, char __user *optval,
int __user *optlen)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
unsigned int sfcount = 0, copied = 0;
struct mptcp_subflow_data sfd;
char __user *addrptr;
int len;
len = mptcp_get_subflow_data(&sfd, optval, optlen);
if (len < 0)
return len;
sfd.size_kernel = sizeof(struct mptcp_subflow_addrs);
sfd.size_user = min_t(unsigned int, sfd.size_user,
sizeof(struct mptcp_subflow_addrs));
addrptr = optval + sfd.size_subflow_data;
lock_sock(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
++sfcount;
if (len && len >= sfd.size_user) {
struct mptcp_subflow_addrs a;
mptcp_get_sub_addrs(ssk, &a);
if (copy_to_user(addrptr, &a, sfd.size_user)) {
release_sock(sk);
return -EFAULT;
}
addrptr += sfd.size_user;
copied += sfd.size_user;
len -= sfd.size_user;
}
}
release_sock(sk);
sfd.num_subflows = sfcount;
if (mptcp_put_subflow_data(&sfd, optval, copied, optlen))
return -EFAULT;
return 0;
}
static int mptcp_get_full_info(struct mptcp_full_info *mfi,
char __user *optval,
int __user *optlen)
{
int len;
BUILD_BUG_ON(offsetof(struct mptcp_full_info, mptcp_info) !=
MIN_FULL_INFO_OPTLEN_SIZE);
if (get_user(len, optlen))
return -EFAULT;
if (len < MIN_FULL_INFO_OPTLEN_SIZE)
return -EINVAL;
memset(mfi, 0, sizeof(*mfi));
if (copy_from_user(mfi, optval, MIN_FULL_INFO_OPTLEN_SIZE))
return -EFAULT;
if (mfi->size_tcpinfo_kernel ||
mfi->size_sfinfo_kernel ||
mfi->num_subflows)
return -EINVAL;
if (mfi->size_sfinfo_user > INT_MAX ||
mfi->size_tcpinfo_user > INT_MAX)
return -EINVAL;
return len - MIN_FULL_INFO_OPTLEN_SIZE;
}
static int mptcp_put_full_info(struct mptcp_full_info *mfi,
char __user *optval,
u32 copylen,
int __user *optlen)
{
copylen += MIN_FULL_INFO_OPTLEN_SIZE;
if (put_user(copylen, optlen))
return -EFAULT;
if (copy_to_user(optval, mfi, copylen))
return -EFAULT;
return 0;
}
static int mptcp_getsockopt_full_info(struct mptcp_sock *msk, char __user *optval,
int __user *optlen)
{
unsigned int sfcount = 0, copylen = 0;
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
void __user *tcpinfoptr, *sfinfoptr;
struct mptcp_full_info mfi;
int len;
len = mptcp_get_full_info(&mfi, optval, optlen);
if (len < 0)
return len;
/* don't bother filling the mptcp info if there is not enough
* user-space-provided storage
*/
if (len > 0) {
mptcp_diag_fill_info(msk, &mfi.mptcp_info);
copylen += min_t(unsigned int, len, sizeof(struct mptcp_info));
}
mfi.size_tcpinfo_kernel = sizeof(struct tcp_info);
mfi.size_tcpinfo_user = min_t(unsigned int, mfi.size_tcpinfo_user,
sizeof(struct tcp_info));
sfinfoptr = u64_to_user_ptr(mfi.subflow_info);
mfi.size_sfinfo_kernel = sizeof(struct mptcp_subflow_info);
mfi.size_sfinfo_user = min_t(unsigned int, mfi.size_sfinfo_user,
sizeof(struct mptcp_subflow_info));
tcpinfoptr = u64_to_user_ptr(mfi.tcp_info);
lock_sock(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
struct mptcp_subflow_info sfinfo;
struct tcp_info tcp_info;
if (sfcount++ >= mfi.size_arrays_user)
continue;
/* fetch addr/tcp_info only if the user space buffers
* are wide enough
*/
memset(&sfinfo, 0, sizeof(sfinfo));
sfinfo.id = subflow->subflow_id;
if (mfi.size_sfinfo_user >
offsetof(struct mptcp_subflow_info, addrs))
mptcp_get_sub_addrs(ssk, &sfinfo.addrs);
if (copy_to_user(sfinfoptr, &sfinfo, mfi.size_sfinfo_user))
goto fail_release;
if (mfi.size_tcpinfo_user) {
tcp_get_info(ssk, &tcp_info);
if (copy_to_user(tcpinfoptr, &tcp_info,
mfi.size_tcpinfo_user))
goto fail_release;
}
tcpinfoptr += mfi.size_tcpinfo_user;
sfinfoptr += mfi.size_sfinfo_user;
}
release_sock(sk);
mfi.num_subflows = sfcount;
if (mptcp_put_full_info(&mfi, optval, copylen, optlen))
return -EFAULT;
return 0;
fail_release:
release_sock(sk);
return -EFAULT;
}
static int mptcp_put_int_option(struct mptcp_sock *msk, char __user *optval,
int __user *optlen, int val)
{
int len;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
if (len < sizeof(int) && len > 0 && val >= 0 && val <= 255) {
unsigned char ucval = (unsigned char)val;
len = 1;
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &ucval, 1))
return -EFAULT;
} else {
len = min_t(unsigned int, len, sizeof(int));
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
}
return 0;
}
static int mptcp_getsockopt_sol_tcp(struct mptcp_sock *msk, int optname,
char __user *optval, int __user *optlen)
{
switch (optname) {
case TCP_ULP:
case TCP_CONGESTION:
case TCP_INFO:
case TCP_CC_INFO:
case TCP_DEFER_ACCEPT:
case TCP_FASTOPEN:
case TCP_FASTOPEN_CONNECT:
case TCP_FASTOPEN_KEY:
case TCP_FASTOPEN_NO_COOKIE:
return mptcp_getsockopt_first_sf_only(msk, SOL_TCP, optname,
optval, optlen);
case TCP_INQ:
return mptcp_put_int_option(msk, optval, optlen, msk->recvmsg_inq);
case TCP_CORK:
return mptcp_put_int_option(msk, optval, optlen, msk->cork);
case TCP_NODELAY:
return mptcp_put_int_option(msk, optval, optlen, msk->nodelay);
}
return -EOPNOTSUPP;
}
static int mptcp_getsockopt_v4(struct mptcp_sock *msk, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = (void *)msk;
switch (optname) {
case IP_TOS:
return mptcp_put_int_option(msk, optval, optlen, inet_sk(sk)->tos);
}
return -EOPNOTSUPP;
}
static int mptcp_getsockopt_sol_mptcp(struct mptcp_sock *msk, int optname,
char __user *optval, int __user *optlen)
{
switch (optname) {
case MPTCP_INFO:
return mptcp_getsockopt_info(msk, optval, optlen);
case MPTCP_FULL_INFO:
return mptcp_getsockopt_full_info(msk, optval, optlen);
case MPTCP_TCPINFO:
return mptcp_getsockopt_tcpinfo(msk, optval, optlen);
case MPTCP_SUBFLOW_ADDRS:
return mptcp_getsockopt_subflow_addrs(msk, optval, optlen);
}
return -EOPNOTSUPP;
}
int mptcp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *option)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
pr_debug("msk=%p", msk);
/* @@ the meaning of setsockopt() when the socket is connected and
* there are multiple subflows is not yet defined. It is up to the
* MPTCP-level socket to configure the subflows until the subflow
* is in TCP fallback, when socket options are passed through
* to the one remaining subflow.
*/
lock_sock(sk);
ssk = __mptcp_tcp_fallback(msk);
release_sock(sk);
if (ssk)
return tcp_getsockopt(ssk, level, optname, optval, option);
if (level == SOL_IP)
return mptcp_getsockopt_v4(msk, optname, optval, option);
if (level == SOL_TCP)
return mptcp_getsockopt_sol_tcp(msk, optname, optval, option);
if (level == SOL_MPTCP)
return mptcp_getsockopt_sol_mptcp(msk, optname, optval, option);
return -EOPNOTSUPP;
}
static void sync_socket_options(struct mptcp_sock *msk, struct sock *ssk)
{
static const unsigned int tx_rx_locks = SOCK_RCVBUF_LOCK | SOCK_SNDBUF_LOCK;
struct sock *sk = (struct sock *)msk;
if (ssk->sk_prot->keepalive) {
if (sock_flag(sk, SOCK_KEEPOPEN))
ssk->sk_prot->keepalive(ssk, 1);
else
ssk->sk_prot->keepalive(ssk, 0);
}
ssk->sk_priority = sk->sk_priority;
ssk->sk_bound_dev_if = sk->sk_bound_dev_if;
ssk->sk_incoming_cpu = sk->sk_incoming_cpu;
ssk->sk_ipv6only = sk->sk_ipv6only;
__ip_sock_set_tos(ssk, inet_sk(sk)->tos);
if (sk->sk_userlocks & tx_rx_locks) {
ssk->sk_userlocks |= sk->sk_userlocks & tx_rx_locks;
if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
WRITE_ONCE(ssk->sk_sndbuf, sk->sk_sndbuf);
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
WRITE_ONCE(ssk->sk_rcvbuf, sk->sk_rcvbuf);
}
if (sock_flag(sk, SOCK_LINGER)) {
ssk->sk_lingertime = sk->sk_lingertime;
sock_set_flag(ssk, SOCK_LINGER);
} else {
sock_reset_flag(ssk, SOCK_LINGER);
}
if (sk->sk_mark != ssk->sk_mark) {
ssk->sk_mark = sk->sk_mark;
sk_dst_reset(ssk);
}
sock_valbool_flag(ssk, SOCK_DBG, sock_flag(sk, SOCK_DBG));
if (inet_csk(sk)->icsk_ca_ops != inet_csk(ssk)->icsk_ca_ops)
tcp_set_congestion_control(ssk, msk->ca_name, false, true);
__tcp_sock_set_cork(ssk, !!msk->cork);
__tcp_sock_set_nodelay(ssk, !!msk->nodelay);
inet_assign_bit(TRANSPARENT, ssk, inet_test_bit(TRANSPARENT, sk));
inet_assign_bit(FREEBIND, ssk, inet_test_bit(FREEBIND, sk));
}
static void __mptcp_sockopt_sync(struct mptcp_sock *msk, struct sock *ssk)
{
bool slow = lock_sock_fast(ssk);
sync_socket_options(msk, ssk);
unlock_sock_fast(ssk, slow);
}
void mptcp_sockopt_sync(struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
msk_owned_by_me(msk);
if (READ_ONCE(subflow->setsockopt_seq) != msk->setsockopt_seq) {
__mptcp_sockopt_sync(msk, ssk);
subflow->setsockopt_seq = msk->setsockopt_seq;
}
}
void mptcp_sockopt_sync_locked(struct mptcp_sock *msk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
msk_owned_by_me(msk);
if (READ_ONCE(subflow->setsockopt_seq) != msk->setsockopt_seq) {
sync_socket_options(msk, ssk);
subflow->setsockopt_seq = msk->setsockopt_seq;
}
}
| linux-master | net/mptcp/sockopt.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2017 - 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/sched/signal.h>
#include <linux/atomic.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/protocol.h>
#include <net/tcp.h>
#include <net/tcp_states.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
#include <net/transp_v6.h>
#endif
#include <net/mptcp.h>
#include <net/xfrm.h>
#include <asm/ioctls.h>
#include "protocol.h"
#include "mib.h"
#define CREATE_TRACE_POINTS
#include <trace/events/mptcp.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
struct mptcp6_sock {
struct mptcp_sock msk;
struct ipv6_pinfo np;
};
#endif
enum {
MPTCP_CMSG_TS = BIT(0),
MPTCP_CMSG_INQ = BIT(1),
};
static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
static void __mptcp_destroy_sock(struct sock *sk);
static void mptcp_check_send_data_fin(struct sock *sk);
DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
static struct net_device mptcp_napi_dev;
/* Returns end sequence number of the receiver's advertised window */
static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
{
return READ_ONCE(msk->wnd_end);
}
static bool mptcp_is_tcpsk(struct sock *sk)
{
struct socket *sock = sk->sk_socket;
if (unlikely(sk->sk_prot == &tcp_prot)) {
/* we are being invoked after mptcp_accept() has
* accepted a non-mp-capable flow: sk is a tcp_sk,
* not an mptcp one.
*
* Hand the socket over to tcp so all further socket ops
* bypass mptcp.
*/
WRITE_ONCE(sock->ops, &inet_stream_ops);
return true;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
WRITE_ONCE(sock->ops, &inet6_stream_ops);
return true;
#endif
}
return false;
}
static int __mptcp_socket_create(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
struct socket *ssock;
int err;
err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
if (err)
return err;
msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
WRITE_ONCE(msk->first, ssock->sk);
subflow = mptcp_subflow_ctx(ssock->sk);
list_add(&subflow->node, &msk->conn_list);
sock_hold(ssock->sk);
subflow->request_mptcp = 1;
subflow->subflow_id = msk->subflow_id++;
/* This is the first subflow, always with id 0 */
subflow->local_id_valid = 1;
mptcp_sock_graft(msk->first, sk->sk_socket);
iput(SOCK_INODE(ssock));
return 0;
}
/* If the MPC handshake is not started, returns the first subflow,
* eventually allocating it.
*/
struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
int ret;
if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
return ERR_PTR(-EINVAL);
if (!msk->first) {
ret = __mptcp_socket_create(msk);
if (ret)
return ERR_PTR(ret);
mptcp_sockopt_sync(msk, msk->first);
}
return msk->first;
}
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
{
sk_drops_add(sk, skb);
__kfree_skb(skb);
}
static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
{
WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
mptcp_sk(sk)->rmem_fwd_alloc + size);
}
static void mptcp_rmem_charge(struct sock *sk, int size)
{
mptcp_rmem_fwd_alloc_add(sk, -size);
}
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
struct sk_buff *from)
{
bool fragstolen;
int delta;
if (MPTCP_SKB_CB(from)->offset ||
!skb_try_coalesce(to, from, &fragstolen, &delta))
return false;
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
to->len, MPTCP_SKB_CB(from)->end_seq);
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
/* note the fwd memory can reach a negative value after accounting
* for the delta, but the later skb free will restore a non
* negative one
*/
atomic_add(delta, &sk->sk_rmem_alloc);
mptcp_rmem_charge(sk, delta);
kfree_skb_partial(from, fragstolen);
return true;
}
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
struct sk_buff *from)
{
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
return false;
return mptcp_try_coalesce((struct sock *)msk, to, from);
}
static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
{
amount >>= PAGE_SHIFT;
mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
__sk_mem_reduce_allocated(sk, amount);
}
static void mptcp_rmem_uncharge(struct sock *sk, int size)
{
struct mptcp_sock *msk = mptcp_sk(sk);
int reclaimable;
mptcp_rmem_fwd_alloc_add(sk, size);
reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
/* see sk_mem_uncharge() for the rationale behind the following schema */
if (unlikely(reclaimable >= PAGE_SIZE))
__mptcp_rmem_reclaim(sk, reclaimable);
}
static void mptcp_rfree(struct sk_buff *skb)
{
unsigned int len = skb->truesize;
struct sock *sk = skb->sk;
atomic_sub(len, &sk->sk_rmem_alloc);
mptcp_rmem_uncharge(sk, len);
}
void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
{
skb_orphan(skb);
skb->sk = sk;
skb->destructor = mptcp_rfree;
atomic_add(skb->truesize, &sk->sk_rmem_alloc);
mptcp_rmem_charge(sk, skb->truesize);
}
/* "inspired" by tcp_data_queue_ofo(), main differences:
* - use mptcp seqs
* - don't cope with sacks
*/
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
{
struct sock *sk = (struct sock *)msk;
struct rb_node **p, *parent;
u64 seq, end_seq, max_seq;
struct sk_buff *skb1;
seq = MPTCP_SKB_CB(skb)->map_seq;
end_seq = MPTCP_SKB_CB(skb)->end_seq;
max_seq = atomic64_read(&msk->rcv_wnd_sent);
pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
RB_EMPTY_ROOT(&msk->out_of_order_queue));
if (after64(end_seq, max_seq)) {
/* out of window */
mptcp_drop(sk, skb);
pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
(unsigned long long)end_seq - (unsigned long)max_seq,
(unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
return;
}
p = &msk->out_of_order_queue.rb_node;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
rb_link_node(&skb->rbnode, NULL, p);
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
msk->ooo_last_skb = skb;
goto end;
}
/* with 2 subflows, adding at end of ooo queue is quite likely
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
*/
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
return;
}
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
parent = &msk->ooo_last_skb->rbnode;
p = &parent->rb_right;
goto insert;
}
/* Find place to insert this segment. Handle overlaps on the way. */
parent = NULL;
while (*p) {
parent = *p;
skb1 = rb_to_skb(parent);
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
p = &parent->rb_left;
continue;
}
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
/* All the bits are present. Drop. */
mptcp_drop(sk, skb);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
return;
}
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
/* partial overlap:
* | skb |
* | skb1 |
* continue traversing
*/
} else {
/* skb's seq == skb1's seq and skb covers skb1.
* Replace skb1 with skb.
*/
rb_replace_node(&skb1->rbnode, &skb->rbnode,
&msk->out_of_order_queue);
mptcp_drop(sk, skb1);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
goto merge_right;
}
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
return;
}
p = &parent->rb_right;
}
insert:
/* Insert segment into RB tree. */
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
merge_right:
/* Remove other segments covered by skb. */
while ((skb1 = skb_rb_next(skb)) != NULL) {
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
break;
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
mptcp_drop(sk, skb1);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
}
/* If there is no skb after us, we are the last_skb ! */
if (!skb1)
msk->ooo_last_skb = skb;
end:
skb_condense(skb);
mptcp_set_owner_r(skb, sk);
}
static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
{
struct mptcp_sock *msk = mptcp_sk(sk);
int amt, amount;
if (size <= msk->rmem_fwd_alloc)
return true;
size -= msk->rmem_fwd_alloc;
amt = sk_mem_pages(size);
amount = amt << PAGE_SHIFT;
if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
return false;
mptcp_rmem_fwd_alloc_add(sk, amount);
return true;
}
static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
struct sk_buff *skb, unsigned int offset,
size_t copy_len)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = (struct sock *)msk;
struct sk_buff *tail;
bool has_rxtstamp;
__skb_unlink(skb, &ssk->sk_receive_queue);
skb_ext_reset(skb);
skb_orphan(skb);
/* try to fetch required memory from subflow */
if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
goto drop;
has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
/* the skb map_seq accounts for the skb offset:
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
* value
*/
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
MPTCP_SKB_CB(skb)->offset = offset;
MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
/* in sequence */
msk->bytes_received += copy_len;
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
tail = skb_peek_tail(&sk->sk_receive_queue);
if (tail && mptcp_try_coalesce(sk, tail, skb))
return true;
mptcp_set_owner_r(skb, sk);
__skb_queue_tail(&sk->sk_receive_queue, skb);
return true;
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
mptcp_data_queue_ofo(msk, skb);
return false;
}
/* old data, keep it simple and drop the whole pkt, sender
* will retransmit as needed, if needed.
*/
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
drop:
mptcp_drop(sk, skb);
return false;
}
static void mptcp_stop_rtx_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
mptcp_sk(sk)->timer_ival = 0;
}
static void mptcp_close_wake_up(struct sock *sk)
{
if (sock_flag(sk, SOCK_DEAD))
return;
sk->sk_state_change(sk);
if (sk->sk_shutdown == SHUTDOWN_MASK ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
else
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
}
static bool mptcp_pending_data_fin_ack(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
return ((1 << sk->sk_state) &
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
msk->write_seq == READ_ONCE(msk->snd_una);
}
static void mptcp_check_data_fin_ack(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
/* Look for an acknowledged DATA_FIN */
if (mptcp_pending_data_fin_ack(sk)) {
WRITE_ONCE(msk->snd_data_fin_enable, 0);
switch (sk->sk_state) {
case TCP_FIN_WAIT1:
inet_sk_state_store(sk, TCP_FIN_WAIT2);
break;
case TCP_CLOSING:
case TCP_LAST_ACK:
inet_sk_state_store(sk, TCP_CLOSE);
break;
}
mptcp_close_wake_up(sk);
}
}
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (READ_ONCE(msk->rcv_data_fin) &&
((1 << sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
if (msk->ack_seq == rcv_data_fin_seq) {
if (seq)
*seq = rcv_data_fin_seq;
return true;
}
}
return false;
}
static void mptcp_set_datafin_timeout(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
u32 retransmits;
retransmits = min_t(u32, icsk->icsk_retransmits,
ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
}
static void __mptcp_set_timeout(struct sock *sk, long tout)
{
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
}
static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
{
const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
inet_csk(ssk)->icsk_timeout - jiffies : 0;
}
static void mptcp_set_timeout(struct sock *sk)
{
struct mptcp_subflow_context *subflow;
long tout = 0;
mptcp_for_each_subflow(mptcp_sk(sk), subflow)
tout = max(tout, mptcp_timeout_from_subflow(subflow));
__mptcp_set_timeout(sk, tout);
}
static inline bool tcp_can_send_ack(const struct sock *ssk)
{
return !((1 << inet_sk_state_load(ssk)) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
}
void __mptcp_subflow_send_ack(struct sock *ssk)
{
if (tcp_can_send_ack(ssk))
tcp_send_ack(ssk);
}
static void mptcp_subflow_send_ack(struct sock *ssk)
{
bool slow;
slow = lock_sock_fast(ssk);
__mptcp_subflow_send_ack(ssk);
unlock_sock_fast(ssk, slow);
}
static void mptcp_send_ack(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
mptcp_for_each_subflow(msk, subflow)
mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
}
static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
{
bool slow;
slow = lock_sock_fast(ssk);
if (tcp_can_send_ack(ssk))
tcp_cleanup_rbuf(ssk, 1);
unlock_sock_fast(ssk, slow);
}
static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
{
const struct inet_connection_sock *icsk = inet_csk(ssk);
u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
const struct tcp_sock *tp = tcp_sk(ssk);
return (ack_pending & ICSK_ACK_SCHED) &&
((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
(rx_empty && ack_pending &
(ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
}
static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
{
int old_space = READ_ONCE(msk->old_wspace);
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int space = __mptcp_space(sk);
bool cleanup, rx_empty;
cleanup = (space > 0) && (space >= (old_space << 1));
rx_empty = !__mptcp_rmem(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
mptcp_subflow_cleanup_rbuf(ssk);
}
}
static bool mptcp_check_data_fin(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
u64 rcv_data_fin_seq;
bool ret = false;
/* Need to ack a DATA_FIN received from a peer while this side
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
* msk->rcv_data_fin was set when parsing the incoming options
* at the subflow level and the msk lock was not held, so this
* is the first opportunity to act on the DATA_FIN and change
* the msk state.
*
* If we are caught up to the sequence number of the incoming
* DATA_FIN, send the DATA_ACK now and do state transition. If
* not caught up, do nothing and let the recv code send DATA_ACK
* when catching up.
*/
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
WRITE_ONCE(msk->rcv_data_fin, 0);
WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
switch (sk->sk_state) {
case TCP_ESTABLISHED:
inet_sk_state_store(sk, TCP_CLOSE_WAIT);
break;
case TCP_FIN_WAIT1:
inet_sk_state_store(sk, TCP_CLOSING);
break;
case TCP_FIN_WAIT2:
inet_sk_state_store(sk, TCP_CLOSE);
break;
default:
/* Other states not expected */
WARN_ON_ONCE(1);
break;
}
ret = true;
if (!__mptcp_check_fallback(msk))
mptcp_send_ack(msk);
mptcp_close_wake_up(sk);
}
return ret;
}
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
struct sock *ssk,
unsigned int *bytes)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = (struct sock *)msk;
unsigned int moved = 0;
bool more_data_avail;
struct tcp_sock *tp;
bool done = false;
int sk_rbuf;
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
if (unlikely(ssk_rbuf > sk_rbuf)) {
WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
sk_rbuf = ssk_rbuf;
}
}
pr_debug("msk=%p ssk=%p", msk, ssk);
tp = tcp_sk(ssk);
do {
u32 map_remaining, offset;
u32 seq = tp->copied_seq;
struct sk_buff *skb;
bool fin;
/* try to move as much data as available */
map_remaining = subflow->map_data_len -
mptcp_subflow_get_map_offset(subflow);
skb = skb_peek(&ssk->sk_receive_queue);
if (!skb) {
/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
* a different CPU can have already processed the pending
* data, stop here or we can enter an infinite loop
*/
if (!moved)
done = true;
break;
}
if (__mptcp_check_fallback(msk)) {
/* Under fallback skbs have no MPTCP extension and TCP could
* collapse them between the dummy map creation and the
* current dequeue. Be sure to adjust the map size.
*/
map_remaining = skb->len;
subflow->map_data_len = skb->len;
}
offset = seq - TCP_SKB_CB(skb)->seq;
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
if (fin) {
done = true;
seq++;
}
if (offset < skb->len) {
size_t len = skb->len - offset;
if (tp->urg_data)
done = true;
if (__mptcp_move_skb(msk, ssk, skb, offset, len))
moved += len;
seq += len;
if (WARN_ON_ONCE(map_remaining < len))
break;
} else {
WARN_ON_ONCE(!fin);
sk_eat_skb(ssk, skb);
done = true;
}
WRITE_ONCE(tp->copied_seq, seq);
more_data_avail = mptcp_subflow_data_available(ssk);
if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
done = true;
break;
}
} while (more_data_avail);
*bytes += moved;
return done;
}
static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
struct sk_buff *skb, *tail;
bool moved = false;
struct rb_node *p;
u64 end_seq;
p = rb_first(&msk->out_of_order_queue);
pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
while (p) {
skb = rb_to_skb(p);
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
break;
p = rb_next(p);
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
msk->ack_seq))) {
mptcp_drop(sk, skb);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
continue;
}
end_seq = MPTCP_SKB_CB(skb)->end_seq;
tail = skb_peek_tail(&sk->sk_receive_queue);
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
/* skip overlapping data, if any */
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
delta);
MPTCP_SKB_CB(skb)->offset += delta;
MPTCP_SKB_CB(skb)->map_seq += delta;
__skb_queue_tail(&sk->sk_receive_queue, skb);
}
msk->bytes_received += end_seq - msk->ack_seq;
msk->ack_seq = end_seq;
moved = true;
}
return moved;
}
static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
{
int err = sock_error(ssk);
int ssk_state;
if (!err)
return false;
/* only propagate errors on fallen-back sockets or
* on MPC connect
*/
if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
return false;
/* We need to propagate only transition to CLOSE state.
* Orphaned socket will see such state change via
* subflow_sched_work_if_closed() and that path will properly
* destroy the msk as needed.
*/
ssk_state = inet_sk_state_load(ssk);
if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
inet_sk_state_store(sk, ssk_state);
WRITE_ONCE(sk->sk_err, -err);
/* This barrier is coupled with smp_rmb() in mptcp_poll() */
smp_wmb();
sk_error_report(sk);
return true;
}
void __mptcp_error_report(struct sock *sk)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
mptcp_for_each_subflow(msk, subflow)
if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
break;
}
/* In most cases we will be able to lock the mptcp socket. If its already
* owned, we need to defer to the work queue to avoid ABBA deadlock.
*/
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
{
struct sock *sk = (struct sock *)msk;
unsigned int moved = 0;
__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
__mptcp_ofo_queue(msk);
if (unlikely(ssk->sk_err)) {
if (!sock_owned_by_user(sk))
__mptcp_error_report(sk);
else
__set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
}
/* If the moves have caught up with the DATA_FIN sequence number
* it's time to ack the DATA_FIN and change socket state, but
* this is not a good place to change state. Let the workqueue
* do it.
*/
if (mptcp_pending_data_fin(sk, NULL))
mptcp_schedule_work(sk);
return moved > 0;
}
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(sk);
int sk_rbuf, ssk_rbuf;
/* The peer can send data while we are shutting down this
* subflow at msk destruction time, but we must avoid enqueuing
* more data to the msk receive queue
*/
if (unlikely(subflow->disposable))
return;
ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
if (unlikely(ssk_rbuf > sk_rbuf))
sk_rbuf = ssk_rbuf;
/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
if (__mptcp_rmem(sk) > sk_rbuf) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
return;
}
/* Wake-up the reader only for in-sequence data */
mptcp_data_lock(sk);
if (move_skbs_to_msk(msk, ssk))
sk->sk_data_ready(sk);
mptcp_data_unlock(sk);
}
static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
{
mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
WRITE_ONCE(msk->allow_infinite_fallback, false);
mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
}
static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
{
struct sock *sk = (struct sock *)msk;
if (sk->sk_state != TCP_ESTABLISHED)
return false;
/* attach to msk socket only after we are sure we will deal with it
* at close time
*/
if (sk->sk_socket && !ssk->sk_socket)
mptcp_sock_graft(ssk, sk->sk_socket);
mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
mptcp_sockopt_sync_locked(msk, ssk);
mptcp_subflow_joined(msk, ssk);
mptcp_stop_tout_timer(sk);
return true;
}
static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
{
struct mptcp_subflow_context *tmp, *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
list_for_each_entry_safe(subflow, tmp, join_list, node) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast(ssk);
list_move_tail(&subflow->node, &msk->conn_list);
if (!__mptcp_finish_join(msk, ssk))
mptcp_subflow_reset(ssk);
unlock_sock_fast(ssk, slow);
}
}
static bool mptcp_rtx_timer_pending(struct sock *sk)
{
return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
}
static void mptcp_reset_rtx_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
unsigned long tout;
/* prevent rescheduling on close */
if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
return;
tout = mptcp_sk(sk)->timer_ival;
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
}
bool mptcp_schedule_work(struct sock *sk)
{
if (inet_sk_state_load(sk) != TCP_CLOSE &&
schedule_work(&mptcp_sk(sk)->work)) {
/* each subflow already holds a reference to the sk, and the
* workqueue is invoked by a subflow, so sk can't go away here.
*/
sock_hold(sk);
return true;
}
return false;
}
static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
msk_owned_by_me(msk);
mptcp_for_each_subflow(msk, subflow) {
if (READ_ONCE(subflow->data_avail))
return mptcp_subflow_tcp_sock(subflow);
}
return NULL;
}
static bool mptcp_skb_can_collapse_to(u64 write_seq,
const struct sk_buff *skb,
const struct mptcp_ext *mpext)
{
if (!tcp_skb_can_collapse_to(skb))
return false;
/* can collapse only if MPTCP level sequence is in order and this
* mapping has not been xmitted yet
*/
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
!mpext->frozen;
}
/* we can append data to the given data frag if:
* - there is space available in the backing page_frag
* - the data frag tail matches the current page_frag free offset
* - the data frag end sequence number matches the current write seq
*/
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
const struct page_frag *pfrag,
const struct mptcp_data_frag *df)
{
return df && pfrag->page == df->page &&
pfrag->size - pfrag->offset > 0 &&
pfrag->offset == (df->offset + df->data_len) &&
df->data_seq + df->data_len == msk->write_seq;
}
static void dfrag_uncharge(struct sock *sk, int len)
{
sk_mem_uncharge(sk, len);
sk_wmem_queued_add(sk, -len);
}
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
{
int len = dfrag->data_len + dfrag->overhead;
list_del(&dfrag->list);
dfrag_uncharge(sk, len);
put_page(dfrag->page);
}
static void __mptcp_clean_una(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_data_frag *dtmp, *dfrag;
u64 snd_una;
snd_una = msk->snd_una;
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
break;
if (unlikely(dfrag == msk->first_pending)) {
/* in recovery mode can see ack after the current snd head */
if (WARN_ON_ONCE(!msk->recovery))
break;
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
}
dfrag_clear(sk, dfrag);
}
dfrag = mptcp_rtx_head(sk);
if (dfrag && after64(snd_una, dfrag->data_seq)) {
u64 delta = snd_una - dfrag->data_seq;
/* prevent wrap around in recovery mode */
if (unlikely(delta > dfrag->already_sent)) {
if (WARN_ON_ONCE(!msk->recovery))
goto out;
if (WARN_ON_ONCE(delta > dfrag->data_len))
goto out;
dfrag->already_sent += delta - dfrag->already_sent;
}
dfrag->data_seq += delta;
dfrag->offset += delta;
dfrag->data_len -= delta;
dfrag->already_sent -= delta;
dfrag_uncharge(sk, delta);
}
/* all retransmitted data acked, recovery completed */
if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
msk->recovery = false;
out:
if (snd_una == READ_ONCE(msk->snd_nxt) &&
snd_una == READ_ONCE(msk->write_seq)) {
if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
mptcp_stop_rtx_timer(sk);
} else {
mptcp_reset_rtx_timer(sk);
}
}
static void __mptcp_clean_una_wakeup(struct sock *sk)
{
lockdep_assert_held_once(&sk->sk_lock.slock);
__mptcp_clean_una(sk);
mptcp_write_space(sk);
}
static void mptcp_clean_una_wakeup(struct sock *sk)
{
mptcp_data_lock(sk);
__mptcp_clean_una_wakeup(sk);
mptcp_data_unlock(sk);
}
static void mptcp_enter_memory_pressure(struct sock *sk)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
bool first = true;
sk_stream_moderate_sndbuf(sk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (first)
tcp_enter_memory_pressure(ssk);
sk_stream_moderate_sndbuf(ssk);
first = false;
}
}
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
* data
*/
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
{
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
pfrag, sk->sk_allocation)))
return true;
mptcp_enter_memory_pressure(sk);
return false;
}
static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
int orig_offset)
{
int offset = ALIGN(orig_offset, sizeof(long));
struct mptcp_data_frag *dfrag;
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
dfrag->data_len = 0;
dfrag->data_seq = msk->write_seq;
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
dfrag->already_sent = 0;
dfrag->page = pfrag->page;
return dfrag;
}
struct mptcp_sendmsg_info {
int mss_now;
int size_goal;
u16 limit;
u16 sent;
unsigned int flags;
bool data_lock_held;
};
static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
u64 data_seq, int avail_size)
{
u64 window_end = mptcp_wnd_end(msk);
u64 mptcp_snd_wnd;
if (__mptcp_check_fallback(msk))
return avail_size;
mptcp_snd_wnd = window_end - data_seq;
avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
}
return avail_size;
}
static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
{
struct skb_ext *mpext = __skb_ext_alloc(gfp);
if (!mpext)
return false;
__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
return true;
}
static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
{
struct sk_buff *skb;
skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
if (likely(skb)) {
if (likely(__mptcp_add_ext(skb, gfp))) {
skb_reserve(skb, MAX_TCP_HEADER);
skb->ip_summed = CHECKSUM_PARTIAL;
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
return skb;
}
__kfree_skb(skb);
} else {
mptcp_enter_memory_pressure(sk);
}
return NULL;
}
static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
{
struct sk_buff *skb;
skb = __mptcp_do_alloc_tx_skb(sk, gfp);
if (!skb)
return NULL;
if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
tcp_skb_entail(ssk, skb);
return skb;
}
tcp_skb_tsorted_anchor_cleanup(skb);
kfree_skb(skb);
return NULL;
}
static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
{
gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
return __mptcp_alloc_tx_skb(sk, ssk, gfp);
}
/* note: this always recompute the csum on the whole skb, even
* if we just appended a single frag. More status info needed
*/
static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
{
struct mptcp_ext *mpext = mptcp_get_ext(skb);
__wsum csum = ~csum_unfold(mpext->csum);
int offset = skb->len - added;
mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
}
static void mptcp_update_infinite_map(struct mptcp_sock *msk,
struct sock *ssk,
struct mptcp_ext *mpext)
{
if (!mpext)
return;
mpext->infinite_map = 1;
mpext->data_len = 0;
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
pr_fallback(msk);
mptcp_do_fallback(ssk);
}
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
struct mptcp_data_frag *dfrag,
struct mptcp_sendmsg_info *info)
{
u64 data_seq = dfrag->data_seq + info->sent;
int offset = dfrag->offset + info->sent;
struct mptcp_sock *msk = mptcp_sk(sk);
bool zero_window_probe = false;
struct mptcp_ext *mpext = NULL;
bool can_coalesce = false;
bool reuse_skb = true;
struct sk_buff *skb;
size_t copy;
int i;
pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
if (WARN_ON_ONCE(info->sent > info->limit ||
info->limit > dfrag->data_len))
return 0;
if (unlikely(!__tcp_can_send(ssk)))
return -EAGAIN;
/* compute send limit */
info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
copy = info->size_goal;
skb = tcp_write_queue_tail(ssk);
if (skb && copy > skb->len) {
/* Limit the write to the size available in the
* current skb, if any, so that we create at most a new skb.
* Explicitly tells TCP internals to avoid collapsing on later
* queue management operation, to avoid breaking the ext <->
* SSN association set here
*/
mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
TCP_SKB_CB(skb)->eor = 1;
goto alloc_skb;
}
i = skb_shinfo(skb)->nr_frags;
can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
tcp_mark_push(tcp_sk(ssk), skb);
goto alloc_skb;
}
copy -= skb->len;
} else {
alloc_skb:
skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
if (!skb)
return -ENOMEM;
i = skb_shinfo(skb)->nr_frags;
reuse_skb = false;
mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
}
/* Zero window and all data acked? Probe. */
copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
if (copy == 0) {
u64 snd_una = READ_ONCE(msk->snd_una);
if (snd_una != msk->snd_nxt) {
tcp_remove_empty_skb(ssk);
return 0;
}
zero_window_probe = true;
data_seq = snd_una - 1;
copy = 1;
/* all mptcp-level data is acked, no skbs should be present into the
* ssk write queue
*/
WARN_ON_ONCE(reuse_skb);
}
copy = min_t(size_t, copy, info->limit - info->sent);
if (!sk_wmem_schedule(ssk, copy)) {
tcp_remove_empty_skb(ssk);
return -ENOMEM;
}
if (can_coalesce) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
} else {
get_page(dfrag->page);
skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
}
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk_wmem_queued_add(ssk, copy);
sk_mem_charge(ssk, copy);
WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
TCP_SKB_CB(skb)->end_seq += copy;
tcp_skb_pcount_set(skb, 0);
/* on skb reuse we just need to update the DSS len */
if (reuse_skb) {
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
mpext->data_len += copy;
WARN_ON_ONCE(zero_window_probe);
goto out;
}
memset(mpext, 0, sizeof(*mpext));
mpext->data_seq = data_seq;
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
mpext->data_len = copy;
mpext->use_map = 1;
mpext->dsn64 = 1;
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
mpext->dsn64);
if (zero_window_probe) {
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
mpext->frozen = 1;
if (READ_ONCE(msk->csum_enabled))
mptcp_update_data_checksum(skb, copy);
tcp_push_pending_frames(ssk);
return 0;
}
out:
if (READ_ONCE(msk->csum_enabled))
mptcp_update_data_checksum(skb, copy);
if (mptcp_subflow_ctx(ssk)->send_infinite_map)
mptcp_update_infinite_map(msk, ssk, mpext);
trace_mptcp_sendmsg_frag(mpext);
mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
return copy;
}
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
sizeof(struct tcphdr) - \
MAX_TCP_OPTION_SPACE - \
sizeof(struct ipv6hdr) - \
sizeof(struct frag_hdr))
struct subflow_send_info {
struct sock *ssk;
u64 linger_time;
};
void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
{
if (!subflow->stale)
return;
subflow->stale = 0;
MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
}
bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
{
if (unlikely(subflow->stale)) {
u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
if (subflow->stale_rcv_tstamp == rcv_tstamp)
return false;
mptcp_subflow_set_active(subflow);
}
return __mptcp_subflow_active(subflow);
}
#define SSK_MODE_ACTIVE 0
#define SSK_MODE_BACKUP 1
#define SSK_MODE_MAX 2
/* implement the mptcp packet scheduler;
* returns the subflow that will transmit the next DSS
* additionally updates the rtx timeout
*/
struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
{
struct subflow_send_info send_info[SSK_MODE_MAX];
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
u32 pace, burst, wmem;
int i, nr_active = 0;
struct sock *ssk;
u64 linger_time;
long tout = 0;
/* pick the subflow with the lower wmem/wspace ratio */
for (i = 0; i < SSK_MODE_MAX; ++i) {
send_info[i].ssk = NULL;
send_info[i].linger_time = -1;
}
mptcp_for_each_subflow(msk, subflow) {
trace_mptcp_subflow_get_send(subflow);
ssk = mptcp_subflow_tcp_sock(subflow);
if (!mptcp_subflow_active(subflow))
continue;
tout = max(tout, mptcp_timeout_from_subflow(subflow));
nr_active += !subflow->backup;
pace = subflow->avg_pacing_rate;
if (unlikely(!pace)) {
/* init pacing rate from socket */
subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
pace = subflow->avg_pacing_rate;
if (!pace)
continue;
}
linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
if (linger_time < send_info[subflow->backup].linger_time) {
send_info[subflow->backup].ssk = ssk;
send_info[subflow->backup].linger_time = linger_time;
}
}
__mptcp_set_timeout(sk, tout);
/* pick the best backup if no other subflow is active */
if (!nr_active)
send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
/* According to the blest algorithm, to avoid HoL blocking for the
* faster flow, we need to:
* - estimate the faster flow linger time
* - use the above to estimate the amount of byte transferred
* by the faster flow
* - check that the amount of queued data is greter than the above,
* otherwise do not use the picked, slower, subflow
* We select the subflow with the shorter estimated time to flush
* the queued mem, which basically ensure the above. We just need
* to check that subflow has a non empty cwin.
*/
ssk = send_info[SSK_MODE_ACTIVE].ssk;
if (!ssk || !sk_stream_memory_free(ssk))
return NULL;
burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
wmem = READ_ONCE(ssk->sk_wmem_queued);
if (!burst)
return ssk;
subflow = mptcp_subflow_ctx(ssk);
subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
READ_ONCE(ssk->sk_pacing_rate) * burst,
burst + wmem);
msk->snd_burst = burst;
return ssk;
}
static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
{
tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
release_sock(ssk);
}
static void mptcp_update_post_push(struct mptcp_sock *msk,
struct mptcp_data_frag *dfrag,
u32 sent)
{
u64 snd_nxt_new = dfrag->data_seq;
dfrag->already_sent += sent;
msk->snd_burst -= sent;
snd_nxt_new += dfrag->already_sent;
/* snd_nxt_new can be smaller than snd_nxt in case mptcp
* is recovering after a failover. In that event, this re-sends
* old segments.
*
* Thus compute snd_nxt_new candidate based on
* the dfrag->data_seq that was sent and the data
* that has been handed to the subflow for transmission
* and skip update in case it was old dfrag.
*/
if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
msk->snd_nxt = snd_nxt_new;
}
}
void mptcp_check_and_set_pending(struct sock *sk)
{
if (mptcp_send_head(sk))
mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
}
static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
struct mptcp_sendmsg_info *info)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_data_frag *dfrag;
int len, copied = 0, err = 0;
while ((dfrag = mptcp_send_head(sk))) {
info->sent = dfrag->already_sent;
info->limit = dfrag->data_len;
len = dfrag->data_len - dfrag->already_sent;
while (len > 0) {
int ret = 0;
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
if (ret <= 0) {
err = copied ? : ret;
goto out;
}
info->sent += ret;
copied += ret;
len -= ret;
mptcp_update_post_push(msk, dfrag, ret);
}
WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
if (msk->snd_burst <= 0 ||
!sk_stream_memory_free(ssk) ||
!mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
err = copied;
goto out;
}
mptcp_set_timeout(sk);
}
err = copied;
out:
return err;
}
void __mptcp_push_pending(struct sock *sk, unsigned int flags)
{
struct sock *prev_ssk = NULL, *ssk = NULL;
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_sendmsg_info info = {
.flags = flags,
};
bool do_check_data_fin = false;
int push_count = 1;
while (mptcp_send_head(sk) && (push_count > 0)) {
struct mptcp_subflow_context *subflow;
int ret = 0;
if (mptcp_sched_get_send(msk))
break;
push_count = 0;
mptcp_for_each_subflow(msk, subflow) {
if (READ_ONCE(subflow->scheduled)) {
mptcp_subflow_set_scheduled(subflow, false);
prev_ssk = ssk;
ssk = mptcp_subflow_tcp_sock(subflow);
if (ssk != prev_ssk) {
/* First check. If the ssk has changed since
* the last round, release prev_ssk
*/
if (prev_ssk)
mptcp_push_release(prev_ssk, &info);
/* Need to lock the new subflow only if different
* from the previous one, otherwise we are still
* helding the relevant lock
*/
lock_sock(ssk);
}
push_count++;
ret = __subflow_push_pending(sk, ssk, &info);
if (ret <= 0) {
if (ret != -EAGAIN ||
(1 << ssk->sk_state) &
(TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
push_count--;
continue;
}
do_check_data_fin = true;
}
}
}
/* at this point we held the socket lock for the last subflow we used */
if (ssk)
mptcp_push_release(ssk, &info);
/* ensure the rtx timer is running */
if (!mptcp_rtx_timer_pending(sk))
mptcp_reset_rtx_timer(sk);
if (do_check_data_fin)
mptcp_check_send_data_fin(sk);
}
static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_sendmsg_info info = {
.data_lock_held = true,
};
bool keep_pushing = true;
struct sock *xmit_ssk;
int copied = 0;
info.flags = 0;
while (mptcp_send_head(sk) && keep_pushing) {
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
int ret = 0;
/* check for a different subflow usage only after
* spooling the first chunk of data
*/
if (first) {
mptcp_subflow_set_scheduled(subflow, false);
ret = __subflow_push_pending(sk, ssk, &info);
first = false;
if (ret <= 0)
break;
copied += ret;
continue;
}
if (mptcp_sched_get_send(msk))
goto out;
if (READ_ONCE(subflow->scheduled)) {
mptcp_subflow_set_scheduled(subflow, false);
ret = __subflow_push_pending(sk, ssk, &info);
if (ret <= 0)
keep_pushing = false;
copied += ret;
}
mptcp_for_each_subflow(msk, subflow) {
if (READ_ONCE(subflow->scheduled)) {
xmit_ssk = mptcp_subflow_tcp_sock(subflow);
if (xmit_ssk != ssk) {
mptcp_subflow_delegate(subflow,
MPTCP_DELEGATE_SEND);
keep_pushing = false;
}
}
}
}
out:
/* __mptcp_alloc_tx_skb could have released some wmem and we are
* not going to flush it via release_sock()
*/
if (copied) {
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
info.size_goal);
if (!mptcp_rtx_timer_pending(sk))
mptcp_reset_rtx_timer(sk);
if (msk->snd_data_fin_enable &&
msk->snd_nxt + 1 == msk->write_seq)
mptcp_schedule_work(sk);
}
}
static void mptcp_set_nospace(struct sock *sk)
{
/* enable autotune */
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* will be cleared on avail space */
set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
}
static int mptcp_disconnect(struct sock *sk, int flags);
static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
size_t len, int *copied_syn)
{
unsigned int saved_flags = msg->msg_flags;
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
int ret;
/* on flags based fastopen the mptcp is supposed to create the
* first subflow right now. Otherwise we are in the defer_connect
* path, and the first subflow must be already present.
* Since the defer_connect flag is cleared after the first succsful
* fastopen attempt, no need to check for additional subflow status.
*/
if (msg->msg_flags & MSG_FASTOPEN) {
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk))
return PTR_ERR(ssk);
}
if (!msk->first)
return -EINVAL;
ssk = msk->first;
lock_sock(ssk);
msg->msg_flags |= MSG_DONTWAIT;
msk->fastopening = 1;
ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
msk->fastopening = 0;
msg->msg_flags = saved_flags;
release_sock(ssk);
/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
msg->msg_namelen, msg->msg_flags, 1);
/* Keep the same behaviour of plain TCP: zero the copied bytes in
* case of any error, except timeout or signal
*/
if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
*copied_syn = 0;
} else if (ret && ret != -EINPROGRESS) {
/* The disconnect() op called by tcp_sendmsg_fastopen()/
* __inet_stream_connect() can fail, due to looking check,
* see mptcp_disconnect().
* Attempt it again outside the problematic scope.
*/
if (!mptcp_disconnect(sk, 0))
sk->sk_socket->state = SS_UNCONNECTED;
}
inet_clear_bit(DEFER_CONNECT, sk);
return ret;
}
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct page_frag *pfrag;
size_t copied = 0;
int ret = 0;
long timeo;
/* silently ignore everything else */
msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
lock_sock(sk);
if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
msg->msg_flags & MSG_FASTOPEN)) {
int copied_syn = 0;
ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
copied += copied_syn;
if (ret == -EINPROGRESS && copied_syn > 0)
goto out;
else if (ret)
goto do_error;
}
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
ret = sk_stream_wait_connect(sk, &timeo);
if (ret)
goto do_error;
}
ret = -EPIPE;
if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
goto do_error;
pfrag = sk_page_frag(sk);
while (msg_data_left(msg)) {
int total_ts, frag_truesize = 0;
struct mptcp_data_frag *dfrag;
bool dfrag_collapsed;
size_t psize, offset;
/* reuse tail pfrag, if possible, or carve a new one from the
* page allocator
*/
dfrag = mptcp_pending_tail(sk);
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
if (!dfrag_collapsed) {
if (!sk_stream_memory_free(sk))
goto wait_for_memory;
if (!mptcp_page_frag_refill(sk, pfrag))
goto wait_for_memory;
dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
frag_truesize = dfrag->overhead;
}
/* we do not bound vs wspace, to allow a single packet.
* memory accounting will prevent execessive memory usage
* anyway
*/
offset = dfrag->offset + dfrag->data_len;
psize = pfrag->size - offset;
psize = min_t(size_t, psize, msg_data_left(msg));
total_ts = psize + frag_truesize;
if (!sk_wmem_schedule(sk, total_ts))
goto wait_for_memory;
if (copy_page_from_iter(dfrag->page, offset, psize,
&msg->msg_iter) != psize) {
ret = -EFAULT;
goto do_error;
}
/* data successfully copied into the write queue */
sk_forward_alloc_add(sk, -total_ts);
copied += psize;
dfrag->data_len += psize;
frag_truesize += psize;
pfrag->offset += frag_truesize;
WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
/* charge data on mptcp pending queue to the msk socket
* Note: we charge such data both to sk and ssk
*/
sk_wmem_queued_add(sk, frag_truesize);
if (!dfrag_collapsed) {
get_page(dfrag->page);
list_add_tail(&dfrag->list, &msk->rtx_queue);
if (!msk->first_pending)
WRITE_ONCE(msk->first_pending, dfrag);
}
pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
!dfrag_collapsed);
continue;
wait_for_memory:
mptcp_set_nospace(sk);
__mptcp_push_pending(sk, msg->msg_flags);
ret = sk_stream_wait_memory(sk, &timeo);
if (ret)
goto do_error;
}
if (copied)
__mptcp_push_pending(sk, msg->msg_flags);
out:
release_sock(sk);
return copied;
do_error:
if (copied)
goto out;
copied = sk_stream_error(sk, msg->msg_flags, ret);
goto out;
}
static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
struct msghdr *msg,
size_t len, int flags,
struct scm_timestamping_internal *tss,
int *cmsg_flags)
{
struct sk_buff *skb, *tmp;
int copied = 0;
skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
u32 offset = MPTCP_SKB_CB(skb)->offset;
u32 data_len = skb->len - offset;
u32 count = min_t(size_t, len - copied, data_len);
int err;
if (!(flags & MSG_TRUNC)) {
err = skb_copy_datagram_msg(skb, offset, msg, count);
if (unlikely(err < 0)) {
if (!copied)
return err;
break;
}
}
if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
tcp_update_recv_tstamps(skb, tss);
*cmsg_flags |= MPTCP_CMSG_TS;
}
copied += count;
if (count < data_len) {
if (!(flags & MSG_PEEK)) {
MPTCP_SKB_CB(skb)->offset += count;
MPTCP_SKB_CB(skb)->map_seq += count;
}
break;
}
if (!(flags & MSG_PEEK)) {
/* we will bulk release the skb memory later */
skb->destructor = NULL;
WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
__skb_unlink(skb, &msk->receive_queue);
__kfree_skb(skb);
}
if (copied >= len)
break;
}
return copied;
}
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
*
* Only difference: Use highest rtt estimate of the subflows in use.
*/
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
u8 scaling_ratio = U8_MAX;
u32 time, advmss = 1;
u64 rtt_us, mstamp;
msk_owned_by_me(msk);
if (copied <= 0)
return;
msk->rcvq_space.copied += copied;
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
rtt_us = msk->rcvq_space.rtt_us;
if (rtt_us && time < (rtt_us >> 3))
return;
rtt_us = 0;
mptcp_for_each_subflow(msk, subflow) {
const struct tcp_sock *tp;
u64 sf_rtt_us;
u32 sf_advmss;
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
sf_advmss = READ_ONCE(tp->advmss);
rtt_us = max(sf_rtt_us, rtt_us);
advmss = max(sf_advmss, advmss);
scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
}
msk->rcvq_space.rtt_us = rtt_us;
msk->scaling_ratio = scaling_ratio;
if (time < (rtt_us >> 3) || rtt_us == 0)
return;
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
goto new_measure;
if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
u64 rcvwin, grow;
int rcvbuf;
rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
do_div(grow, msk->rcvq_space.space);
rcvwin += (grow << 1);
rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
if (rcvbuf > sk->sk_rcvbuf) {
u32 window_clamp;
window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
/* Make subflows follow along. If we do not do this, we
* get drops at subflow level if skbs can't be moved to
* the mptcp rx queue fast enough (announced rcv_win can
* exceed ssk->sk_rcvbuf).
*/
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk;
bool slow;
ssk = mptcp_subflow_tcp_sock(subflow);
slow = lock_sock_fast(ssk);
WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
tcp_sk(ssk)->window_clamp = window_clamp;
tcp_cleanup_rbuf(ssk, 1);
unlock_sock_fast(ssk, slow);
}
}
}
msk->rcvq_space.space = msk->rcvq_space.copied;
new_measure:
msk->rcvq_space.copied = 0;
msk->rcvq_space.time = mstamp;
}
static void __mptcp_update_rmem(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (!msk->rmem_released)
return;
atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
mptcp_rmem_uncharge(sk, msk->rmem_released);
WRITE_ONCE(msk->rmem_released, 0);
}
static void __mptcp_splice_receive_queue(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
}
static bool __mptcp_move_skbs(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
unsigned int moved = 0;
bool ret, done;
do {
struct sock *ssk = mptcp_subflow_recv_lookup(msk);
bool slowpath;
/* we can have data pending in the subflows only if the msk
* receive buffer was full at subflow_data_ready() time,
* that is an unlikely slow path.
*/
if (likely(!ssk))
break;
slowpath = lock_sock_fast(ssk);
mptcp_data_lock(sk);
__mptcp_update_rmem(sk);
done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
mptcp_data_unlock(sk);
if (unlikely(ssk->sk_err))
__mptcp_error_report(sk);
unlock_sock_fast(ssk, slowpath);
} while (!done);
/* acquire the data lock only if some input data is pending */
ret = moved > 0;
if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
!skb_queue_empty_lockless(&sk->sk_receive_queue)) {
mptcp_data_lock(sk);
__mptcp_update_rmem(sk);
ret |= __mptcp_ofo_queue(msk);
__mptcp_splice_receive_queue(sk);
mptcp_data_unlock(sk);
}
if (ret)
mptcp_check_data_fin((struct sock *)msk);
return !skb_queue_empty(&msk->receive_queue);
}
static unsigned int mptcp_inq_hint(const struct sock *sk)
{
const struct mptcp_sock *msk = mptcp_sk(sk);
const struct sk_buff *skb;
skb = skb_peek(&msk->receive_queue);
if (skb) {
u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
if (hint_val >= INT_MAX)
return INT_MAX;
return (unsigned int)hint_val;
}
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
return 1;
return 0;
}
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int flags, int *addr_len)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct scm_timestamping_internal tss;
int copied = 0, cmsg_flags = 0;
int target;
long timeo;
/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
if (unlikely(flags & MSG_ERRQUEUE))
return inet_recv_error(sk, msg, len, addr_len);
lock_sock(sk);
if (unlikely(sk->sk_state == TCP_LISTEN)) {
copied = -ENOTCONN;
goto out_err;
}
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
len = min_t(size_t, len, INT_MAX);
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
if (unlikely(msk->recvmsg_inq))
cmsg_flags = MPTCP_CMSG_INQ;
while (copied < len) {
int bytes_read;
bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
if (unlikely(bytes_read < 0)) {
if (!copied)
copied = bytes_read;
goto out_err;
}
copied += bytes_read;
/* be sure to advertise window change */
mptcp_cleanup_rbuf(msk);
if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
continue;
/* only the master socket status is relevant here. The exit
* conditions mirror closely tcp_recvmsg()
*/
if (copied >= target)
break;
if (copied) {
if (sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current))
break;
} else {
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN) {
/* race breaker: the shutdown could be after the
* previous receive queue check
*/
if (__mptcp_move_skbs(msk))
continue;
break;
}
if (sk->sk_state == TCP_CLOSE) {
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
pr_debug("block timeout %ld", timeo);
sk_wait_data(sk, &timeo, NULL);
}
out_err:
if (cmsg_flags && copied >= 0) {
if (cmsg_flags & MPTCP_CMSG_TS)
tcp_recv_timestamp(msg, sk, &tss);
if (cmsg_flags & MPTCP_CMSG_INQ) {
unsigned int inq = mptcp_inq_hint(sk);
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
}
}
pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
skb_queue_empty(&msk->receive_queue), copied);
if (!(flags & MSG_PEEK))
mptcp_rcv_space_adjust(msk, copied);
release_sock(sk);
return copied;
}
static void mptcp_retransmit_timer(struct timer_list *t)
{
struct inet_connection_sock *icsk = from_timer(icsk, t,
icsk_retransmit_timer);
struct sock *sk = &icsk->icsk_inet.sk;
struct mptcp_sock *msk = mptcp_sk(sk);
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
/* we need a process context to retransmit */
if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
mptcp_schedule_work(sk);
} else {
/* delegate our work to tcp_release_cb() */
__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
}
bh_unlock_sock(sk);
sock_put(sk);
}
static void mptcp_tout_timer(struct timer_list *t)
{
struct sock *sk = from_timer(sk, t, sk_timer);
mptcp_schedule_work(sk);
sock_put(sk);
}
/* Find an idle subflow. Return NULL if there is unacked data at tcp
* level.
*
* A backup subflow is returned only if that is the only kind available.
*/
struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
{
struct sock *backup = NULL, *pick = NULL;
struct mptcp_subflow_context *subflow;
int min_stale_count = INT_MAX;
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (!__mptcp_subflow_active(subflow))
continue;
/* still data outstanding at TCP level? skip this */
if (!tcp_rtx_and_write_queues_empty(ssk)) {
mptcp_pm_subflow_chk_stale(msk, ssk);
min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
continue;
}
if (subflow->backup) {
if (!backup)
backup = ssk;
continue;
}
if (!pick)
pick = ssk;
}
if (pick)
return pick;
/* use backup only if there are no progresses anywhere */
return min_stale_count > 1 ? backup : NULL;
}
bool __mptcp_retransmit_pending_data(struct sock *sk)
{
struct mptcp_data_frag *cur, *rtx_head;
struct mptcp_sock *msk = mptcp_sk(sk);
if (__mptcp_check_fallback(msk))
return false;
if (tcp_rtx_and_write_queues_empty(sk))
return false;
/* the closing socket has some data untransmitted and/or unacked:
* some data in the mptcp rtx queue has not really xmitted yet.
* keep it simple and re-inject the whole mptcp level rtx queue
*/
mptcp_data_lock(sk);
__mptcp_clean_una_wakeup(sk);
rtx_head = mptcp_rtx_head(sk);
if (!rtx_head) {
mptcp_data_unlock(sk);
return false;
}
msk->recovery_snd_nxt = msk->snd_nxt;
msk->recovery = true;
mptcp_data_unlock(sk);
msk->first_pending = rtx_head;
msk->snd_burst = 0;
/* be sure to clear the "sent status" on all re-injected fragments */
list_for_each_entry(cur, &msk->rtx_queue, list) {
if (!cur->already_sent)
break;
cur->already_sent = 0;
}
return true;
}
/* flags for __mptcp_close_ssk() */
#define MPTCP_CF_PUSH BIT(1)
#define MPTCP_CF_FASTCLOSE BIT(2)
/* subflow sockets can be either outgoing (connect) or incoming
* (accept).
*
* Outgoing subflows use in-kernel sockets.
* Incoming subflows do not have their own 'struct socket' allocated,
* so we need to use tcp_close() after detaching them from the mptcp
* parent socket.
*/
static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
struct mptcp_subflow_context *subflow,
unsigned int flags)
{
struct mptcp_sock *msk = mptcp_sk(sk);
bool dispose_it, need_push = false;
/* If the first subflow moved to a close state before accept, e.g. due
* to an incoming reset or listener shutdown, the subflow socket is
* already deleted by inet_child_forget() and the mptcp socket can't
* survive too.
*/
if (msk->in_accept_queue && msk->first == ssk &&
(sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
/* ensure later check in mptcp_worker() will dispose the msk */
mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
sock_set_flag(sk, SOCK_DEAD);
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
mptcp_subflow_drop_ctx(ssk);
goto out_release;
}
dispose_it = msk->free_first || ssk != msk->first;
if (dispose_it)
list_del(&subflow->node);
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
/* be sure to force the tcp_disconnect() path,
* to generate the egress reset
*/
ssk->sk_lingertime = 0;
sock_set_flag(ssk, SOCK_LINGER);
subflow->send_fastclose = 1;
}
need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
if (!dispose_it) {
/* The MPTCP code never wait on the subflow sockets, TCP-level
* disconnect should never fail
*/
WARN_ON_ONCE(tcp_disconnect(ssk, 0));
mptcp_subflow_ctx_reset(subflow);
release_sock(ssk);
goto out;
}
subflow->disposable = 1;
/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
* the ssk has been already destroyed, we just need to release the
* reference owned by msk;
*/
if (!inet_csk(ssk)->icsk_ulp_ops) {
WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
kfree_rcu(subflow, rcu);
} else {
/* otherwise tcp will dispose of the ssk and subflow ctx */
__tcp_close(ssk, 0);
/* close acquired an extra ref */
__sock_put(ssk);
}
out_release:
__mptcp_subflow_error_report(sk, ssk);
release_sock(ssk);
sock_put(ssk);
if (ssk == msk->first)
WRITE_ONCE(msk->first, NULL);
out:
if (need_push)
__mptcp_push_pending(sk, 0);
/* Catch every 'all subflows closed' scenario, including peers silently
* closing them, e.g. due to timeout.
* For established sockets, allow an additional timeout before closing,
* as the protocol can still create more subflows.
*/
if (list_is_singular(&msk->conn_list) && msk->first &&
inet_sk_state_load(msk->first) == TCP_CLOSE) {
if (sk->sk_state != TCP_ESTABLISHED ||
msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
inet_sk_state_store(sk, TCP_CLOSE);
mptcp_close_wake_up(sk);
} else {
mptcp_start_tout_timer(sk);
}
}
}
void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
struct mptcp_subflow_context *subflow)
{
if (sk->sk_state == TCP_ESTABLISHED)
mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
/* subflow aborted before reaching the fully_established status
* attempt the creation of the next subflow
*/
mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
}
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
{
return 0;
}
static void __mptcp_close_subflow(struct sock *sk)
{
struct mptcp_subflow_context *subflow, *tmp;
struct mptcp_sock *msk = mptcp_sk(sk);
might_sleep();
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (inet_sk_state_load(ssk) != TCP_CLOSE)
continue;
/* 'subflow_data_ready' will re-sched once rx queue is empty */
if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
continue;
mptcp_close_ssk(sk, ssk, subflow);
}
}
static bool mptcp_close_tout_expired(const struct sock *sk)
{
if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
sk->sk_state == TCP_CLOSE)
return false;
return time_after32(tcp_jiffies32,
inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
}
static void mptcp_check_fastclose(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow, *tmp;
struct sock *sk = (struct sock *)msk;
if (likely(!READ_ONCE(msk->rcv_fastclose)))
return;
mptcp_token_destroy(msk);
mptcp_for_each_subflow_safe(msk, subflow, tmp) {
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
bool slow;
slow = lock_sock_fast(tcp_sk);
if (tcp_sk->sk_state != TCP_CLOSE) {
tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
tcp_set_state(tcp_sk, TCP_CLOSE);
}
unlock_sock_fast(tcp_sk, slow);
}
/* Mirror the tcp_reset() error propagation */
switch (sk->sk_state) {
case TCP_SYN_SENT:
WRITE_ONCE(sk->sk_err, ECONNREFUSED);
break;
case TCP_CLOSE_WAIT:
WRITE_ONCE(sk->sk_err, EPIPE);
break;
case TCP_CLOSE:
return;
default:
WRITE_ONCE(sk->sk_err, ECONNRESET);
}
inet_sk_state_store(sk, TCP_CLOSE);
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
/* the calling mptcp_worker will properly destroy the socket */
if (sock_flag(sk, SOCK_DEAD))
return;
sk->sk_state_change(sk);
sk_error_report(sk);
}
static void __mptcp_retrans(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_subflow_context *subflow;
struct mptcp_sendmsg_info info = {};
struct mptcp_data_frag *dfrag;
struct sock *ssk;
int ret, err;
u16 len = 0;
mptcp_clean_una_wakeup(sk);
/* first check ssk: need to kick "stale" logic */
err = mptcp_sched_get_retrans(msk);
dfrag = mptcp_rtx_head(sk);
if (!dfrag) {
if (mptcp_data_fin_enabled(msk)) {
struct inet_connection_sock *icsk = inet_csk(sk);
icsk->icsk_retransmits++;
mptcp_set_datafin_timeout(sk);
mptcp_send_ack(msk);
goto reset_timer;
}
if (!mptcp_send_head(sk))
return;
goto reset_timer;
}
if (err)
goto reset_timer;
mptcp_for_each_subflow(msk, subflow) {
if (READ_ONCE(subflow->scheduled)) {
u16 copied = 0;
mptcp_subflow_set_scheduled(subflow, false);
ssk = mptcp_subflow_tcp_sock(subflow);
lock_sock(ssk);
/* limit retransmission to the bytes already sent on some subflows */
info.sent = 0;
info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
dfrag->already_sent;
while (info.sent < info.limit) {
ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
if (ret <= 0)
break;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
copied += ret;
info.sent += ret;
}
if (copied) {
len = max(copied, len);
tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
info.size_goal);
WRITE_ONCE(msk->allow_infinite_fallback, false);
}
release_sock(ssk);
}
}
msk->bytes_retrans += len;
dfrag->already_sent = max(dfrag->already_sent, len);
reset_timer:
mptcp_check_and_set_pending(sk);
if (!mptcp_rtx_timer_pending(sk))
mptcp_reset_rtx_timer(sk);
}
/* schedule the timeout timer for the relevant event: either close timeout
* or mp_fail timeout. The close timeout takes precedence on the mp_fail one
*/
void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
{
struct sock *sk = (struct sock *)msk;
unsigned long timeout, close_timeout;
if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
return;
close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
TCP_TIMEWAIT_LEN;
/* the close timeout takes precedence on the fail one, and here at least one of
* them is active
*/
timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
sk_reset_timer(sk, &sk->sk_timer, timeout);
}
static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
{
struct sock *ssk = msk->first;
bool slow;
if (!ssk)
return;
pr_debug("MP_FAIL doesn't respond, reset the subflow");
slow = lock_sock_fast(ssk);
mptcp_subflow_reset(ssk);
WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
unlock_sock_fast(ssk, slow);
}
static void mptcp_do_fastclose(struct sock *sk)
{
struct mptcp_subflow_context *subflow, *tmp;
struct mptcp_sock *msk = mptcp_sk(sk);
inet_sk_state_store(sk, TCP_CLOSE);
mptcp_for_each_subflow_safe(msk, subflow, tmp)
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
subflow, MPTCP_CF_FASTCLOSE);
}
static void mptcp_worker(struct work_struct *work)
{
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
struct sock *sk = (struct sock *)msk;
unsigned long fail_tout;
int state;
lock_sock(sk);
state = sk->sk_state;
if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
goto unlock;
mptcp_check_fastclose(msk);
mptcp_pm_nl_work(msk);
mptcp_check_send_data_fin(sk);
mptcp_check_data_fin_ack(sk);
mptcp_check_data_fin(sk);
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
__mptcp_close_subflow(sk);
if (mptcp_close_tout_expired(sk)) {
mptcp_do_fastclose(sk);
mptcp_close_wake_up(sk);
}
if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
__mptcp_destroy_sock(sk);
goto unlock;
}
if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
__mptcp_retrans(sk);
fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
if (fail_tout && time_after(jiffies, fail_tout))
mptcp_mp_fail_no_response(msk);
unlock:
release_sock(sk);
sock_put(sk);
}
static void __mptcp_init_sock(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
INIT_LIST_HEAD(&msk->conn_list);
INIT_LIST_HEAD(&msk->join_list);
INIT_LIST_HEAD(&msk->rtx_queue);
INIT_WORK(&msk->work, mptcp_worker);
__skb_queue_head_init(&msk->receive_queue);
msk->out_of_order_queue = RB_ROOT;
msk->first_pending = NULL;
msk->rmem_fwd_alloc = 0;
WRITE_ONCE(msk->rmem_released, 0);
msk->timer_ival = TCP_RTO_MIN;
WRITE_ONCE(msk->first, NULL);
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
WRITE_ONCE(msk->allow_infinite_fallback, true);
msk->recovery = false;
msk->subflow_id = 1;
mptcp_pm_data_init(msk);
/* re-use the csk retrans timer for MPTCP-level retrans */
timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
}
static void mptcp_ca_reset(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
tcp_assign_congestion_control(sk);
strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
/* no need to keep a reference to the ops, the name will suffice */
tcp_cleanup_congestion_control(sk);
icsk->icsk_ca_ops = NULL;
}
static int mptcp_init_sock(struct sock *sk)
{
struct net *net = sock_net(sk);
int ret;
__mptcp_init_sock(sk);
if (!mptcp_is_enabled(net))
return -ENOPROTOOPT;
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
return -ENOMEM;
ret = mptcp_init_sched(mptcp_sk(sk),
mptcp_sched_find(mptcp_get_scheduler(net)));
if (ret)
return ret;
set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
* propagate the correct value
*/
mptcp_ca_reset(sk);
sk_sockets_allocated_inc(sk);
sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
return 0;
}
static void __mptcp_clear_xmit(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_data_frag *dtmp, *dfrag;
WRITE_ONCE(msk->first_pending, NULL);
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
dfrag_clear(sk, dfrag);
}
void mptcp_cancel_work(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (cancel_work_sync(&msk->work))
__sock_put(sk);
}
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
{
lock_sock(ssk);
switch (ssk->sk_state) {
case TCP_LISTEN:
if (!(how & RCV_SHUTDOWN))
break;
fallthrough;
case TCP_SYN_SENT:
WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
break;
default:
if (__mptcp_check_fallback(mptcp_sk(sk))) {
pr_debug("Fallback");
ssk->sk_shutdown |= how;
tcp_shutdown(ssk, how);
/* simulate the data_fin ack reception to let the state
* machine move forward
*/
WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
mptcp_schedule_work(sk);
} else {
pr_debug("Sending DATA_FIN on subflow %p", ssk);
tcp_send_ack(ssk);
if (!mptcp_rtx_timer_pending(sk))
mptcp_reset_rtx_timer(sk);
}
break;
}
release_sock(ssk);
}
static const unsigned char new_state[16] = {
/* current state: new state: action: */
[0 /* (Invalid) */] = TCP_CLOSE,
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_SYN_SENT] = TCP_CLOSE,
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
[TCP_CLOSE] = TCP_CLOSE,
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
[TCP_LAST_ACK] = TCP_LAST_ACK,
[TCP_LISTEN] = TCP_CLOSE,
[TCP_CLOSING] = TCP_CLOSING,
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
};
static int mptcp_close_state(struct sock *sk)
{
int next = (int)new_state[sk->sk_state];
int ns = next & TCP_STATE_MASK;
inet_sk_state_store(sk, ns);
return next & TCP_ACTION_FIN;
}
static void mptcp_check_send_data_fin(struct sock *sk)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
msk->snd_nxt, msk->write_seq);
/* we still need to enqueue subflows or not really shutting down,
* skip this
*/
if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
mptcp_send_head(sk))
return;
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
mptcp_for_each_subflow(msk, subflow) {
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
}
}
static void __mptcp_wr_shutdown(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
!!mptcp_send_head(sk));
/* will be ignored by fallback sockets */
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
WRITE_ONCE(msk->snd_data_fin_enable, 1);
mptcp_check_send_data_fin(sk);
}
static void __mptcp_destroy_sock(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
pr_debug("msk=%p", msk);
might_sleep();
mptcp_stop_rtx_timer(sk);
sk_stop_timer(sk, &sk->sk_timer);
msk->pm.status = 0;
mptcp_release_sched(msk);
sk->sk_prot->destroy(sk);
WARN_ON_ONCE(msk->rmem_fwd_alloc);
WARN_ON_ONCE(msk->rmem_released);
sk_stream_kill_queues(sk);
xfrm_sk_free_policy(sk);
sock_put(sk);
}
void __mptcp_unaccepted_force_close(struct sock *sk)
{
sock_set_flag(sk, SOCK_DEAD);
mptcp_do_fastclose(sk);
__mptcp_destroy_sock(sk);
}
static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
{
/* Concurrent splices from sk_receive_queue into receive_queue will
* always show at least one non-empty queue when checked in this order.
*/
if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
skb_queue_empty_lockless(&msk->receive_queue))
return 0;
return EPOLLIN | EPOLLRDNORM;
}
static void mptcp_check_listen_stop(struct sock *sk)
{
struct sock *ssk;
if (inet_sk_state_load(sk) != TCP_LISTEN)
return;
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
ssk = mptcp_sk(sk)->first;
if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
return;
lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
tcp_set_state(ssk, TCP_CLOSE);
mptcp_subflow_queue_clean(sk, ssk);
inet_csk_listen_stop(ssk);
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
release_sock(ssk);
}
bool __mptcp_close(struct sock *sk, long timeout)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
bool do_cancel_work = false;
int subflows_alive = 0;
WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
mptcp_check_listen_stop(sk);
inet_sk_state_store(sk, TCP_CLOSE);
goto cleanup;
}
if (mptcp_check_readable(msk) || timeout < 0) {
/* If the msk has read data, or the caller explicitly ask it,
* do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
*/
mptcp_do_fastclose(sk);
timeout = 0;
} else if (mptcp_close_state(sk)) {
__mptcp_wr_shutdown(sk);
}
sk_stream_wait_close(sk, timeout);
cleanup:
/* orphan all the subflows */
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bool slow = lock_sock_fast_nested(ssk);
subflows_alive += ssk->sk_state != TCP_CLOSE;
/* since the close timeout takes precedence on the fail one,
* cancel the latter
*/
if (ssk == msk->first)
subflow->fail_tout = 0;
/* detach from the parent socket, but allow data_ready to
* push incoming data into the mptcp stack, to properly ack it
*/
ssk->sk_socket = NULL;
ssk->sk_wq = NULL;
unlock_sock_fast(ssk, slow);
}
sock_orphan(sk);
/* all the subflows are closed, only timeout can change the msk
* state, let's not keep resources busy for no reasons
*/
if (subflows_alive == 0)
inet_sk_state_store(sk, TCP_CLOSE);
sock_hold(sk);
pr_debug("msk=%p state=%d", sk, sk->sk_state);
if (msk->token)
mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
if (sk->sk_state == TCP_CLOSE) {
__mptcp_destroy_sock(sk);
do_cancel_work = true;
} else {
mptcp_start_tout_timer(sk);
}
return do_cancel_work;
}
static void mptcp_close(struct sock *sk, long timeout)
{
bool do_cancel_work;
lock_sock(sk);
do_cancel_work = __mptcp_close(sk, timeout);
release_sock(sk);
if (do_cancel_work)
mptcp_cancel_work(sk);
sock_put(sk);
}
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
struct ipv6_pinfo *msk6 = inet6_sk(msk);
msk->sk_v6_daddr = ssk->sk_v6_daddr;
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
if (msk6 && ssk6) {
msk6->saddr = ssk6->saddr;
msk6->flow_label = ssk6->flow_label;
}
#endif
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
}
static int mptcp_disconnect(struct sock *sk, int flags)
{
struct mptcp_sock *msk = mptcp_sk(sk);
/* Deny disconnect if other threads are blocked in sk_wait_event()
* or inet_wait_for_connect().
*/
if (sk->sk_wait_pending)
return -EBUSY;
/* We are on the fastopen error path. We can't call straight into the
* subflows cleanup code due to lock nesting (we are already under
* msk->firstsocket lock).
*/
if (msk->fastopening)
return -EBUSY;
mptcp_check_listen_stop(sk);
inet_sk_state_store(sk, TCP_CLOSE);
mptcp_stop_rtx_timer(sk);
mptcp_stop_tout_timer(sk);
if (msk->token)
mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
/* msk->subflow is still intact, the following will not free the first
* subflow
*/
mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
WRITE_ONCE(msk->flags, 0);
msk->cb_flags = 0;
msk->push_pending = 0;
msk->recovery = false;
msk->can_ack = false;
msk->fully_established = false;
msk->rcv_data_fin = false;
msk->snd_data_fin_enable = false;
msk->rcv_fastclose = false;
msk->use_64bit_ack = false;
WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
mptcp_pm_data_reset(msk);
mptcp_ca_reset(sk);
msk->bytes_acked = 0;
msk->bytes_received = 0;
msk->bytes_sent = 0;
msk->bytes_retrans = 0;
WRITE_ONCE(sk->sk_shutdown, 0);
sk_error_report(sk);
return 0;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
{
unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
}
#endif
struct sock *mptcp_sk_clone_init(const struct sock *sk,
const struct mptcp_options_received *mp_opt,
struct sock *ssk,
struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
struct mptcp_sock *msk;
if (!nsk)
return NULL;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (nsk->sk_family == AF_INET6)
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
#endif
nsk->sk_wait_pending = 0;
__mptcp_init_sock(nsk);
msk = mptcp_sk(nsk);
msk->local_key = subflow_req->local_key;
msk->token = subflow_req->token;
msk->in_accept_queue = 1;
WRITE_ONCE(msk->fully_established, false);
if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
WRITE_ONCE(msk->csum_enabled, true);
msk->write_seq = subflow_req->idsn + 1;
msk->snd_nxt = msk->write_seq;
msk->snd_una = msk->write_seq;
msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
mptcp_init_sched(msk, mptcp_sk(sk)->sched);
/* passive msk is created after the first/MPC subflow */
msk->subflow_id = 2;
sock_reset_flag(nsk, SOCK_RCU_FREE);
security_inet_csk_clone(nsk, req);
/* this can't race with mptcp_close(), as the msk is
* not yet exposted to user-space
*/
inet_sk_state_store(nsk, TCP_ESTABLISHED);
/* The msk maintain a ref to each subflow in the connections list */
WRITE_ONCE(msk->first, ssk);
list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
sock_hold(ssk);
/* new mpc subflow takes ownership of the newly
* created mptcp socket
*/
mptcp_token_accept(subflow_req, msk);
/* set msk addresses early to ensure mptcp_pm_get_local_id()
* uses the correct data
*/
mptcp_copy_inaddrs(nsk, ssk);
mptcp_propagate_sndbuf(nsk, ssk);
mptcp_rcv_space_init(msk, ssk);
bh_unlock_sock(nsk);
/* note: the newly allocated socket refcount is 2 now */
return nsk;
}
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
{
const struct tcp_sock *tp = tcp_sk(ssk);
msk->rcvq_space.copied = 0;
msk->rcvq_space.rtt_us = 0;
msk->rcvq_space.time = tp->tcp_mstamp;
/* initial rcv_space offering made to peer */
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
TCP_INIT_CWND * tp->advmss);
if (msk->rcvq_space.space == 0)
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
}
static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
bool kern)
{
struct sock *newsk;
pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
newsk = inet_csk_accept(ssk, flags, err, kern);
if (!newsk)
return NULL;
pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
if (sk_is_mptcp(newsk)) {
struct mptcp_subflow_context *subflow;
struct sock *new_mptcp_sock;
subflow = mptcp_subflow_ctx(newsk);
new_mptcp_sock = subflow->conn;
/* is_mptcp should be false if subflow->conn is missing, see
* subflow_syn_recv_sock()
*/
if (WARN_ON_ONCE(!new_mptcp_sock)) {
tcp_sk(newsk)->is_mptcp = 0;
goto out;
}
newsk = new_mptcp_sock;
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
} else {
MPTCP_INC_STATS(sock_net(ssk),
MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
}
out:
newsk->sk_kern_sock = kern;
return newsk;
}
void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
{
struct mptcp_subflow_context *subflow, *tmp;
struct sock *sk = (struct sock *)msk;
__mptcp_clear_xmit(sk);
/* join list will be eventually flushed (with rst) at sock lock release time */
mptcp_for_each_subflow_safe(msk, subflow, tmp)
__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
mptcp_data_lock(sk);
skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
__skb_queue_purge(&sk->sk_receive_queue);
skb_rbtree_purge(&msk->out_of_order_queue);
mptcp_data_unlock(sk);
/* move all the rx fwd alloc into the sk_mem_reclaim_final in
* inet_sock_destruct() will dispose it
*/
sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
WRITE_ONCE(msk->rmem_fwd_alloc, 0);
mptcp_token_destroy(msk);
mptcp_pm_free_anno_list(msk);
mptcp_free_local_addr_list(msk);
}
static void mptcp_destroy(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
/* allow the following to close even the initial subflow */
msk->free_first = 1;
mptcp_destroy_common(msk, 0);
sk_sockets_allocated_dec(sk);
}
void __mptcp_data_acked(struct sock *sk)
{
if (!sock_owned_by_user(sk))
__mptcp_clean_una(sk);
else
__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
if (mptcp_pending_data_fin_ack(sk))
mptcp_schedule_work(sk);
}
void __mptcp_check_push(struct sock *sk, struct sock *ssk)
{
if (!mptcp_send_head(sk))
return;
if (!sock_owned_by_user(sk))
__mptcp_subflow_push_pending(sk, ssk, false);
else
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
}
#define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
BIT(MPTCP_RETRANSMIT) | \
BIT(MPTCP_FLUSH_JOIN_LIST))
/* processes deferred events and flush wmem */
static void mptcp_release_cb(struct sock *sk)
__must_hold(&sk->sk_lock.slock)
{
struct mptcp_sock *msk = mptcp_sk(sk);
for (;;) {
unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
msk->push_pending;
struct list_head join_list;
if (!flags)
break;
INIT_LIST_HEAD(&join_list);
list_splice_init(&msk->join_list, &join_list);
/* the following actions acquire the subflow socket lock
*
* 1) can't be invoked in atomic scope
* 2) must avoid ABBA deadlock with msk socket spinlock: the RX
* datapath acquires the msk socket spinlock while helding
* the subflow socket lock
*/
msk->push_pending = 0;
msk->cb_flags &= ~flags;
spin_unlock_bh(&sk->sk_lock.slock);
if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
__mptcp_flush_join_list(sk, &join_list);
if (flags & BIT(MPTCP_PUSH_PENDING))
__mptcp_push_pending(sk, 0);
if (flags & BIT(MPTCP_RETRANSMIT))
__mptcp_retrans(sk);
cond_resched();
spin_lock_bh(&sk->sk_lock.slock);
}
if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
__mptcp_clean_una_wakeup(sk);
if (unlikely(msk->cb_flags)) {
/* be sure to set the current sk state before tacking actions
* depending on sk_state, that is processing MPTCP_ERROR_REPORT
*/
if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
__mptcp_set_connected(sk);
if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
__mptcp_error_report(sk);
}
__mptcp_update_rmem(sk);
}
/* MP_JOIN client subflow must wait for 4th ack before sending any data:
* TCP can't schedule delack timer before the subflow is fully established.
* MPTCP uses the delack timer to do 3rd ack retransmissions
*/
static void schedule_3rdack_retransmission(struct sock *ssk)
{
struct inet_connection_sock *icsk = inet_csk(ssk);
struct tcp_sock *tp = tcp_sk(ssk);
unsigned long timeout;
if (mptcp_subflow_ctx(ssk)->fully_established)
return;
/* reschedule with a timeout above RTT, as we must look only for drop */
if (tp->srtt_us)
timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
else
timeout = TCP_TIMEOUT_INIT;
timeout += jiffies;
WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
icsk->icsk_ack.timeout = timeout;
sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
}
void mptcp_subflow_process_delegated(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = subflow->conn;
if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
mptcp_data_lock(sk);
if (!sock_owned_by_user(sk))
__mptcp_subflow_push_pending(sk, ssk, true);
else
__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
mptcp_data_unlock(sk);
mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
}
if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
schedule_3rdack_retransmission(ssk);
mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
}
}
static int mptcp_hash(struct sock *sk)
{
/* should never be called,
* we hash the TCP subflows not the master socket
*/
WARN_ON_ONCE(1);
return 0;
}
static void mptcp_unhash(struct sock *sk)
{
/* called from sk_common_release(), but nothing to do here */
}
static int mptcp_get_port(struct sock *sk, unsigned short snum)
{
struct mptcp_sock *msk = mptcp_sk(sk);
pr_debug("msk=%p, ssk=%p", msk, msk->first);
if (WARN_ON_ONCE(!msk->first))
return -EINVAL;
return inet_csk_get_port(msk->first, snum);
}
void mptcp_finish_connect(struct sock *ssk)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk;
struct sock *sk;
subflow = mptcp_subflow_ctx(ssk);
sk = subflow->conn;
msk = mptcp_sk(sk);
pr_debug("msk=%p, token=%u", sk, subflow->token);
subflow->map_seq = subflow->iasn;
subflow->map_subflow_seq = 1;
/* the socket is not connected yet, no msk/subflow ops can access/race
* accessing the field below
*/
WRITE_ONCE(msk->local_key, subflow->local_key);
WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
WRITE_ONCE(msk->snd_nxt, msk->write_seq);
WRITE_ONCE(msk->snd_una, msk->write_seq);
mptcp_pm_new_connection(msk, ssk, 0);
mptcp_rcv_space_init(msk, ssk);
}
void mptcp_sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
rcu_assign_pointer(sk->sk_wq, &parent->wq);
sk_set_socket(sk, parent);
sk->sk_uid = SOCK_INODE(parent)->i_uid;
write_unlock_bh(&sk->sk_callback_lock);
}
bool mptcp_finish_join(struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct sock *parent = (void *)msk;
bool ret = true;
pr_debug("msk=%p, subflow=%p", msk, subflow);
/* mptcp socket already closing? */
if (!mptcp_is_fully_established(parent)) {
subflow->reset_reason = MPTCP_RST_EMPTCP;
return false;
}
/* active subflow, already present inside the conn_list */
if (!list_empty(&subflow->node)) {
mptcp_subflow_joined(msk, ssk);
return true;
}
if (!mptcp_pm_allow_new_subflow(msk))
goto err_prohibited;
/* If we can't acquire msk socket lock here, let the release callback
* handle it
*/
mptcp_data_lock(parent);
if (!sock_owned_by_user(parent)) {
ret = __mptcp_finish_join(msk, ssk);
if (ret) {
sock_hold(ssk);
list_add_tail(&subflow->node, &msk->conn_list);
}
} else {
sock_hold(ssk);
list_add_tail(&subflow->node, &msk->join_list);
__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
}
mptcp_data_unlock(parent);
if (!ret) {
err_prohibited:
subflow->reset_reason = MPTCP_RST_EPROHIBIT;
return false;
}
return true;
}
static void mptcp_shutdown(struct sock *sk, int how)
{
pr_debug("sk=%p, how=%d", sk, how);
if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
__mptcp_wr_shutdown(sk);
}
static int mptcp_forward_alloc_get(const struct sock *sk)
{
return READ_ONCE(sk->sk_forward_alloc) +
READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
}
static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
{
const struct sock *sk = (void *)msk;
u64 delta;
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
return 0;
delta = msk->write_seq - v;
if (__mptcp_check_fallback(msk) && msk->first) {
struct tcp_sock *tp = tcp_sk(msk->first);
/* the first subflow is disconnected after close - see
* __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
* so ignore that status, too.
*/
if (!((1 << msk->first->sk_state) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
delta += READ_ONCE(tp->write_seq) - tp->snd_una;
}
if (delta > INT_MAX)
delta = INT_MAX;
return (int)delta;
}
static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
{
struct mptcp_sock *msk = mptcp_sk(sk);
bool slow;
switch (cmd) {
case SIOCINQ:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
lock_sock(sk);
__mptcp_move_skbs(msk);
*karg = mptcp_inq_hint(sk);
release_sock(sk);
break;
case SIOCOUTQ:
slow = lock_sock_fast(sk);
*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
unlock_sock_fast(sk, slow);
break;
case SIOCOUTQNSD:
slow = lock_sock_fast(sk);
*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
unlock_sock_fast(sk, slow);
break;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
struct mptcp_subflow_context *subflow)
{
subflow->request_mptcp = 0;
__mptcp_do_fallback(msk);
}
static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk = mptcp_sk(sk);
int err = -EINVAL;
struct sock *ssk;
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk))
return PTR_ERR(ssk);
inet_sk_state_store(sk, TCP_SYN_SENT);
subflow = mptcp_subflow_ctx(ssk);
#ifdef CONFIG_TCP_MD5SIG
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
* TCP option space.
*/
if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
mptcp_subflow_early_fallback(msk, subflow);
#endif
if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
mptcp_subflow_early_fallback(msk, subflow);
}
if (likely(!__mptcp_check_fallback(msk)))
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
/* if reaching here via the fastopen/sendmsg path, the caller already
* acquired the subflow socket lock, too.
*/
if (!msk->fastopening)
lock_sock(ssk);
/* the following mirrors closely a very small chunk of code from
* __inet_stream_connect()
*/
if (ssk->sk_state != TCP_CLOSE)
goto out;
if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
if (err)
goto out;
}
err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
if (err < 0)
goto out;
inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
out:
if (!msk->fastopening)
release_sock(ssk);
/* on successful connect, the msk state will be moved to established by
* subflow_finish_connect()
*/
if (unlikely(err)) {
/* avoid leaving a dangling token in an unconnected socket */
mptcp_token_destroy(msk);
inet_sk_state_store(sk, TCP_CLOSE);
return err;
}
mptcp_copy_inaddrs(sk, ssk);
return 0;
}
static struct proto mptcp_prot = {
.name = "MPTCP",
.owner = THIS_MODULE,
.init = mptcp_init_sock,
.connect = mptcp_connect,
.disconnect = mptcp_disconnect,
.close = mptcp_close,
.accept = mptcp_accept,
.setsockopt = mptcp_setsockopt,
.getsockopt = mptcp_getsockopt,
.shutdown = mptcp_shutdown,
.destroy = mptcp_destroy,
.sendmsg = mptcp_sendmsg,
.ioctl = mptcp_ioctl,
.recvmsg = mptcp_recvmsg,
.release_cb = mptcp_release_cb,
.hash = mptcp_hash,
.unhash = mptcp_unhash,
.get_port = mptcp_get_port,
.forward_alloc_get = mptcp_forward_alloc_get,
.sockets_allocated = &mptcp_sockets_allocated,
.memory_allocated = &tcp_memory_allocated,
.per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
.memory_pressure = &tcp_memory_pressure,
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
.sysctl_mem = sysctl_tcp_mem,
.obj_size = sizeof(struct mptcp_sock),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.no_autobind = true,
};
static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct sock *ssk, *sk = sock->sk;
int err = -EINVAL;
lock_sock(sk);
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
err = PTR_ERR(ssk);
goto unlock;
}
if (sk->sk_family == AF_INET)
err = inet_bind_sk(ssk, uaddr, addr_len);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (sk->sk_family == AF_INET6)
err = inet6_bind_sk(ssk, uaddr, addr_len);
#endif
if (!err)
mptcp_copy_inaddrs(sk, ssk);
unlock:
release_sock(sk);
return err;
}
static int mptcp_listen(struct socket *sock, int backlog)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct sock *sk = sock->sk;
struct sock *ssk;
int err;
pr_debug("msk=%p", msk);
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
goto unlock;
ssk = __mptcp_nmpc_sk(msk);
if (IS_ERR(ssk)) {
err = PTR_ERR(ssk);
goto unlock;
}
inet_sk_state_store(sk, TCP_LISTEN);
sock_set_flag(sk, SOCK_RCU_FREE);
lock_sock(ssk);
err = __inet_listen_sk(ssk, backlog);
release_sock(ssk);
inet_sk_state_store(sk, inet_sk_state_load(ssk));
if (!err) {
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
mptcp_copy_inaddrs(sk, ssk);
mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
}
unlock:
release_sock(sk);
return err;
}
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
int flags, bool kern)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct sock *ssk, *newsk;
int err;
pr_debug("msk=%p", msk);
/* Buggy applications can call accept on socket states other then LISTEN
* but no need to allocate the first subflow just to error out.
*/
ssk = READ_ONCE(msk->first);
if (!ssk)
return -EINVAL;
newsk = mptcp_accept(ssk, flags, &err, kern);
if (!newsk)
return err;
lock_sock(newsk);
__inet_accept(sock, newsock, newsk);
if (!mptcp_is_tcpsk(newsock->sk)) {
struct mptcp_sock *msk = mptcp_sk(newsk);
struct mptcp_subflow_context *subflow;
set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
msk->in_accept_queue = 0;
/* set ssk->sk_socket of accept()ed flows to mptcp socket.
* This is needed so NOSPACE flag can be set from tcp stack.
*/
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (!ssk->sk_socket)
mptcp_sock_graft(ssk, newsock);
}
/* Do late cleanup for the first subflow as necessary. Also
* deal with bad peers not doing a complete shutdown.
*/
if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
__mptcp_close_ssk(newsk, msk->first,
mptcp_subflow_ctx(msk->first), 0);
if (unlikely(list_is_singular(&msk->conn_list)))
inet_sk_state_store(newsk, TCP_CLOSE);
}
}
release_sock(newsk);
return 0;
}
static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
if (sk_stream_is_writeable(sk))
return EPOLLOUT | EPOLLWRNORM;
mptcp_set_nospace(sk);
smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
if (sk_stream_is_writeable(sk))
return EPOLLOUT | EPOLLWRNORM;
return 0;
}
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
struct sock *sk = sock->sk;
struct mptcp_sock *msk;
__poll_t mask = 0;
u8 shutdown;
int state;
msk = mptcp_sk(sk);
sock_poll_wait(file, sock, wait);
state = inet_sk_state_load(sk);
pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
if (state == TCP_LISTEN) {
struct sock *ssk = READ_ONCE(msk->first);
if (WARN_ON_ONCE(!ssk))
return 0;
return inet_csk_listen_poll(ssk);
}
shutdown = READ_ONCE(sk->sk_shutdown);
if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
mask |= EPOLLHUP;
if (shutdown & RCV_SHUTDOWN)
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
mask |= mptcp_check_readable(msk);
if (shutdown & SEND_SHUTDOWN)
mask |= EPOLLOUT | EPOLLWRNORM;
else
mask |= mptcp_check_writeable(msk);
} else if (state == TCP_SYN_SENT &&
inet_test_bit(DEFER_CONNECT, sk)) {
/* cf tcp_poll() note about TFO */
mask |= EPOLLOUT | EPOLLWRNORM;
}
/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
smp_rmb();
if (READ_ONCE(sk->sk_err))
mask |= EPOLLERR;
return mask;
}
static const struct proto_ops mptcp_stream_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = mptcp_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = mptcp_stream_accept,
.getname = inet_getname,
.poll = mptcp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = mptcp_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
};
static struct inet_protosw mptcp_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_MPTCP,
.prot = &mptcp_prot,
.ops = &mptcp_stream_ops,
.flags = INET_PROTOSW_ICSK,
};
static int mptcp_napi_poll(struct napi_struct *napi, int budget)
{
struct mptcp_delegated_action *delegated;
struct mptcp_subflow_context *subflow;
int work_done = 0;
delegated = container_of(napi, struct mptcp_delegated_action, napi);
while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
bh_lock_sock_nested(ssk);
if (!sock_owned_by_user(ssk) &&
mptcp_subflow_has_delegated_action(subflow))
mptcp_subflow_process_delegated(ssk);
/* ... elsewhere tcp_release_cb_override already processed
* the action or will do at next release_sock().
* In both case must dequeue the subflow here - on the same
* CPU that scheduled it.
*/
bh_unlock_sock(ssk);
sock_put(ssk);
if (++work_done == budget)
return budget;
}
/* always provide a 0 'work_done' argument, so that napi_complete_done
* will not try accessing the NULL napi->dev ptr
*/
napi_complete_done(napi, 0);
return work_done;
}
void __init mptcp_proto_init(void)
{
struct mptcp_delegated_action *delegated;
int cpu;
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
panic("Failed to allocate MPTCP pcpu counter\n");
init_dummy_netdev(&mptcp_napi_dev);
for_each_possible_cpu(cpu) {
delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
INIT_LIST_HEAD(&delegated->head);
netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
mptcp_napi_poll);
napi_enable(&delegated->napi);
}
mptcp_subflow_init();
mptcp_pm_init();
mptcp_sched_init();
mptcp_token_init();
if (proto_register(&mptcp_prot, 1) != 0)
panic("Failed to register MPTCP proto.\n");
inet_register_protosw(&mptcp_protosw);
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static const struct proto_ops mptcp_v6_stream_ops = {
.family = PF_INET6,
.owner = THIS_MODULE,
.release = inet6_release,
.bind = mptcp_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = mptcp_stream_accept,
.getname = inet6_getname,
.poll = mptcp_poll,
.ioctl = inet6_ioctl,
.gettstamp = sock_gettstamp,
.listen = mptcp_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet6_sendmsg,
.recvmsg = inet6_recvmsg,
.mmap = sock_no_mmap,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet6_compat_ioctl,
#endif
};
static struct proto mptcp_v6_prot;
static struct inet_protosw mptcp_v6_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_MPTCP,
.prot = &mptcp_v6_prot,
.ops = &mptcp_v6_stream_ops,
.flags = INET_PROTOSW_ICSK,
};
int __init mptcp_proto_v6_init(void)
{
int err;
mptcp_v6_prot = mptcp_prot;
strcpy(mptcp_v6_prot.name, "MPTCPv6");
mptcp_v6_prot.slab = NULL;
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
err = proto_register(&mptcp_v6_prot, 1);
if (err)
return err;
err = inet6_register_protosw(&mptcp_v6_protosw);
if (err)
proto_unregister(&mptcp_v6_prot);
return err;
}
#endif
| linux-master | net/mptcp/protocol.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2020, Tessares SA.
* Copyright (c) 2022, SUSE.
*
* Author: Nicolas Rybowski <[email protected]>
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/bpf.h>
#include "protocol.h"
struct mptcp_sock *bpf_mptcp_sock_from_subflow(struct sock *sk)
{
if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP && sk_is_mptcp(sk))
return mptcp_sk(mptcp_subflow_ctx(sk)->conn);
return NULL;
}
BTF_SET8_START(bpf_mptcp_fmodret_ids)
BTF_ID_FLAGS(func, update_socket_protocol)
BTF_SET8_END(bpf_mptcp_fmodret_ids)
static const struct btf_kfunc_id_set bpf_mptcp_fmodret_set = {
.owner = THIS_MODULE,
.set = &bpf_mptcp_fmodret_ids,
};
static int __init bpf_mptcp_kfunc_init(void)
{
return register_btf_fmodret_id_set(&bpf_mptcp_fmodret_set);
}
late_initcall(bpf_mptcp_kfunc_init);
| linux-master | net/mptcp/bpf.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP cryptographic functions
* Copyright (c) 2017 - 2019, Intel Corporation.
*
* Note: This code is based on mptcp_ctrl.c, mptcp_ipv4.c, and
* mptcp_ipv6 from multipath-tcp.org, authored by:
*
* Sébastien Barré <[email protected]>
* Christoph Paasch <[email protected]>
* Jaakko Korkeaniemi <[email protected]>
* Gregory Detal <[email protected]>
* Fabien Duchêne <[email protected]>
* Andreas Seelinger <[email protected]>
* Lavkesh Lahngir <[email protected]>
* Andreas Ripke <[email protected]>
* Vlad Dogaru <[email protected]>
* Octavian Purdila <[email protected]>
* John Ronan <[email protected]>
* Catalin Nicutar <[email protected]>
* Brandon Heller <[email protected]>
*/
#include <linux/kernel.h>
#include <crypto/sha2.h>
#include <asm/unaligned.h>
#include "protocol.h"
#define SHA256_DIGEST_WORDS (SHA256_DIGEST_SIZE / 4)
void mptcp_crypto_key_sha(u64 key, u32 *token, u64 *idsn)
{
__be32 mptcp_hashed_key[SHA256_DIGEST_WORDS];
__be64 input = cpu_to_be64(key);
sha256((__force u8 *)&input, sizeof(input), (u8 *)mptcp_hashed_key);
if (token)
*token = be32_to_cpu(mptcp_hashed_key[0]);
if (idsn)
*idsn = be64_to_cpu(*((__be64 *)&mptcp_hashed_key[6]));
}
void mptcp_crypto_hmac_sha(u64 key1, u64 key2, u8 *msg, int len, void *hmac)
{
u8 input[SHA256_BLOCK_SIZE + SHA256_DIGEST_SIZE];
u8 key1be[8];
u8 key2be[8];
int i;
if (WARN_ON_ONCE(len > SHA256_DIGEST_SIZE))
len = SHA256_DIGEST_SIZE;
put_unaligned_be64(key1, key1be);
put_unaligned_be64(key2, key2be);
/* Generate key xored with ipad */
memset(input, 0x36, SHA256_BLOCK_SIZE);
for (i = 0; i < 8; i++)
input[i] ^= key1be[i];
for (i = 0; i < 8; i++)
input[i + 8] ^= key2be[i];
memcpy(&input[SHA256_BLOCK_SIZE], msg, len);
/* emit sha256(K1 || msg) on the second input block, so we can
* reuse 'input' for the last hashing
*/
sha256(input, SHA256_BLOCK_SIZE + len, &input[SHA256_BLOCK_SIZE]);
/* Prepare second part of hmac */
memset(input, 0x5C, SHA256_BLOCK_SIZE);
for (i = 0; i < 8; i++)
input[i] ^= key1be[i];
for (i = 0; i < 8; i++)
input[i + 8] ^= key2be[i];
sha256(input, SHA256_BLOCK_SIZE + SHA256_DIGEST_SIZE, hmac);
}
#if IS_MODULE(CONFIG_MPTCP_KUNIT_TEST)
EXPORT_SYMBOL_GPL(mptcp_crypto_hmac_sha);
#endif
| linux-master | net/mptcp/crypto.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2022, Intel Corporation.
*/
#include "protocol.h"
#include "mib.h"
void mptcp_free_local_addr_list(struct mptcp_sock *msk)
{
struct mptcp_pm_addr_entry *entry, *tmp;
struct sock *sk = (struct sock *)msk;
LIST_HEAD(free_list);
if (!mptcp_pm_is_userspace(msk))
return;
spin_lock_bh(&msk->pm.lock);
list_splice_init(&msk->pm.userspace_pm_local_addr_list, &free_list);
spin_unlock_bh(&msk->pm.lock);
list_for_each_entry_safe(entry, tmp, &free_list, list) {
sock_kfree_s(sk, entry, sizeof(*entry));
}
}
static int mptcp_userspace_pm_append_new_local_addr(struct mptcp_sock *msk,
struct mptcp_pm_addr_entry *entry)
{
DECLARE_BITMAP(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
struct mptcp_pm_addr_entry *match = NULL;
struct sock *sk = (struct sock *)msk;
struct mptcp_pm_addr_entry *e;
bool addr_match = false;
bool id_match = false;
int ret = -EINVAL;
bitmap_zero(id_bitmap, MPTCP_PM_MAX_ADDR_ID + 1);
spin_lock_bh(&msk->pm.lock);
list_for_each_entry(e, &msk->pm.userspace_pm_local_addr_list, list) {
addr_match = mptcp_addresses_equal(&e->addr, &entry->addr, true);
if (addr_match && entry->addr.id == 0)
entry->addr.id = e->addr.id;
id_match = (e->addr.id == entry->addr.id);
if (addr_match && id_match) {
match = e;
break;
} else if (addr_match || id_match) {
break;
}
__set_bit(e->addr.id, id_bitmap);
}
if (!match && !addr_match && !id_match) {
/* Memory for the entry is allocated from the
* sock option buffer.
*/
e = sock_kmalloc(sk, sizeof(*e), GFP_ATOMIC);
if (!e) {
ret = -ENOMEM;
goto append_err;
}
*e = *entry;
if (!e->addr.id)
e->addr.id = find_next_zero_bit(id_bitmap,
MPTCP_PM_MAX_ADDR_ID + 1,
1);
list_add_tail_rcu(&e->list, &msk->pm.userspace_pm_local_addr_list);
msk->pm.local_addr_used++;
ret = e->addr.id;
} else if (match) {
ret = entry->addr.id;
}
append_err:
spin_unlock_bh(&msk->pm.lock);
return ret;
}
/* If the subflow is closed from the other peer (not via a
* subflow destroy command then), we want to keep the entry
* not to assign the same ID to another address and to be
* able to send RM_ADDR after the removal of the subflow.
*/
static int mptcp_userspace_pm_delete_local_addr(struct mptcp_sock *msk,
struct mptcp_pm_addr_entry *addr)
{
struct mptcp_pm_addr_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, &msk->pm.userspace_pm_local_addr_list, list) {
if (mptcp_addresses_equal(&entry->addr, &addr->addr, false)) {
/* TODO: a refcount is needed because the entry can
* be used multiple times (e.g. fullmesh mode).
*/
list_del_rcu(&entry->list);
kfree(entry);
msk->pm.local_addr_used--;
return 0;
}
}
return -EINVAL;
}
int mptcp_userspace_pm_get_flags_and_ifindex_by_id(struct mptcp_sock *msk,
unsigned int id,
u8 *flags, int *ifindex)
{
struct mptcp_pm_addr_entry *entry, *match = NULL;
spin_lock_bh(&msk->pm.lock);
list_for_each_entry(entry, &msk->pm.userspace_pm_local_addr_list, list) {
if (id == entry->addr.id) {
match = entry;
break;
}
}
spin_unlock_bh(&msk->pm.lock);
if (match) {
*flags = match->flags;
*ifindex = match->ifindex;
}
return 0;
}
int mptcp_userspace_pm_get_local_id(struct mptcp_sock *msk,
struct mptcp_addr_info *skc)
{
struct mptcp_pm_addr_entry new_entry;
__be16 msk_sport = ((struct inet_sock *)
inet_sk((struct sock *)msk))->inet_sport;
memset(&new_entry, 0, sizeof(struct mptcp_pm_addr_entry));
new_entry.addr = *skc;
new_entry.addr.id = 0;
new_entry.flags = MPTCP_PM_ADDR_FLAG_IMPLICIT;
if (new_entry.addr.port == msk_sport)
new_entry.addr.port = 0;
return mptcp_userspace_pm_append_new_local_addr(msk, &new_entry);
}
int mptcp_nl_cmd_announce(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *addr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct mptcp_pm_addr_entry addr_val;
struct mptcp_sock *msk;
int err = -EINVAL;
u32 token_val;
if (!addr || !token) {
GENL_SET_ERR_MSG(info, "missing required inputs");
return err;
}
token_val = nla_get_u32(token);
msk = mptcp_token_get_sock(sock_net(skb->sk), token_val);
if (!msk) {
NL_SET_ERR_MSG_ATTR(info->extack, token, "invalid token");
return err;
}
if (!mptcp_pm_is_userspace(msk)) {
GENL_SET_ERR_MSG(info, "invalid request; userspace PM not selected");
goto announce_err;
}
err = mptcp_pm_parse_entry(addr, info, true, &addr_val);
if (err < 0) {
GENL_SET_ERR_MSG(info, "error parsing local address");
goto announce_err;
}
if (addr_val.addr.id == 0 || !(addr_val.flags & MPTCP_PM_ADDR_FLAG_SIGNAL)) {
GENL_SET_ERR_MSG(info, "invalid addr id or flags");
err = -EINVAL;
goto announce_err;
}
err = mptcp_userspace_pm_append_new_local_addr(msk, &addr_val);
if (err < 0) {
GENL_SET_ERR_MSG(info, "did not match address and id");
goto announce_err;
}
lock_sock((struct sock *)msk);
spin_lock_bh(&msk->pm.lock);
if (mptcp_pm_alloc_anno_list(msk, &addr_val.addr)) {
msk->pm.add_addr_signaled++;
mptcp_pm_announce_addr(msk, &addr_val.addr, false);
mptcp_pm_nl_addr_send_ack(msk);
}
spin_unlock_bh(&msk->pm.lock);
release_sock((struct sock *)msk);
err = 0;
announce_err:
sock_put((struct sock *)msk);
return err;
}
int mptcp_nl_cmd_remove(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *id = info->attrs[MPTCP_PM_ATTR_LOC_ID];
struct mptcp_pm_addr_entry *match = NULL;
struct mptcp_pm_addr_entry *entry;
struct mptcp_sock *msk;
LIST_HEAD(free_list);
int err = -EINVAL;
u32 token_val;
u8 id_val;
if (!id || !token) {
GENL_SET_ERR_MSG(info, "missing required inputs");
return err;
}
id_val = nla_get_u8(id);
token_val = nla_get_u32(token);
msk = mptcp_token_get_sock(sock_net(skb->sk), token_val);
if (!msk) {
NL_SET_ERR_MSG_ATTR(info->extack, token, "invalid token");
return err;
}
if (!mptcp_pm_is_userspace(msk)) {
GENL_SET_ERR_MSG(info, "invalid request; userspace PM not selected");
goto remove_err;
}
lock_sock((struct sock *)msk);
list_for_each_entry(entry, &msk->pm.userspace_pm_local_addr_list, list) {
if (entry->addr.id == id_val) {
match = entry;
break;
}
}
if (!match) {
GENL_SET_ERR_MSG(info, "address with specified id not found");
release_sock((struct sock *)msk);
goto remove_err;
}
list_move(&match->list, &free_list);
mptcp_pm_remove_addrs(msk, &free_list);
release_sock((struct sock *)msk);
list_for_each_entry_safe(match, entry, &free_list, list) {
sock_kfree_s((struct sock *)msk, match, sizeof(*match));
}
err = 0;
remove_err:
sock_put((struct sock *)msk);
return err;
}
int mptcp_nl_cmd_sf_create(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *raddr = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE];
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *laddr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct mptcp_pm_addr_entry local = { 0 };
struct mptcp_addr_info addr_r;
struct mptcp_addr_info addr_l;
struct mptcp_sock *msk;
int err = -EINVAL;
struct sock *sk;
u32 token_val;
if (!laddr || !raddr || !token) {
GENL_SET_ERR_MSG(info, "missing required inputs");
return err;
}
token_val = nla_get_u32(token);
msk = mptcp_token_get_sock(genl_info_net(info), token_val);
if (!msk) {
NL_SET_ERR_MSG_ATTR(info->extack, token, "invalid token");
return err;
}
if (!mptcp_pm_is_userspace(msk)) {
GENL_SET_ERR_MSG(info, "invalid request; userspace PM not selected");
goto create_err;
}
err = mptcp_pm_parse_addr(laddr, info, &addr_l);
if (err < 0) {
NL_SET_ERR_MSG_ATTR(info->extack, laddr, "error parsing local addr");
goto create_err;
}
if (addr_l.id == 0) {
NL_SET_ERR_MSG_ATTR(info->extack, laddr, "missing local addr id");
err = -EINVAL;
goto create_err;
}
err = mptcp_pm_parse_addr(raddr, info, &addr_r);
if (err < 0) {
NL_SET_ERR_MSG_ATTR(info->extack, raddr, "error parsing remote addr");
goto create_err;
}
sk = (struct sock *)msk;
if (!mptcp_pm_addr_families_match(sk, &addr_l, &addr_r)) {
GENL_SET_ERR_MSG(info, "families mismatch");
err = -EINVAL;
goto create_err;
}
local.addr = addr_l;
err = mptcp_userspace_pm_append_new_local_addr(msk, &local);
if (err < 0) {
GENL_SET_ERR_MSG(info, "did not match address and id");
goto create_err;
}
lock_sock(sk);
err = __mptcp_subflow_connect(sk, &addr_l, &addr_r);
release_sock(sk);
spin_lock_bh(&msk->pm.lock);
if (err)
mptcp_userspace_pm_delete_local_addr(msk, &local);
else
msk->pm.subflows++;
spin_unlock_bh(&msk->pm.lock);
create_err:
sock_put((struct sock *)msk);
return err;
}
static struct sock *mptcp_nl_find_ssk(struct mptcp_sock *msk,
const struct mptcp_addr_info *local,
const struct mptcp_addr_info *remote)
{
struct mptcp_subflow_context *subflow;
if (local->family != remote->family)
return NULL;
mptcp_for_each_subflow(msk, subflow) {
const struct inet_sock *issk;
struct sock *ssk;
ssk = mptcp_subflow_tcp_sock(subflow);
if (local->family != ssk->sk_family)
continue;
issk = inet_sk(ssk);
switch (ssk->sk_family) {
case AF_INET:
if (issk->inet_saddr != local->addr.s_addr ||
issk->inet_daddr != remote->addr.s_addr)
continue;
break;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
case AF_INET6: {
const struct ipv6_pinfo *pinfo = inet6_sk(ssk);
if (!ipv6_addr_equal(&local->addr6, &pinfo->saddr) ||
!ipv6_addr_equal(&remote->addr6, &ssk->sk_v6_daddr))
continue;
break;
}
#endif
default:
continue;
}
if (issk->inet_sport == local->port &&
issk->inet_dport == remote->port)
return ssk;
}
return NULL;
}
int mptcp_nl_cmd_sf_destroy(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *raddr = info->attrs[MPTCP_PM_ATTR_ADDR_REMOTE];
struct nlattr *token = info->attrs[MPTCP_PM_ATTR_TOKEN];
struct nlattr *laddr = info->attrs[MPTCP_PM_ATTR_ADDR];
struct mptcp_addr_info addr_l;
struct mptcp_addr_info addr_r;
struct mptcp_sock *msk;
struct sock *sk, *ssk;
int err = -EINVAL;
u32 token_val;
if (!laddr || !raddr || !token) {
GENL_SET_ERR_MSG(info, "missing required inputs");
return err;
}
token_val = nla_get_u32(token);
msk = mptcp_token_get_sock(genl_info_net(info), token_val);
if (!msk) {
NL_SET_ERR_MSG_ATTR(info->extack, token, "invalid token");
return err;
}
if (!mptcp_pm_is_userspace(msk)) {
GENL_SET_ERR_MSG(info, "invalid request; userspace PM not selected");
goto destroy_err;
}
err = mptcp_pm_parse_addr(laddr, info, &addr_l);
if (err < 0) {
NL_SET_ERR_MSG_ATTR(info->extack, laddr, "error parsing local addr");
goto destroy_err;
}
err = mptcp_pm_parse_addr(raddr, info, &addr_r);
if (err < 0) {
NL_SET_ERR_MSG_ATTR(info->extack, raddr, "error parsing remote addr");
goto destroy_err;
}
if (addr_l.family != addr_r.family) {
GENL_SET_ERR_MSG(info, "address families do not match");
err = -EINVAL;
goto destroy_err;
}
if (!addr_l.port || !addr_r.port) {
GENL_SET_ERR_MSG(info, "missing local or remote port");
err = -EINVAL;
goto destroy_err;
}
sk = (struct sock *)msk;
lock_sock(sk);
ssk = mptcp_nl_find_ssk(msk, &addr_l, &addr_r);
if (ssk) {
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_pm_addr_entry entry = { .addr = addr_l };
spin_lock_bh(&msk->pm.lock);
mptcp_userspace_pm_delete_local_addr(msk, &entry);
spin_unlock_bh(&msk->pm.lock);
mptcp_subflow_shutdown(sk, ssk, RCV_SHUTDOWN | SEND_SHUTDOWN);
mptcp_close_ssk(sk, ssk, subflow);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RMSUBFLOW);
err = 0;
} else {
err = -ESRCH;
}
release_sock(sk);
destroy_err:
sock_put((struct sock *)msk);
return err;
}
int mptcp_userspace_pm_set_flags(struct net *net, struct nlattr *token,
struct mptcp_pm_addr_entry *loc,
struct mptcp_pm_addr_entry *rem, u8 bkup)
{
struct mptcp_sock *msk;
int ret = -EINVAL;
u32 token_val;
token_val = nla_get_u32(token);
msk = mptcp_token_get_sock(net, token_val);
if (!msk)
return ret;
if (!mptcp_pm_is_userspace(msk))
goto set_flags_err;
if (loc->addr.family == AF_UNSPEC ||
rem->addr.family == AF_UNSPEC)
goto set_flags_err;
lock_sock((struct sock *)msk);
ret = mptcp_pm_nl_mp_prio_send_ack(msk, &loc->addr, &rem->addr, bkup);
release_sock((struct sock *)msk);
set_flags_err:
sock_put((struct sock *)msk);
return ret;
}
| linux-master | net/mptcp/pm_userspace.c |
// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2017 - 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <crypto/sha2.h>
#include <net/tcp.h>
#include <net/mptcp.h>
#include "protocol.h"
#include "mib.h"
#include <trace/events/mptcp.h>
static bool mptcp_cap_flag_sha256(u8 flags)
{
return (flags & MPTCP_CAP_FLAG_MASK) == MPTCP_CAP_HMAC_SHA256;
}
static void mptcp_parse_option(const struct sk_buff *skb,
const unsigned char *ptr, int opsize,
struct mptcp_options_received *mp_opt)
{
u8 subtype = *ptr >> 4;
int expected_opsize;
u16 subopt;
u8 version;
u8 flags;
u8 i;
switch (subtype) {
case MPTCPOPT_MP_CAPABLE:
/* strict size checking */
if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
if (skb->len > tcp_hdr(skb)->doff << 2)
expected_opsize = TCPOLEN_MPTCP_MPC_ACK_DATA;
else
expected_opsize = TCPOLEN_MPTCP_MPC_ACK;
subopt = OPTION_MPTCP_MPC_ACK;
} else {
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) {
expected_opsize = TCPOLEN_MPTCP_MPC_SYNACK;
subopt = OPTION_MPTCP_MPC_SYNACK;
} else {
expected_opsize = TCPOLEN_MPTCP_MPC_SYN;
subopt = OPTION_MPTCP_MPC_SYN;
}
}
/* Cfr RFC 8684 Section 3.3.0:
* If a checksum is present but its use had
* not been negotiated in the MP_CAPABLE handshake, the receiver MUST
* close the subflow with a RST, as it is not behaving as negotiated.
* If a checksum is not present when its use has been negotiated, the
* receiver MUST close the subflow with a RST, as it is considered
* broken
* We parse even option with mismatching csum presence, so that
* later in subflow_data_ready we can trigger the reset.
*/
if (opsize != expected_opsize &&
(expected_opsize != TCPOLEN_MPTCP_MPC_ACK_DATA ||
opsize != TCPOLEN_MPTCP_MPC_ACK_DATA_CSUM))
break;
/* try to be gentle vs future versions on the initial syn */
version = *ptr++ & MPTCP_VERSION_MASK;
if (opsize != TCPOLEN_MPTCP_MPC_SYN) {
if (version != MPTCP_SUPPORTED_VERSION)
break;
} else if (version < MPTCP_SUPPORTED_VERSION) {
break;
}
flags = *ptr++;
if (!mptcp_cap_flag_sha256(flags) ||
(flags & MPTCP_CAP_EXTENSIBILITY))
break;
/* RFC 6824, Section 3.1:
* "For the Checksum Required bit (labeled "A"), if either
* host requires the use of checksums, checksums MUST be used.
* In other words, the only way for checksums not to be used
* is if both hosts in their SYNs set A=0."
*/
if (flags & MPTCP_CAP_CHECKSUM_REQD)
mp_opt->suboptions |= OPTION_MPTCP_CSUMREQD;
mp_opt->deny_join_id0 = !!(flags & MPTCP_CAP_DENY_JOIN_ID0);
mp_opt->suboptions |= subopt;
if (opsize >= TCPOLEN_MPTCP_MPC_SYNACK) {
mp_opt->sndr_key = get_unaligned_be64(ptr);
ptr += 8;
}
if (opsize >= TCPOLEN_MPTCP_MPC_ACK) {
mp_opt->rcvr_key = get_unaligned_be64(ptr);
ptr += 8;
}
if (opsize >= TCPOLEN_MPTCP_MPC_ACK_DATA) {
/* Section 3.1.:
* "the data parameters in a MP_CAPABLE are semantically
* equivalent to those in a DSS option and can be used
* interchangeably."
*/
mp_opt->suboptions |= OPTION_MPTCP_DSS;
mp_opt->use_map = 1;
mp_opt->mpc_map = 1;
mp_opt->data_len = get_unaligned_be16(ptr);
ptr += 2;
}
if (opsize == TCPOLEN_MPTCP_MPC_ACK_DATA_CSUM) {
mp_opt->csum = get_unaligned((__force __sum16 *)ptr);
mp_opt->suboptions |= OPTION_MPTCP_CSUMREQD;
ptr += 2;
}
pr_debug("MP_CAPABLE version=%x, flags=%x, optlen=%d sndr=%llu, rcvr=%llu len=%d csum=%u",
version, flags, opsize, mp_opt->sndr_key,
mp_opt->rcvr_key, mp_opt->data_len, mp_opt->csum);
break;
case MPTCPOPT_MP_JOIN:
mp_opt->suboptions |= OPTIONS_MPTCP_MPJ;
if (opsize == TCPOLEN_MPTCP_MPJ_SYN) {
mp_opt->backup = *ptr++ & MPTCPOPT_BACKUP;
mp_opt->join_id = *ptr++;
mp_opt->token = get_unaligned_be32(ptr);
ptr += 4;
mp_opt->nonce = get_unaligned_be32(ptr);
ptr += 4;
pr_debug("MP_JOIN bkup=%u, id=%u, token=%u, nonce=%u",
mp_opt->backup, mp_opt->join_id,
mp_opt->token, mp_opt->nonce);
} else if (opsize == TCPOLEN_MPTCP_MPJ_SYNACK) {
mp_opt->backup = *ptr++ & MPTCPOPT_BACKUP;
mp_opt->join_id = *ptr++;
mp_opt->thmac = get_unaligned_be64(ptr);
ptr += 8;
mp_opt->nonce = get_unaligned_be32(ptr);
ptr += 4;
pr_debug("MP_JOIN bkup=%u, id=%u, thmac=%llu, nonce=%u",
mp_opt->backup, mp_opt->join_id,
mp_opt->thmac, mp_opt->nonce);
} else if (opsize == TCPOLEN_MPTCP_MPJ_ACK) {
ptr += 2;
memcpy(mp_opt->hmac, ptr, MPTCPOPT_HMAC_LEN);
pr_debug("MP_JOIN hmac");
} else {
mp_opt->suboptions &= ~OPTIONS_MPTCP_MPJ;
}
break;
case MPTCPOPT_DSS:
pr_debug("DSS");
ptr++;
/* we must clear 'mpc_map' be able to detect MP_CAPABLE
* map vs DSS map in mptcp_incoming_options(), and reconstruct
* map info accordingly
*/
mp_opt->mpc_map = 0;
flags = (*ptr++) & MPTCP_DSS_FLAG_MASK;
mp_opt->data_fin = (flags & MPTCP_DSS_DATA_FIN) != 0;
mp_opt->dsn64 = (flags & MPTCP_DSS_DSN64) != 0;
mp_opt->use_map = (flags & MPTCP_DSS_HAS_MAP) != 0;
mp_opt->ack64 = (flags & MPTCP_DSS_ACK64) != 0;
mp_opt->use_ack = (flags & MPTCP_DSS_HAS_ACK);
pr_debug("data_fin=%d dsn64=%d use_map=%d ack64=%d use_ack=%d",
mp_opt->data_fin, mp_opt->dsn64,
mp_opt->use_map, mp_opt->ack64,
mp_opt->use_ack);
expected_opsize = TCPOLEN_MPTCP_DSS_BASE;
if (mp_opt->use_ack) {
if (mp_opt->ack64)
expected_opsize += TCPOLEN_MPTCP_DSS_ACK64;
else
expected_opsize += TCPOLEN_MPTCP_DSS_ACK32;
}
if (mp_opt->use_map) {
if (mp_opt->dsn64)
expected_opsize += TCPOLEN_MPTCP_DSS_MAP64;
else
expected_opsize += TCPOLEN_MPTCP_DSS_MAP32;
}
/* Always parse any csum presence combination, we will enforce
* RFC 8684 Section 3.3.0 checks later in subflow_data_ready
*/
if (opsize != expected_opsize &&
opsize != expected_opsize + TCPOLEN_MPTCP_DSS_CHECKSUM)
break;
mp_opt->suboptions |= OPTION_MPTCP_DSS;
if (mp_opt->use_ack) {
if (mp_opt->ack64) {
mp_opt->data_ack = get_unaligned_be64(ptr);
ptr += 8;
} else {
mp_opt->data_ack = get_unaligned_be32(ptr);
ptr += 4;
}
pr_debug("data_ack=%llu", mp_opt->data_ack);
}
if (mp_opt->use_map) {
if (mp_opt->dsn64) {
mp_opt->data_seq = get_unaligned_be64(ptr);
ptr += 8;
} else {
mp_opt->data_seq = get_unaligned_be32(ptr);
ptr += 4;
}
mp_opt->subflow_seq = get_unaligned_be32(ptr);
ptr += 4;
mp_opt->data_len = get_unaligned_be16(ptr);
ptr += 2;
if (opsize == expected_opsize + TCPOLEN_MPTCP_DSS_CHECKSUM) {
mp_opt->suboptions |= OPTION_MPTCP_CSUMREQD;
mp_opt->csum = get_unaligned((__force __sum16 *)ptr);
ptr += 2;
}
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u csum=%d:%u",
mp_opt->data_seq, mp_opt->subflow_seq,
mp_opt->data_len, !!(mp_opt->suboptions & OPTION_MPTCP_CSUMREQD),
mp_opt->csum);
}
break;
case MPTCPOPT_ADD_ADDR:
mp_opt->echo = (*ptr++) & MPTCP_ADDR_ECHO;
if (!mp_opt->echo) {
if (opsize == TCPOLEN_MPTCP_ADD_ADDR ||
opsize == TCPOLEN_MPTCP_ADD_ADDR_PORT)
mp_opt->addr.family = AF_INET;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (opsize == TCPOLEN_MPTCP_ADD_ADDR6 ||
opsize == TCPOLEN_MPTCP_ADD_ADDR6_PORT)
mp_opt->addr.family = AF_INET6;
#endif
else
break;
} else {
if (opsize == TCPOLEN_MPTCP_ADD_ADDR_BASE ||
opsize == TCPOLEN_MPTCP_ADD_ADDR_BASE_PORT)
mp_opt->addr.family = AF_INET;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (opsize == TCPOLEN_MPTCP_ADD_ADDR6_BASE ||
opsize == TCPOLEN_MPTCP_ADD_ADDR6_BASE_PORT)
mp_opt->addr.family = AF_INET6;
#endif
else
break;
}
mp_opt->suboptions |= OPTION_MPTCP_ADD_ADDR;
mp_opt->addr.id = *ptr++;
mp_opt->addr.port = 0;
mp_opt->ahmac = 0;
if (mp_opt->addr.family == AF_INET) {
memcpy((u8 *)&mp_opt->addr.addr.s_addr, (u8 *)ptr, 4);
ptr += 4;
if (opsize == TCPOLEN_MPTCP_ADD_ADDR_PORT ||
opsize == TCPOLEN_MPTCP_ADD_ADDR_BASE_PORT) {
mp_opt->addr.port = htons(get_unaligned_be16(ptr));
ptr += 2;
}
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else {
memcpy(mp_opt->addr.addr6.s6_addr, (u8 *)ptr, 16);
ptr += 16;
if (opsize == TCPOLEN_MPTCP_ADD_ADDR6_PORT ||
opsize == TCPOLEN_MPTCP_ADD_ADDR6_BASE_PORT) {
mp_opt->addr.port = htons(get_unaligned_be16(ptr));
ptr += 2;
}
}
#endif
if (!mp_opt->echo) {
mp_opt->ahmac = get_unaligned_be64(ptr);
ptr += 8;
}
pr_debug("ADD_ADDR%s: id=%d, ahmac=%llu, echo=%d, port=%d",
(mp_opt->addr.family == AF_INET6) ? "6" : "",
mp_opt->addr.id, mp_opt->ahmac, mp_opt->echo, ntohs(mp_opt->addr.port));
break;
case MPTCPOPT_RM_ADDR:
if (opsize < TCPOLEN_MPTCP_RM_ADDR_BASE + 1 ||
opsize > TCPOLEN_MPTCP_RM_ADDR_BASE + MPTCP_RM_IDS_MAX)
break;
ptr++;
mp_opt->suboptions |= OPTION_MPTCP_RM_ADDR;
mp_opt->rm_list.nr = opsize - TCPOLEN_MPTCP_RM_ADDR_BASE;
for (i = 0; i < mp_opt->rm_list.nr; i++)
mp_opt->rm_list.ids[i] = *ptr++;
pr_debug("RM_ADDR: rm_list_nr=%d", mp_opt->rm_list.nr);
break;
case MPTCPOPT_MP_PRIO:
if (opsize != TCPOLEN_MPTCP_PRIO)
break;
mp_opt->suboptions |= OPTION_MPTCP_PRIO;
mp_opt->backup = *ptr++ & MPTCP_PRIO_BKUP;
pr_debug("MP_PRIO: prio=%d", mp_opt->backup);
break;
case MPTCPOPT_MP_FASTCLOSE:
if (opsize != TCPOLEN_MPTCP_FASTCLOSE)
break;
ptr += 2;
mp_opt->rcvr_key = get_unaligned_be64(ptr);
ptr += 8;
mp_opt->suboptions |= OPTION_MPTCP_FASTCLOSE;
pr_debug("MP_FASTCLOSE: recv_key=%llu", mp_opt->rcvr_key);
break;
case MPTCPOPT_RST:
if (opsize != TCPOLEN_MPTCP_RST)
break;
if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_RST))
break;
mp_opt->suboptions |= OPTION_MPTCP_RST;
flags = *ptr++;
mp_opt->reset_transient = flags & MPTCP_RST_TRANSIENT;
mp_opt->reset_reason = *ptr;
pr_debug("MP_RST: transient=%u reason=%u",
mp_opt->reset_transient, mp_opt->reset_reason);
break;
case MPTCPOPT_MP_FAIL:
if (opsize != TCPOLEN_MPTCP_FAIL)
break;
ptr += 2;
mp_opt->suboptions |= OPTION_MPTCP_FAIL;
mp_opt->fail_seq = get_unaligned_be64(ptr);
pr_debug("MP_FAIL: data_seq=%llu", mp_opt->fail_seq);
break;
default:
break;
}
}
void mptcp_get_options(const struct sk_buff *skb,
struct mptcp_options_received *mp_opt)
{
const struct tcphdr *th = tcp_hdr(skb);
const unsigned char *ptr;
int length;
/* initialize option status */
mp_opt->suboptions = 0;
length = (th->doff * 4) - sizeof(struct tcphdr);
ptr = (const unsigned char *)(th + 1);
while (length > 0) {
int opcode = *ptr++;
int opsize;
switch (opcode) {
case TCPOPT_EOL:
return;
case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
length--;
continue;
default:
if (length < 2)
return;
opsize = *ptr++;
if (opsize < 2) /* "silly options" */
return;
if (opsize > length)
return; /* don't parse partial options */
if (opcode == TCPOPT_MPTCP)
mptcp_parse_option(skb, ptr, opsize, mp_opt);
ptr += opsize - 2;
length -= opsize;
}
}
}
bool mptcp_syn_options(struct sock *sk, const struct sk_buff *skb,
unsigned int *size, struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
/* we will use snd_isn to detect first pkt [re]transmission
* in mptcp_established_options_mp()
*/
subflow->snd_isn = TCP_SKB_CB(skb)->end_seq;
if (subflow->request_mptcp) {
opts->suboptions = OPTION_MPTCP_MPC_SYN;
opts->csum_reqd = mptcp_is_checksum_enabled(sock_net(sk));
opts->allow_join_id0 = mptcp_allow_join_id0(sock_net(sk));
*size = TCPOLEN_MPTCP_MPC_SYN;
return true;
} else if (subflow->request_join) {
pr_debug("remote_token=%u, nonce=%u", subflow->remote_token,
subflow->local_nonce);
opts->suboptions = OPTION_MPTCP_MPJ_SYN;
opts->join_id = subflow->local_id;
opts->token = subflow->remote_token;
opts->nonce = subflow->local_nonce;
opts->backup = subflow->request_bkup;
*size = TCPOLEN_MPTCP_MPJ_SYN;
return true;
}
return false;
}
static void clear_3rdack_retransmission(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
sk_stop_timer(sk, &icsk->icsk_delack_timer);
icsk->icsk_ack.timeout = 0;
icsk->icsk_ack.ato = 0;
icsk->icsk_ack.pending &= ~(ICSK_ACK_SCHED | ICSK_ACK_TIMER);
}
static bool mptcp_established_options_mp(struct sock *sk, struct sk_buff *skb,
bool snd_data_fin_enable,
unsigned int *size,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct mptcp_ext *mpext;
unsigned int data_len;
u8 len;
/* When skb is not available, we better over-estimate the emitted
* options len. A full DSS option (28 bytes) is longer than
* TCPOLEN_MPTCP_MPC_ACK_DATA(22) or TCPOLEN_MPTCP_MPJ_ACK(24), so
* tell the caller to defer the estimate to
* mptcp_established_options_dss(), which will reserve enough space.
*/
if (!skb)
return false;
/* MPC/MPJ needed only on 3rd ack packet, DATA_FIN and TCP shutdown take precedence */
if (subflow->fully_established || snd_data_fin_enable ||
subflow->snd_isn != TCP_SKB_CB(skb)->seq ||
sk->sk_state != TCP_ESTABLISHED)
return false;
if (subflow->mp_capable) {
mpext = mptcp_get_ext(skb);
data_len = mpext ? mpext->data_len : 0;
/* we will check ops->data_len in mptcp_write_options() to
* discriminate between TCPOLEN_MPTCP_MPC_ACK_DATA and
* TCPOLEN_MPTCP_MPC_ACK
*/
opts->data_len = data_len;
opts->suboptions = OPTION_MPTCP_MPC_ACK;
opts->sndr_key = subflow->local_key;
opts->rcvr_key = subflow->remote_key;
opts->csum_reqd = READ_ONCE(msk->csum_enabled);
opts->allow_join_id0 = mptcp_allow_join_id0(sock_net(sk));
/* Section 3.1.
* The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK
* packets that start the first subflow of an MPTCP connection,
* as well as the first packet that carries data
*/
if (data_len > 0) {
len = TCPOLEN_MPTCP_MPC_ACK_DATA;
if (opts->csum_reqd) {
/* we need to propagate more info to csum the pseudo hdr */
opts->data_seq = mpext->data_seq;
opts->subflow_seq = mpext->subflow_seq;
opts->csum = mpext->csum;
len += TCPOLEN_MPTCP_DSS_CHECKSUM;
}
*size = ALIGN(len, 4);
} else {
*size = TCPOLEN_MPTCP_MPC_ACK;
}
pr_debug("subflow=%p, local_key=%llu, remote_key=%llu map_len=%d",
subflow, subflow->local_key, subflow->remote_key,
data_len);
return true;
} else if (subflow->mp_join) {
opts->suboptions = OPTION_MPTCP_MPJ_ACK;
memcpy(opts->hmac, subflow->hmac, MPTCPOPT_HMAC_LEN);
*size = TCPOLEN_MPTCP_MPJ_ACK;
pr_debug("subflow=%p", subflow);
/* we can use the full delegate action helper only from BH context
* If we are in process context - sk is flushing the backlog at
* socket lock release time - just set the appropriate flag, will
* be handled by the release callback
*/
if (sock_owned_by_user(sk))
set_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status);
else
mptcp_subflow_delegate(subflow, MPTCP_DELEGATE_ACK);
return true;
}
return false;
}
static void mptcp_write_data_fin(struct mptcp_subflow_context *subflow,
struct sk_buff *skb, struct mptcp_ext *ext)
{
/* The write_seq value has already been incremented, so the actual
* sequence number for the DATA_FIN is one less.
*/
u64 data_fin_tx_seq = READ_ONCE(mptcp_sk(subflow->conn)->write_seq) - 1;
if (!ext->use_map || !skb->len) {
/* RFC6824 requires a DSS mapping with specific values
* if DATA_FIN is set but no data payload is mapped
*/
ext->data_fin = 1;
ext->use_map = 1;
ext->dsn64 = 1;
ext->data_seq = data_fin_tx_seq;
ext->subflow_seq = 0;
ext->data_len = 1;
} else if (ext->data_seq + ext->data_len == data_fin_tx_seq) {
/* If there's an existing DSS mapping and it is the
* final mapping, DATA_FIN consumes 1 additional byte of
* mapping space.
*/
ext->data_fin = 1;
ext->data_len++;
}
}
static bool mptcp_established_options_dss(struct sock *sk, struct sk_buff *skb,
bool snd_data_fin_enable,
unsigned int *size,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
unsigned int dss_size = 0;
struct mptcp_ext *mpext;
unsigned int ack_size;
bool ret = false;
u64 ack_seq;
opts->csum_reqd = READ_ONCE(msk->csum_enabled);
mpext = skb ? mptcp_get_ext(skb) : NULL;
if (!skb || (mpext && mpext->use_map) || snd_data_fin_enable) {
unsigned int map_size = TCPOLEN_MPTCP_DSS_BASE + TCPOLEN_MPTCP_DSS_MAP64;
if (mpext) {
if (opts->csum_reqd)
map_size += TCPOLEN_MPTCP_DSS_CHECKSUM;
opts->ext_copy = *mpext;
}
dss_size = map_size;
if (skb && snd_data_fin_enable)
mptcp_write_data_fin(subflow, skb, &opts->ext_copy);
opts->suboptions = OPTION_MPTCP_DSS;
ret = true;
}
/* passive sockets msk will set the 'can_ack' after accept(), even
* if the first subflow may have the already the remote key handy
*/
opts->ext_copy.use_ack = 0;
if (!READ_ONCE(msk->can_ack)) {
*size = ALIGN(dss_size, 4);
return ret;
}
ack_seq = READ_ONCE(msk->ack_seq);
if (READ_ONCE(msk->use_64bit_ack)) {
ack_size = TCPOLEN_MPTCP_DSS_ACK64;
opts->ext_copy.data_ack = ack_seq;
opts->ext_copy.ack64 = 1;
} else {
ack_size = TCPOLEN_MPTCP_DSS_ACK32;
opts->ext_copy.data_ack32 = (uint32_t)ack_seq;
opts->ext_copy.ack64 = 0;
}
opts->ext_copy.use_ack = 1;
opts->suboptions = OPTION_MPTCP_DSS;
WRITE_ONCE(msk->old_wspace, __mptcp_space((struct sock *)msk));
/* Add kind/length/subtype/flag overhead if mapping is not populated */
if (dss_size == 0)
ack_size += TCPOLEN_MPTCP_DSS_BASE;
dss_size += ack_size;
*size = ALIGN(dss_size, 4);
return true;
}
static u64 add_addr_generate_hmac(u64 key1, u64 key2,
struct mptcp_addr_info *addr)
{
u16 port = ntohs(addr->port);
u8 hmac[SHA256_DIGEST_SIZE];
u8 msg[19];
int i = 0;
msg[i++] = addr->id;
if (addr->family == AF_INET) {
memcpy(&msg[i], &addr->addr.s_addr, 4);
i += 4;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (addr->family == AF_INET6) {
memcpy(&msg[i], &addr->addr6.s6_addr, 16);
i += 16;
}
#endif
msg[i++] = port >> 8;
msg[i++] = port & 0xFF;
mptcp_crypto_hmac_sha(key1, key2, msg, i, hmac);
return get_unaligned_be64(&hmac[SHA256_DIGEST_SIZE - sizeof(u64)]);
}
static bool mptcp_established_options_add_addr(struct sock *sk, struct sk_buff *skb,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
bool drop_other_suboptions = false;
unsigned int opt_size = *size;
bool echo;
int len;
/* add addr will strip the existing options, be sure to avoid breaking
* MPC/MPJ handshakes
*/
if (!mptcp_pm_should_add_signal(msk) ||
(opts->suboptions & (OPTION_MPTCP_MPJ_ACK | OPTION_MPTCP_MPC_ACK)) ||
!mptcp_pm_add_addr_signal(msk, skb, opt_size, remaining, &opts->addr,
&echo, &drop_other_suboptions))
return false;
if (drop_other_suboptions)
remaining += opt_size;
len = mptcp_add_addr_len(opts->addr.family, echo, !!opts->addr.port);
if (remaining < len)
return false;
*size = len;
if (drop_other_suboptions) {
pr_debug("drop other suboptions");
opts->suboptions = 0;
/* note that e.g. DSS could have written into the memory
* aliased by ahmac, we must reset the field here
* to avoid appending the hmac even for ADD_ADDR echo
* options
*/
opts->ahmac = 0;
*size -= opt_size;
}
opts->suboptions |= OPTION_MPTCP_ADD_ADDR;
if (!echo) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_ADDADDRTX);
opts->ahmac = add_addr_generate_hmac(msk->local_key,
msk->remote_key,
&opts->addr);
} else {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_ECHOADDTX);
}
pr_debug("addr_id=%d, ahmac=%llu, echo=%d, port=%d",
opts->addr.id, opts->ahmac, echo, ntohs(opts->addr.port));
return true;
}
static bool mptcp_established_options_rm_addr(struct sock *sk,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct mptcp_rm_list rm_list;
int i, len;
if (!mptcp_pm_should_rm_signal(msk) ||
!(mptcp_pm_rm_addr_signal(msk, remaining, &rm_list)))
return false;
len = mptcp_rm_addr_len(&rm_list);
if (len < 0)
return false;
if (remaining < len)
return false;
*size = len;
opts->suboptions |= OPTION_MPTCP_RM_ADDR;
opts->rm_list = rm_list;
for (i = 0; i < opts->rm_list.nr; i++)
pr_debug("rm_list_ids[%d]=%d", i, opts->rm_list.ids[i]);
MPTCP_ADD_STATS(sock_net(sk), MPTCP_MIB_RMADDRTX, opts->rm_list.nr);
return true;
}
static bool mptcp_established_options_mp_prio(struct sock *sk,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
/* can't send MP_PRIO with MPC, as they share the same option space:
* 'backup'. Also it makes no sense at all
*/
if (!subflow->send_mp_prio || (opts->suboptions & OPTIONS_MPTCP_MPC))
return false;
/* account for the trailing 'nop' option */
if (remaining < TCPOLEN_MPTCP_PRIO_ALIGN)
return false;
*size = TCPOLEN_MPTCP_PRIO_ALIGN;
opts->suboptions |= OPTION_MPTCP_PRIO;
opts->backup = subflow->request_bkup;
pr_debug("prio=%d", opts->backup);
return true;
}
static noinline bool mptcp_established_options_rst(struct sock *sk, struct sk_buff *skb,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
if (remaining < TCPOLEN_MPTCP_RST)
return false;
*size = TCPOLEN_MPTCP_RST;
opts->suboptions |= OPTION_MPTCP_RST;
opts->reset_transient = subflow->reset_transient;
opts->reset_reason = subflow->reset_reason;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPRSTTX);
return true;
}
static bool mptcp_established_options_fastclose(struct sock *sk,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
if (likely(!subflow->send_fastclose))
return false;
if (remaining < TCPOLEN_MPTCP_FASTCLOSE)
return false;
*size = TCPOLEN_MPTCP_FASTCLOSE;
opts->suboptions |= OPTION_MPTCP_FASTCLOSE;
opts->rcvr_key = msk->remote_key;
pr_debug("FASTCLOSE key=%llu", opts->rcvr_key);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPFASTCLOSETX);
return true;
}
static bool mptcp_established_options_mp_fail(struct sock *sk,
unsigned int *size,
unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
if (likely(!subflow->send_mp_fail))
return false;
if (remaining < TCPOLEN_MPTCP_FAIL)
return false;
*size = TCPOLEN_MPTCP_FAIL;
opts->suboptions |= OPTION_MPTCP_FAIL;
opts->fail_seq = subflow->map_seq;
pr_debug("MP_FAIL fail_seq=%llu", opts->fail_seq);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPFAILTX);
return true;
}
bool mptcp_established_options(struct sock *sk, struct sk_buff *skb,
unsigned int *size, unsigned int remaining,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
unsigned int opt_size = 0;
bool snd_data_fin;
bool ret = false;
opts->suboptions = 0;
if (unlikely(__mptcp_check_fallback(msk) && !mptcp_check_infinite_map(skb)))
return false;
if (unlikely(skb && TCP_SKB_CB(skb)->tcp_flags & TCPHDR_RST)) {
if (mptcp_established_options_fastclose(sk, &opt_size, remaining, opts) ||
mptcp_established_options_mp_fail(sk, &opt_size, remaining, opts)) {
*size += opt_size;
remaining -= opt_size;
}
/* MP_RST can be used with MP_FASTCLOSE and MP_FAIL if there is room */
if (mptcp_established_options_rst(sk, skb, &opt_size, remaining, opts)) {
*size += opt_size;
remaining -= opt_size;
}
return true;
}
snd_data_fin = mptcp_data_fin_enabled(msk);
if (mptcp_established_options_mp(sk, skb, snd_data_fin, &opt_size, opts))
ret = true;
else if (mptcp_established_options_dss(sk, skb, snd_data_fin, &opt_size, opts)) {
unsigned int mp_fail_size;
ret = true;
if (mptcp_established_options_mp_fail(sk, &mp_fail_size,
remaining - opt_size, opts)) {
*size += opt_size + mp_fail_size;
remaining -= opt_size - mp_fail_size;
return true;
}
}
/* we reserved enough space for the above options, and exceeding the
* TCP option space would be fatal
*/
if (WARN_ON_ONCE(opt_size > remaining))
return false;
*size += opt_size;
remaining -= opt_size;
if (mptcp_established_options_add_addr(sk, skb, &opt_size, remaining, opts)) {
*size += opt_size;
remaining -= opt_size;
ret = true;
} else if (mptcp_established_options_rm_addr(sk, &opt_size, remaining, opts)) {
*size += opt_size;
remaining -= opt_size;
ret = true;
}
if (mptcp_established_options_mp_prio(sk, &opt_size, remaining, opts)) {
*size += opt_size;
remaining -= opt_size;
ret = true;
}
return ret;
}
bool mptcp_synack_options(const struct request_sock *req, unsigned int *size,
struct mptcp_out_options *opts)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
if (subflow_req->mp_capable) {
opts->suboptions = OPTION_MPTCP_MPC_SYNACK;
opts->sndr_key = subflow_req->local_key;
opts->csum_reqd = subflow_req->csum_reqd;
opts->allow_join_id0 = subflow_req->allow_join_id0;
*size = TCPOLEN_MPTCP_MPC_SYNACK;
pr_debug("subflow_req=%p, local_key=%llu",
subflow_req, subflow_req->local_key);
return true;
} else if (subflow_req->mp_join) {
opts->suboptions = OPTION_MPTCP_MPJ_SYNACK;
opts->backup = subflow_req->backup;
opts->join_id = subflow_req->local_id;
opts->thmac = subflow_req->thmac;
opts->nonce = subflow_req->local_nonce;
pr_debug("req=%p, bkup=%u, id=%u, thmac=%llu, nonce=%u",
subflow_req, opts->backup, opts->join_id,
opts->thmac, opts->nonce);
*size = TCPOLEN_MPTCP_MPJ_SYNACK;
return true;
}
return false;
}
static bool check_fully_established(struct mptcp_sock *msk, struct sock *ssk,
struct mptcp_subflow_context *subflow,
struct sk_buff *skb,
struct mptcp_options_received *mp_opt)
{
/* here we can process OoO, in-window pkts, only in-sequence 4th ack
* will make the subflow fully established
*/
if (likely(subflow->fully_established)) {
/* on passive sockets, check for 3rd ack retransmission
* note that msk is always set by subflow_syn_recv_sock()
* for mp_join subflows
*/
if (TCP_SKB_CB(skb)->seq == subflow->ssn_offset + 1 &&
TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq &&
subflow->mp_join && (mp_opt->suboptions & OPTIONS_MPTCP_MPJ) &&
!subflow->request_join)
tcp_send_ack(ssk);
goto check_notify;
}
/* we must process OoO packets before the first subflow is fully
* established. OoO packets are instead a protocol violation
* for MP_JOIN subflows as the peer must not send any data
* before receiving the forth ack - cfr. RFC 8684 section 3.2.
*/
if (TCP_SKB_CB(skb)->seq != subflow->ssn_offset + 1) {
if (subflow->mp_join)
goto reset;
if (subflow->is_mptfo && mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
goto set_fully_established;
return subflow->mp_capable;
}
if (subflow->remote_key_valid &&
(((mp_opt->suboptions & OPTION_MPTCP_DSS) && mp_opt->use_ack) ||
((mp_opt->suboptions & OPTION_MPTCP_ADD_ADDR) && !mp_opt->echo))) {
/* subflows are fully established as soon as we get any
* additional ack, including ADD_ADDR.
*/
subflow->fully_established = 1;
WRITE_ONCE(msk->fully_established, true);
goto check_notify;
}
/* If the first established packet does not contain MP_CAPABLE + data
* then fallback to TCP. Fallback scenarios requires a reset for
* MP_JOIN subflows.
*/
if (!(mp_opt->suboptions & OPTIONS_MPTCP_MPC)) {
if (subflow->mp_join)
goto reset;
subflow->mp_capable = 0;
pr_fallback(msk);
mptcp_do_fallback(ssk);
return false;
}
if (mp_opt->deny_join_id0)
WRITE_ONCE(msk->pm.remote_deny_join_id0, true);
set_fully_established:
if (unlikely(!READ_ONCE(msk->pm.server_side)))
pr_warn_once("bogus mpc option on established client sk");
mptcp_subflow_fully_established(subflow, mp_opt);
check_notify:
/* if the subflow is not already linked into the conn_list, we can't
* notify the PM: this subflow is still on the listener queue
* and the PM possibly acquiring the subflow lock could race with
* the listener close
*/
if (likely(subflow->pm_notified) || list_empty(&subflow->node))
return true;
subflow->pm_notified = 1;
if (subflow->mp_join) {
clear_3rdack_retransmission(ssk);
mptcp_pm_subflow_established(msk);
} else {
mptcp_pm_fully_established(msk, ssk);
}
return true;
reset:
mptcp_subflow_reset(ssk);
return false;
}
u64 __mptcp_expand_seq(u64 old_seq, u64 cur_seq)
{
u32 old_seq32, cur_seq32;
old_seq32 = (u32)old_seq;
cur_seq32 = (u32)cur_seq;
cur_seq = (old_seq & GENMASK_ULL(63, 32)) + cur_seq32;
if (unlikely(cur_seq32 < old_seq32 && before(old_seq32, cur_seq32)))
return cur_seq + (1LL << 32);
/* reverse wrap could happen, too */
if (unlikely(cur_seq32 > old_seq32 && after(old_seq32, cur_seq32)))
return cur_seq - (1LL << 32);
return cur_seq;
}
static void __mptcp_snd_una_update(struct mptcp_sock *msk, u64 new_snd_una)
{
msk->bytes_acked += new_snd_una - msk->snd_una;
msk->snd_una = new_snd_una;
}
static void ack_update_msk(struct mptcp_sock *msk,
struct sock *ssk,
struct mptcp_options_received *mp_opt)
{
u64 new_wnd_end, new_snd_una, snd_nxt = READ_ONCE(msk->snd_nxt);
struct sock *sk = (struct sock *)msk;
u64 old_snd_una;
mptcp_data_lock(sk);
/* avoid ack expansion on update conflict, to reduce the risk of
* wrongly expanding to a future ack sequence number, which is way
* more dangerous than missing an ack
*/
old_snd_una = msk->snd_una;
new_snd_una = mptcp_expand_seq(old_snd_una, mp_opt->data_ack, mp_opt->ack64);
/* ACK for data not even sent yet? Ignore.*/
if (unlikely(after64(new_snd_una, snd_nxt)))
new_snd_una = old_snd_una;
new_wnd_end = new_snd_una + tcp_sk(ssk)->snd_wnd;
if (after64(new_wnd_end, msk->wnd_end))
msk->wnd_end = new_wnd_end;
/* this assumes mptcp_incoming_options() is invoked after tcp_ack() */
if (after64(msk->wnd_end, READ_ONCE(msk->snd_nxt)))
__mptcp_check_push(sk, ssk);
if (after64(new_snd_una, old_snd_una)) {
__mptcp_snd_una_update(msk, new_snd_una);
__mptcp_data_acked(sk);
}
mptcp_data_unlock(sk);
trace_ack_update_msk(mp_opt->data_ack,
old_snd_una, new_snd_una,
new_wnd_end, msk->wnd_end);
}
bool mptcp_update_rcv_data_fin(struct mptcp_sock *msk, u64 data_fin_seq, bool use_64bit)
{
/* Skip if DATA_FIN was already received.
* If updating simultaneously with the recvmsg loop, values
* should match. If they mismatch, the peer is misbehaving and
* we will prefer the most recent information.
*/
if (READ_ONCE(msk->rcv_data_fin))
return false;
WRITE_ONCE(msk->rcv_data_fin_seq,
mptcp_expand_seq(READ_ONCE(msk->ack_seq), data_fin_seq, use_64bit));
WRITE_ONCE(msk->rcv_data_fin, 1);
return true;
}
static bool add_addr_hmac_valid(struct mptcp_sock *msk,
struct mptcp_options_received *mp_opt)
{
u64 hmac = 0;
if (mp_opt->echo)
return true;
hmac = add_addr_generate_hmac(msk->remote_key,
msk->local_key,
&mp_opt->addr);
pr_debug("msk=%p, ahmac=%llu, mp_opt->ahmac=%llu\n",
msk, hmac, mp_opt->ahmac);
return hmac == mp_opt->ahmac;
}
/* Return false if a subflow has been reset, else return true */
bool mptcp_incoming_options(struct sock *sk, struct sk_buff *skb)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct mptcp_options_received mp_opt;
struct mptcp_ext *mpext;
if (__mptcp_check_fallback(msk)) {
/* Keep it simple and unconditionally trigger send data cleanup and
* pending queue spooling. We will need to acquire the data lock
* for more accurate checks, and once the lock is acquired, such
* helpers are cheap.
*/
mptcp_data_lock(subflow->conn);
if (sk_stream_memory_free(sk))
__mptcp_check_push(subflow->conn, sk);
/* on fallback we just need to ignore the msk-level snd_una, as
* this is really plain TCP
*/
__mptcp_snd_una_update(msk, READ_ONCE(msk->snd_nxt));
__mptcp_data_acked(subflow->conn);
mptcp_data_unlock(subflow->conn);
return true;
}
mptcp_get_options(skb, &mp_opt);
/* The subflow can be in close state only if check_fully_established()
* just sent a reset. If so, tell the caller to ignore the current packet.
*/
if (!check_fully_established(msk, sk, subflow, skb, &mp_opt))
return sk->sk_state != TCP_CLOSE;
if (unlikely(mp_opt.suboptions != OPTION_MPTCP_DSS)) {
if ((mp_opt.suboptions & OPTION_MPTCP_FASTCLOSE) &&
msk->local_key == mp_opt.rcvr_key) {
WRITE_ONCE(msk->rcv_fastclose, true);
mptcp_schedule_work((struct sock *)msk);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPFASTCLOSERX);
}
if ((mp_opt.suboptions & OPTION_MPTCP_ADD_ADDR) &&
add_addr_hmac_valid(msk, &mp_opt)) {
if (!mp_opt.echo) {
mptcp_pm_add_addr_received(sk, &mp_opt.addr);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_ADDADDR);
} else {
mptcp_pm_add_addr_echoed(msk, &mp_opt.addr);
mptcp_pm_del_add_timer(msk, &mp_opt.addr, true);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_ECHOADD);
}
if (mp_opt.addr.port)
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_PORTADD);
}
if (mp_opt.suboptions & OPTION_MPTCP_RM_ADDR)
mptcp_pm_rm_addr_received(msk, &mp_opt.rm_list);
if (mp_opt.suboptions & OPTION_MPTCP_PRIO) {
mptcp_pm_mp_prio_received(sk, mp_opt.backup);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPPRIORX);
}
if (mp_opt.suboptions & OPTION_MPTCP_FAIL) {
mptcp_pm_mp_fail_received(sk, mp_opt.fail_seq);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPFAILRX);
}
if (mp_opt.suboptions & OPTION_MPTCP_RST) {
subflow->reset_seen = 1;
subflow->reset_reason = mp_opt.reset_reason;
subflow->reset_transient = mp_opt.reset_transient;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPRSTRX);
}
if (!(mp_opt.suboptions & OPTION_MPTCP_DSS))
return true;
}
/* we can't wait for recvmsg() to update the ack_seq, otherwise
* monodirectional flows will stuck
*/
if (mp_opt.use_ack)
ack_update_msk(msk, sk, &mp_opt);
/* Zero-data-length packets are dropped by the caller and not
* propagated to the MPTCP layer, so the skb extension does not
* need to be allocated or populated. DATA_FIN information, if
* present, needs to be updated here before the skb is freed.
*/
if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
if (mp_opt.data_fin && mp_opt.data_len == 1 &&
mptcp_update_rcv_data_fin(msk, mp_opt.data_seq, mp_opt.dsn64))
mptcp_schedule_work((struct sock *)msk);
return true;
}
mpext = skb_ext_add(skb, SKB_EXT_MPTCP);
if (!mpext)
return true;
memset(mpext, 0, sizeof(*mpext));
if (likely(mp_opt.use_map)) {
if (mp_opt.mpc_map) {
/* this is an MP_CAPABLE carrying MPTCP data
* we know this map the first chunk of data
*/
mptcp_crypto_key_sha(subflow->remote_key, NULL,
&mpext->data_seq);
mpext->data_seq++;
mpext->subflow_seq = 1;
mpext->dsn64 = 1;
mpext->mpc_map = 1;
mpext->data_fin = 0;
} else {
mpext->data_seq = mp_opt.data_seq;
mpext->subflow_seq = mp_opt.subflow_seq;
mpext->dsn64 = mp_opt.dsn64;
mpext->data_fin = mp_opt.data_fin;
}
mpext->data_len = mp_opt.data_len;
mpext->use_map = 1;
mpext->csum_reqd = !!(mp_opt.suboptions & OPTION_MPTCP_CSUMREQD);
if (mpext->csum_reqd)
mpext->csum = mp_opt.csum;
}
return true;
}
static void mptcp_set_rwin(struct tcp_sock *tp, struct tcphdr *th)
{
const struct sock *ssk = (const struct sock *)tp;
struct mptcp_subflow_context *subflow;
u64 ack_seq, rcv_wnd_old, rcv_wnd_new;
struct mptcp_sock *msk;
u32 new_win;
u64 win;
subflow = mptcp_subflow_ctx(ssk);
msk = mptcp_sk(subflow->conn);
ack_seq = READ_ONCE(msk->ack_seq);
rcv_wnd_new = ack_seq + tp->rcv_wnd;
rcv_wnd_old = atomic64_read(&msk->rcv_wnd_sent);
if (after64(rcv_wnd_new, rcv_wnd_old)) {
u64 rcv_wnd;
for (;;) {
rcv_wnd = atomic64_cmpxchg(&msk->rcv_wnd_sent, rcv_wnd_old, rcv_wnd_new);
if (rcv_wnd == rcv_wnd_old)
break;
rcv_wnd_old = rcv_wnd;
if (before64(rcv_wnd_new, rcv_wnd_old)) {
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_RCVWNDCONFLICTUPDATE);
goto raise_win;
}
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_RCVWNDCONFLICT);
}
return;
}
if (rcv_wnd_new != rcv_wnd_old) {
raise_win:
win = rcv_wnd_old - ack_seq;
tp->rcv_wnd = min_t(u64, win, U32_MAX);
new_win = tp->rcv_wnd;
/* Make sure we do not exceed the maximum possible
* scaled window.
*/
if (unlikely(th->syn))
new_win = min(new_win, 65535U) << tp->rx_opt.rcv_wscale;
if (!tp->rx_opt.rcv_wscale &&
READ_ONCE(sock_net(ssk)->ipv4.sysctl_tcp_workaround_signed_windows))
new_win = min(new_win, MAX_TCP_WINDOW);
else
new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
/* RFC1323 scaling applied */
new_win >>= tp->rx_opt.rcv_wscale;
th->window = htons(new_win);
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_RCVWNDSHARED);
}
}
__sum16 __mptcp_make_csum(u64 data_seq, u32 subflow_seq, u16 data_len, __wsum sum)
{
struct csum_pseudo_header header;
__wsum csum;
/* cfr RFC 8684 3.3.1.:
* the data sequence number used in the pseudo-header is
* always the 64-bit value, irrespective of what length is used in the
* DSS option itself.
*/
header.data_seq = cpu_to_be64(data_seq);
header.subflow_seq = htonl(subflow_seq);
header.data_len = htons(data_len);
header.csum = 0;
csum = csum_partial(&header, sizeof(header), sum);
return csum_fold(csum);
}
static __sum16 mptcp_make_csum(const struct mptcp_ext *mpext)
{
return __mptcp_make_csum(mpext->data_seq, mpext->subflow_seq, mpext->data_len,
~csum_unfold(mpext->csum));
}
static void put_len_csum(u16 len, __sum16 csum, void *data)
{
__sum16 *sumptr = data + 2;
__be16 *ptr = data;
put_unaligned_be16(len, ptr);
put_unaligned(csum, sumptr);
}
void mptcp_write_options(struct tcphdr *th, __be32 *ptr, struct tcp_sock *tp,
struct mptcp_out_options *opts)
{
const struct sock *ssk = (const struct sock *)tp;
struct mptcp_subflow_context *subflow;
/* Which options can be used together?
*
* X: mutually exclusive
* O: often used together
* C: can be used together in some cases
* P: could be used together but we prefer not to (optimisations)
*
* Opt: | MPC | MPJ | DSS | ADD | RM | PRIO | FAIL | FC |
* ------|------|------|------|------|------|------|------|------|
* MPC |------|------|------|------|------|------|------|------|
* MPJ | X |------|------|------|------|------|------|------|
* DSS | X | X |------|------|------|------|------|------|
* ADD | X | X | P |------|------|------|------|------|
* RM | C | C | C | P |------|------|------|------|
* PRIO | X | C | C | C | C |------|------|------|
* FAIL | X | X | C | X | X | X |------|------|
* FC | X | X | X | X | X | X | X |------|
* RST | X | X | X | X | X | X | O | O |
* ------|------|------|------|------|------|------|------|------|
*
* The same applies in mptcp_established_options() function.
*/
if (likely(OPTION_MPTCP_DSS & opts->suboptions)) {
struct mptcp_ext *mpext = &opts->ext_copy;
u8 len = TCPOLEN_MPTCP_DSS_BASE;
u8 flags = 0;
if (mpext->use_ack) {
flags = MPTCP_DSS_HAS_ACK;
if (mpext->ack64) {
len += TCPOLEN_MPTCP_DSS_ACK64;
flags |= MPTCP_DSS_ACK64;
} else {
len += TCPOLEN_MPTCP_DSS_ACK32;
}
}
if (mpext->use_map) {
len += TCPOLEN_MPTCP_DSS_MAP64;
/* Use only 64-bit mapping flags for now, add
* support for optional 32-bit mappings later.
*/
flags |= MPTCP_DSS_HAS_MAP | MPTCP_DSS_DSN64;
if (mpext->data_fin)
flags |= MPTCP_DSS_DATA_FIN;
if (opts->csum_reqd)
len += TCPOLEN_MPTCP_DSS_CHECKSUM;
}
*ptr++ = mptcp_option(MPTCPOPT_DSS, len, 0, flags);
if (mpext->use_ack) {
if (mpext->ack64) {
put_unaligned_be64(mpext->data_ack, ptr);
ptr += 2;
} else {
put_unaligned_be32(mpext->data_ack32, ptr);
ptr += 1;
}
}
if (mpext->use_map) {
put_unaligned_be64(mpext->data_seq, ptr);
ptr += 2;
put_unaligned_be32(mpext->subflow_seq, ptr);
ptr += 1;
if (opts->csum_reqd) {
/* data_len == 0 is reserved for the infinite mapping,
* the checksum will also be set to 0.
*/
put_len_csum(mpext->data_len,
(mpext->data_len ? mptcp_make_csum(mpext) : 0),
ptr);
} else {
put_unaligned_be32(mpext->data_len << 16 |
TCPOPT_NOP << 8 | TCPOPT_NOP, ptr);
}
ptr += 1;
}
/* We might need to add MP_FAIL options in rare cases */
if (unlikely(OPTION_MPTCP_FAIL & opts->suboptions))
goto mp_fail;
} else if (OPTIONS_MPTCP_MPC & opts->suboptions) {
u8 len, flag = MPTCP_CAP_HMAC_SHA256;
if (OPTION_MPTCP_MPC_SYN & opts->suboptions) {
len = TCPOLEN_MPTCP_MPC_SYN;
} else if (OPTION_MPTCP_MPC_SYNACK & opts->suboptions) {
len = TCPOLEN_MPTCP_MPC_SYNACK;
} else if (opts->data_len) {
len = TCPOLEN_MPTCP_MPC_ACK_DATA;
if (opts->csum_reqd)
len += TCPOLEN_MPTCP_DSS_CHECKSUM;
} else {
len = TCPOLEN_MPTCP_MPC_ACK;
}
if (opts->csum_reqd)
flag |= MPTCP_CAP_CHECKSUM_REQD;
if (!opts->allow_join_id0)
flag |= MPTCP_CAP_DENY_JOIN_ID0;
*ptr++ = mptcp_option(MPTCPOPT_MP_CAPABLE, len,
MPTCP_SUPPORTED_VERSION,
flag);
if (!((OPTION_MPTCP_MPC_SYNACK | OPTION_MPTCP_MPC_ACK) &
opts->suboptions))
goto mp_capable_done;
put_unaligned_be64(opts->sndr_key, ptr);
ptr += 2;
if (!((OPTION_MPTCP_MPC_ACK) & opts->suboptions))
goto mp_capable_done;
put_unaligned_be64(opts->rcvr_key, ptr);
ptr += 2;
if (!opts->data_len)
goto mp_capable_done;
if (opts->csum_reqd) {
put_len_csum(opts->data_len,
__mptcp_make_csum(opts->data_seq,
opts->subflow_seq,
opts->data_len,
~csum_unfold(opts->csum)),
ptr);
} else {
put_unaligned_be32(opts->data_len << 16 |
TCPOPT_NOP << 8 | TCPOPT_NOP, ptr);
}
ptr += 1;
/* MPC is additionally mutually exclusive with MP_PRIO */
goto mp_capable_done;
} else if (OPTIONS_MPTCP_MPJ & opts->suboptions) {
if (OPTION_MPTCP_MPJ_SYN & opts->suboptions) {
*ptr++ = mptcp_option(MPTCPOPT_MP_JOIN,
TCPOLEN_MPTCP_MPJ_SYN,
opts->backup, opts->join_id);
put_unaligned_be32(opts->token, ptr);
ptr += 1;
put_unaligned_be32(opts->nonce, ptr);
ptr += 1;
} else if (OPTION_MPTCP_MPJ_SYNACK & opts->suboptions) {
*ptr++ = mptcp_option(MPTCPOPT_MP_JOIN,
TCPOLEN_MPTCP_MPJ_SYNACK,
opts->backup, opts->join_id);
put_unaligned_be64(opts->thmac, ptr);
ptr += 2;
put_unaligned_be32(opts->nonce, ptr);
ptr += 1;
} else {
*ptr++ = mptcp_option(MPTCPOPT_MP_JOIN,
TCPOLEN_MPTCP_MPJ_ACK, 0, 0);
memcpy(ptr, opts->hmac, MPTCPOPT_HMAC_LEN);
ptr += 5;
}
} else if (OPTION_MPTCP_ADD_ADDR & opts->suboptions) {
u8 len = TCPOLEN_MPTCP_ADD_ADDR_BASE;
u8 echo = MPTCP_ADDR_ECHO;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (opts->addr.family == AF_INET6)
len = TCPOLEN_MPTCP_ADD_ADDR6_BASE;
#endif
if (opts->addr.port)
len += TCPOLEN_MPTCP_PORT_LEN;
if (opts->ahmac) {
len += sizeof(opts->ahmac);
echo = 0;
}
*ptr++ = mptcp_option(MPTCPOPT_ADD_ADDR,
len, echo, opts->addr.id);
if (opts->addr.family == AF_INET) {
memcpy((u8 *)ptr, (u8 *)&opts->addr.addr.s_addr, 4);
ptr += 1;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
else if (opts->addr.family == AF_INET6) {
memcpy((u8 *)ptr, opts->addr.addr6.s6_addr, 16);
ptr += 4;
}
#endif
if (!opts->addr.port) {
if (opts->ahmac) {
put_unaligned_be64(opts->ahmac, ptr);
ptr += 2;
}
} else {
u16 port = ntohs(opts->addr.port);
if (opts->ahmac) {
u8 *bptr = (u8 *)ptr;
put_unaligned_be16(port, bptr);
bptr += 2;
put_unaligned_be64(opts->ahmac, bptr);
bptr += 8;
put_unaligned_be16(TCPOPT_NOP << 8 |
TCPOPT_NOP, bptr);
ptr += 3;
} else {
put_unaligned_be32(port << 16 |
TCPOPT_NOP << 8 |
TCPOPT_NOP, ptr);
ptr += 1;
}
}
} else if (unlikely(OPTION_MPTCP_FASTCLOSE & opts->suboptions)) {
/* FASTCLOSE is mutually exclusive with others except RST */
*ptr++ = mptcp_option(MPTCPOPT_MP_FASTCLOSE,
TCPOLEN_MPTCP_FASTCLOSE,
0, 0);
put_unaligned_be64(opts->rcvr_key, ptr);
ptr += 2;
if (OPTION_MPTCP_RST & opts->suboptions)
goto mp_rst;
return;
} else if (unlikely(OPTION_MPTCP_FAIL & opts->suboptions)) {
mp_fail:
/* MP_FAIL is mutually exclusive with others except RST */
subflow = mptcp_subflow_ctx(ssk);
subflow->send_mp_fail = 0;
*ptr++ = mptcp_option(MPTCPOPT_MP_FAIL,
TCPOLEN_MPTCP_FAIL,
0, 0);
put_unaligned_be64(opts->fail_seq, ptr);
ptr += 2;
if (OPTION_MPTCP_RST & opts->suboptions)
goto mp_rst;
return;
} else if (unlikely(OPTION_MPTCP_RST & opts->suboptions)) {
mp_rst:
*ptr++ = mptcp_option(MPTCPOPT_RST,
TCPOLEN_MPTCP_RST,
opts->reset_transient,
opts->reset_reason);
return;
}
if (OPTION_MPTCP_PRIO & opts->suboptions) {
subflow = mptcp_subflow_ctx(ssk);
subflow->send_mp_prio = 0;
*ptr++ = mptcp_option(MPTCPOPT_MP_PRIO,
TCPOLEN_MPTCP_PRIO,
opts->backup, TCPOPT_NOP);
MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPPRIOTX);
}
mp_capable_done:
if (OPTION_MPTCP_RM_ADDR & opts->suboptions) {
u8 i = 1;
*ptr++ = mptcp_option(MPTCPOPT_RM_ADDR,
TCPOLEN_MPTCP_RM_ADDR_BASE + opts->rm_list.nr,
0, opts->rm_list.ids[0]);
while (i < opts->rm_list.nr) {
u8 id1, id2, id3, id4;
id1 = opts->rm_list.ids[i];
id2 = i + 1 < opts->rm_list.nr ? opts->rm_list.ids[i + 1] : TCPOPT_NOP;
id3 = i + 2 < opts->rm_list.nr ? opts->rm_list.ids[i + 2] : TCPOPT_NOP;
id4 = i + 3 < opts->rm_list.nr ? opts->rm_list.ids[i + 3] : TCPOPT_NOP;
put_unaligned_be32(id1 << 24 | id2 << 16 | id3 << 8 | id4, ptr);
ptr += 1;
i += 4;
}
}
if (tp)
mptcp_set_rwin(tp, th);
}
__be32 mptcp_get_reset_option(const struct sk_buff *skb)
{
const struct mptcp_ext *ext = mptcp_get_ext(skb);
u8 flags, reason;
if (ext) {
flags = ext->reset_transient;
reason = ext->reset_reason;
return mptcp_option(MPTCPOPT_RST, TCPOLEN_MPTCP_RST,
flags, reason);
}
return htonl(0u);
}
EXPORT_SYMBOL_GPL(mptcp_get_reset_option);
| linux-master | net/mptcp/options.c |
// SPDX-License-Identifier: GPL-2.0
/* XDP user-space ring structure
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/overflow.h>
#include <linux/vmalloc.h>
#include <net/xdp_sock_drv.h>
#include "xsk_queue.h"
static size_t xskq_get_ring_size(struct xsk_queue *q, bool umem_queue)
{
struct xdp_umem_ring *umem_ring;
struct xdp_rxtx_ring *rxtx_ring;
if (umem_queue)
return struct_size(umem_ring, desc, q->nentries);
return struct_size(rxtx_ring, desc, q->nentries);
}
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue)
{
struct xsk_queue *q;
size_t size;
q = kzalloc(sizeof(*q), GFP_KERNEL);
if (!q)
return NULL;
q->nentries = nentries;
q->ring_mask = nentries - 1;
size = xskq_get_ring_size(q, umem_queue);
size = PAGE_ALIGN(size);
q->ring = vmalloc_user(size);
if (!q->ring) {
kfree(q);
return NULL;
}
q->ring_vmalloc_size = size;
return q;
}
void xskq_destroy(struct xsk_queue *q)
{
if (!q)
return;
vfree(q->ring);
kfree(q);
}
| linux-master | net/xdp/xsk_queue.c |
// SPDX-License-Identifier: GPL-2.0
/* XSKMAP used for AF_XDP sockets
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/bpf.h>
#include <linux/filter.h>
#include <net/xdp_sock.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/btf_ids.h>
#include "xsk.h"
static struct xsk_map_node *xsk_map_node_alloc(struct xsk_map *map,
struct xdp_sock __rcu **map_entry)
{
struct xsk_map_node *node;
node = bpf_map_kzalloc(&map->map, sizeof(*node),
GFP_ATOMIC | __GFP_NOWARN);
if (!node)
return ERR_PTR(-ENOMEM);
bpf_map_inc(&map->map);
atomic_inc(&map->count);
node->map = map;
node->map_entry = map_entry;
return node;
}
static void xsk_map_node_free(struct xsk_map_node *node)
{
struct xsk_map *map = node->map;
bpf_map_put(&node->map->map);
kfree(node);
atomic_dec(&map->count);
}
static void xsk_map_sock_add(struct xdp_sock *xs, struct xsk_map_node *node)
{
spin_lock_bh(&xs->map_list_lock);
list_add_tail(&node->node, &xs->map_list);
spin_unlock_bh(&xs->map_list_lock);
}
static void xsk_map_sock_delete(struct xdp_sock *xs,
struct xdp_sock __rcu **map_entry)
{
struct xsk_map_node *n, *tmp;
spin_lock_bh(&xs->map_list_lock);
list_for_each_entry_safe(n, tmp, &xs->map_list, node) {
if (map_entry == n->map_entry) {
list_del(&n->node);
xsk_map_node_free(n);
}
}
spin_unlock_bh(&xs->map_list_lock);
}
static struct bpf_map *xsk_map_alloc(union bpf_attr *attr)
{
struct xsk_map *m;
int numa_node;
u64 size;
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 ||
attr->map_flags & ~(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY))
return ERR_PTR(-EINVAL);
numa_node = bpf_map_attr_numa_node(attr);
size = struct_size(m, xsk_map, attr->max_entries);
m = bpf_map_area_alloc(size, numa_node);
if (!m)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&m->map, attr);
spin_lock_init(&m->lock);
return &m->map;
}
static u64 xsk_map_mem_usage(const struct bpf_map *map)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
return struct_size(m, xsk_map, map->max_entries) +
(u64)atomic_read(&m->count) * sizeof(struct xsk_map_node);
}
static void xsk_map_free(struct bpf_map *map)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
synchronize_net();
bpf_map_area_free(m);
}
static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = next_key;
if (index >= m->map.max_entries) {
*next = 0;
return 0;
}
if (index == m->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
static int xsk_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
const int ret = BPF_REG_0, mp = BPF_REG_1, index = BPF_REG_2;
struct bpf_insn *insn = insn_buf;
*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(sizeof(struct xsk_sock *)));
*insn++ = BPF_ALU64_IMM(BPF_ADD, mp, offsetof(struct xsk_map, xsk_map));
*insn++ = BPF_ALU64_REG(BPF_ADD, ret, mp);
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(struct xsk_sock *), ret, ret, 0);
*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
*insn++ = BPF_MOV64_IMM(ret, 0);
return insn - insn_buf;
}
/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
* by local_bh_disable() (from XDP calls inside NAPI). The
* rcu_read_lock_bh_held() below makes lockdep accept both.
*/
static void *__xsk_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
if (key >= map->max_entries)
return NULL;
return rcu_dereference_check(m->xsk_map[key], rcu_read_lock_bh_held());
}
static void *xsk_map_lookup_elem(struct bpf_map *map, void *key)
{
return __xsk_map_lookup_elem(map, *(u32 *)key);
}
static void *xsk_map_lookup_elem_sys_only(struct bpf_map *map, void *key)
{
return ERR_PTR(-EOPNOTSUPP);
}
static long xsk_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
struct xdp_sock __rcu **map_entry;
struct xdp_sock *xs, *old_xs;
u32 i = *(u32 *)key, fd = *(u32 *)value;
struct xsk_map_node *node;
struct socket *sock;
int err;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= m->map.max_entries))
return -E2BIG;
sock = sockfd_lookup(fd, &err);
if (!sock)
return err;
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return -EOPNOTSUPP;
}
xs = (struct xdp_sock *)sock->sk;
map_entry = &m->xsk_map[i];
node = xsk_map_node_alloc(m, map_entry);
if (IS_ERR(node)) {
sockfd_put(sock);
return PTR_ERR(node);
}
spin_lock_bh(&m->lock);
old_xs = rcu_dereference_protected(*map_entry, lockdep_is_held(&m->lock));
if (old_xs == xs) {
err = 0;
goto out;
} else if (old_xs && map_flags == BPF_NOEXIST) {
err = -EEXIST;
goto out;
} else if (!old_xs && map_flags == BPF_EXIST) {
err = -ENOENT;
goto out;
}
xsk_map_sock_add(xs, node);
rcu_assign_pointer(*map_entry, xs);
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
sockfd_put(sock);
return 0;
out:
spin_unlock_bh(&m->lock);
sockfd_put(sock);
xsk_map_node_free(node);
return err;
}
static long xsk_map_delete_elem(struct bpf_map *map, void *key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
struct xdp_sock __rcu **map_entry;
struct xdp_sock *old_xs;
int k = *(u32 *)key;
if (k >= map->max_entries)
return -EINVAL;
spin_lock_bh(&m->lock);
map_entry = &m->xsk_map[k];
old_xs = unrcu_pointer(xchg(map_entry, NULL));
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
return 0;
}
static long xsk_map_redirect(struct bpf_map *map, u64 index, u64 flags)
{
return __bpf_xdp_redirect_map(map, index, flags, 0,
__xsk_map_lookup_elem);
}
void xsk_map_try_sock_delete(struct xsk_map *map, struct xdp_sock *xs,
struct xdp_sock __rcu **map_entry)
{
spin_lock_bh(&map->lock);
if (rcu_access_pointer(*map_entry) == xs) {
rcu_assign_pointer(*map_entry, NULL);
xsk_map_sock_delete(xs, map_entry);
}
spin_unlock_bh(&map->lock);
}
static bool xsk_map_meta_equal(const struct bpf_map *meta0,
const struct bpf_map *meta1)
{
return meta0->max_entries == meta1->max_entries &&
bpf_map_meta_equal(meta0, meta1);
}
BTF_ID_LIST_SINGLE(xsk_map_btf_ids, struct, xsk_map)
const struct bpf_map_ops xsk_map_ops = {
.map_meta_equal = xsk_map_meta_equal,
.map_alloc = xsk_map_alloc,
.map_free = xsk_map_free,
.map_get_next_key = xsk_map_get_next_key,
.map_lookup_elem = xsk_map_lookup_elem,
.map_gen_lookup = xsk_map_gen_lookup,
.map_lookup_elem_sys_only = xsk_map_lookup_elem_sys_only,
.map_update_elem = xsk_map_update_elem,
.map_delete_elem = xsk_map_delete_elem,
.map_check_btf = map_check_no_btf,
.map_mem_usage = xsk_map_mem_usage,
.map_btf_id = &xsk_map_btf_ids[0],
.map_redirect = xsk_map_redirect,
};
| linux-master | net/xdp/xskmap.c |
// SPDX-License-Identifier: GPL-2.0
/* XDP sockets
*
* AF_XDP sockets allows a channel between XDP programs and userspace
* applications.
* Copyright(c) 2018 Intel Corporation.
*
* Author(s): Björn Töpel <[email protected]>
* Magnus Karlsson <[email protected]>
*/
#define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
#include <linux/if_xdp.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/socket.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/rculist.h>
#include <linux/vmalloc.h>
#include <net/xdp_sock_drv.h>
#include <net/busy_poll.h>
#include <net/netdev_rx_queue.h>
#include <net/xdp.h>
#include "xsk_queue.h"
#include "xdp_umem.h"
#include "xsk.h"
#define TX_BATCH_SIZE 32
static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
{
if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
return;
pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup |= XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup |= XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
{
if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
return;
pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
}
EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
return;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
}
rcu_read_unlock();
pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
}
EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
{
return pool->uses_need_wakeup;
}
EXPORT_SYMBOL(xsk_uses_need_wakeup);
struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
u16 queue_id)
{
if (queue_id < dev->real_num_rx_queues)
return dev->_rx[queue_id].pool;
if (queue_id < dev->real_num_tx_queues)
return dev->_tx[queue_id].pool;
return NULL;
}
EXPORT_SYMBOL(xsk_get_pool_from_qid);
void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
{
if (queue_id < dev->num_rx_queues)
dev->_rx[queue_id].pool = NULL;
if (queue_id < dev->num_tx_queues)
dev->_tx[queue_id].pool = NULL;
}
/* The buffer pool is stored both in the _rx struct and the _tx struct as we do
* not know if the device has more tx queues than rx, or the opposite.
* This might also change during run time.
*/
int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
u16 queue_id)
{
if (queue_id >= max_t(unsigned int,
dev->real_num_rx_queues,
dev->real_num_tx_queues))
return -EINVAL;
if (queue_id < dev->real_num_rx_queues)
dev->_rx[queue_id].pool = pool;
if (queue_id < dev->real_num_tx_queues)
dev->_tx[queue_id].pool = pool;
return 0;
}
static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff_xsk *xskb, u32 len,
u32 flags)
{
u64 addr;
int err;
addr = xp_get_handle(xskb);
err = xskq_prod_reserve_desc(xs->rx, addr, len, flags);
if (err) {
xs->rx_queue_full++;
return err;
}
xp_release(xskb);
return 0;
}
static int xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
u32 frags = xdp_buff_has_frags(xdp);
struct xdp_buff_xsk *pos, *tmp;
struct list_head *xskb_list;
u32 contd = 0;
int err;
if (frags)
contd = XDP_PKT_CONTD;
err = __xsk_rcv_zc(xs, xskb, len, contd);
if (err || likely(!frags))
goto out;
xskb_list = &xskb->pool->xskb_list;
list_for_each_entry_safe(pos, tmp, xskb_list, xskb_list_node) {
if (list_is_singular(xskb_list))
contd = 0;
len = pos->xdp.data_end - pos->xdp.data;
err = __xsk_rcv_zc(xs, pos, len, contd);
if (err)
return err;
list_del(&pos->xskb_list_node);
}
out:
return err;
}
static void *xsk_copy_xdp_start(struct xdp_buff *from)
{
if (unlikely(xdp_data_meta_unsupported(from)))
return from->data;
else
return from->data_meta;
}
static u32 xsk_copy_xdp(void *to, void **from, u32 to_len,
u32 *from_len, skb_frag_t **frag, u32 rem)
{
u32 copied = 0;
while (1) {
u32 copy_len = min_t(u32, *from_len, to_len);
memcpy(to, *from, copy_len);
copied += copy_len;
if (rem == copied)
return copied;
if (*from_len == copy_len) {
*from = skb_frag_address(*frag);
*from_len = skb_frag_size((*frag)++);
} else {
*from += copy_len;
*from_len -= copy_len;
}
if (to_len == copy_len)
return copied;
to_len -= copy_len;
to += copy_len;
}
}
static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
u32 frame_size = xsk_pool_get_rx_frame_size(xs->pool);
void *copy_from = xsk_copy_xdp_start(xdp), *copy_to;
u32 from_len, meta_len, rem, num_desc;
struct xdp_buff_xsk *xskb;
struct xdp_buff *xsk_xdp;
skb_frag_t *frag;
from_len = xdp->data_end - copy_from;
meta_len = xdp->data - copy_from;
rem = len + meta_len;
if (len <= frame_size && !xdp_buff_has_frags(xdp)) {
int err;
xsk_xdp = xsk_buff_alloc(xs->pool);
if (!xsk_xdp) {
xs->rx_dropped++;
return -ENOMEM;
}
memcpy(xsk_xdp->data - meta_len, copy_from, rem);
xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
err = __xsk_rcv_zc(xs, xskb, len, 0);
if (err) {
xsk_buff_free(xsk_xdp);
return err;
}
return 0;
}
num_desc = (len - 1) / frame_size + 1;
if (!xsk_buff_can_alloc(xs->pool, num_desc)) {
xs->rx_dropped++;
return -ENOMEM;
}
if (xskq_prod_nb_free(xs->rx, num_desc) < num_desc) {
xs->rx_queue_full++;
return -ENOBUFS;
}
if (xdp_buff_has_frags(xdp)) {
struct skb_shared_info *sinfo;
sinfo = xdp_get_shared_info_from_buff(xdp);
frag = &sinfo->frags[0];
}
do {
u32 to_len = frame_size + meta_len;
u32 copied;
xsk_xdp = xsk_buff_alloc(xs->pool);
copy_to = xsk_xdp->data - meta_len;
copied = xsk_copy_xdp(copy_to, ©_from, to_len, &from_len, &frag, rem);
rem -= copied;
xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
__xsk_rcv_zc(xs, xskb, copied - meta_len, rem ? XDP_PKT_CONTD : 0);
meta_len = 0;
} while (rem);
return 0;
}
static bool xsk_tx_writeable(struct xdp_sock *xs)
{
if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
return false;
return true;
}
static bool xsk_is_bound(struct xdp_sock *xs)
{
if (READ_ONCE(xs->state) == XSK_BOUND) {
/* Matches smp_wmb() in bind(). */
smp_rmb();
return true;
}
return false;
}
static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
{
if (!xsk_is_bound(xs))
return -ENXIO;
if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
return -EINVAL;
if (len > xsk_pool_get_rx_frame_size(xs->pool) && !xs->sg) {
xs->rx_dropped++;
return -ENOSPC;
}
sk_mark_napi_id_once_xdp(&xs->sk, xdp);
return 0;
}
static void xsk_flush(struct xdp_sock *xs)
{
xskq_prod_submit(xs->rx);
__xskq_cons_release(xs->pool->fq);
sock_def_readable(&xs->sk);
}
int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 len = xdp_get_buff_len(xdp);
int err;
spin_lock_bh(&xs->rx_lock);
err = xsk_rcv_check(xs, xdp, len);
if (!err) {
err = __xsk_rcv(xs, xdp, len);
xsk_flush(xs);
}
spin_unlock_bh(&xs->rx_lock);
return err;
}
static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
{
u32 len = xdp_get_buff_len(xdp);
int err;
err = xsk_rcv_check(xs, xdp, len);
if (err)
return err;
if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) {
len = xdp->data_end - xdp->data;
return xsk_rcv_zc(xs, xdp, len);
}
err = __xsk_rcv(xs, xdp, len);
if (!err)
xdp_return_buff(xdp);
return err;
}
int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
int err;
err = xsk_rcv(xs, xdp);
if (err)
return err;
if (!xs->flush_node.prev)
list_add(&xs->flush_node, flush_list);
return 0;
}
void __xsk_map_flush(void)
{
struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
struct xdp_sock *xs, *tmp;
list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
xsk_flush(xs);
__list_del_clearprev(&xs->flush_node);
}
}
void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
{
xskq_prod_submit_n(pool->cq, nb_entries);
}
EXPORT_SYMBOL(xsk_tx_completed);
void xsk_tx_release(struct xsk_buff_pool *pool)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
__xskq_cons_release(xs->tx);
if (xsk_tx_writeable(xs))
xs->sk.sk_write_space(&xs->sk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(xsk_tx_release);
bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
{
struct xdp_sock *xs;
rcu_read_lock();
list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
if (xskq_has_descs(xs->tx))
xskq_cons_release(xs->tx);
continue;
}
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xskq_prod_reserve_addr(pool->cq, desc->addr))
goto out;
xskq_cons_release(xs->tx);
rcu_read_unlock();
return true;
}
out:
rcu_read_unlock();
return false;
}
EXPORT_SYMBOL(xsk_tx_peek_desc);
static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries)
{
struct xdp_desc *descs = pool->tx_descs;
u32 nb_pkts = 0;
while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
nb_pkts++;
xsk_tx_release(pool);
return nb_pkts;
}
u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts)
{
struct xdp_sock *xs;
rcu_read_lock();
if (!list_is_singular(&pool->xsk_tx_list)) {
/* Fallback to the non-batched version */
rcu_read_unlock();
return xsk_tx_peek_release_fallback(pool, nb_pkts);
}
xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
if (!xs) {
nb_pkts = 0;
goto out;
}
nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts);
/* This is the backpressure mechanism for the Tx path. Try to
* reserve space in the completion queue for all packets, but
* if there are fewer slots available, just process that many
* packets. This avoids having to implement any buffering in
* the Tx path.
*/
nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts);
if (!nb_pkts)
goto out;
nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts);
if (!nb_pkts) {
xs->tx->queue_empty_descs++;
goto out;
}
__xskq_cons_release(xs->tx);
xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts);
xs->sk.sk_write_space(&xs->sk);
out:
rcu_read_unlock();
return nb_pkts;
}
EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
{
struct net_device *dev = xs->dev;
return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
}
static int xsk_cq_reserve_addr_locked(struct xdp_sock *xs, u64 addr)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
ret = xskq_prod_reserve_addr(xs->pool->cq, addr);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
return ret;
}
static void xsk_cq_submit_locked(struct xdp_sock *xs, u32 n)
{
unsigned long flags;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_submit_n(xs->pool->cq, n);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
}
static void xsk_cq_cancel_locked(struct xdp_sock *xs, u32 n)
{
unsigned long flags;
spin_lock_irqsave(&xs->pool->cq_lock, flags);
xskq_prod_cancel_n(xs->pool->cq, n);
spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
}
static u32 xsk_get_num_desc(struct sk_buff *skb)
{
return skb ? (long)skb_shinfo(skb)->destructor_arg : 0;
}
static void xsk_destruct_skb(struct sk_buff *skb)
{
xsk_cq_submit_locked(xdp_sk(skb->sk), xsk_get_num_desc(skb));
sock_wfree(skb);
}
static void xsk_set_destructor_arg(struct sk_buff *skb)
{
long num = xsk_get_num_desc(xdp_sk(skb->sk)->skb) + 1;
skb_shinfo(skb)->destructor_arg = (void *)num;
}
static void xsk_consume_skb(struct sk_buff *skb)
{
struct xdp_sock *xs = xdp_sk(skb->sk);
skb->destructor = sock_wfree;
xsk_cq_cancel_locked(xs, xsk_get_num_desc(skb));
/* Free skb without triggering the perf drop trace */
consume_skb(skb);
xs->skb = NULL;
}
static void xsk_drop_skb(struct sk_buff *skb)
{
xdp_sk(skb->sk)->tx->invalid_descs += xsk_get_num_desc(skb);
xsk_consume_skb(skb);
}
static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs,
struct xdp_desc *desc)
{
struct xsk_buff_pool *pool = xs->pool;
u32 hr, len, ts, offset, copy, copied;
struct sk_buff *skb = xs->skb;
struct page *page;
void *buffer;
int err, i;
u64 addr;
if (!skb) {
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom));
skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err);
if (unlikely(!skb))
return ERR_PTR(err);
skb_reserve(skb, hr);
}
addr = desc->addr;
len = desc->len;
ts = pool->unaligned ? len : pool->chunk_size;
buffer = xsk_buff_raw_get_data(pool, addr);
offset = offset_in_page(buffer);
addr = buffer - pool->addrs;
for (copied = 0, i = skb_shinfo(skb)->nr_frags; copied < len; i++) {
if (unlikely(i >= MAX_SKB_FRAGS))
return ERR_PTR(-EOVERFLOW);
page = pool->umem->pgs[addr >> PAGE_SHIFT];
get_page(page);
copy = min_t(u32, PAGE_SIZE - offset, len - copied);
skb_fill_page_desc(skb, i, page, offset, copy);
copied += copy;
addr += copy;
offset = 0;
}
skb->len += len;
skb->data_len += len;
skb->truesize += ts;
refcount_add(ts, &xs->sk.sk_wmem_alloc);
return skb;
}
static struct sk_buff *xsk_build_skb(struct xdp_sock *xs,
struct xdp_desc *desc)
{
struct net_device *dev = xs->dev;
struct sk_buff *skb = xs->skb;
int err;
if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) {
skb = xsk_build_skb_zerocopy(xs, desc);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
goto free_err;
}
} else {
u32 hr, tr, len;
void *buffer;
buffer = xsk_buff_raw_get_data(xs->pool, desc->addr);
len = desc->len;
if (!skb) {
hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom));
tr = dev->needed_tailroom;
skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err);
if (unlikely(!skb))
goto free_err;
skb_reserve(skb, hr);
skb_put(skb, len);
err = skb_store_bits(skb, 0, buffer, len);
if (unlikely(err)) {
kfree_skb(skb);
goto free_err;
}
} else {
int nr_frags = skb_shinfo(skb)->nr_frags;
struct page *page;
u8 *vaddr;
if (unlikely(nr_frags == (MAX_SKB_FRAGS - 1) && xp_mb_desc(desc))) {
err = -EOVERFLOW;
goto free_err;
}
page = alloc_page(xs->sk.sk_allocation);
if (unlikely(!page)) {
err = -EAGAIN;
goto free_err;
}
vaddr = kmap_local_page(page);
memcpy(vaddr, buffer, len);
kunmap_local(vaddr);
skb_add_rx_frag(skb, nr_frags, page, 0, len, 0);
}
}
skb->dev = dev;
skb->priority = xs->sk.sk_priority;
skb->mark = READ_ONCE(xs->sk.sk_mark);
skb->destructor = xsk_destruct_skb;
xsk_set_destructor_arg(skb);
return skb;
free_err:
if (err == -EOVERFLOW) {
/* Drop the packet */
xsk_set_destructor_arg(xs->skb);
xsk_drop_skb(xs->skb);
xskq_cons_release(xs->tx);
} else {
/* Let application retry */
xsk_cq_cancel_locked(xs, 1);
}
return ERR_PTR(err);
}
static int __xsk_generic_xmit(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
u32 max_batch = TX_BATCH_SIZE;
bool sent_frame = false;
struct xdp_desc desc;
struct sk_buff *skb;
int err = 0;
mutex_lock(&xs->mutex);
/* Since we dropped the RCU read lock, the socket state might have changed. */
if (unlikely(!xsk_is_bound(xs))) {
err = -ENXIO;
goto out;
}
if (xs->queue_id >= xs->dev->real_num_tx_queues)
goto out;
while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
if (max_batch-- == 0) {
err = -EAGAIN;
goto out;
}
/* This is the backpressure mechanism for the Tx path.
* Reserve space in the completion queue and only proceed
* if there is space in it. This avoids having to implement
* any buffering in the Tx path.
*/
if (xsk_cq_reserve_addr_locked(xs, desc.addr))
goto out;
skb = xsk_build_skb(xs, &desc);
if (IS_ERR(skb)) {
err = PTR_ERR(skb);
if (err != -EOVERFLOW)
goto out;
err = 0;
continue;
}
xskq_cons_release(xs->tx);
if (xp_mb_desc(&desc)) {
xs->skb = skb;
continue;
}
err = __dev_direct_xmit(skb, xs->queue_id);
if (err == NETDEV_TX_BUSY) {
/* Tell user-space to retry the send */
xskq_cons_cancel_n(xs->tx, xsk_get_num_desc(skb));
xsk_consume_skb(skb);
err = -EAGAIN;
goto out;
}
/* Ignore NET_XMIT_CN as packet might have been sent */
if (err == NET_XMIT_DROP) {
/* SKB completed but not sent */
err = -EBUSY;
xs->skb = NULL;
goto out;
}
sent_frame = true;
xs->skb = NULL;
}
if (xskq_has_descs(xs->tx)) {
if (xs->skb)
xsk_drop_skb(xs->skb);
xskq_cons_release(xs->tx);
}
out:
if (sent_frame)
if (xsk_tx_writeable(xs))
sk->sk_write_space(sk);
mutex_unlock(&xs->mutex);
return err;
}
static int xsk_generic_xmit(struct sock *sk)
{
int ret;
/* Drop the RCU lock since the SKB path might sleep. */
rcu_read_unlock();
ret = __xsk_generic_xmit(sk);
/* Reaquire RCU lock before going into common code. */
rcu_read_lock();
return ret;
}
static bool xsk_no_wakeup(struct sock *sk)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
/* Prefer busy-polling, skip the wakeup. */
return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
#else
return false;
#endif
}
static int xsk_check_common(struct xdp_sock *xs)
{
if (unlikely(!xsk_is_bound(xs)))
return -ENXIO;
if (unlikely(!(xs->dev->flags & IFF_UP)))
return -ENETDOWN;
return 0;
}
static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
int err;
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(need_wait))
return -EOPNOTSUPP;
if (unlikely(!xs->tx))
return -ENOBUFS;
if (sk_can_busy_loop(sk)) {
if (xs->zc)
__sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool));
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
}
if (xs->zc && xsk_no_wakeup(sk))
return 0;
pool = xs->pool;
if (pool->cached_need_wakeup & XDP_WAKEUP_TX) {
if (xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_TX);
return xsk_generic_xmit(sk);
}
return 0;
}
static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
int ret;
rcu_read_lock();
ret = __xsk_sendmsg(sock, m, total_len);
rcu_read_unlock();
return ret;
}
static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
bool need_wait = !(flags & MSG_DONTWAIT);
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
err = xsk_check_common(xs);
if (err)
return err;
if (unlikely(!xs->rx))
return -ENOBUFS;
if (unlikely(need_wait))
return -EOPNOTSUPP;
if (sk_can_busy_loop(sk))
sk_busy_loop(sk, 1); /* only support non-blocking sockets */
if (xsk_no_wakeup(sk))
return 0;
if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
return xsk_wakeup(xs, XDP_WAKEUP_RX);
return 0;
}
static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
{
int ret;
rcu_read_lock();
ret = __xsk_recvmsg(sock, m, len, flags);
rcu_read_unlock();
return ret;
}
static __poll_t xsk_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
__poll_t mask = 0;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct xsk_buff_pool *pool;
sock_poll_wait(file, sock, wait);
rcu_read_lock();
if (xsk_check_common(xs))
goto skip_tx;
pool = xs->pool;
if (pool->cached_need_wakeup) {
if (xs->zc)
xsk_wakeup(xs, pool->cached_need_wakeup);
else if (xs->tx)
/* Poll needs to drive Tx also in copy mode */
xsk_generic_xmit(sk);
}
skip_tx:
if (xs->rx && !xskq_prod_is_empty(xs->rx))
mask |= EPOLLIN | EPOLLRDNORM;
if (xs->tx && xsk_tx_writeable(xs))
mask |= EPOLLOUT | EPOLLWRNORM;
rcu_read_unlock();
return mask;
}
static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
bool umem_queue)
{
struct xsk_queue *q;
if (entries == 0 || *queue || !is_power_of_2(entries))
return -EINVAL;
q = xskq_create(entries, umem_queue);
if (!q)
return -ENOMEM;
/* Make sure queue is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(*queue, q);
return 0;
}
static void xsk_unbind_dev(struct xdp_sock *xs)
{
struct net_device *dev = xs->dev;
if (xs->state != XSK_BOUND)
return;
WRITE_ONCE(xs->state, XSK_UNBOUND);
/* Wait for driver to stop using the xdp socket. */
xp_del_xsk(xs->pool, xs);
synchronize_net();
dev_put(dev);
}
static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
struct xdp_sock __rcu ***map_entry)
{
struct xsk_map *map = NULL;
struct xsk_map_node *node;
*map_entry = NULL;
spin_lock_bh(&xs->map_list_lock);
node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
node);
if (node) {
bpf_map_inc(&node->map->map);
map = node->map;
*map_entry = node->map_entry;
}
spin_unlock_bh(&xs->map_list_lock);
return map;
}
static void xsk_delete_from_maps(struct xdp_sock *xs)
{
/* This function removes the current XDP socket from all the
* maps it resides in. We need to take extra care here, due to
* the two locks involved. Each map has a lock synchronizing
* updates to the entries, and each socket has a lock that
* synchronizes access to the list of maps (map_list). For
* deadlock avoidance the locks need to be taken in the order
* "map lock"->"socket map list lock". We start off by
* accessing the socket map list, and take a reference to the
* map to guarantee existence between the
* xsk_get_map_list_entry() and xsk_map_try_sock_delete()
* calls. Then we ask the map to remove the socket, which
* tries to remove the socket from the map. Note that there
* might be updates to the map between
* xsk_get_map_list_entry() and xsk_map_try_sock_delete().
*/
struct xdp_sock __rcu **map_entry = NULL;
struct xsk_map *map;
while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
xsk_map_try_sock_delete(map, xs, map_entry);
bpf_map_put(&map->map);
}
}
static int xsk_release(struct socket *sock)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net *net;
if (!sk)
return 0;
net = sock_net(sk);
if (xs->skb)
xsk_drop_skb(xs->skb);
mutex_lock(&net->xdp.lock);
sk_del_node_init_rcu(sk);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, sk->sk_prot, -1);
xsk_delete_from_maps(xs);
mutex_lock(&xs->mutex);
xsk_unbind_dev(xs);
mutex_unlock(&xs->mutex);
xskq_destroy(xs->rx);
xskq_destroy(xs->tx);
xskq_destroy(xs->fq_tmp);
xskq_destroy(xs->cq_tmp);
sock_orphan(sk);
sock->sk = NULL;
sock_put(sk);
return 0;
}
static struct socket *xsk_lookup_xsk_from_fd(int fd)
{
struct socket *sock;
int err;
sock = sockfd_lookup(fd, &err);
if (!sock)
return ERR_PTR(-ENOTSOCK);
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return ERR_PTR(-ENOPROTOOPT);
}
return sock;
}
static bool xsk_validate_queues(struct xdp_sock *xs)
{
return xs->fq_tmp && xs->cq_tmp;
}
static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
{
struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
struct net_device *dev;
int bound_dev_if;
u32 flags, qid;
int err = 0;
if (addr_len < sizeof(struct sockaddr_xdp))
return -EINVAL;
if (sxdp->sxdp_family != AF_XDP)
return -EINVAL;
flags = sxdp->sxdp_flags;
if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
XDP_USE_NEED_WAKEUP | XDP_USE_SG))
return -EINVAL;
bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
if (bound_dev_if && bound_dev_if != sxdp->sxdp_ifindex)
return -EINVAL;
rtnl_lock();
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
err = -EBUSY;
goto out_release;
}
dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
if (!dev) {
err = -ENODEV;
goto out_release;
}
if (!xs->rx && !xs->tx) {
err = -EINVAL;
goto out_unlock;
}
qid = sxdp->sxdp_queue_id;
if (flags & XDP_SHARED_UMEM) {
struct xdp_sock *umem_xs;
struct socket *sock;
if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
(flags & XDP_USE_NEED_WAKEUP) || (flags & XDP_USE_SG)) {
/* Cannot specify flags for shared sockets. */
err = -EINVAL;
goto out_unlock;
}
if (xs->umem) {
/* We have already our own. */
err = -EINVAL;
goto out_unlock;
}
sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
if (IS_ERR(sock)) {
err = PTR_ERR(sock);
goto out_unlock;
}
umem_xs = xdp_sk(sock->sk);
if (!xsk_is_bound(umem_xs)) {
err = -EBADF;
sockfd_put(sock);
goto out_unlock;
}
if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
/* Share the umem with another socket on another qid
* and/or device.
*/
xs->pool = xp_create_and_assign_umem(xs,
umem_xs->umem);
if (!xs->pool) {
err = -ENOMEM;
sockfd_put(sock);
goto out_unlock;
}
err = xp_assign_dev_shared(xs->pool, umem_xs, dev,
qid);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
sockfd_put(sock);
goto out_unlock;
}
} else {
/* Share the buffer pool with the other socket. */
if (xs->fq_tmp || xs->cq_tmp) {
/* Do not allow setting your own fq or cq. */
err = -EINVAL;
sockfd_put(sock);
goto out_unlock;
}
xp_get_pool(umem_xs->pool);
xs->pool = umem_xs->pool;
/* If underlying shared umem was created without Tx
* ring, allocate Tx descs array that Tx batching API
* utilizes
*/
if (xs->tx && !xs->pool->tx_descs) {
err = xp_alloc_tx_descs(xs->pool, xs);
if (err) {
xp_put_pool(xs->pool);
xs->pool = NULL;
sockfd_put(sock);
goto out_unlock;
}
}
}
xdp_get_umem(umem_xs->umem);
WRITE_ONCE(xs->umem, umem_xs->umem);
sockfd_put(sock);
} else if (!xs->umem || !xsk_validate_queues(xs)) {
err = -EINVAL;
goto out_unlock;
} else {
/* This xsk has its own umem. */
xs->pool = xp_create_and_assign_umem(xs, xs->umem);
if (!xs->pool) {
err = -ENOMEM;
goto out_unlock;
}
err = xp_assign_dev(xs->pool, dev, qid, flags);
if (err) {
xp_destroy(xs->pool);
xs->pool = NULL;
goto out_unlock;
}
}
/* FQ and CQ are now owned by the buffer pool and cleaned up with it. */
xs->fq_tmp = NULL;
xs->cq_tmp = NULL;
xs->dev = dev;
xs->zc = xs->umem->zc;
xs->sg = !!(flags & XDP_USE_SG);
xs->queue_id = qid;
xp_add_xsk(xs->pool, xs);
out_unlock:
if (err) {
dev_put(dev);
} else {
/* Matches smp_rmb() in bind() for shared umem
* sockets, and xsk_is_bound().
*/
smp_wmb();
WRITE_ONCE(xs->state, XSK_BOUND);
}
out_release:
mutex_unlock(&xs->mutex);
rtnl_unlock();
return err;
}
struct xdp_umem_reg_v1 {
__u64 addr; /* Start of packet data area */
__u64 len; /* Length of packet data area */
__u32 chunk_size;
__u32 headroom;
};
static int xsk_setsockopt(struct socket *sock, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int err;
if (level != SOL_XDP)
return -ENOPROTOOPT;
switch (optname) {
case XDP_RX_RING:
case XDP_TX_RING:
{
struct xsk_queue **q;
int entries;
if (optlen < sizeof(entries))
return -EINVAL;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
err = xsk_init_queue(entries, q, false);
if (!err && optname == XDP_TX_RING)
/* Tx needs to be explicitly woken up the first time */
xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
mutex_unlock(&xs->mutex);
return err;
}
case XDP_UMEM_REG:
{
size_t mr_size = sizeof(struct xdp_umem_reg);
struct xdp_umem_reg mr = {};
struct xdp_umem *umem;
if (optlen < sizeof(struct xdp_umem_reg_v1))
return -EINVAL;
else if (optlen < sizeof(mr))
mr_size = sizeof(struct xdp_umem_reg_v1);
if (copy_from_sockptr(&mr, optval, mr_size))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY || xs->umem) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
umem = xdp_umem_create(&mr);
if (IS_ERR(umem)) {
mutex_unlock(&xs->mutex);
return PTR_ERR(umem);
}
/* Make sure umem is ready before it can be seen by others */
smp_wmb();
WRITE_ONCE(xs->umem, umem);
mutex_unlock(&xs->mutex);
return 0;
}
case XDP_UMEM_FILL_RING:
case XDP_UMEM_COMPLETION_RING:
{
struct xsk_queue **q;
int entries;
if (copy_from_sockptr(&entries, optval, sizeof(entries)))
return -EFAULT;
mutex_lock(&xs->mutex);
if (xs->state != XSK_READY) {
mutex_unlock(&xs->mutex);
return -EBUSY;
}
q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
&xs->cq_tmp;
err = xsk_init_queue(entries, q, true);
mutex_unlock(&xs->mutex);
return err;
}
default:
break;
}
return -ENOPROTOOPT;
}
static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_rxtx_ring, desc);
}
static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
{
ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
ring->desc = offsetof(struct xdp_umem_ring, desc);
}
struct xdp_statistics_v1 {
__u64 rx_dropped;
__u64 rx_invalid_descs;
__u64 tx_invalid_descs;
};
static int xsk_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct xdp_sock *xs = xdp_sk(sk);
int len;
if (level != SOL_XDP)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0)
return -EINVAL;
switch (optname) {
case XDP_STATISTICS:
{
struct xdp_statistics stats = {};
bool extra_stats = true;
size_t stats_size;
if (len < sizeof(struct xdp_statistics_v1)) {
return -EINVAL;
} else if (len < sizeof(stats)) {
extra_stats = false;
stats_size = sizeof(struct xdp_statistics_v1);
} else {
stats_size = sizeof(stats);
}
mutex_lock(&xs->mutex);
stats.rx_dropped = xs->rx_dropped;
if (extra_stats) {
stats.rx_ring_full = xs->rx_queue_full;
stats.rx_fill_ring_empty_descs =
xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
} else {
stats.rx_dropped += xs->rx_queue_full;
}
stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
mutex_unlock(&xs->mutex);
if (copy_to_user(optval, &stats, stats_size))
return -EFAULT;
if (put_user(stats_size, optlen))
return -EFAULT;
return 0;
}
case XDP_MMAP_OFFSETS:
{
struct xdp_mmap_offsets off;
struct xdp_mmap_offsets_v1 off_v1;
bool flags_supported = true;
void *to_copy;
if (len < sizeof(off_v1))
return -EINVAL;
else if (len < sizeof(off))
flags_supported = false;
if (flags_supported) {
/* xdp_ring_offset is identical to xdp_ring_offset_v1
* except for the flags field added to the end.
*/
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.rx);
xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
&off.tx);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.fr);
xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
&off.cr);
off.rx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.tx.flags = offsetof(struct xdp_rxtx_ring,
ptrs.flags);
off.fr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
off.cr.flags = offsetof(struct xdp_umem_ring,
ptrs.flags);
len = sizeof(off);
to_copy = &off;
} else {
xsk_enter_rxtx_offsets(&off_v1.rx);
xsk_enter_rxtx_offsets(&off_v1.tx);
xsk_enter_umem_offsets(&off_v1.fr);
xsk_enter_umem_offsets(&off_v1.cr);
len = sizeof(off_v1);
to_copy = &off_v1;
}
if (copy_to_user(optval, to_copy, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
case XDP_OPTIONS:
{
struct xdp_options opts = {};
if (len < sizeof(opts))
return -EINVAL;
mutex_lock(&xs->mutex);
if (xs->zc)
opts.flags |= XDP_OPTIONS_ZEROCOPY;
mutex_unlock(&xs->mutex);
len = sizeof(opts);
if (copy_to_user(optval, &opts, len))
return -EFAULT;
if (put_user(len, optlen))
return -EFAULT;
return 0;
}
default:
break;
}
return -EOPNOTSUPP;
}
static int xsk_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
unsigned long size = vma->vm_end - vma->vm_start;
struct xdp_sock *xs = xdp_sk(sock->sk);
int state = READ_ONCE(xs->state);
struct xsk_queue *q = NULL;
if (state != XSK_READY && state != XSK_BOUND)
return -EBUSY;
if (offset == XDP_PGOFF_RX_RING) {
q = READ_ONCE(xs->rx);
} else if (offset == XDP_PGOFF_TX_RING) {
q = READ_ONCE(xs->tx);
} else {
/* Matches the smp_wmb() in XDP_UMEM_REG */
smp_rmb();
if (offset == XDP_UMEM_PGOFF_FILL_RING)
q = state == XSK_READY ? READ_ONCE(xs->fq_tmp) :
READ_ONCE(xs->pool->fq);
else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
q = state == XSK_READY ? READ_ONCE(xs->cq_tmp) :
READ_ONCE(xs->pool->cq);
}
if (!q)
return -EINVAL;
/* Matches the smp_wmb() in xsk_init_queue */
smp_rmb();
if (size > q->ring_vmalloc_size)
return -EINVAL;
return remap_vmalloc_range(vma, q->ring, 0);
}
static int xsk_notifier(struct notifier_block *this,
unsigned long msg, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct net *net = dev_net(dev);
struct sock *sk;
switch (msg) {
case NETDEV_UNREGISTER:
mutex_lock(&net->xdp.lock);
sk_for_each(sk, &net->xdp.list) {
struct xdp_sock *xs = xdp_sk(sk);
mutex_lock(&xs->mutex);
if (xs->dev == dev) {
sk->sk_err = ENETDOWN;
if (!sock_flag(sk, SOCK_DEAD))
sk_error_report(sk);
xsk_unbind_dev(xs);
/* Clear device references. */
xp_clear_dev(xs->pool);
}
mutex_unlock(&xs->mutex);
}
mutex_unlock(&net->xdp.lock);
break;
}
return NOTIFY_DONE;
}
static struct proto xsk_proto = {
.name = "XDP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct xdp_sock),
};
static const struct proto_ops xsk_proto_ops = {
.family = PF_XDP,
.owner = THIS_MODULE,
.release = xsk_release,
.bind = xsk_bind,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = xsk_poll,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.setsockopt = xsk_setsockopt,
.getsockopt = xsk_getsockopt,
.sendmsg = xsk_sendmsg,
.recvmsg = xsk_recvmsg,
.mmap = xsk_mmap,
};
static void xsk_destruct(struct sock *sk)
{
struct xdp_sock *xs = xdp_sk(sk);
if (!sock_flag(sk, SOCK_DEAD))
return;
if (!xp_put_pool(xs->pool))
xdp_put_umem(xs->umem, !xs->pool);
}
static int xsk_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct xdp_sock *xs;
struct sock *sk;
if (!ns_capable(net->user_ns, CAP_NET_RAW))
return -EPERM;
if (sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (protocol)
return -EPROTONOSUPPORT;
sock->state = SS_UNCONNECTED;
sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
if (!sk)
return -ENOBUFS;
sock->ops = &xsk_proto_ops;
sock_init_data(sock, sk);
sk->sk_family = PF_XDP;
sk->sk_destruct = xsk_destruct;
sock_set_flag(sk, SOCK_RCU_FREE);
xs = xdp_sk(sk);
xs->state = XSK_READY;
mutex_init(&xs->mutex);
spin_lock_init(&xs->rx_lock);
INIT_LIST_HEAD(&xs->map_list);
spin_lock_init(&xs->map_list_lock);
mutex_lock(&net->xdp.lock);
sk_add_node_rcu(sk, &net->xdp.list);
mutex_unlock(&net->xdp.lock);
sock_prot_inuse_add(net, &xsk_proto, 1);
return 0;
}
static const struct net_proto_family xsk_family_ops = {
.family = PF_XDP,
.create = xsk_create,
.owner = THIS_MODULE,
};
static struct notifier_block xsk_netdev_notifier = {
.notifier_call = xsk_notifier,
};
static int __net_init xsk_net_init(struct net *net)
{
mutex_init(&net->xdp.lock);
INIT_HLIST_HEAD(&net->xdp.list);
return 0;
}
static void __net_exit xsk_net_exit(struct net *net)
{
WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
}
static struct pernet_operations xsk_net_ops = {
.init = xsk_net_init,
.exit = xsk_net_exit,
};
static int __init xsk_init(void)
{
int err, cpu;
err = proto_register(&xsk_proto, 0 /* no slab */);
if (err)
goto out;
err = sock_register(&xsk_family_ops);
if (err)
goto out_proto;
err = register_pernet_subsys(&xsk_net_ops);
if (err)
goto out_sk;
err = register_netdevice_notifier(&xsk_netdev_notifier);
if (err)
goto out_pernet;
for_each_possible_cpu(cpu)
INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
return 0;
out_pernet:
unregister_pernet_subsys(&xsk_net_ops);
out_sk:
sock_unregister(PF_XDP);
out_proto:
proto_unregister(&xsk_proto);
out:
return err;
}
fs_initcall(xsk_init);
| linux-master | net/xdp/xsk.c |
// SPDX-License-Identifier: GPL-2.0
/* XDP user-space packet buffer
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/idr.h>
#include <linux/vmalloc.h>
#include "xdp_umem.h"
#include "xsk_queue.h"
static DEFINE_IDA(umem_ida);
static void xdp_umem_unpin_pages(struct xdp_umem *umem)
{
unpin_user_pages_dirty_lock(umem->pgs, umem->npgs, true);
kvfree(umem->pgs);
umem->pgs = NULL;
}
static void xdp_umem_unaccount_pages(struct xdp_umem *umem)
{
if (umem->user) {
atomic_long_sub(umem->npgs, &umem->user->locked_vm);
free_uid(umem->user);
}
}
static void xdp_umem_addr_unmap(struct xdp_umem *umem)
{
vunmap(umem->addrs);
umem->addrs = NULL;
}
static int xdp_umem_addr_map(struct xdp_umem *umem, struct page **pages,
u32 nr_pages)
{
umem->addrs = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL);
if (!umem->addrs)
return -ENOMEM;
return 0;
}
static void xdp_umem_release(struct xdp_umem *umem)
{
umem->zc = false;
ida_free(&umem_ida, umem->id);
xdp_umem_addr_unmap(umem);
xdp_umem_unpin_pages(umem);
xdp_umem_unaccount_pages(umem);
kfree(umem);
}
static void xdp_umem_release_deferred(struct work_struct *work)
{
struct xdp_umem *umem = container_of(work, struct xdp_umem, work);
xdp_umem_release(umem);
}
void xdp_get_umem(struct xdp_umem *umem)
{
refcount_inc(&umem->users);
}
void xdp_put_umem(struct xdp_umem *umem, bool defer_cleanup)
{
if (!umem)
return;
if (refcount_dec_and_test(&umem->users)) {
if (defer_cleanup) {
INIT_WORK(&umem->work, xdp_umem_release_deferred);
schedule_work(&umem->work);
} else {
xdp_umem_release(umem);
}
}
}
static int xdp_umem_pin_pages(struct xdp_umem *umem, unsigned long address)
{
unsigned int gup_flags = FOLL_WRITE;
long npgs;
int err;
umem->pgs = kvcalloc(umem->npgs, sizeof(*umem->pgs), GFP_KERNEL | __GFP_NOWARN);
if (!umem->pgs)
return -ENOMEM;
mmap_read_lock(current->mm);
npgs = pin_user_pages(address, umem->npgs,
gup_flags | FOLL_LONGTERM, &umem->pgs[0]);
mmap_read_unlock(current->mm);
if (npgs != umem->npgs) {
if (npgs >= 0) {
umem->npgs = npgs;
err = -ENOMEM;
goto out_pin;
}
err = npgs;
goto out_pgs;
}
return 0;
out_pin:
xdp_umem_unpin_pages(umem);
out_pgs:
kvfree(umem->pgs);
umem->pgs = NULL;
return err;
}
static int xdp_umem_account_pages(struct xdp_umem *umem)
{
unsigned long lock_limit, new_npgs, old_npgs;
if (capable(CAP_IPC_LOCK))
return 0;
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
umem->user = get_uid(current_user());
do {
old_npgs = atomic_long_read(&umem->user->locked_vm);
new_npgs = old_npgs + umem->npgs;
if (new_npgs > lock_limit) {
free_uid(umem->user);
umem->user = NULL;
return -ENOBUFS;
}
} while (atomic_long_cmpxchg(&umem->user->locked_vm, old_npgs,
new_npgs) != old_npgs);
return 0;
}
static int xdp_umem_reg(struct xdp_umem *umem, struct xdp_umem_reg *mr)
{
bool unaligned_chunks = mr->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG;
u32 chunk_size = mr->chunk_size, headroom = mr->headroom;
u64 addr = mr->addr, size = mr->len;
u32 chunks_rem, npgs_rem;
u64 chunks, npgs;
int err;
if (chunk_size < XDP_UMEM_MIN_CHUNK_SIZE || chunk_size > PAGE_SIZE) {
/* Strictly speaking we could support this, if:
* - huge pages, or*
* - using an IOMMU, or
* - making sure the memory area is consecutive
* but for now, we simply say "computer says no".
*/
return -EINVAL;
}
if (mr->flags & ~XDP_UMEM_UNALIGNED_CHUNK_FLAG)
return -EINVAL;
if (!unaligned_chunks && !is_power_of_2(chunk_size))
return -EINVAL;
if (!PAGE_ALIGNED(addr)) {
/* Memory area has to be page size aligned. For
* simplicity, this might change.
*/
return -EINVAL;
}
if ((addr + size) < addr)
return -EINVAL;
npgs = div_u64_rem(size, PAGE_SIZE, &npgs_rem);
if (npgs_rem)
npgs++;
if (npgs > U32_MAX)
return -EINVAL;
chunks = div_u64_rem(size, chunk_size, &chunks_rem);
if (!chunks || chunks > U32_MAX)
return -EINVAL;
if (!unaligned_chunks && chunks_rem)
return -EINVAL;
if (headroom >= chunk_size - XDP_PACKET_HEADROOM)
return -EINVAL;
umem->size = size;
umem->headroom = headroom;
umem->chunk_size = chunk_size;
umem->chunks = chunks;
umem->npgs = npgs;
umem->pgs = NULL;
umem->user = NULL;
umem->flags = mr->flags;
INIT_LIST_HEAD(&umem->xsk_dma_list);
refcount_set(&umem->users, 1);
err = xdp_umem_account_pages(umem);
if (err)
return err;
err = xdp_umem_pin_pages(umem, (unsigned long)addr);
if (err)
goto out_account;
err = xdp_umem_addr_map(umem, umem->pgs, umem->npgs);
if (err)
goto out_unpin;
return 0;
out_unpin:
xdp_umem_unpin_pages(umem);
out_account:
xdp_umem_unaccount_pages(umem);
return err;
}
struct xdp_umem *xdp_umem_create(struct xdp_umem_reg *mr)
{
struct xdp_umem *umem;
int err;
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
if (!umem)
return ERR_PTR(-ENOMEM);
err = ida_alloc(&umem_ida, GFP_KERNEL);
if (err < 0) {
kfree(umem);
return ERR_PTR(err);
}
umem->id = err;
err = xdp_umem_reg(umem, mr);
if (err) {
ida_free(&umem_ida, umem->id);
kfree(umem);
return ERR_PTR(err);
}
return umem;
}
| linux-master | net/xdp/xdp_umem.c |
// SPDX-License-Identifier: GPL-2.0
#include <net/xsk_buff_pool.h>
#include <net/xdp_sock.h>
#include <net/xdp_sock_drv.h>
#include "xsk_queue.h"
#include "xdp_umem.h"
#include "xsk.h"
void xp_add_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs)
{
unsigned long flags;
if (!xs->tx)
return;
spin_lock_irqsave(&pool->xsk_tx_list_lock, flags);
list_add_rcu(&xs->tx_list, &pool->xsk_tx_list);
spin_unlock_irqrestore(&pool->xsk_tx_list_lock, flags);
}
void xp_del_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs)
{
unsigned long flags;
if (!xs->tx)
return;
spin_lock_irqsave(&pool->xsk_tx_list_lock, flags);
list_del_rcu(&xs->tx_list);
spin_unlock_irqrestore(&pool->xsk_tx_list_lock, flags);
}
void xp_destroy(struct xsk_buff_pool *pool)
{
if (!pool)
return;
kvfree(pool->tx_descs);
kvfree(pool->heads);
kvfree(pool);
}
int xp_alloc_tx_descs(struct xsk_buff_pool *pool, struct xdp_sock *xs)
{
pool->tx_descs = kvcalloc(xs->tx->nentries, sizeof(*pool->tx_descs),
GFP_KERNEL);
if (!pool->tx_descs)
return -ENOMEM;
return 0;
}
struct xsk_buff_pool *xp_create_and_assign_umem(struct xdp_sock *xs,
struct xdp_umem *umem)
{
bool unaligned = umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG;
struct xsk_buff_pool *pool;
struct xdp_buff_xsk *xskb;
u32 i, entries;
entries = unaligned ? umem->chunks : 0;
pool = kvzalloc(struct_size(pool, free_heads, entries), GFP_KERNEL);
if (!pool)
goto out;
pool->heads = kvcalloc(umem->chunks, sizeof(*pool->heads), GFP_KERNEL);
if (!pool->heads)
goto out;
if (xs->tx)
if (xp_alloc_tx_descs(pool, xs))
goto out;
pool->chunk_mask = ~((u64)umem->chunk_size - 1);
pool->addrs_cnt = umem->size;
pool->heads_cnt = umem->chunks;
pool->free_heads_cnt = umem->chunks;
pool->headroom = umem->headroom;
pool->chunk_size = umem->chunk_size;
pool->chunk_shift = ffs(umem->chunk_size) - 1;
pool->unaligned = unaligned;
pool->frame_len = umem->chunk_size - umem->headroom -
XDP_PACKET_HEADROOM;
pool->umem = umem;
pool->addrs = umem->addrs;
INIT_LIST_HEAD(&pool->free_list);
INIT_LIST_HEAD(&pool->xskb_list);
INIT_LIST_HEAD(&pool->xsk_tx_list);
spin_lock_init(&pool->xsk_tx_list_lock);
spin_lock_init(&pool->cq_lock);
refcount_set(&pool->users, 1);
pool->fq = xs->fq_tmp;
pool->cq = xs->cq_tmp;
for (i = 0; i < pool->free_heads_cnt; i++) {
xskb = &pool->heads[i];
xskb->pool = pool;
xskb->xdp.frame_sz = umem->chunk_size - umem->headroom;
INIT_LIST_HEAD(&xskb->free_list_node);
INIT_LIST_HEAD(&xskb->xskb_list_node);
if (pool->unaligned)
pool->free_heads[i] = xskb;
else
xp_init_xskb_addr(xskb, pool, i * pool->chunk_size);
}
return pool;
out:
xp_destroy(pool);
return NULL;
}
void xp_set_rxq_info(struct xsk_buff_pool *pool, struct xdp_rxq_info *rxq)
{
u32 i;
for (i = 0; i < pool->heads_cnt; i++)
pool->heads[i].xdp.rxq = rxq;
}
EXPORT_SYMBOL(xp_set_rxq_info);
static void xp_disable_drv_zc(struct xsk_buff_pool *pool)
{
struct netdev_bpf bpf;
int err;
ASSERT_RTNL();
if (pool->umem->zc) {
bpf.command = XDP_SETUP_XSK_POOL;
bpf.xsk.pool = NULL;
bpf.xsk.queue_id = pool->queue_id;
err = pool->netdev->netdev_ops->ndo_bpf(pool->netdev, &bpf);
if (err)
WARN(1, "Failed to disable zero-copy!\n");
}
}
#define NETDEV_XDP_ACT_ZC (NETDEV_XDP_ACT_BASIC | \
NETDEV_XDP_ACT_REDIRECT | \
NETDEV_XDP_ACT_XSK_ZEROCOPY)
int xp_assign_dev(struct xsk_buff_pool *pool,
struct net_device *netdev, u16 queue_id, u16 flags)
{
bool force_zc, force_copy;
struct netdev_bpf bpf;
int err = 0;
ASSERT_RTNL();
force_zc = flags & XDP_ZEROCOPY;
force_copy = flags & XDP_COPY;
if (force_zc && force_copy)
return -EINVAL;
if (xsk_get_pool_from_qid(netdev, queue_id))
return -EBUSY;
pool->netdev = netdev;
pool->queue_id = queue_id;
err = xsk_reg_pool_at_qid(netdev, pool, queue_id);
if (err)
return err;
if (flags & XDP_USE_NEED_WAKEUP)
pool->uses_need_wakeup = true;
/* Tx needs to be explicitly woken up the first time. Also
* for supporting drivers that do not implement this
* feature. They will always have to call sendto() or poll().
*/
pool->cached_need_wakeup = XDP_WAKEUP_TX;
dev_hold(netdev);
if (force_copy)
/* For copy-mode, we are done. */
return 0;
if ((netdev->xdp_features & NETDEV_XDP_ACT_ZC) != NETDEV_XDP_ACT_ZC) {
err = -EOPNOTSUPP;
goto err_unreg_pool;
}
if (netdev->xdp_zc_max_segs == 1 && (flags & XDP_USE_SG)) {
err = -EOPNOTSUPP;
goto err_unreg_pool;
}
bpf.command = XDP_SETUP_XSK_POOL;
bpf.xsk.pool = pool;
bpf.xsk.queue_id = queue_id;
err = netdev->netdev_ops->ndo_bpf(netdev, &bpf);
if (err)
goto err_unreg_pool;
if (!pool->dma_pages) {
WARN(1, "Driver did not DMA map zero-copy buffers");
err = -EINVAL;
goto err_unreg_xsk;
}
pool->umem->zc = true;
return 0;
err_unreg_xsk:
xp_disable_drv_zc(pool);
err_unreg_pool:
if (!force_zc)
err = 0; /* fallback to copy mode */
if (err) {
xsk_clear_pool_at_qid(netdev, queue_id);
dev_put(netdev);
}
return err;
}
int xp_assign_dev_shared(struct xsk_buff_pool *pool, struct xdp_sock *umem_xs,
struct net_device *dev, u16 queue_id)
{
u16 flags;
struct xdp_umem *umem = umem_xs->umem;
/* One fill and completion ring required for each queue id. */
if (!pool->fq || !pool->cq)
return -EINVAL;
flags = umem->zc ? XDP_ZEROCOPY : XDP_COPY;
if (umem_xs->pool->uses_need_wakeup)
flags |= XDP_USE_NEED_WAKEUP;
return xp_assign_dev(pool, dev, queue_id, flags);
}
void xp_clear_dev(struct xsk_buff_pool *pool)
{
if (!pool->netdev)
return;
xp_disable_drv_zc(pool);
xsk_clear_pool_at_qid(pool->netdev, pool->queue_id);
dev_put(pool->netdev);
pool->netdev = NULL;
}
static void xp_release_deferred(struct work_struct *work)
{
struct xsk_buff_pool *pool = container_of(work, struct xsk_buff_pool,
work);
rtnl_lock();
xp_clear_dev(pool);
rtnl_unlock();
if (pool->fq) {
xskq_destroy(pool->fq);
pool->fq = NULL;
}
if (pool->cq) {
xskq_destroy(pool->cq);
pool->cq = NULL;
}
xdp_put_umem(pool->umem, false);
xp_destroy(pool);
}
void xp_get_pool(struct xsk_buff_pool *pool)
{
refcount_inc(&pool->users);
}
bool xp_put_pool(struct xsk_buff_pool *pool)
{
if (!pool)
return false;
if (refcount_dec_and_test(&pool->users)) {
INIT_WORK(&pool->work, xp_release_deferred);
schedule_work(&pool->work);
return true;
}
return false;
}
static struct xsk_dma_map *xp_find_dma_map(struct xsk_buff_pool *pool)
{
struct xsk_dma_map *dma_map;
list_for_each_entry(dma_map, &pool->umem->xsk_dma_list, list) {
if (dma_map->netdev == pool->netdev)
return dma_map;
}
return NULL;
}
static struct xsk_dma_map *xp_create_dma_map(struct device *dev, struct net_device *netdev,
u32 nr_pages, struct xdp_umem *umem)
{
struct xsk_dma_map *dma_map;
dma_map = kzalloc(sizeof(*dma_map), GFP_KERNEL);
if (!dma_map)
return NULL;
dma_map->dma_pages = kvcalloc(nr_pages, sizeof(*dma_map->dma_pages), GFP_KERNEL);
if (!dma_map->dma_pages) {
kfree(dma_map);
return NULL;
}
dma_map->netdev = netdev;
dma_map->dev = dev;
dma_map->dma_need_sync = false;
dma_map->dma_pages_cnt = nr_pages;
refcount_set(&dma_map->users, 1);
list_add(&dma_map->list, &umem->xsk_dma_list);
return dma_map;
}
static void xp_destroy_dma_map(struct xsk_dma_map *dma_map)
{
list_del(&dma_map->list);
kvfree(dma_map->dma_pages);
kfree(dma_map);
}
static void __xp_dma_unmap(struct xsk_dma_map *dma_map, unsigned long attrs)
{
dma_addr_t *dma;
u32 i;
for (i = 0; i < dma_map->dma_pages_cnt; i++) {
dma = &dma_map->dma_pages[i];
if (*dma) {
*dma &= ~XSK_NEXT_PG_CONTIG_MASK;
dma_unmap_page_attrs(dma_map->dev, *dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, attrs);
*dma = 0;
}
}
xp_destroy_dma_map(dma_map);
}
void xp_dma_unmap(struct xsk_buff_pool *pool, unsigned long attrs)
{
struct xsk_dma_map *dma_map;
if (!pool->dma_pages)
return;
dma_map = xp_find_dma_map(pool);
if (!dma_map) {
WARN(1, "Could not find dma_map for device");
return;
}
if (!refcount_dec_and_test(&dma_map->users))
return;
__xp_dma_unmap(dma_map, attrs);
kvfree(pool->dma_pages);
pool->dma_pages = NULL;
pool->dma_pages_cnt = 0;
pool->dev = NULL;
}
EXPORT_SYMBOL(xp_dma_unmap);
static void xp_check_dma_contiguity(struct xsk_dma_map *dma_map)
{
u32 i;
for (i = 0; i < dma_map->dma_pages_cnt - 1; i++) {
if (dma_map->dma_pages[i] + PAGE_SIZE == dma_map->dma_pages[i + 1])
dma_map->dma_pages[i] |= XSK_NEXT_PG_CONTIG_MASK;
else
dma_map->dma_pages[i] &= ~XSK_NEXT_PG_CONTIG_MASK;
}
}
static int xp_init_dma_info(struct xsk_buff_pool *pool, struct xsk_dma_map *dma_map)
{
if (!pool->unaligned) {
u32 i;
for (i = 0; i < pool->heads_cnt; i++) {
struct xdp_buff_xsk *xskb = &pool->heads[i];
xp_init_xskb_dma(xskb, pool, dma_map->dma_pages, xskb->orig_addr);
}
}
pool->dma_pages = kvcalloc(dma_map->dma_pages_cnt, sizeof(*pool->dma_pages), GFP_KERNEL);
if (!pool->dma_pages)
return -ENOMEM;
pool->dev = dma_map->dev;
pool->dma_pages_cnt = dma_map->dma_pages_cnt;
pool->dma_need_sync = dma_map->dma_need_sync;
memcpy(pool->dma_pages, dma_map->dma_pages,
pool->dma_pages_cnt * sizeof(*pool->dma_pages));
return 0;
}
int xp_dma_map(struct xsk_buff_pool *pool, struct device *dev,
unsigned long attrs, struct page **pages, u32 nr_pages)
{
struct xsk_dma_map *dma_map;
dma_addr_t dma;
int err;
u32 i;
dma_map = xp_find_dma_map(pool);
if (dma_map) {
err = xp_init_dma_info(pool, dma_map);
if (err)
return err;
refcount_inc(&dma_map->users);
return 0;
}
dma_map = xp_create_dma_map(dev, pool->netdev, nr_pages, pool->umem);
if (!dma_map)
return -ENOMEM;
for (i = 0; i < dma_map->dma_pages_cnt; i++) {
dma = dma_map_page_attrs(dev, pages[i], 0, PAGE_SIZE,
DMA_BIDIRECTIONAL, attrs);
if (dma_mapping_error(dev, dma)) {
__xp_dma_unmap(dma_map, attrs);
return -ENOMEM;
}
if (dma_need_sync(dev, dma))
dma_map->dma_need_sync = true;
dma_map->dma_pages[i] = dma;
}
if (pool->unaligned)
xp_check_dma_contiguity(dma_map);
err = xp_init_dma_info(pool, dma_map);
if (err) {
__xp_dma_unmap(dma_map, attrs);
return err;
}
return 0;
}
EXPORT_SYMBOL(xp_dma_map);
static bool xp_addr_crosses_non_contig_pg(struct xsk_buff_pool *pool,
u64 addr)
{
return xp_desc_crosses_non_contig_pg(pool, addr, pool->chunk_size);
}
static bool xp_check_unaligned(struct xsk_buff_pool *pool, u64 *addr)
{
*addr = xp_unaligned_extract_addr(*addr);
if (*addr >= pool->addrs_cnt ||
*addr + pool->chunk_size > pool->addrs_cnt ||
xp_addr_crosses_non_contig_pg(pool, *addr))
return false;
return true;
}
static bool xp_check_aligned(struct xsk_buff_pool *pool, u64 *addr)
{
*addr = xp_aligned_extract_addr(pool, *addr);
return *addr < pool->addrs_cnt;
}
static struct xdp_buff_xsk *__xp_alloc(struct xsk_buff_pool *pool)
{
struct xdp_buff_xsk *xskb;
u64 addr;
bool ok;
if (pool->free_heads_cnt == 0)
return NULL;
for (;;) {
if (!xskq_cons_peek_addr_unchecked(pool->fq, &addr)) {
pool->fq->queue_empty_descs++;
return NULL;
}
ok = pool->unaligned ? xp_check_unaligned(pool, &addr) :
xp_check_aligned(pool, &addr);
if (!ok) {
pool->fq->invalid_descs++;
xskq_cons_release(pool->fq);
continue;
}
break;
}
if (pool->unaligned) {
xskb = pool->free_heads[--pool->free_heads_cnt];
xp_init_xskb_addr(xskb, pool, addr);
if (pool->dma_pages)
xp_init_xskb_dma(xskb, pool, pool->dma_pages, addr);
} else {
xskb = &pool->heads[xp_aligned_extract_idx(pool, addr)];
}
xskq_cons_release(pool->fq);
return xskb;
}
struct xdp_buff *xp_alloc(struct xsk_buff_pool *pool)
{
struct xdp_buff_xsk *xskb;
if (!pool->free_list_cnt) {
xskb = __xp_alloc(pool);
if (!xskb)
return NULL;
} else {
pool->free_list_cnt--;
xskb = list_first_entry(&pool->free_list, struct xdp_buff_xsk,
free_list_node);
list_del_init(&xskb->free_list_node);
}
xskb->xdp.data = xskb->xdp.data_hard_start + XDP_PACKET_HEADROOM;
xskb->xdp.data_meta = xskb->xdp.data;
if (pool->dma_need_sync) {
dma_sync_single_range_for_device(pool->dev, xskb->dma, 0,
pool->frame_len,
DMA_BIDIRECTIONAL);
}
return &xskb->xdp;
}
EXPORT_SYMBOL(xp_alloc);
static u32 xp_alloc_new_from_fq(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max)
{
u32 i, cached_cons, nb_entries;
if (max > pool->free_heads_cnt)
max = pool->free_heads_cnt;
max = xskq_cons_nb_entries(pool->fq, max);
cached_cons = pool->fq->cached_cons;
nb_entries = max;
i = max;
while (i--) {
struct xdp_buff_xsk *xskb;
u64 addr;
bool ok;
__xskq_cons_read_addr_unchecked(pool->fq, cached_cons++, &addr);
ok = pool->unaligned ? xp_check_unaligned(pool, &addr) :
xp_check_aligned(pool, &addr);
if (unlikely(!ok)) {
pool->fq->invalid_descs++;
nb_entries--;
continue;
}
if (pool->unaligned) {
xskb = pool->free_heads[--pool->free_heads_cnt];
xp_init_xskb_addr(xskb, pool, addr);
if (pool->dma_pages)
xp_init_xskb_dma(xskb, pool, pool->dma_pages, addr);
} else {
xskb = &pool->heads[xp_aligned_extract_idx(pool, addr)];
}
*xdp = &xskb->xdp;
xdp++;
}
xskq_cons_release_n(pool->fq, max);
return nb_entries;
}
static u32 xp_alloc_reused(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 nb_entries)
{
struct xdp_buff_xsk *xskb;
u32 i;
nb_entries = min_t(u32, nb_entries, pool->free_list_cnt);
i = nb_entries;
while (i--) {
xskb = list_first_entry(&pool->free_list, struct xdp_buff_xsk, free_list_node);
list_del_init(&xskb->free_list_node);
*xdp = &xskb->xdp;
xdp++;
}
pool->free_list_cnt -= nb_entries;
return nb_entries;
}
u32 xp_alloc_batch(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max)
{
u32 nb_entries1 = 0, nb_entries2;
if (unlikely(pool->dma_need_sync)) {
struct xdp_buff *buff;
/* Slow path */
buff = xp_alloc(pool);
if (buff)
*xdp = buff;
return !!buff;
}
if (unlikely(pool->free_list_cnt)) {
nb_entries1 = xp_alloc_reused(pool, xdp, max);
if (nb_entries1 == max)
return nb_entries1;
max -= nb_entries1;
xdp += nb_entries1;
}
nb_entries2 = xp_alloc_new_from_fq(pool, xdp, max);
if (!nb_entries2)
pool->fq->queue_empty_descs++;
return nb_entries1 + nb_entries2;
}
EXPORT_SYMBOL(xp_alloc_batch);
bool xp_can_alloc(struct xsk_buff_pool *pool, u32 count)
{
if (pool->free_list_cnt >= count)
return true;
return xskq_cons_has_entries(pool->fq, count - pool->free_list_cnt);
}
EXPORT_SYMBOL(xp_can_alloc);
void xp_free(struct xdp_buff_xsk *xskb)
{
if (!list_empty(&xskb->free_list_node))
return;
xskb->pool->free_list_cnt++;
list_add(&xskb->free_list_node, &xskb->pool->free_list);
}
EXPORT_SYMBOL(xp_free);
void *xp_raw_get_data(struct xsk_buff_pool *pool, u64 addr)
{
addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr;
return pool->addrs + addr;
}
EXPORT_SYMBOL(xp_raw_get_data);
dma_addr_t xp_raw_get_dma(struct xsk_buff_pool *pool, u64 addr)
{
addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr;
return (pool->dma_pages[addr >> PAGE_SHIFT] &
~XSK_NEXT_PG_CONTIG_MASK) +
(addr & ~PAGE_MASK);
}
EXPORT_SYMBOL(xp_raw_get_dma);
void xp_dma_sync_for_cpu_slow(struct xdp_buff_xsk *xskb)
{
dma_sync_single_range_for_cpu(xskb->pool->dev, xskb->dma, 0,
xskb->pool->frame_len, DMA_BIDIRECTIONAL);
}
EXPORT_SYMBOL(xp_dma_sync_for_cpu_slow);
void xp_dma_sync_for_device_slow(struct xsk_buff_pool *pool, dma_addr_t dma,
size_t size)
{
dma_sync_single_range_for_device(pool->dev, dma, 0,
size, DMA_BIDIRECTIONAL);
}
EXPORT_SYMBOL(xp_dma_sync_for_device_slow);
| linux-master | net/xdp/xsk_buff_pool.c |
// SPDX-License-Identifier: GPL-2.0
/* XDP sockets monitoring support
*
* Copyright(c) 2019 Intel Corporation.
*
* Author: Björn Töpel <[email protected]>
*/
#include <linux/module.h>
#include <net/xdp_sock.h>
#include <linux/xdp_diag.h>
#include <linux/sock_diag.h>
#include "xsk_queue.h"
#include "xsk.h"
static int xsk_diag_put_info(const struct xdp_sock *xs, struct sk_buff *nlskb)
{
struct xdp_diag_info di = {};
di.ifindex = xs->dev ? xs->dev->ifindex : 0;
di.queue_id = xs->queue_id;
return nla_put(nlskb, XDP_DIAG_INFO, sizeof(di), &di);
}
static int xsk_diag_put_ring(const struct xsk_queue *queue, int nl_type,
struct sk_buff *nlskb)
{
struct xdp_diag_ring dr = {};
dr.entries = queue->nentries;
return nla_put(nlskb, nl_type, sizeof(dr), &dr);
}
static int xsk_diag_put_rings_cfg(const struct xdp_sock *xs,
struct sk_buff *nlskb)
{
int err = 0;
if (xs->rx)
err = xsk_diag_put_ring(xs->rx, XDP_DIAG_RX_RING, nlskb);
if (!err && xs->tx)
err = xsk_diag_put_ring(xs->tx, XDP_DIAG_TX_RING, nlskb);
return err;
}
static int xsk_diag_put_umem(const struct xdp_sock *xs, struct sk_buff *nlskb)
{
struct xsk_buff_pool *pool = xs->pool;
struct xdp_umem *umem = xs->umem;
struct xdp_diag_umem du = {};
int err;
if (!umem)
return 0;
du.id = umem->id;
du.size = umem->size;
du.num_pages = umem->npgs;
du.chunk_size = umem->chunk_size;
du.headroom = umem->headroom;
du.ifindex = (pool && pool->netdev) ? pool->netdev->ifindex : 0;
du.queue_id = pool ? pool->queue_id : 0;
du.flags = 0;
if (umem->zc)
du.flags |= XDP_DU_F_ZEROCOPY;
du.refs = refcount_read(&umem->users);
err = nla_put(nlskb, XDP_DIAG_UMEM, sizeof(du), &du);
if (!err && pool && pool->fq)
err = xsk_diag_put_ring(pool->fq,
XDP_DIAG_UMEM_FILL_RING, nlskb);
if (!err && pool && pool->cq)
err = xsk_diag_put_ring(pool->cq,
XDP_DIAG_UMEM_COMPLETION_RING, nlskb);
return err;
}
static int xsk_diag_put_stats(const struct xdp_sock *xs, struct sk_buff *nlskb)
{
struct xdp_diag_stats du = {};
du.n_rx_dropped = xs->rx_dropped;
du.n_rx_invalid = xskq_nb_invalid_descs(xs->rx);
du.n_rx_full = xs->rx_queue_full;
du.n_fill_ring_empty = xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
du.n_tx_invalid = xskq_nb_invalid_descs(xs->tx);
du.n_tx_ring_empty = xskq_nb_queue_empty_descs(xs->tx);
return nla_put(nlskb, XDP_DIAG_STATS, sizeof(du), &du);
}
static int xsk_diag_fill(struct sock *sk, struct sk_buff *nlskb,
struct xdp_diag_req *req,
struct user_namespace *user_ns,
u32 portid, u32 seq, u32 flags, int sk_ino)
{
struct xdp_sock *xs = xdp_sk(sk);
struct xdp_diag_msg *msg;
struct nlmsghdr *nlh;
nlh = nlmsg_put(nlskb, portid, seq, SOCK_DIAG_BY_FAMILY, sizeof(*msg),
flags);
if (!nlh)
return -EMSGSIZE;
msg = nlmsg_data(nlh);
memset(msg, 0, sizeof(*msg));
msg->xdiag_family = AF_XDP;
msg->xdiag_type = sk->sk_type;
msg->xdiag_ino = sk_ino;
sock_diag_save_cookie(sk, msg->xdiag_cookie);
mutex_lock(&xs->mutex);
if (READ_ONCE(xs->state) == XSK_UNBOUND)
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_INFO) && xsk_diag_put_info(xs, nlskb))
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_INFO) &&
nla_put_u32(nlskb, XDP_DIAG_UID,
from_kuid_munged(user_ns, sock_i_uid(sk))))
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_RING_CFG) &&
xsk_diag_put_rings_cfg(xs, nlskb))
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_UMEM) &&
xsk_diag_put_umem(xs, nlskb))
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_MEMINFO) &&
sock_diag_put_meminfo(sk, nlskb, XDP_DIAG_MEMINFO))
goto out_nlmsg_trim;
if ((req->xdiag_show & XDP_SHOW_STATS) &&
xsk_diag_put_stats(xs, nlskb))
goto out_nlmsg_trim;
mutex_unlock(&xs->mutex);
nlmsg_end(nlskb, nlh);
return 0;
out_nlmsg_trim:
mutex_unlock(&xs->mutex);
nlmsg_cancel(nlskb, nlh);
return -EMSGSIZE;
}
static int xsk_diag_dump(struct sk_buff *nlskb, struct netlink_callback *cb)
{
struct xdp_diag_req *req = nlmsg_data(cb->nlh);
struct net *net = sock_net(nlskb->sk);
int num = 0, s_num = cb->args[0];
struct sock *sk;
mutex_lock(&net->xdp.lock);
sk_for_each(sk, &net->xdp.list) {
if (!net_eq(sock_net(sk), net))
continue;
if (num++ < s_num)
continue;
if (xsk_diag_fill(sk, nlskb, req,
sk_user_ns(NETLINK_CB(cb->skb).sk),
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
sock_i_ino(sk)) < 0) {
num--;
break;
}
}
mutex_unlock(&net->xdp.lock);
cb->args[0] = num;
return nlskb->len;
}
static int xsk_diag_handler_dump(struct sk_buff *nlskb, struct nlmsghdr *hdr)
{
struct netlink_dump_control c = { .dump = xsk_diag_dump };
int hdrlen = sizeof(struct xdp_diag_req);
struct net *net = sock_net(nlskb->sk);
if (nlmsg_len(hdr) < hdrlen)
return -EINVAL;
if (!(hdr->nlmsg_flags & NLM_F_DUMP))
return -EOPNOTSUPP;
return netlink_dump_start(net->diag_nlsk, nlskb, hdr, &c);
}
static const struct sock_diag_handler xsk_diag_handler = {
.family = AF_XDP,
.dump = xsk_diag_handler_dump,
};
static int __init xsk_diag_init(void)
{
return sock_diag_register(&xsk_diag_handler);
}
static void __exit xsk_diag_exit(void)
{
sock_diag_unregister(&xsk_diag_handler);
}
module_init(xsk_diag_init);
module_exit(xsk_diag_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, AF_XDP);
| linux-master | net/xdp/xsk_diag.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/timer.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/skbuff.h>
#include <linux/export.h>
#include "dccp.h"
/* sysctl variables governing numbers of retransmission attempts */
int sysctl_dccp_request_retries __read_mostly = TCP_SYN_RETRIES;
int sysctl_dccp_retries1 __read_mostly = TCP_RETR1;
int sysctl_dccp_retries2 __read_mostly = TCP_RETR2;
static void dccp_write_err(struct sock *sk)
{
sk->sk_err = READ_ONCE(sk->sk_err_soft) ? : ETIMEDOUT;
sk_error_report(sk);
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
dccp_done(sk);
__DCCP_INC_STATS(DCCP_MIB_ABORTONTIMEOUT);
}
/* A write timeout has occurred. Process the after effects. */
static int dccp_write_timeout(struct sock *sk)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
int retry_until;
if (sk->sk_state == DCCP_REQUESTING || sk->sk_state == DCCP_PARTOPEN) {
if (icsk->icsk_retransmits != 0)
dst_negative_advice(sk);
retry_until = icsk->icsk_syn_retries ?
: sysctl_dccp_request_retries;
} else {
if (icsk->icsk_retransmits >= sysctl_dccp_retries1) {
/* NOTE. draft-ietf-tcpimpl-pmtud-01.txt requires pmtu
black hole detection. :-(
It is place to make it. It is not made. I do not want
to make it. It is disguisting. It does not work in any
case. Let me to cite the same draft, which requires for
us to implement this:
"The one security concern raised by this memo is that ICMP black holes
are often caused by over-zealous security administrators who block
all ICMP messages. It is vitally important that those who design and
deploy security systems understand the impact of strict filtering on
upper-layer protocols. The safest web site in the world is worthless
if most TCP implementations cannot transfer data from it. It would
be far nicer to have all of the black holes fixed rather than fixing
all of the TCP implementations."
Golden words :-).
*/
dst_negative_advice(sk);
}
retry_until = sysctl_dccp_retries2;
/*
* FIXME: see tcp_write_timout and tcp_out_of_resources
*/
}
if (icsk->icsk_retransmits >= retry_until) {
/* Has it gone just too far? */
dccp_write_err(sk);
return 1;
}
return 0;
}
/*
* The DCCP retransmit timer.
*/
static void dccp_retransmit_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
/*
* More than 4MSL (8 minutes) has passed, a RESET(aborted) was
* sent, no need to retransmit, this sock is dead.
*/
if (dccp_write_timeout(sk))
return;
/*
* We want to know the number of packets retransmitted, not the
* total number of retransmissions of clones of original packets.
*/
if (icsk->icsk_retransmits == 0)
__DCCP_INC_STATS(DCCP_MIB_TIMEOUTS);
if (dccp_retransmit_skb(sk) != 0) {
/*
* Retransmission failed because of local congestion,
* do not backoff.
*/
if (--icsk->icsk_retransmits == 0)
icsk->icsk_retransmits = 1;
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
min(icsk->icsk_rto,
TCP_RESOURCE_PROBE_INTERVAL),
DCCP_RTO_MAX);
return;
}
icsk->icsk_backoff++;
icsk->icsk_rto = min(icsk->icsk_rto << 1, DCCP_RTO_MAX);
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto,
DCCP_RTO_MAX);
if (icsk->icsk_retransmits > sysctl_dccp_retries1)
__sk_dst_reset(sk);
}
static void dccp_write_timer(struct timer_list *t)
{
struct inet_connection_sock *icsk =
from_timer(icsk, t, icsk_retransmit_timer);
struct sock *sk = &icsk->icsk_inet.sk;
int event = 0;
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
/* Try again later */
sk_reset_timer(sk, &icsk->icsk_retransmit_timer,
jiffies + (HZ / 20));
goto out;
}
if (sk->sk_state == DCCP_CLOSED || !icsk->icsk_pending)
goto out;
if (time_after(icsk->icsk_timeout, jiffies)) {
sk_reset_timer(sk, &icsk->icsk_retransmit_timer,
icsk->icsk_timeout);
goto out;
}
event = icsk->icsk_pending;
icsk->icsk_pending = 0;
switch (event) {
case ICSK_TIME_RETRANS:
dccp_retransmit_timer(sk);
break;
}
out:
bh_unlock_sock(sk);
sock_put(sk);
}
static void dccp_keepalive_timer(struct timer_list *t)
{
struct sock *sk = from_timer(sk, t, sk_timer);
pr_err("dccp should not use a keepalive timer !\n");
sock_put(sk);
}
/* This is the same as tcp_delack_timer, sans prequeue & mem_reclaim stuff */
static void dccp_delack_timer(struct timer_list *t)
{
struct inet_connection_sock *icsk =
from_timer(icsk, t, icsk_delack_timer);
struct sock *sk = &icsk->icsk_inet.sk;
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
/* Try again later. */
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOCKED);
sk_reset_timer(sk, &icsk->icsk_delack_timer,
jiffies + TCP_DELACK_MIN);
goto out;
}
if (sk->sk_state == DCCP_CLOSED ||
!(icsk->icsk_ack.pending & ICSK_ACK_TIMER))
goto out;
if (time_after(icsk->icsk_ack.timeout, jiffies)) {
sk_reset_timer(sk, &icsk->icsk_delack_timer,
icsk->icsk_ack.timeout);
goto out;
}
icsk->icsk_ack.pending &= ~ICSK_ACK_TIMER;
if (inet_csk_ack_scheduled(sk)) {
if (!inet_csk_in_pingpong_mode(sk)) {
/* Delayed ACK missed: inflate ATO. */
icsk->icsk_ack.ato = min(icsk->icsk_ack.ato << 1,
icsk->icsk_rto);
} else {
/* Delayed ACK missed: leave pingpong mode and
* deflate ATO.
*/
inet_csk_exit_pingpong_mode(sk);
icsk->icsk_ack.ato = TCP_ATO_MIN;
}
dccp_send_ack(sk);
__NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKS);
}
out:
bh_unlock_sock(sk);
sock_put(sk);
}
/**
* dccp_write_xmitlet - Workhorse for CCID packet dequeueing interface
* @t: pointer to the tasklet associated with this handler
*
* See the comments above %ccid_dequeueing_decision for supported modes.
*/
static void dccp_write_xmitlet(struct tasklet_struct *t)
{
struct dccp_sock *dp = from_tasklet(dp, t, dccps_xmitlet);
struct sock *sk = &dp->dccps_inet_connection.icsk_inet.sk;
bh_lock_sock(sk);
if (sock_owned_by_user(sk))
sk_reset_timer(sk, &dccp_sk(sk)->dccps_xmit_timer, jiffies + 1);
else
dccp_write_xmit(sk);
bh_unlock_sock(sk);
sock_put(sk);
}
static void dccp_write_xmit_timer(struct timer_list *t)
{
struct dccp_sock *dp = from_timer(dp, t, dccps_xmit_timer);
dccp_write_xmitlet(&dp->dccps_xmitlet);
}
void dccp_init_xmit_timers(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
tasklet_setup(&dp->dccps_xmitlet, dccp_write_xmitlet);
timer_setup(&dp->dccps_xmit_timer, dccp_write_xmit_timer, 0);
inet_csk_init_xmit_timers(sk, &dccp_write_timer, &dccp_delack_timer,
&dccp_keepalive_timer);
}
static ktime_t dccp_timestamp_seed;
/**
* dccp_timestamp - 10s of microseconds time source
* Returns the number of 10s of microseconds since loading DCCP. This is native
* DCCP time difference format (RFC 4340, sec. 13).
* Please note: This will wrap around about circa every 11.9 hours.
*/
u32 dccp_timestamp(void)
{
u64 delta = (u64)ktime_us_delta(ktime_get_real(), dccp_timestamp_seed);
do_div(delta, 10);
return delta;
}
EXPORT_SYMBOL_GPL(dccp_timestamp);
void __init dccp_timestamping_init(void)
{
dccp_timestamp_seed = ktime_get_real();
}
| linux-master | net/dccp/timer.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/minisocks.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <net/sock.h>
#include <net/xfrm.h>
#include <net/inet_timewait_sock.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
#include "feat.h"
struct inet_timewait_death_row dccp_death_row = {
.tw_refcount = REFCOUNT_INIT(1),
.sysctl_max_tw_buckets = NR_FILE * 2,
.hashinfo = &dccp_hashinfo,
};
EXPORT_SYMBOL_GPL(dccp_death_row);
void dccp_time_wait(struct sock *sk, int state, int timeo)
{
struct inet_timewait_sock *tw;
tw = inet_twsk_alloc(sk, &dccp_death_row, state);
if (tw != NULL) {
const struct inet_connection_sock *icsk = inet_csk(sk);
const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
#if IS_ENABLED(CONFIG_IPV6)
if (tw->tw_family == PF_INET6) {
tw->tw_v6_daddr = sk->sk_v6_daddr;
tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
tw->tw_ipv6only = sk->sk_ipv6only;
}
#endif
/* Get the TIME_WAIT timeout firing. */
if (timeo < rto)
timeo = rto;
if (state == DCCP_TIME_WAIT)
timeo = DCCP_TIMEWAIT_LEN;
/* tw_timer is pinned, so we need to make sure BH are disabled
* in following section, otherwise timer handler could run before
* we complete the initialization.
*/
local_bh_disable();
inet_twsk_schedule(tw, timeo);
/* Linkage updates.
* Note that access to tw after this point is illegal.
*/
inet_twsk_hashdance(tw, sk, &dccp_hashinfo);
local_bh_enable();
} else {
/* Sorry, if we're out of memory, just CLOSE this
* socket up. We've got bigger problems than
* non-graceful socket closings.
*/
DCCP_WARN("time wait bucket table overflow\n");
}
dccp_done(sk);
}
struct sock *dccp_create_openreq_child(const struct sock *sk,
const struct request_sock *req,
const struct sk_buff *skb)
{
/*
* Step 3: Process LISTEN state
*
* (* Generate a new socket and switch to that socket *)
* Set S := new socket for this port pair
*/
struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
if (newsk != NULL) {
struct dccp_request_sock *dreq = dccp_rsk(req);
struct inet_connection_sock *newicsk = inet_csk(newsk);
struct dccp_sock *newdp = dccp_sk(newsk);
newdp->dccps_role = DCCP_ROLE_SERVER;
newdp->dccps_hc_rx_ackvec = NULL;
newdp->dccps_service_list = NULL;
newdp->dccps_hc_rx_ccid = NULL;
newdp->dccps_hc_tx_ccid = NULL;
newdp->dccps_service = dreq->dreq_service;
newdp->dccps_timestamp_echo = dreq->dreq_timestamp_echo;
newdp->dccps_timestamp_time = dreq->dreq_timestamp_time;
newicsk->icsk_rto = DCCP_TIMEOUT_INIT;
INIT_LIST_HEAD(&newdp->dccps_featneg);
/*
* Step 3: Process LISTEN state
*
* Choose S.ISS (initial seqno) or set from Init Cookies
* Initialize S.GAR := S.ISS
* Set S.ISR, S.GSR from packet (or Init Cookies)
*
* Setting AWL/AWH and SWL/SWH happens as part of the feature
* activation below, as these windows all depend on the local
* and remote Sequence Window feature values (7.5.2).
*/
newdp->dccps_iss = dreq->dreq_iss;
newdp->dccps_gss = dreq->dreq_gss;
newdp->dccps_gar = newdp->dccps_iss;
newdp->dccps_isr = dreq->dreq_isr;
newdp->dccps_gsr = dreq->dreq_gsr;
/*
* Activate features: initialise CCIDs, sequence windows etc.
*/
if (dccp_feat_activate_values(newsk, &dreq->dreq_featneg)) {
sk_free_unlock_clone(newsk);
return NULL;
}
dccp_init_xmit_timers(newsk);
__DCCP_INC_STATS(DCCP_MIB_PASSIVEOPENS);
}
return newsk;
}
EXPORT_SYMBOL_GPL(dccp_create_openreq_child);
/*
* Process an incoming packet for RESPOND sockets represented
* as an request_sock.
*/
struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb,
struct request_sock *req)
{
struct sock *child = NULL;
struct dccp_request_sock *dreq = dccp_rsk(req);
bool own_req;
/* TCP/DCCP listeners became lockless.
* DCCP stores complex state in its request_sock, so we need
* a protection for them, now this code runs without being protected
* by the parent (listener) lock.
*/
spin_lock_bh(&dreq->dreq_lock);
/* Check for retransmitted REQUEST */
if (dccp_hdr(skb)->dccph_type == DCCP_PKT_REQUEST) {
if (after48(DCCP_SKB_CB(skb)->dccpd_seq, dreq->dreq_gsr)) {
dccp_pr_debug("Retransmitted REQUEST\n");
dreq->dreq_gsr = DCCP_SKB_CB(skb)->dccpd_seq;
/*
* Send another RESPONSE packet
* To protect against Request floods, increment retrans
* counter (backoff, monitored by dccp_response_timer).
*/
inet_rtx_syn_ack(sk, req);
}
/* Network Duplicate, discard packet */
goto out;
}
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_ACK &&
dccp_hdr(skb)->dccph_type != DCCP_PKT_DATAACK)
goto drop;
/* Invalid ACK */
if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq,
dreq->dreq_iss, dreq->dreq_gss)) {
dccp_pr_debug("Invalid ACK number: ack_seq=%llu, "
"dreq_iss=%llu, dreq_gss=%llu\n",
(unsigned long long)
DCCP_SKB_CB(skb)->dccpd_ack_seq,
(unsigned long long) dreq->dreq_iss,
(unsigned long long) dreq->dreq_gss);
goto drop;
}
if (dccp_parse_options(sk, dreq, skb))
goto drop;
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
req, &own_req);
if (child) {
child = inet_csk_complete_hashdance(sk, child, req, own_req);
goto out;
}
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY;
drop:
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_RESET)
req->rsk_ops->send_reset(sk, skb);
inet_csk_reqsk_queue_drop(sk, req);
out:
spin_unlock_bh(&dreq->dreq_lock);
return child;
}
EXPORT_SYMBOL_GPL(dccp_check_req);
/*
* Queue segment on the new socket if the new socket is active,
* otherwise we just shortcircuit this and continue with
* the new socket.
*/
int dccp_child_process(struct sock *parent, struct sock *child,
struct sk_buff *skb)
__releases(child)
{
int ret = 0;
const int state = child->sk_state;
if (!sock_owned_by_user(child)) {
ret = dccp_rcv_state_process(child, skb, dccp_hdr(skb),
skb->len);
/* Wakeup parent, send SIGIO */
if (state == DCCP_RESPOND && child->sk_state != state)
parent->sk_data_ready(parent);
} else {
/* Alas, it is possible again, because we do lookup
* in main socket hash table and lock on listening
* socket does not protect us more.
*/
__sk_add_backlog(child, skb);
}
bh_unlock_sock(child);
sock_put(child);
return ret;
}
EXPORT_SYMBOL_GPL(dccp_child_process);
void dccp_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
struct request_sock *rsk)
{
DCCP_BUG("DCCP-ACK packets are never sent in LISTEN/RESPOND state");
}
EXPORT_SYMBOL_GPL(dccp_reqsk_send_ack);
int dccp_reqsk_init(struct request_sock *req,
struct dccp_sock const *dp, struct sk_buff const *skb)
{
struct dccp_request_sock *dreq = dccp_rsk(req);
spin_lock_init(&dreq->dreq_lock);
inet_rsk(req)->ir_rmt_port = dccp_hdr(skb)->dccph_sport;
inet_rsk(req)->ir_num = ntohs(dccp_hdr(skb)->dccph_dport);
inet_rsk(req)->acked = 0;
dreq->dreq_timestamp_echo = 0;
/* inherit feature negotiation options from listening socket */
return dccp_feat_clone_list(&dp->dccps_featneg, &dreq->dreq_featneg);
}
EXPORT_SYMBOL_GPL(dccp_reqsk_init);
| linux-master | net/dccp/minisocks.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/sysctl.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/mm.h>
#include <linux/sysctl.h>
#include "dccp.h"
#include "feat.h"
#ifndef CONFIG_SYSCTL
#error This file should not be compiled without CONFIG_SYSCTL defined
#endif
/* Boundary values */
static int u8_max = 0xFF;
static unsigned long seqw_min = DCCPF_SEQ_WMIN,
seqw_max = 0xFFFFFFFF; /* maximum on 32 bit */
static struct ctl_table dccp_default_table[] = {
{
.procname = "seq_window",
.data = &sysctl_dccp_sequence_window,
.maxlen = sizeof(sysctl_dccp_sequence_window),
.mode = 0644,
.proc_handler = proc_doulongvec_minmax,
.extra1 = &seqw_min, /* RFC 4340, 7.5.2 */
.extra2 = &seqw_max,
},
{
.procname = "rx_ccid",
.data = &sysctl_dccp_rx_ccid,
.maxlen = sizeof(sysctl_dccp_rx_ccid),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &u8_max, /* RFC 4340, 10. */
},
{
.procname = "tx_ccid",
.data = &sysctl_dccp_tx_ccid,
.maxlen = sizeof(sysctl_dccp_tx_ccid),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &u8_max, /* RFC 4340, 10. */
},
{
.procname = "request_retries",
.data = &sysctl_dccp_request_retries,
.maxlen = sizeof(sysctl_dccp_request_retries),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ONE,
.extra2 = &u8_max,
},
{
.procname = "retries1",
.data = &sysctl_dccp_retries1,
.maxlen = sizeof(sysctl_dccp_retries1),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &u8_max,
},
{
.procname = "retries2",
.data = &sysctl_dccp_retries2,
.maxlen = sizeof(sysctl_dccp_retries2),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &u8_max,
},
{
.procname = "tx_qlen",
.data = &sysctl_dccp_tx_qlen,
.maxlen = sizeof(sysctl_dccp_tx_qlen),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
},
{
.procname = "sync_ratelimit",
.data = &sysctl_dccp_sync_ratelimit,
.maxlen = sizeof(sysctl_dccp_sync_ratelimit),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{ }
};
static struct ctl_table_header *dccp_table_header;
int __init dccp_sysctl_init(void)
{
dccp_table_header = register_net_sysctl(&init_net, "net/dccp/default",
dccp_default_table);
return dccp_table_header != NULL ? 0 : -ENOMEM;
}
void dccp_sysctl_exit(void)
{
if (dccp_table_header != NULL) {
unregister_net_sysctl_table(dccp_table_header);
dccp_table_header = NULL;
}
}
| linux-master | net/dccp/sysctl.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/diag.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/module.h>
#include <linux/inet_diag.h>
#include "ccid.h"
#include "dccp.h"
static void dccp_get_info(struct sock *sk, struct tcp_info *info)
{
struct dccp_sock *dp = dccp_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
memset(info, 0, sizeof(*info));
info->tcpi_state = sk->sk_state;
info->tcpi_retransmits = icsk->icsk_retransmits;
info->tcpi_probes = icsk->icsk_probes_out;
info->tcpi_backoff = icsk->icsk_backoff;
info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
if (dp->dccps_hc_rx_ackvec != NULL)
info->tcpi_options |= TCPI_OPT_SACK;
if (dp->dccps_hc_rx_ccid != NULL)
ccid_hc_rx_get_info(dp->dccps_hc_rx_ccid, sk, info);
if (dp->dccps_hc_tx_ccid != NULL)
ccid_hc_tx_get_info(dp->dccps_hc_tx_ccid, sk, info);
}
static void dccp_diag_get_info(struct sock *sk, struct inet_diag_msg *r,
void *_info)
{
r->idiag_rqueue = r->idiag_wqueue = 0;
if (_info != NULL)
dccp_get_info(sk, _info);
}
static void dccp_diag_dump(struct sk_buff *skb, struct netlink_callback *cb,
const struct inet_diag_req_v2 *r)
{
inet_diag_dump_icsk(&dccp_hashinfo, skb, cb, r);
}
static int dccp_diag_dump_one(struct netlink_callback *cb,
const struct inet_diag_req_v2 *req)
{
return inet_diag_dump_one_icsk(&dccp_hashinfo, cb, req);
}
static const struct inet_diag_handler dccp_diag_handler = {
.dump = dccp_diag_dump,
.dump_one = dccp_diag_dump_one,
.idiag_get_info = dccp_diag_get_info,
.idiag_type = IPPROTO_DCCP,
.idiag_info_size = sizeof(struct tcp_info),
};
static int __init dccp_diag_init(void)
{
return inet_diag_register(&dccp_diag_handler);
}
static void __exit dccp_diag_fini(void)
{
inet_diag_unregister(&dccp_diag_handler);
}
module_init(dccp_diag_init);
module_exit(dccp_diag_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <[email protected]>");
MODULE_DESCRIPTION("DCCP inet_diag handler");
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 2-33 /* AF_INET - IPPROTO_DCCP */);
| linux-master | net/dccp/diag.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/ccid.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*
* CCID infrastructure
*/
#include <linux/slab.h>
#include "ccid.h"
#include "ccids/lib/tfrc.h"
static struct ccid_operations *ccids[] = {
&ccid2_ops,
#ifdef CONFIG_IP_DCCP_CCID3
&ccid3_ops,
#endif
};
static struct ccid_operations *ccid_by_number(const u8 id)
{
int i;
for (i = 0; i < ARRAY_SIZE(ccids); i++)
if (ccids[i]->ccid_id == id)
return ccids[i];
return NULL;
}
/* check that up to @array_len members in @ccid_array are supported */
bool ccid_support_check(u8 const *ccid_array, u8 array_len)
{
while (array_len > 0)
if (ccid_by_number(ccid_array[--array_len]) == NULL)
return false;
return true;
}
/**
* ccid_get_builtin_ccids - Populate a list of built-in CCIDs
* @ccid_array: pointer to copy into
* @array_len: value to return length into
*
* This function allocates memory - caller must see that it is freed after use.
*/
int ccid_get_builtin_ccids(u8 **ccid_array, u8 *array_len)
{
*ccid_array = kmalloc(ARRAY_SIZE(ccids), gfp_any());
if (*ccid_array == NULL)
return -ENOBUFS;
for (*array_len = 0; *array_len < ARRAY_SIZE(ccids); *array_len += 1)
(*ccid_array)[*array_len] = ccids[*array_len]->ccid_id;
return 0;
}
int ccid_getsockopt_builtin_ccids(struct sock *sk, int len,
char __user *optval, int __user *optlen)
{
u8 *ccid_array, array_len;
int err = 0;
if (ccid_get_builtin_ccids(&ccid_array, &array_len))
return -ENOBUFS;
if (put_user(array_len, optlen))
err = -EFAULT;
else if (len > 0 && copy_to_user(optval, ccid_array,
len > array_len ? array_len : len))
err = -EFAULT;
kfree(ccid_array);
return err;
}
static __printf(3, 4) struct kmem_cache *ccid_kmem_cache_create(int obj_size, char *slab_name_fmt, const char *fmt,...)
{
struct kmem_cache *slab;
va_list args;
va_start(args, fmt);
vsnprintf(slab_name_fmt, CCID_SLAB_NAME_LENGTH, fmt, args);
va_end(args);
slab = kmem_cache_create(slab_name_fmt, sizeof(struct ccid) + obj_size, 0,
SLAB_HWCACHE_ALIGN, NULL);
return slab;
}
static void ccid_kmem_cache_destroy(struct kmem_cache *slab)
{
kmem_cache_destroy(slab);
}
static int __init ccid_activate(struct ccid_operations *ccid_ops)
{
int err = -ENOBUFS;
ccid_ops->ccid_hc_rx_slab =
ccid_kmem_cache_create(ccid_ops->ccid_hc_rx_obj_size,
ccid_ops->ccid_hc_rx_slab_name,
"ccid%u_hc_rx_sock",
ccid_ops->ccid_id);
if (ccid_ops->ccid_hc_rx_slab == NULL)
goto out;
ccid_ops->ccid_hc_tx_slab =
ccid_kmem_cache_create(ccid_ops->ccid_hc_tx_obj_size,
ccid_ops->ccid_hc_tx_slab_name,
"ccid%u_hc_tx_sock",
ccid_ops->ccid_id);
if (ccid_ops->ccid_hc_tx_slab == NULL)
goto out_free_rx_slab;
pr_info("DCCP: Activated CCID %d (%s)\n",
ccid_ops->ccid_id, ccid_ops->ccid_name);
err = 0;
out:
return err;
out_free_rx_slab:
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab);
ccid_ops->ccid_hc_rx_slab = NULL;
goto out;
}
static void ccid_deactivate(struct ccid_operations *ccid_ops)
{
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_tx_slab);
ccid_ops->ccid_hc_tx_slab = NULL;
ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab);
ccid_ops->ccid_hc_rx_slab = NULL;
pr_info("DCCP: Deactivated CCID %d (%s)\n",
ccid_ops->ccid_id, ccid_ops->ccid_name);
}
struct ccid *ccid_new(const u8 id, struct sock *sk, bool rx)
{
struct ccid_operations *ccid_ops = ccid_by_number(id);
struct ccid *ccid = NULL;
if (ccid_ops == NULL)
goto out;
ccid = kmem_cache_alloc(rx ? ccid_ops->ccid_hc_rx_slab :
ccid_ops->ccid_hc_tx_slab, gfp_any());
if (ccid == NULL)
goto out;
ccid->ccid_ops = ccid_ops;
if (rx) {
memset(ccid + 1, 0, ccid_ops->ccid_hc_rx_obj_size);
if (ccid->ccid_ops->ccid_hc_rx_init != NULL &&
ccid->ccid_ops->ccid_hc_rx_init(ccid, sk) != 0)
goto out_free_ccid;
} else {
memset(ccid + 1, 0, ccid_ops->ccid_hc_tx_obj_size);
if (ccid->ccid_ops->ccid_hc_tx_init != NULL &&
ccid->ccid_ops->ccid_hc_tx_init(ccid, sk) != 0)
goto out_free_ccid;
}
out:
return ccid;
out_free_ccid:
kmem_cache_free(rx ? ccid_ops->ccid_hc_rx_slab :
ccid_ops->ccid_hc_tx_slab, ccid);
ccid = NULL;
goto out;
}
void ccid_hc_rx_delete(struct ccid *ccid, struct sock *sk)
{
if (ccid != NULL) {
if (ccid->ccid_ops->ccid_hc_rx_exit != NULL)
ccid->ccid_ops->ccid_hc_rx_exit(sk);
kmem_cache_free(ccid->ccid_ops->ccid_hc_rx_slab, ccid);
}
}
void ccid_hc_tx_delete(struct ccid *ccid, struct sock *sk)
{
if (ccid != NULL) {
if (ccid->ccid_ops->ccid_hc_tx_exit != NULL)
ccid->ccid_ops->ccid_hc_tx_exit(sk);
kmem_cache_free(ccid->ccid_ops->ccid_hc_tx_slab, ccid);
}
}
int __init ccid_initialize_builtins(void)
{
int i, err = tfrc_lib_init();
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(ccids); i++) {
err = ccid_activate(ccids[i]);
if (err)
goto unwind_registrations;
}
return 0;
unwind_registrations:
while(--i >= 0)
ccid_deactivate(ccids[i]);
tfrc_lib_exit();
return err;
}
void ccid_cleanup_builtins(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(ccids); i++)
ccid_deactivate(ccids[i]);
tfrc_lib_exit();
}
| linux-master | net/dccp/ccid.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* DCCP over IPv6
* Linux INET6 implementation
*
* Based on net/dccp6/ipv6.c
*
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/xfrm.h>
#include <linux/string.h>
#include <net/addrconf.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/inet_sock.h>
#include <net/inet6_connection_sock.h>
#include <net/inet6_hashtables.h>
#include <net/ip6_route.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/transp_v6.h>
#include <net/ip6_checksum.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include <net/netns/generic.h>
#include <net/sock.h>
#include "dccp.h"
#include "ipv6.h"
#include "feat.h"
struct dccp_v6_pernet {
struct sock *v6_ctl_sk;
};
static unsigned int dccp_v6_pernet_id __read_mostly;
/* The per-net v6_ctl_sk is used for sending RSTs and ACKs */
static const struct inet_connection_sock_af_ops dccp_ipv6_mapped;
static const struct inet_connection_sock_af_ops dccp_ipv6_af_ops;
/* add pseudo-header to DCCP checksum stored in skb->csum */
static inline __sum16 dccp_v6_csum_finish(struct sk_buff *skb,
const struct in6_addr *saddr,
const struct in6_addr *daddr)
{
return csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_DCCP, skb->csum);
}
static inline void dccp_v6_send_check(struct sock *sk, struct sk_buff *skb)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct dccp_hdr *dh = dccp_hdr(skb);
dccp_csum_outgoing(skb);
dh->dccph_checksum = dccp_v6_csum_finish(skb, &np->saddr, &sk->sk_v6_daddr);
}
static inline __u64 dccp_v6_init_sequence(struct sk_buff *skb)
{
return secure_dccpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32,
ipv6_hdr(skb)->saddr.s6_addr32,
dccp_hdr(skb)->dccph_dport,
dccp_hdr(skb)->dccph_sport );
}
static int dccp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
u8 type, u8 code, int offset, __be32 info)
{
const struct ipv6hdr *hdr;
const struct dccp_hdr *dh;
struct dccp_sock *dp;
struct ipv6_pinfo *np;
struct sock *sk;
int err;
__u64 seq;
struct net *net = dev_net(skb->dev);
if (!pskb_may_pull(skb, offset + sizeof(*dh)))
return -EINVAL;
dh = (struct dccp_hdr *)(skb->data + offset);
if (!pskb_may_pull(skb, offset + __dccp_basic_hdr_len(dh)))
return -EINVAL;
hdr = (const struct ipv6hdr *)skb->data;
dh = (struct dccp_hdr *)(skb->data + offset);
sk = __inet6_lookup_established(net, &dccp_hashinfo,
&hdr->daddr, dh->dccph_dport,
&hdr->saddr, ntohs(dh->dccph_sport),
inet6_iif(skb), 0);
if (!sk) {
__ICMP6_INC_STATS(net, __in6_dev_get(skb->dev),
ICMP6_MIB_INERRORS);
return -ENOENT;
}
if (sk->sk_state == DCCP_TIME_WAIT) {
inet_twsk_put(inet_twsk(sk));
return 0;
}
seq = dccp_hdr_seq(dh);
if (sk->sk_state == DCCP_NEW_SYN_RECV) {
dccp_req_err(sk, seq);
return 0;
}
bh_lock_sock(sk);
if (sock_owned_by_user(sk))
__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
if (sk->sk_state == DCCP_CLOSED)
goto out;
dp = dccp_sk(sk);
if ((1 << sk->sk_state) & ~(DCCPF_REQUESTING | DCCPF_LISTEN) &&
!between48(seq, dp->dccps_awl, dp->dccps_awh)) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
np = inet6_sk(sk);
if (type == NDISC_REDIRECT) {
if (!sock_owned_by_user(sk)) {
struct dst_entry *dst = __sk_dst_check(sk, np->dst_cookie);
if (dst)
dst->ops->redirect(dst, sk, skb);
}
goto out;
}
if (type == ICMPV6_PKT_TOOBIG) {
struct dst_entry *dst = NULL;
if (!ip6_sk_accept_pmtu(sk))
goto out;
if (sock_owned_by_user(sk))
goto out;
if ((1 << sk->sk_state) & (DCCPF_LISTEN | DCCPF_CLOSED))
goto out;
dst = inet6_csk_update_pmtu(sk, ntohl(info));
if (!dst)
goto out;
if (inet_csk(sk)->icsk_pmtu_cookie > dst_mtu(dst))
dccp_sync_mss(sk, dst_mtu(dst));
goto out;
}
icmpv6_err_convert(type, code, &err);
/* Might be for an request_sock */
switch (sk->sk_state) {
case DCCP_REQUESTING:
case DCCP_RESPOND: /* Cannot happen.
It can, it SYNs are crossed. --ANK */
if (!sock_owned_by_user(sk)) {
__DCCP_INC_STATS(DCCP_MIB_ATTEMPTFAILS);
sk->sk_err = err;
/*
* Wake people up to see the error
* (see connect in sock.c)
*/
sk_error_report(sk);
dccp_done(sk);
} else {
WRITE_ONCE(sk->sk_err_soft, err);
}
goto out;
}
if (!sock_owned_by_user(sk) && np->recverr) {
sk->sk_err = err;
sk_error_report(sk);
} else {
WRITE_ONCE(sk->sk_err_soft, err);
}
out:
bh_unlock_sock(sk);
sock_put(sk);
return 0;
}
static int dccp_v6_send_response(const struct sock *sk, struct request_sock *req)
{
struct inet_request_sock *ireq = inet_rsk(req);
struct ipv6_pinfo *np = inet6_sk(sk);
struct sk_buff *skb;
struct in6_addr *final_p, final;
struct flowi6 fl6;
int err = -1;
struct dst_entry *dst;
memset(&fl6, 0, sizeof(fl6));
fl6.flowi6_proto = IPPROTO_DCCP;
fl6.daddr = ireq->ir_v6_rmt_addr;
fl6.saddr = ireq->ir_v6_loc_addr;
fl6.flowlabel = 0;
fl6.flowi6_oif = ireq->ir_iif;
fl6.fl6_dport = ireq->ir_rmt_port;
fl6.fl6_sport = htons(ireq->ir_num);
security_req_classify_flow(req, flowi6_to_flowi_common(&fl6));
rcu_read_lock();
final_p = fl6_update_dst(&fl6, rcu_dereference(np->opt), &final);
rcu_read_unlock();
dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p);
if (IS_ERR(dst)) {
err = PTR_ERR(dst);
dst = NULL;
goto done;
}
skb = dccp_make_response(sk, dst, req);
if (skb != NULL) {
struct dccp_hdr *dh = dccp_hdr(skb);
struct ipv6_txoptions *opt;
dh->dccph_checksum = dccp_v6_csum_finish(skb,
&ireq->ir_v6_loc_addr,
&ireq->ir_v6_rmt_addr);
fl6.daddr = ireq->ir_v6_rmt_addr;
rcu_read_lock();
opt = ireq->ipv6_opt;
if (!opt)
opt = rcu_dereference(np->opt);
err = ip6_xmit(sk, skb, &fl6, READ_ONCE(sk->sk_mark), opt,
np->tclass, sk->sk_priority);
rcu_read_unlock();
err = net_xmit_eval(err);
}
done:
dst_release(dst);
return err;
}
static void dccp_v6_reqsk_destructor(struct request_sock *req)
{
dccp_feat_list_purge(&dccp_rsk(req)->dreq_featneg);
kfree(inet_rsk(req)->ipv6_opt);
kfree_skb(inet_rsk(req)->pktopts);
}
static void dccp_v6_ctl_send_reset(const struct sock *sk, struct sk_buff *rxskb)
{
const struct ipv6hdr *rxip6h;
struct sk_buff *skb;
struct flowi6 fl6;
struct net *net = dev_net(skb_dst(rxskb)->dev);
struct dccp_v6_pernet *pn;
struct sock *ctl_sk;
struct dst_entry *dst;
if (dccp_hdr(rxskb)->dccph_type == DCCP_PKT_RESET)
return;
if (!ipv6_unicast_destination(rxskb))
return;
pn = net_generic(net, dccp_v6_pernet_id);
ctl_sk = pn->v6_ctl_sk;
skb = dccp_ctl_make_reset(ctl_sk, rxskb);
if (skb == NULL)
return;
rxip6h = ipv6_hdr(rxskb);
dccp_hdr(skb)->dccph_checksum = dccp_v6_csum_finish(skb, &rxip6h->saddr,
&rxip6h->daddr);
memset(&fl6, 0, sizeof(fl6));
fl6.daddr = rxip6h->saddr;
fl6.saddr = rxip6h->daddr;
fl6.flowi6_proto = IPPROTO_DCCP;
fl6.flowi6_oif = inet6_iif(rxskb);
fl6.fl6_dport = dccp_hdr(skb)->dccph_dport;
fl6.fl6_sport = dccp_hdr(skb)->dccph_sport;
security_skb_classify_flow(rxskb, flowi6_to_flowi_common(&fl6));
/* sk = NULL, but it is safe for now. RST socket required. */
dst = ip6_dst_lookup_flow(sock_net(ctl_sk), ctl_sk, &fl6, NULL);
if (!IS_ERR(dst)) {
skb_dst_set(skb, dst);
ip6_xmit(ctl_sk, skb, &fl6, 0, NULL, 0, 0);
DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
DCCP_INC_STATS(DCCP_MIB_OUTRSTS);
return;
}
kfree_skb(skb);
}
static struct request_sock_ops dccp6_request_sock_ops = {
.family = AF_INET6,
.obj_size = sizeof(struct dccp6_request_sock),
.rtx_syn_ack = dccp_v6_send_response,
.send_ack = dccp_reqsk_send_ack,
.destructor = dccp_v6_reqsk_destructor,
.send_reset = dccp_v6_ctl_send_reset,
.syn_ack_timeout = dccp_syn_ack_timeout,
};
static int dccp_v6_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct request_sock *req;
struct dccp_request_sock *dreq;
struct inet_request_sock *ireq;
struct ipv6_pinfo *np = inet6_sk(sk);
const __be32 service = dccp_hdr_request(skb)->dccph_req_service;
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
if (skb->protocol == htons(ETH_P_IP))
return dccp_v4_conn_request(sk, skb);
if (!ipv6_unicast_destination(skb))
return 0; /* discard, don't send a reset here */
if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) {
__IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS);
return 0;
}
if (dccp_bad_service_code(sk, service)) {
dcb->dccpd_reset_code = DCCP_RESET_CODE_BAD_SERVICE_CODE;
goto drop;
}
/*
* There are no SYN attacks on IPv6, yet...
*/
dcb->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY;
if (inet_csk_reqsk_queue_is_full(sk))
goto drop;
if (sk_acceptq_is_full(sk))
goto drop;
req = inet_reqsk_alloc(&dccp6_request_sock_ops, sk, true);
if (req == NULL)
goto drop;
if (dccp_reqsk_init(req, dccp_sk(sk), skb))
goto drop_and_free;
dreq = dccp_rsk(req);
if (dccp_parse_options(sk, dreq, skb))
goto drop_and_free;
if (security_inet_conn_request(sk, skb, req))
goto drop_and_free;
ireq = inet_rsk(req);
ireq->ir_v6_rmt_addr = ipv6_hdr(skb)->saddr;
ireq->ir_v6_loc_addr = ipv6_hdr(skb)->daddr;
ireq->ireq_family = AF_INET6;
ireq->ir_mark = inet_request_mark(sk, skb);
if (ipv6_opt_accepted(sk, skb, IP6CB(skb)) ||
np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo ||
np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim) {
refcount_inc(&skb->users);
ireq->pktopts = skb;
}
ireq->ir_iif = READ_ONCE(sk->sk_bound_dev_if);
/* So that link locals have meaning */
if (!ireq->ir_iif &&
ipv6_addr_type(&ireq->ir_v6_rmt_addr) & IPV6_ADDR_LINKLOCAL)
ireq->ir_iif = inet6_iif(skb);
/*
* Step 3: Process LISTEN state
*
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie
*
* Setting S.SWL/S.SWH to is deferred to dccp_create_openreq_child().
*/
dreq->dreq_isr = dcb->dccpd_seq;
dreq->dreq_gsr = dreq->dreq_isr;
dreq->dreq_iss = dccp_v6_init_sequence(skb);
dreq->dreq_gss = dreq->dreq_iss;
dreq->dreq_service = service;
if (dccp_v6_send_response(sk, req))
goto drop_and_free;
inet_csk_reqsk_queue_hash_add(sk, req, DCCP_TIMEOUT_INIT);
reqsk_put(req);
return 0;
drop_and_free:
reqsk_free(req);
drop:
__DCCP_INC_STATS(DCCP_MIB_ATTEMPTFAILS);
return -1;
}
static struct sock *dccp_v6_request_recv_sock(const struct sock *sk,
struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct inet_request_sock *ireq = inet_rsk(req);
struct ipv6_pinfo *newnp;
const struct ipv6_pinfo *np = inet6_sk(sk);
struct ipv6_txoptions *opt;
struct inet_sock *newinet;
struct dccp6_sock *newdp6;
struct sock *newsk;
if (skb->protocol == htons(ETH_P_IP)) {
/*
* v6 mapped
*/
newsk = dccp_v4_request_recv_sock(sk, skb, req, dst,
req_unhash, own_req);
if (newsk == NULL)
return NULL;
newdp6 = (struct dccp6_sock *)newsk;
newinet = inet_sk(newsk);
newinet->pinet6 = &newdp6->inet6;
newnp = inet6_sk(newsk);
memcpy(newnp, np, sizeof(struct ipv6_pinfo));
newnp->saddr = newsk->sk_v6_rcv_saddr;
inet_csk(newsk)->icsk_af_ops = &dccp_ipv6_mapped;
newsk->sk_backlog_rcv = dccp_v4_do_rcv;
newnp->pktoptions = NULL;
newnp->opt = NULL;
newnp->ipv6_mc_list = NULL;
newnp->ipv6_ac_list = NULL;
newnp->ipv6_fl_list = NULL;
newnp->mcast_oif = inet_iif(skb);
newnp->mcast_hops = ip_hdr(skb)->ttl;
/*
* No need to charge this sock to the relevant IPv6 refcnt debug socks count
* here, dccp_create_openreq_child now does this for us, see the comment in
* that function for the gory details. -acme
*/
/* It is tricky place. Until this moment IPv4 tcp
worked with IPv6 icsk.icsk_af_ops.
Sync it now.
*/
dccp_sync_mss(newsk, inet_csk(newsk)->icsk_pmtu_cookie);
return newsk;
}
if (sk_acceptq_is_full(sk))
goto out_overflow;
if (!dst) {
struct flowi6 fl6;
dst = inet6_csk_route_req(sk, &fl6, req, IPPROTO_DCCP);
if (!dst)
goto out;
}
newsk = dccp_create_openreq_child(sk, req, skb);
if (newsk == NULL)
goto out_nonewsk;
/*
* No need to charge this sock to the relevant IPv6 refcnt debug socks
* count here, dccp_create_openreq_child now does this for us, see the
* comment in that function for the gory details. -acme
*/
ip6_dst_store(newsk, dst, NULL, NULL);
newsk->sk_route_caps = dst->dev->features & ~(NETIF_F_IP_CSUM |
NETIF_F_TSO);
newdp6 = (struct dccp6_sock *)newsk;
newinet = inet_sk(newsk);
newinet->pinet6 = &newdp6->inet6;
newnp = inet6_sk(newsk);
memcpy(newnp, np, sizeof(struct ipv6_pinfo));
newsk->sk_v6_daddr = ireq->ir_v6_rmt_addr;
newnp->saddr = ireq->ir_v6_loc_addr;
newsk->sk_v6_rcv_saddr = ireq->ir_v6_loc_addr;
newsk->sk_bound_dev_if = ireq->ir_iif;
/* Now IPv6 options...
First: no IPv4 options.
*/
newinet->inet_opt = NULL;
/* Clone RX bits */
newnp->rxopt.all = np->rxopt.all;
newnp->ipv6_mc_list = NULL;
newnp->ipv6_ac_list = NULL;
newnp->ipv6_fl_list = NULL;
newnp->pktoptions = NULL;
newnp->opt = NULL;
newnp->mcast_oif = inet6_iif(skb);
newnp->mcast_hops = ipv6_hdr(skb)->hop_limit;
/*
* Clone native IPv6 options from listening socket (if any)
*
* Yes, keeping reference count would be much more clever, but we make
* one more one thing there: reattach optmem to newsk.
*/
opt = ireq->ipv6_opt;
if (!opt)
opt = rcu_dereference(np->opt);
if (opt) {
opt = ipv6_dup_options(newsk, opt);
RCU_INIT_POINTER(newnp->opt, opt);
}
inet_csk(newsk)->icsk_ext_hdr_len = 0;
if (opt)
inet_csk(newsk)->icsk_ext_hdr_len = opt->opt_nflen +
opt->opt_flen;
dccp_sync_mss(newsk, dst_mtu(dst));
newinet->inet_daddr = newinet->inet_saddr = LOOPBACK4_IPV6;
newinet->inet_rcv_saddr = LOOPBACK4_IPV6;
if (__inet_inherit_port(sk, newsk) < 0) {
inet_csk_prepare_forced_close(newsk);
dccp_done(newsk);
goto out;
}
*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), NULL);
/* Clone pktoptions received with SYN, if we own the req */
if (*own_req && ireq->pktopts) {
newnp->pktoptions = skb_clone_and_charge_r(ireq->pktopts, newsk);
consume_skb(ireq->pktopts);
ireq->pktopts = NULL;
}
return newsk;
out_overflow:
__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
out_nonewsk:
dst_release(dst);
out:
__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
return NULL;
}
/* The socket must have it's spinlock held when we get
* here.
*
* We have a potential double-lock case here, so even when
* doing backlog processing we use the BH locking scheme.
* This is because we cannot sleep with the original spinlock
* held.
*/
static int dccp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)
{
struct ipv6_pinfo *np = inet6_sk(sk);
struct sk_buff *opt_skb = NULL;
/* Imagine: socket is IPv6. IPv4 packet arrives,
goes to IPv4 receive handler and backlogged.
From backlog it always goes here. Kerboom...
Fortunately, dccp_rcv_established and rcv_established
handle them correctly, but it is not case with
dccp_v6_hnd_req and dccp_v6_ctl_send_reset(). --ANK
*/
if (skb->protocol == htons(ETH_P_IP))
return dccp_v4_do_rcv(sk, skb);
if (sk_filter(sk, skb))
goto discard;
/*
* socket locking is here for SMP purposes as backlog rcv is currently
* called with bh processing disabled.
*/
/* Do Stevens' IPV6_PKTOPTIONS.
Yes, guys, it is the only place in our code, where we
may make it not affecting IPv4.
The rest of code is protocol independent,
and I do not like idea to uglify IPv4.
Actually, all the idea behind IPV6_PKTOPTIONS
looks not very well thought. For now we latch
options, received in the last packet, enqueued
by tcp. Feel free to propose better solution.
--ANK (980728)
*/
if (np->rxopt.all)
opt_skb = skb_clone_and_charge_r(skb, sk);
if (sk->sk_state == DCCP_OPEN) { /* Fast path */
if (dccp_rcv_established(sk, skb, dccp_hdr(skb), skb->len))
goto reset;
if (opt_skb)
goto ipv6_pktoptions;
return 0;
}
/*
* Step 3: Process LISTEN state
* If S.state == LISTEN,
* If P.type == Request or P contains a valid Init Cookie option,
* (* Must scan the packet's options to check for Init
* Cookies. Only Init Cookies are processed here,
* however; other options are processed in Step 8. This
* scan need only be performed if the endpoint uses Init
* Cookies *)
* (* Generate a new socket and switch to that socket *)
* Set S := new socket for this port pair
* S.state = RESPOND
* Choose S.ISS (initial seqno) or set from Init Cookies
* Initialize S.GAR := S.ISS
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookies
* Continue with S.state == RESPOND
* (* A Response packet will be generated in Step 11 *)
* Otherwise,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*
* NOTE: the check for the packet types is done in
* dccp_rcv_state_process
*/
if (dccp_rcv_state_process(sk, skb, dccp_hdr(skb), skb->len))
goto reset;
if (opt_skb)
goto ipv6_pktoptions;
return 0;
reset:
dccp_v6_ctl_send_reset(sk, skb);
discard:
if (opt_skb != NULL)
__kfree_skb(opt_skb);
kfree_skb(skb);
return 0;
/* Handling IPV6_PKTOPTIONS skb the similar
* way it's done for net/ipv6/tcp_ipv6.c
*/
ipv6_pktoptions:
if (!((1 << sk->sk_state) & (DCCPF_CLOSED | DCCPF_LISTEN))) {
if (np->rxopt.bits.rxinfo || np->rxopt.bits.rxoinfo)
np->mcast_oif = inet6_iif(opt_skb);
if (np->rxopt.bits.rxhlim || np->rxopt.bits.rxohlim)
np->mcast_hops = ipv6_hdr(opt_skb)->hop_limit;
if (np->rxopt.bits.rxflow || np->rxopt.bits.rxtclass)
np->rcv_flowinfo = ip6_flowinfo(ipv6_hdr(opt_skb));
if (np->repflow)
np->flow_label = ip6_flowlabel(ipv6_hdr(opt_skb));
if (ipv6_opt_accepted(sk, opt_skb,
&DCCP_SKB_CB(opt_skb)->header.h6)) {
memmove(IP6CB(opt_skb),
&DCCP_SKB_CB(opt_skb)->header.h6,
sizeof(struct inet6_skb_parm));
opt_skb = xchg(&np->pktoptions, opt_skb);
} else {
__kfree_skb(opt_skb);
opt_skb = xchg(&np->pktoptions, NULL);
}
}
kfree_skb(opt_skb);
return 0;
}
static int dccp_v6_rcv(struct sk_buff *skb)
{
const struct dccp_hdr *dh;
bool refcounted;
struct sock *sk;
int min_cov;
/* Step 1: Check header basics */
if (dccp_invalid_packet(skb))
goto discard_it;
/* Step 1: If header checksum is incorrect, drop packet and return. */
if (dccp_v6_csum_finish(skb, &ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr)) {
DCCP_WARN("dropped packet with invalid checksum\n");
goto discard_it;
}
dh = dccp_hdr(skb);
DCCP_SKB_CB(skb)->dccpd_seq = dccp_hdr_seq(dh);
DCCP_SKB_CB(skb)->dccpd_type = dh->dccph_type;
if (dccp_packet_without_ack(skb))
DCCP_SKB_CB(skb)->dccpd_ack_seq = DCCP_PKT_WITHOUT_ACK_SEQ;
else
DCCP_SKB_CB(skb)->dccpd_ack_seq = dccp_hdr_ack_seq(skb);
lookup:
sk = __inet6_lookup_skb(&dccp_hashinfo, skb, __dccp_hdr_len(dh),
dh->dccph_sport, dh->dccph_dport,
inet6_iif(skb), 0, &refcounted);
if (!sk) {
dccp_pr_debug("failed to look up flow ID in table and "
"get corresponding socket\n");
goto no_dccp_socket;
}
/*
* Step 2:
* ... or S.state == TIMEWAIT,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk->sk_state == DCCP_TIME_WAIT) {
dccp_pr_debug("sk->sk_state == DCCP_TIME_WAIT: do_time_wait\n");
inet_twsk_put(inet_twsk(sk));
goto no_dccp_socket;
}
if (sk->sk_state == DCCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
struct sock *nsk;
sk = req->rsk_listener;
if (unlikely(sk->sk_state != DCCP_LISTEN)) {
inet_csk_reqsk_queue_drop_and_put(sk, req);
goto lookup;
}
sock_hold(sk);
refcounted = true;
nsk = dccp_check_req(sk, skb, req);
if (!nsk) {
reqsk_put(req);
goto discard_and_relse;
}
if (nsk == sk) {
reqsk_put(req);
} else if (dccp_child_process(sk, nsk, skb)) {
dccp_v6_ctl_send_reset(sk, skb);
goto discard_and_relse;
} else {
sock_put(sk);
return 0;
}
}
/*
* RFC 4340, sec. 9.2.1: Minimum Checksum Coverage
* o if MinCsCov = 0, only packets with CsCov = 0 are accepted
* o if MinCsCov > 0, also accept packets with CsCov >= MinCsCov
*/
min_cov = dccp_sk(sk)->dccps_pcrlen;
if (dh->dccph_cscov && (min_cov == 0 || dh->dccph_cscov < min_cov)) {
dccp_pr_debug("Packet CsCov %d does not satisfy MinCsCov %d\n",
dh->dccph_cscov, min_cov);
/* FIXME: send Data Dropped option (see also dccp_v4_rcv) */
goto discard_and_relse;
}
if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb))
goto discard_and_relse;
nf_reset_ct(skb);
return __sk_receive_skb(sk, skb, 1, dh->dccph_doff * 4,
refcounted) ? -1 : 0;
no_dccp_socket:
if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
/*
* Step 2:
* If no socket ...
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (dh->dccph_type != DCCP_PKT_RESET) {
DCCP_SKB_CB(skb)->dccpd_reset_code =
DCCP_RESET_CODE_NO_CONNECTION;
dccp_v6_ctl_send_reset(sk, skb);
}
discard_it:
kfree_skb(skb);
return 0;
discard_and_relse:
if (refcounted)
sock_put(sk);
goto discard_it;
}
static int dccp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
int addr_len)
{
struct sockaddr_in6 *usin = (struct sockaddr_in6 *)uaddr;
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_sock *inet = inet_sk(sk);
struct ipv6_pinfo *np = inet6_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
struct in6_addr *saddr = NULL, *final_p, final;
struct ipv6_txoptions *opt;
struct flowi6 fl6;
struct dst_entry *dst;
int addr_type;
int err;
dp->dccps_role = DCCP_ROLE_CLIENT;
if (addr_len < SIN6_LEN_RFC2133)
return -EINVAL;
if (usin->sin6_family != AF_INET6)
return -EAFNOSUPPORT;
memset(&fl6, 0, sizeof(fl6));
if (np->sndflow) {
fl6.flowlabel = usin->sin6_flowinfo & IPV6_FLOWINFO_MASK;
IP6_ECN_flow_init(fl6.flowlabel);
if (fl6.flowlabel & IPV6_FLOWLABEL_MASK) {
struct ip6_flowlabel *flowlabel;
flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
if (IS_ERR(flowlabel))
return -EINVAL;
fl6_sock_release(flowlabel);
}
}
/*
* connect() to INADDR_ANY means loopback (BSD'ism).
*/
if (ipv6_addr_any(&usin->sin6_addr))
usin->sin6_addr.s6_addr[15] = 1;
addr_type = ipv6_addr_type(&usin->sin6_addr);
if (addr_type & IPV6_ADDR_MULTICAST)
return -ENETUNREACH;
if (addr_type & IPV6_ADDR_LINKLOCAL) {
if (addr_len >= sizeof(struct sockaddr_in6) &&
usin->sin6_scope_id) {
/* If interface is set while binding, indices
* must coincide.
*/
if (sk->sk_bound_dev_if &&
sk->sk_bound_dev_if != usin->sin6_scope_id)
return -EINVAL;
sk->sk_bound_dev_if = usin->sin6_scope_id;
}
/* Connect to link-local address requires an interface */
if (!sk->sk_bound_dev_if)
return -EINVAL;
}
sk->sk_v6_daddr = usin->sin6_addr;
np->flow_label = fl6.flowlabel;
/*
* DCCP over IPv4
*/
if (addr_type == IPV6_ADDR_MAPPED) {
u32 exthdrlen = icsk->icsk_ext_hdr_len;
struct sockaddr_in sin;
SOCK_DEBUG(sk, "connect: ipv4 mapped\n");
if (ipv6_only_sock(sk))
return -ENETUNREACH;
sin.sin_family = AF_INET;
sin.sin_port = usin->sin6_port;
sin.sin_addr.s_addr = usin->sin6_addr.s6_addr32[3];
icsk->icsk_af_ops = &dccp_ipv6_mapped;
sk->sk_backlog_rcv = dccp_v4_do_rcv;
err = dccp_v4_connect(sk, (struct sockaddr *)&sin, sizeof(sin));
if (err) {
icsk->icsk_ext_hdr_len = exthdrlen;
icsk->icsk_af_ops = &dccp_ipv6_af_ops;
sk->sk_backlog_rcv = dccp_v6_do_rcv;
goto failure;
}
np->saddr = sk->sk_v6_rcv_saddr;
return err;
}
if (!ipv6_addr_any(&sk->sk_v6_rcv_saddr))
saddr = &sk->sk_v6_rcv_saddr;
fl6.flowi6_proto = IPPROTO_DCCP;
fl6.daddr = sk->sk_v6_daddr;
fl6.saddr = saddr ? *saddr : np->saddr;
fl6.flowi6_oif = sk->sk_bound_dev_if;
fl6.fl6_dport = usin->sin6_port;
fl6.fl6_sport = inet->inet_sport;
security_sk_classify_flow(sk, flowi6_to_flowi_common(&fl6));
opt = rcu_dereference_protected(np->opt, lockdep_sock_is_held(sk));
final_p = fl6_update_dst(&fl6, opt, &final);
dst = ip6_dst_lookup_flow(sock_net(sk), sk, &fl6, final_p);
if (IS_ERR(dst)) {
err = PTR_ERR(dst);
goto failure;
}
if (saddr == NULL) {
saddr = &fl6.saddr;
err = inet_bhash2_update_saddr(sk, saddr, AF_INET6);
if (err)
goto failure;
}
/* set the source address */
np->saddr = *saddr;
inet->inet_rcv_saddr = LOOPBACK4_IPV6;
ip6_dst_store(sk, dst, NULL, NULL);
icsk->icsk_ext_hdr_len = 0;
if (opt)
icsk->icsk_ext_hdr_len = opt->opt_flen + opt->opt_nflen;
inet->inet_dport = usin->sin6_port;
dccp_set_state(sk, DCCP_REQUESTING);
err = inet6_hash_connect(&dccp_death_row, sk);
if (err)
goto late_failure;
dp->dccps_iss = secure_dccpv6_sequence_number(np->saddr.s6_addr32,
sk->sk_v6_daddr.s6_addr32,
inet->inet_sport,
inet->inet_dport);
err = dccp_connect(sk);
if (err)
goto late_failure;
return 0;
late_failure:
dccp_set_state(sk, DCCP_CLOSED);
inet_bhash2_reset_saddr(sk);
__sk_dst_reset(sk);
failure:
inet->inet_dport = 0;
sk->sk_route_caps = 0;
return err;
}
static const struct inet_connection_sock_af_ops dccp_ipv6_af_ops = {
.queue_xmit = inet6_csk_xmit,
.send_check = dccp_v6_send_check,
.rebuild_header = inet6_sk_rebuild_header,
.conn_request = dccp_v6_conn_request,
.syn_recv_sock = dccp_v6_request_recv_sock,
.net_header_len = sizeof(struct ipv6hdr),
.setsockopt = ipv6_setsockopt,
.getsockopt = ipv6_getsockopt,
.addr2sockaddr = inet6_csk_addr2sockaddr,
.sockaddr_len = sizeof(struct sockaddr_in6),
};
/*
* DCCP over IPv4 via INET6 API
*/
static const struct inet_connection_sock_af_ops dccp_ipv6_mapped = {
.queue_xmit = ip_queue_xmit,
.send_check = dccp_v4_send_check,
.rebuild_header = inet_sk_rebuild_header,
.conn_request = dccp_v6_conn_request,
.syn_recv_sock = dccp_v6_request_recv_sock,
.net_header_len = sizeof(struct iphdr),
.setsockopt = ipv6_setsockopt,
.getsockopt = ipv6_getsockopt,
.addr2sockaddr = inet6_csk_addr2sockaddr,
.sockaddr_len = sizeof(struct sockaddr_in6),
};
static void dccp_v6_sk_destruct(struct sock *sk)
{
dccp_destruct_common(sk);
inet6_sock_destruct(sk);
}
/* NOTE: A lot of things set to zero explicitly by call to
* sk_alloc() so need not be done here.
*/
static int dccp_v6_init_sock(struct sock *sk)
{
static __u8 dccp_v6_ctl_sock_initialized;
int err = dccp_init_sock(sk, dccp_v6_ctl_sock_initialized);
if (err == 0) {
if (unlikely(!dccp_v6_ctl_sock_initialized))
dccp_v6_ctl_sock_initialized = 1;
inet_csk(sk)->icsk_af_ops = &dccp_ipv6_af_ops;
sk->sk_destruct = dccp_v6_sk_destruct;
}
return err;
}
static struct timewait_sock_ops dccp6_timewait_sock_ops = {
.twsk_obj_size = sizeof(struct dccp6_timewait_sock),
};
static struct proto dccp_v6_prot = {
.name = "DCCPv6",
.owner = THIS_MODULE,
.close = dccp_close,
.connect = dccp_v6_connect,
.disconnect = dccp_disconnect,
.ioctl = dccp_ioctl,
.init = dccp_v6_init_sock,
.setsockopt = dccp_setsockopt,
.getsockopt = dccp_getsockopt,
.sendmsg = dccp_sendmsg,
.recvmsg = dccp_recvmsg,
.backlog_rcv = dccp_v6_do_rcv,
.hash = inet6_hash,
.unhash = inet_unhash,
.accept = inet_csk_accept,
.get_port = inet_csk_get_port,
.shutdown = dccp_shutdown,
.destroy = dccp_destroy_sock,
.orphan_count = &dccp_orphan_count,
.max_header = MAX_DCCP_HEADER,
.obj_size = sizeof(struct dccp6_sock),
.ipv6_pinfo_offset = offsetof(struct dccp6_sock, inet6),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.rsk_prot = &dccp6_request_sock_ops,
.twsk_prot = &dccp6_timewait_sock_ops,
.h.hashinfo = &dccp_hashinfo,
};
static const struct inet6_protocol dccp_v6_protocol = {
.handler = dccp_v6_rcv,
.err_handler = dccp_v6_err,
.flags = INET6_PROTO_NOPOLICY | INET6_PROTO_FINAL,
};
static const struct proto_ops inet6_dccp_ops = {
.family = PF_INET6,
.owner = THIS_MODULE,
.release = inet6_release,
.bind = inet6_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet6_getname,
.poll = dccp_poll,
.ioctl = inet6_ioctl,
.gettstamp = sock_gettstamp,
.listen = inet_dccp_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet6_compat_ioctl,
#endif
};
static struct inet_protosw dccp_v6_protosw = {
.type = SOCK_DCCP,
.protocol = IPPROTO_DCCP,
.prot = &dccp_v6_prot,
.ops = &inet6_dccp_ops,
.flags = INET_PROTOSW_ICSK,
};
static int __net_init dccp_v6_init_net(struct net *net)
{
struct dccp_v6_pernet *pn = net_generic(net, dccp_v6_pernet_id);
if (dccp_hashinfo.bhash == NULL)
return -ESOCKTNOSUPPORT;
return inet_ctl_sock_create(&pn->v6_ctl_sk, PF_INET6,
SOCK_DCCP, IPPROTO_DCCP, net);
}
static void __net_exit dccp_v6_exit_net(struct net *net)
{
struct dccp_v6_pernet *pn = net_generic(net, dccp_v6_pernet_id);
inet_ctl_sock_destroy(pn->v6_ctl_sk);
}
static void __net_exit dccp_v6_exit_batch(struct list_head *net_exit_list)
{
inet_twsk_purge(&dccp_hashinfo, AF_INET6);
}
static struct pernet_operations dccp_v6_ops = {
.init = dccp_v6_init_net,
.exit = dccp_v6_exit_net,
.exit_batch = dccp_v6_exit_batch,
.id = &dccp_v6_pernet_id,
.size = sizeof(struct dccp_v6_pernet),
};
static int __init dccp_v6_init(void)
{
int err = proto_register(&dccp_v6_prot, 1);
if (err)
goto out;
inet6_register_protosw(&dccp_v6_protosw);
err = register_pernet_subsys(&dccp_v6_ops);
if (err)
goto out_destroy_ctl_sock;
err = inet6_add_protocol(&dccp_v6_protocol, IPPROTO_DCCP);
if (err)
goto out_unregister_proto;
out:
return err;
out_unregister_proto:
unregister_pernet_subsys(&dccp_v6_ops);
out_destroy_ctl_sock:
inet6_unregister_protosw(&dccp_v6_protosw);
proto_unregister(&dccp_v6_prot);
goto out;
}
static void __exit dccp_v6_exit(void)
{
inet6_del_protocol(&dccp_v6_protocol, IPPROTO_DCCP);
unregister_pernet_subsys(&dccp_v6_ops);
inet6_unregister_protosw(&dccp_v6_protosw);
proto_unregister(&dccp_v6_prot);
}
module_init(dccp_v6_init);
module_exit(dccp_v6_exit);
/*
* __stringify doesn't likes enums, so use SOCK_DCCP (6) and IPPROTO_DCCP (33)
* values directly, Also cover the case where the protocol is not specified,
* i.e. net-pf-PF_INET6-proto-0-type-SOCK_DCCP
*/
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_INET6, 33, 6);
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_INET6, 0, 6);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <[email protected]>");
MODULE_DESCRIPTION("DCCPv6 - Datagram Congestion Controlled Protocol");
| linux-master | net/dccp/ipv6.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/ackvec.c
*
* An implementation of Ack Vectors for the DCCP protocol
* Copyright (c) 2007 University of Aberdeen, Scotland, UK
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
*/
#include "dccp.h"
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/export.h>
static struct kmem_cache *dccp_ackvec_slab;
static struct kmem_cache *dccp_ackvec_record_slab;
struct dccp_ackvec *dccp_ackvec_alloc(const gfp_t priority)
{
struct dccp_ackvec *av = kmem_cache_zalloc(dccp_ackvec_slab, priority);
if (av != NULL) {
av->av_buf_head = av->av_buf_tail = DCCPAV_MAX_ACKVEC_LEN - 1;
INIT_LIST_HEAD(&av->av_records);
}
return av;
}
static void dccp_ackvec_purge_records(struct dccp_ackvec *av)
{
struct dccp_ackvec_record *cur, *next;
list_for_each_entry_safe(cur, next, &av->av_records, avr_node)
kmem_cache_free(dccp_ackvec_record_slab, cur);
INIT_LIST_HEAD(&av->av_records);
}
void dccp_ackvec_free(struct dccp_ackvec *av)
{
if (likely(av != NULL)) {
dccp_ackvec_purge_records(av);
kmem_cache_free(dccp_ackvec_slab, av);
}
}
/**
* dccp_ackvec_update_records - Record information about sent Ack Vectors
* @av: Ack Vector records to update
* @seqno: Sequence number of the packet carrying the Ack Vector just sent
* @nonce_sum: The sum of all buffer nonces contained in the Ack Vector
*/
int dccp_ackvec_update_records(struct dccp_ackvec *av, u64 seqno, u8 nonce_sum)
{
struct dccp_ackvec_record *avr;
avr = kmem_cache_alloc(dccp_ackvec_record_slab, GFP_ATOMIC);
if (avr == NULL)
return -ENOBUFS;
avr->avr_ack_seqno = seqno;
avr->avr_ack_ptr = av->av_buf_head;
avr->avr_ack_ackno = av->av_buf_ackno;
avr->avr_ack_nonce = nonce_sum;
avr->avr_ack_runlen = dccp_ackvec_runlen(av->av_buf + av->av_buf_head);
/*
* When the buffer overflows, we keep no more than one record. This is
* the simplest way of disambiguating sender-Acks dating from before the
* overflow from sender-Acks which refer to after the overflow; a simple
* solution is preferable here since we are handling an exception.
*/
if (av->av_overflow)
dccp_ackvec_purge_records(av);
/*
* Since GSS is incremented for each packet, the list is automatically
* arranged in descending order of @ack_seqno.
*/
list_add(&avr->avr_node, &av->av_records);
dccp_pr_debug("Added Vector, ack_seqno=%llu, ack_ackno=%llu (rl=%u)\n",
(unsigned long long)avr->avr_ack_seqno,
(unsigned long long)avr->avr_ack_ackno,
avr->avr_ack_runlen);
return 0;
}
static struct dccp_ackvec_record *dccp_ackvec_lookup(struct list_head *av_list,
const u64 ackno)
{
struct dccp_ackvec_record *avr;
/*
* Exploit that records are inserted in descending order of sequence
* number, start with the oldest record first. If @ackno is `before'
* the earliest ack_ackno, the packet is too old to be considered.
*/
list_for_each_entry_reverse(avr, av_list, avr_node) {
if (avr->avr_ack_seqno == ackno)
return avr;
if (before48(ackno, avr->avr_ack_seqno))
break;
}
return NULL;
}
/*
* Buffer index and length computation using modulo-buffersize arithmetic.
* Note that, as pointers move from right to left, head is `before' tail.
*/
static inline u16 __ackvec_idx_add(const u16 a, const u16 b)
{
return (a + b) % DCCPAV_MAX_ACKVEC_LEN;
}
static inline u16 __ackvec_idx_sub(const u16 a, const u16 b)
{
return __ackvec_idx_add(a, DCCPAV_MAX_ACKVEC_LEN - b);
}
u16 dccp_ackvec_buflen(const struct dccp_ackvec *av)
{
if (unlikely(av->av_overflow))
return DCCPAV_MAX_ACKVEC_LEN;
return __ackvec_idx_sub(av->av_buf_tail, av->av_buf_head);
}
/**
* dccp_ackvec_update_old - Update previous state as per RFC 4340, 11.4.1
* @av: non-empty buffer to update
* @distance: negative or zero distance of @seqno from buf_ackno downward
* @seqno: the (old) sequence number whose record is to be updated
* @state: state in which packet carrying @seqno was received
*/
static void dccp_ackvec_update_old(struct dccp_ackvec *av, s64 distance,
u64 seqno, enum dccp_ackvec_states state)
{
u16 ptr = av->av_buf_head;
BUG_ON(distance > 0);
if (unlikely(dccp_ackvec_is_empty(av)))
return;
do {
u8 runlen = dccp_ackvec_runlen(av->av_buf + ptr);
if (distance + runlen >= 0) {
/*
* Only update the state if packet has not been received
* yet. This is OK as per the second table in RFC 4340,
* 11.4.1; i.e. here we are using the following table:
* RECEIVED
* 0 1 3
* S +---+---+---+
* T 0 | 0 | 0 | 0 |
* O +---+---+---+
* R 1 | 1 | 1 | 1 |
* E +---+---+---+
* D 3 | 0 | 1 | 3 |
* +---+---+---+
* The "Not Received" state was set by reserve_seats().
*/
if (av->av_buf[ptr] == DCCPAV_NOT_RECEIVED)
av->av_buf[ptr] = state;
else
dccp_pr_debug("Not changing %llu state to %u\n",
(unsigned long long)seqno, state);
break;
}
distance += runlen + 1;
ptr = __ackvec_idx_add(ptr, 1);
} while (ptr != av->av_buf_tail);
}
/* Mark @num entries after buf_head as "Not yet received". */
static void dccp_ackvec_reserve_seats(struct dccp_ackvec *av, u16 num)
{
u16 start = __ackvec_idx_add(av->av_buf_head, 1),
len = DCCPAV_MAX_ACKVEC_LEN - start;
/* check for buffer wrap-around */
if (num > len) {
memset(av->av_buf + start, DCCPAV_NOT_RECEIVED, len);
start = 0;
num -= len;
}
if (num)
memset(av->av_buf + start, DCCPAV_NOT_RECEIVED, num);
}
/**
* dccp_ackvec_add_new - Record one or more new entries in Ack Vector buffer
* @av: container of buffer to update (can be empty or non-empty)
* @num_packets: number of packets to register (must be >= 1)
* @seqno: sequence number of the first packet in @num_packets
* @state: state in which packet carrying @seqno was received
*/
static void dccp_ackvec_add_new(struct dccp_ackvec *av, u32 num_packets,
u64 seqno, enum dccp_ackvec_states state)
{
u32 num_cells = num_packets;
if (num_packets > DCCPAV_BURST_THRESH) {
u32 lost_packets = num_packets - 1;
DCCP_WARN("Warning: large burst loss (%u)\n", lost_packets);
/*
* We received 1 packet and have a loss of size "num_packets-1"
* which we squeeze into num_cells-1 rather than reserving an
* entire byte for each lost packet.
* The reason is that the vector grows in O(burst_length); when
* it grows too large there will no room left for the payload.
* This is a trade-off: if a few packets out of the burst show
* up later, their state will not be changed; it is simply too
* costly to reshuffle/reallocate/copy the buffer each time.
* Should such problems persist, we will need to switch to a
* different underlying data structure.
*/
for (num_packets = num_cells = 1; lost_packets; ++num_cells) {
u8 len = min_t(u32, lost_packets, DCCPAV_MAX_RUNLEN);
av->av_buf_head = __ackvec_idx_sub(av->av_buf_head, 1);
av->av_buf[av->av_buf_head] = DCCPAV_NOT_RECEIVED | len;
lost_packets -= len;
}
}
if (num_cells + dccp_ackvec_buflen(av) >= DCCPAV_MAX_ACKVEC_LEN) {
DCCP_CRIT("Ack Vector buffer overflow: dropping old entries");
av->av_overflow = true;
}
av->av_buf_head = __ackvec_idx_sub(av->av_buf_head, num_packets);
if (av->av_overflow)
av->av_buf_tail = av->av_buf_head;
av->av_buf[av->av_buf_head] = state;
av->av_buf_ackno = seqno;
if (num_packets > 1)
dccp_ackvec_reserve_seats(av, num_packets - 1);
}
/**
* dccp_ackvec_input - Register incoming packet in the buffer
* @av: Ack Vector to register packet to
* @skb: Packet to register
*/
void dccp_ackvec_input(struct dccp_ackvec *av, struct sk_buff *skb)
{
u64 seqno = DCCP_SKB_CB(skb)->dccpd_seq;
enum dccp_ackvec_states state = DCCPAV_RECEIVED;
if (dccp_ackvec_is_empty(av)) {
dccp_ackvec_add_new(av, 1, seqno, state);
av->av_tail_ackno = seqno;
} else {
s64 num_packets = dccp_delta_seqno(av->av_buf_ackno, seqno);
u8 *current_head = av->av_buf + av->av_buf_head;
if (num_packets == 1 &&
dccp_ackvec_state(current_head) == state &&
dccp_ackvec_runlen(current_head) < DCCPAV_MAX_RUNLEN) {
*current_head += 1;
av->av_buf_ackno = seqno;
} else if (num_packets > 0) {
dccp_ackvec_add_new(av, num_packets, seqno, state);
} else {
dccp_ackvec_update_old(av, num_packets, seqno, state);
}
}
}
/**
* dccp_ackvec_clear_state - Perform house-keeping / garbage-collection
* @av: Ack Vector record to clean
* @ackno: last Ack Vector which has been acknowledged
*
* This routine is called when the peer acknowledges the receipt of Ack Vectors
* up to and including @ackno. While based on section A.3 of RFC 4340, here
* are additional precautions to prevent corrupted buffer state. In particular,
* we use tail_ackno to identify outdated records; it always marks the earliest
* packet of group (2) in 11.4.2.
*/
void dccp_ackvec_clear_state(struct dccp_ackvec *av, const u64 ackno)
{
struct dccp_ackvec_record *avr, *next;
u8 runlen_now, eff_runlen;
s64 delta;
avr = dccp_ackvec_lookup(&av->av_records, ackno);
if (avr == NULL)
return;
/*
* Deal with outdated acknowledgments: this arises when e.g. there are
* several old records and the acks from the peer come in slowly. In
* that case we may still have records that pre-date tail_ackno.
*/
delta = dccp_delta_seqno(av->av_tail_ackno, avr->avr_ack_ackno);
if (delta < 0)
goto free_records;
/*
* Deal with overlapping Ack Vectors: don't subtract more than the
* number of packets between tail_ackno and ack_ackno.
*/
eff_runlen = delta < avr->avr_ack_runlen ? delta : avr->avr_ack_runlen;
runlen_now = dccp_ackvec_runlen(av->av_buf + avr->avr_ack_ptr);
/*
* The run length of Ack Vector cells does not decrease over time. If
* the run length is the same as at the time the Ack Vector was sent, we
* free the ack_ptr cell. That cell can however not be freed if the run
* length has increased: in this case we need to move the tail pointer
* backwards (towards higher indices), to its next-oldest neighbour.
*/
if (runlen_now > eff_runlen) {
av->av_buf[avr->avr_ack_ptr] -= eff_runlen + 1;
av->av_buf_tail = __ackvec_idx_add(avr->avr_ack_ptr, 1);
/* This move may not have cleared the overflow flag. */
if (av->av_overflow)
av->av_overflow = (av->av_buf_head == av->av_buf_tail);
} else {
av->av_buf_tail = avr->avr_ack_ptr;
/*
* We have made sure that avr points to a valid cell within the
* buffer. This cell is either older than head, or equals head
* (empty buffer): in both cases we no longer have any overflow.
*/
av->av_overflow = 0;
}
/*
* The peer has acknowledged up to and including ack_ackno. Hence the
* first packet in group (2) of 11.4.2 is the successor of ack_ackno.
*/
av->av_tail_ackno = ADD48(avr->avr_ack_ackno, 1);
free_records:
list_for_each_entry_safe_from(avr, next, &av->av_records, avr_node) {
list_del(&avr->avr_node);
kmem_cache_free(dccp_ackvec_record_slab, avr);
}
}
/*
* Routines to keep track of Ack Vectors received in an skb
*/
int dccp_ackvec_parsed_add(struct list_head *head, u8 *vec, u8 len, u8 nonce)
{
struct dccp_ackvec_parsed *new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (new == NULL)
return -ENOBUFS;
new->vec = vec;
new->len = len;
new->nonce = nonce;
list_add_tail(&new->node, head);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_ackvec_parsed_add);
void dccp_ackvec_parsed_cleanup(struct list_head *parsed_chunks)
{
struct dccp_ackvec_parsed *cur, *next;
list_for_each_entry_safe(cur, next, parsed_chunks, node)
kfree(cur);
INIT_LIST_HEAD(parsed_chunks);
}
EXPORT_SYMBOL_GPL(dccp_ackvec_parsed_cleanup);
int __init dccp_ackvec_init(void)
{
dccp_ackvec_slab = kmem_cache_create("dccp_ackvec",
sizeof(struct dccp_ackvec), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (dccp_ackvec_slab == NULL)
goto out_err;
dccp_ackvec_record_slab = kmem_cache_create("dccp_ackvec_record",
sizeof(struct dccp_ackvec_record),
0, SLAB_HWCACHE_ALIGN, NULL);
if (dccp_ackvec_record_slab == NULL)
goto out_destroy_slab;
return 0;
out_destroy_slab:
kmem_cache_destroy(dccp_ackvec_slab);
dccp_ackvec_slab = NULL;
out_err:
DCCP_CRIT("Unable to create Ack Vector slab cache");
return -ENOBUFS;
}
void dccp_ackvec_exit(void)
{
kmem_cache_destroy(dccp_ackvec_slab);
dccp_ackvec_slab = NULL;
kmem_cache_destroy(dccp_ackvec_record_slab);
dccp_ackvec_record_slab = NULL;
}
| linux-master | net/dccp/ackvec.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/input.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <net/sock.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
/* rate-limit for syncs in reply to sequence-invalid packets; RFC 4340, 7.5.4 */
int sysctl_dccp_sync_ratelimit __read_mostly = HZ / 8;
static void dccp_enqueue_skb(struct sock *sk, struct sk_buff *skb)
{
__skb_pull(skb, dccp_hdr(skb)->dccph_doff * 4);
__skb_queue_tail(&sk->sk_receive_queue, skb);
skb_set_owner_r(skb, sk);
sk->sk_data_ready(sk);
}
static void dccp_fin(struct sock *sk, struct sk_buff *skb)
{
/*
* On receiving Close/CloseReq, both RD/WR shutdown are performed.
* RFC 4340, 8.3 says that we MAY send further Data/DataAcks after
* receiving the closing segment, but there is no guarantee that such
* data will be processed at all.
*/
sk->sk_shutdown = SHUTDOWN_MASK;
sock_set_flag(sk, SOCK_DONE);
dccp_enqueue_skb(sk, skb);
}
static int dccp_rcv_close(struct sock *sk, struct sk_buff *skb)
{
int queued = 0;
switch (sk->sk_state) {
/*
* We ignore Close when received in one of the following states:
* - CLOSED (may be a late or duplicate packet)
* - PASSIVE_CLOSEREQ (the peer has sent a CloseReq earlier)
* - RESPOND (already handled by dccp_check_req)
*/
case DCCP_CLOSING:
/*
* Simultaneous-close: receiving a Close after sending one. This
* can happen if both client and server perform active-close and
* will result in an endless ping-pong of crossing and retrans-
* mitted Close packets, which only terminates when one of the
* nodes times out (min. 64 seconds). Quicker convergence can be
* achieved when one of the nodes acts as tie-breaker.
* This is ok as both ends are done with data transfer and each
* end is just waiting for the other to acknowledge termination.
*/
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT)
break;
fallthrough;
case DCCP_REQUESTING:
case DCCP_ACTIVE_CLOSEREQ:
dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED);
dccp_done(sk);
break;
case DCCP_OPEN:
case DCCP_PARTOPEN:
/* Give waiting application a chance to read pending data */
queued = 1;
dccp_fin(sk, skb);
dccp_set_state(sk, DCCP_PASSIVE_CLOSE);
fallthrough;
case DCCP_PASSIVE_CLOSE:
/*
* Retransmitted Close: we have already enqueued the first one.
*/
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
}
return queued;
}
static int dccp_rcv_closereq(struct sock *sk, struct sk_buff *skb)
{
int queued = 0;
/*
* Step 7: Check for unexpected packet types
* If (S.is_server and P.type == CloseReq)
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT) {
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, DCCP_PKT_SYNC);
return queued;
}
/* Step 13: process relevant Client states < CLOSEREQ */
switch (sk->sk_state) {
case DCCP_REQUESTING:
dccp_send_close(sk, 0);
dccp_set_state(sk, DCCP_CLOSING);
break;
case DCCP_OPEN:
case DCCP_PARTOPEN:
/* Give waiting application a chance to read pending data */
queued = 1;
dccp_fin(sk, skb);
dccp_set_state(sk, DCCP_PASSIVE_CLOSEREQ);
fallthrough;
case DCCP_PASSIVE_CLOSEREQ:
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
}
return queued;
}
static u16 dccp_reset_code_convert(const u8 code)
{
static const u16 error_code[] = {
[DCCP_RESET_CODE_CLOSED] = 0, /* normal termination */
[DCCP_RESET_CODE_UNSPECIFIED] = 0, /* nothing known */
[DCCP_RESET_CODE_ABORTED] = ECONNRESET,
[DCCP_RESET_CODE_NO_CONNECTION] = ECONNREFUSED,
[DCCP_RESET_CODE_CONNECTION_REFUSED] = ECONNREFUSED,
[DCCP_RESET_CODE_TOO_BUSY] = EUSERS,
[DCCP_RESET_CODE_AGGRESSION_PENALTY] = EDQUOT,
[DCCP_RESET_CODE_PACKET_ERROR] = ENOMSG,
[DCCP_RESET_CODE_BAD_INIT_COOKIE] = EBADR,
[DCCP_RESET_CODE_BAD_SERVICE_CODE] = EBADRQC,
[DCCP_RESET_CODE_OPTION_ERROR] = EILSEQ,
[DCCP_RESET_CODE_MANDATORY_ERROR] = EOPNOTSUPP,
};
return code >= DCCP_MAX_RESET_CODES ? 0 : error_code[code];
}
static void dccp_rcv_reset(struct sock *sk, struct sk_buff *skb)
{
u16 err = dccp_reset_code_convert(dccp_hdr_reset(skb)->dccph_reset_code);
sk->sk_err = err;
/* Queue the equivalent of TCP fin so that dccp_recvmsg exits the loop */
dccp_fin(sk, skb);
if (err && !sock_flag(sk, SOCK_DEAD))
sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
dccp_time_wait(sk, DCCP_TIME_WAIT, 0);
}
static void dccp_handle_ackvec_processing(struct sock *sk, struct sk_buff *skb)
{
struct dccp_ackvec *av = dccp_sk(sk)->dccps_hc_rx_ackvec;
if (av == NULL)
return;
if (DCCP_SKB_CB(skb)->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
dccp_ackvec_clear_state(av, DCCP_SKB_CB(skb)->dccpd_ack_seq);
dccp_ackvec_input(av, skb);
}
static void dccp_deliver_input_to_ccids(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_sock *dp = dccp_sk(sk);
/* Don't deliver to RX CCID when node has shut down read end. */
if (!(sk->sk_shutdown & RCV_SHUTDOWN))
ccid_hc_rx_packet_recv(dp->dccps_hc_rx_ccid, sk, skb);
/*
* Until the TX queue has been drained, we can not honour SHUT_WR, since
* we need received feedback as input to adjust congestion control.
*/
if (sk->sk_write_queue.qlen > 0 || !(sk->sk_shutdown & SEND_SHUTDOWN))
ccid_hc_tx_packet_recv(dp->dccps_hc_tx_ccid, sk, skb);
}
static int dccp_check_seqno(struct sock *sk, struct sk_buff *skb)
{
const struct dccp_hdr *dh = dccp_hdr(skb);
struct dccp_sock *dp = dccp_sk(sk);
u64 lswl, lawl, seqno = DCCP_SKB_CB(skb)->dccpd_seq,
ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq;
/*
* Step 5: Prepare sequence numbers for Sync
* If P.type == Sync or P.type == SyncAck,
* If S.AWL <= P.ackno <= S.AWH and P.seqno >= S.SWL,
* / * P is valid, so update sequence number variables
* accordingly. After this update, P will pass the tests
* in Step 6. A SyncAck is generated if necessary in
* Step 15 * /
* Update S.GSR, S.SWL, S.SWH
* Otherwise,
* Drop packet and return
*/
if (dh->dccph_type == DCCP_PKT_SYNC ||
dh->dccph_type == DCCP_PKT_SYNCACK) {
if (between48(ackno, dp->dccps_awl, dp->dccps_awh) &&
dccp_delta_seqno(dp->dccps_swl, seqno) >= 0)
dccp_update_gsr(sk, seqno);
else
return -1;
}
/*
* Step 6: Check sequence numbers
* Let LSWL = S.SWL and LAWL = S.AWL
* If P.type == CloseReq or P.type == Close or P.type == Reset,
* LSWL := S.GSR + 1, LAWL := S.GAR
* If LSWL <= P.seqno <= S.SWH
* and (P.ackno does not exist or LAWL <= P.ackno <= S.AWH),
* Update S.GSR, S.SWL, S.SWH
* If P.type != Sync,
* Update S.GAR
*/
lswl = dp->dccps_swl;
lawl = dp->dccps_awl;
if (dh->dccph_type == DCCP_PKT_CLOSEREQ ||
dh->dccph_type == DCCP_PKT_CLOSE ||
dh->dccph_type == DCCP_PKT_RESET) {
lswl = ADD48(dp->dccps_gsr, 1);
lawl = dp->dccps_gar;
}
if (between48(seqno, lswl, dp->dccps_swh) &&
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ ||
between48(ackno, lawl, dp->dccps_awh))) {
dccp_update_gsr(sk, seqno);
if (dh->dccph_type != DCCP_PKT_SYNC &&
ackno != DCCP_PKT_WITHOUT_ACK_SEQ &&
after48(ackno, dp->dccps_gar))
dp->dccps_gar = ackno;
} else {
unsigned long now = jiffies;
/*
* Step 6: Check sequence numbers
* Otherwise,
* If P.type == Reset,
* Send Sync packet acknowledging S.GSR
* Otherwise,
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*
* These Syncs are rate-limited as per RFC 4340, 7.5.4:
* at most 1 / (dccp_sync_rate_limit * HZ) Syncs per second.
*/
if (time_before(now, (dp->dccps_rate_last +
sysctl_dccp_sync_ratelimit)))
return -1;
DCCP_WARN("Step 6 failed for %s packet, "
"(LSWL(%llu) <= P.seqno(%llu) <= S.SWH(%llu)) and "
"(P.ackno %s or LAWL(%llu) <= P.ackno(%llu) <= S.AWH(%llu), "
"sending SYNC...\n", dccp_packet_name(dh->dccph_type),
(unsigned long long) lswl, (unsigned long long) seqno,
(unsigned long long) dp->dccps_swh,
(ackno == DCCP_PKT_WITHOUT_ACK_SEQ) ? "doesn't exist"
: "exists",
(unsigned long long) lawl, (unsigned long long) ackno,
(unsigned long long) dp->dccps_awh);
dp->dccps_rate_last = now;
if (dh->dccph_type == DCCP_PKT_RESET)
seqno = dp->dccps_gsr;
dccp_send_sync(sk, seqno, DCCP_PKT_SYNC);
return -1;
}
return 0;
}
static int __dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
const struct dccp_hdr *dh, const unsigned int len)
{
struct dccp_sock *dp = dccp_sk(sk);
switch (dccp_hdr(skb)->dccph_type) {
case DCCP_PKT_DATAACK:
case DCCP_PKT_DATA:
/*
* FIXME: schedule DATA_DROPPED (RFC 4340, 11.7.2) if and when
* - sk_shutdown == RCV_SHUTDOWN, use Code 1, "Not Listening"
* - sk_receive_queue is full, use Code 2, "Receive Buffer"
*/
dccp_enqueue_skb(sk, skb);
return 0;
case DCCP_PKT_ACK:
goto discard;
case DCCP_PKT_RESET:
/*
* Step 9: Process Reset
* If P.type == Reset,
* Tear down connection
* S.state := TIMEWAIT
* Set TIMEWAIT timer
* Drop packet and return
*/
dccp_rcv_reset(sk, skb);
return 0;
case DCCP_PKT_CLOSEREQ:
if (dccp_rcv_closereq(sk, skb))
return 0;
goto discard;
case DCCP_PKT_CLOSE:
if (dccp_rcv_close(sk, skb))
return 0;
goto discard;
case DCCP_PKT_REQUEST:
/* Step 7
* or (S.is_server and P.type == Response)
* or (S.is_client and P.type == Request)
* or (S.state >= OPEN and P.type == Request
* and P.seqno >= S.OSR)
* or (S.state >= OPEN and P.type == Response
* and P.seqno >= S.OSR)
* or (S.state == RESPOND and P.type == Data),
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
if (dp->dccps_role != DCCP_ROLE_LISTEN)
goto send_sync;
goto check_seq;
case DCCP_PKT_RESPONSE:
if (dp->dccps_role != DCCP_ROLE_CLIENT)
goto send_sync;
check_seq:
if (dccp_delta_seqno(dp->dccps_osr,
DCCP_SKB_CB(skb)->dccpd_seq) >= 0) {
send_sync:
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_PKT_SYNC);
}
break;
case DCCP_PKT_SYNC:
dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq,
DCCP_PKT_SYNCACK);
/*
* From RFC 4340, sec. 5.7
*
* As with DCCP-Ack packets, DCCP-Sync and DCCP-SyncAck packets
* MAY have non-zero-length application data areas, whose
* contents receivers MUST ignore.
*/
goto discard;
}
DCCP_INC_STATS(DCCP_MIB_INERRS);
discard:
__kfree_skb(skb);
return 0;
}
int dccp_rcv_established(struct sock *sk, struct sk_buff *skb,
const struct dccp_hdr *dh, const unsigned int len)
{
if (dccp_check_seqno(sk, skb))
goto discard;
if (dccp_parse_options(sk, NULL, skb))
return 1;
dccp_handle_ackvec_processing(sk, skb);
dccp_deliver_input_to_ccids(sk, skb);
return __dccp_rcv_established(sk, skb, dh, len);
discard:
__kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_rcv_established);
static int dccp_rcv_request_sent_state_process(struct sock *sk,
struct sk_buff *skb,
const struct dccp_hdr *dh,
const unsigned int len)
{
/*
* Step 4: Prepare sequence numbers in REQUEST
* If S.state == REQUEST,
* If (P.type == Response or P.type == Reset)
* and S.AWL <= P.ackno <= S.AWH,
* / * Set sequence number variables corresponding to the
* other endpoint, so P will pass the tests in Step 6 * /
* Set S.GSR, S.ISR, S.SWL, S.SWH
* / * Response processing continues in Step 10; Reset
* processing continues in Step 9 * /
*/
if (dh->dccph_type == DCCP_PKT_RESPONSE) {
const struct inet_connection_sock *icsk = inet_csk(sk);
struct dccp_sock *dp = dccp_sk(sk);
long tstamp = dccp_timestamp();
if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq,
dp->dccps_awl, dp->dccps_awh)) {
dccp_pr_debug("invalid ackno: S.AWL=%llu, "
"P.ackno=%llu, S.AWH=%llu\n",
(unsigned long long)dp->dccps_awl,
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
(unsigned long long)dp->dccps_awh);
goto out_invalid_packet;
}
/*
* If option processing (Step 8) failed, return 1 here so that
* dccp_v4_do_rcv() sends a Reset. The Reset code depends on
* the option type and is set in dccp_parse_options().
*/
if (dccp_parse_options(sk, NULL, skb))
return 1;
/* Obtain usec RTT sample from SYN exchange (used by TFRC). */
if (likely(dp->dccps_options_received.dccpor_timestamp_echo))
dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * (tstamp -
dp->dccps_options_received.dccpor_timestamp_echo));
/* Stop the REQUEST timer */
inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
WARN_ON(sk->sk_send_head == NULL);
kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
/*
* Set ISR, GSR from packet. ISS was set in dccp_v{4,6}_connect
* and GSS in dccp_transmit_skb(). Setting AWL/AWH and SWL/SWH
* is done as part of activating the feature values below, since
* these settings depend on the local/remote Sequence Window
* features, which were undefined or not confirmed until now.
*/
dp->dccps_gsr = dp->dccps_isr = DCCP_SKB_CB(skb)->dccpd_seq;
dccp_sync_mss(sk, icsk->icsk_pmtu_cookie);
/*
* Step 10: Process REQUEST state (second part)
* If S.state == REQUEST,
* / * If we get here, P is a valid Response from the
* server (see Step 4), and we should move to
* PARTOPEN state. PARTOPEN means send an Ack,
* don't send Data packets, retransmit Acks
* periodically, and always include any Init Cookie
* from the Response * /
* S.state := PARTOPEN
* Set PARTOPEN timer
* Continue with S.state == PARTOPEN
* / * Step 12 will send the Ack completing the
* three-way handshake * /
*/
dccp_set_state(sk, DCCP_PARTOPEN);
/*
* If feature negotiation was successful, activate features now;
* an activation failure means that this host could not activate
* one ore more features (e.g. insufficient memory), which would
* leave at least one feature in an undefined state.
*/
if (dccp_feat_activate_values(sk, &dp->dccps_featneg))
goto unable_to_proceed;
/* Make sure socket is routed, for correct metrics. */
icsk->icsk_af_ops->rebuild_header(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_state_change(sk);
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
}
if (sk->sk_write_pending || inet_csk_in_pingpong_mode(sk) ||
icsk->icsk_accept_queue.rskq_defer_accept) {
/* Save one ACK. Data will be ready after
* several ticks, if write_pending is set.
*
* It may be deleted, but with this feature tcpdumps
* look so _wonderfully_ clever, that I was not able
* to stand against the temptation 8) --ANK
*/
/*
* OK, in DCCP we can as well do a similar trick, its
* even in the draft, but there is no need for us to
* schedule an ack here, as dccp_sendmsg does this for
* us, also stated in the draft. -acme
*/
__kfree_skb(skb);
return 0;
}
dccp_send_ack(sk);
return -1;
}
out_invalid_packet:
/* dccp_v4_do_rcv will send a reset */
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
return 1;
unable_to_proceed:
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_ABORTED;
/*
* We mark this socket as no longer usable, so that the loop in
* dccp_sendmsg() terminates and the application gets notified.
*/
dccp_set_state(sk, DCCP_CLOSED);
sk->sk_err = ECOMM;
return 1;
}
static int dccp_rcv_respond_partopen_state_process(struct sock *sk,
struct sk_buff *skb,
const struct dccp_hdr *dh,
const unsigned int len)
{
struct dccp_sock *dp = dccp_sk(sk);
u32 sample = dp->dccps_options_received.dccpor_timestamp_echo;
int queued = 0;
switch (dh->dccph_type) {
case DCCP_PKT_RESET:
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
break;
case DCCP_PKT_DATA:
if (sk->sk_state == DCCP_RESPOND)
break;
fallthrough;
case DCCP_PKT_DATAACK:
case DCCP_PKT_ACK:
/*
* FIXME: we should be resetting the PARTOPEN (DELACK) timer
* here but only if we haven't used the DELACK timer for
* something else, like sending a delayed ack for a TIMESTAMP
* echo, etc, for now were not clearing it, sending an extra
* ACK when there is nothing else to do in DELACK is not a big
* deal after all.
*/
/* Stop the PARTOPEN timer */
if (sk->sk_state == DCCP_PARTOPEN)
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
/* Obtain usec RTT sample from SYN exchange (used by TFRC). */
if (likely(sample)) {
long delta = dccp_timestamp() - sample;
dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * delta);
}
dp->dccps_osr = DCCP_SKB_CB(skb)->dccpd_seq;
dccp_set_state(sk, DCCP_OPEN);
if (dh->dccph_type == DCCP_PKT_DATAACK ||
dh->dccph_type == DCCP_PKT_DATA) {
__dccp_rcv_established(sk, skb, dh, len);
queued = 1; /* packet was queued
(by __dccp_rcv_established) */
}
break;
}
return queued;
}
int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
struct dccp_hdr *dh, unsigned int len)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
const int old_state = sk->sk_state;
bool acceptable;
int queued = 0;
/*
* Step 3: Process LISTEN state
*
* If S.state == LISTEN,
* If P.type == Request or P contains a valid Init Cookie option,
* (* Must scan the packet's options to check for Init
* Cookies. Only Init Cookies are processed here,
* however; other options are processed in Step 8. This
* scan need only be performed if the endpoint uses Init
* Cookies *)
* (* Generate a new socket and switch to that socket *)
* Set S := new socket for this port pair
* S.state = RESPOND
* Choose S.ISS (initial seqno) or set from Init Cookies
* Initialize S.GAR := S.ISS
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init
* Cookies Continue with S.state == RESPOND
* (* A Response packet will be generated in Step 11 *)
* Otherwise,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk->sk_state == DCCP_LISTEN) {
if (dh->dccph_type == DCCP_PKT_REQUEST) {
/* It is possible that we process SYN packets from backlog,
* so we need to make sure to disable BH and RCU right there.
*/
rcu_read_lock();
local_bh_disable();
acceptable = inet_csk(sk)->icsk_af_ops->conn_request(sk, skb) >= 0;
local_bh_enable();
rcu_read_unlock();
if (!acceptable)
return 1;
consume_skb(skb);
return 0;
}
if (dh->dccph_type == DCCP_PKT_RESET)
goto discard;
/* Caller (dccp_v4_do_rcv) will send Reset */
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
return 1;
} else if (sk->sk_state == DCCP_CLOSED) {
dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION;
return 1;
}
/* Step 6: Check sequence numbers (omitted in LISTEN/REQUEST state) */
if (sk->sk_state != DCCP_REQUESTING && dccp_check_seqno(sk, skb))
goto discard;
/*
* Step 7: Check for unexpected packet types
* If (S.is_server and P.type == Response)
* or (S.is_client and P.type == Request)
* or (S.state == RESPOND and P.type == Data),
* Send Sync packet acknowledging P.seqno
* Drop packet and return
*/
if ((dp->dccps_role != DCCP_ROLE_CLIENT &&
dh->dccph_type == DCCP_PKT_RESPONSE) ||
(dp->dccps_role == DCCP_ROLE_CLIENT &&
dh->dccph_type == DCCP_PKT_REQUEST) ||
(sk->sk_state == DCCP_RESPOND && dh->dccph_type == DCCP_PKT_DATA)) {
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNC);
goto discard;
}
/* Step 8: Process options */
if (dccp_parse_options(sk, NULL, skb))
return 1;
/*
* Step 9: Process Reset
* If P.type == Reset,
* Tear down connection
* S.state := TIMEWAIT
* Set TIMEWAIT timer
* Drop packet and return
*/
if (dh->dccph_type == DCCP_PKT_RESET) {
dccp_rcv_reset(sk, skb);
return 0;
} else if (dh->dccph_type == DCCP_PKT_CLOSEREQ) { /* Step 13 */
if (dccp_rcv_closereq(sk, skb))
return 0;
goto discard;
} else if (dh->dccph_type == DCCP_PKT_CLOSE) { /* Step 14 */
if (dccp_rcv_close(sk, skb))
return 0;
goto discard;
}
switch (sk->sk_state) {
case DCCP_REQUESTING:
queued = dccp_rcv_request_sent_state_process(sk, skb, dh, len);
if (queued >= 0)
return queued;
__kfree_skb(skb);
return 0;
case DCCP_PARTOPEN:
/* Step 8: if using Ack Vectors, mark packet acknowledgeable */
dccp_handle_ackvec_processing(sk, skb);
dccp_deliver_input_to_ccids(sk, skb);
fallthrough;
case DCCP_RESPOND:
queued = dccp_rcv_respond_partopen_state_process(sk, skb,
dh, len);
break;
}
if (dh->dccph_type == DCCP_PKT_ACK ||
dh->dccph_type == DCCP_PKT_DATAACK) {
switch (old_state) {
case DCCP_PARTOPEN:
sk->sk_state_change(sk);
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
break;
}
} else if (unlikely(dh->dccph_type == DCCP_PKT_SYNC)) {
dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNCACK);
goto discard;
}
if (!queued) {
discard:
__kfree_skb(skb);
}
return 0;
}
EXPORT_SYMBOL_GPL(dccp_rcv_state_process);
/**
* dccp_sample_rtt - Validate and finalise computation of RTT sample
* @sk: socket structure
* @delta: number of microseconds between packet and acknowledgment
*
* The routine is kept generic to work in different contexts. It should be
* called immediately when the ACK used for the RTT sample arrives.
*/
u32 dccp_sample_rtt(struct sock *sk, long delta)
{
/* dccpor_elapsed_time is either zeroed out or set and > 0 */
delta -= dccp_sk(sk)->dccps_options_received.dccpor_elapsed_time * 10;
if (unlikely(delta <= 0)) {
DCCP_WARN("unusable RTT sample %ld, using min\n", delta);
return DCCP_SANE_RTT_MIN;
}
if (unlikely(delta > DCCP_SANE_RTT_MAX)) {
DCCP_WARN("RTT sample %ld too large, using max\n", delta);
return DCCP_SANE_RTT_MAX;
}
return delta;
}
| linux-master | net/dccp/input.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/qpolicy.c
*
* Policy-based packet dequeueing interface for DCCP.
*
* Copyright (c) 2008 Tomasz Grobelny <[email protected]>
*/
#include "dccp.h"
/*
* Simple Dequeueing Policy:
* If tx_qlen is different from 0, enqueue up to tx_qlen elements.
*/
static void qpolicy_simple_push(struct sock *sk, struct sk_buff *skb)
{
skb_queue_tail(&sk->sk_write_queue, skb);
}
static bool qpolicy_simple_full(struct sock *sk)
{
return dccp_sk(sk)->dccps_tx_qlen &&
sk->sk_write_queue.qlen >= dccp_sk(sk)->dccps_tx_qlen;
}
static struct sk_buff *qpolicy_simple_top(struct sock *sk)
{
return skb_peek(&sk->sk_write_queue);
}
/*
* Priority-based Dequeueing Policy:
* If tx_qlen is different from 0 and the queue has reached its upper bound
* of tx_qlen elements, replace older packets lowest-priority-first.
*/
static struct sk_buff *qpolicy_prio_best_skb(struct sock *sk)
{
struct sk_buff *skb, *best = NULL;
skb_queue_walk(&sk->sk_write_queue, skb)
if (best == NULL || skb->priority > best->priority)
best = skb;
return best;
}
static struct sk_buff *qpolicy_prio_worst_skb(struct sock *sk)
{
struct sk_buff *skb, *worst = NULL;
skb_queue_walk(&sk->sk_write_queue, skb)
if (worst == NULL || skb->priority < worst->priority)
worst = skb;
return worst;
}
static bool qpolicy_prio_full(struct sock *sk)
{
if (qpolicy_simple_full(sk))
dccp_qpolicy_drop(sk, qpolicy_prio_worst_skb(sk));
return false;
}
/**
* struct dccp_qpolicy_operations - TX Packet Dequeueing Interface
* @push: add a new @skb to the write queue
* @full: indicates that no more packets will be admitted
* @top: peeks at whatever the queueing policy defines as its `top'
* @params: parameter passed to policy operation
*/
struct dccp_qpolicy_operations {
void (*push) (struct sock *sk, struct sk_buff *skb);
bool (*full) (struct sock *sk);
struct sk_buff* (*top) (struct sock *sk);
__be32 params;
};
static struct dccp_qpolicy_operations qpol_table[DCCPQ_POLICY_MAX] = {
[DCCPQ_POLICY_SIMPLE] = {
.push = qpolicy_simple_push,
.full = qpolicy_simple_full,
.top = qpolicy_simple_top,
.params = 0,
},
[DCCPQ_POLICY_PRIO] = {
.push = qpolicy_simple_push,
.full = qpolicy_prio_full,
.top = qpolicy_prio_best_skb,
.params = DCCP_SCM_PRIORITY,
},
};
/*
* Externally visible interface
*/
void dccp_qpolicy_push(struct sock *sk, struct sk_buff *skb)
{
qpol_table[dccp_sk(sk)->dccps_qpolicy].push(sk, skb);
}
bool dccp_qpolicy_full(struct sock *sk)
{
return qpol_table[dccp_sk(sk)->dccps_qpolicy].full(sk);
}
void dccp_qpolicy_drop(struct sock *sk, struct sk_buff *skb)
{
if (skb != NULL) {
skb_unlink(skb, &sk->sk_write_queue);
kfree_skb(skb);
}
}
struct sk_buff *dccp_qpolicy_top(struct sock *sk)
{
return qpol_table[dccp_sk(sk)->dccps_qpolicy].top(sk);
}
struct sk_buff *dccp_qpolicy_pop(struct sock *sk)
{
struct sk_buff *skb = dccp_qpolicy_top(sk);
if (skb != NULL) {
/* Clear any skb fields that we used internally */
skb->priority = 0;
skb_unlink(skb, &sk->sk_write_queue);
}
return skb;
}
bool dccp_qpolicy_param_ok(struct sock *sk, __be32 param)
{
/* check if exactly one bit is set */
if (!param || (param & (param - 1)))
return false;
return (qpol_table[dccp_sk(sk)->dccps_qpolicy].params & param) == param;
}
| linux-master | net/dccp/qpolicy.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/proto.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/inet_sock.h>
#include <net/inet_common.h>
#include <net/sock.h>
#include <net/xfrm.h>
#include <asm/ioctls.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include "ccid.h"
#include "dccp.h"
#include "feat.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
DEFINE_SNMP_STAT(struct dccp_mib, dccp_statistics) __read_mostly;
EXPORT_SYMBOL_GPL(dccp_statistics);
DEFINE_PER_CPU(unsigned int, dccp_orphan_count);
EXPORT_PER_CPU_SYMBOL_GPL(dccp_orphan_count);
struct inet_hashinfo dccp_hashinfo;
EXPORT_SYMBOL_GPL(dccp_hashinfo);
/* the maximum queue length for tx in packets. 0 is no limit */
int sysctl_dccp_tx_qlen __read_mostly = 5;
#ifdef CONFIG_IP_DCCP_DEBUG
static const char *dccp_state_name(const int state)
{
static const char *const dccp_state_names[] = {
[DCCP_OPEN] = "OPEN",
[DCCP_REQUESTING] = "REQUESTING",
[DCCP_PARTOPEN] = "PARTOPEN",
[DCCP_LISTEN] = "LISTEN",
[DCCP_RESPOND] = "RESPOND",
[DCCP_CLOSING] = "CLOSING",
[DCCP_ACTIVE_CLOSEREQ] = "CLOSEREQ",
[DCCP_PASSIVE_CLOSE] = "PASSIVE_CLOSE",
[DCCP_PASSIVE_CLOSEREQ] = "PASSIVE_CLOSEREQ",
[DCCP_TIME_WAIT] = "TIME_WAIT",
[DCCP_CLOSED] = "CLOSED",
};
if (state >= DCCP_MAX_STATES)
return "INVALID STATE!";
else
return dccp_state_names[state];
}
#endif
void dccp_set_state(struct sock *sk, const int state)
{
const int oldstate = sk->sk_state;
dccp_pr_debug("%s(%p) %s --> %s\n", dccp_role(sk), sk,
dccp_state_name(oldstate), dccp_state_name(state));
WARN_ON(state == oldstate);
switch (state) {
case DCCP_OPEN:
if (oldstate != DCCP_OPEN)
DCCP_INC_STATS(DCCP_MIB_CURRESTAB);
/* Client retransmits all Confirm options until entering OPEN */
if (oldstate == DCCP_PARTOPEN)
dccp_feat_list_purge(&dccp_sk(sk)->dccps_featneg);
break;
case DCCP_CLOSED:
if (oldstate == DCCP_OPEN || oldstate == DCCP_ACTIVE_CLOSEREQ ||
oldstate == DCCP_CLOSING)
DCCP_INC_STATS(DCCP_MIB_ESTABRESETS);
sk->sk_prot->unhash(sk);
if (inet_csk(sk)->icsk_bind_hash != NULL &&
!(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
inet_put_port(sk);
fallthrough;
default:
if (oldstate == DCCP_OPEN)
DCCP_DEC_STATS(DCCP_MIB_CURRESTAB);
}
/* Change state AFTER socket is unhashed to avoid closed
* socket sitting in hash tables.
*/
inet_sk_set_state(sk, state);
}
EXPORT_SYMBOL_GPL(dccp_set_state);
static void dccp_finish_passive_close(struct sock *sk)
{
switch (sk->sk_state) {
case DCCP_PASSIVE_CLOSE:
/* Node (client or server) has received Close packet. */
dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED);
dccp_set_state(sk, DCCP_CLOSED);
break;
case DCCP_PASSIVE_CLOSEREQ:
/*
* Client received CloseReq. We set the `active' flag so that
* dccp_send_close() retransmits the Close as per RFC 4340, 8.3.
*/
dccp_send_close(sk, 1);
dccp_set_state(sk, DCCP_CLOSING);
}
}
void dccp_done(struct sock *sk)
{
dccp_set_state(sk, DCCP_CLOSED);
dccp_clear_xmit_timers(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
else
inet_csk_destroy_sock(sk);
}
EXPORT_SYMBOL_GPL(dccp_done);
const char *dccp_packet_name(const int type)
{
static const char *const dccp_packet_names[] = {
[DCCP_PKT_REQUEST] = "REQUEST",
[DCCP_PKT_RESPONSE] = "RESPONSE",
[DCCP_PKT_DATA] = "DATA",
[DCCP_PKT_ACK] = "ACK",
[DCCP_PKT_DATAACK] = "DATAACK",
[DCCP_PKT_CLOSEREQ] = "CLOSEREQ",
[DCCP_PKT_CLOSE] = "CLOSE",
[DCCP_PKT_RESET] = "RESET",
[DCCP_PKT_SYNC] = "SYNC",
[DCCP_PKT_SYNCACK] = "SYNCACK",
};
if (type >= DCCP_NR_PKT_TYPES)
return "INVALID";
else
return dccp_packet_names[type];
}
EXPORT_SYMBOL_GPL(dccp_packet_name);
void dccp_destruct_common(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_tx_ccid = NULL;
}
EXPORT_SYMBOL_GPL(dccp_destruct_common);
static void dccp_sk_destruct(struct sock *sk)
{
dccp_destruct_common(sk);
inet_sock_destruct(sk);
}
int dccp_init_sock(struct sock *sk, const __u8 ctl_sock_initialized)
{
struct dccp_sock *dp = dccp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
pr_warn_once("DCCP is deprecated and scheduled to be removed in 2025, "
"please contact the netdev mailing list\n");
icsk->icsk_rto = DCCP_TIMEOUT_INIT;
icsk->icsk_syn_retries = sysctl_dccp_request_retries;
sk->sk_state = DCCP_CLOSED;
sk->sk_write_space = dccp_write_space;
sk->sk_destruct = dccp_sk_destruct;
icsk->icsk_sync_mss = dccp_sync_mss;
dp->dccps_mss_cache = 536;
dp->dccps_rate_last = jiffies;
dp->dccps_role = DCCP_ROLE_UNDEFINED;
dp->dccps_service = DCCP_SERVICE_CODE_IS_ABSENT;
dp->dccps_tx_qlen = sysctl_dccp_tx_qlen;
dccp_init_xmit_timers(sk);
INIT_LIST_HEAD(&dp->dccps_featneg);
/* control socket doesn't need feat nego */
if (likely(ctl_sock_initialized))
return dccp_feat_init(sk);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_init_sock);
void dccp_destroy_sock(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
__skb_queue_purge(&sk->sk_write_queue);
if (sk->sk_send_head != NULL) {
kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
/* Clean up a referenced DCCP bind bucket. */
if (inet_csk(sk)->icsk_bind_hash != NULL)
inet_put_port(sk);
kfree(dp->dccps_service_list);
dp->dccps_service_list = NULL;
if (dp->dccps_hc_rx_ackvec != NULL) {
dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
dp->dccps_hc_rx_ackvec = NULL;
}
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = NULL;
/* clean up feature negotiation state */
dccp_feat_list_purge(&dp->dccps_featneg);
}
EXPORT_SYMBOL_GPL(dccp_destroy_sock);
static inline int dccp_need_reset(int state)
{
return state != DCCP_CLOSED && state != DCCP_LISTEN &&
state != DCCP_REQUESTING;
}
int dccp_disconnect(struct sock *sk, int flags)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_sock *inet = inet_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
const int old_state = sk->sk_state;
if (old_state != DCCP_CLOSED)
dccp_set_state(sk, DCCP_CLOSED);
/*
* This corresponds to the ABORT function of RFC793, sec. 3.8
* TCP uses a RST segment, DCCP a Reset packet with Code 2, "Aborted".
*/
if (old_state == DCCP_LISTEN) {
inet_csk_listen_stop(sk);
} else if (dccp_need_reset(old_state)) {
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
sk->sk_err = ECONNRESET;
} else if (old_state == DCCP_REQUESTING)
sk->sk_err = ECONNRESET;
dccp_clear_xmit_timers(sk);
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = NULL;
__skb_queue_purge(&sk->sk_receive_queue);
__skb_queue_purge(&sk->sk_write_queue);
if (sk->sk_send_head != NULL) {
__kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
inet->inet_dport = 0;
inet_bhash2_reset_saddr(sk);
sk->sk_shutdown = 0;
sock_reset_flag(sk, SOCK_DONE);
icsk->icsk_backoff = 0;
inet_csk_delack_init(sk);
__sk_dst_reset(sk);
WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
sk_error_report(sk);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_disconnect);
/*
* Wait for a DCCP event.
*
* Note that we don't need to lock the socket, as the upper poll layers
* take care of normal races (between the test and the event) and we don't
* go look at any of the socket buffers directly.
*/
__poll_t dccp_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
__poll_t mask;
u8 shutdown;
int state;
sock_poll_wait(file, sock, wait);
state = inet_sk_state_load(sk);
if (state == DCCP_LISTEN)
return inet_csk_listen_poll(sk);
/* Socket is not locked. We are protected from async events
by poll logic and correct handling of state changes
made by another threads is impossible in any case.
*/
mask = 0;
if (READ_ONCE(sk->sk_err))
mask = EPOLLERR;
shutdown = READ_ONCE(sk->sk_shutdown);
if (shutdown == SHUTDOWN_MASK || state == DCCP_CLOSED)
mask |= EPOLLHUP;
if (shutdown & RCV_SHUTDOWN)
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
/* Connected? */
if ((1 << state) & ~(DCCPF_REQUESTING | DCCPF_RESPOND)) {
if (atomic_read(&sk->sk_rmem_alloc) > 0)
mask |= EPOLLIN | EPOLLRDNORM;
if (!(shutdown & SEND_SHUTDOWN)) {
if (sk_stream_is_writeable(sk)) {
mask |= EPOLLOUT | EPOLLWRNORM;
} else { /* send SIGIO later */
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* Race breaker. If space is freed after
* wspace test but before the flags are set,
* IO signal will be lost.
*/
if (sk_stream_is_writeable(sk))
mask |= EPOLLOUT | EPOLLWRNORM;
}
}
}
return mask;
}
EXPORT_SYMBOL_GPL(dccp_poll);
int dccp_ioctl(struct sock *sk, int cmd, int *karg)
{
int rc = -ENOTCONN;
lock_sock(sk);
if (sk->sk_state == DCCP_LISTEN)
goto out;
switch (cmd) {
case SIOCOUTQ: {
*karg = sk_wmem_alloc_get(sk);
/* Using sk_wmem_alloc here because sk_wmem_queued is not used by DCCP and
* always 0, comparably to UDP.
*/
rc = 0;
}
break;
case SIOCINQ: {
struct sk_buff *skb;
*karg = 0;
skb = skb_peek(&sk->sk_receive_queue);
if (skb != NULL) {
/*
* We will only return the amount of this packet since
* that is all that will be read.
*/
*karg = skb->len;
}
rc = 0;
}
break;
default:
rc = -ENOIOCTLCMD;
break;
}
out:
release_sock(sk);
return rc;
}
EXPORT_SYMBOL_GPL(dccp_ioctl);
static int dccp_setsockopt_service(struct sock *sk, const __be32 service,
sockptr_t optval, unsigned int optlen)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_service_list *sl = NULL;
if (service == DCCP_SERVICE_INVALID_VALUE ||
optlen > DCCP_SERVICE_LIST_MAX_LEN * sizeof(u32))
return -EINVAL;
if (optlen > sizeof(service)) {
sl = kmalloc(optlen, GFP_KERNEL);
if (sl == NULL)
return -ENOMEM;
sl->dccpsl_nr = optlen / sizeof(u32) - 1;
if (copy_from_sockptr_offset(sl->dccpsl_list, optval,
sizeof(service), optlen - sizeof(service)) ||
dccp_list_has_service(sl, DCCP_SERVICE_INVALID_VALUE)) {
kfree(sl);
return -EFAULT;
}
}
lock_sock(sk);
dp->dccps_service = service;
kfree(dp->dccps_service_list);
dp->dccps_service_list = sl;
release_sock(sk);
return 0;
}
static int dccp_setsockopt_cscov(struct sock *sk, int cscov, bool rx)
{
u8 *list, len;
int i, rc;
if (cscov < 0 || cscov > 15)
return -EINVAL;
/*
* Populate a list of permissible values, in the range cscov...15. This
* is necessary since feature negotiation of single values only works if
* both sides incidentally choose the same value. Since the list starts
* lowest-value first, negotiation will pick the smallest shared value.
*/
if (cscov == 0)
return 0;
len = 16 - cscov;
list = kmalloc(len, GFP_KERNEL);
if (list == NULL)
return -ENOBUFS;
for (i = 0; i < len; i++)
list[i] = cscov++;
rc = dccp_feat_register_sp(sk, DCCPF_MIN_CSUM_COVER, rx, list, len);
if (rc == 0) {
if (rx)
dccp_sk(sk)->dccps_pcrlen = cscov;
else
dccp_sk(sk)->dccps_pcslen = cscov;
}
kfree(list);
return rc;
}
static int dccp_setsockopt_ccid(struct sock *sk, int type,
sockptr_t optval, unsigned int optlen)
{
u8 *val;
int rc = 0;
if (optlen < 1 || optlen > DCCP_FEAT_MAX_SP_VALS)
return -EINVAL;
val = memdup_sockptr(optval, optlen);
if (IS_ERR(val))
return PTR_ERR(val);
lock_sock(sk);
if (type == DCCP_SOCKOPT_TX_CCID || type == DCCP_SOCKOPT_CCID)
rc = dccp_feat_register_sp(sk, DCCPF_CCID, 1, val, optlen);
if (!rc && (type == DCCP_SOCKOPT_RX_CCID || type == DCCP_SOCKOPT_CCID))
rc = dccp_feat_register_sp(sk, DCCPF_CCID, 0, val, optlen);
release_sock(sk);
kfree(val);
return rc;
}
static int do_dccp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct dccp_sock *dp = dccp_sk(sk);
int val, err = 0;
switch (optname) {
case DCCP_SOCKOPT_PACKET_SIZE:
DCCP_WARN("sockopt(PACKET_SIZE) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_CHANGE_L:
case DCCP_SOCKOPT_CHANGE_R:
DCCP_WARN("sockopt(CHANGE_L/R) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_CCID:
case DCCP_SOCKOPT_RX_CCID:
case DCCP_SOCKOPT_TX_CCID:
return dccp_setsockopt_ccid(sk, optname, optval, optlen);
}
if (optlen < (int)sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(int)))
return -EFAULT;
if (optname == DCCP_SOCKOPT_SERVICE)
return dccp_setsockopt_service(sk, val, optval, optlen);
lock_sock(sk);
switch (optname) {
case DCCP_SOCKOPT_SERVER_TIMEWAIT:
if (dp->dccps_role != DCCP_ROLE_SERVER)
err = -EOPNOTSUPP;
else
dp->dccps_server_timewait = (val != 0);
break;
case DCCP_SOCKOPT_SEND_CSCOV:
err = dccp_setsockopt_cscov(sk, val, false);
break;
case DCCP_SOCKOPT_RECV_CSCOV:
err = dccp_setsockopt_cscov(sk, val, true);
break;
case DCCP_SOCKOPT_QPOLICY_ID:
if (sk->sk_state != DCCP_CLOSED)
err = -EISCONN;
else if (val < 0 || val >= DCCPQ_POLICY_MAX)
err = -EINVAL;
else
dp->dccps_qpolicy = val;
break;
case DCCP_SOCKOPT_QPOLICY_TXQLEN:
if (val < 0)
err = -EINVAL;
else
dp->dccps_tx_qlen = val;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
int dccp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
unsigned int optlen)
{
if (level != SOL_DCCP)
return inet_csk(sk)->icsk_af_ops->setsockopt(sk, level,
optname, optval,
optlen);
return do_dccp_setsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL_GPL(dccp_setsockopt);
static int dccp_getsockopt_service(struct sock *sk, int len,
__be32 __user *optval,
int __user *optlen)
{
const struct dccp_sock *dp = dccp_sk(sk);
const struct dccp_service_list *sl;
int err = -ENOENT, slen = 0, total_len = sizeof(u32);
lock_sock(sk);
if ((sl = dp->dccps_service_list) != NULL) {
slen = sl->dccpsl_nr * sizeof(u32);
total_len += slen;
}
err = -EINVAL;
if (total_len > len)
goto out;
err = 0;
if (put_user(total_len, optlen) ||
put_user(dp->dccps_service, optval) ||
(sl != NULL && copy_to_user(optval + 1, sl->dccpsl_list, slen)))
err = -EFAULT;
out:
release_sock(sk);
return err;
}
static int do_dccp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct dccp_sock *dp;
int val, len;
if (get_user(len, optlen))
return -EFAULT;
if (len < (int)sizeof(int))
return -EINVAL;
dp = dccp_sk(sk);
switch (optname) {
case DCCP_SOCKOPT_PACKET_SIZE:
DCCP_WARN("sockopt(PACKET_SIZE) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_SERVICE:
return dccp_getsockopt_service(sk, len,
(__be32 __user *)optval, optlen);
case DCCP_SOCKOPT_GET_CUR_MPS:
val = READ_ONCE(dp->dccps_mss_cache);
break;
case DCCP_SOCKOPT_AVAILABLE_CCIDS:
return ccid_getsockopt_builtin_ccids(sk, len, optval, optlen);
case DCCP_SOCKOPT_TX_CCID:
val = ccid_get_current_tx_ccid(dp);
if (val < 0)
return -ENOPROTOOPT;
break;
case DCCP_SOCKOPT_RX_CCID:
val = ccid_get_current_rx_ccid(dp);
if (val < 0)
return -ENOPROTOOPT;
break;
case DCCP_SOCKOPT_SERVER_TIMEWAIT:
val = dp->dccps_server_timewait;
break;
case DCCP_SOCKOPT_SEND_CSCOV:
val = dp->dccps_pcslen;
break;
case DCCP_SOCKOPT_RECV_CSCOV:
val = dp->dccps_pcrlen;
break;
case DCCP_SOCKOPT_QPOLICY_ID:
val = dp->dccps_qpolicy;
break;
case DCCP_SOCKOPT_QPOLICY_TXQLEN:
val = dp->dccps_tx_qlen;
break;
case 128 ... 191:
return ccid_hc_rx_getsockopt(dp->dccps_hc_rx_ccid, sk, optname,
len, (u32 __user *)optval, optlen);
case 192 ... 255:
return ccid_hc_tx_getsockopt(dp->dccps_hc_tx_ccid, sk, optname,
len, (u32 __user *)optval, optlen);
default:
return -ENOPROTOOPT;
}
len = sizeof(val);
if (put_user(len, optlen) || copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
int dccp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
if (level != SOL_DCCP)
return inet_csk(sk)->icsk_af_ops->getsockopt(sk, level,
optname, optval,
optlen);
return do_dccp_getsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL_GPL(dccp_getsockopt);
static int dccp_msghdr_parse(struct msghdr *msg, struct sk_buff *skb)
{
struct cmsghdr *cmsg;
/*
* Assign an (opaque) qpolicy priority value to skb->priority.
*
* We are overloading this skb field for use with the qpolicy subystem.
* The skb->priority is normally used for the SO_PRIORITY option, which
* is initialised from sk_priority. Since the assignment of sk_priority
* to skb->priority happens later (on layer 3), we overload this field
* for use with queueing priorities as long as the skb is on layer 4.
* The default priority value (if nothing is set) is 0.
*/
skb->priority = 0;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_DCCP)
continue;
if (cmsg->cmsg_type <= DCCP_SCM_QPOLICY_MAX &&
!dccp_qpolicy_param_ok(skb->sk, cmsg->cmsg_type))
return -EINVAL;
switch (cmsg->cmsg_type) {
case DCCP_SCM_PRIORITY:
if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u32)))
return -EINVAL;
skb->priority = *(__u32 *)CMSG_DATA(cmsg);
break;
default:
return -EINVAL;
}
}
return 0;
}
int dccp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
{
const struct dccp_sock *dp = dccp_sk(sk);
const int flags = msg->msg_flags;
const int noblock = flags & MSG_DONTWAIT;
struct sk_buff *skb;
int rc, size;
long timeo;
trace_dccp_probe(sk, len);
if (len > READ_ONCE(dp->dccps_mss_cache))
return -EMSGSIZE;
lock_sock(sk);
timeo = sock_sndtimeo(sk, noblock);
/*
* We have to use sk_stream_wait_connect here to set sk_write_pending,
* so that the trick in dccp_rcv_request_sent_state_process.
*/
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN))
if ((rc = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_release;
size = sk->sk_prot->max_header + len;
release_sock(sk);
skb = sock_alloc_send_skb(sk, size, noblock, &rc);
lock_sock(sk);
if (skb == NULL)
goto out_release;
if (dccp_qpolicy_full(sk)) {
rc = -EAGAIN;
goto out_discard;
}
if (sk->sk_state == DCCP_CLOSED) {
rc = -ENOTCONN;
goto out_discard;
}
/* We need to check dccps_mss_cache after socket is locked. */
if (len > dp->dccps_mss_cache) {
rc = -EMSGSIZE;
goto out_discard;
}
skb_reserve(skb, sk->sk_prot->max_header);
rc = memcpy_from_msg(skb_put(skb, len), msg, len);
if (rc != 0)
goto out_discard;
rc = dccp_msghdr_parse(msg, skb);
if (rc != 0)
goto out_discard;
dccp_qpolicy_push(sk, skb);
/*
* The xmit_timer is set if the TX CCID is rate-based and will expire
* when congestion control permits to release further packets into the
* network. Window-based CCIDs do not use this timer.
*/
if (!timer_pending(&dp->dccps_xmit_timer))
dccp_write_xmit(sk);
out_release:
release_sock(sk);
return rc ? : len;
out_discard:
kfree_skb(skb);
goto out_release;
}
EXPORT_SYMBOL_GPL(dccp_sendmsg);
int dccp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
int *addr_len)
{
const struct dccp_hdr *dh;
long timeo;
lock_sock(sk);
if (sk->sk_state == DCCP_LISTEN) {
len = -ENOTCONN;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
do {
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
if (skb == NULL)
goto verify_sock_status;
dh = dccp_hdr(skb);
switch (dh->dccph_type) {
case DCCP_PKT_DATA:
case DCCP_PKT_DATAACK:
goto found_ok_skb;
case DCCP_PKT_CLOSE:
case DCCP_PKT_CLOSEREQ:
if (!(flags & MSG_PEEK))
dccp_finish_passive_close(sk);
fallthrough;
case DCCP_PKT_RESET:
dccp_pr_debug("found fin (%s) ok!\n",
dccp_packet_name(dh->dccph_type));
len = 0;
goto found_fin_ok;
default:
dccp_pr_debug("packet_type=%s\n",
dccp_packet_name(dh->dccph_type));
sk_eat_skb(sk, skb);
}
verify_sock_status:
if (sock_flag(sk, SOCK_DONE)) {
len = 0;
break;
}
if (sk->sk_err) {
len = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN) {
len = 0;
break;
}
if (sk->sk_state == DCCP_CLOSED) {
if (!sock_flag(sk, SOCK_DONE)) {
/* This occurs when user tries to read
* from never connected socket.
*/
len = -ENOTCONN;
break;
}
len = 0;
break;
}
if (!timeo) {
len = -EAGAIN;
break;
}
if (signal_pending(current)) {
len = sock_intr_errno(timeo);
break;
}
sk_wait_data(sk, &timeo, NULL);
continue;
found_ok_skb:
if (len > skb->len)
len = skb->len;
else if (len < skb->len)
msg->msg_flags |= MSG_TRUNC;
if (skb_copy_datagram_msg(skb, 0, msg, len)) {
/* Exception. Bailout! */
len = -EFAULT;
break;
}
if (flags & MSG_TRUNC)
len = skb->len;
found_fin_ok:
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
break;
} while (1);
out:
release_sock(sk);
return len;
}
EXPORT_SYMBOL_GPL(dccp_recvmsg);
int inet_dccp_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_DCCP)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (DCCPF_CLOSED | DCCPF_LISTEN)))
goto out;
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != DCCP_LISTEN) {
struct dccp_sock *dp = dccp_sk(sk);
dp->dccps_role = DCCP_ROLE_LISTEN;
/* do not start to listen if feature negotiation setup fails */
if (dccp_feat_finalise_settings(dp)) {
err = -EPROTO;
goto out;
}
err = inet_csk_listen_start(sk);
if (err)
goto out;
}
err = 0;
out:
release_sock(sk);
return err;
}
EXPORT_SYMBOL_GPL(inet_dccp_listen);
static void dccp_terminate_connection(struct sock *sk)
{
u8 next_state = DCCP_CLOSED;
switch (sk->sk_state) {
case DCCP_PASSIVE_CLOSE:
case DCCP_PASSIVE_CLOSEREQ:
dccp_finish_passive_close(sk);
break;
case DCCP_PARTOPEN:
dccp_pr_debug("Stop PARTOPEN timer (%p)\n", sk);
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
fallthrough;
case DCCP_OPEN:
dccp_send_close(sk, 1);
if (dccp_sk(sk)->dccps_role == DCCP_ROLE_SERVER &&
!dccp_sk(sk)->dccps_server_timewait)
next_state = DCCP_ACTIVE_CLOSEREQ;
else
next_state = DCCP_CLOSING;
fallthrough;
default:
dccp_set_state(sk, next_state);
}
}
void dccp_close(struct sock *sk, long timeout)
{
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb;
u32 data_was_unread = 0;
int state;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == DCCP_LISTEN) {
dccp_set_state(sk, DCCP_CLOSED);
/* Special case. */
inet_csk_listen_stop(sk);
goto adjudge_to_death;
}
sk_stop_timer(sk, &dp->dccps_xmit_timer);
/*
* We need to flush the recv. buffs. We do this only on the
* descriptor close, not protocol-sourced closes, because the
*reader process may not have drained the data yet!
*/
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
data_was_unread += skb->len;
__kfree_skb(skb);
}
/* If socket has been already reset kill it. */
if (sk->sk_state == DCCP_CLOSED)
goto adjudge_to_death;
if (data_was_unread) {
/* Unread data was tossed, send an appropriate Reset Code */
DCCP_WARN("ABORT with %u bytes unread\n", data_was_unread);
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
dccp_set_state(sk, DCCP_CLOSED);
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
/* Check zero linger _after_ checking for unread data. */
sk->sk_prot->disconnect(sk, 0);
} else if (sk->sk_state != DCCP_CLOSED) {
/*
* Normal connection termination. May need to wait if there are
* still packets in the TX queue that are delayed by the CCID.
*/
dccp_flush_write_queue(sk, &timeout);
dccp_terminate_connection(sk);
}
/*
* Flush write queue. This may be necessary in several cases:
* - we have been closed by the peer but still have application data;
* - abortive termination (unread data or zero linger time),
* - normal termination but queue could not be flushed within time limit
*/
__skb_queue_purge(&sk->sk_write_queue);
sk_stream_wait_close(sk, timeout);
adjudge_to_death:
state = sk->sk_state;
sock_hold(sk);
sock_orphan(sk);
/*
* It is the last release_sock in its life. It will remove backlog.
*/
release_sock(sk);
/*
* Now socket is owned by kernel and we acquire BH lock
* to finish close. No need to check for user refs.
*/
local_bh_disable();
bh_lock_sock(sk);
WARN_ON(sock_owned_by_user(sk));
this_cpu_inc(dccp_orphan_count);
/* Have we already been destroyed by a softirq or backlog? */
if (state != DCCP_CLOSED && sk->sk_state == DCCP_CLOSED)
goto out;
if (sk->sk_state == DCCP_CLOSED)
inet_csk_destroy_sock(sk);
/* Otherwise, socket is reprieved until protocol close. */
out:
bh_unlock_sock(sk);
local_bh_enable();
sock_put(sk);
}
EXPORT_SYMBOL_GPL(dccp_close);
void dccp_shutdown(struct sock *sk, int how)
{
dccp_pr_debug("called shutdown(%x)\n", how);
}
EXPORT_SYMBOL_GPL(dccp_shutdown);
static inline int __init dccp_mib_init(void)
{
dccp_statistics = alloc_percpu(struct dccp_mib);
if (!dccp_statistics)
return -ENOMEM;
return 0;
}
static inline void dccp_mib_exit(void)
{
free_percpu(dccp_statistics);
}
static int thash_entries;
module_param(thash_entries, int, 0444);
MODULE_PARM_DESC(thash_entries, "Number of ehash buckets");
#ifdef CONFIG_IP_DCCP_DEBUG
bool dccp_debug;
module_param(dccp_debug, bool, 0644);
MODULE_PARM_DESC(dccp_debug, "Enable debug messages");
EXPORT_SYMBOL_GPL(dccp_debug);
#endif
static int __init dccp_init(void)
{
unsigned long goal;
unsigned long nr_pages = totalram_pages();
int ehash_order, bhash_order, i;
int rc;
BUILD_BUG_ON(sizeof(struct dccp_skb_cb) >
sizeof_field(struct sk_buff, cb));
rc = inet_hashinfo2_init_mod(&dccp_hashinfo);
if (rc)
goto out_fail;
rc = -ENOBUFS;
dccp_hashinfo.bind_bucket_cachep =
kmem_cache_create("dccp_bind_bucket",
sizeof(struct inet_bind_bucket), 0,
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
if (!dccp_hashinfo.bind_bucket_cachep)
goto out_free_hashinfo2;
dccp_hashinfo.bind2_bucket_cachep =
kmem_cache_create("dccp_bind2_bucket",
sizeof(struct inet_bind2_bucket), 0,
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
if (!dccp_hashinfo.bind2_bucket_cachep)
goto out_free_bind_bucket_cachep;
/*
* Size and allocate the main established and bind bucket
* hash tables.
*
* The methodology is similar to that of the buffer cache.
*/
if (nr_pages >= (128 * 1024))
goal = nr_pages >> (21 - PAGE_SHIFT);
else
goal = nr_pages >> (23 - PAGE_SHIFT);
if (thash_entries)
goal = (thash_entries *
sizeof(struct inet_ehash_bucket)) >> PAGE_SHIFT;
for (ehash_order = 0; (1UL << ehash_order) < goal; ehash_order++)
;
do {
unsigned long hash_size = (1UL << ehash_order) * PAGE_SIZE /
sizeof(struct inet_ehash_bucket);
while (hash_size & (hash_size - 1))
hash_size--;
dccp_hashinfo.ehash_mask = hash_size - 1;
dccp_hashinfo.ehash = (struct inet_ehash_bucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, ehash_order);
} while (!dccp_hashinfo.ehash && --ehash_order > 0);
if (!dccp_hashinfo.ehash) {
DCCP_CRIT("Failed to allocate DCCP established hash table");
goto out_free_bind2_bucket_cachep;
}
for (i = 0; i <= dccp_hashinfo.ehash_mask; i++)
INIT_HLIST_NULLS_HEAD(&dccp_hashinfo.ehash[i].chain, i);
if (inet_ehash_locks_alloc(&dccp_hashinfo))
goto out_free_dccp_ehash;
bhash_order = ehash_order;
do {
dccp_hashinfo.bhash_size = (1UL << bhash_order) * PAGE_SIZE /
sizeof(struct inet_bind_hashbucket);
if ((dccp_hashinfo.bhash_size > (64 * 1024)) &&
bhash_order > 0)
continue;
dccp_hashinfo.bhash = (struct inet_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, bhash_order);
} while (!dccp_hashinfo.bhash && --bhash_order >= 0);
if (!dccp_hashinfo.bhash) {
DCCP_CRIT("Failed to allocate DCCP bind hash table");
goto out_free_dccp_locks;
}
dccp_hashinfo.bhash2 = (struct inet_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC | __GFP_NOWARN, bhash_order);
if (!dccp_hashinfo.bhash2) {
DCCP_CRIT("Failed to allocate DCCP bind2 hash table");
goto out_free_dccp_bhash;
}
for (i = 0; i < dccp_hashinfo.bhash_size; i++) {
spin_lock_init(&dccp_hashinfo.bhash[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.bhash[i].chain);
spin_lock_init(&dccp_hashinfo.bhash2[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.bhash2[i].chain);
}
dccp_hashinfo.pernet = false;
rc = dccp_mib_init();
if (rc)
goto out_free_dccp_bhash2;
rc = dccp_ackvec_init();
if (rc)
goto out_free_dccp_mib;
rc = dccp_sysctl_init();
if (rc)
goto out_ackvec_exit;
rc = ccid_initialize_builtins();
if (rc)
goto out_sysctl_exit;
dccp_timestamping_init();
return 0;
out_sysctl_exit:
dccp_sysctl_exit();
out_ackvec_exit:
dccp_ackvec_exit();
out_free_dccp_mib:
dccp_mib_exit();
out_free_dccp_bhash2:
free_pages((unsigned long)dccp_hashinfo.bhash2, bhash_order);
out_free_dccp_bhash:
free_pages((unsigned long)dccp_hashinfo.bhash, bhash_order);
out_free_dccp_locks:
inet_ehash_locks_free(&dccp_hashinfo);
out_free_dccp_ehash:
free_pages((unsigned long)dccp_hashinfo.ehash, ehash_order);
out_free_bind2_bucket_cachep:
kmem_cache_destroy(dccp_hashinfo.bind2_bucket_cachep);
out_free_bind_bucket_cachep:
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
out_free_hashinfo2:
inet_hashinfo2_free_mod(&dccp_hashinfo);
out_fail:
dccp_hashinfo.bhash = NULL;
dccp_hashinfo.bhash2 = NULL;
dccp_hashinfo.ehash = NULL;
dccp_hashinfo.bind_bucket_cachep = NULL;
dccp_hashinfo.bind2_bucket_cachep = NULL;
return rc;
}
static void __exit dccp_fini(void)
{
int bhash_order = get_order(dccp_hashinfo.bhash_size *
sizeof(struct inet_bind_hashbucket));
ccid_cleanup_builtins();
dccp_mib_exit();
free_pages((unsigned long)dccp_hashinfo.bhash, bhash_order);
free_pages((unsigned long)dccp_hashinfo.bhash2, bhash_order);
free_pages((unsigned long)dccp_hashinfo.ehash,
get_order((dccp_hashinfo.ehash_mask + 1) *
sizeof(struct inet_ehash_bucket)));
inet_ehash_locks_free(&dccp_hashinfo);
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
dccp_ackvec_exit();
dccp_sysctl_exit();
inet_hashinfo2_free_mod(&dccp_hashinfo);
}
module_init(dccp_init);
module_exit(dccp_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <[email protected]>");
MODULE_DESCRIPTION("DCCP - Datagram Congestion Controlled Protocol");
| linux-master | net/dccp/proto.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/ipv4.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/icmp.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <net/icmp.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/inet_sock.h>
#include <net/protocol.h>
#include <net/sock.h>
#include <net/timewait_sock.h>
#include <net/tcp_states.h>
#include <net/xfrm.h>
#include <net/secure_seq.h>
#include <net/netns/generic.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
#include "feat.h"
struct dccp_v4_pernet {
struct sock *v4_ctl_sk;
};
static unsigned int dccp_v4_pernet_id __read_mostly;
/*
* The per-net v4_ctl_sk socket is used for responding to
* the Out-of-the-blue (OOTB) packets. A control sock will be created
* for this socket at the initialization time.
*/
int dccp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
{
const struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
struct inet_sock *inet = inet_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
__be16 orig_sport, orig_dport;
__be32 daddr, nexthop;
struct flowi4 *fl4;
struct rtable *rt;
int err;
struct ip_options_rcu *inet_opt;
dp->dccps_role = DCCP_ROLE_CLIENT;
if (addr_len < sizeof(struct sockaddr_in))
return -EINVAL;
if (usin->sin_family != AF_INET)
return -EAFNOSUPPORT;
nexthop = daddr = usin->sin_addr.s_addr;
inet_opt = rcu_dereference_protected(inet->inet_opt,
lockdep_sock_is_held(sk));
if (inet_opt != NULL && inet_opt->opt.srr) {
if (daddr == 0)
return -EINVAL;
nexthop = inet_opt->opt.faddr;
}
orig_sport = inet->inet_sport;
orig_dport = usin->sin_port;
fl4 = &inet->cork.fl.u.ip4;
rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
sk->sk_bound_dev_if, IPPROTO_DCCP, orig_sport,
orig_dport, sk);
if (IS_ERR(rt))
return PTR_ERR(rt);
if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
ip_rt_put(rt);
return -ENETUNREACH;
}
if (inet_opt == NULL || !inet_opt->opt.srr)
daddr = fl4->daddr;
if (inet->inet_saddr == 0) {
err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET);
if (err) {
ip_rt_put(rt);
return err;
}
} else {
sk_rcv_saddr_set(sk, inet->inet_saddr);
}
inet->inet_dport = usin->sin_port;
sk_daddr_set(sk, daddr);
inet_csk(sk)->icsk_ext_hdr_len = 0;
if (inet_opt)
inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
/*
* Socket identity is still unknown (sport may be zero).
* However we set state to DCCP_REQUESTING and not releasing socket
* lock select source port, enter ourselves into the hash tables and
* complete initialization after this.
*/
dccp_set_state(sk, DCCP_REQUESTING);
err = inet_hash_connect(&dccp_death_row, sk);
if (err != 0)
goto failure;
rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
inet->inet_sport, inet->inet_dport, sk);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
rt = NULL;
goto failure;
}
/* OK, now commit destination to socket. */
sk_setup_caps(sk, &rt->dst);
dp->dccps_iss = secure_dccp_sequence_number(inet->inet_saddr,
inet->inet_daddr,
inet->inet_sport,
inet->inet_dport);
atomic_set(&inet->inet_id, get_random_u16());
err = dccp_connect(sk);
rt = NULL;
if (err != 0)
goto failure;
out:
return err;
failure:
/*
* This unhashes the socket and releases the local port, if necessary.
*/
dccp_set_state(sk, DCCP_CLOSED);
inet_bhash2_reset_saddr(sk);
ip_rt_put(rt);
sk->sk_route_caps = 0;
inet->inet_dport = 0;
goto out;
}
EXPORT_SYMBOL_GPL(dccp_v4_connect);
/*
* This routine does path mtu discovery as defined in RFC1191.
*/
static inline void dccp_do_pmtu_discovery(struct sock *sk,
const struct iphdr *iph,
u32 mtu)
{
struct dst_entry *dst;
const struct inet_sock *inet = inet_sk(sk);
const struct dccp_sock *dp = dccp_sk(sk);
/* We are not interested in DCCP_LISTEN and request_socks (RESPONSEs
* send out by Linux are always < 576bytes so they should go through
* unfragmented).
*/
if (sk->sk_state == DCCP_LISTEN)
return;
dst = inet_csk_update_pmtu(sk, mtu);
if (!dst)
return;
/* Something is about to be wrong... Remember soft error
* for the case, if this connection will not able to recover.
*/
if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
mtu = dst_mtu(dst);
if (inet->pmtudisc != IP_PMTUDISC_DONT &&
ip_sk_accept_pmtu(sk) &&
inet_csk(sk)->icsk_pmtu_cookie > mtu) {
dccp_sync_mss(sk, mtu);
/*
* From RFC 4340, sec. 14.1:
*
* DCCP-Sync packets are the best choice for upward
* probing, since DCCP-Sync probes do not risk application
* data loss.
*/
dccp_send_sync(sk, dp->dccps_gsr, DCCP_PKT_SYNC);
} /* else let the usual retransmit timer handle it */
}
static void dccp_do_redirect(struct sk_buff *skb, struct sock *sk)
{
struct dst_entry *dst = __sk_dst_check(sk, 0);
if (dst)
dst->ops->redirect(dst, sk, skb);
}
void dccp_req_err(struct sock *sk, u64 seq)
{
struct request_sock *req = inet_reqsk(sk);
struct net *net = sock_net(sk);
/*
* ICMPs are not backlogged, hence we cannot get an established
* socket here.
*/
if (!between48(seq, dccp_rsk(req)->dreq_iss, dccp_rsk(req)->dreq_gss)) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
} else {
/*
* Still in RESPOND, just remove it silently.
* There is no good way to pass the error to the newly
* created socket, and POSIX does not want network
* errors returned from accept().
*/
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
}
reqsk_put(req);
}
EXPORT_SYMBOL(dccp_req_err);
/*
* This routine is called by the ICMP module when it gets some sort of error
* condition. If err < 0 then the socket should be closed and the error
* returned to the user. If err > 0 it's just the icmp type << 8 | icmp code.
* After adjustment header points to the first 8 bytes of the tcp header. We
* need to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When someone else
* accesses the socket the ICMP is just dropped and for some paths there is no
* check at all. A more general error queue to queue errors for later handling
* is probably better.
*/
static int dccp_v4_err(struct sk_buff *skb, u32 info)
{
const struct iphdr *iph = (struct iphdr *)skb->data;
const u8 offset = iph->ihl << 2;
const struct dccp_hdr *dh;
struct dccp_sock *dp;
const int type = icmp_hdr(skb)->type;
const int code = icmp_hdr(skb)->code;
struct sock *sk;
__u64 seq;
int err;
struct net *net = dev_net(skb->dev);
if (!pskb_may_pull(skb, offset + sizeof(*dh)))
return -EINVAL;
dh = (struct dccp_hdr *)(skb->data + offset);
if (!pskb_may_pull(skb, offset + __dccp_basic_hdr_len(dh)))
return -EINVAL;
iph = (struct iphdr *)skb->data;
dh = (struct dccp_hdr *)(skb->data + offset);
sk = __inet_lookup_established(net, &dccp_hashinfo,
iph->daddr, dh->dccph_dport,
iph->saddr, ntohs(dh->dccph_sport),
inet_iif(skb), 0);
if (!sk) {
__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
return -ENOENT;
}
if (sk->sk_state == DCCP_TIME_WAIT) {
inet_twsk_put(inet_twsk(sk));
return 0;
}
seq = dccp_hdr_seq(dh);
if (sk->sk_state == DCCP_NEW_SYN_RECV) {
dccp_req_err(sk, seq);
return 0;
}
bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
*/
if (sock_owned_by_user(sk))
__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
if (sk->sk_state == DCCP_CLOSED)
goto out;
dp = dccp_sk(sk);
if ((1 << sk->sk_state) & ~(DCCPF_REQUESTING | DCCPF_LISTEN) &&
!between48(seq, dp->dccps_awl, dp->dccps_awh)) {
__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
goto out;
}
switch (type) {
case ICMP_REDIRECT:
if (!sock_owned_by_user(sk))
dccp_do_redirect(skb, sk);
goto out;
case ICMP_SOURCE_QUENCH:
/* Just silently ignore these. */
goto out;
case ICMP_PARAMETERPROB:
err = EPROTO;
break;
case ICMP_DEST_UNREACH:
if (code > NR_ICMP_UNREACH)
goto out;
if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
if (!sock_owned_by_user(sk))
dccp_do_pmtu_discovery(sk, iph, info);
goto out;
}
err = icmp_err_convert[code].errno;
break;
case ICMP_TIME_EXCEEDED:
err = EHOSTUNREACH;
break;
default:
goto out;
}
switch (sk->sk_state) {
case DCCP_REQUESTING:
case DCCP_RESPOND:
if (!sock_owned_by_user(sk)) {
__DCCP_INC_STATS(DCCP_MIB_ATTEMPTFAILS);
sk->sk_err = err;
sk_error_report(sk);
dccp_done(sk);
} else {
WRITE_ONCE(sk->sk_err_soft, err);
}
goto out;
}
/* If we've already connected we will keep trying
* until we time out, or the user gives up.
*
* rfc1122 4.2.3.9 allows to consider as hard errors
* only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
* but it is obsoleted by pmtu discovery).
*
* Note, that in modern internet, where routing is unreliable
* and in each dark corner broken firewalls sit, sending random
* errors ordered by their masters even this two messages finally lose
* their original sense (even Linux sends invalid PORT_UNREACHs)
*
* Now we are in compliance with RFCs.
* --ANK (980905)
*/
if (!sock_owned_by_user(sk) && inet_test_bit(RECVERR, sk)) {
sk->sk_err = err;
sk_error_report(sk);
} else { /* Only an error on timeout */
WRITE_ONCE(sk->sk_err_soft, err);
}
out:
bh_unlock_sock(sk);
sock_put(sk);
return 0;
}
static inline __sum16 dccp_v4_csum_finish(struct sk_buff *skb,
__be32 src, __be32 dst)
{
return csum_tcpudp_magic(src, dst, skb->len, IPPROTO_DCCP, skb->csum);
}
void dccp_v4_send_check(struct sock *sk, struct sk_buff *skb)
{
const struct inet_sock *inet = inet_sk(sk);
struct dccp_hdr *dh = dccp_hdr(skb);
dccp_csum_outgoing(skb);
dh->dccph_checksum = dccp_v4_csum_finish(skb,
inet->inet_saddr,
inet->inet_daddr);
}
EXPORT_SYMBOL_GPL(dccp_v4_send_check);
static inline u64 dccp_v4_init_sequence(const struct sk_buff *skb)
{
return secure_dccp_sequence_number(ip_hdr(skb)->daddr,
ip_hdr(skb)->saddr,
dccp_hdr(skb)->dccph_dport,
dccp_hdr(skb)->dccph_sport);
}
/*
* The three way handshake has completed - we got a valid ACK or DATAACK -
* now create the new socket.
*
* This is the equivalent of TCP's tcp_v4_syn_recv_sock
*/
struct sock *dccp_v4_request_recv_sock(const struct sock *sk,
struct sk_buff *skb,
struct request_sock *req,
struct dst_entry *dst,
struct request_sock *req_unhash,
bool *own_req)
{
struct inet_request_sock *ireq;
struct inet_sock *newinet;
struct sock *newsk;
if (sk_acceptq_is_full(sk))
goto exit_overflow;
newsk = dccp_create_openreq_child(sk, req, skb);
if (newsk == NULL)
goto exit_nonewsk;
newinet = inet_sk(newsk);
ireq = inet_rsk(req);
sk_daddr_set(newsk, ireq->ir_rmt_addr);
sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
newinet->inet_saddr = ireq->ir_loc_addr;
RCU_INIT_POINTER(newinet->inet_opt, rcu_dereference(ireq->ireq_opt));
newinet->mc_index = inet_iif(skb);
newinet->mc_ttl = ip_hdr(skb)->ttl;
atomic_set(&newinet->inet_id, get_random_u16());
if (dst == NULL && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
goto put_and_exit;
sk_setup_caps(newsk, dst);
dccp_sync_mss(newsk, dst_mtu(dst));
if (__inet_inherit_port(sk, newsk) < 0)
goto put_and_exit;
*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), NULL);
if (*own_req)
ireq->ireq_opt = NULL;
else
newinet->inet_opt = NULL;
return newsk;
exit_overflow:
__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
exit_nonewsk:
dst_release(dst);
exit:
__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
return NULL;
put_and_exit:
newinet->inet_opt = NULL;
inet_csk_prepare_forced_close(newsk);
dccp_done(newsk);
goto exit;
}
EXPORT_SYMBOL_GPL(dccp_v4_request_recv_sock);
static struct dst_entry* dccp_v4_route_skb(struct net *net, struct sock *sk,
struct sk_buff *skb)
{
struct rtable *rt;
const struct iphdr *iph = ip_hdr(skb);
struct flowi4 fl4 = {
.flowi4_oif = inet_iif(skb),
.daddr = iph->saddr,
.saddr = iph->daddr,
.flowi4_tos = ip_sock_rt_tos(sk),
.flowi4_scope = ip_sock_rt_scope(sk),
.flowi4_proto = sk->sk_protocol,
.fl4_sport = dccp_hdr(skb)->dccph_dport,
.fl4_dport = dccp_hdr(skb)->dccph_sport,
};
security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
rt = ip_route_output_flow(net, &fl4, sk);
if (IS_ERR(rt)) {
IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
return NULL;
}
return &rt->dst;
}
static int dccp_v4_send_response(const struct sock *sk, struct request_sock *req)
{
int err = -1;
struct sk_buff *skb;
struct dst_entry *dst;
struct flowi4 fl4;
dst = inet_csk_route_req(sk, &fl4, req);
if (dst == NULL)
goto out;
skb = dccp_make_response(sk, dst, req);
if (skb != NULL) {
const struct inet_request_sock *ireq = inet_rsk(req);
struct dccp_hdr *dh = dccp_hdr(skb);
dh->dccph_checksum = dccp_v4_csum_finish(skb, ireq->ir_loc_addr,
ireq->ir_rmt_addr);
rcu_read_lock();
err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
ireq->ir_rmt_addr,
rcu_dereference(ireq->ireq_opt),
inet_sk(sk)->tos);
rcu_read_unlock();
err = net_xmit_eval(err);
}
out:
dst_release(dst);
return err;
}
static void dccp_v4_ctl_send_reset(const struct sock *sk, struct sk_buff *rxskb)
{
int err;
const struct iphdr *rxiph;
struct sk_buff *skb;
struct dst_entry *dst;
struct net *net = dev_net(skb_dst(rxskb)->dev);
struct dccp_v4_pernet *pn;
struct sock *ctl_sk;
/* Never send a reset in response to a reset. */
if (dccp_hdr(rxskb)->dccph_type == DCCP_PKT_RESET)
return;
if (skb_rtable(rxskb)->rt_type != RTN_LOCAL)
return;
pn = net_generic(net, dccp_v4_pernet_id);
ctl_sk = pn->v4_ctl_sk;
dst = dccp_v4_route_skb(net, ctl_sk, rxskb);
if (dst == NULL)
return;
skb = dccp_ctl_make_reset(ctl_sk, rxskb);
if (skb == NULL)
goto out;
rxiph = ip_hdr(rxskb);
dccp_hdr(skb)->dccph_checksum = dccp_v4_csum_finish(skb, rxiph->saddr,
rxiph->daddr);
skb_dst_set(skb, dst_clone(dst));
local_bh_disable();
bh_lock_sock(ctl_sk);
err = ip_build_and_send_pkt(skb, ctl_sk,
rxiph->daddr, rxiph->saddr, NULL,
inet_sk(ctl_sk)->tos);
bh_unlock_sock(ctl_sk);
if (net_xmit_eval(err) == 0) {
__DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
__DCCP_INC_STATS(DCCP_MIB_OUTRSTS);
}
local_bh_enable();
out:
dst_release(dst);
}
static void dccp_v4_reqsk_destructor(struct request_sock *req)
{
dccp_feat_list_purge(&dccp_rsk(req)->dreq_featneg);
kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
}
void dccp_syn_ack_timeout(const struct request_sock *req)
{
}
EXPORT_SYMBOL(dccp_syn_ack_timeout);
static struct request_sock_ops dccp_request_sock_ops __read_mostly = {
.family = PF_INET,
.obj_size = sizeof(struct dccp_request_sock),
.rtx_syn_ack = dccp_v4_send_response,
.send_ack = dccp_reqsk_send_ack,
.destructor = dccp_v4_reqsk_destructor,
.send_reset = dccp_v4_ctl_send_reset,
.syn_ack_timeout = dccp_syn_ack_timeout,
};
int dccp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
struct inet_request_sock *ireq;
struct request_sock *req;
struct dccp_request_sock *dreq;
const __be32 service = dccp_hdr_request(skb)->dccph_req_service;
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
/* Never answer to DCCP_PKT_REQUESTs send to broadcast or multicast */
if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
return 0; /* discard, don't send a reset here */
if (dccp_bad_service_code(sk, service)) {
dcb->dccpd_reset_code = DCCP_RESET_CODE_BAD_SERVICE_CODE;
goto drop;
}
/*
* TW buckets are converted to open requests without
* limitations, they conserve resources and peer is
* evidently real one.
*/
dcb->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY;
if (inet_csk_reqsk_queue_is_full(sk))
goto drop;
if (sk_acceptq_is_full(sk))
goto drop;
req = inet_reqsk_alloc(&dccp_request_sock_ops, sk, true);
if (req == NULL)
goto drop;
if (dccp_reqsk_init(req, dccp_sk(sk), skb))
goto drop_and_free;
dreq = dccp_rsk(req);
if (dccp_parse_options(sk, dreq, skb))
goto drop_and_free;
if (security_inet_conn_request(sk, skb, req))
goto drop_and_free;
ireq = inet_rsk(req);
sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
ireq->ir_mark = inet_request_mark(sk, skb);
ireq->ireq_family = AF_INET;
ireq->ir_iif = READ_ONCE(sk->sk_bound_dev_if);
/*
* Step 3: Process LISTEN state
*
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookie
*
* Setting S.SWL/S.SWH to is deferred to dccp_create_openreq_child().
*/
dreq->dreq_isr = dcb->dccpd_seq;
dreq->dreq_gsr = dreq->dreq_isr;
dreq->dreq_iss = dccp_v4_init_sequence(skb);
dreq->dreq_gss = dreq->dreq_iss;
dreq->dreq_service = service;
if (dccp_v4_send_response(sk, req))
goto drop_and_free;
inet_csk_reqsk_queue_hash_add(sk, req, DCCP_TIMEOUT_INIT);
reqsk_put(req);
return 0;
drop_and_free:
reqsk_free(req);
drop:
__DCCP_INC_STATS(DCCP_MIB_ATTEMPTFAILS);
return -1;
}
EXPORT_SYMBOL_GPL(dccp_v4_conn_request);
int dccp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
struct dccp_hdr *dh = dccp_hdr(skb);
if (sk->sk_state == DCCP_OPEN) { /* Fast path */
if (dccp_rcv_established(sk, skb, dh, skb->len))
goto reset;
return 0;
}
/*
* Step 3: Process LISTEN state
* If P.type == Request or P contains a valid Init Cookie option,
* (* Must scan the packet's options to check for Init
* Cookies. Only Init Cookies are processed here,
* however; other options are processed in Step 8. This
* scan need only be performed if the endpoint uses Init
* Cookies *)
* (* Generate a new socket and switch to that socket *)
* Set S := new socket for this port pair
* S.state = RESPOND
* Choose S.ISS (initial seqno) or set from Init Cookies
* Initialize S.GAR := S.ISS
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookies
* Continue with S.state == RESPOND
* (* A Response packet will be generated in Step 11 *)
* Otherwise,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*
* NOTE: the check for the packet types is done in
* dccp_rcv_state_process
*/
if (dccp_rcv_state_process(sk, skb, dh, skb->len))
goto reset;
return 0;
reset:
dccp_v4_ctl_send_reset(sk, skb);
kfree_skb(skb);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_v4_do_rcv);
/**
* dccp_invalid_packet - check for malformed packets
* @skb: Packet to validate
*
* Implements RFC 4340, 8.5: Step 1: Check header basics
* Packets that fail these checks are ignored and do not receive Resets.
*/
int dccp_invalid_packet(struct sk_buff *skb)
{
const struct dccp_hdr *dh;
unsigned int cscov;
u8 dccph_doff;
if (skb->pkt_type != PACKET_HOST)
return 1;
/* If the packet is shorter than 12 bytes, drop packet and return */
if (!pskb_may_pull(skb, sizeof(struct dccp_hdr))) {
DCCP_WARN("pskb_may_pull failed\n");
return 1;
}
dh = dccp_hdr(skb);
/* If P.type is not understood, drop packet and return */
if (dh->dccph_type >= DCCP_PKT_INVALID) {
DCCP_WARN("invalid packet type\n");
return 1;
}
/*
* If P.Data Offset is too small for packet type, drop packet and return
*/
dccph_doff = dh->dccph_doff;
if (dccph_doff < dccp_hdr_len(skb) / sizeof(u32)) {
DCCP_WARN("P.Data Offset(%u) too small\n", dccph_doff);
return 1;
}
/*
* If P.Data Offset is too large for packet, drop packet and return
*/
if (!pskb_may_pull(skb, dccph_doff * sizeof(u32))) {
DCCP_WARN("P.Data Offset(%u) too large\n", dccph_doff);
return 1;
}
dh = dccp_hdr(skb);
/*
* If P.type is not Data, Ack, or DataAck and P.X == 0 (the packet
* has short sequence numbers), drop packet and return
*/
if ((dh->dccph_type < DCCP_PKT_DATA ||
dh->dccph_type > DCCP_PKT_DATAACK) && dh->dccph_x == 0) {
DCCP_WARN("P.type (%s) not Data || [Data]Ack, while P.X == 0\n",
dccp_packet_name(dh->dccph_type));
return 1;
}
/*
* If P.CsCov is too large for the packet size, drop packet and return.
* This must come _before_ checksumming (not as RFC 4340 suggests).
*/
cscov = dccp_csum_coverage(skb);
if (cscov > skb->len) {
DCCP_WARN("P.CsCov %u exceeds packet length %d\n",
dh->dccph_cscov, skb->len);
return 1;
}
/* If header checksum is incorrect, drop packet and return.
* (This step is completed in the AF-dependent functions.) */
skb->csum = skb_checksum(skb, 0, cscov, 0);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_invalid_packet);
/* this is called when real data arrives */
static int dccp_v4_rcv(struct sk_buff *skb)
{
const struct dccp_hdr *dh;
const struct iphdr *iph;
bool refcounted;
struct sock *sk;
int min_cov;
/* Step 1: Check header basics */
if (dccp_invalid_packet(skb))
goto discard_it;
iph = ip_hdr(skb);
/* Step 1: If header checksum is incorrect, drop packet and return */
if (dccp_v4_csum_finish(skb, iph->saddr, iph->daddr)) {
DCCP_WARN("dropped packet with invalid checksum\n");
goto discard_it;
}
dh = dccp_hdr(skb);
DCCP_SKB_CB(skb)->dccpd_seq = dccp_hdr_seq(dh);
DCCP_SKB_CB(skb)->dccpd_type = dh->dccph_type;
dccp_pr_debug("%8.8s src=%pI4@%-5d dst=%pI4@%-5d seq=%llu",
dccp_packet_name(dh->dccph_type),
&iph->saddr, ntohs(dh->dccph_sport),
&iph->daddr, ntohs(dh->dccph_dport),
(unsigned long long) DCCP_SKB_CB(skb)->dccpd_seq);
if (dccp_packet_without_ack(skb)) {
DCCP_SKB_CB(skb)->dccpd_ack_seq = DCCP_PKT_WITHOUT_ACK_SEQ;
dccp_pr_debug_cat("\n");
} else {
DCCP_SKB_CB(skb)->dccpd_ack_seq = dccp_hdr_ack_seq(skb);
dccp_pr_debug_cat(", ack=%llu\n", (unsigned long long)
DCCP_SKB_CB(skb)->dccpd_ack_seq);
}
lookup:
sk = __inet_lookup_skb(&dccp_hashinfo, skb, __dccp_hdr_len(dh),
dh->dccph_sport, dh->dccph_dport, 0, &refcounted);
if (!sk) {
dccp_pr_debug("failed to look up flow ID in table and "
"get corresponding socket\n");
goto no_dccp_socket;
}
/*
* Step 2:
* ... or S.state == TIMEWAIT,
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (sk->sk_state == DCCP_TIME_WAIT) {
dccp_pr_debug("sk->sk_state == DCCP_TIME_WAIT: do_time_wait\n");
inet_twsk_put(inet_twsk(sk));
goto no_dccp_socket;
}
if (sk->sk_state == DCCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
struct sock *nsk;
sk = req->rsk_listener;
if (unlikely(sk->sk_state != DCCP_LISTEN)) {
inet_csk_reqsk_queue_drop_and_put(sk, req);
goto lookup;
}
sock_hold(sk);
refcounted = true;
nsk = dccp_check_req(sk, skb, req);
if (!nsk) {
reqsk_put(req);
goto discard_and_relse;
}
if (nsk == sk) {
reqsk_put(req);
} else if (dccp_child_process(sk, nsk, skb)) {
dccp_v4_ctl_send_reset(sk, skb);
goto discard_and_relse;
} else {
sock_put(sk);
return 0;
}
}
/*
* RFC 4340, sec. 9.2.1: Minimum Checksum Coverage
* o if MinCsCov = 0, only packets with CsCov = 0 are accepted
* o if MinCsCov > 0, also accept packets with CsCov >= MinCsCov
*/
min_cov = dccp_sk(sk)->dccps_pcrlen;
if (dh->dccph_cscov && (min_cov == 0 || dh->dccph_cscov < min_cov)) {
dccp_pr_debug("Packet CsCov %d does not satisfy MinCsCov %d\n",
dh->dccph_cscov, min_cov);
/* FIXME: "Such packets SHOULD be reported using Data Dropped
* options (Section 11.7) with Drop Code 0, Protocol
* Constraints." */
goto discard_and_relse;
}
if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
goto discard_and_relse;
nf_reset_ct(skb);
return __sk_receive_skb(sk, skb, 1, dh->dccph_doff * 4, refcounted);
no_dccp_socket:
if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
goto discard_it;
/*
* Step 2:
* If no socket ...
* Generate Reset(No Connection) unless P.type == Reset
* Drop packet and return
*/
if (dh->dccph_type != DCCP_PKT_RESET) {
DCCP_SKB_CB(skb)->dccpd_reset_code =
DCCP_RESET_CODE_NO_CONNECTION;
dccp_v4_ctl_send_reset(sk, skb);
}
discard_it:
kfree_skb(skb);
return 0;
discard_and_relse:
if (refcounted)
sock_put(sk);
goto discard_it;
}
static const struct inet_connection_sock_af_ops dccp_ipv4_af_ops = {
.queue_xmit = ip_queue_xmit,
.send_check = dccp_v4_send_check,
.rebuild_header = inet_sk_rebuild_header,
.conn_request = dccp_v4_conn_request,
.syn_recv_sock = dccp_v4_request_recv_sock,
.net_header_len = sizeof(struct iphdr),
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.addr2sockaddr = inet_csk_addr2sockaddr,
.sockaddr_len = sizeof(struct sockaddr_in),
};
static int dccp_v4_init_sock(struct sock *sk)
{
static __u8 dccp_v4_ctl_sock_initialized;
int err = dccp_init_sock(sk, dccp_v4_ctl_sock_initialized);
if (err == 0) {
if (unlikely(!dccp_v4_ctl_sock_initialized))
dccp_v4_ctl_sock_initialized = 1;
inet_csk(sk)->icsk_af_ops = &dccp_ipv4_af_ops;
}
return err;
}
static struct timewait_sock_ops dccp_timewait_sock_ops = {
.twsk_obj_size = sizeof(struct inet_timewait_sock),
};
static struct proto dccp_v4_prot = {
.name = "DCCP",
.owner = THIS_MODULE,
.close = dccp_close,
.connect = dccp_v4_connect,
.disconnect = dccp_disconnect,
.ioctl = dccp_ioctl,
.init = dccp_v4_init_sock,
.setsockopt = dccp_setsockopt,
.getsockopt = dccp_getsockopt,
.sendmsg = dccp_sendmsg,
.recvmsg = dccp_recvmsg,
.backlog_rcv = dccp_v4_do_rcv,
.hash = inet_hash,
.unhash = inet_unhash,
.accept = inet_csk_accept,
.get_port = inet_csk_get_port,
.shutdown = dccp_shutdown,
.destroy = dccp_destroy_sock,
.orphan_count = &dccp_orphan_count,
.max_header = MAX_DCCP_HEADER,
.obj_size = sizeof(struct dccp_sock),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.rsk_prot = &dccp_request_sock_ops,
.twsk_prot = &dccp_timewait_sock_ops,
.h.hashinfo = &dccp_hashinfo,
};
static const struct net_protocol dccp_v4_protocol = {
.handler = dccp_v4_rcv,
.err_handler = dccp_v4_err,
.no_policy = 1,
.icmp_strict_tag_validation = 1,
};
static const struct proto_ops inet_dccp_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = inet_bind,
.connect = inet_stream_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname,
/* FIXME: work on tcp_poll to rename it to inet_csk_poll */
.poll = dccp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
/* FIXME: work on inet_listen to rename it to sock_common_listen */
.listen = inet_dccp_listen,
.shutdown = inet_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
};
static struct inet_protosw dccp_v4_protosw = {
.type = SOCK_DCCP,
.protocol = IPPROTO_DCCP,
.prot = &dccp_v4_prot,
.ops = &inet_dccp_ops,
.flags = INET_PROTOSW_ICSK,
};
static int __net_init dccp_v4_init_net(struct net *net)
{
struct dccp_v4_pernet *pn = net_generic(net, dccp_v4_pernet_id);
if (dccp_hashinfo.bhash == NULL)
return -ESOCKTNOSUPPORT;
return inet_ctl_sock_create(&pn->v4_ctl_sk, PF_INET,
SOCK_DCCP, IPPROTO_DCCP, net);
}
static void __net_exit dccp_v4_exit_net(struct net *net)
{
struct dccp_v4_pernet *pn = net_generic(net, dccp_v4_pernet_id);
inet_ctl_sock_destroy(pn->v4_ctl_sk);
}
static void __net_exit dccp_v4_exit_batch(struct list_head *net_exit_list)
{
inet_twsk_purge(&dccp_hashinfo, AF_INET);
}
static struct pernet_operations dccp_v4_ops = {
.init = dccp_v4_init_net,
.exit = dccp_v4_exit_net,
.exit_batch = dccp_v4_exit_batch,
.id = &dccp_v4_pernet_id,
.size = sizeof(struct dccp_v4_pernet),
};
static int __init dccp_v4_init(void)
{
int err = proto_register(&dccp_v4_prot, 1);
if (err)
goto out;
inet_register_protosw(&dccp_v4_protosw);
err = register_pernet_subsys(&dccp_v4_ops);
if (err)
goto out_destroy_ctl_sock;
err = inet_add_protocol(&dccp_v4_protocol, IPPROTO_DCCP);
if (err)
goto out_proto_unregister;
out:
return err;
out_proto_unregister:
unregister_pernet_subsys(&dccp_v4_ops);
out_destroy_ctl_sock:
inet_unregister_protosw(&dccp_v4_protosw);
proto_unregister(&dccp_v4_prot);
goto out;
}
static void __exit dccp_v4_exit(void)
{
inet_del_protocol(&dccp_v4_protocol, IPPROTO_DCCP);
unregister_pernet_subsys(&dccp_v4_ops);
inet_unregister_protosw(&dccp_v4_protosw);
proto_unregister(&dccp_v4_prot);
}
module_init(dccp_v4_init);
module_exit(dccp_v4_exit);
/*
* __stringify doesn't likes enums, so use SOCK_DCCP (6) and IPPROTO_DCCP (33)
* values directly, Also cover the case where the protocol is not specified,
* i.e. net-pf-PF_INET-proto-0-type-SOCK_DCCP
*/
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_INET, 33, 6);
MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_INET, 0, 6);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <[email protected]>");
MODULE_DESCRIPTION("DCCP - Datagram Congestion Controlled Protocol");
| linux-master | net/dccp/ipv4.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/output.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <net/inet_sock.h>
#include <net/sock.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
static inline void dccp_event_ack_sent(struct sock *sk)
{
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
}
/* enqueue @skb on sk_send_head for retransmission, return clone to send now */
static struct sk_buff *dccp_skb_entail(struct sock *sk, struct sk_buff *skb)
{
skb_set_owner_w(skb, sk);
WARN_ON(sk->sk_send_head);
sk->sk_send_head = skb;
return skb_clone(sk->sk_send_head, gfp_any());
}
/*
* All SKB's seen here are completely headerless. It is our
* job to build the DCCP header, and pass the packet down to
* IP so it can do the same plus pass the packet off to the
* device.
*/
static int dccp_transmit_skb(struct sock *sk, struct sk_buff *skb)
{
if (likely(skb != NULL)) {
struct inet_sock *inet = inet_sk(sk);
const struct inet_connection_sock *icsk = inet_csk(sk);
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
struct dccp_hdr *dh;
/* XXX For now we're using only 48 bits sequence numbers */
const u32 dccp_header_size = sizeof(*dh) +
sizeof(struct dccp_hdr_ext) +
dccp_packet_hdr_len(dcb->dccpd_type);
int err, set_ack = 1;
u64 ackno = dp->dccps_gsr;
/*
* Increment GSS here already in case the option code needs it.
* Update GSS for real only if option processing below succeeds.
*/
dcb->dccpd_seq = ADD48(dp->dccps_gss, 1);
switch (dcb->dccpd_type) {
case DCCP_PKT_DATA:
set_ack = 0;
fallthrough;
case DCCP_PKT_DATAACK:
case DCCP_PKT_RESET:
break;
case DCCP_PKT_REQUEST:
set_ack = 0;
/* Use ISS on the first (non-retransmitted) Request. */
if (icsk->icsk_retransmits == 0)
dcb->dccpd_seq = dp->dccps_iss;
fallthrough;
case DCCP_PKT_SYNC:
case DCCP_PKT_SYNCACK:
ackno = dcb->dccpd_ack_seq;
fallthrough;
default:
/*
* Set owner/destructor: some skbs are allocated via
* alloc_skb (e.g. when retransmission may happen).
* Only Data, DataAck, and Reset packets should come
* through here with skb->sk set.
*/
WARN_ON(skb->sk);
skb_set_owner_w(skb, sk);
break;
}
if (dccp_insert_options(sk, skb)) {
kfree_skb(skb);
return -EPROTO;
}
/* Build DCCP header and checksum it. */
dh = dccp_zeroed_hdr(skb, dccp_header_size);
dh->dccph_type = dcb->dccpd_type;
dh->dccph_sport = inet->inet_sport;
dh->dccph_dport = inet->inet_dport;
dh->dccph_doff = (dccp_header_size + dcb->dccpd_opt_len) / 4;
dh->dccph_ccval = dcb->dccpd_ccval;
dh->dccph_cscov = dp->dccps_pcslen;
/* XXX For now we're using only 48 bits sequence numbers */
dh->dccph_x = 1;
dccp_update_gss(sk, dcb->dccpd_seq);
dccp_hdr_set_seq(dh, dp->dccps_gss);
if (set_ack)
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), ackno);
switch (dcb->dccpd_type) {
case DCCP_PKT_REQUEST:
dccp_hdr_request(skb)->dccph_req_service =
dp->dccps_service;
/*
* Limit Ack window to ISS <= P.ackno <= GSS, so that
* only Responses to Requests we sent are considered.
*/
dp->dccps_awl = dp->dccps_iss;
break;
case DCCP_PKT_RESET:
dccp_hdr_reset(skb)->dccph_reset_code =
dcb->dccpd_reset_code;
break;
}
icsk->icsk_af_ops->send_check(sk, skb);
if (set_ack)
dccp_event_ack_sent(sk);
DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
return net_xmit_eval(err);
}
return -ENOBUFS;
}
/**
* dccp_determine_ccmps - Find out about CCID-specific packet-size limits
* @dp: socket to find packet size limits of
*
* We only consider the HC-sender CCID for setting the CCMPS (RFC 4340, 14.),
* since the RX CCID is restricted to feedback packets (Acks), which are small
* in comparison with the data traffic. A value of 0 means "no current CCMPS".
*/
static u32 dccp_determine_ccmps(const struct dccp_sock *dp)
{
const struct ccid *tx_ccid = dp->dccps_hc_tx_ccid;
if (tx_ccid == NULL || tx_ccid->ccid_ops == NULL)
return 0;
return tx_ccid->ccid_ops->ccid_ccmps;
}
unsigned int dccp_sync_mss(struct sock *sk, u32 pmtu)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct dccp_sock *dp = dccp_sk(sk);
u32 ccmps = dccp_determine_ccmps(dp);
u32 cur_mps = ccmps ? min(pmtu, ccmps) : pmtu;
/* Account for header lengths and IPv4/v6 option overhead */
cur_mps -= (icsk->icsk_af_ops->net_header_len + icsk->icsk_ext_hdr_len +
sizeof(struct dccp_hdr) + sizeof(struct dccp_hdr_ext));
/*
* Leave enough headroom for common DCCP header options.
* This only considers options which may appear on DCCP-Data packets, as
* per table 3 in RFC 4340, 5.8. When running out of space for other
* options (eg. Ack Vector which can take up to 255 bytes), it is better
* to schedule a separate Ack. Thus we leave headroom for the following:
* - 1 byte for Slow Receiver (11.6)
* - 6 bytes for Timestamp (13.1)
* - 10 bytes for Timestamp Echo (13.3)
* - 8 bytes for NDP count (7.7, when activated)
* - 6 bytes for Data Checksum (9.3)
* - %DCCPAV_MIN_OPTLEN bytes for Ack Vector size (11.4, when enabled)
*/
cur_mps -= roundup(1 + 6 + 10 + dp->dccps_send_ndp_count * 8 + 6 +
(dp->dccps_hc_rx_ackvec ? DCCPAV_MIN_OPTLEN : 0), 4);
/* And store cached results */
icsk->icsk_pmtu_cookie = pmtu;
WRITE_ONCE(dp->dccps_mss_cache, cur_mps);
return cur_mps;
}
EXPORT_SYMBOL_GPL(dccp_sync_mss);
void dccp_write_space(struct sock *sk)
{
struct socket_wq *wq;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible(&wq->wait);
/* Should agree with poll, otherwise some programs break */
if (sock_writeable(sk))
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
/**
* dccp_wait_for_ccid - Await CCID send permission
* @sk: socket to wait for
* @delay: timeout in jiffies
*
* This is used by CCIDs which need to delay the send time in process context.
*/
static int dccp_wait_for_ccid(struct sock *sk, unsigned long delay)
{
DEFINE_WAIT(wait);
long remaining;
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
sk->sk_write_pending++;
release_sock(sk);
remaining = schedule_timeout(delay);
lock_sock(sk);
sk->sk_write_pending--;
finish_wait(sk_sleep(sk), &wait);
if (signal_pending(current) || sk->sk_err)
return -1;
return remaining;
}
/**
* dccp_xmit_packet - Send data packet under control of CCID
* @sk: socket to send data packet on
*
* Transmits next-queued payload and informs CCID to account for the packet.
*/
static void dccp_xmit_packet(struct sock *sk)
{
int err, len;
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb = dccp_qpolicy_pop(sk);
if (unlikely(skb == NULL))
return;
len = skb->len;
if (sk->sk_state == DCCP_PARTOPEN) {
const u32 cur_mps = dp->dccps_mss_cache - DCCP_FEATNEG_OVERHEAD;
/*
* See 8.1.5 - Handshake Completion.
*
* For robustness we resend Confirm options until the client has
* entered OPEN. During the initial feature negotiation, the MPS
* is smaller than usual, reduced by the Change/Confirm options.
*/
if (!list_empty(&dp->dccps_featneg) && len > cur_mps) {
DCCP_WARN("Payload too large (%d) for featneg.\n", len);
dccp_send_ack(sk);
dccp_feat_list_purge(&dp->dccps_featneg);
}
inet_csk_schedule_ack(sk);
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
inet_csk(sk)->icsk_rto,
DCCP_RTO_MAX);
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATAACK;
} else if (dccp_ack_pending(sk)) {
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATAACK;
} else {
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_DATA;
}
err = dccp_transmit_skb(sk, skb);
if (err)
dccp_pr_debug("transmit_skb() returned err=%d\n", err);
/*
* Register this one as sent even if an error occurred. To the remote
* end a local packet drop is indistinguishable from network loss, i.e.
* any local drop will eventually be reported via receiver feedback.
*/
ccid_hc_tx_packet_sent(dp->dccps_hc_tx_ccid, sk, len);
/*
* If the CCID needs to transfer additional header options out-of-band
* (e.g. Ack Vectors or feature-negotiation options), it activates this
* flag to schedule a Sync. The Sync will automatically incorporate all
* currently pending header options, thus clearing the backlog.
*/
if (dp->dccps_sync_scheduled)
dccp_send_sync(sk, dp->dccps_gsr, DCCP_PKT_SYNC);
}
/**
* dccp_flush_write_queue - Drain queue at end of connection
* @sk: socket to be drained
* @time_budget: time allowed to drain the queue
*
* Since dccp_sendmsg queues packets without waiting for them to be sent, it may
* happen that the TX queue is not empty at the end of a connection. We give the
* HC-sender CCID a grace period of up to @time_budget jiffies. If this function
* returns with a non-empty write queue, it will be purged later.
*/
void dccp_flush_write_queue(struct sock *sk, long *time_budget)
{
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb;
long delay, rc;
while (*time_budget > 0 && (skb = skb_peek(&sk->sk_write_queue))) {
rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb);
switch (ccid_packet_dequeue_eval(rc)) {
case CCID_PACKET_WILL_DEQUEUE_LATER:
/*
* If the CCID determines when to send, the next sending
* time is unknown or the CCID may not even send again
* (e.g. remote host crashes or lost Ack packets).
*/
DCCP_WARN("CCID did not manage to send all packets\n");
return;
case CCID_PACKET_DELAY:
delay = msecs_to_jiffies(rc);
if (delay > *time_budget)
return;
rc = dccp_wait_for_ccid(sk, delay);
if (rc < 0)
return;
*time_budget -= (delay - rc);
/* check again if we can send now */
break;
case CCID_PACKET_SEND_AT_ONCE:
dccp_xmit_packet(sk);
break;
case CCID_PACKET_ERR:
skb_dequeue(&sk->sk_write_queue);
kfree_skb(skb);
dccp_pr_debug("packet discarded due to err=%ld\n", rc);
}
}
}
void dccp_write_xmit(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb;
while ((skb = dccp_qpolicy_top(sk))) {
int rc = ccid_hc_tx_send_packet(dp->dccps_hc_tx_ccid, sk, skb);
switch (ccid_packet_dequeue_eval(rc)) {
case CCID_PACKET_WILL_DEQUEUE_LATER:
return;
case CCID_PACKET_DELAY:
sk_reset_timer(sk, &dp->dccps_xmit_timer,
jiffies + msecs_to_jiffies(rc));
return;
case CCID_PACKET_SEND_AT_ONCE:
dccp_xmit_packet(sk);
break;
case CCID_PACKET_ERR:
dccp_qpolicy_drop(sk, skb);
dccp_pr_debug("packet discarded due to err=%d\n", rc);
}
}
}
/**
* dccp_retransmit_skb - Retransmit Request, Close, or CloseReq packets
* @sk: socket to perform retransmit on
*
* There are only four retransmittable packet types in DCCP:
* - Request in client-REQUEST state (sec. 8.1.1),
* - CloseReq in server-CLOSEREQ state (sec. 8.3),
* - Close in node-CLOSING state (sec. 8.3),
* - Acks in client-PARTOPEN state (sec. 8.1.5, handled by dccp_delack_timer()).
* This function expects sk->sk_send_head to contain the original skb.
*/
int dccp_retransmit_skb(struct sock *sk)
{
WARN_ON(sk->sk_send_head == NULL);
if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk) != 0)
return -EHOSTUNREACH; /* Routing failure or similar. */
/* this count is used to distinguish original and retransmitted skb */
inet_csk(sk)->icsk_retransmits++;
return dccp_transmit_skb(sk, skb_clone(sk->sk_send_head, GFP_ATOMIC));
}
struct sk_buff *dccp_make_response(const struct sock *sk, struct dst_entry *dst,
struct request_sock *req)
{
struct dccp_hdr *dh;
struct dccp_request_sock *dreq;
const u32 dccp_header_size = sizeof(struct dccp_hdr) +
sizeof(struct dccp_hdr_ext) +
sizeof(struct dccp_hdr_response);
struct sk_buff *skb;
/* sk is marked const to clearly express we dont hold socket lock.
* sock_wmalloc() will atomically change sk->sk_wmem_alloc,
* it is safe to promote sk to non const.
*/
skb = sock_wmalloc((struct sock *)sk, MAX_DCCP_HEADER, 1,
GFP_ATOMIC);
if (!skb)
return NULL;
skb_reserve(skb, MAX_DCCP_HEADER);
skb_dst_set(skb, dst_clone(dst));
dreq = dccp_rsk(req);
if (inet_rsk(req)->acked) /* increase GSS upon retransmission */
dccp_inc_seqno(&dreq->dreq_gss);
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESPONSE;
DCCP_SKB_CB(skb)->dccpd_seq = dreq->dreq_gss;
/* Resolve feature dependencies resulting from choice of CCID */
if (dccp_feat_server_ccid_dependencies(dreq))
goto response_failed;
if (dccp_insert_options_rsk(dreq, skb))
goto response_failed;
/* Build and checksum header */
dh = dccp_zeroed_hdr(skb, dccp_header_size);
dh->dccph_sport = htons(inet_rsk(req)->ir_num);
dh->dccph_dport = inet_rsk(req)->ir_rmt_port;
dh->dccph_doff = (dccp_header_size +
DCCP_SKB_CB(skb)->dccpd_opt_len) / 4;
dh->dccph_type = DCCP_PKT_RESPONSE;
dh->dccph_x = 1;
dccp_hdr_set_seq(dh, dreq->dreq_gss);
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dreq->dreq_gsr);
dccp_hdr_response(skb)->dccph_resp_service = dreq->dreq_service;
dccp_csum_outgoing(skb);
/* We use `acked' to remember that a Response was already sent. */
inet_rsk(req)->acked = 1;
DCCP_INC_STATS(DCCP_MIB_OUTSEGS);
return skb;
response_failed:
kfree_skb(skb);
return NULL;
}
EXPORT_SYMBOL_GPL(dccp_make_response);
/* answer offending packet in @rcv_skb with Reset from control socket @ctl */
struct sk_buff *dccp_ctl_make_reset(struct sock *sk, struct sk_buff *rcv_skb)
{
struct dccp_hdr *rxdh = dccp_hdr(rcv_skb), *dh;
struct dccp_skb_cb *dcb = DCCP_SKB_CB(rcv_skb);
const u32 dccp_hdr_reset_len = sizeof(struct dccp_hdr) +
sizeof(struct dccp_hdr_ext) +
sizeof(struct dccp_hdr_reset);
struct dccp_hdr_reset *dhr;
struct sk_buff *skb;
skb = alloc_skb(sk->sk_prot->max_header, GFP_ATOMIC);
if (skb == NULL)
return NULL;
skb_reserve(skb, sk->sk_prot->max_header);
/* Swap the send and the receive. */
dh = dccp_zeroed_hdr(skb, dccp_hdr_reset_len);
dh->dccph_type = DCCP_PKT_RESET;
dh->dccph_sport = rxdh->dccph_dport;
dh->dccph_dport = rxdh->dccph_sport;
dh->dccph_doff = dccp_hdr_reset_len / 4;
dh->dccph_x = 1;
dhr = dccp_hdr_reset(skb);
dhr->dccph_reset_code = dcb->dccpd_reset_code;
switch (dcb->dccpd_reset_code) {
case DCCP_RESET_CODE_PACKET_ERROR:
dhr->dccph_reset_data[0] = rxdh->dccph_type;
break;
case DCCP_RESET_CODE_OPTION_ERROR:
case DCCP_RESET_CODE_MANDATORY_ERROR:
memcpy(dhr->dccph_reset_data, dcb->dccpd_reset_data, 3);
break;
}
/*
* From RFC 4340, 8.3.1:
* If P.ackno exists, set R.seqno := P.ackno + 1.
* Else set R.seqno := 0.
*/
if (dcb->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ)
dccp_hdr_set_seq(dh, ADD48(dcb->dccpd_ack_seq, 1));
dccp_hdr_set_ack(dccp_hdr_ack_bits(skb), dcb->dccpd_seq);
dccp_csum_outgoing(skb);
return skb;
}
EXPORT_SYMBOL_GPL(dccp_ctl_make_reset);
/* send Reset on established socket, to close or abort the connection */
int dccp_send_reset(struct sock *sk, enum dccp_reset_codes code)
{
struct sk_buff *skb;
/*
* FIXME: what if rebuild_header fails?
* Should we be doing a rebuild_header here?
*/
int err = inet_csk(sk)->icsk_af_ops->rebuild_header(sk);
if (err != 0)
return err;
skb = sock_wmalloc(sk, sk->sk_prot->max_header, 1, GFP_ATOMIC);
if (skb == NULL)
return -ENOBUFS;
/* Reserve space for headers and prepare control bits. */
skb_reserve(skb, sk->sk_prot->max_header);
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_RESET;
DCCP_SKB_CB(skb)->dccpd_reset_code = code;
return dccp_transmit_skb(sk, skb);
}
/*
* Do all connect socket setups that can be done AF independent.
*/
int dccp_connect(struct sock *sk)
{
struct sk_buff *skb;
struct dccp_sock *dp = dccp_sk(sk);
struct dst_entry *dst = __sk_dst_get(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
sk->sk_err = 0;
sock_reset_flag(sk, SOCK_DONE);
dccp_sync_mss(sk, dst_mtu(dst));
/* do not connect if feature negotiation setup fails */
if (dccp_feat_finalise_settings(dccp_sk(sk)))
return -EPROTO;
/* Initialise GAR as per 8.5; AWL/AWH are set in dccp_transmit_skb() */
dp->dccps_gar = dp->dccps_iss;
skb = alloc_skb(sk->sk_prot->max_header, sk->sk_allocation);
if (unlikely(skb == NULL))
return -ENOBUFS;
/* Reserve space for headers. */
skb_reserve(skb, sk->sk_prot->max_header);
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_REQUEST;
dccp_transmit_skb(sk, dccp_skb_entail(sk, skb));
DCCP_INC_STATS(DCCP_MIB_ACTIVEOPENS);
/* Timer for repeating the REQUEST until an answer. */
icsk->icsk_retransmits = 0;
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
icsk->icsk_rto, DCCP_RTO_MAX);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_connect);
void dccp_send_ack(struct sock *sk)
{
/* If we have been reset, we may not send again. */
if (sk->sk_state != DCCP_CLOSED) {
struct sk_buff *skb = alloc_skb(sk->sk_prot->max_header,
GFP_ATOMIC);
if (skb == NULL) {
inet_csk_schedule_ack(sk);
inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
TCP_DELACK_MAX,
DCCP_RTO_MAX);
return;
}
/* Reserve space for headers */
skb_reserve(skb, sk->sk_prot->max_header);
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_ACK;
dccp_transmit_skb(sk, skb);
}
}
EXPORT_SYMBOL_GPL(dccp_send_ack);
#if 0
/* FIXME: Is this still necessary (11.3) - currently nowhere used by DCCP. */
void dccp_send_delayed_ack(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
/*
* FIXME: tune this timer. elapsed time fixes the skew, so no problem
* with using 2s, and active senders also piggyback the ACK into a
* DATAACK packet, so this is really for quiescent senders.
*/
unsigned long timeout = jiffies + 2 * HZ;
/* Use new timeout only if there wasn't a older one earlier. */
if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
/* If delack timer was blocked or is about to expire,
* send ACK now.
*
* FIXME: check the "about to expire" part
*/
if (icsk->icsk_ack.blocked) {
dccp_send_ack(sk);
return;
}
if (!time_before(timeout, icsk->icsk_ack.timeout))
timeout = icsk->icsk_ack.timeout;
}
icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
icsk->icsk_ack.timeout = timeout;
sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
}
#endif
void dccp_send_sync(struct sock *sk, const u64 ackno,
const enum dccp_pkt_type pkt_type)
{
/*
* We are not putting this on the write queue, so
* dccp_transmit_skb() will set the ownership to this
* sock.
*/
struct sk_buff *skb = alloc_skb(sk->sk_prot->max_header, GFP_ATOMIC);
if (skb == NULL) {
/* FIXME: how to make sure the sync is sent? */
DCCP_CRIT("could not send %s", dccp_packet_name(pkt_type));
return;
}
/* Reserve space for headers and prepare control bits. */
skb_reserve(skb, sk->sk_prot->max_header);
DCCP_SKB_CB(skb)->dccpd_type = pkt_type;
DCCP_SKB_CB(skb)->dccpd_ack_seq = ackno;
/*
* Clear the flag in case the Sync was scheduled for out-of-band data,
* such as carrying a long Ack Vector.
*/
dccp_sk(sk)->dccps_sync_scheduled = 0;
dccp_transmit_skb(sk, skb);
}
EXPORT_SYMBOL_GPL(dccp_send_sync);
/*
* Send a DCCP_PKT_CLOSE/CLOSEREQ. The caller locks the socket for us. This
* cannot be allowed to fail queueing a DCCP_PKT_CLOSE/CLOSEREQ frame under
* any circumstances.
*/
void dccp_send_close(struct sock *sk, const int active)
{
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb;
const gfp_t prio = active ? GFP_KERNEL : GFP_ATOMIC;
skb = alloc_skb(sk->sk_prot->max_header, prio);
if (skb == NULL)
return;
/* Reserve space for headers and prepare control bits. */
skb_reserve(skb, sk->sk_prot->max_header);
if (dp->dccps_role == DCCP_ROLE_SERVER && !dp->dccps_server_timewait)
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_CLOSEREQ;
else
DCCP_SKB_CB(skb)->dccpd_type = DCCP_PKT_CLOSE;
if (active) {
skb = dccp_skb_entail(sk, skb);
/*
* Retransmission timer for active-close: RFC 4340, 8.3 requires
* to retransmit the Close/CloseReq until the CLOSING/CLOSEREQ
* state can be left. The initial timeout is 2 RTTs.
* Since RTT measurement is done by the CCIDs, there is no easy
* way to get an RTT sample. The fallback RTT from RFC 4340, 3.4
* is too low (200ms); we use a high value to avoid unnecessary
* retransmissions when the link RTT is > 0.2 seconds.
* FIXME: Let main module sample RTTs and use that instead.
*/
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
DCCP_TIMEOUT_INIT, DCCP_RTO_MAX);
}
dccp_transmit_skb(sk, skb);
}
| linux-master | net/dccp/output.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/options.c
*
* An implementation of the DCCP protocol
* Copyright (c) 2005 Aristeu Sergio Rozanski Filho <[email protected]>
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
* Copyright (c) 2005 Ian McDonald <[email protected]>
*/
#include <linux/dccp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include "ackvec.h"
#include "ccid.h"
#include "dccp.h"
#include "feat.h"
u64 dccp_decode_value_var(const u8 *bf, const u8 len)
{
u64 value = 0;
if (len >= DCCP_OPTVAL_MAXLEN)
value += ((u64)*bf++) << 40;
if (len > 4)
value += ((u64)*bf++) << 32;
if (len > 3)
value += ((u64)*bf++) << 24;
if (len > 2)
value += ((u64)*bf++) << 16;
if (len > 1)
value += ((u64)*bf++) << 8;
if (len > 0)
value += *bf;
return value;
}
/**
* dccp_parse_options - Parse DCCP options present in @skb
* @sk: client|server|listening dccp socket (when @dreq != NULL)
* @dreq: request socket to use during connection setup, or NULL
* @skb: frame to parse
*/
int dccp_parse_options(struct sock *sk, struct dccp_request_sock *dreq,
struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
const struct dccp_hdr *dh = dccp_hdr(skb);
const u8 pkt_type = DCCP_SKB_CB(skb)->dccpd_type;
unsigned char *options = (unsigned char *)dh + dccp_hdr_len(skb);
unsigned char *opt_ptr = options;
const unsigned char *opt_end = (unsigned char *)dh +
(dh->dccph_doff * 4);
struct dccp_options_received *opt_recv = &dp->dccps_options_received;
unsigned char opt, len;
unsigned char *value;
u32 elapsed_time;
__be32 opt_val;
int rc;
int mandatory = 0;
memset(opt_recv, 0, sizeof(*opt_recv));
opt = len = 0;
while (opt_ptr != opt_end) {
opt = *opt_ptr++;
len = 0;
value = NULL;
/* Check if this isn't a single byte option */
if (opt > DCCPO_MAX_RESERVED) {
if (opt_ptr == opt_end)
goto out_nonsensical_length;
len = *opt_ptr++;
if (len < 2)
goto out_nonsensical_length;
/*
* Remove the type and len fields, leaving
* just the value size
*/
len -= 2;
value = opt_ptr;
opt_ptr += len;
if (opt_ptr > opt_end)
goto out_nonsensical_length;
}
/*
* CCID-specific options are ignored during connection setup, as
* negotiation may still be in progress (see RFC 4340, 10.3).
* The same applies to Ack Vectors, as these depend on the CCID.
*/
if (dreq != NULL && (opt >= DCCPO_MIN_RX_CCID_SPECIFIC ||
opt == DCCPO_ACK_VECTOR_0 || opt == DCCPO_ACK_VECTOR_1))
goto ignore_option;
switch (opt) {
case DCCPO_PADDING:
break;
case DCCPO_MANDATORY:
if (mandatory)
goto out_invalid_option;
if (pkt_type != DCCP_PKT_DATA)
mandatory = 1;
break;
case DCCPO_NDP_COUNT:
if (len > 6)
goto out_invalid_option;
opt_recv->dccpor_ndp = dccp_decode_value_var(value, len);
dccp_pr_debug("%s opt: NDP count=%llu\n", dccp_role(sk),
(unsigned long long)opt_recv->dccpor_ndp);
break;
case DCCPO_CHANGE_L ... DCCPO_CONFIRM_R:
if (pkt_type == DCCP_PKT_DATA) /* RFC 4340, 6 */
break;
if (len == 0)
goto out_invalid_option;
rc = dccp_feat_parse_options(sk, dreq, mandatory, opt,
*value, value + 1, len - 1);
if (rc)
goto out_featneg_failed;
break;
case DCCPO_TIMESTAMP:
if (len != 4)
goto out_invalid_option;
/*
* RFC 4340 13.1: "The precise time corresponding to
* Timestamp Value zero is not specified". We use
* zero to indicate absence of a meaningful timestamp.
*/
opt_val = get_unaligned((__be32 *)value);
if (unlikely(opt_val == 0)) {
DCCP_WARN("Timestamp with zero value\n");
break;
}
if (dreq != NULL) {
dreq->dreq_timestamp_echo = ntohl(opt_val);
dreq->dreq_timestamp_time = dccp_timestamp();
} else {
opt_recv->dccpor_timestamp =
dp->dccps_timestamp_echo = ntohl(opt_val);
dp->dccps_timestamp_time = dccp_timestamp();
}
dccp_pr_debug("%s rx opt: TIMESTAMP=%u, ackno=%llu\n",
dccp_role(sk), ntohl(opt_val),
(unsigned long long)
DCCP_SKB_CB(skb)->dccpd_ack_seq);
/* schedule an Ack in case this sender is quiescent */
inet_csk_schedule_ack(sk);
break;
case DCCPO_TIMESTAMP_ECHO:
if (len != 4 && len != 6 && len != 8)
goto out_invalid_option;
opt_val = get_unaligned((__be32 *)value);
opt_recv->dccpor_timestamp_echo = ntohl(opt_val);
dccp_pr_debug("%s rx opt: TIMESTAMP_ECHO=%u, len=%d, "
"ackno=%llu", dccp_role(sk),
opt_recv->dccpor_timestamp_echo,
len + 2,
(unsigned long long)
DCCP_SKB_CB(skb)->dccpd_ack_seq);
value += 4;
if (len == 4) { /* no elapsed time included */
dccp_pr_debug_cat("\n");
break;
}
if (len == 6) { /* 2-byte elapsed time */
__be16 opt_val2 = get_unaligned((__be16 *)value);
elapsed_time = ntohs(opt_val2);
} else { /* 4-byte elapsed time */
opt_val = get_unaligned((__be32 *)value);
elapsed_time = ntohl(opt_val);
}
dccp_pr_debug_cat(", ELAPSED_TIME=%u\n", elapsed_time);
/* Give precedence to the biggest ELAPSED_TIME */
if (elapsed_time > opt_recv->dccpor_elapsed_time)
opt_recv->dccpor_elapsed_time = elapsed_time;
break;
case DCCPO_ELAPSED_TIME:
if (dccp_packet_without_ack(skb)) /* RFC 4340, 13.2 */
break;
if (len == 2) {
__be16 opt_val2 = get_unaligned((__be16 *)value);
elapsed_time = ntohs(opt_val2);
} else if (len == 4) {
opt_val = get_unaligned((__be32 *)value);
elapsed_time = ntohl(opt_val);
} else {
goto out_invalid_option;
}
if (elapsed_time > opt_recv->dccpor_elapsed_time)
opt_recv->dccpor_elapsed_time = elapsed_time;
dccp_pr_debug("%s rx opt: ELAPSED_TIME=%d\n",
dccp_role(sk), elapsed_time);
break;
case DCCPO_MIN_RX_CCID_SPECIFIC ... DCCPO_MAX_RX_CCID_SPECIFIC:
if (ccid_hc_rx_parse_options(dp->dccps_hc_rx_ccid, sk,
pkt_type, opt, value, len))
goto out_invalid_option;
break;
case DCCPO_ACK_VECTOR_0:
case DCCPO_ACK_VECTOR_1:
if (dccp_packet_without_ack(skb)) /* RFC 4340, 11.4 */
break;
/*
* Ack vectors are processed by the TX CCID if it is
* interested. The RX CCID need not parse Ack Vectors,
* since it is only interested in clearing old state.
*/
fallthrough;
case DCCPO_MIN_TX_CCID_SPECIFIC ... DCCPO_MAX_TX_CCID_SPECIFIC:
if (ccid_hc_tx_parse_options(dp->dccps_hc_tx_ccid, sk,
pkt_type, opt, value, len))
goto out_invalid_option;
break;
default:
DCCP_CRIT("DCCP(%p): option %d(len=%d) not "
"implemented, ignoring", sk, opt, len);
break;
}
ignore_option:
if (opt != DCCPO_MANDATORY)
mandatory = 0;
}
/* mandatory was the last byte in option list -> reset connection */
if (mandatory)
goto out_invalid_option;
out_nonsensical_length:
/* RFC 4340, 5.8: ignore option and all remaining option space */
return 0;
out_invalid_option:
DCCP_INC_STATS(DCCP_MIB_INVALIDOPT);
rc = DCCP_RESET_CODE_OPTION_ERROR;
out_featneg_failed:
DCCP_WARN("DCCP(%p): Option %d (len=%d) error=%u\n", sk, opt, len, rc);
DCCP_SKB_CB(skb)->dccpd_reset_code = rc;
DCCP_SKB_CB(skb)->dccpd_reset_data[0] = opt;
DCCP_SKB_CB(skb)->dccpd_reset_data[1] = len > 0 ? value[0] : 0;
DCCP_SKB_CB(skb)->dccpd_reset_data[2] = len > 1 ? value[1] : 0;
return -1;
}
EXPORT_SYMBOL_GPL(dccp_parse_options);
void dccp_encode_value_var(const u64 value, u8 *to, const u8 len)
{
if (len >= DCCP_OPTVAL_MAXLEN)
*to++ = (value & 0xFF0000000000ull) >> 40;
if (len > 4)
*to++ = (value & 0xFF00000000ull) >> 32;
if (len > 3)
*to++ = (value & 0xFF000000) >> 24;
if (len > 2)
*to++ = (value & 0xFF0000) >> 16;
if (len > 1)
*to++ = (value & 0xFF00) >> 8;
if (len > 0)
*to++ = (value & 0xFF);
}
static inline u8 dccp_ndp_len(const u64 ndp)
{
if (likely(ndp <= 0xFF))
return 1;
return likely(ndp <= USHRT_MAX) ? 2 : (ndp <= UINT_MAX ? 4 : 6);
}
int dccp_insert_option(struct sk_buff *skb, const unsigned char option,
const void *value, const unsigned char len)
{
unsigned char *to;
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len + 2 > DCCP_MAX_OPT_LEN)
return -1;
DCCP_SKB_CB(skb)->dccpd_opt_len += len + 2;
to = skb_push(skb, len + 2);
*to++ = option;
*to++ = len + 2;
memcpy(to, value, len);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_insert_option);
static int dccp_insert_option_ndp(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
u64 ndp = dp->dccps_ndp_count;
if (dccp_non_data_packet(skb))
++dp->dccps_ndp_count;
else
dp->dccps_ndp_count = 0;
if (ndp > 0) {
unsigned char *ptr;
const int ndp_len = dccp_ndp_len(ndp);
const int len = ndp_len + 2;
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len > DCCP_MAX_OPT_LEN)
return -1;
DCCP_SKB_CB(skb)->dccpd_opt_len += len;
ptr = skb_push(skb, len);
*ptr++ = DCCPO_NDP_COUNT;
*ptr++ = len;
dccp_encode_value_var(ndp, ptr, ndp_len);
}
return 0;
}
static inline int dccp_elapsed_time_len(const u32 elapsed_time)
{
return elapsed_time == 0 ? 0 : elapsed_time <= 0xFFFF ? 2 : 4;
}
static int dccp_insert_option_timestamp(struct sk_buff *skb)
{
__be32 now = htonl(dccp_timestamp());
/* yes this will overflow but that is the point as we want a
* 10 usec 32 bit timer which mean it wraps every 11.9 hours */
return dccp_insert_option(skb, DCCPO_TIMESTAMP, &now, sizeof(now));
}
static int dccp_insert_option_timestamp_echo(struct dccp_sock *dp,
struct dccp_request_sock *dreq,
struct sk_buff *skb)
{
__be32 tstamp_echo;
unsigned char *to;
u32 elapsed_time, elapsed_time_len, len;
if (dreq != NULL) {
elapsed_time = dccp_timestamp() - dreq->dreq_timestamp_time;
tstamp_echo = htonl(dreq->dreq_timestamp_echo);
dreq->dreq_timestamp_echo = 0;
} else {
elapsed_time = dccp_timestamp() - dp->dccps_timestamp_time;
tstamp_echo = htonl(dp->dccps_timestamp_echo);
dp->dccps_timestamp_echo = 0;
}
elapsed_time_len = dccp_elapsed_time_len(elapsed_time);
len = 6 + elapsed_time_len;
if (DCCP_SKB_CB(skb)->dccpd_opt_len + len > DCCP_MAX_OPT_LEN)
return -1;
DCCP_SKB_CB(skb)->dccpd_opt_len += len;
to = skb_push(skb, len);
*to++ = DCCPO_TIMESTAMP_ECHO;
*to++ = len;
memcpy(to, &tstamp_echo, 4);
to += 4;
if (elapsed_time_len == 2) {
const __be16 var16 = htons((u16)elapsed_time);
memcpy(to, &var16, 2);
} else if (elapsed_time_len == 4) {
const __be32 var32 = htonl(elapsed_time);
memcpy(to, &var32, 4);
}
return 0;
}
static int dccp_insert_option_ackvec(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_ackvec *av = dp->dccps_hc_rx_ackvec;
struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb);
const u16 buflen = dccp_ackvec_buflen(av);
/* Figure out how many options do we need to represent the ackvec */
const u8 nr_opts = DIV_ROUND_UP(buflen, DCCP_SINGLE_OPT_MAXLEN);
u16 len = buflen + 2 * nr_opts;
u8 i, nonce = 0;
const unsigned char *tail, *from;
unsigned char *to;
if (dcb->dccpd_opt_len + len > DCCP_MAX_OPT_LEN) {
DCCP_WARN("Lacking space for %u bytes on %s packet\n", len,
dccp_packet_name(dcb->dccpd_type));
return -1;
}
/*
* Since Ack Vectors are variable-length, we can not always predict
* their size. To catch exception cases where the space is running out
* on the skb, a separate Sync is scheduled to carry the Ack Vector.
*/
if (len > DCCPAV_MIN_OPTLEN &&
len + dcb->dccpd_opt_len + skb->len > dp->dccps_mss_cache) {
DCCP_WARN("No space left for Ack Vector (%u) on skb (%u+%u), "
"MPS=%u ==> reduce payload size?\n", len, skb->len,
dcb->dccpd_opt_len, dp->dccps_mss_cache);
dp->dccps_sync_scheduled = 1;
return 0;
}
dcb->dccpd_opt_len += len;
to = skb_push(skb, len);
len = buflen;
from = av->av_buf + av->av_buf_head;
tail = av->av_buf + DCCPAV_MAX_ACKVEC_LEN;
for (i = 0; i < nr_opts; ++i) {
int copylen = len;
if (len > DCCP_SINGLE_OPT_MAXLEN)
copylen = DCCP_SINGLE_OPT_MAXLEN;
/*
* RFC 4340, 12.2: Encode the Nonce Echo for this Ack Vector via
* its type; ack_nonce is the sum of all individual buf_nonce's.
*/
nonce ^= av->av_buf_nonce[i];
*to++ = DCCPO_ACK_VECTOR_0 + av->av_buf_nonce[i];
*to++ = copylen + 2;
/* Check if buf_head wraps */
if (from + copylen > tail) {
const u16 tailsize = tail - from;
memcpy(to, from, tailsize);
to += tailsize;
len -= tailsize;
copylen -= tailsize;
from = av->av_buf;
}
memcpy(to, from, copylen);
from += copylen;
to += copylen;
len -= copylen;
}
/*
* Each sent Ack Vector is recorded in the list, as per A.2 of RFC 4340.
*/
if (dccp_ackvec_update_records(av, dcb->dccpd_seq, nonce))
return -ENOBUFS;
return 0;
}
/**
* dccp_insert_option_mandatory - Mandatory option (5.8.2)
* @skb: frame into which to insert option
*
* Note that since we are using skb_push, this function needs to be called
* _after_ inserting the option it is supposed to influence (stack order).
*/
int dccp_insert_option_mandatory(struct sk_buff *skb)
{
if (DCCP_SKB_CB(skb)->dccpd_opt_len >= DCCP_MAX_OPT_LEN)
return -1;
DCCP_SKB_CB(skb)->dccpd_opt_len++;
*(u8 *)skb_push(skb, 1) = DCCPO_MANDATORY;
return 0;
}
/**
* dccp_insert_fn_opt - Insert single Feature-Negotiation option into @skb
* @skb: frame to insert feature negotiation option into
* @type: %DCCPO_CHANGE_L, %DCCPO_CHANGE_R, %DCCPO_CONFIRM_L, %DCCPO_CONFIRM_R
* @feat: one out of %dccp_feature_numbers
* @val: NN value or SP array (preferred element first) to copy
* @len: true length of @val in bytes (excluding first element repetition)
* @repeat_first: whether to copy the first element of @val twice
*
* The last argument is used to construct Confirm options, where the preferred
* value and the preference list appear separately (RFC 4340, 6.3.1). Preference
* lists are kept such that the preferred entry is always first, so we only need
* to copy twice, and avoid the overhead of cloning into a bigger array.
*/
int dccp_insert_fn_opt(struct sk_buff *skb, u8 type, u8 feat,
u8 *val, u8 len, bool repeat_first)
{
u8 tot_len, *to;
/* take the `Feature' field and possible repetition into account */
if (len > (DCCP_SINGLE_OPT_MAXLEN - 2)) {
DCCP_WARN("length %u for feature %u too large\n", len, feat);
return -1;
}
if (unlikely(val == NULL || len == 0))
len = repeat_first = false;
tot_len = 3 + repeat_first + len;
if (DCCP_SKB_CB(skb)->dccpd_opt_len + tot_len > DCCP_MAX_OPT_LEN) {
DCCP_WARN("packet too small for feature %d option!\n", feat);
return -1;
}
DCCP_SKB_CB(skb)->dccpd_opt_len += tot_len;
to = skb_push(skb, tot_len);
*to++ = type;
*to++ = tot_len;
*to++ = feat;
if (repeat_first)
*to++ = *val;
if (len)
memcpy(to, val, len);
return 0;
}
/* The length of all options needs to be a multiple of 4 (5.8) */
static void dccp_insert_option_padding(struct sk_buff *skb)
{
int padding = DCCP_SKB_CB(skb)->dccpd_opt_len % 4;
if (padding != 0) {
padding = 4 - padding;
memset(skb_push(skb, padding), 0, padding);
DCCP_SKB_CB(skb)->dccpd_opt_len += padding;
}
}
int dccp_insert_options(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
DCCP_SKB_CB(skb)->dccpd_opt_len = 0;
if (dp->dccps_send_ndp_count && dccp_insert_option_ndp(sk, skb))
return -1;
if (DCCP_SKB_CB(skb)->dccpd_type != DCCP_PKT_DATA) {
/* Feature Negotiation */
if (dccp_feat_insert_opts(dp, NULL, skb))
return -1;
if (DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_REQUEST) {
/*
* Obtain RTT sample from Request/Response exchange.
* This is currently used for TFRC initialisation.
*/
if (dccp_insert_option_timestamp(skb))
return -1;
} else if (dccp_ackvec_pending(sk) &&
dccp_insert_option_ackvec(sk, skb)) {
return -1;
}
}
if (dp->dccps_hc_rx_insert_options) {
if (ccid_hc_rx_insert_options(dp->dccps_hc_rx_ccid, sk, skb))
return -1;
dp->dccps_hc_rx_insert_options = 0;
}
if (dp->dccps_timestamp_echo != 0 &&
dccp_insert_option_timestamp_echo(dp, NULL, skb))
return -1;
dccp_insert_option_padding(skb);
return 0;
}
int dccp_insert_options_rsk(struct dccp_request_sock *dreq, struct sk_buff *skb)
{
DCCP_SKB_CB(skb)->dccpd_opt_len = 0;
if (dccp_feat_insert_opts(NULL, dreq, skb))
return -1;
/* Obtain RTT sample from Response/Ack exchange (used by TFRC). */
if (dccp_insert_option_timestamp(skb))
return -1;
if (dreq->dreq_timestamp_echo != 0 &&
dccp_insert_option_timestamp_echo(NULL, dreq, skb))
return -1;
dccp_insert_option_padding(skb);
return 0;
}
| linux-master | net/dccp/options.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dccp/feat.c
*
* Feature negotiation for the DCCP protocol (RFC 4340, section 6)
*
* Copyright (c) 2008 Gerrit Renker <[email protected]>
* Rewrote from scratch, some bits from earlier code by
* Copyright (c) 2005 Andrea Bittau <[email protected]>
*
* ASSUMPTIONS
* -----------
* o Feature negotiation is coordinated with connection setup (as in TCP), wild
* changes of parameters of an established connection are not supported.
* o Changing non-negotiable (NN) values is supported in state OPEN/PARTOPEN.
* o All currently known SP features have 1-byte quantities. If in the future
* extensions of RFCs 4340..42 define features with item lengths larger than
* one byte, a feature-specific extension of the code will be required.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include "ccid.h"
#include "feat.h"
/* feature-specific sysctls - initialised to the defaults from RFC 4340, 6.4 */
unsigned long sysctl_dccp_sequence_window __read_mostly = 100;
int sysctl_dccp_rx_ccid __read_mostly = 2,
sysctl_dccp_tx_ccid __read_mostly = 2;
/*
* Feature activation handlers.
*
* These all use an u64 argument, to provide enough room for NN/SP features. At
* this stage the negotiated values have been checked to be within their range.
*/
static int dccp_hdlr_ccid(struct sock *sk, u64 ccid, bool rx)
{
struct dccp_sock *dp = dccp_sk(sk);
struct ccid *new_ccid = ccid_new(ccid, sk, rx);
if (new_ccid == NULL)
return -ENOMEM;
if (rx) {
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = new_ccid;
} else {
ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_tx_ccid = new_ccid;
}
return 0;
}
static int dccp_hdlr_seq_win(struct sock *sk, u64 seq_win, bool rx)
{
struct dccp_sock *dp = dccp_sk(sk);
if (rx) {
dp->dccps_r_seq_win = seq_win;
/* propagate changes to update SWL/SWH */
dccp_update_gsr(sk, dp->dccps_gsr);
} else {
dp->dccps_l_seq_win = seq_win;
/* propagate changes to update AWL */
dccp_update_gss(sk, dp->dccps_gss);
}
return 0;
}
static int dccp_hdlr_ack_ratio(struct sock *sk, u64 ratio, bool rx)
{
if (rx)
dccp_sk(sk)->dccps_r_ack_ratio = ratio;
else
dccp_sk(sk)->dccps_l_ack_ratio = ratio;
return 0;
}
static int dccp_hdlr_ackvec(struct sock *sk, u64 enable, bool rx)
{
struct dccp_sock *dp = dccp_sk(sk);
if (rx) {
if (enable && dp->dccps_hc_rx_ackvec == NULL) {
dp->dccps_hc_rx_ackvec = dccp_ackvec_alloc(gfp_any());
if (dp->dccps_hc_rx_ackvec == NULL)
return -ENOMEM;
} else if (!enable) {
dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
dp->dccps_hc_rx_ackvec = NULL;
}
}
return 0;
}
static int dccp_hdlr_ndp(struct sock *sk, u64 enable, bool rx)
{
if (!rx)
dccp_sk(sk)->dccps_send_ndp_count = (enable > 0);
return 0;
}
/*
* Minimum Checksum Coverage is located at the RX side (9.2.1). This means that
* `rx' holds when the sending peer informs about his partial coverage via a
* ChangeR() option. In the other case, we are the sender and the receiver
* announces its coverage via ChangeL() options. The policy here is to honour
* such communication by enabling the corresponding partial coverage - but only
* if it has not been set manually before; the warning here means that all
* packets will be dropped.
*/
static int dccp_hdlr_min_cscov(struct sock *sk, u64 cscov, bool rx)
{
struct dccp_sock *dp = dccp_sk(sk);
if (rx)
dp->dccps_pcrlen = cscov;
else {
if (dp->dccps_pcslen == 0)
dp->dccps_pcslen = cscov;
else if (cscov > dp->dccps_pcslen)
DCCP_WARN("CsCov %u too small, peer requires >= %u\n",
dp->dccps_pcslen, (u8)cscov);
}
return 0;
}
static const struct {
u8 feat_num; /* DCCPF_xxx */
enum dccp_feat_type rxtx; /* RX or TX */
enum dccp_feat_type reconciliation; /* SP or NN */
u8 default_value; /* as in 6.4 */
int (*activation_hdlr)(struct sock *sk, u64 val, bool rx);
/*
* Lookup table for location and type of features (from RFC 4340/4342)
* +--------------------------+----+-----+----+----+---------+-----------+
* | Feature | Location | Reconc. | Initial | Section |
* | | RX | TX | SP | NN | Value | Reference |
* +--------------------------+----+-----+----+----+---------+-----------+
* | DCCPF_CCID | | X | X | | 2 | 10 |
* | DCCPF_SHORT_SEQNOS | | X | X | | 0 | 7.6.1 |
* | DCCPF_SEQUENCE_WINDOW | | X | | X | 100 | 7.5.2 |
* | DCCPF_ECN_INCAPABLE | X | | X | | 0 | 12.1 |
* | DCCPF_ACK_RATIO | | X | | X | 2 | 11.3 |
* | DCCPF_SEND_ACK_VECTOR | X | | X | | 0 | 11.5 |
* | DCCPF_SEND_NDP_COUNT | | X | X | | 0 | 7.7.2 |
* | DCCPF_MIN_CSUM_COVER | X | | X | | 0 | 9.2.1 |
* | DCCPF_DATA_CHECKSUM | X | | X | | 0 | 9.3.1 |
* | DCCPF_SEND_LEV_RATE | X | | X | | 0 | 4342/8.4 |
* +--------------------------+----+-----+----+----+---------+-----------+
*/
} dccp_feat_table[] = {
{ DCCPF_CCID, FEAT_AT_TX, FEAT_SP, 2, dccp_hdlr_ccid },
{ DCCPF_SHORT_SEQNOS, FEAT_AT_TX, FEAT_SP, 0, NULL },
{ DCCPF_SEQUENCE_WINDOW, FEAT_AT_TX, FEAT_NN, 100, dccp_hdlr_seq_win },
{ DCCPF_ECN_INCAPABLE, FEAT_AT_RX, FEAT_SP, 0, NULL },
{ DCCPF_ACK_RATIO, FEAT_AT_TX, FEAT_NN, 2, dccp_hdlr_ack_ratio},
{ DCCPF_SEND_ACK_VECTOR, FEAT_AT_RX, FEAT_SP, 0, dccp_hdlr_ackvec },
{ DCCPF_SEND_NDP_COUNT, FEAT_AT_TX, FEAT_SP, 0, dccp_hdlr_ndp },
{ DCCPF_MIN_CSUM_COVER, FEAT_AT_RX, FEAT_SP, 0, dccp_hdlr_min_cscov},
{ DCCPF_DATA_CHECKSUM, FEAT_AT_RX, FEAT_SP, 0, NULL },
{ DCCPF_SEND_LEV_RATE, FEAT_AT_RX, FEAT_SP, 0, NULL },
};
#define DCCP_FEAT_SUPPORTED_MAX ARRAY_SIZE(dccp_feat_table)
/**
* dccp_feat_index - Hash function to map feature number into array position
* @feat_num: feature to hash, one of %dccp_feature_numbers
*
* Returns consecutive array index or -1 if the feature is not understood.
*/
static int dccp_feat_index(u8 feat_num)
{
/* The first 9 entries are occupied by the types from RFC 4340, 6.4 */
if (feat_num > DCCPF_RESERVED && feat_num <= DCCPF_DATA_CHECKSUM)
return feat_num - 1;
/*
* Other features: add cases for new feature types here after adding
* them to the above table.
*/
switch (feat_num) {
case DCCPF_SEND_LEV_RATE:
return DCCP_FEAT_SUPPORTED_MAX - 1;
}
return -1;
}
static u8 dccp_feat_type(u8 feat_num)
{
int idx = dccp_feat_index(feat_num);
if (idx < 0)
return FEAT_UNKNOWN;
return dccp_feat_table[idx].reconciliation;
}
static int dccp_feat_default_value(u8 feat_num)
{
int idx = dccp_feat_index(feat_num);
/*
* There are no default values for unknown features, so encountering a
* negative index here indicates a serious problem somewhere else.
*/
DCCP_BUG_ON(idx < 0);
return idx < 0 ? 0 : dccp_feat_table[idx].default_value;
}
/*
* Debugging and verbose-printing section
*/
static const char *dccp_feat_fname(const u8 feat)
{
static const char *const feature_names[] = {
[DCCPF_RESERVED] = "Reserved",
[DCCPF_CCID] = "CCID",
[DCCPF_SHORT_SEQNOS] = "Allow Short Seqnos",
[DCCPF_SEQUENCE_WINDOW] = "Sequence Window",
[DCCPF_ECN_INCAPABLE] = "ECN Incapable",
[DCCPF_ACK_RATIO] = "Ack Ratio",
[DCCPF_SEND_ACK_VECTOR] = "Send ACK Vector",
[DCCPF_SEND_NDP_COUNT] = "Send NDP Count",
[DCCPF_MIN_CSUM_COVER] = "Min. Csum Coverage",
[DCCPF_DATA_CHECKSUM] = "Send Data Checksum",
};
if (feat > DCCPF_DATA_CHECKSUM && feat < DCCPF_MIN_CCID_SPECIFIC)
return feature_names[DCCPF_RESERVED];
if (feat == DCCPF_SEND_LEV_RATE)
return "Send Loss Event Rate";
if (feat >= DCCPF_MIN_CCID_SPECIFIC)
return "CCID-specific";
return feature_names[feat];
}
static const char *const dccp_feat_sname[] = {
"DEFAULT", "INITIALISING", "CHANGING", "UNSTABLE", "STABLE",
};
#ifdef CONFIG_IP_DCCP_DEBUG
static const char *dccp_feat_oname(const u8 opt)
{
switch (opt) {
case DCCPO_CHANGE_L: return "Change_L";
case DCCPO_CONFIRM_L: return "Confirm_L";
case DCCPO_CHANGE_R: return "Change_R";
case DCCPO_CONFIRM_R: return "Confirm_R";
}
return NULL;
}
static void dccp_feat_printval(u8 feat_num, dccp_feat_val const *val)
{
u8 i, type = dccp_feat_type(feat_num);
if (val == NULL || (type == FEAT_SP && val->sp.vec == NULL))
dccp_pr_debug_cat("(NULL)");
else if (type == FEAT_SP)
for (i = 0; i < val->sp.len; i++)
dccp_pr_debug_cat("%s%u", i ? " " : "", val->sp.vec[i]);
else if (type == FEAT_NN)
dccp_pr_debug_cat("%llu", (unsigned long long)val->nn);
else
dccp_pr_debug_cat("unknown type %u", type);
}
static void dccp_feat_printvals(u8 feat_num, u8 *list, u8 len)
{
u8 type = dccp_feat_type(feat_num);
dccp_feat_val fval = { .sp.vec = list, .sp.len = len };
if (type == FEAT_NN)
fval.nn = dccp_decode_value_var(list, len);
dccp_feat_printval(feat_num, &fval);
}
static void dccp_feat_print_entry(struct dccp_feat_entry const *entry)
{
dccp_debug(" * %s %s = ", entry->is_local ? "local" : "remote",
dccp_feat_fname(entry->feat_num));
dccp_feat_printval(entry->feat_num, &entry->val);
dccp_pr_debug_cat(", state=%s %s\n", dccp_feat_sname[entry->state],
entry->needs_confirm ? "(Confirm pending)" : "");
}
#define dccp_feat_print_opt(opt, feat, val, len, mandatory) do { \
dccp_pr_debug("%s(%s, ", dccp_feat_oname(opt), dccp_feat_fname(feat));\
dccp_feat_printvals(feat, val, len); \
dccp_pr_debug_cat(") %s\n", mandatory ? "!" : ""); } while (0)
#define dccp_feat_print_fnlist(fn_list) { \
const struct dccp_feat_entry *___entry; \
\
dccp_pr_debug("List Dump:\n"); \
list_for_each_entry(___entry, fn_list, node) \
dccp_feat_print_entry(___entry); \
}
#else /* ! CONFIG_IP_DCCP_DEBUG */
#define dccp_feat_print_opt(opt, feat, val, len, mandatory)
#define dccp_feat_print_fnlist(fn_list)
#endif
static int __dccp_feat_activate(struct sock *sk, const int idx,
const bool is_local, dccp_feat_val const *fval)
{
bool rx;
u64 val;
if (idx < 0 || idx >= DCCP_FEAT_SUPPORTED_MAX)
return -1;
if (dccp_feat_table[idx].activation_hdlr == NULL)
return 0;
if (fval == NULL) {
val = dccp_feat_table[idx].default_value;
} else if (dccp_feat_table[idx].reconciliation == FEAT_SP) {
if (fval->sp.vec == NULL) {
/*
* This can happen when an empty Confirm is sent
* for an SP (i.e. known) feature. In this case
* we would be using the default anyway.
*/
DCCP_CRIT("Feature #%d undefined: using default", idx);
val = dccp_feat_table[idx].default_value;
} else {
val = fval->sp.vec[0];
}
} else {
val = fval->nn;
}
/* Location is RX if this is a local-RX or remote-TX feature */
rx = (is_local == (dccp_feat_table[idx].rxtx == FEAT_AT_RX));
dccp_debug(" -> activating %s %s, %sval=%llu\n", rx ? "RX" : "TX",
dccp_feat_fname(dccp_feat_table[idx].feat_num),
fval ? "" : "default ", (unsigned long long)val);
return dccp_feat_table[idx].activation_hdlr(sk, val, rx);
}
/**
* dccp_feat_activate - Activate feature value on socket
* @sk: fully connected DCCP socket (after handshake is complete)
* @feat_num: feature to activate, one of %dccp_feature_numbers
* @local: whether local (1) or remote (0) @feat_num is meant
* @fval: the value (SP or NN) to activate, or NULL to use the default value
*
* For general use this function is preferable over __dccp_feat_activate().
*/
static int dccp_feat_activate(struct sock *sk, u8 feat_num, bool local,
dccp_feat_val const *fval)
{
return __dccp_feat_activate(sk, dccp_feat_index(feat_num), local, fval);
}
/* Test for "Req'd" feature (RFC 4340, 6.4) */
static inline int dccp_feat_must_be_understood(u8 feat_num)
{
return feat_num == DCCPF_CCID || feat_num == DCCPF_SHORT_SEQNOS ||
feat_num == DCCPF_SEQUENCE_WINDOW;
}
/* copy constructor, fval must not already contain allocated memory */
static int dccp_feat_clone_sp_val(dccp_feat_val *fval, u8 const *val, u8 len)
{
fval->sp.len = len;
if (fval->sp.len > 0) {
fval->sp.vec = kmemdup(val, len, gfp_any());
if (fval->sp.vec == NULL) {
fval->sp.len = 0;
return -ENOMEM;
}
}
return 0;
}
static void dccp_feat_val_destructor(u8 feat_num, dccp_feat_val *val)
{
if (unlikely(val == NULL))
return;
if (dccp_feat_type(feat_num) == FEAT_SP)
kfree(val->sp.vec);
memset(val, 0, sizeof(*val));
}
static struct dccp_feat_entry *
dccp_feat_clone_entry(struct dccp_feat_entry const *original)
{
struct dccp_feat_entry *new;
u8 type = dccp_feat_type(original->feat_num);
if (type == FEAT_UNKNOWN)
return NULL;
new = kmemdup(original, sizeof(struct dccp_feat_entry), gfp_any());
if (new == NULL)
return NULL;
if (type == FEAT_SP && dccp_feat_clone_sp_val(&new->val,
original->val.sp.vec,
original->val.sp.len)) {
kfree(new);
return NULL;
}
return new;
}
static void dccp_feat_entry_destructor(struct dccp_feat_entry *entry)
{
if (entry != NULL) {
dccp_feat_val_destructor(entry->feat_num, &entry->val);
kfree(entry);
}
}
/*
* List management functions
*
* Feature negotiation lists rely on and maintain the following invariants:
* - each feat_num in the list is known, i.e. we know its type and default value
* - each feat_num/is_local combination is unique (old entries are overwritten)
* - SP values are always freshly allocated
* - list is sorted in increasing order of feature number (faster lookup)
*/
static struct dccp_feat_entry *dccp_feat_list_lookup(struct list_head *fn_list,
u8 feat_num, bool is_local)
{
struct dccp_feat_entry *entry;
list_for_each_entry(entry, fn_list, node) {
if (entry->feat_num == feat_num && entry->is_local == is_local)
return entry;
else if (entry->feat_num > feat_num)
break;
}
return NULL;
}
/**
* dccp_feat_entry_new - Central list update routine (called by all others)
* @head: list to add to
* @feat: feature number
* @local: whether the local (1) or remote feature with number @feat is meant
*
* This is the only constructor and serves to ensure the above invariants.
*/
static struct dccp_feat_entry *
dccp_feat_entry_new(struct list_head *head, u8 feat, bool local)
{
struct dccp_feat_entry *entry;
list_for_each_entry(entry, head, node)
if (entry->feat_num == feat && entry->is_local == local) {
dccp_feat_val_destructor(entry->feat_num, &entry->val);
return entry;
} else if (entry->feat_num > feat) {
head = &entry->node;
break;
}
entry = kmalloc(sizeof(*entry), gfp_any());
if (entry != NULL) {
entry->feat_num = feat;
entry->is_local = local;
list_add_tail(&entry->node, head);
}
return entry;
}
/**
* dccp_feat_push_change - Add/overwrite a Change option in the list
* @fn_list: feature-negotiation list to update
* @feat: one of %dccp_feature_numbers
* @local: whether local (1) or remote (0) @feat_num is meant
* @mandatory: whether to use Mandatory feature negotiation options
* @fval: pointer to NN/SP value to be inserted (will be copied)
*/
static int dccp_feat_push_change(struct list_head *fn_list, u8 feat, u8 local,
u8 mandatory, dccp_feat_val *fval)
{
struct dccp_feat_entry *new = dccp_feat_entry_new(fn_list, feat, local);
if (new == NULL)
return -ENOMEM;
new->feat_num = feat;
new->is_local = local;
new->state = FEAT_INITIALISING;
new->needs_confirm = false;
new->empty_confirm = false;
new->val = *fval;
new->needs_mandatory = mandatory;
return 0;
}
/**
* dccp_feat_push_confirm - Add a Confirm entry to the FN list
* @fn_list: feature-negotiation list to add to
* @feat: one of %dccp_feature_numbers
* @local: whether local (1) or remote (0) @feat_num is being confirmed
* @fval: pointer to NN/SP value to be inserted or NULL
*
* Returns 0 on success, a Reset code for further processing otherwise.
*/
static int dccp_feat_push_confirm(struct list_head *fn_list, u8 feat, u8 local,
dccp_feat_val *fval)
{
struct dccp_feat_entry *new = dccp_feat_entry_new(fn_list, feat, local);
if (new == NULL)
return DCCP_RESET_CODE_TOO_BUSY;
new->feat_num = feat;
new->is_local = local;
new->state = FEAT_STABLE; /* transition in 6.6.2 */
new->needs_confirm = true;
new->empty_confirm = (fval == NULL);
new->val.nn = 0; /* zeroes the whole structure */
if (!new->empty_confirm)
new->val = *fval;
new->needs_mandatory = false;
return 0;
}
static int dccp_push_empty_confirm(struct list_head *fn_list, u8 feat, u8 local)
{
return dccp_feat_push_confirm(fn_list, feat, local, NULL);
}
static inline void dccp_feat_list_pop(struct dccp_feat_entry *entry)
{
list_del(&entry->node);
dccp_feat_entry_destructor(entry);
}
void dccp_feat_list_purge(struct list_head *fn_list)
{
struct dccp_feat_entry *entry, *next;
list_for_each_entry_safe(entry, next, fn_list, node)
dccp_feat_entry_destructor(entry);
INIT_LIST_HEAD(fn_list);
}
EXPORT_SYMBOL_GPL(dccp_feat_list_purge);
/* generate @to as full clone of @from - @to must not contain any nodes */
int dccp_feat_clone_list(struct list_head const *from, struct list_head *to)
{
struct dccp_feat_entry *entry, *new;
INIT_LIST_HEAD(to);
list_for_each_entry(entry, from, node) {
new = dccp_feat_clone_entry(entry);
if (new == NULL)
goto cloning_failed;
list_add_tail(&new->node, to);
}
return 0;
cloning_failed:
dccp_feat_list_purge(to);
return -ENOMEM;
}
/**
* dccp_feat_valid_nn_length - Enforce length constraints on NN options
* @feat_num: feature to return length of, one of %dccp_feature_numbers
*
* Length is between 0 and %DCCP_OPTVAL_MAXLEN. Used for outgoing packets only,
* incoming options are accepted as long as their values are valid.
*/
static u8 dccp_feat_valid_nn_length(u8 feat_num)
{
if (feat_num == DCCPF_ACK_RATIO) /* RFC 4340, 11.3 and 6.6.8 */
return 2;
if (feat_num == DCCPF_SEQUENCE_WINDOW) /* RFC 4340, 7.5.2 and 6.5 */
return 6;
return 0;
}
static u8 dccp_feat_is_valid_nn_val(u8 feat_num, u64 val)
{
switch (feat_num) {
case DCCPF_ACK_RATIO:
return val <= DCCPF_ACK_RATIO_MAX;
case DCCPF_SEQUENCE_WINDOW:
return val >= DCCPF_SEQ_WMIN && val <= DCCPF_SEQ_WMAX;
}
return 0; /* feature unknown - so we can't tell */
}
/* check that SP values are within the ranges defined in RFC 4340 */
static u8 dccp_feat_is_valid_sp_val(u8 feat_num, u8 val)
{
switch (feat_num) {
case DCCPF_CCID:
return val == DCCPC_CCID2 || val == DCCPC_CCID3;
/* Type-check Boolean feature values: */
case DCCPF_SHORT_SEQNOS:
case DCCPF_ECN_INCAPABLE:
case DCCPF_SEND_ACK_VECTOR:
case DCCPF_SEND_NDP_COUNT:
case DCCPF_DATA_CHECKSUM:
case DCCPF_SEND_LEV_RATE:
return val < 2;
case DCCPF_MIN_CSUM_COVER:
return val < 16;
}
return 0; /* feature unknown */
}
static u8 dccp_feat_sp_list_ok(u8 feat_num, u8 const *sp_list, u8 sp_len)
{
if (sp_list == NULL || sp_len < 1)
return 0;
while (sp_len--)
if (!dccp_feat_is_valid_sp_val(feat_num, *sp_list++))
return 0;
return 1;
}
/**
* dccp_feat_insert_opts - Generate FN options from current list state
* @skb: next sk_buff to be sent to the peer
* @dp: for client during handshake and general negotiation
* @dreq: used by the server only (all Changes/Confirms in LISTEN/RESPOND)
*/
int dccp_feat_insert_opts(struct dccp_sock *dp, struct dccp_request_sock *dreq,
struct sk_buff *skb)
{
struct list_head *fn = dreq ? &dreq->dreq_featneg : &dp->dccps_featneg;
struct dccp_feat_entry *pos, *next;
u8 opt, type, len, *ptr, nn_in_nbo[DCCP_OPTVAL_MAXLEN];
bool rpt;
/* put entries into @skb in the order they appear in the list */
list_for_each_entry_safe_reverse(pos, next, fn, node) {
opt = dccp_feat_genopt(pos);
type = dccp_feat_type(pos->feat_num);
rpt = false;
if (pos->empty_confirm) {
len = 0;
ptr = NULL;
} else {
if (type == FEAT_SP) {
len = pos->val.sp.len;
ptr = pos->val.sp.vec;
rpt = pos->needs_confirm;
} else if (type == FEAT_NN) {
len = dccp_feat_valid_nn_length(pos->feat_num);
ptr = nn_in_nbo;
dccp_encode_value_var(pos->val.nn, ptr, len);
} else {
DCCP_BUG("unknown feature %u", pos->feat_num);
return -1;
}
}
dccp_feat_print_opt(opt, pos->feat_num, ptr, len, 0);
if (dccp_insert_fn_opt(skb, opt, pos->feat_num, ptr, len, rpt))
return -1;
if (pos->needs_mandatory && dccp_insert_option_mandatory(skb))
return -1;
if (skb->sk->sk_state == DCCP_OPEN &&
(opt == DCCPO_CONFIRM_R || opt == DCCPO_CONFIRM_L)) {
/*
* Confirms don't get retransmitted (6.6.3) once the
* connection is in state OPEN
*/
dccp_feat_list_pop(pos);
} else {
/*
* Enter CHANGING after transmitting the Change
* option (6.6.2).
*/
if (pos->state == FEAT_INITIALISING)
pos->state = FEAT_CHANGING;
}
}
return 0;
}
/**
* __feat_register_nn - Register new NN value on socket
* @fn: feature-negotiation list to register with
* @feat: an NN feature from %dccp_feature_numbers
* @mandatory: use Mandatory option if 1
* @nn_val: value to register (restricted to 4 bytes)
*
* Note that NN features are local by definition (RFC 4340, 6.3.2).
*/
static int __feat_register_nn(struct list_head *fn, u8 feat,
u8 mandatory, u64 nn_val)
{
dccp_feat_val fval = { .nn = nn_val };
if (dccp_feat_type(feat) != FEAT_NN ||
!dccp_feat_is_valid_nn_val(feat, nn_val))
return -EINVAL;
/* Don't bother with default values, they will be activated anyway. */
if (nn_val - (u64)dccp_feat_default_value(feat) == 0)
return 0;
return dccp_feat_push_change(fn, feat, 1, mandatory, &fval);
}
/**
* __feat_register_sp - Register new SP value/list on socket
* @fn: feature-negotiation list to register with
* @feat: an SP feature from %dccp_feature_numbers
* @is_local: whether the local (1) or the remote (0) @feat is meant
* @mandatory: use Mandatory option if 1
* @sp_val: SP value followed by optional preference list
* @sp_len: length of @sp_val in bytes
*/
static int __feat_register_sp(struct list_head *fn, u8 feat, u8 is_local,
u8 mandatory, u8 const *sp_val, u8 sp_len)
{
dccp_feat_val fval;
if (dccp_feat_type(feat) != FEAT_SP ||
!dccp_feat_sp_list_ok(feat, sp_val, sp_len))
return -EINVAL;
/* Avoid negotiating alien CCIDs by only advertising supported ones */
if (feat == DCCPF_CCID && !ccid_support_check(sp_val, sp_len))
return -EOPNOTSUPP;
if (dccp_feat_clone_sp_val(&fval, sp_val, sp_len))
return -ENOMEM;
if (dccp_feat_push_change(fn, feat, is_local, mandatory, &fval)) {
kfree(fval.sp.vec);
return -ENOMEM;
}
return 0;
}
/**
* dccp_feat_register_sp - Register requests to change SP feature values
* @sk: client or listening socket
* @feat: one of %dccp_feature_numbers
* @is_local: whether the local (1) or remote (0) @feat is meant
* @list: array of preferred values, in descending order of preference
* @len: length of @list in bytes
*/
int dccp_feat_register_sp(struct sock *sk, u8 feat, u8 is_local,
u8 const *list, u8 len)
{ /* any changes must be registered before establishing the connection */
if (sk->sk_state != DCCP_CLOSED)
return -EISCONN;
if (dccp_feat_type(feat) != FEAT_SP)
return -EINVAL;
return __feat_register_sp(&dccp_sk(sk)->dccps_featneg, feat, is_local,
0, list, len);
}
/**
* dccp_feat_nn_get - Query current/pending value of NN feature
* @sk: DCCP socket of an established connection
* @feat: NN feature number from %dccp_feature_numbers
*
* For a known NN feature, returns value currently being negotiated, or
* current (confirmed) value if no negotiation is going on.
*/
u64 dccp_feat_nn_get(struct sock *sk, u8 feat)
{
if (dccp_feat_type(feat) == FEAT_NN) {
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_feat_entry *entry;
entry = dccp_feat_list_lookup(&dp->dccps_featneg, feat, 1);
if (entry != NULL)
return entry->val.nn;
switch (feat) {
case DCCPF_ACK_RATIO:
return dp->dccps_l_ack_ratio;
case DCCPF_SEQUENCE_WINDOW:
return dp->dccps_l_seq_win;
}
}
DCCP_BUG("attempt to look up unsupported feature %u", feat);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_feat_nn_get);
/**
* dccp_feat_signal_nn_change - Update NN values for an established connection
* @sk: DCCP socket of an established connection
* @feat: NN feature number from %dccp_feature_numbers
* @nn_val: the new value to use
*
* This function is used to communicate NN updates out-of-band.
*/
int dccp_feat_signal_nn_change(struct sock *sk, u8 feat, u64 nn_val)
{
struct list_head *fn = &dccp_sk(sk)->dccps_featneg;
dccp_feat_val fval = { .nn = nn_val };
struct dccp_feat_entry *entry;
if (sk->sk_state != DCCP_OPEN && sk->sk_state != DCCP_PARTOPEN)
return 0;
if (dccp_feat_type(feat) != FEAT_NN ||
!dccp_feat_is_valid_nn_val(feat, nn_val))
return -EINVAL;
if (nn_val == dccp_feat_nn_get(sk, feat))
return 0; /* already set or negotiation under way */
entry = dccp_feat_list_lookup(fn, feat, 1);
if (entry != NULL) {
dccp_pr_debug("Clobbering existing NN entry %llu -> %llu\n",
(unsigned long long)entry->val.nn,
(unsigned long long)nn_val);
dccp_feat_list_pop(entry);
}
inet_csk_schedule_ack(sk);
return dccp_feat_push_change(fn, feat, 1, 0, &fval);
}
EXPORT_SYMBOL_GPL(dccp_feat_signal_nn_change);
/*
* Tracking features whose value depend on the choice of CCID
*
* This is designed with an extension in mind so that a list walk could be done
* before activating any features. However, the existing framework was found to
* work satisfactorily up until now, the automatic verification is left open.
* When adding new CCIDs, add a corresponding dependency table here.
*/
static const struct ccid_dependency *dccp_feat_ccid_deps(u8 ccid, bool is_local)
{
static const struct ccid_dependency ccid2_dependencies[2][2] = {
/*
* CCID2 mandates Ack Vectors (RFC 4341, 4.): as CCID is a TX
* feature and Send Ack Vector is an RX feature, `is_local'
* needs to be reversed.
*/
{ /* Dependencies of the receiver-side (remote) CCID2 */
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = true,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 }
},
{ /* Dependencies of the sender-side (local) CCID2 */
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 }
}
};
static const struct ccid_dependency ccid3_dependencies[2][5] = {
{ /*
* Dependencies of the receiver-side CCID3
*/
{ /* locally disable Ack Vectors */
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = true,
.is_mandatory = false,
.val = 0
},
{ /* see below why Send Loss Event Rate is on */
.dependent_feat = DCCPF_SEND_LEV_RATE,
.is_local = true,
.is_mandatory = true,
.val = 1
},
{ /* NDP Count is needed as per RFC 4342, 6.1.1 */
.dependent_feat = DCCPF_SEND_NDP_COUNT,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 },
},
{ /*
* CCID3 at the TX side: we request that the HC-receiver
* will not send Ack Vectors (they will be ignored, so
* Mandatory is not set); we enable Send Loss Event Rate
* (Mandatory since the implementation does not support
* the Loss Intervals option of RFC 4342, 8.6).
* The last two options are for peer's information only.
*/
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = false,
.is_mandatory = false,
.val = 0
},
{
.dependent_feat = DCCPF_SEND_LEV_RATE,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ /* this CCID does not support Ack Ratio */
.dependent_feat = DCCPF_ACK_RATIO,
.is_local = true,
.is_mandatory = false,
.val = 0
},
{ /* tell receiver we are sending NDP counts */
.dependent_feat = DCCPF_SEND_NDP_COUNT,
.is_local = true,
.is_mandatory = false,
.val = 1
},
{ 0, 0, 0, 0 }
}
};
switch (ccid) {
case DCCPC_CCID2:
return ccid2_dependencies[is_local];
case DCCPC_CCID3:
return ccid3_dependencies[is_local];
default:
return NULL;
}
}
/**
* dccp_feat_propagate_ccid - Resolve dependencies of features on choice of CCID
* @fn: feature-negotiation list to update
* @id: CCID number to track
* @is_local: whether TX CCID (1) or RX CCID (0) is meant
*
* This function needs to be called after registering all other features.
*/
static int dccp_feat_propagate_ccid(struct list_head *fn, u8 id, bool is_local)
{
const struct ccid_dependency *table = dccp_feat_ccid_deps(id, is_local);
int i, rc = (table == NULL);
for (i = 0; rc == 0 && table[i].dependent_feat != DCCPF_RESERVED; i++)
if (dccp_feat_type(table[i].dependent_feat) == FEAT_SP)
rc = __feat_register_sp(fn, table[i].dependent_feat,
table[i].is_local,
table[i].is_mandatory,
&table[i].val, 1);
else
rc = __feat_register_nn(fn, table[i].dependent_feat,
table[i].is_mandatory,
table[i].val);
return rc;
}
/**
* dccp_feat_finalise_settings - Finalise settings before starting negotiation
* @dp: client or listening socket (settings will be inherited)
*
* This is called after all registrations (socket initialisation, sysctls, and
* sockopt calls), and before sending the first packet containing Change options
* (ie. client-Request or server-Response), to ensure internal consistency.
*/
int dccp_feat_finalise_settings(struct dccp_sock *dp)
{
struct list_head *fn = &dp->dccps_featneg;
struct dccp_feat_entry *entry;
int i = 2, ccids[2] = { -1, -1 };
/*
* Propagating CCIDs:
* 1) not useful to propagate CCID settings if this host advertises more
* than one CCID: the choice of CCID may still change - if this is
* the client, or if this is the server and the client sends
* singleton CCID values.
* 2) since is that propagate_ccid changes the list, we defer changing
* the sorted list until after the traversal.
*/
list_for_each_entry(entry, fn, node)
if (entry->feat_num == DCCPF_CCID && entry->val.sp.len == 1)
ccids[entry->is_local] = entry->val.sp.vec[0];
while (i--)
if (ccids[i] > 0 && dccp_feat_propagate_ccid(fn, ccids[i], i))
return -1;
dccp_feat_print_fnlist(fn);
return 0;
}
/**
* dccp_feat_server_ccid_dependencies - Resolve CCID-dependent features
* @dreq: server socket to resolve
*
* It is the server which resolves the dependencies once the CCID has been
* fully negotiated. If no CCID has been negotiated, it uses the default CCID.
*/
int dccp_feat_server_ccid_dependencies(struct dccp_request_sock *dreq)
{
struct list_head *fn = &dreq->dreq_featneg;
struct dccp_feat_entry *entry;
u8 is_local, ccid;
for (is_local = 0; is_local <= 1; is_local++) {
entry = dccp_feat_list_lookup(fn, DCCPF_CCID, is_local);
if (entry != NULL && !entry->empty_confirm)
ccid = entry->val.sp.vec[0];
else
ccid = dccp_feat_default_value(DCCPF_CCID);
if (dccp_feat_propagate_ccid(fn, ccid, is_local))
return -1;
}
return 0;
}
/* Select the first entry in @servlist that also occurs in @clilist (6.3.1) */
static int dccp_feat_preflist_match(u8 *servlist, u8 slen, u8 *clilist, u8 clen)
{
u8 c, s;
for (s = 0; s < slen; s++)
for (c = 0; c < clen; c++)
if (servlist[s] == clilist[c])
return servlist[s];
return -1;
}
/**
* dccp_feat_prefer - Move preferred entry to the start of array
* @preferred_value: entry to move to start of array
* @array: array of preferred entries
* @array_len: size of the array
*
* Reorder the @array_len elements in @array so that @preferred_value comes
* first. Returns >0 to indicate that @preferred_value does occur in @array.
*/
static u8 dccp_feat_prefer(u8 preferred_value, u8 *array, u8 array_len)
{
u8 i, does_occur = 0;
if (array != NULL) {
for (i = 0; i < array_len; i++)
if (array[i] == preferred_value) {
array[i] = array[0];
does_occur++;
}
if (does_occur)
array[0] = preferred_value;
}
return does_occur;
}
/**
* dccp_feat_reconcile - Reconcile SP preference lists
* @fv: SP list to reconcile into
* @arr: received SP preference list
* @len: length of @arr in bytes
* @is_server: whether this side is the server (and @fv is the server's list)
* @reorder: whether to reorder the list in @fv after reconciling with @arr
* When successful, > 0 is returned and the reconciled list is in @fval.
* A value of 0 means that negotiation failed (no shared entry).
*/
static int dccp_feat_reconcile(dccp_feat_val *fv, u8 *arr, u8 len,
bool is_server, bool reorder)
{
int rc;
if (!fv->sp.vec || !arr) {
DCCP_CRIT("NULL feature value or array");
return 0;
}
if (is_server)
rc = dccp_feat_preflist_match(fv->sp.vec, fv->sp.len, arr, len);
else
rc = dccp_feat_preflist_match(arr, len, fv->sp.vec, fv->sp.len);
if (!reorder)
return rc;
if (rc < 0)
return 0;
/*
* Reorder list: used for activating features and in dccp_insert_fn_opt.
*/
return dccp_feat_prefer(rc, fv->sp.vec, fv->sp.len);
}
/**
* dccp_feat_change_recv - Process incoming ChangeL/R options
* @fn: feature-negotiation list to update
* @is_mandatory: whether the Change was preceded by a Mandatory option
* @opt: %DCCPO_CHANGE_L or %DCCPO_CHANGE_R
* @feat: one of %dccp_feature_numbers
* @val: NN value or SP value/preference list
* @len: length of @val in bytes
* @server: whether this node is the server (1) or the client (0)
*/
static u8 dccp_feat_change_recv(struct list_head *fn, u8 is_mandatory, u8 opt,
u8 feat, u8 *val, u8 len, const bool server)
{
u8 defval, type = dccp_feat_type(feat);
const bool local = (opt == DCCPO_CHANGE_R);
struct dccp_feat_entry *entry;
dccp_feat_val fval;
if (len == 0 || type == FEAT_UNKNOWN) /* 6.1 and 6.6.8 */
goto unknown_feature_or_value;
dccp_feat_print_opt(opt, feat, val, len, is_mandatory);
/*
* Negotiation of NN features: Change R is invalid, so there is no
* simultaneous negotiation; hence we do not look up in the list.
*/
if (type == FEAT_NN) {
if (local || len > sizeof(fval.nn))
goto unknown_feature_or_value;
/* 6.3.2: "The feature remote MUST accept any valid value..." */
fval.nn = dccp_decode_value_var(val, len);
if (!dccp_feat_is_valid_nn_val(feat, fval.nn))
goto unknown_feature_or_value;
return dccp_feat_push_confirm(fn, feat, local, &fval);
}
/*
* Unidirectional/simultaneous negotiation of SP features (6.3.1)
*/
entry = dccp_feat_list_lookup(fn, feat, local);
if (entry == NULL) {
/*
* No particular preferences have been registered. We deal with
* this situation by assuming that all valid values are equally
* acceptable, and apply the following checks:
* - if the peer's list is a singleton, we accept a valid value;
* - if we are the server, we first try to see if the peer (the
* client) advertises the default value. If yes, we use it,
* otherwise we accept the preferred value;
* - else if we are the client, we use the first list element.
*/
if (dccp_feat_clone_sp_val(&fval, val, 1))
return DCCP_RESET_CODE_TOO_BUSY;
if (len > 1 && server) {
defval = dccp_feat_default_value(feat);
if (dccp_feat_preflist_match(&defval, 1, val, len) > -1)
fval.sp.vec[0] = defval;
} else if (!dccp_feat_is_valid_sp_val(feat, fval.sp.vec[0])) {
kfree(fval.sp.vec);
goto unknown_feature_or_value;
}
/* Treat unsupported CCIDs like invalid values */
if (feat == DCCPF_CCID && !ccid_support_check(fval.sp.vec, 1)) {
kfree(fval.sp.vec);
goto not_valid_or_not_known;
}
return dccp_feat_push_confirm(fn, feat, local, &fval);
} else if (entry->state == FEAT_UNSTABLE) { /* 6.6.2 */
return 0;
}
if (dccp_feat_reconcile(&entry->val, val, len, server, true)) {
entry->empty_confirm = false;
} else if (is_mandatory) {
return DCCP_RESET_CODE_MANDATORY_ERROR;
} else if (entry->state == FEAT_INITIALISING) {
/*
* Failed simultaneous negotiation (server only): try to `save'
* the connection by checking whether entry contains the default
* value for @feat. If yes, send an empty Confirm to signal that
* the received Change was not understood - which implies using
* the default value.
* If this also fails, we use Reset as the last resort.
*/
WARN_ON(!server);
defval = dccp_feat_default_value(feat);
if (!dccp_feat_reconcile(&entry->val, &defval, 1, server, true))
return DCCP_RESET_CODE_OPTION_ERROR;
entry->empty_confirm = true;
}
entry->needs_confirm = true;
entry->needs_mandatory = false;
entry->state = FEAT_STABLE;
return 0;
unknown_feature_or_value:
if (!is_mandatory)
return dccp_push_empty_confirm(fn, feat, local);
not_valid_or_not_known:
return is_mandatory ? DCCP_RESET_CODE_MANDATORY_ERROR
: DCCP_RESET_CODE_OPTION_ERROR;
}
/**
* dccp_feat_confirm_recv - Process received Confirm options
* @fn: feature-negotiation list to update
* @is_mandatory: whether @opt was preceded by a Mandatory option
* @opt: %DCCPO_CONFIRM_L or %DCCPO_CONFIRM_R
* @feat: one of %dccp_feature_numbers
* @val: NN value or SP value/preference list
* @len: length of @val in bytes
* @server: whether this node is server (1) or client (0)
*/
static u8 dccp_feat_confirm_recv(struct list_head *fn, u8 is_mandatory, u8 opt,
u8 feat, u8 *val, u8 len, const bool server)
{
u8 *plist, plen, type = dccp_feat_type(feat);
const bool local = (opt == DCCPO_CONFIRM_R);
struct dccp_feat_entry *entry = dccp_feat_list_lookup(fn, feat, local);
dccp_feat_print_opt(opt, feat, val, len, is_mandatory);
if (entry == NULL) { /* nothing queued: ignore or handle error */
if (is_mandatory && type == FEAT_UNKNOWN)
return DCCP_RESET_CODE_MANDATORY_ERROR;
if (!local && type == FEAT_NN) /* 6.3.2 */
goto confirmation_failed;
return 0;
}
if (entry->state != FEAT_CHANGING) /* 6.6.2 */
return 0;
if (len == 0) {
if (dccp_feat_must_be_understood(feat)) /* 6.6.7 */
goto confirmation_failed;
/*
* Empty Confirm during connection setup: this means reverting
* to the `old' value, which in this case is the default. Since
* we handle default values automatically when no other values
* have been set, we revert to the old value by removing this
* entry from the list.
*/
dccp_feat_list_pop(entry);
return 0;
}
if (type == FEAT_NN) {
if (len > sizeof(entry->val.nn))
goto confirmation_failed;
if (entry->val.nn == dccp_decode_value_var(val, len))
goto confirmation_succeeded;
DCCP_WARN("Bogus Confirm for non-existing value\n");
goto confirmation_failed;
}
/*
* Parsing SP Confirms: the first element of @val is the preferred
* SP value which the peer confirms, the remainder depends on @len.
* Note that only the confirmed value need to be a valid SP value.
*/
if (!dccp_feat_is_valid_sp_val(feat, *val))
goto confirmation_failed;
if (len == 1) { /* peer didn't supply a preference list */
plist = val;
plen = len;
} else { /* preferred value + preference list */
plist = val + 1;
plen = len - 1;
}
/* Check whether the peer got the reconciliation right (6.6.8) */
if (dccp_feat_reconcile(&entry->val, plist, plen, server, 0) != *val) {
DCCP_WARN("Confirm selected the wrong value %u\n", *val);
return DCCP_RESET_CODE_OPTION_ERROR;
}
entry->val.sp.vec[0] = *val;
confirmation_succeeded:
entry->state = FEAT_STABLE;
return 0;
confirmation_failed:
DCCP_WARN("Confirmation failed\n");
return is_mandatory ? DCCP_RESET_CODE_MANDATORY_ERROR
: DCCP_RESET_CODE_OPTION_ERROR;
}
/**
* dccp_feat_handle_nn_established - Fast-path reception of NN options
* @sk: socket of an established DCCP connection
* @mandatory: whether @opt was preceded by a Mandatory option
* @opt: %DCCPO_CHANGE_L | %DCCPO_CONFIRM_R (NN only)
* @feat: NN number, one of %dccp_feature_numbers
* @val: NN value
* @len: length of @val in bytes
*
* This function combines the functionality of change_recv/confirm_recv, with
* the following differences (reset codes are the same):
* - cleanup after receiving the Confirm;
* - values are directly activated after successful parsing;
* - deliberately restricted to NN features.
* The restriction to NN features is essential since SP features can have non-
* predictable outcomes (depending on the remote configuration), and are inter-
* dependent (CCIDs for instance cause further dependencies).
*/
static u8 dccp_feat_handle_nn_established(struct sock *sk, u8 mandatory, u8 opt,
u8 feat, u8 *val, u8 len)
{
struct list_head *fn = &dccp_sk(sk)->dccps_featneg;
const bool local = (opt == DCCPO_CONFIRM_R);
struct dccp_feat_entry *entry;
u8 type = dccp_feat_type(feat);
dccp_feat_val fval;
dccp_feat_print_opt(opt, feat, val, len, mandatory);
/* Ignore non-mandatory unknown and non-NN features */
if (type == FEAT_UNKNOWN) {
if (local && !mandatory)
return 0;
goto fast_path_unknown;
} else if (type != FEAT_NN) {
return 0;
}
/*
* We don't accept empty Confirms, since in fast-path feature
* negotiation the values are enabled immediately after sending
* the Change option.
* Empty Changes on the other hand are invalid (RFC 4340, 6.1).
*/
if (len == 0 || len > sizeof(fval.nn))
goto fast_path_unknown;
if (opt == DCCPO_CHANGE_L) {
fval.nn = dccp_decode_value_var(val, len);
if (!dccp_feat_is_valid_nn_val(feat, fval.nn))
goto fast_path_unknown;
if (dccp_feat_push_confirm(fn, feat, local, &fval) ||
dccp_feat_activate(sk, feat, local, &fval))
return DCCP_RESET_CODE_TOO_BUSY;
/* set the `Ack Pending' flag to piggyback a Confirm */
inet_csk_schedule_ack(sk);
} else if (opt == DCCPO_CONFIRM_R) {
entry = dccp_feat_list_lookup(fn, feat, local);
if (entry == NULL || entry->state != FEAT_CHANGING)
return 0;
fval.nn = dccp_decode_value_var(val, len);
/*
* Just ignore a value that doesn't match our current value.
* If the option changes twice within two RTTs, then at least
* one CONFIRM will be received for the old value after a
* new CHANGE was sent.
*/
if (fval.nn != entry->val.nn)
return 0;
/* Only activate after receiving the Confirm option (6.6.1). */
dccp_feat_activate(sk, feat, local, &fval);
/* It has been confirmed - so remove the entry */
dccp_feat_list_pop(entry);
} else {
DCCP_WARN("Received illegal option %u\n", opt);
goto fast_path_failed;
}
return 0;
fast_path_unknown:
if (!mandatory)
return dccp_push_empty_confirm(fn, feat, local);
fast_path_failed:
return mandatory ? DCCP_RESET_CODE_MANDATORY_ERROR
: DCCP_RESET_CODE_OPTION_ERROR;
}
/**
* dccp_feat_parse_options - Process Feature-Negotiation Options
* @sk: for general use and used by the client during connection setup
* @dreq: used by the server during connection setup
* @mandatory: whether @opt was preceded by a Mandatory option
* @opt: %DCCPO_CHANGE_L | %DCCPO_CHANGE_R | %DCCPO_CONFIRM_L | %DCCPO_CONFIRM_R
* @feat: one of %dccp_feature_numbers
* @val: value contents of @opt
* @len: length of @val in bytes
*
* Returns 0 on success, a Reset code for ending the connection otherwise.
*/
int dccp_feat_parse_options(struct sock *sk, struct dccp_request_sock *dreq,
u8 mandatory, u8 opt, u8 feat, u8 *val, u8 len)
{
struct dccp_sock *dp = dccp_sk(sk);
struct list_head *fn = dreq ? &dreq->dreq_featneg : &dp->dccps_featneg;
bool server = false;
switch (sk->sk_state) {
/*
* Negotiation during connection setup
*/
case DCCP_LISTEN:
server = true;
fallthrough;
case DCCP_REQUESTING:
switch (opt) {
case DCCPO_CHANGE_L:
case DCCPO_CHANGE_R:
return dccp_feat_change_recv(fn, mandatory, opt, feat,
val, len, server);
case DCCPO_CONFIRM_R:
case DCCPO_CONFIRM_L:
return dccp_feat_confirm_recv(fn, mandatory, opt, feat,
val, len, server);
}
break;
/*
* Support for exchanging NN options on an established connection.
*/
case DCCP_OPEN:
case DCCP_PARTOPEN:
return dccp_feat_handle_nn_established(sk, mandatory, opt, feat,
val, len);
}
return 0; /* ignore FN options in all other states */
}
/**
* dccp_feat_init - Seed feature negotiation with host-specific defaults
* @sk: Socket to initialize.
*
* This initialises global defaults, depending on the value of the sysctls.
* These can later be overridden by registering changes via setsockopt calls.
* The last link in the chain is finalise_settings, to make sure that between
* here and the start of actual feature negotiation no inconsistencies enter.
*
* All features not appearing below use either defaults or are otherwise
* later adjusted through dccp_feat_finalise_settings().
*/
int dccp_feat_init(struct sock *sk)
{
struct list_head *fn = &dccp_sk(sk)->dccps_featneg;
u8 on = 1, off = 0;
int rc;
struct {
u8 *val;
u8 len;
} tx, rx;
/* Non-negotiable (NN) features */
rc = __feat_register_nn(fn, DCCPF_SEQUENCE_WINDOW, 0,
sysctl_dccp_sequence_window);
if (rc)
return rc;
/* Server-priority (SP) features */
/* Advertise that short seqnos are not supported (7.6.1) */
rc = __feat_register_sp(fn, DCCPF_SHORT_SEQNOS, true, true, &off, 1);
if (rc)
return rc;
/* RFC 4340 12.1: "If a DCCP is not ECN capable, ..." */
rc = __feat_register_sp(fn, DCCPF_ECN_INCAPABLE, true, true, &on, 1);
if (rc)
return rc;
/*
* We advertise the available list of CCIDs and reorder according to
* preferences, to avoid failure resulting from negotiating different
* singleton values (which always leads to failure).
* These settings can still (later) be overridden via sockopts.
*/
if (ccid_get_builtin_ccids(&tx.val, &tx.len))
return -ENOBUFS;
if (ccid_get_builtin_ccids(&rx.val, &rx.len)) {
kfree(tx.val);
return -ENOBUFS;
}
if (!dccp_feat_prefer(sysctl_dccp_tx_ccid, tx.val, tx.len) ||
!dccp_feat_prefer(sysctl_dccp_rx_ccid, rx.val, rx.len))
goto free_ccid_lists;
rc = __feat_register_sp(fn, DCCPF_CCID, true, false, tx.val, tx.len);
if (rc)
goto free_ccid_lists;
rc = __feat_register_sp(fn, DCCPF_CCID, false, false, rx.val, rx.len);
free_ccid_lists:
kfree(tx.val);
kfree(rx.val);
return rc;
}
int dccp_feat_activate_values(struct sock *sk, struct list_head *fn_list)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_feat_entry *cur, *next;
int idx;
dccp_feat_val *fvals[DCCP_FEAT_SUPPORTED_MAX][2] = {
[0 ... DCCP_FEAT_SUPPORTED_MAX-1] = { NULL, NULL }
};
list_for_each_entry(cur, fn_list, node) {
/*
* An empty Confirm means that either an unknown feature type
* or an invalid value was present. In the first case there is
* nothing to activate, in the other the default value is used.
*/
if (cur->empty_confirm)
continue;
idx = dccp_feat_index(cur->feat_num);
if (idx < 0) {
DCCP_BUG("Unknown feature %u", cur->feat_num);
goto activation_failed;
}
if (cur->state != FEAT_STABLE) {
DCCP_CRIT("Negotiation of %s %s failed in state %s",
cur->is_local ? "local" : "remote",
dccp_feat_fname(cur->feat_num),
dccp_feat_sname[cur->state]);
goto activation_failed;
}
fvals[idx][cur->is_local] = &cur->val;
}
/*
* Activate in decreasing order of index, so that the CCIDs are always
* activated as the last feature. This avoids the case where a CCID
* relies on the initialisation of one or more features that it depends
* on (e.g. Send NDP Count, Send Ack Vector, and Ack Ratio features).
*/
for (idx = DCCP_FEAT_SUPPORTED_MAX; --idx >= 0;)
if (__dccp_feat_activate(sk, idx, 0, fvals[idx][0]) ||
__dccp_feat_activate(sk, idx, 1, fvals[idx][1])) {
DCCP_CRIT("Could not activate %d", idx);
goto activation_failed;
}
/* Clean up Change options which have been confirmed already */
list_for_each_entry_safe(cur, next, fn_list, node)
if (!cur->needs_confirm)
dccp_feat_list_pop(cur);
dccp_pr_debug("Activation OK\n");
return 0;
activation_failed:
/*
* We clean up everything that may have been allocated, since
* it is difficult to track at which stage negotiation failed.
* This is ok, since all allocation functions below are robust
* against NULL arguments.
*/
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_rx_ccid = dp->dccps_hc_tx_ccid = NULL;
dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
dp->dccps_hc_rx_ackvec = NULL;
return -1;
}
| linux-master | net/dccp/feat.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2005, 2006 Andrea Bittau <[email protected]>
*
* Changes to meet Linux coding standards, and DCCP infrastructure fixes.
*
* Copyright (c) 2006 Arnaldo Carvalho de Melo <[email protected]>
*/
/*
* This implementation should follow RFC 4341
*/
#include <linux/slab.h>
#include "../feat.h"
#include "ccid2.h"
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
static bool ccid2_debug;
#define ccid2_pr_debug(format, a...) DCCP_PR_DEBUG(ccid2_debug, format, ##a)
#else
#define ccid2_pr_debug(format, a...)
#endif
static int ccid2_hc_tx_alloc_seq(struct ccid2_hc_tx_sock *hc)
{
struct ccid2_seq *seqp;
int i;
/* check if we have space to preserve the pointer to the buffer */
if (hc->tx_seqbufc >= (sizeof(hc->tx_seqbuf) /
sizeof(struct ccid2_seq *)))
return -ENOMEM;
/* allocate buffer and initialize linked list */
seqp = kmalloc_array(CCID2_SEQBUF_LEN, sizeof(struct ccid2_seq),
gfp_any());
if (seqp == NULL)
return -ENOMEM;
for (i = 0; i < (CCID2_SEQBUF_LEN - 1); i++) {
seqp[i].ccid2s_next = &seqp[i + 1];
seqp[i + 1].ccid2s_prev = &seqp[i];
}
seqp[CCID2_SEQBUF_LEN - 1].ccid2s_next = seqp;
seqp->ccid2s_prev = &seqp[CCID2_SEQBUF_LEN - 1];
/* This is the first allocation. Initiate the head and tail. */
if (hc->tx_seqbufc == 0)
hc->tx_seqh = hc->tx_seqt = seqp;
else {
/* link the existing list with the one we just created */
hc->tx_seqh->ccid2s_next = seqp;
seqp->ccid2s_prev = hc->tx_seqh;
hc->tx_seqt->ccid2s_prev = &seqp[CCID2_SEQBUF_LEN - 1];
seqp[CCID2_SEQBUF_LEN - 1].ccid2s_next = hc->tx_seqt;
}
/* store the original pointer to the buffer so we can free it */
hc->tx_seqbuf[hc->tx_seqbufc] = seqp;
hc->tx_seqbufc++;
return 0;
}
static int ccid2_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
{
if (ccid2_cwnd_network_limited(ccid2_hc_tx_sk(sk)))
return CCID_PACKET_WILL_DEQUEUE_LATER;
return CCID_PACKET_SEND_AT_ONCE;
}
static void ccid2_change_l_ack_ratio(struct sock *sk, u32 val)
{
u32 max_ratio = DIV_ROUND_UP(ccid2_hc_tx_sk(sk)->tx_cwnd, 2);
/*
* Ensure that Ack Ratio does not exceed ceil(cwnd/2), which is (2) from
* RFC 4341, 6.1.2. We ignore the statement that Ack Ratio 2 is always
* acceptable since this causes starvation/deadlock whenever cwnd < 2.
* The same problem arises when Ack Ratio is 0 (ie. Ack Ratio disabled).
*/
if (val == 0 || val > max_ratio) {
DCCP_WARN("Limiting Ack Ratio (%u) to %u\n", val, max_ratio);
val = max_ratio;
}
dccp_feat_signal_nn_change(sk, DCCPF_ACK_RATIO,
min_t(u32, val, DCCPF_ACK_RATIO_MAX));
}
static void ccid2_check_l_ack_ratio(struct sock *sk)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
/*
* After a loss, idle period, application limited period, or RTO we
* need to check that the ack ratio is still less than the congestion
* window. Otherwise, we will send an entire congestion window of
* packets and got no response because we haven't sent ack ratio
* packets yet.
* If the ack ratio does need to be reduced, we reduce it to half of
* the congestion window (or 1 if that's zero) instead of to the
* congestion window. This prevents problems if one ack is lost.
*/
if (dccp_feat_nn_get(sk, DCCPF_ACK_RATIO) > hc->tx_cwnd)
ccid2_change_l_ack_ratio(sk, hc->tx_cwnd/2 ? : 1U);
}
static void ccid2_change_l_seq_window(struct sock *sk, u64 val)
{
dccp_feat_signal_nn_change(sk, DCCPF_SEQUENCE_WINDOW,
clamp_val(val, DCCPF_SEQ_WMIN,
DCCPF_SEQ_WMAX));
}
static void dccp_tasklet_schedule(struct sock *sk)
{
struct tasklet_struct *t = &dccp_sk(sk)->dccps_xmitlet;
if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
sock_hold(sk);
__tasklet_schedule(t);
}
}
static void ccid2_hc_tx_rto_expire(struct timer_list *t)
{
struct ccid2_hc_tx_sock *hc = from_timer(hc, t, tx_rtotimer);
struct sock *sk = hc->sk;
const bool sender_was_blocked = ccid2_cwnd_network_limited(hc);
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + HZ / 5);
goto out;
}
ccid2_pr_debug("RTO_EXPIRE\n");
if (sk->sk_state == DCCP_CLOSED)
goto out;
/* back-off timer */
hc->tx_rto <<= 1;
if (hc->tx_rto > DCCP_RTO_MAX)
hc->tx_rto = DCCP_RTO_MAX;
/* adjust pipe, cwnd etc */
hc->tx_ssthresh = hc->tx_cwnd / 2;
if (hc->tx_ssthresh < 2)
hc->tx_ssthresh = 2;
hc->tx_cwnd = 1;
hc->tx_pipe = 0;
/* clear state about stuff we sent */
hc->tx_seqt = hc->tx_seqh;
hc->tx_packets_acked = 0;
/* clear ack ratio state. */
hc->tx_rpseq = 0;
hc->tx_rpdupack = -1;
ccid2_change_l_ack_ratio(sk, 1);
/* if we were blocked before, we may now send cwnd=1 packet */
if (sender_was_blocked)
dccp_tasklet_schedule(sk);
/* restart backed-off timer */
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
out:
bh_unlock_sock(sk);
sock_put(sk);
}
/*
* Congestion window validation (RFC 2861).
*/
static bool ccid2_do_cwv = true;
module_param(ccid2_do_cwv, bool, 0644);
MODULE_PARM_DESC(ccid2_do_cwv, "Perform RFC2861 Congestion Window Validation");
/**
* ccid2_update_used_window - Track how much of cwnd is actually used
* @hc: socket to update window
* @new_wnd: new window values to add into the filter
*
* This is done in addition to CWV. The sender needs to have an idea of how many
* packets may be in flight, to set the local Sequence Window value accordingly
* (RFC 4340, 7.5.2). The CWV mechanism is exploited to keep track of the
* maximum-used window. We use an EWMA low-pass filter to filter out noise.
*/
static void ccid2_update_used_window(struct ccid2_hc_tx_sock *hc, u32 new_wnd)
{
hc->tx_expected_wnd = (3 * hc->tx_expected_wnd + new_wnd) / 4;
}
/* This borrows the code of tcp_cwnd_application_limited() */
static void ccid2_cwnd_application_limited(struct sock *sk, const u32 now)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
/* don't reduce cwnd below the initial window (IW) */
u32 init_win = rfc3390_bytes_to_packets(dccp_sk(sk)->dccps_mss_cache),
win_used = max(hc->tx_cwnd_used, init_win);
if (win_used < hc->tx_cwnd) {
hc->tx_ssthresh = max(hc->tx_ssthresh,
(hc->tx_cwnd >> 1) + (hc->tx_cwnd >> 2));
hc->tx_cwnd = (hc->tx_cwnd + win_used) >> 1;
}
hc->tx_cwnd_used = 0;
hc->tx_cwnd_stamp = now;
ccid2_check_l_ack_ratio(sk);
}
/* This borrows the code of tcp_cwnd_restart() */
static void ccid2_cwnd_restart(struct sock *sk, const u32 now)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
u32 cwnd = hc->tx_cwnd, restart_cwnd,
iwnd = rfc3390_bytes_to_packets(dccp_sk(sk)->dccps_mss_cache);
s32 delta = now - hc->tx_lsndtime;
hc->tx_ssthresh = max(hc->tx_ssthresh, (cwnd >> 1) + (cwnd >> 2));
/* don't reduce cwnd below the initial window (IW) */
restart_cwnd = min(cwnd, iwnd);
while ((delta -= hc->tx_rto) >= 0 && cwnd > restart_cwnd)
cwnd >>= 1;
hc->tx_cwnd = max(cwnd, restart_cwnd);
hc->tx_cwnd_stamp = now;
hc->tx_cwnd_used = 0;
ccid2_check_l_ack_ratio(sk);
}
static void ccid2_hc_tx_packet_sent(struct sock *sk, unsigned int len)
{
struct dccp_sock *dp = dccp_sk(sk);
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
const u32 now = ccid2_jiffies32;
struct ccid2_seq *next;
/* slow-start after idle periods (RFC 2581, RFC 2861) */
if (ccid2_do_cwv && !hc->tx_pipe &&
(s32)(now - hc->tx_lsndtime) >= hc->tx_rto)
ccid2_cwnd_restart(sk, now);
hc->tx_lsndtime = now;
hc->tx_pipe += 1;
/* see whether cwnd was fully used (RFC 2861), update expected window */
if (ccid2_cwnd_network_limited(hc)) {
ccid2_update_used_window(hc, hc->tx_cwnd);
hc->tx_cwnd_used = 0;
hc->tx_cwnd_stamp = now;
} else {
if (hc->tx_pipe > hc->tx_cwnd_used)
hc->tx_cwnd_used = hc->tx_pipe;
ccid2_update_used_window(hc, hc->tx_cwnd_used);
if (ccid2_do_cwv && (s32)(now - hc->tx_cwnd_stamp) >= hc->tx_rto)
ccid2_cwnd_application_limited(sk, now);
}
hc->tx_seqh->ccid2s_seq = dp->dccps_gss;
hc->tx_seqh->ccid2s_acked = 0;
hc->tx_seqh->ccid2s_sent = now;
next = hc->tx_seqh->ccid2s_next;
/* check if we need to alloc more space */
if (next == hc->tx_seqt) {
if (ccid2_hc_tx_alloc_seq(hc)) {
DCCP_CRIT("packet history - out of memory!");
/* FIXME: find a more graceful way to bail out */
return;
}
next = hc->tx_seqh->ccid2s_next;
BUG_ON(next == hc->tx_seqt);
}
hc->tx_seqh = next;
ccid2_pr_debug("cwnd=%d pipe=%d\n", hc->tx_cwnd, hc->tx_pipe);
/*
* FIXME: The code below is broken and the variables have been removed
* from the socket struct. The `ackloss' variable was always set to 0,
* and with arsent there are several problems:
* (i) it doesn't just count the number of Acks, but all sent packets;
* (ii) it is expressed in # of packets, not # of windows, so the
* comparison below uses the wrong formula: Appendix A of RFC 4341
* comes up with the number K = cwnd / (R^2 - R) of consecutive windows
* of data with no lost or marked Ack packets. If arsent were the # of
* consecutive Acks received without loss, then Ack Ratio needs to be
* decreased by 1 when
* arsent >= K * cwnd / R = cwnd^2 / (R^3 - R^2)
* where cwnd / R is the number of Acks received per window of data
* (cf. RFC 4341, App. A). The problems are that
* - arsent counts other packets as well;
* - the comparison uses a formula different from RFC 4341;
* - computing a cubic/quadratic equation each time is too complicated.
* Hence a different algorithm is needed.
*/
#if 0
/* Ack Ratio. Need to maintain a concept of how many windows we sent */
hc->tx_arsent++;
/* We had an ack loss in this window... */
if (hc->tx_ackloss) {
if (hc->tx_arsent >= hc->tx_cwnd) {
hc->tx_arsent = 0;
hc->tx_ackloss = 0;
}
} else {
/* No acks lost up to now... */
/* decrease ack ratio if enough packets were sent */
if (dp->dccps_l_ack_ratio > 1) {
/* XXX don't calculate denominator each time */
int denom = dp->dccps_l_ack_ratio * dp->dccps_l_ack_ratio -
dp->dccps_l_ack_ratio;
denom = hc->tx_cwnd * hc->tx_cwnd / denom;
if (hc->tx_arsent >= denom) {
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio - 1);
hc->tx_arsent = 0;
}
} else {
/* we can't increase ack ratio further [1] */
hc->tx_arsent = 0; /* or maybe set it to cwnd*/
}
}
#endif
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
do {
struct ccid2_seq *seqp = hc->tx_seqt;
while (seqp != hc->tx_seqh) {
ccid2_pr_debug("out seq=%llu acked=%d time=%u\n",
(unsigned long long)seqp->ccid2s_seq,
seqp->ccid2s_acked, seqp->ccid2s_sent);
seqp = seqp->ccid2s_next;
}
} while (0);
ccid2_pr_debug("=========\n");
#endif
}
/**
* ccid2_rtt_estimator - Sample RTT and compute RTO using RFC2988 algorithm
* @sk: socket to perform estimator on
*
* This code is almost identical with TCP's tcp_rtt_estimator(), since
* - it has a higher sampling frequency (recommended by RFC 1323),
* - the RTO does not collapse into RTT due to RTTVAR going towards zero,
* - it is simple (cf. more complex proposals such as Eifel timer or research
* which suggests that the gain should be set according to window size),
* - in tests it was found to work well with CCID2 [gerrit].
*/
static void ccid2_rtt_estimator(struct sock *sk, const long mrtt)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
long m = mrtt ? : 1;
if (hc->tx_srtt == 0) {
/* First measurement m */
hc->tx_srtt = m << 3;
hc->tx_mdev = m << 1;
hc->tx_mdev_max = max(hc->tx_mdev, tcp_rto_min(sk));
hc->tx_rttvar = hc->tx_mdev_max;
hc->tx_rtt_seq = dccp_sk(sk)->dccps_gss;
} else {
/* Update scaled SRTT as SRTT += 1/8 * (m - SRTT) */
m -= (hc->tx_srtt >> 3);
hc->tx_srtt += m;
/* Similarly, update scaled mdev with regard to |m| */
if (m < 0) {
m = -m;
m -= (hc->tx_mdev >> 2);
/*
* This neutralises RTO increase when RTT < SRTT - mdev
* (see P. Sarolahti, A. Kuznetsov,"Congestion Control
* in Linux TCP", USENIX 2002, pp. 49-62).
*/
if (m > 0)
m >>= 3;
} else {
m -= (hc->tx_mdev >> 2);
}
hc->tx_mdev += m;
if (hc->tx_mdev > hc->tx_mdev_max) {
hc->tx_mdev_max = hc->tx_mdev;
if (hc->tx_mdev_max > hc->tx_rttvar)
hc->tx_rttvar = hc->tx_mdev_max;
}
/*
* Decay RTTVAR at most once per flight, exploiting that
* 1) pipe <= cwnd <= Sequence_Window = W (RFC 4340, 7.5.2)
* 2) AWL = GSS-W+1 <= GAR <= GSS (RFC 4340, 7.5.1)
* GAR is a useful bound for FlightSize = pipe.
* AWL is probably too low here, as it over-estimates pipe.
*/
if (after48(dccp_sk(sk)->dccps_gar, hc->tx_rtt_seq)) {
if (hc->tx_mdev_max < hc->tx_rttvar)
hc->tx_rttvar -= (hc->tx_rttvar -
hc->tx_mdev_max) >> 2;
hc->tx_rtt_seq = dccp_sk(sk)->dccps_gss;
hc->tx_mdev_max = tcp_rto_min(sk);
}
}
/*
* Set RTO from SRTT and RTTVAR
* As in TCP, 4 * RTTVAR >= TCP_RTO_MIN, giving a minimum RTO of 200 ms.
* This agrees with RFC 4341, 5:
* "Because DCCP does not retransmit data, DCCP does not require
* TCP's recommended minimum timeout of one second".
*/
hc->tx_rto = (hc->tx_srtt >> 3) + hc->tx_rttvar;
if (hc->tx_rto > DCCP_RTO_MAX)
hc->tx_rto = DCCP_RTO_MAX;
}
static void ccid2_new_ack(struct sock *sk, struct ccid2_seq *seqp,
unsigned int *maxincr)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
int r_seq_used = hc->tx_cwnd / dp->dccps_l_ack_ratio;
if (hc->tx_cwnd < dp->dccps_l_seq_win &&
r_seq_used < dp->dccps_r_seq_win) {
if (hc->tx_cwnd < hc->tx_ssthresh) {
if (*maxincr > 0 && ++hc->tx_packets_acked >= 2) {
hc->tx_cwnd += 1;
*maxincr -= 1;
hc->tx_packets_acked = 0;
}
} else if (++hc->tx_packets_acked >= hc->tx_cwnd) {
hc->tx_cwnd += 1;
hc->tx_packets_acked = 0;
}
}
/*
* Adjust the local sequence window and the ack ratio to allow about
* 5 times the number of packets in the network (RFC 4340 7.5.2)
*/
if (r_seq_used * CCID2_WIN_CHANGE_FACTOR >= dp->dccps_r_seq_win)
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio * 2);
else if (r_seq_used * CCID2_WIN_CHANGE_FACTOR < dp->dccps_r_seq_win/2)
ccid2_change_l_ack_ratio(sk, dp->dccps_l_ack_ratio / 2 ? : 1U);
if (hc->tx_cwnd * CCID2_WIN_CHANGE_FACTOR >= dp->dccps_l_seq_win)
ccid2_change_l_seq_window(sk, dp->dccps_l_seq_win * 2);
else if (hc->tx_cwnd * CCID2_WIN_CHANGE_FACTOR < dp->dccps_l_seq_win/2)
ccid2_change_l_seq_window(sk, dp->dccps_l_seq_win / 2);
/*
* FIXME: RTT is sampled several times per acknowledgment (for each
* entry in the Ack Vector), instead of once per Ack (as in TCP SACK).
* This causes the RTT to be over-estimated, since the older entries
* in the Ack Vector have earlier sending times.
* The cleanest solution is to not use the ccid2s_sent field at all
* and instead use DCCP timestamps: requires changes in other places.
*/
ccid2_rtt_estimator(sk, ccid2_jiffies32 - seqp->ccid2s_sent);
}
static void ccid2_congestion_event(struct sock *sk, struct ccid2_seq *seqp)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
if ((s32)(seqp->ccid2s_sent - hc->tx_last_cong) < 0) {
ccid2_pr_debug("Multiple losses in an RTT---treating as one\n");
return;
}
hc->tx_last_cong = ccid2_jiffies32;
hc->tx_cwnd = hc->tx_cwnd / 2 ? : 1U;
hc->tx_ssthresh = max(hc->tx_cwnd, 2U);
ccid2_check_l_ack_ratio(sk);
}
static int ccid2_hc_tx_parse_options(struct sock *sk, u8 packet_type,
u8 option, u8 *optval, u8 optlen)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
switch (option) {
case DCCPO_ACK_VECTOR_0:
case DCCPO_ACK_VECTOR_1:
return dccp_ackvec_parsed_add(&hc->tx_av_chunks, optval, optlen,
option - DCCPO_ACK_VECTOR_0);
}
return 0;
}
static void ccid2_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
const bool sender_was_blocked = ccid2_cwnd_network_limited(hc);
struct dccp_ackvec_parsed *avp;
u64 ackno, seqno;
struct ccid2_seq *seqp;
int done = 0;
unsigned int maxincr = 0;
/* check reverse path congestion */
seqno = DCCP_SKB_CB(skb)->dccpd_seq;
/* XXX this whole "algorithm" is broken. Need to fix it to keep track
* of the seqnos of the dupacks so that rpseq and rpdupack are correct
* -sorbo.
*/
/* need to bootstrap */
if (hc->tx_rpdupack == -1) {
hc->tx_rpdupack = 0;
hc->tx_rpseq = seqno;
} else {
/* check if packet is consecutive */
if (dccp_delta_seqno(hc->tx_rpseq, seqno) == 1)
hc->tx_rpseq = seqno;
/* it's a later packet */
else if (after48(seqno, hc->tx_rpseq)) {
hc->tx_rpdupack++;
/* check if we got enough dupacks */
if (hc->tx_rpdupack >= NUMDUPACK) {
hc->tx_rpdupack = -1; /* XXX lame */
hc->tx_rpseq = 0;
#ifdef __CCID2_COPES_GRACEFULLY_WITH_ACK_CONGESTION_CONTROL__
/*
* FIXME: Ack Congestion Control is broken; in
* the current state instabilities occurred with
* Ack Ratios greater than 1; causing hang-ups
* and long RTO timeouts. This needs to be fixed
* before opening up dynamic changes. -- gerrit
*/
ccid2_change_l_ack_ratio(sk, 2 * dp->dccps_l_ack_ratio);
#endif
}
}
}
/* check forward path congestion */
if (dccp_packet_without_ack(skb))
return;
/* still didn't send out new data packets */
if (hc->tx_seqh == hc->tx_seqt)
goto done;
ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq;
if (after48(ackno, hc->tx_high_ack))
hc->tx_high_ack = ackno;
seqp = hc->tx_seqt;
while (before48(seqp->ccid2s_seq, ackno)) {
seqp = seqp->ccid2s_next;
if (seqp == hc->tx_seqh) {
seqp = hc->tx_seqh->ccid2s_prev;
break;
}
}
/*
* In slow-start, cwnd can increase up to a maximum of Ack Ratio/2
* packets per acknowledgement. Rounding up avoids that cwnd is not
* advanced when Ack Ratio is 1 and gives a slight edge otherwise.
*/
if (hc->tx_cwnd < hc->tx_ssthresh)
maxincr = DIV_ROUND_UP(dp->dccps_l_ack_ratio, 2);
/* go through all ack vectors */
list_for_each_entry(avp, &hc->tx_av_chunks, node) {
/* go through this ack vector */
for (; avp->len--; avp->vec++) {
u64 ackno_end_rl = SUB48(ackno,
dccp_ackvec_runlen(avp->vec));
ccid2_pr_debug("ackvec %llu |%u,%u|\n",
(unsigned long long)ackno,
dccp_ackvec_state(avp->vec) >> 6,
dccp_ackvec_runlen(avp->vec));
/* if the seqno we are analyzing is larger than the
* current ackno, then move towards the tail of our
* seqnos.
*/
while (after48(seqp->ccid2s_seq, ackno)) {
if (seqp == hc->tx_seqt) {
done = 1;
break;
}
seqp = seqp->ccid2s_prev;
}
if (done)
break;
/* check all seqnos in the range of the vector
* run length
*/
while (between48(seqp->ccid2s_seq,ackno_end_rl,ackno)) {
const u8 state = dccp_ackvec_state(avp->vec);
/* new packet received or marked */
if (state != DCCPAV_NOT_RECEIVED &&
!seqp->ccid2s_acked) {
if (state == DCCPAV_ECN_MARKED)
ccid2_congestion_event(sk,
seqp);
else
ccid2_new_ack(sk, seqp,
&maxincr);
seqp->ccid2s_acked = 1;
ccid2_pr_debug("Got ack for %llu\n",
(unsigned long long)seqp->ccid2s_seq);
hc->tx_pipe--;
}
if (seqp == hc->tx_seqt) {
done = 1;
break;
}
seqp = seqp->ccid2s_prev;
}
if (done)
break;
ackno = SUB48(ackno_end_rl, 1);
}
if (done)
break;
}
/* The state about what is acked should be correct now
* Check for NUMDUPACK
*/
seqp = hc->tx_seqt;
while (before48(seqp->ccid2s_seq, hc->tx_high_ack)) {
seqp = seqp->ccid2s_next;
if (seqp == hc->tx_seqh) {
seqp = hc->tx_seqh->ccid2s_prev;
break;
}
}
done = 0;
while (1) {
if (seqp->ccid2s_acked) {
done++;
if (done == NUMDUPACK)
break;
}
if (seqp == hc->tx_seqt)
break;
seqp = seqp->ccid2s_prev;
}
/* If there are at least 3 acknowledgements, anything unacknowledged
* below the last sequence number is considered lost
*/
if (done == NUMDUPACK) {
struct ccid2_seq *last_acked = seqp;
/* check for lost packets */
while (1) {
if (!seqp->ccid2s_acked) {
ccid2_pr_debug("Packet lost: %llu\n",
(unsigned long long)seqp->ccid2s_seq);
/* XXX need to traverse from tail -> head in
* order to detect multiple congestion events in
* one ack vector.
*/
ccid2_congestion_event(sk, seqp);
hc->tx_pipe--;
}
if (seqp == hc->tx_seqt)
break;
seqp = seqp->ccid2s_prev;
}
hc->tx_seqt = last_acked;
}
/* trim acked packets in tail */
while (hc->tx_seqt != hc->tx_seqh) {
if (!hc->tx_seqt->ccid2s_acked)
break;
hc->tx_seqt = hc->tx_seqt->ccid2s_next;
}
/* restart RTO timer if not all outstanding data has been acked */
if (hc->tx_pipe == 0)
sk_stop_timer(sk, &hc->tx_rtotimer);
else
sk_reset_timer(sk, &hc->tx_rtotimer, jiffies + hc->tx_rto);
done:
/* check if incoming Acks allow pending packets to be sent */
if (sender_was_blocked && !ccid2_cwnd_network_limited(hc))
dccp_tasklet_schedule(sk);
dccp_ackvec_parsed_cleanup(&hc->tx_av_chunks);
}
static int ccid2_hc_tx_init(struct ccid *ccid, struct sock *sk)
{
struct ccid2_hc_tx_sock *hc = ccid_priv(ccid);
struct dccp_sock *dp = dccp_sk(sk);
u32 max_ratio;
/* RFC 4341, 5: initialise ssthresh to arbitrarily high (max) value */
hc->tx_ssthresh = ~0U;
/* Use larger initial windows (RFC 4341, section 5). */
hc->tx_cwnd = rfc3390_bytes_to_packets(dp->dccps_mss_cache);
hc->tx_expected_wnd = hc->tx_cwnd;
/* Make sure that Ack Ratio is enabled and within bounds. */
max_ratio = DIV_ROUND_UP(hc->tx_cwnd, 2);
if (dp->dccps_l_ack_ratio == 0 || dp->dccps_l_ack_ratio > max_ratio)
dp->dccps_l_ack_ratio = max_ratio;
/* XXX init ~ to window size... */
if (ccid2_hc_tx_alloc_seq(hc))
return -ENOMEM;
hc->tx_rto = DCCP_TIMEOUT_INIT;
hc->tx_rpdupack = -1;
hc->tx_last_cong = hc->tx_lsndtime = hc->tx_cwnd_stamp = ccid2_jiffies32;
hc->tx_cwnd_used = 0;
hc->sk = sk;
timer_setup(&hc->tx_rtotimer, ccid2_hc_tx_rto_expire, 0);
INIT_LIST_HEAD(&hc->tx_av_chunks);
return 0;
}
static void ccid2_hc_tx_exit(struct sock *sk)
{
struct ccid2_hc_tx_sock *hc = ccid2_hc_tx_sk(sk);
int i;
sk_stop_timer(sk, &hc->tx_rtotimer);
for (i = 0; i < hc->tx_seqbufc; i++)
kfree(hc->tx_seqbuf[i]);
hc->tx_seqbufc = 0;
dccp_ackvec_parsed_cleanup(&hc->tx_av_chunks);
}
static void ccid2_hc_rx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
struct ccid2_hc_rx_sock *hc = ccid2_hc_rx_sk(sk);
if (!dccp_data_packet(skb))
return;
if (++hc->rx_num_data_pkts >= dccp_sk(sk)->dccps_r_ack_ratio) {
dccp_send_ack(sk);
hc->rx_num_data_pkts = 0;
}
}
struct ccid_operations ccid2_ops = {
.ccid_id = DCCPC_CCID2,
.ccid_name = "TCP-like",
.ccid_hc_tx_obj_size = sizeof(struct ccid2_hc_tx_sock),
.ccid_hc_tx_init = ccid2_hc_tx_init,
.ccid_hc_tx_exit = ccid2_hc_tx_exit,
.ccid_hc_tx_send_packet = ccid2_hc_tx_send_packet,
.ccid_hc_tx_packet_sent = ccid2_hc_tx_packet_sent,
.ccid_hc_tx_parse_options = ccid2_hc_tx_parse_options,
.ccid_hc_tx_packet_recv = ccid2_hc_tx_packet_recv,
.ccid_hc_rx_obj_size = sizeof(struct ccid2_hc_rx_sock),
.ccid_hc_rx_packet_recv = ccid2_hc_rx_packet_recv,
};
#ifdef CONFIG_IP_DCCP_CCID2_DEBUG
module_param(ccid2_debug, bool, 0644);
MODULE_PARM_DESC(ccid2_debug, "Enable CCID-2 debug messages");
#endif
| linux-master | net/dccp/ccids/ccid2.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
* Copyright (c) 2005-7 Ian McDonald <[email protected]>
*
* An implementation of the DCCP protocol
*
* This code has been developed by the University of Waikato WAND
* research group. For further information please see https://www.wand.net.nz/
*
* This code also uses code from Lulea University, rereleased as GPL by its
* authors:
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
*
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
* and to make it work as a loadable module in the DCCP stack written by
* Arnaldo Carvalho de Melo <[email protected]>.
*
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
*/
#include "../dccp.h"
#include "ccid3.h"
#include <asm/unaligned.h>
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static bool ccid3_debug;
#define ccid3_pr_debug(format, a...) DCCP_PR_DEBUG(ccid3_debug, format, ##a)
#else
#define ccid3_pr_debug(format, a...)
#endif
/*
* Transmitter Half-Connection Routines
*/
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static const char *ccid3_tx_state_name(enum ccid3_hc_tx_states state)
{
static const char *const ccid3_state_names[] = {
[TFRC_SSTATE_NO_SENT] = "NO_SENT",
[TFRC_SSTATE_NO_FBACK] = "NO_FBACK",
[TFRC_SSTATE_FBACK] = "FBACK",
};
return ccid3_state_names[state];
}
#endif
static void ccid3_hc_tx_set_state(struct sock *sk,
enum ccid3_hc_tx_states state)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
enum ccid3_hc_tx_states oldstate = hc->tx_state;
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
dccp_role(sk), sk, ccid3_tx_state_name(oldstate),
ccid3_tx_state_name(state));
WARN_ON(state == oldstate);
hc->tx_state = state;
}
/*
* Compute the initial sending rate X_init in the manner of RFC 3390:
*
* X_init = min(4 * s, max(2 * s, 4380 bytes)) / RTT
*
* Note that RFC 3390 uses MSS, RFC 4342 refers to RFC 3390, and rfc3448bis
* (rev-02) clarifies the use of RFC 3390 with regard to the above formula.
* For consistency with other parts of the code, X_init is scaled by 2^6.
*/
static inline u64 rfc3390_initial_rate(struct sock *sk)
{
const struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
const __u32 w_init = clamp_t(__u32, 4380U, 2 * hc->tx_s, 4 * hc->tx_s);
return scaled_div(w_init << 6, hc->tx_rtt);
}
/**
* ccid3_update_send_interval - Calculate new t_ipi = s / X_inst
* @hc: socket to have the send interval updated
*
* This respects the granularity of X_inst (64 * bytes/second).
*/
static void ccid3_update_send_interval(struct ccid3_hc_tx_sock *hc)
{
hc->tx_t_ipi = scaled_div32(((u64)hc->tx_s) << 6, hc->tx_x);
DCCP_BUG_ON(hc->tx_t_ipi == 0);
ccid3_pr_debug("t_ipi=%u, s=%u, X=%u\n", hc->tx_t_ipi,
hc->tx_s, (unsigned int)(hc->tx_x >> 6));
}
static u32 ccid3_hc_tx_idle_rtt(struct ccid3_hc_tx_sock *hc, ktime_t now)
{
u32 delta = ktime_us_delta(now, hc->tx_t_last_win_count);
return delta / hc->tx_rtt;
}
/**
* ccid3_hc_tx_update_x - Update allowed sending rate X
* @sk: socket to be updated
* @stamp: most recent time if available - can be left NULL.
*
* This function tracks draft rfc3448bis, check there for latest details.
*
* Note: X and X_recv are both stored in units of 64 * bytes/second, to support
* fine-grained resolution of sending rates. This requires scaling by 2^6
* throughout the code. Only X_calc is unscaled (in bytes/second).
*
*/
static void ccid3_hc_tx_update_x(struct sock *sk, ktime_t *stamp)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
__u64 min_rate = 2 * hc->tx_x_recv;
const __u64 old_x = hc->tx_x;
ktime_t now = stamp ? *stamp : ktime_get_real();
/*
* Handle IDLE periods: do not reduce below RFC3390 initial sending rate
* when idling [RFC 4342, 5.1]. Definition of idling is from rfc3448bis:
* a sender is idle if it has not sent anything over a 2-RTT-period.
* For consistency with X and X_recv, min_rate is also scaled by 2^6.
*/
if (ccid3_hc_tx_idle_rtt(hc, now) >= 2) {
min_rate = rfc3390_initial_rate(sk);
min_rate = max(min_rate, 2 * hc->tx_x_recv);
}
if (hc->tx_p > 0) {
hc->tx_x = min(((__u64)hc->tx_x_calc) << 6, min_rate);
hc->tx_x = max(hc->tx_x, (((__u64)hc->tx_s) << 6) / TFRC_T_MBI);
} else if (ktime_us_delta(now, hc->tx_t_ld) - (s64)hc->tx_rtt >= 0) {
hc->tx_x = min(2 * hc->tx_x, min_rate);
hc->tx_x = max(hc->tx_x,
scaled_div(((__u64)hc->tx_s) << 6, hc->tx_rtt));
hc->tx_t_ld = now;
}
if (hc->tx_x != old_x) {
ccid3_pr_debug("X_prev=%u, X_now=%u, X_calc=%u, "
"X_recv=%u\n", (unsigned int)(old_x >> 6),
(unsigned int)(hc->tx_x >> 6), hc->tx_x_calc,
(unsigned int)(hc->tx_x_recv >> 6));
ccid3_update_send_interval(hc);
}
}
/**
* ccid3_hc_tx_update_s - Track the mean packet size `s'
* @hc: socket to be updated
* @len: DCCP packet payload size in bytes
*
* cf. RFC 4342, 5.3 and RFC 3448, 4.1
*/
static inline void ccid3_hc_tx_update_s(struct ccid3_hc_tx_sock *hc, int len)
{
const u16 old_s = hc->tx_s;
hc->tx_s = tfrc_ewma(hc->tx_s, len, 9);
if (hc->tx_s != old_s)
ccid3_update_send_interval(hc);
}
/*
* Update Window Counter using the algorithm from [RFC 4342, 8.1].
* As elsewhere, RTT > 0 is assumed by using dccp_sample_rtt().
*/
static inline void ccid3_hc_tx_update_win_count(struct ccid3_hc_tx_sock *hc,
ktime_t now)
{
u32 delta = ktime_us_delta(now, hc->tx_t_last_win_count),
quarter_rtts = (4 * delta) / hc->tx_rtt;
if (quarter_rtts > 0) {
hc->tx_t_last_win_count = now;
hc->tx_last_win_count += min(quarter_rtts, 5U);
hc->tx_last_win_count &= 0xF; /* mod 16 */
}
}
static void ccid3_hc_tx_no_feedback_timer(struct timer_list *t)
{
struct ccid3_hc_tx_sock *hc = from_timer(hc, t, tx_no_feedback_timer);
struct sock *sk = hc->sk;
unsigned long t_nfb = USEC_PER_SEC / 5;
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
/* Try again later. */
/* XXX: set some sensible MIB */
goto restart_timer;
}
ccid3_pr_debug("%s(%p, state=%s) - entry\n", dccp_role(sk), sk,
ccid3_tx_state_name(hc->tx_state));
/* Ignore and do not restart after leaving the established state */
if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN))
goto out;
/* Reset feedback state to "no feedback received" */
if (hc->tx_state == TFRC_SSTATE_FBACK)
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_NO_FBACK);
/*
* Determine new allowed sending rate X as per draft rfc3448bis-00, 4.4
* RTO is 0 if and only if no feedback has been received yet.
*/
if (hc->tx_t_rto == 0 || hc->tx_p == 0) {
/* halve send rate directly */
hc->tx_x = max(hc->tx_x / 2,
(((__u64)hc->tx_s) << 6) / TFRC_T_MBI);
ccid3_update_send_interval(hc);
} else {
/*
* Modify the cached value of X_recv
*
* If (X_calc > 2 * X_recv)
* X_recv = max(X_recv / 2, s / (2 * t_mbi));
* Else
* X_recv = X_calc / 4;
*
* Note that X_recv is scaled by 2^6 while X_calc is not
*/
if (hc->tx_x_calc > (hc->tx_x_recv >> 5))
hc->tx_x_recv =
max(hc->tx_x_recv / 2,
(((__u64)hc->tx_s) << 6) / (2*TFRC_T_MBI));
else {
hc->tx_x_recv = hc->tx_x_calc;
hc->tx_x_recv <<= 4;
}
ccid3_hc_tx_update_x(sk, NULL);
}
ccid3_pr_debug("Reduced X to %llu/64 bytes/sec\n",
(unsigned long long)hc->tx_x);
/*
* Set new timeout for the nofeedback timer.
* See comments in packet_recv() regarding the value of t_RTO.
*/
if (unlikely(hc->tx_t_rto == 0)) /* no feedback received yet */
t_nfb = TFRC_INITIAL_TIMEOUT;
else
t_nfb = max(hc->tx_t_rto, 2 * hc->tx_t_ipi);
restart_timer:
sk_reset_timer(sk, &hc->tx_no_feedback_timer,
jiffies + usecs_to_jiffies(t_nfb));
out:
bh_unlock_sock(sk);
sock_put(sk);
}
/**
* ccid3_hc_tx_send_packet - Delay-based dequeueing of TX packets
* @sk: socket to send packet from
* @skb: next packet candidate to send on @sk
*
* This function uses the convention of ccid_packet_dequeue_eval() and
* returns a millisecond-delay value between 0 and t_mbi = 64000 msec.
*/
static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
{
struct dccp_sock *dp = dccp_sk(sk);
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
ktime_t now = ktime_get_real();
s64 delay;
/*
* This function is called only for Data and DataAck packets. Sending
* zero-sized Data(Ack)s is theoretically possible, but for congestion
* control this case is pathological - ignore it.
*/
if (unlikely(skb->len == 0))
return -EBADMSG;
if (hc->tx_state == TFRC_SSTATE_NO_SENT) {
sk_reset_timer(sk, &hc->tx_no_feedback_timer, (jiffies +
usecs_to_jiffies(TFRC_INITIAL_TIMEOUT)));
hc->tx_last_win_count = 0;
hc->tx_t_last_win_count = now;
/* Set t_0 for initial packet */
hc->tx_t_nom = now;
hc->tx_s = skb->len;
/*
* Use initial RTT sample when available: recommended by erratum
* to RFC 4342. This implements the initialisation procedure of
* draft rfc3448bis, section 4.2. Remember, X is scaled by 2^6.
*/
if (dp->dccps_syn_rtt) {
ccid3_pr_debug("SYN RTT = %uus\n", dp->dccps_syn_rtt);
hc->tx_rtt = dp->dccps_syn_rtt;
hc->tx_x = rfc3390_initial_rate(sk);
hc->tx_t_ld = now;
} else {
/*
* Sender does not have RTT sample:
* - set fallback RTT (RFC 4340, 3.4) since a RTT value
* is needed in several parts (e.g. window counter);
* - set sending rate X_pps = 1pps as per RFC 3448, 4.2.
*/
hc->tx_rtt = DCCP_FALLBACK_RTT;
hc->tx_x = hc->tx_s;
hc->tx_x <<= 6;
}
ccid3_update_send_interval(hc);
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_NO_FBACK);
} else {
delay = ktime_us_delta(hc->tx_t_nom, now);
ccid3_pr_debug("delay=%ld\n", (long)delay);
/*
* Scheduling of packet transmissions (RFC 5348, 8.3)
*
* if (t_now > t_nom - delta)
* // send the packet now
* else
* // send the packet in (t_nom - t_now) milliseconds.
*/
if (delay >= TFRC_T_DELTA)
return (u32)delay / USEC_PER_MSEC;
ccid3_hc_tx_update_win_count(hc, now);
}
/* prepare to send now (add options etc.) */
dp->dccps_hc_tx_insert_options = 1;
DCCP_SKB_CB(skb)->dccpd_ccval = hc->tx_last_win_count;
/* set the nominal send time for the next following packet */
hc->tx_t_nom = ktime_add_us(hc->tx_t_nom, hc->tx_t_ipi);
return CCID_PACKET_SEND_AT_ONCE;
}
static void ccid3_hc_tx_packet_sent(struct sock *sk, unsigned int len)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
ccid3_hc_tx_update_s(hc, len);
if (tfrc_tx_hist_add(&hc->tx_hist, dccp_sk(sk)->dccps_gss))
DCCP_CRIT("packet history - out of memory!");
}
static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
struct tfrc_tx_hist_entry *acked;
ktime_t now;
unsigned long t_nfb;
u32 r_sample;
/* we are only interested in ACKs */
if (!(DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_ACK ||
DCCP_SKB_CB(skb)->dccpd_type == DCCP_PKT_DATAACK))
return;
/*
* Locate the acknowledged packet in the TX history.
*
* Returning "entry not found" here can for instance happen when
* - the host has not sent out anything (e.g. a passive server),
* - the Ack is outdated (packet with higher Ack number was received),
* - it is a bogus Ack (for a packet not sent on this connection).
*/
acked = tfrc_tx_hist_find_entry(hc->tx_hist, dccp_hdr_ack_seq(skb));
if (acked == NULL)
return;
/* For the sake of RTT sampling, ignore/remove all older entries */
tfrc_tx_hist_purge(&acked->next);
/* Update the moving average for the RTT estimate (RFC 3448, 4.3) */
now = ktime_get_real();
r_sample = dccp_sample_rtt(sk, ktime_us_delta(now, acked->stamp));
hc->tx_rtt = tfrc_ewma(hc->tx_rtt, r_sample, 9);
/*
* Update allowed sending rate X as per draft rfc3448bis-00, 4.2/3
*/
if (hc->tx_state == TFRC_SSTATE_NO_FBACK) {
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
if (hc->tx_t_rto == 0) {
/*
* Initial feedback packet: Larger Initial Windows (4.2)
*/
hc->tx_x = rfc3390_initial_rate(sk);
hc->tx_t_ld = now;
ccid3_update_send_interval(hc);
goto done_computing_x;
} else if (hc->tx_p == 0) {
/*
* First feedback after nofeedback timer expiry (4.3)
*/
goto done_computing_x;
}
}
/* Update sending rate (step 4 of [RFC 3448, 4.3]) */
if (hc->tx_p > 0)
hc->tx_x_calc = tfrc_calc_x(hc->tx_s, hc->tx_rtt, hc->tx_p);
ccid3_hc_tx_update_x(sk, &now);
done_computing_x:
ccid3_pr_debug("%s(%p), RTT=%uus (sample=%uus), s=%u, "
"p=%u, X_calc=%u, X_recv=%u, X=%u\n",
dccp_role(sk), sk, hc->tx_rtt, r_sample,
hc->tx_s, hc->tx_p, hc->tx_x_calc,
(unsigned int)(hc->tx_x_recv >> 6),
(unsigned int)(hc->tx_x >> 6));
/* unschedule no feedback timer */
sk_stop_timer(sk, &hc->tx_no_feedback_timer);
/*
* As we have calculated new ipi, delta, t_nom it is possible
* that we now can send a packet, so wake up dccp_wait_for_ccid
*/
sk->sk_write_space(sk);
/*
* Update timeout interval for the nofeedback timer. In order to control
* rate halving on networks with very low RTTs (<= 1 ms), use per-route
* tunable RTAX_RTO_MIN value as the lower bound.
*/
hc->tx_t_rto = max_t(u32, 4 * hc->tx_rtt,
USEC_PER_SEC/HZ * tcp_rto_min(sk));
/*
* Schedule no feedback timer to expire in
* max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
*/
t_nfb = max(hc->tx_t_rto, 2 * hc->tx_t_ipi);
ccid3_pr_debug("%s(%p), Scheduled no feedback timer to "
"expire in %lu jiffies (%luus)\n",
dccp_role(sk), sk, usecs_to_jiffies(t_nfb), t_nfb);
sk_reset_timer(sk, &hc->tx_no_feedback_timer,
jiffies + usecs_to_jiffies(t_nfb));
}
static int ccid3_hc_tx_parse_options(struct sock *sk, u8 packet_type,
u8 option, u8 *optval, u8 optlen)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
__be32 opt_val;
switch (option) {
case TFRC_OPT_RECEIVE_RATE:
case TFRC_OPT_LOSS_EVENT_RATE:
/* Must be ignored on Data packets, cf. RFC 4342 8.3 and 8.5 */
if (packet_type == DCCP_PKT_DATA)
break;
if (unlikely(optlen != 4)) {
DCCP_WARN("%s(%p), invalid len %d for %u\n",
dccp_role(sk), sk, optlen, option);
return -EINVAL;
}
opt_val = ntohl(get_unaligned((__be32 *)optval));
if (option == TFRC_OPT_RECEIVE_RATE) {
/* Receive Rate is kept in units of 64 bytes/second */
hc->tx_x_recv = opt_val;
hc->tx_x_recv <<= 6;
ccid3_pr_debug("%s(%p), RECEIVE_RATE=%u\n",
dccp_role(sk), sk, opt_val);
} else {
/* Update the fixpoint Loss Event Rate fraction */
hc->tx_p = tfrc_invert_loss_event_rate(opt_val);
ccid3_pr_debug("%s(%p), LOSS_EVENT_RATE=%u\n",
dccp_role(sk), sk, opt_val);
}
}
return 0;
}
static int ccid3_hc_tx_init(struct ccid *ccid, struct sock *sk)
{
struct ccid3_hc_tx_sock *hc = ccid_priv(ccid);
hc->tx_state = TFRC_SSTATE_NO_SENT;
hc->tx_hist = NULL;
hc->sk = sk;
timer_setup(&hc->tx_no_feedback_timer,
ccid3_hc_tx_no_feedback_timer, 0);
return 0;
}
static void ccid3_hc_tx_exit(struct sock *sk)
{
struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
sk_stop_timer(sk, &hc->tx_no_feedback_timer);
tfrc_tx_hist_purge(&hc->tx_hist);
}
static void ccid3_hc_tx_get_info(struct sock *sk, struct tcp_info *info)
{
info->tcpi_rto = ccid3_hc_tx_sk(sk)->tx_t_rto;
info->tcpi_rtt = ccid3_hc_tx_sk(sk)->tx_rtt;
}
static int ccid3_hc_tx_getsockopt(struct sock *sk, const int optname, int len,
u32 __user *optval, int __user *optlen)
{
const struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk);
struct tfrc_tx_info tfrc;
const void *val;
switch (optname) {
case DCCP_SOCKOPT_CCID_TX_INFO:
if (len < sizeof(tfrc))
return -EINVAL;
memset(&tfrc, 0, sizeof(tfrc));
tfrc.tfrctx_x = hc->tx_x;
tfrc.tfrctx_x_recv = hc->tx_x_recv;
tfrc.tfrctx_x_calc = hc->tx_x_calc;
tfrc.tfrctx_rtt = hc->tx_rtt;
tfrc.tfrctx_p = hc->tx_p;
tfrc.tfrctx_rto = hc->tx_t_rto;
tfrc.tfrctx_ipi = hc->tx_t_ipi;
len = sizeof(tfrc);
val = &tfrc;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen) || copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
/*
* Receiver Half-Connection Routines
*/
/* CCID3 feedback types */
enum ccid3_fback_type {
CCID3_FBACK_NONE = 0,
CCID3_FBACK_INITIAL,
CCID3_FBACK_PERIODIC,
CCID3_FBACK_PARAM_CHANGE
};
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
static const char *ccid3_rx_state_name(enum ccid3_hc_rx_states state)
{
static const char *const ccid3_rx_state_names[] = {
[TFRC_RSTATE_NO_DATA] = "NO_DATA",
[TFRC_RSTATE_DATA] = "DATA",
};
return ccid3_rx_state_names[state];
}
#endif
static void ccid3_hc_rx_set_state(struct sock *sk,
enum ccid3_hc_rx_states state)
{
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
enum ccid3_hc_rx_states oldstate = hc->rx_state;
ccid3_pr_debug("%s(%p) %-8.8s -> %s\n",
dccp_role(sk), sk, ccid3_rx_state_name(oldstate),
ccid3_rx_state_name(state));
WARN_ON(state == oldstate);
hc->rx_state = state;
}
static void ccid3_hc_rx_send_feedback(struct sock *sk,
const struct sk_buff *skb,
enum ccid3_fback_type fbtype)
{
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
ktime_t now = ktime_get();
s64 delta = 0;
switch (fbtype) {
case CCID3_FBACK_INITIAL:
hc->rx_x_recv = 0;
hc->rx_pinv = ~0U; /* see RFC 4342, 8.5 */
break;
case CCID3_FBACK_PARAM_CHANGE:
/*
* When parameters change (new loss or p > p_prev), we do not
* have a reliable estimate for R_m of [RFC 3448, 6.2] and so
* need to reuse the previous value of X_recv. However, when
* X_recv was 0 (due to early loss), this would kill X down to
* s/t_mbi (i.e. one packet in 64 seconds).
* To avoid such drastic reduction, we approximate X_recv as
* the number of bytes since last feedback.
* This is a safe fallback, since X is bounded above by X_calc.
*/
if (hc->rx_x_recv > 0)
break;
fallthrough;
case CCID3_FBACK_PERIODIC:
delta = ktime_us_delta(now, hc->rx_tstamp_last_feedback);
if (delta <= 0)
delta = 1;
hc->rx_x_recv = scaled_div32(hc->rx_bytes_recv, delta);
break;
default:
return;
}
ccid3_pr_debug("Interval %lldusec, X_recv=%u, 1/p=%u\n", delta,
hc->rx_x_recv, hc->rx_pinv);
hc->rx_tstamp_last_feedback = now;
hc->rx_last_counter = dccp_hdr(skb)->dccph_ccval;
hc->rx_bytes_recv = 0;
dp->dccps_hc_rx_insert_options = 1;
dccp_send_ack(sk);
}
static int ccid3_hc_rx_insert_options(struct sock *sk, struct sk_buff *skb)
{
const struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
__be32 x_recv, pinv;
if (!(sk->sk_state == DCCP_OPEN || sk->sk_state == DCCP_PARTOPEN))
return 0;
if (dccp_packet_without_ack(skb))
return 0;
x_recv = htonl(hc->rx_x_recv);
pinv = htonl(hc->rx_pinv);
if (dccp_insert_option(skb, TFRC_OPT_LOSS_EVENT_RATE,
&pinv, sizeof(pinv)) ||
dccp_insert_option(skb, TFRC_OPT_RECEIVE_RATE,
&x_recv, sizeof(x_recv)))
return -1;
return 0;
}
/**
* ccid3_first_li - Implements [RFC 5348, 6.3.1]
* @sk: socket to calculate loss interval for
*
* Determine the length of the first loss interval via inverse lookup.
* Assume that X_recv can be computed by the throughput equation
* s
* X_recv = --------
* R * fval
* Find some p such that f(p) = fval; return 1/p (scaled).
*/
static u32 ccid3_first_li(struct sock *sk)
{
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
u32 x_recv, p;
s64 delta;
u64 fval;
if (hc->rx_rtt == 0) {
DCCP_WARN("No RTT estimate available, using fallback RTT\n");
hc->rx_rtt = DCCP_FALLBACK_RTT;
}
delta = ktime_us_delta(ktime_get(), hc->rx_tstamp_last_feedback);
if (delta <= 0)
delta = 1;
x_recv = scaled_div32(hc->rx_bytes_recv, delta);
if (x_recv == 0) { /* would also trigger divide-by-zero */
DCCP_WARN("X_recv==0\n");
if (hc->rx_x_recv == 0) {
DCCP_BUG("stored value of X_recv is zero");
return ~0U;
}
x_recv = hc->rx_x_recv;
}
fval = scaled_div(hc->rx_s, hc->rx_rtt);
fval = scaled_div32(fval, x_recv);
p = tfrc_calc_x_reverse_lookup(fval);
ccid3_pr_debug("%s(%p), receive rate=%u bytes/s, implied "
"loss rate=%u\n", dccp_role(sk), sk, x_recv, p);
return p == 0 ? ~0U : scaled_div(1, p);
}
static void ccid3_hc_rx_packet_recv(struct sock *sk, struct sk_buff *skb)
{
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
enum ccid3_fback_type do_feedback = CCID3_FBACK_NONE;
const u64 ndp = dccp_sk(sk)->dccps_options_received.dccpor_ndp;
const bool is_data_packet = dccp_data_packet(skb);
if (unlikely(hc->rx_state == TFRC_RSTATE_NO_DATA)) {
if (is_data_packet) {
const u32 payload = skb->len - dccp_hdr(skb)->dccph_doff * 4;
do_feedback = CCID3_FBACK_INITIAL;
ccid3_hc_rx_set_state(sk, TFRC_RSTATE_DATA);
hc->rx_s = payload;
/*
* Not necessary to update rx_bytes_recv here,
* since X_recv = 0 for the first feedback packet (cf.
* RFC 3448, 6.3) -- gerrit
*/
}
goto update_records;
}
if (tfrc_rx_hist_duplicate(&hc->rx_hist, skb))
return; /* done receiving */
if (is_data_packet) {
const u32 payload = skb->len - dccp_hdr(skb)->dccph_doff * 4;
/*
* Update moving-average of s and the sum of received payload bytes
*/
hc->rx_s = tfrc_ewma(hc->rx_s, payload, 9);
hc->rx_bytes_recv += payload;
}
/*
* Perform loss detection and handle pending losses
*/
if (tfrc_rx_handle_loss(&hc->rx_hist, &hc->rx_li_hist,
skb, ndp, ccid3_first_li, sk)) {
do_feedback = CCID3_FBACK_PARAM_CHANGE;
goto done_receiving;
}
if (tfrc_rx_hist_loss_pending(&hc->rx_hist))
return; /* done receiving */
/*
* Handle data packets: RTT sampling and monitoring p
*/
if (unlikely(!is_data_packet))
goto update_records;
if (!tfrc_lh_is_initialised(&hc->rx_li_hist)) {
const u32 sample = tfrc_rx_hist_sample_rtt(&hc->rx_hist, skb);
/*
* Empty loss history: no loss so far, hence p stays 0.
* Sample RTT values, since an RTT estimate is required for the
* computation of p when the first loss occurs; RFC 3448, 6.3.1.
*/
if (sample != 0)
hc->rx_rtt = tfrc_ewma(hc->rx_rtt, sample, 9);
} else if (tfrc_lh_update_i_mean(&hc->rx_li_hist, skb)) {
/*
* Step (3) of [RFC 3448, 6.1]: Recompute I_mean and, if I_mean
* has decreased (resp. p has increased), send feedback now.
*/
do_feedback = CCID3_FBACK_PARAM_CHANGE;
}
/*
* Check if the periodic once-per-RTT feedback is due; RFC 4342, 10.3
*/
if (SUB16(dccp_hdr(skb)->dccph_ccval, hc->rx_last_counter) > 3)
do_feedback = CCID3_FBACK_PERIODIC;
update_records:
tfrc_rx_hist_add_packet(&hc->rx_hist, skb, ndp);
done_receiving:
if (do_feedback)
ccid3_hc_rx_send_feedback(sk, skb, do_feedback);
}
static int ccid3_hc_rx_init(struct ccid *ccid, struct sock *sk)
{
struct ccid3_hc_rx_sock *hc = ccid_priv(ccid);
hc->rx_state = TFRC_RSTATE_NO_DATA;
tfrc_lh_init(&hc->rx_li_hist);
return tfrc_rx_hist_alloc(&hc->rx_hist);
}
static void ccid3_hc_rx_exit(struct sock *sk)
{
struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
tfrc_rx_hist_purge(&hc->rx_hist);
tfrc_lh_cleanup(&hc->rx_li_hist);
}
static void ccid3_hc_rx_get_info(struct sock *sk, struct tcp_info *info)
{
info->tcpi_ca_state = ccid3_hc_rx_sk(sk)->rx_state;
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
info->tcpi_rcv_rtt = ccid3_hc_rx_sk(sk)->rx_rtt;
}
static int ccid3_hc_rx_getsockopt(struct sock *sk, const int optname, int len,
u32 __user *optval, int __user *optlen)
{
const struct ccid3_hc_rx_sock *hc = ccid3_hc_rx_sk(sk);
struct tfrc_rx_info rx_info;
const void *val;
switch (optname) {
case DCCP_SOCKOPT_CCID_RX_INFO:
if (len < sizeof(rx_info))
return -EINVAL;
rx_info.tfrcrx_x_recv = hc->rx_x_recv;
rx_info.tfrcrx_rtt = hc->rx_rtt;
rx_info.tfrcrx_p = tfrc_invert_loss_event_rate(hc->rx_pinv);
len = sizeof(rx_info);
val = &rx_info;
break;
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen) || copy_to_user(optval, val, len))
return -EFAULT;
return 0;
}
struct ccid_operations ccid3_ops = {
.ccid_id = DCCPC_CCID3,
.ccid_name = "TCP-Friendly Rate Control",
.ccid_hc_tx_obj_size = sizeof(struct ccid3_hc_tx_sock),
.ccid_hc_tx_init = ccid3_hc_tx_init,
.ccid_hc_tx_exit = ccid3_hc_tx_exit,
.ccid_hc_tx_send_packet = ccid3_hc_tx_send_packet,
.ccid_hc_tx_packet_sent = ccid3_hc_tx_packet_sent,
.ccid_hc_tx_packet_recv = ccid3_hc_tx_packet_recv,
.ccid_hc_tx_parse_options = ccid3_hc_tx_parse_options,
.ccid_hc_rx_obj_size = sizeof(struct ccid3_hc_rx_sock),
.ccid_hc_rx_init = ccid3_hc_rx_init,
.ccid_hc_rx_exit = ccid3_hc_rx_exit,
.ccid_hc_rx_insert_options = ccid3_hc_rx_insert_options,
.ccid_hc_rx_packet_recv = ccid3_hc_rx_packet_recv,
.ccid_hc_rx_get_info = ccid3_hc_rx_get_info,
.ccid_hc_tx_get_info = ccid3_hc_tx_get_info,
.ccid_hc_rx_getsockopt = ccid3_hc_rx_getsockopt,
.ccid_hc_tx_getsockopt = ccid3_hc_tx_getsockopt,
};
#ifdef CONFIG_IP_DCCP_CCID3_DEBUG
module_param(ccid3_debug, bool, 0644);
MODULE_PARM_DESC(ccid3_debug, "Enable CCID-3 debug messages");
#endif
| linux-master | net/dccp/ccids/ccid3.c |
// SPDX-License-Identifier: GPL-2.0
/*
* TFRC library initialisation
*
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
* Copyright (c) 2007 Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/moduleparam.h>
#include "tfrc.h"
#ifdef CONFIG_IP_DCCP_TFRC_DEBUG
bool tfrc_debug;
module_param(tfrc_debug, bool, 0644);
MODULE_PARM_DESC(tfrc_debug, "Enable TFRC debug messages");
#endif
int __init tfrc_lib_init(void)
{
int rc = tfrc_li_init();
if (rc)
goto out;
rc = tfrc_tx_packet_history_init();
if (rc)
goto out_free_loss_intervals;
rc = tfrc_rx_packet_history_init();
if (rc)
goto out_free_tx_history;
return 0;
out_free_tx_history:
tfrc_tx_packet_history_exit();
out_free_loss_intervals:
tfrc_li_exit();
out:
return rc;
}
void tfrc_lib_exit(void)
{
tfrc_rx_packet_history_exit();
tfrc_tx_packet_history_exit();
tfrc_li_exit();
}
| linux-master | net/dccp/ccids/lib/tfrc.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
* Copyright (c) 2005-7 Ian McDonald <[email protected]>
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
*/
#include <net/sock.h>
#include "tfrc.h"
static struct kmem_cache *tfrc_lh_slab __read_mostly;
/* Loss Interval weights from [RFC 3448, 5.4], scaled by 10 */
static const int tfrc_lh_weights[NINTERVAL] = { 10, 10, 10, 10, 8, 6, 4, 2 };
/* implements LIFO semantics on the array */
static inline u8 LIH_INDEX(const u8 ctr)
{
return LIH_SIZE - 1 - (ctr % LIH_SIZE);
}
/* the `counter' index always points at the next entry to be populated */
static inline struct tfrc_loss_interval *tfrc_lh_peek(struct tfrc_loss_hist *lh)
{
return lh->counter ? lh->ring[LIH_INDEX(lh->counter - 1)] : NULL;
}
/* given i with 0 <= i <= k, return I_i as per the rfc3448bis notation */
static inline u32 tfrc_lh_get_interval(struct tfrc_loss_hist *lh, const u8 i)
{
BUG_ON(i >= lh->counter);
return lh->ring[LIH_INDEX(lh->counter - i - 1)]->li_length;
}
/*
* On-demand allocation and de-allocation of entries
*/
static struct tfrc_loss_interval *tfrc_lh_demand_next(struct tfrc_loss_hist *lh)
{
if (lh->ring[LIH_INDEX(lh->counter)] == NULL)
lh->ring[LIH_INDEX(lh->counter)] = kmem_cache_alloc(tfrc_lh_slab,
GFP_ATOMIC);
return lh->ring[LIH_INDEX(lh->counter)];
}
void tfrc_lh_cleanup(struct tfrc_loss_hist *lh)
{
if (!tfrc_lh_is_initialised(lh))
return;
for (lh->counter = 0; lh->counter < LIH_SIZE; lh->counter++)
if (lh->ring[LIH_INDEX(lh->counter)] != NULL) {
kmem_cache_free(tfrc_lh_slab,
lh->ring[LIH_INDEX(lh->counter)]);
lh->ring[LIH_INDEX(lh->counter)] = NULL;
}
}
static void tfrc_lh_calc_i_mean(struct tfrc_loss_hist *lh)
{
u32 i_i, i_tot0 = 0, i_tot1 = 0, w_tot = 0;
int i, k = tfrc_lh_length(lh) - 1; /* k is as in rfc3448bis, 5.4 */
if (k <= 0)
return;
for (i = 0; i <= k; i++) {
i_i = tfrc_lh_get_interval(lh, i);
if (i < k) {
i_tot0 += i_i * tfrc_lh_weights[i];
w_tot += tfrc_lh_weights[i];
}
if (i > 0)
i_tot1 += i_i * tfrc_lh_weights[i-1];
}
lh->i_mean = max(i_tot0, i_tot1) / w_tot;
}
/**
* tfrc_lh_update_i_mean - Update the `open' loss interval I_0
* @lh: histogram to update
* @skb: received socket triggering loss interval update
*
* For recomputing p: returns `true' if p > p_prev <=> 1/p < 1/p_prev
*/
u8 tfrc_lh_update_i_mean(struct tfrc_loss_hist *lh, struct sk_buff *skb)
{
struct tfrc_loss_interval *cur = tfrc_lh_peek(lh);
u32 old_i_mean = lh->i_mean;
s64 len;
if (cur == NULL) /* not initialised */
return 0;
len = dccp_delta_seqno(cur->li_seqno, DCCP_SKB_CB(skb)->dccpd_seq) + 1;
if (len - (s64)cur->li_length <= 0) /* duplicate or reordered */
return 0;
if (SUB16(dccp_hdr(skb)->dccph_ccval, cur->li_ccval) > 4)
/*
* Implements RFC 4342, 10.2:
* If a packet S (skb) exists whose seqno comes `after' the one
* starting the current loss interval (cur) and if the modulo-16
* distance from C(cur) to C(S) is greater than 4, consider all
* subsequent packets as belonging to a new loss interval. This
* test is necessary since CCVal may wrap between intervals.
*/
cur->li_is_closed = 1;
if (tfrc_lh_length(lh) == 1) /* due to RFC 3448, 6.3.1 */
return 0;
cur->li_length = len;
tfrc_lh_calc_i_mean(lh);
return lh->i_mean < old_i_mean;
}
/* Determine if `new_loss' does begin a new loss interval [RFC 4342, 10.2] */
static inline u8 tfrc_lh_is_new_loss(struct tfrc_loss_interval *cur,
struct tfrc_rx_hist_entry *new_loss)
{
return dccp_delta_seqno(cur->li_seqno, new_loss->tfrchrx_seqno) > 0 &&
(cur->li_is_closed || SUB16(new_loss->tfrchrx_ccval, cur->li_ccval) > 4);
}
/**
* tfrc_lh_interval_add - Insert new record into the Loss Interval database
* @lh: Loss Interval database
* @rh: Receive history containing a fresh loss event
* @calc_first_li: Caller-dependent routine to compute length of first interval
* @sk: Used by @calc_first_li in caller-specific way (subtyping)
*
* Updates I_mean and returns 1 if a new interval has in fact been added to @lh.
*/
int tfrc_lh_interval_add(struct tfrc_loss_hist *lh, struct tfrc_rx_hist *rh,
u32 (*calc_first_li)(struct sock *), struct sock *sk)
{
struct tfrc_loss_interval *cur = tfrc_lh_peek(lh), *new;
if (cur != NULL && !tfrc_lh_is_new_loss(cur, tfrc_rx_hist_loss_prev(rh)))
return 0;
new = tfrc_lh_demand_next(lh);
if (unlikely(new == NULL)) {
DCCP_CRIT("Cannot allocate/add loss record.");
return 0;
}
new->li_seqno = tfrc_rx_hist_loss_prev(rh)->tfrchrx_seqno;
new->li_ccval = tfrc_rx_hist_loss_prev(rh)->tfrchrx_ccval;
new->li_is_closed = 0;
if (++lh->counter == 1)
lh->i_mean = new->li_length = (*calc_first_li)(sk);
else {
cur->li_length = dccp_delta_seqno(cur->li_seqno, new->li_seqno);
new->li_length = dccp_delta_seqno(new->li_seqno,
tfrc_rx_hist_last_rcv(rh)->tfrchrx_seqno) + 1;
if (lh->counter > (2*LIH_SIZE))
lh->counter -= LIH_SIZE;
tfrc_lh_calc_i_mean(lh);
}
return 1;
}
int __init tfrc_li_init(void)
{
tfrc_lh_slab = kmem_cache_create("tfrc_li_hist",
sizeof(struct tfrc_loss_interval), 0,
SLAB_HWCACHE_ALIGN, NULL);
return tfrc_lh_slab == NULL ? -ENOBUFS : 0;
}
void tfrc_li_exit(void)
{
if (tfrc_lh_slab != NULL) {
kmem_cache_destroy(tfrc_lh_slab);
tfrc_lh_slab = NULL;
}
}
| linux-master | net/dccp/ccids/lib/loss_interval.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2007 The University of Aberdeen, Scotland, UK
* Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
*
* An implementation of the DCCP protocol
*
* This code has been developed by the University of Waikato WAND
* research group. For further information please see https://www.wand.net.nz/
* or e-mail Ian McDonald - [email protected]
*
* This code also uses code from Lulea University, rereleased as GPL by its
* authors:
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
*
* Changes to meet Linux coding standards, to make it meet latest ccid3 draft
* and to make it work as a loadable module in the DCCP stack written by
* Arnaldo Carvalho de Melo <[email protected]>.
*
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
*/
#include <linux/string.h>
#include <linux/slab.h>
#include "packet_history.h"
#include "../../dccp.h"
/*
* Transmitter History Routines
*/
static struct kmem_cache *tfrc_tx_hist_slab;
int __init tfrc_tx_packet_history_init(void)
{
tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
sizeof(struct tfrc_tx_hist_entry),
0, SLAB_HWCACHE_ALIGN, NULL);
return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
}
void tfrc_tx_packet_history_exit(void)
{
if (tfrc_tx_hist_slab != NULL) {
kmem_cache_destroy(tfrc_tx_hist_slab);
tfrc_tx_hist_slab = NULL;
}
}
int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
{
struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
if (entry == NULL)
return -ENOBUFS;
entry->seqno = seqno;
entry->stamp = ktime_get_real();
entry->next = *headp;
*headp = entry;
return 0;
}
void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
{
struct tfrc_tx_hist_entry *head = *headp;
while (head != NULL) {
struct tfrc_tx_hist_entry *next = head->next;
kmem_cache_free(tfrc_tx_hist_slab, head);
head = next;
}
*headp = NULL;
}
/*
* Receiver History Routines
*/
static struct kmem_cache *tfrc_rx_hist_slab;
int __init tfrc_rx_packet_history_init(void)
{
tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
sizeof(struct tfrc_rx_hist_entry),
0, SLAB_HWCACHE_ALIGN, NULL);
return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
}
void tfrc_rx_packet_history_exit(void)
{
if (tfrc_rx_hist_slab != NULL) {
kmem_cache_destroy(tfrc_rx_hist_slab);
tfrc_rx_hist_slab = NULL;
}
}
static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
const struct sk_buff *skb,
const u64 ndp)
{
const struct dccp_hdr *dh = dccp_hdr(skb);
entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
entry->tfrchrx_ccval = dh->dccph_ccval;
entry->tfrchrx_type = dh->dccph_type;
entry->tfrchrx_ndp = ndp;
entry->tfrchrx_tstamp = ktime_get_real();
}
void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
const struct sk_buff *skb,
const u64 ndp)
{
struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
}
/* has the packet contained in skb been seen before? */
int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
{
const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
int i;
if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
return 1;
for (i = 1; i <= h->loss_count; i++)
if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
return 1;
return 0;
}
static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
{
const u8 idx_a = tfrc_rx_hist_index(h, a),
idx_b = tfrc_rx_hist_index(h, b);
swap(h->ring[idx_a], h->ring[idx_b]);
}
/*
* Private helper functions for loss detection.
*
* In the descriptions, `Si' refers to the sequence number of entry number i,
* whose NDP count is `Ni' (lower case is used for variables).
* Note: All __xxx_loss functions expect that a test against duplicates has been
* performed already: the seqno of the skb must not be less than the seqno
* of loss_prev; and it must not equal that of any valid history entry.
*/
static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
{
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
s1 = DCCP_SKB_CB(skb)->dccpd_seq;
if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
h->loss_count = 1;
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
}
}
static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
{
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
s2 = DCCP_SKB_CB(skb)->dccpd_seq;
if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
h->loss_count = 2;
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
return;
}
/* S0 < S2 < S1 */
if (dccp_loss_free(s0, s2, n2)) {
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
if (dccp_loss_free(s2, s1, n1)) {
/* hole is filled: S0, S2, and S1 are consecutive */
h->loss_count = 0;
h->loss_start = tfrc_rx_hist_index(h, 1);
} else
/* gap between S2 and S1: just update loss_prev */
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
} else { /* gap between S0 and S2 */
/*
* Reorder history to insert S2 between S0 and S1
*/
tfrc_rx_hist_swap(h, 0, 3);
h->loss_start = tfrc_rx_hist_index(h, 3);
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
h->loss_count = 2;
}
}
/* return 1 if a new loss event has been identified */
static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
{
u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
s3 = DCCP_SKB_CB(skb)->dccpd_seq;
if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
h->loss_count = 3;
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
return 1;
}
/* S3 < S2 */
if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
/*
* Reorder history to insert S3 between S1 and S2
*/
tfrc_rx_hist_swap(h, 2, 3);
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
h->loss_count = 3;
return 1;
}
/* S0 < S3 < S1 */
if (dccp_loss_free(s0, s3, n3)) {
u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
if (dccp_loss_free(s3, s1, n1)) {
/* hole between S0 and S1 filled by S3 */
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
if (dccp_loss_free(s1, s2, n2)) {
/* entire hole filled by S0, S3, S1, S2 */
h->loss_start = tfrc_rx_hist_index(h, 2);
h->loss_count = 0;
} else {
/* gap remains between S1 and S2 */
h->loss_start = tfrc_rx_hist_index(h, 1);
h->loss_count = 1;
}
} else /* gap exists between S3 and S1, loss_count stays at 2 */
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
return 0;
}
/*
* The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
* Reorder history to insert S3 between S0 and S1.
*/
tfrc_rx_hist_swap(h, 0, 3);
h->loss_start = tfrc_rx_hist_index(h, 3);
tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
h->loss_count = 3;
return 1;
}
/* recycle RX history records to continue loss detection if necessary */
static void __three_after_loss(struct tfrc_rx_hist *h)
{
/*
* At this stage we know already that there is a gap between S0 and S1
* (since S0 was the highest sequence number received before detecting
* the loss). To recycle the loss record, it is thus only necessary to
* check for other possible gaps between S1/S2 and between S2/S3.
*/
u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
if (dccp_loss_free(s1, s2, n2)) {
if (dccp_loss_free(s2, s3, n3)) {
/* no gap between S2 and S3: entire hole is filled */
h->loss_start = tfrc_rx_hist_index(h, 3);
h->loss_count = 0;
} else {
/* gap between S2 and S3 */
h->loss_start = tfrc_rx_hist_index(h, 2);
h->loss_count = 1;
}
} else { /* gap between S1 and S2 */
h->loss_start = tfrc_rx_hist_index(h, 1);
h->loss_count = 2;
}
}
/**
* tfrc_rx_handle_loss - Loss detection and further processing
* @h: The non-empty RX history object
* @lh: Loss Intervals database to update
* @skb: Currently received packet
* @ndp: The NDP count belonging to @skb
* @calc_first_li: Caller-dependent computation of first loss interval in @lh
* @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
*
* Chooses action according to pending loss, updates LI database when a new
* loss was detected, and does required post-processing. Returns 1 when caller
* should send feedback, 0 otherwise.
* Since it also takes care of reordering during loss detection and updates the
* records accordingly, the caller should not perform any more RX history
* operations when loss_count is greater than 0 after calling this function.
*/
int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
struct tfrc_loss_hist *lh,
struct sk_buff *skb, const u64 ndp,
u32 (*calc_first_li)(struct sock *), struct sock *sk)
{
int is_new_loss = 0;
if (h->loss_count == 0) {
__do_track_loss(h, skb, ndp);
} else if (h->loss_count == 1) {
__one_after_loss(h, skb, ndp);
} else if (h->loss_count != 2) {
DCCP_BUG("invalid loss_count %d", h->loss_count);
} else if (__two_after_loss(h, skb, ndp)) {
/*
* Update Loss Interval database and recycle RX records
*/
is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
__three_after_loss(h);
}
return is_new_loss;
}
int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
{
int i;
for (i = 0; i <= TFRC_NDUPACK; i++) {
h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
if (h->ring[i] == NULL)
goto out_free;
}
h->loss_count = h->loss_start = 0;
return 0;
out_free:
while (i-- != 0) {
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
h->ring[i] = NULL;
}
return -ENOBUFS;
}
void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
{
int i;
for (i = 0; i <= TFRC_NDUPACK; ++i)
if (h->ring[i] != NULL) {
kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
h->ring[i] = NULL;
}
}
/**
* tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
* @h: The non-empty RX history object
*/
static inline struct tfrc_rx_hist_entry *
tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
{
return h->ring[0];
}
/**
* tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
* @h: The non-empty RX history object
*/
static inline struct tfrc_rx_hist_entry *
tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
{
return h->ring[h->rtt_sample_prev];
}
/**
* tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
* @h: receive histogram
* @skb: packet containing timestamp.
*
* Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
* to compute a sample with given data - calling function should check this.
*/
u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
{
u32 sample = 0,
delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
if (h->rtt_sample_prev == 2) { /* previous candidate stored */
sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
if (sample)
sample = 4 / sample *
ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
else /*
* FIXME: This condition is in principle not
* possible but occurs when CCID is used for
* two-way data traffic. I have tried to trace
* it, but the cause does not seem to be here.
*/
DCCP_BUG("please report to [email protected]"
" => prev = %u, last = %u",
tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
} else if (delta_v < 1) {
h->rtt_sample_prev = 1;
goto keep_ref_for_next_time;
}
} else if (delta_v == 4) /* optimal match */
sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
else { /* suboptimal match */
h->rtt_sample_prev = 2;
goto keep_ref_for_next_time;
}
if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
DCCP_WARN("RTT sample %u too large, using max\n", sample);
sample = DCCP_SANE_RTT_MAX;
}
h->rtt_sample_prev = 0; /* use current entry as next reference */
keep_ref_for_next_time:
return sample;
}
| linux-master | net/dccp/ccids/lib/packet_history.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2005 The University of Waikato, Hamilton, New Zealand.
* Copyright (c) 2005 Ian McDonald <[email protected]>
* Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
* Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
*/
#include <linux/module.h>
#include "../../dccp.h"
#include "tfrc.h"
#define TFRC_CALC_X_ARRSIZE 500
#define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */
#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE)
/*
TFRC TCP Reno Throughput Equation Lookup Table for f(p)
The following two-column lookup table implements a part of the TCP throughput
equation from [RFC 3448, sec. 3.1]:
s
X_calc = --------------------------------------------------------------
R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3))
Where:
X is the transmit rate in bytes/second
s is the packet size in bytes
R is the round trip time in seconds
p is the loss event rate, between 0 and 1.0, of the number of loss
events as a fraction of the number of packets transmitted
t_RTO is the TCP retransmission timeout value in seconds
b is the number of packets acknowledged by a single TCP ACK
We can assume that b = 1 and t_RTO is 4 * R. The equation now becomes:
s
X_calc = -------------------------------------------------------
R * sqrt(p*2/3) + (12 * R * sqrt(p*3/8) * (p + 32*p^3))
which we can break down into:
s
X_calc = ---------
R * f(p)
where f(p) is given for 0 < p <= 1 by:
f(p) = sqrt(2*p/3) + 12 * sqrt(3*p/8) * (p + 32*p^3)
Since this is kernel code, floating-point arithmetic is avoided in favour of
integer arithmetic. This means that nearly all fractional parameters are
scaled by 1000000:
* the parameters p and R
* the return result f(p)
The lookup table therefore actually tabulates the following function g(q):
g(q) = 1000000 * f(q/1000000)
Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer
granularity for the practically more relevant case of small values of p (up to
5%), the second column is used; the first one ranges up to 100%. This split
corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also
determines the smallest resolution possible with this lookup table:
TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE
The entire table is generated by:
for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) {
lookup[i][0] = g((i+1) * 1000000/TFRC_CALC_X_ARRSIZE);
lookup[i][1] = g((i+1) * TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE);
}
With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1,
lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%)
lookup[M][0] = g(1000000) = 1000000 * f(100%)
lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%)
lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%)
In summary, the two columns represent f(p) for the following ranges:
* The first column is for 0.002 <= p <= 1.0
* The second column is for 0.0001 <= p <= 0.05
Where the columns overlap, the second (finer-grained) is given preference,
i.e. the first column is used only for p >= 0.05.
*/
static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
{ 37172, 8172 },
{ 53499, 11567 },
{ 66664, 14180 },
{ 78298, 16388 },
{ 89021, 18339 },
{ 99147, 20108 },
{ 108858, 21738 },
{ 118273, 23260 },
{ 127474, 24693 },
{ 136520, 26052 },
{ 145456, 27348 },
{ 154316, 28589 },
{ 163130, 29783 },
{ 171919, 30935 },
{ 180704, 32049 },
{ 189502, 33130 },
{ 198328, 34180 },
{ 207194, 35202 },
{ 216114, 36198 },
{ 225097, 37172 },
{ 234153, 38123 },
{ 243294, 39055 },
{ 252527, 39968 },
{ 261861, 40864 },
{ 271305, 41743 },
{ 280866, 42607 },
{ 290553, 43457 },
{ 300372, 44293 },
{ 310333, 45117 },
{ 320441, 45929 },
{ 330705, 46729 },
{ 341131, 47518 },
{ 351728, 48297 },
{ 362501, 49066 },
{ 373460, 49826 },
{ 384609, 50577 },
{ 395958, 51320 },
{ 407513, 52054 },
{ 419281, 52780 },
{ 431270, 53499 },
{ 443487, 54211 },
{ 455940, 54916 },
{ 468635, 55614 },
{ 481581, 56306 },
{ 494785, 56991 },
{ 508254, 57671 },
{ 521996, 58345 },
{ 536019, 59014 },
{ 550331, 59677 },
{ 564939, 60335 },
{ 579851, 60988 },
{ 595075, 61636 },
{ 610619, 62279 },
{ 626491, 62918 },
{ 642700, 63553 },
{ 659253, 64183 },
{ 676158, 64809 },
{ 693424, 65431 },
{ 711060, 66050 },
{ 729073, 66664 },
{ 747472, 67275 },
{ 766266, 67882 },
{ 785464, 68486 },
{ 805073, 69087 },
{ 825103, 69684 },
{ 845562, 70278 },
{ 866460, 70868 },
{ 887805, 71456 },
{ 909606, 72041 },
{ 931873, 72623 },
{ 954614, 73202 },
{ 977839, 73778 },
{ 1001557, 74352 },
{ 1025777, 74923 },
{ 1050508, 75492 },
{ 1075761, 76058 },
{ 1101544, 76621 },
{ 1127867, 77183 },
{ 1154739, 77741 },
{ 1182172, 78298 },
{ 1210173, 78852 },
{ 1238753, 79405 },
{ 1267922, 79955 },
{ 1297689, 80503 },
{ 1328066, 81049 },
{ 1359060, 81593 },
{ 1390684, 82135 },
{ 1422947, 82675 },
{ 1455859, 83213 },
{ 1489430, 83750 },
{ 1523671, 84284 },
{ 1558593, 84817 },
{ 1594205, 85348 },
{ 1630518, 85878 },
{ 1667543, 86406 },
{ 1705290, 86932 },
{ 1743770, 87457 },
{ 1782994, 87980 },
{ 1822973, 88501 },
{ 1863717, 89021 },
{ 1905237, 89540 },
{ 1947545, 90057 },
{ 1990650, 90573 },
{ 2034566, 91087 },
{ 2079301, 91600 },
{ 2124869, 92111 },
{ 2171279, 92622 },
{ 2218543, 93131 },
{ 2266673, 93639 },
{ 2315680, 94145 },
{ 2365575, 94650 },
{ 2416371, 95154 },
{ 2468077, 95657 },
{ 2520707, 96159 },
{ 2574271, 96660 },
{ 2628782, 97159 },
{ 2684250, 97658 },
{ 2740689, 98155 },
{ 2798110, 98651 },
{ 2856524, 99147 },
{ 2915944, 99641 },
{ 2976382, 100134 },
{ 3037850, 100626 },
{ 3100360, 101117 },
{ 3163924, 101608 },
{ 3228554, 102097 },
{ 3294263, 102586 },
{ 3361063, 103073 },
{ 3428966, 103560 },
{ 3497984, 104045 },
{ 3568131, 104530 },
{ 3639419, 105014 },
{ 3711860, 105498 },
{ 3785467, 105980 },
{ 3860253, 106462 },
{ 3936229, 106942 },
{ 4013410, 107422 },
{ 4091808, 107902 },
{ 4171435, 108380 },
{ 4252306, 108858 },
{ 4334431, 109335 },
{ 4417825, 109811 },
{ 4502501, 110287 },
{ 4588472, 110762 },
{ 4675750, 111236 },
{ 4764349, 111709 },
{ 4854283, 112182 },
{ 4945564, 112654 },
{ 5038206, 113126 },
{ 5132223, 113597 },
{ 5227627, 114067 },
{ 5324432, 114537 },
{ 5422652, 115006 },
{ 5522299, 115474 },
{ 5623389, 115942 },
{ 5725934, 116409 },
{ 5829948, 116876 },
{ 5935446, 117342 },
{ 6042439, 117808 },
{ 6150943, 118273 },
{ 6260972, 118738 },
{ 6372538, 119202 },
{ 6485657, 119665 },
{ 6600342, 120128 },
{ 6716607, 120591 },
{ 6834467, 121053 },
{ 6953935, 121514 },
{ 7075025, 121976 },
{ 7197752, 122436 },
{ 7322131, 122896 },
{ 7448175, 123356 },
{ 7575898, 123815 },
{ 7705316, 124274 },
{ 7836442, 124733 },
{ 7969291, 125191 },
{ 8103877, 125648 },
{ 8240216, 126105 },
{ 8378321, 126562 },
{ 8518208, 127018 },
{ 8659890, 127474 },
{ 8803384, 127930 },
{ 8948702, 128385 },
{ 9095861, 128840 },
{ 9244875, 129294 },
{ 9395760, 129748 },
{ 9548529, 130202 },
{ 9703198, 130655 },
{ 9859782, 131108 },
{ 10018296, 131561 },
{ 10178755, 132014 },
{ 10341174, 132466 },
{ 10505569, 132917 },
{ 10671954, 133369 },
{ 10840345, 133820 },
{ 11010757, 134271 },
{ 11183206, 134721 },
{ 11357706, 135171 },
{ 11534274, 135621 },
{ 11712924, 136071 },
{ 11893673, 136520 },
{ 12076536, 136969 },
{ 12261527, 137418 },
{ 12448664, 137867 },
{ 12637961, 138315 },
{ 12829435, 138763 },
{ 13023101, 139211 },
{ 13218974, 139658 },
{ 13417071, 140106 },
{ 13617407, 140553 },
{ 13819999, 140999 },
{ 14024862, 141446 },
{ 14232012, 141892 },
{ 14441465, 142339 },
{ 14653238, 142785 },
{ 14867346, 143230 },
{ 15083805, 143676 },
{ 15302632, 144121 },
{ 15523842, 144566 },
{ 15747453, 145011 },
{ 15973479, 145456 },
{ 16201939, 145900 },
{ 16432847, 146345 },
{ 16666221, 146789 },
{ 16902076, 147233 },
{ 17140429, 147677 },
{ 17381297, 148121 },
{ 17624696, 148564 },
{ 17870643, 149007 },
{ 18119154, 149451 },
{ 18370247, 149894 },
{ 18623936, 150336 },
{ 18880241, 150779 },
{ 19139176, 151222 },
{ 19400759, 151664 },
{ 19665007, 152107 },
{ 19931936, 152549 },
{ 20201564, 152991 },
{ 20473907, 153433 },
{ 20748982, 153875 },
{ 21026807, 154316 },
{ 21307399, 154758 },
{ 21590773, 155199 },
{ 21876949, 155641 },
{ 22165941, 156082 },
{ 22457769, 156523 },
{ 22752449, 156964 },
{ 23049999, 157405 },
{ 23350435, 157846 },
{ 23653774, 158287 },
{ 23960036, 158727 },
{ 24269236, 159168 },
{ 24581392, 159608 },
{ 24896521, 160049 },
{ 25214642, 160489 },
{ 25535772, 160929 },
{ 25859927, 161370 },
{ 26187127, 161810 },
{ 26517388, 162250 },
{ 26850728, 162690 },
{ 27187165, 163130 },
{ 27526716, 163569 },
{ 27869400, 164009 },
{ 28215234, 164449 },
{ 28564236, 164889 },
{ 28916423, 165328 },
{ 29271815, 165768 },
{ 29630428, 166208 },
{ 29992281, 166647 },
{ 30357392, 167087 },
{ 30725779, 167526 },
{ 31097459, 167965 },
{ 31472452, 168405 },
{ 31850774, 168844 },
{ 32232445, 169283 },
{ 32617482, 169723 },
{ 33005904, 170162 },
{ 33397730, 170601 },
{ 33792976, 171041 },
{ 34191663, 171480 },
{ 34593807, 171919 },
{ 34999428, 172358 },
{ 35408544, 172797 },
{ 35821174, 173237 },
{ 36237335, 173676 },
{ 36657047, 174115 },
{ 37080329, 174554 },
{ 37507197, 174993 },
{ 37937673, 175433 },
{ 38371773, 175872 },
{ 38809517, 176311 },
{ 39250924, 176750 },
{ 39696012, 177190 },
{ 40144800, 177629 },
{ 40597308, 178068 },
{ 41053553, 178507 },
{ 41513554, 178947 },
{ 41977332, 179386 },
{ 42444904, 179825 },
{ 42916290, 180265 },
{ 43391509, 180704 },
{ 43870579, 181144 },
{ 44353520, 181583 },
{ 44840352, 182023 },
{ 45331092, 182462 },
{ 45825761, 182902 },
{ 46324378, 183342 },
{ 46826961, 183781 },
{ 47333531, 184221 },
{ 47844106, 184661 },
{ 48358706, 185101 },
{ 48877350, 185541 },
{ 49400058, 185981 },
{ 49926849, 186421 },
{ 50457743, 186861 },
{ 50992759, 187301 },
{ 51531916, 187741 },
{ 52075235, 188181 },
{ 52622735, 188622 },
{ 53174435, 189062 },
{ 53730355, 189502 },
{ 54290515, 189943 },
{ 54854935, 190383 },
{ 55423634, 190824 },
{ 55996633, 191265 },
{ 56573950, 191706 },
{ 57155606, 192146 },
{ 57741621, 192587 },
{ 58332014, 193028 },
{ 58926806, 193470 },
{ 59526017, 193911 },
{ 60129666, 194352 },
{ 60737774, 194793 },
{ 61350361, 195235 },
{ 61967446, 195677 },
{ 62589050, 196118 },
{ 63215194, 196560 },
{ 63845897, 197002 },
{ 64481179, 197444 },
{ 65121061, 197886 },
{ 65765563, 198328 },
{ 66414705, 198770 },
{ 67068508, 199213 },
{ 67726992, 199655 },
{ 68390177, 200098 },
{ 69058085, 200540 },
{ 69730735, 200983 },
{ 70408147, 201426 },
{ 71090343, 201869 },
{ 71777343, 202312 },
{ 72469168, 202755 },
{ 73165837, 203199 },
{ 73867373, 203642 },
{ 74573795, 204086 },
{ 75285124, 204529 },
{ 76001380, 204973 },
{ 76722586, 205417 },
{ 77448761, 205861 },
{ 78179926, 206306 },
{ 78916102, 206750 },
{ 79657310, 207194 },
{ 80403571, 207639 },
{ 81154906, 208084 },
{ 81911335, 208529 },
{ 82672880, 208974 },
{ 83439562, 209419 },
{ 84211402, 209864 },
{ 84988421, 210309 },
{ 85770640, 210755 },
{ 86558080, 211201 },
{ 87350762, 211647 },
{ 88148708, 212093 },
{ 88951938, 212539 },
{ 89760475, 212985 },
{ 90574339, 213432 },
{ 91393551, 213878 },
{ 92218133, 214325 },
{ 93048107, 214772 },
{ 93883493, 215219 },
{ 94724314, 215666 },
{ 95570590, 216114 },
{ 96422343, 216561 },
{ 97279594, 217009 },
{ 98142366, 217457 },
{ 99010679, 217905 },
{ 99884556, 218353 },
{ 100764018, 218801 },
{ 101649086, 219250 },
{ 102539782, 219698 },
{ 103436128, 220147 },
{ 104338146, 220596 },
{ 105245857, 221046 },
{ 106159284, 221495 },
{ 107078448, 221945 },
{ 108003370, 222394 },
{ 108934074, 222844 },
{ 109870580, 223294 },
{ 110812910, 223745 },
{ 111761087, 224195 },
{ 112715133, 224646 },
{ 113675069, 225097 },
{ 114640918, 225548 },
{ 115612702, 225999 },
{ 116590442, 226450 },
{ 117574162, 226902 },
{ 118563882, 227353 },
{ 119559626, 227805 },
{ 120561415, 228258 },
{ 121569272, 228710 },
{ 122583219, 229162 },
{ 123603278, 229615 },
{ 124629471, 230068 },
{ 125661822, 230521 },
{ 126700352, 230974 },
{ 127745083, 231428 },
{ 128796039, 231882 },
{ 129853241, 232336 },
{ 130916713, 232790 },
{ 131986475, 233244 },
{ 133062553, 233699 },
{ 134144966, 234153 },
{ 135233739, 234608 },
{ 136328894, 235064 },
{ 137430453, 235519 },
{ 138538440, 235975 },
{ 139652876, 236430 },
{ 140773786, 236886 },
{ 141901190, 237343 },
{ 143035113, 237799 },
{ 144175576, 238256 },
{ 145322604, 238713 },
{ 146476218, 239170 },
{ 147636442, 239627 },
{ 148803298, 240085 },
{ 149976809, 240542 },
{ 151156999, 241000 },
{ 152343890, 241459 },
{ 153537506, 241917 },
{ 154737869, 242376 },
{ 155945002, 242835 },
{ 157158929, 243294 },
{ 158379673, 243753 },
{ 159607257, 244213 },
{ 160841704, 244673 },
{ 162083037, 245133 },
{ 163331279, 245593 },
{ 164586455, 246054 },
{ 165848586, 246514 },
{ 167117696, 246975 },
{ 168393810, 247437 },
{ 169676949, 247898 },
{ 170967138, 248360 },
{ 172264399, 248822 },
{ 173568757, 249284 },
{ 174880235, 249747 },
{ 176198856, 250209 },
{ 177524643, 250672 },
{ 178857621, 251136 },
{ 180197813, 251599 },
{ 181545242, 252063 },
{ 182899933, 252527 },
{ 184261908, 252991 },
{ 185631191, 253456 },
{ 187007807, 253920 },
{ 188391778, 254385 },
{ 189783129, 254851 },
{ 191181884, 255316 },
{ 192588065, 255782 },
{ 194001698, 256248 },
{ 195422805, 256714 },
{ 196851411, 257181 },
{ 198287540, 257648 },
{ 199731215, 258115 },
{ 201182461, 258582 },
{ 202641302, 259050 },
{ 204107760, 259518 },
{ 205581862, 259986 },
{ 207063630, 260454 },
{ 208553088, 260923 },
{ 210050262, 261392 },
{ 211555174, 261861 },
{ 213067849, 262331 },
{ 214588312, 262800 },
{ 216116586, 263270 },
{ 217652696, 263741 },
{ 219196666, 264211 },
{ 220748520, 264682 },
{ 222308282, 265153 },
{ 223875978, 265625 },
{ 225451630, 266097 },
{ 227035265, 266569 },
{ 228626905, 267041 },
{ 230226576, 267514 },
{ 231834302, 267986 },
{ 233450107, 268460 },
{ 235074016, 268933 },
{ 236706054, 269407 },
{ 238346244, 269881 },
{ 239994613, 270355 },
{ 241651183, 270830 },
{ 243315981, 271305 }
};
/* return largest index i such that fval <= lookup[i][small] */
static inline u32 tfrc_binsearch(u32 fval, u8 small)
{
u32 try, low = 0, high = TFRC_CALC_X_ARRSIZE - 1;
while (low < high) {
try = (low + high) / 2;
if (fval <= tfrc_calc_x_lookup[try][small])
high = try;
else
low = try + 1;
}
return high;
}
/**
* tfrc_calc_x - Calculate the send rate as per section 3.1 of RFC3448
* @s: packet size in bytes
* @R: RTT scaled by 1000000 (i.e., microseconds)
* @p: loss ratio estimate scaled by 1000000
*
* Returns X_calc in bytes per second (not scaled).
*/
u32 tfrc_calc_x(u16 s, u32 R, u32 p)
{
u16 index;
u32 f;
u64 result;
/* check against invalid parameters and divide-by-zero */
BUG_ON(p > 1000000); /* p must not exceed 100% */
BUG_ON(p == 0); /* f(0) = 0, divide by zero */
if (R == 0) { /* possible divide by zero */
DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc.");
return ~0U;
}
if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */
if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */
DCCP_WARN("Value of p (%d) below resolution. "
"Substituting %d\n", p, TFRC_SMALLEST_P);
index = 0;
} else /* 0.0001 <= p <= 0.05 */
index = p/TFRC_SMALLEST_P - 1;
f = tfrc_calc_x_lookup[index][1];
} else { /* 0.05 < p <= 1.00 */
index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1;
f = tfrc_calc_x_lookup[index][0];
}
/*
* Compute X = s/(R*f(p)) in bytes per second.
* Since f(p) and R are both scaled by 1000000, we need to multiply by
* 1000000^2. To avoid overflow, the result is computed in two stages.
* This works under almost all reasonable operational conditions, for a
* wide range of parameters. Yet, should some strange combination of
* parameters result in overflow, the use of scaled_div32 will catch
* this and return UINT_MAX - which is a logically adequate consequence.
*/
result = scaled_div(s, R);
return scaled_div32(result, f);
}
/**
* tfrc_calc_x_reverse_lookup - try to find p given f(p)
* @fvalue: function value to match, scaled by 1000000
*
* Returns closest match for p, also scaled by 1000000
*/
u32 tfrc_calc_x_reverse_lookup(u32 fvalue)
{
int index;
if (fvalue == 0) /* f(p) = 0 whenever p = 0 */
return 0;
/* Error cases. */
if (fvalue < tfrc_calc_x_lookup[0][1]) {
DCCP_WARN("fvalue %u smaller than resolution\n", fvalue);
return TFRC_SMALLEST_P;
}
if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) {
DCCP_WARN("fvalue %u exceeds bounds!\n", fvalue);
return 1000000;
}
if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) {
index = tfrc_binsearch(fvalue, 1);
return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE;
}
/* else ... it must be in the coarse-grained column */
index = tfrc_binsearch(fvalue, 0);
return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE;
}
/**
* tfrc_invert_loss_event_rate - Compute p so that 10^6 corresponds to 100%
* @loss_event_rate: loss event rate to invert
* When @loss_event_rate is large, there is a chance that p is truncated to 0.
* To avoid re-entering slow-start in that case, we set p = TFRC_SMALLEST_P > 0.
*/
u32 tfrc_invert_loss_event_rate(u32 loss_event_rate)
{
if (loss_event_rate == UINT_MAX) /* see RFC 4342, 8.5 */
return 0;
if (unlikely(loss_event_rate == 0)) /* map 1/0 into 100% */
return 1000000;
return max_t(u32, scaled_div(1, loss_event_rate), TFRC_SMALLEST_P);
}
| linux-master | net/dccp/ccids/lib/tfrc_equation.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* sch_plug.c Queue traffic until an explicit release command
*
* There are two ways to use this qdisc:
* 1. A simple "instantaneous" plug/unplug operation, by issuing an alternating
* sequence of TCQ_PLUG_BUFFER & TCQ_PLUG_RELEASE_INDEFINITE commands.
*
* 2. For network output buffering (a.k.a output commit) functionality.
* Output commit property is commonly used by applications using checkpoint
* based fault-tolerance to ensure that the checkpoint from which a system
* is being restored is consistent w.r.t outside world.
*
* Consider for e.g. Remus - a Virtual Machine checkpointing system,
* wherein a VM is checkpointed, say every 50ms. The checkpoint is replicated
* asynchronously to the backup host, while the VM continues executing the
* next epoch speculatively.
*
* The following is a typical sequence of output buffer operations:
* 1.At epoch i, start_buffer(i)
* 2. At end of epoch i (i.e. after 50ms):
* 2.1 Stop VM and take checkpoint(i).
* 2.2 start_buffer(i+1) and Resume VM
* 3. While speculatively executing epoch(i+1), asynchronously replicate
* checkpoint(i) to backup host.
* 4. When checkpoint_ack(i) is received from backup, release_buffer(i)
* Thus, this Qdisc would receive the following sequence of commands:
* TCQ_PLUG_BUFFER (epoch i)
* .. TCQ_PLUG_BUFFER (epoch i+1)
* ....TCQ_PLUG_RELEASE_ONE (epoch i)
* ......TCQ_PLUG_BUFFER (epoch i+2)
* ........
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
/*
* State of the queue, when used for network output buffering:
*
* plug(i+1) plug(i) head
* ------------------+--------------------+---------------->
* | |
* | |
* pkts_current_epoch| pkts_last_epoch |pkts_to_release
* ----------------->|<--------+--------->|+--------------->
* v v
*
*/
struct plug_sched_data {
/* If true, the dequeue function releases all packets
* from head to end of the queue. The queue turns into
* a pass-through queue for newly arriving packets.
*/
bool unplug_indefinite;
bool throttled;
/* Queue Limit in bytes */
u32 limit;
/* Number of packets (output) from the current speculatively
* executing epoch.
*/
u32 pkts_current_epoch;
/* Number of packets corresponding to the recently finished
* epoch. These will be released when we receive a
* TCQ_PLUG_RELEASE_ONE command. This command is typically
* issued after committing a checkpoint at the target.
*/
u32 pkts_last_epoch;
/*
* Number of packets from the head of the queue, that can
* be released (committed checkpoint).
*/
u32 pkts_to_release;
};
static int plug_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct plug_sched_data *q = qdisc_priv(sch);
if (likely(sch->qstats.backlog + skb->len <= q->limit)) {
if (!q->unplug_indefinite)
q->pkts_current_epoch++;
return qdisc_enqueue_tail(skb, sch);
}
return qdisc_drop(skb, sch, to_free);
}
static struct sk_buff *plug_dequeue(struct Qdisc *sch)
{
struct plug_sched_data *q = qdisc_priv(sch);
if (q->throttled)
return NULL;
if (!q->unplug_indefinite) {
if (!q->pkts_to_release) {
/* No more packets to dequeue. Block the queue
* and wait for the next release command.
*/
q->throttled = true;
return NULL;
}
q->pkts_to_release--;
}
return qdisc_dequeue_head(sch);
}
static int plug_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct plug_sched_data *q = qdisc_priv(sch);
q->pkts_current_epoch = 0;
q->pkts_last_epoch = 0;
q->pkts_to_release = 0;
q->unplug_indefinite = false;
if (opt == NULL) {
q->limit = qdisc_dev(sch)->tx_queue_len
* psched_mtu(qdisc_dev(sch));
} else {
struct tc_plug_qopt *ctl = nla_data(opt);
if (nla_len(opt) < sizeof(*ctl))
return -EINVAL;
q->limit = ctl->limit;
}
q->throttled = true;
return 0;
}
/* Receives 4 types of messages:
* TCQ_PLUG_BUFFER: Inset a plug into the queue and
* buffer any incoming packets
* TCQ_PLUG_RELEASE_ONE: Dequeue packets from queue head
* to beginning of the next plug.
* TCQ_PLUG_RELEASE_INDEFINITE: Dequeue all packets from queue.
* Stop buffering packets until the next TCQ_PLUG_BUFFER
* command is received (just act as a pass-thru queue).
* TCQ_PLUG_LIMIT: Increase/decrease queue size
*/
static int plug_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct plug_sched_data *q = qdisc_priv(sch);
struct tc_plug_qopt *msg;
msg = nla_data(opt);
if (nla_len(opt) < sizeof(*msg))
return -EINVAL;
switch (msg->action) {
case TCQ_PLUG_BUFFER:
/* Save size of the current buffer */
q->pkts_last_epoch = q->pkts_current_epoch;
q->pkts_current_epoch = 0;
if (q->unplug_indefinite)
q->throttled = true;
q->unplug_indefinite = false;
break;
case TCQ_PLUG_RELEASE_ONE:
/* Add packets from the last complete buffer to the
* packets to be released set.
*/
q->pkts_to_release += q->pkts_last_epoch;
q->pkts_last_epoch = 0;
q->throttled = false;
netif_schedule_queue(sch->dev_queue);
break;
case TCQ_PLUG_RELEASE_INDEFINITE:
q->unplug_indefinite = true;
q->pkts_to_release = 0;
q->pkts_last_epoch = 0;
q->pkts_current_epoch = 0;
q->throttled = false;
netif_schedule_queue(sch->dev_queue);
break;
case TCQ_PLUG_LIMIT:
/* Limit is supplied in bytes */
q->limit = msg->limit;
break;
default:
return -EINVAL;
}
return 0;
}
static struct Qdisc_ops plug_qdisc_ops __read_mostly = {
.id = "plug",
.priv_size = sizeof(struct plug_sched_data),
.enqueue = plug_enqueue,
.dequeue = plug_dequeue,
.peek = qdisc_peek_dequeued,
.init = plug_init,
.change = plug_change,
.reset = qdisc_reset_queue,
.owner = THIS_MODULE,
};
static int __init plug_module_init(void)
{
return register_qdisc(&plug_qdisc_ops);
}
static void __exit plug_module_exit(void)
{
unregister_qdisc(&plug_qdisc_ops);
}
module_init(plug_module_init)
module_exit(plug_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_plug.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_ipt.c iptables target interface
*
*TODO: Add other tables. For now we only support the ipv4 table targets
*
* Copyright: Jamal Hadi Salim (2002-13)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/tc_act/tc_ipt.h>
#include <net/tc_act/tc_ipt.h>
#include <net/tc_wrapper.h>
#include <net/ip.h>
#include <linux/netfilter_ipv4/ip_tables.h>
static struct tc_action_ops act_ipt_ops;
static struct tc_action_ops act_xt_ops;
static int ipt_init_target(struct net *net, struct xt_entry_target *t,
char *table, unsigned int hook)
{
struct xt_tgchk_param par;
struct xt_target *target;
struct ipt_entry e = {};
int ret = 0;
target = xt_request_find_target(AF_INET, t->u.user.name,
t->u.user.revision);
if (IS_ERR(target))
return PTR_ERR(target);
t->u.kernel.target = target;
memset(&par, 0, sizeof(par));
par.net = net;
par.table = table;
par.entryinfo = &e;
par.target = target;
par.targinfo = t->data;
par.hook_mask = 1 << hook;
par.family = NFPROTO_IPV4;
ret = xt_check_target(&par, t->u.target_size - sizeof(*t), 0, false);
if (ret < 0) {
module_put(t->u.kernel.target->me);
return ret;
}
return 0;
}
static void ipt_destroy_target(struct xt_entry_target *t, struct net *net)
{
struct xt_tgdtor_param par = {
.target = t->u.kernel.target,
.targinfo = t->data,
.family = NFPROTO_IPV4,
.net = net,
};
if (par.target->destroy != NULL)
par.target->destroy(&par);
module_put(par.target->me);
}
static void tcf_ipt_release(struct tc_action *a)
{
struct tcf_ipt *ipt = to_ipt(a);
if (ipt->tcfi_t) {
ipt_destroy_target(ipt->tcfi_t, a->idrinfo->net);
kfree(ipt->tcfi_t);
}
kfree(ipt->tcfi_tname);
}
static const struct nla_policy ipt_policy[TCA_IPT_MAX + 1] = {
[TCA_IPT_TABLE] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_IPT_HOOK] = NLA_POLICY_RANGE(NLA_U32, NF_INET_PRE_ROUTING,
NF_INET_NUMHOOKS),
[TCA_IPT_INDEX] = { .type = NLA_U32 },
[TCA_IPT_TARG] = { .len = sizeof(struct xt_entry_target) },
};
static int __tcf_ipt_init(struct net *net, unsigned int id, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
const struct tc_action_ops *ops,
struct tcf_proto *tp, u32 flags)
{
struct tc_action_net *tn = net_generic(net, id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_IPT_MAX + 1];
struct tcf_ipt *ipt;
struct xt_entry_target *td, *t;
char *tname;
bool exists = false;
int ret = 0, err;
u32 hook = 0;
u32 index = 0;
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_IPT_MAX, nla, ipt_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_IPT_INDEX] != NULL)
index = nla_get_u32(tb[TCA_IPT_INDEX]);
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (tb[TCA_IPT_HOOK] == NULL || tb[TCA_IPT_TARG] == NULL) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
td = (struct xt_entry_target *)nla_data(tb[TCA_IPT_TARG]);
if (nla_len(tb[TCA_IPT_TARG]) != td->u.target_size) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
if (!exists) {
ret = tcf_idr_create(tn, index, est, a, ops, bind,
false, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else {
if (bind)/* dont override defaults */
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
}
err = -EINVAL;
hook = nla_get_u32(tb[TCA_IPT_HOOK]);
switch (hook) {
case NF_INET_PRE_ROUTING:
break;
case NF_INET_POST_ROUTING:
break;
default:
goto err1;
}
if (tb[TCA_IPT_TABLE]) {
/* mangle only for now */
if (nla_strcmp(tb[TCA_IPT_TABLE], "mangle"))
goto err1;
}
tname = kstrdup("mangle", GFP_KERNEL);
if (unlikely(!tname))
goto err1;
t = kmemdup(td, td->u.target_size, GFP_KERNEL);
if (unlikely(!t))
goto err2;
err = ipt_init_target(net, t, tname, hook);
if (err < 0)
goto err3;
ipt = to_ipt(*a);
spin_lock_bh(&ipt->tcf_lock);
if (ret != ACT_P_CREATED) {
ipt_destroy_target(ipt->tcfi_t, net);
kfree(ipt->tcfi_tname);
kfree(ipt->tcfi_t);
}
ipt->tcfi_tname = tname;
ipt->tcfi_t = t;
ipt->tcfi_hook = hook;
spin_unlock_bh(&ipt->tcf_lock);
return ret;
err3:
kfree(t);
err2:
kfree(tname);
err1:
tcf_idr_release(*a, bind);
return err;
}
static int tcf_ipt_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
return __tcf_ipt_init(net, act_ipt_ops.net_id, nla, est,
a, &act_ipt_ops, tp, flags);
}
static int tcf_xt_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
return __tcf_ipt_init(net, act_xt_ops.net_id, nla, est,
a, &act_xt_ops, tp, flags);
}
static bool tcf_ipt_act_check(struct sk_buff *skb)
{
const struct iphdr *iph;
unsigned int nhoff, len;
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
return false;
nhoff = skb_network_offset(skb);
iph = ip_hdr(skb);
if (iph->ihl < 5 || iph->version != 4)
return false;
len = skb_ip_totlen(skb);
if (skb->len < nhoff + len || len < (iph->ihl * 4u))
return false;
return pskb_may_pull(skb, iph->ihl * 4u);
}
TC_INDIRECT_SCOPE int tcf_ipt_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
char saved_cb[sizeof_field(struct sk_buff, cb)];
int ret = 0, result = 0;
struct tcf_ipt *ipt = to_ipt(a);
struct xt_action_param par;
struct nf_hook_state state = {
.net = dev_net(skb->dev),
.in = skb->dev,
.hook = ipt->tcfi_hook,
.pf = NFPROTO_IPV4,
};
if (skb_protocol(skb, false) != htons(ETH_P_IP))
return TC_ACT_UNSPEC;
if (skb_unclone(skb, GFP_ATOMIC))
return TC_ACT_UNSPEC;
if (!tcf_ipt_act_check(skb))
return TC_ACT_UNSPEC;
if (state.hook == NF_INET_POST_ROUTING) {
if (!skb_dst(skb))
return TC_ACT_UNSPEC;
state.out = skb->dev;
}
memcpy(saved_cb, skb->cb, sizeof(saved_cb));
spin_lock(&ipt->tcf_lock);
tcf_lastuse_update(&ipt->tcf_tm);
bstats_update(&ipt->tcf_bstats, skb);
/* yes, we have to worry about both in and out dev
* worry later - danger - this API seems to have changed
* from earlier kernels
*/
par.state = &state;
par.target = ipt->tcfi_t->u.kernel.target;
par.targinfo = ipt->tcfi_t->data;
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
ret = par.target->target(skb, &par);
switch (ret) {
case NF_ACCEPT:
result = TC_ACT_OK;
break;
case NF_DROP:
result = TC_ACT_SHOT;
ipt->tcf_qstats.drops++;
break;
case XT_CONTINUE:
result = TC_ACT_PIPE;
break;
default:
net_notice_ratelimited("tc filter: Bogus netfilter code %d assume ACCEPT\n",
ret);
result = TC_ACT_OK;
break;
}
spin_unlock(&ipt->tcf_lock);
memcpy(skb->cb, saved_cb, sizeof(skb->cb));
return result;
}
static int tcf_ipt_dump(struct sk_buff *skb, struct tc_action *a, int bind,
int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_ipt *ipt = to_ipt(a);
struct xt_entry_target *t;
struct tcf_t tm;
struct tc_cnt c;
/* for simple targets kernel size == user size
* user name = target name
* for foolproof you need to not assume this
*/
spin_lock_bh(&ipt->tcf_lock);
t = kmemdup(ipt->tcfi_t, ipt->tcfi_t->u.user.target_size, GFP_ATOMIC);
if (unlikely(!t))
goto nla_put_failure;
c.bindcnt = atomic_read(&ipt->tcf_bindcnt) - bind;
c.refcnt = refcount_read(&ipt->tcf_refcnt) - ref;
strcpy(t->u.user.name, ipt->tcfi_t->u.kernel.target->name);
if (nla_put(skb, TCA_IPT_TARG, ipt->tcfi_t->u.user.target_size, t) ||
nla_put_u32(skb, TCA_IPT_INDEX, ipt->tcf_index) ||
nla_put_u32(skb, TCA_IPT_HOOK, ipt->tcfi_hook) ||
nla_put(skb, TCA_IPT_CNT, sizeof(struct tc_cnt), &c) ||
nla_put_string(skb, TCA_IPT_TABLE, ipt->tcfi_tname))
goto nla_put_failure;
tcf_tm_dump(&tm, &ipt->tcf_tm);
if (nla_put_64bit(skb, TCA_IPT_TM, sizeof(tm), &tm, TCA_IPT_PAD))
goto nla_put_failure;
spin_unlock_bh(&ipt->tcf_lock);
kfree(t);
return skb->len;
nla_put_failure:
spin_unlock_bh(&ipt->tcf_lock);
nlmsg_trim(skb, b);
kfree(t);
return -1;
}
static struct tc_action_ops act_ipt_ops = {
.kind = "ipt",
.id = TCA_ID_IPT,
.owner = THIS_MODULE,
.act = tcf_ipt_act,
.dump = tcf_ipt_dump,
.cleanup = tcf_ipt_release,
.init = tcf_ipt_init,
.size = sizeof(struct tcf_ipt),
};
static __net_init int ipt_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_ipt_ops.net_id);
return tc_action_net_init(net, tn, &act_ipt_ops);
}
static void __net_exit ipt_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_ipt_ops.net_id);
}
static struct pernet_operations ipt_net_ops = {
.init = ipt_init_net,
.exit_batch = ipt_exit_net,
.id = &act_ipt_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static struct tc_action_ops act_xt_ops = {
.kind = "xt",
.id = TCA_ID_XT,
.owner = THIS_MODULE,
.act = tcf_ipt_act,
.dump = tcf_ipt_dump,
.cleanup = tcf_ipt_release,
.init = tcf_xt_init,
.size = sizeof(struct tcf_ipt),
};
static __net_init int xt_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_xt_ops.net_id);
return tc_action_net_init(net, tn, &act_xt_ops);
}
static void __net_exit xt_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_xt_ops.net_id);
}
static struct pernet_operations xt_net_ops = {
.init = xt_init_net,
.exit_batch = xt_exit_net,
.id = &act_xt_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2002-13)");
MODULE_DESCRIPTION("Iptables target actions");
MODULE_LICENSE("GPL");
MODULE_ALIAS("act_xt");
static int __init ipt_init_module(void)
{
int ret1, ret2;
ret1 = tcf_register_action(&act_xt_ops, &xt_net_ops);
if (ret1 < 0)
pr_err("Failed to load xt action\n");
ret2 = tcf_register_action(&act_ipt_ops, &ipt_net_ops);
if (ret2 < 0)
pr_err("Failed to load ipt action\n");
if (ret1 < 0 && ret2 < 0) {
return ret1;
} else
return 0;
}
static void __exit ipt_cleanup_module(void)
{
tcf_unregister_action(&act_ipt_ops, &ipt_net_ops);
tcf_unregister_action(&act_xt_ops, &xt_net_ops);
}
module_init(ipt_init_module);
module_exit(ipt_cleanup_module);
| linux-master | net/sched/act_ipt.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_red.c Random Early Detection queue.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*
* Changes:
* J Hadi Salim 980914: computation fixes
* Alexey Makarenko <[email protected]> 990814: qave on idle link was calculated incorrectly.
* J Hadi Salim 980816: ECN support
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/inet_ecn.h>
#include <net/red.h>
/* Parameters, settable by user:
-----------------------------
limit - bytes (must be > qth_max + burst)
Hard limit on queue length, should be chosen >qth_max
to allow packet bursts. This parameter does not
affect the algorithms behaviour and can be chosen
arbitrarily high (well, less than ram size)
Really, this limit will never be reached
if RED works correctly.
*/
struct red_sched_data {
u32 limit; /* HARD maximal queue length */
unsigned char flags;
/* Non-flags in tc_red_qopt.flags. */
unsigned char userbits;
struct timer_list adapt_timer;
struct Qdisc *sch;
struct red_parms parms;
struct red_vars vars;
struct red_stats stats;
struct Qdisc *qdisc;
struct tcf_qevent qe_early_drop;
struct tcf_qevent qe_mark;
};
#define TC_RED_SUPPORTED_FLAGS (TC_RED_HISTORIC_FLAGS | TC_RED_NODROP)
static inline int red_use_ecn(struct red_sched_data *q)
{
return q->flags & TC_RED_ECN;
}
static inline int red_use_harddrop(struct red_sched_data *q)
{
return q->flags & TC_RED_HARDDROP;
}
static int red_use_nodrop(struct red_sched_data *q)
{
return q->flags & TC_RED_NODROP;
}
static int red_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
unsigned int len;
int ret;
q->vars.qavg = red_calc_qavg(&q->parms,
&q->vars,
child->qstats.backlog);
if (red_is_idling(&q->vars))
red_end_of_idle_period(&q->vars);
switch (red_action(&q->parms, &q->vars, q->vars.qavg)) {
case RED_DONT_MARK:
break;
case RED_PROB_MARK:
qdisc_qstats_overlimit(sch);
if (!red_use_ecn(q)) {
q->stats.prob_drop++;
goto congestion_drop;
}
if (INET_ECN_set_ce(skb)) {
q->stats.prob_mark++;
skb = tcf_qevent_handle(&q->qe_mark, sch, skb, to_free, &ret);
if (!skb)
return NET_XMIT_CN | ret;
} else if (!red_use_nodrop(q)) {
q->stats.prob_drop++;
goto congestion_drop;
}
/* Non-ECT packet in ECN nodrop mode: queue it. */
break;
case RED_HARD_MARK:
qdisc_qstats_overlimit(sch);
if (red_use_harddrop(q) || !red_use_ecn(q)) {
q->stats.forced_drop++;
goto congestion_drop;
}
if (INET_ECN_set_ce(skb)) {
q->stats.forced_mark++;
skb = tcf_qevent_handle(&q->qe_mark, sch, skb, to_free, &ret);
if (!skb)
return NET_XMIT_CN | ret;
} else if (!red_use_nodrop(q)) {
q->stats.forced_drop++;
goto congestion_drop;
}
/* Non-ECT packet in ECN nodrop mode: queue it. */
break;
}
len = qdisc_pkt_len(skb);
ret = qdisc_enqueue(skb, child, to_free);
if (likely(ret == NET_XMIT_SUCCESS)) {
sch->qstats.backlog += len;
sch->q.qlen++;
} else if (net_xmit_drop_count(ret)) {
q->stats.pdrop++;
qdisc_qstats_drop(sch);
}
return ret;
congestion_drop:
skb = tcf_qevent_handle(&q->qe_early_drop, sch, skb, to_free, &ret);
if (!skb)
return NET_XMIT_CN | ret;
qdisc_drop(skb, sch, to_free);
return NET_XMIT_CN;
}
static struct sk_buff *red_dequeue(struct Qdisc *sch)
{
struct sk_buff *skb;
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
skb = child->dequeue(child);
if (skb) {
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
} else {
if (!red_is_idling(&q->vars))
red_start_of_idle_period(&q->vars);
}
return skb;
}
static struct sk_buff *red_peek(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
return child->ops->peek(child);
}
static void red_reset(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
qdisc_reset(q->qdisc);
red_restart(&q->vars);
}
static int red_offload(struct Qdisc *sch, bool enable)
{
struct red_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_red_qopt_offload opt = {
.handle = sch->handle,
.parent = sch->parent,
};
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return -EOPNOTSUPP;
if (enable) {
opt.command = TC_RED_REPLACE;
opt.set.min = q->parms.qth_min >> q->parms.Wlog;
opt.set.max = q->parms.qth_max >> q->parms.Wlog;
opt.set.probability = q->parms.max_P;
opt.set.limit = q->limit;
opt.set.is_ecn = red_use_ecn(q);
opt.set.is_harddrop = red_use_harddrop(q);
opt.set.is_nodrop = red_use_nodrop(q);
opt.set.qstats = &sch->qstats;
} else {
opt.command = TC_RED_DESTROY;
}
return dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_RED, &opt);
}
static void red_destroy(struct Qdisc *sch)
{
struct red_sched_data *q = qdisc_priv(sch);
tcf_qevent_destroy(&q->qe_mark, sch);
tcf_qevent_destroy(&q->qe_early_drop, sch);
del_timer_sync(&q->adapt_timer);
red_offload(sch, false);
qdisc_put(q->qdisc);
}
static const struct nla_policy red_policy[TCA_RED_MAX + 1] = {
[TCA_RED_UNSPEC] = { .strict_start_type = TCA_RED_FLAGS },
[TCA_RED_PARMS] = { .len = sizeof(struct tc_red_qopt) },
[TCA_RED_STAB] = { .len = RED_STAB_SIZE },
[TCA_RED_MAX_P] = { .type = NLA_U32 },
[TCA_RED_FLAGS] = NLA_POLICY_BITFIELD32(TC_RED_SUPPORTED_FLAGS),
[TCA_RED_EARLY_DROP_BLOCK] = { .type = NLA_U32 },
[TCA_RED_MARK_BLOCK] = { .type = NLA_U32 },
};
static int __red_change(struct Qdisc *sch, struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct Qdisc *old_child = NULL, *child = NULL;
struct red_sched_data *q = qdisc_priv(sch);
struct nla_bitfield32 flags_bf;
struct tc_red_qopt *ctl;
unsigned char userbits;
unsigned char flags;
int err;
u32 max_P;
u8 *stab;
if (tb[TCA_RED_PARMS] == NULL ||
tb[TCA_RED_STAB] == NULL)
return -EINVAL;
max_P = tb[TCA_RED_MAX_P] ? nla_get_u32(tb[TCA_RED_MAX_P]) : 0;
ctl = nla_data(tb[TCA_RED_PARMS]);
stab = nla_data(tb[TCA_RED_STAB]);
if (!red_check_params(ctl->qth_min, ctl->qth_max, ctl->Wlog,
ctl->Scell_log, stab))
return -EINVAL;
err = red_get_flags(ctl->flags, TC_RED_HISTORIC_FLAGS,
tb[TCA_RED_FLAGS], TC_RED_SUPPORTED_FLAGS,
&flags_bf, &userbits, extack);
if (err)
return err;
if (ctl->limit > 0) {
child = fifo_create_dflt(sch, &bfifo_qdisc_ops, ctl->limit,
extack);
if (IS_ERR(child))
return PTR_ERR(child);
/* child is fifo, no need to check for noop_qdisc */
qdisc_hash_add(child, true);
}
sch_tree_lock(sch);
flags = (q->flags & ~flags_bf.selector) | flags_bf.value;
err = red_validate_flags(flags, extack);
if (err)
goto unlock_out;
q->flags = flags;
q->userbits = userbits;
q->limit = ctl->limit;
if (child) {
qdisc_tree_flush_backlog(q->qdisc);
old_child = q->qdisc;
q->qdisc = child;
}
red_set_parms(&q->parms,
ctl->qth_min, ctl->qth_max, ctl->Wlog,
ctl->Plog, ctl->Scell_log,
stab,
max_P);
red_set_vars(&q->vars);
del_timer(&q->adapt_timer);
if (ctl->flags & TC_RED_ADAPTATIVE)
mod_timer(&q->adapt_timer, jiffies + HZ/2);
if (!q->qdisc->q.qlen)
red_start_of_idle_period(&q->vars);
sch_tree_unlock(sch);
red_offload(sch, true);
if (old_child)
qdisc_put(old_child);
return 0;
unlock_out:
sch_tree_unlock(sch);
if (child)
qdisc_put(child);
return err;
}
static inline void red_adaptative_timer(struct timer_list *t)
{
struct red_sched_data *q = from_timer(q, t, adapt_timer);
struct Qdisc *sch = q->sch;
spinlock_t *root_lock;
rcu_read_lock();
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
red_adaptative_algo(&q->parms, &q->vars);
mod_timer(&q->adapt_timer, jiffies + HZ/2);
spin_unlock(root_lock);
rcu_read_unlock();
}
static int red_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct red_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_RED_MAX + 1];
int err;
q->qdisc = &noop_qdisc;
q->sch = sch;
timer_setup(&q->adapt_timer, red_adaptative_timer, 0);
if (!opt)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_RED_MAX, opt, red_policy,
extack);
if (err < 0)
return err;
err = __red_change(sch, tb, extack);
if (err)
return err;
err = tcf_qevent_init(&q->qe_early_drop, sch,
FLOW_BLOCK_BINDER_TYPE_RED_EARLY_DROP,
tb[TCA_RED_EARLY_DROP_BLOCK], extack);
if (err)
return err;
return tcf_qevent_init(&q->qe_mark, sch,
FLOW_BLOCK_BINDER_TYPE_RED_MARK,
tb[TCA_RED_MARK_BLOCK], extack);
}
static int red_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct red_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_RED_MAX + 1];
int err;
err = nla_parse_nested_deprecated(tb, TCA_RED_MAX, opt, red_policy,
extack);
if (err < 0)
return err;
err = tcf_qevent_validate_change(&q->qe_early_drop,
tb[TCA_RED_EARLY_DROP_BLOCK], extack);
if (err)
return err;
err = tcf_qevent_validate_change(&q->qe_mark,
tb[TCA_RED_MARK_BLOCK], extack);
if (err)
return err;
return __red_change(sch, tb, extack);
}
static int red_dump_offload_stats(struct Qdisc *sch)
{
struct tc_red_qopt_offload hw_stats = {
.command = TC_RED_STATS,
.handle = sch->handle,
.parent = sch->parent,
{
.stats.bstats = &sch->bstats,
.stats.qstats = &sch->qstats,
},
};
return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_RED, &hw_stats);
}
static int red_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct red_sched_data *q = qdisc_priv(sch);
struct nlattr *opts = NULL;
struct tc_red_qopt opt = {
.limit = q->limit,
.flags = (q->flags & TC_RED_HISTORIC_FLAGS) |
q->userbits,
.qth_min = q->parms.qth_min >> q->parms.Wlog,
.qth_max = q->parms.qth_max >> q->parms.Wlog,
.Wlog = q->parms.Wlog,
.Plog = q->parms.Plog,
.Scell_log = q->parms.Scell_log,
};
int err;
err = red_dump_offload_stats(sch);
if (err)
goto nla_put_failure;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_RED_PARMS, sizeof(opt), &opt) ||
nla_put_u32(skb, TCA_RED_MAX_P, q->parms.max_P) ||
nla_put_bitfield32(skb, TCA_RED_FLAGS,
q->flags, TC_RED_SUPPORTED_FLAGS) ||
tcf_qevent_dump(skb, TCA_RED_MARK_BLOCK, &q->qe_mark) ||
tcf_qevent_dump(skb, TCA_RED_EARLY_DROP_BLOCK, &q->qe_early_drop))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct red_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_red_xstats st = {0};
if (sch->flags & TCQ_F_OFFLOADED) {
struct tc_red_qopt_offload hw_stats_request = {
.command = TC_RED_XSTATS,
.handle = sch->handle,
.parent = sch->parent,
{
.xstats = &q->stats,
},
};
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_RED,
&hw_stats_request);
}
st.early = q->stats.prob_drop + q->stats.forced_drop;
st.pdrop = q->stats.pdrop;
st.marked = q->stats.prob_mark + q->stats.forced_mark;
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static int red_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct red_sched_data *q = qdisc_priv(sch);
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static void red_graft_offload(struct Qdisc *sch,
struct Qdisc *new, struct Qdisc *old,
struct netlink_ext_ack *extack)
{
struct tc_red_qopt_offload graft_offload = {
.handle = sch->handle,
.parent = sch->parent,
.child_handle = new->handle,
.command = TC_RED_GRAFT,
};
qdisc_offload_graft_helper(qdisc_dev(sch), sch, new, old,
TC_SETUP_QDISC_RED, &graft_offload, extack);
}
static int red_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct red_sched_data *q = qdisc_priv(sch);
if (new == NULL)
new = &noop_qdisc;
*old = qdisc_replace(sch, new, &q->qdisc);
red_graft_offload(sch, new, *old, extack);
return 0;
}
static struct Qdisc *red_leaf(struct Qdisc *sch, unsigned long arg)
{
struct red_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long red_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void red_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
tc_qdisc_stats_dump(sch, 1, walker);
}
}
static const struct Qdisc_class_ops red_class_ops = {
.graft = red_graft,
.leaf = red_leaf,
.find = red_find,
.walk = red_walk,
.dump = red_dump_class,
};
static struct Qdisc_ops red_qdisc_ops __read_mostly = {
.id = "red",
.priv_size = sizeof(struct red_sched_data),
.cl_ops = &red_class_ops,
.enqueue = red_enqueue,
.dequeue = red_dequeue,
.peek = red_peek,
.init = red_init,
.reset = red_reset,
.destroy = red_destroy,
.change = red_change,
.dump = red_dump,
.dump_stats = red_dump_stats,
.owner = THIS_MODULE,
};
static int __init red_module_init(void)
{
return register_qdisc(&red_qdisc_ops);
}
static void __exit red_module_exit(void)
{
unregister_qdisc(&red_qdisc_ops);
}
module_init(red_module_init)
module_exit(red_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_red.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_basic.c Basic Packet Classifier.
*
* Authors: Thomas Graf <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <linux/idr.h>
#include <linux/percpu.h>
#include <net/netlink.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
struct basic_head {
struct list_head flist;
struct idr handle_idr;
struct rcu_head rcu;
};
struct basic_filter {
u32 handle;
struct tcf_exts exts;
struct tcf_ematch_tree ematches;
struct tcf_result res;
struct tcf_proto *tp;
struct list_head link;
struct tc_basic_pcnt __percpu *pf;
struct rcu_work rwork;
};
TC_INDIRECT_SCOPE int basic_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
int r;
struct basic_head *head = rcu_dereference_bh(tp->root);
struct basic_filter *f;
list_for_each_entry_rcu(f, &head->flist, link) {
__this_cpu_inc(f->pf->rcnt);
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
continue;
__this_cpu_inc(f->pf->rhit);
*res = f->res;
r = tcf_exts_exec(skb, &f->exts, res);
if (r < 0)
continue;
return r;
}
return -1;
}
static void *basic_get(struct tcf_proto *tp, u32 handle)
{
struct basic_head *head = rtnl_dereference(tp->root);
struct basic_filter *f;
list_for_each_entry(f, &head->flist, link) {
if (f->handle == handle) {
return f;
}
}
return NULL;
}
static int basic_init(struct tcf_proto *tp)
{
struct basic_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (head == NULL)
return -ENOBUFS;
INIT_LIST_HEAD(&head->flist);
idr_init(&head->handle_idr);
rcu_assign_pointer(tp->root, head);
return 0;
}
static void __basic_delete_filter(struct basic_filter *f)
{
tcf_exts_destroy(&f->exts);
tcf_em_tree_destroy(&f->ematches);
tcf_exts_put_net(&f->exts);
free_percpu(f->pf);
kfree(f);
}
static void basic_delete_filter_work(struct work_struct *work)
{
struct basic_filter *f = container_of(to_rcu_work(work),
struct basic_filter,
rwork);
rtnl_lock();
__basic_delete_filter(f);
rtnl_unlock();
}
static void basic_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct basic_head *head = rtnl_dereference(tp->root);
struct basic_filter *f, *n;
list_for_each_entry_safe(f, n, &head->flist, link) {
list_del_rcu(&f->link);
tcf_unbind_filter(tp, &f->res);
idr_remove(&head->handle_idr, f->handle);
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, basic_delete_filter_work);
else
__basic_delete_filter(f);
}
idr_destroy(&head->handle_idr);
kfree_rcu(head, rcu);
}
static int basic_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct basic_head *head = rtnl_dereference(tp->root);
struct basic_filter *f = arg;
list_del_rcu(&f->link);
tcf_unbind_filter(tp, &f->res);
idr_remove(&head->handle_idr, f->handle);
tcf_exts_get_net(&f->exts);
tcf_queue_work(&f->rwork, basic_delete_filter_work);
*last = list_empty(&head->flist);
return 0;
}
static const struct nla_policy basic_policy[TCA_BASIC_MAX + 1] = {
[TCA_BASIC_CLASSID] = { .type = NLA_U32 },
[TCA_BASIC_EMATCHES] = { .type = NLA_NESTED },
};
static int basic_set_parms(struct net *net, struct tcf_proto *tp,
struct basic_filter *f, unsigned long base,
struct nlattr **tb,
struct nlattr *est, u32 flags,
struct netlink_ext_ack *extack)
{
int err;
err = tcf_exts_validate(net, tp, tb, est, &f->exts, flags, extack);
if (err < 0)
return err;
err = tcf_em_tree_validate(tp, tb[TCA_BASIC_EMATCHES], &f->ematches);
if (err < 0)
return err;
if (tb[TCA_BASIC_CLASSID]) {
f->res.classid = nla_get_u32(tb[TCA_BASIC_CLASSID]);
tcf_bind_filter(tp, &f->res, base);
}
f->tp = tp;
return 0;
}
static int basic_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base, u32 handle,
struct nlattr **tca, void **arg,
u32 flags, struct netlink_ext_ack *extack)
{
int err;
struct basic_head *head = rtnl_dereference(tp->root);
struct nlattr *tb[TCA_BASIC_MAX + 1];
struct basic_filter *fold = (struct basic_filter *) *arg;
struct basic_filter *fnew;
if (tca[TCA_OPTIONS] == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_BASIC_MAX, tca[TCA_OPTIONS],
basic_policy, NULL);
if (err < 0)
return err;
if (fold != NULL) {
if (handle && fold->handle != handle)
return -EINVAL;
}
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
if (!fnew)
return -ENOBUFS;
err = tcf_exts_init(&fnew->exts, net, TCA_BASIC_ACT, TCA_BASIC_POLICE);
if (err < 0)
goto errout;
if (!handle) {
handle = 1;
err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
INT_MAX, GFP_KERNEL);
} else if (!fold) {
err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
handle, GFP_KERNEL);
}
if (err)
goto errout;
fnew->handle = handle;
fnew->pf = alloc_percpu(struct tc_basic_pcnt);
if (!fnew->pf) {
err = -ENOMEM;
goto errout;
}
err = basic_set_parms(net, tp, fnew, base, tb, tca[TCA_RATE], flags,
extack);
if (err < 0) {
if (!fold)
idr_remove(&head->handle_idr, fnew->handle);
goto errout;
}
*arg = fnew;
if (fold) {
idr_replace(&head->handle_idr, fnew, fnew->handle);
list_replace_rcu(&fold->link, &fnew->link);
tcf_unbind_filter(tp, &fold->res);
tcf_exts_get_net(&fold->exts);
tcf_queue_work(&fold->rwork, basic_delete_filter_work);
} else {
list_add_rcu(&fnew->link, &head->flist);
}
return 0;
errout:
free_percpu(fnew->pf);
tcf_exts_destroy(&fnew->exts);
kfree(fnew);
return err;
}
static void basic_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct basic_head *head = rtnl_dereference(tp->root);
struct basic_filter *f;
list_for_each_entry(f, &head->flist, link) {
if (!tc_cls_stats_dump(tp, arg, f))
break;
}
}
static void basic_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
unsigned long base)
{
struct basic_filter *f = fh;
tc_cls_bind_class(classid, cl, q, &f->res, base);
}
static int basic_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct tc_basic_pcnt gpf = {};
struct basic_filter *f = fh;
struct nlattr *nest;
int cpu;
if (f == NULL)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (f->res.classid &&
nla_put_u32(skb, TCA_BASIC_CLASSID, f->res.classid))
goto nla_put_failure;
for_each_possible_cpu(cpu) {
struct tc_basic_pcnt *pf = per_cpu_ptr(f->pf, cpu);
gpf.rcnt += pf->rcnt;
gpf.rhit += pf->rhit;
}
if (nla_put_64bit(skb, TCA_BASIC_PCNT,
sizeof(struct tc_basic_pcnt),
&gpf, TCA_BASIC_PAD))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0 ||
tcf_em_tree_dump(skb, &f->ematches, TCA_BASIC_EMATCHES) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct tcf_proto_ops cls_basic_ops __read_mostly = {
.kind = "basic",
.classify = basic_classify,
.init = basic_init,
.destroy = basic_destroy,
.get = basic_get,
.change = basic_change,
.delete = basic_delete,
.walk = basic_walk,
.dump = basic_dump,
.bind_class = basic_bind_class,
.owner = THIS_MODULE,
};
static int __init init_basic(void)
{
return register_tcf_proto_ops(&cls_basic_ops);
}
static void __exit exit_basic(void)
{
unregister_tcf_proto_ops(&cls_basic_ops);
}
module_init(init_basic)
module_exit(exit_basic)
MODULE_LICENSE("GPL");
| linux-master | net/sched/cls_basic.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_mirred.c packet mirroring and redirect actions
*
* Authors: Jamal Hadi Salim (2002-4)
*
* TODO: Add ingress support (and socket redirect support)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <linux/if_arp.h>
#include <net/net_namespace.h>
#include <net/netlink.h>
#include <net/dst.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/tc_act/tc_mirred.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_wrapper.h>
static LIST_HEAD(mirred_list);
static DEFINE_SPINLOCK(mirred_list_lock);
#define MIRRED_NEST_LIMIT 4
static DEFINE_PER_CPU(unsigned int, mirred_nest_level);
static bool tcf_mirred_is_act_redirect(int action)
{
return action == TCA_EGRESS_REDIR || action == TCA_INGRESS_REDIR;
}
static bool tcf_mirred_act_wants_ingress(int action)
{
switch (action) {
case TCA_EGRESS_REDIR:
case TCA_EGRESS_MIRROR:
return false;
case TCA_INGRESS_REDIR:
case TCA_INGRESS_MIRROR:
return true;
default:
BUG();
}
}
static bool tcf_mirred_can_reinsert(int action)
{
switch (action) {
case TC_ACT_SHOT:
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
return true;
}
return false;
}
static struct net_device *tcf_mirred_dev_dereference(struct tcf_mirred *m)
{
return rcu_dereference_protected(m->tcfm_dev,
lockdep_is_held(&m->tcf_lock));
}
static void tcf_mirred_release(struct tc_action *a)
{
struct tcf_mirred *m = to_mirred(a);
struct net_device *dev;
spin_lock(&mirred_list_lock);
list_del(&m->tcfm_list);
spin_unlock(&mirred_list_lock);
/* last reference to action, no need to lock */
dev = rcu_dereference_protected(m->tcfm_dev, 1);
netdev_put(dev, &m->tcfm_dev_tracker);
}
static const struct nla_policy mirred_policy[TCA_MIRRED_MAX + 1] = {
[TCA_MIRRED_PARMS] = { .len = sizeof(struct tc_mirred) },
};
static struct tc_action_ops act_mirred_ops;
static int tcf_mirred_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_mirred_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_MIRRED_MAX + 1];
struct tcf_chain *goto_ch = NULL;
bool mac_header_xmit = false;
struct tc_mirred *parm;
struct tcf_mirred *m;
bool exists = false;
int ret, err;
u32 index;
if (!nla) {
NL_SET_ERR_MSG_MOD(extack, "Mirred requires attributes to be passed");
return -EINVAL;
}
ret = nla_parse_nested_deprecated(tb, TCA_MIRRED_MAX, nla,
mirred_policy, extack);
if (ret < 0)
return ret;
if (!tb[TCA_MIRRED_PARMS]) {
NL_SET_ERR_MSG_MOD(extack, "Missing required mirred parameters");
return -EINVAL;
}
parm = nla_data(tb[TCA_MIRRED_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
switch (parm->eaction) {
case TCA_EGRESS_MIRROR:
case TCA_EGRESS_REDIR:
case TCA_INGRESS_REDIR:
case TCA_INGRESS_MIRROR:
break;
default:
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
NL_SET_ERR_MSG_MOD(extack, "Unknown mirred option");
return -EINVAL;
}
if (!exists) {
if (!parm->ifindex) {
tcf_idr_cleanup(tn, index);
NL_SET_ERR_MSG_MOD(extack, "Specified device does not exist");
return -EINVAL;
}
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_mirred_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
m = to_mirred(*a);
if (ret == ACT_P_CREATED)
INIT_LIST_HEAD(&m->tcfm_list);
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
spin_lock_bh(&m->tcf_lock);
if (parm->ifindex) {
struct net_device *odev, *ndev;
ndev = dev_get_by_index(net, parm->ifindex);
if (!ndev) {
spin_unlock_bh(&m->tcf_lock);
err = -ENODEV;
goto put_chain;
}
mac_header_xmit = dev_is_mac_header_xmit(ndev);
odev = rcu_replace_pointer(m->tcfm_dev, ndev,
lockdep_is_held(&m->tcf_lock));
netdev_put(odev, &m->tcfm_dev_tracker);
netdev_tracker_alloc(ndev, &m->tcfm_dev_tracker, GFP_ATOMIC);
m->tcfm_mac_header_xmit = mac_header_xmit;
}
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
m->tcfm_eaction = parm->eaction;
spin_unlock_bh(&m->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (ret == ACT_P_CREATED) {
spin_lock(&mirred_list_lock);
list_add(&m->tcfm_list, &mirred_list);
spin_unlock(&mirred_list_lock);
}
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static bool is_mirred_nested(void)
{
return unlikely(__this_cpu_read(mirred_nest_level) > 1);
}
static int tcf_mirred_forward(bool want_ingress, struct sk_buff *skb)
{
int err;
if (!want_ingress)
err = tcf_dev_queue_xmit(skb, dev_queue_xmit);
else if (is_mirred_nested())
err = netif_rx(skb);
else
err = netif_receive_skb(skb);
return err;
}
TC_INDIRECT_SCOPE int tcf_mirred_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_mirred *m = to_mirred(a);
struct sk_buff *skb2 = skb;
bool m_mac_header_xmit;
struct net_device *dev;
unsigned int nest_level;
int retval, err = 0;
bool use_reinsert;
bool want_ingress;
bool is_redirect;
bool expects_nh;
bool at_ingress;
int m_eaction;
int mac_len;
bool at_nh;
nest_level = __this_cpu_inc_return(mirred_nest_level);
if (unlikely(nest_level > MIRRED_NEST_LIMIT)) {
net_warn_ratelimited("Packet exceeded mirred recursion limit on dev %s\n",
netdev_name(skb->dev));
__this_cpu_dec(mirred_nest_level);
return TC_ACT_SHOT;
}
tcf_lastuse_update(&m->tcf_tm);
tcf_action_update_bstats(&m->common, skb);
m_mac_header_xmit = READ_ONCE(m->tcfm_mac_header_xmit);
m_eaction = READ_ONCE(m->tcfm_eaction);
retval = READ_ONCE(m->tcf_action);
dev = rcu_dereference_bh(m->tcfm_dev);
if (unlikely(!dev)) {
pr_notice_once("tc mirred: target device is gone\n");
goto out;
}
if (unlikely(!(dev->flags & IFF_UP)) || !netif_carrier_ok(dev)) {
net_notice_ratelimited("tc mirred to Houston: device %s is down\n",
dev->name);
goto out;
}
/* we could easily avoid the clone only if called by ingress and clsact;
* since we can't easily detect the clsact caller, skip clone only for
* ingress - that covers the TC S/W datapath.
*/
is_redirect = tcf_mirred_is_act_redirect(m_eaction);
at_ingress = skb_at_tc_ingress(skb);
use_reinsert = at_ingress && is_redirect &&
tcf_mirred_can_reinsert(retval);
if (!use_reinsert) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (!skb2)
goto out;
}
want_ingress = tcf_mirred_act_wants_ingress(m_eaction);
/* All mirred/redirected skbs should clear previous ct info */
nf_reset_ct(skb2);
if (want_ingress && !at_ingress) /* drop dst for egress -> ingress */
skb_dst_drop(skb2);
expects_nh = want_ingress || !m_mac_header_xmit;
at_nh = skb->data == skb_network_header(skb);
if (at_nh != expects_nh) {
mac_len = skb_at_tc_ingress(skb) ? skb->mac_len :
skb_network_offset(skb);
if (expects_nh) {
/* target device/action expect data at nh */
skb_pull_rcsum(skb2, mac_len);
} else {
/* target device/action expect data at mac */
skb_push_rcsum(skb2, mac_len);
}
}
skb2->skb_iif = skb->dev->ifindex;
skb2->dev = dev;
/* mirror is always swallowed */
if (is_redirect) {
skb_set_redirected(skb2, skb2->tc_at_ingress);
/* let's the caller reinsert the packet, if possible */
if (use_reinsert) {
err = tcf_mirred_forward(want_ingress, skb);
if (err)
tcf_action_inc_overlimit_qstats(&m->common);
__this_cpu_dec(mirred_nest_level);
return TC_ACT_CONSUMED;
}
}
err = tcf_mirred_forward(want_ingress, skb2);
if (err) {
out:
tcf_action_inc_overlimit_qstats(&m->common);
if (tcf_mirred_is_act_redirect(m_eaction))
retval = TC_ACT_SHOT;
}
__this_cpu_dec(mirred_nest_level);
return retval;
}
static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_mirred *m = to_mirred(a);
struct tcf_t *tm = &m->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static int tcf_mirred_dump(struct sk_buff *skb, struct tc_action *a, int bind,
int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_mirred *m = to_mirred(a);
struct tc_mirred opt = {
.index = m->tcf_index,
.refcnt = refcount_read(&m->tcf_refcnt) - ref,
.bindcnt = atomic_read(&m->tcf_bindcnt) - bind,
};
struct net_device *dev;
struct tcf_t t;
spin_lock_bh(&m->tcf_lock);
opt.action = m->tcf_action;
opt.eaction = m->tcfm_eaction;
dev = tcf_mirred_dev_dereference(m);
if (dev)
opt.ifindex = dev->ifindex;
if (nla_put(skb, TCA_MIRRED_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &m->tcf_tm);
if (nla_put_64bit(skb, TCA_MIRRED_TM, sizeof(t), &t, TCA_MIRRED_PAD))
goto nla_put_failure;
spin_unlock_bh(&m->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&m->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static int mirred_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct tcf_mirred *m;
ASSERT_RTNL();
if (event == NETDEV_UNREGISTER) {
spin_lock(&mirred_list_lock);
list_for_each_entry(m, &mirred_list, tcfm_list) {
spin_lock_bh(&m->tcf_lock);
if (tcf_mirred_dev_dereference(m) == dev) {
netdev_put(dev, &m->tcfm_dev_tracker);
/* Note : no rcu grace period necessary, as
* net_device are already rcu protected.
*/
RCU_INIT_POINTER(m->tcfm_dev, NULL);
}
spin_unlock_bh(&m->tcf_lock);
}
spin_unlock(&mirred_list_lock);
}
return NOTIFY_DONE;
}
static struct notifier_block mirred_device_notifier = {
.notifier_call = mirred_device_event,
};
static void tcf_mirred_dev_put(void *priv)
{
struct net_device *dev = priv;
dev_put(dev);
}
static struct net_device *
tcf_mirred_get_dev(const struct tc_action *a,
tc_action_priv_destructor *destructor)
{
struct tcf_mirred *m = to_mirred(a);
struct net_device *dev;
rcu_read_lock();
dev = rcu_dereference(m->tcfm_dev);
if (dev) {
dev_hold(dev);
*destructor = tcf_mirred_dev_put;
}
rcu_read_unlock();
return dev;
}
static size_t tcf_mirred_get_fill_size(const struct tc_action *act)
{
return nla_total_size(sizeof(struct tc_mirred));
}
static void tcf_offload_mirred_get_dev(struct flow_action_entry *entry,
const struct tc_action *act)
{
entry->dev = act->ops->get_dev(act, &entry->destructor);
if (!entry->dev)
return;
entry->destructor_priv = entry->dev;
}
static int tcf_mirred_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
if (is_tcf_mirred_egress_redirect(act)) {
entry->id = FLOW_ACTION_REDIRECT;
tcf_offload_mirred_get_dev(entry, act);
} else if (is_tcf_mirred_egress_mirror(act)) {
entry->id = FLOW_ACTION_MIRRED;
tcf_offload_mirred_get_dev(entry, act);
} else if (is_tcf_mirred_ingress_redirect(act)) {
entry->id = FLOW_ACTION_REDIRECT_INGRESS;
tcf_offload_mirred_get_dev(entry, act);
} else if (is_tcf_mirred_ingress_mirror(act)) {
entry->id = FLOW_ACTION_MIRRED_INGRESS;
tcf_offload_mirred_get_dev(entry, act);
} else {
NL_SET_ERR_MSG_MOD(extack, "Unsupported mirred offload");
return -EOPNOTSUPP;
}
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
if (is_tcf_mirred_egress_redirect(act))
fl_action->id = FLOW_ACTION_REDIRECT;
else if (is_tcf_mirred_egress_mirror(act))
fl_action->id = FLOW_ACTION_MIRRED;
else if (is_tcf_mirred_ingress_redirect(act))
fl_action->id = FLOW_ACTION_REDIRECT_INGRESS;
else if (is_tcf_mirred_ingress_mirror(act))
fl_action->id = FLOW_ACTION_MIRRED_INGRESS;
else
return -EOPNOTSUPP;
}
return 0;
}
static struct tc_action_ops act_mirred_ops = {
.kind = "mirred",
.id = TCA_ID_MIRRED,
.owner = THIS_MODULE,
.act = tcf_mirred_act,
.stats_update = tcf_stats_update,
.dump = tcf_mirred_dump,
.cleanup = tcf_mirred_release,
.init = tcf_mirred_init,
.get_fill_size = tcf_mirred_get_fill_size,
.offload_act_setup = tcf_mirred_offload_act_setup,
.size = sizeof(struct tcf_mirred),
.get_dev = tcf_mirred_get_dev,
};
static __net_init int mirred_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_mirred_ops.net_id);
return tc_action_net_init(net, tn, &act_mirred_ops);
}
static void __net_exit mirred_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_mirred_ops.net_id);
}
static struct pernet_operations mirred_net_ops = {
.init = mirred_init_net,
.exit_batch = mirred_exit_net,
.id = &act_mirred_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2002)");
MODULE_DESCRIPTION("Device Mirror/redirect actions");
MODULE_LICENSE("GPL");
static int __init mirred_init_module(void)
{
int err = register_netdevice_notifier(&mirred_device_notifier);
if (err)
return err;
pr_info("Mirror/redirect action on\n");
err = tcf_register_action(&act_mirred_ops, &mirred_net_ops);
if (err)
unregister_netdevice_notifier(&mirred_device_notifier);
return err;
}
static void __exit mirred_cleanup_module(void)
{
tcf_unregister_action(&act_mirred_ops, &mirred_net_ops);
unregister_netdevice_notifier(&mirred_device_notifier);
}
module_init(mirred_init_module);
module_exit(mirred_cleanup_module);
| linux-master | net/sched/act_mirred.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2016, Amir Vadai <[email protected]>
* Copyright (c) 2016, Mellanox Technologies. All rights reserved.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <net/geneve.h>
#include <net/vxlan.h>
#include <net/erspan.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/dst.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
#include <linux/tc_act/tc_tunnel_key.h>
#include <net/tc_act/tc_tunnel_key.h>
static struct tc_action_ops act_tunnel_key_ops;
TC_INDIRECT_SCOPE int tunnel_key_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_tunnel_key *t = to_tunnel_key(a);
struct tcf_tunnel_key_params *params;
int action;
params = rcu_dereference_bh(t->params);
tcf_lastuse_update(&t->tcf_tm);
tcf_action_update_bstats(&t->common, skb);
action = READ_ONCE(t->tcf_action);
switch (params->tcft_action) {
case TCA_TUNNEL_KEY_ACT_RELEASE:
skb_dst_drop(skb);
break;
case TCA_TUNNEL_KEY_ACT_SET:
skb_dst_drop(skb);
skb_dst_set(skb, dst_clone(¶ms->tcft_enc_metadata->dst));
break;
default:
WARN_ONCE(1, "Bad tunnel_key action %d.\n",
params->tcft_action);
break;
}
return action;
}
static const struct nla_policy
enc_opts_policy[TCA_TUNNEL_KEY_ENC_OPTS_MAX + 1] = {
[TCA_TUNNEL_KEY_ENC_OPTS_UNSPEC] = {
.strict_start_type = TCA_TUNNEL_KEY_ENC_OPTS_VXLAN },
[TCA_TUNNEL_KEY_ENC_OPTS_GENEVE] = { .type = NLA_NESTED },
[TCA_TUNNEL_KEY_ENC_OPTS_VXLAN] = { .type = NLA_NESTED },
[TCA_TUNNEL_KEY_ENC_OPTS_ERSPAN] = { .type = NLA_NESTED },
};
static const struct nla_policy
geneve_opt_policy[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_MAX + 1] = {
[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_CLASS] = { .type = NLA_U16 },
[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_TYPE] = { .type = NLA_U8 },
[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_DATA] = { .type = NLA_BINARY,
.len = 128 },
};
static const struct nla_policy
vxlan_opt_policy[TCA_TUNNEL_KEY_ENC_OPT_VXLAN_MAX + 1] = {
[TCA_TUNNEL_KEY_ENC_OPT_VXLAN_GBP] = { .type = NLA_U32 },
};
static const struct nla_policy
erspan_opt_policy[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_MAX + 1] = {
[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_VER] = { .type = NLA_U8 },
[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_INDEX] = { .type = NLA_U32 },
[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_DIR] = { .type = NLA_U8 },
[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_HWID] = { .type = NLA_U8 },
};
static int
tunnel_key_copy_geneve_opt(const struct nlattr *nla, void *dst, int dst_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_MAX + 1];
int err, data_len, opt_len;
u8 *data;
err = nla_parse_nested_deprecated(tb,
TCA_TUNNEL_KEY_ENC_OPT_GENEVE_MAX,
nla, geneve_opt_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_CLASS] ||
!tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_TYPE] ||
!tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_DATA]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key geneve option class, type or data");
return -EINVAL;
}
data = nla_data(tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_DATA]);
data_len = nla_len(tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_DATA]);
if (data_len < 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is less than 4 bytes long");
return -ERANGE;
}
if (data_len % 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is not a multiple of 4 bytes long");
return -ERANGE;
}
opt_len = sizeof(struct geneve_opt) + data_len;
if (dst) {
struct geneve_opt *opt = dst;
WARN_ON(dst_len < opt_len);
opt->opt_class =
nla_get_be16(tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_CLASS]);
opt->type = nla_get_u8(tb[TCA_TUNNEL_KEY_ENC_OPT_GENEVE_TYPE]);
opt->length = data_len / 4; /* length is in units of 4 bytes */
opt->r1 = 0;
opt->r2 = 0;
opt->r3 = 0;
memcpy(opt + 1, data, data_len);
}
return opt_len;
}
static int
tunnel_key_copy_vxlan_opt(const struct nlattr *nla, void *dst, int dst_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TUNNEL_KEY_ENC_OPT_VXLAN_MAX + 1];
int err;
err = nla_parse_nested(tb, TCA_TUNNEL_KEY_ENC_OPT_VXLAN_MAX, nla,
vxlan_opt_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_TUNNEL_KEY_ENC_OPT_VXLAN_GBP]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key vxlan option gbp");
return -EINVAL;
}
if (dst) {
struct vxlan_metadata *md = dst;
md->gbp = nla_get_u32(tb[TCA_TUNNEL_KEY_ENC_OPT_VXLAN_GBP]);
md->gbp &= VXLAN_GBP_MASK;
}
return sizeof(struct vxlan_metadata);
}
static int
tunnel_key_copy_erspan_opt(const struct nlattr *nla, void *dst, int dst_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_MAX + 1];
int err;
u8 ver;
err = nla_parse_nested(tb, TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_MAX, nla,
erspan_opt_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_VER]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option ver");
return -EINVAL;
}
ver = nla_get_u8(tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_VER]);
if (ver == 1) {
if (!tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_INDEX]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option index");
return -EINVAL;
}
} else if (ver == 2) {
if (!tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_DIR] ||
!tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_HWID]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option dir or hwid");
return -EINVAL;
}
} else {
NL_SET_ERR_MSG(extack, "Tunnel key erspan option ver is incorrect");
return -EINVAL;
}
if (dst) {
struct erspan_metadata *md = dst;
md->version = ver;
if (ver == 1) {
nla = tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_INDEX];
md->u.index = nla_get_be32(nla);
} else {
nla = tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_DIR];
md->u.md2.dir = nla_get_u8(nla);
nla = tb[TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_HWID];
set_hwid(&md->u.md2, nla_get_u8(nla));
}
}
return sizeof(struct erspan_metadata);
}
static int tunnel_key_copy_opts(const struct nlattr *nla, u8 *dst,
int dst_len, struct netlink_ext_ack *extack)
{
int err, rem, opt_len, len = nla_len(nla), opts_len = 0, type = 0;
const struct nlattr *attr, *head = nla_data(nla);
err = nla_validate_deprecated(head, len, TCA_TUNNEL_KEY_ENC_OPTS_MAX,
enc_opts_policy, extack);
if (err)
return err;
nla_for_each_attr(attr, head, len, rem) {
switch (nla_type(attr)) {
case TCA_TUNNEL_KEY_ENC_OPTS_GENEVE:
if (type && type != TUNNEL_GENEVE_OPT) {
NL_SET_ERR_MSG(extack, "Duplicate type for geneve options");
return -EINVAL;
}
opt_len = tunnel_key_copy_geneve_opt(attr, dst,
dst_len, extack);
if (opt_len < 0)
return opt_len;
opts_len += opt_len;
if (opts_len > IP_TUNNEL_OPTS_MAX) {
NL_SET_ERR_MSG(extack, "Tunnel options exceeds max size");
return -EINVAL;
}
if (dst) {
dst_len -= opt_len;
dst += opt_len;
}
type = TUNNEL_GENEVE_OPT;
break;
case TCA_TUNNEL_KEY_ENC_OPTS_VXLAN:
if (type) {
NL_SET_ERR_MSG(extack, "Duplicate type for vxlan options");
return -EINVAL;
}
opt_len = tunnel_key_copy_vxlan_opt(attr, dst,
dst_len, extack);
if (opt_len < 0)
return opt_len;
opts_len += opt_len;
type = TUNNEL_VXLAN_OPT;
break;
case TCA_TUNNEL_KEY_ENC_OPTS_ERSPAN:
if (type) {
NL_SET_ERR_MSG(extack, "Duplicate type for erspan options");
return -EINVAL;
}
opt_len = tunnel_key_copy_erspan_opt(attr, dst,
dst_len, extack);
if (opt_len < 0)
return opt_len;
opts_len += opt_len;
type = TUNNEL_ERSPAN_OPT;
break;
}
}
if (!opts_len) {
NL_SET_ERR_MSG(extack, "Empty list of tunnel options");
return -EINVAL;
}
if (rem > 0) {
NL_SET_ERR_MSG(extack, "Trailing data after parsing tunnel key options attributes");
return -EINVAL;
}
return opts_len;
}
static int tunnel_key_get_opts_len(struct nlattr *nla,
struct netlink_ext_ack *extack)
{
return tunnel_key_copy_opts(nla, NULL, 0, extack);
}
static int tunnel_key_opts_set(struct nlattr *nla, struct ip_tunnel_info *info,
int opts_len, struct netlink_ext_ack *extack)
{
info->options_len = opts_len;
switch (nla_type(nla_data(nla))) {
case TCA_TUNNEL_KEY_ENC_OPTS_GENEVE:
#if IS_ENABLED(CONFIG_INET)
info->key.tun_flags |= TUNNEL_GENEVE_OPT;
return tunnel_key_copy_opts(nla, ip_tunnel_info_opts(info),
opts_len, extack);
#else
return -EAFNOSUPPORT;
#endif
case TCA_TUNNEL_KEY_ENC_OPTS_VXLAN:
#if IS_ENABLED(CONFIG_INET)
info->key.tun_flags |= TUNNEL_VXLAN_OPT;
return tunnel_key_copy_opts(nla, ip_tunnel_info_opts(info),
opts_len, extack);
#else
return -EAFNOSUPPORT;
#endif
case TCA_TUNNEL_KEY_ENC_OPTS_ERSPAN:
#if IS_ENABLED(CONFIG_INET)
info->key.tun_flags |= TUNNEL_ERSPAN_OPT;
return tunnel_key_copy_opts(nla, ip_tunnel_info_opts(info),
opts_len, extack);
#else
return -EAFNOSUPPORT;
#endif
default:
NL_SET_ERR_MSG(extack, "Cannot set tunnel options for unknown tunnel type");
return -EINVAL;
}
}
static const struct nla_policy tunnel_key_policy[TCA_TUNNEL_KEY_MAX + 1] = {
[TCA_TUNNEL_KEY_PARMS] = { .len = sizeof(struct tc_tunnel_key) },
[TCA_TUNNEL_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
[TCA_TUNNEL_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
[TCA_TUNNEL_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[TCA_TUNNEL_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[TCA_TUNNEL_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
[TCA_TUNNEL_KEY_ENC_DST_PORT] = {.type = NLA_U16},
[TCA_TUNNEL_KEY_NO_CSUM] = { .type = NLA_U8 },
[TCA_TUNNEL_KEY_ENC_OPTS] = { .type = NLA_NESTED },
[TCA_TUNNEL_KEY_ENC_TOS] = { .type = NLA_U8 },
[TCA_TUNNEL_KEY_ENC_TTL] = { .type = NLA_U8 },
};
static void tunnel_key_release_params(struct tcf_tunnel_key_params *p)
{
if (!p)
return;
if (p->tcft_action == TCA_TUNNEL_KEY_ACT_SET)
dst_release(&p->tcft_enc_metadata->dst);
kfree_rcu(p, rcu);
}
static int tunnel_key_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 act_flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_tunnel_key_ops.net_id);
bool bind = act_flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_TUNNEL_KEY_MAX + 1];
struct tcf_tunnel_key_params *params_new;
struct metadata_dst *metadata = NULL;
struct tcf_chain *goto_ch = NULL;
struct tc_tunnel_key *parm;
struct tcf_tunnel_key *t;
bool exists = false;
__be16 dst_port = 0;
__be64 key_id = 0;
int opts_len = 0;
__be16 flags = 0;
u8 tos, ttl;
int ret = 0;
u32 index;
int err;
if (!nla) {
NL_SET_ERR_MSG(extack, "Tunnel requires attributes to be passed");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_TUNNEL_KEY_MAX, nla,
tunnel_key_policy, extack);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Failed to parse nested tunnel key attributes");
return err;
}
if (!tb[TCA_TUNNEL_KEY_PARMS]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key parameters");
return -EINVAL;
}
parm = nla_data(tb[TCA_TUNNEL_KEY_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
switch (parm->t_action) {
case TCA_TUNNEL_KEY_ACT_RELEASE:
break;
case TCA_TUNNEL_KEY_ACT_SET:
if (tb[TCA_TUNNEL_KEY_ENC_KEY_ID]) {
__be32 key32;
key32 = nla_get_be32(tb[TCA_TUNNEL_KEY_ENC_KEY_ID]);
key_id = key32_to_tunnel_id(key32);
flags = TUNNEL_KEY;
}
flags |= TUNNEL_CSUM;
if (tb[TCA_TUNNEL_KEY_NO_CSUM] &&
nla_get_u8(tb[TCA_TUNNEL_KEY_NO_CSUM]))
flags &= ~TUNNEL_CSUM;
if (nla_get_flag(tb[TCA_TUNNEL_KEY_NO_FRAG]))
flags |= TUNNEL_DONT_FRAGMENT;
if (tb[TCA_TUNNEL_KEY_ENC_DST_PORT])
dst_port = nla_get_be16(tb[TCA_TUNNEL_KEY_ENC_DST_PORT]);
if (tb[TCA_TUNNEL_KEY_ENC_OPTS]) {
opts_len = tunnel_key_get_opts_len(tb[TCA_TUNNEL_KEY_ENC_OPTS],
extack);
if (opts_len < 0) {
ret = opts_len;
goto err_out;
}
}
tos = 0;
if (tb[TCA_TUNNEL_KEY_ENC_TOS])
tos = nla_get_u8(tb[TCA_TUNNEL_KEY_ENC_TOS]);
ttl = 0;
if (tb[TCA_TUNNEL_KEY_ENC_TTL])
ttl = nla_get_u8(tb[TCA_TUNNEL_KEY_ENC_TTL]);
if (tb[TCA_TUNNEL_KEY_ENC_IPV4_SRC] &&
tb[TCA_TUNNEL_KEY_ENC_IPV4_DST]) {
__be32 saddr;
__be32 daddr;
saddr = nla_get_in_addr(tb[TCA_TUNNEL_KEY_ENC_IPV4_SRC]);
daddr = nla_get_in_addr(tb[TCA_TUNNEL_KEY_ENC_IPV4_DST]);
metadata = __ip_tun_set_dst(saddr, daddr, tos, ttl,
dst_port, flags,
key_id, opts_len);
} else if (tb[TCA_TUNNEL_KEY_ENC_IPV6_SRC] &&
tb[TCA_TUNNEL_KEY_ENC_IPV6_DST]) {
struct in6_addr saddr;
struct in6_addr daddr;
saddr = nla_get_in6_addr(tb[TCA_TUNNEL_KEY_ENC_IPV6_SRC]);
daddr = nla_get_in6_addr(tb[TCA_TUNNEL_KEY_ENC_IPV6_DST]);
metadata = __ipv6_tun_set_dst(&saddr, &daddr, tos, ttl, dst_port,
0, flags,
key_id, opts_len);
} else {
NL_SET_ERR_MSG(extack, "Missing either ipv4 or ipv6 src and dst");
ret = -EINVAL;
goto err_out;
}
if (!metadata) {
NL_SET_ERR_MSG(extack, "Cannot allocate tunnel metadata dst");
ret = -ENOMEM;
goto err_out;
}
#ifdef CONFIG_DST_CACHE
ret = dst_cache_init(&metadata->u.tun_info.dst_cache, GFP_KERNEL);
if (ret)
goto release_tun_meta;
#endif
if (opts_len) {
ret = tunnel_key_opts_set(tb[TCA_TUNNEL_KEY_ENC_OPTS],
&metadata->u.tun_info,
opts_len, extack);
if (ret < 0)
goto release_tun_meta;
}
metadata->u.tun_info.mode |= IP_TUNNEL_INFO_TX;
break;
default:
NL_SET_ERR_MSG(extack, "Unknown tunnel key action");
ret = -EINVAL;
goto err_out;
}
if (!exists) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_tunnel_key_ops, bind,
act_flags);
if (ret) {
NL_SET_ERR_MSG(extack, "Cannot create TC IDR");
goto release_tun_meta;
}
ret = ACT_P_CREATED;
} else if (!(act_flags & TCA_ACT_FLAGS_REPLACE)) {
NL_SET_ERR_MSG(extack, "TC IDR already exists");
ret = -EEXIST;
goto release_tun_meta;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0) {
ret = err;
exists = true;
goto release_tun_meta;
}
t = to_tunnel_key(*a);
params_new = kzalloc(sizeof(*params_new), GFP_KERNEL);
if (unlikely(!params_new)) {
NL_SET_ERR_MSG(extack, "Cannot allocate tunnel key parameters");
ret = -ENOMEM;
exists = true;
goto put_chain;
}
params_new->tcft_action = parm->t_action;
params_new->tcft_enc_metadata = metadata;
spin_lock_bh(&t->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
params_new = rcu_replace_pointer(t->params, params_new,
lockdep_is_held(&t->tcf_lock));
spin_unlock_bh(&t->tcf_lock);
tunnel_key_release_params(params_new);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_tun_meta:
if (metadata)
dst_release(&metadata->dst);
err_out:
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return ret;
}
static void tunnel_key_release(struct tc_action *a)
{
struct tcf_tunnel_key *t = to_tunnel_key(a);
struct tcf_tunnel_key_params *params;
params = rcu_dereference_protected(t->params, 1);
tunnel_key_release_params(params);
}
static int tunnel_key_geneve_opts_dump(struct sk_buff *skb,
const struct ip_tunnel_info *info)
{
int len = info->options_len;
u8 *src = (u8 *)(info + 1);
struct nlattr *start;
start = nla_nest_start_noflag(skb, TCA_TUNNEL_KEY_ENC_OPTS_GENEVE);
if (!start)
return -EMSGSIZE;
while (len > 0) {
struct geneve_opt *opt = (struct geneve_opt *)src;
if (nla_put_be16(skb, TCA_TUNNEL_KEY_ENC_OPT_GENEVE_CLASS,
opt->opt_class) ||
nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_OPT_GENEVE_TYPE,
opt->type) ||
nla_put(skb, TCA_TUNNEL_KEY_ENC_OPT_GENEVE_DATA,
opt->length * 4, opt + 1)) {
nla_nest_cancel(skb, start);
return -EMSGSIZE;
}
len -= sizeof(struct geneve_opt) + opt->length * 4;
src += sizeof(struct geneve_opt) + opt->length * 4;
}
nla_nest_end(skb, start);
return 0;
}
static int tunnel_key_vxlan_opts_dump(struct sk_buff *skb,
const struct ip_tunnel_info *info)
{
struct vxlan_metadata *md = (struct vxlan_metadata *)(info + 1);
struct nlattr *start;
start = nla_nest_start_noflag(skb, TCA_TUNNEL_KEY_ENC_OPTS_VXLAN);
if (!start)
return -EMSGSIZE;
if (nla_put_u32(skb, TCA_TUNNEL_KEY_ENC_OPT_VXLAN_GBP, md->gbp)) {
nla_nest_cancel(skb, start);
return -EMSGSIZE;
}
nla_nest_end(skb, start);
return 0;
}
static int tunnel_key_erspan_opts_dump(struct sk_buff *skb,
const struct ip_tunnel_info *info)
{
struct erspan_metadata *md = (struct erspan_metadata *)(info + 1);
struct nlattr *start;
start = nla_nest_start_noflag(skb, TCA_TUNNEL_KEY_ENC_OPTS_ERSPAN);
if (!start)
return -EMSGSIZE;
if (nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_VER, md->version))
goto err;
if (md->version == 1 &&
nla_put_be32(skb, TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_INDEX, md->u.index))
goto err;
if (md->version == 2 &&
(nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_DIR,
md->u.md2.dir) ||
nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_OPT_ERSPAN_HWID,
get_hwid(&md->u.md2))))
goto err;
nla_nest_end(skb, start);
return 0;
err:
nla_nest_cancel(skb, start);
return -EMSGSIZE;
}
static int tunnel_key_opts_dump(struct sk_buff *skb,
const struct ip_tunnel_info *info)
{
struct nlattr *start;
int err = -EINVAL;
if (!info->options_len)
return 0;
start = nla_nest_start_noflag(skb, TCA_TUNNEL_KEY_ENC_OPTS);
if (!start)
return -EMSGSIZE;
if (info->key.tun_flags & TUNNEL_GENEVE_OPT) {
err = tunnel_key_geneve_opts_dump(skb, info);
if (err)
goto err_out;
} else if (info->key.tun_flags & TUNNEL_VXLAN_OPT) {
err = tunnel_key_vxlan_opts_dump(skb, info);
if (err)
goto err_out;
} else if (info->key.tun_flags & TUNNEL_ERSPAN_OPT) {
err = tunnel_key_erspan_opts_dump(skb, info);
if (err)
goto err_out;
} else {
err_out:
nla_nest_cancel(skb, start);
return err;
}
nla_nest_end(skb, start);
return 0;
}
static int tunnel_key_dump_addresses(struct sk_buff *skb,
const struct ip_tunnel_info *info)
{
unsigned short family = ip_tunnel_info_af(info);
if (family == AF_INET) {
__be32 saddr = info->key.u.ipv4.src;
__be32 daddr = info->key.u.ipv4.dst;
if (!nla_put_in_addr(skb, TCA_TUNNEL_KEY_ENC_IPV4_SRC, saddr) &&
!nla_put_in_addr(skb, TCA_TUNNEL_KEY_ENC_IPV4_DST, daddr))
return 0;
}
if (family == AF_INET6) {
const struct in6_addr *saddr6 = &info->key.u.ipv6.src;
const struct in6_addr *daddr6 = &info->key.u.ipv6.dst;
if (!nla_put_in6_addr(skb,
TCA_TUNNEL_KEY_ENC_IPV6_SRC, saddr6) &&
!nla_put_in6_addr(skb,
TCA_TUNNEL_KEY_ENC_IPV6_DST, daddr6))
return 0;
}
return -EINVAL;
}
static int tunnel_key_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_tunnel_key *t = to_tunnel_key(a);
struct tcf_tunnel_key_params *params;
struct tc_tunnel_key opt = {
.index = t->tcf_index,
.refcnt = refcount_read(&t->tcf_refcnt) - ref,
.bindcnt = atomic_read(&t->tcf_bindcnt) - bind,
};
struct tcf_t tm;
spin_lock_bh(&t->tcf_lock);
params = rcu_dereference_protected(t->params,
lockdep_is_held(&t->tcf_lock));
opt.action = t->tcf_action;
opt.t_action = params->tcft_action;
if (nla_put(skb, TCA_TUNNEL_KEY_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
if (params->tcft_action == TCA_TUNNEL_KEY_ACT_SET) {
struct ip_tunnel_info *info =
¶ms->tcft_enc_metadata->u.tun_info;
struct ip_tunnel_key *key = &info->key;
__be32 key_id = tunnel_id_to_key32(key->tun_id);
if (((key->tun_flags & TUNNEL_KEY) &&
nla_put_be32(skb, TCA_TUNNEL_KEY_ENC_KEY_ID, key_id)) ||
tunnel_key_dump_addresses(skb,
¶ms->tcft_enc_metadata->u.tun_info) ||
(key->tp_dst &&
nla_put_be16(skb, TCA_TUNNEL_KEY_ENC_DST_PORT,
key->tp_dst)) ||
nla_put_u8(skb, TCA_TUNNEL_KEY_NO_CSUM,
!(key->tun_flags & TUNNEL_CSUM)) ||
((key->tun_flags & TUNNEL_DONT_FRAGMENT) &&
nla_put_flag(skb, TCA_TUNNEL_KEY_NO_FRAG)) ||
tunnel_key_opts_dump(skb, info))
goto nla_put_failure;
if (key->tos && nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_TOS, key->tos))
goto nla_put_failure;
if (key->ttl && nla_put_u8(skb, TCA_TUNNEL_KEY_ENC_TTL, key->ttl))
goto nla_put_failure;
}
tcf_tm_dump(&tm, &t->tcf_tm);
if (nla_put_64bit(skb, TCA_TUNNEL_KEY_TM, sizeof(tm),
&tm, TCA_TUNNEL_KEY_PAD))
goto nla_put_failure;
spin_unlock_bh(&t->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&t->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_tunnel_encap_put_tunnel(void *priv)
{
struct ip_tunnel_info *tunnel = priv;
kfree(tunnel);
}
static int tcf_tunnel_encap_get_tunnel(struct flow_action_entry *entry,
const struct tc_action *act)
{
entry->tunnel = tcf_tunnel_info_copy(act);
if (!entry->tunnel)
return -ENOMEM;
entry->destructor = tcf_tunnel_encap_put_tunnel;
entry->destructor_priv = entry->tunnel;
return 0;
}
static int tcf_tunnel_key_offload_act_setup(struct tc_action *act,
void *entry_data,
u32 *index_inc,
bool bind,
struct netlink_ext_ack *extack)
{
int err;
if (bind) {
struct flow_action_entry *entry = entry_data;
if (is_tcf_tunnel_set(act)) {
entry->id = FLOW_ACTION_TUNNEL_ENCAP;
err = tcf_tunnel_encap_get_tunnel(entry, act);
if (err)
return err;
} else if (is_tcf_tunnel_release(act)) {
entry->id = FLOW_ACTION_TUNNEL_DECAP;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unsupported tunnel key mode offload");
return -EOPNOTSUPP;
}
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
if (is_tcf_tunnel_set(act))
fl_action->id = FLOW_ACTION_TUNNEL_ENCAP;
else if (is_tcf_tunnel_release(act))
fl_action->id = FLOW_ACTION_TUNNEL_DECAP;
else
return -EOPNOTSUPP;
}
return 0;
}
static struct tc_action_ops act_tunnel_key_ops = {
.kind = "tunnel_key",
.id = TCA_ID_TUNNEL_KEY,
.owner = THIS_MODULE,
.act = tunnel_key_act,
.dump = tunnel_key_dump,
.init = tunnel_key_init,
.cleanup = tunnel_key_release,
.offload_act_setup = tcf_tunnel_key_offload_act_setup,
.size = sizeof(struct tcf_tunnel_key),
};
static __net_init int tunnel_key_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_tunnel_key_ops.net_id);
return tc_action_net_init(net, tn, &act_tunnel_key_ops);
}
static void __net_exit tunnel_key_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_tunnel_key_ops.net_id);
}
static struct pernet_operations tunnel_key_net_ops = {
.init = tunnel_key_init_net,
.exit_batch = tunnel_key_exit_net,
.id = &act_tunnel_key_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init tunnel_key_init_module(void)
{
return tcf_register_action(&act_tunnel_key_ops, &tunnel_key_net_ops);
}
static void __exit tunnel_key_cleanup_module(void)
{
tcf_unregister_action(&act_tunnel_key_ops, &tunnel_key_net_ops);
}
module_init(tunnel_key_init_module);
module_exit(tunnel_key_cleanup_module);
MODULE_AUTHOR("Amir Vadai <[email protected]>");
MODULE_DESCRIPTION("ip tunnel manipulation actions");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/act_tunnel_key.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_fw.c Classifier mapping ipchains' fwmark to traffic class.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*
* Changes:
* Karlis Peisenieks <[email protected]> : 990415 : fw_walk off by one
* Karlis Peisenieks <[email protected]> : 990415 : fw_delete killed all the filter (and kernel).
* Alex <[email protected]> : 2004xxyy: Added Action extension
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <net/sch_generic.h>
#include <net/tc_wrapper.h>
#define HTSIZE 256
struct fw_head {
u32 mask;
struct fw_filter __rcu *ht[HTSIZE];
struct rcu_head rcu;
};
struct fw_filter {
struct fw_filter __rcu *next;
u32 id;
struct tcf_result res;
int ifindex;
struct tcf_exts exts;
struct tcf_proto *tp;
struct rcu_work rwork;
};
static u32 fw_hash(u32 handle)
{
handle ^= (handle >> 16);
handle ^= (handle >> 8);
return handle % HTSIZE;
}
TC_INDIRECT_SCOPE int fw_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct fw_head *head = rcu_dereference_bh(tp->root);
struct fw_filter *f;
int r;
u32 id = skb->mark;
if (head != NULL) {
id &= head->mask;
for (f = rcu_dereference_bh(head->ht[fw_hash(id)]); f;
f = rcu_dereference_bh(f->next)) {
if (f->id == id) {
*res = f->res;
if (!tcf_match_indev(skb, f->ifindex))
continue;
r = tcf_exts_exec(skb, &f->exts, res);
if (r < 0)
continue;
return r;
}
}
} else {
struct Qdisc *q = tcf_block_q(tp->chain->block);
/* Old method: classify the packet using its skb mark. */
if (id && (TC_H_MAJ(id) == 0 ||
!(TC_H_MAJ(id ^ q->handle)))) {
res->classid = id;
res->class = 0;
return 0;
}
}
return -1;
}
static void *fw_get(struct tcf_proto *tp, u32 handle)
{
struct fw_head *head = rtnl_dereference(tp->root);
struct fw_filter *f;
if (head == NULL)
return NULL;
f = rtnl_dereference(head->ht[fw_hash(handle)]);
for (; f; f = rtnl_dereference(f->next)) {
if (f->id == handle)
return f;
}
return NULL;
}
static int fw_init(struct tcf_proto *tp)
{
/* We don't allocate fw_head here, because in the old method
* we don't need it at all.
*/
return 0;
}
static void __fw_delete_filter(struct fw_filter *f)
{
tcf_exts_destroy(&f->exts);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void fw_delete_filter_work(struct work_struct *work)
{
struct fw_filter *f = container_of(to_rcu_work(work),
struct fw_filter,
rwork);
rtnl_lock();
__fw_delete_filter(f);
rtnl_unlock();
}
static void fw_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct fw_head *head = rtnl_dereference(tp->root);
struct fw_filter *f;
int h;
if (head == NULL)
return;
for (h = 0; h < HTSIZE; h++) {
while ((f = rtnl_dereference(head->ht[h])) != NULL) {
RCU_INIT_POINTER(head->ht[h],
rtnl_dereference(f->next));
tcf_unbind_filter(tp, &f->res);
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, fw_delete_filter_work);
else
__fw_delete_filter(f);
}
}
kfree_rcu(head, rcu);
}
static int fw_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct fw_head *head = rtnl_dereference(tp->root);
struct fw_filter *f = arg;
struct fw_filter __rcu **fp;
struct fw_filter *pfp;
int ret = -EINVAL;
int h;
if (head == NULL || f == NULL)
goto out;
fp = &head->ht[fw_hash(f->id)];
for (pfp = rtnl_dereference(*fp); pfp;
fp = &pfp->next, pfp = rtnl_dereference(*fp)) {
if (pfp == f) {
RCU_INIT_POINTER(*fp, rtnl_dereference(f->next));
tcf_unbind_filter(tp, &f->res);
tcf_exts_get_net(&f->exts);
tcf_queue_work(&f->rwork, fw_delete_filter_work);
ret = 0;
break;
}
}
*last = true;
for (h = 0; h < HTSIZE; h++) {
if (rcu_access_pointer(head->ht[h])) {
*last = false;
break;
}
}
out:
return ret;
}
static const struct nla_policy fw_policy[TCA_FW_MAX + 1] = {
[TCA_FW_CLASSID] = { .type = NLA_U32 },
[TCA_FW_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_FW_MASK] = { .type = NLA_U32 },
};
static int fw_set_parms(struct net *net, struct tcf_proto *tp,
struct fw_filter *f, struct nlattr **tb,
struct nlattr **tca, unsigned long base, u32 flags,
struct netlink_ext_ack *extack)
{
struct fw_head *head = rtnl_dereference(tp->root);
u32 mask;
int err;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &f->exts, flags,
extack);
if (err < 0)
return err;
if (tb[TCA_FW_INDEV]) {
int ret;
ret = tcf_change_indev(net, tb[TCA_FW_INDEV], extack);
if (ret < 0)
return ret;
f->ifindex = ret;
}
err = -EINVAL;
if (tb[TCA_FW_MASK]) {
mask = nla_get_u32(tb[TCA_FW_MASK]);
if (mask != head->mask)
return err;
} else if (head->mask != 0xFFFFFFFF)
return err;
if (tb[TCA_FW_CLASSID]) {
f->res.classid = nla_get_u32(tb[TCA_FW_CLASSID]);
tcf_bind_filter(tp, &f->res, base);
}
return 0;
}
static int fw_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca, void **arg,
u32 flags, struct netlink_ext_ack *extack)
{
struct fw_head *head = rtnl_dereference(tp->root);
struct fw_filter *f = *arg;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_FW_MAX + 1];
int err;
if (!opt)
return handle ? -EINVAL : 0; /* Succeed if it is old method. */
err = nla_parse_nested_deprecated(tb, TCA_FW_MAX, opt, fw_policy,
NULL);
if (err < 0)
return err;
if (f) {
struct fw_filter *pfp, *fnew;
struct fw_filter __rcu **fp;
if (f->id != handle && handle)
return -EINVAL;
fnew = kzalloc(sizeof(struct fw_filter), GFP_KERNEL);
if (!fnew)
return -ENOBUFS;
fnew->id = f->id;
fnew->ifindex = f->ifindex;
fnew->tp = f->tp;
err = tcf_exts_init(&fnew->exts, net, TCA_FW_ACT,
TCA_FW_POLICE);
if (err < 0) {
kfree(fnew);
return err;
}
err = fw_set_parms(net, tp, fnew, tb, tca, base, flags, extack);
if (err < 0) {
tcf_exts_destroy(&fnew->exts);
kfree(fnew);
return err;
}
fp = &head->ht[fw_hash(fnew->id)];
for (pfp = rtnl_dereference(*fp); pfp;
fp = &pfp->next, pfp = rtnl_dereference(*fp))
if (pfp == f)
break;
RCU_INIT_POINTER(fnew->next, rtnl_dereference(pfp->next));
rcu_assign_pointer(*fp, fnew);
tcf_unbind_filter(tp, &f->res);
tcf_exts_get_net(&f->exts);
tcf_queue_work(&f->rwork, fw_delete_filter_work);
*arg = fnew;
return err;
}
if (!handle)
return -EINVAL;
if (!head) {
u32 mask = 0xFFFFFFFF;
if (tb[TCA_FW_MASK])
mask = nla_get_u32(tb[TCA_FW_MASK]);
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOBUFS;
head->mask = mask;
rcu_assign_pointer(tp->root, head);
}
f = kzalloc(sizeof(struct fw_filter), GFP_KERNEL);
if (f == NULL)
return -ENOBUFS;
err = tcf_exts_init(&f->exts, net, TCA_FW_ACT, TCA_FW_POLICE);
if (err < 0)
goto errout;
f->id = handle;
f->tp = tp;
err = fw_set_parms(net, tp, f, tb, tca, base, flags, extack);
if (err < 0)
goto errout;
RCU_INIT_POINTER(f->next, head->ht[fw_hash(handle)]);
rcu_assign_pointer(head->ht[fw_hash(handle)], f);
*arg = f;
return 0;
errout:
tcf_exts_destroy(&f->exts);
kfree(f);
return err;
}
static void fw_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct fw_head *head = rtnl_dereference(tp->root);
int h;
if (head == NULL)
arg->stop = 1;
if (arg->stop)
return;
for (h = 0; h < HTSIZE; h++) {
struct fw_filter *f;
for (f = rtnl_dereference(head->ht[h]); f;
f = rtnl_dereference(f->next)) {
if (!tc_cls_stats_dump(tp, arg, f))
return;
}
}
}
static int fw_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct fw_head *head = rtnl_dereference(tp->root);
struct fw_filter *f = fh;
struct nlattr *nest;
if (f == NULL)
return skb->len;
t->tcm_handle = f->id;
if (!f->res.classid && !tcf_exts_has_actions(&f->exts))
return skb->len;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (f->res.classid &&
nla_put_u32(skb, TCA_FW_CLASSID, f->res.classid))
goto nla_put_failure;
if (f->ifindex) {
struct net_device *dev;
dev = __dev_get_by_index(net, f->ifindex);
if (dev && nla_put_string(skb, TCA_FW_INDEV, dev->name))
goto nla_put_failure;
}
if (head->mask != 0xFFFFFFFF &&
nla_put_u32(skb, TCA_FW_MASK, head->mask))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void fw_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
unsigned long base)
{
struct fw_filter *f = fh;
tc_cls_bind_class(classid, cl, q, &f->res, base);
}
static struct tcf_proto_ops cls_fw_ops __read_mostly = {
.kind = "fw",
.classify = fw_classify,
.init = fw_init,
.destroy = fw_destroy,
.get = fw_get,
.change = fw_change,
.delete = fw_delete,
.walk = fw_walk,
.dump = fw_dump,
.bind_class = fw_bind_class,
.owner = THIS_MODULE,
};
static int __init init_fw(void)
{
return register_tcf_proto_ops(&cls_fw_ops);
}
static void __exit exit_fw(void)
{
unregister_tcf_proto_ops(&cls_fw_ops);
}
module_init(init_fw)
module_exit(exit_fw)
MODULE_LICENSE("GPL");
| linux-master | net/sched/cls_fw.c |
// SPDX-License-Identifier: GPL-2.0
/* net/sched/sch_etf.c Earliest TxTime First queueing discipline.
*
* Authors: Jesus Sanchez-Palencia <[email protected]>
* Vinicius Costa Gomes <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/errqueue.h>
#include <linux/rbtree.h>
#include <linux/skbuff.h>
#include <linux/posix-timers.h>
#include <net/netlink.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/sock.h>
#define DEADLINE_MODE_IS_ON(x) ((x)->flags & TC_ETF_DEADLINE_MODE_ON)
#define OFFLOAD_IS_ON(x) ((x)->flags & TC_ETF_OFFLOAD_ON)
#define SKIP_SOCK_CHECK_IS_SET(x) ((x)->flags & TC_ETF_SKIP_SOCK_CHECK)
struct etf_sched_data {
bool offload;
bool deadline_mode;
bool skip_sock_check;
int clockid;
int queue;
s32 delta; /* in ns */
ktime_t last; /* The txtime of the last skb sent to the netdevice. */
struct rb_root_cached head;
struct qdisc_watchdog watchdog;
ktime_t (*get_time)(void);
};
static const struct nla_policy etf_policy[TCA_ETF_MAX + 1] = {
[TCA_ETF_PARMS] = { .len = sizeof(struct tc_etf_qopt) },
};
static inline int validate_input_params(struct tc_etf_qopt *qopt,
struct netlink_ext_ack *extack)
{
/* Check if params comply to the following rules:
* * Clockid and delta must be valid.
*
* * Dynamic clockids are not supported.
*
* * Delta must be a positive integer.
*
* Also note that for the HW offload case, we must
* expect that system clocks have been synchronized to PHC.
*/
if (qopt->clockid < 0) {
NL_SET_ERR_MSG(extack, "Dynamic clockids are not supported");
return -ENOTSUPP;
}
if (qopt->clockid != CLOCK_TAI) {
NL_SET_ERR_MSG(extack, "Invalid clockid. CLOCK_TAI must be used");
return -EINVAL;
}
if (qopt->delta < 0) {
NL_SET_ERR_MSG(extack, "Delta must be positive");
return -EINVAL;
}
return 0;
}
static bool is_packet_valid(struct Qdisc *sch, struct sk_buff *nskb)
{
struct etf_sched_data *q = qdisc_priv(sch);
ktime_t txtime = nskb->tstamp;
struct sock *sk = nskb->sk;
ktime_t now;
if (q->skip_sock_check)
goto skip;
if (!sk || !sk_fullsock(sk))
return false;
if (!sock_flag(sk, SOCK_TXTIME))
return false;
/* We don't perform crosstimestamping.
* Drop if packet's clockid differs from qdisc's.
*/
if (sk->sk_clockid != q->clockid)
return false;
if (sk->sk_txtime_deadline_mode != q->deadline_mode)
return false;
skip:
now = q->get_time();
if (ktime_before(txtime, now) || ktime_before(txtime, q->last))
return false;
return true;
}
static struct sk_buff *etf_peek_timesortedlist(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct rb_node *p;
p = rb_first_cached(&q->head);
if (!p)
return NULL;
return rb_to_skb(p);
}
static void reset_watchdog(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb = etf_peek_timesortedlist(sch);
ktime_t next;
if (!skb) {
qdisc_watchdog_cancel(&q->watchdog);
return;
}
next = ktime_sub_ns(skb->tstamp, q->delta);
qdisc_watchdog_schedule_ns(&q->watchdog, ktime_to_ns(next));
}
static void report_sock_error(struct sk_buff *skb, u32 err, u8 code)
{
struct sock_exterr_skb *serr;
struct sk_buff *clone;
ktime_t txtime = skb->tstamp;
struct sock *sk = skb->sk;
if (!sk || !sk_fullsock(sk) || !(sk->sk_txtime_report_errors))
return;
clone = skb_clone(skb, GFP_ATOMIC);
if (!clone)
return;
serr = SKB_EXT_ERR(clone);
serr->ee.ee_errno = err;
serr->ee.ee_origin = SO_EE_ORIGIN_TXTIME;
serr->ee.ee_type = 0;
serr->ee.ee_code = code;
serr->ee.ee_pad = 0;
serr->ee.ee_data = (txtime >> 32); /* high part of tstamp */
serr->ee.ee_info = txtime; /* low part of tstamp */
if (sock_queue_err_skb(sk, clone))
kfree_skb(clone);
}
static int etf_enqueue_timesortedlist(struct sk_buff *nskb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct rb_node **p = &q->head.rb_root.rb_node, *parent = NULL;
ktime_t txtime = nskb->tstamp;
bool leftmost = true;
if (!is_packet_valid(sch, nskb)) {
report_sock_error(nskb, EINVAL,
SO_EE_CODE_TXTIME_INVALID_PARAM);
return qdisc_drop(nskb, sch, to_free);
}
while (*p) {
struct sk_buff *skb;
parent = *p;
skb = rb_to_skb(parent);
if (ktime_compare(txtime, skb->tstamp) >= 0) {
p = &parent->rb_right;
leftmost = false;
} else {
p = &parent->rb_left;
}
}
rb_link_node(&nskb->rbnode, parent, p);
rb_insert_color_cached(&nskb->rbnode, &q->head, leftmost);
qdisc_qstats_backlog_inc(sch, nskb);
sch->q.qlen++;
/* Now we may need to re-arm the qdisc watchdog for the next packet. */
reset_watchdog(sch);
return NET_XMIT_SUCCESS;
}
static void timesortedlist_drop(struct Qdisc *sch, struct sk_buff *skb,
ktime_t now)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct sk_buff *to_free = NULL;
struct sk_buff *tmp = NULL;
skb_rbtree_walk_from_safe(skb, tmp) {
if (ktime_after(skb->tstamp, now))
break;
rb_erase_cached(&skb->rbnode, &q->head);
/* The rbnode field in the skb re-uses these fields, now that
* we are done with the rbnode, reset them.
*/
skb->next = NULL;
skb->prev = NULL;
skb->dev = qdisc_dev(sch);
report_sock_error(skb, ECANCELED, SO_EE_CODE_TXTIME_MISSED);
qdisc_qstats_backlog_dec(sch, skb);
qdisc_drop(skb, sch, &to_free);
qdisc_qstats_overlimit(sch);
sch->q.qlen--;
}
kfree_skb_list(to_free);
}
static void timesortedlist_remove(struct Qdisc *sch, struct sk_buff *skb)
{
struct etf_sched_data *q = qdisc_priv(sch);
rb_erase_cached(&skb->rbnode, &q->head);
/* The rbnode field in the skb re-uses these fields, now that
* we are done with the rbnode, reset them.
*/
skb->next = NULL;
skb->prev = NULL;
skb->dev = qdisc_dev(sch);
qdisc_qstats_backlog_dec(sch, skb);
qdisc_bstats_update(sch, skb);
q->last = skb->tstamp;
sch->q.qlen--;
}
static struct sk_buff *etf_dequeue_timesortedlist(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
ktime_t now, next;
skb = etf_peek_timesortedlist(sch);
if (!skb)
return NULL;
now = q->get_time();
/* Drop if packet has expired while in queue. */
if (ktime_before(skb->tstamp, now)) {
timesortedlist_drop(sch, skb, now);
skb = NULL;
goto out;
}
/* When in deadline mode, dequeue as soon as possible and change the
* txtime from deadline to (now + delta).
*/
if (q->deadline_mode) {
timesortedlist_remove(sch, skb);
skb->tstamp = now;
goto out;
}
next = ktime_sub_ns(skb->tstamp, q->delta);
/* Dequeue only if now is within the [txtime - delta, txtime] range. */
if (ktime_after(now, next))
timesortedlist_remove(sch, skb);
else
skb = NULL;
out:
/* Now we may need to re-arm the qdisc watchdog for the next packet. */
reset_watchdog(sch);
return skb;
}
static void etf_disable_offload(struct net_device *dev,
struct etf_sched_data *q)
{
struct tc_etf_qopt_offload etf = { };
const struct net_device_ops *ops;
int err;
if (!q->offload)
return;
ops = dev->netdev_ops;
if (!ops->ndo_setup_tc)
return;
etf.queue = q->queue;
etf.enable = 0;
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_ETF, &etf);
if (err < 0)
pr_warn("Couldn't disable ETF offload for queue %d\n",
etf.queue);
}
static int etf_enable_offload(struct net_device *dev, struct etf_sched_data *q,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_etf_qopt_offload etf = { };
int err;
if (!ops->ndo_setup_tc) {
NL_SET_ERR_MSG(extack, "Specified device does not support ETF offload");
return -EOPNOTSUPP;
}
etf.queue = q->queue;
etf.enable = 1;
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_ETF, &etf);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Specified device failed to setup ETF hardware offload");
return err;
}
return 0;
}
static int etf_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct nlattr *tb[TCA_ETF_MAX + 1];
struct tc_etf_qopt *qopt;
int err;
if (!opt) {
NL_SET_ERR_MSG(extack,
"Missing ETF qdisc options which are mandatory");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_ETF_MAX, opt, etf_policy,
extack);
if (err < 0)
return err;
if (!tb[TCA_ETF_PARMS]) {
NL_SET_ERR_MSG(extack, "Missing mandatory ETF parameters");
return -EINVAL;
}
qopt = nla_data(tb[TCA_ETF_PARMS]);
pr_debug("delta %d clockid %d offload %s deadline %s\n",
qopt->delta, qopt->clockid,
OFFLOAD_IS_ON(qopt) ? "on" : "off",
DEADLINE_MODE_IS_ON(qopt) ? "on" : "off");
err = validate_input_params(qopt, extack);
if (err < 0)
return err;
q->queue = sch->dev_queue - netdev_get_tx_queue(dev, 0);
if (OFFLOAD_IS_ON(qopt)) {
err = etf_enable_offload(dev, q, extack);
if (err < 0)
return err;
}
/* Everything went OK, save the parameters used. */
q->delta = qopt->delta;
q->clockid = qopt->clockid;
q->offload = OFFLOAD_IS_ON(qopt);
q->deadline_mode = DEADLINE_MODE_IS_ON(qopt);
q->skip_sock_check = SKIP_SOCK_CHECK_IS_SET(qopt);
switch (q->clockid) {
case CLOCK_REALTIME:
q->get_time = ktime_get_real;
break;
case CLOCK_MONOTONIC:
q->get_time = ktime_get;
break;
case CLOCK_BOOTTIME:
q->get_time = ktime_get_boottime;
break;
case CLOCK_TAI:
q->get_time = ktime_get_clocktai;
break;
default:
NL_SET_ERR_MSG(extack, "Clockid is not supported");
return -ENOTSUPP;
}
qdisc_watchdog_init_clockid(&q->watchdog, sch, q->clockid);
return 0;
}
static void timesortedlist_clear(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct rb_node *p = rb_first_cached(&q->head);
while (p) {
struct sk_buff *skb = rb_to_skb(p);
p = rb_next(p);
rb_erase_cached(&skb->rbnode, &q->head);
rtnl_kfree_skbs(skb, skb);
sch->q.qlen--;
}
}
static void etf_reset(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
/* Only cancel watchdog if it's been initialized. */
if (q->watchdog.qdisc == sch)
qdisc_watchdog_cancel(&q->watchdog);
/* No matter which mode we are on, it's safe to clear both lists. */
timesortedlist_clear(sch);
__qdisc_reset_queue(&sch->q);
q->last = 0;
}
static void etf_destroy(struct Qdisc *sch)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
/* Only cancel watchdog if it's been initialized. */
if (q->watchdog.qdisc == sch)
qdisc_watchdog_cancel(&q->watchdog);
etf_disable_offload(dev, q);
}
static int etf_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct etf_sched_data *q = qdisc_priv(sch);
struct tc_etf_qopt opt = { };
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
opt.delta = q->delta;
opt.clockid = q->clockid;
if (q->offload)
opt.flags |= TC_ETF_OFFLOAD_ON;
if (q->deadline_mode)
opt.flags |= TC_ETF_DEADLINE_MODE_ON;
if (q->skip_sock_check)
opt.flags |= TC_ETF_SKIP_SOCK_CHECK;
if (nla_put(skb, TCA_ETF_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct Qdisc_ops etf_qdisc_ops __read_mostly = {
.id = "etf",
.priv_size = sizeof(struct etf_sched_data),
.enqueue = etf_enqueue_timesortedlist,
.dequeue = etf_dequeue_timesortedlist,
.peek = etf_peek_timesortedlist,
.init = etf_init,
.reset = etf_reset,
.destroy = etf_destroy,
.dump = etf_dump,
.owner = THIS_MODULE,
};
static int __init etf_module_init(void)
{
return register_qdisc(&etf_qdisc_ops);
}
static void __exit etf_module_exit(void)
{
unregister_qdisc(&etf_qdisc_ops);
}
module_init(etf_module_init)
module_exit(etf_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_etf.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_cbs.c Credit Based Shaper
*
* Authors: Vinicius Costa Gomes <[email protected]>
*/
/* Credit Based Shaper (CBS)
* =========================
*
* This is a simple rate-limiting shaper aimed at TSN applications on
* systems with known traffic workloads.
*
* Its algorithm is defined by the IEEE 802.1Q-2014 Specification,
* Section 8.6.8.2, and explained in more detail in the Annex L of the
* same specification.
*
* There are four tunables to be considered:
*
* 'idleslope': Idleslope is the rate of credits that is
* accumulated (in kilobits per second) when there is at least
* one packet waiting for transmission. Packets are transmitted
* when the current value of credits is equal or greater than
* zero. When there is no packet to be transmitted the amount of
* credits is set to zero. This is the main tunable of the CBS
* algorithm.
*
* 'sendslope':
* Sendslope is the rate of credits that is depleted (it should be a
* negative number of kilobits per second) when a transmission is
* ocurring. It can be calculated as follows, (IEEE 802.1Q-2014 Section
* 8.6.8.2 item g):
*
* sendslope = idleslope - port_transmit_rate
*
* 'hicredit': Hicredit defines the maximum amount of credits (in
* bytes) that can be accumulated. Hicredit depends on the
* characteristics of interfering traffic,
* 'max_interference_size' is the maximum size of any burst of
* traffic that can delay the transmission of a frame that is
* available for transmission for this traffic class, (IEEE
* 802.1Q-2014 Annex L, Equation L-3):
*
* hicredit = max_interference_size * (idleslope / port_transmit_rate)
*
* 'locredit': Locredit is the minimum amount of credits that can
* be reached. It is a function of the traffic flowing through
* this qdisc (IEEE 802.1Q-2014 Annex L, Equation L-2):
*
* locredit = max_frame_size * (sendslope / port_transmit_rate)
*/
#include <linux/ethtool.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/netevent.h>
#include <net/netlink.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
static LIST_HEAD(cbs_list);
static DEFINE_SPINLOCK(cbs_list_lock);
#define BYTES_PER_KBIT (1000LL / 8)
struct cbs_sched_data {
bool offload;
int queue;
atomic64_t port_rate; /* in bytes/s */
s64 last; /* timestamp in ns */
s64 credits; /* in bytes */
s32 locredit; /* in bytes */
s32 hicredit; /* in bytes */
s64 sendslope; /* in bytes/s */
s64 idleslope; /* in bytes/s */
struct qdisc_watchdog watchdog;
int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free);
struct sk_buff *(*dequeue)(struct Qdisc *sch);
struct Qdisc *qdisc;
struct list_head cbs_list;
};
static int cbs_child_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct Qdisc *child,
struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb);
int err;
err = child->ops->enqueue(skb, child, to_free);
if (err != NET_XMIT_SUCCESS)
return err;
sch->qstats.backlog += len;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
static int cbs_enqueue_offload(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct Qdisc *qdisc = q->qdisc;
return cbs_child_enqueue(skb, sch, qdisc, to_free);
}
static int cbs_enqueue_soft(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct Qdisc *qdisc = q->qdisc;
if (sch->q.qlen == 0 && q->credits > 0) {
/* We need to stop accumulating credits when there's
* no enqueued packets and q->credits is positive.
*/
q->credits = 0;
q->last = ktime_get_ns();
}
return cbs_child_enqueue(skb, sch, qdisc, to_free);
}
static int cbs_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct cbs_sched_data *q = qdisc_priv(sch);
return q->enqueue(skb, sch, to_free);
}
/* timediff is in ns, slope is in bytes/s */
static s64 timediff_to_credits(s64 timediff, s64 slope)
{
return div64_s64(timediff * slope, NSEC_PER_SEC);
}
static s64 delay_from_credits(s64 credits, s64 slope)
{
if (unlikely(slope == 0))
return S64_MAX;
return div64_s64(-credits * NSEC_PER_SEC, slope);
}
static s64 credits_from_len(unsigned int len, s64 slope, s64 port_rate)
{
if (unlikely(port_rate == 0))
return S64_MAX;
return div64_s64(len * slope, port_rate);
}
static struct sk_buff *cbs_child_dequeue(struct Qdisc *sch, struct Qdisc *child)
{
struct sk_buff *skb;
skb = child->ops->dequeue(child);
if (!skb)
return NULL;
qdisc_qstats_backlog_dec(sch, skb);
qdisc_bstats_update(sch, skb);
sch->q.qlen--;
return skb;
}
static struct sk_buff *cbs_dequeue_soft(struct Qdisc *sch)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct Qdisc *qdisc = q->qdisc;
s64 now = ktime_get_ns();
struct sk_buff *skb;
s64 credits;
int len;
/* The previous packet is still being sent */
if (now < q->last) {
qdisc_watchdog_schedule_ns(&q->watchdog, q->last);
return NULL;
}
if (q->credits < 0) {
credits = timediff_to_credits(now - q->last, q->idleslope);
credits = q->credits + credits;
q->credits = min_t(s64, credits, q->hicredit);
if (q->credits < 0) {
s64 delay;
delay = delay_from_credits(q->credits, q->idleslope);
qdisc_watchdog_schedule_ns(&q->watchdog, now + delay);
q->last = now;
return NULL;
}
}
skb = cbs_child_dequeue(sch, qdisc);
if (!skb)
return NULL;
len = qdisc_pkt_len(skb);
/* As sendslope is a negative number, this will decrease the
* amount of q->credits.
*/
credits = credits_from_len(len, q->sendslope,
atomic64_read(&q->port_rate));
credits += q->credits;
q->credits = max_t(s64, credits, q->locredit);
/* Estimate of the transmission of the last byte of the packet in ns */
if (unlikely(atomic64_read(&q->port_rate) == 0))
q->last = now;
else
q->last = now + div64_s64(len * NSEC_PER_SEC,
atomic64_read(&q->port_rate));
return skb;
}
static struct sk_buff *cbs_dequeue_offload(struct Qdisc *sch)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct Qdisc *qdisc = q->qdisc;
return cbs_child_dequeue(sch, qdisc);
}
static struct sk_buff *cbs_dequeue(struct Qdisc *sch)
{
struct cbs_sched_data *q = qdisc_priv(sch);
return q->dequeue(sch);
}
static const struct nla_policy cbs_policy[TCA_CBS_MAX + 1] = {
[TCA_CBS_PARMS] = { .len = sizeof(struct tc_cbs_qopt) },
};
static void cbs_disable_offload(struct net_device *dev,
struct cbs_sched_data *q)
{
struct tc_cbs_qopt_offload cbs = { };
const struct net_device_ops *ops;
int err;
if (!q->offload)
return;
q->enqueue = cbs_enqueue_soft;
q->dequeue = cbs_dequeue_soft;
ops = dev->netdev_ops;
if (!ops->ndo_setup_tc)
return;
cbs.queue = q->queue;
cbs.enable = 0;
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_CBS, &cbs);
if (err < 0)
pr_warn("Couldn't disable CBS offload for queue %d\n",
cbs.queue);
}
static int cbs_enable_offload(struct net_device *dev, struct cbs_sched_data *q,
const struct tc_cbs_qopt *opt,
struct netlink_ext_ack *extack)
{
const struct net_device_ops *ops = dev->netdev_ops;
struct tc_cbs_qopt_offload cbs = { };
int err;
if (!ops->ndo_setup_tc) {
NL_SET_ERR_MSG(extack, "Specified device does not support cbs offload");
return -EOPNOTSUPP;
}
cbs.queue = q->queue;
cbs.enable = 1;
cbs.hicredit = opt->hicredit;
cbs.locredit = opt->locredit;
cbs.idleslope = opt->idleslope;
cbs.sendslope = opt->sendslope;
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_CBS, &cbs);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Specified device failed to setup cbs hardware offload");
return err;
}
q->enqueue = cbs_enqueue_offload;
q->dequeue = cbs_dequeue_offload;
return 0;
}
static void cbs_set_port_rate(struct net_device *dev, struct cbs_sched_data *q)
{
struct ethtool_link_ksettings ecmd;
int speed = SPEED_10;
int port_rate;
int err;
err = __ethtool_get_link_ksettings(dev, &ecmd);
if (err < 0)
goto skip;
if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
speed = ecmd.base.speed;
skip:
port_rate = speed * 1000 * BYTES_PER_KBIT;
atomic64_set(&q->port_rate, port_rate);
netdev_dbg(dev, "cbs: set %s's port_rate to: %lld, linkspeed: %d\n",
dev->name, (long long)atomic64_read(&q->port_rate),
ecmd.base.speed);
}
static int cbs_dev_notifier(struct notifier_block *nb, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct cbs_sched_data *q;
struct net_device *qdev;
bool found = false;
ASSERT_RTNL();
if (event != NETDEV_UP && event != NETDEV_CHANGE)
return NOTIFY_DONE;
spin_lock(&cbs_list_lock);
list_for_each_entry(q, &cbs_list, cbs_list) {
qdev = qdisc_dev(q->qdisc);
if (qdev == dev) {
found = true;
break;
}
}
spin_unlock(&cbs_list_lock);
if (found)
cbs_set_port_rate(dev, q);
return NOTIFY_DONE;
}
static int cbs_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct nlattr *tb[TCA_CBS_MAX + 1];
struct tc_cbs_qopt *qopt;
int err;
err = nla_parse_nested_deprecated(tb, TCA_CBS_MAX, opt, cbs_policy,
extack);
if (err < 0)
return err;
if (!tb[TCA_CBS_PARMS]) {
NL_SET_ERR_MSG(extack, "Missing CBS parameter which are mandatory");
return -EINVAL;
}
qopt = nla_data(tb[TCA_CBS_PARMS]);
if (!qopt->offload) {
cbs_set_port_rate(dev, q);
cbs_disable_offload(dev, q);
} else {
err = cbs_enable_offload(dev, q, qopt, extack);
if (err < 0)
return err;
}
/* Everything went OK, save the parameters used. */
q->hicredit = qopt->hicredit;
q->locredit = qopt->locredit;
q->idleslope = qopt->idleslope * BYTES_PER_KBIT;
q->sendslope = qopt->sendslope * BYTES_PER_KBIT;
q->offload = qopt->offload;
return 0;
}
static int cbs_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
if (!opt) {
NL_SET_ERR_MSG(extack, "Missing CBS qdisc options which are mandatory");
return -EINVAL;
}
q->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
sch->handle, extack);
if (!q->qdisc)
return -ENOMEM;
spin_lock(&cbs_list_lock);
list_add(&q->cbs_list, &cbs_list);
spin_unlock(&cbs_list_lock);
qdisc_hash_add(q->qdisc, false);
q->queue = sch->dev_queue - netdev_get_tx_queue(dev, 0);
q->enqueue = cbs_enqueue_soft;
q->dequeue = cbs_dequeue_soft;
qdisc_watchdog_init(&q->watchdog, sch);
return cbs_change(sch, opt, extack);
}
static void cbs_destroy(struct Qdisc *sch)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
/* Nothing to do if we couldn't create the underlying qdisc */
if (!q->qdisc)
return;
qdisc_watchdog_cancel(&q->watchdog);
cbs_disable_offload(dev, q);
spin_lock(&cbs_list_lock);
list_del(&q->cbs_list);
spin_unlock(&cbs_list_lock);
qdisc_put(q->qdisc);
}
static int cbs_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct cbs_sched_data *q = qdisc_priv(sch);
struct tc_cbs_qopt opt = { };
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
opt.hicredit = q->hicredit;
opt.locredit = q->locredit;
opt.sendslope = div64_s64(q->sendslope, BYTES_PER_KBIT);
opt.idleslope = div64_s64(q->idleslope, BYTES_PER_KBIT);
opt.offload = q->offload;
if (nla_put(skb, TCA_CBS_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int cbs_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct cbs_sched_data *q = qdisc_priv(sch);
if (cl != 1 || !q->qdisc) /* only one class */
return -ENOENT;
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static int cbs_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct cbs_sched_data *q = qdisc_priv(sch);
if (!new) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
sch->handle, NULL);
if (!new)
new = &noop_qdisc;
}
*old = qdisc_replace(sch, new, &q->qdisc);
return 0;
}
static struct Qdisc *cbs_leaf(struct Qdisc *sch, unsigned long arg)
{
struct cbs_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long cbs_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void cbs_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
tc_qdisc_stats_dump(sch, 1, walker);
}
}
static const struct Qdisc_class_ops cbs_class_ops = {
.graft = cbs_graft,
.leaf = cbs_leaf,
.find = cbs_find,
.walk = cbs_walk,
.dump = cbs_dump_class,
};
static struct Qdisc_ops cbs_qdisc_ops __read_mostly = {
.id = "cbs",
.cl_ops = &cbs_class_ops,
.priv_size = sizeof(struct cbs_sched_data),
.enqueue = cbs_enqueue,
.dequeue = cbs_dequeue,
.peek = qdisc_peek_dequeued,
.init = cbs_init,
.reset = qdisc_reset_queue,
.destroy = cbs_destroy,
.change = cbs_change,
.dump = cbs_dump,
.owner = THIS_MODULE,
};
static struct notifier_block cbs_device_notifier = {
.notifier_call = cbs_dev_notifier,
};
static int __init cbs_module_init(void)
{
int err;
err = register_netdevice_notifier(&cbs_device_notifier);
if (err)
return err;
err = register_qdisc(&cbs_qdisc_ops);
if (err)
unregister_netdevice_notifier(&cbs_device_notifier);
return err;
}
static void __exit cbs_module_exit(void)
{
unregister_qdisc(&cbs_qdisc_ops);
unregister_netdevice_notifier(&cbs_device_notifier);
}
module_init(cbs_module_init)
module_exit(cbs_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_cbs.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_pedit.c Generic packet editor
*
* Authors: Jamal Hadi Salim (2002-4)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/tc_act/tc_pedit.h>
#include <net/tc_act/tc_pedit.h>
#include <uapi/linux/tc_act/tc_pedit.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
static struct tc_action_ops act_pedit_ops;
static const struct nla_policy pedit_policy[TCA_PEDIT_MAX + 1] = {
[TCA_PEDIT_PARMS] = { .len = sizeof(struct tc_pedit) },
[TCA_PEDIT_PARMS_EX] = { .len = sizeof(struct tc_pedit) },
[TCA_PEDIT_KEYS_EX] = { .type = NLA_NESTED },
};
static const struct nla_policy pedit_key_ex_policy[TCA_PEDIT_KEY_EX_MAX + 1] = {
[TCA_PEDIT_KEY_EX_HTYPE] =
NLA_POLICY_MAX(NLA_U16, TCA_PEDIT_HDR_TYPE_MAX),
[TCA_PEDIT_KEY_EX_CMD] = NLA_POLICY_MAX(NLA_U16, TCA_PEDIT_CMD_MAX),
};
static struct tcf_pedit_key_ex *tcf_pedit_keys_ex_parse(struct nlattr *nla,
u8 n, struct netlink_ext_ack *extack)
{
struct tcf_pedit_key_ex *keys_ex;
struct tcf_pedit_key_ex *k;
const struct nlattr *ka;
int err = -EINVAL;
int rem;
if (!nla)
return NULL;
keys_ex = kcalloc(n, sizeof(*k), GFP_KERNEL);
if (!keys_ex)
return ERR_PTR(-ENOMEM);
k = keys_ex;
nla_for_each_nested(ka, nla, rem) {
struct nlattr *tb[TCA_PEDIT_KEY_EX_MAX + 1];
if (!n) {
NL_SET_ERR_MSG_MOD(extack, "Can't parse more extended keys than requested");
err = -EINVAL;
goto err_out;
}
n--;
if (nla_type(ka) != TCA_PEDIT_KEY_EX) {
NL_SET_ERR_MSG_ATTR(extack, ka, "Unknown attribute, expected extended key");
err = -EINVAL;
goto err_out;
}
err = nla_parse_nested_deprecated(tb, TCA_PEDIT_KEY_EX_MAX,
ka, pedit_key_ex_policy,
NULL);
if (err)
goto err_out;
if (NL_REQ_ATTR_CHECK(extack, nla, tb, TCA_PEDIT_KEY_EX_HTYPE)) {
NL_SET_ERR_MSG(extack, "Missing required attribute");
err = -EINVAL;
goto err_out;
}
if (NL_REQ_ATTR_CHECK(extack, nla, tb, TCA_PEDIT_KEY_EX_CMD)) {
NL_SET_ERR_MSG(extack, "Missing required attribute");
err = -EINVAL;
goto err_out;
}
k->htype = nla_get_u16(tb[TCA_PEDIT_KEY_EX_HTYPE]);
k->cmd = nla_get_u16(tb[TCA_PEDIT_KEY_EX_CMD]);
k++;
}
if (n) {
NL_SET_ERR_MSG_MOD(extack, "Not enough extended keys to parse");
err = -EINVAL;
goto err_out;
}
return keys_ex;
err_out:
kfree(keys_ex);
return ERR_PTR(err);
}
static int tcf_pedit_key_ex_dump(struct sk_buff *skb,
struct tcf_pedit_key_ex *keys_ex, int n)
{
struct nlattr *keys_start = nla_nest_start_noflag(skb,
TCA_PEDIT_KEYS_EX);
if (!keys_start)
goto nla_failure;
for (; n > 0; n--) {
struct nlattr *key_start;
key_start = nla_nest_start_noflag(skb, TCA_PEDIT_KEY_EX);
if (!key_start)
goto nla_failure;
if (nla_put_u16(skb, TCA_PEDIT_KEY_EX_HTYPE, keys_ex->htype) ||
nla_put_u16(skb, TCA_PEDIT_KEY_EX_CMD, keys_ex->cmd))
goto nla_failure;
nla_nest_end(skb, key_start);
keys_ex++;
}
nla_nest_end(skb, keys_start);
return 0;
nla_failure:
nla_nest_cancel(skb, keys_start);
return -EINVAL;
}
static void tcf_pedit_cleanup_rcu(struct rcu_head *head)
{
struct tcf_pedit_parms *parms =
container_of(head, struct tcf_pedit_parms, rcu);
kfree(parms->tcfp_keys_ex);
kfree(parms->tcfp_keys);
kfree(parms);
}
static int tcf_pedit_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_pedit_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct tcf_chain *goto_ch = NULL;
struct tcf_pedit_parms *oparms, *nparms;
struct nlattr *tb[TCA_PEDIT_MAX + 1];
struct tc_pedit *parm;
struct nlattr *pattr;
struct tcf_pedit *p;
int ret = 0, err;
int i, ksize;
u32 index;
if (!nla) {
NL_SET_ERR_MSG_MOD(extack, "Pedit requires attributes to be passed");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_PEDIT_MAX, nla,
pedit_policy, NULL);
if (err < 0)
return err;
pattr = tb[TCA_PEDIT_PARMS];
if (!pattr)
pattr = tb[TCA_PEDIT_PARMS_EX];
if (!pattr) {
NL_SET_ERR_MSG_MOD(extack, "Missing required TCA_PEDIT_PARMS or TCA_PEDIT_PARMS_EX pedit attribute");
return -EINVAL;
}
parm = nla_data(pattr);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_pedit_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (err > 0) {
if (bind)
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
ret = -EEXIST;
goto out_release;
}
} else {
return err;
}
if (!parm->nkeys) {
NL_SET_ERR_MSG_MOD(extack, "Pedit requires keys to be passed");
ret = -EINVAL;
goto out_release;
}
ksize = parm->nkeys * sizeof(struct tc_pedit_key);
if (nla_len(pattr) < sizeof(*parm) + ksize) {
NL_SET_ERR_MSG_ATTR(extack, pattr, "Length of TCA_PEDIT_PARMS or TCA_PEDIT_PARMS_EX pedit attribute is invalid");
ret = -EINVAL;
goto out_release;
}
nparms = kzalloc(sizeof(*nparms), GFP_KERNEL);
if (!nparms) {
ret = -ENOMEM;
goto out_release;
}
nparms->tcfp_keys_ex =
tcf_pedit_keys_ex_parse(tb[TCA_PEDIT_KEYS_EX], parm->nkeys, extack);
if (IS_ERR(nparms->tcfp_keys_ex)) {
ret = PTR_ERR(nparms->tcfp_keys_ex);
goto out_free;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0) {
ret = err;
goto out_free_ex;
}
nparms->tcfp_off_max_hint = 0;
nparms->tcfp_flags = parm->flags;
nparms->tcfp_nkeys = parm->nkeys;
nparms->tcfp_keys = kmemdup(parm->keys, ksize, GFP_KERNEL);
if (!nparms->tcfp_keys) {
ret = -ENOMEM;
goto put_chain;
}
for (i = 0; i < nparms->tcfp_nkeys; ++i) {
u32 offmask = nparms->tcfp_keys[i].offmask;
u32 cur = nparms->tcfp_keys[i].off;
/* The AT option can be added to static offsets in the datapath */
if (!offmask && cur % 4) {
NL_SET_ERR_MSG_MOD(extack, "Offsets must be on 32bit boundaries");
ret = -EINVAL;
goto out_free_keys;
}
/* sanitize the shift value for any later use */
nparms->tcfp_keys[i].shift = min_t(size_t,
BITS_PER_TYPE(int) - 1,
nparms->tcfp_keys[i].shift);
/* The AT option can read a single byte, we can bound the actual
* value with uchar max.
*/
cur += (0xff & offmask) >> nparms->tcfp_keys[i].shift;
/* Each key touches 4 bytes starting from the computed offset */
nparms->tcfp_off_max_hint =
max(nparms->tcfp_off_max_hint, cur + 4);
}
p = to_pedit(*a);
spin_lock_bh(&p->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
oparms = rcu_replace_pointer(p->parms, nparms, 1);
spin_unlock_bh(&p->tcf_lock);
if (oparms)
call_rcu(&oparms->rcu, tcf_pedit_cleanup_rcu);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
out_free_keys:
kfree(nparms->tcfp_keys);
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
out_free_ex:
kfree(nparms->tcfp_keys_ex);
out_free:
kfree(nparms);
out_release:
tcf_idr_release(*a, bind);
return ret;
}
static void tcf_pedit_cleanup(struct tc_action *a)
{
struct tcf_pedit *p = to_pedit(a);
struct tcf_pedit_parms *parms;
parms = rcu_dereference_protected(p->parms, 1);
if (parms)
call_rcu(&parms->rcu, tcf_pedit_cleanup_rcu);
}
static bool offset_valid(struct sk_buff *skb, int offset)
{
if (offset > 0 && offset > skb->len)
return false;
if (offset < 0 && -offset > skb_headroom(skb))
return false;
return true;
}
static int pedit_l4_skb_offset(struct sk_buff *skb, int *hoffset, const int header_type)
{
const int noff = skb_network_offset(skb);
int ret = -EINVAL;
struct iphdr _iph;
switch (skb->protocol) {
case htons(ETH_P_IP): {
const struct iphdr *iph = skb_header_pointer(skb, noff, sizeof(_iph), &_iph);
if (!iph)
goto out;
*hoffset = noff + iph->ihl * 4;
ret = 0;
break;
}
case htons(ETH_P_IPV6):
ret = ipv6_find_hdr(skb, hoffset, header_type, NULL, NULL) == header_type ? 0 : -EINVAL;
break;
}
out:
return ret;
}
static int pedit_skb_hdr_offset(struct sk_buff *skb,
enum pedit_header_type htype, int *hoffset)
{
int ret = -EINVAL;
/* 'htype' is validated in the netlink parsing */
switch (htype) {
case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH:
if (skb_mac_header_was_set(skb)) {
*hoffset = skb_mac_offset(skb);
ret = 0;
}
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_NETWORK:
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4:
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6:
*hoffset = skb_network_offset(skb);
ret = 0;
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP:
ret = pedit_l4_skb_offset(skb, hoffset, IPPROTO_TCP);
break;
case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP:
ret = pedit_l4_skb_offset(skb, hoffset, IPPROTO_UDP);
break;
default:
break;
}
return ret;
}
TC_INDIRECT_SCOPE int tcf_pedit_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
enum pedit_header_type htype = TCA_PEDIT_KEY_EX_HDR_TYPE_NETWORK;
enum pedit_cmd cmd = TCA_PEDIT_KEY_EX_CMD_SET;
struct tcf_pedit *p = to_pedit(a);
struct tcf_pedit_key_ex *tkey_ex;
struct tcf_pedit_parms *parms;
struct tc_pedit_key *tkey;
u32 max_offset;
int i;
parms = rcu_dereference_bh(p->parms);
max_offset = (skb_transport_header_was_set(skb) ?
skb_transport_offset(skb) :
skb_network_offset(skb)) +
parms->tcfp_off_max_hint;
if (skb_ensure_writable(skb, min(skb->len, max_offset)))
goto done;
tcf_lastuse_update(&p->tcf_tm);
tcf_action_update_bstats(&p->common, skb);
tkey = parms->tcfp_keys;
tkey_ex = parms->tcfp_keys_ex;
for (i = parms->tcfp_nkeys; i > 0; i--, tkey++) {
int offset = tkey->off;
int hoffset = 0;
u32 *ptr, hdata;
u32 val;
int rc;
if (tkey_ex) {
htype = tkey_ex->htype;
cmd = tkey_ex->cmd;
tkey_ex++;
}
rc = pedit_skb_hdr_offset(skb, htype, &hoffset);
if (rc) {
pr_info_ratelimited("tc action pedit unable to extract header offset for header type (0x%x)\n", htype);
goto bad;
}
if (tkey->offmask) {
u8 *d, _d;
if (!offset_valid(skb, hoffset + tkey->at)) {
pr_info_ratelimited("tc action pedit 'at' offset %d out of bounds\n",
hoffset + tkey->at);
goto bad;
}
d = skb_header_pointer(skb, hoffset + tkey->at,
sizeof(_d), &_d);
if (!d)
goto bad;
offset += (*d & tkey->offmask) >> tkey->shift;
if (offset % 4) {
pr_info_ratelimited("tc action pedit offset must be on 32 bit boundaries\n");
goto bad;
}
}
if (!offset_valid(skb, hoffset + offset)) {
pr_info_ratelimited("tc action pedit offset %d out of bounds\n", hoffset + offset);
goto bad;
}
ptr = skb_header_pointer(skb, hoffset + offset,
sizeof(hdata), &hdata);
if (!ptr)
goto bad;
/* just do it, baby */
switch (cmd) {
case TCA_PEDIT_KEY_EX_CMD_SET:
val = tkey->val;
break;
case TCA_PEDIT_KEY_EX_CMD_ADD:
val = (*ptr + tkey->val) & ~tkey->mask;
break;
default:
pr_info_ratelimited("tc action pedit bad command (%d)\n", cmd);
goto bad;
}
*ptr = ((*ptr & tkey->mask) ^ val);
if (ptr == &hdata)
skb_store_bits(skb, hoffset + offset, ptr, 4);
}
goto done;
bad:
tcf_action_inc_overlimit_qstats(&p->common);
done:
return p->tcf_action;
}
static void tcf_pedit_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_pedit *d = to_pedit(a);
struct tcf_t *tm = &d->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static int tcf_pedit_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_pedit *p = to_pedit(a);
struct tcf_pedit_parms *parms;
struct tc_pedit *opt;
struct tcf_t t;
int s;
spin_lock_bh(&p->tcf_lock);
parms = rcu_dereference_protected(p->parms, 1);
s = struct_size(opt, keys, parms->tcfp_nkeys);
opt = kzalloc(s, GFP_ATOMIC);
if (unlikely(!opt)) {
spin_unlock_bh(&p->tcf_lock);
return -ENOBUFS;
}
memcpy(opt->keys, parms->tcfp_keys,
flex_array_size(opt, keys, parms->tcfp_nkeys));
opt->index = p->tcf_index;
opt->nkeys = parms->tcfp_nkeys;
opt->flags = parms->tcfp_flags;
opt->action = p->tcf_action;
opt->refcnt = refcount_read(&p->tcf_refcnt) - ref;
opt->bindcnt = atomic_read(&p->tcf_bindcnt) - bind;
if (parms->tcfp_keys_ex) {
if (tcf_pedit_key_ex_dump(skb, parms->tcfp_keys_ex,
parms->tcfp_nkeys))
goto nla_put_failure;
if (nla_put(skb, TCA_PEDIT_PARMS_EX, s, opt))
goto nla_put_failure;
} else {
if (nla_put(skb, TCA_PEDIT_PARMS, s, opt))
goto nla_put_failure;
}
tcf_tm_dump(&t, &p->tcf_tm);
if (nla_put_64bit(skb, TCA_PEDIT_TM, sizeof(t), &t, TCA_PEDIT_PAD))
goto nla_put_failure;
spin_unlock_bh(&p->tcf_lock);
kfree(opt);
return skb->len;
nla_put_failure:
spin_unlock_bh(&p->tcf_lock);
nlmsg_trim(skb, b);
kfree(opt);
return -1;
}
static int tcf_pedit_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
int k;
for (k = 0; k < tcf_pedit_nkeys(act); k++) {
switch (tcf_pedit_cmd(act, k)) {
case TCA_PEDIT_KEY_EX_CMD_SET:
entry->id = FLOW_ACTION_MANGLE;
break;
case TCA_PEDIT_KEY_EX_CMD_ADD:
entry->id = FLOW_ACTION_ADD;
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported pedit command offload");
return -EOPNOTSUPP;
}
entry->mangle.htype = tcf_pedit_htype(act, k);
entry->mangle.mask = tcf_pedit_mask(act, k);
entry->mangle.val = tcf_pedit_val(act, k);
entry->mangle.offset = tcf_pedit_offset(act, k);
entry->hw_stats = tc_act_hw_stats(act->hw_stats);
entry++;
}
*index_inc = k;
} else {
struct flow_offload_action *fl_action = entry_data;
u32 cmd = tcf_pedit_cmd(act, 0);
int k;
switch (cmd) {
case TCA_PEDIT_KEY_EX_CMD_SET:
fl_action->id = FLOW_ACTION_MANGLE;
break;
case TCA_PEDIT_KEY_EX_CMD_ADD:
fl_action->id = FLOW_ACTION_ADD;
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported pedit command offload");
return -EOPNOTSUPP;
}
for (k = 1; k < tcf_pedit_nkeys(act); k++) {
if (cmd != tcf_pedit_cmd(act, k)) {
NL_SET_ERR_MSG_MOD(extack, "Unsupported pedit command offload");
return -EOPNOTSUPP;
}
}
}
return 0;
}
static struct tc_action_ops act_pedit_ops = {
.kind = "pedit",
.id = TCA_ID_PEDIT,
.owner = THIS_MODULE,
.act = tcf_pedit_act,
.stats_update = tcf_pedit_stats_update,
.dump = tcf_pedit_dump,
.cleanup = tcf_pedit_cleanup,
.init = tcf_pedit_init,
.offload_act_setup = tcf_pedit_offload_act_setup,
.size = sizeof(struct tcf_pedit),
};
static __net_init int pedit_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_pedit_ops.net_id);
return tc_action_net_init(net, tn, &act_pedit_ops);
}
static void __net_exit pedit_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_pedit_ops.net_id);
}
static struct pernet_operations pedit_net_ops = {
.init = pedit_init_net,
.exit_batch = pedit_exit_net,
.id = &act_pedit_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2002-4)");
MODULE_DESCRIPTION("Generic Packet Editor actions");
MODULE_LICENSE("GPL");
static int __init pedit_init_module(void)
{
return tcf_register_action(&act_pedit_ops, &pedit_net_ops);
}
static void __exit pedit_cleanup_module(void)
{
tcf_unregister_action(&act_pedit_ops, &pedit_net_ops);
}
module_init(pedit_init_module);
module_exit(pedit_cleanup_module);
| linux-master | net/sched/act_pedit.c |
// SPDX-License-Identifier: GPL-2.0-only
/* Flow Queue PIE discipline
*
* Copyright (C) 2019 Mohit P. Tahiliani <[email protected]>
* Copyright (C) 2019 Sachin D. Patil <[email protected]>
* Copyright (C) 2019 V. Saicharan <[email protected]>
* Copyright (C) 2019 Mohit Bhasi <[email protected]>
* Copyright (C) 2019 Leslie Monis <[email protected]>
* Copyright (C) 2019 Gautam Ramakrishnan <[email protected]>
*/
#include <linux/jhash.h>
#include <linux/sizes.h>
#include <linux/vmalloc.h>
#include <net/pkt_cls.h>
#include <net/pie.h>
/* Flow Queue PIE
*
* Principles:
* - Packets are classified on flows.
* - This is a Stochastic model (as we use a hash, several flows might
* be hashed to the same slot)
* - Each flow has a PIE managed queue.
* - Flows are linked onto two (Round Robin) lists,
* so that new flows have priority on old ones.
* - For a given flow, packets are not reordered.
* - Drops during enqueue only.
* - ECN capability is off by default.
* - ECN threshold (if ECN is enabled) is at 10% by default.
* - Uses timestamps to calculate queue delay by default.
*/
/**
* struct fq_pie_flow - contains data for each flow
* @vars: pie vars associated with the flow
* @deficit: number of remaining byte credits
* @backlog: size of data in the flow
* @qlen: number of packets in the flow
* @flowchain: flowchain for the flow
* @head: first packet in the flow
* @tail: last packet in the flow
*/
struct fq_pie_flow {
struct pie_vars vars;
s32 deficit;
u32 backlog;
u32 qlen;
struct list_head flowchain;
struct sk_buff *head;
struct sk_buff *tail;
};
struct fq_pie_sched_data {
struct tcf_proto __rcu *filter_list; /* optional external classifier */
struct tcf_block *block;
struct fq_pie_flow *flows;
struct Qdisc *sch;
struct list_head old_flows;
struct list_head new_flows;
struct pie_params p_params;
u32 ecn_prob;
u32 flows_cnt;
u32 flows_cursor;
u32 quantum;
u32 memory_limit;
u32 new_flow_count;
u32 memory_usage;
u32 overmemory;
struct pie_stats stats;
struct timer_list adapt_timer;
};
static unsigned int fq_pie_hash(const struct fq_pie_sched_data *q,
struct sk_buff *skb)
{
return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
}
static unsigned int fq_pie_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct tcf_proto *filter;
struct tcf_result res;
int result;
if (TC_H_MAJ(skb->priority) == sch->handle &&
TC_H_MIN(skb->priority) > 0 &&
TC_H_MIN(skb->priority) <= q->flows_cnt)
return TC_H_MIN(skb->priority);
filter = rcu_dereference_bh(q->filter_list);
if (!filter)
return fq_pie_hash(q, skb) + 1;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
result = tcf_classify(skb, NULL, filter, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return 0;
}
#endif
if (TC_H_MIN(res.classid) <= q->flows_cnt)
return TC_H_MIN(res.classid);
}
return 0;
}
/* add skb to flow queue (tail add) */
static inline void flow_queue_add(struct fq_pie_flow *flow,
struct sk_buff *skb)
{
if (!flow->head)
flow->head = skb;
else
flow->tail->next = skb;
flow->tail = skb;
skb->next = NULL;
}
static int fq_pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct fq_pie_flow *sel_flow;
int ret;
u8 memory_limited = false;
u8 enqueue = false;
u32 pkt_len;
u32 idx;
/* Classifies packet into corresponding flow */
idx = fq_pie_classify(skb, sch, &ret);
if (idx == 0) {
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return ret;
}
idx--;
sel_flow = &q->flows[idx];
/* Checks whether adding a new packet would exceed memory limit */
get_pie_cb(skb)->mem_usage = skb->truesize;
memory_limited = q->memory_usage > q->memory_limit + skb->truesize;
/* Checks if the qdisc is full */
if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
q->stats.overlimit++;
goto out;
} else if (unlikely(memory_limited)) {
q->overmemory++;
}
if (!pie_drop_early(sch, &q->p_params, &sel_flow->vars,
sel_flow->backlog, skb->len)) {
enqueue = true;
} else if (q->p_params.ecn &&
sel_flow->vars.prob <= (MAX_PROB / 100) * q->ecn_prob &&
INET_ECN_set_ce(skb)) {
/* If packet is ecn capable, mark it if drop probability
* is lower than the parameter ecn_prob, else drop it.
*/
q->stats.ecn_mark++;
enqueue = true;
}
if (enqueue) {
/* Set enqueue time only when dq_rate_estimator is disabled. */
if (!q->p_params.dq_rate_estimator)
pie_set_enqueue_time(skb);
pkt_len = qdisc_pkt_len(skb);
q->stats.packets_in++;
q->memory_usage += skb->truesize;
sch->qstats.backlog += pkt_len;
sch->q.qlen++;
flow_queue_add(sel_flow, skb);
if (list_empty(&sel_flow->flowchain)) {
list_add_tail(&sel_flow->flowchain, &q->new_flows);
q->new_flow_count++;
sel_flow->deficit = q->quantum;
sel_flow->qlen = 0;
sel_flow->backlog = 0;
}
sel_flow->qlen++;
sel_flow->backlog += pkt_len;
return NET_XMIT_SUCCESS;
}
out:
q->stats.dropped++;
sel_flow->vars.accu_prob = 0;
__qdisc_drop(skb, to_free);
qdisc_qstats_drop(sch);
return NET_XMIT_CN;
}
static struct netlink_range_validation fq_pie_q_range = {
.min = 1,
.max = 1 << 20,
};
static const struct nla_policy fq_pie_policy[TCA_FQ_PIE_MAX + 1] = {
[TCA_FQ_PIE_LIMIT] = {.type = NLA_U32},
[TCA_FQ_PIE_FLOWS] = {.type = NLA_U32},
[TCA_FQ_PIE_TARGET] = {.type = NLA_U32},
[TCA_FQ_PIE_TUPDATE] = {.type = NLA_U32},
[TCA_FQ_PIE_ALPHA] = {.type = NLA_U32},
[TCA_FQ_PIE_BETA] = {.type = NLA_U32},
[TCA_FQ_PIE_QUANTUM] =
NLA_POLICY_FULL_RANGE(NLA_U32, &fq_pie_q_range),
[TCA_FQ_PIE_MEMORY_LIMIT] = {.type = NLA_U32},
[TCA_FQ_PIE_ECN_PROB] = {.type = NLA_U32},
[TCA_FQ_PIE_ECN] = {.type = NLA_U32},
[TCA_FQ_PIE_BYTEMODE] = {.type = NLA_U32},
[TCA_FQ_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32},
};
static inline struct sk_buff *dequeue_head(struct fq_pie_flow *flow)
{
struct sk_buff *skb = flow->head;
flow->head = skb->next;
skb->next = NULL;
return skb;
}
static struct sk_buff *fq_pie_qdisc_dequeue(struct Qdisc *sch)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb = NULL;
struct fq_pie_flow *flow;
struct list_head *head;
u32 pkt_len;
begin:
head = &q->new_flows;
if (list_empty(head)) {
head = &q->old_flows;
if (list_empty(head))
return NULL;
}
flow = list_first_entry(head, struct fq_pie_flow, flowchain);
/* Flow has exhausted all its credits */
if (flow->deficit <= 0) {
flow->deficit += q->quantum;
list_move_tail(&flow->flowchain, &q->old_flows);
goto begin;
}
if (flow->head) {
skb = dequeue_head(flow);
pkt_len = qdisc_pkt_len(skb);
sch->qstats.backlog -= pkt_len;
sch->q.qlen--;
qdisc_bstats_update(sch, skb);
}
if (!skb) {
/* force a pass through old_flows to prevent starvation */
if (head == &q->new_flows && !list_empty(&q->old_flows))
list_move_tail(&flow->flowchain, &q->old_flows);
else
list_del_init(&flow->flowchain);
goto begin;
}
flow->qlen--;
flow->deficit -= pkt_len;
flow->backlog -= pkt_len;
q->memory_usage -= get_pie_cb(skb)->mem_usage;
pie_process_dequeue(skb, &q->p_params, &flow->vars, flow->backlog);
return skb;
}
static int fq_pie_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_FQ_PIE_MAX + 1];
unsigned int len_dropped = 0;
unsigned int num_dropped = 0;
int err;
err = nla_parse_nested(tb, TCA_FQ_PIE_MAX, opt, fq_pie_policy, extack);
if (err < 0)
return err;
sch_tree_lock(sch);
if (tb[TCA_FQ_PIE_LIMIT]) {
u32 limit = nla_get_u32(tb[TCA_FQ_PIE_LIMIT]);
q->p_params.limit = limit;
sch->limit = limit;
}
if (tb[TCA_FQ_PIE_FLOWS]) {
if (q->flows) {
NL_SET_ERR_MSG_MOD(extack,
"Number of flows cannot be changed");
goto flow_error;
}
q->flows_cnt = nla_get_u32(tb[TCA_FQ_PIE_FLOWS]);
if (!q->flows_cnt || q->flows_cnt > 65536) {
NL_SET_ERR_MSG_MOD(extack,
"Number of flows must range in [1..65536]");
goto flow_error;
}
}
/* convert from microseconds to pschedtime */
if (tb[TCA_FQ_PIE_TARGET]) {
/* target is in us */
u32 target = nla_get_u32(tb[TCA_FQ_PIE_TARGET]);
/* convert to pschedtime */
q->p_params.target =
PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
}
/* tupdate is in jiffies */
if (tb[TCA_FQ_PIE_TUPDATE])
q->p_params.tupdate =
usecs_to_jiffies(nla_get_u32(tb[TCA_FQ_PIE_TUPDATE]));
if (tb[TCA_FQ_PIE_ALPHA])
q->p_params.alpha = nla_get_u32(tb[TCA_FQ_PIE_ALPHA]);
if (tb[TCA_FQ_PIE_BETA])
q->p_params.beta = nla_get_u32(tb[TCA_FQ_PIE_BETA]);
if (tb[TCA_FQ_PIE_QUANTUM])
q->quantum = nla_get_u32(tb[TCA_FQ_PIE_QUANTUM]);
if (tb[TCA_FQ_PIE_MEMORY_LIMIT])
q->memory_limit = nla_get_u32(tb[TCA_FQ_PIE_MEMORY_LIMIT]);
if (tb[TCA_FQ_PIE_ECN_PROB])
q->ecn_prob = nla_get_u32(tb[TCA_FQ_PIE_ECN_PROB]);
if (tb[TCA_FQ_PIE_ECN])
q->p_params.ecn = nla_get_u32(tb[TCA_FQ_PIE_ECN]);
if (tb[TCA_FQ_PIE_BYTEMODE])
q->p_params.bytemode = nla_get_u32(tb[TCA_FQ_PIE_BYTEMODE]);
if (tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR])
q->p_params.dq_rate_estimator =
nla_get_u32(tb[TCA_FQ_PIE_DQ_RATE_ESTIMATOR]);
/* Drop excess packets if new limit is lower */
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = fq_pie_qdisc_dequeue(sch);
len_dropped += qdisc_pkt_len(skb);
num_dropped += 1;
rtnl_kfree_skbs(skb, skb);
}
qdisc_tree_reduce_backlog(sch, num_dropped, len_dropped);
sch_tree_unlock(sch);
return 0;
flow_error:
sch_tree_unlock(sch);
return -EINVAL;
}
static void fq_pie_timer(struct timer_list *t)
{
struct fq_pie_sched_data *q = from_timer(q, t, adapt_timer);
unsigned long next, tupdate;
struct Qdisc *sch = q->sch;
spinlock_t *root_lock; /* to lock qdisc for probability calculations */
int max_cnt, i;
rcu_read_lock();
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
/* Limit this expensive loop to 2048 flows per round. */
max_cnt = min_t(int, q->flows_cnt - q->flows_cursor, 2048);
for (i = 0; i < max_cnt; i++) {
pie_calculate_probability(&q->p_params,
&q->flows[q->flows_cursor].vars,
q->flows[q->flows_cursor].backlog);
q->flows_cursor++;
}
tupdate = q->p_params.tupdate;
next = 0;
if (q->flows_cursor >= q->flows_cnt) {
q->flows_cursor = 0;
next = tupdate;
}
if (tupdate)
mod_timer(&q->adapt_timer, jiffies + next);
spin_unlock(root_lock);
rcu_read_unlock();
}
static int fq_pie_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
int err;
u32 idx;
pie_params_init(&q->p_params);
sch->limit = 10 * 1024;
q->p_params.limit = sch->limit;
q->quantum = psched_mtu(qdisc_dev(sch));
q->sch = sch;
q->ecn_prob = 10;
q->flows_cnt = 1024;
q->memory_limit = SZ_32M;
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
timer_setup(&q->adapt_timer, fq_pie_timer, 0);
if (opt) {
err = fq_pie_change(sch, opt, extack);
if (err)
return err;
}
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
goto init_failure;
q->flows = kvcalloc(q->flows_cnt, sizeof(struct fq_pie_flow),
GFP_KERNEL);
if (!q->flows) {
err = -ENOMEM;
goto init_failure;
}
for (idx = 0; idx < q->flows_cnt; idx++) {
struct fq_pie_flow *flow = q->flows + idx;
INIT_LIST_HEAD(&flow->flowchain);
pie_vars_init(&flow->vars);
}
mod_timer(&q->adapt_timer, jiffies + HZ / 2);
return 0;
init_failure:
q->flows_cnt = 0;
return err;
}
static int fq_pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start(skb, TCA_OPTIONS);
if (!opts)
return -EMSGSIZE;
/* convert target from pschedtime to us */
if (nla_put_u32(skb, TCA_FQ_PIE_LIMIT, sch->limit) ||
nla_put_u32(skb, TCA_FQ_PIE_FLOWS, q->flows_cnt) ||
nla_put_u32(skb, TCA_FQ_PIE_TARGET,
((u32)PSCHED_TICKS2NS(q->p_params.target)) /
NSEC_PER_USEC) ||
nla_put_u32(skb, TCA_FQ_PIE_TUPDATE,
jiffies_to_usecs(q->p_params.tupdate)) ||
nla_put_u32(skb, TCA_FQ_PIE_ALPHA, q->p_params.alpha) ||
nla_put_u32(skb, TCA_FQ_PIE_BETA, q->p_params.beta) ||
nla_put_u32(skb, TCA_FQ_PIE_QUANTUM, q->quantum) ||
nla_put_u32(skb, TCA_FQ_PIE_MEMORY_LIMIT, q->memory_limit) ||
nla_put_u32(skb, TCA_FQ_PIE_ECN_PROB, q->ecn_prob) ||
nla_put_u32(skb, TCA_FQ_PIE_ECN, q->p_params.ecn) ||
nla_put_u32(skb, TCA_FQ_PIE_BYTEMODE, q->p_params.bytemode) ||
nla_put_u32(skb, TCA_FQ_PIE_DQ_RATE_ESTIMATOR,
q->p_params.dq_rate_estimator))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static int fq_pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
struct tc_fq_pie_xstats st = {
.packets_in = q->stats.packets_in,
.overlimit = q->stats.overlimit,
.overmemory = q->overmemory,
.dropped = q->stats.dropped,
.ecn_mark = q->stats.ecn_mark,
.new_flow_count = q->new_flow_count,
.memory_usage = q->memory_usage,
};
struct list_head *pos;
sch_tree_lock(sch);
list_for_each(pos, &q->new_flows)
st.new_flows_len++;
list_for_each(pos, &q->old_flows)
st.old_flows_len++;
sch_tree_unlock(sch);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static void fq_pie_reset(struct Qdisc *sch)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
u32 idx;
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
for (idx = 0; idx < q->flows_cnt; idx++) {
struct fq_pie_flow *flow = q->flows + idx;
/* Removes all packets from flow */
rtnl_kfree_skbs(flow->head, flow->tail);
flow->head = NULL;
INIT_LIST_HEAD(&flow->flowchain);
pie_vars_init(&flow->vars);
}
}
static void fq_pie_destroy(struct Qdisc *sch)
{
struct fq_pie_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
q->p_params.tupdate = 0;
del_timer_sync(&q->adapt_timer);
kvfree(q->flows);
}
static struct Qdisc_ops fq_pie_qdisc_ops __read_mostly = {
.id = "fq_pie",
.priv_size = sizeof(struct fq_pie_sched_data),
.enqueue = fq_pie_qdisc_enqueue,
.dequeue = fq_pie_qdisc_dequeue,
.peek = qdisc_peek_dequeued,
.init = fq_pie_init,
.destroy = fq_pie_destroy,
.reset = fq_pie_reset,
.change = fq_pie_change,
.dump = fq_pie_dump,
.dump_stats = fq_pie_dump_stats,
.owner = THIS_MODULE,
};
static int __init fq_pie_module_init(void)
{
return register_qdisc(&fq_pie_qdisc_ops);
}
static void __exit fq_pie_module_exit(void)
{
unregister_qdisc(&fq_pie_qdisc_ops);
}
module_init(fq_pie_module_init);
module_exit(fq_pie_module_exit);
MODULE_DESCRIPTION("Flow Queue Proportional Integral controller Enhanced (FQ-PIE)");
MODULE_AUTHOR("Mohit P. Tahiliani");
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_fq_pie.c |
/*
* Copyright (c) 2003 Patrick McHardy, <[email protected]>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* 2003-10-17 - Ported from altq
*/
/*
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation is hereby granted (including for commercial or
* for-profit use), provided that both the copyright notice and this
* permission notice appear in all copies of the software, derivative
* works, or modified versions, and any portions thereof.
*
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* Carnegie Mellon encourages (but does not require) users of this
* software to return any improvements or extensions that they make,
* and to grant Carnegie Mellon the rights to redistribute these
* changes without encumbrance.
*/
/*
* H-FSC is described in Proceedings of SIGCOMM'97,
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
* Real-Time and Priority Service"
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
*
* Oleg Cherevko <[email protected]> added the upperlimit for link-sharing.
* when a class has an upperlimit, the fit-time is computed from the
* upperlimit service curve. the link-sharing scheduler does not schedule
* a class whose fit-time exceeds the current time.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/compiler.h>
#include <linux/spinlock.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/init.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_sched.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <asm/div64.h>
/*
* kernel internal service curve representation:
* coordinates are given by 64 bit unsigned integers.
* x-axis: unit is clock count.
* y-axis: unit is byte.
*
* The service curve parameters are converted to the internal
* representation. The slope values are scaled to avoid overflow.
* the inverse slope values as well as the y-projection of the 1st
* segment are kept in order to avoid 64-bit divide operations
* that are expensive on 32-bit architectures.
*/
struct internal_sc {
u64 sm1; /* scaled slope of the 1st segment */
u64 ism1; /* scaled inverse-slope of the 1st segment */
u64 dx; /* the x-projection of the 1st segment */
u64 dy; /* the y-projection of the 1st segment */
u64 sm2; /* scaled slope of the 2nd segment */
u64 ism2; /* scaled inverse-slope of the 2nd segment */
};
/* runtime service curve */
struct runtime_sc {
u64 x; /* current starting position on x-axis */
u64 y; /* current starting position on y-axis */
u64 sm1; /* scaled slope of the 1st segment */
u64 ism1; /* scaled inverse-slope of the 1st segment */
u64 dx; /* the x-projection of the 1st segment */
u64 dy; /* the y-projection of the 1st segment */
u64 sm2; /* scaled slope of the 2nd segment */
u64 ism2; /* scaled inverse-slope of the 2nd segment */
};
enum hfsc_class_flags {
HFSC_RSC = 0x1,
HFSC_FSC = 0x2,
HFSC_USC = 0x4
};
struct hfsc_class {
struct Qdisc_class_common cl_common;
struct gnet_stats_basic_sync bstats;
struct gnet_stats_queue qstats;
struct net_rate_estimator __rcu *rate_est;
struct tcf_proto __rcu *filter_list; /* filter list */
struct tcf_block *block;
unsigned int level; /* class level in hierarchy */
struct hfsc_sched *sched; /* scheduler data */
struct hfsc_class *cl_parent; /* parent class */
struct list_head siblings; /* sibling classes */
struct list_head children; /* child classes */
struct Qdisc *qdisc; /* leaf qdisc */
struct rb_node el_node; /* qdisc's eligible tree member */
struct rb_root vt_tree; /* active children sorted by cl_vt */
struct rb_node vt_node; /* parent's vt_tree member */
struct rb_root cf_tree; /* active children sorted by cl_f */
struct rb_node cf_node; /* parent's cf_heap member */
u64 cl_total; /* total work in bytes */
u64 cl_cumul; /* cumulative work in bytes done by
real-time criteria */
u64 cl_d; /* deadline*/
u64 cl_e; /* eligible time */
u64 cl_vt; /* virtual time */
u64 cl_f; /* time when this class will fit for
link-sharing, max(myf, cfmin) */
u64 cl_myf; /* my fit-time (calculated from this
class's own upperlimit curve) */
u64 cl_cfmin; /* earliest children's fit-time (used
with cl_myf to obtain cl_f) */
u64 cl_cvtmin; /* minimal virtual time among the
children fit for link-sharing
(monotonic within a period) */
u64 cl_vtadj; /* intra-period cumulative vt
adjustment */
u64 cl_cvtoff; /* largest virtual time seen among
the children */
struct internal_sc cl_rsc; /* internal real-time service curve */
struct internal_sc cl_fsc; /* internal fair service curve */
struct internal_sc cl_usc; /* internal upperlimit service curve */
struct runtime_sc cl_deadline; /* deadline curve */
struct runtime_sc cl_eligible; /* eligible curve */
struct runtime_sc cl_virtual; /* virtual curve */
struct runtime_sc cl_ulimit; /* upperlimit curve */
u8 cl_flags; /* which curves are valid */
u32 cl_vtperiod; /* vt period sequence number */
u32 cl_parentperiod;/* parent's vt period sequence number*/
u32 cl_nactive; /* number of active children */
};
struct hfsc_sched {
u16 defcls; /* default class id */
struct hfsc_class root; /* root class */
struct Qdisc_class_hash clhash; /* class hash */
struct rb_root eligible; /* eligible tree */
struct qdisc_watchdog watchdog; /* watchdog timer */
};
#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
/*
* eligible tree holds backlogged classes being sorted by their eligible times.
* there is one eligible tree per hfsc instance.
*/
static void
eltree_insert(struct hfsc_class *cl)
{
struct rb_node **p = &cl->sched->eligible.rb_node;
struct rb_node *parent = NULL;
struct hfsc_class *cl1;
while (*p != NULL) {
parent = *p;
cl1 = rb_entry(parent, struct hfsc_class, el_node);
if (cl->cl_e >= cl1->cl_e)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&cl->el_node, parent, p);
rb_insert_color(&cl->el_node, &cl->sched->eligible);
}
static inline void
eltree_remove(struct hfsc_class *cl)
{
rb_erase(&cl->el_node, &cl->sched->eligible);
}
static inline void
eltree_update(struct hfsc_class *cl)
{
eltree_remove(cl);
eltree_insert(cl);
}
/* find the class with the minimum deadline among the eligible classes */
static inline struct hfsc_class *
eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
{
struct hfsc_class *p, *cl = NULL;
struct rb_node *n;
for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
p = rb_entry(n, struct hfsc_class, el_node);
if (p->cl_e > cur_time)
break;
if (cl == NULL || p->cl_d < cl->cl_d)
cl = p;
}
return cl;
}
/* find the class with minimum eligible time among the eligible classes */
static inline struct hfsc_class *
eltree_get_minel(struct hfsc_sched *q)
{
struct rb_node *n;
n = rb_first(&q->eligible);
if (n == NULL)
return NULL;
return rb_entry(n, struct hfsc_class, el_node);
}
/*
* vttree holds holds backlogged child classes being sorted by their virtual
* time. each intermediate class has one vttree.
*/
static void
vttree_insert(struct hfsc_class *cl)
{
struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
struct rb_node *parent = NULL;
struct hfsc_class *cl1;
while (*p != NULL) {
parent = *p;
cl1 = rb_entry(parent, struct hfsc_class, vt_node);
if (cl->cl_vt >= cl1->cl_vt)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&cl->vt_node, parent, p);
rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
}
static inline void
vttree_remove(struct hfsc_class *cl)
{
rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
}
static inline void
vttree_update(struct hfsc_class *cl)
{
vttree_remove(cl);
vttree_insert(cl);
}
static inline struct hfsc_class *
vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
{
struct hfsc_class *p;
struct rb_node *n;
for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
p = rb_entry(n, struct hfsc_class, vt_node);
if (p->cl_f <= cur_time)
return p;
}
return NULL;
}
/*
* get the leaf class with the minimum vt in the hierarchy
*/
static struct hfsc_class *
vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
{
/* if root-class's cfmin is bigger than cur_time nothing to do */
if (cl->cl_cfmin > cur_time)
return NULL;
while (cl->level > 0) {
cl = vttree_firstfit(cl, cur_time);
if (cl == NULL)
return NULL;
/*
* update parent's cl_cvtmin.
*/
if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
cl->cl_parent->cl_cvtmin = cl->cl_vt;
}
return cl;
}
static void
cftree_insert(struct hfsc_class *cl)
{
struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
struct rb_node *parent = NULL;
struct hfsc_class *cl1;
while (*p != NULL) {
parent = *p;
cl1 = rb_entry(parent, struct hfsc_class, cf_node);
if (cl->cl_f >= cl1->cl_f)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&cl->cf_node, parent, p);
rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
}
static inline void
cftree_remove(struct hfsc_class *cl)
{
rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
}
static inline void
cftree_update(struct hfsc_class *cl)
{
cftree_remove(cl);
cftree_insert(cl);
}
/*
* service curve support functions
*
* external service curve parameters
* m: bps
* d: us
* internal service curve parameters
* sm: (bytes/psched_us) << SM_SHIFT
* ism: (psched_us/byte) << ISM_SHIFT
* dx: psched_us
*
* The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
*
* sm and ism are scaled in order to keep effective digits.
* SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
* digits in decimal using the following table.
*
* bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
* ------------+-------------------------------------------------------
* bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
*
* 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
*
* So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
*/
#define SM_SHIFT (30 - PSCHED_SHIFT)
#define ISM_SHIFT (8 + PSCHED_SHIFT)
#define SM_MASK ((1ULL << SM_SHIFT) - 1)
#define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
static inline u64
seg_x2y(u64 x, u64 sm)
{
u64 y;
/*
* compute
* y = x * sm >> SM_SHIFT
* but divide it for the upper and lower bits to avoid overflow
*/
y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
return y;
}
static inline u64
seg_y2x(u64 y, u64 ism)
{
u64 x;
if (y == 0)
x = 0;
else if (ism == HT_INFINITY)
x = HT_INFINITY;
else {
x = (y >> ISM_SHIFT) * ism
+ (((y & ISM_MASK) * ism) >> ISM_SHIFT);
}
return x;
}
/* Convert m (bps) into sm (bytes/psched us) */
static u64
m2sm(u32 m)
{
u64 sm;
sm = ((u64)m << SM_SHIFT);
sm += PSCHED_TICKS_PER_SEC - 1;
do_div(sm, PSCHED_TICKS_PER_SEC);
return sm;
}
/* convert m (bps) into ism (psched us/byte) */
static u64
m2ism(u32 m)
{
u64 ism;
if (m == 0)
ism = HT_INFINITY;
else {
ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
ism += m - 1;
do_div(ism, m);
}
return ism;
}
/* convert d (us) into dx (psched us) */
static u64
d2dx(u32 d)
{
u64 dx;
dx = ((u64)d * PSCHED_TICKS_PER_SEC);
dx += USEC_PER_SEC - 1;
do_div(dx, USEC_PER_SEC);
return dx;
}
/* convert sm (bytes/psched us) into m (bps) */
static u32
sm2m(u64 sm)
{
u64 m;
m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
return (u32)m;
}
/* convert dx (psched us) into d (us) */
static u32
dx2d(u64 dx)
{
u64 d;
d = dx * USEC_PER_SEC;
do_div(d, PSCHED_TICKS_PER_SEC);
return (u32)d;
}
static void
sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
{
isc->sm1 = m2sm(sc->m1);
isc->ism1 = m2ism(sc->m1);
isc->dx = d2dx(sc->d);
isc->dy = seg_x2y(isc->dx, isc->sm1);
isc->sm2 = m2sm(sc->m2);
isc->ism2 = m2ism(sc->m2);
}
/*
* initialize the runtime service curve with the given internal
* service curve starting at (x, y).
*/
static void
rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
{
rtsc->x = x;
rtsc->y = y;
rtsc->sm1 = isc->sm1;
rtsc->ism1 = isc->ism1;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
rtsc->sm2 = isc->sm2;
rtsc->ism2 = isc->ism2;
}
/*
* calculate the y-projection of the runtime service curve by the
* given x-projection value
*/
static u64
rtsc_y2x(struct runtime_sc *rtsc, u64 y)
{
u64 x;
if (y < rtsc->y)
x = rtsc->x;
else if (y <= rtsc->y + rtsc->dy) {
/* x belongs to the 1st segment */
if (rtsc->dy == 0)
x = rtsc->x + rtsc->dx;
else
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
} else {
/* x belongs to the 2nd segment */
x = rtsc->x + rtsc->dx
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
}
return x;
}
static u64
rtsc_x2y(struct runtime_sc *rtsc, u64 x)
{
u64 y;
if (x <= rtsc->x)
y = rtsc->y;
else if (x <= rtsc->x + rtsc->dx)
/* y belongs to the 1st segment */
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
else
/* y belongs to the 2nd segment */
y = rtsc->y + rtsc->dy
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
return y;
}
/*
* update the runtime service curve by taking the minimum of the current
* runtime service curve and the service curve starting at (x, y).
*/
static void
rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
{
u64 y1, y2, dx, dy;
u32 dsm;
if (isc->sm1 <= isc->sm2) {
/* service curve is convex */
y1 = rtsc_x2y(rtsc, x);
if (y1 < y)
/* the current rtsc is smaller */
return;
rtsc->x = x;
rtsc->y = y;
return;
}
/*
* service curve is concave
* compute the two y values of the current rtsc
* y1: at x
* y2: at (x + dx)
*/
y1 = rtsc_x2y(rtsc, x);
if (y1 <= y) {
/* rtsc is below isc, no change to rtsc */
return;
}
y2 = rtsc_x2y(rtsc, x + isc->dx);
if (y2 >= y + isc->dy) {
/* rtsc is above isc, replace rtsc by isc */
rtsc->x = x;
rtsc->y = y;
rtsc->dx = isc->dx;
rtsc->dy = isc->dy;
return;
}
/*
* the two curves intersect
* compute the offsets (dx, dy) using the reverse
* function of seg_x2y()
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
*/
dx = (y1 - y) << SM_SHIFT;
dsm = isc->sm1 - isc->sm2;
do_div(dx, dsm);
/*
* check if (x, y1) belongs to the 1st segment of rtsc.
* if so, add the offset.
*/
if (rtsc->x + rtsc->dx > x)
dx += rtsc->x + rtsc->dx - x;
dy = seg_x2y(dx, isc->sm1);
rtsc->x = x;
rtsc->y = y;
rtsc->dx = dx;
rtsc->dy = dy;
}
static void
init_ed(struct hfsc_class *cl, unsigned int next_len)
{
u64 cur_time = psched_get_time();
/* update the deadline curve */
rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
/*
* update the eligible curve.
* for concave, it is equal to the deadline curve.
* for convex, it is a linear curve with slope m2.
*/
cl->cl_eligible = cl->cl_deadline;
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
cl->cl_eligible.dx = 0;
cl->cl_eligible.dy = 0;
}
/* compute e and d */
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
eltree_insert(cl);
}
static void
update_ed(struct hfsc_class *cl, unsigned int next_len)
{
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
eltree_update(cl);
}
static inline void
update_d(struct hfsc_class *cl, unsigned int next_len)
{
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
}
static inline void
update_cfmin(struct hfsc_class *cl)
{
struct rb_node *n = rb_first(&cl->cf_tree);
struct hfsc_class *p;
if (n == NULL) {
cl->cl_cfmin = 0;
return;
}
p = rb_entry(n, struct hfsc_class, cf_node);
cl->cl_cfmin = p->cl_f;
}
static void
init_vf(struct hfsc_class *cl, unsigned int len)
{
struct hfsc_class *max_cl;
struct rb_node *n;
u64 vt, f, cur_time;
int go_active;
cur_time = 0;
go_active = 1;
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
if (go_active && cl->cl_nactive++ == 0)
go_active = 1;
else
go_active = 0;
if (go_active) {
n = rb_last(&cl->cl_parent->vt_tree);
if (n != NULL) {
max_cl = rb_entry(n, struct hfsc_class, vt_node);
/*
* set vt to the average of the min and max
* classes. if the parent's period didn't
* change, don't decrease vt of the class.
*/
vt = max_cl->cl_vt;
if (cl->cl_parent->cl_cvtmin != 0)
vt = (cl->cl_parent->cl_cvtmin + vt)/2;
if (cl->cl_parent->cl_vtperiod !=
cl->cl_parentperiod || vt > cl->cl_vt)
cl->cl_vt = vt;
} else {
/*
* first child for a new parent backlog period.
* initialize cl_vt to the highest value seen
* among the siblings. this is analogous to
* what cur_time would provide in realtime case.
*/
cl->cl_vt = cl->cl_parent->cl_cvtoff;
cl->cl_parent->cl_cvtmin = 0;
}
/* update the virtual curve */
rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
cl->cl_vtadj = 0;
cl->cl_vtperiod++; /* increment vt period */
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
if (cl->cl_parent->cl_nactive == 0)
cl->cl_parentperiod++;
cl->cl_f = 0;
vttree_insert(cl);
cftree_insert(cl);
if (cl->cl_flags & HFSC_USC) {
/* class has upper limit curve */
if (cur_time == 0)
cur_time = psched_get_time();
/* update the ulimit curve */
rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
cl->cl_total);
/* compute myf */
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
cl->cl_total);
}
}
f = max(cl->cl_myf, cl->cl_cfmin);
if (f != cl->cl_f) {
cl->cl_f = f;
cftree_update(cl);
}
update_cfmin(cl->cl_parent);
}
}
static void
update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
{
u64 f; /* , myf_bound, delta; */
int go_passive = 0;
if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
go_passive = 1;
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
cl->cl_total += len;
if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
continue;
if (go_passive && --cl->cl_nactive == 0)
go_passive = 1;
else
go_passive = 0;
/* update vt */
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj;
/*
* if vt of the class is smaller than cvtmin,
* the class was skipped in the past due to non-fit.
* if so, we need to adjust vtadj.
*/
if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
cl->cl_vt = cl->cl_parent->cl_cvtmin;
}
if (go_passive) {
/* no more active child, going passive */
/* update cvtoff of the parent class */
if (cl->cl_vt > cl->cl_parent->cl_cvtoff)
cl->cl_parent->cl_cvtoff = cl->cl_vt;
/* remove this class from the vt tree */
vttree_remove(cl);
cftree_remove(cl);
update_cfmin(cl->cl_parent);
continue;
}
/* update the vt tree */
vttree_update(cl);
/* update f */
if (cl->cl_flags & HFSC_USC) {
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
#if 0
cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
cl->cl_total);
/*
* This code causes classes to stay way under their
* limit when multiple classes are used at gigabit
* speed. needs investigation. -kaber
*/
/*
* if myf lags behind by more than one clock tick
* from the current time, adjust myfadj to prevent
* a rate-limited class from going greedy.
* in a steady state under rate-limiting, myf
* fluctuates within one clock tick.
*/
myf_bound = cur_time - PSCHED_JIFFIE2US(1);
if (cl->cl_myf < myf_bound) {
delta = cur_time - cl->cl_myf;
cl->cl_myfadj += delta;
cl->cl_myf += delta;
}
#endif
}
f = max(cl->cl_myf, cl->cl_cfmin);
if (f != cl->cl_f) {
cl->cl_f = f;
cftree_update(cl);
update_cfmin(cl->cl_parent);
}
}
}
static unsigned int
qdisc_peek_len(struct Qdisc *sch)
{
struct sk_buff *skb;
unsigned int len;
skb = sch->ops->peek(sch);
if (unlikely(skb == NULL)) {
qdisc_warn_nonwc("qdisc_peek_len", sch);
return 0;
}
len = qdisc_pkt_len(skb);
return len;
}
static void
hfsc_adjust_levels(struct hfsc_class *cl)
{
struct hfsc_class *p;
unsigned int level;
do {
level = 0;
list_for_each_entry(p, &cl->children, siblings) {
if (p->level >= level)
level = p->level + 1;
}
cl->level = level;
} while ((cl = cl->cl_parent) != NULL);
}
static inline struct hfsc_class *
hfsc_find_class(u32 classid, struct Qdisc *sch)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct Qdisc_class_common *clc;
clc = qdisc_class_find(&q->clhash, classid);
if (clc == NULL)
return NULL;
return container_of(clc, struct hfsc_class, cl_common);
}
static void
hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
u64 cur_time)
{
sc2isc(rsc, &cl->cl_rsc);
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
cl->cl_eligible = cl->cl_deadline;
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
cl->cl_eligible.dx = 0;
cl->cl_eligible.dy = 0;
}
cl->cl_flags |= HFSC_RSC;
}
static void
hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
{
sc2isc(fsc, &cl->cl_fsc);
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
cl->cl_flags |= HFSC_FSC;
}
static void
hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
u64 cur_time)
{
sc2isc(usc, &cl->cl_usc);
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
cl->cl_flags |= HFSC_USC;
}
static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
[TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
[TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
[TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
};
static int
hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
struct nlattr **tca, unsigned long *arg,
struct netlink_ext_ack *extack)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl = (struct hfsc_class *)*arg;
struct hfsc_class *parent = NULL;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_HFSC_MAX + 1];
struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
u64 cur_time;
int err;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_HFSC_RSC]) {
rsc = nla_data(tb[TCA_HFSC_RSC]);
if (rsc->m1 == 0 && rsc->m2 == 0)
rsc = NULL;
}
if (tb[TCA_HFSC_FSC]) {
fsc = nla_data(tb[TCA_HFSC_FSC]);
if (fsc->m1 == 0 && fsc->m2 == 0)
fsc = NULL;
}
if (tb[TCA_HFSC_USC]) {
usc = nla_data(tb[TCA_HFSC_USC]);
if (usc->m1 == 0 && usc->m2 == 0)
usc = NULL;
}
if (cl != NULL) {
int old_flags;
if (parentid) {
if (cl->cl_parent &&
cl->cl_parent->cl_common.classid != parentid)
return -EINVAL;
if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
return -EINVAL;
}
cur_time = psched_get_time();
if (tca[TCA_RATE]) {
err = gen_replace_estimator(&cl->bstats, NULL,
&cl->rate_est,
NULL,
true,
tca[TCA_RATE]);
if (err)
return err;
}
sch_tree_lock(sch);
old_flags = cl->cl_flags;
if (rsc != NULL)
hfsc_change_rsc(cl, rsc, cur_time);
if (fsc != NULL)
hfsc_change_fsc(cl, fsc);
if (usc != NULL)
hfsc_change_usc(cl, usc, cur_time);
if (cl->qdisc->q.qlen != 0) {
int len = qdisc_peek_len(cl->qdisc);
if (cl->cl_flags & HFSC_RSC) {
if (old_flags & HFSC_RSC)
update_ed(cl, len);
else
init_ed(cl, len);
}
if (cl->cl_flags & HFSC_FSC) {
if (old_flags & HFSC_FSC)
update_vf(cl, 0, cur_time);
else
init_vf(cl, len);
}
}
sch_tree_unlock(sch);
return 0;
}
if (parentid == TC_H_ROOT)
return -EEXIST;
parent = &q->root;
if (parentid) {
parent = hfsc_find_class(parentid, sch);
if (parent == NULL)
return -ENOENT;
}
if (!(parent->cl_flags & HFSC_FSC) && parent != &q->root) {
NL_SET_ERR_MSG(extack, "Invalid parent - parent class must have FSC");
return -EINVAL;
}
if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
return -EINVAL;
if (hfsc_find_class(classid, sch))
return -EEXIST;
if (rsc == NULL && fsc == NULL)
return -EINVAL;
cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
if (cl == NULL)
return -ENOBUFS;
err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack);
if (err) {
kfree(cl);
return err;
}
if (tca[TCA_RATE]) {
err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
NULL, true, tca[TCA_RATE]);
if (err) {
tcf_block_put(cl->block);
kfree(cl);
return err;
}
}
if (rsc != NULL)
hfsc_change_rsc(cl, rsc, 0);
if (fsc != NULL)
hfsc_change_fsc(cl, fsc);
if (usc != NULL)
hfsc_change_usc(cl, usc, 0);
cl->cl_common.classid = classid;
cl->sched = q;
cl->cl_parent = parent;
cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
classid, NULL);
if (cl->qdisc == NULL)
cl->qdisc = &noop_qdisc;
else
qdisc_hash_add(cl->qdisc, true);
INIT_LIST_HEAD(&cl->children);
cl->vt_tree = RB_ROOT;
cl->cf_tree = RB_ROOT;
sch_tree_lock(sch);
qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
list_add_tail(&cl->siblings, &parent->children);
if (parent->level == 0)
qdisc_purge_queue(parent->qdisc);
hfsc_adjust_levels(parent);
sch_tree_unlock(sch);
qdisc_class_hash_grow(sch, &q->clhash);
*arg = (unsigned long)cl;
return 0;
}
static void
hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
{
struct hfsc_sched *q = qdisc_priv(sch);
tcf_block_put(cl->block);
qdisc_put(cl->qdisc);
gen_kill_estimator(&cl->rate_est);
if (cl != &q->root)
kfree(cl);
}
static int
hfsc_delete_class(struct Qdisc *sch, unsigned long arg,
struct netlink_ext_ack *extack)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl = (struct hfsc_class *)arg;
if (cl->level > 0 || qdisc_class_in_use(&cl->cl_common) ||
cl == &q->root) {
NL_SET_ERR_MSG(extack, "HFSC class in use");
return -EBUSY;
}
sch_tree_lock(sch);
list_del(&cl->siblings);
hfsc_adjust_levels(cl->cl_parent);
qdisc_purge_queue(cl->qdisc);
qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
sch_tree_unlock(sch);
hfsc_destroy_class(sch, cl);
return 0;
}
static struct hfsc_class *
hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *head, *cl;
struct tcf_result res;
struct tcf_proto *tcf;
int result;
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
(cl = hfsc_find_class(skb->priority, sch)) != NULL)
if (cl->level == 0)
return cl;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
head = &q->root;
tcf = rcu_dereference_bh(q->root.filter_list);
while (tcf && (result = tcf_classify(skb, NULL, tcf, &res, false)) >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_QUEUED:
case TC_ACT_STOLEN:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return NULL;
}
#endif
cl = (struct hfsc_class *)res.class;
if (!cl) {
cl = hfsc_find_class(res.classid, sch);
if (!cl)
break; /* filter selected invalid classid */
if (cl->level >= head->level)
break; /* filter may only point downwards */
}
if (cl->level == 0)
return cl; /* hit leaf class */
/* apply inner filter chain */
tcf = rcu_dereference_bh(cl->filter_list);
head = cl;
}
/* classification failed, try default class */
cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
if (cl == NULL || cl->level > 0)
return NULL;
return cl;
}
static int
hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
if (cl->level > 0)
return -EINVAL;
if (new == NULL) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
cl->cl_common.classid, NULL);
if (new == NULL)
new = &noop_qdisc;
}
*old = qdisc_replace(sch, new, &cl->qdisc);
return 0;
}
static struct Qdisc *
hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
if (cl->level == 0)
return cl->qdisc;
return NULL;
}
static void
hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
/* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
* needs to be called explicitly to remove a class from vttree.
*/
update_vf(cl, 0, 0);
if (cl->cl_flags & HFSC_RSC)
eltree_remove(cl);
}
static unsigned long
hfsc_search_class(struct Qdisc *sch, u32 classid)
{
return (unsigned long)hfsc_find_class(classid, sch);
}
static unsigned long
hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
{
struct hfsc_class *p = (struct hfsc_class *)parent;
struct hfsc_class *cl = hfsc_find_class(classid, sch);
if (cl != NULL) {
if (p != NULL && p->level <= cl->level)
return 0;
qdisc_class_get(&cl->cl_common);
}
return (unsigned long)cl;
}
static void
hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
qdisc_class_put(&cl->cl_common);
}
static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg,
struct netlink_ext_ack *extack)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl = (struct hfsc_class *)arg;
if (cl == NULL)
cl = &q->root;
return cl->block;
}
static int
hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
{
struct tc_service_curve tsc;
tsc.m1 = sm2m(sc->sm1);
tsc.d = dx2d(sc->dx);
tsc.m2 = sm2m(sc->sm2);
if (nla_put(skb, attr, sizeof(tsc), &tsc))
goto nla_put_failure;
return skb->len;
nla_put_failure:
return -1;
}
static int
hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
{
if ((cl->cl_flags & HFSC_RSC) &&
(hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
goto nla_put_failure;
if ((cl->cl_flags & HFSC_FSC) &&
(hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
goto nla_put_failure;
if ((cl->cl_flags & HFSC_USC) &&
(hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
goto nla_put_failure;
return skb->len;
nla_put_failure:
return -1;
}
static int
hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
struct tcmsg *tcm)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
struct nlattr *nest;
tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
TC_H_ROOT;
tcm->tcm_handle = cl->cl_common.classid;
if (cl->level == 0)
tcm->tcm_info = cl->qdisc->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (hfsc_dump_curves(skb, cl) < 0)
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int
hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
struct gnet_dump *d)
{
struct hfsc_class *cl = (struct hfsc_class *)arg;
struct tc_hfsc_stats xstats;
__u32 qlen;
qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog);
xstats.level = cl->level;
xstats.period = cl->cl_vtperiod;
xstats.work = cl->cl_total;
xstats.rtwork = cl->cl_cumul;
if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0)
return -1;
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}
static void
hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl;
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i],
cl_common.hnode) {
if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
return;
}
}
}
static void
hfsc_schedule_watchdog(struct Qdisc *sch)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl;
u64 next_time = 0;
cl = eltree_get_minel(q);
if (cl)
next_time = cl->cl_e;
if (q->root.cl_cfmin != 0) {
if (next_time == 0 || next_time > q->root.cl_cfmin)
next_time = q->root.cl_cfmin;
}
if (next_time)
qdisc_watchdog_schedule(&q->watchdog, next_time);
}
static int
hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct tc_hfsc_qopt *qopt;
int err;
qdisc_watchdog_init(&q->watchdog, sch);
if (!opt || nla_len(opt) < sizeof(*qopt))
return -EINVAL;
qopt = nla_data(opt);
q->defcls = qopt->defcls;
err = qdisc_class_hash_init(&q->clhash);
if (err < 0)
return err;
q->eligible = RB_ROOT;
err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack);
if (err)
return err;
gnet_stats_basic_sync_init(&q->root.bstats);
q->root.cl_common.classid = sch->handle;
q->root.sched = q;
q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
sch->handle, NULL);
if (q->root.qdisc == NULL)
q->root.qdisc = &noop_qdisc;
else
qdisc_hash_add(q->root.qdisc, true);
INIT_LIST_HEAD(&q->root.children);
q->root.vt_tree = RB_ROOT;
q->root.cf_tree = RB_ROOT;
qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
qdisc_class_hash_grow(sch, &q->clhash);
return 0;
}
static int
hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct tc_hfsc_qopt *qopt;
if (nla_len(opt) < sizeof(*qopt))
return -EINVAL;
qopt = nla_data(opt);
sch_tree_lock(sch);
q->defcls = qopt->defcls;
sch_tree_unlock(sch);
return 0;
}
static void
hfsc_reset_class(struct hfsc_class *cl)
{
cl->cl_total = 0;
cl->cl_cumul = 0;
cl->cl_d = 0;
cl->cl_e = 0;
cl->cl_vt = 0;
cl->cl_vtadj = 0;
cl->cl_cvtmin = 0;
cl->cl_cvtoff = 0;
cl->cl_vtperiod = 0;
cl->cl_parentperiod = 0;
cl->cl_f = 0;
cl->cl_myf = 0;
cl->cl_cfmin = 0;
cl->cl_nactive = 0;
cl->vt_tree = RB_ROOT;
cl->cf_tree = RB_ROOT;
qdisc_reset(cl->qdisc);
if (cl->cl_flags & HFSC_RSC)
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
if (cl->cl_flags & HFSC_FSC)
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
if (cl->cl_flags & HFSC_USC)
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
}
static void
hfsc_reset_qdisc(struct Qdisc *sch)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl;
unsigned int i;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
hfsc_reset_class(cl);
}
q->eligible = RB_ROOT;
qdisc_watchdog_cancel(&q->watchdog);
}
static void
hfsc_destroy_qdisc(struct Qdisc *sch)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hlist_node *next;
struct hfsc_class *cl;
unsigned int i;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) {
tcf_block_put(cl->block);
cl->block = NULL;
}
}
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
cl_common.hnode)
hfsc_destroy_class(sch, cl);
}
qdisc_class_hash_destroy(&q->clhash);
qdisc_watchdog_cancel(&q->watchdog);
}
static int
hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
{
struct hfsc_sched *q = qdisc_priv(sch);
unsigned char *b = skb_tail_pointer(skb);
struct tc_hfsc_qopt qopt;
qopt.defcls = q->defcls;
if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
goto nla_put_failure;
return skb->len;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int
hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb);
struct hfsc_class *cl;
int err;
bool first;
cl = hfsc_classify(skb, sch, &err);
if (cl == NULL) {
if (err & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return err;
}
first = !cl->qdisc->q.qlen;
err = qdisc_enqueue(skb, cl->qdisc, to_free);
if (unlikely(err != NET_XMIT_SUCCESS)) {
if (net_xmit_drop_count(err)) {
cl->qstats.drops++;
qdisc_qstats_drop(sch);
}
return err;
}
if (first) {
if (cl->cl_flags & HFSC_RSC)
init_ed(cl, len);
if (cl->cl_flags & HFSC_FSC)
init_vf(cl, len);
/*
* If this is the first packet, isolate the head so an eventual
* head drop before the first dequeue operation has no chance
* to invalidate the deadline.
*/
if (cl->cl_flags & HFSC_RSC)
cl->qdisc->ops->peek(cl->qdisc);
}
sch->qstats.backlog += len;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
static struct sk_buff *
hfsc_dequeue(struct Qdisc *sch)
{
struct hfsc_sched *q = qdisc_priv(sch);
struct hfsc_class *cl;
struct sk_buff *skb;
u64 cur_time;
unsigned int next_len;
int realtime = 0;
if (sch->q.qlen == 0)
return NULL;
cur_time = psched_get_time();
/*
* if there are eligible classes, use real-time criteria.
* find the class with the minimum deadline among
* the eligible classes.
*/
cl = eltree_get_mindl(q, cur_time);
if (cl) {
realtime = 1;
} else {
/*
* use link-sharing criteria
* get the class with the minimum vt in the hierarchy
*/
cl = vttree_get_minvt(&q->root, cur_time);
if (cl == NULL) {
qdisc_qstats_overlimit(sch);
hfsc_schedule_watchdog(sch);
return NULL;
}
}
skb = qdisc_dequeue_peeked(cl->qdisc);
if (skb == NULL) {
qdisc_warn_nonwc("HFSC", cl->qdisc);
return NULL;
}
bstats_update(&cl->bstats, skb);
update_vf(cl, qdisc_pkt_len(skb), cur_time);
if (realtime)
cl->cl_cumul += qdisc_pkt_len(skb);
if (cl->cl_flags & HFSC_RSC) {
if (cl->qdisc->q.qlen != 0) {
/* update ed */
next_len = qdisc_peek_len(cl->qdisc);
if (realtime)
update_ed(cl, next_len);
else
update_d(cl, next_len);
} else {
/* the class becomes passive */
eltree_remove(cl);
}
}
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
static const struct Qdisc_class_ops hfsc_class_ops = {
.change = hfsc_change_class,
.delete = hfsc_delete_class,
.graft = hfsc_graft_class,
.leaf = hfsc_class_leaf,
.qlen_notify = hfsc_qlen_notify,
.find = hfsc_search_class,
.bind_tcf = hfsc_bind_tcf,
.unbind_tcf = hfsc_unbind_tcf,
.tcf_block = hfsc_tcf_block,
.dump = hfsc_dump_class,
.dump_stats = hfsc_dump_class_stats,
.walk = hfsc_walk
};
static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
.id = "hfsc",
.init = hfsc_init_qdisc,
.change = hfsc_change_qdisc,
.reset = hfsc_reset_qdisc,
.destroy = hfsc_destroy_qdisc,
.dump = hfsc_dump_qdisc,
.enqueue = hfsc_enqueue,
.dequeue = hfsc_dequeue,
.peek = qdisc_peek_dequeued,
.cl_ops = &hfsc_class_ops,
.priv_size = sizeof(struct hfsc_sched),
.owner = THIS_MODULE
};
static int __init
hfsc_init(void)
{
return register_qdisc(&hfsc_qdisc_ops);
}
static void __exit
hfsc_cleanup(void)
{
unregister_qdisc(&hfsc_qdisc_ops);
}
MODULE_LICENSE("GPL");
module_init(hfsc_init);
module_exit(hfsc_cleanup);
| linux-master | net/sched/sch_hfsc.c |
// SPDX-License-Identifier: GPL-2.0+
/* net/sched/act_ctinfo.c netfilter ctinfo connmark actions
*
* Copyright (c) 2019 Kevin Darbyshire-Bryant <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_cls.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <uapi/linux/tc_act/tc_ctinfo.h>
#include <net/tc_act/tc_ctinfo.h>
#include <net/tc_wrapper.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_ecache.h>
#include <net/netfilter/nf_conntrack_zones.h>
static struct tc_action_ops act_ctinfo_ops;
static void tcf_ctinfo_dscp_set(struct nf_conn *ct, struct tcf_ctinfo *ca,
struct tcf_ctinfo_params *cp,
struct sk_buff *skb, int wlen, int proto)
{
u8 dscp, newdscp;
newdscp = (((READ_ONCE(ct->mark) & cp->dscpmask) >> cp->dscpmaskshift) << 2) &
~INET_ECN_MASK;
switch (proto) {
case NFPROTO_IPV4:
dscp = ipv4_get_dsfield(ip_hdr(skb)) & ~INET_ECN_MASK;
if (dscp != newdscp) {
if (likely(!skb_try_make_writable(skb, wlen))) {
ipv4_change_dsfield(ip_hdr(skb),
INET_ECN_MASK,
newdscp);
ca->stats_dscp_set++;
} else {
ca->stats_dscp_error++;
}
}
break;
case NFPROTO_IPV6:
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & ~INET_ECN_MASK;
if (dscp != newdscp) {
if (likely(!skb_try_make_writable(skb, wlen))) {
ipv6_change_dsfield(ipv6_hdr(skb),
INET_ECN_MASK,
newdscp);
ca->stats_dscp_set++;
} else {
ca->stats_dscp_error++;
}
}
break;
default:
break;
}
}
static void tcf_ctinfo_cpmark_set(struct nf_conn *ct, struct tcf_ctinfo *ca,
struct tcf_ctinfo_params *cp,
struct sk_buff *skb)
{
ca->stats_cpmark_set++;
skb->mark = READ_ONCE(ct->mark) & cp->cpmarkmask;
}
TC_INDIRECT_SCOPE int tcf_ctinfo_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
const struct nf_conntrack_tuple_hash *thash = NULL;
struct tcf_ctinfo *ca = to_ctinfo(a);
struct nf_conntrack_tuple tuple;
struct nf_conntrack_zone zone;
enum ip_conntrack_info ctinfo;
struct tcf_ctinfo_params *cp;
struct nf_conn *ct;
int proto, wlen;
int action;
cp = rcu_dereference_bh(ca->params);
tcf_lastuse_update(&ca->tcf_tm);
tcf_action_update_bstats(&ca->common, skb);
action = READ_ONCE(ca->tcf_action);
wlen = skb_network_offset(skb);
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
wlen += sizeof(struct iphdr);
if (!pskb_may_pull(skb, wlen))
goto out;
proto = NFPROTO_IPV4;
break;
case htons(ETH_P_IPV6):
wlen += sizeof(struct ipv6hdr);
if (!pskb_may_pull(skb, wlen))
goto out;
proto = NFPROTO_IPV6;
break;
default:
goto out;
}
ct = nf_ct_get(skb, &ctinfo);
if (!ct) { /* look harder, usually ingress */
if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
proto, cp->net, &tuple))
goto out;
zone.id = cp->zone;
zone.dir = NF_CT_DEFAULT_ZONE_DIR;
thash = nf_conntrack_find_get(cp->net, &zone, &tuple);
if (!thash)
goto out;
ct = nf_ct_tuplehash_to_ctrack(thash);
}
if (cp->mode & CTINFO_MODE_DSCP)
if (!cp->dscpstatemask || (READ_ONCE(ct->mark) & cp->dscpstatemask))
tcf_ctinfo_dscp_set(ct, ca, cp, skb, wlen, proto);
if (cp->mode & CTINFO_MODE_CPMARK)
tcf_ctinfo_cpmark_set(ct, ca, cp, skb);
if (thash)
nf_ct_put(ct);
out:
return action;
}
static const struct nla_policy ctinfo_policy[TCA_CTINFO_MAX + 1] = {
[TCA_CTINFO_ACT] =
NLA_POLICY_EXACT_LEN(sizeof(struct tc_ctinfo)),
[TCA_CTINFO_ZONE] = { .type = NLA_U16 },
[TCA_CTINFO_PARMS_DSCP_MASK] = { .type = NLA_U32 },
[TCA_CTINFO_PARMS_DSCP_STATEMASK] = { .type = NLA_U32 },
[TCA_CTINFO_PARMS_CPMARK_MASK] = { .type = NLA_U32 },
};
static int tcf_ctinfo_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_ctinfo_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
u32 dscpmask = 0, dscpstatemask, index;
struct nlattr *tb[TCA_CTINFO_MAX + 1];
struct tcf_ctinfo_params *cp_new;
struct tcf_chain *goto_ch = NULL;
struct tc_ctinfo *actparm;
struct tcf_ctinfo *ci;
u8 dscpmaskshift;
int ret = 0, err;
if (!nla) {
NL_SET_ERR_MSG_MOD(extack, "ctinfo requires attributes to be passed");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_CTINFO_MAX, nla, ctinfo_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_CTINFO_ACT]) {
NL_SET_ERR_MSG_MOD(extack,
"Missing required TCA_CTINFO_ACT attribute");
return -EINVAL;
}
actparm = nla_data(tb[TCA_CTINFO_ACT]);
/* do some basic validation here before dynamically allocating things */
/* that we would otherwise have to clean up. */
if (tb[TCA_CTINFO_PARMS_DSCP_MASK]) {
dscpmask = nla_get_u32(tb[TCA_CTINFO_PARMS_DSCP_MASK]);
/* need contiguous 6 bit mask */
dscpmaskshift = dscpmask ? __ffs(dscpmask) : 0;
if ((~0 & (dscpmask >> dscpmaskshift)) != 0x3f) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_CTINFO_PARMS_DSCP_MASK],
"dscp mask must be 6 contiguous bits");
return -EINVAL;
}
dscpstatemask = tb[TCA_CTINFO_PARMS_DSCP_STATEMASK] ?
nla_get_u32(tb[TCA_CTINFO_PARMS_DSCP_STATEMASK]) : 0;
/* mask & statemask must not overlap */
if (dscpmask & dscpstatemask) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_CTINFO_PARMS_DSCP_STATEMASK],
"dscp statemask must not overlap dscp mask");
return -EINVAL;
}
}
/* done the validation:now to the actual action allocation */
index = actparm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_ctinfo_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (err > 0) {
if (bind) /* don't override defaults */
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
} else {
return err;
}
err = tcf_action_check_ctrlact(actparm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
ci = to_ctinfo(*a);
cp_new = kzalloc(sizeof(*cp_new), GFP_KERNEL);
if (unlikely(!cp_new)) {
err = -ENOMEM;
goto put_chain;
}
cp_new->net = net;
cp_new->zone = tb[TCA_CTINFO_ZONE] ?
nla_get_u16(tb[TCA_CTINFO_ZONE]) : 0;
if (dscpmask) {
cp_new->dscpmask = dscpmask;
cp_new->dscpmaskshift = dscpmaskshift;
cp_new->dscpstatemask = dscpstatemask;
cp_new->mode |= CTINFO_MODE_DSCP;
}
if (tb[TCA_CTINFO_PARMS_CPMARK_MASK]) {
cp_new->cpmarkmask =
nla_get_u32(tb[TCA_CTINFO_PARMS_CPMARK_MASK]);
cp_new->mode |= CTINFO_MODE_CPMARK;
}
spin_lock_bh(&ci->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, actparm->action, goto_ch);
cp_new = rcu_replace_pointer(ci->params, cp_new,
lockdep_is_held(&ci->tcf_lock));
spin_unlock_bh(&ci->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (cp_new)
kfree_rcu(cp_new, rcu);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static int tcf_ctinfo_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
struct tcf_ctinfo *ci = to_ctinfo(a);
struct tc_ctinfo opt = {
.index = ci->tcf_index,
.refcnt = refcount_read(&ci->tcf_refcnt) - ref,
.bindcnt = atomic_read(&ci->tcf_bindcnt) - bind,
};
unsigned char *b = skb_tail_pointer(skb);
struct tcf_ctinfo_params *cp;
struct tcf_t t;
spin_lock_bh(&ci->tcf_lock);
cp = rcu_dereference_protected(ci->params,
lockdep_is_held(&ci->tcf_lock));
tcf_tm_dump(&t, &ci->tcf_tm);
if (nla_put_64bit(skb, TCA_CTINFO_TM, sizeof(t), &t, TCA_CTINFO_PAD))
goto nla_put_failure;
opt.action = ci->tcf_action;
if (nla_put(skb, TCA_CTINFO_ACT, sizeof(opt), &opt))
goto nla_put_failure;
if (nla_put_u16(skb, TCA_CTINFO_ZONE, cp->zone))
goto nla_put_failure;
if (cp->mode & CTINFO_MODE_DSCP) {
if (nla_put_u32(skb, TCA_CTINFO_PARMS_DSCP_MASK,
cp->dscpmask))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_CTINFO_PARMS_DSCP_STATEMASK,
cp->dscpstatemask))
goto nla_put_failure;
}
if (cp->mode & CTINFO_MODE_CPMARK) {
if (nla_put_u32(skb, TCA_CTINFO_PARMS_CPMARK_MASK,
cp->cpmarkmask))
goto nla_put_failure;
}
if (nla_put_u64_64bit(skb, TCA_CTINFO_STATS_DSCP_SET,
ci->stats_dscp_set, TCA_CTINFO_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_CTINFO_STATS_DSCP_ERROR,
ci->stats_dscp_error, TCA_CTINFO_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_CTINFO_STATS_CPMARK_SET,
ci->stats_cpmark_set, TCA_CTINFO_PAD))
goto nla_put_failure;
spin_unlock_bh(&ci->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&ci->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_ctinfo_cleanup(struct tc_action *a)
{
struct tcf_ctinfo *ci = to_ctinfo(a);
struct tcf_ctinfo_params *cp;
cp = rcu_dereference_protected(ci->params, 1);
if (cp)
kfree_rcu(cp, rcu);
}
static struct tc_action_ops act_ctinfo_ops = {
.kind = "ctinfo",
.id = TCA_ID_CTINFO,
.owner = THIS_MODULE,
.act = tcf_ctinfo_act,
.dump = tcf_ctinfo_dump,
.init = tcf_ctinfo_init,
.cleanup= tcf_ctinfo_cleanup,
.size = sizeof(struct tcf_ctinfo),
};
static __net_init int ctinfo_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_ctinfo_ops.net_id);
return tc_action_net_init(net, tn, &act_ctinfo_ops);
}
static void __net_exit ctinfo_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_ctinfo_ops.net_id);
}
static struct pernet_operations ctinfo_net_ops = {
.init = ctinfo_init_net,
.exit_batch = ctinfo_exit_net,
.id = &act_ctinfo_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init ctinfo_init_module(void)
{
return tcf_register_action(&act_ctinfo_ops, &ctinfo_net_ops);
}
static void __exit ctinfo_cleanup_module(void)
{
tcf_unregister_action(&act_ctinfo_ops, &ctinfo_net_ops);
}
module_init(ctinfo_init_module);
module_exit(ctinfo_cleanup_module);
MODULE_AUTHOR("Kevin Darbyshire-Bryant <[email protected]>");
MODULE_DESCRIPTION("Connection tracking mark actions");
MODULE_LICENSE("GPL");
| linux-master | net/sched/act_ctinfo.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Fair Queue CoDel discipline
*
* Copyright (C) 2012,2015 Eric Dumazet <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/codel.h>
#include <net/codel_impl.h>
#include <net/codel_qdisc.h>
/* Fair Queue CoDel.
*
* Principles :
* Packets are classified (internal classifier or external) on flows.
* This is a Stochastic model (as we use a hash, several flows
* might be hashed on same slot)
* Each flow has a CoDel managed queue.
* Flows are linked onto two (Round Robin) lists,
* so that new flows have priority on old ones.
*
* For a given flow, packets are not reordered (CoDel uses a FIFO)
* head drops only.
* ECN capability is on by default.
* Low memory footprint (64 bytes per flow)
*/
struct fq_codel_flow {
struct sk_buff *head;
struct sk_buff *tail;
struct list_head flowchain;
int deficit;
struct codel_vars cvars;
}; /* please try to keep this structure <= 64 bytes */
struct fq_codel_sched_data {
struct tcf_proto __rcu *filter_list; /* optional external classifier */
struct tcf_block *block;
struct fq_codel_flow *flows; /* Flows table [flows_cnt] */
u32 *backlogs; /* backlog table [flows_cnt] */
u32 flows_cnt; /* number of flows */
u32 quantum; /* psched_mtu(qdisc_dev(sch)); */
u32 drop_batch_size;
u32 memory_limit;
struct codel_params cparams;
struct codel_stats cstats;
u32 memory_usage;
u32 drop_overmemory;
u32 drop_overlimit;
u32 new_flow_count;
struct list_head new_flows; /* list of new flows */
struct list_head old_flows; /* list of old flows */
};
static unsigned int fq_codel_hash(const struct fq_codel_sched_data *q,
struct sk_buff *skb)
{
return reciprocal_scale(skb_get_hash(skb), q->flows_cnt);
}
static unsigned int fq_codel_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct tcf_proto *filter;
struct tcf_result res;
int result;
if (TC_H_MAJ(skb->priority) == sch->handle &&
TC_H_MIN(skb->priority) > 0 &&
TC_H_MIN(skb->priority) <= q->flows_cnt)
return TC_H_MIN(skb->priority);
filter = rcu_dereference_bh(q->filter_list);
if (!filter)
return fq_codel_hash(q, skb) + 1;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
result = tcf_classify(skb, NULL, filter, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return 0;
}
#endif
if (TC_H_MIN(res.classid) <= q->flows_cnt)
return TC_H_MIN(res.classid);
}
return 0;
}
/* helper functions : might be changed when/if skb use a standard list_head */
/* remove one skb from head of slot queue */
static inline struct sk_buff *dequeue_head(struct fq_codel_flow *flow)
{
struct sk_buff *skb = flow->head;
flow->head = skb->next;
skb_mark_not_on_list(skb);
return skb;
}
/* add skb to flow queue (tail add) */
static inline void flow_queue_add(struct fq_codel_flow *flow,
struct sk_buff *skb)
{
if (flow->head == NULL)
flow->head = skb;
else
flow->tail->next = skb;
flow->tail = skb;
skb->next = NULL;
}
static unsigned int fq_codel_drop(struct Qdisc *sch, unsigned int max_packets,
struct sk_buff **to_free)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
unsigned int maxbacklog = 0, idx = 0, i, len;
struct fq_codel_flow *flow;
unsigned int threshold;
unsigned int mem = 0;
/* Queue is full! Find the fat flow and drop packet(s) from it.
* This might sound expensive, but with 1024 flows, we scan
* 4KB of memory, and we dont need to handle a complex tree
* in fast path (packet queue/enqueue) with many cache misses.
* In stress mode, we'll try to drop 64 packets from the flow,
* amortizing this linear lookup to one cache line per drop.
*/
for (i = 0; i < q->flows_cnt; i++) {
if (q->backlogs[i] > maxbacklog) {
maxbacklog = q->backlogs[i];
idx = i;
}
}
/* Our goal is to drop half of this fat flow backlog */
threshold = maxbacklog >> 1;
flow = &q->flows[idx];
len = 0;
i = 0;
do {
skb = dequeue_head(flow);
len += qdisc_pkt_len(skb);
mem += get_codel_cb(skb)->mem_usage;
__qdisc_drop(skb, to_free);
} while (++i < max_packets && len < threshold);
/* Tell codel to increase its signal strength also */
flow->cvars.count += i;
q->backlogs[idx] -= len;
q->memory_usage -= mem;
sch->qstats.drops += i;
sch->qstats.backlog -= len;
sch->q.qlen -= i;
return idx;
}
static int fq_codel_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
unsigned int idx, prev_backlog, prev_qlen;
struct fq_codel_flow *flow;
int ret;
unsigned int pkt_len;
bool memory_limited;
idx = fq_codel_classify(skb, sch, &ret);
if (idx == 0) {
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return ret;
}
idx--;
codel_set_enqueue_time(skb);
flow = &q->flows[idx];
flow_queue_add(flow, skb);
q->backlogs[idx] += qdisc_pkt_len(skb);
qdisc_qstats_backlog_inc(sch, skb);
if (list_empty(&flow->flowchain)) {
list_add_tail(&flow->flowchain, &q->new_flows);
q->new_flow_count++;
flow->deficit = q->quantum;
}
get_codel_cb(skb)->mem_usage = skb->truesize;
q->memory_usage += get_codel_cb(skb)->mem_usage;
memory_limited = q->memory_usage > q->memory_limit;
if (++sch->q.qlen <= sch->limit && !memory_limited)
return NET_XMIT_SUCCESS;
prev_backlog = sch->qstats.backlog;
prev_qlen = sch->q.qlen;
/* save this packet length as it might be dropped by fq_codel_drop() */
pkt_len = qdisc_pkt_len(skb);
/* fq_codel_drop() is quite expensive, as it performs a linear search
* in q->backlogs[] to find a fat flow.
* So instead of dropping a single packet, drop half of its backlog
* with a 64 packets limit to not add a too big cpu spike here.
*/
ret = fq_codel_drop(sch, q->drop_batch_size, to_free);
prev_qlen -= sch->q.qlen;
prev_backlog -= sch->qstats.backlog;
q->drop_overlimit += prev_qlen;
if (memory_limited)
q->drop_overmemory += prev_qlen;
/* As we dropped packet(s), better let upper stack know this.
* If we dropped a packet for this flow, return NET_XMIT_CN,
* but in this case, our parents wont increase their backlogs.
*/
if (ret == idx) {
qdisc_tree_reduce_backlog(sch, prev_qlen - 1,
prev_backlog - pkt_len);
return NET_XMIT_CN;
}
qdisc_tree_reduce_backlog(sch, prev_qlen, prev_backlog);
return NET_XMIT_SUCCESS;
}
/* This is the specific function called from codel_dequeue()
* to dequeue a packet from queue. Note: backlog is handled in
* codel, we dont need to reduce it here.
*/
static struct sk_buff *dequeue_func(struct codel_vars *vars, void *ctx)
{
struct Qdisc *sch = ctx;
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct fq_codel_flow *flow;
struct sk_buff *skb = NULL;
flow = container_of(vars, struct fq_codel_flow, cvars);
if (flow->head) {
skb = dequeue_head(flow);
q->backlogs[flow - q->flows] -= qdisc_pkt_len(skb);
q->memory_usage -= get_codel_cb(skb)->mem_usage;
sch->q.qlen--;
sch->qstats.backlog -= qdisc_pkt_len(skb);
}
return skb;
}
static void drop_func(struct sk_buff *skb, void *ctx)
{
struct Qdisc *sch = ctx;
kfree_skb(skb);
qdisc_qstats_drop(sch);
}
static struct sk_buff *fq_codel_dequeue(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
struct fq_codel_flow *flow;
struct list_head *head;
begin:
head = &q->new_flows;
if (list_empty(head)) {
head = &q->old_flows;
if (list_empty(head))
return NULL;
}
flow = list_first_entry(head, struct fq_codel_flow, flowchain);
if (flow->deficit <= 0) {
flow->deficit += q->quantum;
list_move_tail(&flow->flowchain, &q->old_flows);
goto begin;
}
skb = codel_dequeue(sch, &sch->qstats.backlog, &q->cparams,
&flow->cvars, &q->cstats, qdisc_pkt_len,
codel_get_enqueue_time, drop_func, dequeue_func);
if (!skb) {
/* force a pass through old_flows to prevent starvation */
if ((head == &q->new_flows) && !list_empty(&q->old_flows))
list_move_tail(&flow->flowchain, &q->old_flows);
else
list_del_init(&flow->flowchain);
goto begin;
}
qdisc_bstats_update(sch, skb);
flow->deficit -= qdisc_pkt_len(skb);
/* We cant call qdisc_tree_reduce_backlog() if our qlen is 0,
* or HTB crashes. Defer it for next round.
*/
if (q->cstats.drop_count && sch->q.qlen) {
qdisc_tree_reduce_backlog(sch, q->cstats.drop_count,
q->cstats.drop_len);
q->cstats.drop_count = 0;
q->cstats.drop_len = 0;
}
return skb;
}
static void fq_codel_flow_purge(struct fq_codel_flow *flow)
{
rtnl_kfree_skbs(flow->head, flow->tail);
flow->head = NULL;
}
static void fq_codel_reset(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
int i;
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
for (i = 0; i < q->flows_cnt; i++) {
struct fq_codel_flow *flow = q->flows + i;
fq_codel_flow_purge(flow);
INIT_LIST_HEAD(&flow->flowchain);
codel_vars_init(&flow->cvars);
}
memset(q->backlogs, 0, q->flows_cnt * sizeof(u32));
q->memory_usage = 0;
}
static const struct nla_policy fq_codel_policy[TCA_FQ_CODEL_MAX + 1] = {
[TCA_FQ_CODEL_TARGET] = { .type = NLA_U32 },
[TCA_FQ_CODEL_LIMIT] = { .type = NLA_U32 },
[TCA_FQ_CODEL_INTERVAL] = { .type = NLA_U32 },
[TCA_FQ_CODEL_ECN] = { .type = NLA_U32 },
[TCA_FQ_CODEL_FLOWS] = { .type = NLA_U32 },
[TCA_FQ_CODEL_QUANTUM] = { .type = NLA_U32 },
[TCA_FQ_CODEL_CE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_CODEL_DROP_BATCH_SIZE] = { .type = NLA_U32 },
[TCA_FQ_CODEL_MEMORY_LIMIT] = { .type = NLA_U32 },
[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR] = { .type = NLA_U8 },
[TCA_FQ_CODEL_CE_THRESHOLD_MASK] = { .type = NLA_U8 },
};
static int fq_codel_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_FQ_CODEL_MAX + 1];
u32 quantum = 0;
int err;
err = nla_parse_nested_deprecated(tb, TCA_FQ_CODEL_MAX, opt,
fq_codel_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_FQ_CODEL_FLOWS]) {
if (q->flows)
return -EINVAL;
q->flows_cnt = nla_get_u32(tb[TCA_FQ_CODEL_FLOWS]);
if (!q->flows_cnt ||
q->flows_cnt > 65536)
return -EINVAL;
}
if (tb[TCA_FQ_CODEL_QUANTUM]) {
quantum = max(256U, nla_get_u32(tb[TCA_FQ_CODEL_QUANTUM]));
if (quantum > FQ_CODEL_QUANTUM_MAX) {
NL_SET_ERR_MSG(extack, "Invalid quantum");
return -EINVAL;
}
}
sch_tree_lock(sch);
if (tb[TCA_FQ_CODEL_TARGET]) {
u64 target = nla_get_u32(tb[TCA_FQ_CODEL_TARGET]);
q->cparams.target = (target * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_CE_THRESHOLD]) {
u64 val = nla_get_u32(tb[TCA_FQ_CODEL_CE_THRESHOLD]);
q->cparams.ce_threshold = (val * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR])
q->cparams.ce_threshold_selector = nla_get_u8(tb[TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR]);
if (tb[TCA_FQ_CODEL_CE_THRESHOLD_MASK])
q->cparams.ce_threshold_mask = nla_get_u8(tb[TCA_FQ_CODEL_CE_THRESHOLD_MASK]);
if (tb[TCA_FQ_CODEL_INTERVAL]) {
u64 interval = nla_get_u32(tb[TCA_FQ_CODEL_INTERVAL]);
q->cparams.interval = (interval * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_FQ_CODEL_LIMIT])
sch->limit = nla_get_u32(tb[TCA_FQ_CODEL_LIMIT]);
if (tb[TCA_FQ_CODEL_ECN])
q->cparams.ecn = !!nla_get_u32(tb[TCA_FQ_CODEL_ECN]);
if (quantum)
q->quantum = quantum;
if (tb[TCA_FQ_CODEL_DROP_BATCH_SIZE])
q->drop_batch_size = max(1U, nla_get_u32(tb[TCA_FQ_CODEL_DROP_BATCH_SIZE]));
if (tb[TCA_FQ_CODEL_MEMORY_LIMIT])
q->memory_limit = min(1U << 31, nla_get_u32(tb[TCA_FQ_CODEL_MEMORY_LIMIT]));
while (sch->q.qlen > sch->limit ||
q->memory_usage > q->memory_limit) {
struct sk_buff *skb = fq_codel_dequeue(sch);
q->cstats.drop_len += qdisc_pkt_len(skb);
rtnl_kfree_skbs(skb, skb);
q->cstats.drop_count++;
}
qdisc_tree_reduce_backlog(sch, q->cstats.drop_count, q->cstats.drop_len);
q->cstats.drop_count = 0;
q->cstats.drop_len = 0;
sch_tree_unlock(sch);
return 0;
}
static void fq_codel_destroy(struct Qdisc *sch)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
kvfree(q->backlogs);
kvfree(q->flows);
}
static int fq_codel_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
int i;
int err;
sch->limit = 10*1024;
q->flows_cnt = 1024;
q->memory_limit = 32 << 20; /* 32 MBytes */
q->drop_batch_size = 64;
q->quantum = psched_mtu(qdisc_dev(sch));
INIT_LIST_HEAD(&q->new_flows);
INIT_LIST_HEAD(&q->old_flows);
codel_params_init(&q->cparams);
codel_stats_init(&q->cstats);
q->cparams.ecn = true;
q->cparams.mtu = psched_mtu(qdisc_dev(sch));
if (opt) {
err = fq_codel_change(sch, opt, extack);
if (err)
goto init_failure;
}
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
goto init_failure;
if (!q->flows) {
q->flows = kvcalloc(q->flows_cnt,
sizeof(struct fq_codel_flow),
GFP_KERNEL);
if (!q->flows) {
err = -ENOMEM;
goto init_failure;
}
q->backlogs = kvcalloc(q->flows_cnt, sizeof(u32), GFP_KERNEL);
if (!q->backlogs) {
err = -ENOMEM;
goto alloc_failure;
}
for (i = 0; i < q->flows_cnt; i++) {
struct fq_codel_flow *flow = q->flows + i;
INIT_LIST_HEAD(&flow->flowchain);
codel_vars_init(&flow->cvars);
}
}
if (sch->limit >= 1)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
alloc_failure:
kvfree(q->flows);
q->flows = NULL;
init_failure:
q->flows_cnt = 0;
return err;
}
static int fq_codel_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_FQ_CODEL_TARGET,
codel_time_to_us(q->cparams.target)) ||
nla_put_u32(skb, TCA_FQ_CODEL_LIMIT,
sch->limit) ||
nla_put_u32(skb, TCA_FQ_CODEL_INTERVAL,
codel_time_to_us(q->cparams.interval)) ||
nla_put_u32(skb, TCA_FQ_CODEL_ECN,
q->cparams.ecn) ||
nla_put_u32(skb, TCA_FQ_CODEL_QUANTUM,
q->quantum) ||
nla_put_u32(skb, TCA_FQ_CODEL_DROP_BATCH_SIZE,
q->drop_batch_size) ||
nla_put_u32(skb, TCA_FQ_CODEL_MEMORY_LIMIT,
q->memory_limit) ||
nla_put_u32(skb, TCA_FQ_CODEL_FLOWS,
q->flows_cnt))
goto nla_put_failure;
if (q->cparams.ce_threshold != CODEL_DISABLED_THRESHOLD) {
if (nla_put_u32(skb, TCA_FQ_CODEL_CE_THRESHOLD,
codel_time_to_us(q->cparams.ce_threshold)))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FQ_CODEL_CE_THRESHOLD_SELECTOR, q->cparams.ce_threshold_selector))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FQ_CODEL_CE_THRESHOLD_MASK, q->cparams.ce_threshold_mask))
goto nla_put_failure;
}
return nla_nest_end(skb, opts);
nla_put_failure:
return -1;
}
static int fq_codel_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
struct tc_fq_codel_xstats st = {
.type = TCA_FQ_CODEL_XSTATS_QDISC,
};
struct list_head *pos;
st.qdisc_stats.maxpacket = q->cstats.maxpacket;
st.qdisc_stats.drop_overlimit = q->drop_overlimit;
st.qdisc_stats.ecn_mark = q->cstats.ecn_mark;
st.qdisc_stats.new_flow_count = q->new_flow_count;
st.qdisc_stats.ce_mark = q->cstats.ce_mark;
st.qdisc_stats.memory_usage = q->memory_usage;
st.qdisc_stats.drop_overmemory = q->drop_overmemory;
sch_tree_lock(sch);
list_for_each(pos, &q->new_flows)
st.qdisc_stats.new_flows_len++;
list_for_each(pos, &q->old_flows)
st.qdisc_stats.old_flows_len++;
sch_tree_unlock(sch);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct Qdisc *fq_codel_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long fq_codel_find(struct Qdisc *sch, u32 classid)
{
return 0;
}
static unsigned long fq_codel_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return 0;
}
static void fq_codel_unbind(struct Qdisc *q, unsigned long cl)
{
}
static struct tcf_block *fq_codel_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static int fq_codel_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int fq_codel_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
u32 idx = cl - 1;
struct gnet_stats_queue qs = { 0 };
struct tc_fq_codel_xstats xstats;
if (idx < q->flows_cnt) {
const struct fq_codel_flow *flow = &q->flows[idx];
const struct sk_buff *skb;
memset(&xstats, 0, sizeof(xstats));
xstats.type = TCA_FQ_CODEL_XSTATS_CLASS;
xstats.class_stats.deficit = flow->deficit;
xstats.class_stats.ldelay =
codel_time_to_us(flow->cvars.ldelay);
xstats.class_stats.count = flow->cvars.count;
xstats.class_stats.lastcount = flow->cvars.lastcount;
xstats.class_stats.dropping = flow->cvars.dropping;
if (flow->cvars.dropping) {
codel_tdiff_t delta = flow->cvars.drop_next -
codel_get_time();
xstats.class_stats.drop_next = (delta >= 0) ?
codel_time_to_us(delta) :
-codel_time_to_us(-delta);
}
if (flow->head) {
sch_tree_lock(sch);
skb = flow->head;
while (skb) {
qs.qlen++;
skb = skb->next;
}
sch_tree_unlock(sch);
}
qs.backlog = q->backlogs[idx];
qs.drops = 0;
}
if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
return -1;
if (idx < q->flows_cnt)
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
return 0;
}
static void fq_codel_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct fq_codel_sched_data *q = qdisc_priv(sch);
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->flows_cnt; i++) {
if (list_empty(&q->flows[i].flowchain)) {
arg->count++;
continue;
}
if (!tc_qdisc_stats_dump(sch, i + 1, arg))
break;
}
}
static const struct Qdisc_class_ops fq_codel_class_ops = {
.leaf = fq_codel_leaf,
.find = fq_codel_find,
.tcf_block = fq_codel_tcf_block,
.bind_tcf = fq_codel_bind,
.unbind_tcf = fq_codel_unbind,
.dump = fq_codel_dump_class,
.dump_stats = fq_codel_dump_class_stats,
.walk = fq_codel_walk,
};
static struct Qdisc_ops fq_codel_qdisc_ops __read_mostly = {
.cl_ops = &fq_codel_class_ops,
.id = "fq_codel",
.priv_size = sizeof(struct fq_codel_sched_data),
.enqueue = fq_codel_enqueue,
.dequeue = fq_codel_dequeue,
.peek = qdisc_peek_dequeued,
.init = fq_codel_init,
.reset = fq_codel_reset,
.destroy = fq_codel_destroy,
.change = fq_codel_change,
.dump = fq_codel_dump,
.dump_stats = fq_codel_dump_stats,
.owner = THIS_MODULE,
};
static int __init fq_codel_module_init(void)
{
return register_qdisc(&fq_codel_qdisc_ops);
}
static void __exit fq_codel_module_exit(void)
{
unregister_qdisc(&fq_codel_qdisc_ops);
}
module_init(fq_codel_module_init)
module_exit(fq_codel_module_exit)
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fair Queue CoDel discipline");
| linux-master | net/sched/sch_fq_codel.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/ife.c Inter-FE action based on ForCES WG InterFE LFB
*
* Refer to:
* draft-ietf-forces-interfelfb-03
* and
* netdev01 paper:
* "Distributing Linux Traffic Control Classifier-Action
* Subsystem"
* Authors: Jamal Hadi Salim and Damascene M. Joachimpillai
*
* copyright Jamal Hadi Salim (2015)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <net/net_namespace.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <uapi/linux/tc_act/tc_ife.h>
#include <net/tc_act/tc_ife.h>
#include <linux/etherdevice.h>
#include <net/ife.h>
#include <net/tc_wrapper.h>
static int max_metacnt = IFE_META_MAX + 1;
static struct tc_action_ops act_ife_ops;
static const struct nla_policy ife_policy[TCA_IFE_MAX + 1] = {
[TCA_IFE_PARMS] = { .len = sizeof(struct tc_ife)},
[TCA_IFE_DMAC] = { .len = ETH_ALEN},
[TCA_IFE_SMAC] = { .len = ETH_ALEN},
[TCA_IFE_TYPE] = { .type = NLA_U16},
};
int ife_encode_meta_u16(u16 metaval, void *skbdata, struct tcf_meta_info *mi)
{
u16 edata = 0;
if (mi->metaval)
edata = *(u16 *)mi->metaval;
else if (metaval)
edata = metaval;
if (!edata) /* will not encode */
return 0;
edata = htons(edata);
return ife_tlv_meta_encode(skbdata, mi->metaid, 2, &edata);
}
EXPORT_SYMBOL_GPL(ife_encode_meta_u16);
int ife_get_meta_u32(struct sk_buff *skb, struct tcf_meta_info *mi)
{
if (mi->metaval)
return nla_put_u32(skb, mi->metaid, *(u32 *)mi->metaval);
else
return nla_put(skb, mi->metaid, 0, NULL);
}
EXPORT_SYMBOL_GPL(ife_get_meta_u32);
int ife_check_meta_u32(u32 metaval, struct tcf_meta_info *mi)
{
if (metaval || mi->metaval)
return 8; /* T+L+V == 2+2+4 */
return 0;
}
EXPORT_SYMBOL_GPL(ife_check_meta_u32);
int ife_check_meta_u16(u16 metaval, struct tcf_meta_info *mi)
{
if (metaval || mi->metaval)
return 8; /* T+L+(V) == 2+2+(2+2bytepad) */
return 0;
}
EXPORT_SYMBOL_GPL(ife_check_meta_u16);
int ife_encode_meta_u32(u32 metaval, void *skbdata, struct tcf_meta_info *mi)
{
u32 edata = metaval;
if (mi->metaval)
edata = *(u32 *)mi->metaval;
else if (metaval)
edata = metaval;
if (!edata) /* will not encode */
return 0;
edata = htonl(edata);
return ife_tlv_meta_encode(skbdata, mi->metaid, 4, &edata);
}
EXPORT_SYMBOL_GPL(ife_encode_meta_u32);
int ife_get_meta_u16(struct sk_buff *skb, struct tcf_meta_info *mi)
{
if (mi->metaval)
return nla_put_u16(skb, mi->metaid, *(u16 *)mi->metaval);
else
return nla_put(skb, mi->metaid, 0, NULL);
}
EXPORT_SYMBOL_GPL(ife_get_meta_u16);
int ife_alloc_meta_u32(struct tcf_meta_info *mi, void *metaval, gfp_t gfp)
{
mi->metaval = kmemdup(metaval, sizeof(u32), gfp);
if (!mi->metaval)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(ife_alloc_meta_u32);
int ife_alloc_meta_u16(struct tcf_meta_info *mi, void *metaval, gfp_t gfp)
{
mi->metaval = kmemdup(metaval, sizeof(u16), gfp);
if (!mi->metaval)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(ife_alloc_meta_u16);
void ife_release_meta_gen(struct tcf_meta_info *mi)
{
kfree(mi->metaval);
}
EXPORT_SYMBOL_GPL(ife_release_meta_gen);
int ife_validate_meta_u32(void *val, int len)
{
if (len == sizeof(u32))
return 0;
return -EINVAL;
}
EXPORT_SYMBOL_GPL(ife_validate_meta_u32);
int ife_validate_meta_u16(void *val, int len)
{
/* length will not include padding */
if (len == sizeof(u16))
return 0;
return -EINVAL;
}
EXPORT_SYMBOL_GPL(ife_validate_meta_u16);
static LIST_HEAD(ifeoplist);
static DEFINE_RWLOCK(ife_mod_lock);
static struct tcf_meta_ops *find_ife_oplist(u16 metaid)
{
struct tcf_meta_ops *o;
read_lock(&ife_mod_lock);
list_for_each_entry(o, &ifeoplist, list) {
if (o->metaid == metaid) {
if (!try_module_get(o->owner))
o = NULL;
read_unlock(&ife_mod_lock);
return o;
}
}
read_unlock(&ife_mod_lock);
return NULL;
}
int register_ife_op(struct tcf_meta_ops *mops)
{
struct tcf_meta_ops *m;
if (!mops->metaid || !mops->metatype || !mops->name ||
!mops->check_presence || !mops->encode || !mops->decode ||
!mops->get || !mops->alloc)
return -EINVAL;
write_lock(&ife_mod_lock);
list_for_each_entry(m, &ifeoplist, list) {
if (m->metaid == mops->metaid ||
(strcmp(mops->name, m->name) == 0)) {
write_unlock(&ife_mod_lock);
return -EEXIST;
}
}
if (!mops->release)
mops->release = ife_release_meta_gen;
list_add_tail(&mops->list, &ifeoplist);
write_unlock(&ife_mod_lock);
return 0;
}
EXPORT_SYMBOL_GPL(unregister_ife_op);
int unregister_ife_op(struct tcf_meta_ops *mops)
{
struct tcf_meta_ops *m;
int err = -ENOENT;
write_lock(&ife_mod_lock);
list_for_each_entry(m, &ifeoplist, list) {
if (m->metaid == mops->metaid) {
list_del(&mops->list);
err = 0;
break;
}
}
write_unlock(&ife_mod_lock);
return err;
}
EXPORT_SYMBOL_GPL(register_ife_op);
static int ife_validate_metatype(struct tcf_meta_ops *ops, void *val, int len)
{
int ret = 0;
/* XXX: unfortunately cant use nla_policy at this point
* because a length of 0 is valid in the case of
* "allow". "use" semantics do enforce for proper
* length and i couldve use nla_policy but it makes it hard
* to use it just for that..
*/
if (ops->validate)
return ops->validate(val, len);
if (ops->metatype == NLA_U32)
ret = ife_validate_meta_u32(val, len);
else if (ops->metatype == NLA_U16)
ret = ife_validate_meta_u16(val, len);
return ret;
}
#ifdef CONFIG_MODULES
static const char *ife_meta_id2name(u32 metaid)
{
switch (metaid) {
case IFE_META_SKBMARK:
return "skbmark";
case IFE_META_PRIO:
return "skbprio";
case IFE_META_TCINDEX:
return "tcindex";
default:
return "unknown";
}
}
#endif
/* called when adding new meta information
*/
static int load_metaops_and_vet(u32 metaid, void *val, int len, bool rtnl_held)
{
struct tcf_meta_ops *ops = find_ife_oplist(metaid);
int ret = 0;
if (!ops) {
ret = -ENOENT;
#ifdef CONFIG_MODULES
if (rtnl_held)
rtnl_unlock();
request_module("ife-meta-%s", ife_meta_id2name(metaid));
if (rtnl_held)
rtnl_lock();
ops = find_ife_oplist(metaid);
#endif
}
if (ops) {
ret = 0;
if (len)
ret = ife_validate_metatype(ops, val, len);
module_put(ops->owner);
}
return ret;
}
/* called when adding new meta information
*/
static int __add_metainfo(const struct tcf_meta_ops *ops,
struct tcf_ife_info *ife, u32 metaid, void *metaval,
int len, bool atomic, bool exists)
{
struct tcf_meta_info *mi = NULL;
int ret = 0;
mi = kzalloc(sizeof(*mi), atomic ? GFP_ATOMIC : GFP_KERNEL);
if (!mi)
return -ENOMEM;
mi->metaid = metaid;
mi->ops = ops;
if (len > 0) {
ret = ops->alloc(mi, metaval, atomic ? GFP_ATOMIC : GFP_KERNEL);
if (ret != 0) {
kfree(mi);
return ret;
}
}
if (exists)
spin_lock_bh(&ife->tcf_lock);
list_add_tail(&mi->metalist, &ife->metalist);
if (exists)
spin_unlock_bh(&ife->tcf_lock);
return ret;
}
static int add_metainfo_and_get_ops(const struct tcf_meta_ops *ops,
struct tcf_ife_info *ife, u32 metaid,
bool exists)
{
int ret;
if (!try_module_get(ops->owner))
return -ENOENT;
ret = __add_metainfo(ops, ife, metaid, NULL, 0, true, exists);
if (ret)
module_put(ops->owner);
return ret;
}
static int add_metainfo(struct tcf_ife_info *ife, u32 metaid, void *metaval,
int len, bool exists)
{
const struct tcf_meta_ops *ops = find_ife_oplist(metaid);
int ret;
if (!ops)
return -ENOENT;
ret = __add_metainfo(ops, ife, metaid, metaval, len, false, exists);
if (ret)
/*put back what find_ife_oplist took */
module_put(ops->owner);
return ret;
}
static int use_all_metadata(struct tcf_ife_info *ife, bool exists)
{
struct tcf_meta_ops *o;
int rc = 0;
int installed = 0;
read_lock(&ife_mod_lock);
list_for_each_entry(o, &ifeoplist, list) {
rc = add_metainfo_and_get_ops(o, ife, o->metaid, exists);
if (rc == 0)
installed += 1;
}
read_unlock(&ife_mod_lock);
if (installed)
return 0;
else
return -EINVAL;
}
static int dump_metalist(struct sk_buff *skb, struct tcf_ife_info *ife)
{
struct tcf_meta_info *e;
struct nlattr *nest;
unsigned char *b = skb_tail_pointer(skb);
int total_encoded = 0;
/*can only happen on decode */
if (list_empty(&ife->metalist))
return 0;
nest = nla_nest_start_noflag(skb, TCA_IFE_METALST);
if (!nest)
goto out_nlmsg_trim;
list_for_each_entry(e, &ife->metalist, metalist) {
if (!e->ops->get(skb, e))
total_encoded += 1;
}
if (!total_encoded)
goto out_nlmsg_trim;
nla_nest_end(skb, nest);
return 0;
out_nlmsg_trim:
nlmsg_trim(skb, b);
return -1;
}
/* under ife->tcf_lock */
static void _tcf_ife_cleanup(struct tc_action *a)
{
struct tcf_ife_info *ife = to_ife(a);
struct tcf_meta_info *e, *n;
list_for_each_entry_safe(e, n, &ife->metalist, metalist) {
list_del(&e->metalist);
if (e->metaval) {
if (e->ops->release)
e->ops->release(e);
else
kfree(e->metaval);
}
module_put(e->ops->owner);
kfree(e);
}
}
static void tcf_ife_cleanup(struct tc_action *a)
{
struct tcf_ife_info *ife = to_ife(a);
struct tcf_ife_params *p;
spin_lock_bh(&ife->tcf_lock);
_tcf_ife_cleanup(a);
spin_unlock_bh(&ife->tcf_lock);
p = rcu_dereference_protected(ife->params, 1);
if (p)
kfree_rcu(p, rcu);
}
static int load_metalist(struct nlattr **tb, bool rtnl_held)
{
int i;
for (i = 1; i < max_metacnt; i++) {
if (tb[i]) {
void *val = nla_data(tb[i]);
int len = nla_len(tb[i]);
int rc;
rc = load_metaops_and_vet(i, val, len, rtnl_held);
if (rc != 0)
return rc;
}
}
return 0;
}
static int populate_metalist(struct tcf_ife_info *ife, struct nlattr **tb,
bool exists, bool rtnl_held)
{
int len = 0;
int rc = 0;
int i = 0;
void *val;
for (i = 1; i < max_metacnt; i++) {
if (tb[i]) {
val = nla_data(tb[i]);
len = nla_len(tb[i]);
rc = add_metainfo(ife, i, val, len, exists);
if (rc)
return rc;
}
}
return rc;
}
static int tcf_ife_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_ife_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_IFE_MAX + 1];
struct nlattr *tb2[IFE_META_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tcf_ife_params *p;
struct tcf_ife_info *ife;
u16 ife_type = ETH_P_IFE;
struct tc_ife *parm;
u8 *daddr = NULL;
u8 *saddr = NULL;
bool exists = false;
int ret = 0;
u32 index;
int err;
if (!nla) {
NL_SET_ERR_MSG_MOD(extack, "IFE requires attributes to be passed");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_IFE_MAX, nla, ife_policy,
NULL);
if (err < 0)
return err;
if (!tb[TCA_IFE_PARMS])
return -EINVAL;
parm = nla_data(tb[TCA_IFE_PARMS]);
/* IFE_DECODE is 0 and indicates the opposite of IFE_ENCODE because
* they cannot run as the same time. Check on all other values which
* are not supported right now.
*/
if (parm->flags & ~IFE_ENCODE)
return -EINVAL;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
if (tb[TCA_IFE_METALST]) {
err = nla_parse_nested_deprecated(tb2, IFE_META_MAX,
tb[TCA_IFE_METALST], NULL,
NULL);
if (err) {
kfree(p);
return err;
}
err = load_metalist(tb2, !(flags & TCA_ACT_FLAGS_NO_RTNL));
if (err) {
kfree(p);
return err;
}
}
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0) {
kfree(p);
return err;
}
exists = err;
if (exists && bind) {
kfree(p);
return 0;
}
if (!exists) {
ret = tcf_idr_create(tn, index, est, a, &act_ife_ops,
bind, true, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
kfree(p);
return ret;
}
ret = ACT_P_CREATED;
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
kfree(p);
return -EEXIST;
}
ife = to_ife(*a);
if (ret == ACT_P_CREATED)
INIT_LIST_HEAD(&ife->metalist);
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
p->flags = parm->flags;
if (parm->flags & IFE_ENCODE) {
if (tb[TCA_IFE_TYPE])
ife_type = nla_get_u16(tb[TCA_IFE_TYPE]);
if (tb[TCA_IFE_DMAC])
daddr = nla_data(tb[TCA_IFE_DMAC]);
if (tb[TCA_IFE_SMAC])
saddr = nla_data(tb[TCA_IFE_SMAC]);
}
if (parm->flags & IFE_ENCODE) {
if (daddr)
ether_addr_copy(p->eth_dst, daddr);
else
eth_zero_addr(p->eth_dst);
if (saddr)
ether_addr_copy(p->eth_src, saddr);
else
eth_zero_addr(p->eth_src);
p->eth_type = ife_type;
}
if (tb[TCA_IFE_METALST]) {
err = populate_metalist(ife, tb2, exists,
!(flags & TCA_ACT_FLAGS_NO_RTNL));
if (err)
goto metadata_parse_err;
} else {
/* if no passed metadata allow list or passed allow-all
* then here we process by adding as many supported metadatum
* as we can. You better have at least one else we are
* going to bail out
*/
err = use_all_metadata(ife, exists);
if (err)
goto metadata_parse_err;
}
if (exists)
spin_lock_bh(&ife->tcf_lock);
/* protected by tcf_lock when modifying existing action */
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
p = rcu_replace_pointer(ife->params, p, 1);
if (exists)
spin_unlock_bh(&ife->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (p)
kfree_rcu(p, rcu);
return ret;
metadata_parse_err:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
kfree(p);
tcf_idr_release(*a, bind);
return err;
}
static int tcf_ife_dump(struct sk_buff *skb, struct tc_action *a, int bind,
int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_ife_info *ife = to_ife(a);
struct tcf_ife_params *p;
struct tc_ife opt = {
.index = ife->tcf_index,
.refcnt = refcount_read(&ife->tcf_refcnt) - ref,
.bindcnt = atomic_read(&ife->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&ife->tcf_lock);
opt.action = ife->tcf_action;
p = rcu_dereference_protected(ife->params,
lockdep_is_held(&ife->tcf_lock));
opt.flags = p->flags;
if (nla_put(skb, TCA_IFE_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &ife->tcf_tm);
if (nla_put_64bit(skb, TCA_IFE_TM, sizeof(t), &t, TCA_IFE_PAD))
goto nla_put_failure;
if (!is_zero_ether_addr(p->eth_dst)) {
if (nla_put(skb, TCA_IFE_DMAC, ETH_ALEN, p->eth_dst))
goto nla_put_failure;
}
if (!is_zero_ether_addr(p->eth_src)) {
if (nla_put(skb, TCA_IFE_SMAC, ETH_ALEN, p->eth_src))
goto nla_put_failure;
}
if (nla_put(skb, TCA_IFE_TYPE, 2, &p->eth_type))
goto nla_put_failure;
if (dump_metalist(skb, ife)) {
/*ignore failure to dump metalist */
pr_info("Failed to dump metalist\n");
}
spin_unlock_bh(&ife->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&ife->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static int find_decode_metaid(struct sk_buff *skb, struct tcf_ife_info *ife,
u16 metaid, u16 mlen, void *mdata)
{
struct tcf_meta_info *e;
/* XXX: use hash to speed up */
list_for_each_entry(e, &ife->metalist, metalist) {
if (metaid == e->metaid) {
if (e->ops) {
/* We check for decode presence already */
return e->ops->decode(skb, mdata, mlen);
}
}
}
return -ENOENT;
}
static int tcf_ife_decode(struct sk_buff *skb, const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_ife_info *ife = to_ife(a);
int action = ife->tcf_action;
u8 *ifehdr_end;
u8 *tlv_data;
u16 metalen;
bstats_update(this_cpu_ptr(ife->common.cpu_bstats), skb);
tcf_lastuse_update(&ife->tcf_tm);
if (skb_at_tc_ingress(skb))
skb_push(skb, skb->dev->hard_header_len);
tlv_data = ife_decode(skb, &metalen);
if (unlikely(!tlv_data)) {
qstats_drop_inc(this_cpu_ptr(ife->common.cpu_qstats));
return TC_ACT_SHOT;
}
ifehdr_end = tlv_data + metalen;
for (; tlv_data < ifehdr_end; tlv_data = ife_tlv_meta_next(tlv_data)) {
u8 *curr_data;
u16 mtype;
u16 dlen;
curr_data = ife_tlv_meta_decode(tlv_data, ifehdr_end, &mtype,
&dlen, NULL);
if (!curr_data) {
qstats_drop_inc(this_cpu_ptr(ife->common.cpu_qstats));
return TC_ACT_SHOT;
}
if (find_decode_metaid(skb, ife, mtype, dlen, curr_data)) {
/* abuse overlimits to count when we receive metadata
* but dont have an ops for it
*/
pr_info_ratelimited("Unknown metaid %d dlen %d\n",
mtype, dlen);
qstats_overlimit_inc(this_cpu_ptr(ife->common.cpu_qstats));
}
}
if (WARN_ON(tlv_data != ifehdr_end)) {
qstats_drop_inc(this_cpu_ptr(ife->common.cpu_qstats));
return TC_ACT_SHOT;
}
skb->protocol = eth_type_trans(skb, skb->dev);
skb_reset_network_header(skb);
return action;
}
/*XXX: check if we can do this at install time instead of current
* send data path
**/
static int ife_get_sz(struct sk_buff *skb, struct tcf_ife_info *ife)
{
struct tcf_meta_info *e, *n;
int tot_run_sz = 0, run_sz = 0;
list_for_each_entry_safe(e, n, &ife->metalist, metalist) {
if (e->ops->check_presence) {
run_sz = e->ops->check_presence(skb, e);
tot_run_sz += run_sz;
}
}
return tot_run_sz;
}
static int tcf_ife_encode(struct sk_buff *skb, const struct tc_action *a,
struct tcf_result *res, struct tcf_ife_params *p)
{
struct tcf_ife_info *ife = to_ife(a);
int action = ife->tcf_action;
struct ethhdr *oethh; /* outer ether header */
struct tcf_meta_info *e;
/*
OUTERHDR:TOTMETALEN:{TLVHDR:Metadatum:TLVHDR..}:ORIGDATA
where ORIGDATA = original ethernet header ...
*/
u16 metalen = ife_get_sz(skb, ife);
int hdrm = metalen + skb->dev->hard_header_len + IFE_METAHDRLEN;
unsigned int skboff = 0;
int new_len = skb->len + hdrm;
bool exceed_mtu = false;
void *ife_meta;
int err = 0;
if (!skb_at_tc_ingress(skb)) {
if (new_len > skb->dev->mtu)
exceed_mtu = true;
}
bstats_update(this_cpu_ptr(ife->common.cpu_bstats), skb);
tcf_lastuse_update(&ife->tcf_tm);
if (!metalen) { /* no metadata to send */
/* abuse overlimits to count when we allow packet
* with no metadata
*/
qstats_overlimit_inc(this_cpu_ptr(ife->common.cpu_qstats));
return action;
}
/* could be stupid policy setup or mtu config
* so lets be conservative.. */
if ((action == TC_ACT_SHOT) || exceed_mtu) {
qstats_drop_inc(this_cpu_ptr(ife->common.cpu_qstats));
return TC_ACT_SHOT;
}
if (skb_at_tc_ingress(skb))
skb_push(skb, skb->dev->hard_header_len);
ife_meta = ife_encode(skb, metalen);
spin_lock(&ife->tcf_lock);
/* XXX: we dont have a clever way of telling encode to
* not repeat some of the computations that are done by
* ops->presence_check...
*/
list_for_each_entry(e, &ife->metalist, metalist) {
if (e->ops->encode) {
err = e->ops->encode(skb, (void *)(ife_meta + skboff),
e);
}
if (err < 0) {
/* too corrupt to keep around if overwritten */
spin_unlock(&ife->tcf_lock);
qstats_drop_inc(this_cpu_ptr(ife->common.cpu_qstats));
return TC_ACT_SHOT;
}
skboff += err;
}
spin_unlock(&ife->tcf_lock);
oethh = (struct ethhdr *)skb->data;
if (!is_zero_ether_addr(p->eth_src))
ether_addr_copy(oethh->h_source, p->eth_src);
if (!is_zero_ether_addr(p->eth_dst))
ether_addr_copy(oethh->h_dest, p->eth_dst);
oethh->h_proto = htons(p->eth_type);
if (skb_at_tc_ingress(skb))
skb_pull(skb, skb->dev->hard_header_len);
return action;
}
TC_INDIRECT_SCOPE int tcf_ife_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_ife_info *ife = to_ife(a);
struct tcf_ife_params *p;
int ret;
p = rcu_dereference_bh(ife->params);
if (p->flags & IFE_ENCODE) {
ret = tcf_ife_encode(skb, a, res, p);
return ret;
}
return tcf_ife_decode(skb, a, res);
}
static struct tc_action_ops act_ife_ops = {
.kind = "ife",
.id = TCA_ID_IFE,
.owner = THIS_MODULE,
.act = tcf_ife_act,
.dump = tcf_ife_dump,
.cleanup = tcf_ife_cleanup,
.init = tcf_ife_init,
.size = sizeof(struct tcf_ife_info),
};
static __net_init int ife_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_ife_ops.net_id);
return tc_action_net_init(net, tn, &act_ife_ops);
}
static void __net_exit ife_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_ife_ops.net_id);
}
static struct pernet_operations ife_net_ops = {
.init = ife_init_net,
.exit_batch = ife_exit_net,
.id = &act_ife_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init ife_init_module(void)
{
return tcf_register_action(&act_ife_ops, &ife_net_ops);
}
static void __exit ife_cleanup_module(void)
{
tcf_unregister_action(&act_ife_ops, &ife_net_ops);
}
module_init(ife_init_module);
module_exit(ife_cleanup_module);
MODULE_AUTHOR("Jamal Hadi Salim(2015)");
MODULE_DESCRIPTION("Inter-FE LFB action");
MODULE_LICENSE("GPL");
| linux-master | net/sched/act_ife.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_api.c Packet action API.
*
* Author: Jamal Hadi Salim
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/err.h>
#include <linux/module.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_pedit.h>
#include <net/act_api.h>
#include <net/netlink.h>
#include <net/flow_offload.h>
#include <net/tc_wrapper.h>
#ifdef CONFIG_INET
DEFINE_STATIC_KEY_FALSE(tcf_frag_xmit_count);
EXPORT_SYMBOL_GPL(tcf_frag_xmit_count);
#endif
int tcf_dev_queue_xmit(struct sk_buff *skb, int (*xmit)(struct sk_buff *skb))
{
#ifdef CONFIG_INET
if (static_branch_unlikely(&tcf_frag_xmit_count))
return sch_frag_xmit_hook(skb, xmit);
#endif
return xmit(skb);
}
EXPORT_SYMBOL_GPL(tcf_dev_queue_xmit);
static void tcf_action_goto_chain_exec(const struct tc_action *a,
struct tcf_result *res)
{
const struct tcf_chain *chain = rcu_dereference_bh(a->goto_chain);
res->goto_tp = rcu_dereference_bh(chain->filter_chain);
}
static void tcf_free_cookie_rcu(struct rcu_head *p)
{
struct tc_cookie *cookie = container_of(p, struct tc_cookie, rcu);
kfree(cookie->data);
kfree(cookie);
}
static void tcf_set_action_cookie(struct tc_cookie __rcu **old_cookie,
struct tc_cookie *new_cookie)
{
struct tc_cookie *old;
old = xchg((__force struct tc_cookie **)old_cookie, new_cookie);
if (old)
call_rcu(&old->rcu, tcf_free_cookie_rcu);
}
int tcf_action_check_ctrlact(int action, struct tcf_proto *tp,
struct tcf_chain **newchain,
struct netlink_ext_ack *extack)
{
int opcode = TC_ACT_EXT_OPCODE(action), ret = -EINVAL;
u32 chain_index;
if (!opcode)
ret = action > TC_ACT_VALUE_MAX ? -EINVAL : 0;
else if (opcode <= TC_ACT_EXT_OPCODE_MAX || action == TC_ACT_UNSPEC)
ret = 0;
if (ret) {
NL_SET_ERR_MSG(extack, "invalid control action");
goto end;
}
if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN)) {
chain_index = action & TC_ACT_EXT_VAL_MASK;
if (!tp || !newchain) {
ret = -EINVAL;
NL_SET_ERR_MSG(extack,
"can't goto NULL proto/chain");
goto end;
}
*newchain = tcf_chain_get_by_act(tp->chain->block, chain_index);
if (!*newchain) {
ret = -ENOMEM;
NL_SET_ERR_MSG(extack,
"can't allocate goto_chain");
}
}
end:
return ret;
}
EXPORT_SYMBOL(tcf_action_check_ctrlact);
struct tcf_chain *tcf_action_set_ctrlact(struct tc_action *a, int action,
struct tcf_chain *goto_chain)
{
a->tcfa_action = action;
goto_chain = rcu_replace_pointer(a->goto_chain, goto_chain, 1);
return goto_chain;
}
EXPORT_SYMBOL(tcf_action_set_ctrlact);
/* XXX: For standalone actions, we don't need a RCU grace period either, because
* actions are always connected to filters and filters are already destroyed in
* RCU callbacks, so after a RCU grace period actions are already disconnected
* from filters. Readers later can not find us.
*/
static void free_tcf(struct tc_action *p)
{
struct tcf_chain *chain = rcu_dereference_protected(p->goto_chain, 1);
free_percpu(p->cpu_bstats);
free_percpu(p->cpu_bstats_hw);
free_percpu(p->cpu_qstats);
tcf_set_action_cookie(&p->user_cookie, NULL);
if (chain)
tcf_chain_put_by_act(chain);
kfree(p);
}
static void offload_action_hw_count_set(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count = hw_count;
}
static void offload_action_hw_count_inc(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count += hw_count;
}
static void offload_action_hw_count_dec(struct tc_action *act,
u32 hw_count)
{
act->in_hw_count = act->in_hw_count > hw_count ?
act->in_hw_count - hw_count : 0;
}
static unsigned int tcf_offload_act_num_actions_single(struct tc_action *act)
{
if (is_tcf_pedit(act))
return tcf_pedit_nkeys(act);
else
return 1;
}
static bool tc_act_skip_hw(u32 flags)
{
return (flags & TCA_ACT_FLAGS_SKIP_HW) ? true : false;
}
static bool tc_act_skip_sw(u32 flags)
{
return (flags & TCA_ACT_FLAGS_SKIP_SW) ? true : false;
}
/* SKIP_HW and SKIP_SW are mutually exclusive flags. */
static bool tc_act_flags_valid(u32 flags)
{
flags &= TCA_ACT_FLAGS_SKIP_HW | TCA_ACT_FLAGS_SKIP_SW;
return flags ^ (TCA_ACT_FLAGS_SKIP_HW | TCA_ACT_FLAGS_SKIP_SW);
}
static int offload_action_init(struct flow_offload_action *fl_action,
struct tc_action *act,
enum offload_act_command cmd,
struct netlink_ext_ack *extack)
{
int err;
fl_action->extack = extack;
fl_action->command = cmd;
fl_action->index = act->tcfa_index;
fl_action->cookie = (unsigned long)act;
if (act->ops->offload_act_setup) {
spin_lock_bh(&act->tcfa_lock);
err = act->ops->offload_act_setup(act, fl_action, NULL,
false, extack);
spin_unlock_bh(&act->tcfa_lock);
return err;
}
return -EOPNOTSUPP;
}
static int tcf_action_offload_cmd_ex(struct flow_offload_action *fl_act,
u32 *hw_count)
{
int err;
err = flow_indr_dev_setup_offload(NULL, NULL, TC_SETUP_ACT,
fl_act, NULL, NULL);
if (err < 0)
return err;
if (hw_count)
*hw_count = err;
return 0;
}
static int tcf_action_offload_cmd_cb_ex(struct flow_offload_action *fl_act,
u32 *hw_count,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
int err;
err = cb(NULL, NULL, cb_priv, TC_SETUP_ACT, NULL, fl_act, NULL);
if (err < 0)
return err;
if (hw_count)
*hw_count = 1;
return 0;
}
static int tcf_action_offload_cmd(struct flow_offload_action *fl_act,
u32 *hw_count,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
return cb ? tcf_action_offload_cmd_cb_ex(fl_act, hw_count,
cb, cb_priv) :
tcf_action_offload_cmd_ex(fl_act, hw_count);
}
static int tcf_action_offload_add_ex(struct tc_action *action,
struct netlink_ext_ack *extack,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
bool skip_sw = tc_act_skip_sw(action->tcfa_flags);
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {
[0] = action,
};
struct flow_offload_action *fl_action;
u32 in_hw_count = 0;
int num, err = 0;
if (tc_act_skip_hw(action->tcfa_flags))
return 0;
num = tcf_offload_act_num_actions_single(action);
fl_action = offload_action_alloc(num);
if (!fl_action)
return -ENOMEM;
err = offload_action_init(fl_action, action, FLOW_ACT_REPLACE, extack);
if (err)
goto fl_err;
err = tc_setup_action(&fl_action->action, actions, 0, extack);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Failed to setup tc actions for offload");
goto fl_err;
}
err = tcf_action_offload_cmd(fl_action, &in_hw_count, cb, cb_priv);
if (!err)
cb ? offload_action_hw_count_inc(action, in_hw_count) :
offload_action_hw_count_set(action, in_hw_count);
if (skip_sw && !tc_act_in_hw(action))
err = -EINVAL;
tc_cleanup_offload_action(&fl_action->action);
fl_err:
kfree(fl_action);
return err;
}
/* offload the tc action after it is inserted */
static int tcf_action_offload_add(struct tc_action *action,
struct netlink_ext_ack *extack)
{
return tcf_action_offload_add_ex(action, extack, NULL, NULL);
}
int tcf_action_update_hw_stats(struct tc_action *action)
{
struct flow_offload_action fl_act = {};
int err;
err = offload_action_init(&fl_act, action, FLOW_ACT_STATS, NULL);
if (err)
return err;
err = tcf_action_offload_cmd(&fl_act, NULL, NULL, NULL);
if (!err) {
preempt_disable();
tcf_action_stats_update(action, fl_act.stats.bytes,
fl_act.stats.pkts,
fl_act.stats.drops,
fl_act.stats.lastused,
true);
preempt_enable();
action->used_hw_stats = fl_act.stats.used_hw_stats;
action->used_hw_stats_valid = true;
} else {
return -EOPNOTSUPP;
}
return 0;
}
EXPORT_SYMBOL(tcf_action_update_hw_stats);
static int tcf_action_offload_del_ex(struct tc_action *action,
flow_indr_block_bind_cb_t *cb,
void *cb_priv)
{
struct flow_offload_action fl_act = {};
u32 in_hw_count = 0;
int err = 0;
if (!tc_act_in_hw(action))
return 0;
err = offload_action_init(&fl_act, action, FLOW_ACT_DESTROY, NULL);
if (err)
return err;
err = tcf_action_offload_cmd(&fl_act, &in_hw_count, cb, cb_priv);
if (err < 0)
return err;
if (!cb && action->in_hw_count != in_hw_count)
return -EINVAL;
/* do not need to update hw state when deleting action */
if (cb && in_hw_count)
offload_action_hw_count_dec(action, in_hw_count);
return 0;
}
static int tcf_action_offload_del(struct tc_action *action)
{
return tcf_action_offload_del_ex(action, NULL, NULL);
}
static void tcf_action_cleanup(struct tc_action *p)
{
tcf_action_offload_del(p);
if (p->ops->cleanup)
p->ops->cleanup(p);
gen_kill_estimator(&p->tcfa_rate_est);
free_tcf(p);
}
static int __tcf_action_put(struct tc_action *p, bool bind)
{
struct tcf_idrinfo *idrinfo = p->idrinfo;
if (refcount_dec_and_mutex_lock(&p->tcfa_refcnt, &idrinfo->lock)) {
if (bind)
atomic_dec(&p->tcfa_bindcnt);
idr_remove(&idrinfo->action_idr, p->tcfa_index);
mutex_unlock(&idrinfo->lock);
tcf_action_cleanup(p);
return 1;
}
if (bind)
atomic_dec(&p->tcfa_bindcnt);
return 0;
}
static int __tcf_idr_release(struct tc_action *p, bool bind, bool strict)
{
int ret = 0;
/* Release with strict==1 and bind==0 is only called through act API
* interface (classifiers always bind). Only case when action with
* positive reference count and zero bind count can exist is when it was
* also created with act API (unbinding last classifier will destroy the
* action if it was created by classifier). So only case when bind count
* can be changed after initial check is when unbound action is
* destroyed by act API while classifier binds to action with same id
* concurrently. This result either creation of new action(same behavior
* as before), or reusing existing action if concurrent process
* increments reference count before action is deleted. Both scenarios
* are acceptable.
*/
if (p) {
if (!bind && strict && atomic_read(&p->tcfa_bindcnt) > 0)
return -EPERM;
if (__tcf_action_put(p, bind))
ret = ACT_P_DELETED;
}
return ret;
}
int tcf_idr_release(struct tc_action *a, bool bind)
{
const struct tc_action_ops *ops = a->ops;
int ret;
ret = __tcf_idr_release(a, bind, false);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
return ret;
}
EXPORT_SYMBOL(tcf_idr_release);
static size_t tcf_action_shared_attrs_size(const struct tc_action *act)
{
struct tc_cookie *user_cookie;
u32 cookie_len = 0;
rcu_read_lock();
user_cookie = rcu_dereference(act->user_cookie);
if (user_cookie)
cookie_len = nla_total_size(user_cookie->len);
rcu_read_unlock();
return nla_total_size(0) /* action number nested */
+ nla_total_size(IFNAMSIZ) /* TCA_ACT_KIND */
+ cookie_len /* TCA_ACT_COOKIE */
+ nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_HW_STATS */
+ nla_total_size(0) /* TCA_ACT_STATS nested */
+ nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_FLAGS */
/* TCA_STATS_BASIC */
+ nla_total_size_64bit(sizeof(struct gnet_stats_basic))
/* TCA_STATS_PKT64 */
+ nla_total_size_64bit(sizeof(u64))
/* TCA_STATS_QUEUE */
+ nla_total_size_64bit(sizeof(struct gnet_stats_queue))
+ nla_total_size(0) /* TCA_ACT_OPTIONS nested */
+ nla_total_size(sizeof(struct tcf_t)); /* TCA_GACT_TM */
}
static size_t tcf_action_full_attrs_size(size_t sz)
{
return NLMSG_HDRLEN /* struct nlmsghdr */
+ sizeof(struct tcamsg)
+ nla_total_size(0) /* TCA_ACT_TAB nested */
+ sz;
}
static size_t tcf_action_fill_size(const struct tc_action *act)
{
size_t sz = tcf_action_shared_attrs_size(act);
if (act->ops->get_fill_size)
return act->ops->get_fill_size(act) + sz;
return sz;
}
static int
tcf_action_dump_terse(struct sk_buff *skb, struct tc_action *a, bool from_act)
{
unsigned char *b = skb_tail_pointer(skb);
struct tc_cookie *cookie;
if (nla_put_string(skb, TCA_ACT_KIND, a->ops->kind))
goto nla_put_failure;
if (tcf_action_copy_stats(skb, a, 0))
goto nla_put_failure;
if (from_act && nla_put_u32(skb, TCA_ACT_INDEX, a->tcfa_index))
goto nla_put_failure;
rcu_read_lock();
cookie = rcu_dereference(a->user_cookie);
if (cookie) {
if (nla_put(skb, TCA_ACT_COOKIE, cookie->len, cookie->data)) {
rcu_read_unlock();
goto nla_put_failure;
}
}
rcu_read_unlock();
return 0;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int tcf_dump_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb,
struct netlink_callback *cb)
{
int err = 0, index = -1, s_i = 0, n_i = 0;
u32 act_flags = cb->args[2];
unsigned long jiffy_since = cb->args[3];
struct nlattr *nest;
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
unsigned long id = 1;
unsigned long tmp;
mutex_lock(&idrinfo->lock);
s_i = cb->args[0];
idr_for_each_entry_ul(idr, p, tmp, id) {
index++;
if (index < s_i)
continue;
if (IS_ERR(p))
continue;
if (jiffy_since &&
time_after(jiffy_since,
(unsigned long)p->tcfa_tm.lastuse))
continue;
tcf_action_update_hw_stats(p);
nest = nla_nest_start_noflag(skb, n_i);
if (!nest) {
index--;
goto nla_put_failure;
}
err = (act_flags & TCA_ACT_FLAG_TERSE_DUMP) ?
tcf_action_dump_terse(skb, p, true) :
tcf_action_dump_1(skb, p, 0, 0);
if (err < 0) {
index--;
nlmsg_trim(skb, nest);
goto done;
}
nla_nest_end(skb, nest);
n_i++;
if (!(act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON) &&
n_i >= TCA_ACT_MAX_PRIO)
goto done;
}
done:
if (index >= 0)
cb->args[0] = index + 1;
mutex_unlock(&idrinfo->lock);
if (n_i) {
if (act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON)
cb->args[1] = n_i;
}
return n_i;
nla_put_failure:
nla_nest_cancel(skb, nest);
goto done;
}
static int tcf_idr_release_unsafe(struct tc_action *p)
{
if (atomic_read(&p->tcfa_bindcnt) > 0)
return -EPERM;
if (refcount_dec_and_test(&p->tcfa_refcnt)) {
idr_remove(&p->idrinfo->action_idr, p->tcfa_index);
tcf_action_cleanup(p);
return ACT_P_DELETED;
}
return 0;
}
static int tcf_del_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct nlattr *nest;
int n_i = 0;
int ret = -EINVAL;
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
unsigned long id = 1;
unsigned long tmp;
nest = nla_nest_start_noflag(skb, 0);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_string(skb, TCA_ACT_KIND, ops->kind))
goto nla_put_failure;
ret = 0;
mutex_lock(&idrinfo->lock);
idr_for_each_entry_ul(idr, p, tmp, id) {
if (IS_ERR(p))
continue;
ret = tcf_idr_release_unsafe(p);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
break;
n_i++;
}
mutex_unlock(&idrinfo->lock);
if (ret < 0) {
if (n_i)
NL_SET_ERR_MSG(extack, "Unable to flush all TC actions");
else
goto nla_put_failure;
}
ret = nla_put_u32(skb, TCA_FCNT, n_i);
if (ret)
goto nla_put_failure;
nla_nest_end(skb, nest);
return n_i;
nla_put_failure:
nla_nest_cancel(skb, nest);
return ret;
}
int tcf_generic_walker(struct tc_action_net *tn, struct sk_buff *skb,
struct netlink_callback *cb, int type,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
if (type == RTM_DELACTION) {
return tcf_del_walker(idrinfo, skb, ops, extack);
} else if (type == RTM_GETACTION) {
return tcf_dump_walker(idrinfo, skb, cb);
} else {
WARN(1, "tcf_generic_walker: unknown command %d\n", type);
NL_SET_ERR_MSG(extack, "tcf_generic_walker: unknown command");
return -EINVAL;
}
}
EXPORT_SYMBOL(tcf_generic_walker);
int tcf_idr_search(struct tc_action_net *tn, struct tc_action **a, u32 index)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
struct tc_action *p;
mutex_lock(&idrinfo->lock);
p = idr_find(&idrinfo->action_idr, index);
if (IS_ERR(p))
p = NULL;
else if (p)
refcount_inc(&p->tcfa_refcnt);
mutex_unlock(&idrinfo->lock);
if (p) {
*a = p;
return true;
}
return false;
}
EXPORT_SYMBOL(tcf_idr_search);
static int __tcf_generic_walker(struct net *net, struct sk_buff *skb,
struct netlink_callback *cb, int type,
const struct tc_action_ops *ops,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, ops->net_id);
if (unlikely(ops->walk))
return ops->walk(net, skb, cb, type, ops, extack);
return tcf_generic_walker(tn, skb, cb, type, ops, extack);
}
static int __tcf_idr_search(struct net *net,
const struct tc_action_ops *ops,
struct tc_action **a, u32 index)
{
struct tc_action_net *tn = net_generic(net, ops->net_id);
if (unlikely(ops->lookup))
return ops->lookup(net, a, index);
return tcf_idr_search(tn, a, index);
}
static int tcf_idr_delete_index(struct tcf_idrinfo *idrinfo, u32 index)
{
struct tc_action *p;
int ret = 0;
mutex_lock(&idrinfo->lock);
p = idr_find(&idrinfo->action_idr, index);
if (!p) {
mutex_unlock(&idrinfo->lock);
return -ENOENT;
}
if (!atomic_read(&p->tcfa_bindcnt)) {
if (refcount_dec_and_test(&p->tcfa_refcnt)) {
struct module *owner = p->ops->owner;
WARN_ON(p != idr_remove(&idrinfo->action_idr,
p->tcfa_index));
mutex_unlock(&idrinfo->lock);
tcf_action_cleanup(p);
module_put(owner);
return 0;
}
ret = 0;
} else {
ret = -EPERM;
}
mutex_unlock(&idrinfo->lock);
return ret;
}
int tcf_idr_create(struct tc_action_net *tn, u32 index, struct nlattr *est,
struct tc_action **a, const struct tc_action_ops *ops,
int bind, bool cpustats, u32 flags)
{
struct tc_action *p = kzalloc(ops->size, GFP_KERNEL);
struct tcf_idrinfo *idrinfo = tn->idrinfo;
int err = -ENOMEM;
if (unlikely(!p))
return -ENOMEM;
refcount_set(&p->tcfa_refcnt, 1);
if (bind)
atomic_set(&p->tcfa_bindcnt, 1);
if (cpustats) {
p->cpu_bstats = netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
if (!p->cpu_bstats)
goto err1;
p->cpu_bstats_hw = netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
if (!p->cpu_bstats_hw)
goto err2;
p->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
if (!p->cpu_qstats)
goto err3;
}
gnet_stats_basic_sync_init(&p->tcfa_bstats);
gnet_stats_basic_sync_init(&p->tcfa_bstats_hw);
spin_lock_init(&p->tcfa_lock);
p->tcfa_index = index;
p->tcfa_tm.install = jiffies;
p->tcfa_tm.lastuse = jiffies;
p->tcfa_tm.firstuse = 0;
p->tcfa_flags = flags;
if (est) {
err = gen_new_estimator(&p->tcfa_bstats, p->cpu_bstats,
&p->tcfa_rate_est,
&p->tcfa_lock, false, est);
if (err)
goto err4;
}
p->idrinfo = idrinfo;
__module_get(ops->owner);
p->ops = ops;
*a = p;
return 0;
err4:
free_percpu(p->cpu_qstats);
err3:
free_percpu(p->cpu_bstats_hw);
err2:
free_percpu(p->cpu_bstats);
err1:
kfree(p);
return err;
}
EXPORT_SYMBOL(tcf_idr_create);
int tcf_idr_create_from_flags(struct tc_action_net *tn, u32 index,
struct nlattr *est, struct tc_action **a,
const struct tc_action_ops *ops, int bind,
u32 flags)
{
/* Set cpustats according to actions flags. */
return tcf_idr_create(tn, index, est, a, ops, bind,
!(flags & TCA_ACT_FLAGS_NO_PERCPU_STATS), flags);
}
EXPORT_SYMBOL(tcf_idr_create_from_flags);
/* Cleanup idr index that was allocated but not initialized. */
void tcf_idr_cleanup(struct tc_action_net *tn, u32 index)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
mutex_lock(&idrinfo->lock);
/* Remove ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc */
WARN_ON(!IS_ERR(idr_remove(&idrinfo->action_idr, index)));
mutex_unlock(&idrinfo->lock);
}
EXPORT_SYMBOL(tcf_idr_cleanup);
/* Check if action with specified index exists. If actions is found, increments
* its reference and bind counters, and return 1. Otherwise insert temporary
* error pointer (to prevent concurrent users from inserting actions with same
* index) and return 0.
*/
int tcf_idr_check_alloc(struct tc_action_net *tn, u32 *index,
struct tc_action **a, int bind)
{
struct tcf_idrinfo *idrinfo = tn->idrinfo;
struct tc_action *p;
int ret;
again:
mutex_lock(&idrinfo->lock);
if (*index) {
p = idr_find(&idrinfo->action_idr, *index);
if (IS_ERR(p)) {
/* This means that another process allocated
* index but did not assign the pointer yet.
*/
mutex_unlock(&idrinfo->lock);
goto again;
}
if (p) {
refcount_inc(&p->tcfa_refcnt);
if (bind)
atomic_inc(&p->tcfa_bindcnt);
*a = p;
ret = 1;
} else {
*a = NULL;
ret = idr_alloc_u32(&idrinfo->action_idr, NULL, index,
*index, GFP_KERNEL);
if (!ret)
idr_replace(&idrinfo->action_idr,
ERR_PTR(-EBUSY), *index);
}
} else {
*index = 1;
*a = NULL;
ret = idr_alloc_u32(&idrinfo->action_idr, NULL, index,
UINT_MAX, GFP_KERNEL);
if (!ret)
idr_replace(&idrinfo->action_idr, ERR_PTR(-EBUSY),
*index);
}
mutex_unlock(&idrinfo->lock);
return ret;
}
EXPORT_SYMBOL(tcf_idr_check_alloc);
void tcf_idrinfo_destroy(const struct tc_action_ops *ops,
struct tcf_idrinfo *idrinfo)
{
struct idr *idr = &idrinfo->action_idr;
struct tc_action *p;
int ret;
unsigned long id = 1;
unsigned long tmp;
idr_for_each_entry_ul(idr, p, tmp, id) {
ret = __tcf_idr_release(p, false, true);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
return;
}
idr_destroy(&idrinfo->action_idr);
}
EXPORT_SYMBOL(tcf_idrinfo_destroy);
static LIST_HEAD(act_base);
static DEFINE_RWLOCK(act_mod_lock);
/* since act ops id is stored in pernet subsystem list,
* then there is no way to walk through only all the action
* subsystem, so we keep tc action pernet ops id for
* reoffload to walk through.
*/
static LIST_HEAD(act_pernet_id_list);
static DEFINE_MUTEX(act_id_mutex);
struct tc_act_pernet_id {
struct list_head list;
unsigned int id;
};
static int tcf_pernet_add_id_list(unsigned int id)
{
struct tc_act_pernet_id *id_ptr;
int ret = 0;
mutex_lock(&act_id_mutex);
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
if (id_ptr->id == id) {
ret = -EEXIST;
goto err_out;
}
}
id_ptr = kzalloc(sizeof(*id_ptr), GFP_KERNEL);
if (!id_ptr) {
ret = -ENOMEM;
goto err_out;
}
id_ptr->id = id;
list_add_tail(&id_ptr->list, &act_pernet_id_list);
err_out:
mutex_unlock(&act_id_mutex);
return ret;
}
static void tcf_pernet_del_id_list(unsigned int id)
{
struct tc_act_pernet_id *id_ptr;
mutex_lock(&act_id_mutex);
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
if (id_ptr->id == id) {
list_del(&id_ptr->list);
kfree(id_ptr);
break;
}
}
mutex_unlock(&act_id_mutex);
}
int tcf_register_action(struct tc_action_ops *act,
struct pernet_operations *ops)
{
struct tc_action_ops *a;
int ret;
if (!act->act || !act->dump || !act->init)
return -EINVAL;
/* We have to register pernet ops before making the action ops visible,
* otherwise tcf_action_init_1() could get a partially initialized
* netns.
*/
ret = register_pernet_subsys(ops);
if (ret)
return ret;
if (ops->id) {
ret = tcf_pernet_add_id_list(*ops->id);
if (ret)
goto err_id;
}
write_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (act->id == a->id || (strcmp(act->kind, a->kind) == 0)) {
ret = -EEXIST;
goto err_out;
}
}
list_add_tail(&act->head, &act_base);
write_unlock(&act_mod_lock);
return 0;
err_out:
write_unlock(&act_mod_lock);
if (ops->id)
tcf_pernet_del_id_list(*ops->id);
err_id:
unregister_pernet_subsys(ops);
return ret;
}
EXPORT_SYMBOL(tcf_register_action);
int tcf_unregister_action(struct tc_action_ops *act,
struct pernet_operations *ops)
{
struct tc_action_ops *a;
int err = -ENOENT;
write_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (a == act) {
list_del(&act->head);
err = 0;
break;
}
}
write_unlock(&act_mod_lock);
if (!err) {
unregister_pernet_subsys(ops);
if (ops->id)
tcf_pernet_del_id_list(*ops->id);
}
return err;
}
EXPORT_SYMBOL(tcf_unregister_action);
/* lookup by name */
static struct tc_action_ops *tc_lookup_action_n(char *kind)
{
struct tc_action_ops *a, *res = NULL;
if (kind) {
read_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (strcmp(kind, a->kind) == 0) {
if (try_module_get(a->owner))
res = a;
break;
}
}
read_unlock(&act_mod_lock);
}
return res;
}
/* lookup by nlattr */
static struct tc_action_ops *tc_lookup_action(struct nlattr *kind)
{
struct tc_action_ops *a, *res = NULL;
if (kind) {
read_lock(&act_mod_lock);
list_for_each_entry(a, &act_base, head) {
if (nla_strcmp(kind, a->kind) == 0) {
if (try_module_get(a->owner))
res = a;
break;
}
}
read_unlock(&act_mod_lock);
}
return res;
}
/*TCA_ACT_MAX_PRIO is 32, there count up to 32 */
#define TCA_ACT_MAX_PRIO_MASK 0x1FF
int tcf_action_exec(struct sk_buff *skb, struct tc_action **actions,
int nr_actions, struct tcf_result *res)
{
u32 jmp_prgcnt = 0;
u32 jmp_ttl = TCA_ACT_MAX_PRIO; /*matches actions per filter */
int i;
int ret = TC_ACT_OK;
if (skb_skip_tc_classify(skb))
return TC_ACT_OK;
restart_act_graph:
for (i = 0; i < nr_actions; i++) {
const struct tc_action *a = actions[i];
int repeat_ttl;
if (jmp_prgcnt > 0) {
jmp_prgcnt -= 1;
continue;
}
if (tc_act_skip_sw(a->tcfa_flags))
continue;
repeat_ttl = 32;
repeat:
ret = tc_act(skb, a, res);
if (unlikely(ret == TC_ACT_REPEAT)) {
if (--repeat_ttl != 0)
goto repeat;
/* suspicious opcode, stop pipeline */
net_warn_ratelimited("TC_ACT_REPEAT abuse ?\n");
return TC_ACT_OK;
}
if (TC_ACT_EXT_CMP(ret, TC_ACT_JUMP)) {
jmp_prgcnt = ret & TCA_ACT_MAX_PRIO_MASK;
if (!jmp_prgcnt || (jmp_prgcnt > nr_actions)) {
/* faulty opcode, stop pipeline */
return TC_ACT_OK;
} else {
jmp_ttl -= 1;
if (jmp_ttl > 0)
goto restart_act_graph;
else /* faulty graph, stop pipeline */
return TC_ACT_OK;
}
} else if (TC_ACT_EXT_CMP(ret, TC_ACT_GOTO_CHAIN)) {
if (unlikely(!rcu_access_pointer(a->goto_chain))) {
net_warn_ratelimited("can't go to NULL chain!\n");
return TC_ACT_SHOT;
}
tcf_action_goto_chain_exec(a, res);
}
if (ret != TC_ACT_PIPE)
break;
}
return ret;
}
EXPORT_SYMBOL(tcf_action_exec);
int tcf_action_destroy(struct tc_action *actions[], int bind)
{
const struct tc_action_ops *ops;
struct tc_action *a;
int ret = 0, i;
for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) {
a = actions[i];
actions[i] = NULL;
ops = a->ops;
ret = __tcf_idr_release(a, bind, true);
if (ret == ACT_P_DELETED)
module_put(ops->owner);
else if (ret < 0)
return ret;
}
return ret;
}
static int tcf_action_put(struct tc_action *p)
{
return __tcf_action_put(p, false);
}
/* Put all actions in this array, skip those NULL's. */
static void tcf_action_put_many(struct tc_action *actions[])
{
int i;
for (i = 0; i < TCA_ACT_MAX_PRIO; i++) {
struct tc_action *a = actions[i];
const struct tc_action_ops *ops;
if (!a)
continue;
ops = a->ops;
if (tcf_action_put(a))
module_put(ops->owner);
}
}
int
tcf_action_dump_old(struct sk_buff *skb, struct tc_action *a, int bind, int ref)
{
return a->ops->dump(skb, a, bind, ref);
}
int
tcf_action_dump_1(struct sk_buff *skb, struct tc_action *a, int bind, int ref)
{
int err = -EINVAL;
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
u32 flags;
if (tcf_action_dump_terse(skb, a, false))
goto nla_put_failure;
if (a->hw_stats != TCA_ACT_HW_STATS_ANY &&
nla_put_bitfield32(skb, TCA_ACT_HW_STATS,
a->hw_stats, TCA_ACT_HW_STATS_ANY))
goto nla_put_failure;
if (a->used_hw_stats_valid &&
nla_put_bitfield32(skb, TCA_ACT_USED_HW_STATS,
a->used_hw_stats, TCA_ACT_HW_STATS_ANY))
goto nla_put_failure;
flags = a->tcfa_flags & TCA_ACT_FLAGS_USER_MASK;
if (flags &&
nla_put_bitfield32(skb, TCA_ACT_FLAGS,
flags, flags))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_ACT_IN_HW_COUNT, a->in_hw_count))
goto nla_put_failure;
nest = nla_nest_start_noflag(skb, TCA_ACT_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
err = tcf_action_dump_old(skb, a, bind, ref);
if (err > 0) {
nla_nest_end(skb, nest);
return err;
}
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
EXPORT_SYMBOL(tcf_action_dump_1);
int tcf_action_dump(struct sk_buff *skb, struct tc_action *actions[],
int bind, int ref, bool terse)
{
struct tc_action *a;
int err = -EINVAL, i;
struct nlattr *nest;
for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) {
a = actions[i];
nest = nla_nest_start_noflag(skb, i + 1);
if (nest == NULL)
goto nla_put_failure;
err = terse ? tcf_action_dump_terse(skb, a, false) :
tcf_action_dump_1(skb, a, bind, ref);
if (err < 0)
goto errout;
nla_nest_end(skb, nest);
}
return 0;
nla_put_failure:
err = -EINVAL;
errout:
nla_nest_cancel(skb, nest);
return err;
}
static struct tc_cookie *nla_memdup_cookie(struct nlattr **tb)
{
struct tc_cookie *c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return NULL;
c->data = nla_memdup(tb[TCA_ACT_COOKIE], GFP_KERNEL);
if (!c->data) {
kfree(c);
return NULL;
}
c->len = nla_len(tb[TCA_ACT_COOKIE]);
return c;
}
static u8 tcf_action_hw_stats_get(struct nlattr *hw_stats_attr)
{
struct nla_bitfield32 hw_stats_bf;
/* If the user did not pass the attr, that means he does
* not care about the type. Return "any" in that case
* which is setting on all supported types.
*/
if (!hw_stats_attr)
return TCA_ACT_HW_STATS_ANY;
hw_stats_bf = nla_get_bitfield32(hw_stats_attr);
return hw_stats_bf.value;
}
static const struct nla_policy tcf_action_policy[TCA_ACT_MAX + 1] = {
[TCA_ACT_KIND] = { .type = NLA_STRING },
[TCA_ACT_INDEX] = { .type = NLA_U32 },
[TCA_ACT_COOKIE] = { .type = NLA_BINARY,
.len = TC_COOKIE_MAX_SIZE },
[TCA_ACT_OPTIONS] = { .type = NLA_NESTED },
[TCA_ACT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAGS_NO_PERCPU_STATS |
TCA_ACT_FLAGS_SKIP_HW |
TCA_ACT_FLAGS_SKIP_SW),
[TCA_ACT_HW_STATS] = NLA_POLICY_BITFIELD32(TCA_ACT_HW_STATS_ANY),
};
void tcf_idr_insert_many(struct tc_action *actions[])
{
int i;
for (i = 0; i < TCA_ACT_MAX_PRIO; i++) {
struct tc_action *a = actions[i];
struct tcf_idrinfo *idrinfo;
if (!a)
continue;
idrinfo = a->idrinfo;
mutex_lock(&idrinfo->lock);
/* Replace ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc if
* it is just created, otherwise this is just a nop.
*/
idr_replace(&idrinfo->action_idr, a, a->tcfa_index);
mutex_unlock(&idrinfo->lock);
}
}
struct tc_action_ops *tc_action_load_ops(struct nlattr *nla, bool police,
bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_ACT_MAX + 1];
struct tc_action_ops *a_o;
char act_name[IFNAMSIZ];
struct nlattr *kind;
int err;
if (!police) {
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
return ERR_PTR(err);
err = -EINVAL;
kind = tb[TCA_ACT_KIND];
if (!kind) {
NL_SET_ERR_MSG(extack, "TC action kind must be specified");
return ERR_PTR(err);
}
if (nla_strscpy(act_name, kind, IFNAMSIZ) < 0) {
NL_SET_ERR_MSG(extack, "TC action name too long");
return ERR_PTR(err);
}
} else {
if (strscpy(act_name, "police", IFNAMSIZ) < 0) {
NL_SET_ERR_MSG(extack, "TC action name too long");
return ERR_PTR(-EINVAL);
}
}
a_o = tc_lookup_action_n(act_name);
if (a_o == NULL) {
#ifdef CONFIG_MODULES
if (rtnl_held)
rtnl_unlock();
request_module("act_%s", act_name);
if (rtnl_held)
rtnl_lock();
a_o = tc_lookup_action_n(act_name);
/* We dropped the RTNL semaphore in order to
* perform the module load. So, even if we
* succeeded in loading the module we have to
* tell the caller to replay the request. We
* indicate this using -EAGAIN.
*/
if (a_o != NULL) {
module_put(a_o->owner);
return ERR_PTR(-EAGAIN);
}
#endif
NL_SET_ERR_MSG(extack, "Failed to load TC action module");
return ERR_PTR(-ENOENT);
}
return a_o;
}
struct tc_action *tcf_action_init_1(struct net *net, struct tcf_proto *tp,
struct nlattr *nla, struct nlattr *est,
struct tc_action_ops *a_o, int *init_res,
u32 flags, struct netlink_ext_ack *extack)
{
bool police = flags & TCA_ACT_FLAGS_POLICE;
struct nla_bitfield32 userflags = { 0, 0 };
struct tc_cookie *user_cookie = NULL;
u8 hw_stats = TCA_ACT_HW_STATS_ANY;
struct nlattr *tb[TCA_ACT_MAX + 1];
struct tc_action *a;
int err;
/* backward compatibility for policer */
if (!police) {
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
return ERR_PTR(err);
if (tb[TCA_ACT_COOKIE]) {
user_cookie = nla_memdup_cookie(tb);
if (!user_cookie) {
NL_SET_ERR_MSG(extack, "No memory to generate TC cookie");
err = -ENOMEM;
goto err_out;
}
}
hw_stats = tcf_action_hw_stats_get(tb[TCA_ACT_HW_STATS]);
if (tb[TCA_ACT_FLAGS]) {
userflags = nla_get_bitfield32(tb[TCA_ACT_FLAGS]);
if (!tc_act_flags_valid(userflags.value)) {
err = -EINVAL;
goto err_out;
}
}
err = a_o->init(net, tb[TCA_ACT_OPTIONS], est, &a, tp,
userflags.value | flags, extack);
} else {
err = a_o->init(net, nla, est, &a, tp, userflags.value | flags,
extack);
}
if (err < 0)
goto err_out;
*init_res = err;
if (!police && tb[TCA_ACT_COOKIE])
tcf_set_action_cookie(&a->user_cookie, user_cookie);
if (!police)
a->hw_stats = hw_stats;
return a;
err_out:
if (user_cookie) {
kfree(user_cookie->data);
kfree(user_cookie);
}
return ERR_PTR(err);
}
static bool tc_act_bind(u32 flags)
{
return !!(flags & TCA_ACT_FLAGS_BIND);
}
/* Returns numbers of initialized actions or negative error. */
int tcf_action_init(struct net *net, struct tcf_proto *tp, struct nlattr *nla,
struct nlattr *est, struct tc_action *actions[],
int init_res[], size_t *attr_size,
u32 flags, u32 fl_flags,
struct netlink_ext_ack *extack)
{
struct tc_action_ops *ops[TCA_ACT_MAX_PRIO] = {};
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct tc_action *act;
size_t sz = 0;
int err;
int i;
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL,
extack);
if (err < 0)
return err;
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
struct tc_action_ops *a_o;
a_o = tc_action_load_ops(tb[i], flags & TCA_ACT_FLAGS_POLICE,
!(flags & TCA_ACT_FLAGS_NO_RTNL),
extack);
if (IS_ERR(a_o)) {
err = PTR_ERR(a_o);
goto err_mod;
}
ops[i - 1] = a_o;
}
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
act = tcf_action_init_1(net, tp, tb[i], est, ops[i - 1],
&init_res[i - 1], flags, extack);
if (IS_ERR(act)) {
err = PTR_ERR(act);
goto err;
}
sz += tcf_action_fill_size(act);
/* Start from index 0 */
actions[i - 1] = act;
if (tc_act_bind(flags)) {
bool skip_sw = tc_skip_sw(fl_flags);
bool skip_hw = tc_skip_hw(fl_flags);
if (tc_act_bind(act->tcfa_flags))
continue;
if (skip_sw != tc_act_skip_sw(act->tcfa_flags) ||
skip_hw != tc_act_skip_hw(act->tcfa_flags)) {
NL_SET_ERR_MSG(extack,
"Mismatch between action and filter offload flags");
err = -EINVAL;
goto err;
}
} else {
err = tcf_action_offload_add(act, extack);
if (tc_act_skip_sw(act->tcfa_flags) && err)
goto err;
}
}
/* We have to commit them all together, because if any error happened in
* between, we could not handle the failure gracefully.
*/
tcf_idr_insert_many(actions);
*attr_size = tcf_action_full_attrs_size(sz);
err = i - 1;
goto err_mod;
err:
tcf_action_destroy(actions, flags & TCA_ACT_FLAGS_BIND);
err_mod:
for (i = 0; i < TCA_ACT_MAX_PRIO; i++) {
if (ops[i])
module_put(ops[i]->owner);
}
return err;
}
void tcf_action_update_stats(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, bool hw)
{
if (a->cpu_bstats) {
_bstats_update(this_cpu_ptr(a->cpu_bstats), bytes, packets);
this_cpu_ptr(a->cpu_qstats)->drops += drops;
if (hw)
_bstats_update(this_cpu_ptr(a->cpu_bstats_hw),
bytes, packets);
return;
}
_bstats_update(&a->tcfa_bstats, bytes, packets);
a->tcfa_qstats.drops += drops;
if (hw)
_bstats_update(&a->tcfa_bstats_hw, bytes, packets);
}
EXPORT_SYMBOL(tcf_action_update_stats);
int tcf_action_copy_stats(struct sk_buff *skb, struct tc_action *p,
int compat_mode)
{
int err = 0;
struct gnet_dump d;
if (p == NULL)
goto errout;
/* compat_mode being true specifies a call that is supposed
* to add additional backward compatibility statistic TLVs.
*/
if (compat_mode) {
if (p->type == TCA_OLD_COMPAT)
err = gnet_stats_start_copy_compat(skb, 0,
TCA_STATS,
TCA_XSTATS,
&p->tcfa_lock, &d,
TCA_PAD);
else
return 0;
} else
err = gnet_stats_start_copy(skb, TCA_ACT_STATS,
&p->tcfa_lock, &d, TCA_ACT_PAD);
if (err < 0)
goto errout;
if (gnet_stats_copy_basic(&d, p->cpu_bstats,
&p->tcfa_bstats, false) < 0 ||
gnet_stats_copy_basic_hw(&d, p->cpu_bstats_hw,
&p->tcfa_bstats_hw, false) < 0 ||
gnet_stats_copy_rate_est(&d, &p->tcfa_rate_est) < 0 ||
gnet_stats_copy_queue(&d, p->cpu_qstats,
&p->tcfa_qstats,
p->tcfa_qstats.qlen) < 0)
goto errout;
if (gnet_stats_finish_copy(&d) < 0)
goto errout;
return 0;
errout:
return -1;
}
static int tca_get_fill(struct sk_buff *skb, struct tc_action *actions[],
u32 portid, u32 seq, u16 flags, int event, int bind,
int ref, struct netlink_ext_ack *extack)
{
struct tcamsg *t;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*t), flags);
if (!nlh)
goto out_nlmsg_trim;
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
if (extack && extack->_msg &&
nla_put_string(skb, TCA_ROOT_EXT_WARN_MSG, extack->_msg))
goto out_nlmsg_trim;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (!nest)
goto out_nlmsg_trim;
if (tcf_action_dump(skb, actions, bind, ref, false) < 0)
goto out_nlmsg_trim;
nla_nest_end(skb, nest);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
out_nlmsg_trim:
nlmsg_trim(skb, b);
return -1;
}
static int
tcf_get_notify(struct net *net, u32 portid, struct nlmsghdr *n,
struct tc_action *actions[], int event,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, event,
0, 1, NULL) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action");
kfree_skb(skb);
return -EINVAL;
}
return rtnl_unicast(skb, net, portid);
}
static struct tc_action *tcf_action_get_1(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_ACT_MAX + 1];
const struct tc_action_ops *ops;
struct tc_action *a;
int index;
int err;
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
goto err_out;
err = -EINVAL;
if (tb[TCA_ACT_INDEX] == NULL ||
nla_len(tb[TCA_ACT_INDEX]) < sizeof(index)) {
NL_SET_ERR_MSG(extack, "Invalid TC action index value");
goto err_out;
}
index = nla_get_u32(tb[TCA_ACT_INDEX]);
err = -EINVAL;
ops = tc_lookup_action(tb[TCA_ACT_KIND]);
if (!ops) { /* could happen in batch of actions */
NL_SET_ERR_MSG(extack, "Specified TC action kind not found");
goto err_out;
}
err = -ENOENT;
if (__tcf_idr_search(net, ops, &a, index) == 0) {
NL_SET_ERR_MSG(extack, "TC action with specified index not found");
goto err_mod;
}
module_put(ops->owner);
return a;
err_mod:
module_put(ops->owner);
err_out:
return ERR_PTR(err);
}
static int tca_action_flush(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid,
struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
unsigned char *b;
struct nlmsghdr *nlh;
struct tcamsg *t;
struct netlink_callback dcb;
struct nlattr *nest;
struct nlattr *tb[TCA_ACT_MAX + 1];
const struct tc_action_ops *ops;
struct nlattr *kind;
int err = -ENOMEM;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return err;
b = skb_tail_pointer(skb);
err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla,
tcf_action_policy, extack);
if (err < 0)
goto err_out;
err = -EINVAL;
kind = tb[TCA_ACT_KIND];
ops = tc_lookup_action(kind);
if (!ops) { /*some idjot trying to flush unknown action */
NL_SET_ERR_MSG(extack, "Cannot flush unknown TC action");
goto err_out;
}
nlh = nlmsg_put(skb, portid, n->nlmsg_seq, RTM_DELACTION,
sizeof(*t), 0);
if (!nlh) {
NL_SET_ERR_MSG(extack, "Failed to create TC action flush notification");
goto out_module_put;
}
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (!nest) {
NL_SET_ERR_MSG(extack, "Failed to add new netlink message");
goto out_module_put;
}
err = __tcf_generic_walker(net, skb, &dcb, RTM_DELACTION, ops, extack);
if (err <= 0) {
nla_nest_cancel(skb, nest);
goto out_module_put;
}
nla_nest_end(skb, nest);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
nlh->nlmsg_flags |= NLM_F_ROOT;
module_put(ops->owner);
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send TC action flush notification");
return err;
out_module_put:
module_put(ops->owner);
err_out:
kfree_skb(skb);
return err;
}
static int tcf_action_delete(struct net *net, struct tc_action *actions[])
{
int i;
for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) {
struct tc_action *a = actions[i];
const struct tc_action_ops *ops = a->ops;
/* Actions can be deleted concurrently so we must save their
* type and id to search again after reference is released.
*/
struct tcf_idrinfo *idrinfo = a->idrinfo;
u32 act_index = a->tcfa_index;
actions[i] = NULL;
if (tcf_action_put(a)) {
/* last reference, action was deleted concurrently */
module_put(ops->owner);
} else {
int ret;
/* now do the delete */
ret = tcf_idr_delete_index(idrinfo, act_index);
if (ret < 0)
return ret;
}
}
return 0;
}
static int
tcf_reoffload_del_notify(struct net *net, struct tc_action *action)
{
size_t attr_size = tcf_action_fill_size(action);
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {
[0] = action,
};
const struct tc_action_ops *ops = action->ops;
struct sk_buff *skb;
int ret;
skb = alloc_skb(attr_size <= NLMSG_GOODSIZE ? NLMSG_GOODSIZE : attr_size,
GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tca_get_fill(skb, actions, 0, 0, 0, RTM_DELACTION, 0, 1, NULL) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
ret = tcf_idr_release_unsafe(action);
if (ret == ACT_P_DELETED) {
module_put(ops->owner);
ret = rtnetlink_send(skb, net, 0, RTNLGRP_TC, 0);
} else {
kfree_skb(skb);
}
return ret;
}
int tcf_action_reoffload_cb(flow_indr_block_bind_cb_t *cb,
void *cb_priv, bool add)
{
struct tc_act_pernet_id *id_ptr;
struct tcf_idrinfo *idrinfo;
struct tc_action_net *tn;
struct tc_action *p;
unsigned int act_id;
unsigned long tmp;
unsigned long id;
struct idr *idr;
struct net *net;
int ret;
if (!cb)
return -EINVAL;
down_read(&net_rwsem);
mutex_lock(&act_id_mutex);
for_each_net(net) {
list_for_each_entry(id_ptr, &act_pernet_id_list, list) {
act_id = id_ptr->id;
tn = net_generic(net, act_id);
if (!tn)
continue;
idrinfo = tn->idrinfo;
if (!idrinfo)
continue;
mutex_lock(&idrinfo->lock);
idr = &idrinfo->action_idr;
idr_for_each_entry_ul(idr, p, tmp, id) {
if (IS_ERR(p) || tc_act_bind(p->tcfa_flags))
continue;
if (add) {
tcf_action_offload_add_ex(p, NULL, cb,
cb_priv);
continue;
}
/* cb unregister to update hw count */
ret = tcf_action_offload_del_ex(p, cb, cb_priv);
if (ret < 0)
continue;
if (tc_act_skip_sw(p->tcfa_flags) &&
!tc_act_in_hw(p))
tcf_reoffload_del_notify(net, p);
}
mutex_unlock(&idrinfo->lock);
}
}
mutex_unlock(&act_id_mutex);
up_read(&net_rwsem);
return 0;
}
static int
tcf_del_notify(struct net *net, struct nlmsghdr *n, struct tc_action *actions[],
u32 portid, size_t attr_size, struct netlink_ext_ack *extack)
{
int ret;
struct sk_buff *skb;
skb = alloc_skb(attr_size <= NLMSG_GOODSIZE ? NLMSG_GOODSIZE : attr_size,
GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, RTM_DELACTION,
0, 2, extack) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink TC action attributes");
kfree_skb(skb);
return -EINVAL;
}
/* now do the delete */
ret = tcf_action_delete(net, actions);
if (ret < 0) {
NL_SET_ERR_MSG(extack, "Failed to delete TC action");
kfree_skb(skb);
return ret;
}
ret = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
return ret;
}
static int
tca_action_gd(struct net *net, struct nlattr *nla, struct nlmsghdr *n,
u32 portid, int event, struct netlink_ext_ack *extack)
{
int i, ret;
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct tc_action *act;
size_t attr_size = 0;
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {};
ret = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL,
extack);
if (ret < 0)
return ret;
if (event == RTM_DELACTION && n->nlmsg_flags & NLM_F_ROOT) {
if (tb[1])
return tca_action_flush(net, tb[1], n, portid, extack);
NL_SET_ERR_MSG(extack, "Invalid netlink attributes while flushing TC action");
return -EINVAL;
}
for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) {
act = tcf_action_get_1(net, tb[i], n, portid, extack);
if (IS_ERR(act)) {
ret = PTR_ERR(act);
goto err;
}
attr_size += tcf_action_fill_size(act);
actions[i - 1] = act;
}
attr_size = tcf_action_full_attrs_size(attr_size);
if (event == RTM_GETACTION)
ret = tcf_get_notify(net, portid, n, actions, event, extack);
else { /* delete */
ret = tcf_del_notify(net, n, actions, portid, attr_size, extack);
if (ret)
goto err;
return 0;
}
err:
tcf_action_put_many(actions);
return ret;
}
static int
tcf_add_notify(struct net *net, struct nlmsghdr *n, struct tc_action *actions[],
u32 portid, size_t attr_size, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
skb = alloc_skb(attr_size <= NLMSG_GOODSIZE ? NLMSG_GOODSIZE : attr_size,
GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, n->nlmsg_flags,
RTM_NEWACTION, 0, 0, extack) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action");
kfree_skb(skb);
return -EINVAL;
}
return rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
}
static int tcf_action_add(struct net *net, struct nlattr *nla,
struct nlmsghdr *n, u32 portid, u32 flags,
struct netlink_ext_ack *extack)
{
size_t attr_size = 0;
int loop, ret, i;
struct tc_action *actions[TCA_ACT_MAX_PRIO] = {};
int init_res[TCA_ACT_MAX_PRIO] = {};
for (loop = 0; loop < 10; loop++) {
ret = tcf_action_init(net, NULL, nla, NULL, actions, init_res,
&attr_size, flags, 0, extack);
if (ret != -EAGAIN)
break;
}
if (ret < 0)
return ret;
ret = tcf_add_notify(net, n, actions, portid, attr_size, extack);
/* only put existing actions */
for (i = 0; i < TCA_ACT_MAX_PRIO; i++)
if (init_res[i] == ACT_P_CREATED)
actions[i] = NULL;
tcf_action_put_many(actions);
return ret;
}
static const struct nla_policy tcaa_policy[TCA_ROOT_MAX + 1] = {
[TCA_ROOT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAG_LARGE_DUMP_ON |
TCA_ACT_FLAG_TERSE_DUMP),
[TCA_ROOT_TIME_DELTA] = { .type = NLA_U32 },
};
static int tc_ctl_action(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_ROOT_MAX + 1];
u32 portid = NETLINK_CB(skb).portid;
u32 flags = 0;
int ret = 0;
if ((n->nlmsg_type != RTM_GETACTION) &&
!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
ret = nlmsg_parse_deprecated(n, sizeof(struct tcamsg), tca,
TCA_ROOT_MAX, NULL, extack);
if (ret < 0)
return ret;
if (tca[TCA_ACT_TAB] == NULL) {
NL_SET_ERR_MSG(extack, "Netlink action attributes missing");
return -EINVAL;
}
/* n->nlmsg_flags & NLM_F_CREATE */
switch (n->nlmsg_type) {
case RTM_NEWACTION:
/* we are going to assume all other flags
* imply create only if it doesn't exist
* Note that CREATE | EXCL implies that
* but since we want avoid ambiguity (eg when flags
* is zero) then just set this
*/
if (n->nlmsg_flags & NLM_F_REPLACE)
flags = TCA_ACT_FLAGS_REPLACE;
ret = tcf_action_add(net, tca[TCA_ACT_TAB], n, portid, flags,
extack);
break;
case RTM_DELACTION:
ret = tca_action_gd(net, tca[TCA_ACT_TAB], n,
portid, RTM_DELACTION, extack);
break;
case RTM_GETACTION:
ret = tca_action_gd(net, tca[TCA_ACT_TAB], n,
portid, RTM_GETACTION, extack);
break;
default:
BUG();
}
return ret;
}
static struct nlattr *find_dump_kind(struct nlattr **nla)
{
struct nlattr *tb1, *tb2[TCA_ACT_MAX + 1];
struct nlattr *tb[TCA_ACT_MAX_PRIO + 1];
struct nlattr *kind;
tb1 = nla[TCA_ACT_TAB];
if (tb1 == NULL)
return NULL;
if (nla_parse_deprecated(tb, TCA_ACT_MAX_PRIO, nla_data(tb1), NLMSG_ALIGN(nla_len(tb1)), NULL, NULL) < 0)
return NULL;
if (tb[1] == NULL)
return NULL;
if (nla_parse_nested_deprecated(tb2, TCA_ACT_MAX, tb[1], tcf_action_policy, NULL) < 0)
return NULL;
kind = tb2[TCA_ACT_KIND];
return kind;
}
static int tc_dump_action(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
struct nlattr *nest;
struct tc_action_ops *a_o;
int ret = 0;
struct tcamsg *t = (struct tcamsg *) nlmsg_data(cb->nlh);
struct nlattr *tb[TCA_ROOT_MAX + 1];
struct nlattr *count_attr = NULL;
unsigned long jiffy_since = 0;
struct nlattr *kind = NULL;
struct nla_bitfield32 bf;
u32 msecs_since = 0;
u32 act_count = 0;
ret = nlmsg_parse_deprecated(cb->nlh, sizeof(struct tcamsg), tb,
TCA_ROOT_MAX, tcaa_policy, cb->extack);
if (ret < 0)
return ret;
kind = find_dump_kind(tb);
if (kind == NULL) {
pr_info("tc_dump_action: action bad kind\n");
return 0;
}
a_o = tc_lookup_action(kind);
if (a_o == NULL)
return 0;
cb->args[2] = 0;
if (tb[TCA_ROOT_FLAGS]) {
bf = nla_get_bitfield32(tb[TCA_ROOT_FLAGS]);
cb->args[2] = bf.value;
}
if (tb[TCA_ROOT_TIME_DELTA]) {
msecs_since = nla_get_u32(tb[TCA_ROOT_TIME_DELTA]);
}
nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq,
cb->nlh->nlmsg_type, sizeof(*t), 0);
if (!nlh)
goto out_module_put;
if (msecs_since)
jiffy_since = jiffies - msecs_to_jiffies(msecs_since);
t = nlmsg_data(nlh);
t->tca_family = AF_UNSPEC;
t->tca__pad1 = 0;
t->tca__pad2 = 0;
cb->args[3] = jiffy_since;
count_attr = nla_reserve(skb, TCA_ROOT_COUNT, sizeof(u32));
if (!count_attr)
goto out_module_put;
nest = nla_nest_start_noflag(skb, TCA_ACT_TAB);
if (nest == NULL)
goto out_module_put;
ret = __tcf_generic_walker(net, skb, cb, RTM_GETACTION, a_o, NULL);
if (ret < 0)
goto out_module_put;
if (ret > 0) {
nla_nest_end(skb, nest);
ret = skb->len;
act_count = cb->args[1];
memcpy(nla_data(count_attr), &act_count, sizeof(u32));
cb->args[1] = 0;
} else
nlmsg_trim(skb, b);
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
if (NETLINK_CB(cb->skb).portid && ret)
nlh->nlmsg_flags |= NLM_F_MULTI;
module_put(a_o->owner);
return skb->len;
out_module_put:
module_put(a_o->owner);
nlmsg_trim(skb, b);
return skb->len;
}
static int __init tc_action_init(void)
{
rtnl_register(PF_UNSPEC, RTM_NEWACTION, tc_ctl_action, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_DELACTION, tc_ctl_action, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_GETACTION, tc_ctl_action, tc_dump_action,
0);
return 0;
}
subsys_initcall(tc_action_init);
| linux-master | net/sched/act_api.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_fifo.c The simplest FIFO queue.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
/* 1 band FIFO pseudo-"scheduler" */
static int bfifo_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
if (likely(sch->qstats.backlog + qdisc_pkt_len(skb) <= sch->limit))
return qdisc_enqueue_tail(skb, sch);
return qdisc_drop(skb, sch, to_free);
}
static int pfifo_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
if (likely(sch->q.qlen < sch->limit))
return qdisc_enqueue_tail(skb, sch);
return qdisc_drop(skb, sch, to_free);
}
static int pfifo_tail_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
unsigned int prev_backlog;
if (likely(sch->q.qlen < sch->limit))
return qdisc_enqueue_tail(skb, sch);
prev_backlog = sch->qstats.backlog;
/* queue full, remove one skb to fulfill the limit */
__qdisc_queue_drop_head(sch, &sch->q, to_free);
qdisc_qstats_drop(sch);
qdisc_enqueue_tail(skb, sch);
qdisc_tree_reduce_backlog(sch, 0, prev_backlog - sch->qstats.backlog);
return NET_XMIT_CN;
}
static void fifo_offload_init(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_fifo_qopt_offload qopt;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_FIFO_REPLACE;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_FIFO, &qopt);
}
static void fifo_offload_destroy(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_fifo_qopt_offload qopt;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_FIFO_DESTROY;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_FIFO, &qopt);
}
static int fifo_offload_dump(struct Qdisc *sch)
{
struct tc_fifo_qopt_offload qopt;
qopt.command = TC_FIFO_STATS;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.stats.bstats = &sch->bstats;
qopt.stats.qstats = &sch->qstats;
return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_FIFO, &qopt);
}
static int __fifo_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
bool bypass;
bool is_bfifo = sch->ops == &bfifo_qdisc_ops;
if (opt == NULL) {
u32 limit = qdisc_dev(sch)->tx_queue_len;
if (is_bfifo)
limit *= psched_mtu(qdisc_dev(sch));
sch->limit = limit;
} else {
struct tc_fifo_qopt *ctl = nla_data(opt);
if (nla_len(opt) < sizeof(*ctl))
return -EINVAL;
sch->limit = ctl->limit;
}
if (is_bfifo)
bypass = sch->limit >= psched_mtu(qdisc_dev(sch));
else
bypass = sch->limit >= 1;
if (bypass)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
}
static int fifo_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
int err;
err = __fifo_init(sch, opt, extack);
if (err)
return err;
fifo_offload_init(sch);
return 0;
}
static int fifo_hd_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
return __fifo_init(sch, opt, extack);
}
static void fifo_destroy(struct Qdisc *sch)
{
fifo_offload_destroy(sch);
}
static int __fifo_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct tc_fifo_qopt opt = { .limit = sch->limit };
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
goto nla_put_failure;
return skb->len;
nla_put_failure:
return -1;
}
static int fifo_dump(struct Qdisc *sch, struct sk_buff *skb)
{
int err;
err = fifo_offload_dump(sch);
if (err)
return err;
return __fifo_dump(sch, skb);
}
static int fifo_hd_dump(struct Qdisc *sch, struct sk_buff *skb)
{
return __fifo_dump(sch, skb);
}
struct Qdisc_ops pfifo_qdisc_ops __read_mostly = {
.id = "pfifo",
.priv_size = 0,
.enqueue = pfifo_enqueue,
.dequeue = qdisc_dequeue_head,
.peek = qdisc_peek_head,
.init = fifo_init,
.destroy = fifo_destroy,
.reset = qdisc_reset_queue,
.change = fifo_init,
.dump = fifo_dump,
.owner = THIS_MODULE,
};
EXPORT_SYMBOL(pfifo_qdisc_ops);
struct Qdisc_ops bfifo_qdisc_ops __read_mostly = {
.id = "bfifo",
.priv_size = 0,
.enqueue = bfifo_enqueue,
.dequeue = qdisc_dequeue_head,
.peek = qdisc_peek_head,
.init = fifo_init,
.destroy = fifo_destroy,
.reset = qdisc_reset_queue,
.change = fifo_init,
.dump = fifo_dump,
.owner = THIS_MODULE,
};
EXPORT_SYMBOL(bfifo_qdisc_ops);
struct Qdisc_ops pfifo_head_drop_qdisc_ops __read_mostly = {
.id = "pfifo_head_drop",
.priv_size = 0,
.enqueue = pfifo_tail_enqueue,
.dequeue = qdisc_dequeue_head,
.peek = qdisc_peek_head,
.init = fifo_hd_init,
.reset = qdisc_reset_queue,
.change = fifo_hd_init,
.dump = fifo_hd_dump,
.owner = THIS_MODULE,
};
/* Pass size change message down to embedded FIFO */
int fifo_set_limit(struct Qdisc *q, unsigned int limit)
{
struct nlattr *nla;
int ret = -ENOMEM;
/* Hack to avoid sending change message to non-FIFO */
if (strncmp(q->ops->id + 1, "fifo", 4) != 0)
return 0;
if (!q->ops->change)
return 0;
nla = kmalloc(nla_attr_size(sizeof(struct tc_fifo_qopt)), GFP_KERNEL);
if (nla) {
nla->nla_type = RTM_NEWQDISC;
nla->nla_len = nla_attr_size(sizeof(struct tc_fifo_qopt));
((struct tc_fifo_qopt *)nla_data(nla))->limit = limit;
ret = q->ops->change(q, nla, NULL);
kfree(nla);
}
return ret;
}
EXPORT_SYMBOL(fifo_set_limit);
struct Qdisc *fifo_create_dflt(struct Qdisc *sch, struct Qdisc_ops *ops,
unsigned int limit,
struct netlink_ext_ack *extack)
{
struct Qdisc *q;
int err = -ENOMEM;
q = qdisc_create_dflt(sch->dev_queue, ops, TC_H_MAKE(sch->handle, 1),
extack);
if (q) {
err = fifo_set_limit(q, limit);
if (err < 0) {
qdisc_put(q);
q = NULL;
}
}
return q ? : ERR_PTR(err);
}
EXPORT_SYMBOL(fifo_create_dflt);
| linux-master | net/sched/sch_fifo.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/em_cmp.c Simple packet data comparison ematch
*
* Authors: Thomas Graf <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/tc_ematch/tc_em_cmp.h>
#include <asm/unaligned.h>
#include <net/pkt_cls.h>
static inline int cmp_needs_transformation(struct tcf_em_cmp *cmp)
{
return unlikely(cmp->flags & TCF_EM_CMP_TRANS);
}
static int em_cmp_match(struct sk_buff *skb, struct tcf_ematch *em,
struct tcf_pkt_info *info)
{
struct tcf_em_cmp *cmp = (struct tcf_em_cmp *) em->data;
unsigned char *ptr = tcf_get_base_ptr(skb, cmp->layer) + cmp->off;
u32 val = 0;
if (!tcf_valid_offset(skb, ptr, cmp->align))
return 0;
switch (cmp->align) {
case TCF_EM_ALIGN_U8:
val = *ptr;
break;
case TCF_EM_ALIGN_U16:
val = get_unaligned_be16(ptr);
if (cmp_needs_transformation(cmp))
val = be16_to_cpu(val);
break;
case TCF_EM_ALIGN_U32:
/* Worth checking boundaries? The branching seems
* to get worse. Visit again.
*/
val = get_unaligned_be32(ptr);
if (cmp_needs_transformation(cmp))
val = be32_to_cpu(val);
break;
default:
return 0;
}
if (cmp->mask)
val &= cmp->mask;
switch (cmp->opnd) {
case TCF_EM_OPND_EQ:
return val == cmp->val;
case TCF_EM_OPND_LT:
return val < cmp->val;
case TCF_EM_OPND_GT:
return val > cmp->val;
}
return 0;
}
static struct tcf_ematch_ops em_cmp_ops = {
.kind = TCF_EM_CMP,
.datalen = sizeof(struct tcf_em_cmp),
.match = em_cmp_match,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_cmp_ops.link)
};
static int __init init_em_cmp(void)
{
return tcf_em_register(&em_cmp_ops);
}
static void __exit exit_em_cmp(void)
{
tcf_em_unregister(&em_cmp_ops);
}
MODULE_LICENSE("GPL");
module_init(init_em_cmp);
module_exit(exit_em_cmp);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_CMP);
| linux-master | net/sched/em_cmp.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Berkeley Packet Filter based traffic classifier
*
* Might be used to classify traffic through flexible, user-defined and
* possibly JIT-ed BPF filters for traffic control as an alternative to
* ematches.
*
* (C) 2013 Daniel Borkmann <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/skbuff.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/idr.h>
#include <net/rtnetlink.h>
#include <net/pkt_cls.h>
#include <net/sock.h>
#include <net/tc_wrapper.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel Borkmann <[email protected]>");
MODULE_DESCRIPTION("TC BPF based classifier");
#define CLS_BPF_NAME_LEN 256
#define CLS_BPF_SUPPORTED_GEN_FLAGS \
(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW)
struct cls_bpf_head {
struct list_head plist;
struct idr handle_idr;
struct rcu_head rcu;
};
struct cls_bpf_prog {
struct bpf_prog *filter;
struct list_head link;
struct tcf_result res;
bool exts_integrated;
u32 gen_flags;
unsigned int in_hw_count;
struct tcf_exts exts;
u32 handle;
u16 bpf_num_ops;
struct sock_filter *bpf_ops;
const char *bpf_name;
struct tcf_proto *tp;
struct rcu_work rwork;
};
static const struct nla_policy bpf_policy[TCA_BPF_MAX + 1] = {
[TCA_BPF_CLASSID] = { .type = NLA_U32 },
[TCA_BPF_FLAGS] = { .type = NLA_U32 },
[TCA_BPF_FLAGS_GEN] = { .type = NLA_U32 },
[TCA_BPF_FD] = { .type = NLA_U32 },
[TCA_BPF_NAME] = { .type = NLA_NUL_STRING,
.len = CLS_BPF_NAME_LEN },
[TCA_BPF_OPS_LEN] = { .type = NLA_U16 },
[TCA_BPF_OPS] = { .type = NLA_BINARY,
.len = sizeof(struct sock_filter) * BPF_MAXINSNS },
};
static int cls_bpf_exec_opcode(int code)
{
switch (code) {
case TC_ACT_OK:
case TC_ACT_SHOT:
case TC_ACT_STOLEN:
case TC_ACT_TRAP:
case TC_ACT_REDIRECT:
case TC_ACT_UNSPEC:
return code;
default:
return TC_ACT_UNSPEC;
}
}
TC_INDIRECT_SCOPE int cls_bpf_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct cls_bpf_head *head = rcu_dereference_bh(tp->root);
bool at_ingress = skb_at_tc_ingress(skb);
struct cls_bpf_prog *prog;
int ret = -1;
list_for_each_entry_rcu(prog, &head->plist, link) {
int filter_res;
qdisc_skb_cb(skb)->tc_classid = prog->res.classid;
if (tc_skip_sw(prog->gen_flags)) {
filter_res = prog->exts_integrated ? TC_ACT_UNSPEC : 0;
} else if (at_ingress) {
/* It is safe to push/pull even if skb_shared() */
__skb_push(skb, skb->mac_len);
bpf_compute_data_pointers(skb);
filter_res = bpf_prog_run(prog->filter, skb);
__skb_pull(skb, skb->mac_len);
} else {
bpf_compute_data_pointers(skb);
filter_res = bpf_prog_run(prog->filter, skb);
}
if (unlikely(!skb->tstamp && skb->mono_delivery_time))
skb->mono_delivery_time = 0;
if (prog->exts_integrated) {
res->class = 0;
res->classid = TC_H_MAJ(prog->res.classid) |
qdisc_skb_cb(skb)->tc_classid;
ret = cls_bpf_exec_opcode(filter_res);
if (ret == TC_ACT_UNSPEC)
continue;
break;
}
if (filter_res == 0)
continue;
if (filter_res != -1) {
res->class = 0;
res->classid = filter_res;
} else {
*res = prog->res;
}
ret = tcf_exts_exec(skb, &prog->exts, res);
if (ret < 0)
continue;
break;
}
return ret;
}
static bool cls_bpf_is_ebpf(const struct cls_bpf_prog *prog)
{
return !prog->bpf_ops;
}
static int cls_bpf_offload_cmd(struct tcf_proto *tp, struct cls_bpf_prog *prog,
struct cls_bpf_prog *oldprog,
struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct tc_cls_bpf_offload cls_bpf = {};
struct cls_bpf_prog *obj;
bool skip_sw;
int err;
skip_sw = prog && tc_skip_sw(prog->gen_flags);
obj = prog ?: oldprog;
tc_cls_common_offload_init(&cls_bpf.common, tp, obj->gen_flags, extack);
cls_bpf.command = TC_CLSBPF_OFFLOAD;
cls_bpf.exts = &obj->exts;
cls_bpf.prog = prog ? prog->filter : NULL;
cls_bpf.oldprog = oldprog ? oldprog->filter : NULL;
cls_bpf.name = obj->bpf_name;
cls_bpf.exts_integrated = obj->exts_integrated;
if (oldprog && prog)
err = tc_setup_cb_replace(block, tp, TC_SETUP_CLSBPF, &cls_bpf,
skip_sw, &oldprog->gen_flags,
&oldprog->in_hw_count,
&prog->gen_flags, &prog->in_hw_count,
true);
else if (prog)
err = tc_setup_cb_add(block, tp, TC_SETUP_CLSBPF, &cls_bpf,
skip_sw, &prog->gen_flags,
&prog->in_hw_count, true);
else
err = tc_setup_cb_destroy(block, tp, TC_SETUP_CLSBPF, &cls_bpf,
skip_sw, &oldprog->gen_flags,
&oldprog->in_hw_count, true);
if (prog && err) {
cls_bpf_offload_cmd(tp, oldprog, prog, extack);
return err;
}
if (prog && skip_sw && !(prog->gen_flags & TCA_CLS_FLAGS_IN_HW))
return -EINVAL;
return 0;
}
static u32 cls_bpf_flags(u32 flags)
{
return flags & CLS_BPF_SUPPORTED_GEN_FLAGS;
}
static int cls_bpf_offload(struct tcf_proto *tp, struct cls_bpf_prog *prog,
struct cls_bpf_prog *oldprog,
struct netlink_ext_ack *extack)
{
if (prog && oldprog &&
cls_bpf_flags(prog->gen_flags) !=
cls_bpf_flags(oldprog->gen_flags))
return -EINVAL;
if (prog && tc_skip_hw(prog->gen_flags))
prog = NULL;
if (oldprog && tc_skip_hw(oldprog->gen_flags))
oldprog = NULL;
if (!prog && !oldprog)
return 0;
return cls_bpf_offload_cmd(tp, prog, oldprog, extack);
}
static void cls_bpf_stop_offload(struct tcf_proto *tp,
struct cls_bpf_prog *prog,
struct netlink_ext_ack *extack)
{
int err;
err = cls_bpf_offload_cmd(tp, NULL, prog, extack);
if (err)
pr_err("Stopping hardware offload failed: %d\n", err);
}
static void cls_bpf_offload_update_stats(struct tcf_proto *tp,
struct cls_bpf_prog *prog)
{
struct tcf_block *block = tp->chain->block;
struct tc_cls_bpf_offload cls_bpf = {};
tc_cls_common_offload_init(&cls_bpf.common, tp, prog->gen_flags, NULL);
cls_bpf.command = TC_CLSBPF_STATS;
cls_bpf.exts = &prog->exts;
cls_bpf.prog = prog->filter;
cls_bpf.name = prog->bpf_name;
cls_bpf.exts_integrated = prog->exts_integrated;
tc_setup_cb_call(block, TC_SETUP_CLSBPF, &cls_bpf, false, true);
}
static int cls_bpf_init(struct tcf_proto *tp)
{
struct cls_bpf_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (head == NULL)
return -ENOBUFS;
INIT_LIST_HEAD_RCU(&head->plist);
idr_init(&head->handle_idr);
rcu_assign_pointer(tp->root, head);
return 0;
}
static void cls_bpf_free_parms(struct cls_bpf_prog *prog)
{
if (cls_bpf_is_ebpf(prog))
bpf_prog_put(prog->filter);
else
bpf_prog_destroy(prog->filter);
kfree(prog->bpf_name);
kfree(prog->bpf_ops);
}
static void __cls_bpf_delete_prog(struct cls_bpf_prog *prog)
{
tcf_exts_destroy(&prog->exts);
tcf_exts_put_net(&prog->exts);
cls_bpf_free_parms(prog);
kfree(prog);
}
static void cls_bpf_delete_prog_work(struct work_struct *work)
{
struct cls_bpf_prog *prog = container_of(to_rcu_work(work),
struct cls_bpf_prog,
rwork);
rtnl_lock();
__cls_bpf_delete_prog(prog);
rtnl_unlock();
}
static void __cls_bpf_delete(struct tcf_proto *tp, struct cls_bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
idr_remove(&head->handle_idr, prog->handle);
cls_bpf_stop_offload(tp, prog, extack);
list_del_rcu(&prog->link);
tcf_unbind_filter(tp, &prog->res);
if (tcf_exts_get_net(&prog->exts))
tcf_queue_work(&prog->rwork, cls_bpf_delete_prog_work);
else
__cls_bpf_delete_prog(prog);
}
static int cls_bpf_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
__cls_bpf_delete(tp, arg, extack);
*last = list_empty(&head->plist);
return 0;
}
static void cls_bpf_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
struct cls_bpf_prog *prog, *tmp;
list_for_each_entry_safe(prog, tmp, &head->plist, link)
__cls_bpf_delete(tp, prog, extack);
idr_destroy(&head->handle_idr);
kfree_rcu(head, rcu);
}
static void *cls_bpf_get(struct tcf_proto *tp, u32 handle)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
struct cls_bpf_prog *prog;
list_for_each_entry(prog, &head->plist, link) {
if (prog->handle == handle)
return prog;
}
return NULL;
}
static int cls_bpf_prog_from_ops(struct nlattr **tb, struct cls_bpf_prog *prog)
{
struct sock_filter *bpf_ops;
struct sock_fprog_kern fprog_tmp;
struct bpf_prog *fp;
u16 bpf_size, bpf_num_ops;
int ret;
bpf_num_ops = nla_get_u16(tb[TCA_BPF_OPS_LEN]);
if (bpf_num_ops > BPF_MAXINSNS || bpf_num_ops == 0)
return -EINVAL;
bpf_size = bpf_num_ops * sizeof(*bpf_ops);
if (bpf_size != nla_len(tb[TCA_BPF_OPS]))
return -EINVAL;
bpf_ops = kmemdup(nla_data(tb[TCA_BPF_OPS]), bpf_size, GFP_KERNEL);
if (bpf_ops == NULL)
return -ENOMEM;
fprog_tmp.len = bpf_num_ops;
fprog_tmp.filter = bpf_ops;
ret = bpf_prog_create(&fp, &fprog_tmp);
if (ret < 0) {
kfree(bpf_ops);
return ret;
}
prog->bpf_ops = bpf_ops;
prog->bpf_num_ops = bpf_num_ops;
prog->bpf_name = NULL;
prog->filter = fp;
return 0;
}
static int cls_bpf_prog_from_efd(struct nlattr **tb, struct cls_bpf_prog *prog,
u32 gen_flags, const struct tcf_proto *tp)
{
struct bpf_prog *fp;
char *name = NULL;
bool skip_sw;
u32 bpf_fd;
bpf_fd = nla_get_u32(tb[TCA_BPF_FD]);
skip_sw = gen_flags & TCA_CLS_FLAGS_SKIP_SW;
fp = bpf_prog_get_type_dev(bpf_fd, BPF_PROG_TYPE_SCHED_CLS, skip_sw);
if (IS_ERR(fp))
return PTR_ERR(fp);
if (tb[TCA_BPF_NAME]) {
name = nla_memdup(tb[TCA_BPF_NAME], GFP_KERNEL);
if (!name) {
bpf_prog_put(fp);
return -ENOMEM;
}
}
prog->bpf_ops = NULL;
prog->bpf_name = name;
prog->filter = fp;
if (fp->dst_needed)
tcf_block_netif_keep_dst(tp->chain->block);
return 0;
}
static int cls_bpf_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
bool is_bpf, is_ebpf, have_exts = false;
struct cls_bpf_prog *oldprog = *arg;
struct nlattr *tb[TCA_BPF_MAX + 1];
bool bound_to_filter = false;
struct cls_bpf_prog *prog;
u32 gen_flags = 0;
int ret;
if (tca[TCA_OPTIONS] == NULL)
return -EINVAL;
ret = nla_parse_nested_deprecated(tb, TCA_BPF_MAX, tca[TCA_OPTIONS],
bpf_policy, NULL);
if (ret < 0)
return ret;
prog = kzalloc(sizeof(*prog), GFP_KERNEL);
if (!prog)
return -ENOBUFS;
ret = tcf_exts_init(&prog->exts, net, TCA_BPF_ACT, TCA_BPF_POLICE);
if (ret < 0)
goto errout;
if (oldprog) {
if (handle && oldprog->handle != handle) {
ret = -EINVAL;
goto errout;
}
}
if (handle == 0) {
handle = 1;
ret = idr_alloc_u32(&head->handle_idr, prog, &handle,
INT_MAX, GFP_KERNEL);
} else if (!oldprog) {
ret = idr_alloc_u32(&head->handle_idr, prog, &handle,
handle, GFP_KERNEL);
}
if (ret)
goto errout;
prog->handle = handle;
is_bpf = tb[TCA_BPF_OPS_LEN] && tb[TCA_BPF_OPS];
is_ebpf = tb[TCA_BPF_FD];
if ((!is_bpf && !is_ebpf) || (is_bpf && is_ebpf)) {
ret = -EINVAL;
goto errout_idr;
}
ret = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &prog->exts,
flags, extack);
if (ret < 0)
goto errout_idr;
if (tb[TCA_BPF_FLAGS]) {
u32 bpf_flags = nla_get_u32(tb[TCA_BPF_FLAGS]);
if (bpf_flags & ~TCA_BPF_FLAG_ACT_DIRECT) {
ret = -EINVAL;
goto errout_idr;
}
have_exts = bpf_flags & TCA_BPF_FLAG_ACT_DIRECT;
}
if (tb[TCA_BPF_FLAGS_GEN]) {
gen_flags = nla_get_u32(tb[TCA_BPF_FLAGS_GEN]);
if (gen_flags & ~CLS_BPF_SUPPORTED_GEN_FLAGS ||
!tc_flags_valid(gen_flags)) {
ret = -EINVAL;
goto errout_idr;
}
}
prog->exts_integrated = have_exts;
prog->gen_flags = gen_flags;
ret = is_bpf ? cls_bpf_prog_from_ops(tb, prog) :
cls_bpf_prog_from_efd(tb, prog, gen_flags, tp);
if (ret < 0)
goto errout_idr;
if (tb[TCA_BPF_CLASSID]) {
prog->res.classid = nla_get_u32(tb[TCA_BPF_CLASSID]);
tcf_bind_filter(tp, &prog->res, base);
bound_to_filter = true;
}
ret = cls_bpf_offload(tp, prog, oldprog, extack);
if (ret)
goto errout_parms;
if (!tc_in_hw(prog->gen_flags))
prog->gen_flags |= TCA_CLS_FLAGS_NOT_IN_HW;
if (oldprog) {
idr_replace(&head->handle_idr, prog, handle);
list_replace_rcu(&oldprog->link, &prog->link);
tcf_unbind_filter(tp, &oldprog->res);
tcf_exts_get_net(&oldprog->exts);
tcf_queue_work(&oldprog->rwork, cls_bpf_delete_prog_work);
} else {
list_add_rcu(&prog->link, &head->plist);
}
*arg = prog;
return 0;
errout_parms:
if (bound_to_filter)
tcf_unbind_filter(tp, &prog->res);
cls_bpf_free_parms(prog);
errout_idr:
if (!oldprog)
idr_remove(&head->handle_idr, prog->handle);
errout:
tcf_exts_destroy(&prog->exts);
kfree(prog);
return ret;
}
static int cls_bpf_dump_bpf_info(const struct cls_bpf_prog *prog,
struct sk_buff *skb)
{
struct nlattr *nla;
if (nla_put_u16(skb, TCA_BPF_OPS_LEN, prog->bpf_num_ops))
return -EMSGSIZE;
nla = nla_reserve(skb, TCA_BPF_OPS, prog->bpf_num_ops *
sizeof(struct sock_filter));
if (nla == NULL)
return -EMSGSIZE;
memcpy(nla_data(nla), prog->bpf_ops, nla_len(nla));
return 0;
}
static int cls_bpf_dump_ebpf_info(const struct cls_bpf_prog *prog,
struct sk_buff *skb)
{
struct nlattr *nla;
if (prog->bpf_name &&
nla_put_string(skb, TCA_BPF_NAME, prog->bpf_name))
return -EMSGSIZE;
if (nla_put_u32(skb, TCA_BPF_ID, prog->filter->aux->id))
return -EMSGSIZE;
nla = nla_reserve(skb, TCA_BPF_TAG, sizeof(prog->filter->tag));
if (nla == NULL)
return -EMSGSIZE;
memcpy(nla_data(nla), prog->filter->tag, nla_len(nla));
return 0;
}
static int cls_bpf_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *tm, bool rtnl_held)
{
struct cls_bpf_prog *prog = fh;
struct nlattr *nest;
u32 bpf_flags = 0;
int ret;
if (prog == NULL)
return skb->len;
tm->tcm_handle = prog->handle;
cls_bpf_offload_update_stats(tp, prog);
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (prog->res.classid &&
nla_put_u32(skb, TCA_BPF_CLASSID, prog->res.classid))
goto nla_put_failure;
if (cls_bpf_is_ebpf(prog))
ret = cls_bpf_dump_ebpf_info(prog, skb);
else
ret = cls_bpf_dump_bpf_info(prog, skb);
if (ret)
goto nla_put_failure;
if (tcf_exts_dump(skb, &prog->exts) < 0)
goto nla_put_failure;
if (prog->exts_integrated)
bpf_flags |= TCA_BPF_FLAG_ACT_DIRECT;
if (bpf_flags && nla_put_u32(skb, TCA_BPF_FLAGS, bpf_flags))
goto nla_put_failure;
if (prog->gen_flags &&
nla_put_u32(skb, TCA_BPF_FLAGS_GEN, prog->gen_flags))
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &prog->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void cls_bpf_bind_class(void *fh, u32 classid, unsigned long cl,
void *q, unsigned long base)
{
struct cls_bpf_prog *prog = fh;
tc_cls_bind_class(classid, cl, q, &prog->res, base);
}
static void cls_bpf_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
struct cls_bpf_prog *prog;
list_for_each_entry(prog, &head->plist, link) {
if (!tc_cls_stats_dump(tp, arg, prog))
break;
}
}
static int cls_bpf_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
void *cb_priv, struct netlink_ext_ack *extack)
{
struct cls_bpf_head *head = rtnl_dereference(tp->root);
struct tcf_block *block = tp->chain->block;
struct tc_cls_bpf_offload cls_bpf = {};
struct cls_bpf_prog *prog;
int err;
list_for_each_entry(prog, &head->plist, link) {
if (tc_skip_hw(prog->gen_flags))
continue;
tc_cls_common_offload_init(&cls_bpf.common, tp, prog->gen_flags,
extack);
cls_bpf.command = TC_CLSBPF_OFFLOAD;
cls_bpf.exts = &prog->exts;
cls_bpf.prog = add ? prog->filter : NULL;
cls_bpf.oldprog = add ? NULL : prog->filter;
cls_bpf.name = prog->bpf_name;
cls_bpf.exts_integrated = prog->exts_integrated;
err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSBPF,
&cls_bpf, cb_priv, &prog->gen_flags,
&prog->in_hw_count);
if (err)
return err;
}
return 0;
}
static struct tcf_proto_ops cls_bpf_ops __read_mostly = {
.kind = "bpf",
.owner = THIS_MODULE,
.classify = cls_bpf_classify,
.init = cls_bpf_init,
.destroy = cls_bpf_destroy,
.get = cls_bpf_get,
.change = cls_bpf_change,
.delete = cls_bpf_delete,
.walk = cls_bpf_walk,
.reoffload = cls_bpf_reoffload,
.dump = cls_bpf_dump,
.bind_class = cls_bpf_bind_class,
};
static int __init cls_bpf_init_mod(void)
{
return register_tcf_proto_ops(&cls_bpf_ops);
}
static void __exit cls_bpf_exit_mod(void)
{
unregister_tcf_proto_ops(&cls_bpf_ops);
}
module_init(cls_bpf_init_mod);
module_exit(cls_bpf_exit_mod);
| linux-master | net/sched/cls_bpf.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_police.c Input police filter
*
* Authors: Alexey Kuznetsov, <[email protected]>
* J Hadi Salim (action changes)
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <net/act_api.h>
#include <net/gso.h>
#include <net/netlink.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_police.h>
#include <net/tc_wrapper.h>
/* Each policer is serialized by its individual spinlock */
static struct tc_action_ops act_police_ops;
static const struct nla_policy police_policy[TCA_POLICE_MAX + 1] = {
[TCA_POLICE_RATE] = { .len = TC_RTAB_SIZE },
[TCA_POLICE_PEAKRATE] = { .len = TC_RTAB_SIZE },
[TCA_POLICE_AVRATE] = { .type = NLA_U32 },
[TCA_POLICE_RESULT] = { .type = NLA_U32 },
[TCA_POLICE_RATE64] = { .type = NLA_U64 },
[TCA_POLICE_PEAKRATE64] = { .type = NLA_U64 },
[TCA_POLICE_PKTRATE64] = { .type = NLA_U64, .min = 1 },
[TCA_POLICE_PKTBURST64] = { .type = NLA_U64, .min = 1 },
};
static int tcf_police_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
int ret = 0, tcfp_result = TC_ACT_OK, err, size;
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_POLICE_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_police *parm;
struct tcf_police *police;
struct qdisc_rate_table *R_tab = NULL, *P_tab = NULL;
struct tc_action_net *tn = net_generic(net, act_police_ops.net_id);
struct tcf_police_params *new;
bool exists = false;
u32 index;
u64 rate64, prate64;
u64 pps, ppsburst;
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_POLICE_MAX, nla,
police_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_POLICE_TBF] == NULL)
return -EINVAL;
size = nla_len(tb[TCA_POLICE_TBF]);
if (size != sizeof(*parm) && size != sizeof(struct tc_police_compat))
return -EINVAL;
parm = nla_data(tb[TCA_POLICE_TBF]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (!exists) {
ret = tcf_idr_create(tn, index, NULL, a,
&act_police_ops, bind, true, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
spin_lock_init(&(to_police(*a)->tcfp_lock));
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
police = to_police(*a);
if (parm->rate.rate) {
err = -ENOMEM;
R_tab = qdisc_get_rtab(&parm->rate, tb[TCA_POLICE_RATE], NULL);
if (R_tab == NULL)
goto failure;
if (parm->peakrate.rate) {
P_tab = qdisc_get_rtab(&parm->peakrate,
tb[TCA_POLICE_PEAKRATE], NULL);
if (P_tab == NULL)
goto failure;
}
}
if (est) {
err = gen_replace_estimator(&police->tcf_bstats,
police->common.cpu_bstats,
&police->tcf_rate_est,
&police->tcf_lock,
false, est);
if (err)
goto failure;
} else if (tb[TCA_POLICE_AVRATE] &&
(ret == ACT_P_CREATED ||
!gen_estimator_active(&police->tcf_rate_est))) {
err = -EINVAL;
goto failure;
}
if (tb[TCA_POLICE_RESULT]) {
tcfp_result = nla_get_u32(tb[TCA_POLICE_RESULT]);
if (TC_ACT_EXT_CMP(tcfp_result, TC_ACT_GOTO_CHAIN)) {
NL_SET_ERR_MSG(extack,
"goto chain not allowed on fallback");
err = -EINVAL;
goto failure;
}
}
if ((tb[TCA_POLICE_PKTRATE64] && !tb[TCA_POLICE_PKTBURST64]) ||
(!tb[TCA_POLICE_PKTRATE64] && tb[TCA_POLICE_PKTBURST64])) {
NL_SET_ERR_MSG(extack,
"Both or neither packet-per-second burst and rate must be provided");
err = -EINVAL;
goto failure;
}
if (tb[TCA_POLICE_PKTRATE64] && R_tab) {
NL_SET_ERR_MSG(extack,
"packet-per-second and byte-per-second rate limits not allowed in same action");
err = -EINVAL;
goto failure;
}
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (unlikely(!new)) {
err = -ENOMEM;
goto failure;
}
/* No failure allowed after this point */
new->tcfp_result = tcfp_result;
new->tcfp_mtu = parm->mtu;
if (!new->tcfp_mtu) {
new->tcfp_mtu = ~0;
if (R_tab)
new->tcfp_mtu = 255 << R_tab->rate.cell_log;
}
if (R_tab) {
new->rate_present = true;
rate64 = tb[TCA_POLICE_RATE64] ?
nla_get_u64(tb[TCA_POLICE_RATE64]) : 0;
psched_ratecfg_precompute(&new->rate, &R_tab->rate, rate64);
qdisc_put_rtab(R_tab);
} else {
new->rate_present = false;
}
if (P_tab) {
new->peak_present = true;
prate64 = tb[TCA_POLICE_PEAKRATE64] ?
nla_get_u64(tb[TCA_POLICE_PEAKRATE64]) : 0;
psched_ratecfg_precompute(&new->peak, &P_tab->rate, prate64);
qdisc_put_rtab(P_tab);
} else {
new->peak_present = false;
}
new->tcfp_burst = PSCHED_TICKS2NS(parm->burst);
if (new->peak_present)
new->tcfp_mtu_ptoks = (s64)psched_l2t_ns(&new->peak,
new->tcfp_mtu);
if (tb[TCA_POLICE_AVRATE])
new->tcfp_ewma_rate = nla_get_u32(tb[TCA_POLICE_AVRATE]);
if (tb[TCA_POLICE_PKTRATE64]) {
pps = nla_get_u64(tb[TCA_POLICE_PKTRATE64]);
ppsburst = nla_get_u64(tb[TCA_POLICE_PKTBURST64]);
new->pps_present = true;
new->tcfp_pkt_burst = PSCHED_TICKS2NS(ppsburst);
psched_ppscfg_precompute(&new->ppsrate, pps);
}
spin_lock_bh(&police->tcf_lock);
spin_lock_bh(&police->tcfp_lock);
police->tcfp_t_c = ktime_get_ns();
police->tcfp_toks = new->tcfp_burst;
if (new->peak_present)
police->tcfp_ptoks = new->tcfp_mtu_ptoks;
spin_unlock_bh(&police->tcfp_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
new = rcu_replace_pointer(police->params,
new,
lockdep_is_held(&police->tcf_lock));
spin_unlock_bh(&police->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (new)
kfree_rcu(new, rcu);
return ret;
failure:
qdisc_put_rtab(P_tab);
qdisc_put_rtab(R_tab);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static bool tcf_police_mtu_check(struct sk_buff *skb, u32 limit)
{
u32 len;
if (skb_is_gso(skb))
return skb_gso_validate_mac_len(skb, limit);
len = qdisc_pkt_len(skb);
if (skb_at_tc_ingress(skb))
len += skb->mac_len;
return len <= limit;
}
TC_INDIRECT_SCOPE int tcf_police_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_police *police = to_police(a);
s64 now, toks, ppstoks = 0, ptoks = 0;
struct tcf_police_params *p;
int ret;
tcf_lastuse_update(&police->tcf_tm);
bstats_update(this_cpu_ptr(police->common.cpu_bstats), skb);
ret = READ_ONCE(police->tcf_action);
p = rcu_dereference_bh(police->params);
if (p->tcfp_ewma_rate) {
struct gnet_stats_rate_est64 sample;
if (!gen_estimator_read(&police->tcf_rate_est, &sample) ||
sample.bps >= p->tcfp_ewma_rate)
goto inc_overlimits;
}
if (tcf_police_mtu_check(skb, p->tcfp_mtu)) {
if (!p->rate_present && !p->pps_present) {
ret = p->tcfp_result;
goto end;
}
now = ktime_get_ns();
spin_lock_bh(&police->tcfp_lock);
toks = min_t(s64, now - police->tcfp_t_c, p->tcfp_burst);
if (p->peak_present) {
ptoks = toks + police->tcfp_ptoks;
if (ptoks > p->tcfp_mtu_ptoks)
ptoks = p->tcfp_mtu_ptoks;
ptoks -= (s64)psched_l2t_ns(&p->peak,
qdisc_pkt_len(skb));
}
if (p->rate_present) {
toks += police->tcfp_toks;
if (toks > p->tcfp_burst)
toks = p->tcfp_burst;
toks -= (s64)psched_l2t_ns(&p->rate, qdisc_pkt_len(skb));
} else if (p->pps_present) {
ppstoks = min_t(s64, now - police->tcfp_t_c, p->tcfp_pkt_burst);
ppstoks += police->tcfp_pkttoks;
if (ppstoks > p->tcfp_pkt_burst)
ppstoks = p->tcfp_pkt_burst;
ppstoks -= (s64)psched_pkt2t_ns(&p->ppsrate, 1);
}
if ((toks | ptoks | ppstoks) >= 0) {
police->tcfp_t_c = now;
police->tcfp_toks = toks;
police->tcfp_ptoks = ptoks;
police->tcfp_pkttoks = ppstoks;
spin_unlock_bh(&police->tcfp_lock);
ret = p->tcfp_result;
goto inc_drops;
}
spin_unlock_bh(&police->tcfp_lock);
}
inc_overlimits:
qstats_overlimit_inc(this_cpu_ptr(police->common.cpu_qstats));
inc_drops:
if (ret == TC_ACT_SHOT)
qstats_drop_inc(this_cpu_ptr(police->common.cpu_qstats));
end:
return ret;
}
static void tcf_police_cleanup(struct tc_action *a)
{
struct tcf_police *police = to_police(a);
struct tcf_police_params *p;
p = rcu_dereference_protected(police->params, 1);
if (p)
kfree_rcu(p, rcu);
}
static void tcf_police_stats_update(struct tc_action *a,
u64 bytes, u64 packets, u64 drops,
u64 lastuse, bool hw)
{
struct tcf_police *police = to_police(a);
struct tcf_t *tm = &police->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static int tcf_police_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_police *police = to_police(a);
struct tcf_police_params *p;
struct tc_police opt = {
.index = police->tcf_index,
.refcnt = refcount_read(&police->tcf_refcnt) - ref,
.bindcnt = atomic_read(&police->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&police->tcf_lock);
opt.action = police->tcf_action;
p = rcu_dereference_protected(police->params,
lockdep_is_held(&police->tcf_lock));
opt.mtu = p->tcfp_mtu;
opt.burst = PSCHED_NS2TICKS(p->tcfp_burst);
if (p->rate_present) {
psched_ratecfg_getrate(&opt.rate, &p->rate);
if ((p->rate.rate_bytes_ps >= (1ULL << 32)) &&
nla_put_u64_64bit(skb, TCA_POLICE_RATE64,
p->rate.rate_bytes_ps,
TCA_POLICE_PAD))
goto nla_put_failure;
}
if (p->peak_present) {
psched_ratecfg_getrate(&opt.peakrate, &p->peak);
if ((p->peak.rate_bytes_ps >= (1ULL << 32)) &&
nla_put_u64_64bit(skb, TCA_POLICE_PEAKRATE64,
p->peak.rate_bytes_ps,
TCA_POLICE_PAD))
goto nla_put_failure;
}
if (p->pps_present) {
if (nla_put_u64_64bit(skb, TCA_POLICE_PKTRATE64,
p->ppsrate.rate_pkts_ps,
TCA_POLICE_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_POLICE_PKTBURST64,
PSCHED_NS2TICKS(p->tcfp_pkt_burst),
TCA_POLICE_PAD))
goto nla_put_failure;
}
if (nla_put(skb, TCA_POLICE_TBF, sizeof(opt), &opt))
goto nla_put_failure;
if (p->tcfp_result &&
nla_put_u32(skb, TCA_POLICE_RESULT, p->tcfp_result))
goto nla_put_failure;
if (p->tcfp_ewma_rate &&
nla_put_u32(skb, TCA_POLICE_AVRATE, p->tcfp_ewma_rate))
goto nla_put_failure;
tcf_tm_dump(&t, &police->tcf_tm);
if (nla_put_64bit(skb, TCA_POLICE_TM, sizeof(t), &t, TCA_POLICE_PAD))
goto nla_put_failure;
spin_unlock_bh(&police->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&police->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static int tcf_police_act_to_flow_act(int tc_act, u32 *extval,
struct netlink_ext_ack *extack)
{
int act_id = -EOPNOTSUPP;
if (!TC_ACT_EXT_OPCODE(tc_act)) {
if (tc_act == TC_ACT_OK)
act_id = FLOW_ACTION_ACCEPT;
else if (tc_act == TC_ACT_SHOT)
act_id = FLOW_ACTION_DROP;
else if (tc_act == TC_ACT_PIPE)
act_id = FLOW_ACTION_PIPE;
else if (tc_act == TC_ACT_RECLASSIFY)
NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform/exceed action is \"reclassify\"");
else
NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload");
} else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_GOTO_CHAIN)) {
act_id = FLOW_ACTION_GOTO;
*extval = tc_act & TC_ACT_EXT_VAL_MASK;
} else if (TC_ACT_EXT_CMP(tc_act, TC_ACT_JUMP)) {
act_id = FLOW_ACTION_JUMP;
*extval = tc_act & TC_ACT_EXT_VAL_MASK;
} else if (tc_act == TC_ACT_UNSPEC) {
act_id = FLOW_ACTION_CONTINUE;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unsupported conform/exceed action offload");
}
return act_id;
}
static int tcf_police_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
struct tcf_police *police = to_police(act);
struct tcf_police_params *p;
int act_id;
p = rcu_dereference_protected(police->params,
lockdep_is_held(&police->tcf_lock));
entry->id = FLOW_ACTION_POLICE;
entry->police.burst = tcf_police_burst(act);
entry->police.rate_bytes_ps =
tcf_police_rate_bytes_ps(act);
entry->police.peakrate_bytes_ps = tcf_police_peakrate_bytes_ps(act);
entry->police.avrate = tcf_police_tcfp_ewma_rate(act);
entry->police.overhead = tcf_police_rate_overhead(act);
entry->police.burst_pkt = tcf_police_burst_pkt(act);
entry->police.rate_pkt_ps =
tcf_police_rate_pkt_ps(act);
entry->police.mtu = tcf_police_tcfp_mtu(act);
act_id = tcf_police_act_to_flow_act(police->tcf_action,
&entry->police.exceed.extval,
extack);
if (act_id < 0)
return act_id;
entry->police.exceed.act_id = act_id;
act_id = tcf_police_act_to_flow_act(p->tcfp_result,
&entry->police.notexceed.extval,
extack);
if (act_id < 0)
return act_id;
entry->police.notexceed.act_id = act_id;
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
fl_action->id = FLOW_ACTION_POLICE;
}
return 0;
}
MODULE_AUTHOR("Alexey Kuznetsov");
MODULE_DESCRIPTION("Policing actions");
MODULE_LICENSE("GPL");
static struct tc_action_ops act_police_ops = {
.kind = "police",
.id = TCA_ID_POLICE,
.owner = THIS_MODULE,
.stats_update = tcf_police_stats_update,
.act = tcf_police_act,
.dump = tcf_police_dump,
.init = tcf_police_init,
.cleanup = tcf_police_cleanup,
.offload_act_setup = tcf_police_offload_act_setup,
.size = sizeof(struct tcf_police),
};
static __net_init int police_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_police_ops.net_id);
return tc_action_net_init(net, tn, &act_police_ops);
}
static void __net_exit police_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_police_ops.net_id);
}
static struct pernet_operations police_net_ops = {
.init = police_init_net,
.exit_batch = police_exit_net,
.id = &act_police_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init police_init_module(void)
{
return tcf_register_action(&act_police_ops, &police_net_ops);
}
static void __exit police_cleanup_module(void)
{
tcf_unregister_action(&act_police_ops, &police_net_ops);
}
module_init(police_init_module);
module_exit(police_cleanup_module);
| linux-master | net/sched/act_police.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_connmark.c netfilter connmark retriever action
* skb mark is over-written
*
* Copyright (c) 2011 Felix Fietkau <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_cls.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <uapi/linux/tc_act/tc_connmark.h>
#include <net/tc_act/tc_connmark.h>
#include <net/tc_wrapper.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_zones.h>
static struct tc_action_ops act_connmark_ops;
TC_INDIRECT_SCOPE int tcf_connmark_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
const struct nf_conntrack_tuple_hash *thash;
struct nf_conntrack_tuple tuple;
enum ip_conntrack_info ctinfo;
struct tcf_connmark_info *ca = to_connmark(a);
struct tcf_connmark_parms *parms;
struct nf_conntrack_zone zone;
struct nf_conn *c;
int proto;
tcf_lastuse_update(&ca->tcf_tm);
tcf_action_update_bstats(&ca->common, skb);
parms = rcu_dereference_bh(ca->parms);
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
if (skb->len < sizeof(struct iphdr))
goto out;
proto = NFPROTO_IPV4;
break;
case htons(ETH_P_IPV6):
if (skb->len < sizeof(struct ipv6hdr))
goto out;
proto = NFPROTO_IPV6;
break;
default:
goto out;
}
c = nf_ct_get(skb, &ctinfo);
if (c) {
skb->mark = READ_ONCE(c->mark);
goto count;
}
if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, parms->net,
&tuple))
goto out;
zone.id = parms->zone;
zone.dir = NF_CT_DEFAULT_ZONE_DIR;
thash = nf_conntrack_find_get(parms->net, &zone, &tuple);
if (!thash)
goto out;
c = nf_ct_tuplehash_to_ctrack(thash);
skb->mark = READ_ONCE(c->mark);
nf_ct_put(c);
count:
/* using overlimits stats to count how many packets marked */
tcf_action_inc_overlimit_qstats(&ca->common);
out:
return READ_ONCE(ca->tcf_action);
}
static const struct nla_policy connmark_policy[TCA_CONNMARK_MAX + 1] = {
[TCA_CONNMARK_PARMS] = { .len = sizeof(struct tc_connmark) },
};
static int tcf_connmark_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_connmark_ops.net_id);
struct tcf_connmark_parms *nparms, *oparms;
struct nlattr *tb[TCA_CONNMARK_MAX + 1];
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct tcf_chain *goto_ch = NULL;
struct tcf_connmark_info *ci;
struct tc_connmark *parm;
int ret = 0, err;
u32 index;
if (!nla)
return -EINVAL;
ret = nla_parse_nested_deprecated(tb, TCA_CONNMARK_MAX, nla,
connmark_policy, NULL);
if (ret < 0)
return ret;
if (!tb[TCA_CONNMARK_PARMS])
return -EINVAL;
nparms = kzalloc(sizeof(*nparms), GFP_KERNEL);
if (!nparms)
return -ENOMEM;
parm = nla_data(tb[TCA_CONNMARK_PARMS]);
index = parm->index;
ret = tcf_idr_check_alloc(tn, &index, a, bind);
if (!ret) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_connmark_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
err = ret;
goto out_free;
}
ci = to_connmark(*a);
nparms->net = net;
nparms->zone = parm->zone;
ret = ACT_P_CREATED;
} else if (ret > 0) {
ci = to_connmark(*a);
if (bind) {
err = 0;
goto out_free;
}
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
err = -EEXIST;
goto release_idr;
}
nparms->net = rtnl_dereference(ci->parms)->net;
nparms->zone = parm->zone;
ret = 0;
} else {
err = ret;
goto out_free;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
spin_lock_bh(&ci->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
oparms = rcu_replace_pointer(ci->parms, nparms, lockdep_is_held(&ci->tcf_lock));
spin_unlock_bh(&ci->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (oparms)
kfree_rcu(oparms, rcu);
return ret;
release_idr:
tcf_idr_release(*a, bind);
out_free:
kfree(nparms);
return err;
}
static inline int tcf_connmark_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_connmark_info *ci = to_connmark(a);
struct tc_connmark opt = {
.index = ci->tcf_index,
.refcnt = refcount_read(&ci->tcf_refcnt) - ref,
.bindcnt = atomic_read(&ci->tcf_bindcnt) - bind,
};
struct tcf_connmark_parms *parms;
struct tcf_t t;
spin_lock_bh(&ci->tcf_lock);
parms = rcu_dereference_protected(ci->parms, lockdep_is_held(&ci->tcf_lock));
opt.action = ci->tcf_action;
opt.zone = parms->zone;
if (nla_put(skb, TCA_CONNMARK_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &ci->tcf_tm);
if (nla_put_64bit(skb, TCA_CONNMARK_TM, sizeof(t), &t,
TCA_CONNMARK_PAD))
goto nla_put_failure;
spin_unlock_bh(&ci->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&ci->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_connmark_cleanup(struct tc_action *a)
{
struct tcf_connmark_info *ci = to_connmark(a);
struct tcf_connmark_parms *parms;
parms = rcu_dereference_protected(ci->parms, 1);
if (parms)
kfree_rcu(parms, rcu);
}
static struct tc_action_ops act_connmark_ops = {
.kind = "connmark",
.id = TCA_ID_CONNMARK,
.owner = THIS_MODULE,
.act = tcf_connmark_act,
.dump = tcf_connmark_dump,
.init = tcf_connmark_init,
.cleanup = tcf_connmark_cleanup,
.size = sizeof(struct tcf_connmark_info),
};
static __net_init int connmark_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_connmark_ops.net_id);
return tc_action_net_init(net, tn, &act_connmark_ops);
}
static void __net_exit connmark_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_connmark_ops.net_id);
}
static struct pernet_operations connmark_net_ops = {
.init = connmark_init_net,
.exit_batch = connmark_exit_net,
.id = &act_connmark_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init connmark_init_module(void)
{
return tcf_register_action(&act_connmark_ops, &connmark_net_ops);
}
static void __exit connmark_cleanup_module(void)
{
tcf_unregister_action(&act_connmark_ops, &connmark_net_ops);
}
module_init(connmark_init_module);
module_exit(connmark_cleanup_module);
MODULE_AUTHOR("Felix Fietkau <[email protected]>");
MODULE_DESCRIPTION("Connection tracking mark restoring");
MODULE_LICENSE("GPL");
| linux-master | net/sched/act_connmark.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_drr.c Deficit Round Robin scheduler
*
* Copyright (c) 2008 Patrick McHardy <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/pkt_sched.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
struct drr_class {
struct Qdisc_class_common common;
struct gnet_stats_basic_sync bstats;
struct gnet_stats_queue qstats;
struct net_rate_estimator __rcu *rate_est;
struct list_head alist;
struct Qdisc *qdisc;
u32 quantum;
u32 deficit;
};
struct drr_sched {
struct list_head active;
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
struct Qdisc_class_hash clhash;
};
static struct drr_class *drr_find_class(struct Qdisc *sch, u32 classid)
{
struct drr_sched *q = qdisc_priv(sch);
struct Qdisc_class_common *clc;
clc = qdisc_class_find(&q->clhash, classid);
if (clc == NULL)
return NULL;
return container_of(clc, struct drr_class, common);
}
static const struct nla_policy drr_policy[TCA_DRR_MAX + 1] = {
[TCA_DRR_QUANTUM] = { .type = NLA_U32 },
};
static int drr_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
struct nlattr **tca, unsigned long *arg,
struct netlink_ext_ack *extack)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl = (struct drr_class *)*arg;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_DRR_MAX + 1];
u32 quantum;
int err;
if (!opt) {
NL_SET_ERR_MSG(extack, "DRR options are required for this operation");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_DRR_MAX, opt, drr_policy,
extack);
if (err < 0)
return err;
if (tb[TCA_DRR_QUANTUM]) {
quantum = nla_get_u32(tb[TCA_DRR_QUANTUM]);
if (quantum == 0) {
NL_SET_ERR_MSG(extack, "Specified DRR quantum cannot be zero");
return -EINVAL;
}
} else
quantum = psched_mtu(qdisc_dev(sch));
if (cl != NULL) {
if (tca[TCA_RATE]) {
err = gen_replace_estimator(&cl->bstats, NULL,
&cl->rate_est,
NULL, true,
tca[TCA_RATE]);
if (err) {
NL_SET_ERR_MSG(extack, "Failed to replace estimator");
return err;
}
}
sch_tree_lock(sch);
if (tb[TCA_DRR_QUANTUM])
cl->quantum = quantum;
sch_tree_unlock(sch);
return 0;
}
cl = kzalloc(sizeof(struct drr_class), GFP_KERNEL);
if (cl == NULL)
return -ENOBUFS;
gnet_stats_basic_sync_init(&cl->bstats);
cl->common.classid = classid;
cl->quantum = quantum;
cl->qdisc = qdisc_create_dflt(sch->dev_queue,
&pfifo_qdisc_ops, classid,
NULL);
if (cl->qdisc == NULL)
cl->qdisc = &noop_qdisc;
else
qdisc_hash_add(cl->qdisc, true);
if (tca[TCA_RATE]) {
err = gen_replace_estimator(&cl->bstats, NULL, &cl->rate_est,
NULL, true, tca[TCA_RATE]);
if (err) {
NL_SET_ERR_MSG(extack, "Failed to replace estimator");
qdisc_put(cl->qdisc);
kfree(cl);
return err;
}
}
sch_tree_lock(sch);
qdisc_class_hash_insert(&q->clhash, &cl->common);
sch_tree_unlock(sch);
qdisc_class_hash_grow(sch, &q->clhash);
*arg = (unsigned long)cl;
return 0;
}
static void drr_destroy_class(struct Qdisc *sch, struct drr_class *cl)
{
gen_kill_estimator(&cl->rate_est);
qdisc_put(cl->qdisc);
kfree(cl);
}
static int drr_delete_class(struct Qdisc *sch, unsigned long arg,
struct netlink_ext_ack *extack)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl = (struct drr_class *)arg;
if (qdisc_class_in_use(&cl->common)) {
NL_SET_ERR_MSG(extack, "DRR class is in use");
return -EBUSY;
}
sch_tree_lock(sch);
qdisc_purge_queue(cl->qdisc);
qdisc_class_hash_remove(&q->clhash, &cl->common);
sch_tree_unlock(sch);
drr_destroy_class(sch, cl);
return 0;
}
static unsigned long drr_search_class(struct Qdisc *sch, u32 classid)
{
return (unsigned long)drr_find_class(sch, classid);
}
static struct tcf_block *drr_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct drr_sched *q = qdisc_priv(sch);
if (cl) {
NL_SET_ERR_MSG(extack, "DRR classid must be zero");
return NULL;
}
return q->block;
}
static unsigned long drr_bind_tcf(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
struct drr_class *cl = drr_find_class(sch, classid);
if (cl)
qdisc_class_get(&cl->common);
return (unsigned long)cl;
}
static void drr_unbind_tcf(struct Qdisc *sch, unsigned long arg)
{
struct drr_class *cl = (struct drr_class *)arg;
qdisc_class_put(&cl->common);
}
static int drr_graft_class(struct Qdisc *sch, unsigned long arg,
struct Qdisc *new, struct Qdisc **old,
struct netlink_ext_ack *extack)
{
struct drr_class *cl = (struct drr_class *)arg;
if (new == NULL) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
cl->common.classid, NULL);
if (new == NULL)
new = &noop_qdisc;
}
*old = qdisc_replace(sch, new, &cl->qdisc);
return 0;
}
static struct Qdisc *drr_class_leaf(struct Qdisc *sch, unsigned long arg)
{
struct drr_class *cl = (struct drr_class *)arg;
return cl->qdisc;
}
static void drr_qlen_notify(struct Qdisc *csh, unsigned long arg)
{
struct drr_class *cl = (struct drr_class *)arg;
list_del(&cl->alist);
}
static int drr_dump_class(struct Qdisc *sch, unsigned long arg,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct drr_class *cl = (struct drr_class *)arg;
struct nlattr *nest;
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_handle = cl->common.classid;
tcm->tcm_info = cl->qdisc->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_DRR_QUANTUM, cl->quantum))
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int drr_dump_class_stats(struct Qdisc *sch, unsigned long arg,
struct gnet_dump *d)
{
struct drr_class *cl = (struct drr_class *)arg;
__u32 qlen = qdisc_qlen_sum(cl->qdisc);
struct Qdisc *cl_q = cl->qdisc;
struct tc_drr_stats xstats;
memset(&xstats, 0, sizeof(xstats));
if (qlen)
xstats.deficit = cl->deficit;
if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
gnet_stats_copy_queue(d, cl_q->cpu_qstats, &cl_q->qstats, qlen) < 0)
return -1;
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}
static void drr_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
return;
}
}
}
static struct drr_class *drr_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
struct tcf_result res;
struct tcf_proto *fl;
int result;
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
cl = drr_find_class(sch, skb->priority);
if (cl != NULL)
return cl;
}
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
fl = rcu_dereference_bh(q->filter_list);
result = tcf_classify(skb, NULL, fl, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_QUEUED:
case TC_ACT_STOLEN:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return NULL;
}
#endif
cl = (struct drr_class *)res.class;
if (cl == NULL)
cl = drr_find_class(sch, res.classid);
return cl;
}
return NULL;
}
static int drr_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb);
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
int err = 0;
bool first;
cl = drr_classify(skb, sch, &err);
if (cl == NULL) {
if (err & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return err;
}
first = !cl->qdisc->q.qlen;
err = qdisc_enqueue(skb, cl->qdisc, to_free);
if (unlikely(err != NET_XMIT_SUCCESS)) {
if (net_xmit_drop_count(err)) {
cl->qstats.drops++;
qdisc_qstats_drop(sch);
}
return err;
}
if (first) {
list_add_tail(&cl->alist, &q->active);
cl->deficit = cl->quantum;
}
sch->qstats.backlog += len;
sch->q.qlen++;
return err;
}
static struct sk_buff *drr_dequeue(struct Qdisc *sch)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
struct sk_buff *skb;
unsigned int len;
if (list_empty(&q->active))
goto out;
while (1) {
cl = list_first_entry(&q->active, struct drr_class, alist);
skb = cl->qdisc->ops->peek(cl->qdisc);
if (skb == NULL) {
qdisc_warn_nonwc(__func__, cl->qdisc);
goto out;
}
len = qdisc_pkt_len(skb);
if (len <= cl->deficit) {
cl->deficit -= len;
skb = qdisc_dequeue_peeked(cl->qdisc);
if (unlikely(skb == NULL))
goto out;
if (cl->qdisc->q.qlen == 0)
list_del(&cl->alist);
bstats_update(&cl->bstats, skb);
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
cl->deficit += cl->quantum;
list_move_tail(&cl->alist, &q->active);
}
out:
return NULL;
}
static int drr_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct drr_sched *q = qdisc_priv(sch);
int err;
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
err = qdisc_class_hash_init(&q->clhash);
if (err < 0)
return err;
INIT_LIST_HEAD(&q->active);
return 0;
}
static void drr_reset_qdisc(struct Qdisc *sch)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
unsigned int i;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
if (cl->qdisc->q.qlen)
list_del(&cl->alist);
qdisc_reset(cl->qdisc);
}
}
}
static void drr_destroy_qdisc(struct Qdisc *sch)
{
struct drr_sched *q = qdisc_priv(sch);
struct drr_class *cl;
struct hlist_node *next;
unsigned int i;
tcf_block_put(q->block);
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
common.hnode)
drr_destroy_class(sch, cl);
}
qdisc_class_hash_destroy(&q->clhash);
}
static const struct Qdisc_class_ops drr_class_ops = {
.change = drr_change_class,
.delete = drr_delete_class,
.find = drr_search_class,
.tcf_block = drr_tcf_block,
.bind_tcf = drr_bind_tcf,
.unbind_tcf = drr_unbind_tcf,
.graft = drr_graft_class,
.leaf = drr_class_leaf,
.qlen_notify = drr_qlen_notify,
.dump = drr_dump_class,
.dump_stats = drr_dump_class_stats,
.walk = drr_walk,
};
static struct Qdisc_ops drr_qdisc_ops __read_mostly = {
.cl_ops = &drr_class_ops,
.id = "drr",
.priv_size = sizeof(struct drr_sched),
.enqueue = drr_enqueue,
.dequeue = drr_dequeue,
.peek = qdisc_peek_dequeued,
.init = drr_init_qdisc,
.reset = drr_reset_qdisc,
.destroy = drr_destroy_qdisc,
.owner = THIS_MODULE,
};
static int __init drr_init(void)
{
return register_qdisc(&drr_qdisc_ops);
}
static void __exit drr_exit(void)
{
unregister_qdisc(&drr_qdisc_ops);
}
module_init(drr_init);
module_exit(drr_exit);
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_drr.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_prio.c Simple 3-band priority "scheduler".
*
* Authors: Alexey Kuznetsov, <[email protected]>
* Fixes: 19990609: J Hadi Salim <[email protected]>:
* Init -- EINVAL when opt undefined
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
struct prio_sched_data {
int bands;
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
u8 prio2band[TC_PRIO_MAX+1];
struct Qdisc *queues[TCQ_PRIO_BANDS];
};
static struct Qdisc *
prio_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
{
struct prio_sched_data *q = qdisc_priv(sch);
u32 band = skb->priority;
struct tcf_result res;
struct tcf_proto *fl;
int err;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
if (TC_H_MAJ(skb->priority) != sch->handle) {
fl = rcu_dereference_bh(q->filter_list);
err = tcf_classify(skb, NULL, fl, &res, false);
#ifdef CONFIG_NET_CLS_ACT
switch (err) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return NULL;
}
#endif
if (!fl || err < 0) {
if (TC_H_MAJ(band))
band = 0;
return q->queues[q->prio2band[band & TC_PRIO_MAX]];
}
band = res.classid;
}
band = TC_H_MIN(band) - 1;
if (band >= q->bands)
return q->queues[q->prio2band[0]];
return q->queues[band];
}
static int
prio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb);
struct Qdisc *qdisc;
int ret;
qdisc = prio_classify(skb, sch, &ret);
#ifdef CONFIG_NET_CLS_ACT
if (qdisc == NULL) {
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return ret;
}
#endif
ret = qdisc_enqueue(skb, qdisc, to_free);
if (ret == NET_XMIT_SUCCESS) {
sch->qstats.backlog += len;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
if (net_xmit_drop_count(ret))
qdisc_qstats_drop(sch);
return ret;
}
static struct sk_buff *prio_peek(struct Qdisc *sch)
{
struct prio_sched_data *q = qdisc_priv(sch);
int prio;
for (prio = 0; prio < q->bands; prio++) {
struct Qdisc *qdisc = q->queues[prio];
struct sk_buff *skb = qdisc->ops->peek(qdisc);
if (skb)
return skb;
}
return NULL;
}
static struct sk_buff *prio_dequeue(struct Qdisc *sch)
{
struct prio_sched_data *q = qdisc_priv(sch);
int prio;
for (prio = 0; prio < q->bands; prio++) {
struct Qdisc *qdisc = q->queues[prio];
struct sk_buff *skb = qdisc_dequeue_peeked(qdisc);
if (skb) {
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
}
return NULL;
}
static void
prio_reset(struct Qdisc *sch)
{
int prio;
struct prio_sched_data *q = qdisc_priv(sch);
for (prio = 0; prio < q->bands; prio++)
qdisc_reset(q->queues[prio]);
}
static int prio_offload(struct Qdisc *sch, struct tc_prio_qopt *qopt)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_prio_qopt_offload opt = {
.handle = sch->handle,
.parent = sch->parent,
};
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return -EOPNOTSUPP;
if (qopt) {
opt.command = TC_PRIO_REPLACE;
opt.replace_params.bands = qopt->bands;
memcpy(&opt.replace_params.priomap, qopt->priomap,
TC_PRIO_MAX + 1);
opt.replace_params.qstats = &sch->qstats;
} else {
opt.command = TC_PRIO_DESTROY;
}
return dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_PRIO, &opt);
}
static void
prio_destroy(struct Qdisc *sch)
{
int prio;
struct prio_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
prio_offload(sch, NULL);
for (prio = 0; prio < q->bands; prio++)
qdisc_put(q->queues[prio]);
}
static int prio_tune(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct prio_sched_data *q = qdisc_priv(sch);
struct Qdisc *queues[TCQ_PRIO_BANDS];
int oldbands = q->bands, i;
struct tc_prio_qopt *qopt;
if (nla_len(opt) < sizeof(*qopt))
return -EINVAL;
qopt = nla_data(opt);
if (qopt->bands > TCQ_PRIO_BANDS || qopt->bands < TCQ_MIN_PRIO_BANDS)
return -EINVAL;
for (i = 0; i <= TC_PRIO_MAX; i++) {
if (qopt->priomap[i] >= qopt->bands)
return -EINVAL;
}
/* Before commit, make sure we can allocate all new qdiscs */
for (i = oldbands; i < qopt->bands; i++) {
queues[i] = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
TC_H_MAKE(sch->handle, i + 1),
extack);
if (!queues[i]) {
while (i > oldbands)
qdisc_put(queues[--i]);
return -ENOMEM;
}
}
prio_offload(sch, qopt);
sch_tree_lock(sch);
q->bands = qopt->bands;
memcpy(q->prio2band, qopt->priomap, TC_PRIO_MAX+1);
for (i = q->bands; i < oldbands; i++)
qdisc_tree_flush_backlog(q->queues[i]);
for (i = oldbands; i < q->bands; i++) {
q->queues[i] = queues[i];
if (q->queues[i] != &noop_qdisc)
qdisc_hash_add(q->queues[i], true);
}
sch_tree_unlock(sch);
for (i = q->bands; i < oldbands; i++)
qdisc_put(q->queues[i]);
return 0;
}
static int prio_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct prio_sched_data *q = qdisc_priv(sch);
int err;
if (!opt)
return -EINVAL;
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
return prio_tune(sch, opt, extack);
}
static int prio_dump_offload(struct Qdisc *sch)
{
struct tc_prio_qopt_offload hw_stats = {
.command = TC_PRIO_STATS,
.handle = sch->handle,
.parent = sch->parent,
{
.stats = {
.bstats = &sch->bstats,
.qstats = &sch->qstats,
},
},
};
return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_PRIO, &hw_stats);
}
static int prio_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct prio_sched_data *q = qdisc_priv(sch);
unsigned char *b = skb_tail_pointer(skb);
struct tc_prio_qopt opt;
int err;
opt.bands = q->bands;
memcpy(&opt.priomap, q->prio2band, TC_PRIO_MAX + 1);
err = prio_dump_offload(sch);
if (err)
goto nla_put_failure;
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
goto nla_put_failure;
return skb->len;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static int prio_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct prio_sched_data *q = qdisc_priv(sch);
struct tc_prio_qopt_offload graft_offload;
unsigned long band = arg - 1;
if (!new) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
TC_H_MAKE(sch->handle, arg), extack);
if (!new)
new = &noop_qdisc;
else
qdisc_hash_add(new, true);
}
*old = qdisc_replace(sch, new, &q->queues[band]);
graft_offload.handle = sch->handle;
graft_offload.parent = sch->parent;
graft_offload.graft_params.band = band;
graft_offload.graft_params.child_handle = new->handle;
graft_offload.command = TC_PRIO_GRAFT;
qdisc_offload_graft_helper(qdisc_dev(sch), sch, new, *old,
TC_SETUP_QDISC_PRIO, &graft_offload,
extack);
return 0;
}
static struct Qdisc *
prio_leaf(struct Qdisc *sch, unsigned long arg)
{
struct prio_sched_data *q = qdisc_priv(sch);
unsigned long band = arg - 1;
return q->queues[band];
}
static unsigned long prio_find(struct Qdisc *sch, u32 classid)
{
struct prio_sched_data *q = qdisc_priv(sch);
unsigned long band = TC_H_MIN(classid);
if (band - 1 >= q->bands)
return 0;
return band;
}
static unsigned long prio_bind(struct Qdisc *sch, unsigned long parent, u32 classid)
{
return prio_find(sch, classid);
}
static void prio_unbind(struct Qdisc *q, unsigned long cl)
{
}
static int prio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb,
struct tcmsg *tcm)
{
struct prio_sched_data *q = qdisc_priv(sch);
tcm->tcm_handle |= TC_H_MIN(cl);
tcm->tcm_info = q->queues[cl-1]->handle;
return 0;
}
static int prio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct prio_sched_data *q = qdisc_priv(sch);
struct Qdisc *cl_q;
cl_q = q->queues[cl - 1];
if (gnet_stats_copy_basic(d, cl_q->cpu_bstats,
&cl_q->bstats, true) < 0 ||
qdisc_qstats_copy(d, cl_q) < 0)
return -1;
return 0;
}
static void prio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct prio_sched_data *q = qdisc_priv(sch);
int prio;
if (arg->stop)
return;
for (prio = 0; prio < q->bands; prio++) {
if (!tc_qdisc_stats_dump(sch, prio + 1, arg))
break;
}
}
static struct tcf_block *prio_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct prio_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static const struct Qdisc_class_ops prio_class_ops = {
.graft = prio_graft,
.leaf = prio_leaf,
.find = prio_find,
.walk = prio_walk,
.tcf_block = prio_tcf_block,
.bind_tcf = prio_bind,
.unbind_tcf = prio_unbind,
.dump = prio_dump_class,
.dump_stats = prio_dump_class_stats,
};
static struct Qdisc_ops prio_qdisc_ops __read_mostly = {
.next = NULL,
.cl_ops = &prio_class_ops,
.id = "prio",
.priv_size = sizeof(struct prio_sched_data),
.enqueue = prio_enqueue,
.dequeue = prio_dequeue,
.peek = prio_peek,
.init = prio_init,
.reset = prio_reset,
.destroy = prio_destroy,
.change = prio_tune,
.dump = prio_dump,
.owner = THIS_MODULE,
};
static int __init prio_module_init(void)
{
return register_qdisc(&prio_qdisc_ops);
}
static void __exit prio_module_exit(void)
{
unregister_qdisc(&prio_qdisc_ops);
}
module_init(prio_module_init)
module_exit(prio_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_prio.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_tbf.c Token Bucket Filter queue.
*
* Authors: Alexey Kuznetsov, <[email protected]>
* Dmitry Torokhov <[email protected]> - allow attaching inner qdiscs -
* original idea by Martin Devera
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/gso.h>
#include <net/netlink.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/pkt_sched.h>
/* Simple Token Bucket Filter.
=======================================
SOURCE.
-------
None.
Description.
------------
A data flow obeys TBF with rate R and depth B, if for any
time interval t_i...t_f the number of transmitted bits
does not exceed B + R*(t_f-t_i).
Packetized version of this definition:
The sequence of packets of sizes s_i served at moments t_i
obeys TBF, if for any i<=k:
s_i+....+s_k <= B + R*(t_k - t_i)
Algorithm.
----------
Let N(t_i) be B/R initially and N(t) grow continuously with time as:
N(t+delta) = min{B/R, N(t) + delta}
If the first packet in queue has length S, it may be
transmitted only at the time t_* when S/R <= N(t_*),
and in this case N(t) jumps:
N(t_* + 0) = N(t_* - 0) - S/R.
Actually, QoS requires two TBF to be applied to a data stream.
One of them controls steady state burst size, another
one with rate P (peak rate) and depth M (equal to link MTU)
limits bursts at a smaller time scale.
It is easy to see that P>R, and B>M. If P is infinity, this double
TBF is equivalent to a single one.
When TBF works in reshaping mode, latency is estimated as:
lat = max ((L-B)/R, (L-M)/P)
NOTES.
------
If TBF throttles, it starts a watchdog timer, which will wake it up
when it is ready to transmit.
Note that the minimal timer resolution is 1/HZ.
If no new packets arrive during this period,
or if the device is not awaken by EOI for some previous packet,
TBF can stop its activity for 1/HZ.
This means, that with depth B, the maximal rate is
R_crit = B*HZ
F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
Note that the peak rate TBF is much more tough: with MTU 1500
P_crit = 150Kbytes/sec. So, if you need greater peak
rates, use alpha with HZ=1000 :-)
With classful TBF, limit is just kept for backwards compatibility.
It is passed to the default bfifo qdisc - if the inner qdisc is
changed the limit is not effective anymore.
*/
struct tbf_sched_data {
/* Parameters */
u32 limit; /* Maximal length of backlog: bytes */
u32 max_size;
s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
s64 mtu;
struct psched_ratecfg rate;
struct psched_ratecfg peak;
/* Variables */
s64 tokens; /* Current number of B tokens */
s64 ptokens; /* Current number of P tokens */
s64 t_c; /* Time check-point */
struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
struct qdisc_watchdog watchdog; /* Watchdog timer */
};
/* Time to Length, convert time in ns to length in bytes
* to determinate how many bytes can be sent in given time.
*/
static u64 psched_ns_t2l(const struct psched_ratecfg *r,
u64 time_in_ns)
{
/* The formula is :
* len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
*/
u64 len = time_in_ns * r->rate_bytes_ps;
do_div(len, NSEC_PER_SEC);
if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
do_div(len, 53);
len = len * 48;
}
if (len > r->overhead)
len -= r->overhead;
else
len = 0;
return len;
}
static void tbf_offload_change(struct Qdisc *sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct tc_tbf_qopt_offload qopt;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_TBF_REPLACE;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.replace_params.rate = q->rate;
qopt.replace_params.max_size = q->max_size;
qopt.replace_params.qstats = &sch->qstats;
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
}
static void tbf_offload_destroy(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_tbf_qopt_offload qopt;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_TBF_DESTROY;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
}
static int tbf_offload_dump(struct Qdisc *sch)
{
struct tc_tbf_qopt_offload qopt;
qopt.command = TC_TBF_STATS;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.stats.bstats = &sch->bstats;
qopt.stats.qstats = &sch->qstats;
return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_TBF, &qopt);
}
static void tbf_offload_graft(struct Qdisc *sch, struct Qdisc *new,
struct Qdisc *old, struct netlink_ext_ack *extack)
{
struct tc_tbf_qopt_offload graft_offload = {
.handle = sch->handle,
.parent = sch->parent,
.child_handle = new->handle,
.command = TC_TBF_GRAFT,
};
qdisc_offload_graft_helper(qdisc_dev(sch), sch, new, old,
TC_SETUP_QDISC_TBF, &graft_offload, extack);
}
/* GSO packet is too big, segment it so that tbf can transmit
* each segment in time
*/
static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct tbf_sched_data *q = qdisc_priv(sch);
struct sk_buff *segs, *nskb;
netdev_features_t features = netif_skb_features(skb);
unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
int ret, nb;
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
if (IS_ERR_OR_NULL(segs))
return qdisc_drop(skb, sch, to_free);
nb = 0;
skb_list_walk_safe(segs, segs, nskb) {
skb_mark_not_on_list(segs);
qdisc_skb_cb(segs)->pkt_len = segs->len;
len += segs->len;
ret = qdisc_enqueue(segs, q->qdisc, to_free);
if (ret != NET_XMIT_SUCCESS) {
if (net_xmit_drop_count(ret))
qdisc_qstats_drop(sch);
} else {
nb++;
}
}
sch->q.qlen += nb;
if (nb > 1)
qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
consume_skb(skb);
return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
}
static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct tbf_sched_data *q = qdisc_priv(sch);
unsigned int len = qdisc_pkt_len(skb);
int ret;
if (qdisc_pkt_len(skb) > q->max_size) {
if (skb_is_gso(skb) &&
skb_gso_validate_mac_len(skb, q->max_size))
return tbf_segment(skb, sch, to_free);
return qdisc_drop(skb, sch, to_free);
}
ret = qdisc_enqueue(skb, q->qdisc, to_free);
if (ret != NET_XMIT_SUCCESS) {
if (net_xmit_drop_count(ret))
qdisc_qstats_drop(sch);
return ret;
}
sch->qstats.backlog += len;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
static bool tbf_peak_present(const struct tbf_sched_data *q)
{
return q->peak.rate_bytes_ps;
}
static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
skb = q->qdisc->ops->peek(q->qdisc);
if (skb) {
s64 now;
s64 toks;
s64 ptoks = 0;
unsigned int len = qdisc_pkt_len(skb);
now = ktime_get_ns();
toks = min_t(s64, now - q->t_c, q->buffer);
if (tbf_peak_present(q)) {
ptoks = toks + q->ptokens;
if (ptoks > q->mtu)
ptoks = q->mtu;
ptoks -= (s64) psched_l2t_ns(&q->peak, len);
}
toks += q->tokens;
if (toks > q->buffer)
toks = q->buffer;
toks -= (s64) psched_l2t_ns(&q->rate, len);
if ((toks|ptoks) >= 0) {
skb = qdisc_dequeue_peeked(q->qdisc);
if (unlikely(!skb))
return NULL;
q->t_c = now;
q->tokens = toks;
q->ptokens = ptoks;
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
qdisc_bstats_update(sch, skb);
return skb;
}
qdisc_watchdog_schedule_ns(&q->watchdog,
now + max_t(long, -toks, -ptoks));
/* Maybe we have a shorter packet in the queue,
which can be sent now. It sounds cool,
but, however, this is wrong in principle.
We MUST NOT reorder packets under these circumstances.
Really, if we split the flow into independent
subflows, it would be a very good solution.
This is the main idea of all FQ algorithms
(cf. CSZ, HPFQ, HFSC)
*/
qdisc_qstats_overlimit(sch);
}
return NULL;
}
static void tbf_reset(struct Qdisc *sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
qdisc_reset(q->qdisc);
q->t_c = ktime_get_ns();
q->tokens = q->buffer;
q->ptokens = q->mtu;
qdisc_watchdog_cancel(&q->watchdog);
}
static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
[TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
[TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
[TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
[TCA_TBF_RATE64] = { .type = NLA_U64 },
[TCA_TBF_PRATE64] = { .type = NLA_U64 },
[TCA_TBF_BURST] = { .type = NLA_U32 },
[TCA_TBF_PBURST] = { .type = NLA_U32 },
};
static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
int err;
struct tbf_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_TBF_MAX + 1];
struct tc_tbf_qopt *qopt;
struct Qdisc *child = NULL;
struct Qdisc *old = NULL;
struct psched_ratecfg rate;
struct psched_ratecfg peak;
u64 max_size;
s64 buffer, mtu;
u64 rate64 = 0, prate64 = 0;
err = nla_parse_nested_deprecated(tb, TCA_TBF_MAX, opt, tbf_policy,
NULL);
if (err < 0)
return err;
err = -EINVAL;
if (tb[TCA_TBF_PARMS] == NULL)
goto done;
qopt = nla_data(tb[TCA_TBF_PARMS]);
if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
tb[TCA_TBF_RTAB],
NULL));
if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
tb[TCA_TBF_PTAB],
NULL));
buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
if (tb[TCA_TBF_RATE64])
rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
if (tb[TCA_TBF_BURST]) {
max_size = nla_get_u32(tb[TCA_TBF_BURST]);
buffer = psched_l2t_ns(&rate, max_size);
} else {
max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
}
if (qopt->peakrate.rate) {
if (tb[TCA_TBF_PRATE64])
prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
peak.rate_bytes_ps, rate.rate_bytes_ps);
err = -EINVAL;
goto done;
}
if (tb[TCA_TBF_PBURST]) {
u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
max_size = min_t(u32, max_size, pburst);
mtu = psched_l2t_ns(&peak, pburst);
} else {
max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
}
} else {
memset(&peak, 0, sizeof(peak));
}
if (max_size < psched_mtu(qdisc_dev(sch)))
pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
max_size, qdisc_dev(sch)->name,
psched_mtu(qdisc_dev(sch)));
if (!max_size) {
err = -EINVAL;
goto done;
}
if (q->qdisc != &noop_qdisc) {
err = fifo_set_limit(q->qdisc, qopt->limit);
if (err)
goto done;
} else if (qopt->limit > 0) {
child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
extack);
if (IS_ERR(child)) {
err = PTR_ERR(child);
goto done;
}
/* child is fifo, no need to check for noop_qdisc */
qdisc_hash_add(child, true);
}
sch_tree_lock(sch);
if (child) {
qdisc_tree_flush_backlog(q->qdisc);
old = q->qdisc;
q->qdisc = child;
}
q->limit = qopt->limit;
if (tb[TCA_TBF_PBURST])
q->mtu = mtu;
else
q->mtu = PSCHED_TICKS2NS(qopt->mtu);
q->max_size = max_size;
if (tb[TCA_TBF_BURST])
q->buffer = buffer;
else
q->buffer = PSCHED_TICKS2NS(qopt->buffer);
q->tokens = q->buffer;
q->ptokens = q->mtu;
memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
sch_tree_unlock(sch);
qdisc_put(old);
err = 0;
tbf_offload_change(sch);
done:
return err;
}
static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct tbf_sched_data *q = qdisc_priv(sch);
qdisc_watchdog_init(&q->watchdog, sch);
q->qdisc = &noop_qdisc;
if (!opt)
return -EINVAL;
q->t_c = ktime_get_ns();
return tbf_change(sch, opt, extack);
}
static void tbf_destroy(struct Qdisc *sch)
{
struct tbf_sched_data *q = qdisc_priv(sch);
qdisc_watchdog_cancel(&q->watchdog);
tbf_offload_destroy(sch);
qdisc_put(q->qdisc);
}
static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct tbf_sched_data *q = qdisc_priv(sch);
struct nlattr *nest;
struct tc_tbf_qopt opt;
int err;
err = tbf_offload_dump(sch);
if (err)
return err;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
opt.limit = q->limit;
psched_ratecfg_getrate(&opt.rate, &q->rate);
if (tbf_peak_present(q))
psched_ratecfg_getrate(&opt.peakrate, &q->peak);
else
memset(&opt.peakrate, 0, sizeof(opt.peakrate));
opt.mtu = PSCHED_NS2TICKS(q->mtu);
opt.buffer = PSCHED_NS2TICKS(q->buffer);
if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
TCA_TBF_PAD))
goto nla_put_failure;
if (tbf_peak_present(q) &&
q->peak.rate_bytes_ps >= (1ULL << 32) &&
nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
TCA_TBF_PAD))
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct tbf_sched_data *q = qdisc_priv(sch);
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct tbf_sched_data *q = qdisc_priv(sch);
if (new == NULL)
new = &noop_qdisc;
*old = qdisc_replace(sch, new, &q->qdisc);
tbf_offload_graft(sch, new, *old, extack);
return 0;
}
static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
{
struct tbf_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
tc_qdisc_stats_dump(sch, 1, walker);
}
}
static const struct Qdisc_class_ops tbf_class_ops = {
.graft = tbf_graft,
.leaf = tbf_leaf,
.find = tbf_find,
.walk = tbf_walk,
.dump = tbf_dump_class,
};
static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
.next = NULL,
.cl_ops = &tbf_class_ops,
.id = "tbf",
.priv_size = sizeof(struct tbf_sched_data),
.enqueue = tbf_enqueue,
.dequeue = tbf_dequeue,
.peek = qdisc_peek_dequeued,
.init = tbf_init,
.reset = tbf_reset,
.destroy = tbf_destroy,
.change = tbf_change,
.dump = tbf_dump,
.owner = THIS_MODULE,
};
static int __init tbf_module_init(void)
{
return register_qdisc(&tbf_qdisc_ops);
}
static void __exit tbf_module_exit(void)
{
unregister_qdisc(&tbf_qdisc_ops);
}
module_init(tbf_module_init)
module_exit(tbf_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_tbf.c |
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
*
* Author: Vijay Subramanian <[email protected]>
* Author: Mythili Prabhu <[email protected]>
*
* ECN support is added by Naeem Khademi <[email protected]>
* University of Oslo, Norway.
*
* References:
* RFC 8033: https://tools.ietf.org/html/rfc8033
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <net/pie.h>
/* private data for the Qdisc */
struct pie_sched_data {
struct pie_vars vars;
struct pie_params params;
struct pie_stats stats;
struct timer_list adapt_timer;
struct Qdisc *sch;
};
bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
struct pie_vars *vars, u32 backlog, u32 packet_size)
{
u64 rnd;
u64 local_prob = vars->prob;
u32 mtu = psched_mtu(qdisc_dev(sch));
/* If there is still burst allowance left skip random early drop */
if (vars->burst_time > 0)
return false;
/* If current delay is less than half of target, and
* if drop prob is low already, disable early_drop
*/
if ((vars->qdelay < params->target / 2) &&
(vars->prob < MAX_PROB / 5))
return false;
/* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
* similar to min_th in RED
*/
if (backlog < 2 * mtu)
return false;
/* If bytemode is turned on, use packet size to compute new
* probablity. Smaller packets will have lower drop prob in this case
*/
if (params->bytemode && packet_size <= mtu)
local_prob = (u64)packet_size * div_u64(local_prob, mtu);
else
local_prob = vars->prob;
if (local_prob == 0)
vars->accu_prob = 0;
else
vars->accu_prob += local_prob;
if (vars->accu_prob < (MAX_PROB / 100) * 85)
return false;
if (vars->accu_prob >= (MAX_PROB / 2) * 17)
return true;
get_random_bytes(&rnd, 8);
if ((rnd >> BITS_PER_BYTE) < local_prob) {
vars->accu_prob = 0;
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(pie_drop_early);
static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct pie_sched_data *q = qdisc_priv(sch);
bool enqueue = false;
if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
q->stats.overlimit++;
goto out;
}
if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
skb->len)) {
enqueue = true;
} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
INET_ECN_set_ce(skb)) {
/* If packet is ecn capable, mark it if drop probability
* is lower than 10%, else drop it.
*/
q->stats.ecn_mark++;
enqueue = true;
}
/* we can enqueue the packet */
if (enqueue) {
/* Set enqueue time only when dq_rate_estimator is disabled. */
if (!q->params.dq_rate_estimator)
pie_set_enqueue_time(skb);
q->stats.packets_in++;
if (qdisc_qlen(sch) > q->stats.maxq)
q->stats.maxq = qdisc_qlen(sch);
return qdisc_enqueue_tail(skb, sch);
}
out:
q->stats.dropped++;
q->vars.accu_prob = 0;
return qdisc_drop(skb, sch, to_free);
}
static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
[TCA_PIE_TARGET] = {.type = NLA_U32},
[TCA_PIE_LIMIT] = {.type = NLA_U32},
[TCA_PIE_TUPDATE] = {.type = NLA_U32},
[TCA_PIE_ALPHA] = {.type = NLA_U32},
[TCA_PIE_BETA] = {.type = NLA_U32},
[TCA_PIE_ECN] = {.type = NLA_U32},
[TCA_PIE_BYTEMODE] = {.type = NLA_U32},
[TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32},
};
static int pie_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_PIE_MAX + 1];
unsigned int qlen, dropped = 0;
int err;
err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
NULL);
if (err < 0)
return err;
sch_tree_lock(sch);
/* convert from microseconds to pschedtime */
if (tb[TCA_PIE_TARGET]) {
/* target is in us */
u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
/* convert to pschedtime */
q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
}
/* tupdate is in jiffies */
if (tb[TCA_PIE_TUPDATE])
q->params.tupdate =
usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
if (tb[TCA_PIE_LIMIT]) {
u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
q->params.limit = limit;
sch->limit = limit;
}
if (tb[TCA_PIE_ALPHA])
q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
if (tb[TCA_PIE_BETA])
q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
if (tb[TCA_PIE_ECN])
q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
if (tb[TCA_PIE_BYTEMODE])
q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
q->params.dq_rate_estimator =
nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]);
/* Drop excess packets if new limit is lower */
qlen = sch->q.qlen;
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
dropped += qdisc_pkt_len(skb);
qdisc_qstats_backlog_dec(sch, skb);
rtnl_qdisc_drop(skb, sch);
}
qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
sch_tree_unlock(sch);
return 0;
}
void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
struct pie_vars *vars, u32 backlog)
{
psched_time_t now = psched_get_time();
u32 dtime = 0;
/* If dq_rate_estimator is disabled, calculate qdelay using the
* packet timestamp.
*/
if (!params->dq_rate_estimator) {
vars->qdelay = now - pie_get_enqueue_time(skb);
if (vars->dq_tstamp != DTIME_INVALID)
dtime = now - vars->dq_tstamp;
vars->dq_tstamp = now;
if (backlog == 0)
vars->qdelay = 0;
if (dtime == 0)
return;
goto burst_allowance_reduction;
}
/* If current queue is about 10 packets or more and dq_count is unset
* we have enough packets to calculate the drain rate. Save
* current time as dq_tstamp and start measurement cycle.
*/
if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
vars->dq_tstamp = psched_get_time();
vars->dq_count = 0;
}
/* Calculate the average drain rate from this value. If queue length
* has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
* the dq_count to -1 as we don't have enough packets to calculate the
* drain rate anymore. The following if block is entered only when we
* have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
* and we calculate the drain rate for the threshold here. dq_count is
* in bytes, time difference in psched_time, hence rate is in
* bytes/psched_time.
*/
if (vars->dq_count != DQCOUNT_INVALID) {
vars->dq_count += skb->len;
if (vars->dq_count >= QUEUE_THRESHOLD) {
u32 count = vars->dq_count << PIE_SCALE;
dtime = now - vars->dq_tstamp;
if (dtime == 0)
return;
count = count / dtime;
if (vars->avg_dq_rate == 0)
vars->avg_dq_rate = count;
else
vars->avg_dq_rate =
(vars->avg_dq_rate -
(vars->avg_dq_rate >> 3)) + (count >> 3);
/* If the queue has receded below the threshold, we hold
* on to the last drain rate calculated, else we reset
* dq_count to 0 to re-enter the if block when the next
* packet is dequeued
*/
if (backlog < QUEUE_THRESHOLD) {
vars->dq_count = DQCOUNT_INVALID;
} else {
vars->dq_count = 0;
vars->dq_tstamp = psched_get_time();
}
goto burst_allowance_reduction;
}
}
return;
burst_allowance_reduction:
if (vars->burst_time > 0) {
if (vars->burst_time > dtime)
vars->burst_time -= dtime;
else
vars->burst_time = 0;
}
}
EXPORT_SYMBOL_GPL(pie_process_dequeue);
void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
u32 backlog)
{
psched_time_t qdelay = 0; /* in pschedtime */
psched_time_t qdelay_old = 0; /* in pschedtime */
s64 delta = 0; /* determines the change in probability */
u64 oldprob;
u64 alpha, beta;
u32 power;
bool update_prob = true;
if (params->dq_rate_estimator) {
qdelay_old = vars->qdelay;
vars->qdelay_old = vars->qdelay;
if (vars->avg_dq_rate > 0)
qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
else
qdelay = 0;
} else {
qdelay = vars->qdelay;
qdelay_old = vars->qdelay_old;
}
/* If qdelay is zero and backlog is not, it means backlog is very small,
* so we do not update probability in this round.
*/
if (qdelay == 0 && backlog != 0)
update_prob = false;
/* In the algorithm, alpha and beta are between 0 and 2 with typical
* value for alpha as 0.125. In this implementation, we use values 0-32
* passed from user space to represent this. Also, alpha and beta have
* unit of HZ and need to be scaled before they can used to update
* probability. alpha/beta are updated locally below by scaling down
* by 16 to come to 0-2 range.
*/
alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
/* We scale alpha and beta differently depending on how heavy the
* congestion is. Please see RFC 8033 for details.
*/
if (vars->prob < MAX_PROB / 10) {
alpha >>= 1;
beta >>= 1;
power = 100;
while (vars->prob < div_u64(MAX_PROB, power) &&
power <= 1000000) {
alpha >>= 2;
beta >>= 2;
power *= 10;
}
}
/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
delta += alpha * (qdelay - params->target);
delta += beta * (qdelay - qdelay_old);
oldprob = vars->prob;
/* to ensure we increase probability in steps of no more than 2% */
if (delta > (s64)(MAX_PROB / (100 / 2)) &&
vars->prob >= MAX_PROB / 10)
delta = (MAX_PROB / 100) * 2;
/* Non-linear drop:
* Tune drop probability to increase quickly for high delays(>= 250ms)
* 250ms is derived through experiments and provides error protection
*/
if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
delta += MAX_PROB / (100 / 2);
vars->prob += delta;
if (delta > 0) {
/* prevent overflow */
if (vars->prob < oldprob) {
vars->prob = MAX_PROB;
/* Prevent normalization error. If probability is at
* maximum value already, we normalize it here, and
* skip the check to do a non-linear drop in the next
* section.
*/
update_prob = false;
}
} else {
/* prevent underflow */
if (vars->prob > oldprob)
vars->prob = 0;
}
/* Non-linear drop in probability: Reduce drop probability quickly if
* delay is 0 for 2 consecutive Tupdate periods.
*/
if (qdelay == 0 && qdelay_old == 0 && update_prob)
/* Reduce drop probability to 98.4% */
vars->prob -= vars->prob / 64;
vars->qdelay = qdelay;
vars->backlog_old = backlog;
/* We restart the measurement cycle if the following conditions are met
* 1. If the delay has been low for 2 consecutive Tupdate periods
* 2. Calculated drop probability is zero
* 3. If average dq_rate_estimator is enabled, we have at least one
* estimate for the avg_dq_rate ie., is a non-zero value
*/
if ((vars->qdelay < params->target / 2) &&
(vars->qdelay_old < params->target / 2) &&
vars->prob == 0 &&
(!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
pie_vars_init(vars);
}
if (!params->dq_rate_estimator)
vars->qdelay_old = qdelay;
}
EXPORT_SYMBOL_GPL(pie_calculate_probability);
static void pie_timer(struct timer_list *t)
{
struct pie_sched_data *q = from_timer(q, t, adapt_timer);
struct Qdisc *sch = q->sch;
spinlock_t *root_lock;
rcu_read_lock();
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
if (q->params.tupdate)
mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
spin_unlock(root_lock);
rcu_read_unlock();
}
static int pie_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct pie_sched_data *q = qdisc_priv(sch);
pie_params_init(&q->params);
pie_vars_init(&q->vars);
sch->limit = q->params.limit;
q->sch = sch;
timer_setup(&q->adapt_timer, pie_timer, 0);
if (opt) {
int err = pie_change(sch, opt, extack);
if (err)
return err;
}
mod_timer(&q->adapt_timer, jiffies + HZ / 2);
return 0;
}
static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!opts)
goto nla_put_failure;
/* convert target from pschedtime to us */
if (nla_put_u32(skb, TCA_PIE_TARGET,
((u32)PSCHED_TICKS2NS(q->params.target)) /
NSEC_PER_USEC) ||
nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
nla_put_u32(skb, TCA_PIE_TUPDATE,
jiffies_to_usecs(q->params.tupdate)) ||
nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) ||
nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
q->params.dq_rate_estimator))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -1;
}
static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct tc_pie_xstats st = {
.prob = q->vars.prob << BITS_PER_BYTE,
.delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
NSEC_PER_USEC,
.packets_in = q->stats.packets_in,
.overlimit = q->stats.overlimit,
.maxq = q->stats.maxq,
.dropped = q->stats.dropped,
.ecn_mark = q->stats.ecn_mark,
};
/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
st.dq_rate_estimating = q->params.dq_rate_estimator;
/* unscale and return dq_rate in bytes per sec */
if (q->params.dq_rate_estimator)
st.avg_dq_rate = q->vars.avg_dq_rate *
(PSCHED_TICKS_PER_SEC) >> PIE_SCALE;
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb = qdisc_dequeue_head(sch);
if (!skb)
return NULL;
pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
return skb;
}
static void pie_reset(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
qdisc_reset_queue(sch);
pie_vars_init(&q->vars);
}
static void pie_destroy(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
q->params.tupdate = 0;
del_timer_sync(&q->adapt_timer);
}
static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
.id = "pie",
.priv_size = sizeof(struct pie_sched_data),
.enqueue = pie_qdisc_enqueue,
.dequeue = pie_qdisc_dequeue,
.peek = qdisc_peek_dequeued,
.init = pie_init,
.destroy = pie_destroy,
.reset = pie_reset,
.change = pie_change,
.dump = pie_dump,
.dump_stats = pie_dump_stats,
.owner = THIS_MODULE,
};
static int __init pie_module_init(void)
{
return register_qdisc(&pie_qdisc_ops);
}
static void __exit pie_module_exit(void)
{
unregister_qdisc(&pie_qdisc_ops);
}
module_init(pie_module_init);
module_exit(pie_module_exit);
MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
MODULE_AUTHOR("Vijay Subramanian");
MODULE_AUTHOR("Mythili Prabhu");
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_pie.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_ets.c Enhanced Transmission Selection scheduler
*
* Description
* -----------
*
* The Enhanced Transmission Selection scheduler is a classful queuing
* discipline that merges functionality of PRIO and DRR qdiscs in one scheduler.
* ETS makes it easy to configure a set of strict and bandwidth-sharing bands to
* implement the transmission selection described in 802.1Qaz.
*
* Although ETS is technically classful, it's not possible to add and remove
* classes at will. Instead one specifies number of classes, how many are
* PRIO-like and how many DRR-like, and quanta for the latter.
*
* Algorithm
* ---------
*
* The strict classes, if any, are tried for traffic first: first band 0, if it
* has no traffic then band 1, etc.
*
* When there is no traffic in any of the strict queues, the bandwidth-sharing
* ones are tried next. Each band is assigned a deficit counter, initialized to
* "quantum" of that band. ETS maintains a list of active bandwidth-sharing
* bands whose qdiscs are non-empty. A packet is dequeued from the band at the
* head of the list if the packet size is smaller or equal to the deficit
* counter. If the counter is too small, it is increased by "quantum" and the
* scheduler moves on to the next band in the active list.
*/
#include <linux/module.h>
#include <net/gen_stats.h>
#include <net/netlink.h>
#include <net/pkt_cls.h>
#include <net/pkt_sched.h>
#include <net/sch_generic.h>
struct ets_class {
struct list_head alist; /* In struct ets_sched.active. */
struct Qdisc *qdisc;
u32 quantum;
u32 deficit;
struct gnet_stats_basic_sync bstats;
struct gnet_stats_queue qstats;
};
struct ets_sched {
struct list_head active;
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
unsigned int nbands;
unsigned int nstrict;
u8 prio2band[TC_PRIO_MAX + 1];
struct ets_class classes[TCQ_ETS_MAX_BANDS];
};
static const struct nla_policy ets_policy[TCA_ETS_MAX + 1] = {
[TCA_ETS_NBANDS] = { .type = NLA_U8 },
[TCA_ETS_NSTRICT] = { .type = NLA_U8 },
[TCA_ETS_QUANTA] = { .type = NLA_NESTED },
[TCA_ETS_PRIOMAP] = { .type = NLA_NESTED },
};
static const struct nla_policy ets_priomap_policy[TCA_ETS_MAX + 1] = {
[TCA_ETS_PRIOMAP_BAND] = { .type = NLA_U8 },
};
static const struct nla_policy ets_quanta_policy[TCA_ETS_MAX + 1] = {
[TCA_ETS_QUANTA_BAND] = { .type = NLA_U32 },
};
static const struct nla_policy ets_class_policy[TCA_ETS_MAX + 1] = {
[TCA_ETS_QUANTA_BAND] = { .type = NLA_U32 },
};
static int ets_quantum_parse(struct Qdisc *sch, const struct nlattr *attr,
unsigned int *quantum,
struct netlink_ext_ack *extack)
{
*quantum = nla_get_u32(attr);
if (!*quantum) {
NL_SET_ERR_MSG(extack, "ETS quantum cannot be zero");
return -EINVAL;
}
return 0;
}
static struct ets_class *
ets_class_from_arg(struct Qdisc *sch, unsigned long arg)
{
struct ets_sched *q = qdisc_priv(sch);
return &q->classes[arg - 1];
}
static u32 ets_class_id(struct Qdisc *sch, const struct ets_class *cl)
{
struct ets_sched *q = qdisc_priv(sch);
int band = cl - q->classes;
return TC_H_MAKE(sch->handle, band + 1);
}
static void ets_offload_change(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct ets_sched *q = qdisc_priv(sch);
struct tc_ets_qopt_offload qopt;
unsigned int w_psum_prev = 0;
unsigned int q_psum = 0;
unsigned int q_sum = 0;
unsigned int quantum;
unsigned int w_psum;
unsigned int weight;
unsigned int i;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_ETS_REPLACE;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.replace_params.bands = q->nbands;
qopt.replace_params.qstats = &sch->qstats;
memcpy(&qopt.replace_params.priomap,
q->prio2band, sizeof(q->prio2band));
for (i = 0; i < q->nbands; i++)
q_sum += q->classes[i].quantum;
for (i = 0; i < q->nbands; i++) {
quantum = q->classes[i].quantum;
q_psum += quantum;
w_psum = quantum ? q_psum * 100 / q_sum : 0;
weight = w_psum - w_psum_prev;
w_psum_prev = w_psum;
qopt.replace_params.quanta[i] = quantum;
qopt.replace_params.weights[i] = weight;
}
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_ETS, &qopt);
}
static void ets_offload_destroy(struct Qdisc *sch)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_ets_qopt_offload qopt;
if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
return;
qopt.command = TC_ETS_DESTROY;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_ETS, &qopt);
}
static void ets_offload_graft(struct Qdisc *sch, struct Qdisc *new,
struct Qdisc *old, unsigned long arg,
struct netlink_ext_ack *extack)
{
struct net_device *dev = qdisc_dev(sch);
struct tc_ets_qopt_offload qopt;
qopt.command = TC_ETS_GRAFT;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.graft_params.band = arg - 1;
qopt.graft_params.child_handle = new->handle;
qdisc_offload_graft_helper(dev, sch, new, old, TC_SETUP_QDISC_ETS,
&qopt, extack);
}
static int ets_offload_dump(struct Qdisc *sch)
{
struct tc_ets_qopt_offload qopt;
qopt.command = TC_ETS_STATS;
qopt.handle = sch->handle;
qopt.parent = sch->parent;
qopt.stats.bstats = &sch->bstats;
qopt.stats.qstats = &sch->qstats;
return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_ETS, &qopt);
}
static bool ets_class_is_strict(struct ets_sched *q, const struct ets_class *cl)
{
unsigned int band = cl - q->classes;
return band < q->nstrict;
}
static int ets_class_change(struct Qdisc *sch, u32 classid, u32 parentid,
struct nlattr **tca, unsigned long *arg,
struct netlink_ext_ack *extack)
{
struct ets_class *cl = ets_class_from_arg(sch, *arg);
struct ets_sched *q = qdisc_priv(sch);
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_ETS_MAX + 1];
unsigned int quantum;
int err;
/* Classes can be added and removed only through Qdisc_ops.change
* interface.
*/
if (!cl) {
NL_SET_ERR_MSG(extack, "Fine-grained class addition and removal is not supported");
return -EOPNOTSUPP;
}
if (!opt) {
NL_SET_ERR_MSG(extack, "ETS options are required for this operation");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_ETS_MAX, opt, ets_class_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_ETS_QUANTA_BAND])
/* Nothing to configure. */
return 0;
if (ets_class_is_strict(q, cl)) {
NL_SET_ERR_MSG(extack, "Strict bands do not have a configurable quantum");
return -EINVAL;
}
err = ets_quantum_parse(sch, tb[TCA_ETS_QUANTA_BAND], &quantum,
extack);
if (err)
return err;
sch_tree_lock(sch);
cl->quantum = quantum;
sch_tree_unlock(sch);
ets_offload_change(sch);
return 0;
}
static int ets_class_graft(struct Qdisc *sch, unsigned long arg,
struct Qdisc *new, struct Qdisc **old,
struct netlink_ext_ack *extack)
{
struct ets_class *cl = ets_class_from_arg(sch, arg);
if (!new) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
ets_class_id(sch, cl), NULL);
if (!new)
new = &noop_qdisc;
else
qdisc_hash_add(new, true);
}
*old = qdisc_replace(sch, new, &cl->qdisc);
ets_offload_graft(sch, new, *old, arg, extack);
return 0;
}
static struct Qdisc *ets_class_leaf(struct Qdisc *sch, unsigned long arg)
{
struct ets_class *cl = ets_class_from_arg(sch, arg);
return cl->qdisc;
}
static unsigned long ets_class_find(struct Qdisc *sch, u32 classid)
{
unsigned long band = TC_H_MIN(classid);
struct ets_sched *q = qdisc_priv(sch);
if (band - 1 >= q->nbands)
return 0;
return band;
}
static void ets_class_qlen_notify(struct Qdisc *sch, unsigned long arg)
{
struct ets_class *cl = ets_class_from_arg(sch, arg);
struct ets_sched *q = qdisc_priv(sch);
/* We get notified about zero-length child Qdiscs as well if they are
* offloaded. Those aren't on the active list though, so don't attempt
* to remove them.
*/
if (!ets_class_is_strict(q, cl) && sch->q.qlen)
list_del(&cl->alist);
}
static int ets_class_dump(struct Qdisc *sch, unsigned long arg,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct ets_class *cl = ets_class_from_arg(sch, arg);
struct ets_sched *q = qdisc_priv(sch);
struct nlattr *nest;
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_handle = ets_class_id(sch, cl);
tcm->tcm_info = cl->qdisc->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
if (!ets_class_is_strict(q, cl)) {
if (nla_put_u32(skb, TCA_ETS_QUANTA_BAND, cl->quantum))
goto nla_put_failure;
}
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int ets_class_dump_stats(struct Qdisc *sch, unsigned long arg,
struct gnet_dump *d)
{
struct ets_class *cl = ets_class_from_arg(sch, arg);
struct Qdisc *cl_q = cl->qdisc;
if (gnet_stats_copy_basic(d, NULL, &cl_q->bstats, true) < 0 ||
qdisc_qstats_copy(d, cl_q) < 0)
return -1;
return 0;
}
static void ets_qdisc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct ets_sched *q = qdisc_priv(sch);
int i;
if (arg->stop)
return;
for (i = 0; i < q->nbands; i++) {
if (!tc_qdisc_stats_dump(sch, i + 1, arg))
break;
}
}
static struct tcf_block *
ets_qdisc_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct ets_sched *q = qdisc_priv(sch);
if (cl) {
NL_SET_ERR_MSG(extack, "ETS classid must be zero");
return NULL;
}
return q->block;
}
static unsigned long ets_qdisc_bind_tcf(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return ets_class_find(sch, classid);
}
static void ets_qdisc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
{
}
static struct ets_class *ets_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct ets_sched *q = qdisc_priv(sch);
u32 band = skb->priority;
struct tcf_result res;
struct tcf_proto *fl;
int err;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
if (TC_H_MAJ(skb->priority) != sch->handle) {
fl = rcu_dereference_bh(q->filter_list);
err = tcf_classify(skb, NULL, fl, &res, false);
#ifdef CONFIG_NET_CLS_ACT
switch (err) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return NULL;
}
#endif
if (!fl || err < 0) {
if (TC_H_MAJ(band))
band = 0;
return &q->classes[q->prio2band[band & TC_PRIO_MAX]];
}
band = res.classid;
}
band = TC_H_MIN(band) - 1;
if (band >= q->nbands)
return &q->classes[q->prio2band[0]];
return &q->classes[band];
}
static int ets_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb);
struct ets_sched *q = qdisc_priv(sch);
struct ets_class *cl;
int err = 0;
bool first;
cl = ets_classify(skb, sch, &err);
if (!cl) {
if (err & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return err;
}
first = !cl->qdisc->q.qlen;
err = qdisc_enqueue(skb, cl->qdisc, to_free);
if (unlikely(err != NET_XMIT_SUCCESS)) {
if (net_xmit_drop_count(err)) {
cl->qstats.drops++;
qdisc_qstats_drop(sch);
}
return err;
}
if (first && !ets_class_is_strict(q, cl)) {
list_add_tail(&cl->alist, &q->active);
cl->deficit = cl->quantum;
}
sch->qstats.backlog += len;
sch->q.qlen++;
return err;
}
static struct sk_buff *
ets_qdisc_dequeue_skb(struct Qdisc *sch, struct sk_buff *skb)
{
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
return skb;
}
static struct sk_buff *ets_qdisc_dequeue(struct Qdisc *sch)
{
struct ets_sched *q = qdisc_priv(sch);
struct ets_class *cl;
struct sk_buff *skb;
unsigned int band;
unsigned int len;
while (1) {
for (band = 0; band < q->nstrict; band++) {
cl = &q->classes[band];
skb = qdisc_dequeue_peeked(cl->qdisc);
if (skb)
return ets_qdisc_dequeue_skb(sch, skb);
}
if (list_empty(&q->active))
goto out;
cl = list_first_entry(&q->active, struct ets_class, alist);
skb = cl->qdisc->ops->peek(cl->qdisc);
if (!skb) {
qdisc_warn_nonwc(__func__, cl->qdisc);
goto out;
}
len = qdisc_pkt_len(skb);
if (len <= cl->deficit) {
cl->deficit -= len;
skb = qdisc_dequeue_peeked(cl->qdisc);
if (unlikely(!skb))
goto out;
if (cl->qdisc->q.qlen == 0)
list_del(&cl->alist);
return ets_qdisc_dequeue_skb(sch, skb);
}
cl->deficit += cl->quantum;
list_move_tail(&cl->alist, &q->active);
}
out:
return NULL;
}
static int ets_qdisc_priomap_parse(struct nlattr *priomap_attr,
unsigned int nbands, u8 *priomap,
struct netlink_ext_ack *extack)
{
const struct nlattr *attr;
int prio = 0;
u8 band;
int rem;
int err;
err = __nla_validate_nested(priomap_attr, TCA_ETS_MAX,
ets_priomap_policy, NL_VALIDATE_STRICT,
extack);
if (err)
return err;
nla_for_each_nested(attr, priomap_attr, rem) {
switch (nla_type(attr)) {
case TCA_ETS_PRIOMAP_BAND:
if (prio > TC_PRIO_MAX) {
NL_SET_ERR_MSG_MOD(extack, "Too many priorities in ETS priomap");
return -EINVAL;
}
band = nla_get_u8(attr);
if (band >= nbands) {
NL_SET_ERR_MSG_MOD(extack, "Invalid band number in ETS priomap");
return -EINVAL;
}
priomap[prio++] = band;
break;
default:
WARN_ON_ONCE(1); /* Validate should have caught this. */
return -EINVAL;
}
}
return 0;
}
static int ets_qdisc_quanta_parse(struct Qdisc *sch, struct nlattr *quanta_attr,
unsigned int nbands, unsigned int nstrict,
unsigned int *quanta,
struct netlink_ext_ack *extack)
{
const struct nlattr *attr;
int band = nstrict;
int rem;
int err;
err = __nla_validate_nested(quanta_attr, TCA_ETS_MAX,
ets_quanta_policy, NL_VALIDATE_STRICT,
extack);
if (err < 0)
return err;
nla_for_each_nested(attr, quanta_attr, rem) {
switch (nla_type(attr)) {
case TCA_ETS_QUANTA_BAND:
if (band >= nbands) {
NL_SET_ERR_MSG_MOD(extack, "ETS quanta has more values than bands");
return -EINVAL;
}
err = ets_quantum_parse(sch, attr, &quanta[band++],
extack);
if (err)
return err;
break;
default:
WARN_ON_ONCE(1); /* Validate should have caught this. */
return -EINVAL;
}
}
return 0;
}
static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
unsigned int quanta[TCQ_ETS_MAX_BANDS] = {0};
struct Qdisc *queues[TCQ_ETS_MAX_BANDS];
struct ets_sched *q = qdisc_priv(sch);
struct nlattr *tb[TCA_ETS_MAX + 1];
unsigned int oldbands = q->nbands;
u8 priomap[TC_PRIO_MAX + 1];
unsigned int nstrict = 0;
unsigned int nbands;
unsigned int i;
int err;
err = nla_parse_nested(tb, TCA_ETS_MAX, opt, ets_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_ETS_NBANDS]) {
NL_SET_ERR_MSG_MOD(extack, "Number of bands is a required argument");
return -EINVAL;
}
nbands = nla_get_u8(tb[TCA_ETS_NBANDS]);
if (nbands < 1 || nbands > TCQ_ETS_MAX_BANDS) {
NL_SET_ERR_MSG_MOD(extack, "Invalid number of bands");
return -EINVAL;
}
/* Unless overridden, traffic goes to the last band. */
memset(priomap, nbands - 1, sizeof(priomap));
if (tb[TCA_ETS_NSTRICT]) {
nstrict = nla_get_u8(tb[TCA_ETS_NSTRICT]);
if (nstrict > nbands) {
NL_SET_ERR_MSG_MOD(extack, "Invalid number of strict bands");
return -EINVAL;
}
}
if (tb[TCA_ETS_PRIOMAP]) {
err = ets_qdisc_priomap_parse(tb[TCA_ETS_PRIOMAP],
nbands, priomap, extack);
if (err)
return err;
}
if (tb[TCA_ETS_QUANTA]) {
err = ets_qdisc_quanta_parse(sch, tb[TCA_ETS_QUANTA],
nbands, nstrict, quanta, extack);
if (err)
return err;
}
/* If there are more bands than strict + quanta provided, the remaining
* ones are ETS with quantum of MTU. Initialize the missing values here.
*/
for (i = nstrict; i < nbands; i++) {
if (!quanta[i])
quanta[i] = psched_mtu(qdisc_dev(sch));
}
/* Before commit, make sure we can allocate all new qdiscs */
for (i = oldbands; i < nbands; i++) {
queues[i] = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
ets_class_id(sch, &q->classes[i]),
extack);
if (!queues[i]) {
while (i > oldbands)
qdisc_put(queues[--i]);
return -ENOMEM;
}
}
sch_tree_lock(sch);
q->nbands = nbands;
for (i = nstrict; i < q->nstrict; i++) {
if (q->classes[i].qdisc->q.qlen) {
list_add_tail(&q->classes[i].alist, &q->active);
q->classes[i].deficit = quanta[i];
}
}
for (i = q->nbands; i < oldbands; i++) {
if (i >= q->nstrict && q->classes[i].qdisc->q.qlen)
list_del(&q->classes[i].alist);
qdisc_tree_flush_backlog(q->classes[i].qdisc);
}
q->nstrict = nstrict;
memcpy(q->prio2band, priomap, sizeof(priomap));
for (i = 0; i < q->nbands; i++)
q->classes[i].quantum = quanta[i];
for (i = oldbands; i < q->nbands; i++) {
q->classes[i].qdisc = queues[i];
if (q->classes[i].qdisc != &noop_qdisc)
qdisc_hash_add(q->classes[i].qdisc, true);
}
sch_tree_unlock(sch);
ets_offload_change(sch);
for (i = q->nbands; i < oldbands; i++) {
qdisc_put(q->classes[i].qdisc);
q->classes[i].qdisc = NULL;
q->classes[i].quantum = 0;
q->classes[i].deficit = 0;
gnet_stats_basic_sync_init(&q->classes[i].bstats);
memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats));
}
return 0;
}
static int ets_qdisc_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct ets_sched *q = qdisc_priv(sch);
int err, i;
if (!opt)
return -EINVAL;
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
INIT_LIST_HEAD(&q->active);
for (i = 0; i < TCQ_ETS_MAX_BANDS; i++)
INIT_LIST_HEAD(&q->classes[i].alist);
return ets_qdisc_change(sch, opt, extack);
}
static void ets_qdisc_reset(struct Qdisc *sch)
{
struct ets_sched *q = qdisc_priv(sch);
int band;
for (band = q->nstrict; band < q->nbands; band++) {
if (q->classes[band].qdisc->q.qlen)
list_del(&q->classes[band].alist);
}
for (band = 0; band < q->nbands; band++)
qdisc_reset(q->classes[band].qdisc);
}
static void ets_qdisc_destroy(struct Qdisc *sch)
{
struct ets_sched *q = qdisc_priv(sch);
int band;
ets_offload_destroy(sch);
tcf_block_put(q->block);
for (band = 0; band < q->nbands; band++)
qdisc_put(q->classes[band].qdisc);
}
static int ets_qdisc_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct ets_sched *q = qdisc_priv(sch);
struct nlattr *opts;
struct nlattr *nest;
int band;
int prio;
int err;
err = ets_offload_dump(sch);
if (err)
return err;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!opts)
goto nla_err;
if (nla_put_u8(skb, TCA_ETS_NBANDS, q->nbands))
goto nla_err;
if (q->nstrict &&
nla_put_u8(skb, TCA_ETS_NSTRICT, q->nstrict))
goto nla_err;
if (q->nbands > q->nstrict) {
nest = nla_nest_start(skb, TCA_ETS_QUANTA);
if (!nest)
goto nla_err;
for (band = q->nstrict; band < q->nbands; band++) {
if (nla_put_u32(skb, TCA_ETS_QUANTA_BAND,
q->classes[band].quantum))
goto nla_err;
}
nla_nest_end(skb, nest);
}
nest = nla_nest_start(skb, TCA_ETS_PRIOMAP);
if (!nest)
goto nla_err;
for (prio = 0; prio <= TC_PRIO_MAX; prio++) {
if (nla_put_u8(skb, TCA_ETS_PRIOMAP_BAND, q->prio2band[prio]))
goto nla_err;
}
nla_nest_end(skb, nest);
return nla_nest_end(skb, opts);
nla_err:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static const struct Qdisc_class_ops ets_class_ops = {
.change = ets_class_change,
.graft = ets_class_graft,
.leaf = ets_class_leaf,
.find = ets_class_find,
.qlen_notify = ets_class_qlen_notify,
.dump = ets_class_dump,
.dump_stats = ets_class_dump_stats,
.walk = ets_qdisc_walk,
.tcf_block = ets_qdisc_tcf_block,
.bind_tcf = ets_qdisc_bind_tcf,
.unbind_tcf = ets_qdisc_unbind_tcf,
};
static struct Qdisc_ops ets_qdisc_ops __read_mostly = {
.cl_ops = &ets_class_ops,
.id = "ets",
.priv_size = sizeof(struct ets_sched),
.enqueue = ets_qdisc_enqueue,
.dequeue = ets_qdisc_dequeue,
.peek = qdisc_peek_dequeued,
.change = ets_qdisc_change,
.init = ets_qdisc_init,
.reset = ets_qdisc_reset,
.destroy = ets_qdisc_destroy,
.dump = ets_qdisc_dump,
.owner = THIS_MODULE,
};
static int __init ets_init(void)
{
return register_qdisc(&ets_qdisc_ops);
}
static void __exit ets_exit(void)
{
unregister_qdisc(&ets_qdisc_ops);
}
module_init(ets_init);
module_exit(ets_exit);
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_ets.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_flow.c Generic flow classifier
*
* Copyright (c) 2007, 2008 Patrick McHardy <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <net/inet_sock.h>
#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
#include <net/flow_dissector.h>
#include <net/tc_wrapper.h>
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack.h>
#endif
struct flow_head {
struct list_head filters;
struct rcu_head rcu;
};
struct flow_filter {
struct list_head list;
struct tcf_exts exts;
struct tcf_ematch_tree ematches;
struct tcf_proto *tp;
struct timer_list perturb_timer;
u32 perturb_period;
u32 handle;
u32 nkeys;
u32 keymask;
u32 mode;
u32 mask;
u32 xor;
u32 rshift;
u32 addend;
u32 divisor;
u32 baseclass;
u32 hashrnd;
struct rcu_work rwork;
};
static inline u32 addr_fold(void *addr)
{
unsigned long a = (unsigned long)addr;
return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}
static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
{
__be32 src = flow_get_u32_src(flow);
if (src)
return ntohl(src);
return addr_fold(skb->sk);
}
static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
{
__be32 dst = flow_get_u32_dst(flow);
if (dst)
return ntohl(dst);
return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true);
}
static u32 flow_get_proto(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return flow->basic.ip_proto;
}
static u32 flow_get_proto_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
if (flow->ports.ports)
return ntohs(flow->ports.src);
return addr_fold(skb->sk);
}
static u32 flow_get_proto_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
if (flow->ports.ports)
return ntohs(flow->ports.dst);
return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true);
}
static u32 flow_get_iif(const struct sk_buff *skb)
{
return skb->skb_iif;
}
static u32 flow_get_priority(const struct sk_buff *skb)
{
return skb->priority;
}
static u32 flow_get_mark(const struct sk_buff *skb)
{
return skb->mark;
}
static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
return addr_fold(skb_nfct(skb));
#else
return 0;
#endif
}
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#define CTTUPLE(skb, member) \
({ \
enum ip_conntrack_info ctinfo; \
const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
if (ct == NULL) \
goto fallback; \
ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
})
#else
#define CTTUPLE(skb, member) \
({ \
goto fallback; \
0; \
})
#endif
static u32 flow_get_nfct_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, src.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
}
fallback:
return flow_get_src(skb, flow);
}
static u32 flow_get_nfct_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
return ntohl(CTTUPLE(skb, dst.u3.ip));
case htons(ETH_P_IPV6):
return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
}
fallback:
return flow_get_dst(skb, flow);
}
static u32 flow_get_nfct_proto_src(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return ntohs(CTTUPLE(skb, src.u.all));
fallback:
return flow_get_proto_src(skb, flow);
}
static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb,
const struct flow_keys *flow)
{
return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
return flow_get_proto_dst(skb, flow);
}
static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
#ifdef CONFIG_IP_ROUTE_CLASSID
if (skb_dst(skb))
return skb_dst(skb)->tclassid;
#endif
return 0;
}
static u32 flow_get_skuid(const struct sk_buff *skb)
{
struct sock *sk = skb_to_full_sk(skb);
if (sk && sk->sk_socket && sk->sk_socket->file) {
kuid_t skuid = sk->sk_socket->file->f_cred->fsuid;
return from_kuid(&init_user_ns, skuid);
}
return 0;
}
static u32 flow_get_skgid(const struct sk_buff *skb)
{
struct sock *sk = skb_to_full_sk(skb);
if (sk && sk->sk_socket && sk->sk_socket->file) {
kgid_t skgid = sk->sk_socket->file->f_cred->fsgid;
return from_kgid(&init_user_ns, skgid);
}
return 0;
}
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
u16 tag;
if (vlan_get_tag(skb, &tag) < 0)
return 0;
return tag & VLAN_VID_MASK;
}
static u32 flow_get_rxhash(struct sk_buff *skb)
{
return skb_get_hash(skb);
}
static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
{
switch (key) {
case FLOW_KEY_SRC:
return flow_get_src(skb, flow);
case FLOW_KEY_DST:
return flow_get_dst(skb, flow);
case FLOW_KEY_PROTO:
return flow_get_proto(skb, flow);
case FLOW_KEY_PROTO_SRC:
return flow_get_proto_src(skb, flow);
case FLOW_KEY_PROTO_DST:
return flow_get_proto_dst(skb, flow);
case FLOW_KEY_IIF:
return flow_get_iif(skb);
case FLOW_KEY_PRIORITY:
return flow_get_priority(skb);
case FLOW_KEY_MARK:
return flow_get_mark(skb);
case FLOW_KEY_NFCT:
return flow_get_nfct(skb);
case FLOW_KEY_NFCT_SRC:
return flow_get_nfct_src(skb, flow);
case FLOW_KEY_NFCT_DST:
return flow_get_nfct_dst(skb, flow);
case FLOW_KEY_NFCT_PROTO_SRC:
return flow_get_nfct_proto_src(skb, flow);
case FLOW_KEY_NFCT_PROTO_DST:
return flow_get_nfct_proto_dst(skb, flow);
case FLOW_KEY_RTCLASSID:
return flow_get_rtclassid(skb);
case FLOW_KEY_SKUID:
return flow_get_skuid(skb);
case FLOW_KEY_SKGID:
return flow_get_skgid(skb);
case FLOW_KEY_VLAN_TAG:
return flow_get_vlan_tag(skb);
case FLOW_KEY_RXHASH:
return flow_get_rxhash(skb);
default:
WARN_ON(1);
return 0;
}
}
#define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \
(1 << FLOW_KEY_DST) | \
(1 << FLOW_KEY_PROTO) | \
(1 << FLOW_KEY_PROTO_SRC) | \
(1 << FLOW_KEY_PROTO_DST) | \
(1 << FLOW_KEY_NFCT_SRC) | \
(1 << FLOW_KEY_NFCT_DST) | \
(1 << FLOW_KEY_NFCT_PROTO_SRC) | \
(1 << FLOW_KEY_NFCT_PROTO_DST))
TC_INDIRECT_SCOPE int flow_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct flow_head *head = rcu_dereference_bh(tp->root);
struct flow_filter *f;
u32 keymask;
u32 classid;
unsigned int n, key;
int r;
list_for_each_entry_rcu(f, &head->filters, list) {
u32 keys[FLOW_KEY_MAX + 1];
struct flow_keys flow_keys;
if (!tcf_em_tree_match(skb, &f->ematches, NULL))
continue;
keymask = f->keymask;
if (keymask & FLOW_KEYS_NEEDED)
skb_flow_dissect_flow_keys(skb, &flow_keys, 0);
for (n = 0; n < f->nkeys; n++) {
key = ffs(keymask) - 1;
keymask &= ~(1 << key);
keys[n] = flow_key_get(skb, key, &flow_keys);
}
if (f->mode == FLOW_MODE_HASH)
classid = jhash2(keys, f->nkeys, f->hashrnd);
else {
classid = keys[0];
classid = (classid & f->mask) ^ f->xor;
classid = (classid >> f->rshift) + f->addend;
}
if (f->divisor)
classid %= f->divisor;
res->class = 0;
res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
r = tcf_exts_exec(skb, &f->exts, res);
if (r < 0)
continue;
return r;
}
return -1;
}
static void flow_perturbation(struct timer_list *t)
{
struct flow_filter *f = from_timer(f, t, perturb_timer);
get_random_bytes(&f->hashrnd, 4);
if (f->perturb_period)
mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
[TCA_FLOW_KEYS] = { .type = NLA_U32 },
[TCA_FLOW_MODE] = { .type = NLA_U32 },
[TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
[TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
[TCA_FLOW_ADDEND] = { .type = NLA_U32 },
[TCA_FLOW_MASK] = { .type = NLA_U32 },
[TCA_FLOW_XOR] = { .type = NLA_U32 },
[TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
[TCA_FLOW_ACT] = { .type = NLA_NESTED },
[TCA_FLOW_POLICE] = { .type = NLA_NESTED },
[TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
[TCA_FLOW_PERTURB] = { .type = NLA_U32 },
};
static void __flow_destroy_filter(struct flow_filter *f)
{
timer_shutdown_sync(&f->perturb_timer);
tcf_exts_destroy(&f->exts);
tcf_em_tree_destroy(&f->ematches);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void flow_destroy_filter_work(struct work_struct *work)
{
struct flow_filter *f = container_of(to_rcu_work(work),
struct flow_filter,
rwork);
rtnl_lock();
__flow_destroy_filter(f);
rtnl_unlock();
}
static int flow_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *fold, *fnew;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_FLOW_MAX + 1];
unsigned int nkeys = 0;
unsigned int perturb_period = 0;
u32 baseclass = 0;
u32 keymask = 0;
u32 mode;
int err;
if (opt == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_FLOW_MAX, opt, flow_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_FLOW_BASECLASS]) {
baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
if (TC_H_MIN(baseclass) == 0)
return -EINVAL;
}
if (tb[TCA_FLOW_KEYS]) {
keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
nkeys = hweight32(keymask);
if (nkeys == 0)
return -EINVAL;
if (fls(keymask) - 1 > FLOW_KEY_MAX)
return -EOPNOTSUPP;
if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
return -EOPNOTSUPP;
}
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
if (!fnew)
return -ENOBUFS;
err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches);
if (err < 0)
goto err1;
err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE);
if (err < 0)
goto err2;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, flags,
extack);
if (err < 0)
goto err2;
fold = *arg;
if (fold) {
err = -EINVAL;
if (fold->handle != handle && handle)
goto err2;
/* Copy fold into fnew */
fnew->tp = fold->tp;
fnew->handle = fold->handle;
fnew->nkeys = fold->nkeys;
fnew->keymask = fold->keymask;
fnew->mode = fold->mode;
fnew->mask = fold->mask;
fnew->xor = fold->xor;
fnew->rshift = fold->rshift;
fnew->addend = fold->addend;
fnew->divisor = fold->divisor;
fnew->baseclass = fold->baseclass;
fnew->hashrnd = fold->hashrnd;
mode = fold->mode;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (mode == FLOW_MODE_HASH)
perturb_period = fold->perturb_period;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
} else {
err = -EINVAL;
if (!handle)
goto err2;
if (!tb[TCA_FLOW_KEYS])
goto err2;
mode = FLOW_MODE_MAP;
if (tb[TCA_FLOW_MODE])
mode = nla_get_u32(tb[TCA_FLOW_MODE]);
if (mode != FLOW_MODE_HASH && nkeys > 1)
goto err2;
if (tb[TCA_FLOW_PERTURB]) {
if (mode != FLOW_MODE_HASH)
goto err2;
perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
}
if (TC_H_MAJ(baseclass) == 0) {
struct Qdisc *q = tcf_block_q(tp->chain->block);
baseclass = TC_H_MAKE(q->handle, baseclass);
}
if (TC_H_MIN(baseclass) == 0)
baseclass = TC_H_MAKE(baseclass, 1);
fnew->handle = handle;
fnew->mask = ~0U;
fnew->tp = tp;
get_random_bytes(&fnew->hashrnd, 4);
}
timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE);
tcf_block_netif_keep_dst(tp->chain->block);
if (tb[TCA_FLOW_KEYS]) {
fnew->keymask = keymask;
fnew->nkeys = nkeys;
}
fnew->mode = mode;
if (tb[TCA_FLOW_MASK])
fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
if (tb[TCA_FLOW_XOR])
fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
if (tb[TCA_FLOW_RSHIFT])
fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
if (tb[TCA_FLOW_ADDEND])
fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
if (tb[TCA_FLOW_DIVISOR])
fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
if (baseclass)
fnew->baseclass = baseclass;
fnew->perturb_period = perturb_period;
if (perturb_period)
mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
if (!*arg)
list_add_tail_rcu(&fnew->list, &head->filters);
else
list_replace_rcu(&fold->list, &fnew->list);
*arg = fnew;
if (fold) {
tcf_exts_get_net(&fold->exts);
tcf_queue_work(&fold->rwork, flow_destroy_filter_work);
}
return 0;
err2:
tcf_exts_destroy(&fnew->exts);
tcf_em_tree_destroy(&fnew->ematches);
err1:
kfree(fnew);
return err;
}
static int flow_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f = arg;
list_del_rcu(&f->list);
tcf_exts_get_net(&f->exts);
tcf_queue_work(&f->rwork, flow_destroy_filter_work);
*last = list_empty(&head->filters);
return 0;
}
static int flow_init(struct tcf_proto *tp)
{
struct flow_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (head == NULL)
return -ENOBUFS;
INIT_LIST_HEAD(&head->filters);
rcu_assign_pointer(tp->root, head);
return 0;
}
static void flow_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f, *next;
list_for_each_entry_safe(f, next, &head->filters, list) {
list_del_rcu(&f->list);
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, flow_destroy_filter_work);
else
__flow_destroy_filter(f);
}
kfree_rcu(head, rcu);
}
static void *flow_get(struct tcf_proto *tp, u32 handle)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list)
if (f->handle == handle)
return f;
return NULL;
}
static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct flow_filter *f = fh;
struct nlattr *nest;
if (f == NULL)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
goto nla_put_failure;
if (f->mask != ~0 || f->xor != 0) {
if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
goto nla_put_failure;
}
if (f->rshift &&
nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
goto nla_put_failure;
if (f->addend &&
nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
goto nla_put_failure;
if (f->divisor &&
nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
goto nla_put_failure;
if (f->baseclass &&
nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
goto nla_put_failure;
if (f->perturb_period &&
nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts) < 0)
goto nla_put_failure;
#ifdef CONFIG_NET_EMATCH
if (f->ematches.hdr.nmatches &&
tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
goto nla_put_failure;
#endif
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct flow_head *head = rtnl_dereference(tp->root);
struct flow_filter *f;
list_for_each_entry(f, &head->filters, list) {
if (!tc_cls_stats_dump(tp, arg, f))
break;
}
}
static struct tcf_proto_ops cls_flow_ops __read_mostly = {
.kind = "flow",
.classify = flow_classify,
.init = flow_init,
.destroy = flow_destroy,
.change = flow_change,
.delete = flow_delete,
.get = flow_get,
.dump = flow_dump,
.walk = flow_walk,
.owner = THIS_MODULE,
};
static int __init cls_flow_init(void)
{
return register_tcf_proto_ops(&cls_flow_ops);
}
static void __exit cls_flow_exit(void)
{
unregister_tcf_proto_ops(&cls_flow_ops);
}
module_init(cls_flow_init);
module_exit(cls_flow_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <[email protected]>");
MODULE_DESCRIPTION("TC flow classifier");
| linux-master | net/sched/cls_flow.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_skbmod.c skb data modifier
*
* Copyright (c) 2016 Jamal Hadi Salim <[email protected]>
*/
#include <linux/module.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <net/inet_ecn.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
#include <linux/tc_act/tc_skbmod.h>
#include <net/tc_act/tc_skbmod.h>
static struct tc_action_ops act_skbmod_ops;
TC_INDIRECT_SCOPE int tcf_skbmod_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_skbmod *d = to_skbmod(a);
int action, max_edit_len, err;
struct tcf_skbmod_params *p;
u64 flags;
tcf_lastuse_update(&d->tcf_tm);
bstats_update(this_cpu_ptr(d->common.cpu_bstats), skb);
action = READ_ONCE(d->tcf_action);
if (unlikely(action == TC_ACT_SHOT))
goto drop;
max_edit_len = skb_mac_header_len(skb);
p = rcu_dereference_bh(d->skbmod_p);
flags = p->flags;
/* tcf_skbmod_init() guarantees "flags" to be one of the following:
* 1. a combination of SKBMOD_F_{DMAC,SMAC,ETYPE}
* 2. SKBMOD_F_SWAPMAC
* 3. SKBMOD_F_ECN
* SKBMOD_F_ECN only works with IP packets; all other flags only work with Ethernet
* packets.
*/
if (flags == SKBMOD_F_ECN) {
switch (skb_protocol(skb, true)) {
case cpu_to_be16(ETH_P_IP):
case cpu_to_be16(ETH_P_IPV6):
max_edit_len += skb_network_header_len(skb);
break;
default:
goto out;
}
} else if (!skb->dev || skb->dev->type != ARPHRD_ETHER) {
goto out;
}
err = skb_ensure_writable(skb, max_edit_len);
if (unlikely(err)) /* best policy is to drop on the floor */
goto drop;
if (flags & SKBMOD_F_DMAC)
ether_addr_copy(eth_hdr(skb)->h_dest, p->eth_dst);
if (flags & SKBMOD_F_SMAC)
ether_addr_copy(eth_hdr(skb)->h_source, p->eth_src);
if (flags & SKBMOD_F_ETYPE)
eth_hdr(skb)->h_proto = p->eth_type;
if (flags & SKBMOD_F_SWAPMAC) {
u16 tmpaddr[ETH_ALEN / 2]; /* ether_addr_copy() requirement */
/*XXX: I am sure we can come up with more efficient swapping*/
ether_addr_copy((u8 *)tmpaddr, eth_hdr(skb)->h_dest);
ether_addr_copy(eth_hdr(skb)->h_dest, eth_hdr(skb)->h_source);
ether_addr_copy(eth_hdr(skb)->h_source, (u8 *)tmpaddr);
}
if (flags & SKBMOD_F_ECN)
INET_ECN_set_ce(skb);
out:
return action;
drop:
qstats_overlimit_inc(this_cpu_ptr(d->common.cpu_qstats));
return TC_ACT_SHOT;
}
static const struct nla_policy skbmod_policy[TCA_SKBMOD_MAX + 1] = {
[TCA_SKBMOD_PARMS] = { .len = sizeof(struct tc_skbmod) },
[TCA_SKBMOD_DMAC] = { .len = ETH_ALEN },
[TCA_SKBMOD_SMAC] = { .len = ETH_ALEN },
[TCA_SKBMOD_ETYPE] = { .type = NLA_U16 },
};
static int tcf_skbmod_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_skbmod_ops.net_id);
bool ovr = flags & TCA_ACT_FLAGS_REPLACE;
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_SKBMOD_MAX + 1];
struct tcf_skbmod_params *p, *p_old;
struct tcf_chain *goto_ch = NULL;
struct tc_skbmod *parm;
u32 lflags = 0, index;
struct tcf_skbmod *d;
bool exists = false;
u8 *daddr = NULL;
u8 *saddr = NULL;
u16 eth_type = 0;
int ret = 0, err;
if (!nla)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_SKBMOD_MAX, nla,
skbmod_policy, NULL);
if (err < 0)
return err;
if (!tb[TCA_SKBMOD_PARMS])
return -EINVAL;
if (tb[TCA_SKBMOD_DMAC]) {
daddr = nla_data(tb[TCA_SKBMOD_DMAC]);
lflags |= SKBMOD_F_DMAC;
}
if (tb[TCA_SKBMOD_SMAC]) {
saddr = nla_data(tb[TCA_SKBMOD_SMAC]);
lflags |= SKBMOD_F_SMAC;
}
if (tb[TCA_SKBMOD_ETYPE]) {
eth_type = nla_get_u16(tb[TCA_SKBMOD_ETYPE]);
lflags |= SKBMOD_F_ETYPE;
}
parm = nla_data(tb[TCA_SKBMOD_PARMS]);
index = parm->index;
if (parm->flags & SKBMOD_F_SWAPMAC)
lflags = SKBMOD_F_SWAPMAC;
if (parm->flags & SKBMOD_F_ECN)
lflags = SKBMOD_F_ECN;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (!lflags) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
if (!exists) {
ret = tcf_idr_create(tn, index, est, a,
&act_skbmod_ops, bind, true, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (!ovr) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
d = to_skbmod(*a);
p = kzalloc(sizeof(struct tcf_skbmod_params), GFP_KERNEL);
if (unlikely(!p)) {
err = -ENOMEM;
goto put_chain;
}
p->flags = lflags;
if (ovr)
spin_lock_bh(&d->tcf_lock);
/* Protected by tcf_lock if overwriting existing action. */
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
p_old = rcu_dereference_protected(d->skbmod_p, 1);
if (lflags & SKBMOD_F_DMAC)
ether_addr_copy(p->eth_dst, daddr);
if (lflags & SKBMOD_F_SMAC)
ether_addr_copy(p->eth_src, saddr);
if (lflags & SKBMOD_F_ETYPE)
p->eth_type = htons(eth_type);
rcu_assign_pointer(d->skbmod_p, p);
if (ovr)
spin_unlock_bh(&d->tcf_lock);
if (p_old)
kfree_rcu(p_old, rcu);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static void tcf_skbmod_cleanup(struct tc_action *a)
{
struct tcf_skbmod *d = to_skbmod(a);
struct tcf_skbmod_params *p;
p = rcu_dereference_protected(d->skbmod_p, 1);
if (p)
kfree_rcu(p, rcu);
}
static int tcf_skbmod_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
struct tcf_skbmod *d = to_skbmod(a);
unsigned char *b = skb_tail_pointer(skb);
struct tcf_skbmod_params *p;
struct tc_skbmod opt = {
.index = d->tcf_index,
.refcnt = refcount_read(&d->tcf_refcnt) - ref,
.bindcnt = atomic_read(&d->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&d->tcf_lock);
opt.action = d->tcf_action;
p = rcu_dereference_protected(d->skbmod_p,
lockdep_is_held(&d->tcf_lock));
opt.flags = p->flags;
if (nla_put(skb, TCA_SKBMOD_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
if ((p->flags & SKBMOD_F_DMAC) &&
nla_put(skb, TCA_SKBMOD_DMAC, ETH_ALEN, p->eth_dst))
goto nla_put_failure;
if ((p->flags & SKBMOD_F_SMAC) &&
nla_put(skb, TCA_SKBMOD_SMAC, ETH_ALEN, p->eth_src))
goto nla_put_failure;
if ((p->flags & SKBMOD_F_ETYPE) &&
nla_put_u16(skb, TCA_SKBMOD_ETYPE, ntohs(p->eth_type)))
goto nla_put_failure;
tcf_tm_dump(&t, &d->tcf_tm);
if (nla_put_64bit(skb, TCA_SKBMOD_TM, sizeof(t), &t, TCA_SKBMOD_PAD))
goto nla_put_failure;
spin_unlock_bh(&d->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&d->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static struct tc_action_ops act_skbmod_ops = {
.kind = "skbmod",
.id = TCA_ACT_SKBMOD,
.owner = THIS_MODULE,
.act = tcf_skbmod_act,
.dump = tcf_skbmod_dump,
.init = tcf_skbmod_init,
.cleanup = tcf_skbmod_cleanup,
.size = sizeof(struct tcf_skbmod),
};
static __net_init int skbmod_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_skbmod_ops.net_id);
return tc_action_net_init(net, tn, &act_skbmod_ops);
}
static void __net_exit skbmod_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_skbmod_ops.net_id);
}
static struct pernet_operations skbmod_net_ops = {
.init = skbmod_init_net,
.exit_batch = skbmod_exit_net,
.id = &act_skbmod_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim, <[email protected]>");
MODULE_DESCRIPTION("SKB data mod-ing");
MODULE_LICENSE("GPL");
static int __init skbmod_init_module(void)
{
return tcf_register_action(&act_skbmod_ops, &skbmod_net_ops);
}
static void __exit skbmod_cleanup_module(void)
{
tcf_unregister_action(&act_skbmod_ops, &skbmod_net_ops);
}
module_init(skbmod_init_module);
module_exit(skbmod_cleanup_module);
| linux-master | net/sched/act_skbmod.c |
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/netlink.h>
#include <linux/types.h>
#include <net/pkt_sched.h>
#include "sch_mqprio_lib.h"
/* Returns true if the intervals [a, b) and [c, d) overlap. */
static bool intervals_overlap(int a, int b, int c, int d)
{
int left = max(a, c), right = min(b, d);
return left < right;
}
static int mqprio_validate_queue_counts(struct net_device *dev,
const struct tc_mqprio_qopt *qopt,
bool allow_overlapping_txqs,
struct netlink_ext_ack *extack)
{
int i, j;
for (i = 0; i < qopt->num_tc; i++) {
unsigned int last = qopt->offset[i] + qopt->count[i];
if (!qopt->count[i]) {
NL_SET_ERR_MSG_FMT_MOD(extack, "No queues for TC %d",
i);
return -EINVAL;
}
/* Verify the queue count is in tx range being equal to the
* real_num_tx_queues indicates the last queue is in use.
*/
if (qopt->offset[i] >= dev->real_num_tx_queues ||
last > dev->real_num_tx_queues) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"Queues %d:%d for TC %d exceed the %d TX queues available",
qopt->count[i], qopt->offset[i],
i, dev->real_num_tx_queues);
return -EINVAL;
}
if (allow_overlapping_txqs)
continue;
/* Verify that the offset and counts do not overlap */
for (j = i + 1; j < qopt->num_tc; j++) {
if (intervals_overlap(qopt->offset[i], last,
qopt->offset[j],
qopt->offset[j] +
qopt->count[j])) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"TC %d queues %d@%d overlap with TC %d queues %d@%d",
i, qopt->count[i], qopt->offset[i],
j, qopt->count[j], qopt->offset[j]);
return -EINVAL;
}
}
}
return 0;
}
int mqprio_validate_qopt(struct net_device *dev, struct tc_mqprio_qopt *qopt,
bool validate_queue_counts,
bool allow_overlapping_txqs,
struct netlink_ext_ack *extack)
{
int i, err;
/* Verify num_tc is not out of max range */
if (qopt->num_tc > TC_MAX_QUEUE) {
NL_SET_ERR_MSG(extack,
"Number of traffic classes is outside valid range");
return -EINVAL;
}
/* Verify priority mapping uses valid tcs */
for (i = 0; i <= TC_BITMASK; i++) {
if (qopt->prio_tc_map[i] >= qopt->num_tc) {
NL_SET_ERR_MSG(extack,
"Invalid traffic class in priority to traffic class mapping");
return -EINVAL;
}
}
if (validate_queue_counts) {
err = mqprio_validate_queue_counts(dev, qopt,
allow_overlapping_txqs,
extack);
if (err)
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(mqprio_validate_qopt);
void mqprio_qopt_reconstruct(struct net_device *dev, struct tc_mqprio_qopt *qopt)
{
int tc, num_tc = netdev_get_num_tc(dev);
qopt->num_tc = num_tc;
memcpy(qopt->prio_tc_map, dev->prio_tc_map, sizeof(qopt->prio_tc_map));
for (tc = 0; tc < num_tc; tc++) {
qopt->count[tc] = dev->tc_to_txq[tc].count;
qopt->offset[tc] = dev->tc_to_txq[tc].offset;
}
}
EXPORT_SYMBOL_GPL(mqprio_qopt_reconstruct);
void mqprio_fp_to_offload(u32 fp[TC_QOPT_MAX_QUEUE],
struct tc_mqprio_qopt_offload *mqprio)
{
unsigned long preemptible_tcs = 0;
int tc;
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
if (fp[tc] == TC_FP_PREEMPTIBLE)
preemptible_tcs |= BIT(tc);
mqprio->preemptible_tcs = preemptible_tcs;
}
EXPORT_SYMBOL_GPL(mqprio_fp_to_offload);
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_mqprio_lib.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_simple.c Simple example of an action
*
* Authors: Jamal Hadi Salim (2005-8)
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
#include <linux/tc_act/tc_defact.h>
#include <net/tc_act/tc_defact.h>
static struct tc_action_ops act_simp_ops;
#define SIMP_MAX_DATA 32
TC_INDIRECT_SCOPE int tcf_simp_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_defact *d = to_defact(a);
spin_lock(&d->tcf_lock);
tcf_lastuse_update(&d->tcf_tm);
bstats_update(&d->tcf_bstats, skb);
/* print policy string followed by _ then packet count
* Example if this was the 3rd packet and the string was "hello"
* then it would look like "hello_3" (without quotes)
*/
pr_info("simple: %s_%llu\n",
(char *)d->tcfd_defdata,
u64_stats_read(&d->tcf_bstats.packets));
spin_unlock(&d->tcf_lock);
return d->tcf_action;
}
static void tcf_simp_release(struct tc_action *a)
{
struct tcf_defact *d = to_defact(a);
kfree(d->tcfd_defdata);
}
static int alloc_defdata(struct tcf_defact *d, const struct nlattr *defdata)
{
d->tcfd_defdata = kzalloc(SIMP_MAX_DATA, GFP_KERNEL);
if (unlikely(!d->tcfd_defdata))
return -ENOMEM;
nla_strscpy(d->tcfd_defdata, defdata, SIMP_MAX_DATA);
return 0;
}
static int reset_policy(struct tc_action *a, const struct nlattr *defdata,
struct tc_defact *p, struct tcf_proto *tp,
struct netlink_ext_ack *extack)
{
struct tcf_chain *goto_ch = NULL;
struct tcf_defact *d;
int err;
err = tcf_action_check_ctrlact(p->action, tp, &goto_ch, extack);
if (err < 0)
return err;
d = to_defact(a);
spin_lock_bh(&d->tcf_lock);
goto_ch = tcf_action_set_ctrlact(a, p->action, goto_ch);
memset(d->tcfd_defdata, 0, SIMP_MAX_DATA);
nla_strscpy(d->tcfd_defdata, defdata, SIMP_MAX_DATA);
spin_unlock_bh(&d->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return 0;
}
static const struct nla_policy simple_policy[TCA_DEF_MAX + 1] = {
[TCA_DEF_PARMS] = { .len = sizeof(struct tc_defact) },
[TCA_DEF_DATA] = { .type = NLA_STRING, .len = SIMP_MAX_DATA },
};
static int tcf_simp_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_simp_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_DEF_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_defact *parm;
struct tcf_defact *d;
bool exists = false;
int ret = 0, err;
u32 index;
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_DEF_MAX, nla, simple_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_DEF_PARMS] == NULL)
return -EINVAL;
parm = nla_data(tb[TCA_DEF_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (tb[TCA_DEF_DATA] == NULL) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
if (!exists) {
ret = tcf_idr_create(tn, index, est, a,
&act_simp_ops, bind, false, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
d = to_defact(*a);
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch,
extack);
if (err < 0)
goto release_idr;
err = alloc_defdata(d, tb[TCA_DEF_DATA]);
if (err < 0)
goto put_chain;
tcf_action_set_ctrlact(*a, parm->action, goto_ch);
ret = ACT_P_CREATED;
} else {
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
err = -EEXIST;
goto release_idr;
}
err = reset_policy(*a, tb[TCA_DEF_DATA], parm, tp, extack);
if (err)
goto release_idr;
}
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static int tcf_simp_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_defact *d = to_defact(a);
struct tc_defact opt = {
.index = d->tcf_index,
.refcnt = refcount_read(&d->tcf_refcnt) - ref,
.bindcnt = atomic_read(&d->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&d->tcf_lock);
opt.action = d->tcf_action;
if (nla_put(skb, TCA_DEF_PARMS, sizeof(opt), &opt) ||
nla_put_string(skb, TCA_DEF_DATA, d->tcfd_defdata))
goto nla_put_failure;
tcf_tm_dump(&t, &d->tcf_tm);
if (nla_put_64bit(skb, TCA_DEF_TM, sizeof(t), &t, TCA_DEF_PAD))
goto nla_put_failure;
spin_unlock_bh(&d->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&d->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static struct tc_action_ops act_simp_ops = {
.kind = "simple",
.id = TCA_ID_SIMP,
.owner = THIS_MODULE,
.act = tcf_simp_act,
.dump = tcf_simp_dump,
.cleanup = tcf_simp_release,
.init = tcf_simp_init,
.size = sizeof(struct tcf_defact),
};
static __net_init int simp_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_simp_ops.net_id);
return tc_action_net_init(net, tn, &act_simp_ops);
}
static void __net_exit simp_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_simp_ops.net_id);
}
static struct pernet_operations simp_net_ops = {
.init = simp_init_net,
.exit_batch = simp_exit_net,
.id = &act_simp_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2005)");
MODULE_DESCRIPTION("Simple example action");
MODULE_LICENSE("GPL");
static int __init simp_init_module(void)
{
int ret = tcf_register_action(&act_simp_ops, &simp_net_ops);
if (!ret)
pr_info("Simple TC action Loaded\n");
return ret;
}
static void __exit simp_cleanup_module(void)
{
tcf_unregister_action(&act_simp_ops, &simp_net_ops);
}
module_init(simp_init_module);
module_exit(simp_cleanup_module);
| linux-master | net/sched/act_simple.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_matchll.c Match-all classifier
*
* Copyright (c) 2016 Jiri Pirko <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
struct cls_mall_head {
struct tcf_exts exts;
struct tcf_result res;
u32 handle;
u32 flags;
unsigned int in_hw_count;
struct tc_matchall_pcnt __percpu *pf;
struct rcu_work rwork;
bool deleting;
};
TC_INDIRECT_SCOPE int mall_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct cls_mall_head *head = rcu_dereference_bh(tp->root);
if (unlikely(!head))
return -1;
if (tc_skip_sw(head->flags))
return -1;
*res = head->res;
__this_cpu_inc(head->pf->rhit);
return tcf_exts_exec(skb, &head->exts, res);
}
static int mall_init(struct tcf_proto *tp)
{
return 0;
}
static void __mall_destroy(struct cls_mall_head *head)
{
tcf_exts_destroy(&head->exts);
tcf_exts_put_net(&head->exts);
free_percpu(head->pf);
kfree(head);
}
static void mall_destroy_work(struct work_struct *work)
{
struct cls_mall_head *head = container_of(to_rcu_work(work),
struct cls_mall_head,
rwork);
rtnl_lock();
__mall_destroy(head);
rtnl_unlock();
}
static void mall_destroy_hw_filter(struct tcf_proto *tp,
struct cls_mall_head *head,
unsigned long cookie,
struct netlink_ext_ack *extack)
{
struct tc_cls_matchall_offload cls_mall = {};
struct tcf_block *block = tp->chain->block;
tc_cls_common_offload_init(&cls_mall.common, tp, head->flags, extack);
cls_mall.command = TC_CLSMATCHALL_DESTROY;
cls_mall.cookie = cookie;
tc_setup_cb_destroy(block, tp, TC_SETUP_CLSMATCHALL, &cls_mall, false,
&head->flags, &head->in_hw_count, true);
}
static int mall_replace_hw_filter(struct tcf_proto *tp,
struct cls_mall_head *head,
unsigned long cookie,
struct netlink_ext_ack *extack)
{
struct tc_cls_matchall_offload cls_mall = {};
struct tcf_block *block = tp->chain->block;
bool skip_sw = tc_skip_sw(head->flags);
int err;
cls_mall.rule = flow_rule_alloc(tcf_exts_num_actions(&head->exts));
if (!cls_mall.rule)
return -ENOMEM;
tc_cls_common_offload_init(&cls_mall.common, tp, head->flags, extack);
cls_mall.command = TC_CLSMATCHALL_REPLACE;
cls_mall.cookie = cookie;
err = tc_setup_offload_action(&cls_mall.rule->action, &head->exts,
cls_mall.common.extack);
if (err) {
kfree(cls_mall.rule);
mall_destroy_hw_filter(tp, head, cookie, NULL);
return skip_sw ? err : 0;
}
err = tc_setup_cb_add(block, tp, TC_SETUP_CLSMATCHALL, &cls_mall,
skip_sw, &head->flags, &head->in_hw_count, true);
tc_cleanup_offload_action(&cls_mall.rule->action);
kfree(cls_mall.rule);
if (err) {
mall_destroy_hw_filter(tp, head, cookie, NULL);
return err;
}
if (skip_sw && !(head->flags & TCA_CLS_FLAGS_IN_HW))
return -EINVAL;
return 0;
}
static void mall_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
if (!head)
return;
tcf_unbind_filter(tp, &head->res);
if (!tc_skip_hw(head->flags))
mall_destroy_hw_filter(tp, head, (unsigned long) head, extack);
if (tcf_exts_get_net(&head->exts))
tcf_queue_work(&head->rwork, mall_destroy_work);
else
__mall_destroy(head);
}
static void *mall_get(struct tcf_proto *tp, u32 handle)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
if (head && head->handle == handle)
return head;
return NULL;
}
static const struct nla_policy mall_policy[TCA_MATCHALL_MAX + 1] = {
[TCA_MATCHALL_UNSPEC] = { .type = NLA_UNSPEC },
[TCA_MATCHALL_CLASSID] = { .type = NLA_U32 },
[TCA_MATCHALL_FLAGS] = { .type = NLA_U32 },
};
static int mall_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
struct nlattr *tb[TCA_MATCHALL_MAX + 1];
bool bound_to_filter = false;
struct cls_mall_head *new;
u32 userflags = 0;
int err;
if (!tca[TCA_OPTIONS])
return -EINVAL;
if (head)
return -EEXIST;
err = nla_parse_nested_deprecated(tb, TCA_MATCHALL_MAX,
tca[TCA_OPTIONS], mall_policy, NULL);
if (err < 0)
return err;
if (tb[TCA_MATCHALL_FLAGS]) {
userflags = nla_get_u32(tb[TCA_MATCHALL_FLAGS]);
if (!tc_flags_valid(userflags))
return -EINVAL;
}
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return -ENOBUFS;
err = tcf_exts_init(&new->exts, net, TCA_MATCHALL_ACT, 0);
if (err)
goto err_exts_init;
if (!handle)
handle = 1;
new->handle = handle;
new->flags = userflags;
new->pf = alloc_percpu(struct tc_matchall_pcnt);
if (!new->pf) {
err = -ENOMEM;
goto err_alloc_percpu;
}
err = tcf_exts_validate_ex(net, tp, tb, tca[TCA_RATE],
&new->exts, flags, new->flags, extack);
if (err < 0)
goto err_set_parms;
if (tb[TCA_MATCHALL_CLASSID]) {
new->res.classid = nla_get_u32(tb[TCA_MATCHALL_CLASSID]);
tcf_bind_filter(tp, &new->res, base);
bound_to_filter = true;
}
if (!tc_skip_hw(new->flags)) {
err = mall_replace_hw_filter(tp, new, (unsigned long)new,
extack);
if (err)
goto err_replace_hw_filter;
}
if (!tc_in_hw(new->flags))
new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
*arg = head;
rcu_assign_pointer(tp->root, new);
return 0;
err_replace_hw_filter:
if (bound_to_filter)
tcf_unbind_filter(tp, &new->res);
err_set_parms:
free_percpu(new->pf);
err_alloc_percpu:
tcf_exts_destroy(&new->exts);
err_exts_init:
kfree(new);
return err;
}
static int mall_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
head->deleting = true;
*last = true;
return 0;
}
static void mall_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
if (arg->count < arg->skip)
goto skip;
if (!head || head->deleting)
return;
if (arg->fn(tp, head, arg) < 0)
arg->stop = 1;
skip:
arg->count++;
}
static int mall_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
void *cb_priv, struct netlink_ext_ack *extack)
{
struct cls_mall_head *head = rtnl_dereference(tp->root);
struct tc_cls_matchall_offload cls_mall = {};
struct tcf_block *block = tp->chain->block;
int err;
if (tc_skip_hw(head->flags))
return 0;
cls_mall.rule = flow_rule_alloc(tcf_exts_num_actions(&head->exts));
if (!cls_mall.rule)
return -ENOMEM;
tc_cls_common_offload_init(&cls_mall.common, tp, head->flags, extack);
cls_mall.command = add ?
TC_CLSMATCHALL_REPLACE : TC_CLSMATCHALL_DESTROY;
cls_mall.cookie = (unsigned long)head;
err = tc_setup_offload_action(&cls_mall.rule->action, &head->exts,
cls_mall.common.extack);
if (err) {
kfree(cls_mall.rule);
return add && tc_skip_sw(head->flags) ? err : 0;
}
err = tc_setup_cb_reoffload(block, tp, add, cb, TC_SETUP_CLSMATCHALL,
&cls_mall, cb_priv, &head->flags,
&head->in_hw_count);
tc_cleanup_offload_action(&cls_mall.rule->action);
kfree(cls_mall.rule);
return err;
}
static void mall_stats_hw_filter(struct tcf_proto *tp,
struct cls_mall_head *head,
unsigned long cookie)
{
struct tc_cls_matchall_offload cls_mall = {};
struct tcf_block *block = tp->chain->block;
tc_cls_common_offload_init(&cls_mall.common, tp, head->flags, NULL);
cls_mall.command = TC_CLSMATCHALL_STATS;
cls_mall.cookie = cookie;
tc_setup_cb_call(block, TC_SETUP_CLSMATCHALL, &cls_mall, false, true);
tcf_exts_hw_stats_update(&head->exts, &cls_mall.stats, cls_mall.use_act_stats);
}
static int mall_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct tc_matchall_pcnt gpf = {};
struct cls_mall_head *head = fh;
struct nlattr *nest;
int cpu;
if (!head)
return skb->len;
if (!tc_skip_hw(head->flags))
mall_stats_hw_filter(tp, head, (unsigned long)head);
t->tcm_handle = head->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
if (head->res.classid &&
nla_put_u32(skb, TCA_MATCHALL_CLASSID, head->res.classid))
goto nla_put_failure;
if (head->flags && nla_put_u32(skb, TCA_MATCHALL_FLAGS, head->flags))
goto nla_put_failure;
for_each_possible_cpu(cpu) {
struct tc_matchall_pcnt *pf = per_cpu_ptr(head->pf, cpu);
gpf.rhit += pf->rhit;
}
if (nla_put_64bit(skb, TCA_MATCHALL_PCNT,
sizeof(struct tc_matchall_pcnt),
&gpf, TCA_MATCHALL_PAD))
goto nla_put_failure;
if (tcf_exts_dump(skb, &head->exts))
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &head->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static void mall_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
unsigned long base)
{
struct cls_mall_head *head = fh;
tc_cls_bind_class(classid, cl, q, &head->res, base);
}
static struct tcf_proto_ops cls_mall_ops __read_mostly = {
.kind = "matchall",
.classify = mall_classify,
.init = mall_init,
.destroy = mall_destroy,
.get = mall_get,
.change = mall_change,
.delete = mall_delete,
.walk = mall_walk,
.reoffload = mall_reoffload,
.dump = mall_dump,
.bind_class = mall_bind_class,
.owner = THIS_MODULE,
};
static int __init cls_mall_init(void)
{
return register_tcf_proto_ops(&cls_mall_ops);
}
static void __exit cls_mall_exit(void)
{
unregister_tcf_proto_ops(&cls_mall_ops);
}
module_init(cls_mall_init);
module_exit(cls_mall_exit);
MODULE_AUTHOR("Jiri Pirko <[email protected]>");
MODULE_DESCRIPTION("Match-all classifier");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/cls_matchall.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_sfb.c Stochastic Fair Blue
*
* Copyright (c) 2008-2011 Juliusz Chroboczek <[email protected]>
* Copyright (c) 2011 Eric Dumazet <[email protected]>
*
* W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
* A New Class of Active Queue Management Algorithms.
* U. Michigan CSE-TR-387-99, April 1999.
*
* http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <linux/siphash.h>
#include <net/ip.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/inet_ecn.h>
/*
* SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
* This implementation uses L = 8 and N = 16
* This permits us to split one 32bit hash (provided per packet by rxhash or
* external classifier) into 8 subhashes of 4 bits.
*/
#define SFB_BUCKET_SHIFT 4
#define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
#define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
#define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
/* SFB algo uses a virtual queue, named "bin" */
struct sfb_bucket {
u16 qlen; /* length of virtual queue */
u16 p_mark; /* marking probability */
};
/* We use a double buffering right before hash change
* (Section 4.4 of SFB reference : moving hash functions)
*/
struct sfb_bins {
siphash_key_t perturbation; /* siphash key */
struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
};
struct sfb_sched_data {
struct Qdisc *qdisc;
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
unsigned long rehash_interval;
unsigned long warmup_time; /* double buffering warmup time in jiffies */
u32 max;
u32 bin_size; /* maximum queue length per bin */
u32 increment; /* d1 */
u32 decrement; /* d2 */
u32 limit; /* HARD maximal queue length */
u32 penalty_rate;
u32 penalty_burst;
u32 tokens_avail;
unsigned long rehash_time;
unsigned long token_time;
u8 slot; /* current active bins (0 or 1) */
bool double_buffering;
struct sfb_bins bins[2];
struct {
u32 earlydrop;
u32 penaltydrop;
u32 bucketdrop;
u32 queuedrop;
u32 childdrop; /* drops in child qdisc */
u32 marked; /* ECN mark */
} stats;
};
/*
* Each queued skb might be hashed on one or two bins
* We store in skb_cb the two hash values.
* (A zero value means double buffering was not used)
*/
struct sfb_skb_cb {
u32 hashes[2];
};
static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
{
qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
}
/*
* If using 'internal' SFB flow classifier, hash comes from skb rxhash
* If using external classifier, hash comes from the classid.
*/
static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
{
return sfb_skb_cb(skb)->hashes[slot];
}
/* Probabilities are coded as Q0.16 fixed-point values,
* with 0xFFFF representing 65535/65536 (almost 1.0)
* Addition and subtraction are saturating in [0, 65535]
*/
static u32 prob_plus(u32 p1, u32 p2)
{
u32 res = p1 + p2;
return min_t(u32, res, SFB_MAX_PROB);
}
static u32 prob_minus(u32 p1, u32 p2)
{
return p1 > p2 ? p1 - p2 : 0;
}
static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
{
int i;
struct sfb_bucket *b = &q->bins[slot].bins[0][0];
for (i = 0; i < SFB_LEVELS; i++) {
u32 hash = sfbhash & SFB_BUCKET_MASK;
sfbhash >>= SFB_BUCKET_SHIFT;
if (b[hash].qlen < 0xFFFF)
b[hash].qlen++;
b += SFB_NUMBUCKETS; /* next level */
}
}
static void increment_qlen(const struct sfb_skb_cb *cb, struct sfb_sched_data *q)
{
u32 sfbhash;
sfbhash = cb->hashes[0];
if (sfbhash)
increment_one_qlen(sfbhash, 0, q);
sfbhash = cb->hashes[1];
if (sfbhash)
increment_one_qlen(sfbhash, 1, q);
}
static void decrement_one_qlen(u32 sfbhash, u32 slot,
struct sfb_sched_data *q)
{
int i;
struct sfb_bucket *b = &q->bins[slot].bins[0][0];
for (i = 0; i < SFB_LEVELS; i++) {
u32 hash = sfbhash & SFB_BUCKET_MASK;
sfbhash >>= SFB_BUCKET_SHIFT;
if (b[hash].qlen > 0)
b[hash].qlen--;
b += SFB_NUMBUCKETS; /* next level */
}
}
static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
{
u32 sfbhash;
sfbhash = sfb_hash(skb, 0);
if (sfbhash)
decrement_one_qlen(sfbhash, 0, q);
sfbhash = sfb_hash(skb, 1);
if (sfbhash)
decrement_one_qlen(sfbhash, 1, q);
}
static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
{
b->p_mark = prob_minus(b->p_mark, q->decrement);
}
static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
{
b->p_mark = prob_plus(b->p_mark, q->increment);
}
static void sfb_zero_all_buckets(struct sfb_sched_data *q)
{
memset(&q->bins, 0, sizeof(q->bins));
}
/*
* compute max qlen, max p_mark, and avg p_mark
*/
static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
{
int i;
u32 qlen = 0, prob = 0, totalpm = 0;
const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
if (qlen < b->qlen)
qlen = b->qlen;
totalpm += b->p_mark;
if (prob < b->p_mark)
prob = b->p_mark;
b++;
}
*prob_r = prob;
*avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
return qlen;
}
static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
{
get_random_bytes(&q->bins[slot].perturbation,
sizeof(q->bins[slot].perturbation));
}
static void sfb_swap_slot(struct sfb_sched_data *q)
{
sfb_init_perturbation(q->slot, q);
q->slot ^= 1;
q->double_buffering = false;
}
/* Non elastic flows are allowed to use part of the bandwidth, expressed
* in "penalty_rate" packets per second, with "penalty_burst" burst
*/
static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
{
if (q->penalty_rate == 0 || q->penalty_burst == 0)
return true;
if (q->tokens_avail < 1) {
unsigned long age = min(10UL * HZ, jiffies - q->token_time);
q->tokens_avail = (age * q->penalty_rate) / HZ;
if (q->tokens_avail > q->penalty_burst)
q->tokens_avail = q->penalty_burst;
q->token_time = jiffies;
if (q->tokens_avail < 1)
return true;
}
q->tokens_avail--;
return false;
}
static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
int *qerr, u32 *salt)
{
struct tcf_result res;
int result;
result = tcf_classify(skb, NULL, fl, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return false;
}
#endif
*salt = TC_H_MIN(res.classid);
return true;
}
return false;
}
static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct sfb_sched_data *q = qdisc_priv(sch);
unsigned int len = qdisc_pkt_len(skb);
struct Qdisc *child = q->qdisc;
struct tcf_proto *fl;
struct sfb_skb_cb cb;
int i;
u32 p_min = ~0;
u32 minqlen = ~0;
u32 r, sfbhash;
u32 slot = q->slot;
int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
if (unlikely(sch->q.qlen >= q->limit)) {
qdisc_qstats_overlimit(sch);
q->stats.queuedrop++;
goto drop;
}
if (q->rehash_interval > 0) {
unsigned long limit = q->rehash_time + q->rehash_interval;
if (unlikely(time_after(jiffies, limit))) {
sfb_swap_slot(q);
q->rehash_time = jiffies;
} else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
time_after(jiffies, limit - q->warmup_time))) {
q->double_buffering = true;
}
}
fl = rcu_dereference_bh(q->filter_list);
if (fl) {
u32 salt;
/* If using external classifiers, get result and record it. */
if (!sfb_classify(skb, fl, &ret, &salt))
goto other_drop;
sfbhash = siphash_1u32(salt, &q->bins[slot].perturbation);
} else {
sfbhash = skb_get_hash_perturb(skb, &q->bins[slot].perturbation);
}
if (!sfbhash)
sfbhash = 1;
sfb_skb_cb(skb)->hashes[slot] = sfbhash;
for (i = 0; i < SFB_LEVELS; i++) {
u32 hash = sfbhash & SFB_BUCKET_MASK;
struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
sfbhash >>= SFB_BUCKET_SHIFT;
if (b->qlen == 0)
decrement_prob(b, q);
else if (b->qlen >= q->bin_size)
increment_prob(b, q);
if (minqlen > b->qlen)
minqlen = b->qlen;
if (p_min > b->p_mark)
p_min = b->p_mark;
}
slot ^= 1;
sfb_skb_cb(skb)->hashes[slot] = 0;
if (unlikely(minqlen >= q->max)) {
qdisc_qstats_overlimit(sch);
q->stats.bucketdrop++;
goto drop;
}
if (unlikely(p_min >= SFB_MAX_PROB)) {
/* Inelastic flow */
if (q->double_buffering) {
sfbhash = skb_get_hash_perturb(skb,
&q->bins[slot].perturbation);
if (!sfbhash)
sfbhash = 1;
sfb_skb_cb(skb)->hashes[slot] = sfbhash;
for (i = 0; i < SFB_LEVELS; i++) {
u32 hash = sfbhash & SFB_BUCKET_MASK;
struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
sfbhash >>= SFB_BUCKET_SHIFT;
if (b->qlen == 0)
decrement_prob(b, q);
else if (b->qlen >= q->bin_size)
increment_prob(b, q);
}
}
if (sfb_rate_limit(skb, q)) {
qdisc_qstats_overlimit(sch);
q->stats.penaltydrop++;
goto drop;
}
goto enqueue;
}
r = get_random_u16() & SFB_MAX_PROB;
if (unlikely(r < p_min)) {
if (unlikely(p_min > SFB_MAX_PROB / 2)) {
/* If we're marking that many packets, then either
* this flow is unresponsive, or we're badly congested.
* In either case, we want to start dropping packets.
*/
if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
q->stats.earlydrop++;
goto drop;
}
}
if (INET_ECN_set_ce(skb)) {
q->stats.marked++;
} else {
q->stats.earlydrop++;
goto drop;
}
}
enqueue:
memcpy(&cb, sfb_skb_cb(skb), sizeof(cb));
ret = qdisc_enqueue(skb, child, to_free);
if (likely(ret == NET_XMIT_SUCCESS)) {
sch->qstats.backlog += len;
sch->q.qlen++;
increment_qlen(&cb, q);
} else if (net_xmit_drop_count(ret)) {
q->stats.childdrop++;
qdisc_qstats_drop(sch);
}
return ret;
drop:
qdisc_drop(skb, sch, to_free);
return NET_XMIT_CN;
other_drop:
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
kfree_skb(skb);
return ret;
}
static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
{
struct sfb_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
struct sk_buff *skb;
skb = child->dequeue(q->qdisc);
if (skb) {
qdisc_bstats_update(sch, skb);
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
decrement_qlen(skb, q);
}
return skb;
}
static struct sk_buff *sfb_peek(struct Qdisc *sch)
{
struct sfb_sched_data *q = qdisc_priv(sch);
struct Qdisc *child = q->qdisc;
return child->ops->peek(child);
}
/* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
static void sfb_reset(struct Qdisc *sch)
{
struct sfb_sched_data *q = qdisc_priv(sch);
if (likely(q->qdisc))
qdisc_reset(q->qdisc);
q->slot = 0;
q->double_buffering = false;
sfb_zero_all_buckets(q);
sfb_init_perturbation(0, q);
}
static void sfb_destroy(struct Qdisc *sch)
{
struct sfb_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
qdisc_put(q->qdisc);
}
static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
[TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
};
static const struct tc_sfb_qopt sfb_default_ops = {
.rehash_interval = 600 * MSEC_PER_SEC,
.warmup_time = 60 * MSEC_PER_SEC,
.limit = 0,
.max = 25,
.bin_size = 20,
.increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
.decrement = (SFB_MAX_PROB + 3000) / 6000,
.penalty_rate = 10,
.penalty_burst = 20,
};
static int sfb_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct sfb_sched_data *q = qdisc_priv(sch);
struct Qdisc *child, *old;
struct nlattr *tb[TCA_SFB_MAX + 1];
const struct tc_sfb_qopt *ctl = &sfb_default_ops;
u32 limit;
int err;
if (opt) {
err = nla_parse_nested_deprecated(tb, TCA_SFB_MAX, opt,
sfb_policy, NULL);
if (err < 0)
return -EINVAL;
if (tb[TCA_SFB_PARMS] == NULL)
return -EINVAL;
ctl = nla_data(tb[TCA_SFB_PARMS]);
}
limit = ctl->limit;
if (limit == 0)
limit = qdisc_dev(sch)->tx_queue_len;
child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit, extack);
if (IS_ERR(child))
return PTR_ERR(child);
if (child != &noop_qdisc)
qdisc_hash_add(child, true);
sch_tree_lock(sch);
qdisc_purge_queue(q->qdisc);
old = q->qdisc;
q->qdisc = child;
q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
q->rehash_time = jiffies;
q->limit = limit;
q->increment = ctl->increment;
q->decrement = ctl->decrement;
q->max = ctl->max;
q->bin_size = ctl->bin_size;
q->penalty_rate = ctl->penalty_rate;
q->penalty_burst = ctl->penalty_burst;
q->tokens_avail = ctl->penalty_burst;
q->token_time = jiffies;
q->slot = 0;
q->double_buffering = false;
sfb_zero_all_buckets(q);
sfb_init_perturbation(0, q);
sfb_init_perturbation(1, q);
sch_tree_unlock(sch);
qdisc_put(old);
return 0;
}
static int sfb_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct sfb_sched_data *q = qdisc_priv(sch);
int err;
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
q->qdisc = &noop_qdisc;
return sfb_change(sch, opt, extack);
}
static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct sfb_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
struct tc_sfb_qopt opt = {
.rehash_interval = jiffies_to_msecs(q->rehash_interval),
.warmup_time = jiffies_to_msecs(q->warmup_time),
.limit = q->limit,
.max = q->max,
.bin_size = q->bin_size,
.increment = q->increment,
.decrement = q->decrement,
.penalty_rate = q->penalty_rate,
.penalty_burst = q->penalty_burst,
};
sch->qstats.backlog = q->qdisc->qstats.backlog;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -EMSGSIZE;
}
static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct sfb_sched_data *q = qdisc_priv(sch);
struct tc_sfb_xstats st = {
.earlydrop = q->stats.earlydrop,
.penaltydrop = q->stats.penaltydrop,
.bucketdrop = q->stats.bucketdrop,
.queuedrop = q->stats.queuedrop,
.childdrop = q->stats.childdrop,
.marked = q->stats.marked,
};
st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
return -ENOSYS;
}
static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct sfb_sched_data *q = qdisc_priv(sch);
if (new == NULL)
new = &noop_qdisc;
*old = qdisc_replace(sch, new, &q->qdisc);
return 0;
}
static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
{
struct sfb_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long sfb_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void sfb_unbind(struct Qdisc *sch, unsigned long arg)
{
}
static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
struct nlattr **tca, unsigned long *arg,
struct netlink_ext_ack *extack)
{
return -ENOSYS;
}
static int sfb_delete(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
return -ENOSYS;
}
static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
tc_qdisc_stats_dump(sch, 1, walker);
}
}
static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct sfb_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return 0;
}
static const struct Qdisc_class_ops sfb_class_ops = {
.graft = sfb_graft,
.leaf = sfb_leaf,
.find = sfb_find,
.change = sfb_change_class,
.delete = sfb_delete,
.walk = sfb_walk,
.tcf_block = sfb_tcf_block,
.bind_tcf = sfb_bind,
.unbind_tcf = sfb_unbind,
.dump = sfb_dump_class,
};
static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
.id = "sfb",
.priv_size = sizeof(struct sfb_sched_data),
.cl_ops = &sfb_class_ops,
.enqueue = sfb_enqueue,
.dequeue = sfb_dequeue,
.peek = sfb_peek,
.init = sfb_init,
.reset = sfb_reset,
.destroy = sfb_destroy,
.change = sfb_change,
.dump = sfb_dump,
.dump_stats = sfb_dump_stats,
.owner = THIS_MODULE,
};
static int __init sfb_module_init(void)
{
return register_qdisc(&sfb_qdisc_ops);
}
static void __exit sfb_module_exit(void)
{
unregister_qdisc(&sfb_qdisc_ops);
}
module_init(sfb_module_init)
module_exit(sfb_module_exit)
MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
MODULE_AUTHOR("Juliusz Chroboczek");
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_sfb.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* em_canid.c Ematch rule to match CAN frames according to their CAN IDs
*
* Idea: Oliver Hartkopp <[email protected]>
* Copyright: (c) 2011 Czech Technical University in Prague
* (c) 2011 Volkswagen Group Research
* Authors: Michal Sojka <[email protected]>
* Pavel Pisa <[email protected]>
* Rostislav Lisovy <[email protected]>
* Funded by: Volkswagen Group Research
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <net/pkt_cls.h>
#include <linux/can.h>
#define EM_CAN_RULES_MAX 500
struct canid_match {
/* For each SFF CAN ID (11 bit) there is one record in this bitfield */
DECLARE_BITMAP(match_sff, (1 << CAN_SFF_ID_BITS));
int rules_count;
int sff_rules_count;
int eff_rules_count;
/*
* Raw rules copied from netlink message; Used for sending
* information to userspace (when 'tc filter show' is invoked)
* AND when matching EFF frames
*/
struct can_filter rules_raw[];
};
/**
* em_canid_get_id() - Extracts Can ID out of the sk_buff structure.
* @skb: buffer to extract Can ID from
*/
static canid_t em_canid_get_id(struct sk_buff *skb)
{
/* CAN ID is stored within the data field */
struct can_frame *cf = (struct can_frame *)skb->data;
return cf->can_id;
}
static void em_canid_sff_match_add(struct canid_match *cm, u32 can_id,
u32 can_mask)
{
int i;
/*
* Limit can_mask and can_id to SFF range to
* protect against write after end of array
*/
can_mask &= CAN_SFF_MASK;
can_id &= can_mask;
/* Single frame */
if (can_mask == CAN_SFF_MASK) {
set_bit(can_id, cm->match_sff);
return;
}
/* All frames */
if (can_mask == 0) {
bitmap_fill(cm->match_sff, (1 << CAN_SFF_ID_BITS));
return;
}
/*
* Individual frame filter.
* Add record (set bit to 1) for each ID that
* conforms particular rule
*/
for (i = 0; i < (1 << CAN_SFF_ID_BITS); i++) {
if ((i & can_mask) == can_id)
set_bit(i, cm->match_sff);
}
}
static inline struct canid_match *em_canid_priv(struct tcf_ematch *m)
{
return (struct canid_match *)m->data;
}
static int em_canid_match(struct sk_buff *skb, struct tcf_ematch *m,
struct tcf_pkt_info *info)
{
struct canid_match *cm = em_canid_priv(m);
canid_t can_id;
int match = 0;
int i;
const struct can_filter *lp;
can_id = em_canid_get_id(skb);
if (can_id & CAN_EFF_FLAG) {
for (i = 0, lp = cm->rules_raw;
i < cm->eff_rules_count; i++, lp++) {
if (!(((lp->can_id ^ can_id) & lp->can_mask))) {
match = 1;
break;
}
}
} else { /* SFF */
can_id &= CAN_SFF_MASK;
match = (test_bit(can_id, cm->match_sff) ? 1 : 0);
}
return match;
}
static int em_canid_change(struct net *net, void *data, int len,
struct tcf_ematch *m)
{
struct can_filter *conf = data; /* Array with rules */
struct canid_match *cm;
int i;
if (!len)
return -EINVAL;
if (len % sizeof(struct can_filter))
return -EINVAL;
if (len > sizeof(struct can_filter) * EM_CAN_RULES_MAX)
return -EINVAL;
cm = kzalloc(sizeof(struct canid_match) + len, GFP_KERNEL);
if (!cm)
return -ENOMEM;
cm->rules_count = len / sizeof(struct can_filter);
/*
* We need two for() loops for copying rules into two contiguous
* areas in rules_raw to process all eff rules with a simple loop.
* NB: The configuration interface supports sff and eff rules.
* We do not support filters here that match for the same can_id
* provided in a SFF and EFF frame (e.g. 0x123 / 0x80000123).
* For this (unusual case) two filters have to be specified. The
* SFF/EFF separation is done with the CAN_EFF_FLAG in the can_id.
*/
/* Fill rules_raw with EFF rules first */
for (i = 0; i < cm->rules_count; i++) {
if (conf[i].can_id & CAN_EFF_FLAG) {
memcpy(cm->rules_raw + cm->eff_rules_count,
&conf[i],
sizeof(struct can_filter));
cm->eff_rules_count++;
}
}
/* append SFF frame rules */
for (i = 0; i < cm->rules_count; i++) {
if (!(conf[i].can_id & CAN_EFF_FLAG)) {
memcpy(cm->rules_raw
+ cm->eff_rules_count
+ cm->sff_rules_count,
&conf[i], sizeof(struct can_filter));
cm->sff_rules_count++;
em_canid_sff_match_add(cm,
conf[i].can_id, conf[i].can_mask);
}
}
m->datalen = sizeof(struct canid_match) + len;
m->data = (unsigned long)cm;
return 0;
}
static void em_canid_destroy(struct tcf_ematch *m)
{
struct canid_match *cm = em_canid_priv(m);
kfree(cm);
}
static int em_canid_dump(struct sk_buff *skb, struct tcf_ematch *m)
{
struct canid_match *cm = em_canid_priv(m);
/*
* When configuring this ematch 'rules_count' is set not to exceed
* 'rules_raw' array size
*/
if (nla_put_nohdr(skb, sizeof(struct can_filter) * cm->rules_count,
&cm->rules_raw) < 0)
return -EMSGSIZE;
return 0;
}
static struct tcf_ematch_ops em_canid_ops = {
.kind = TCF_EM_CANID,
.change = em_canid_change,
.match = em_canid_match,
.destroy = em_canid_destroy,
.dump = em_canid_dump,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_canid_ops.link)
};
static int __init init_em_canid(void)
{
return tcf_em_register(&em_canid_ops);
}
static void __exit exit_em_canid(void)
{
tcf_em_unregister(&em_canid_ops);
}
MODULE_LICENSE("GPL");
module_init(init_em_canid);
module_exit(exit_em_canid);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_CANID);
| linux-master | net/sched/em_canid.c |
/*
* Codel - The Controlled-Delay Active Queue Management algorithm
*
* Copyright (C) 2011-2012 Kathleen Nichols <[email protected]>
* Copyright (C) 2011-2012 Van Jacobson <[email protected]>
*
* Implemented on linux by :
* Copyright (C) 2012 Michael D. Taht <[email protected]>
* Copyright (C) 2012,2015 Eric Dumazet <[email protected]>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, provided that this notice is retained in full, this
* software may be distributed under the terms of the GNU General
* Public License ("GPL") version 2, in which case the provisions of the
* GPL apply INSTEAD OF those given above.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/prefetch.h>
#include <net/pkt_sched.h>
#include <net/codel.h>
#include <net/codel_impl.h>
#include <net/codel_qdisc.h>
#define DEFAULT_CODEL_LIMIT 1000
struct codel_sched_data {
struct codel_params params;
struct codel_vars vars;
struct codel_stats stats;
u32 drop_overlimit;
};
/* This is the specific function called from codel_dequeue()
* to dequeue a packet from queue. Note: backlog is handled in
* codel, we dont need to reduce it here.
*/
static struct sk_buff *dequeue_func(struct codel_vars *vars, void *ctx)
{
struct Qdisc *sch = ctx;
struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
if (skb) {
sch->qstats.backlog -= qdisc_pkt_len(skb);
prefetch(&skb->end); /* we'll need skb_shinfo() */
}
return skb;
}
static void drop_func(struct sk_buff *skb, void *ctx)
{
struct Qdisc *sch = ctx;
kfree_skb(skb);
qdisc_qstats_drop(sch);
}
static struct sk_buff *codel_qdisc_dequeue(struct Qdisc *sch)
{
struct codel_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
skb = codel_dequeue(sch, &sch->qstats.backlog, &q->params, &q->vars,
&q->stats, qdisc_pkt_len, codel_get_enqueue_time,
drop_func, dequeue_func);
/* We cant call qdisc_tree_reduce_backlog() if our qlen is 0,
* or HTB crashes. Defer it for next round.
*/
if (q->stats.drop_count && sch->q.qlen) {
qdisc_tree_reduce_backlog(sch, q->stats.drop_count, q->stats.drop_len);
q->stats.drop_count = 0;
q->stats.drop_len = 0;
}
if (skb)
qdisc_bstats_update(sch, skb);
return skb;
}
static int codel_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct codel_sched_data *q;
if (likely(qdisc_qlen(sch) < sch->limit)) {
codel_set_enqueue_time(skb);
return qdisc_enqueue_tail(skb, sch);
}
q = qdisc_priv(sch);
q->drop_overlimit++;
return qdisc_drop(skb, sch, to_free);
}
static const struct nla_policy codel_policy[TCA_CODEL_MAX + 1] = {
[TCA_CODEL_TARGET] = { .type = NLA_U32 },
[TCA_CODEL_LIMIT] = { .type = NLA_U32 },
[TCA_CODEL_INTERVAL] = { .type = NLA_U32 },
[TCA_CODEL_ECN] = { .type = NLA_U32 },
[TCA_CODEL_CE_THRESHOLD]= { .type = NLA_U32 },
};
static int codel_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct codel_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_CODEL_MAX + 1];
unsigned int qlen, dropped = 0;
int err;
err = nla_parse_nested_deprecated(tb, TCA_CODEL_MAX, opt,
codel_policy, NULL);
if (err < 0)
return err;
sch_tree_lock(sch);
if (tb[TCA_CODEL_TARGET]) {
u32 target = nla_get_u32(tb[TCA_CODEL_TARGET]);
q->params.target = ((u64)target * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_CODEL_CE_THRESHOLD]) {
u64 val = nla_get_u32(tb[TCA_CODEL_CE_THRESHOLD]);
q->params.ce_threshold = (val * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_CODEL_INTERVAL]) {
u32 interval = nla_get_u32(tb[TCA_CODEL_INTERVAL]);
q->params.interval = ((u64)interval * NSEC_PER_USEC) >> CODEL_SHIFT;
}
if (tb[TCA_CODEL_LIMIT])
sch->limit = nla_get_u32(tb[TCA_CODEL_LIMIT]);
if (tb[TCA_CODEL_ECN])
q->params.ecn = !!nla_get_u32(tb[TCA_CODEL_ECN]);
qlen = sch->q.qlen;
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
dropped += qdisc_pkt_len(skb);
qdisc_qstats_backlog_dec(sch, skb);
rtnl_qdisc_drop(skb, sch);
}
qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
sch_tree_unlock(sch);
return 0;
}
static int codel_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct codel_sched_data *q = qdisc_priv(sch);
sch->limit = DEFAULT_CODEL_LIMIT;
codel_params_init(&q->params);
codel_vars_init(&q->vars);
codel_stats_init(&q->stats);
q->params.mtu = psched_mtu(qdisc_dev(sch));
if (opt) {
int err = codel_change(sch, opt, extack);
if (err)
return err;
}
if (sch->limit >= 1)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
}
static int codel_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct codel_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_CODEL_TARGET,
codel_time_to_us(q->params.target)) ||
nla_put_u32(skb, TCA_CODEL_LIMIT,
sch->limit) ||
nla_put_u32(skb, TCA_CODEL_INTERVAL,
codel_time_to_us(q->params.interval)) ||
nla_put_u32(skb, TCA_CODEL_ECN,
q->params.ecn))
goto nla_put_failure;
if (q->params.ce_threshold != CODEL_DISABLED_THRESHOLD &&
nla_put_u32(skb, TCA_CODEL_CE_THRESHOLD,
codel_time_to_us(q->params.ce_threshold)))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -1;
}
static int codel_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
const struct codel_sched_data *q = qdisc_priv(sch);
struct tc_codel_xstats st = {
.maxpacket = q->stats.maxpacket,
.count = q->vars.count,
.lastcount = q->vars.lastcount,
.drop_overlimit = q->drop_overlimit,
.ldelay = codel_time_to_us(q->vars.ldelay),
.dropping = q->vars.dropping,
.ecn_mark = q->stats.ecn_mark,
.ce_mark = q->stats.ce_mark,
};
if (q->vars.dropping) {
codel_tdiff_t delta = q->vars.drop_next - codel_get_time();
if (delta >= 0)
st.drop_next = codel_time_to_us(delta);
else
st.drop_next = -codel_time_to_us(-delta);
}
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static void codel_reset(struct Qdisc *sch)
{
struct codel_sched_data *q = qdisc_priv(sch);
qdisc_reset_queue(sch);
codel_vars_init(&q->vars);
}
static struct Qdisc_ops codel_qdisc_ops __read_mostly = {
.id = "codel",
.priv_size = sizeof(struct codel_sched_data),
.enqueue = codel_qdisc_enqueue,
.dequeue = codel_qdisc_dequeue,
.peek = qdisc_peek_dequeued,
.init = codel_init,
.reset = codel_reset,
.change = codel_change,
.dump = codel_dump,
.dump_stats = codel_dump_stats,
.owner = THIS_MODULE,
};
static int __init codel_module_init(void)
{
return register_qdisc(&codel_qdisc_ops);
}
static void __exit codel_module_exit(void)
{
unregister_qdisc(&codel_qdisc_ops);
}
module_init(codel_module_init)
module_exit(codel_module_exit)
MODULE_DESCRIPTION("Controlled Delay queue discipline");
MODULE_AUTHOR("Dave Taht");
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("Dual BSD/GPL");
| linux-master | net/sched/sch_codel.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/em_meta.c Metadata ematch
*
* Authors: Thomas Graf <[email protected]>
*
* ==========================================================================
*
* The metadata ematch compares two meta objects where each object
* represents either a meta value stored in the kernel or a static
* value provided by userspace. The objects are not provided by
* userspace itself but rather a definition providing the information
* to build them. Every object is of a certain type which must be
* equal to the object it is being compared to.
*
* The definition of a objects conists of the type (meta type), a
* identifier (meta id) and additional type specific information.
* The meta id is either TCF_META_TYPE_VALUE for values provided by
* userspace or a index to the meta operations table consisting of
* function pointers to type specific meta data collectors returning
* the value of the requested meta value.
*
* lvalue rvalue
* +-----------+ +-----------+
* | type: INT | | type: INT |
* def | id: DEV | | id: VALUE |
* | data: | | data: 3 |
* +-----------+ +-----------+
* | |
* ---> meta_ops[INT][DEV](...) |
* | |
* ----------- |
* V V
* +-----------+ +-----------+
* | type: INT | | type: INT |
* obj | id: DEV | | id: VALUE |
* | data: 2 |<--data got filled out | data: 3 |
* +-----------+ +-----------+
* | |
* --------------> 2 equals 3 <--------------
*
* This is a simplified schema, the complexity varies depending
* on the meta type. Obviously, the length of the data must also
* be provided for non-numeric types.
*
* Additionally, type dependent modifiers such as shift operators
* or mask may be applied to extend the functionality. As of now,
* the variable length type supports shifting the byte string to
* the right, eating up any number of octets and thus supporting
* wildcard interface name comparisons such as "ppp%" matching
* ppp0..9.
*
* NOTE: Certain meta values depend on other subsystems and are
* only available if that subsystem is enabled in the kernel.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/random.h>
#include <linux/if_vlan.h>
#include <linux/tc_ematch/tc_em_meta.h>
#include <net/dst.h>
#include <net/route.h>
#include <net/pkt_cls.h>
#include <net/sock.h>
struct meta_obj {
unsigned long value;
unsigned int len;
};
struct meta_value {
struct tcf_meta_val hdr;
unsigned long val;
unsigned int len;
};
struct meta_match {
struct meta_value lvalue;
struct meta_value rvalue;
};
static inline int meta_id(struct meta_value *v)
{
return TCF_META_ID(v->hdr.kind);
}
static inline int meta_type(struct meta_value *v)
{
return TCF_META_TYPE(v->hdr.kind);
}
#define META_COLLECTOR(FUNC) static void meta_##FUNC(struct sk_buff *skb, \
struct tcf_pkt_info *info, struct meta_value *v, \
struct meta_obj *dst, int *err)
/**************************************************************************
* System status & misc
**************************************************************************/
META_COLLECTOR(int_random)
{
get_random_bytes(&dst->value, sizeof(dst->value));
}
static inline unsigned long fixed_loadavg(int load)
{
int rnd_load = load + (FIXED_1/200);
int rnd_frac = ((rnd_load & (FIXED_1-1)) * 100) >> FSHIFT;
return ((rnd_load >> FSHIFT) * 100) + rnd_frac;
}
META_COLLECTOR(int_loadavg_0)
{
dst->value = fixed_loadavg(avenrun[0]);
}
META_COLLECTOR(int_loadavg_1)
{
dst->value = fixed_loadavg(avenrun[1]);
}
META_COLLECTOR(int_loadavg_2)
{
dst->value = fixed_loadavg(avenrun[2]);
}
/**************************************************************************
* Device names & indices
**************************************************************************/
static inline int int_dev(struct net_device *dev, struct meta_obj *dst)
{
if (unlikely(dev == NULL))
return -1;
dst->value = dev->ifindex;
return 0;
}
static inline int var_dev(struct net_device *dev, struct meta_obj *dst)
{
if (unlikely(dev == NULL))
return -1;
dst->value = (unsigned long) dev->name;
dst->len = strlen(dev->name);
return 0;
}
META_COLLECTOR(int_dev)
{
*err = int_dev(skb->dev, dst);
}
META_COLLECTOR(var_dev)
{
*err = var_dev(skb->dev, dst);
}
/**************************************************************************
* vlan tag
**************************************************************************/
META_COLLECTOR(int_vlan_tag)
{
unsigned short tag;
if (skb_vlan_tag_present(skb))
dst->value = skb_vlan_tag_get(skb);
else if (!__vlan_get_tag(skb, &tag))
dst->value = tag;
else
*err = -1;
}
/**************************************************************************
* skb attributes
**************************************************************************/
META_COLLECTOR(int_priority)
{
dst->value = skb->priority;
}
META_COLLECTOR(int_protocol)
{
/* Let userspace take care of the byte ordering */
dst->value = skb_protocol(skb, false);
}
META_COLLECTOR(int_pkttype)
{
dst->value = skb->pkt_type;
}
META_COLLECTOR(int_pktlen)
{
dst->value = skb->len;
}
META_COLLECTOR(int_datalen)
{
dst->value = skb->data_len;
}
META_COLLECTOR(int_maclen)
{
dst->value = skb->mac_len;
}
META_COLLECTOR(int_rxhash)
{
dst->value = skb_get_hash(skb);
}
/**************************************************************************
* Netfilter
**************************************************************************/
META_COLLECTOR(int_mark)
{
dst->value = skb->mark;
}
/**************************************************************************
* Traffic Control
**************************************************************************/
META_COLLECTOR(int_tcindex)
{
dst->value = skb->tc_index;
}
/**************************************************************************
* Routing
**************************************************************************/
META_COLLECTOR(int_rtclassid)
{
if (unlikely(skb_dst(skb) == NULL))
*err = -1;
else
#ifdef CONFIG_IP_ROUTE_CLASSID
dst->value = skb_dst(skb)->tclassid;
#else
dst->value = 0;
#endif
}
META_COLLECTOR(int_rtiif)
{
if (unlikely(skb_rtable(skb) == NULL))
*err = -1;
else
dst->value = inet_iif(skb);
}
/**************************************************************************
* Socket Attributes
**************************************************************************/
#define skip_nonlocal(skb) \
(unlikely(skb->sk == NULL))
META_COLLECTOR(int_sk_family)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_family;
}
META_COLLECTOR(int_sk_state)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_state;
}
META_COLLECTOR(int_sk_reuse)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_reuse;
}
META_COLLECTOR(int_sk_bound_if)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
/* No error if bound_dev_if is 0, legal userspace check */
dst->value = skb->sk->sk_bound_dev_if;
}
META_COLLECTOR(var_sk_bound_if)
{
int bound_dev_if;
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
bound_dev_if = READ_ONCE(skb->sk->sk_bound_dev_if);
if (bound_dev_if == 0) {
dst->value = (unsigned long) "any";
dst->len = 3;
} else {
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(skb->sk),
bound_dev_if);
*err = var_dev(dev, dst);
rcu_read_unlock();
}
}
META_COLLECTOR(int_sk_refcnt)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = refcount_read(&skb->sk->sk_refcnt);
}
META_COLLECTOR(int_sk_rcvbuf)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_rcvbuf;
}
META_COLLECTOR(int_sk_shutdown)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_shutdown;
}
META_COLLECTOR(int_sk_proto)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_protocol;
}
META_COLLECTOR(int_sk_type)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_type;
}
META_COLLECTOR(int_sk_rmem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_rmem_alloc_get(sk);
}
META_COLLECTOR(int_sk_wmem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_wmem_alloc_get(sk);
}
META_COLLECTOR(int_sk_omem_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = atomic_read(&sk->sk_omem_alloc);
}
META_COLLECTOR(int_sk_rcv_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_receive_queue.qlen;
}
META_COLLECTOR(int_sk_snd_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_write_queue.qlen;
}
META_COLLECTOR(int_sk_wmem_queued)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_wmem_queued);
}
META_COLLECTOR(int_sk_fwd_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk_forward_alloc_get(sk);
}
META_COLLECTOR(int_sk_sndbuf)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_sndbuf;
}
META_COLLECTOR(int_sk_alloc)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = (__force int) sk->sk_allocation;
}
META_COLLECTOR(int_sk_hash)
{
if (skip_nonlocal(skb)) {
*err = -1;
return;
}
dst->value = skb->sk->sk_hash;
}
META_COLLECTOR(int_sk_lingertime)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_lingertime) / HZ;
}
META_COLLECTOR(int_sk_err_qlen)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_error_queue.qlen;
}
META_COLLECTOR(int_sk_ack_bl)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_ack_backlog);
}
META_COLLECTOR(int_sk_max_ack_bl)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_max_ack_backlog);
}
META_COLLECTOR(int_sk_prio)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_priority;
}
META_COLLECTOR(int_sk_rcvlowat)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_rcvlowat);
}
META_COLLECTOR(int_sk_rcvtimeo)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_rcvtimeo) / HZ;
}
META_COLLECTOR(int_sk_sndtimeo)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = READ_ONCE(sk->sk_sndtimeo) / HZ;
}
META_COLLECTOR(int_sk_sendmsg_off)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_frag.offset;
}
META_COLLECTOR(int_sk_write_pend)
{
const struct sock *sk = skb_to_full_sk(skb);
if (!sk) {
*err = -1;
return;
}
dst->value = sk->sk_write_pending;
}
/**************************************************************************
* Meta value collectors assignment table
**************************************************************************/
struct meta_ops {
void (*get)(struct sk_buff *, struct tcf_pkt_info *,
struct meta_value *, struct meta_obj *, int *);
};
#define META_ID(name) TCF_META_ID_##name
#define META_FUNC(name) { .get = meta_##name }
/* Meta value operations table listing all meta value collectors and
* assigns them to a type and meta id. */
static struct meta_ops __meta_ops[TCF_META_TYPE_MAX + 1][TCF_META_ID_MAX + 1] = {
[TCF_META_TYPE_VAR] = {
[META_ID(DEV)] = META_FUNC(var_dev),
[META_ID(SK_BOUND_IF)] = META_FUNC(var_sk_bound_if),
},
[TCF_META_TYPE_INT] = {
[META_ID(RANDOM)] = META_FUNC(int_random),
[META_ID(LOADAVG_0)] = META_FUNC(int_loadavg_0),
[META_ID(LOADAVG_1)] = META_FUNC(int_loadavg_1),
[META_ID(LOADAVG_2)] = META_FUNC(int_loadavg_2),
[META_ID(DEV)] = META_FUNC(int_dev),
[META_ID(PRIORITY)] = META_FUNC(int_priority),
[META_ID(PROTOCOL)] = META_FUNC(int_protocol),
[META_ID(PKTTYPE)] = META_FUNC(int_pkttype),
[META_ID(PKTLEN)] = META_FUNC(int_pktlen),
[META_ID(DATALEN)] = META_FUNC(int_datalen),
[META_ID(MACLEN)] = META_FUNC(int_maclen),
[META_ID(NFMARK)] = META_FUNC(int_mark),
[META_ID(TCINDEX)] = META_FUNC(int_tcindex),
[META_ID(RTCLASSID)] = META_FUNC(int_rtclassid),
[META_ID(RTIIF)] = META_FUNC(int_rtiif),
[META_ID(SK_FAMILY)] = META_FUNC(int_sk_family),
[META_ID(SK_STATE)] = META_FUNC(int_sk_state),
[META_ID(SK_REUSE)] = META_FUNC(int_sk_reuse),
[META_ID(SK_BOUND_IF)] = META_FUNC(int_sk_bound_if),
[META_ID(SK_REFCNT)] = META_FUNC(int_sk_refcnt),
[META_ID(SK_RCVBUF)] = META_FUNC(int_sk_rcvbuf),
[META_ID(SK_SNDBUF)] = META_FUNC(int_sk_sndbuf),
[META_ID(SK_SHUTDOWN)] = META_FUNC(int_sk_shutdown),
[META_ID(SK_PROTO)] = META_FUNC(int_sk_proto),
[META_ID(SK_TYPE)] = META_FUNC(int_sk_type),
[META_ID(SK_RMEM_ALLOC)] = META_FUNC(int_sk_rmem_alloc),
[META_ID(SK_WMEM_ALLOC)] = META_FUNC(int_sk_wmem_alloc),
[META_ID(SK_OMEM_ALLOC)] = META_FUNC(int_sk_omem_alloc),
[META_ID(SK_WMEM_QUEUED)] = META_FUNC(int_sk_wmem_queued),
[META_ID(SK_RCV_QLEN)] = META_FUNC(int_sk_rcv_qlen),
[META_ID(SK_SND_QLEN)] = META_FUNC(int_sk_snd_qlen),
[META_ID(SK_ERR_QLEN)] = META_FUNC(int_sk_err_qlen),
[META_ID(SK_FORWARD_ALLOCS)] = META_FUNC(int_sk_fwd_alloc),
[META_ID(SK_ALLOCS)] = META_FUNC(int_sk_alloc),
[META_ID(SK_HASH)] = META_FUNC(int_sk_hash),
[META_ID(SK_LINGERTIME)] = META_FUNC(int_sk_lingertime),
[META_ID(SK_ACK_BACKLOG)] = META_FUNC(int_sk_ack_bl),
[META_ID(SK_MAX_ACK_BACKLOG)] = META_FUNC(int_sk_max_ack_bl),
[META_ID(SK_PRIO)] = META_FUNC(int_sk_prio),
[META_ID(SK_RCVLOWAT)] = META_FUNC(int_sk_rcvlowat),
[META_ID(SK_RCVTIMEO)] = META_FUNC(int_sk_rcvtimeo),
[META_ID(SK_SNDTIMEO)] = META_FUNC(int_sk_sndtimeo),
[META_ID(SK_SENDMSG_OFF)] = META_FUNC(int_sk_sendmsg_off),
[META_ID(SK_WRITE_PENDING)] = META_FUNC(int_sk_write_pend),
[META_ID(VLAN_TAG)] = META_FUNC(int_vlan_tag),
[META_ID(RXHASH)] = META_FUNC(int_rxhash),
}
};
static inline struct meta_ops *meta_ops(struct meta_value *val)
{
return &__meta_ops[meta_type(val)][meta_id(val)];
}
/**************************************************************************
* Type specific operations for TCF_META_TYPE_VAR
**************************************************************************/
static int meta_var_compare(struct meta_obj *a, struct meta_obj *b)
{
int r = a->len - b->len;
if (r == 0)
r = memcmp((void *) a->value, (void *) b->value, a->len);
return r;
}
static int meta_var_change(struct meta_value *dst, struct nlattr *nla)
{
int len = nla_len(nla);
dst->val = (unsigned long)kmemdup(nla_data(nla), len, GFP_KERNEL);
if (dst->val == 0UL)
return -ENOMEM;
dst->len = len;
return 0;
}
static void meta_var_destroy(struct meta_value *v)
{
kfree((void *) v->val);
}
static void meta_var_apply_extras(struct meta_value *v,
struct meta_obj *dst)
{
int shift = v->hdr.shift;
if (shift && shift < dst->len)
dst->len -= shift;
}
static int meta_var_dump(struct sk_buff *skb, struct meta_value *v, int tlv)
{
if (v->val && v->len &&
nla_put(skb, tlv, v->len, (void *) v->val))
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
/**************************************************************************
* Type specific operations for TCF_META_TYPE_INT
**************************************************************************/
static int meta_int_compare(struct meta_obj *a, struct meta_obj *b)
{
/* Let gcc optimize it, the unlikely is not really based on
* some numbers but jump free code for mismatches seems
* more logical. */
if (unlikely(a->value == b->value))
return 0;
else if (a->value < b->value)
return -1;
else
return 1;
}
static int meta_int_change(struct meta_value *dst, struct nlattr *nla)
{
if (nla_len(nla) >= sizeof(unsigned long)) {
dst->val = *(unsigned long *) nla_data(nla);
dst->len = sizeof(unsigned long);
} else if (nla_len(nla) == sizeof(u32)) {
dst->val = nla_get_u32(nla);
dst->len = sizeof(u32);
} else
return -EINVAL;
return 0;
}
static void meta_int_apply_extras(struct meta_value *v,
struct meta_obj *dst)
{
if (v->hdr.shift)
dst->value >>= v->hdr.shift;
if (v->val)
dst->value &= v->val;
}
static int meta_int_dump(struct sk_buff *skb, struct meta_value *v, int tlv)
{
if (v->len == sizeof(unsigned long)) {
if (nla_put(skb, tlv, sizeof(unsigned long), &v->val))
goto nla_put_failure;
} else if (v->len == sizeof(u32)) {
if (nla_put_u32(skb, tlv, v->val))
goto nla_put_failure;
}
return 0;
nla_put_failure:
return -1;
}
/**************************************************************************
* Type specific operations table
**************************************************************************/
struct meta_type_ops {
void (*destroy)(struct meta_value *);
int (*compare)(struct meta_obj *, struct meta_obj *);
int (*change)(struct meta_value *, struct nlattr *);
void (*apply_extras)(struct meta_value *, struct meta_obj *);
int (*dump)(struct sk_buff *, struct meta_value *, int);
};
static const struct meta_type_ops __meta_type_ops[TCF_META_TYPE_MAX + 1] = {
[TCF_META_TYPE_VAR] = {
.destroy = meta_var_destroy,
.compare = meta_var_compare,
.change = meta_var_change,
.apply_extras = meta_var_apply_extras,
.dump = meta_var_dump
},
[TCF_META_TYPE_INT] = {
.compare = meta_int_compare,
.change = meta_int_change,
.apply_extras = meta_int_apply_extras,
.dump = meta_int_dump
}
};
static inline const struct meta_type_ops *meta_type_ops(struct meta_value *v)
{
return &__meta_type_ops[meta_type(v)];
}
/**************************************************************************
* Core
**************************************************************************/
static int meta_get(struct sk_buff *skb, struct tcf_pkt_info *info,
struct meta_value *v, struct meta_obj *dst)
{
int err = 0;
if (meta_id(v) == TCF_META_ID_VALUE) {
dst->value = v->val;
dst->len = v->len;
return 0;
}
meta_ops(v)->get(skb, info, v, dst, &err);
if (err < 0)
return err;
if (meta_type_ops(v)->apply_extras)
meta_type_ops(v)->apply_extras(v, dst);
return 0;
}
static int em_meta_match(struct sk_buff *skb, struct tcf_ematch *m,
struct tcf_pkt_info *info)
{
int r;
struct meta_match *meta = (struct meta_match *) m->data;
struct meta_obj l_value, r_value;
if (meta_get(skb, info, &meta->lvalue, &l_value) < 0 ||
meta_get(skb, info, &meta->rvalue, &r_value) < 0)
return 0;
r = meta_type_ops(&meta->lvalue)->compare(&l_value, &r_value);
switch (meta->lvalue.hdr.op) {
case TCF_EM_OPND_EQ:
return !r;
case TCF_EM_OPND_LT:
return r < 0;
case TCF_EM_OPND_GT:
return r > 0;
}
return 0;
}
static void meta_delete(struct meta_match *meta)
{
if (meta) {
const struct meta_type_ops *ops = meta_type_ops(&meta->lvalue);
if (ops && ops->destroy) {
ops->destroy(&meta->lvalue);
ops->destroy(&meta->rvalue);
}
}
kfree(meta);
}
static inline int meta_change_data(struct meta_value *dst, struct nlattr *nla)
{
if (nla) {
if (nla_len(nla) == 0)
return -EINVAL;
return meta_type_ops(dst)->change(dst, nla);
}
return 0;
}
static inline int meta_is_supported(struct meta_value *val)
{
return !meta_id(val) || meta_ops(val)->get;
}
static const struct nla_policy meta_policy[TCA_EM_META_MAX + 1] = {
[TCA_EM_META_HDR] = { .len = sizeof(struct tcf_meta_hdr) },
};
static int em_meta_change(struct net *net, void *data, int len,
struct tcf_ematch *m)
{
int err;
struct nlattr *tb[TCA_EM_META_MAX + 1];
struct tcf_meta_hdr *hdr;
struct meta_match *meta = NULL;
err = nla_parse_deprecated(tb, TCA_EM_META_MAX, data, len,
meta_policy, NULL);
if (err < 0)
goto errout;
err = -EINVAL;
if (tb[TCA_EM_META_HDR] == NULL)
goto errout;
hdr = nla_data(tb[TCA_EM_META_HDR]);
if (TCF_META_TYPE(hdr->left.kind) != TCF_META_TYPE(hdr->right.kind) ||
TCF_META_TYPE(hdr->left.kind) > TCF_META_TYPE_MAX ||
TCF_META_ID(hdr->left.kind) > TCF_META_ID_MAX ||
TCF_META_ID(hdr->right.kind) > TCF_META_ID_MAX)
goto errout;
meta = kzalloc(sizeof(*meta), GFP_KERNEL);
if (meta == NULL) {
err = -ENOMEM;
goto errout;
}
memcpy(&meta->lvalue.hdr, &hdr->left, sizeof(hdr->left));
memcpy(&meta->rvalue.hdr, &hdr->right, sizeof(hdr->right));
if (!meta_is_supported(&meta->lvalue) ||
!meta_is_supported(&meta->rvalue)) {
err = -EOPNOTSUPP;
goto errout;
}
if (meta_change_data(&meta->lvalue, tb[TCA_EM_META_LVALUE]) < 0 ||
meta_change_data(&meta->rvalue, tb[TCA_EM_META_RVALUE]) < 0)
goto errout;
m->datalen = sizeof(*meta);
m->data = (unsigned long) meta;
err = 0;
errout:
if (err && meta)
meta_delete(meta);
return err;
}
static void em_meta_destroy(struct tcf_ematch *m)
{
if (m)
meta_delete((struct meta_match *) m->data);
}
static int em_meta_dump(struct sk_buff *skb, struct tcf_ematch *em)
{
struct meta_match *meta = (struct meta_match *) em->data;
struct tcf_meta_hdr hdr;
const struct meta_type_ops *ops;
memset(&hdr, 0, sizeof(hdr));
memcpy(&hdr.left, &meta->lvalue.hdr, sizeof(hdr.left));
memcpy(&hdr.right, &meta->rvalue.hdr, sizeof(hdr.right));
if (nla_put(skb, TCA_EM_META_HDR, sizeof(hdr), &hdr))
goto nla_put_failure;
ops = meta_type_ops(&meta->lvalue);
if (ops->dump(skb, &meta->lvalue, TCA_EM_META_LVALUE) < 0 ||
ops->dump(skb, &meta->rvalue, TCA_EM_META_RVALUE) < 0)
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static struct tcf_ematch_ops em_meta_ops = {
.kind = TCF_EM_META,
.change = em_meta_change,
.match = em_meta_match,
.destroy = em_meta_destroy,
.dump = em_meta_dump,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_meta_ops.link)
};
static int __init init_em_meta(void)
{
return tcf_em_register(&em_meta_ops);
}
static void __exit exit_em_meta(void)
{
tcf_em_unregister(&em_meta_ops);
}
MODULE_LICENSE("GPL");
module_init(init_em_meta);
module_exit(exit_em_meta);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_META);
| linux-master | net/sched/em_meta.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_netem.c Network emulator
*
* Many of the algorithms and ideas for this came from
* NIST Net which is not copyrighted.
*
* Authors: Stephen Hemminger <[email protected]>
* Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/rtnetlink.h>
#include <linux/reciprocal_div.h>
#include <linux/rbtree.h>
#include <net/gso.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#define VERSION "1.3"
/* Network Emulation Queuing algorithm.
====================================
Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
Network Emulation Tool
[2] Luigi Rizzo, DummyNet for FreeBSD
----------------------------------------------------------------
This started out as a simple way to delay outgoing packets to
test TCP but has grown to include most of the functionality
of a full blown network emulator like NISTnet. It can delay
packets and add random jitter (and correlation). The random
distribution can be loaded from a table as well to provide
normal, Pareto, or experimental curves. Packet loss,
duplication, and reordering can also be emulated.
This qdisc does not do classification that can be handled in
layering other disciplines. It does not need to do bandwidth
control either since that can be handled by using token
bucket or other rate control.
Correlated Loss Generator models
Added generation of correlated loss according to the
"Gilbert-Elliot" model, a 4-state markov model.
References:
[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
and intuitive loss model for packet networks and its implementation
in the Netem module in the Linux kernel", available in [1]
Authors: Stefano Salsano <stefano.salsano at uniroma2.it
Fabio Ludovici <fabio.ludovici at yahoo.it>
*/
struct disttable {
u32 size;
s16 table[];
};
struct netem_sched_data {
/* internal t(ime)fifo qdisc uses t_root and sch->limit */
struct rb_root t_root;
/* a linear queue; reduces rbtree rebalancing when jitter is low */
struct sk_buff *t_head;
struct sk_buff *t_tail;
/* optional qdisc for classful handling (NULL at netem init) */
struct Qdisc *qdisc;
struct qdisc_watchdog watchdog;
s64 latency;
s64 jitter;
u32 loss;
u32 ecn;
u32 limit;
u32 counter;
u32 gap;
u32 duplicate;
u32 reorder;
u32 corrupt;
u64 rate;
s32 packet_overhead;
u32 cell_size;
struct reciprocal_value cell_size_reciprocal;
s32 cell_overhead;
struct crndstate {
u32 last;
u32 rho;
} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
struct prng {
u64 seed;
struct rnd_state prng_state;
} prng;
struct disttable *delay_dist;
enum {
CLG_RANDOM,
CLG_4_STATES,
CLG_GILB_ELL,
} loss_model;
enum {
TX_IN_GAP_PERIOD = 1,
TX_IN_BURST_PERIOD,
LOST_IN_GAP_PERIOD,
LOST_IN_BURST_PERIOD,
} _4_state_model;
enum {
GOOD_STATE = 1,
BAD_STATE,
} GE_state_model;
/* Correlated Loss Generation models */
struct clgstate {
/* state of the Markov chain */
u8 state;
/* 4-states and Gilbert-Elliot models */
u32 a1; /* p13 for 4-states or p for GE */
u32 a2; /* p31 for 4-states or r for GE */
u32 a3; /* p32 for 4-states or h for GE */
u32 a4; /* p14 for 4-states or 1-k for GE */
u32 a5; /* p23 used only in 4-states */
} clg;
struct tc_netem_slot slot_config;
struct slotstate {
u64 slot_next;
s32 packets_left;
s32 bytes_left;
} slot;
struct disttable *slot_dist;
};
/* Time stamp put into socket buffer control block
* Only valid when skbs are in our internal t(ime)fifo queue.
*
* As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
* and skb->next & skb->prev are scratch space for a qdisc,
* we save skb->tstamp value in skb->cb[] before destroying it.
*/
struct netem_skb_cb {
u64 time_to_send;
};
static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
{
/* we assume we can use skb next/prev/tstamp as storage for rb_node */
qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
}
/* init_crandom - initialize correlated random number generator
* Use entropy source for initial seed.
*/
static void init_crandom(struct crndstate *state, unsigned long rho)
{
state->rho = rho;
state->last = get_random_u32();
}
/* get_crandom - correlated random number generator
* Next number depends on last value.
* rho is scaled to avoid floating point.
*/
static u32 get_crandom(struct crndstate *state, struct prng *p)
{
u64 value, rho;
unsigned long answer;
struct rnd_state *s = &p->prng_state;
if (!state || state->rho == 0) /* no correlation */
return prandom_u32_state(s);
value = prandom_u32_state(s);
rho = (u64)state->rho + 1;
answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
state->last = answer;
return answer;
}
/* loss_4state - 4-state model loss generator
* Generates losses according to the 4-state Markov chain adopted in
* the GI (General and Intuitive) loss model.
*/
static bool loss_4state(struct netem_sched_data *q)
{
struct clgstate *clg = &q->clg;
u32 rnd = prandom_u32_state(&q->prng.prng_state);
/*
* Makes a comparison between rnd and the transition
* probabilities outgoing from the current state, then decides the
* next state and if the next packet has to be transmitted or lost.
* The four states correspond to:
* TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
* LOST_IN_GAP_PERIOD => isolated losses within a gap period
* LOST_IN_BURST_PERIOD => lost packets within a burst period
* TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
*/
switch (clg->state) {
case TX_IN_GAP_PERIOD:
if (rnd < clg->a4) {
clg->state = LOST_IN_GAP_PERIOD;
return true;
} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
clg->state = LOST_IN_BURST_PERIOD;
return true;
} else if (clg->a1 + clg->a4 < rnd) {
clg->state = TX_IN_GAP_PERIOD;
}
break;
case TX_IN_BURST_PERIOD:
if (rnd < clg->a5) {
clg->state = LOST_IN_BURST_PERIOD;
return true;
} else {
clg->state = TX_IN_BURST_PERIOD;
}
break;
case LOST_IN_BURST_PERIOD:
if (rnd < clg->a3)
clg->state = TX_IN_BURST_PERIOD;
else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
clg->state = TX_IN_GAP_PERIOD;
} else if (clg->a2 + clg->a3 < rnd) {
clg->state = LOST_IN_BURST_PERIOD;
return true;
}
break;
case LOST_IN_GAP_PERIOD:
clg->state = TX_IN_GAP_PERIOD;
break;
}
return false;
}
/* loss_gilb_ell - Gilbert-Elliot model loss generator
* Generates losses according to the Gilbert-Elliot loss model or
* its special cases (Gilbert or Simple Gilbert)
*
* Makes a comparison between random number and the transition
* probabilities outgoing from the current state, then decides the
* next state. A second random number is extracted and the comparison
* with the loss probability of the current state decides if the next
* packet will be transmitted or lost.
*/
static bool loss_gilb_ell(struct netem_sched_data *q)
{
struct clgstate *clg = &q->clg;
struct rnd_state *s = &q->prng.prng_state;
switch (clg->state) {
case GOOD_STATE:
if (prandom_u32_state(s) < clg->a1)
clg->state = BAD_STATE;
if (prandom_u32_state(s) < clg->a4)
return true;
break;
case BAD_STATE:
if (prandom_u32_state(s) < clg->a2)
clg->state = GOOD_STATE;
if (prandom_u32_state(s) > clg->a3)
return true;
}
return false;
}
static bool loss_event(struct netem_sched_data *q)
{
switch (q->loss_model) {
case CLG_RANDOM:
/* Random packet drop 0 => none, ~0 => all */
return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
case CLG_4_STATES:
/* 4state loss model algorithm (used also for GI model)
* Extracts a value from the markov 4 state loss generator,
* if it is 1 drops a packet and if needed writes the event in
* the kernel logs
*/
return loss_4state(q);
case CLG_GILB_ELL:
/* Gilbert-Elliot loss model algorithm
* Extracts a value from the Gilbert-Elliot loss generator,
* if it is 1 drops a packet and if needed writes the event in
* the kernel logs
*/
return loss_gilb_ell(q);
}
return false; /* not reached */
}
/* tabledist - return a pseudo-randomly distributed value with mean mu and
* std deviation sigma. Uses table lookup to approximate the desired
* distribution, and a uniformly-distributed pseudo-random source.
*/
static s64 tabledist(s64 mu, s32 sigma,
struct crndstate *state,
struct prng *prng,
const struct disttable *dist)
{
s64 x;
long t;
u32 rnd;
if (sigma == 0)
return mu;
rnd = get_crandom(state, prng);
/* default uniform distribution */
if (dist == NULL)
return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
t = dist->table[rnd % dist->size];
x = (sigma % NETEM_DIST_SCALE) * t;
if (x >= 0)
x += NETEM_DIST_SCALE/2;
else
x -= NETEM_DIST_SCALE/2;
return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
}
static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
{
len += q->packet_overhead;
if (q->cell_size) {
u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
if (len > cells * q->cell_size) /* extra cell needed for remainder */
cells++;
len = cells * (q->cell_size + q->cell_overhead);
}
return div64_u64(len * NSEC_PER_SEC, q->rate);
}
static void tfifo_reset(struct Qdisc *sch)
{
struct netem_sched_data *q = qdisc_priv(sch);
struct rb_node *p = rb_first(&q->t_root);
while (p) {
struct sk_buff *skb = rb_to_skb(p);
p = rb_next(p);
rb_erase(&skb->rbnode, &q->t_root);
rtnl_kfree_skbs(skb, skb);
}
rtnl_kfree_skbs(q->t_head, q->t_tail);
q->t_head = NULL;
q->t_tail = NULL;
}
static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
{
struct netem_sched_data *q = qdisc_priv(sch);
u64 tnext = netem_skb_cb(nskb)->time_to_send;
if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
if (q->t_tail)
q->t_tail->next = nskb;
else
q->t_head = nskb;
q->t_tail = nskb;
} else {
struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
while (*p) {
struct sk_buff *skb;
parent = *p;
skb = rb_to_skb(parent);
if (tnext >= netem_skb_cb(skb)->time_to_send)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&nskb->rbnode, parent, p);
rb_insert_color(&nskb->rbnode, &q->t_root);
}
sch->q.qlen++;
}
/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
* when we statistically choose to corrupt one, we instead segment it, returning
* the first packet to be corrupted, and re-enqueue the remaining frames
*/
static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct sk_buff *segs;
netdev_features_t features = netif_skb_features(skb);
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
if (IS_ERR_OR_NULL(segs)) {
qdisc_drop(skb, sch, to_free);
return NULL;
}
consume_skb(skb);
return segs;
}
/*
* Insert one skb into qdisc.
* Note: parent depends on return value to account for queue length.
* NET_XMIT_DROP: queue length didn't change.
* NET_XMIT_SUCCESS: one skb was queued.
*/
static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct netem_sched_data *q = qdisc_priv(sch);
/* We don't fill cb now as skb_unshare() may invalidate it */
struct netem_skb_cb *cb;
struct sk_buff *skb2;
struct sk_buff *segs = NULL;
unsigned int prev_len = qdisc_pkt_len(skb);
int count = 1;
int rc = NET_XMIT_SUCCESS;
int rc_drop = NET_XMIT_DROP;
/* Do not fool qdisc_drop_all() */
skb->prev = NULL;
/* Random duplication */
if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
++count;
/* Drop packet? */
if (loss_event(q)) {
if (q->ecn && INET_ECN_set_ce(skb))
qdisc_qstats_drop(sch); /* mark packet */
else
--count;
}
if (count == 0) {
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
}
/* If a delay is expected, orphan the skb. (orphaning usually takes
* place at TX completion time, so _before_ the link transit delay)
*/
if (q->latency || q->jitter || q->rate)
skb_orphan_partial(skb);
/*
* If we need to duplicate packet, then re-insert at top of the
* qdisc tree, since parent queuer expects that only one
* skb will be queued.
*/
if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
struct Qdisc *rootq = qdisc_root_bh(sch);
u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
q->duplicate = 0;
rootq->enqueue(skb2, rootq, to_free);
q->duplicate = dupsave;
rc_drop = NET_XMIT_SUCCESS;
}
/*
* Randomized packet corruption.
* Make copy if needed since we are modifying
* If packet is going to be hardware checksummed, then
* do it now in software before we mangle it.
*/
if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
if (skb_is_gso(skb)) {
skb = netem_segment(skb, sch, to_free);
if (!skb)
return rc_drop;
segs = skb->next;
skb_mark_not_on_list(skb);
qdisc_skb_cb(skb)->pkt_len = skb->len;
}
skb = skb_unshare(skb, GFP_ATOMIC);
if (unlikely(!skb)) {
qdisc_qstats_drop(sch);
goto finish_segs;
}
if (skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_help(skb)) {
qdisc_drop(skb, sch, to_free);
skb = NULL;
goto finish_segs;
}
skb->data[get_random_u32_below(skb_headlen(skb))] ^=
1<<get_random_u32_below(8);
}
if (unlikely(sch->q.qlen >= sch->limit)) {
/* re-link segs, so that qdisc_drop_all() frees them all */
skb->next = segs;
qdisc_drop_all(skb, sch, to_free);
return rc_drop;
}
qdisc_qstats_backlog_inc(sch, skb);
cb = netem_skb_cb(skb);
if (q->gap == 0 || /* not doing reordering */
q->counter < q->gap - 1 || /* inside last reordering gap */
q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
u64 now;
s64 delay;
delay = tabledist(q->latency, q->jitter,
&q->delay_cor, &q->prng, q->delay_dist);
now = ktime_get_ns();
if (q->rate) {
struct netem_skb_cb *last = NULL;
if (sch->q.tail)
last = netem_skb_cb(sch->q.tail);
if (q->t_root.rb_node) {
struct sk_buff *t_skb;
struct netem_skb_cb *t_last;
t_skb = skb_rb_last(&q->t_root);
t_last = netem_skb_cb(t_skb);
if (!last ||
t_last->time_to_send > last->time_to_send)
last = t_last;
}
if (q->t_tail) {
struct netem_skb_cb *t_last =
netem_skb_cb(q->t_tail);
if (!last ||
t_last->time_to_send > last->time_to_send)
last = t_last;
}
if (last) {
/*
* Last packet in queue is reference point (now),
* calculate this time bonus and subtract
* from delay.
*/
delay -= last->time_to_send - now;
delay = max_t(s64, 0, delay);
now = last->time_to_send;
}
delay += packet_time_ns(qdisc_pkt_len(skb), q);
}
cb->time_to_send = now + delay;
++q->counter;
tfifo_enqueue(skb, sch);
} else {
/*
* Do re-ordering by putting one out of N packets at the front
* of the queue.
*/
cb->time_to_send = ktime_get_ns();
q->counter = 0;
__qdisc_enqueue_head(skb, &sch->q);
sch->qstats.requeues++;
}
finish_segs:
if (segs) {
unsigned int len, last_len;
int nb;
len = skb ? skb->len : 0;
nb = skb ? 1 : 0;
while (segs) {
skb2 = segs->next;
skb_mark_not_on_list(segs);
qdisc_skb_cb(segs)->pkt_len = segs->len;
last_len = segs->len;
rc = qdisc_enqueue(segs, sch, to_free);
if (rc != NET_XMIT_SUCCESS) {
if (net_xmit_drop_count(rc))
qdisc_qstats_drop(sch);
} else {
nb++;
len += last_len;
}
segs = skb2;
}
/* Parent qdiscs accounted for 1 skb of size @prev_len */
qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
} else if (!skb) {
return NET_XMIT_DROP;
}
return NET_XMIT_SUCCESS;
}
/* Delay the next round with a new future slot with a
* correct number of bytes and packets.
*/
static void get_slot_next(struct netem_sched_data *q, u64 now)
{
s64 next_delay;
if (!q->slot_dist)
next_delay = q->slot_config.min_delay +
(get_random_u32() *
(q->slot_config.max_delay -
q->slot_config.min_delay) >> 32);
else
next_delay = tabledist(q->slot_config.dist_delay,
(s32)(q->slot_config.dist_jitter),
NULL, &q->prng, q->slot_dist);
q->slot.slot_next = now + next_delay;
q->slot.packets_left = q->slot_config.max_packets;
q->slot.bytes_left = q->slot_config.max_bytes;
}
static struct sk_buff *netem_peek(struct netem_sched_data *q)
{
struct sk_buff *skb = skb_rb_first(&q->t_root);
u64 t1, t2;
if (!skb)
return q->t_head;
if (!q->t_head)
return skb;
t1 = netem_skb_cb(skb)->time_to_send;
t2 = netem_skb_cb(q->t_head)->time_to_send;
if (t1 < t2)
return skb;
return q->t_head;
}
static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
{
if (skb == q->t_head) {
q->t_head = skb->next;
if (!q->t_head)
q->t_tail = NULL;
} else {
rb_erase(&skb->rbnode, &q->t_root);
}
}
static struct sk_buff *netem_dequeue(struct Qdisc *sch)
{
struct netem_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
tfifo_dequeue:
skb = __qdisc_dequeue_head(&sch->q);
if (skb) {
qdisc_qstats_backlog_dec(sch, skb);
deliver:
qdisc_bstats_update(sch, skb);
return skb;
}
skb = netem_peek(q);
if (skb) {
u64 time_to_send;
u64 now = ktime_get_ns();
/* if more time remaining? */
time_to_send = netem_skb_cb(skb)->time_to_send;
if (q->slot.slot_next && q->slot.slot_next < time_to_send)
get_slot_next(q, now);
if (time_to_send <= now && q->slot.slot_next <= now) {
netem_erase_head(q, skb);
sch->q.qlen--;
qdisc_qstats_backlog_dec(sch, skb);
skb->next = NULL;
skb->prev = NULL;
/* skb->dev shares skb->rbnode area,
* we need to restore its value.
*/
skb->dev = qdisc_dev(sch);
if (q->slot.slot_next) {
q->slot.packets_left--;
q->slot.bytes_left -= qdisc_pkt_len(skb);
if (q->slot.packets_left <= 0 ||
q->slot.bytes_left <= 0)
get_slot_next(q, now);
}
if (q->qdisc) {
unsigned int pkt_len = qdisc_pkt_len(skb);
struct sk_buff *to_free = NULL;
int err;
err = qdisc_enqueue(skb, q->qdisc, &to_free);
kfree_skb_list(to_free);
if (err != NET_XMIT_SUCCESS &&
net_xmit_drop_count(err)) {
qdisc_qstats_drop(sch);
qdisc_tree_reduce_backlog(sch, 1,
pkt_len);
}
goto tfifo_dequeue;
}
goto deliver;
}
if (q->qdisc) {
skb = q->qdisc->ops->dequeue(q->qdisc);
if (skb)
goto deliver;
}
qdisc_watchdog_schedule_ns(&q->watchdog,
max(time_to_send,
q->slot.slot_next));
}
if (q->qdisc) {
skb = q->qdisc->ops->dequeue(q->qdisc);
if (skb)
goto deliver;
}
return NULL;
}
static void netem_reset(struct Qdisc *sch)
{
struct netem_sched_data *q = qdisc_priv(sch);
qdisc_reset_queue(sch);
tfifo_reset(sch);
if (q->qdisc)
qdisc_reset(q->qdisc);
qdisc_watchdog_cancel(&q->watchdog);
}
static void dist_free(struct disttable *d)
{
kvfree(d);
}
/*
* Distribution data is a variable size payload containing
* signed 16 bit values.
*/
static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
{
size_t n = nla_len(attr)/sizeof(__s16);
const __s16 *data = nla_data(attr);
struct disttable *d;
int i;
if (!n || n > NETEM_DIST_MAX)
return -EINVAL;
d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
if (!d)
return -ENOMEM;
d->size = n;
for (i = 0; i < n; i++)
d->table[i] = data[i];
*tbl = d;
return 0;
}
static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct tc_netem_slot *c = nla_data(attr);
q->slot_config = *c;
if (q->slot_config.max_packets == 0)
q->slot_config.max_packets = INT_MAX;
if (q->slot_config.max_bytes == 0)
q->slot_config.max_bytes = INT_MAX;
/* capping dist_jitter to the range acceptable by tabledist() */
q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
q->slot.packets_left = q->slot_config.max_packets;
q->slot.bytes_left = q->slot_config.max_bytes;
if (q->slot_config.min_delay | q->slot_config.max_delay |
q->slot_config.dist_jitter)
q->slot.slot_next = ktime_get_ns();
else
q->slot.slot_next = 0;
}
static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct tc_netem_corr *c = nla_data(attr);
init_crandom(&q->delay_cor, c->delay_corr);
init_crandom(&q->loss_cor, c->loss_corr);
init_crandom(&q->dup_cor, c->dup_corr);
}
static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct tc_netem_reorder *r = nla_data(attr);
q->reorder = r->probability;
init_crandom(&q->reorder_cor, r->correlation);
}
static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct tc_netem_corrupt *r = nla_data(attr);
q->corrupt = r->probability;
init_crandom(&q->corrupt_cor, r->correlation);
}
static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct tc_netem_rate *r = nla_data(attr);
q->rate = r->rate;
q->packet_overhead = r->packet_overhead;
q->cell_size = r->cell_size;
q->cell_overhead = r->cell_overhead;
if (q->cell_size)
q->cell_size_reciprocal = reciprocal_value(q->cell_size);
else
q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
}
static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
{
const struct nlattr *la;
int rem;
nla_for_each_nested(la, attr, rem) {
u16 type = nla_type(la);
switch (type) {
case NETEM_LOSS_GI: {
const struct tc_netem_gimodel *gi = nla_data(la);
if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
pr_info("netem: incorrect gi model size\n");
return -EINVAL;
}
q->loss_model = CLG_4_STATES;
q->clg.state = TX_IN_GAP_PERIOD;
q->clg.a1 = gi->p13;
q->clg.a2 = gi->p31;
q->clg.a3 = gi->p32;
q->clg.a4 = gi->p14;
q->clg.a5 = gi->p23;
break;
}
case NETEM_LOSS_GE: {
const struct tc_netem_gemodel *ge = nla_data(la);
if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
pr_info("netem: incorrect ge model size\n");
return -EINVAL;
}
q->loss_model = CLG_GILB_ELL;
q->clg.state = GOOD_STATE;
q->clg.a1 = ge->p;
q->clg.a2 = ge->r;
q->clg.a3 = ge->h;
q->clg.a4 = ge->k1;
break;
}
default:
pr_info("netem: unknown loss type %u\n", type);
return -EINVAL;
}
}
return 0;
}
static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
[TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
[TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
[TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
[TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
[TCA_NETEM_LOSS] = { .type = NLA_NESTED },
[TCA_NETEM_ECN] = { .type = NLA_U32 },
[TCA_NETEM_RATE64] = { .type = NLA_U64 },
[TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
[TCA_NETEM_JITTER64] = { .type = NLA_S64 },
[TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
[TCA_NETEM_PRNG_SEED] = { .type = NLA_U64 },
};
static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
const struct nla_policy *policy, int len)
{
int nested_len = nla_len(nla) - NLA_ALIGN(len);
if (nested_len < 0) {
pr_info("netem: invalid attributes len %d\n", nested_len);
return -EINVAL;
}
if (nested_len >= nla_attr_size(0))
return nla_parse_deprecated(tb, maxtype,
nla_data(nla) + NLA_ALIGN(len),
nested_len, policy, NULL);
memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
return 0;
}
/* Parse netlink message to set options */
static int netem_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct netem_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_NETEM_MAX + 1];
struct disttable *delay_dist = NULL;
struct disttable *slot_dist = NULL;
struct tc_netem_qopt *qopt;
struct clgstate old_clg;
int old_loss_model = CLG_RANDOM;
int ret;
qopt = nla_data(opt);
ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
if (ret < 0)
return ret;
if (tb[TCA_NETEM_DELAY_DIST]) {
ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
if (ret)
goto table_free;
}
if (tb[TCA_NETEM_SLOT_DIST]) {
ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
if (ret)
goto table_free;
}
sch_tree_lock(sch);
/* backup q->clg and q->loss_model */
old_clg = q->clg;
old_loss_model = q->loss_model;
if (tb[TCA_NETEM_LOSS]) {
ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
if (ret) {
q->loss_model = old_loss_model;
q->clg = old_clg;
goto unlock;
}
} else {
q->loss_model = CLG_RANDOM;
}
if (delay_dist)
swap(q->delay_dist, delay_dist);
if (slot_dist)
swap(q->slot_dist, slot_dist);
sch->limit = qopt->limit;
q->latency = PSCHED_TICKS2NS(qopt->latency);
q->jitter = PSCHED_TICKS2NS(qopt->jitter);
q->limit = qopt->limit;
q->gap = qopt->gap;
q->counter = 0;
q->loss = qopt->loss;
q->duplicate = qopt->duplicate;
/* for compatibility with earlier versions.
* if gap is set, need to assume 100% probability
*/
if (q->gap)
q->reorder = ~0;
if (tb[TCA_NETEM_CORR])
get_correlation(q, tb[TCA_NETEM_CORR]);
if (tb[TCA_NETEM_REORDER])
get_reorder(q, tb[TCA_NETEM_REORDER]);
if (tb[TCA_NETEM_CORRUPT])
get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
if (tb[TCA_NETEM_RATE])
get_rate(q, tb[TCA_NETEM_RATE]);
if (tb[TCA_NETEM_RATE64])
q->rate = max_t(u64, q->rate,
nla_get_u64(tb[TCA_NETEM_RATE64]));
if (tb[TCA_NETEM_LATENCY64])
q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
if (tb[TCA_NETEM_JITTER64])
q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
if (tb[TCA_NETEM_ECN])
q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
if (tb[TCA_NETEM_SLOT])
get_slot(q, tb[TCA_NETEM_SLOT]);
/* capping jitter to the range acceptable by tabledist() */
q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
if (tb[TCA_NETEM_PRNG_SEED])
q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
else
q->prng.seed = get_random_u64();
prandom_seed_state(&q->prng.prng_state, q->prng.seed);
unlock:
sch_tree_unlock(sch);
table_free:
dist_free(delay_dist);
dist_free(slot_dist);
return ret;
}
static int netem_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct netem_sched_data *q = qdisc_priv(sch);
int ret;
qdisc_watchdog_init(&q->watchdog, sch);
if (!opt)
return -EINVAL;
q->loss_model = CLG_RANDOM;
ret = netem_change(sch, opt, extack);
if (ret)
pr_info("netem: change failed\n");
return ret;
}
static void netem_destroy(struct Qdisc *sch)
{
struct netem_sched_data *q = qdisc_priv(sch);
qdisc_watchdog_cancel(&q->watchdog);
if (q->qdisc)
qdisc_put(q->qdisc);
dist_free(q->delay_dist);
dist_free(q->slot_dist);
}
static int dump_loss_model(const struct netem_sched_data *q,
struct sk_buff *skb)
{
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
if (nest == NULL)
goto nla_put_failure;
switch (q->loss_model) {
case CLG_RANDOM:
/* legacy loss model */
nla_nest_cancel(skb, nest);
return 0; /* no data */
case CLG_4_STATES: {
struct tc_netem_gimodel gi = {
.p13 = q->clg.a1,
.p31 = q->clg.a2,
.p32 = q->clg.a3,
.p14 = q->clg.a4,
.p23 = q->clg.a5,
};
if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
goto nla_put_failure;
break;
}
case CLG_GILB_ELL: {
struct tc_netem_gemodel ge = {
.p = q->clg.a1,
.r = q->clg.a2,
.h = q->clg.a3,
.k1 = q->clg.a4,
};
if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
goto nla_put_failure;
break;
}
}
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
{
const struct netem_sched_data *q = qdisc_priv(sch);
struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
struct tc_netem_qopt qopt;
struct tc_netem_corr cor;
struct tc_netem_reorder reorder;
struct tc_netem_corrupt corrupt;
struct tc_netem_rate rate;
struct tc_netem_slot slot;
qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
UINT_MAX);
qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
UINT_MAX);
qopt.limit = q->limit;
qopt.loss = q->loss;
qopt.gap = q->gap;
qopt.duplicate = q->duplicate;
if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
goto nla_put_failure;
if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
goto nla_put_failure;
if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
goto nla_put_failure;
cor.delay_corr = q->delay_cor.rho;
cor.loss_corr = q->loss_cor.rho;
cor.dup_corr = q->dup_cor.rho;
if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
goto nla_put_failure;
reorder.probability = q->reorder;
reorder.correlation = q->reorder_cor.rho;
if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
goto nla_put_failure;
corrupt.probability = q->corrupt;
corrupt.correlation = q->corrupt_cor.rho;
if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
goto nla_put_failure;
if (q->rate >= (1ULL << 32)) {
if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
TCA_NETEM_PAD))
goto nla_put_failure;
rate.rate = ~0U;
} else {
rate.rate = q->rate;
}
rate.packet_overhead = q->packet_overhead;
rate.cell_size = q->cell_size;
rate.cell_overhead = q->cell_overhead;
if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
goto nla_put_failure;
if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
goto nla_put_failure;
if (dump_loss_model(q, skb) != 0)
goto nla_put_failure;
if (q->slot_config.min_delay | q->slot_config.max_delay |
q->slot_config.dist_jitter) {
slot = q->slot_config;
if (slot.max_packets == INT_MAX)
slot.max_packets = 0;
if (slot.max_bytes == INT_MAX)
slot.max_bytes = 0;
if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
goto nla_put_failure;
}
if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
TCA_NETEM_PAD))
goto nla_put_failure;
return nla_nest_end(skb, nla);
nla_put_failure:
nlmsg_trim(skb, nla);
return -1;
}
static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct netem_sched_data *q = qdisc_priv(sch);
if (cl != 1 || !q->qdisc) /* only one class */
return -ENOENT;
tcm->tcm_handle |= TC_H_MIN(1);
tcm->tcm_info = q->qdisc->handle;
return 0;
}
static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
struct Qdisc **old, struct netlink_ext_ack *extack)
{
struct netem_sched_data *q = qdisc_priv(sch);
*old = qdisc_replace(sch, new, &q->qdisc);
return 0;
}
static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
{
struct netem_sched_data *q = qdisc_priv(sch);
return q->qdisc;
}
static unsigned long netem_find(struct Qdisc *sch, u32 classid)
{
return 1;
}
static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
if (!walker->stop) {
if (!tc_qdisc_stats_dump(sch, 1, walker))
return;
}
}
static const struct Qdisc_class_ops netem_class_ops = {
.graft = netem_graft,
.leaf = netem_leaf,
.find = netem_find,
.walk = netem_walk,
.dump = netem_dump_class,
};
static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
.id = "netem",
.cl_ops = &netem_class_ops,
.priv_size = sizeof(struct netem_sched_data),
.enqueue = netem_enqueue,
.dequeue = netem_dequeue,
.peek = qdisc_peek_dequeued,
.init = netem_init,
.reset = netem_reset,
.destroy = netem_destroy,
.change = netem_change,
.dump = netem_dump,
.owner = THIS_MODULE,
};
static int __init netem_module_init(void)
{
pr_info("netem: version " VERSION "\n");
return register_qdisc(&netem_qdisc_ops);
}
static void __exit netem_module_exit(void)
{
unregister_qdisc(&netem_qdisc_ops);
}
module_init(netem_module_init)
module_exit(netem_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_netem.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_api.c Packet classifier API.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*
* Changes:
*
* Eduardo J. Blanco <[email protected]> :990222: kmod support
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/jhash.h>
#include <linux/rculist.h>
#include <linux/rhashtable.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>
#include <net/tc_act/tc_tunnel_key.h>
#include <net/tc_act/tc_csum.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_police.h>
#include <net/tc_act/tc_sample.h>
#include <net/tc_act/tc_skbedit.h>
#include <net/tc_act/tc_ct.h>
#include <net/tc_act/tc_mpls.h>
#include <net/tc_act/tc_gate.h>
#include <net/flow_offload.h>
#include <net/tc_wrapper.h>
/* The list of all installed classifier types */
static LIST_HEAD(tcf_proto_base);
/* Protects list of registered TC modules. It is pure SMP lock. */
static DEFINE_RWLOCK(cls_mod_lock);
static struct xarray tcf_exts_miss_cookies_xa;
struct tcf_exts_miss_cookie_node {
const struct tcf_chain *chain;
const struct tcf_proto *tp;
const struct tcf_exts *exts;
u32 chain_index;
u32 tp_prio;
u32 handle;
u32 miss_cookie_base;
struct rcu_head rcu;
};
/* Each tc action entry cookie will be comprised of 32bit miss_cookie_base +
* action index in the exts tc actions array.
*/
union tcf_exts_miss_cookie {
struct {
u32 miss_cookie_base;
u32 act_index;
};
u64 miss_cookie;
};
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
static int
tcf_exts_miss_cookie_base_alloc(struct tcf_exts *exts, struct tcf_proto *tp,
u32 handle)
{
struct tcf_exts_miss_cookie_node *n;
static u32 next;
int err;
if (WARN_ON(!handle || !tp->ops->get_exts))
return -EINVAL;
n = kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return -ENOMEM;
n->chain_index = tp->chain->index;
n->chain = tp->chain;
n->tp_prio = tp->prio;
n->tp = tp;
n->exts = exts;
n->handle = handle;
err = xa_alloc_cyclic(&tcf_exts_miss_cookies_xa, &n->miss_cookie_base,
n, xa_limit_32b, &next, GFP_KERNEL);
if (err)
goto err_xa_alloc;
exts->miss_cookie_node = n;
return 0;
err_xa_alloc:
kfree(n);
return err;
}
static void tcf_exts_miss_cookie_base_destroy(struct tcf_exts *exts)
{
struct tcf_exts_miss_cookie_node *n;
if (!exts->miss_cookie_node)
return;
n = exts->miss_cookie_node;
xa_erase(&tcf_exts_miss_cookies_xa, n->miss_cookie_base);
kfree_rcu(n, rcu);
}
static struct tcf_exts_miss_cookie_node *
tcf_exts_miss_cookie_lookup(u64 miss_cookie, int *act_index)
{
union tcf_exts_miss_cookie mc = { .miss_cookie = miss_cookie, };
*act_index = mc.act_index;
return xa_load(&tcf_exts_miss_cookies_xa, mc.miss_cookie_base);
}
#else /* IS_ENABLED(CONFIG_NET_TC_SKB_EXT) */
static int
tcf_exts_miss_cookie_base_alloc(struct tcf_exts *exts, struct tcf_proto *tp,
u32 handle)
{
return 0;
}
static void tcf_exts_miss_cookie_base_destroy(struct tcf_exts *exts)
{
}
#endif /* IS_ENABLED(CONFIG_NET_TC_SKB_EXT) */
static u64 tcf_exts_miss_cookie_get(u32 miss_cookie_base, int act_index)
{
union tcf_exts_miss_cookie mc = { .act_index = act_index, };
if (!miss_cookie_base)
return 0;
mc.miss_cookie_base = miss_cookie_base;
return mc.miss_cookie;
}
#ifdef CONFIG_NET_CLS_ACT
DEFINE_STATIC_KEY_FALSE(tc_skb_ext_tc);
EXPORT_SYMBOL(tc_skb_ext_tc);
void tc_skb_ext_tc_enable(void)
{
static_branch_inc(&tc_skb_ext_tc);
}
EXPORT_SYMBOL(tc_skb_ext_tc_enable);
void tc_skb_ext_tc_disable(void)
{
static_branch_dec(&tc_skb_ext_tc);
}
EXPORT_SYMBOL(tc_skb_ext_tc_disable);
#endif
static u32 destroy_obj_hashfn(const struct tcf_proto *tp)
{
return jhash_3words(tp->chain->index, tp->prio,
(__force __u32)tp->protocol, 0);
}
static void tcf_proto_signal_destroying(struct tcf_chain *chain,
struct tcf_proto *tp)
{
struct tcf_block *block = chain->block;
mutex_lock(&block->proto_destroy_lock);
hash_add_rcu(block->proto_destroy_ht, &tp->destroy_ht_node,
destroy_obj_hashfn(tp));
mutex_unlock(&block->proto_destroy_lock);
}
static bool tcf_proto_cmp(const struct tcf_proto *tp1,
const struct tcf_proto *tp2)
{
return tp1->chain->index == tp2->chain->index &&
tp1->prio == tp2->prio &&
tp1->protocol == tp2->protocol;
}
static bool tcf_proto_exists_destroying(struct tcf_chain *chain,
struct tcf_proto *tp)
{
u32 hash = destroy_obj_hashfn(tp);
struct tcf_proto *iter;
bool found = false;
rcu_read_lock();
hash_for_each_possible_rcu(chain->block->proto_destroy_ht, iter,
destroy_ht_node, hash) {
if (tcf_proto_cmp(tp, iter)) {
found = true;
break;
}
}
rcu_read_unlock();
return found;
}
static void
tcf_proto_signal_destroyed(struct tcf_chain *chain, struct tcf_proto *tp)
{
struct tcf_block *block = chain->block;
mutex_lock(&block->proto_destroy_lock);
if (hash_hashed(&tp->destroy_ht_node))
hash_del_rcu(&tp->destroy_ht_node);
mutex_unlock(&block->proto_destroy_lock);
}
/* Find classifier type by string name */
static const struct tcf_proto_ops *__tcf_proto_lookup_ops(const char *kind)
{
const struct tcf_proto_ops *t, *res = NULL;
if (kind) {
read_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head) {
if (strcmp(kind, t->kind) == 0) {
if (try_module_get(t->owner))
res = t;
break;
}
}
read_unlock(&cls_mod_lock);
}
return res;
}
static const struct tcf_proto_ops *
tcf_proto_lookup_ops(const char *kind, bool rtnl_held,
struct netlink_ext_ack *extack)
{
const struct tcf_proto_ops *ops;
ops = __tcf_proto_lookup_ops(kind);
if (ops)
return ops;
#ifdef CONFIG_MODULES
if (rtnl_held)
rtnl_unlock();
request_module("cls_%s", kind);
if (rtnl_held)
rtnl_lock();
ops = __tcf_proto_lookup_ops(kind);
/* We dropped the RTNL semaphore in order to perform
* the module load. So, even if we succeeded in loading
* the module we have to replay the request. We indicate
* this using -EAGAIN.
*/
if (ops) {
module_put(ops->owner);
return ERR_PTR(-EAGAIN);
}
#endif
NL_SET_ERR_MSG(extack, "TC classifier not found");
return ERR_PTR(-ENOENT);
}
/* Register(unregister) new classifier type */
int register_tcf_proto_ops(struct tcf_proto_ops *ops)
{
struct tcf_proto_ops *t;
int rc = -EEXIST;
write_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head)
if (!strcmp(ops->kind, t->kind))
goto out;
list_add_tail(&ops->head, &tcf_proto_base);
rc = 0;
out:
write_unlock(&cls_mod_lock);
return rc;
}
EXPORT_SYMBOL(register_tcf_proto_ops);
static struct workqueue_struct *tc_filter_wq;
void unregister_tcf_proto_ops(struct tcf_proto_ops *ops)
{
struct tcf_proto_ops *t;
int rc = -ENOENT;
/* Wait for outstanding call_rcu()s, if any, from a
* tcf_proto_ops's destroy() handler.
*/
rcu_barrier();
flush_workqueue(tc_filter_wq);
write_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head) {
if (t == ops) {
list_del(&t->head);
rc = 0;
break;
}
}
write_unlock(&cls_mod_lock);
WARN(rc, "unregister tc filter kind(%s) failed %d\n", ops->kind, rc);
}
EXPORT_SYMBOL(unregister_tcf_proto_ops);
bool tcf_queue_work(struct rcu_work *rwork, work_func_t func)
{
INIT_RCU_WORK(rwork, func);
return queue_rcu_work(tc_filter_wq, rwork);
}
EXPORT_SYMBOL(tcf_queue_work);
/* Select new prio value from the range, managed by kernel. */
static inline u32 tcf_auto_prio(struct tcf_proto *tp)
{
u32 first = TC_H_MAKE(0xC0000000U, 0U);
if (tp)
first = tp->prio - 1;
return TC_H_MAJ(first);
}
static bool tcf_proto_check_kind(struct nlattr *kind, char *name)
{
if (kind)
return nla_strscpy(name, kind, IFNAMSIZ) < 0;
memset(name, 0, IFNAMSIZ);
return false;
}
static bool tcf_proto_is_unlocked(const char *kind)
{
const struct tcf_proto_ops *ops;
bool ret;
if (strlen(kind) == 0)
return false;
ops = tcf_proto_lookup_ops(kind, false, NULL);
/* On error return false to take rtnl lock. Proto lookup/create
* functions will perform lookup again and properly handle errors.
*/
if (IS_ERR(ops))
return false;
ret = !!(ops->flags & TCF_PROTO_OPS_DOIT_UNLOCKED);
module_put(ops->owner);
return ret;
}
static struct tcf_proto *tcf_proto_create(const char *kind, u32 protocol,
u32 prio, struct tcf_chain *chain,
bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcf_proto *tp;
int err;
tp = kzalloc(sizeof(*tp), GFP_KERNEL);
if (!tp)
return ERR_PTR(-ENOBUFS);
tp->ops = tcf_proto_lookup_ops(kind, rtnl_held, extack);
if (IS_ERR(tp->ops)) {
err = PTR_ERR(tp->ops);
goto errout;
}
tp->classify = tp->ops->classify;
tp->protocol = protocol;
tp->prio = prio;
tp->chain = chain;
spin_lock_init(&tp->lock);
refcount_set(&tp->refcnt, 1);
err = tp->ops->init(tp);
if (err) {
module_put(tp->ops->owner);
goto errout;
}
return tp;
errout:
kfree(tp);
return ERR_PTR(err);
}
static void tcf_proto_get(struct tcf_proto *tp)
{
refcount_inc(&tp->refcnt);
}
static void tcf_chain_put(struct tcf_chain *chain);
static void tcf_proto_destroy(struct tcf_proto *tp, bool rtnl_held,
bool sig_destroy, struct netlink_ext_ack *extack)
{
tp->ops->destroy(tp, rtnl_held, extack);
if (sig_destroy)
tcf_proto_signal_destroyed(tp->chain, tp);
tcf_chain_put(tp->chain);
module_put(tp->ops->owner);
kfree_rcu(tp, rcu);
}
static void tcf_proto_put(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
if (refcount_dec_and_test(&tp->refcnt))
tcf_proto_destroy(tp, rtnl_held, true, extack);
}
static bool tcf_proto_check_delete(struct tcf_proto *tp)
{
if (tp->ops->delete_empty)
return tp->ops->delete_empty(tp);
tp->deleting = true;
return tp->deleting;
}
static void tcf_proto_mark_delete(struct tcf_proto *tp)
{
spin_lock(&tp->lock);
tp->deleting = true;
spin_unlock(&tp->lock);
}
static bool tcf_proto_is_deleting(struct tcf_proto *tp)
{
bool deleting;
spin_lock(&tp->lock);
deleting = tp->deleting;
spin_unlock(&tp->lock);
return deleting;
}
#define ASSERT_BLOCK_LOCKED(block) \
lockdep_assert_held(&(block)->lock)
struct tcf_filter_chain_list_item {
struct list_head list;
tcf_chain_head_change_t *chain_head_change;
void *chain_head_change_priv;
};
static struct tcf_chain *tcf_chain_create(struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
ASSERT_BLOCK_LOCKED(block);
chain = kzalloc(sizeof(*chain), GFP_KERNEL);
if (!chain)
return NULL;
list_add_tail_rcu(&chain->list, &block->chain_list);
mutex_init(&chain->filter_chain_lock);
chain->block = block;
chain->index = chain_index;
chain->refcnt = 1;
if (!chain->index)
block->chain0.chain = chain;
return chain;
}
static void tcf_chain_head_change_item(struct tcf_filter_chain_list_item *item,
struct tcf_proto *tp_head)
{
if (item->chain_head_change)
item->chain_head_change(tp_head, item->chain_head_change_priv);
}
static void tcf_chain0_head_change(struct tcf_chain *chain,
struct tcf_proto *tp_head)
{
struct tcf_filter_chain_list_item *item;
struct tcf_block *block = chain->block;
if (chain->index)
return;
mutex_lock(&block->lock);
list_for_each_entry(item, &block->chain0.filter_chain_list, list)
tcf_chain_head_change_item(item, tp_head);
mutex_unlock(&block->lock);
}
/* Returns true if block can be safely freed. */
static bool tcf_chain_detach(struct tcf_chain *chain)
{
struct tcf_block *block = chain->block;
ASSERT_BLOCK_LOCKED(block);
list_del_rcu(&chain->list);
if (!chain->index)
block->chain0.chain = NULL;
if (list_empty(&block->chain_list) &&
refcount_read(&block->refcnt) == 0)
return true;
return false;
}
static void tcf_block_destroy(struct tcf_block *block)
{
mutex_destroy(&block->lock);
mutex_destroy(&block->proto_destroy_lock);
kfree_rcu(block, rcu);
}
static void tcf_chain_destroy(struct tcf_chain *chain, bool free_block)
{
struct tcf_block *block = chain->block;
mutex_destroy(&chain->filter_chain_lock);
kfree_rcu(chain, rcu);
if (free_block)
tcf_block_destroy(block);
}
static void tcf_chain_hold(struct tcf_chain *chain)
{
ASSERT_BLOCK_LOCKED(chain->block);
++chain->refcnt;
}
static bool tcf_chain_held_by_acts_only(struct tcf_chain *chain)
{
ASSERT_BLOCK_LOCKED(chain->block);
/* In case all the references are action references, this
* chain should not be shown to the user.
*/
return chain->refcnt == chain->action_refcnt;
}
static struct tcf_chain *tcf_chain_lookup(struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
ASSERT_BLOCK_LOCKED(block);
list_for_each_entry(chain, &block->chain_list, list) {
if (chain->index == chain_index)
return chain;
}
return NULL;
}
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
static struct tcf_chain *tcf_chain_lookup_rcu(const struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
list_for_each_entry_rcu(chain, &block->chain_list, list) {
if (chain->index == chain_index)
return chain;
}
return NULL;
}
#endif
static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb,
u32 seq, u16 flags, int event, bool unicast,
struct netlink_ext_ack *extack);
static struct tcf_chain *__tcf_chain_get(struct tcf_block *block,
u32 chain_index, bool create,
bool by_act)
{
struct tcf_chain *chain = NULL;
bool is_first_reference;
mutex_lock(&block->lock);
chain = tcf_chain_lookup(block, chain_index);
if (chain) {
tcf_chain_hold(chain);
} else {
if (!create)
goto errout;
chain = tcf_chain_create(block, chain_index);
if (!chain)
goto errout;
}
if (by_act)
++chain->action_refcnt;
is_first_reference = chain->refcnt - chain->action_refcnt == 1;
mutex_unlock(&block->lock);
/* Send notification only in case we got the first
* non-action reference. Until then, the chain acts only as
* a placeholder for actions pointing to it and user ought
* not know about them.
*/
if (is_first_reference && !by_act)
tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL,
RTM_NEWCHAIN, false, NULL);
return chain;
errout:
mutex_unlock(&block->lock);
return chain;
}
static struct tcf_chain *tcf_chain_get(struct tcf_block *block, u32 chain_index,
bool create)
{
return __tcf_chain_get(block, chain_index, create, false);
}
struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index)
{
return __tcf_chain_get(block, chain_index, true, true);
}
EXPORT_SYMBOL(tcf_chain_get_by_act);
static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv);
static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct tcf_block *block, struct sk_buff *oskb,
u32 seq, u16 flags, bool unicast);
static void __tcf_chain_put(struct tcf_chain *chain, bool by_act,
bool explicitly_created)
{
struct tcf_block *block = chain->block;
const struct tcf_proto_ops *tmplt_ops;
unsigned int refcnt, non_act_refcnt;
bool free_block = false;
void *tmplt_priv;
mutex_lock(&block->lock);
if (explicitly_created) {
if (!chain->explicitly_created) {
mutex_unlock(&block->lock);
return;
}
chain->explicitly_created = false;
}
if (by_act)
chain->action_refcnt--;
/* tc_chain_notify_delete can't be called while holding block lock.
* However, when block is unlocked chain can be changed concurrently, so
* save these to temporary variables.
*/
refcnt = --chain->refcnt;
non_act_refcnt = refcnt - chain->action_refcnt;
tmplt_ops = chain->tmplt_ops;
tmplt_priv = chain->tmplt_priv;
if (non_act_refcnt == chain->explicitly_created && !by_act) {
if (non_act_refcnt == 0)
tc_chain_notify_delete(tmplt_ops, tmplt_priv,
chain->index, block, NULL, 0, 0,
false);
/* Last reference to chain, no need to lock. */
chain->flushing = false;
}
if (refcnt == 0)
free_block = tcf_chain_detach(chain);
mutex_unlock(&block->lock);
if (refcnt == 0) {
tc_chain_tmplt_del(tmplt_ops, tmplt_priv);
tcf_chain_destroy(chain, free_block);
}
}
static void tcf_chain_put(struct tcf_chain *chain)
{
__tcf_chain_put(chain, false, false);
}
void tcf_chain_put_by_act(struct tcf_chain *chain)
{
__tcf_chain_put(chain, true, false);
}
EXPORT_SYMBOL(tcf_chain_put_by_act);
static void tcf_chain_put_explicitly_created(struct tcf_chain *chain)
{
__tcf_chain_put(chain, false, true);
}
static void tcf_chain_flush(struct tcf_chain *chain, bool rtnl_held)
{
struct tcf_proto *tp, *tp_next;
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_dereference(chain->filter_chain, chain);
while (tp) {
tp_next = rcu_dereference_protected(tp->next, 1);
tcf_proto_signal_destroying(chain, tp);
tp = tp_next;
}
tp = tcf_chain_dereference(chain->filter_chain, chain);
RCU_INIT_POINTER(chain->filter_chain, NULL);
tcf_chain0_head_change(chain, NULL);
chain->flushing = true;
mutex_unlock(&chain->filter_chain_lock);
while (tp) {
tp_next = rcu_dereference_protected(tp->next, 1);
tcf_proto_put(tp, rtnl_held, NULL);
tp = tp_next;
}
}
static int tcf_block_setup(struct tcf_block *block,
struct flow_block_offload *bo);
static void tcf_block_offload_init(struct flow_block_offload *bo,
struct net_device *dev, struct Qdisc *sch,
enum flow_block_command command,
enum flow_block_binder_type binder_type,
struct flow_block *flow_block,
bool shared, struct netlink_ext_ack *extack)
{
bo->net = dev_net(dev);
bo->command = command;
bo->binder_type = binder_type;
bo->block = flow_block;
bo->block_shared = shared;
bo->extack = extack;
bo->sch = sch;
bo->cb_list_head = &flow_block->cb_list;
INIT_LIST_HEAD(&bo->cb_list);
}
static void tcf_block_unbind(struct tcf_block *block,
struct flow_block_offload *bo);
static void tc_block_indr_cleanup(struct flow_block_cb *block_cb)
{
struct tcf_block *block = block_cb->indr.data;
struct net_device *dev = block_cb->indr.dev;
struct Qdisc *sch = block_cb->indr.sch;
struct netlink_ext_ack extack = {};
struct flow_block_offload bo = {};
tcf_block_offload_init(&bo, dev, sch, FLOW_BLOCK_UNBIND,
block_cb->indr.binder_type,
&block->flow_block, tcf_block_shared(block),
&extack);
rtnl_lock();
down_write(&block->cb_lock);
list_del(&block_cb->driver_list);
list_move(&block_cb->list, &bo.cb_list);
tcf_block_unbind(block, &bo);
up_write(&block->cb_lock);
rtnl_unlock();
}
static bool tcf_block_offload_in_use(struct tcf_block *block)
{
return atomic_read(&block->offloadcnt);
}
static int tcf_block_offload_cmd(struct tcf_block *block,
struct net_device *dev, struct Qdisc *sch,
struct tcf_block_ext_info *ei,
enum flow_block_command command,
struct netlink_ext_ack *extack)
{
struct flow_block_offload bo = {};
tcf_block_offload_init(&bo, dev, sch, command, ei->binder_type,
&block->flow_block, tcf_block_shared(block),
extack);
if (dev->netdev_ops->ndo_setup_tc) {
int err;
err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_BLOCK, &bo);
if (err < 0) {
if (err != -EOPNOTSUPP)
NL_SET_ERR_MSG(extack, "Driver ndo_setup_tc failed");
return err;
}
return tcf_block_setup(block, &bo);
}
flow_indr_dev_setup_offload(dev, sch, TC_SETUP_BLOCK, block, &bo,
tc_block_indr_cleanup);
tcf_block_setup(block, &bo);
return -EOPNOTSUPP;
}
static int tcf_block_offload_bind(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct net_device *dev = q->dev_queue->dev;
int err;
down_write(&block->cb_lock);
/* If tc offload feature is disabled and the block we try to bind
* to already has some offloaded filters, forbid to bind.
*/
if (dev->netdev_ops->ndo_setup_tc &&
!tc_can_offload(dev) &&
tcf_block_offload_in_use(block)) {
NL_SET_ERR_MSG(extack, "Bind to offloaded block failed as dev has offload disabled");
err = -EOPNOTSUPP;
goto err_unlock;
}
err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_BIND, extack);
if (err == -EOPNOTSUPP)
goto no_offload_dev_inc;
if (err)
goto err_unlock;
up_write(&block->cb_lock);
return 0;
no_offload_dev_inc:
if (tcf_block_offload_in_use(block))
goto err_unlock;
err = 0;
block->nooffloaddevcnt++;
err_unlock:
up_write(&block->cb_lock);
return err;
}
static void tcf_block_offload_unbind(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei)
{
struct net_device *dev = q->dev_queue->dev;
int err;
down_write(&block->cb_lock);
err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_UNBIND, NULL);
if (err == -EOPNOTSUPP)
goto no_offload_dev_dec;
up_write(&block->cb_lock);
return;
no_offload_dev_dec:
WARN_ON(block->nooffloaddevcnt-- == 0);
up_write(&block->cb_lock);
}
static int
tcf_chain0_head_change_cb_add(struct tcf_block *block,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct tcf_filter_chain_list_item *item;
struct tcf_chain *chain0;
item = kmalloc(sizeof(*item), GFP_KERNEL);
if (!item) {
NL_SET_ERR_MSG(extack, "Memory allocation for head change callback item failed");
return -ENOMEM;
}
item->chain_head_change = ei->chain_head_change;
item->chain_head_change_priv = ei->chain_head_change_priv;
mutex_lock(&block->lock);
chain0 = block->chain0.chain;
if (chain0)
tcf_chain_hold(chain0);
else
list_add(&item->list, &block->chain0.filter_chain_list);
mutex_unlock(&block->lock);
if (chain0) {
struct tcf_proto *tp_head;
mutex_lock(&chain0->filter_chain_lock);
tp_head = tcf_chain_dereference(chain0->filter_chain, chain0);
if (tp_head)
tcf_chain_head_change_item(item, tp_head);
mutex_lock(&block->lock);
list_add(&item->list, &block->chain0.filter_chain_list);
mutex_unlock(&block->lock);
mutex_unlock(&chain0->filter_chain_lock);
tcf_chain_put(chain0);
}
return 0;
}
static void
tcf_chain0_head_change_cb_del(struct tcf_block *block,
struct tcf_block_ext_info *ei)
{
struct tcf_filter_chain_list_item *item;
mutex_lock(&block->lock);
list_for_each_entry(item, &block->chain0.filter_chain_list, list) {
if ((!ei->chain_head_change && !ei->chain_head_change_priv) ||
(item->chain_head_change == ei->chain_head_change &&
item->chain_head_change_priv == ei->chain_head_change_priv)) {
if (block->chain0.chain)
tcf_chain_head_change_item(item, NULL);
list_del(&item->list);
mutex_unlock(&block->lock);
kfree(item);
return;
}
}
mutex_unlock(&block->lock);
WARN_ON(1);
}
struct tcf_net {
spinlock_t idr_lock; /* Protects idr */
struct idr idr;
};
static unsigned int tcf_net_id;
static int tcf_block_insert(struct tcf_block *block, struct net *net,
struct netlink_ext_ack *extack)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
int err;
idr_preload(GFP_KERNEL);
spin_lock(&tn->idr_lock);
err = idr_alloc_u32(&tn->idr, block, &block->index, block->index,
GFP_NOWAIT);
spin_unlock(&tn->idr_lock);
idr_preload_end();
return err;
}
static void tcf_block_remove(struct tcf_block *block, struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
spin_lock(&tn->idr_lock);
idr_remove(&tn->idr, block->index);
spin_unlock(&tn->idr_lock);
}
static struct tcf_block *tcf_block_create(struct net *net, struct Qdisc *q,
u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
block = kzalloc(sizeof(*block), GFP_KERNEL);
if (!block) {
NL_SET_ERR_MSG(extack, "Memory allocation for block failed");
return ERR_PTR(-ENOMEM);
}
mutex_init(&block->lock);
mutex_init(&block->proto_destroy_lock);
init_rwsem(&block->cb_lock);
flow_block_init(&block->flow_block);
INIT_LIST_HEAD(&block->chain_list);
INIT_LIST_HEAD(&block->owner_list);
INIT_LIST_HEAD(&block->chain0.filter_chain_list);
refcount_set(&block->refcnt, 1);
block->net = net;
block->index = block_index;
/* Don't store q pointer for blocks which are shared */
if (!tcf_block_shared(block))
block->q = q;
return block;
}
static struct tcf_block *tcf_block_lookup(struct net *net, u32 block_index)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
return idr_find(&tn->idr, block_index);
}
static struct tcf_block *tcf_block_refcnt_get(struct net *net, u32 block_index)
{
struct tcf_block *block;
rcu_read_lock();
block = tcf_block_lookup(net, block_index);
if (block && !refcount_inc_not_zero(&block->refcnt))
block = NULL;
rcu_read_unlock();
return block;
}
static struct tcf_chain *
__tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain)
{
mutex_lock(&block->lock);
if (chain)
chain = list_is_last(&chain->list, &block->chain_list) ?
NULL : list_next_entry(chain, list);
else
chain = list_first_entry_or_null(&block->chain_list,
struct tcf_chain, list);
/* skip all action-only chains */
while (chain && tcf_chain_held_by_acts_only(chain))
chain = list_is_last(&chain->list, &block->chain_list) ?
NULL : list_next_entry(chain, list);
if (chain)
tcf_chain_hold(chain);
mutex_unlock(&block->lock);
return chain;
}
/* Function to be used by all clients that want to iterate over all chains on
* block. It properly obtains block->lock and takes reference to chain before
* returning it. Users of this function must be tolerant to concurrent chain
* insertion/deletion or ensure that no concurrent chain modification is
* possible. Note that all netlink dump callbacks cannot guarantee to provide
* consistent dump because rtnl lock is released each time skb is filled with
* data and sent to user-space.
*/
struct tcf_chain *
tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain)
{
struct tcf_chain *chain_next = __tcf_get_next_chain(block, chain);
if (chain)
tcf_chain_put(chain);
return chain_next;
}
EXPORT_SYMBOL(tcf_get_next_chain);
static struct tcf_proto *
__tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp)
{
u32 prio = 0;
ASSERT_RTNL();
mutex_lock(&chain->filter_chain_lock);
if (!tp) {
tp = tcf_chain_dereference(chain->filter_chain, chain);
} else if (tcf_proto_is_deleting(tp)) {
/* 'deleting' flag is set and chain->filter_chain_lock was
* unlocked, which means next pointer could be invalid. Restart
* search.
*/
prio = tp->prio + 1;
tp = tcf_chain_dereference(chain->filter_chain, chain);
for (; tp; tp = tcf_chain_dereference(tp->next, chain))
if (!tp->deleting && tp->prio >= prio)
break;
} else {
tp = tcf_chain_dereference(tp->next, chain);
}
if (tp)
tcf_proto_get(tp);
mutex_unlock(&chain->filter_chain_lock);
return tp;
}
/* Function to be used by all clients that want to iterate over all tp's on
* chain. Users of this function must be tolerant to concurrent tp
* insertion/deletion or ensure that no concurrent chain modification is
* possible. Note that all netlink dump callbacks cannot guarantee to provide
* consistent dump because rtnl lock is released each time skb is filled with
* data and sent to user-space.
*/
struct tcf_proto *
tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp)
{
struct tcf_proto *tp_next = __tcf_get_next_proto(chain, tp);
if (tp)
tcf_proto_put(tp, true, NULL);
return tp_next;
}
EXPORT_SYMBOL(tcf_get_next_proto);
static void tcf_block_flush_all_chains(struct tcf_block *block, bool rtnl_held)
{
struct tcf_chain *chain;
/* Last reference to block. At this point chains cannot be added or
* removed concurrently.
*/
for (chain = tcf_get_next_chain(block, NULL);
chain;
chain = tcf_get_next_chain(block, chain)) {
tcf_chain_put_explicitly_created(chain);
tcf_chain_flush(chain, rtnl_held);
}
}
/* Lookup Qdisc and increments its reference counter.
* Set parent, if necessary.
*/
static int __tcf_qdisc_find(struct net *net, struct Qdisc **q,
u32 *parent, int ifindex, bool rtnl_held,
struct netlink_ext_ack *extack)
{
const struct Qdisc_class_ops *cops;
struct net_device *dev;
int err = 0;
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK)
return 0;
rcu_read_lock();
/* Find link */
dev = dev_get_by_index_rcu(net, ifindex);
if (!dev) {
rcu_read_unlock();
return -ENODEV;
}
/* Find qdisc */
if (!*parent) {
*q = rcu_dereference(dev->qdisc);
*parent = (*q)->handle;
} else {
*q = qdisc_lookup_rcu(dev, TC_H_MAJ(*parent));
if (!*q) {
NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists");
err = -EINVAL;
goto errout_rcu;
}
}
*q = qdisc_refcount_inc_nz(*q);
if (!*q) {
NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists");
err = -EINVAL;
goto errout_rcu;
}
/* Is it classful? */
cops = (*q)->ops->cl_ops;
if (!cops) {
NL_SET_ERR_MSG(extack, "Qdisc not classful");
err = -EINVAL;
goto errout_qdisc;
}
if (!cops->tcf_block) {
NL_SET_ERR_MSG(extack, "Class doesn't support blocks");
err = -EOPNOTSUPP;
goto errout_qdisc;
}
errout_rcu:
/* At this point we know that qdisc is not noop_qdisc,
* which means that qdisc holds a reference to net_device
* and we hold a reference to qdisc, so it is safe to release
* rcu read lock.
*/
rcu_read_unlock();
return err;
errout_qdisc:
rcu_read_unlock();
if (rtnl_held)
qdisc_put(*q);
else
qdisc_put_unlocked(*q);
*q = NULL;
return err;
}
static int __tcf_qdisc_cl_find(struct Qdisc *q, u32 parent, unsigned long *cl,
int ifindex, struct netlink_ext_ack *extack)
{
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK)
return 0;
/* Do we search for filter, attached to class? */
if (TC_H_MIN(parent)) {
const struct Qdisc_class_ops *cops = q->ops->cl_ops;
*cl = cops->find(q, parent);
if (*cl == 0) {
NL_SET_ERR_MSG(extack, "Specified class doesn't exist");
return -ENOENT;
}
}
return 0;
}
static struct tcf_block *__tcf_block_find(struct net *net, struct Qdisc *q,
unsigned long cl, int ifindex,
u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, block_index);
if (!block) {
NL_SET_ERR_MSG(extack, "Block of given index was not found");
return ERR_PTR(-EINVAL);
}
} else {
const struct Qdisc_class_ops *cops = q->ops->cl_ops;
block = cops->tcf_block(q, cl, extack);
if (!block)
return ERR_PTR(-EINVAL);
if (tcf_block_shared(block)) {
NL_SET_ERR_MSG(extack, "This filter block is shared. Please use the block index to manipulate the filters");
return ERR_PTR(-EOPNOTSUPP);
}
/* Always take reference to block in order to support execution
* of rules update path of cls API without rtnl lock. Caller
* must release block when it is finished using it. 'if' block
* of this conditional obtain reference to block by calling
* tcf_block_refcnt_get().
*/
refcount_inc(&block->refcnt);
}
return block;
}
static void __tcf_block_put(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei, bool rtnl_held)
{
if (refcount_dec_and_mutex_lock(&block->refcnt, &block->lock)) {
/* Flushing/putting all chains will cause the block to be
* deallocated when last chain is freed. However, if chain_list
* is empty, block has to be manually deallocated. After block
* reference counter reached 0, it is no longer possible to
* increment it or add new chains to block.
*/
bool free_block = list_empty(&block->chain_list);
mutex_unlock(&block->lock);
if (tcf_block_shared(block))
tcf_block_remove(block, block->net);
if (q)
tcf_block_offload_unbind(block, q, ei);
if (free_block)
tcf_block_destroy(block);
else
tcf_block_flush_all_chains(block, rtnl_held);
} else if (q) {
tcf_block_offload_unbind(block, q, ei);
}
}
static void tcf_block_refcnt_put(struct tcf_block *block, bool rtnl_held)
{
__tcf_block_put(block, NULL, NULL, rtnl_held);
}
/* Find tcf block.
* Set q, parent, cl when appropriate.
*/
static struct tcf_block *tcf_block_find(struct net *net, struct Qdisc **q,
u32 *parent, unsigned long *cl,
int ifindex, u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
int err = 0;
ASSERT_RTNL();
err = __tcf_qdisc_find(net, q, parent, ifindex, true, extack);
if (err)
goto errout;
err = __tcf_qdisc_cl_find(*q, *parent, cl, ifindex, extack);
if (err)
goto errout_qdisc;
block = __tcf_block_find(net, *q, *cl, ifindex, block_index, extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout_qdisc;
}
return block;
errout_qdisc:
if (*q)
qdisc_put(*q);
errout:
*q = NULL;
return ERR_PTR(err);
}
static void tcf_block_release(struct Qdisc *q, struct tcf_block *block,
bool rtnl_held)
{
if (!IS_ERR_OR_NULL(block))
tcf_block_refcnt_put(block, rtnl_held);
if (q) {
if (rtnl_held)
qdisc_put(q);
else
qdisc_put_unlocked(q);
}
}
struct tcf_block_owner_item {
struct list_head list;
struct Qdisc *q;
enum flow_block_binder_type binder_type;
};
static void
tcf_block_owner_netif_keep_dst(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
if (block->keep_dst &&
binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS)
netif_keep_dst(qdisc_dev(q));
}
void tcf_block_netif_keep_dst(struct tcf_block *block)
{
struct tcf_block_owner_item *item;
block->keep_dst = true;
list_for_each_entry(item, &block->owner_list, list)
tcf_block_owner_netif_keep_dst(block, item->q,
item->binder_type);
}
EXPORT_SYMBOL(tcf_block_netif_keep_dst);
static int tcf_block_owner_add(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
struct tcf_block_owner_item *item;
item = kmalloc(sizeof(*item), GFP_KERNEL);
if (!item)
return -ENOMEM;
item->q = q;
item->binder_type = binder_type;
list_add(&item->list, &block->owner_list);
return 0;
}
static void tcf_block_owner_del(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
struct tcf_block_owner_item *item;
list_for_each_entry(item, &block->owner_list, list) {
if (item->q == q && item->binder_type == binder_type) {
list_del(&item->list);
kfree(item);
return;
}
}
WARN_ON(1);
}
int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct net *net = qdisc_net(q);
struct tcf_block *block = NULL;
int err;
if (ei->block_index)
/* block_index not 0 means the shared block is requested */
block = tcf_block_refcnt_get(net, ei->block_index);
if (!block) {
block = tcf_block_create(net, q, ei->block_index, extack);
if (IS_ERR(block))
return PTR_ERR(block);
if (tcf_block_shared(block)) {
err = tcf_block_insert(block, net, extack);
if (err)
goto err_block_insert;
}
}
err = tcf_block_owner_add(block, q, ei->binder_type);
if (err)
goto err_block_owner_add;
tcf_block_owner_netif_keep_dst(block, q, ei->binder_type);
err = tcf_chain0_head_change_cb_add(block, ei, extack);
if (err)
goto err_chain0_head_change_cb_add;
err = tcf_block_offload_bind(block, q, ei, extack);
if (err)
goto err_block_offload_bind;
*p_block = block;
return 0;
err_block_offload_bind:
tcf_chain0_head_change_cb_del(block, ei);
err_chain0_head_change_cb_add:
tcf_block_owner_del(block, q, ei->binder_type);
err_block_owner_add:
err_block_insert:
tcf_block_refcnt_put(block, true);
return err;
}
EXPORT_SYMBOL(tcf_block_get_ext);
static void tcf_chain_head_change_dflt(struct tcf_proto *tp_head, void *priv)
{
struct tcf_proto __rcu **p_filter_chain = priv;
rcu_assign_pointer(*p_filter_chain, tp_head);
}
int tcf_block_get(struct tcf_block **p_block,
struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q,
struct netlink_ext_ack *extack)
{
struct tcf_block_ext_info ei = {
.chain_head_change = tcf_chain_head_change_dflt,
.chain_head_change_priv = p_filter_chain,
};
WARN_ON(!p_filter_chain);
return tcf_block_get_ext(p_block, q, &ei, extack);
}
EXPORT_SYMBOL(tcf_block_get);
/* XXX: Standalone actions are not allowed to jump to any chain, and bound
* actions should be all removed after flushing.
*/
void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei)
{
if (!block)
return;
tcf_chain0_head_change_cb_del(block, ei);
tcf_block_owner_del(block, q, ei->binder_type);
__tcf_block_put(block, q, ei, true);
}
EXPORT_SYMBOL(tcf_block_put_ext);
void tcf_block_put(struct tcf_block *block)
{
struct tcf_block_ext_info ei = {0, };
if (!block)
return;
tcf_block_put_ext(block, block->q, &ei);
}
EXPORT_SYMBOL(tcf_block_put);
static int
tcf_block_playback_offloads(struct tcf_block *block, flow_setup_cb_t *cb,
void *cb_priv, bool add, bool offload_in_use,
struct netlink_ext_ack *extack)
{
struct tcf_chain *chain, *chain_prev;
struct tcf_proto *tp, *tp_prev;
int err;
lockdep_assert_held(&block->cb_lock);
for (chain = __tcf_get_next_chain(block, NULL);
chain;
chain_prev = chain,
chain = __tcf_get_next_chain(block, chain),
tcf_chain_put(chain_prev)) {
for (tp = __tcf_get_next_proto(chain, NULL); tp;
tp_prev = tp,
tp = __tcf_get_next_proto(chain, tp),
tcf_proto_put(tp_prev, true, NULL)) {
if (tp->ops->reoffload) {
err = tp->ops->reoffload(tp, add, cb, cb_priv,
extack);
if (err && add)
goto err_playback_remove;
} else if (add && offload_in_use) {
err = -EOPNOTSUPP;
NL_SET_ERR_MSG(extack, "Filter HW offload failed - classifier without re-offloading support");
goto err_playback_remove;
}
}
}
return 0;
err_playback_remove:
tcf_proto_put(tp, true, NULL);
tcf_chain_put(chain);
tcf_block_playback_offloads(block, cb, cb_priv, false, offload_in_use,
extack);
return err;
}
static int tcf_block_bind(struct tcf_block *block,
struct flow_block_offload *bo)
{
struct flow_block_cb *block_cb, *next;
int err, i = 0;
lockdep_assert_held(&block->cb_lock);
list_for_each_entry(block_cb, &bo->cb_list, list) {
err = tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, true,
tcf_block_offload_in_use(block),
bo->extack);
if (err)
goto err_unroll;
if (!bo->unlocked_driver_cb)
block->lockeddevcnt++;
i++;
}
list_splice(&bo->cb_list, &block->flow_block.cb_list);
return 0;
err_unroll:
list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) {
list_del(&block_cb->driver_list);
if (i-- > 0) {
list_del(&block_cb->list);
tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, false,
tcf_block_offload_in_use(block),
NULL);
if (!bo->unlocked_driver_cb)
block->lockeddevcnt--;
}
flow_block_cb_free(block_cb);
}
return err;
}
static void tcf_block_unbind(struct tcf_block *block,
struct flow_block_offload *bo)
{
struct flow_block_cb *block_cb, *next;
lockdep_assert_held(&block->cb_lock);
list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) {
tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, false,
tcf_block_offload_in_use(block),
NULL);
list_del(&block_cb->list);
flow_block_cb_free(block_cb);
if (!bo->unlocked_driver_cb)
block->lockeddevcnt--;
}
}
static int tcf_block_setup(struct tcf_block *block,
struct flow_block_offload *bo)
{
int err;
switch (bo->command) {
case FLOW_BLOCK_BIND:
err = tcf_block_bind(block, bo);
break;
case FLOW_BLOCK_UNBIND:
err = 0;
tcf_block_unbind(block, bo);
break;
default:
WARN_ON_ONCE(1);
err = -EOPNOTSUPP;
}
return err;
}
/* Main classifier routine: scans classifier chain attached
* to this qdisc, (optionally) tests for protocol and asks
* specific classifiers.
*/
static inline int __tcf_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
const struct tcf_proto *orig_tp,
struct tcf_result *res,
bool compat_mode,
struct tcf_exts_miss_cookie_node *n,
int act_index,
u32 *last_executed_chain)
{
#ifdef CONFIG_NET_CLS_ACT
const int max_reclassify_loop = 16;
const struct tcf_proto *first_tp;
int limit = 0;
reclassify:
#endif
for (; tp; tp = rcu_dereference_bh(tp->next)) {
__be16 protocol = skb_protocol(skb, false);
int err = 0;
if (n) {
struct tcf_exts *exts;
if (n->tp_prio != tp->prio)
continue;
/* We re-lookup the tp and chain based on index instead
* of having hard refs and locks to them, so do a sanity
* check if any of tp,chain,exts was replaced by the
* time we got here with a cookie from hardware.
*/
if (unlikely(n->tp != tp || n->tp->chain != n->chain ||
!tp->ops->get_exts))
return TC_ACT_SHOT;
exts = tp->ops->get_exts(tp, n->handle);
if (unlikely(!exts || n->exts != exts))
return TC_ACT_SHOT;
n = NULL;
err = tcf_exts_exec_ex(skb, exts, act_index, res);
} else {
if (tp->protocol != protocol &&
tp->protocol != htons(ETH_P_ALL))
continue;
err = tc_classify(skb, tp, res);
}
#ifdef CONFIG_NET_CLS_ACT
if (unlikely(err == TC_ACT_RECLASSIFY && !compat_mode)) {
first_tp = orig_tp;
*last_executed_chain = first_tp->chain->index;
goto reset;
} else if (unlikely(TC_ACT_EXT_CMP(err, TC_ACT_GOTO_CHAIN))) {
first_tp = res->goto_tp;
*last_executed_chain = err & TC_ACT_EXT_VAL_MASK;
goto reset;
}
#endif
if (err >= 0)
return err;
}
if (unlikely(n))
return TC_ACT_SHOT;
return TC_ACT_UNSPEC; /* signal: continue lookup */
#ifdef CONFIG_NET_CLS_ACT
reset:
if (unlikely(limit++ >= max_reclassify_loop)) {
net_notice_ratelimited("%u: reclassify loop, rule prio %u, protocol %02x\n",
tp->chain->block->index,
tp->prio & 0xffff,
ntohs(tp->protocol));
return TC_ACT_SHOT;
}
tp = first_tp;
goto reclassify;
#endif
}
int tcf_classify(struct sk_buff *skb,
const struct tcf_block *block,
const struct tcf_proto *tp,
struct tcf_result *res, bool compat_mode)
{
#if !IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
u32 last_executed_chain = 0;
return __tcf_classify(skb, tp, tp, res, compat_mode, NULL, 0,
&last_executed_chain);
#else
u32 last_executed_chain = tp ? tp->chain->index : 0;
struct tcf_exts_miss_cookie_node *n = NULL;
const struct tcf_proto *orig_tp = tp;
struct tc_skb_ext *ext;
int act_index = 0;
int ret;
if (block) {
ext = skb_ext_find(skb, TC_SKB_EXT);
if (ext && (ext->chain || ext->act_miss)) {
struct tcf_chain *fchain;
u32 chain;
if (ext->act_miss) {
n = tcf_exts_miss_cookie_lookup(ext->act_miss_cookie,
&act_index);
if (!n)
return TC_ACT_SHOT;
chain = n->chain_index;
} else {
chain = ext->chain;
}
fchain = tcf_chain_lookup_rcu(block, chain);
if (!fchain)
return TC_ACT_SHOT;
/* Consume, so cloned/redirect skbs won't inherit ext */
skb_ext_del(skb, TC_SKB_EXT);
tp = rcu_dereference_bh(fchain->filter_chain);
last_executed_chain = fchain->index;
}
}
ret = __tcf_classify(skb, tp, orig_tp, res, compat_mode, n, act_index,
&last_executed_chain);
if (tc_skb_ext_tc_enabled()) {
/* If we missed on some chain */
if (ret == TC_ACT_UNSPEC && last_executed_chain) {
struct tc_skb_cb *cb = tc_skb_cb(skb);
ext = tc_skb_ext_alloc(skb);
if (WARN_ON_ONCE(!ext))
return TC_ACT_SHOT;
ext->chain = last_executed_chain;
ext->mru = cb->mru;
ext->post_ct = cb->post_ct;
ext->post_ct_snat = cb->post_ct_snat;
ext->post_ct_dnat = cb->post_ct_dnat;
ext->zone = cb->zone;
}
}
return ret;
#endif
}
EXPORT_SYMBOL(tcf_classify);
struct tcf_chain_info {
struct tcf_proto __rcu **pprev;
struct tcf_proto __rcu *next;
};
static struct tcf_proto *tcf_chain_tp_prev(struct tcf_chain *chain,
struct tcf_chain_info *chain_info)
{
return tcf_chain_dereference(*chain_info->pprev, chain);
}
static int tcf_chain_tp_insert(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
struct tcf_proto *tp)
{
if (chain->flushing)
return -EAGAIN;
RCU_INIT_POINTER(tp->next, tcf_chain_tp_prev(chain, chain_info));
if (*chain_info->pprev == chain->filter_chain)
tcf_chain0_head_change(chain, tp);
tcf_proto_get(tp);
rcu_assign_pointer(*chain_info->pprev, tp);
return 0;
}
static void tcf_chain_tp_remove(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
struct tcf_proto *tp)
{
struct tcf_proto *next = tcf_chain_dereference(chain_info->next, chain);
tcf_proto_mark_delete(tp);
if (tp == chain->filter_chain)
tcf_chain0_head_change(chain, next);
RCU_INIT_POINTER(*chain_info->pprev, next);
}
static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
u32 protocol, u32 prio,
bool prio_allocate);
/* Try to insert new proto.
* If proto with specified priority already exists, free new proto
* and return existing one.
*/
static struct tcf_proto *tcf_chain_tp_insert_unique(struct tcf_chain *chain,
struct tcf_proto *tp_new,
u32 protocol, u32 prio,
bool rtnl_held)
{
struct tcf_chain_info chain_info;
struct tcf_proto *tp;
int err = 0;
mutex_lock(&chain->filter_chain_lock);
if (tcf_proto_exists_destroying(chain, tp_new)) {
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
return ERR_PTR(-EAGAIN);
}
tp = tcf_chain_tp_find(chain, &chain_info,
protocol, prio, false);
if (!tp)
err = tcf_chain_tp_insert(chain, &chain_info, tp_new);
mutex_unlock(&chain->filter_chain_lock);
if (tp) {
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
tp_new = tp;
} else if (err) {
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
tp_new = ERR_PTR(err);
}
return tp_new;
}
static void tcf_chain_tp_delete_empty(struct tcf_chain *chain,
struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcf_chain_info chain_info;
struct tcf_proto *tp_iter;
struct tcf_proto **pprev;
struct tcf_proto *next;
mutex_lock(&chain->filter_chain_lock);
/* Atomically find and remove tp from chain. */
for (pprev = &chain->filter_chain;
(tp_iter = tcf_chain_dereference(*pprev, chain));
pprev = &tp_iter->next) {
if (tp_iter == tp) {
chain_info.pprev = pprev;
chain_info.next = tp_iter->next;
WARN_ON(tp_iter->deleting);
break;
}
}
/* Verify that tp still exists and no new filters were inserted
* concurrently.
* Mark tp for deletion if it is empty.
*/
if (!tp_iter || !tcf_proto_check_delete(tp)) {
mutex_unlock(&chain->filter_chain_lock);
return;
}
tcf_proto_signal_destroying(chain, tp);
next = tcf_chain_dereference(chain_info.next, chain);
if (tp == chain->filter_chain)
tcf_chain0_head_change(chain, next);
RCU_INIT_POINTER(*chain_info.pprev, next);
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_put(tp, rtnl_held, extack);
}
static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
u32 protocol, u32 prio,
bool prio_allocate)
{
struct tcf_proto **pprev;
struct tcf_proto *tp;
/* Check the chain for existence of proto-tcf with this priority */
for (pprev = &chain->filter_chain;
(tp = tcf_chain_dereference(*pprev, chain));
pprev = &tp->next) {
if (tp->prio >= prio) {
if (tp->prio == prio) {
if (prio_allocate ||
(tp->protocol != protocol && protocol))
return ERR_PTR(-EINVAL);
} else {
tp = NULL;
}
break;
}
}
chain_info->pprev = pprev;
if (tp) {
chain_info->next = tp->next;
tcf_proto_get(tp);
} else {
chain_info->next = NULL;
}
return tp;
}
static int tcf_fill_node(struct net *net, struct sk_buff *skb,
struct tcf_proto *tp, struct tcf_block *block,
struct Qdisc *q, u32 parent, void *fh,
u32 portid, u32 seq, u16 flags, int event,
bool terse_dump, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcmsg *tcm;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags);
if (!nlh)
goto out_nlmsg_trim;
tcm = nlmsg_data(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
if (q) {
tcm->tcm_ifindex = qdisc_dev(q)->ifindex;
tcm->tcm_parent = parent;
} else {
tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK;
tcm->tcm_block_index = block->index;
}
tcm->tcm_info = TC_H_MAKE(tp->prio, tp->protocol);
if (nla_put_string(skb, TCA_KIND, tp->ops->kind))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_CHAIN, tp->chain->index))
goto nla_put_failure;
if (!fh) {
tcm->tcm_handle = 0;
} else if (terse_dump) {
if (tp->ops->terse_dump) {
if (tp->ops->terse_dump(net, tp, fh, skb, tcm,
rtnl_held) < 0)
goto nla_put_failure;
} else {
goto cls_op_not_supp;
}
} else {
if (tp->ops->dump &&
tp->ops->dump(net, tp, fh, skb, tcm, rtnl_held) < 0)
goto nla_put_failure;
}
if (extack && extack->_msg &&
nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg))
goto nla_put_failure;
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
out_nlmsg_trim:
nla_put_failure:
cls_op_not_supp:
nlmsg_trim(skb, b);
return -1;
}
static int tfilter_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct tcf_proto *tp,
struct tcf_block *block, struct Qdisc *q,
u32 parent, void *fh, int event, bool unicast,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
int err = 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid,
n->nlmsg_seq, n->nlmsg_flags, event,
false, rtnl_held, extack) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
return err;
}
static int tfilter_del_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct tcf_proto *tp,
struct tcf_block *block, struct Qdisc *q,
u32 parent, void *fh, bool unicast, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
int err;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid,
n->nlmsg_seq, n->nlmsg_flags, RTM_DELTFILTER,
false, rtnl_held, extack) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to build del event notification");
kfree_skb(skb);
return -EINVAL;
}
err = tp->ops->delete(tp, fh, last, rtnl_held, extack);
if (err) {
kfree_skb(skb);
return err;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send filter delete notification");
return err;
}
static void tfilter_notify_chain(struct net *net, struct sk_buff *oskb,
struct tcf_block *block, struct Qdisc *q,
u32 parent, struct nlmsghdr *n,
struct tcf_chain *chain, int event,
struct netlink_ext_ack *extack)
{
struct tcf_proto *tp;
for (tp = tcf_get_next_proto(chain, NULL);
tp; tp = tcf_get_next_proto(chain, tp))
tfilter_notify(net, oskb, n, tp, block, q, parent, NULL,
event, false, true, extack);
}
static void tfilter_put(struct tcf_proto *tp, void *fh)
{
if (tp->ops->put && fh)
tp->ops->put(tp, fh);
}
static bool is_qdisc_ingress(__u32 classid)
{
return (TC_H_MIN(classid) == TC_H_MIN(TC_H_MIN_INGRESS));
}
static int tc_new_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
bool prio_allocate;
u32 parent;
u32 chain_index;
struct Qdisc *q;
struct tcf_chain_info chain_info;
struct tcf_chain *chain;
struct tcf_block *block;
struct tcf_proto *tp;
unsigned long cl;
void *fh;
int err;
int tp_created;
bool rtnl_held = false;
u32 flags;
replay:
tp_created = 0;
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
prio_allocate = false;
parent = t->tcm_parent;
tp = NULL;
cl = 0;
block = NULL;
q = NULL;
chain = NULL;
flags = 0;
if (prio == 0) {
/* If no priority is provided by the user,
* we allocate one.
*/
if (n->nlmsg_flags & NLM_F_CREATE) {
prio = TC_H_MAKE(0x80000000U, 0U);
prio_allocate = true;
} else {
NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero");
return -ENOENT;
}
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if rtnl_held was set to true on previous iteration,
* block is shared (no qdisc found), qdisc is not unlocked, classifier
* type is not specified, classifier is not unlocked.
*/
if (rtnl_held ||
(q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
block->classid = parent;
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, true);
if (!chain) {
NL_SET_ERR_MSG(extack, "Cannot create specified filter chain");
err = -ENOMEM;
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, prio_allocate);
if (IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = PTR_ERR(tp);
goto errout_locked;
}
if (tp == NULL) {
struct tcf_proto *tp_new = NULL;
if (chain->flushing) {
err = -EAGAIN;
goto errout_locked;
}
/* Proto-tcf does not exist, create new one */
if (tca[TCA_KIND] == NULL || !protocol) {
NL_SET_ERR_MSG(extack, "Filter kind and protocol must be specified");
err = -EINVAL;
goto errout_locked;
}
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter");
err = -ENOENT;
goto errout_locked;
}
if (prio_allocate)
prio = tcf_auto_prio(tcf_chain_tp_prev(chain,
&chain_info));
mutex_unlock(&chain->filter_chain_lock);
tp_new = tcf_proto_create(name, protocol, prio, chain,
rtnl_held, extack);
if (IS_ERR(tp_new)) {
err = PTR_ERR(tp_new);
goto errout_tp;
}
tp_created = 1;
tp = tcf_chain_tp_insert_unique(chain, tp_new, protocol, prio,
rtnl_held);
if (IS_ERR(tp)) {
err = PTR_ERR(tp);
goto errout_tp;
}
} else {
mutex_unlock(&chain->filter_chain_lock);
}
if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout;
}
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter");
err = -ENOENT;
goto errout;
}
} else if (n->nlmsg_flags & NLM_F_EXCL) {
tfilter_put(tp, fh);
NL_SET_ERR_MSG(extack, "Filter already exists");
err = -EEXIST;
goto errout;
}
if (chain->tmplt_ops && chain->tmplt_ops != tp->ops) {
tfilter_put(tp, fh);
NL_SET_ERR_MSG(extack, "Chain template is set to a different filter kind");
err = -EINVAL;
goto errout;
}
if (!(n->nlmsg_flags & NLM_F_CREATE))
flags |= TCA_ACT_FLAGS_REPLACE;
if (!rtnl_held)
flags |= TCA_ACT_FLAGS_NO_RTNL;
if (is_qdisc_ingress(parent))
flags |= TCA_ACT_FLAGS_AT_INGRESS;
err = tp->ops->change(net, skb, tp, cl, t->tcm_handle, tca, &fh,
flags, extack);
if (err == 0) {
tfilter_notify(net, skb, n, tp, block, q, parent, fh,
RTM_NEWTFILTER, false, rtnl_held, extack);
tfilter_put(tp, fh);
/* q pointer is NULL for shared blocks */
if (q)
q->flags &= ~TCQ_F_CAN_BYPASS;
}
errout:
if (err && tp_created)
tcf_chain_tp_delete_empty(chain, tp, rtnl_held, NULL);
errout_tp:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
if (!tp_created)
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
if (err == -EAGAIN) {
/* Take rtnl lock in case EAGAIN is caused by concurrent flush
* of target chain.
*/
rtnl_held = true;
/* Replay the request. */
goto replay;
}
return err;
errout_locked:
mutex_unlock(&chain->filter_chain_lock);
goto errout;
}
static int tc_del_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain_info chain_info;
struct tcf_chain *chain = NULL;
struct tcf_block *block = NULL;
struct tcf_proto *tp = NULL;
unsigned long cl = 0;
void *fh = NULL;
int err;
bool rtnl_held = false;
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
parent = t->tcm_parent;
if (prio == 0 && (protocol || t->tcm_handle || tca[TCA_KIND])) {
NL_SET_ERR_MSG(extack, "Cannot flush filters with protocol, handle or kind set");
return -ENOENT;
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if flushing whole chain, block is shared (no qdisc
* found), qdisc is not unlocked, classifier type is not specified,
* classifier is not unlocked.
*/
if (!prio ||
(q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, false);
if (!chain) {
/* User requested flush on non-existent chain. Nothing to do,
* so just return success.
*/
if (prio == 0) {
err = 0;
goto errout;
}
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -ENOENT;
goto errout;
}
if (prio == 0) {
tfilter_notify_chain(net, skb, block, q, parent, n,
chain, RTM_DELTFILTER, extack);
tcf_chain_flush(chain, rtnl_held);
err = 0;
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, false);
if (!tp || IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = tp ? PTR_ERR(tp) : -ENOENT;
goto errout_locked;
} else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout_locked;
} else if (t->tcm_handle == 0) {
tcf_proto_signal_destroying(chain, tp);
tcf_chain_tp_remove(chain, &chain_info, tp);
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_put(tp, rtnl_held, NULL);
tfilter_notify(net, skb, n, tp, block, q, parent, fh,
RTM_DELTFILTER, false, rtnl_held, extack);
err = 0;
goto errout;
}
mutex_unlock(&chain->filter_chain_lock);
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
NL_SET_ERR_MSG(extack, "Specified filter handle not found");
err = -ENOENT;
} else {
bool last;
err = tfilter_del_notify(net, skb, n, tp, block,
q, parent, fh, false, &last,
rtnl_held, extack);
if (err)
goto errout;
if (last)
tcf_chain_tp_delete_empty(chain, tp, rtnl_held, extack);
}
errout:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
return err;
errout_locked:
mutex_unlock(&chain->filter_chain_lock);
goto errout;
}
static int tc_get_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain_info chain_info;
struct tcf_chain *chain = NULL;
struct tcf_block *block = NULL;
struct tcf_proto *tp = NULL;
unsigned long cl = 0;
void *fh = NULL;
int err;
bool rtnl_held = false;
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
parent = t->tcm_parent;
if (prio == 0) {
NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero");
return -ENOENT;
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if block is shared (no qdisc found), qdisc is not
* unlocked, classifier type is not specified, classifier is not
* unlocked.
*/
if ((q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, false);
if (!chain) {
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -EINVAL;
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, false);
mutex_unlock(&chain->filter_chain_lock);
if (!tp || IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = tp ? PTR_ERR(tp) : -ENOENT;
goto errout;
} else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout;
}
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
NL_SET_ERR_MSG(extack, "Specified filter handle not found");
err = -ENOENT;
} else {
err = tfilter_notify(net, skb, n, tp, block, q, parent,
fh, RTM_NEWTFILTER, true, rtnl_held, NULL);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send filter notify message");
}
tfilter_put(tp, fh);
errout:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
return err;
}
struct tcf_dump_args {
struct tcf_walker w;
struct sk_buff *skb;
struct netlink_callback *cb;
struct tcf_block *block;
struct Qdisc *q;
u32 parent;
bool terse_dump;
};
static int tcf_node_dump(struct tcf_proto *tp, void *n, struct tcf_walker *arg)
{
struct tcf_dump_args *a = (void *)arg;
struct net *net = sock_net(a->skb->sk);
return tcf_fill_node(net, a->skb, tp, a->block, a->q, a->parent,
n, NETLINK_CB(a->cb->skb).portid,
a->cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWTFILTER, a->terse_dump, true, NULL);
}
static bool tcf_chain_dump(struct tcf_chain *chain, struct Qdisc *q, u32 parent,
struct sk_buff *skb, struct netlink_callback *cb,
long index_start, long *p_index, bool terse)
{
struct net *net = sock_net(skb->sk);
struct tcf_block *block = chain->block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
struct tcf_proto *tp, *tp_prev;
struct tcf_dump_args arg;
for (tp = __tcf_get_next_proto(chain, NULL);
tp;
tp_prev = tp,
tp = __tcf_get_next_proto(chain, tp),
tcf_proto_put(tp_prev, true, NULL),
(*p_index)++) {
if (*p_index < index_start)
continue;
if (TC_H_MAJ(tcm->tcm_info) &&
TC_H_MAJ(tcm->tcm_info) != tp->prio)
continue;
if (TC_H_MIN(tcm->tcm_info) &&
TC_H_MIN(tcm->tcm_info) != tp->protocol)
continue;
if (*p_index > index_start)
memset(&cb->args[1], 0,
sizeof(cb->args) - sizeof(cb->args[0]));
if (cb->args[1] == 0) {
if (tcf_fill_node(net, skb, tp, block, q, parent, NULL,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWTFILTER, false, true, NULL) <= 0)
goto errout;
cb->args[1] = 1;
}
if (!tp->ops->walk)
continue;
arg.w.fn = tcf_node_dump;
arg.skb = skb;
arg.cb = cb;
arg.block = block;
arg.q = q;
arg.parent = parent;
arg.w.stop = 0;
arg.w.skip = cb->args[1] - 1;
arg.w.count = 0;
arg.w.cookie = cb->args[2];
arg.terse_dump = terse;
tp->ops->walk(tp, &arg.w, true);
cb->args[2] = arg.w.cookie;
cb->args[1] = arg.w.count + 1;
if (arg.w.stop)
goto errout;
}
return true;
errout:
tcf_proto_put(tp, true, NULL);
return false;
}
static const struct nla_policy tcf_tfilter_dump_policy[TCA_MAX + 1] = {
[TCA_DUMP_FLAGS] = NLA_POLICY_BITFIELD32(TCA_DUMP_FLAGS_TERSE),
};
/* called with RTNL */
static int tc_dump_tfilter(struct sk_buff *skb, struct netlink_callback *cb)
{
struct tcf_chain *chain, *chain_prev;
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct Qdisc *q = NULL;
struct tcf_block *block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
bool terse_dump = false;
long index_start;
long index;
u32 parent;
int err;
if (nlmsg_len(cb->nlh) < sizeof(*tcm))
return skb->len;
err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX,
tcf_tfilter_dump_policy, cb->extack);
if (err)
return err;
if (tca[TCA_DUMP_FLAGS]) {
struct nla_bitfield32 flags =
nla_get_bitfield32(tca[TCA_DUMP_FLAGS]);
terse_dump = flags.value & TCA_DUMP_FLAGS_TERSE;
}
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, tcm->tcm_block_index);
if (!block)
goto out;
/* If we work with block index, q is NULL and parent value
* will never be used in the following code. The check
* in tcf_fill_node prevents it. However, compiler does not
* see that far, so set parent to zero to silence the warning
* about parent being uninitialized.
*/
parent = 0;
} else {
const struct Qdisc_class_ops *cops;
struct net_device *dev;
unsigned long cl = 0;
dev = __dev_get_by_index(net, tcm->tcm_ifindex);
if (!dev)
return skb->len;
parent = tcm->tcm_parent;
if (!parent)
q = rtnl_dereference(dev->qdisc);
else
q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent));
if (!q)
goto out;
cops = q->ops->cl_ops;
if (!cops)
goto out;
if (!cops->tcf_block)
goto out;
if (TC_H_MIN(tcm->tcm_parent)) {
cl = cops->find(q, tcm->tcm_parent);
if (cl == 0)
goto out;
}
block = cops->tcf_block(q, cl, NULL);
if (!block)
goto out;
parent = block->classid;
if (tcf_block_shared(block))
q = NULL;
}
index_start = cb->args[0];
index = 0;
for (chain = __tcf_get_next_chain(block, NULL);
chain;
chain_prev = chain,
chain = __tcf_get_next_chain(block, chain),
tcf_chain_put(chain_prev)) {
if (tca[TCA_CHAIN] &&
nla_get_u32(tca[TCA_CHAIN]) != chain->index)
continue;
if (!tcf_chain_dump(chain, q, parent, skb, cb,
index_start, &index, terse_dump)) {
tcf_chain_put(chain);
err = -EMSGSIZE;
break;
}
}
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK)
tcf_block_refcnt_put(block, true);
cb->args[0] = index;
out:
/* If we did no progress, the error (EMSGSIZE) is real */
if (skb->len == 0 && err)
return err;
return skb->len;
}
static int tc_chain_fill_node(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct net *net, struct sk_buff *skb,
struct tcf_block *block,
u32 portid, u32 seq, u16 flags, int event,
struct netlink_ext_ack *extack)
{
unsigned char *b = skb_tail_pointer(skb);
const struct tcf_proto_ops *ops;
struct nlmsghdr *nlh;
struct tcmsg *tcm;
void *priv;
ops = tmplt_ops;
priv = tmplt_priv;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags);
if (!nlh)
goto out_nlmsg_trim;
tcm = nlmsg_data(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
tcm->tcm_handle = 0;
if (block->q) {
tcm->tcm_ifindex = qdisc_dev(block->q)->ifindex;
tcm->tcm_parent = block->q->handle;
} else {
tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK;
tcm->tcm_block_index = block->index;
}
if (nla_put_u32(skb, TCA_CHAIN, chain_index))
goto nla_put_failure;
if (ops) {
if (nla_put_string(skb, TCA_KIND, ops->kind))
goto nla_put_failure;
if (ops->tmplt_dump(skb, net, priv) < 0)
goto nla_put_failure;
}
if (extack && extack->_msg &&
nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg))
goto out_nlmsg_trim;
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
out_nlmsg_trim:
nla_put_failure:
nlmsg_trim(skb, b);
return -EMSGSIZE;
}
static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb,
u32 seq, u16 flags, int event, bool unicast,
struct netlink_ext_ack *extack)
{
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
struct tcf_block *block = chain->block;
struct net *net = block->net;
struct sk_buff *skb;
int err = 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv,
chain->index, net, skb, block, portid,
seq, flags, event, extack) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
flags & NLM_F_ECHO);
return err;
}
static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct tcf_block *block, struct sk_buff *oskb,
u32 seq, u16 flags, bool unicast)
{
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
struct net *net = block->net;
struct sk_buff *skb;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tc_chain_fill_node(tmplt_ops, tmplt_priv, chain_index, net, skb,
block, portid, seq, flags, RTM_DELCHAIN, NULL) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
return rtnl_unicast(skb, net, portid);
return rtnetlink_send(skb, net, portid, RTNLGRP_TC, flags & NLM_F_ECHO);
}
static int tc_chain_tmplt_add(struct tcf_chain *chain, struct net *net,
struct nlattr **tca,
struct netlink_ext_ack *extack)
{
const struct tcf_proto_ops *ops;
char name[IFNAMSIZ];
void *tmplt_priv;
/* If kind is not set, user did not specify template. */
if (!tca[TCA_KIND])
return 0;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC chain template name too long");
return -EINVAL;
}
ops = tcf_proto_lookup_ops(name, true, extack);
if (IS_ERR(ops))
return PTR_ERR(ops);
if (!ops->tmplt_create || !ops->tmplt_destroy || !ops->tmplt_dump) {
NL_SET_ERR_MSG(extack, "Chain templates are not supported with specified classifier");
module_put(ops->owner);
return -EOPNOTSUPP;
}
tmplt_priv = ops->tmplt_create(net, chain, tca, extack);
if (IS_ERR(tmplt_priv)) {
module_put(ops->owner);
return PTR_ERR(tmplt_priv);
}
chain->tmplt_ops = ops;
chain->tmplt_priv = tmplt_priv;
return 0;
}
static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv)
{
/* If template ops are set, no work to do for us. */
if (!tmplt_ops)
return;
tmplt_ops->tmplt_destroy(tmplt_priv);
module_put(tmplt_ops->owner);
}
/* Add/delete/get a chain */
static int tc_ctl_chain(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct tcmsg *t;
u32 parent;
u32 chain_index;
struct Qdisc *q;
struct tcf_chain *chain;
struct tcf_block *block;
unsigned long cl;
int err;
replay:
q = NULL;
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
parent = t->tcm_parent;
cl = 0;
block = tcf_block_find(net, &q, &parent, &cl,
t->tcm_ifindex, t->tcm_block_index, extack);
if (IS_ERR(block))
return PTR_ERR(block);
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout_block;
}
mutex_lock(&block->lock);
chain = tcf_chain_lookup(block, chain_index);
if (n->nlmsg_type == RTM_NEWCHAIN) {
if (chain) {
if (tcf_chain_held_by_acts_only(chain)) {
/* The chain exists only because there is
* some action referencing it.
*/
tcf_chain_hold(chain);
} else {
NL_SET_ERR_MSG(extack, "Filter chain already exists");
err = -EEXIST;
goto errout_block_locked;
}
} else {
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWCHAIN and NLM_F_CREATE to create a new chain");
err = -ENOENT;
goto errout_block_locked;
}
chain = tcf_chain_create(block, chain_index);
if (!chain) {
NL_SET_ERR_MSG(extack, "Failed to create filter chain");
err = -ENOMEM;
goto errout_block_locked;
}
}
} else {
if (!chain || tcf_chain_held_by_acts_only(chain)) {
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -EINVAL;
goto errout_block_locked;
}
tcf_chain_hold(chain);
}
if (n->nlmsg_type == RTM_NEWCHAIN) {
/* Modifying chain requires holding parent block lock. In case
* the chain was successfully added, take a reference to the
* chain. This ensures that an empty chain does not disappear at
* the end of this function.
*/
tcf_chain_hold(chain);
chain->explicitly_created = true;
}
mutex_unlock(&block->lock);
switch (n->nlmsg_type) {
case RTM_NEWCHAIN:
err = tc_chain_tmplt_add(chain, net, tca, extack);
if (err) {
tcf_chain_put_explicitly_created(chain);
goto errout;
}
tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL,
RTM_NEWCHAIN, false, extack);
break;
case RTM_DELCHAIN:
tfilter_notify_chain(net, skb, block, q, parent, n,
chain, RTM_DELTFILTER, extack);
/* Flush the chain first as the user requested chain removal. */
tcf_chain_flush(chain, true);
/* In case the chain was successfully deleted, put a reference
* to the chain previously taken during addition.
*/
tcf_chain_put_explicitly_created(chain);
break;
case RTM_GETCHAIN:
err = tc_chain_notify(chain, skb, n->nlmsg_seq,
n->nlmsg_flags, n->nlmsg_type, true, extack);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send chain notify message");
break;
default:
err = -EOPNOTSUPP;
NL_SET_ERR_MSG(extack, "Unsupported message type");
goto errout;
}
errout:
tcf_chain_put(chain);
errout_block:
tcf_block_release(q, block, true);
if (err == -EAGAIN)
/* Replay the request. */
goto replay;
return err;
errout_block_locked:
mutex_unlock(&block->lock);
goto errout_block;
}
/* called with RTNL */
static int tc_dump_chain(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct Qdisc *q = NULL;
struct tcf_block *block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
struct tcf_chain *chain;
long index_start;
long index;
int err;
if (nlmsg_len(cb->nlh) < sizeof(*tcm))
return skb->len;
err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX,
rtm_tca_policy, cb->extack);
if (err)
return err;
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, tcm->tcm_block_index);
if (!block)
goto out;
} else {
const struct Qdisc_class_ops *cops;
struct net_device *dev;
unsigned long cl = 0;
dev = __dev_get_by_index(net, tcm->tcm_ifindex);
if (!dev)
return skb->len;
if (!tcm->tcm_parent)
q = rtnl_dereference(dev->qdisc);
else
q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent));
if (!q)
goto out;
cops = q->ops->cl_ops;
if (!cops)
goto out;
if (!cops->tcf_block)
goto out;
if (TC_H_MIN(tcm->tcm_parent)) {
cl = cops->find(q, tcm->tcm_parent);
if (cl == 0)
goto out;
}
block = cops->tcf_block(q, cl, NULL);
if (!block)
goto out;
if (tcf_block_shared(block))
q = NULL;
}
index_start = cb->args[0];
index = 0;
mutex_lock(&block->lock);
list_for_each_entry(chain, &block->chain_list, list) {
if ((tca[TCA_CHAIN] &&
nla_get_u32(tca[TCA_CHAIN]) != chain->index))
continue;
if (index < index_start) {
index++;
continue;
}
if (tcf_chain_held_by_acts_only(chain))
continue;
err = tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv,
chain->index, net, skb, block,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWCHAIN, NULL);
if (err <= 0)
break;
index++;
}
mutex_unlock(&block->lock);
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK)
tcf_block_refcnt_put(block, true);
cb->args[0] = index;
out:
/* If we did no progress, the error (EMSGSIZE) is real */
if (skb->len == 0 && err)
return err;
return skb->len;
}
int tcf_exts_init_ex(struct tcf_exts *exts, struct net *net, int action,
int police, struct tcf_proto *tp, u32 handle,
bool use_action_miss)
{
int err = 0;
#ifdef CONFIG_NET_CLS_ACT
exts->type = 0;
exts->nr_actions = 0;
exts->miss_cookie_node = NULL;
/* Note: we do not own yet a reference on net.
* This reference might be taken later from tcf_exts_get_net().
*/
exts->net = net;
exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *),
GFP_KERNEL);
if (!exts->actions)
return -ENOMEM;
#endif
exts->action = action;
exts->police = police;
if (!use_action_miss)
return 0;
err = tcf_exts_miss_cookie_base_alloc(exts, tp, handle);
if (err)
goto err_miss_alloc;
return 0;
err_miss_alloc:
tcf_exts_destroy(exts);
#ifdef CONFIG_NET_CLS_ACT
exts->actions = NULL;
#endif
return err;
}
EXPORT_SYMBOL(tcf_exts_init_ex);
void tcf_exts_destroy(struct tcf_exts *exts)
{
tcf_exts_miss_cookie_base_destroy(exts);
#ifdef CONFIG_NET_CLS_ACT
if (exts->actions) {
tcf_action_destroy(exts->actions, TCA_ACT_UNBIND);
kfree(exts->actions);
}
exts->nr_actions = 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_destroy);
int tcf_exts_validate_ex(struct net *net, struct tcf_proto *tp, struct nlattr **tb,
struct nlattr *rate_tlv, struct tcf_exts *exts,
u32 flags, u32 fl_flags, struct netlink_ext_ack *extack)
{
#ifdef CONFIG_NET_CLS_ACT
{
int init_res[TCA_ACT_MAX_PRIO] = {};
struct tc_action *act;
size_t attr_size = 0;
if (exts->police && tb[exts->police]) {
struct tc_action_ops *a_o;
a_o = tc_action_load_ops(tb[exts->police], true,
!(flags & TCA_ACT_FLAGS_NO_RTNL),
extack);
if (IS_ERR(a_o))
return PTR_ERR(a_o);
flags |= TCA_ACT_FLAGS_POLICE | TCA_ACT_FLAGS_BIND;
act = tcf_action_init_1(net, tp, tb[exts->police],
rate_tlv, a_o, init_res, flags,
extack);
module_put(a_o->owner);
if (IS_ERR(act))
return PTR_ERR(act);
act->type = exts->type = TCA_OLD_COMPAT;
exts->actions[0] = act;
exts->nr_actions = 1;
tcf_idr_insert_many(exts->actions);
} else if (exts->action && tb[exts->action]) {
int err;
flags |= TCA_ACT_FLAGS_BIND;
err = tcf_action_init(net, tp, tb[exts->action],
rate_tlv, exts->actions, init_res,
&attr_size, flags, fl_flags,
extack);
if (err < 0)
return err;
exts->nr_actions = err;
}
}
#else
if ((exts->action && tb[exts->action]) ||
(exts->police && tb[exts->police])) {
NL_SET_ERR_MSG(extack, "Classifier actions are not supported per compile options (CONFIG_NET_CLS_ACT)");
return -EOPNOTSUPP;
}
#endif
return 0;
}
EXPORT_SYMBOL(tcf_exts_validate_ex);
int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb,
struct nlattr *rate_tlv, struct tcf_exts *exts,
u32 flags, struct netlink_ext_ack *extack)
{
return tcf_exts_validate_ex(net, tp, tb, rate_tlv, exts,
flags, 0, extack);
}
EXPORT_SYMBOL(tcf_exts_validate);
void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src)
{
#ifdef CONFIG_NET_CLS_ACT
struct tcf_exts old = *dst;
*dst = *src;
tcf_exts_destroy(&old);
#endif
}
EXPORT_SYMBOL(tcf_exts_change);
#ifdef CONFIG_NET_CLS_ACT
static struct tc_action *tcf_exts_first_act(struct tcf_exts *exts)
{
if (exts->nr_actions == 0)
return NULL;
else
return exts->actions[0];
}
#endif
int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct nlattr *nest;
if (exts->action && tcf_exts_has_actions(exts)) {
/*
* again for backward compatible mode - we want
* to work with both old and new modes of entering
* tc data even if iproute2 was newer - jhs
*/
if (exts->type != TCA_OLD_COMPAT) {
nest = nla_nest_start_noflag(skb, exts->action);
if (nest == NULL)
goto nla_put_failure;
if (tcf_action_dump(skb, exts->actions, 0, 0, false)
< 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
} else if (exts->police) {
struct tc_action *act = tcf_exts_first_act(exts);
nest = nla_nest_start_noflag(skb, exts->police);
if (nest == NULL || !act)
goto nla_put_failure;
if (tcf_action_dump_old(skb, act, 0, 0) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
}
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
#else
return 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_dump);
int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct nlattr *nest;
if (!exts->action || !tcf_exts_has_actions(exts))
return 0;
nest = nla_nest_start_noflag(skb, exts->action);
if (!nest)
goto nla_put_failure;
if (tcf_action_dump(skb, exts->actions, 0, 0, true) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
#else
return 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_terse_dump);
int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct tc_action *a = tcf_exts_first_act(exts);
if (a != NULL && tcf_action_copy_stats(skb, a, 1) < 0)
return -1;
#endif
return 0;
}
EXPORT_SYMBOL(tcf_exts_dump_stats);
static void tcf_block_offload_inc(struct tcf_block *block, u32 *flags)
{
if (*flags & TCA_CLS_FLAGS_IN_HW)
return;
*flags |= TCA_CLS_FLAGS_IN_HW;
atomic_inc(&block->offloadcnt);
}
static void tcf_block_offload_dec(struct tcf_block *block, u32 *flags)
{
if (!(*flags & TCA_CLS_FLAGS_IN_HW))
return;
*flags &= ~TCA_CLS_FLAGS_IN_HW;
atomic_dec(&block->offloadcnt);
}
static void tc_cls_offload_cnt_update(struct tcf_block *block,
struct tcf_proto *tp, u32 *cnt,
u32 *flags, u32 diff, bool add)
{
lockdep_assert_held(&block->cb_lock);
spin_lock(&tp->lock);
if (add) {
if (!*cnt)
tcf_block_offload_inc(block, flags);
*cnt += diff;
} else {
*cnt -= diff;
if (!*cnt)
tcf_block_offload_dec(block, flags);
}
spin_unlock(&tp->lock);
}
static void
tc_cls_offload_cnt_reset(struct tcf_block *block, struct tcf_proto *tp,
u32 *cnt, u32 *flags)
{
lockdep_assert_held(&block->cb_lock);
spin_lock(&tp->lock);
tcf_block_offload_dec(block, flags);
*cnt = 0;
spin_unlock(&tp->lock);
}
static int
__tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type,
void *type_data, bool err_stop)
{
struct flow_block_cb *block_cb;
int ok_count = 0;
int err;
list_for_each_entry(block_cb, &block->flow_block.cb_list, list) {
err = block_cb->cb(type, type_data, block_cb->cb_priv);
if (err) {
if (err_stop)
return err;
} else {
ok_count++;
}
}
return ok_count;
}
int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type,
void *type_data, bool err_stop, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return ok_count;
}
EXPORT_SYMBOL(tc_setup_cb_call);
/* Non-destructive filter add. If filter that wasn't already in hardware is
* successfully offloaded, increment block offloads counter. On failure,
* previously offloaded filter is considered to be intact and offloads counter
* is not decremented.
*/
int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *flags, unsigned int *in_hw_count, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
/* Make sure all netdevs sharing this block are offload-capable. */
if (block->nooffloaddevcnt && err_stop) {
ok_count = -EOPNOTSUPP;
goto err_unlock;
}
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
if (ok_count < 0)
goto err_unlock;
if (tp->ops->hw_add)
tp->ops->hw_add(tp, type_data);
if (ok_count > 0)
tc_cls_offload_cnt_update(block, tp, in_hw_count, flags,
ok_count, true);
err_unlock:
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
}
EXPORT_SYMBOL(tc_setup_cb_add);
/* Destructive filter replace. If filter that wasn't already in hardware is
* successfully offloaded, increment block offload counter. On failure,
* previously offloaded filter is considered to be destroyed and offload counter
* is decremented.
*/
int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *old_flags, unsigned int *old_in_hw_count,
u32 *new_flags, unsigned int *new_in_hw_count,
bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
/* Make sure all netdevs sharing this block are offload-capable. */
if (block->nooffloaddevcnt && err_stop) {
ok_count = -EOPNOTSUPP;
goto err_unlock;
}
tc_cls_offload_cnt_reset(block, tp, old_in_hw_count, old_flags);
if (tp->ops->hw_del)
tp->ops->hw_del(tp, type_data);
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
if (ok_count < 0)
goto err_unlock;
if (tp->ops->hw_add)
tp->ops->hw_add(tp, type_data);
if (ok_count > 0)
tc_cls_offload_cnt_update(block, tp, new_in_hw_count,
new_flags, ok_count, true);
err_unlock:
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
}
EXPORT_SYMBOL(tc_setup_cb_replace);
/* Destroy filter and decrement block offload counter, if filter was previously
* offloaded.
*/
int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *flags, unsigned int *in_hw_count, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
tc_cls_offload_cnt_reset(block, tp, in_hw_count, flags);
if (tp->ops->hw_del)
tp->ops->hw_del(tp, type_data);
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
}
EXPORT_SYMBOL(tc_setup_cb_destroy);
int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp,
bool add, flow_setup_cb_t *cb,
enum tc_setup_type type, void *type_data,
void *cb_priv, u32 *flags, unsigned int *in_hw_count)
{
int err = cb(type, type_data, cb_priv);
if (err) {
if (add && tc_skip_sw(*flags))
return err;
} else {
tc_cls_offload_cnt_update(block, tp, in_hw_count, flags, 1,
add);
}
return 0;
}
EXPORT_SYMBOL(tc_setup_cb_reoffload);
static int tcf_act_get_user_cookie(struct flow_action_entry *entry,
const struct tc_action *act)
{
struct tc_cookie *user_cookie;
int err = 0;
rcu_read_lock();
user_cookie = rcu_dereference(act->user_cookie);
if (user_cookie) {
entry->user_cookie = flow_action_cookie_create(user_cookie->data,
user_cookie->len,
GFP_ATOMIC);
if (!entry->user_cookie)
err = -ENOMEM;
}
rcu_read_unlock();
return err;
}
static void tcf_act_put_user_cookie(struct flow_action_entry *entry)
{
flow_action_cookie_destroy(entry->user_cookie);
}
void tc_cleanup_offload_action(struct flow_action *flow_action)
{
struct flow_action_entry *entry;
int i;
flow_action_for_each(i, entry, flow_action) {
tcf_act_put_user_cookie(entry);
if (entry->destructor)
entry->destructor(entry->destructor_priv);
}
}
EXPORT_SYMBOL(tc_cleanup_offload_action);
static int tc_setup_offload_act(struct tc_action *act,
struct flow_action_entry *entry,
u32 *index_inc,
struct netlink_ext_ack *extack)
{
#ifdef CONFIG_NET_CLS_ACT
if (act->ops->offload_act_setup) {
return act->ops->offload_act_setup(act, entry, index_inc, true,
extack);
} else {
NL_SET_ERR_MSG(extack, "Action does not support offload");
return -EOPNOTSUPP;
}
#else
return 0;
#endif
}
int tc_setup_action(struct flow_action *flow_action,
struct tc_action *actions[],
u32 miss_cookie_base,
struct netlink_ext_ack *extack)
{
int i, j, k, index, err = 0;
struct tc_action *act;
BUILD_BUG_ON(TCA_ACT_HW_STATS_ANY != FLOW_ACTION_HW_STATS_ANY);
BUILD_BUG_ON(TCA_ACT_HW_STATS_IMMEDIATE != FLOW_ACTION_HW_STATS_IMMEDIATE);
BUILD_BUG_ON(TCA_ACT_HW_STATS_DELAYED != FLOW_ACTION_HW_STATS_DELAYED);
if (!actions)
return 0;
j = 0;
tcf_act_for_each_action(i, act, actions) {
struct flow_action_entry *entry;
entry = &flow_action->entries[j];
spin_lock_bh(&act->tcfa_lock);
err = tcf_act_get_user_cookie(entry, act);
if (err)
goto err_out_locked;
index = 0;
err = tc_setup_offload_act(act, entry, &index, extack);
if (err)
goto err_out_locked;
for (k = 0; k < index ; k++) {
entry[k].hw_stats = tc_act_hw_stats(act->hw_stats);
entry[k].hw_index = act->tcfa_index;
entry[k].cookie = (unsigned long)act;
entry[k].miss_cookie =
tcf_exts_miss_cookie_get(miss_cookie_base, i);
}
j += index;
spin_unlock_bh(&act->tcfa_lock);
}
err_out:
if (err)
tc_cleanup_offload_action(flow_action);
return err;
err_out_locked:
spin_unlock_bh(&act->tcfa_lock);
goto err_out;
}
int tc_setup_offload_action(struct flow_action *flow_action,
const struct tcf_exts *exts,
struct netlink_ext_ack *extack)
{
#ifdef CONFIG_NET_CLS_ACT
u32 miss_cookie_base;
if (!exts)
return 0;
miss_cookie_base = exts->miss_cookie_node ?
exts->miss_cookie_node->miss_cookie_base : 0;
return tc_setup_action(flow_action, exts->actions, miss_cookie_base,
extack);
#else
return 0;
#endif
}
EXPORT_SYMBOL(tc_setup_offload_action);
unsigned int tcf_exts_num_actions(struct tcf_exts *exts)
{
unsigned int num_acts = 0;
struct tc_action *act;
int i;
tcf_exts_for_each_action(i, act, exts) {
if (is_tcf_pedit(act))
num_acts += tcf_pedit_nkeys(act);
else
num_acts++;
}
return num_acts;
}
EXPORT_SYMBOL(tcf_exts_num_actions);
#ifdef CONFIG_NET_CLS_ACT
static int tcf_qevent_parse_block_index(struct nlattr *block_index_attr,
u32 *p_block_index,
struct netlink_ext_ack *extack)
{
*p_block_index = nla_get_u32(block_index_attr);
if (!*p_block_index) {
NL_SET_ERR_MSG(extack, "Block number may not be zero");
return -EINVAL;
}
return 0;
}
int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch,
enum flow_block_binder_type binder_type,
struct nlattr *block_index_attr,
struct netlink_ext_ack *extack)
{
u32 block_index;
int err;
if (!block_index_attr)
return 0;
err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack);
if (err)
return err;
qe->info.binder_type = binder_type;
qe->info.chain_head_change = tcf_chain_head_change_dflt;
qe->info.chain_head_change_priv = &qe->filter_chain;
qe->info.block_index = block_index;
return tcf_block_get_ext(&qe->block, sch, &qe->info, extack);
}
EXPORT_SYMBOL(tcf_qevent_init);
void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch)
{
if (qe->info.block_index)
tcf_block_put_ext(qe->block, sch, &qe->info);
}
EXPORT_SYMBOL(tcf_qevent_destroy);
int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr,
struct netlink_ext_ack *extack)
{
u32 block_index;
int err;
if (!block_index_attr)
return 0;
err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack);
if (err)
return err;
/* Bounce newly-configured block or change in block. */
if (block_index != qe->info.block_index) {
NL_SET_ERR_MSG(extack, "Change of blocks is not supported");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(tcf_qevent_validate_change);
struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb,
struct sk_buff **to_free, int *ret)
{
struct tcf_result cl_res;
struct tcf_proto *fl;
if (!qe->info.block_index)
return skb;
fl = rcu_dereference_bh(qe->filter_chain);
switch (tcf_classify(skb, NULL, fl, &cl_res, false)) {
case TC_ACT_SHOT:
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
*ret = __NET_XMIT_BYPASS;
return NULL;
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
__qdisc_drop(skb, to_free);
*ret = __NET_XMIT_STOLEN;
return NULL;
case TC_ACT_REDIRECT:
skb_do_redirect(skb);
*ret = __NET_XMIT_STOLEN;
return NULL;
}
return skb;
}
EXPORT_SYMBOL(tcf_qevent_handle);
int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe)
{
if (!qe->info.block_index)
return 0;
return nla_put_u32(skb, attr_name, qe->info.block_index);
}
EXPORT_SYMBOL(tcf_qevent_dump);
#endif
static __net_init int tcf_net_init(struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
spin_lock_init(&tn->idr_lock);
idr_init(&tn->idr);
return 0;
}
static void __net_exit tcf_net_exit(struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
idr_destroy(&tn->idr);
}
static struct pernet_operations tcf_net_ops = {
.init = tcf_net_init,
.exit = tcf_net_exit,
.id = &tcf_net_id,
.size = sizeof(struct tcf_net),
};
static int __init tc_filter_init(void)
{
int err;
tc_filter_wq = alloc_ordered_workqueue("tc_filter_workqueue", 0);
if (!tc_filter_wq)
return -ENOMEM;
err = register_pernet_subsys(&tcf_net_ops);
if (err)
goto err_register_pernet_subsys;
xa_init_flags(&tcf_exts_miss_cookies_xa, XA_FLAGS_ALLOC1);
rtnl_register(PF_UNSPEC, RTM_NEWTFILTER, tc_new_tfilter, NULL,
RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_DELTFILTER, tc_del_tfilter, NULL,
RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_GETTFILTER, tc_get_tfilter,
tc_dump_tfilter, RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_NEWCHAIN, tc_ctl_chain, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_DELCHAIN, tc_ctl_chain, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_GETCHAIN, tc_ctl_chain,
tc_dump_chain, 0);
return 0;
err_register_pernet_subsys:
destroy_workqueue(tc_filter_wq);
return err;
}
subsys_initcall(tc_filter_init);
| linux-master | net/sched/cls_api.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Stateless NAT actions
*
* Copyright (c) 2007 Herbert Xu <[email protected]>
*/
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tc_act/tc_nat.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <net/icmp.h>
#include <net/ip.h>
#include <net/netlink.h>
#include <net/tc_act/tc_nat.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/tc_wrapper.h>
static struct tc_action_ops act_nat_ops;
static const struct nla_policy nat_policy[TCA_NAT_MAX + 1] = {
[TCA_NAT_PARMS] = { .len = sizeof(struct tc_nat) },
};
static int tcf_nat_init(struct net *net, struct nlattr *nla, struct nlattr *est,
struct tc_action **a, struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_nat_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct tcf_nat_parms *nparm, *oparm;
struct nlattr *tb[TCA_NAT_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_nat *parm;
int ret = 0, err;
struct tcf_nat *p;
u32 index;
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_NAT_MAX, nla, nat_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_NAT_PARMS] == NULL)
return -EINVAL;
parm = nla_data(tb[TCA_NAT_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a, &act_nat_ops,
bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (err > 0) {
if (bind)
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
} else {
return err;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
nparm = kzalloc(sizeof(*nparm), GFP_KERNEL);
if (!nparm) {
err = -ENOMEM;
goto release_idr;
}
nparm->old_addr = parm->old_addr;
nparm->new_addr = parm->new_addr;
nparm->mask = parm->mask;
nparm->flags = parm->flags;
p = to_tcf_nat(*a);
spin_lock_bh(&p->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
oparm = rcu_replace_pointer(p->parms, nparm, lockdep_is_held(&p->tcf_lock));
spin_unlock_bh(&p->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (oparm)
kfree_rcu(oparm, rcu);
return ret;
release_idr:
tcf_idr_release(*a, bind);
return err;
}
TC_INDIRECT_SCOPE int tcf_nat_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_nat *p = to_tcf_nat(a);
struct tcf_nat_parms *parms;
struct iphdr *iph;
__be32 old_addr;
__be32 new_addr;
__be32 mask;
__be32 addr;
int egress;
int action;
int ihl;
int noff;
tcf_lastuse_update(&p->tcf_tm);
tcf_action_update_bstats(&p->common, skb);
action = READ_ONCE(p->tcf_action);
parms = rcu_dereference_bh(p->parms);
old_addr = parms->old_addr;
new_addr = parms->new_addr;
mask = parms->mask;
egress = parms->flags & TCA_NAT_FLAG_EGRESS;
if (unlikely(action == TC_ACT_SHOT))
goto drop;
noff = skb_network_offset(skb);
if (!pskb_may_pull(skb, sizeof(*iph) + noff))
goto drop;
iph = ip_hdr(skb);
if (egress)
addr = iph->saddr;
else
addr = iph->daddr;
if (!((old_addr ^ addr) & mask)) {
if (skb_try_make_writable(skb, sizeof(*iph) + noff))
goto drop;
new_addr &= mask;
new_addr |= addr & ~mask;
/* Rewrite IP header */
iph = ip_hdr(skb);
if (egress)
iph->saddr = new_addr;
else
iph->daddr = new_addr;
csum_replace4(&iph->check, addr, new_addr);
} else if ((iph->frag_off & htons(IP_OFFSET)) ||
iph->protocol != IPPROTO_ICMP) {
goto out;
}
ihl = iph->ihl * 4;
/* It would be nice to share code with stateful NAT. */
switch (iph->frag_off & htons(IP_OFFSET) ? 0 : iph->protocol) {
case IPPROTO_TCP:
{
struct tcphdr *tcph;
if (!pskb_may_pull(skb, ihl + sizeof(*tcph) + noff) ||
skb_try_make_writable(skb, ihl + sizeof(*tcph) + noff))
goto drop;
tcph = (void *)(skb_network_header(skb) + ihl);
inet_proto_csum_replace4(&tcph->check, skb, addr, new_addr,
true);
break;
}
case IPPROTO_UDP:
{
struct udphdr *udph;
if (!pskb_may_pull(skb, ihl + sizeof(*udph) + noff) ||
skb_try_make_writable(skb, ihl + sizeof(*udph) + noff))
goto drop;
udph = (void *)(skb_network_header(skb) + ihl);
if (udph->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace4(&udph->check, skb, addr,
new_addr, true);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
}
break;
}
case IPPROTO_ICMP:
{
struct icmphdr *icmph;
if (!pskb_may_pull(skb, ihl + sizeof(*icmph) + noff))
goto drop;
icmph = (void *)(skb_network_header(skb) + ihl);
if (!icmp_is_err(icmph->type))
break;
if (!pskb_may_pull(skb, ihl + sizeof(*icmph) + sizeof(*iph) +
noff))
goto drop;
icmph = (void *)(skb_network_header(skb) + ihl);
iph = (void *)(icmph + 1);
if (egress)
addr = iph->daddr;
else
addr = iph->saddr;
if ((old_addr ^ addr) & mask)
break;
if (skb_try_make_writable(skb, ihl + sizeof(*icmph) +
sizeof(*iph) + noff))
goto drop;
icmph = (void *)(skb_network_header(skb) + ihl);
iph = (void *)(icmph + 1);
new_addr &= mask;
new_addr |= addr & ~mask;
/* XXX Fix up the inner checksums. */
if (egress)
iph->daddr = new_addr;
else
iph->saddr = new_addr;
inet_proto_csum_replace4(&icmph->checksum, skb, addr, new_addr,
false);
break;
}
default:
break;
}
out:
return action;
drop:
tcf_action_inc_drop_qstats(&p->common);
return TC_ACT_SHOT;
}
static int tcf_nat_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_nat *p = to_tcf_nat(a);
struct tc_nat opt = {
.index = p->tcf_index,
.refcnt = refcount_read(&p->tcf_refcnt) - ref,
.bindcnt = atomic_read(&p->tcf_bindcnt) - bind,
};
struct tcf_nat_parms *parms;
struct tcf_t t;
spin_lock_bh(&p->tcf_lock);
opt.action = p->tcf_action;
parms = rcu_dereference_protected(p->parms, lockdep_is_held(&p->tcf_lock));
opt.old_addr = parms->old_addr;
opt.new_addr = parms->new_addr;
opt.mask = parms->mask;
opt.flags = parms->flags;
if (nla_put(skb, TCA_NAT_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &p->tcf_tm);
if (nla_put_64bit(skb, TCA_NAT_TM, sizeof(t), &t, TCA_NAT_PAD))
goto nla_put_failure;
spin_unlock_bh(&p->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&p->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_nat_cleanup(struct tc_action *a)
{
struct tcf_nat *p = to_tcf_nat(a);
struct tcf_nat_parms *parms;
parms = rcu_dereference_protected(p->parms, 1);
if (parms)
kfree_rcu(parms, rcu);
}
static struct tc_action_ops act_nat_ops = {
.kind = "nat",
.id = TCA_ID_NAT,
.owner = THIS_MODULE,
.act = tcf_nat_act,
.dump = tcf_nat_dump,
.init = tcf_nat_init,
.cleanup = tcf_nat_cleanup,
.size = sizeof(struct tcf_nat),
};
static __net_init int nat_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_nat_ops.net_id);
return tc_action_net_init(net, tn, &act_nat_ops);
}
static void __net_exit nat_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_nat_ops.net_id);
}
static struct pernet_operations nat_net_ops = {
.init = nat_init_net,
.exit_batch = nat_exit_net,
.id = &act_nat_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_DESCRIPTION("Stateless NAT actions");
MODULE_LICENSE("GPL");
static int __init nat_init_module(void)
{
return tcf_register_action(&act_nat_ops, &nat_net_ops);
}
static void __exit nat_cleanup_module(void)
{
tcf_unregister_action(&act_nat_ops, &nat_net_ops);
}
module_init(nat_init_module);
module_exit(nat_cleanup_module);
| linux-master | net/sched/act_nat.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
*
* Copyright (C) 2013-2015 Eric Dumazet <[email protected]>
*
* Meant to be mostly used for locally generated traffic :
* Fast classification depends on skb->sk being set before reaching us.
* If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
* All packets belonging to a socket are considered as a 'flow'.
*
* Flows are dynamically allocated and stored in a hash table of RB trees
* They are also part of one Round Robin 'queues' (new or old flows)
*
* Burst avoidance (aka pacing) capability :
*
* Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
* bunch of packets, and this packet scheduler adds delay between
* packets to respect rate limitation.
*
* enqueue() :
* - lookup one RB tree (out of 1024 or more) to find the flow.
* If non existent flow, create it, add it to the tree.
* Add skb to the per flow list of skb (fifo).
* - Use a special fifo for high prio packets
*
* dequeue() : serves flows in Round Robin
* Note : When a flow becomes empty, we do not immediately remove it from
* rb trees, for performance reasons (its expected to send additional packets,
* or SLAB cache will reuse socket for another flow)
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/hash.h>
#include <linux/prefetch.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/tcp.h>
struct fq_skb_cb {
u64 time_to_send;
};
static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
{
qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
}
/*
* Per flow structure, dynamically allocated.
* If packets have monotically increasing time_to_send, they are placed in O(1)
* in linear list (head,tail), otherwise are placed in a rbtree (t_root).
*/
struct fq_flow {
/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
struct rb_root t_root;
struct sk_buff *head; /* list of skbs for this flow : first skb */
union {
struct sk_buff *tail; /* last skb in the list */
unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */
};
struct rb_node fq_node; /* anchor in fq_root[] trees */
struct sock *sk;
u32 socket_hash; /* sk_hash */
int qlen; /* number of packets in flow queue */
/* Second cache line, used in fq_dequeue() */
int credit;
/* 32bit hole on 64bit arches */
struct fq_flow *next; /* next pointer in RR lists */
struct rb_node rate_node; /* anchor in q->delayed tree */
u64 time_next_packet;
} ____cacheline_aligned_in_smp;
struct fq_flow_head {
struct fq_flow *first;
struct fq_flow *last;
};
struct fq_sched_data {
struct fq_flow_head new_flows;
struct fq_flow_head old_flows;
struct rb_root delayed; /* for rate limited flows */
u64 time_next_delayed_flow;
u64 ktime_cache; /* copy of last ktime_get_ns() */
unsigned long unthrottle_latency_ns;
struct fq_flow internal; /* for non classified or high prio packets */
u32 quantum;
u32 initial_quantum;
u32 flow_refill_delay;
u32 flow_plimit; /* max packets per flow */
unsigned long flow_max_rate; /* optional max rate per flow */
u64 ce_threshold;
u64 horizon; /* horizon in ns */
u32 orphan_mask; /* mask for orphaned skb */
u32 low_rate_threshold;
struct rb_root *fq_root;
u8 rate_enable;
u8 fq_trees_log;
u8 horizon_drop;
u32 flows;
u32 inactive_flows;
u32 throttled_flows;
u64 stat_gc_flows;
u64 stat_internal_packets;
u64 stat_throttled;
u64 stat_ce_mark;
u64 stat_horizon_drops;
u64 stat_horizon_caps;
u64 stat_flows_plimit;
u64 stat_pkts_too_long;
u64 stat_allocation_errors;
u32 timer_slack; /* hrtimer slack in ns */
struct qdisc_watchdog watchdog;
};
/*
* f->tail and f->age share the same location.
* We can use the low order bit to differentiate if this location points
* to a sk_buff or contains a jiffies value, if we force this value to be odd.
* This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
*/
static void fq_flow_set_detached(struct fq_flow *f)
{
f->age = jiffies | 1UL;
}
static bool fq_flow_is_detached(const struct fq_flow *f)
{
return !!(f->age & 1UL);
}
/* special value to mark a throttled flow (not on old/new list) */
static struct fq_flow throttled;
static bool fq_flow_is_throttled(const struct fq_flow *f)
{
return f->next == &throttled;
}
static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
{
if (head->first)
head->last->next = flow;
else
head->first = flow;
head->last = flow;
flow->next = NULL;
}
static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
rb_erase(&f->rate_node, &q->delayed);
q->throttled_flows--;
fq_flow_add_tail(&q->old_flows, f);
}
static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
while (*p) {
struct fq_flow *aux;
parent = *p;
aux = rb_entry(parent, struct fq_flow, rate_node);
if (f->time_next_packet >= aux->time_next_packet)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&f->rate_node, parent, p);
rb_insert_color(&f->rate_node, &q->delayed);
q->throttled_flows++;
q->stat_throttled++;
f->next = &throttled;
if (q->time_next_delayed_flow > f->time_next_packet)
q->time_next_delayed_flow = f->time_next_packet;
}
static struct kmem_cache *fq_flow_cachep __read_mostly;
/* limit number of collected flows per round */
#define FQ_GC_MAX 8
#define FQ_GC_AGE (3*HZ)
static bool fq_gc_candidate(const struct fq_flow *f)
{
return fq_flow_is_detached(f) &&
time_after(jiffies, f->age + FQ_GC_AGE);
}
static void fq_gc(struct fq_sched_data *q,
struct rb_root *root,
struct sock *sk)
{
struct rb_node **p, *parent;
void *tofree[FQ_GC_MAX];
struct fq_flow *f;
int i, fcnt = 0;
p = &root->rb_node;
parent = NULL;
while (*p) {
parent = *p;
f = rb_entry(parent, struct fq_flow, fq_node);
if (f->sk == sk)
break;
if (fq_gc_candidate(f)) {
tofree[fcnt++] = f;
if (fcnt == FQ_GC_MAX)
break;
}
if (f->sk > sk)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
if (!fcnt)
return;
for (i = fcnt; i > 0; ) {
f = tofree[--i];
rb_erase(&f->fq_node, root);
}
q->flows -= fcnt;
q->inactive_flows -= fcnt;
q->stat_gc_flows += fcnt;
kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
}
static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
{
struct rb_node **p, *parent;
struct sock *sk = skb->sk;
struct rb_root *root;
struct fq_flow *f;
/* warning: no starvation prevention... */
if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
return &q->internal;
/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
* or a listener (SYNCOOKIE mode)
* 1) request sockets are not full blown,
* they do not contain sk_pacing_rate
* 2) They are not part of a 'flow' yet
* 3) We do not want to rate limit them (eg SYNFLOOD attack),
* especially if the listener set SO_MAX_PACING_RATE
* 4) We pretend they are orphaned
*/
if (!sk || sk_listener(sk)) {
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
/* By forcing low order bit to 1, we make sure to not
* collide with a local flow (socket pointers are word aligned)
*/
sk = (struct sock *)((hash << 1) | 1UL);
skb_orphan(skb);
} else if (sk->sk_state == TCP_CLOSE) {
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
/*
* Sockets in TCP_CLOSE are non connected.
* Typical use case is UDP sockets, they can send packets
* with sendto() to many different destinations.
* We probably could use a generic bit advertising
* non connected sockets, instead of sk_state == TCP_CLOSE,
* if we care enough.
*/
sk = (struct sock *)((hash << 1) | 1UL);
}
root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
if (q->flows >= (2U << q->fq_trees_log) &&
q->inactive_flows > q->flows/2)
fq_gc(q, root, sk);
p = &root->rb_node;
parent = NULL;
while (*p) {
parent = *p;
f = rb_entry(parent, struct fq_flow, fq_node);
if (f->sk == sk) {
/* socket might have been reallocated, so check
* if its sk_hash is the same.
* It not, we need to refill credit with
* initial quantum
*/
if (unlikely(skb->sk == sk &&
f->socket_hash != sk->sk_hash)) {
f->credit = q->initial_quantum;
f->socket_hash = sk->sk_hash;
if (q->rate_enable)
smp_store_release(&sk->sk_pacing_status,
SK_PACING_FQ);
if (fq_flow_is_throttled(f))
fq_flow_unset_throttled(q, f);
f->time_next_packet = 0ULL;
}
return f;
}
if (f->sk > sk)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!f)) {
q->stat_allocation_errors++;
return &q->internal;
}
/* f->t_root is already zeroed after kmem_cache_zalloc() */
fq_flow_set_detached(f);
f->sk = sk;
if (skb->sk == sk) {
f->socket_hash = sk->sk_hash;
if (q->rate_enable)
smp_store_release(&sk->sk_pacing_status,
SK_PACING_FQ);
}
f->credit = q->initial_quantum;
rb_link_node(&f->fq_node, parent, p);
rb_insert_color(&f->fq_node, root);
q->flows++;
q->inactive_flows++;
return f;
}
static struct sk_buff *fq_peek(struct fq_flow *flow)
{
struct sk_buff *skb = skb_rb_first(&flow->t_root);
struct sk_buff *head = flow->head;
if (!skb)
return head;
if (!head)
return skb;
if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
return skb;
return head;
}
static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
struct sk_buff *skb)
{
if (skb == flow->head) {
flow->head = skb->next;
} else {
rb_erase(&skb->rbnode, &flow->t_root);
skb->dev = qdisc_dev(sch);
}
}
/* Remove one skb from flow queue.
* This skb must be the return value of prior fq_peek().
*/
static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
struct sk_buff *skb)
{
fq_erase_head(sch, flow, skb);
skb_mark_not_on_list(skb);
flow->qlen--;
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
}
static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
{
struct rb_node **p, *parent;
struct sk_buff *head, *aux;
head = flow->head;
if (!head ||
fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
if (!head)
flow->head = skb;
else
flow->tail->next = skb;
flow->tail = skb;
skb->next = NULL;
return;
}
p = &flow->t_root.rb_node;
parent = NULL;
while (*p) {
parent = *p;
aux = rb_to_skb(parent);
if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, &flow->t_root);
}
static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
const struct fq_sched_data *q)
{
return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
}
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct fq_flow *f;
if (unlikely(sch->q.qlen >= sch->limit))
return qdisc_drop(skb, sch, to_free);
if (!skb->tstamp) {
fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
} else {
/* Check if packet timestamp is too far in the future.
* Try first if our cached value, to avoid ktime_get_ns()
* cost in most cases.
*/
if (fq_packet_beyond_horizon(skb, q)) {
/* Refresh our cache and check another time */
q->ktime_cache = ktime_get_ns();
if (fq_packet_beyond_horizon(skb, q)) {
if (q->horizon_drop) {
q->stat_horizon_drops++;
return qdisc_drop(skb, sch, to_free);
}
q->stat_horizon_caps++;
skb->tstamp = q->ktime_cache + q->horizon;
}
}
fq_skb_cb(skb)->time_to_send = skb->tstamp;
}
f = fq_classify(skb, q);
if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
q->stat_flows_plimit++;
return qdisc_drop(skb, sch, to_free);
}
f->qlen++;
qdisc_qstats_backlog_inc(sch, skb);
if (fq_flow_is_detached(f)) {
fq_flow_add_tail(&q->new_flows, f);
if (time_after(jiffies, f->age + q->flow_refill_delay))
f->credit = max_t(u32, f->credit, q->quantum);
q->inactive_flows--;
}
/* Note: this overwrites f->age */
flow_queue_add(f, skb);
if (unlikely(f == &q->internal)) {
q->stat_internal_packets++;
}
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
static void fq_check_throttled(struct fq_sched_data *q, u64 now)
{
unsigned long sample;
struct rb_node *p;
if (q->time_next_delayed_flow > now)
return;
/* Update unthrottle latency EWMA.
* This is cheap and can help diagnosing timer/latency problems.
*/
sample = (unsigned long)(now - q->time_next_delayed_flow);
q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
q->unthrottle_latency_ns += sample >> 3;
q->time_next_delayed_flow = ~0ULL;
while ((p = rb_first(&q->delayed)) != NULL) {
struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
if (f->time_next_packet > now) {
q->time_next_delayed_flow = f->time_next_packet;
break;
}
fq_flow_unset_throttled(q, f);
}
}
static struct sk_buff *fq_dequeue(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct fq_flow_head *head;
struct sk_buff *skb;
struct fq_flow *f;
unsigned long rate;
u32 plen;
u64 now;
if (!sch->q.qlen)
return NULL;
skb = fq_peek(&q->internal);
if (unlikely(skb)) {
fq_dequeue_skb(sch, &q->internal, skb);
goto out;
}
q->ktime_cache = now = ktime_get_ns();
fq_check_throttled(q, now);
begin:
head = &q->new_flows;
if (!head->first) {
head = &q->old_flows;
if (!head->first) {
if (q->time_next_delayed_flow != ~0ULL)
qdisc_watchdog_schedule_range_ns(&q->watchdog,
q->time_next_delayed_flow,
q->timer_slack);
return NULL;
}
}
f = head->first;
if (f->credit <= 0) {
f->credit += q->quantum;
head->first = f->next;
fq_flow_add_tail(&q->old_flows, f);
goto begin;
}
skb = fq_peek(f);
if (skb) {
u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
f->time_next_packet);
if (now < time_next_packet) {
head->first = f->next;
f->time_next_packet = time_next_packet;
fq_flow_set_throttled(q, f);
goto begin;
}
prefetch(&skb->end);
if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
INET_ECN_set_ce(skb);
q->stat_ce_mark++;
}
fq_dequeue_skb(sch, f, skb);
} else {
head->first = f->next;
/* force a pass through old_flows to prevent starvation */
if ((head == &q->new_flows) && q->old_flows.first) {
fq_flow_add_tail(&q->old_flows, f);
} else {
fq_flow_set_detached(f);
q->inactive_flows++;
}
goto begin;
}
plen = qdisc_pkt_len(skb);
f->credit -= plen;
if (!q->rate_enable)
goto out;
rate = q->flow_max_rate;
/* If EDT time was provided for this skb, we need to
* update f->time_next_packet only if this qdisc enforces
* a flow max rate.
*/
if (!skb->tstamp) {
if (skb->sk)
rate = min(skb->sk->sk_pacing_rate, rate);
if (rate <= q->low_rate_threshold) {
f->credit = 0;
} else {
plen = max(plen, q->quantum);
if (f->credit > 0)
goto out;
}
}
if (rate != ~0UL) {
u64 len = (u64)plen * NSEC_PER_SEC;
if (likely(rate))
len = div64_ul(len, rate);
/* Since socket rate can change later,
* clamp the delay to 1 second.
* Really, providers of too big packets should be fixed !
*/
if (unlikely(len > NSEC_PER_SEC)) {
len = NSEC_PER_SEC;
q->stat_pkts_too_long++;
}
/* Account for schedule/timers drifts.
* f->time_next_packet was set when prior packet was sent,
* and current time (@now) can be too late by tens of us.
*/
if (f->time_next_packet)
len -= min(len/2, now - f->time_next_packet);
f->time_next_packet = now + len;
}
out:
qdisc_bstats_update(sch, skb);
return skb;
}
static void fq_flow_purge(struct fq_flow *flow)
{
struct rb_node *p = rb_first(&flow->t_root);
while (p) {
struct sk_buff *skb = rb_to_skb(p);
p = rb_next(p);
rb_erase(&skb->rbnode, &flow->t_root);
rtnl_kfree_skbs(skb, skb);
}
rtnl_kfree_skbs(flow->head, flow->tail);
flow->head = NULL;
flow->qlen = 0;
}
static void fq_reset(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct rb_root *root;
struct rb_node *p;
struct fq_flow *f;
unsigned int idx;
sch->q.qlen = 0;
sch->qstats.backlog = 0;
fq_flow_purge(&q->internal);
if (!q->fq_root)
return;
for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
root = &q->fq_root[idx];
while ((p = rb_first(root)) != NULL) {
f = rb_entry(p, struct fq_flow, fq_node);
rb_erase(p, root);
fq_flow_purge(f);
kmem_cache_free(fq_flow_cachep, f);
}
}
q->new_flows.first = NULL;
q->old_flows.first = NULL;
q->delayed = RB_ROOT;
q->flows = 0;
q->inactive_flows = 0;
q->throttled_flows = 0;
}
static void fq_rehash(struct fq_sched_data *q,
struct rb_root *old_array, u32 old_log,
struct rb_root *new_array, u32 new_log)
{
struct rb_node *op, **np, *parent;
struct rb_root *oroot, *nroot;
struct fq_flow *of, *nf;
int fcnt = 0;
u32 idx;
for (idx = 0; idx < (1U << old_log); idx++) {
oroot = &old_array[idx];
while ((op = rb_first(oroot)) != NULL) {
rb_erase(op, oroot);
of = rb_entry(op, struct fq_flow, fq_node);
if (fq_gc_candidate(of)) {
fcnt++;
kmem_cache_free(fq_flow_cachep, of);
continue;
}
nroot = &new_array[hash_ptr(of->sk, new_log)];
np = &nroot->rb_node;
parent = NULL;
while (*np) {
parent = *np;
nf = rb_entry(parent, struct fq_flow, fq_node);
BUG_ON(nf->sk == of->sk);
if (nf->sk > of->sk)
np = &parent->rb_right;
else
np = &parent->rb_left;
}
rb_link_node(&of->fq_node, parent, np);
rb_insert_color(&of->fq_node, nroot);
}
}
q->flows -= fcnt;
q->inactive_flows -= fcnt;
q->stat_gc_flows += fcnt;
}
static void fq_free(void *addr)
{
kvfree(addr);
}
static int fq_resize(struct Qdisc *sch, u32 log)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct rb_root *array;
void *old_fq_root;
u32 idx;
if (q->fq_root && log == q->fq_trees_log)
return 0;
/* If XPS was setup, we can allocate memory on right NUMA node */
array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
netdev_queue_numa_node_read(sch->dev_queue));
if (!array)
return -ENOMEM;
for (idx = 0; idx < (1U << log); idx++)
array[idx] = RB_ROOT;
sch_tree_lock(sch);
old_fq_root = q->fq_root;
if (old_fq_root)
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
q->fq_root = array;
q->fq_trees_log = log;
sch_tree_unlock(sch);
fq_free(old_fq_root);
return 0;
}
static struct netlink_range_validation iq_range = {
.max = INT_MAX,
};
static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
[TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK },
[TCA_FQ_PLIMIT] = { .type = NLA_U32 },
[TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
[TCA_FQ_QUANTUM] = { .type = NLA_U32 },
[TCA_FQ_INITIAL_QUANTUM] = NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
[TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
[TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
[TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
[TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
[TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
[TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
[TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 },
[TCA_FQ_HORIZON] = { .type = NLA_U32 },
[TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 },
};
static int fq_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_FQ_MAX + 1];
int err, drop_count = 0;
unsigned drop_len = 0;
u32 fq_log;
err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
NULL);
if (err < 0)
return err;
sch_tree_lock(sch);
fq_log = q->fq_trees_log;
if (tb[TCA_FQ_BUCKETS_LOG]) {
u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
if (nval >= 1 && nval <= ilog2(256*1024))
fq_log = nval;
else
err = -EINVAL;
}
if (tb[TCA_FQ_PLIMIT])
sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
if (tb[TCA_FQ_FLOW_PLIMIT])
q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
if (tb[TCA_FQ_QUANTUM]) {
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
if (quantum > 0 && quantum <= (1 << 20)) {
q->quantum = quantum;
} else {
NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
err = -EINVAL;
}
}
if (tb[TCA_FQ_INITIAL_QUANTUM])
q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
if (tb[TCA_FQ_FLOW_MAX_RATE]) {
u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
}
if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
q->low_rate_threshold =
nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
if (tb[TCA_FQ_RATE_ENABLE]) {
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
if (enable <= 1)
q->rate_enable = enable;
else
err = -EINVAL;
}
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
}
if (tb[TCA_FQ_ORPHAN_MASK])
q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
if (tb[TCA_FQ_CE_THRESHOLD])
q->ce_threshold = (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
if (tb[TCA_FQ_TIMER_SLACK])
q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
if (tb[TCA_FQ_HORIZON])
q->horizon = (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_HORIZON]);
if (tb[TCA_FQ_HORIZON_DROP])
q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
if (!err) {
sch_tree_unlock(sch);
err = fq_resize(sch, fq_log);
sch_tree_lock(sch);
}
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = fq_dequeue(sch);
if (!skb)
break;
drop_len += qdisc_pkt_len(skb);
rtnl_kfree_skbs(skb, skb);
drop_count++;
}
qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
sch_tree_unlock(sch);
return err;
}
static void fq_destroy(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
fq_reset(sch);
fq_free(q->fq_root);
qdisc_watchdog_cancel(&q->watchdog);
}
static int fq_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_sched_data *q = qdisc_priv(sch);
int err;
sch->limit = 10000;
q->flow_plimit = 100;
q->quantum = 2 * psched_mtu(qdisc_dev(sch));
q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
q->flow_refill_delay = msecs_to_jiffies(40);
q->flow_max_rate = ~0UL;
q->time_next_delayed_flow = ~0ULL;
q->rate_enable = 1;
q->new_flows.first = NULL;
q->old_flows.first = NULL;
q->delayed = RB_ROOT;
q->fq_root = NULL;
q->fq_trees_log = ilog2(1024);
q->orphan_mask = 1024 - 1;
q->low_rate_threshold = 550000 / 8;
q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
q->horizon_drop = 1; /* by default, drop packets beyond horizon */
/* Default ce_threshold of 4294 seconds */
q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
if (opt)
err = fq_change(sch, opt, extack);
else
err = fq_resize(sch, q->fq_trees_log);
return err;
}
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct fq_sched_data *q = qdisc_priv(sch);
u64 ce_threshold = q->ce_threshold;
u64 horizon = q->horizon;
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
do_div(ce_threshold, NSEC_PER_USEC);
do_div(horizon, NSEC_PER_USEC);
if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
min_t(unsigned long, q->flow_max_rate, ~0U)) ||
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
jiffies_to_usecs(q->flow_refill_delay)) ||
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
q->low_rate_threshold) ||
nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
return -1;
}
static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct tc_fq_qd_stats st;
sch_tree_lock(sch);
st.gc_flows = q->stat_gc_flows;
st.highprio_packets = q->stat_internal_packets;
st.tcp_retrans = 0;
st.throttled = q->stat_throttled;
st.flows_plimit = q->stat_flows_plimit;
st.pkts_too_long = q->stat_pkts_too_long;
st.allocation_errors = q->stat_allocation_errors;
st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
ktime_get_ns();
st.flows = q->flows;
st.inactive_flows = q->inactive_flows;
st.throttled_flows = q->throttled_flows;
st.unthrottle_latency_ns = min_t(unsigned long,
q->unthrottle_latency_ns, ~0U);
st.ce_mark = q->stat_ce_mark;
st.horizon_drops = q->stat_horizon_drops;
st.horizon_caps = q->stat_horizon_caps;
sch_tree_unlock(sch);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
.id = "fq",
.priv_size = sizeof(struct fq_sched_data),
.enqueue = fq_enqueue,
.dequeue = fq_dequeue,
.peek = qdisc_peek_dequeued,
.init = fq_init,
.reset = fq_reset,
.destroy = fq_destroy,
.change = fq_change,
.dump = fq_dump,
.dump_stats = fq_dump_stats,
.owner = THIS_MODULE,
};
static int __init fq_module_init(void)
{
int ret;
fq_flow_cachep = kmem_cache_create("fq_flow_cache",
sizeof(struct fq_flow),
0, 0, NULL);
if (!fq_flow_cachep)
return -ENOMEM;
ret = register_qdisc(&fq_qdisc_ops);
if (ret)
kmem_cache_destroy(fq_flow_cachep);
return ret;
}
static void __exit fq_module_exit(void)
{
unregister_qdisc(&fq_qdisc_ops);
kmem_cache_destroy(fq_flow_cachep);
}
module_init(fq_module_init)
module_exit(fq_module_exit)
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
| linux-master | net/sched/sch_fq.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
*
* Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
* Copyright (c) 2012 Paolo Valente.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/pkt_sched.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
/* Quick Fair Queueing Plus
========================
Sources:
[1] Paolo Valente,
"Reducing the Execution Time of Fair-Queueing Schedulers."
http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
Sources for QFQ:
[2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
Packet Scheduling with Tight Bandwidth Distribution Guarantees."
See also:
http://retis.sssup.it/~fabio/linux/qfq/
*/
/*
QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
classes. Each aggregate is timestamped with a virtual start time S
and a virtual finish time F, and scheduled according to its
timestamps. S and F are computed as a function of a system virtual
time function V. The classes within each aggregate are instead
scheduled with DRR.
To speed up operations, QFQ+ divides also aggregates into a limited
number of groups. Which group a class belongs to depends on the
ratio between the maximum packet length for the class and the weight
of the class. Groups have their own S and F. In the end, QFQ+
schedules groups, then aggregates within groups, then classes within
aggregates. See [1] and [2] for a full description.
Virtual time computations.
S, F and V are all computed in fixed point arithmetic with
FRAC_BITS decimal bits.
QFQ_MAX_INDEX is the maximum index allowed for a group. We need
one bit per index.
QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
The layout of the bits is as below:
[ MTU_SHIFT ][ FRAC_BITS ]
[ MAX_INDEX ][ MIN_SLOT_SHIFT ]
^.__grp->index = 0
*.__grp->slot_shift
where MIN_SLOT_SHIFT is derived by difference from the others.
The max group index corresponds to Lmax/w_min, where
Lmax=1<<MTU_SHIFT, w_min = 1 .
From this, and knowing how many groups (MAX_INDEX) we want,
we can derive the shift corresponding to each group.
Because we often need to compute
F = S + len/w_i and V = V + len/wsum
instead of storing w_i store the value
inv_w = (1<<FRAC_BITS)/w_i
so we can do F = S + len * inv_w * wsum.
We use W_TOT in the formulas so we can easily move between
static and adaptive weight sum.
The per-scheduler-instance data contain all the data structures
for the scheduler: bitmaps and bucket lists.
*/
/*
* Maximum number of consecutive slots occupied by backlogged classes
* inside a group.
*/
#define QFQ_MAX_SLOTS 32
/*
* Shifts used for aggregate<->group mapping. We allow class weights that are
* in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
* group with the smallest index that can support the L_i / r_i configured
* for the classes in the aggregate.
*
* grp->index is the index of the group; and grp->slot_shift
* is the shift for the corresponding (scaled) sigma_i.
*/
#define QFQ_MAX_INDEX 24
#define QFQ_MAX_WSHIFT 10
#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
#define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
#define FRAC_BITS 30 /* fixed point arithmetic */
#define ONE_FP (1UL << FRAC_BITS)
#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
#define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
#define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
/*
* Possible group states. These values are used as indexes for the bitmaps
* array of struct qfq_queue.
*/
enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
struct qfq_group;
struct qfq_aggregate;
struct qfq_class {
struct Qdisc_class_common common;
struct gnet_stats_basic_sync bstats;
struct gnet_stats_queue qstats;
struct net_rate_estimator __rcu *rate_est;
struct Qdisc *qdisc;
struct list_head alist; /* Link for active-classes list. */
struct qfq_aggregate *agg; /* Parent aggregate. */
int deficit; /* DRR deficit counter. */
};
struct qfq_aggregate {
struct hlist_node next; /* Link for the slot list. */
u64 S, F; /* flow timestamps (exact) */
/* group we belong to. In principle we would need the index,
* which is log_2(lmax/weight), but we never reference it
* directly, only the group.
*/
struct qfq_group *grp;
/* these are copied from the flowset. */
u32 class_weight; /* Weight of each class in this aggregate. */
/* Max pkt size for the classes in this aggregate, DRR quantum. */
int lmax;
u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
u32 budgetmax; /* Max budget for this aggregate. */
u32 initial_budget, budget; /* Initial and current budget. */
int num_classes; /* Number of classes in this aggr. */
struct list_head active; /* DRR queue of active classes. */
struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
};
struct qfq_group {
u64 S, F; /* group timestamps (approx). */
unsigned int slot_shift; /* Slot shift. */
unsigned int index; /* Group index. */
unsigned int front; /* Index of the front slot. */
unsigned long full_slots; /* non-empty slots */
/* Array of RR lists of active aggregates. */
struct hlist_head slots[QFQ_MAX_SLOTS];
};
struct qfq_sched {
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
struct Qdisc_class_hash clhash;
u64 oldV, V; /* Precise virtual times. */
struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
u32 wsum; /* weight sum */
u32 iwsum; /* inverse weight sum */
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
u32 max_agg_classes; /* Max number of classes per aggr. */
struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
};
/*
* Possible reasons why the timestamps of an aggregate are updated
* enqueue: the aggregate switches from idle to active and must scheduled
* for service
* requeue: the aggregate finishes its budget, so it stops being served and
* must be rescheduled for service
*/
enum update_reason {enqueue, requeue};
static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
{
struct qfq_sched *q = qdisc_priv(sch);
struct Qdisc_class_common *clc;
clc = qdisc_class_find(&q->clhash, classid);
if (clc == NULL)
return NULL;
return container_of(clc, struct qfq_class, common);
}
static struct netlink_range_validation lmax_range = {
.min = QFQ_MIN_LMAX,
.max = QFQ_MAX_LMAX,
};
static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
[TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
[TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
};
/*
* Calculate a flow index, given its weight and maximum packet length.
* index = log_2(maxlen/weight) but we need to apply the scaling.
* This is used only once at flow creation.
*/
static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
{
u64 slot_size = (u64)maxlen * inv_w;
unsigned long size_map;
int index = 0;
size_map = slot_size >> min_slot_shift;
if (!size_map)
goto out;
index = __fls(size_map) + 1; /* basically a log_2 */
index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
if (index < 0)
index = 0;
out:
pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
(unsigned long) ONE_FP/inv_w, maxlen, index);
return index;
}
static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
enum update_reason);
static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
u32 lmax, u32 weight)
{
INIT_LIST_HEAD(&agg->active);
hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
agg->lmax = lmax;
agg->class_weight = weight;
}
static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
u32 lmax, u32 weight)
{
struct qfq_aggregate *agg;
hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
if (agg->lmax == lmax && agg->class_weight == weight)
return agg;
return NULL;
}
/* Update aggregate as a function of the new number of classes. */
static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
int new_num_classes)
{
u32 new_agg_weight;
if (new_num_classes == q->max_agg_classes)
hlist_del_init(&agg->nonfull_next);
if (agg->num_classes > new_num_classes &&
new_num_classes == q->max_agg_classes - 1) /* agg no more full */
hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
/* The next assignment may let
* agg->initial_budget > agg->budgetmax
* hold, we will take it into account in charge_actual_service().
*/
agg->budgetmax = new_num_classes * agg->lmax;
new_agg_weight = agg->class_weight * new_num_classes;
agg->inv_w = ONE_FP/new_agg_weight;
if (agg->grp == NULL) {
int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
q->min_slot_shift);
agg->grp = &q->groups[i];
}
q->wsum +=
(int) agg->class_weight * (new_num_classes - agg->num_classes);
q->iwsum = ONE_FP / q->wsum;
agg->num_classes = new_num_classes;
}
/* Add class to aggregate. */
static void qfq_add_to_agg(struct qfq_sched *q,
struct qfq_aggregate *agg,
struct qfq_class *cl)
{
cl->agg = agg;
qfq_update_agg(q, agg, agg->num_classes+1);
if (cl->qdisc->q.qlen > 0) { /* adding an active class */
list_add_tail(&cl->alist, &agg->active);
if (list_first_entry(&agg->active, struct qfq_class, alist) ==
cl && q->in_serv_agg != agg) /* agg was inactive */
qfq_activate_agg(q, agg, enqueue); /* schedule agg */
}
}
static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
{
hlist_del_init(&agg->nonfull_next);
q->wsum -= agg->class_weight;
if (q->wsum != 0)
q->iwsum = ONE_FP / q->wsum;
if (q->in_serv_agg == agg)
q->in_serv_agg = qfq_choose_next_agg(q);
kfree(agg);
}
/* Deschedule class from within its parent aggregate. */
static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
{
struct qfq_aggregate *agg = cl->agg;
list_del(&cl->alist); /* remove from RR queue of the aggregate */
if (list_empty(&agg->active)) /* agg is now inactive */
qfq_deactivate_agg(q, agg);
}
/* Remove class from its parent aggregate. */
static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
{
struct qfq_aggregate *agg = cl->agg;
cl->agg = NULL;
if (agg->num_classes == 1) { /* agg being emptied, destroy it */
qfq_destroy_agg(q, agg);
return;
}
qfq_update_agg(q, agg, agg->num_classes-1);
}
/* Deschedule class and remove it from its parent aggregate. */
static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
{
if (cl->qdisc->q.qlen > 0) /* class is active */
qfq_deactivate_class(q, cl);
qfq_rm_from_agg(q, cl);
}
/* Move class to a new aggregate, matching the new class weight and/or lmax */
static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
u32 lmax)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_aggregate *new_agg;
/* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
if (lmax > QFQ_MAX_LMAX)
return -EINVAL;
new_agg = qfq_find_agg(q, lmax, weight);
if (new_agg == NULL) { /* create new aggregate */
new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
if (new_agg == NULL)
return -ENOBUFS;
qfq_init_agg(q, new_agg, lmax, weight);
}
qfq_deact_rm_from_agg(q, cl);
qfq_add_to_agg(q, new_agg, cl);
return 0;
}
static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
struct nlattr **tca, unsigned long *arg,
struct netlink_ext_ack *extack)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl = (struct qfq_class *)*arg;
bool existing = false;
struct nlattr *tb[TCA_QFQ_MAX + 1];
struct qfq_aggregate *new_agg = NULL;
u32 weight, lmax, inv_w;
int err;
int delta_w;
if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
NL_SET_ERR_MSG_MOD(extack, "missing options");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
qfq_policy, extack);
if (err < 0)
return err;
if (tb[TCA_QFQ_WEIGHT])
weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
else
weight = 1;
if (tb[TCA_QFQ_LMAX]) {
lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
} else {
/* MTU size is user controlled */
lmax = psched_mtu(qdisc_dev(sch));
if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
NL_SET_ERR_MSG_MOD(extack,
"MTU size out of bounds for qfq");
return -EINVAL;
}
}
inv_w = ONE_FP / weight;
weight = ONE_FP / inv_w;
if (cl != NULL &&
lmax == cl->agg->lmax &&
weight == cl->agg->class_weight)
return 0; /* nothing to change */
delta_w = weight - (cl ? cl->agg->class_weight : 0);
if (q->wsum + delta_w > QFQ_MAX_WSUM) {
NL_SET_ERR_MSG_FMT_MOD(extack,
"total weight out of range (%d + %u)\n",
delta_w, q->wsum);
return -EINVAL;
}
if (cl != NULL) { /* modify existing class */
if (tca[TCA_RATE]) {
err = gen_replace_estimator(&cl->bstats, NULL,
&cl->rate_est,
NULL,
true,
tca[TCA_RATE]);
if (err)
return err;
}
existing = true;
goto set_change_agg;
}
/* create and init new class */
cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
if (cl == NULL)
return -ENOBUFS;
gnet_stats_basic_sync_init(&cl->bstats);
cl->common.classid = classid;
cl->deficit = lmax;
cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
classid, NULL);
if (cl->qdisc == NULL)
cl->qdisc = &noop_qdisc;
if (tca[TCA_RATE]) {
err = gen_new_estimator(&cl->bstats, NULL,
&cl->rate_est,
NULL,
true,
tca[TCA_RATE]);
if (err)
goto destroy_class;
}
if (cl->qdisc != &noop_qdisc)
qdisc_hash_add(cl->qdisc, true);
set_change_agg:
sch_tree_lock(sch);
new_agg = qfq_find_agg(q, lmax, weight);
if (new_agg == NULL) { /* create new aggregate */
sch_tree_unlock(sch);
new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
if (new_agg == NULL) {
err = -ENOBUFS;
gen_kill_estimator(&cl->rate_est);
goto destroy_class;
}
sch_tree_lock(sch);
qfq_init_agg(q, new_agg, lmax, weight);
}
if (existing)
qfq_deact_rm_from_agg(q, cl);
else
qdisc_class_hash_insert(&q->clhash, &cl->common);
qfq_add_to_agg(q, new_agg, cl);
sch_tree_unlock(sch);
qdisc_class_hash_grow(sch, &q->clhash);
*arg = (unsigned long)cl;
return 0;
destroy_class:
qdisc_put(cl->qdisc);
kfree(cl);
return err;
}
static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
{
struct qfq_sched *q = qdisc_priv(sch);
qfq_rm_from_agg(q, cl);
gen_kill_estimator(&cl->rate_est);
qdisc_put(cl->qdisc);
kfree(cl);
}
static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
struct netlink_ext_ack *extack)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl = (struct qfq_class *)arg;
if (qdisc_class_in_use(&cl->common)) {
NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
return -EBUSY;
}
sch_tree_lock(sch);
qdisc_purge_queue(cl->qdisc);
qdisc_class_hash_remove(&q->clhash, &cl->common);
sch_tree_unlock(sch);
qfq_destroy_class(sch, cl);
return 0;
}
static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
{
return (unsigned long)qfq_find_class(sch, classid);
}
static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct qfq_sched *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
struct qfq_class *cl = qfq_find_class(sch, classid);
if (cl)
qdisc_class_get(&cl->common);
return (unsigned long)cl;
}
static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
{
struct qfq_class *cl = (struct qfq_class *)arg;
qdisc_class_put(&cl->common);
}
static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
struct Qdisc *new, struct Qdisc **old,
struct netlink_ext_ack *extack)
{
struct qfq_class *cl = (struct qfq_class *)arg;
if (new == NULL) {
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
cl->common.classid, NULL);
if (new == NULL)
new = &noop_qdisc;
}
*old = qdisc_replace(sch, new, &cl->qdisc);
return 0;
}
static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
{
struct qfq_class *cl = (struct qfq_class *)arg;
return cl->qdisc;
}
static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
struct sk_buff *skb, struct tcmsg *tcm)
{
struct qfq_class *cl = (struct qfq_class *)arg;
struct nlattr *nest;
tcm->tcm_parent = TC_H_ROOT;
tcm->tcm_handle = cl->common.classid;
tcm->tcm_info = cl->qdisc->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
struct gnet_dump *d)
{
struct qfq_class *cl = (struct qfq_class *)arg;
struct tc_qfq_stats xstats;
memset(&xstats, 0, sizeof(xstats));
xstats.weight = cl->agg->class_weight;
xstats.lmax = cl->agg->lmax;
if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
qdisc_qstats_copy(d, cl->qdisc) < 0)
return -1;
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}
static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl;
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
return;
}
}
}
static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl;
struct tcf_result res;
struct tcf_proto *fl;
int result;
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
pr_debug("qfq_classify: found %d\n", skb->priority);
cl = qfq_find_class(sch, skb->priority);
if (cl != NULL)
return cl;
}
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
fl = rcu_dereference_bh(q->filter_list);
result = tcf_classify(skb, NULL, fl, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_QUEUED:
case TC_ACT_STOLEN:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return NULL;
}
#endif
cl = (struct qfq_class *)res.class;
if (cl == NULL)
cl = qfq_find_class(sch, res.classid);
return cl;
}
return NULL;
}
/* Generic comparison function, handling wraparound. */
static inline int qfq_gt(u64 a, u64 b)
{
return (s64)(a - b) > 0;
}
/* Round a precise timestamp to its slotted value. */
static inline u64 qfq_round_down(u64 ts, unsigned int shift)
{
return ts & ~((1ULL << shift) - 1);
}
/* return the pointer to the group with lowest index in the bitmap */
static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
unsigned long bitmap)
{
int index = __ffs(bitmap);
return &q->groups[index];
}
/* Calculate a mask to mimic what would be ffs_from(). */
static inline unsigned long mask_from(unsigned long bitmap, int from)
{
return bitmap & ~((1UL << from) - 1);
}
/*
* The state computation relies on ER=0, IR=1, EB=2, IB=3
* First compute eligibility comparing grp->S, q->V,
* then check if someone is blocking us and possibly add EB
*/
static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
{
/* if S > V we are not eligible */
unsigned int state = qfq_gt(grp->S, q->V);
unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
struct qfq_group *next;
if (mask) {
next = qfq_ffs(q, mask);
if (qfq_gt(grp->F, next->F))
state |= EB;
}
return state;
}
/*
* In principle
* q->bitmaps[dst] |= q->bitmaps[src] & mask;
* q->bitmaps[src] &= ~mask;
* but we should make sure that src != dst
*/
static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
int src, int dst)
{
q->bitmaps[dst] |= q->bitmaps[src] & mask;
q->bitmaps[src] &= ~mask;
}
static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
{
unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
struct qfq_group *next;
if (mask) {
next = qfq_ffs(q, mask);
if (!qfq_gt(next->F, old_F))
return;
}
mask = (1UL << index) - 1;
qfq_move_groups(q, mask, EB, ER);
qfq_move_groups(q, mask, IB, IR);
}
/*
* perhaps
*
old_V ^= q->V;
old_V >>= q->min_slot_shift;
if (old_V) {
...
}
*
*/
static void qfq_make_eligible(struct qfq_sched *q)
{
unsigned long vslot = q->V >> q->min_slot_shift;
unsigned long old_vslot = q->oldV >> q->min_slot_shift;
if (vslot != old_vslot) {
unsigned long mask;
int last_flip_pos = fls(vslot ^ old_vslot);
if (last_flip_pos > 31) /* higher than the number of groups */
mask = ~0UL; /* make all groups eligible */
else
mask = (1UL << last_flip_pos) - 1;
qfq_move_groups(q, mask, IR, ER);
qfq_move_groups(q, mask, IB, EB);
}
}
/*
* The index of the slot in which the input aggregate agg is to be
* inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
* and not a '-1' because the start time of the group may be moved
* backward by one slot after the aggregate has been inserted, and
* this would cause non-empty slots to be right-shifted by one
* position.
*
* QFQ+ fully satisfies this bound to the slot index if the parameters
* of the classes are not changed dynamically, and if QFQ+ never
* happens to postpone the service of agg unjustly, i.e., it never
* happens that the aggregate becomes backlogged and eligible, or just
* eligible, while an aggregate with a higher approximated finish time
* is being served. In particular, in this case QFQ+ guarantees that
* the timestamps of agg are low enough that the slot index is never
* higher than 2. Unfortunately, QFQ+ cannot provide the same
* guarantee if it happens to unjustly postpone the service of agg, or
* if the parameters of some class are changed.
*
* As for the first event, i.e., an out-of-order service, the
* upper bound to the slot index guaranteed by QFQ+ grows to
* 2 +
* QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
* (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
*
* The following function deals with this problem by backward-shifting
* the timestamps of agg, if needed, so as to guarantee that the slot
* index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
* cause the service of other aggregates to be postponed, yet the
* worst-case guarantees of these aggregates are not violated. In
* fact, in case of no out-of-order service, the timestamps of agg
* would have been even lower than they are after the backward shift,
* because QFQ+ would have guaranteed a maximum value equal to 2 for
* the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
* service is postponed because of the backward-shift would have
* however waited for the service of agg before being served.
*
* The other event that may cause the slot index to be higher than 2
* for agg is a recent change of the parameters of some class. If the
* weight of a class is increased or the lmax (max_pkt_size) of the
* class is decreased, then a new aggregate with smaller slot size
* than the original parent aggregate of the class may happen to be
* activated. The activation of this aggregate should be properly
* delayed to when the service of the class has finished in the ideal
* system tracked by QFQ+. If the activation of the aggregate is not
* delayed to this reference time instant, then this aggregate may be
* unjustly served before other aggregates waiting for service. This
* may cause the above bound to the slot index to be violated for some
* of these unlucky aggregates.
*
* Instead of delaying the activation of the new aggregate, which is
* quite complex, the above-discussed capping of the slot index is
* used to handle also the consequences of a change of the parameters
* of a class.
*/
static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
u64 roundedS)
{
u64 slot = (roundedS - grp->S) >> grp->slot_shift;
unsigned int i; /* slot index in the bucket list */
if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
u64 deltaS = roundedS - grp->S -
((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
agg->S -= deltaS;
agg->F -= deltaS;
slot = QFQ_MAX_SLOTS - 2;
}
i = (grp->front + slot) % QFQ_MAX_SLOTS;
hlist_add_head(&agg->next, &grp->slots[i]);
__set_bit(slot, &grp->full_slots);
}
/* Maybe introduce hlist_first_entry?? */
static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
{
return hlist_entry(grp->slots[grp->front].first,
struct qfq_aggregate, next);
}
/*
* remove the entry from the slot
*/
static void qfq_front_slot_remove(struct qfq_group *grp)
{
struct qfq_aggregate *agg = qfq_slot_head(grp);
BUG_ON(!agg);
hlist_del(&agg->next);
if (hlist_empty(&grp->slots[grp->front]))
__clear_bit(0, &grp->full_slots);
}
/*
* Returns the first aggregate in the first non-empty bucket of the
* group. As a side effect, adjusts the bucket list so the first
* non-empty bucket is at position 0 in full_slots.
*/
static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
{
unsigned int i;
pr_debug("qfq slot_scan: grp %u full %#lx\n",
grp->index, grp->full_slots);
if (grp->full_slots == 0)
return NULL;
i = __ffs(grp->full_slots); /* zero based */
if (i > 0) {
grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
grp->full_slots >>= i;
}
return qfq_slot_head(grp);
}
/*
* adjust the bucket list. When the start time of a group decreases,
* we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
* move the objects. The mask of occupied slots must be shifted
* because we use ffs() to find the first non-empty slot.
* This covers decreases in the group's start time, but what about
* increases of the start time ?
* Here too we should make sure that i is less than 32
*/
static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
{
unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
grp->full_slots <<= i;
grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
}
static void qfq_update_eligible(struct qfq_sched *q)
{
struct qfq_group *grp;
unsigned long ineligible;
ineligible = q->bitmaps[IR] | q->bitmaps[IB];
if (ineligible) {
if (!q->bitmaps[ER]) {
grp = qfq_ffs(q, ineligible);
if (qfq_gt(grp->S, q->V))
q->V = grp->S;
}
qfq_make_eligible(q);
}
}
/* Dequeue head packet of the head class in the DRR queue of the aggregate. */
static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
struct qfq_class *cl, unsigned int len)
{
struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
if (!skb)
return NULL;
cl->deficit -= (int) len;
if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
list_del(&cl->alist);
else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
cl->deficit += agg->lmax;
list_move_tail(&cl->alist, &agg->active);
}
return skb;
}
static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
struct qfq_class **cl,
unsigned int *len)
{
struct sk_buff *skb;
*cl = list_first_entry(&agg->active, struct qfq_class, alist);
skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
if (skb == NULL)
WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
else
*len = qdisc_pkt_len(skb);
return skb;
}
/* Update F according to the actual service received by the aggregate. */
static inline void charge_actual_service(struct qfq_aggregate *agg)
{
/* Compute the service received by the aggregate, taking into
* account that, after decreasing the number of classes in
* agg, it may happen that
* agg->initial_budget - agg->budget > agg->bugdetmax
*/
u32 service_received = min(agg->budgetmax,
agg->initial_budget - agg->budget);
agg->F = agg->S + (u64)service_received * agg->inv_w;
}
/* Assign a reasonable start time for a new aggregate in group i.
* Admissible values for \hat(F) are multiples of \sigma_i
* no greater than V+\sigma_i . Larger values mean that
* we had a wraparound so we consider the timestamp to be stale.
*
* If F is not stale and F >= V then we set S = F.
* Otherwise we should assign S = V, but this may violate
* the ordering in EB (see [2]). So, if we have groups in ER,
* set S to the F_j of the first group j which would be blocking us.
* We are guaranteed not to move S backward because
* otherwise our group i would still be blocked.
*/
static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
{
unsigned long mask;
u64 limit, roundedF;
int slot_shift = agg->grp->slot_shift;
roundedF = qfq_round_down(agg->F, slot_shift);
limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
/* timestamp was stale */
mask = mask_from(q->bitmaps[ER], agg->grp->index);
if (mask) {
struct qfq_group *next = qfq_ffs(q, mask);
if (qfq_gt(roundedF, next->F)) {
if (qfq_gt(limit, next->F))
agg->S = next->F;
else /* preserve timestamp correctness */
agg->S = limit;
return;
}
}
agg->S = q->V;
} else /* timestamp is not stale */
agg->S = agg->F;
}
/* Update the timestamps of agg before scheduling/rescheduling it for
* service. In particular, assign to agg->F its maximum possible
* value, i.e., the virtual finish time with which the aggregate
* should be labeled if it used all its budget once in service.
*/
static inline void
qfq_update_agg_ts(struct qfq_sched *q,
struct qfq_aggregate *agg, enum update_reason reason)
{
if (reason != requeue)
qfq_update_start(q, agg);
else /* just charge agg for the service received */
agg->S = agg->F;
agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
}
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
struct qfq_class *cl;
struct sk_buff *skb = NULL;
/* next-packet len, 0 means no more active classes in in-service agg */
unsigned int len = 0;
if (in_serv_agg == NULL)
return NULL;
if (!list_empty(&in_serv_agg->active))
skb = qfq_peek_skb(in_serv_agg, &cl, &len);
/*
* If there are no active classes in the in-service aggregate,
* or if the aggregate has not enough budget to serve its next
* class, then choose the next aggregate to serve.
*/
if (len == 0 || in_serv_agg->budget < len) {
charge_actual_service(in_serv_agg);
/* recharge the budget of the aggregate */
in_serv_agg->initial_budget = in_serv_agg->budget =
in_serv_agg->budgetmax;
if (!list_empty(&in_serv_agg->active)) {
/*
* Still active: reschedule for
* service. Possible optimization: if no other
* aggregate is active, then there is no point
* in rescheduling this aggregate, and we can
* just keep it as the in-service one. This
* should be however a corner case, and to
* handle it, we would need to maintain an
* extra num_active_aggs field.
*/
qfq_update_agg_ts(q, in_serv_agg, requeue);
qfq_schedule_agg(q, in_serv_agg);
} else if (sch->q.qlen == 0) { /* no aggregate to serve */
q->in_serv_agg = NULL;
return NULL;
}
/*
* If we get here, there are other aggregates queued:
* choose the new aggregate to serve.
*/
in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
skb = qfq_peek_skb(in_serv_agg, &cl, &len);
}
if (!skb)
return NULL;
sch->q.qlen--;
skb = agg_dequeue(in_serv_agg, cl, len);
if (!skb) {
sch->q.qlen++;
return NULL;
}
qdisc_qstats_backlog_dec(sch, skb);
qdisc_bstats_update(sch, skb);
/* If lmax is lowered, through qfq_change_class, for a class
* owning pending packets with larger size than the new value
* of lmax, then the following condition may hold.
*/
if (unlikely(in_serv_agg->budget < len))
in_serv_agg->budget = 0;
else
in_serv_agg->budget -= len;
q->V += (u64)len * q->iwsum;
pr_debug("qfq dequeue: len %u F %lld now %lld\n",
len, (unsigned long long) in_serv_agg->F,
(unsigned long long) q->V);
return skb;
}
static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
{
struct qfq_group *grp;
struct qfq_aggregate *agg, *new_front_agg;
u64 old_F;
qfq_update_eligible(q);
q->oldV = q->V;
if (!q->bitmaps[ER])
return NULL;
grp = qfq_ffs(q, q->bitmaps[ER]);
old_F = grp->F;
agg = qfq_slot_head(grp);
/* agg starts to be served, remove it from schedule */
qfq_front_slot_remove(grp);
new_front_agg = qfq_slot_scan(grp);
if (new_front_agg == NULL) /* group is now inactive, remove from ER */
__clear_bit(grp->index, &q->bitmaps[ER]);
else {
u64 roundedS = qfq_round_down(new_front_agg->S,
grp->slot_shift);
unsigned int s;
if (grp->S == roundedS)
return agg;
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift);
__clear_bit(grp->index, &q->bitmaps[ER]);
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
}
qfq_unblock_groups(q, grp->index, old_F);
return agg;
}
static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
unsigned int len = qdisc_pkt_len(skb), gso_segs;
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl;
struct qfq_aggregate *agg;
int err = 0;
bool first;
cl = qfq_classify(skb, sch, &err);
if (cl == NULL) {
if (err & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return err;
}
pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
if (unlikely(cl->agg->lmax < len)) {
pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
cl->agg->lmax, len, cl->common.classid);
err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
if (err) {
cl->qstats.drops++;
return qdisc_drop(skb, sch, to_free);
}
}
gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
first = !cl->qdisc->q.qlen;
err = qdisc_enqueue(skb, cl->qdisc, to_free);
if (unlikely(err != NET_XMIT_SUCCESS)) {
pr_debug("qfq_enqueue: enqueue failed %d\n", err);
if (net_xmit_drop_count(err)) {
cl->qstats.drops++;
qdisc_qstats_drop(sch);
}
return err;
}
_bstats_update(&cl->bstats, len, gso_segs);
sch->qstats.backlog += len;
++sch->q.qlen;
agg = cl->agg;
/* if the queue was not empty, then done here */
if (!first) {
if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
list_first_entry(&agg->active, struct qfq_class, alist)
== cl && cl->deficit < len)
list_move_tail(&cl->alist, &agg->active);
return err;
}
/* schedule class for service within the aggregate */
cl->deficit = agg->lmax;
list_add_tail(&cl->alist, &agg->active);
if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
q->in_serv_agg == agg)
return err; /* non-empty or in service, nothing else to do */
qfq_activate_agg(q, agg, enqueue);
return err;
}
/*
* Schedule aggregate according to its timestamps.
*/
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
{
struct qfq_group *grp = agg->grp;
u64 roundedS;
int s;
roundedS = qfq_round_down(agg->S, grp->slot_shift);
/*
* Insert agg in the correct bucket.
* If agg->S >= grp->S we don't need to adjust the
* bucket list and simply go to the insertion phase.
* Otherwise grp->S is decreasing, we must make room
* in the bucket list, and also recompute the group state.
* Finally, if there were no flows in this group and nobody
* was in ER make sure to adjust V.
*/
if (grp->full_slots) {
if (!qfq_gt(grp->S, agg->S))
goto skip_update;
/* create a slot for this agg->S */
qfq_slot_rotate(grp, roundedS);
/* group was surely ineligible, remove */
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[IB]);
} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
q->in_serv_agg == NULL)
q->V = roundedS;
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift);
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
s, q->bitmaps[s],
(unsigned long long) agg->S,
(unsigned long long) agg->F,
(unsigned long long) q->V);
skip_update:
qfq_slot_insert(grp, agg, roundedS);
}
/* Update agg ts and schedule agg for service */
static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
enum update_reason reason)
{
agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
qfq_update_agg_ts(q, agg, reason);
if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
q->in_serv_agg = agg; /* start serving this aggregate */
/* update V: to be in service, agg must be eligible */
q->oldV = q->V = agg->S;
} else if (agg != q->in_serv_agg)
qfq_schedule_agg(q, agg);
}
static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
struct qfq_aggregate *agg)
{
unsigned int i, offset;
u64 roundedS;
roundedS = qfq_round_down(agg->S, grp->slot_shift);
offset = (roundedS - grp->S) >> grp->slot_shift;
i = (grp->front + offset) % QFQ_MAX_SLOTS;
hlist_del(&agg->next);
if (hlist_empty(&grp->slots[i]))
__clear_bit(offset, &grp->full_slots);
}
/*
* Called to forcibly deschedule an aggregate. If the aggregate is
* not in the front bucket, or if the latter has other aggregates in
* the front bucket, we can simply remove the aggregate with no other
* side effects.
* Otherwise we must propagate the event up.
*/
static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
{
struct qfq_group *grp = agg->grp;
unsigned long mask;
u64 roundedS;
int s;
if (agg == q->in_serv_agg) {
charge_actual_service(agg);
q->in_serv_agg = qfq_choose_next_agg(q);
return;
}
agg->F = agg->S;
qfq_slot_remove(q, grp, agg);
if (!grp->full_slots) {
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[EB]);
__clear_bit(grp->index, &q->bitmaps[IB]);
if (test_bit(grp->index, &q->bitmaps[ER]) &&
!(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
if (mask)
mask = ~((1UL << __fls(mask)) - 1);
else
mask = ~0UL;
qfq_move_groups(q, mask, EB, ER);
qfq_move_groups(q, mask, IB, IR);
}
__clear_bit(grp->index, &q->bitmaps[ER]);
} else if (hlist_empty(&grp->slots[grp->front])) {
agg = qfq_slot_scan(grp);
roundedS = qfq_round_down(agg->S, grp->slot_shift);
if (grp->S != roundedS) {
__clear_bit(grp->index, &q->bitmaps[ER]);
__clear_bit(grp->index, &q->bitmaps[IR]);
__clear_bit(grp->index, &q->bitmaps[EB]);
__clear_bit(grp->index, &q->bitmaps[IB]);
grp->S = roundedS;
grp->F = roundedS + (2ULL << grp->slot_shift);
s = qfq_calc_state(q, grp);
__set_bit(grp->index, &q->bitmaps[s]);
}
}
}
static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl = (struct qfq_class *)arg;
qfq_deactivate_class(q, cl);
}
static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_group *grp;
int i, j, err;
u32 max_cl_shift, maxbudg_shift, max_classes;
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
err = qdisc_class_hash_init(&q->clhash);
if (err < 0)
return err;
max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
QFQ_MAX_AGG_CLASSES);
/* max_cl_shift = floor(log_2(max_classes)) */
max_cl_shift = __fls(max_classes);
q->max_agg_classes = 1<<max_cl_shift;
/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
grp = &q->groups[i];
grp->index = i;
grp->slot_shift = q->min_slot_shift + i;
for (j = 0; j < QFQ_MAX_SLOTS; j++)
INIT_HLIST_HEAD(&grp->slots[j]);
}
INIT_HLIST_HEAD(&q->nonfull_aggs);
return 0;
}
static void qfq_reset_qdisc(struct Qdisc *sch)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl;
unsigned int i;
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
if (cl->qdisc->q.qlen > 0)
qfq_deactivate_class(q, cl);
qdisc_reset(cl->qdisc);
}
}
}
static void qfq_destroy_qdisc(struct Qdisc *sch)
{
struct qfq_sched *q = qdisc_priv(sch);
struct qfq_class *cl;
struct hlist_node *next;
unsigned int i;
tcf_block_put(q->block);
for (i = 0; i < q->clhash.hashsize; i++) {
hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
common.hnode) {
qfq_destroy_class(sch, cl);
}
}
qdisc_class_hash_destroy(&q->clhash);
}
static const struct Qdisc_class_ops qfq_class_ops = {
.change = qfq_change_class,
.delete = qfq_delete_class,
.find = qfq_search_class,
.tcf_block = qfq_tcf_block,
.bind_tcf = qfq_bind_tcf,
.unbind_tcf = qfq_unbind_tcf,
.graft = qfq_graft_class,
.leaf = qfq_class_leaf,
.qlen_notify = qfq_qlen_notify,
.dump = qfq_dump_class,
.dump_stats = qfq_dump_class_stats,
.walk = qfq_walk,
};
static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
.cl_ops = &qfq_class_ops,
.id = "qfq",
.priv_size = sizeof(struct qfq_sched),
.enqueue = qfq_enqueue,
.dequeue = qfq_dequeue,
.peek = qdisc_peek_dequeued,
.init = qfq_init_qdisc,
.reset = qfq_reset_qdisc,
.destroy = qfq_destroy_qdisc,
.owner = THIS_MODULE,
};
static int __init qfq_init(void)
{
return register_qdisc(&qfq_qdisc_ops);
}
static void __exit qfq_exit(void)
{
unregister_qdisc(&qfq_qdisc_ops);
}
module_init(qfq_init);
module_exit(qfq_exit);
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_qfq.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* net/sched/sch_teql.c "True" (or "trivial") link equalizer.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/moduleparam.h>
#include <net/dst.h>
#include <net/neighbour.h>
#include <net/pkt_sched.h>
/*
How to setup it.
----------------
After loading this module you will find a new device teqlN
and new qdisc with the same name. To join a slave to the equalizer
you should just set this qdisc on a device f.e.
# tc qdisc add dev eth0 root teql0
# tc qdisc add dev eth1 root teql0
That's all. Full PnP 8)
Applicability.
--------------
1. Slave devices MUST be active devices, i.e., they must raise the tbusy
signal and generate EOI events. If you want to equalize virtual devices
like tunnels, use a normal eql device.
2. This device puts no limitations on physical slave characteristics
f.e. it will equalize 9600baud line and 100Mb ethernet perfectly :-)
Certainly, large difference in link speeds will make the resulting
eqalized link unusable, because of huge packet reordering.
I estimate an upper useful difference as ~10 times.
3. If the slave requires address resolution, only protocols using
neighbour cache (IPv4/IPv6) will work over the equalized link.
Other protocols are still allowed to use the slave device directly,
which will not break load balancing, though native slave
traffic will have the highest priority. */
struct teql_master {
struct Qdisc_ops qops;
struct net_device *dev;
struct Qdisc *slaves;
struct list_head master_list;
unsigned long tx_bytes;
unsigned long tx_packets;
unsigned long tx_errors;
unsigned long tx_dropped;
};
struct teql_sched_data {
struct Qdisc *next;
struct teql_master *m;
struct sk_buff_head q;
};
#define NEXT_SLAVE(q) (((struct teql_sched_data *)qdisc_priv(q))->next)
#define FMASK (IFF_BROADCAST | IFF_POINTOPOINT)
/* "teql*" qdisc routines */
static int
teql_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
{
struct net_device *dev = qdisc_dev(sch);
struct teql_sched_data *q = qdisc_priv(sch);
if (q->q.qlen < dev->tx_queue_len) {
__skb_queue_tail(&q->q, skb);
return NET_XMIT_SUCCESS;
}
return qdisc_drop(skb, sch, to_free);
}
static struct sk_buff *
teql_dequeue(struct Qdisc *sch)
{
struct teql_sched_data *dat = qdisc_priv(sch);
struct netdev_queue *dat_queue;
struct sk_buff *skb;
struct Qdisc *q;
skb = __skb_dequeue(&dat->q);
dat_queue = netdev_get_tx_queue(dat->m->dev, 0);
q = rcu_dereference_bh(dat_queue->qdisc);
if (skb == NULL) {
struct net_device *m = qdisc_dev(q);
if (m) {
dat->m->slaves = sch;
netif_wake_queue(m);
}
} else {
qdisc_bstats_update(sch, skb);
}
sch->q.qlen = dat->q.qlen + q->q.qlen;
return skb;
}
static struct sk_buff *
teql_peek(struct Qdisc *sch)
{
/* teql is meant to be used as root qdisc */
return NULL;
}
static void
teql_reset(struct Qdisc *sch)
{
struct teql_sched_data *dat = qdisc_priv(sch);
skb_queue_purge(&dat->q);
}
static void
teql_destroy(struct Qdisc *sch)
{
struct Qdisc *q, *prev;
struct teql_sched_data *dat = qdisc_priv(sch);
struct teql_master *master = dat->m;
if (!master)
return;
prev = master->slaves;
if (prev) {
do {
q = NEXT_SLAVE(prev);
if (q == sch) {
NEXT_SLAVE(prev) = NEXT_SLAVE(q);
if (q == master->slaves) {
master->slaves = NEXT_SLAVE(q);
if (q == master->slaves) {
struct netdev_queue *txq;
spinlock_t *root_lock;
txq = netdev_get_tx_queue(master->dev, 0);
master->slaves = NULL;
root_lock = qdisc_root_sleeping_lock(rtnl_dereference(txq->qdisc));
spin_lock_bh(root_lock);
qdisc_reset(rtnl_dereference(txq->qdisc));
spin_unlock_bh(root_lock);
}
}
skb_queue_purge(&dat->q);
break;
}
} while ((prev = q) != master->slaves);
}
}
static int teql_qdisc_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct net_device *dev = qdisc_dev(sch);
struct teql_master *m = (struct teql_master *)sch->ops;
struct teql_sched_data *q = qdisc_priv(sch);
if (dev->hard_header_len > m->dev->hard_header_len)
return -EINVAL;
if (m->dev == dev)
return -ELOOP;
q->m = m;
skb_queue_head_init(&q->q);
if (m->slaves) {
if (m->dev->flags & IFF_UP) {
if ((m->dev->flags & IFF_POINTOPOINT &&
!(dev->flags & IFF_POINTOPOINT)) ||
(m->dev->flags & IFF_BROADCAST &&
!(dev->flags & IFF_BROADCAST)) ||
(m->dev->flags & IFF_MULTICAST &&
!(dev->flags & IFF_MULTICAST)) ||
dev->mtu < m->dev->mtu)
return -EINVAL;
} else {
if (!(dev->flags&IFF_POINTOPOINT))
m->dev->flags &= ~IFF_POINTOPOINT;
if (!(dev->flags&IFF_BROADCAST))
m->dev->flags &= ~IFF_BROADCAST;
if (!(dev->flags&IFF_MULTICAST))
m->dev->flags &= ~IFF_MULTICAST;
if (dev->mtu < m->dev->mtu)
m->dev->mtu = dev->mtu;
}
q->next = NEXT_SLAVE(m->slaves);
NEXT_SLAVE(m->slaves) = sch;
} else {
q->next = sch;
m->slaves = sch;
m->dev->mtu = dev->mtu;
m->dev->flags = (m->dev->flags&~FMASK)|(dev->flags&FMASK);
}
return 0;
}
static int
__teql_resolve(struct sk_buff *skb, struct sk_buff *skb_res,
struct net_device *dev, struct netdev_queue *txq,
struct dst_entry *dst)
{
struct neighbour *n;
int err = 0;
n = dst_neigh_lookup_skb(dst, skb);
if (!n)
return -ENOENT;
if (dst->dev != dev) {
struct neighbour *mn;
mn = __neigh_lookup_errno(n->tbl, n->primary_key, dev);
neigh_release(n);
if (IS_ERR(mn))
return PTR_ERR(mn);
n = mn;
}
if (neigh_event_send(n, skb_res) == 0) {
int err;
char haddr[MAX_ADDR_LEN];
neigh_ha_snapshot(haddr, n, dev);
err = dev_hard_header(skb, dev, ntohs(skb_protocol(skb, false)),
haddr, NULL, skb->len);
if (err < 0)
err = -EINVAL;
} else {
err = (skb_res == NULL) ? -EAGAIN : 1;
}
neigh_release(n);
return err;
}
static inline int teql_resolve(struct sk_buff *skb,
struct sk_buff *skb_res,
struct net_device *dev,
struct netdev_queue *txq)
{
struct dst_entry *dst = skb_dst(skb);
int res;
if (rcu_access_pointer(txq->qdisc) == &noop_qdisc)
return -ENODEV;
if (!dev->header_ops || !dst)
return 0;
rcu_read_lock();
res = __teql_resolve(skb, skb_res, dev, txq, dst);
rcu_read_unlock();
return res;
}
static netdev_tx_t teql_master_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct teql_master *master = netdev_priv(dev);
struct Qdisc *start, *q;
int busy;
int nores;
int subq = skb_get_queue_mapping(skb);
struct sk_buff *skb_res = NULL;
start = master->slaves;
restart:
nores = 0;
busy = 0;
q = start;
if (!q)
goto drop;
do {
struct net_device *slave = qdisc_dev(q);
struct netdev_queue *slave_txq = netdev_get_tx_queue(slave, 0);
if (rcu_access_pointer(slave_txq->qdisc_sleeping) != q)
continue;
if (netif_xmit_stopped(netdev_get_tx_queue(slave, subq)) ||
!netif_running(slave)) {
busy = 1;
continue;
}
switch (teql_resolve(skb, skb_res, slave, slave_txq)) {
case 0:
if (__netif_tx_trylock(slave_txq)) {
unsigned int length = qdisc_pkt_len(skb);
if (!netif_xmit_frozen_or_stopped(slave_txq) &&
netdev_start_xmit(skb, slave, slave_txq, false) ==
NETDEV_TX_OK) {
__netif_tx_unlock(slave_txq);
master->slaves = NEXT_SLAVE(q);
netif_wake_queue(dev);
master->tx_packets++;
master->tx_bytes += length;
return NETDEV_TX_OK;
}
__netif_tx_unlock(slave_txq);
}
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)))
busy = 1;
break;
case 1:
master->slaves = NEXT_SLAVE(q);
return NETDEV_TX_OK;
default:
nores = 1;
break;
}
__skb_pull(skb, skb_network_offset(skb));
} while ((q = NEXT_SLAVE(q)) != start);
if (nores && skb_res == NULL) {
skb_res = skb;
goto restart;
}
if (busy) {
netif_stop_queue(dev);
return NETDEV_TX_BUSY;
}
master->tx_errors++;
drop:
master->tx_dropped++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int teql_master_open(struct net_device *dev)
{
struct Qdisc *q;
struct teql_master *m = netdev_priv(dev);
int mtu = 0xFFFE;
unsigned int flags = IFF_NOARP | IFF_MULTICAST;
if (m->slaves == NULL)
return -EUNATCH;
flags = FMASK;
q = m->slaves;
do {
struct net_device *slave = qdisc_dev(q);
if (slave == NULL)
return -EUNATCH;
if (slave->mtu < mtu)
mtu = slave->mtu;
if (slave->hard_header_len > LL_MAX_HEADER)
return -EINVAL;
/* If all the slaves are BROADCAST, master is BROADCAST
If all the slaves are PtP, master is PtP
Otherwise, master is NBMA.
*/
if (!(slave->flags&IFF_POINTOPOINT))
flags &= ~IFF_POINTOPOINT;
if (!(slave->flags&IFF_BROADCAST))
flags &= ~IFF_BROADCAST;
if (!(slave->flags&IFF_MULTICAST))
flags &= ~IFF_MULTICAST;
} while ((q = NEXT_SLAVE(q)) != m->slaves);
m->dev->mtu = mtu;
m->dev->flags = (m->dev->flags&~FMASK) | flags;
netif_start_queue(m->dev);
return 0;
}
static int teql_master_close(struct net_device *dev)
{
netif_stop_queue(dev);
return 0;
}
static void teql_master_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct teql_master *m = netdev_priv(dev);
stats->tx_packets = m->tx_packets;
stats->tx_bytes = m->tx_bytes;
stats->tx_errors = m->tx_errors;
stats->tx_dropped = m->tx_dropped;
}
static int teql_master_mtu(struct net_device *dev, int new_mtu)
{
struct teql_master *m = netdev_priv(dev);
struct Qdisc *q;
q = m->slaves;
if (q) {
do {
if (new_mtu > qdisc_dev(q)->mtu)
return -EINVAL;
} while ((q = NEXT_SLAVE(q)) != m->slaves);
}
dev->mtu = new_mtu;
return 0;
}
static const struct net_device_ops teql_netdev_ops = {
.ndo_open = teql_master_open,
.ndo_stop = teql_master_close,
.ndo_start_xmit = teql_master_xmit,
.ndo_get_stats64 = teql_master_stats64,
.ndo_change_mtu = teql_master_mtu,
};
static __init void teql_master_setup(struct net_device *dev)
{
struct teql_master *master = netdev_priv(dev);
struct Qdisc_ops *ops = &master->qops;
master->dev = dev;
ops->priv_size = sizeof(struct teql_sched_data);
ops->enqueue = teql_enqueue;
ops->dequeue = teql_dequeue;
ops->peek = teql_peek;
ops->init = teql_qdisc_init;
ops->reset = teql_reset;
ops->destroy = teql_destroy;
ops->owner = THIS_MODULE;
dev->netdev_ops = &teql_netdev_ops;
dev->type = ARPHRD_VOID;
dev->mtu = 1500;
dev->min_mtu = 68;
dev->max_mtu = 65535;
dev->tx_queue_len = 100;
dev->flags = IFF_NOARP;
dev->hard_header_len = LL_MAX_HEADER;
netif_keep_dst(dev);
}
static LIST_HEAD(master_dev_list);
static int max_equalizers = 1;
module_param(max_equalizers, int, 0);
MODULE_PARM_DESC(max_equalizers, "Max number of link equalizers");
static int __init teql_init(void)
{
int i;
int err = -ENODEV;
for (i = 0; i < max_equalizers; i++) {
struct net_device *dev;
struct teql_master *master;
dev = alloc_netdev(sizeof(struct teql_master), "teql%d",
NET_NAME_UNKNOWN, teql_master_setup);
if (!dev) {
err = -ENOMEM;
break;
}
if ((err = register_netdev(dev))) {
free_netdev(dev);
break;
}
master = netdev_priv(dev);
strscpy(master->qops.id, dev->name, IFNAMSIZ);
err = register_qdisc(&master->qops);
if (err) {
unregister_netdev(dev);
free_netdev(dev);
break;
}
list_add_tail(&master->master_list, &master_dev_list);
}
return i ? 0 : err;
}
static void __exit teql_exit(void)
{
struct teql_master *master, *nxt;
list_for_each_entry_safe(master, nxt, &master_dev_list, master_list) {
list_del(&master->master_list);
unregister_qdisc(&master->qops);
unregister_netdev(master->dev);
free_netdev(master->dev);
}
}
module_init(teql_init);
module_exit(teql_exit);
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_teql.c |
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/* -
* net/sched/act_ct.c Connection Tracking action
*
* Authors: Paul Blakey <[email protected]>
* Yossi Kuperman <[email protected]>
* Marcelo Ricardo Leitner <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_cls.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/rhashtable.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/act_api.h>
#include <net/ip.h>
#include <net/ipv6_frag.h>
#include <uapi/linux/tc_act/tc_ct.h>
#include <net/tc_act/tc_ct.h>
#include <net/tc_wrapper.h>
#include <net/netfilter/nf_flow_table.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_acct.h>
#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
#include <net/netfilter/nf_conntrack_act_ct.h>
#include <net/netfilter/nf_conntrack_seqadj.h>
#include <uapi/linux/netfilter/nf_nat.h>
static struct workqueue_struct *act_ct_wq;
static struct rhashtable zones_ht;
static DEFINE_MUTEX(zones_mutex);
struct tcf_ct_flow_table {
struct rhash_head node; /* In zones tables */
struct rcu_work rwork;
struct nf_flowtable nf_ft;
refcount_t ref;
u16 zone;
bool dying;
};
static const struct rhashtable_params zones_params = {
.head_offset = offsetof(struct tcf_ct_flow_table, node),
.key_offset = offsetof(struct tcf_ct_flow_table, zone),
.key_len = sizeof_field(struct tcf_ct_flow_table, zone),
.automatic_shrinking = true,
};
static struct flow_action_entry *
tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action)
{
int i = flow_action->num_entries++;
return &flow_action->entries[i];
}
static void tcf_ct_add_mangle_action(struct flow_action *action,
enum flow_action_mangle_base htype,
u32 offset,
u32 mask,
u32 val)
{
struct flow_action_entry *entry;
entry = tcf_ct_flow_table_flow_action_get_next(action);
entry->id = FLOW_ACTION_MANGLE;
entry->mangle.htype = htype;
entry->mangle.mask = ~mask;
entry->mangle.offset = offset;
entry->mangle.val = val;
}
/* The following nat helper functions check if the inverted reverse tuple
* (target) is different then the current dir tuple - meaning nat for ports
* and/or ip is needed, and add the relevant mangle actions.
*/
static void
tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_tuple target,
struct flow_action *action)
{
if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
offsetof(struct iphdr, saddr),
0xFFFFFFFF,
be32_to_cpu(target.src.u3.ip));
if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4,
offsetof(struct iphdr, daddr),
0xFFFFFFFF,
be32_to_cpu(target.dst.u3.ip));
}
static void
tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action,
union nf_inet_addr *addr,
u32 offset)
{
int i;
for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++)
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6,
i * sizeof(u32) + offset,
0xFFFFFFFF, be32_to_cpu(addr->ip6[i]));
}
static void
tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_tuple target,
struct flow_action *action)
{
if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3)))
tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3,
offsetof(struct ipv6hdr,
saddr));
if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3)))
tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3,
offsetof(struct ipv6hdr,
daddr));
}
static void
tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_tuple target,
struct flow_action *action)
{
__be16 target_src = target.src.u.tcp.port;
__be16 target_dst = target.dst.u.tcp.port;
if (target_src != tuple->src.u.tcp.port)
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
offsetof(struct tcphdr, source),
0xFFFF, be16_to_cpu(target_src));
if (target_dst != tuple->dst.u.tcp.port)
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP,
offsetof(struct tcphdr, dest),
0xFFFF, be16_to_cpu(target_dst));
}
static void
tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple,
struct nf_conntrack_tuple target,
struct flow_action *action)
{
__be16 target_src = target.src.u.udp.port;
__be16 target_dst = target.dst.u.udp.port;
if (target_src != tuple->src.u.udp.port)
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
offsetof(struct udphdr, source),
0xFFFF, be16_to_cpu(target_src));
if (target_dst != tuple->dst.u.udp.port)
tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP,
offsetof(struct udphdr, dest),
0xFFFF, be16_to_cpu(target_dst));
}
static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct,
enum ip_conntrack_dir dir,
enum ip_conntrack_info ctinfo,
struct flow_action *action)
{
struct nf_conn_labels *ct_labels;
struct flow_action_entry *entry;
u32 *act_ct_labels;
entry = tcf_ct_flow_table_flow_action_get_next(action);
entry->id = FLOW_ACTION_CT_METADATA;
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
entry->ct_metadata.mark = READ_ONCE(ct->mark);
#endif
/* aligns with the CT reference on the SKB nf_ct_set */
entry->ct_metadata.cookie = (unsigned long)ct | ctinfo;
entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL;
act_ct_labels = entry->ct_metadata.labels;
ct_labels = nf_ct_labels_find(ct);
if (ct_labels)
memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE);
else
memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE);
}
static int tcf_ct_flow_table_add_action_nat(struct net *net,
struct nf_conn *ct,
enum ip_conntrack_dir dir,
struct flow_action *action)
{
const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple;
struct nf_conntrack_tuple target;
if (!(ct->status & IPS_NAT_MASK))
return 0;
nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple);
switch (tuple->src.l3num) {
case NFPROTO_IPV4:
tcf_ct_flow_table_add_action_nat_ipv4(tuple, target,
action);
break;
case NFPROTO_IPV6:
tcf_ct_flow_table_add_action_nat_ipv6(tuple, target,
action);
break;
default:
return -EOPNOTSUPP;
}
switch (nf_ct_protonum(ct)) {
case IPPROTO_TCP:
tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action);
break;
case IPPROTO_UDP:
tcf_ct_flow_table_add_action_nat_udp(tuple, target, action);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int tcf_ct_flow_table_fill_actions(struct net *net,
struct flow_offload *flow,
enum flow_offload_tuple_dir tdir,
struct nf_flow_rule *flow_rule)
{
struct flow_action *action = &flow_rule->rule->action;
int num_entries = action->num_entries;
struct nf_conn *ct = flow->ct;
enum ip_conntrack_info ctinfo;
enum ip_conntrack_dir dir;
int i, err;
switch (tdir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
dir = IP_CT_DIR_ORIGINAL;
ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
IP_CT_ESTABLISHED : IP_CT_NEW;
if (ctinfo == IP_CT_ESTABLISHED)
set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags);
break;
case FLOW_OFFLOAD_DIR_REPLY:
dir = IP_CT_DIR_REPLY;
ctinfo = IP_CT_ESTABLISHED_REPLY;
break;
default:
return -EOPNOTSUPP;
}
err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action);
if (err)
goto err_nat;
tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action);
return 0;
err_nat:
/* Clear filled actions */
for (i = num_entries; i < action->num_entries; i++)
memset(&action->entries[i], 0, sizeof(action->entries[i]));
action->num_entries = num_entries;
return err;
}
static struct nf_flowtable_type flowtable_ct = {
.action = tcf_ct_flow_table_fill_actions,
.owner = THIS_MODULE,
};
static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params)
{
struct tcf_ct_flow_table *ct_ft;
int err = -ENOMEM;
mutex_lock(&zones_mutex);
ct_ft = rhashtable_lookup_fast(&zones_ht, ¶ms->zone, zones_params);
if (ct_ft && refcount_inc_not_zero(&ct_ft->ref))
goto out_unlock;
ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL);
if (!ct_ft)
goto err_alloc;
refcount_set(&ct_ft->ref, 1);
ct_ft->zone = params->zone;
err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params);
if (err)
goto err_insert;
ct_ft->nf_ft.type = &flowtable_ct;
ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD |
NF_FLOWTABLE_COUNTER;
err = nf_flow_table_init(&ct_ft->nf_ft);
if (err)
goto err_init;
write_pnet(&ct_ft->nf_ft.net, net);
__module_get(THIS_MODULE);
out_unlock:
params->ct_ft = ct_ft;
params->nf_ft = &ct_ft->nf_ft;
mutex_unlock(&zones_mutex);
return 0;
err_init:
rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
err_insert:
kfree(ct_ft);
err_alloc:
mutex_unlock(&zones_mutex);
return err;
}
static void tcf_ct_flow_table_cleanup_work(struct work_struct *work)
{
struct flow_block_cb *block_cb, *tmp_cb;
struct tcf_ct_flow_table *ct_ft;
struct flow_block *block;
ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table,
rwork);
nf_flow_table_free(&ct_ft->nf_ft);
/* Remove any remaining callbacks before cleanup */
block = &ct_ft->nf_ft.flow_block;
down_write(&ct_ft->nf_ft.flow_block_lock);
list_for_each_entry_safe(block_cb, tmp_cb, &block->cb_list, list) {
list_del(&block_cb->list);
flow_block_cb_free(block_cb);
}
up_write(&ct_ft->nf_ft.flow_block_lock);
kfree(ct_ft);
module_put(THIS_MODULE);
}
static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft)
{
if (refcount_dec_and_test(&ct_ft->ref)) {
rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params);
INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work);
queue_rcu_work(act_ct_wq, &ct_ft->rwork);
}
}
static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry,
struct nf_conn_act_ct_ext *act_ct_ext, u8 dir)
{
entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC;
entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir];
}
static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft,
struct nf_conn *ct,
bool tcp, bool bidirectional)
{
struct nf_conn_act_ct_ext *act_ct_ext;
struct flow_offload *entry;
int err;
if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status))
return;
entry = flow_offload_alloc(ct);
if (!entry) {
WARN_ON_ONCE(1);
goto err_alloc;
}
if (tcp) {
ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL;
}
if (bidirectional)
__set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags);
act_ct_ext = nf_conn_act_ct_ext_find(ct);
if (act_ct_ext) {
tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL);
tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY);
}
err = flow_offload_add(&ct_ft->nf_ft, entry);
if (err)
goto err_add;
return;
err_add:
flow_offload_free(entry);
err_alloc:
clear_bit(IPS_OFFLOAD_BIT, &ct->status);
}
static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft,
struct nf_conn *ct,
enum ip_conntrack_info ctinfo)
{
bool tcp = false, bidirectional = true;
switch (nf_ct_protonum(ct)) {
case IPPROTO_TCP:
if ((ctinfo != IP_CT_ESTABLISHED &&
ctinfo != IP_CT_ESTABLISHED_REPLY) ||
!test_bit(IPS_ASSURED_BIT, &ct->status) ||
ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED)
return;
tcp = true;
break;
case IPPROTO_UDP:
if (!nf_ct_is_confirmed(ct))
return;
if (!test_bit(IPS_ASSURED_BIT, &ct->status))
bidirectional = false;
break;
#ifdef CONFIG_NF_CT_PROTO_GRE
case IPPROTO_GRE: {
struct nf_conntrack_tuple *tuple;
if ((ctinfo != IP_CT_ESTABLISHED &&
ctinfo != IP_CT_ESTABLISHED_REPLY) ||
!test_bit(IPS_ASSURED_BIT, &ct->status) ||
ct->status & IPS_NAT_MASK)
return;
tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
/* No support for GRE v1 */
if (tuple->src.u.gre.key || tuple->dst.u.gre.key)
return;
break;
}
#endif
default:
return;
}
if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) ||
ct->status & IPS_SEQ_ADJUST)
return;
tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional);
}
static bool
tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb,
struct flow_offload_tuple *tuple,
struct tcphdr **tcph)
{
struct flow_ports *ports;
unsigned int thoff;
struct iphdr *iph;
size_t hdrsize;
u8 ipproto;
if (!pskb_network_may_pull(skb, sizeof(*iph)))
return false;
iph = ip_hdr(skb);
thoff = iph->ihl * 4;
if (ip_is_fragment(iph) ||
unlikely(thoff != sizeof(struct iphdr)))
return false;
ipproto = iph->protocol;
switch (ipproto) {
case IPPROTO_TCP:
hdrsize = sizeof(struct tcphdr);
break;
case IPPROTO_UDP:
hdrsize = sizeof(*ports);
break;
#ifdef CONFIG_NF_CT_PROTO_GRE
case IPPROTO_GRE:
hdrsize = sizeof(struct gre_base_hdr);
break;
#endif
default:
return false;
}
if (iph->ttl <= 1)
return false;
if (!pskb_network_may_pull(skb, thoff + hdrsize))
return false;
switch (ipproto) {
case IPPROTO_TCP:
*tcph = (void *)(skb_network_header(skb) + thoff);
fallthrough;
case IPPROTO_UDP:
ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
tuple->src_port = ports->source;
tuple->dst_port = ports->dest;
break;
case IPPROTO_GRE: {
struct gre_base_hdr *greh;
greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
return false;
break;
}
}
iph = ip_hdr(skb);
tuple->src_v4.s_addr = iph->saddr;
tuple->dst_v4.s_addr = iph->daddr;
tuple->l3proto = AF_INET;
tuple->l4proto = ipproto;
return true;
}
static bool
tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb,
struct flow_offload_tuple *tuple,
struct tcphdr **tcph)
{
struct flow_ports *ports;
struct ipv6hdr *ip6h;
unsigned int thoff;
size_t hdrsize;
u8 nexthdr;
if (!pskb_network_may_pull(skb, sizeof(*ip6h)))
return false;
ip6h = ipv6_hdr(skb);
thoff = sizeof(*ip6h);
nexthdr = ip6h->nexthdr;
switch (nexthdr) {
case IPPROTO_TCP:
hdrsize = sizeof(struct tcphdr);
break;
case IPPROTO_UDP:
hdrsize = sizeof(*ports);
break;
#ifdef CONFIG_NF_CT_PROTO_GRE
case IPPROTO_GRE:
hdrsize = sizeof(struct gre_base_hdr);
break;
#endif
default:
return false;
}
if (ip6h->hop_limit <= 1)
return false;
if (!pskb_network_may_pull(skb, thoff + hdrsize))
return false;
switch (nexthdr) {
case IPPROTO_TCP:
*tcph = (void *)(skb_network_header(skb) + thoff);
fallthrough;
case IPPROTO_UDP:
ports = (struct flow_ports *)(skb_network_header(skb) + thoff);
tuple->src_port = ports->source;
tuple->dst_port = ports->dest;
break;
case IPPROTO_GRE: {
struct gre_base_hdr *greh;
greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff);
if ((greh->flags & GRE_VERSION) != GRE_VERSION_0)
return false;
break;
}
}
ip6h = ipv6_hdr(skb);
tuple->src_v6 = ip6h->saddr;
tuple->dst_v6 = ip6h->daddr;
tuple->l3proto = AF_INET6;
tuple->l4proto = nexthdr;
return true;
}
static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p,
struct sk_buff *skb,
u8 family)
{
struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft;
struct flow_offload_tuple_rhash *tuplehash;
struct flow_offload_tuple tuple = {};
enum ip_conntrack_info ctinfo;
struct tcphdr *tcph = NULL;
bool force_refresh = false;
struct flow_offload *flow;
struct nf_conn *ct;
u8 dir;
switch (family) {
case NFPROTO_IPV4:
if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph))
return false;
break;
case NFPROTO_IPV6:
if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph))
return false;
break;
default:
return false;
}
tuplehash = flow_offload_lookup(nf_ft, &tuple);
if (!tuplehash)
return false;
dir = tuplehash->tuple.dir;
flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
ct = flow->ct;
if (dir == FLOW_OFFLOAD_DIR_REPLY &&
!test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) {
/* Only offload reply direction after connection became
* assured.
*/
if (test_bit(IPS_ASSURED_BIT, &ct->status))
set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags);
else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags))
/* If flow_table flow has already been updated to the
* established state, then don't refresh.
*/
return false;
force_refresh = true;
}
if (tcph && (unlikely(tcph->fin || tcph->rst))) {
flow_offload_teardown(flow);
return false;
}
if (dir == FLOW_OFFLOAD_DIR_ORIGINAL)
ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ?
IP_CT_ESTABLISHED : IP_CT_NEW;
else
ctinfo = IP_CT_ESTABLISHED_REPLY;
flow_offload_refresh(nf_ft, flow, force_refresh);
if (!test_bit(IPS_ASSURED_BIT, &ct->status)) {
/* Process this flow in SW to allow promoting to ASSURED */
return false;
}
nf_conntrack_get(&ct->ct_general);
nf_ct_set(skb, ct, ctinfo);
if (nf_ft->flags & NF_FLOWTABLE_COUNTER)
nf_ct_acct_update(ct, dir, skb->len);
return true;
}
static int tcf_ct_flow_tables_init(void)
{
return rhashtable_init(&zones_ht, &zones_params);
}
static void tcf_ct_flow_tables_uninit(void)
{
rhashtable_destroy(&zones_ht);
}
static struct tc_action_ops act_ct_ops;
struct tc_ct_action_net {
struct tc_action_net tn; /* Must be first */
bool labels;
};
/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb,
struct tcf_ct_params *p)
{
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
ct = nf_ct_get(skb, &ctinfo);
if (!ct)
return false;
if (!net_eq(net, read_pnet(&ct->ct_net)))
goto drop_ct;
if (nf_ct_zone(ct)->id != p->zone)
goto drop_ct;
if (p->helper) {
struct nf_conn_help *help;
help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
if (help && rcu_access_pointer(help->helper) != p->helper)
goto drop_ct;
}
/* Force conntrack entry direction. */
if ((p->ct_action & TCA_CT_ACT_FORCE) &&
CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
if (nf_ct_is_confirmed(ct))
nf_ct_kill(ct);
goto drop_ct;
}
return true;
drop_ct:
nf_ct_put(ct);
nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
return false;
}
static u8 tcf_ct_skb_nf_family(struct sk_buff *skb)
{
u8 family = NFPROTO_UNSPEC;
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
family = NFPROTO_IPV4;
break;
case htons(ETH_P_IPV6):
family = NFPROTO_IPV6;
break;
default:
break;
}
return family;
}
static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag)
{
unsigned int len;
len = skb_network_offset(skb) + sizeof(struct iphdr);
if (unlikely(skb->len < len))
return -EINVAL;
if (unlikely(!pskb_may_pull(skb, len)))
return -ENOMEM;
*frag = ip_is_fragment(ip_hdr(skb));
return 0;
}
static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag)
{
unsigned int flags = 0, len, payload_ofs = 0;
unsigned short frag_off;
int nexthdr;
len = skb_network_offset(skb) + sizeof(struct ipv6hdr);
if (unlikely(skb->len < len))
return -EINVAL;
if (unlikely(!pskb_may_pull(skb, len)))
return -ENOMEM;
nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
if (unlikely(nexthdr < 0))
return -EPROTO;
*frag = flags & IP6_FH_F_FRAG;
return 0;
}
static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb,
u8 family, u16 zone, bool *defrag)
{
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
int err = 0;
bool frag;
u8 proto;
u16 mru;
/* Previously seen (loopback)? Ignore. */
ct = nf_ct_get(skb, &ctinfo);
if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED)
return 0;
if (family == NFPROTO_IPV4)
err = tcf_ct_ipv4_is_fragment(skb, &frag);
else
err = tcf_ct_ipv6_is_fragment(skb, &frag);
if (err || !frag)
return err;
skb_get(skb);
err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru);
if (err)
return err;
*defrag = true;
tc_skb_cb(skb)->mru = mru;
return 0;
}
static void tcf_ct_params_free(struct tcf_ct_params *params)
{
if (params->helper) {
#if IS_ENABLED(CONFIG_NF_NAT)
if (params->ct_action & TCA_CT_ACT_NAT)
nf_nat_helper_put(params->helper);
#endif
nf_conntrack_helper_put(params->helper);
}
if (params->ct_ft)
tcf_ct_flow_table_put(params->ct_ft);
if (params->tmpl)
nf_ct_put(params->tmpl);
kfree(params);
}
static void tcf_ct_params_free_rcu(struct rcu_head *head)
{
struct tcf_ct_params *params;
params = container_of(head, struct tcf_ct_params, rcu);
tcf_ct_params_free(params);
}
static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
u32 new_mark;
if (!mask)
return;
new_mark = mark | (READ_ONCE(ct->mark) & ~(mask));
if (READ_ONCE(ct->mark) != new_mark) {
WRITE_ONCE(ct->mark, new_mark);
if (nf_ct_is_confirmed(ct))
nf_conntrack_event_cache(IPCT_MARK, ct);
}
#endif
}
static void tcf_ct_act_set_labels(struct nf_conn *ct,
u32 *labels,
u32 *labels_m)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)
size_t labels_sz = sizeof_field(struct tcf_ct_params, labels);
if (!memchr_inv(labels_m, 0, labels_sz))
return;
nf_connlabels_replace(ct, labels, labels_m, 4);
#endif
}
static int tcf_ct_act_nat(struct sk_buff *skb,
struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
int ct_action,
struct nf_nat_range2 *range,
bool commit)
{
#if IS_ENABLED(CONFIG_NF_NAT)
int err, action = 0;
if (!(ct_action & TCA_CT_ACT_NAT))
return NF_ACCEPT;
if (ct_action & TCA_CT_ACT_NAT_SRC)
action |= BIT(NF_NAT_MANIP_SRC);
if (ct_action & TCA_CT_ACT_NAT_DST)
action |= BIT(NF_NAT_MANIP_DST);
err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit);
if (action & BIT(NF_NAT_MANIP_SRC))
tc_skb_cb(skb)->post_ct_snat = 1;
if (action & BIT(NF_NAT_MANIP_DST))
tc_skb_cb(skb)->post_ct_dnat = 1;
return err;
#else
return NF_ACCEPT;
#endif
}
TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a,
struct tcf_result *res)
{
struct net *net = dev_net(skb->dev);
enum ip_conntrack_info ctinfo;
struct tcf_ct *c = to_ct(a);
struct nf_conn *tmpl = NULL;
struct nf_hook_state state;
bool cached, commit, clear;
int nh_ofs, err, retval;
struct tcf_ct_params *p;
bool add_helper = false;
bool skip_add = false;
bool defrag = false;
struct nf_conn *ct;
u8 family;
p = rcu_dereference_bh(c->params);
retval = READ_ONCE(c->tcf_action);
commit = p->ct_action & TCA_CT_ACT_COMMIT;
clear = p->ct_action & TCA_CT_ACT_CLEAR;
tmpl = p->tmpl;
tcf_lastuse_update(&c->tcf_tm);
tcf_action_update_bstats(&c->common, skb);
if (clear) {
tc_skb_cb(skb)->post_ct = false;
ct = nf_ct_get(skb, &ctinfo);
if (ct) {
nf_ct_put(ct);
nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
}
goto out_clear;
}
family = tcf_ct_skb_nf_family(skb);
if (family == NFPROTO_UNSPEC)
goto drop;
/* The conntrack module expects to be working at L3.
* We also try to pull the IPv4/6 header to linear area
*/
nh_ofs = skb_network_offset(skb);
skb_pull_rcsum(skb, nh_ofs);
err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag);
if (err == -EINPROGRESS) {
retval = TC_ACT_STOLEN;
goto out_clear;
}
if (err)
goto drop;
err = nf_ct_skb_network_trim(skb, family);
if (err)
goto drop;
/* If we are recirculating packets to match on ct fields and
* committing with a separate ct action, then we don't need to
* actually run the packet through conntrack twice unless it's for a
* different zone.
*/
cached = tcf_ct_skb_nfct_cached(net, skb, p);
if (!cached) {
if (tcf_ct_flow_table_lookup(p, skb, family)) {
skip_add = true;
goto do_nat;
}
/* Associate skb with specified zone. */
if (tmpl) {
nf_conntrack_put(skb_nfct(skb));
nf_conntrack_get(&tmpl->ct_general);
nf_ct_set(skb, tmpl, IP_CT_NEW);
}
state.hook = NF_INET_PRE_ROUTING;
state.net = net;
state.pf = family;
err = nf_conntrack_in(skb, &state);
if (err != NF_ACCEPT)
goto out_push;
}
do_nat:
ct = nf_ct_get(skb, &ctinfo);
if (!ct)
goto out_push;
nf_ct_deliver_cached_events(ct);
nf_conn_act_ct_ext_fill(skb, ct, ctinfo);
err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit);
if (err != NF_ACCEPT)
goto drop;
if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) {
err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC);
if (err)
goto drop;
add_helper = true;
if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) {
if (!nfct_seqadj_ext_add(ct))
goto drop;
}
}
if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) {
if (nf_ct_helper(skb, ct, ctinfo, family) != NF_ACCEPT)
goto drop;
}
if (commit) {
tcf_ct_act_set_mark(ct, p->mark, p->mark_mask);
tcf_ct_act_set_labels(ct, p->labels, p->labels_mask);
if (!nf_ct_is_confirmed(ct))
nf_conn_act_ct_ext_add(ct);
/* This will take care of sending queued events
* even if the connection is already confirmed.
*/
if (nf_conntrack_confirm(skb) != NF_ACCEPT)
goto drop;
}
if (!skip_add)
tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo);
out_push:
skb_push_rcsum(skb, nh_ofs);
tc_skb_cb(skb)->post_ct = true;
tc_skb_cb(skb)->zone = p->zone;
out_clear:
if (defrag)
qdisc_skb_cb(skb)->pkt_len = skb->len;
return retval;
drop:
tcf_action_inc_drop_qstats(&c->common);
return TC_ACT_SHOT;
}
static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = {
[TCA_CT_ACTION] = { .type = NLA_U16 },
[TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)),
[TCA_CT_ZONE] = { .type = NLA_U16 },
[TCA_CT_MARK] = { .type = NLA_U32 },
[TCA_CT_MARK_MASK] = { .type = NLA_U32 },
[TCA_CT_LABELS] = { .type = NLA_BINARY,
.len = 128 / BITS_PER_BYTE },
[TCA_CT_LABELS_MASK] = { .type = NLA_BINARY,
.len = 128 / BITS_PER_BYTE },
[TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 },
[TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 },
[TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
[TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)),
[TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 },
[TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 },
[TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN },
[TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 },
[TCA_CT_HELPER_PROTO] = { .type = NLA_U8 },
};
static int tcf_ct_fill_params_nat(struct tcf_ct_params *p,
struct tc_ct *parm,
struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct nf_nat_range2 *range;
if (!(p->ct_action & TCA_CT_ACT_NAT))
return 0;
if (!IS_ENABLED(CONFIG_NF_NAT)) {
NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel");
return -EOPNOTSUPP;
}
if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
return 0;
if ((p->ct_action & TCA_CT_ACT_NAT_SRC) &&
(p->ct_action & TCA_CT_ACT_NAT_DST)) {
NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time");
return -EOPNOTSUPP;
}
range = &p->range;
if (tb[TCA_CT_NAT_IPV4_MIN]) {
struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX];
p->ipv4_range = true;
range->flags |= NF_NAT_RANGE_MAP_IPS;
range->min_addr.ip =
nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]);
range->max_addr.ip = max_attr ?
nla_get_in_addr(max_attr) :
range->min_addr.ip;
} else if (tb[TCA_CT_NAT_IPV6_MIN]) {
struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX];
p->ipv4_range = false;
range->flags |= NF_NAT_RANGE_MAP_IPS;
range->min_addr.in6 =
nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]);
range->max_addr.in6 = max_attr ?
nla_get_in6_addr(max_attr) :
range->min_addr.in6;
}
if (tb[TCA_CT_NAT_PORT_MIN]) {
range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]);
range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ?
nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) :
range->min_proto.all;
}
return 0;
}
static void tcf_ct_set_key_val(struct nlattr **tb,
void *val, int val_type,
void *mask, int mask_type,
int len)
{
if (!tb[val_type])
return;
nla_memcpy(val, tb[val_type], len);
if (!mask)
return;
if (mask_type == TCA_CT_UNSPEC || !tb[mask_type])
memset(mask, 0xff, len);
else
nla_memcpy(mask, tb[mask_type], len);
}
static int tcf_ct_fill_params(struct net *net,
struct tcf_ct_params *p,
struct tc_ct *parm,
struct nlattr **tb,
struct netlink_ext_ack *extack)
{
struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
struct nf_conntrack_zone zone;
int err, family, proto, len;
struct nf_conn *tmpl;
char *name;
p->zone = NF_CT_DEFAULT_ZONE_ID;
tcf_ct_set_key_val(tb,
&p->ct_action, TCA_CT_ACTION,
NULL, TCA_CT_UNSPEC,
sizeof(p->ct_action));
if (p->ct_action & TCA_CT_ACT_CLEAR)
return 0;
err = tcf_ct_fill_params_nat(p, parm, tb, extack);
if (err)
return err;
if (tb[TCA_CT_MARK]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled.");
return -EOPNOTSUPP;
}
tcf_ct_set_key_val(tb,
&p->mark, TCA_CT_MARK,
&p->mark_mask, TCA_CT_MARK_MASK,
sizeof(p->mark));
}
if (tb[TCA_CT_LABELS]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled.");
return -EOPNOTSUPP;
}
if (!tn->labels) {
NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length");
return -EOPNOTSUPP;
}
tcf_ct_set_key_val(tb,
p->labels, TCA_CT_LABELS,
p->labels_mask, TCA_CT_LABELS_MASK,
sizeof(p->labels));
}
if (tb[TCA_CT_ZONE]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled.");
return -EOPNOTSUPP;
}
tcf_ct_set_key_val(tb,
&p->zone, TCA_CT_ZONE,
NULL, TCA_CT_UNSPEC,
sizeof(p->zone));
}
nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0);
tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL);
if (!tmpl) {
NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template");
return -ENOMEM;
}
p->tmpl = tmpl;
if (tb[TCA_CT_HELPER_NAME]) {
name = nla_data(tb[TCA_CT_HELPER_NAME]);
len = nla_len(tb[TCA_CT_HELPER_NAME]);
if (len > 16 || name[len - 1] != '\0') {
NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name.");
err = -EINVAL;
goto err;
}
family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET;
proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP;
err = nf_ct_add_helper(tmpl, name, family, proto,
p->ct_action & TCA_CT_ACT_NAT, &p->helper);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Failed to add helper");
goto err;
}
}
if (p->ct_action & TCA_CT_ACT_COMMIT)
__set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
return 0;
err:
nf_ct_put(p->tmpl);
p->tmpl = NULL;
return err;
}
static int tcf_ct_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct tcf_ct_params *params = NULL;
struct nlattr *tb[TCA_CT_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_ct *parm;
struct tcf_ct *c;
int err, res = 0;
u32 index;
if (!nla) {
NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_CT_PARMS]) {
NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters");
return -EINVAL;
}
parm = nla_data(tb[TCA_CT_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
if (!err) {
err = tcf_idr_create_from_flags(tn, index, est, a,
&act_ct_ops, bind, flags);
if (err) {
tcf_idr_cleanup(tn, index);
return err;
}
res = ACT_P_CREATED;
} else {
if (bind)
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto cleanup;
c = to_ct(*a);
params = kzalloc(sizeof(*params), GFP_KERNEL);
if (unlikely(!params)) {
err = -ENOMEM;
goto cleanup;
}
err = tcf_ct_fill_params(net, params, parm, tb, extack);
if (err)
goto cleanup;
err = tcf_ct_flow_table_get(net, params);
if (err)
goto cleanup;
spin_lock_bh(&c->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
params = rcu_replace_pointer(c->params, params,
lockdep_is_held(&c->tcf_lock));
spin_unlock_bh(&c->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (params)
call_rcu(¶ms->rcu, tcf_ct_params_free_rcu);
return res;
cleanup:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (params)
tcf_ct_params_free(params);
tcf_idr_release(*a, bind);
return err;
}
static void tcf_ct_cleanup(struct tc_action *a)
{
struct tcf_ct_params *params;
struct tcf_ct *c = to_ct(a);
params = rcu_dereference_protected(c->params, 1);
if (params)
call_rcu(¶ms->rcu, tcf_ct_params_free_rcu);
}
static int tcf_ct_dump_key_val(struct sk_buff *skb,
void *val, int val_type,
void *mask, int mask_type,
int len)
{
int err;
if (mask && !memchr_inv(mask, 0, len))
return 0;
err = nla_put(skb, val_type, len, val);
if (err)
return err;
if (mask_type != TCA_CT_UNSPEC) {
err = nla_put(skb, mask_type, len, mask);
if (err)
return err;
}
return 0;
}
static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p)
{
struct nf_nat_range2 *range = &p->range;
if (!(p->ct_action & TCA_CT_ACT_NAT))
return 0;
if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST)))
return 0;
if (range->flags & NF_NAT_RANGE_MAP_IPS) {
if (p->ipv4_range) {
if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN,
range->min_addr.ip))
return -1;
if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX,
range->max_addr.ip))
return -1;
} else {
if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN,
&range->min_addr.in6))
return -1;
if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX,
&range->max_addr.in6))
return -1;
}
}
if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN,
range->min_proto.all))
return -1;
if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX,
range->max_proto.all))
return -1;
}
return 0;
}
static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper)
{
if (!helper)
return 0;
if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) ||
nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) ||
nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum))
return -1;
return 0;
}
static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_ct *c = to_ct(a);
struct tcf_ct_params *p;
struct tc_ct opt = {
.index = c->tcf_index,
.refcnt = refcount_read(&c->tcf_refcnt) - ref,
.bindcnt = atomic_read(&c->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&c->tcf_lock);
p = rcu_dereference_protected(c->params,
lockdep_is_held(&c->tcf_lock));
opt.action = c->tcf_action;
if (tcf_ct_dump_key_val(skb,
&p->ct_action, TCA_CT_ACTION,
NULL, TCA_CT_UNSPEC,
sizeof(p->ct_action)))
goto nla_put_failure;
if (p->ct_action & TCA_CT_ACT_CLEAR)
goto skip_dump;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
tcf_ct_dump_key_val(skb,
&p->mark, TCA_CT_MARK,
&p->mark_mask, TCA_CT_MARK_MASK,
sizeof(p->mark)))
goto nla_put_failure;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
tcf_ct_dump_key_val(skb,
p->labels, TCA_CT_LABELS,
p->labels_mask, TCA_CT_LABELS_MASK,
sizeof(p->labels)))
goto nla_put_failure;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
tcf_ct_dump_key_val(skb,
&p->zone, TCA_CT_ZONE,
NULL, TCA_CT_UNSPEC,
sizeof(p->zone)))
goto nla_put_failure;
if (tcf_ct_dump_nat(skb, p))
goto nla_put_failure;
if (tcf_ct_dump_helper(skb, p->helper))
goto nla_put_failure;
skip_dump:
if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &c->tcf_tm);
if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD))
goto nla_put_failure;
spin_unlock_bh(&c->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&c->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_ct *c = to_ct(a);
tcf_action_update_stats(a, bytes, packets, drops, hw);
c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse);
}
static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
entry->id = FLOW_ACTION_CT;
entry->ct.action = tcf_ct_action(act);
entry->ct.zone = tcf_ct_zone(act);
entry->ct.flow_table = tcf_ct_ft(act);
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
fl_action->id = FLOW_ACTION_CT;
}
return 0;
}
static struct tc_action_ops act_ct_ops = {
.kind = "ct",
.id = TCA_ID_CT,
.owner = THIS_MODULE,
.act = tcf_ct_act,
.dump = tcf_ct_dump,
.init = tcf_ct_init,
.cleanup = tcf_ct_cleanup,
.stats_update = tcf_stats_update,
.offload_act_setup = tcf_ct_offload_act_setup,
.size = sizeof(struct tcf_ct),
};
static __net_init int ct_init_net(struct net *net)
{
unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8;
struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
if (nf_connlabels_get(net, n_bits - 1)) {
tn->labels = false;
pr_err("act_ct: Failed to set connlabels length");
} else {
tn->labels = true;
}
return tc_action_net_init(net, &tn->tn, &act_ct_ops);
}
static void __net_exit ct_exit_net(struct list_head *net_list)
{
struct net *net;
rtnl_lock();
list_for_each_entry(net, net_list, exit_list) {
struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id);
if (tn->labels)
nf_connlabels_put(net);
}
rtnl_unlock();
tc_action_net_exit(net_list, act_ct_ops.net_id);
}
static struct pernet_operations ct_net_ops = {
.init = ct_init_net,
.exit_batch = ct_exit_net,
.id = &act_ct_ops.net_id,
.size = sizeof(struct tc_ct_action_net),
};
static int __init ct_init_module(void)
{
int err;
act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0);
if (!act_ct_wq)
return -ENOMEM;
err = tcf_ct_flow_tables_init();
if (err)
goto err_tbl_init;
err = tcf_register_action(&act_ct_ops, &ct_net_ops);
if (err)
goto err_register;
static_branch_inc(&tcf_frag_xmit_count);
return 0;
err_register:
tcf_ct_flow_tables_uninit();
err_tbl_init:
destroy_workqueue(act_ct_wq);
return err;
}
static void __exit ct_cleanup_module(void)
{
static_branch_dec(&tcf_frag_xmit_count);
tcf_unregister_action(&act_ct_ops, &ct_net_ops);
tcf_ct_flow_tables_uninit();
destroy_workqueue(act_ct_wq);
}
module_init(ct_init_module);
module_exit(ct_cleanup_module);
MODULE_AUTHOR("Paul Blakey <[email protected]>");
MODULE_AUTHOR("Yossi Kuperman <[email protected]>");
MODULE_AUTHOR("Marcelo Ricardo Leitner <[email protected]>");
MODULE_DESCRIPTION("Connection tracking action");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/act_ct.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_flower.c Flower classifier
*
* Copyright (c) 2015 Jiri Pirko <[email protected]>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rhashtable.h>
#include <linux/workqueue.h>
#include <linux/refcount.h>
#include <linux/bitfield.h>
#include <linux/if_ether.h>
#include <linux/in6.h>
#include <linux/ip.h>
#include <linux/mpls.h>
#include <linux/ppp_defs.h>
#include <net/sch_generic.h>
#include <net/pkt_cls.h>
#include <net/pkt_sched.h>
#include <net/ip.h>
#include <net/flow_dissector.h>
#include <net/geneve.h>
#include <net/vxlan.h>
#include <net/erspan.h>
#include <net/gtp.h>
#include <net/tc_wrapper.h>
#include <net/dst.h>
#include <net/dst_metadata.h>
#include <uapi/linux/netfilter/nf_conntrack_common.h>
#define TCA_FLOWER_KEY_CT_FLAGS_MAX \
((__TCA_FLOWER_KEY_CT_FLAGS_MAX - 1) << 1)
#define TCA_FLOWER_KEY_CT_FLAGS_MASK \
(TCA_FLOWER_KEY_CT_FLAGS_MAX - 1)
struct fl_flow_key {
struct flow_dissector_key_meta meta;
struct flow_dissector_key_control control;
struct flow_dissector_key_control enc_control;
struct flow_dissector_key_basic basic;
struct flow_dissector_key_eth_addrs eth;
struct flow_dissector_key_vlan vlan;
struct flow_dissector_key_vlan cvlan;
union {
struct flow_dissector_key_ipv4_addrs ipv4;
struct flow_dissector_key_ipv6_addrs ipv6;
};
struct flow_dissector_key_ports tp;
struct flow_dissector_key_icmp icmp;
struct flow_dissector_key_arp arp;
struct flow_dissector_key_keyid enc_key_id;
union {
struct flow_dissector_key_ipv4_addrs enc_ipv4;
struct flow_dissector_key_ipv6_addrs enc_ipv6;
};
struct flow_dissector_key_ports enc_tp;
struct flow_dissector_key_mpls mpls;
struct flow_dissector_key_tcp tcp;
struct flow_dissector_key_ip ip;
struct flow_dissector_key_ip enc_ip;
struct flow_dissector_key_enc_opts enc_opts;
struct flow_dissector_key_ports_range tp_range;
struct flow_dissector_key_ct ct;
struct flow_dissector_key_hash hash;
struct flow_dissector_key_num_of_vlans num_of_vlans;
struct flow_dissector_key_pppoe pppoe;
struct flow_dissector_key_l2tpv3 l2tpv3;
struct flow_dissector_key_ipsec ipsec;
struct flow_dissector_key_cfm cfm;
} __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
struct fl_flow_mask_range {
unsigned short int start;
unsigned short int end;
};
struct fl_flow_mask {
struct fl_flow_key key;
struct fl_flow_mask_range range;
u32 flags;
struct rhash_head ht_node;
struct rhashtable ht;
struct rhashtable_params filter_ht_params;
struct flow_dissector dissector;
struct list_head filters;
struct rcu_work rwork;
struct list_head list;
refcount_t refcnt;
};
struct fl_flow_tmplt {
struct fl_flow_key dummy_key;
struct fl_flow_key mask;
struct flow_dissector dissector;
struct tcf_chain *chain;
};
struct cls_fl_head {
struct rhashtable ht;
spinlock_t masks_lock; /* Protect masks list */
struct list_head masks;
struct list_head hw_filters;
struct rcu_work rwork;
struct idr handle_idr;
};
struct cls_fl_filter {
struct fl_flow_mask *mask;
struct rhash_head ht_node;
struct fl_flow_key mkey;
struct tcf_exts exts;
struct tcf_result res;
struct fl_flow_key key;
struct list_head list;
struct list_head hw_list;
u32 handle;
u32 flags;
u32 in_hw_count;
u8 needs_tc_skb_ext:1;
struct rcu_work rwork;
struct net_device *hw_dev;
/* Flower classifier is unlocked, which means that its reference counter
* can be changed concurrently without any kind of external
* synchronization. Use atomic reference counter to be concurrency-safe.
*/
refcount_t refcnt;
bool deleted;
};
static const struct rhashtable_params mask_ht_params = {
.key_offset = offsetof(struct fl_flow_mask, key),
.key_len = sizeof(struct fl_flow_key),
.head_offset = offsetof(struct fl_flow_mask, ht_node),
.automatic_shrinking = true,
};
static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
{
return mask->range.end - mask->range.start;
}
static void fl_mask_update_range(struct fl_flow_mask *mask)
{
const u8 *bytes = (const u8 *) &mask->key;
size_t size = sizeof(mask->key);
size_t i, first = 0, last;
for (i = 0; i < size; i++) {
if (bytes[i]) {
first = i;
break;
}
}
last = first;
for (i = size - 1; i != first; i--) {
if (bytes[i]) {
last = i;
break;
}
}
mask->range.start = rounddown(first, sizeof(long));
mask->range.end = roundup(last + 1, sizeof(long));
}
static void *fl_key_get_start(struct fl_flow_key *key,
const struct fl_flow_mask *mask)
{
return (u8 *) key + mask->range.start;
}
static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
struct fl_flow_mask *mask)
{
const long *lkey = fl_key_get_start(key, mask);
const long *lmask = fl_key_get_start(&mask->key, mask);
long *lmkey = fl_key_get_start(mkey, mask);
int i;
for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
*lmkey++ = *lkey++ & *lmask++;
}
static bool fl_mask_fits_tmplt(struct fl_flow_tmplt *tmplt,
struct fl_flow_mask *mask)
{
const long *lmask = fl_key_get_start(&mask->key, mask);
const long *ltmplt;
int i;
if (!tmplt)
return true;
ltmplt = fl_key_get_start(&tmplt->mask, mask);
for (i = 0; i < fl_mask_range(mask); i += sizeof(long)) {
if (~*ltmplt++ & *lmask++)
return false;
}
return true;
}
static void fl_clear_masked_range(struct fl_flow_key *key,
struct fl_flow_mask *mask)
{
memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
}
static bool fl_range_port_dst_cmp(struct cls_fl_filter *filter,
struct fl_flow_key *key,
struct fl_flow_key *mkey)
{
u16 min_mask, max_mask, min_val, max_val;
min_mask = ntohs(filter->mask->key.tp_range.tp_min.dst);
max_mask = ntohs(filter->mask->key.tp_range.tp_max.dst);
min_val = ntohs(filter->key.tp_range.tp_min.dst);
max_val = ntohs(filter->key.tp_range.tp_max.dst);
if (min_mask && max_mask) {
if (ntohs(key->tp_range.tp.dst) < min_val ||
ntohs(key->tp_range.tp.dst) > max_val)
return false;
/* skb does not have min and max values */
mkey->tp_range.tp_min.dst = filter->mkey.tp_range.tp_min.dst;
mkey->tp_range.tp_max.dst = filter->mkey.tp_range.tp_max.dst;
}
return true;
}
static bool fl_range_port_src_cmp(struct cls_fl_filter *filter,
struct fl_flow_key *key,
struct fl_flow_key *mkey)
{
u16 min_mask, max_mask, min_val, max_val;
min_mask = ntohs(filter->mask->key.tp_range.tp_min.src);
max_mask = ntohs(filter->mask->key.tp_range.tp_max.src);
min_val = ntohs(filter->key.tp_range.tp_min.src);
max_val = ntohs(filter->key.tp_range.tp_max.src);
if (min_mask && max_mask) {
if (ntohs(key->tp_range.tp.src) < min_val ||
ntohs(key->tp_range.tp.src) > max_val)
return false;
/* skb does not have min and max values */
mkey->tp_range.tp_min.src = filter->mkey.tp_range.tp_min.src;
mkey->tp_range.tp_max.src = filter->mkey.tp_range.tp_max.src;
}
return true;
}
static struct cls_fl_filter *__fl_lookup(struct fl_flow_mask *mask,
struct fl_flow_key *mkey)
{
return rhashtable_lookup_fast(&mask->ht, fl_key_get_start(mkey, mask),
mask->filter_ht_params);
}
static struct cls_fl_filter *fl_lookup_range(struct fl_flow_mask *mask,
struct fl_flow_key *mkey,
struct fl_flow_key *key)
{
struct cls_fl_filter *filter, *f;
list_for_each_entry_rcu(filter, &mask->filters, list) {
if (!fl_range_port_dst_cmp(filter, key, mkey))
continue;
if (!fl_range_port_src_cmp(filter, key, mkey))
continue;
f = __fl_lookup(mask, mkey);
if (f)
return f;
}
return NULL;
}
static noinline_for_stack
struct cls_fl_filter *fl_mask_lookup(struct fl_flow_mask *mask, struct fl_flow_key *key)
{
struct fl_flow_key mkey;
fl_set_masked_key(&mkey, key, mask);
if ((mask->flags & TCA_FLOWER_MASK_FLAGS_RANGE))
return fl_lookup_range(mask, &mkey, key);
return __fl_lookup(mask, &mkey);
}
static u16 fl_ct_info_to_flower_map[] = {
[IP_CT_ESTABLISHED] = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_ESTABLISHED,
[IP_CT_RELATED] = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_RELATED,
[IP_CT_ESTABLISHED_REPLY] = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_ESTABLISHED |
TCA_FLOWER_KEY_CT_FLAGS_REPLY,
[IP_CT_RELATED_REPLY] = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_RELATED |
TCA_FLOWER_KEY_CT_FLAGS_REPLY,
[IP_CT_NEW] = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_NEW,
};
TC_INDIRECT_SCOPE int fl_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct cls_fl_head *head = rcu_dereference_bh(tp->root);
bool post_ct = tc_skb_cb(skb)->post_ct;
u16 zone = tc_skb_cb(skb)->zone;
struct fl_flow_key skb_key;
struct fl_flow_mask *mask;
struct cls_fl_filter *f;
list_for_each_entry_rcu(mask, &head->masks, list) {
flow_dissector_init_keys(&skb_key.control, &skb_key.basic);
fl_clear_masked_range(&skb_key, mask);
skb_flow_dissect_meta(skb, &mask->dissector, &skb_key);
/* skb_flow_dissect() does not set n_proto in case an unknown
* protocol, so do it rather here.
*/
skb_key.basic.n_proto = skb_protocol(skb, false);
skb_flow_dissect_tunnel_info(skb, &mask->dissector, &skb_key);
skb_flow_dissect_ct(skb, &mask->dissector, &skb_key,
fl_ct_info_to_flower_map,
ARRAY_SIZE(fl_ct_info_to_flower_map),
post_ct, zone);
skb_flow_dissect_hash(skb, &mask->dissector, &skb_key);
skb_flow_dissect(skb, &mask->dissector, &skb_key,
FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP);
f = fl_mask_lookup(mask, &skb_key);
if (f && !tc_skip_sw(f->flags)) {
*res = f->res;
return tcf_exts_exec(skb, &f->exts, res);
}
}
return -1;
}
static int fl_init(struct tcf_proto *tp)
{
struct cls_fl_head *head;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOBUFS;
spin_lock_init(&head->masks_lock);
INIT_LIST_HEAD_RCU(&head->masks);
INIT_LIST_HEAD(&head->hw_filters);
rcu_assign_pointer(tp->root, head);
idr_init(&head->handle_idr);
return rhashtable_init(&head->ht, &mask_ht_params);
}
static void fl_mask_free(struct fl_flow_mask *mask, bool mask_init_done)
{
/* temporary masks don't have their filters list and ht initialized */
if (mask_init_done) {
WARN_ON(!list_empty(&mask->filters));
rhashtable_destroy(&mask->ht);
}
kfree(mask);
}
static void fl_mask_free_work(struct work_struct *work)
{
struct fl_flow_mask *mask = container_of(to_rcu_work(work),
struct fl_flow_mask, rwork);
fl_mask_free(mask, true);
}
static void fl_uninit_mask_free_work(struct work_struct *work)
{
struct fl_flow_mask *mask = container_of(to_rcu_work(work),
struct fl_flow_mask, rwork);
fl_mask_free(mask, false);
}
static bool fl_mask_put(struct cls_fl_head *head, struct fl_flow_mask *mask)
{
if (!refcount_dec_and_test(&mask->refcnt))
return false;
rhashtable_remove_fast(&head->ht, &mask->ht_node, mask_ht_params);
spin_lock(&head->masks_lock);
list_del_rcu(&mask->list);
spin_unlock(&head->masks_lock);
tcf_queue_work(&mask->rwork, fl_mask_free_work);
return true;
}
static struct cls_fl_head *fl_head_dereference(struct tcf_proto *tp)
{
/* Flower classifier only changes root pointer during init and destroy.
* Users must obtain reference to tcf_proto instance before calling its
* API, so tp->root pointer is protected from concurrent call to
* fl_destroy() by reference counting.
*/
return rcu_dereference_raw(tp->root);
}
static void __fl_destroy_filter(struct cls_fl_filter *f)
{
if (f->needs_tc_skb_ext)
tc_skb_ext_tc_disable();
tcf_exts_destroy(&f->exts);
tcf_exts_put_net(&f->exts);
kfree(f);
}
static void fl_destroy_filter_work(struct work_struct *work)
{
struct cls_fl_filter *f = container_of(to_rcu_work(work),
struct cls_fl_filter, rwork);
__fl_destroy_filter(f);
}
static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct flow_cls_offload cls_flower = {};
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
cls_flower.command = FLOW_CLS_DESTROY;
cls_flower.cookie = (unsigned long) f;
tc_setup_cb_destroy(block, tp, TC_SETUP_CLSFLOWER, &cls_flower, false,
&f->flags, &f->in_hw_count, rtnl_held);
}
static int fl_hw_replace_filter(struct tcf_proto *tp,
struct cls_fl_filter *f, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct flow_cls_offload cls_flower = {};
bool skip_sw = tc_skip_sw(f->flags);
int err = 0;
cls_flower.rule = flow_rule_alloc(tcf_exts_num_actions(&f->exts));
if (!cls_flower.rule)
return -ENOMEM;
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
cls_flower.command = FLOW_CLS_REPLACE;
cls_flower.cookie = (unsigned long) f;
cls_flower.rule->match.dissector = &f->mask->dissector;
cls_flower.rule->match.mask = &f->mask->key;
cls_flower.rule->match.key = &f->mkey;
cls_flower.classid = f->res.classid;
err = tc_setup_offload_action(&cls_flower.rule->action, &f->exts,
cls_flower.common.extack);
if (err) {
kfree(cls_flower.rule);
return skip_sw ? err : 0;
}
err = tc_setup_cb_add(block, tp, TC_SETUP_CLSFLOWER, &cls_flower,
skip_sw, &f->flags, &f->in_hw_count, rtnl_held);
tc_cleanup_offload_action(&cls_flower.rule->action);
kfree(cls_flower.rule);
if (err) {
fl_hw_destroy_filter(tp, f, rtnl_held, NULL);
return err;
}
if (skip_sw && !(f->flags & TCA_CLS_FLAGS_IN_HW))
return -EINVAL;
return 0;
}
static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f,
bool rtnl_held)
{
struct tcf_block *block = tp->chain->block;
struct flow_cls_offload cls_flower = {};
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, NULL);
cls_flower.command = FLOW_CLS_STATS;
cls_flower.cookie = (unsigned long) f;
cls_flower.classid = f->res.classid;
tc_setup_cb_call(block, TC_SETUP_CLSFLOWER, &cls_flower, false,
rtnl_held);
tcf_exts_hw_stats_update(&f->exts, &cls_flower.stats, cls_flower.use_act_stats);
}
static void __fl_put(struct cls_fl_filter *f)
{
if (!refcount_dec_and_test(&f->refcnt))
return;
if (tcf_exts_get_net(&f->exts))
tcf_queue_work(&f->rwork, fl_destroy_filter_work);
else
__fl_destroy_filter(f);
}
static struct cls_fl_filter *__fl_get(struct cls_fl_head *head, u32 handle)
{
struct cls_fl_filter *f;
rcu_read_lock();
f = idr_find(&head->handle_idr, handle);
if (f && !refcount_inc_not_zero(&f->refcnt))
f = NULL;
rcu_read_unlock();
return f;
}
static struct tcf_exts *fl_get_exts(const struct tcf_proto *tp, u32 handle)
{
struct cls_fl_head *head = rcu_dereference_bh(tp->root);
struct cls_fl_filter *f;
f = idr_find(&head->handle_idr, handle);
return f ? &f->exts : NULL;
}
static int __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f,
bool *last, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = fl_head_dereference(tp);
*last = false;
spin_lock(&tp->lock);
if (f->deleted) {
spin_unlock(&tp->lock);
return -ENOENT;
}
f->deleted = true;
rhashtable_remove_fast(&f->mask->ht, &f->ht_node,
f->mask->filter_ht_params);
idr_remove(&head->handle_idr, f->handle);
list_del_rcu(&f->list);
spin_unlock(&tp->lock);
*last = fl_mask_put(head, f->mask);
if (!tc_skip_hw(f->flags))
fl_hw_destroy_filter(tp, f, rtnl_held, extack);
tcf_unbind_filter(tp, &f->res);
__fl_put(f);
return 0;
}
static void fl_destroy_sleepable(struct work_struct *work)
{
struct cls_fl_head *head = container_of(to_rcu_work(work),
struct cls_fl_head,
rwork);
rhashtable_destroy(&head->ht);
kfree(head);
module_put(THIS_MODULE);
}
static void fl_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = fl_head_dereference(tp);
struct fl_flow_mask *mask, *next_mask;
struct cls_fl_filter *f, *next;
bool last;
list_for_each_entry_safe(mask, next_mask, &head->masks, list) {
list_for_each_entry_safe(f, next, &mask->filters, list) {
__fl_delete(tp, f, &last, rtnl_held, extack);
if (last)
break;
}
}
idr_destroy(&head->handle_idr);
__module_get(THIS_MODULE);
tcf_queue_work(&head->rwork, fl_destroy_sleepable);
}
static void fl_put(struct tcf_proto *tp, void *arg)
{
struct cls_fl_filter *f = arg;
__fl_put(f);
}
static void *fl_get(struct tcf_proto *tp, u32 handle)
{
struct cls_fl_head *head = fl_head_dereference(tp);
return __fl_get(head, handle);
}
static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
[TCA_FLOWER_UNSPEC] = { .strict_start_type =
TCA_FLOWER_L2_MISS },
[TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
[TCA_FLOWER_INDEV] = { .type = NLA_STRING,
.len = IFNAMSIZ },
[TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
[TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
[TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_MPLS_OPTS] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_CVLAN_ID] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_CVLAN_PRIO] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_CVLAN_ETH_TYPE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_IP_TOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TOS_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_IP_TTL_MASK] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPTS] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_ENC_OPTS_MASK] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_CT_STATE] =
NLA_POLICY_MASK(NLA_U16, TCA_FLOWER_KEY_CT_FLAGS_MASK),
[TCA_FLOWER_KEY_CT_STATE_MASK] =
NLA_POLICY_MASK(NLA_U16, TCA_FLOWER_KEY_CT_FLAGS_MASK),
[TCA_FLOWER_KEY_CT_ZONE] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_CT_ZONE_MASK] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_CT_MARK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_CT_MARK_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_CT_LABELS] = { .type = NLA_BINARY,
.len = 128 / BITS_PER_BYTE },
[TCA_FLOWER_KEY_CT_LABELS_MASK] = { .type = NLA_BINARY,
.len = 128 / BITS_PER_BYTE },
[TCA_FLOWER_FLAGS] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_HASH] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_HASH_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_NUM_OF_VLANS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_PPPOE_SID] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_PPP_PROTO] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_L2TPV3_SID] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_SPI] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_SPI_MASK] = { .type = NLA_U32 },
[TCA_FLOWER_L2_MISS] = NLA_POLICY_MAX(NLA_U8, 1),
[TCA_FLOWER_KEY_CFM] = { .type = NLA_NESTED },
};
static const struct nla_policy
enc_opts_policy[TCA_FLOWER_KEY_ENC_OPTS_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPTS_UNSPEC] = {
.strict_start_type = TCA_FLOWER_KEY_ENC_OPTS_VXLAN },
[TCA_FLOWER_KEY_ENC_OPTS_GENEVE] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_ENC_OPTS_VXLAN] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_ENC_OPTS_ERSPAN] = { .type = NLA_NESTED },
[TCA_FLOWER_KEY_ENC_OPTS_GTP] = { .type = NLA_NESTED },
};
static const struct nla_policy
geneve_opt_policy[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] = { .type = NLA_U16 },
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA] = { .type = NLA_BINARY,
.len = 128 },
};
static const struct nla_policy
vxlan_opt_policy[TCA_FLOWER_KEY_ENC_OPT_VXLAN_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPT_VXLAN_GBP] = { .type = NLA_U32 },
};
static const struct nla_policy
erspan_opt_policy[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_VER] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_INDEX] = { .type = NLA_U32 },
[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_DIR] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_HWID] = { .type = NLA_U8 },
};
static const struct nla_policy
gtp_opt_policy[TCA_FLOWER_KEY_ENC_OPT_GTP_MAX + 1] = {
[TCA_FLOWER_KEY_ENC_OPT_GTP_PDU_TYPE] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_ENC_OPT_GTP_QFI] = { .type = NLA_U8 },
};
static const struct nla_policy
mpls_stack_entry_policy[TCA_FLOWER_KEY_MPLS_OPT_LSE_MAX + 1] = {
[TCA_FLOWER_KEY_MPLS_OPT_LSE_DEPTH] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_OPT_LSE_TTL] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_OPT_LSE_BOS] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_OPT_LSE_TC] = { .type = NLA_U8 },
[TCA_FLOWER_KEY_MPLS_OPT_LSE_LABEL] = { .type = NLA_U32 },
};
static const struct nla_policy
cfm_opt_policy[TCA_FLOWER_KEY_CFM_OPT_MAX + 1] = {
[TCA_FLOWER_KEY_CFM_MD_LEVEL] = NLA_POLICY_MAX(NLA_U8,
FLOW_DIS_CFM_MDL_MAX),
[TCA_FLOWER_KEY_CFM_OPCODE] = { .type = NLA_U8 },
};
static void fl_set_key_val(struct nlattr **tb,
void *val, int val_type,
void *mask, int mask_type, int len)
{
if (!tb[val_type])
return;
nla_memcpy(val, tb[val_type], len);
if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
memset(mask, 0xff, len);
else
nla_memcpy(mask, tb[mask_type], len);
}
static int fl_set_key_spi(struct nlattr **tb, struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
if (key->basic.ip_proto != IPPROTO_ESP &&
key->basic.ip_proto != IPPROTO_AH) {
NL_SET_ERR_MSG(extack,
"Protocol must be either ESP or AH");
return -EINVAL;
}
fl_set_key_val(tb, &key->ipsec.spi,
TCA_FLOWER_KEY_SPI,
&mask->ipsec.spi, TCA_FLOWER_KEY_SPI_MASK,
sizeof(key->ipsec.spi));
return 0;
}
static int fl_set_key_port_range(struct nlattr **tb, struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
fl_set_key_val(tb, &key->tp_range.tp_min.dst,
TCA_FLOWER_KEY_PORT_DST_MIN, &mask->tp_range.tp_min.dst,
TCA_FLOWER_UNSPEC, sizeof(key->tp_range.tp_min.dst));
fl_set_key_val(tb, &key->tp_range.tp_max.dst,
TCA_FLOWER_KEY_PORT_DST_MAX, &mask->tp_range.tp_max.dst,
TCA_FLOWER_UNSPEC, sizeof(key->tp_range.tp_max.dst));
fl_set_key_val(tb, &key->tp_range.tp_min.src,
TCA_FLOWER_KEY_PORT_SRC_MIN, &mask->tp_range.tp_min.src,
TCA_FLOWER_UNSPEC, sizeof(key->tp_range.tp_min.src));
fl_set_key_val(tb, &key->tp_range.tp_max.src,
TCA_FLOWER_KEY_PORT_SRC_MAX, &mask->tp_range.tp_max.src,
TCA_FLOWER_UNSPEC, sizeof(key->tp_range.tp_max.src));
if (mask->tp_range.tp_min.dst != mask->tp_range.tp_max.dst) {
NL_SET_ERR_MSG(extack,
"Both min and max destination ports must be specified");
return -EINVAL;
}
if (mask->tp_range.tp_min.src != mask->tp_range.tp_max.src) {
NL_SET_ERR_MSG(extack,
"Both min and max source ports must be specified");
return -EINVAL;
}
if (mask->tp_range.tp_min.dst && mask->tp_range.tp_max.dst &&
ntohs(key->tp_range.tp_max.dst) <=
ntohs(key->tp_range.tp_min.dst)) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_PORT_DST_MIN],
"Invalid destination port range (min must be strictly smaller than max)");
return -EINVAL;
}
if (mask->tp_range.tp_min.src && mask->tp_range.tp_max.src &&
ntohs(key->tp_range.tp_max.src) <=
ntohs(key->tp_range.tp_min.src)) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_PORT_SRC_MIN],
"Invalid source port range (min must be strictly smaller than max)");
return -EINVAL;
}
return 0;
}
static int fl_set_key_mpls_lse(const struct nlattr *nla_lse,
struct flow_dissector_key_mpls *key_val,
struct flow_dissector_key_mpls *key_mask,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_MAX + 1];
struct flow_dissector_mpls_lse *lse_mask;
struct flow_dissector_mpls_lse *lse_val;
u8 lse_index;
u8 depth;
int err;
err = nla_parse_nested(tb, TCA_FLOWER_KEY_MPLS_OPT_LSE_MAX, nla_lse,
mpls_stack_entry_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_DEPTH]) {
NL_SET_ERR_MSG(extack, "Missing MPLS option \"depth\"");
return -EINVAL;
}
depth = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_DEPTH]);
/* LSE depth starts at 1, for consistency with terminology used by
* RFC 3031 (section 3.9), where depth 0 refers to unlabeled packets.
*/
if (depth < 1 || depth > FLOW_DIS_MPLS_MAX) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_DEPTH],
"Invalid MPLS depth");
return -EINVAL;
}
lse_index = depth - 1;
dissector_set_mpls_lse(key_val, lse_index);
dissector_set_mpls_lse(key_mask, lse_index);
lse_val = &key_val->ls[lse_index];
lse_mask = &key_mask->ls[lse_index];
if (tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_TTL]) {
lse_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_TTL]);
lse_mask->mpls_ttl = MPLS_TTL_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_BOS]) {
u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_BOS]);
if (bos & ~MPLS_BOS_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_BOS],
"Bottom Of Stack (BOS) must be 0 or 1");
return -EINVAL;
}
lse_val->mpls_bos = bos;
lse_mask->mpls_bos = MPLS_BOS_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_TC]) {
u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_TC]);
if (tc & ~MPLS_TC_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_TC],
"Traffic Class (TC) must be between 0 and 7");
return -EINVAL;
}
lse_val->mpls_tc = tc;
lse_mask->mpls_tc = MPLS_TC_MASK;
}
if (tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_LABEL]) {
u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_LABEL]);
if (label & ~MPLS_LABEL_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_OPT_LSE_LABEL],
"Label must be between 0 and 1048575");
return -EINVAL;
}
lse_val->mpls_label = label;
lse_mask->mpls_label = MPLS_LABEL_MASK;
}
return 0;
}
static int fl_set_key_mpls_opts(const struct nlattr *nla_mpls_opts,
struct flow_dissector_key_mpls *key_val,
struct flow_dissector_key_mpls *key_mask,
struct netlink_ext_ack *extack)
{
struct nlattr *nla_lse;
int rem;
int err;
if (!(nla_mpls_opts->nla_type & NLA_F_NESTED)) {
NL_SET_ERR_MSG_ATTR(extack, nla_mpls_opts,
"NLA_F_NESTED is missing");
return -EINVAL;
}
nla_for_each_nested(nla_lse, nla_mpls_opts, rem) {
if (nla_type(nla_lse) != TCA_FLOWER_KEY_MPLS_OPTS_LSE) {
NL_SET_ERR_MSG_ATTR(extack, nla_lse,
"Invalid MPLS option type");
return -EINVAL;
}
err = fl_set_key_mpls_lse(nla_lse, key_val, key_mask, extack);
if (err < 0)
return err;
}
if (rem) {
NL_SET_ERR_MSG(extack,
"Bytes leftover after parsing MPLS options");
return -EINVAL;
}
return 0;
}
static int fl_set_key_mpls(struct nlattr **tb,
struct flow_dissector_key_mpls *key_val,
struct flow_dissector_key_mpls *key_mask,
struct netlink_ext_ack *extack)
{
struct flow_dissector_mpls_lse *lse_mask;
struct flow_dissector_mpls_lse *lse_val;
if (tb[TCA_FLOWER_KEY_MPLS_OPTS]) {
if (tb[TCA_FLOWER_KEY_MPLS_TTL] ||
tb[TCA_FLOWER_KEY_MPLS_BOS] ||
tb[TCA_FLOWER_KEY_MPLS_TC] ||
tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_OPTS],
"MPLS label, Traffic Class, Bottom Of Stack and Time To Live must be encapsulated in the MPLS options attribute");
return -EBADMSG;
}
return fl_set_key_mpls_opts(tb[TCA_FLOWER_KEY_MPLS_OPTS],
key_val, key_mask, extack);
}
lse_val = &key_val->ls[0];
lse_mask = &key_mask->ls[0];
if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
lse_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
lse_mask->mpls_ttl = MPLS_TTL_MASK;
dissector_set_mpls_lse(key_val, 0);
dissector_set_mpls_lse(key_mask, 0);
}
if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
if (bos & ~MPLS_BOS_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_BOS],
"Bottom Of Stack (BOS) must be 0 or 1");
return -EINVAL;
}
lse_val->mpls_bos = bos;
lse_mask->mpls_bos = MPLS_BOS_MASK;
dissector_set_mpls_lse(key_val, 0);
dissector_set_mpls_lse(key_mask, 0);
}
if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
if (tc & ~MPLS_TC_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_TC],
"Traffic Class (TC) must be between 0 and 7");
return -EINVAL;
}
lse_val->mpls_tc = tc;
lse_mask->mpls_tc = MPLS_TC_MASK;
dissector_set_mpls_lse(key_val, 0);
dissector_set_mpls_lse(key_mask, 0);
}
if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
if (label & ~MPLS_LABEL_MASK) {
NL_SET_ERR_MSG_ATTR(extack,
tb[TCA_FLOWER_KEY_MPLS_LABEL],
"Label must be between 0 and 1048575");
return -EINVAL;
}
lse_val->mpls_label = label;
lse_mask->mpls_label = MPLS_LABEL_MASK;
dissector_set_mpls_lse(key_val, 0);
dissector_set_mpls_lse(key_mask, 0);
}
return 0;
}
static void fl_set_key_vlan(struct nlattr **tb,
__be16 ethertype,
int vlan_id_key, int vlan_prio_key,
int vlan_next_eth_type_key,
struct flow_dissector_key_vlan *key_val,
struct flow_dissector_key_vlan *key_mask)
{
#define VLAN_PRIORITY_MASK 0x7
if (tb[vlan_id_key]) {
key_val->vlan_id =
nla_get_u16(tb[vlan_id_key]) & VLAN_VID_MASK;
key_mask->vlan_id = VLAN_VID_MASK;
}
if (tb[vlan_prio_key]) {
key_val->vlan_priority =
nla_get_u8(tb[vlan_prio_key]) &
VLAN_PRIORITY_MASK;
key_mask->vlan_priority = VLAN_PRIORITY_MASK;
}
if (ethertype) {
key_val->vlan_tpid = ethertype;
key_mask->vlan_tpid = cpu_to_be16(~0);
}
if (tb[vlan_next_eth_type_key]) {
key_val->vlan_eth_type =
nla_get_be16(tb[vlan_next_eth_type_key]);
key_mask->vlan_eth_type = cpu_to_be16(~0);
}
}
static void fl_set_key_pppoe(struct nlattr **tb,
struct flow_dissector_key_pppoe *key_val,
struct flow_dissector_key_pppoe *key_mask,
struct fl_flow_key *key,
struct fl_flow_key *mask)
{
/* key_val::type must be set to ETH_P_PPP_SES
* because ETH_P_PPP_SES was stored in basic.n_proto
* which might get overwritten by ppp_proto
* or might be set to 0, the role of key_val::type
* is similar to vlan_key::tpid
*/
key_val->type = htons(ETH_P_PPP_SES);
key_mask->type = cpu_to_be16(~0);
if (tb[TCA_FLOWER_KEY_PPPOE_SID]) {
key_val->session_id =
nla_get_be16(tb[TCA_FLOWER_KEY_PPPOE_SID]);
key_mask->session_id = cpu_to_be16(~0);
}
if (tb[TCA_FLOWER_KEY_PPP_PROTO]) {
key_val->ppp_proto =
nla_get_be16(tb[TCA_FLOWER_KEY_PPP_PROTO]);
key_mask->ppp_proto = cpu_to_be16(~0);
if (key_val->ppp_proto == htons(PPP_IP)) {
key->basic.n_proto = htons(ETH_P_IP);
mask->basic.n_proto = cpu_to_be16(~0);
} else if (key_val->ppp_proto == htons(PPP_IPV6)) {
key->basic.n_proto = htons(ETH_P_IPV6);
mask->basic.n_proto = cpu_to_be16(~0);
} else if (key_val->ppp_proto == htons(PPP_MPLS_UC)) {
key->basic.n_proto = htons(ETH_P_MPLS_UC);
mask->basic.n_proto = cpu_to_be16(~0);
} else if (key_val->ppp_proto == htons(PPP_MPLS_MC)) {
key->basic.n_proto = htons(ETH_P_MPLS_MC);
mask->basic.n_proto = cpu_to_be16(~0);
}
} else {
key->basic.n_proto = 0;
mask->basic.n_proto = cpu_to_be16(0);
}
}
static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
u32 *dissector_key, u32 *dissector_mask,
u32 flower_flag_bit, u32 dissector_flag_bit)
{
if (flower_mask & flower_flag_bit) {
*dissector_mask |= dissector_flag_bit;
if (flower_key & flower_flag_bit)
*dissector_key |= dissector_flag_bit;
}
}
static int fl_set_key_flags(struct nlattr **tb, u32 *flags_key,
u32 *flags_mask, struct netlink_ext_ack *extack)
{
u32 key, mask;
/* mask is mandatory for flags */
if (!tb[TCA_FLOWER_KEY_FLAGS_MASK]) {
NL_SET_ERR_MSG(extack, "Missing flags mask");
return -EINVAL;
}
key = be32_to_cpu(nla_get_be32(tb[TCA_FLOWER_KEY_FLAGS]));
mask = be32_to_cpu(nla_get_be32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
*flags_key = 0;
*flags_mask = 0;
fl_set_key_flag(key, mask, flags_key, flags_mask,
TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
fl_set_key_flag(key, mask, flags_key, flags_mask,
TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
FLOW_DIS_FIRST_FRAG);
return 0;
}
static void fl_set_key_ip(struct nlattr **tb, bool encap,
struct flow_dissector_key_ip *key,
struct flow_dissector_key_ip *mask)
{
int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
fl_set_key_val(tb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos));
fl_set_key_val(tb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl));
}
static int fl_set_geneve_opt(const struct nlattr *nla, struct fl_flow_key *key,
int depth, int option_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1];
struct nlattr *class = NULL, *type = NULL, *data = NULL;
struct geneve_opt *opt;
int err, data_len = 0;
if (option_len > sizeof(struct geneve_opt))
data_len = option_len - sizeof(struct geneve_opt);
if (key->enc_opts.len > FLOW_DIS_TUN_OPTS_MAX - 4)
return -ERANGE;
opt = (struct geneve_opt *)&key->enc_opts.data[key->enc_opts.len];
memset(opt, 0xff, option_len);
opt->length = data_len / 4;
opt->r1 = 0;
opt->r2 = 0;
opt->r3 = 0;
/* If no mask has been prodived we assume an exact match. */
if (!depth)
return sizeof(struct geneve_opt) + data_len;
if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_GENEVE) {
NL_SET_ERR_MSG(extack, "Non-geneve option type for mask");
return -EINVAL;
}
err = nla_parse_nested_deprecated(tb,
TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX,
nla, geneve_opt_policy, extack);
if (err < 0)
return err;
/* We are not allowed to omit any of CLASS, TYPE or DATA
* fields from the key.
*/
if (!option_len &&
(!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA])) {
NL_SET_ERR_MSG(extack, "Missing tunnel key geneve option class, type or data");
return -EINVAL;
}
/* Omitting any of CLASS, TYPE or DATA fields is allowed
* for the mask.
*/
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA]) {
int new_len = key->enc_opts.len;
data = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA];
data_len = nla_len(data);
if (data_len < 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is less than 4 bytes long");
return -ERANGE;
}
if (data_len % 4) {
NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is not a multiple of 4 bytes long");
return -ERANGE;
}
new_len += sizeof(struct geneve_opt) + data_len;
BUILD_BUG_ON(FLOW_DIS_TUN_OPTS_MAX != IP_TUNNEL_OPTS_MAX);
if (new_len > FLOW_DIS_TUN_OPTS_MAX) {
NL_SET_ERR_MSG(extack, "Tunnel options exceeds max size");
return -ERANGE;
}
opt->length = data_len / 4;
memcpy(opt->opt_data, nla_data(data), data_len);
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS]) {
class = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS];
opt->opt_class = nla_get_be16(class);
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE]) {
type = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE];
opt->type = nla_get_u8(type);
}
return sizeof(struct geneve_opt) + data_len;
}
static int fl_set_vxlan_opt(const struct nlattr *nla, struct fl_flow_key *key,
int depth, int option_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_VXLAN_MAX + 1];
struct vxlan_metadata *md;
int err;
md = (struct vxlan_metadata *)&key->enc_opts.data[key->enc_opts.len];
memset(md, 0xff, sizeof(*md));
if (!depth)
return sizeof(*md);
if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_VXLAN) {
NL_SET_ERR_MSG(extack, "Non-vxlan option type for mask");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_VXLAN_MAX, nla,
vxlan_opt_policy, extack);
if (err < 0)
return err;
if (!option_len && !tb[TCA_FLOWER_KEY_ENC_OPT_VXLAN_GBP]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key vxlan option gbp");
return -EINVAL;
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_VXLAN_GBP]) {
md->gbp = nla_get_u32(tb[TCA_FLOWER_KEY_ENC_OPT_VXLAN_GBP]);
md->gbp &= VXLAN_GBP_MASK;
}
return sizeof(*md);
}
static int fl_set_erspan_opt(const struct nlattr *nla, struct fl_flow_key *key,
int depth, int option_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_MAX + 1];
struct erspan_metadata *md;
int err;
md = (struct erspan_metadata *)&key->enc_opts.data[key->enc_opts.len];
memset(md, 0xff, sizeof(*md));
md->version = 1;
if (!depth)
return sizeof(*md);
if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_ERSPAN) {
NL_SET_ERR_MSG(extack, "Non-erspan option type for mask");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_ERSPAN_MAX, nla,
erspan_opt_policy, extack);
if (err < 0)
return err;
if (!option_len && !tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_VER]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option ver");
return -EINVAL;
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_VER])
md->version = nla_get_u8(tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_VER]);
if (md->version == 1) {
if (!option_len && !tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_INDEX]) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option index");
return -EINVAL;
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_INDEX]) {
nla = tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_INDEX];
memset(&md->u, 0x00, sizeof(md->u));
md->u.index = nla_get_be32(nla);
}
} else if (md->version == 2) {
if (!option_len && (!tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_DIR] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_HWID])) {
NL_SET_ERR_MSG(extack, "Missing tunnel key erspan option dir or hwid");
return -EINVAL;
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_DIR]) {
nla = tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_DIR];
md->u.md2.dir = nla_get_u8(nla);
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_HWID]) {
nla = tb[TCA_FLOWER_KEY_ENC_OPT_ERSPAN_HWID];
set_hwid(&md->u.md2, nla_get_u8(nla));
}
} else {
NL_SET_ERR_MSG(extack, "Tunnel key erspan option ver is incorrect");
return -EINVAL;
}
return sizeof(*md);
}
static int fl_set_gtp_opt(const struct nlattr *nla, struct fl_flow_key *key,
int depth, int option_len,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_GTP_MAX + 1];
struct gtp_pdu_session_info *sinfo;
u8 len = key->enc_opts.len;
int err;
sinfo = (struct gtp_pdu_session_info *)&key->enc_opts.data[len];
memset(sinfo, 0xff, option_len);
if (!depth)
return sizeof(*sinfo);
if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_GTP) {
NL_SET_ERR_MSG_MOD(extack, "Non-gtp option type for mask");
return -EINVAL;
}
err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_GTP_MAX, nla,
gtp_opt_policy, extack);
if (err < 0)
return err;
if (!option_len &&
(!tb[TCA_FLOWER_KEY_ENC_OPT_GTP_PDU_TYPE] ||
!tb[TCA_FLOWER_KEY_ENC_OPT_GTP_QFI])) {
NL_SET_ERR_MSG_MOD(extack,
"Missing tunnel key gtp option pdu type or qfi");
return -EINVAL;
}
if (tb[TCA_FLOWER_KEY_ENC_OPT_GTP_PDU_TYPE])
sinfo->pdu_type =
nla_get_u8(tb[TCA_FLOWER_KEY_ENC_OPT_GTP_PDU_TYPE]);
if (tb[TCA_FLOWER_KEY_ENC_OPT_GTP_QFI])
sinfo->qfi = nla_get_u8(tb[TCA_FLOWER_KEY_ENC_OPT_GTP_QFI]);
return sizeof(*sinfo);
}
static int fl_set_enc_opt(struct nlattr **tb, struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
const struct nlattr *nla_enc_key, *nla_opt_key, *nla_opt_msk = NULL;
int err, option_len, key_depth, msk_depth = 0;
err = nla_validate_nested_deprecated(tb[TCA_FLOWER_KEY_ENC_OPTS],
TCA_FLOWER_KEY_ENC_OPTS_MAX,
enc_opts_policy, extack);
if (err)
return err;
nla_enc_key = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS]);
if (tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]) {
err = nla_validate_nested_deprecated(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK],
TCA_FLOWER_KEY_ENC_OPTS_MAX,
enc_opts_policy, extack);
if (err)
return err;
nla_opt_msk = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
msk_depth = nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
if (!nla_ok(nla_opt_msk, msk_depth)) {
NL_SET_ERR_MSG(extack, "Invalid nested attribute for masks");
return -EINVAL;
}
}
nla_for_each_attr(nla_opt_key, nla_enc_key,
nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS]), key_depth) {
switch (nla_type(nla_opt_key)) {
case TCA_FLOWER_KEY_ENC_OPTS_GENEVE:
if (key->enc_opts.dst_opt_type &&
key->enc_opts.dst_opt_type != TUNNEL_GENEVE_OPT) {
NL_SET_ERR_MSG(extack, "Duplicate type for geneve options");
return -EINVAL;
}
option_len = 0;
key->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
option_len = fl_set_geneve_opt(nla_opt_key, key,
key_depth, option_len,
extack);
if (option_len < 0)
return option_len;
key->enc_opts.len += option_len;
/* At the same time we need to parse through the mask
* in order to verify exact and mask attribute lengths.
*/
mask->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
option_len = fl_set_geneve_opt(nla_opt_msk, mask,
msk_depth, option_len,
extack);
if (option_len < 0)
return option_len;
mask->enc_opts.len += option_len;
if (key->enc_opts.len != mask->enc_opts.len) {
NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
return -EINVAL;
}
break;
case TCA_FLOWER_KEY_ENC_OPTS_VXLAN:
if (key->enc_opts.dst_opt_type) {
NL_SET_ERR_MSG(extack, "Duplicate type for vxlan options");
return -EINVAL;
}
option_len = 0;
key->enc_opts.dst_opt_type = TUNNEL_VXLAN_OPT;
option_len = fl_set_vxlan_opt(nla_opt_key, key,
key_depth, option_len,
extack);
if (option_len < 0)
return option_len;
key->enc_opts.len += option_len;
/* At the same time we need to parse through the mask
* in order to verify exact and mask attribute lengths.
*/
mask->enc_opts.dst_opt_type = TUNNEL_VXLAN_OPT;
option_len = fl_set_vxlan_opt(nla_opt_msk, mask,
msk_depth, option_len,
extack);
if (option_len < 0)
return option_len;
mask->enc_opts.len += option_len;
if (key->enc_opts.len != mask->enc_opts.len) {
NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
return -EINVAL;
}
break;
case TCA_FLOWER_KEY_ENC_OPTS_ERSPAN:
if (key->enc_opts.dst_opt_type) {
NL_SET_ERR_MSG(extack, "Duplicate type for erspan options");
return -EINVAL;
}
option_len = 0;
key->enc_opts.dst_opt_type = TUNNEL_ERSPAN_OPT;
option_len = fl_set_erspan_opt(nla_opt_key, key,
key_depth, option_len,
extack);
if (option_len < 0)
return option_len;
key->enc_opts.len += option_len;
/* At the same time we need to parse through the mask
* in order to verify exact and mask attribute lengths.
*/
mask->enc_opts.dst_opt_type = TUNNEL_ERSPAN_OPT;
option_len = fl_set_erspan_opt(nla_opt_msk, mask,
msk_depth, option_len,
extack);
if (option_len < 0)
return option_len;
mask->enc_opts.len += option_len;
if (key->enc_opts.len != mask->enc_opts.len) {
NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
return -EINVAL;
}
break;
case TCA_FLOWER_KEY_ENC_OPTS_GTP:
if (key->enc_opts.dst_opt_type) {
NL_SET_ERR_MSG_MOD(extack,
"Duplicate type for gtp options");
return -EINVAL;
}
option_len = 0;
key->enc_opts.dst_opt_type = TUNNEL_GTP_OPT;
option_len = fl_set_gtp_opt(nla_opt_key, key,
key_depth, option_len,
extack);
if (option_len < 0)
return option_len;
key->enc_opts.len += option_len;
/* At the same time we need to parse through the mask
* in order to verify exact and mask attribute lengths.
*/
mask->enc_opts.dst_opt_type = TUNNEL_GTP_OPT;
option_len = fl_set_gtp_opt(nla_opt_msk, mask,
msk_depth, option_len,
extack);
if (option_len < 0)
return option_len;
mask->enc_opts.len += option_len;
if (key->enc_opts.len != mask->enc_opts.len) {
NL_SET_ERR_MSG_MOD(extack,
"Key and mask miss aligned");
return -EINVAL;
}
break;
default:
NL_SET_ERR_MSG(extack, "Unknown tunnel option type");
return -EINVAL;
}
if (!msk_depth)
continue;
if (!nla_ok(nla_opt_msk, msk_depth)) {
NL_SET_ERR_MSG(extack, "A mask attribute is invalid");
return -EINVAL;
}
nla_opt_msk = nla_next(nla_opt_msk, &msk_depth);
}
return 0;
}
static int fl_validate_ct_state(u16 state, struct nlattr *tb,
struct netlink_ext_ack *extack)
{
if (state && !(state & TCA_FLOWER_KEY_CT_FLAGS_TRACKED)) {
NL_SET_ERR_MSG_ATTR(extack, tb,
"no trk, so no other flag can be set");
return -EINVAL;
}
if (state & TCA_FLOWER_KEY_CT_FLAGS_NEW &&
state & TCA_FLOWER_KEY_CT_FLAGS_ESTABLISHED) {
NL_SET_ERR_MSG_ATTR(extack, tb,
"new and est are mutually exclusive");
return -EINVAL;
}
if (state & TCA_FLOWER_KEY_CT_FLAGS_INVALID &&
state & ~(TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_INVALID)) {
NL_SET_ERR_MSG_ATTR(extack, tb,
"when inv is set, only trk may be set");
return -EINVAL;
}
if (state & TCA_FLOWER_KEY_CT_FLAGS_NEW &&
state & TCA_FLOWER_KEY_CT_FLAGS_REPLY) {
NL_SET_ERR_MSG_ATTR(extack, tb,
"new and rpl are mutually exclusive");
return -EINVAL;
}
return 0;
}
static int fl_set_key_ct(struct nlattr **tb,
struct flow_dissector_key_ct *key,
struct flow_dissector_key_ct *mask,
struct netlink_ext_ack *extack)
{
if (tb[TCA_FLOWER_KEY_CT_STATE]) {
int err;
if (!IS_ENABLED(CONFIG_NF_CONNTRACK)) {
NL_SET_ERR_MSG(extack, "Conntrack isn't enabled");
return -EOPNOTSUPP;
}
fl_set_key_val(tb, &key->ct_state, TCA_FLOWER_KEY_CT_STATE,
&mask->ct_state, TCA_FLOWER_KEY_CT_STATE_MASK,
sizeof(key->ct_state));
err = fl_validate_ct_state(key->ct_state & mask->ct_state,
tb[TCA_FLOWER_KEY_CT_STATE_MASK],
extack);
if (err)
return err;
}
if (tb[TCA_FLOWER_KEY_CT_ZONE]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) {
NL_SET_ERR_MSG(extack, "Conntrack zones isn't enabled");
return -EOPNOTSUPP;
}
fl_set_key_val(tb, &key->ct_zone, TCA_FLOWER_KEY_CT_ZONE,
&mask->ct_zone, TCA_FLOWER_KEY_CT_ZONE_MASK,
sizeof(key->ct_zone));
}
if (tb[TCA_FLOWER_KEY_CT_MARK]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) {
NL_SET_ERR_MSG(extack, "Conntrack mark isn't enabled");
return -EOPNOTSUPP;
}
fl_set_key_val(tb, &key->ct_mark, TCA_FLOWER_KEY_CT_MARK,
&mask->ct_mark, TCA_FLOWER_KEY_CT_MARK_MASK,
sizeof(key->ct_mark));
}
if (tb[TCA_FLOWER_KEY_CT_LABELS]) {
if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) {
NL_SET_ERR_MSG(extack, "Conntrack labels aren't enabled");
return -EOPNOTSUPP;
}
fl_set_key_val(tb, key->ct_labels, TCA_FLOWER_KEY_CT_LABELS,
mask->ct_labels, TCA_FLOWER_KEY_CT_LABELS_MASK,
sizeof(key->ct_labels));
}
return 0;
}
static bool is_vlan_key(struct nlattr *tb, __be16 *ethertype,
struct fl_flow_key *key, struct fl_flow_key *mask,
int vthresh)
{
const bool good_num_of_vlans = key->num_of_vlans.num_of_vlans > vthresh;
if (!tb) {
*ethertype = 0;
return good_num_of_vlans;
}
*ethertype = nla_get_be16(tb);
if (good_num_of_vlans || eth_type_vlan(*ethertype))
return true;
key->basic.n_proto = *ethertype;
mask->basic.n_proto = cpu_to_be16(~0);
return false;
}
static void fl_set_key_cfm_md_level(struct nlattr **tb,
struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
u8 level;
if (!tb[TCA_FLOWER_KEY_CFM_MD_LEVEL])
return;
level = nla_get_u8(tb[TCA_FLOWER_KEY_CFM_MD_LEVEL]);
key->cfm.mdl_ver = FIELD_PREP(FLOW_DIS_CFM_MDL_MASK, level);
mask->cfm.mdl_ver = FLOW_DIS_CFM_MDL_MASK;
}
static void fl_set_key_cfm_opcode(struct nlattr **tb,
struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
fl_set_key_val(tb, &key->cfm.opcode, TCA_FLOWER_KEY_CFM_OPCODE,
&mask->cfm.opcode, TCA_FLOWER_UNSPEC,
sizeof(key->cfm.opcode));
}
static int fl_set_key_cfm(struct nlattr **tb,
struct fl_flow_key *key,
struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
struct nlattr *nla_cfm_opt[TCA_FLOWER_KEY_CFM_OPT_MAX + 1];
int err;
if (!tb[TCA_FLOWER_KEY_CFM])
return 0;
err = nla_parse_nested(nla_cfm_opt, TCA_FLOWER_KEY_CFM_OPT_MAX,
tb[TCA_FLOWER_KEY_CFM], cfm_opt_policy, extack);
if (err < 0)
return err;
fl_set_key_cfm_opcode(nla_cfm_opt, key, mask, extack);
fl_set_key_cfm_md_level(nla_cfm_opt, key, mask, extack);
return 0;
}
static int fl_set_key(struct net *net, struct nlattr **tb,
struct fl_flow_key *key, struct fl_flow_key *mask,
struct netlink_ext_ack *extack)
{
__be16 ethertype;
int ret = 0;
if (tb[TCA_FLOWER_INDEV]) {
int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV], extack);
if (err < 0)
return err;
key->meta.ingress_ifindex = err;
mask->meta.ingress_ifindex = 0xffffffff;
}
fl_set_key_val(tb, &key->meta.l2_miss, TCA_FLOWER_L2_MISS,
&mask->meta.l2_miss, TCA_FLOWER_UNSPEC,
sizeof(key->meta.l2_miss));
fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
sizeof(key->eth.dst));
fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
sizeof(key->eth.src));
fl_set_key_val(tb, &key->num_of_vlans,
TCA_FLOWER_KEY_NUM_OF_VLANS,
&mask->num_of_vlans,
TCA_FLOWER_UNSPEC,
sizeof(key->num_of_vlans));
if (is_vlan_key(tb[TCA_FLOWER_KEY_ETH_TYPE], ðertype, key, mask, 0)) {
fl_set_key_vlan(tb, ethertype, TCA_FLOWER_KEY_VLAN_ID,
TCA_FLOWER_KEY_VLAN_PRIO,
TCA_FLOWER_KEY_VLAN_ETH_TYPE,
&key->vlan, &mask->vlan);
if (is_vlan_key(tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE],
ðertype, key, mask, 1)) {
fl_set_key_vlan(tb, ethertype,
TCA_FLOWER_KEY_CVLAN_ID,
TCA_FLOWER_KEY_CVLAN_PRIO,
TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
&key->cvlan, &mask->cvlan);
fl_set_key_val(tb, &key->basic.n_proto,
TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
&mask->basic.n_proto,
TCA_FLOWER_UNSPEC,
sizeof(key->basic.n_proto));
}
}
if (key->basic.n_proto == htons(ETH_P_PPP_SES))
fl_set_key_pppoe(tb, &key->pppoe, &mask->pppoe, key, mask);
if (key->basic.n_proto == htons(ETH_P_IP) ||
key->basic.n_proto == htons(ETH_P_IPV6)) {
fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
&mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.ip_proto));
fl_set_key_ip(tb, false, &key->ip, &mask->ip);
}
if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
mask->control.addr_type = ~0;
fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
&mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
sizeof(key->ipv4.src));
fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
&mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
sizeof(key->ipv4.dst));
} else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
mask->control.addr_type = ~0;
fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
&mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
sizeof(key->ipv6.src));
fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
&mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
sizeof(key->ipv6.dst));
}
if (key->basic.ip_proto == IPPROTO_TCP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
sizeof(key->tp.dst));
fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
&mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
sizeof(key->tcp.flags));
} else if (key->basic.ip_proto == IPPROTO_UDP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
sizeof(key->tp.dst));
} else if (key->basic.ip_proto == IPPROTO_SCTP) {
fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
sizeof(key->tp.src));
fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
sizeof(key->tp.dst));
} else if (key->basic.n_proto == htons(ETH_P_IP) &&
key->basic.ip_proto == IPPROTO_ICMP) {
fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
&mask->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
sizeof(key->icmp.type));
fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
&mask->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
sizeof(key->icmp.code));
} else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
key->basic.ip_proto == IPPROTO_ICMPV6) {
fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
&mask->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
sizeof(key->icmp.type));
fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
&mask->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
sizeof(key->icmp.code));
} else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls, extack);
if (ret)
return ret;
} else if (key->basic.n_proto == htons(ETH_P_ARP) ||
key->basic.n_proto == htons(ETH_P_RARP)) {
fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
&mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
sizeof(key->arp.sip));
fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
&mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
sizeof(key->arp.tip));
fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
&mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
sizeof(key->arp.op));
fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
sizeof(key->arp.sha));
fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
sizeof(key->arp.tha));
} else if (key->basic.ip_proto == IPPROTO_L2TP) {
fl_set_key_val(tb, &key->l2tpv3.session_id,
TCA_FLOWER_KEY_L2TPV3_SID,
&mask->l2tpv3.session_id, TCA_FLOWER_UNSPEC,
sizeof(key->l2tpv3.session_id));
} else if (key->basic.n_proto == htons(ETH_P_CFM)) {
ret = fl_set_key_cfm(tb, key, mask, extack);
if (ret)
return ret;
}
if (key->basic.ip_proto == IPPROTO_TCP ||
key->basic.ip_proto == IPPROTO_UDP ||
key->basic.ip_proto == IPPROTO_SCTP) {
ret = fl_set_key_port_range(tb, key, mask, extack);
if (ret)
return ret;
}
if (tb[TCA_FLOWER_KEY_SPI]) {
ret = fl_set_key_spi(tb, key, mask, extack);
if (ret)
return ret;
}
if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
mask->enc_control.addr_type = ~0;
fl_set_key_val(tb, &key->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC,
&mask->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
sizeof(key->enc_ipv4.src));
fl_set_key_val(tb, &key->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST,
&mask->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
sizeof(key->enc_ipv4.dst));
}
if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
mask->enc_control.addr_type = ~0;
fl_set_key_val(tb, &key->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC,
&mask->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
sizeof(key->enc_ipv6.src));
fl_set_key_val(tb, &key->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST,
&mask->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
sizeof(key->enc_ipv6.dst));
}
fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
&mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
sizeof(key->enc_key_id.keyid));
fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
&mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
sizeof(key->enc_tp.src));
fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
&mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
sizeof(key->enc_tp.dst));
fl_set_key_ip(tb, true, &key->enc_ip, &mask->enc_ip);
fl_set_key_val(tb, &key->hash.hash, TCA_FLOWER_KEY_HASH,
&mask->hash.hash, TCA_FLOWER_KEY_HASH_MASK,
sizeof(key->hash.hash));
if (tb[TCA_FLOWER_KEY_ENC_OPTS]) {
ret = fl_set_enc_opt(tb, key, mask, extack);
if (ret)
return ret;
}
ret = fl_set_key_ct(tb, &key->ct, &mask->ct, extack);
if (ret)
return ret;
if (tb[TCA_FLOWER_KEY_FLAGS])
ret = fl_set_key_flags(tb, &key->control.flags,
&mask->control.flags, extack);
return ret;
}
static void fl_mask_copy(struct fl_flow_mask *dst,
struct fl_flow_mask *src)
{
const void *psrc = fl_key_get_start(&src->key, src);
void *pdst = fl_key_get_start(&dst->key, src);
memcpy(pdst, psrc, fl_mask_range(src));
dst->range = src->range;
}
static const struct rhashtable_params fl_ht_params = {
.key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
.head_offset = offsetof(struct cls_fl_filter, ht_node),
.automatic_shrinking = true,
};
static int fl_init_mask_hashtable(struct fl_flow_mask *mask)
{
mask->filter_ht_params = fl_ht_params;
mask->filter_ht_params.key_len = fl_mask_range(mask);
mask->filter_ht_params.key_offset += mask->range.start;
return rhashtable_init(&mask->ht, &mask->filter_ht_params);
}
#define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
#define FL_KEY_MEMBER_SIZE(member) sizeof_field(struct fl_flow_key, member)
#define FL_KEY_IS_MASKED(mask, member) \
memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
0, FL_KEY_MEMBER_SIZE(member)) \
#define FL_KEY_SET(keys, cnt, id, member) \
do { \
keys[cnt].key_id = id; \
keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
cnt++; \
} while(0);
#define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
do { \
if (FL_KEY_IS_MASKED(mask, member)) \
FL_KEY_SET(keys, cnt, id, member); \
} while(0);
static void fl_init_dissector(struct flow_dissector *dissector,
struct fl_flow_key *mask)
{
struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
size_t cnt = 0;
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_META, meta);
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_PORTS, tp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_PORTS_RANGE, tp_range);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IP, ip);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_TCP, tcp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ICMP, icmp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ARP, arp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_MPLS, mpls);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_VLAN, vlan);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_CVLAN, cvlan);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
if (FL_KEY_IS_MASKED(mask, enc_ipv4) ||
FL_KEY_IS_MASKED(mask, enc_ipv6))
FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
enc_control);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_IP, enc_ip);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_ENC_OPTS, enc_opts);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_CT, ct);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_HASH, hash);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS, num_of_vlans);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_PPPOE, pppoe);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_L2TPV3, l2tpv3);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_IPSEC, ipsec);
FL_KEY_SET_IF_MASKED(mask, keys, cnt,
FLOW_DISSECTOR_KEY_CFM, cfm);
skb_flow_dissector_init(dissector, keys, cnt);
}
static struct fl_flow_mask *fl_create_new_mask(struct cls_fl_head *head,
struct fl_flow_mask *mask)
{
struct fl_flow_mask *newmask;
int err;
newmask = kzalloc(sizeof(*newmask), GFP_KERNEL);
if (!newmask)
return ERR_PTR(-ENOMEM);
fl_mask_copy(newmask, mask);
if ((newmask->key.tp_range.tp_min.dst &&
newmask->key.tp_range.tp_max.dst) ||
(newmask->key.tp_range.tp_min.src &&
newmask->key.tp_range.tp_max.src))
newmask->flags |= TCA_FLOWER_MASK_FLAGS_RANGE;
err = fl_init_mask_hashtable(newmask);
if (err)
goto errout_free;
fl_init_dissector(&newmask->dissector, &newmask->key);
INIT_LIST_HEAD_RCU(&newmask->filters);
refcount_set(&newmask->refcnt, 1);
err = rhashtable_replace_fast(&head->ht, &mask->ht_node,
&newmask->ht_node, mask_ht_params);
if (err)
goto errout_destroy;
spin_lock(&head->masks_lock);
list_add_tail_rcu(&newmask->list, &head->masks);
spin_unlock(&head->masks_lock);
return newmask;
errout_destroy:
rhashtable_destroy(&newmask->ht);
errout_free:
kfree(newmask);
return ERR_PTR(err);
}
static int fl_check_assign_mask(struct cls_fl_head *head,
struct cls_fl_filter *fnew,
struct cls_fl_filter *fold,
struct fl_flow_mask *mask)
{
struct fl_flow_mask *newmask;
int ret = 0;
rcu_read_lock();
/* Insert mask as temporary node to prevent concurrent creation of mask
* with same key. Any concurrent lookups with same key will return
* -EAGAIN because mask's refcnt is zero.
*/
fnew->mask = rhashtable_lookup_get_insert_fast(&head->ht,
&mask->ht_node,
mask_ht_params);
if (!fnew->mask) {
rcu_read_unlock();
if (fold) {
ret = -EINVAL;
goto errout_cleanup;
}
newmask = fl_create_new_mask(head, mask);
if (IS_ERR(newmask)) {
ret = PTR_ERR(newmask);
goto errout_cleanup;
}
fnew->mask = newmask;
return 0;
} else if (IS_ERR(fnew->mask)) {
ret = PTR_ERR(fnew->mask);
} else if (fold && fold->mask != fnew->mask) {
ret = -EINVAL;
} else if (!refcount_inc_not_zero(&fnew->mask->refcnt)) {
/* Mask was deleted concurrently, try again */
ret = -EAGAIN;
}
rcu_read_unlock();
return ret;
errout_cleanup:
rhashtable_remove_fast(&head->ht, &mask->ht_node,
mask_ht_params);
return ret;
}
static bool fl_needs_tc_skb_ext(const struct fl_flow_key *mask)
{
return mask->meta.l2_miss;
}
static int fl_ht_insert_unique(struct cls_fl_filter *fnew,
struct cls_fl_filter *fold,
bool *in_ht)
{
struct fl_flow_mask *mask = fnew->mask;
int err;
err = rhashtable_lookup_insert_fast(&mask->ht,
&fnew->ht_node,
mask->filter_ht_params);
if (err) {
*in_ht = false;
/* It is okay if filter with same key exists when
* overwriting.
*/
return fold && err == -EEXIST ? 0 : err;
}
*in_ht = true;
return 0;
}
static int fl_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = fl_head_dereference(tp);
bool rtnl_held = !(flags & TCA_ACT_FLAGS_NO_RTNL);
struct cls_fl_filter *fold = *arg;
bool bound_to_filter = false;
struct cls_fl_filter *fnew;
struct fl_flow_mask *mask;
struct nlattr **tb;
bool in_ht;
int err;
if (!tca[TCA_OPTIONS]) {
err = -EINVAL;
goto errout_fold;
}
mask = kzalloc(sizeof(struct fl_flow_mask), GFP_KERNEL);
if (!mask) {
err = -ENOBUFS;
goto errout_fold;
}
tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
if (!tb) {
err = -ENOBUFS;
goto errout_mask_alloc;
}
err = nla_parse_nested_deprecated(tb, TCA_FLOWER_MAX,
tca[TCA_OPTIONS], fl_policy, NULL);
if (err < 0)
goto errout_tb;
if (fold && handle && fold->handle != handle) {
err = -EINVAL;
goto errout_tb;
}
fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
if (!fnew) {
err = -ENOBUFS;
goto errout_tb;
}
INIT_LIST_HEAD(&fnew->hw_list);
refcount_set(&fnew->refcnt, 1);
if (tb[TCA_FLOWER_FLAGS]) {
fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
if (!tc_flags_valid(fnew->flags)) {
kfree(fnew);
err = -EINVAL;
goto errout_tb;
}
}
if (!fold) {
spin_lock(&tp->lock);
if (!handle) {
handle = 1;
err = idr_alloc_u32(&head->handle_idr, NULL, &handle,
INT_MAX, GFP_ATOMIC);
} else {
err = idr_alloc_u32(&head->handle_idr, NULL, &handle,
handle, GFP_ATOMIC);
/* Filter with specified handle was concurrently
* inserted after initial check in cls_api. This is not
* necessarily an error if NLM_F_EXCL is not set in
* message flags. Returning EAGAIN will cause cls_api to
* try to update concurrently inserted rule.
*/
if (err == -ENOSPC)
err = -EAGAIN;
}
spin_unlock(&tp->lock);
if (err) {
kfree(fnew);
goto errout_tb;
}
}
fnew->handle = handle;
err = tcf_exts_init_ex(&fnew->exts, net, TCA_FLOWER_ACT, 0, tp, handle,
!tc_skip_hw(fnew->flags));
if (err < 0)
goto errout_idr;
err = tcf_exts_validate_ex(net, tp, tb, tca[TCA_RATE],
&fnew->exts, flags, fnew->flags,
extack);
if (err < 0)
goto errout_idr;
if (tb[TCA_FLOWER_CLASSID]) {
fnew->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
if (flags & TCA_ACT_FLAGS_NO_RTNL)
rtnl_lock();
tcf_bind_filter(tp, &fnew->res, base);
if (flags & TCA_ACT_FLAGS_NO_RTNL)
rtnl_unlock();
bound_to_filter = true;
}
err = fl_set_key(net, tb, &fnew->key, &mask->key, extack);
if (err)
goto unbind_filter;
fl_mask_update_range(mask);
fl_set_masked_key(&fnew->mkey, &fnew->key, mask);
if (!fl_mask_fits_tmplt(tp->chain->tmplt_priv, mask)) {
NL_SET_ERR_MSG_MOD(extack, "Mask does not fit the template");
err = -EINVAL;
goto unbind_filter;
}
/* Enable tc skb extension if filter matches on data extracted from
* this extension.
*/
if (fl_needs_tc_skb_ext(&mask->key)) {
fnew->needs_tc_skb_ext = 1;
tc_skb_ext_tc_enable();
}
err = fl_check_assign_mask(head, fnew, fold, mask);
if (err)
goto unbind_filter;
err = fl_ht_insert_unique(fnew, fold, &in_ht);
if (err)
goto errout_mask;
if (!tc_skip_hw(fnew->flags)) {
err = fl_hw_replace_filter(tp, fnew, rtnl_held, extack);
if (err)
goto errout_ht;
}
if (!tc_in_hw(fnew->flags))
fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
spin_lock(&tp->lock);
/* tp was deleted concurrently. -EAGAIN will cause caller to lookup
* proto again or create new one, if necessary.
*/
if (tp->deleting) {
err = -EAGAIN;
goto errout_hw;
}
if (fold) {
/* Fold filter was deleted concurrently. Retry lookup. */
if (fold->deleted) {
err = -EAGAIN;
goto errout_hw;
}
fnew->handle = handle;
if (!in_ht) {
struct rhashtable_params params =
fnew->mask->filter_ht_params;
err = rhashtable_insert_fast(&fnew->mask->ht,
&fnew->ht_node,
params);
if (err)
goto errout_hw;
in_ht = true;
}
refcount_inc(&fnew->refcnt);
rhashtable_remove_fast(&fold->mask->ht,
&fold->ht_node,
fold->mask->filter_ht_params);
idr_replace(&head->handle_idr, fnew, fnew->handle);
list_replace_rcu(&fold->list, &fnew->list);
fold->deleted = true;
spin_unlock(&tp->lock);
fl_mask_put(head, fold->mask);
if (!tc_skip_hw(fold->flags))
fl_hw_destroy_filter(tp, fold, rtnl_held, NULL);
tcf_unbind_filter(tp, &fold->res);
/* Caller holds reference to fold, so refcnt is always > 0
* after this.
*/
refcount_dec(&fold->refcnt);
__fl_put(fold);
} else {
idr_replace(&head->handle_idr, fnew, fnew->handle);
refcount_inc(&fnew->refcnt);
list_add_tail_rcu(&fnew->list, &fnew->mask->filters);
spin_unlock(&tp->lock);
}
*arg = fnew;
kfree(tb);
tcf_queue_work(&mask->rwork, fl_uninit_mask_free_work);
return 0;
errout_ht:
spin_lock(&tp->lock);
errout_hw:
fnew->deleted = true;
spin_unlock(&tp->lock);
if (!tc_skip_hw(fnew->flags))
fl_hw_destroy_filter(tp, fnew, rtnl_held, NULL);
if (in_ht)
rhashtable_remove_fast(&fnew->mask->ht, &fnew->ht_node,
fnew->mask->filter_ht_params);
errout_mask:
fl_mask_put(head, fnew->mask);
unbind_filter:
if (bound_to_filter) {
if (flags & TCA_ACT_FLAGS_NO_RTNL)
rtnl_lock();
tcf_unbind_filter(tp, &fnew->res);
if (flags & TCA_ACT_FLAGS_NO_RTNL)
rtnl_unlock();
}
errout_idr:
if (!fold)
idr_remove(&head->handle_idr, fnew->handle);
__fl_put(fnew);
errout_tb:
kfree(tb);
errout_mask_alloc:
tcf_queue_work(&mask->rwork, fl_uninit_mask_free_work);
errout_fold:
if (fold)
__fl_put(fold);
return err;
}
static int fl_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct cls_fl_head *head = fl_head_dereference(tp);
struct cls_fl_filter *f = arg;
bool last_on_mask;
int err = 0;
err = __fl_delete(tp, f, &last_on_mask, rtnl_held, extack);
*last = list_empty(&head->masks);
__fl_put(f);
return err;
}
static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct cls_fl_head *head = fl_head_dereference(tp);
unsigned long id = arg->cookie, tmp;
struct cls_fl_filter *f;
arg->count = arg->skip;
rcu_read_lock();
idr_for_each_entry_continue_ul(&head->handle_idr, f, tmp, id) {
/* don't return filters that are being deleted */
if (!f || !refcount_inc_not_zero(&f->refcnt))
continue;
rcu_read_unlock();
if (arg->fn(tp, f, arg) < 0) {
__fl_put(f);
arg->stop = 1;
rcu_read_lock();
break;
}
__fl_put(f);
arg->count++;
rcu_read_lock();
}
rcu_read_unlock();
arg->cookie = id;
}
static struct cls_fl_filter *
fl_get_next_hw_filter(struct tcf_proto *tp, struct cls_fl_filter *f, bool add)
{
struct cls_fl_head *head = fl_head_dereference(tp);
spin_lock(&tp->lock);
if (list_empty(&head->hw_filters)) {
spin_unlock(&tp->lock);
return NULL;
}
if (!f)
f = list_entry(&head->hw_filters, struct cls_fl_filter,
hw_list);
list_for_each_entry_continue(f, &head->hw_filters, hw_list) {
if (!(add && f->deleted) && refcount_inc_not_zero(&f->refcnt)) {
spin_unlock(&tp->lock);
return f;
}
}
spin_unlock(&tp->lock);
return NULL;
}
static int fl_reoffload(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb,
void *cb_priv, struct netlink_ext_ack *extack)
{
struct tcf_block *block = tp->chain->block;
struct flow_cls_offload cls_flower = {};
struct cls_fl_filter *f = NULL;
int err;
/* hw_filters list can only be changed by hw offload functions after
* obtaining rtnl lock. Make sure it is not changed while reoffload is
* iterating it.
*/
ASSERT_RTNL();
while ((f = fl_get_next_hw_filter(tp, f, add))) {
cls_flower.rule =
flow_rule_alloc(tcf_exts_num_actions(&f->exts));
if (!cls_flower.rule) {
__fl_put(f);
return -ENOMEM;
}
tc_cls_common_offload_init(&cls_flower.common, tp, f->flags,
extack);
cls_flower.command = add ?
FLOW_CLS_REPLACE : FLOW_CLS_DESTROY;
cls_flower.cookie = (unsigned long)f;
cls_flower.rule->match.dissector = &f->mask->dissector;
cls_flower.rule->match.mask = &f->mask->key;
cls_flower.rule->match.key = &f->mkey;
err = tc_setup_offload_action(&cls_flower.rule->action, &f->exts,
cls_flower.common.extack);
if (err) {
kfree(cls_flower.rule);
if (tc_skip_sw(f->flags)) {
__fl_put(f);
return err;
}
goto next_flow;
}
cls_flower.classid = f->res.classid;
err = tc_setup_cb_reoffload(block, tp, add, cb,
TC_SETUP_CLSFLOWER, &cls_flower,
cb_priv, &f->flags,
&f->in_hw_count);
tc_cleanup_offload_action(&cls_flower.rule->action);
kfree(cls_flower.rule);
if (err) {
__fl_put(f);
return err;
}
next_flow:
__fl_put(f);
}
return 0;
}
static void fl_hw_add(struct tcf_proto *tp, void *type_data)
{
struct flow_cls_offload *cls_flower = type_data;
struct cls_fl_filter *f =
(struct cls_fl_filter *) cls_flower->cookie;
struct cls_fl_head *head = fl_head_dereference(tp);
spin_lock(&tp->lock);
list_add(&f->hw_list, &head->hw_filters);
spin_unlock(&tp->lock);
}
static void fl_hw_del(struct tcf_proto *tp, void *type_data)
{
struct flow_cls_offload *cls_flower = type_data;
struct cls_fl_filter *f =
(struct cls_fl_filter *) cls_flower->cookie;
spin_lock(&tp->lock);
if (!list_empty(&f->hw_list))
list_del_init(&f->hw_list);
spin_unlock(&tp->lock);
}
static int fl_hw_create_tmplt(struct tcf_chain *chain,
struct fl_flow_tmplt *tmplt)
{
struct flow_cls_offload cls_flower = {};
struct tcf_block *block = chain->block;
cls_flower.rule = flow_rule_alloc(0);
if (!cls_flower.rule)
return -ENOMEM;
cls_flower.common.chain_index = chain->index;
cls_flower.command = FLOW_CLS_TMPLT_CREATE;
cls_flower.cookie = (unsigned long) tmplt;
cls_flower.rule->match.dissector = &tmplt->dissector;
cls_flower.rule->match.mask = &tmplt->mask;
cls_flower.rule->match.key = &tmplt->dummy_key;
/* We don't care if driver (any of them) fails to handle this
* call. It serves just as a hint for it.
*/
tc_setup_cb_call(block, TC_SETUP_CLSFLOWER, &cls_flower, false, true);
kfree(cls_flower.rule);
return 0;
}
static void fl_hw_destroy_tmplt(struct tcf_chain *chain,
struct fl_flow_tmplt *tmplt)
{
struct flow_cls_offload cls_flower = {};
struct tcf_block *block = chain->block;
cls_flower.common.chain_index = chain->index;
cls_flower.command = FLOW_CLS_TMPLT_DESTROY;
cls_flower.cookie = (unsigned long) tmplt;
tc_setup_cb_call(block, TC_SETUP_CLSFLOWER, &cls_flower, false, true);
}
static void *fl_tmplt_create(struct net *net, struct tcf_chain *chain,
struct nlattr **tca,
struct netlink_ext_ack *extack)
{
struct fl_flow_tmplt *tmplt;
struct nlattr **tb;
int err;
if (!tca[TCA_OPTIONS])
return ERR_PTR(-EINVAL);
tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
if (!tb)
return ERR_PTR(-ENOBUFS);
err = nla_parse_nested_deprecated(tb, TCA_FLOWER_MAX,
tca[TCA_OPTIONS], fl_policy, NULL);
if (err)
goto errout_tb;
tmplt = kzalloc(sizeof(*tmplt), GFP_KERNEL);
if (!tmplt) {
err = -ENOMEM;
goto errout_tb;
}
tmplt->chain = chain;
err = fl_set_key(net, tb, &tmplt->dummy_key, &tmplt->mask, extack);
if (err)
goto errout_tmplt;
fl_init_dissector(&tmplt->dissector, &tmplt->mask);
err = fl_hw_create_tmplt(chain, tmplt);
if (err)
goto errout_tmplt;
kfree(tb);
return tmplt;
errout_tmplt:
kfree(tmplt);
errout_tb:
kfree(tb);
return ERR_PTR(err);
}
static void fl_tmplt_destroy(void *tmplt_priv)
{
struct fl_flow_tmplt *tmplt = tmplt_priv;
fl_hw_destroy_tmplt(tmplt->chain, tmplt);
kfree(tmplt);
}
static int fl_dump_key_val(struct sk_buff *skb,
void *val, int val_type,
void *mask, int mask_type, int len)
{
int err;
if (!memchr_inv(mask, 0, len))
return 0;
err = nla_put(skb, val_type, len, val);
if (err)
return err;
if (mask_type != TCA_FLOWER_UNSPEC) {
err = nla_put(skb, mask_type, len, mask);
if (err)
return err;
}
return 0;
}
static int fl_dump_key_port_range(struct sk_buff *skb, struct fl_flow_key *key,
struct fl_flow_key *mask)
{
if (fl_dump_key_val(skb, &key->tp_range.tp_min.dst,
TCA_FLOWER_KEY_PORT_DST_MIN,
&mask->tp_range.tp_min.dst, TCA_FLOWER_UNSPEC,
sizeof(key->tp_range.tp_min.dst)) ||
fl_dump_key_val(skb, &key->tp_range.tp_max.dst,
TCA_FLOWER_KEY_PORT_DST_MAX,
&mask->tp_range.tp_max.dst, TCA_FLOWER_UNSPEC,
sizeof(key->tp_range.tp_max.dst)) ||
fl_dump_key_val(skb, &key->tp_range.tp_min.src,
TCA_FLOWER_KEY_PORT_SRC_MIN,
&mask->tp_range.tp_min.src, TCA_FLOWER_UNSPEC,
sizeof(key->tp_range.tp_min.src)) ||
fl_dump_key_val(skb, &key->tp_range.tp_max.src,
TCA_FLOWER_KEY_PORT_SRC_MAX,
&mask->tp_range.tp_max.src, TCA_FLOWER_UNSPEC,
sizeof(key->tp_range.tp_max.src)))
return -1;
return 0;
}
static int fl_dump_key_mpls_opt_lse(struct sk_buff *skb,
struct flow_dissector_key_mpls *mpls_key,
struct flow_dissector_key_mpls *mpls_mask,
u8 lse_index)
{
struct flow_dissector_mpls_lse *lse_mask = &mpls_mask->ls[lse_index];
struct flow_dissector_mpls_lse *lse_key = &mpls_key->ls[lse_index];
int err;
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_OPT_LSE_DEPTH,
lse_index + 1);
if (err)
return err;
if (lse_mask->mpls_ttl) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_OPT_LSE_TTL,
lse_key->mpls_ttl);
if (err)
return err;
}
if (lse_mask->mpls_bos) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_OPT_LSE_BOS,
lse_key->mpls_bos);
if (err)
return err;
}
if (lse_mask->mpls_tc) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_OPT_LSE_TC,
lse_key->mpls_tc);
if (err)
return err;
}
if (lse_mask->mpls_label) {
err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_OPT_LSE_LABEL,
lse_key->mpls_label);
if (err)
return err;
}
return 0;
}
static int fl_dump_key_mpls_opts(struct sk_buff *skb,
struct flow_dissector_key_mpls *mpls_key,
struct flow_dissector_key_mpls *mpls_mask)
{
struct nlattr *opts;
struct nlattr *lse;
u8 lse_index;
int err;
opts = nla_nest_start(skb, TCA_FLOWER_KEY_MPLS_OPTS);
if (!opts)
return -EMSGSIZE;
for (lse_index = 0; lse_index < FLOW_DIS_MPLS_MAX; lse_index++) {
if (!(mpls_mask->used_lses & 1 << lse_index))
continue;
lse = nla_nest_start(skb, TCA_FLOWER_KEY_MPLS_OPTS_LSE);
if (!lse) {
err = -EMSGSIZE;
goto err_opts;
}
err = fl_dump_key_mpls_opt_lse(skb, mpls_key, mpls_mask,
lse_index);
if (err)
goto err_opts_lse;
nla_nest_end(skb, lse);
}
nla_nest_end(skb, opts);
return 0;
err_opts_lse:
nla_nest_cancel(skb, lse);
err_opts:
nla_nest_cancel(skb, opts);
return err;
}
static int fl_dump_key_mpls(struct sk_buff *skb,
struct flow_dissector_key_mpls *mpls_key,
struct flow_dissector_key_mpls *mpls_mask)
{
struct flow_dissector_mpls_lse *lse_mask;
struct flow_dissector_mpls_lse *lse_key;
int err;
if (!mpls_mask->used_lses)
return 0;
lse_mask = &mpls_mask->ls[0];
lse_key = &mpls_key->ls[0];
/* For backward compatibility, don't use the MPLS nested attributes if
* the rule can be expressed using the old attributes.
*/
if (mpls_mask->used_lses & ~1 ||
(!lse_mask->mpls_ttl && !lse_mask->mpls_bos &&
!lse_mask->mpls_tc && !lse_mask->mpls_label))
return fl_dump_key_mpls_opts(skb, mpls_key, mpls_mask);
if (lse_mask->mpls_ttl) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
lse_key->mpls_ttl);
if (err)
return err;
}
if (lse_mask->mpls_tc) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
lse_key->mpls_tc);
if (err)
return err;
}
if (lse_mask->mpls_label) {
err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
lse_key->mpls_label);
if (err)
return err;
}
if (lse_mask->mpls_bos) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
lse_key->mpls_bos);
if (err)
return err;
}
return 0;
}
static int fl_dump_key_ip(struct sk_buff *skb, bool encap,
struct flow_dissector_key_ip *key,
struct flow_dissector_key_ip *mask)
{
int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
if (fl_dump_key_val(skb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos)) ||
fl_dump_key_val(skb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl)))
return -1;
return 0;
}
static int fl_dump_key_vlan(struct sk_buff *skb,
int vlan_id_key, int vlan_prio_key,
struct flow_dissector_key_vlan *vlan_key,
struct flow_dissector_key_vlan *vlan_mask)
{
int err;
if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
return 0;
if (vlan_mask->vlan_id) {
err = nla_put_u16(skb, vlan_id_key,
vlan_key->vlan_id);
if (err)
return err;
}
if (vlan_mask->vlan_priority) {
err = nla_put_u8(skb, vlan_prio_key,
vlan_key->vlan_priority);
if (err)
return err;
}
return 0;
}
static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
u32 *flower_key, u32 *flower_mask,
u32 flower_flag_bit, u32 dissector_flag_bit)
{
if (dissector_mask & dissector_flag_bit) {
*flower_mask |= flower_flag_bit;
if (dissector_key & dissector_flag_bit)
*flower_key |= flower_flag_bit;
}
}
static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
{
u32 key, mask;
__be32 _key, _mask;
int err;
if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
return 0;
key = 0;
mask = 0;
fl_get_key_flag(flags_key, flags_mask, &key, &mask,
TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
fl_get_key_flag(flags_key, flags_mask, &key, &mask,
TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
FLOW_DIS_FIRST_FRAG);
_key = cpu_to_be32(key);
_mask = cpu_to_be32(mask);
err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
if (err)
return err;
return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
}
static int fl_dump_key_geneve_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct geneve_opt *opt;
struct nlattr *nest;
int opt_off = 0;
nest = nla_nest_start_noflag(skb, TCA_FLOWER_KEY_ENC_OPTS_GENEVE);
if (!nest)
goto nla_put_failure;
while (enc_opts->len > opt_off) {
opt = (struct geneve_opt *)&enc_opts->data[opt_off];
if (nla_put_be16(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS,
opt->opt_class))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE,
opt->type))
goto nla_put_failure;
if (nla_put(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA,
opt->length * 4, opt->opt_data))
goto nla_put_failure;
opt_off += sizeof(struct geneve_opt) + opt->length * 4;
}
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_vxlan_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct vxlan_metadata *md;
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_FLOWER_KEY_ENC_OPTS_VXLAN);
if (!nest)
goto nla_put_failure;
md = (struct vxlan_metadata *)&enc_opts->data[0];
if (nla_put_u32(skb, TCA_FLOWER_KEY_ENC_OPT_VXLAN_GBP, md->gbp))
goto nla_put_failure;
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_erspan_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct erspan_metadata *md;
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_FLOWER_KEY_ENC_OPTS_ERSPAN);
if (!nest)
goto nla_put_failure;
md = (struct erspan_metadata *)&enc_opts->data[0];
if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_ERSPAN_VER, md->version))
goto nla_put_failure;
if (md->version == 1 &&
nla_put_be32(skb, TCA_FLOWER_KEY_ENC_OPT_ERSPAN_INDEX, md->u.index))
goto nla_put_failure;
if (md->version == 2 &&
(nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_ERSPAN_DIR,
md->u.md2.dir) ||
nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_ERSPAN_HWID,
get_hwid(&md->u.md2))))
goto nla_put_failure;
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_gtp_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct gtp_pdu_session_info *session_info;
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_FLOWER_KEY_ENC_OPTS_GTP);
if (!nest)
goto nla_put_failure;
session_info = (struct gtp_pdu_session_info *)&enc_opts->data[0];
if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GTP_PDU_TYPE,
session_info->pdu_type))
goto nla_put_failure;
if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GTP_QFI, session_info->qfi))
goto nla_put_failure;
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_ct(struct sk_buff *skb,
struct flow_dissector_key_ct *key,
struct flow_dissector_key_ct *mask)
{
if (IS_ENABLED(CONFIG_NF_CONNTRACK) &&
fl_dump_key_val(skb, &key->ct_state, TCA_FLOWER_KEY_CT_STATE,
&mask->ct_state, TCA_FLOWER_KEY_CT_STATE_MASK,
sizeof(key->ct_state)))
goto nla_put_failure;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
fl_dump_key_val(skb, &key->ct_zone, TCA_FLOWER_KEY_CT_ZONE,
&mask->ct_zone, TCA_FLOWER_KEY_CT_ZONE_MASK,
sizeof(key->ct_zone)))
goto nla_put_failure;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
fl_dump_key_val(skb, &key->ct_mark, TCA_FLOWER_KEY_CT_MARK,
&mask->ct_mark, TCA_FLOWER_KEY_CT_MARK_MASK,
sizeof(key->ct_mark)))
goto nla_put_failure;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
fl_dump_key_val(skb, &key->ct_labels, TCA_FLOWER_KEY_CT_LABELS,
&mask->ct_labels, TCA_FLOWER_KEY_CT_LABELS_MASK,
sizeof(key->ct_labels)))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int fl_dump_key_cfm(struct sk_buff *skb,
struct flow_dissector_key_cfm *key,
struct flow_dissector_key_cfm *mask)
{
struct nlattr *opts;
int err;
u8 mdl;
if (!memchr_inv(mask, 0, sizeof(*mask)))
return 0;
opts = nla_nest_start(skb, TCA_FLOWER_KEY_CFM);
if (!opts)
return -EMSGSIZE;
if (FIELD_GET(FLOW_DIS_CFM_MDL_MASK, mask->mdl_ver)) {
mdl = FIELD_GET(FLOW_DIS_CFM_MDL_MASK, key->mdl_ver);
err = nla_put_u8(skb, TCA_FLOWER_KEY_CFM_MD_LEVEL, mdl);
if (err)
goto err_cfm_opts;
}
if (mask->opcode) {
err = nla_put_u8(skb, TCA_FLOWER_KEY_CFM_OPCODE, key->opcode);
if (err)
goto err_cfm_opts;
}
nla_nest_end(skb, opts);
return 0;
err_cfm_opts:
nla_nest_cancel(skb, opts);
return err;
}
static int fl_dump_key_options(struct sk_buff *skb, int enc_opt_type,
struct flow_dissector_key_enc_opts *enc_opts)
{
struct nlattr *nest;
int err;
if (!enc_opts->len)
return 0;
nest = nla_nest_start_noflag(skb, enc_opt_type);
if (!nest)
goto nla_put_failure;
switch (enc_opts->dst_opt_type) {
case TUNNEL_GENEVE_OPT:
err = fl_dump_key_geneve_opt(skb, enc_opts);
if (err)
goto nla_put_failure;
break;
case TUNNEL_VXLAN_OPT:
err = fl_dump_key_vxlan_opt(skb, enc_opts);
if (err)
goto nla_put_failure;
break;
case TUNNEL_ERSPAN_OPT:
err = fl_dump_key_erspan_opt(skb, enc_opts);
if (err)
goto nla_put_failure;
break;
case TUNNEL_GTP_OPT:
err = fl_dump_key_gtp_opt(skb, enc_opts);
if (err)
goto nla_put_failure;
break;
default:
goto nla_put_failure;
}
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static int fl_dump_key_enc_opt(struct sk_buff *skb,
struct flow_dissector_key_enc_opts *key_opts,
struct flow_dissector_key_enc_opts *msk_opts)
{
int err;
err = fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS, key_opts);
if (err)
return err;
return fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS_MASK, msk_opts);
}
static int fl_dump_key(struct sk_buff *skb, struct net *net,
struct fl_flow_key *key, struct fl_flow_key *mask)
{
if (mask->meta.ingress_ifindex) {
struct net_device *dev;
dev = __dev_get_by_index(net, key->meta.ingress_ifindex);
if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
goto nla_put_failure;
}
if (fl_dump_key_val(skb, &key->meta.l2_miss,
TCA_FLOWER_L2_MISS, &mask->meta.l2_miss,
TCA_FLOWER_UNSPEC, sizeof(key->meta.l2_miss)))
goto nla_put_failure;
if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
sizeof(key->eth.dst)) ||
fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
sizeof(key->eth.src)) ||
fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
&mask->basic.n_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.n_proto)))
goto nla_put_failure;
if (mask->num_of_vlans.num_of_vlans) {
if (nla_put_u8(skb, TCA_FLOWER_KEY_NUM_OF_VLANS, key->num_of_vlans.num_of_vlans))
goto nla_put_failure;
}
if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
goto nla_put_failure;
if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_VLAN_ID,
TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan, &mask->vlan))
goto nla_put_failure;
if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_CVLAN_ID,
TCA_FLOWER_KEY_CVLAN_PRIO,
&key->cvlan, &mask->cvlan) ||
(mask->cvlan.vlan_tpid &&
nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
key->cvlan.vlan_tpid)))
goto nla_put_failure;
if (mask->basic.n_proto) {
if (mask->cvlan.vlan_eth_type) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
key->basic.n_proto))
goto nla_put_failure;
} else if (mask->vlan.vlan_eth_type) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
key->vlan.vlan_eth_type))
goto nla_put_failure;
}
}
if ((key->basic.n_proto == htons(ETH_P_IP) ||
key->basic.n_proto == htons(ETH_P_IPV6)) &&
(fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
&mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
sizeof(key->basic.ip_proto)) ||
fl_dump_key_ip(skb, false, &key->ip, &mask->ip)))
goto nla_put_failure;
if (mask->pppoe.session_id) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_PPPOE_SID,
key->pppoe.session_id))
goto nla_put_failure;
}
if (mask->basic.n_proto && mask->pppoe.ppp_proto) {
if (nla_put_be16(skb, TCA_FLOWER_KEY_PPP_PROTO,
key->pppoe.ppp_proto))
goto nla_put_failure;
}
if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
(fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
&mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
sizeof(key->ipv4.src)) ||
fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
&mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
sizeof(key->ipv4.dst))))
goto nla_put_failure;
else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
(fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
&mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
sizeof(key->ipv6.src)) ||
fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
&mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
sizeof(key->ipv6.dst))))
goto nla_put_failure;
if (key->basic.ip_proto == IPPROTO_TCP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
sizeof(key->tp.dst)) ||
fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
&mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
sizeof(key->tcp.flags))))
goto nla_put_failure;
else if (key->basic.ip_proto == IPPROTO_UDP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
sizeof(key->tp.dst))))
goto nla_put_failure;
else if (key->basic.ip_proto == IPPROTO_SCTP &&
(fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
&mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
sizeof(key->tp.src)) ||
fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
&mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
sizeof(key->tp.dst))))
goto nla_put_failure;
else if (key->basic.n_proto == htons(ETH_P_IP) &&
key->basic.ip_proto == IPPROTO_ICMP &&
(fl_dump_key_val(skb, &key->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
sizeof(key->icmp.type)) ||
fl_dump_key_val(skb, &key->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
sizeof(key->icmp.code))))
goto nla_put_failure;
else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
key->basic.ip_proto == IPPROTO_ICMPV6 &&
(fl_dump_key_val(skb, &key->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
sizeof(key->icmp.type)) ||
fl_dump_key_val(skb, &key->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
sizeof(key->icmp.code))))
goto nla_put_failure;
else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
key->basic.n_proto == htons(ETH_P_RARP)) &&
(fl_dump_key_val(skb, &key->arp.sip,
TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
TCA_FLOWER_KEY_ARP_SIP_MASK,
sizeof(key->arp.sip)) ||
fl_dump_key_val(skb, &key->arp.tip,
TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
TCA_FLOWER_KEY_ARP_TIP_MASK,
sizeof(key->arp.tip)) ||
fl_dump_key_val(skb, &key->arp.op,
TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
TCA_FLOWER_KEY_ARP_OP_MASK,
sizeof(key->arp.op)) ||
fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
sizeof(key->arp.sha)) ||
fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
sizeof(key->arp.tha))))
goto nla_put_failure;
else if (key->basic.ip_proto == IPPROTO_L2TP &&
fl_dump_key_val(skb, &key->l2tpv3.session_id,
TCA_FLOWER_KEY_L2TPV3_SID,
&mask->l2tpv3.session_id,
TCA_FLOWER_UNSPEC,
sizeof(key->l2tpv3.session_id)))
goto nla_put_failure;
if (key->ipsec.spi &&
fl_dump_key_val(skb, &key->ipsec.spi, TCA_FLOWER_KEY_SPI,
&mask->ipsec.spi, TCA_FLOWER_KEY_SPI_MASK,
sizeof(key->ipsec.spi)))
goto nla_put_failure;
if ((key->basic.ip_proto == IPPROTO_TCP ||
key->basic.ip_proto == IPPROTO_UDP ||
key->basic.ip_proto == IPPROTO_SCTP) &&
fl_dump_key_port_range(skb, key, mask))
goto nla_put_failure;
if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
(fl_dump_key_val(skb, &key->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
sizeof(key->enc_ipv4.src)) ||
fl_dump_key_val(skb, &key->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
sizeof(key->enc_ipv4.dst))))
goto nla_put_failure;
else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
(fl_dump_key_val(skb, &key->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
sizeof(key->enc_ipv6.src)) ||
fl_dump_key_val(skb, &key->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST,
&mask->enc_ipv6.dst,
TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
sizeof(key->enc_ipv6.dst))))
goto nla_put_failure;
if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
&mask->enc_key_id, TCA_FLOWER_UNSPEC,
sizeof(key->enc_key_id)) ||
fl_dump_key_val(skb, &key->enc_tp.src,
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
&mask->enc_tp.src,
TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
sizeof(key->enc_tp.src)) ||
fl_dump_key_val(skb, &key->enc_tp.dst,
TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
&mask->enc_tp.dst,
TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
sizeof(key->enc_tp.dst)) ||
fl_dump_key_ip(skb, true, &key->enc_ip, &mask->enc_ip) ||
fl_dump_key_enc_opt(skb, &key->enc_opts, &mask->enc_opts))
goto nla_put_failure;
if (fl_dump_key_ct(skb, &key->ct, &mask->ct))
goto nla_put_failure;
if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
goto nla_put_failure;
if (fl_dump_key_val(skb, &key->hash.hash, TCA_FLOWER_KEY_HASH,
&mask->hash.hash, TCA_FLOWER_KEY_HASH_MASK,
sizeof(key->hash.hash)))
goto nla_put_failure;
if (fl_dump_key_cfm(skb, &key->cfm, &mask->cfm))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct cls_fl_filter *f = fh;
struct nlattr *nest;
struct fl_flow_key *key, *mask;
bool skip_hw;
if (!f)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
spin_lock(&tp->lock);
if (f->res.classid &&
nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
goto nla_put_failure_locked;
key = &f->key;
mask = &f->mask->key;
skip_hw = tc_skip_hw(f->flags);
if (fl_dump_key(skb, net, key, mask))
goto nla_put_failure_locked;
if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
goto nla_put_failure_locked;
spin_unlock(&tp->lock);
if (!skip_hw)
fl_hw_update_stats(tp, f, rtnl_held);
if (nla_put_u32(skb, TCA_FLOWER_IN_HW_COUNT, f->in_hw_count))
goto nla_put_failure;
if (tcf_exts_dump(skb, &f->exts))
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &f->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure_locked:
spin_unlock(&tp->lock);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int fl_terse_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct cls_fl_filter *f = fh;
struct nlattr *nest;
bool skip_hw;
if (!f)
return skb->len;
t->tcm_handle = f->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
spin_lock(&tp->lock);
skip_hw = tc_skip_hw(f->flags);
if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
goto nla_put_failure_locked;
spin_unlock(&tp->lock);
if (!skip_hw)
fl_hw_update_stats(tp, f, rtnl_held);
if (tcf_exts_terse_dump(skb, &f->exts))
goto nla_put_failure;
nla_nest_end(skb, nest);
return skb->len;
nla_put_failure_locked:
spin_unlock(&tp->lock);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static int fl_tmplt_dump(struct sk_buff *skb, struct net *net, void *tmplt_priv)
{
struct fl_flow_tmplt *tmplt = tmplt_priv;
struct fl_flow_key *key, *mask;
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!nest)
goto nla_put_failure;
key = &tmplt->dummy_key;
mask = &tmplt->mask;
if (fl_dump_key(skb, net, key, mask))
goto nla_put_failure;
nla_nest_end(skb, nest);
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -EMSGSIZE;
}
static void fl_bind_class(void *fh, u32 classid, unsigned long cl, void *q,
unsigned long base)
{
struct cls_fl_filter *f = fh;
tc_cls_bind_class(classid, cl, q, &f->res, base);
}
static bool fl_delete_empty(struct tcf_proto *tp)
{
struct cls_fl_head *head = fl_head_dereference(tp);
spin_lock(&tp->lock);
tp->deleting = idr_is_empty(&head->handle_idr);
spin_unlock(&tp->lock);
return tp->deleting;
}
static struct tcf_proto_ops cls_fl_ops __read_mostly = {
.kind = "flower",
.classify = fl_classify,
.init = fl_init,
.destroy = fl_destroy,
.get = fl_get,
.put = fl_put,
.change = fl_change,
.delete = fl_delete,
.delete_empty = fl_delete_empty,
.walk = fl_walk,
.reoffload = fl_reoffload,
.hw_add = fl_hw_add,
.hw_del = fl_hw_del,
.dump = fl_dump,
.terse_dump = fl_terse_dump,
.bind_class = fl_bind_class,
.tmplt_create = fl_tmplt_create,
.tmplt_destroy = fl_tmplt_destroy,
.tmplt_dump = fl_tmplt_dump,
.get_exts = fl_get_exts,
.owner = THIS_MODULE,
.flags = TCF_PROTO_OPS_DOIT_UNLOCKED,
};
static int __init cls_fl_init(void)
{
return register_tcf_proto_ops(&cls_fl_ops);
}
static void __exit cls_fl_exit(void)
{
unregister_tcf_proto_ops(&cls_fl_ops);
}
module_init(cls_fl_init);
module_exit(cls_fl_exit);
MODULE_AUTHOR("Jiri Pirko <[email protected]>");
MODULE_DESCRIPTION("Flower classifier");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/cls_flower.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_meta_tc_index.c IFE skb->tc_index metadata module
*
* copyright Jamal Hadi Salim (2016)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <uapi/linux/tc_act/tc_ife.h>
#include <net/tc_act/tc_ife.h>
static int skbtcindex_encode(struct sk_buff *skb, void *skbdata,
struct tcf_meta_info *e)
{
u32 ifetc_index = skb->tc_index;
return ife_encode_meta_u16(ifetc_index, skbdata, e);
}
static int skbtcindex_decode(struct sk_buff *skb, void *data, u16 len)
{
u16 ifetc_index = *(u16 *)data;
skb->tc_index = ntohs(ifetc_index);
return 0;
}
static int skbtcindex_check(struct sk_buff *skb, struct tcf_meta_info *e)
{
return ife_check_meta_u16(skb->tc_index, e);
}
static struct tcf_meta_ops ife_skbtcindex_ops = {
.metaid = IFE_META_TCINDEX,
.metatype = NLA_U16,
.name = "tc_index",
.synopsis = "skb tc_index 16 bit metadata",
.check_presence = skbtcindex_check,
.encode = skbtcindex_encode,
.decode = skbtcindex_decode,
.get = ife_get_meta_u16,
.alloc = ife_alloc_meta_u16,
.release = ife_release_meta_gen,
.validate = ife_validate_meta_u16,
.owner = THIS_MODULE,
};
static int __init ifetc_index_init_module(void)
{
return register_ife_op(&ife_skbtcindex_ops);
}
static void __exit ifetc_index_cleanup_module(void)
{
unregister_ife_op(&ife_skbtcindex_ops);
}
module_init(ifetc_index_init_module);
module_exit(ifetc_index_cleanup_module);
MODULE_AUTHOR("Jamal Hadi Salim(2016)");
MODULE_DESCRIPTION("Inter-FE skb tc_index metadata module");
MODULE_LICENSE("GPL");
MODULE_ALIAS_IFE_META("tcindex");
| linux-master | net/sched/act_meta_skbtcindex.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
*
* Authors: Alexey Kuznetsov, <[email protected]>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/siphash.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/red.h>
/* Stochastic Fairness Queuing algorithm.
=======================================
Source:
Paul E. McKenney "Stochastic Fairness Queuing",
IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
Paul E. McKenney "Stochastic Fairness Queuing",
"Interworking: Research and Experience", v.2, 1991, p.113-131.
See also:
M. Shreedhar and George Varghese "Efficient Fair
Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
This is not the thing that is usually called (W)FQ nowadays.
It does not use any timestamp mechanism, but instead
processes queues in round-robin order.
ADVANTAGE:
- It is very cheap. Both CPU and memory requirements are minimal.
DRAWBACKS:
- "Stochastic" -> It is not 100% fair.
When hash collisions occur, several flows are considered as one.
- "Round-robin" -> It introduces larger delays than virtual clock
based schemes, and should not be used for isolating interactive
traffic from non-interactive. It means, that this scheduler
should be used as leaf of CBQ or P3, which put interactive traffic
to higher priority band.
We still need true WFQ for top level CSZ, but using WFQ
for the best effort traffic is absolutely pointless:
SFQ is superior for this purpose.
IMPLEMENTATION:
This implementation limits :
- maximal queue length per flow to 127 packets.
- max mtu to 2^18-1;
- max 65408 flows,
- number of hash buckets to 65536.
It is easy to increase these values, but not in flight. */
#define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
#define SFQ_DEFAULT_FLOWS 128
#define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
#define SFQ_EMPTY_SLOT 0xffff
#define SFQ_DEFAULT_HASH_DIVISOR 1024
/* We use 16 bits to store allot, and want to handle packets up to 64K
* Scale allot by 8 (1<<3) so that no overflow occurs.
*/
#define SFQ_ALLOT_SHIFT 3
#define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
/* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
typedef u16 sfq_index;
/*
* We dont use pointers to save space.
* Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
* while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
* are 'pointers' to dep[] array
*/
struct sfq_head {
sfq_index next;
sfq_index prev;
};
struct sfq_slot {
struct sk_buff *skblist_next;
struct sk_buff *skblist_prev;
sfq_index qlen; /* number of skbs in skblist */
sfq_index next; /* next slot in sfq RR chain */
struct sfq_head dep; /* anchor in dep[] chains */
unsigned short hash; /* hash value (index in ht[]) */
short allot; /* credit for this slot */
unsigned int backlog;
struct red_vars vars;
};
struct sfq_sched_data {
/* frequently used fields */
int limit; /* limit of total number of packets in this qdisc */
unsigned int divisor; /* number of slots in hash table */
u8 headdrop;
u8 maxdepth; /* limit of packets per flow */
siphash_key_t perturbation;
u8 cur_depth; /* depth of longest slot */
u8 flags;
unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
struct tcf_proto __rcu *filter_list;
struct tcf_block *block;
sfq_index *ht; /* Hash table ('divisor' slots) */
struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
struct red_parms *red_parms;
struct tc_sfqred_stats stats;
struct sfq_slot *tail; /* current slot in round */
struct sfq_head dep[SFQ_MAX_DEPTH + 1];
/* Linked lists of slots, indexed by depth
* dep[0] : list of unused flows
* dep[1] : list of flows with 1 packet
* dep[X] : list of flows with X packets
*/
unsigned int maxflows; /* number of flows in flows array */
int perturb_period;
unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
struct timer_list perturb_timer;
struct Qdisc *sch;
};
/*
* sfq_head are either in a sfq_slot or in dep[] array
*/
static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
{
if (val < SFQ_MAX_FLOWS)
return &q->slots[val].dep;
return &q->dep[val - SFQ_MAX_FLOWS];
}
static unsigned int sfq_hash(const struct sfq_sched_data *q,
const struct sk_buff *skb)
{
return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1);
}
static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
int *qerr)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct tcf_result res;
struct tcf_proto *fl;
int result;
if (TC_H_MAJ(skb->priority) == sch->handle &&
TC_H_MIN(skb->priority) > 0 &&
TC_H_MIN(skb->priority) <= q->divisor)
return TC_H_MIN(skb->priority);
fl = rcu_dereference_bh(q->filter_list);
if (!fl)
return sfq_hash(q, skb) + 1;
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
result = tcf_classify(skb, NULL, fl, &res, false);
if (result >= 0) {
#ifdef CONFIG_NET_CLS_ACT
switch (result) {
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
fallthrough;
case TC_ACT_SHOT:
return 0;
}
#endif
if (TC_H_MIN(res.classid) <= q->divisor)
return TC_H_MIN(res.classid);
}
return 0;
}
/*
* x : slot number [0 .. SFQ_MAX_FLOWS - 1]
*/
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
struct sfq_slot *slot = &q->slots[x];
int qlen = slot->qlen;
p = qlen + SFQ_MAX_FLOWS;
n = q->dep[qlen].next;
slot->dep.next = n;
slot->dep.prev = p;
q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
sfq_dep_head(q, n)->prev = x;
}
#define sfq_unlink(q, x, n, p) \
do { \
n = q->slots[x].dep.next; \
p = q->slots[x].dep.prev; \
sfq_dep_head(q, p)->next = n; \
sfq_dep_head(q, n)->prev = p; \
} while (0)
static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
int d;
sfq_unlink(q, x, n, p);
d = q->slots[x].qlen--;
if (n == p && q->cur_depth == d)
q->cur_depth--;
sfq_link(q, x);
}
static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
{
sfq_index p, n;
int d;
sfq_unlink(q, x, n, p);
d = ++q->slots[x].qlen;
if (q->cur_depth < d)
q->cur_depth = d;
sfq_link(q, x);
}
/* helper functions : might be changed when/if skb use a standard list_head */
/* remove one skb from tail of slot queue */
static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
{
struct sk_buff *skb = slot->skblist_prev;
slot->skblist_prev = skb->prev;
skb->prev->next = (struct sk_buff *)slot;
skb->next = skb->prev = NULL;
return skb;
}
/* remove one skb from head of slot queue */
static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
{
struct sk_buff *skb = slot->skblist_next;
slot->skblist_next = skb->next;
skb->next->prev = (struct sk_buff *)slot;
skb->next = skb->prev = NULL;
return skb;
}
static inline void slot_queue_init(struct sfq_slot *slot)
{
memset(slot, 0, sizeof(*slot));
slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
}
/* add skb to slot queue (tail add) */
static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
{
skb->prev = slot->skblist_prev;
skb->next = (struct sk_buff *)slot;
slot->skblist_prev->next = skb;
slot->skblist_prev = skb;
}
static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free)
{
struct sfq_sched_data *q = qdisc_priv(sch);
sfq_index x, d = q->cur_depth;
struct sk_buff *skb;
unsigned int len;
struct sfq_slot *slot;
/* Queue is full! Find the longest slot and drop tail packet from it */
if (d > 1) {
x = q->dep[d].next;
slot = &q->slots[x];
drop:
skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
len = qdisc_pkt_len(skb);
slot->backlog -= len;
sfq_dec(q, x);
sch->q.qlen--;
qdisc_qstats_backlog_dec(sch, skb);
qdisc_drop(skb, sch, to_free);
return len;
}
if (d == 1) {
/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
x = q->tail->next;
slot = &q->slots[x];
q->tail->next = slot->next;
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
goto drop;
}
return 0;
}
/* Is ECN parameter configured */
static int sfq_prob_mark(const struct sfq_sched_data *q)
{
return q->flags & TC_RED_ECN;
}
/* Should packets over max threshold just be marked */
static int sfq_hard_mark(const struct sfq_sched_data *q)
{
return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
}
static int sfq_headdrop(const struct sfq_sched_data *q)
{
return q->headdrop;
}
static int
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned int hash, dropped;
sfq_index x, qlen;
struct sfq_slot *slot;
int ret;
struct sk_buff *head;
int delta;
hash = sfq_classify(skb, sch, &ret);
if (hash == 0) {
if (ret & __NET_XMIT_BYPASS)
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
return ret;
}
hash--;
x = q->ht[hash];
slot = &q->slots[x];
if (x == SFQ_EMPTY_SLOT) {
x = q->dep[0].next; /* get a free slot */
if (x >= SFQ_MAX_FLOWS)
return qdisc_drop(skb, sch, to_free);
q->ht[hash] = x;
slot = &q->slots[x];
slot->hash = hash;
slot->backlog = 0; /* should already be 0 anyway... */
red_set_vars(&slot->vars);
goto enqueue;
}
if (q->red_parms) {
slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
&slot->vars,
slot->backlog);
switch (red_action(q->red_parms,
&slot->vars,
slot->vars.qavg)) {
case RED_DONT_MARK:
break;
case RED_PROB_MARK:
qdisc_qstats_overlimit(sch);
if (sfq_prob_mark(q)) {
/* We know we have at least one packet in queue */
if (sfq_headdrop(q) &&
INET_ECN_set_ce(slot->skblist_next)) {
q->stats.prob_mark_head++;
break;
}
if (INET_ECN_set_ce(skb)) {
q->stats.prob_mark++;
break;
}
}
q->stats.prob_drop++;
goto congestion_drop;
case RED_HARD_MARK:
qdisc_qstats_overlimit(sch);
if (sfq_hard_mark(q)) {
/* We know we have at least one packet in queue */
if (sfq_headdrop(q) &&
INET_ECN_set_ce(slot->skblist_next)) {
q->stats.forced_mark_head++;
break;
}
if (INET_ECN_set_ce(skb)) {
q->stats.forced_mark++;
break;
}
}
q->stats.forced_drop++;
goto congestion_drop;
}
}
if (slot->qlen >= q->maxdepth) {
congestion_drop:
if (!sfq_headdrop(q))
return qdisc_drop(skb, sch, to_free);
/* We know we have at least one packet in queue */
head = slot_dequeue_head(slot);
delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
sch->qstats.backlog -= delta;
slot->backlog -= delta;
qdisc_drop(head, sch, to_free);
slot_queue_add(slot, skb);
qdisc_tree_reduce_backlog(sch, 0, delta);
return NET_XMIT_CN;
}
enqueue:
qdisc_qstats_backlog_inc(sch, skb);
slot->backlog += qdisc_pkt_len(skb);
slot_queue_add(slot, skb);
sfq_inc(q, x);
if (slot->qlen == 1) { /* The flow is new */
if (q->tail == NULL) { /* It is the first flow */
slot->next = x;
} else {
slot->next = q->tail->next;
q->tail->next = x;
}
/* We put this flow at the end of our flow list.
* This might sound unfair for a new flow to wait after old ones,
* but we could endup servicing new flows only, and freeze old ones.
*/
q->tail = slot;
/* We could use a bigger initial quantum for new flows */
slot->allot = q->scaled_quantum;
}
if (++sch->q.qlen <= q->limit)
return NET_XMIT_SUCCESS;
qlen = slot->qlen;
dropped = sfq_drop(sch, to_free);
/* Return Congestion Notification only if we dropped a packet
* from this flow.
*/
if (qlen != slot->qlen) {
qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb));
return NET_XMIT_CN;
}
/* As we dropped a packet, better let upper stack know this */
qdisc_tree_reduce_backlog(sch, 1, dropped);
return NET_XMIT_SUCCESS;
}
static struct sk_buff *
sfq_dequeue(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
sfq_index a, next_a;
struct sfq_slot *slot;
/* No active slots */
if (q->tail == NULL)
return NULL;
next_slot:
a = q->tail->next;
slot = &q->slots[a];
if (slot->allot <= 0) {
q->tail = slot;
slot->allot += q->scaled_quantum;
goto next_slot;
}
skb = slot_dequeue_head(slot);
sfq_dec(q, a);
qdisc_bstats_update(sch, skb);
sch->q.qlen--;
qdisc_qstats_backlog_dec(sch, skb);
slot->backlog -= qdisc_pkt_len(skb);
/* Is the slot empty? */
if (slot->qlen == 0) {
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
next_a = slot->next;
if (a == next_a) {
q->tail = NULL; /* no more active slots */
return skb;
}
q->tail->next = next_a;
} else {
slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
}
return skb;
}
static void
sfq_reset(struct Qdisc *sch)
{
struct sk_buff *skb;
while ((skb = sfq_dequeue(sch)) != NULL)
rtnl_kfree_skbs(skb, skb);
}
/*
* When q->perturbation is changed, we rehash all queued skbs
* to avoid OOO (Out Of Order) effects.
* We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
* counters.
*/
static void sfq_rehash(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb;
int i;
struct sfq_slot *slot;
struct sk_buff_head list;
int dropped = 0;
unsigned int drop_len = 0;
__skb_queue_head_init(&list);
for (i = 0; i < q->maxflows; i++) {
slot = &q->slots[i];
if (!slot->qlen)
continue;
while (slot->qlen) {
skb = slot_dequeue_head(slot);
sfq_dec(q, i);
__skb_queue_tail(&list, skb);
}
slot->backlog = 0;
red_set_vars(&slot->vars);
q->ht[slot->hash] = SFQ_EMPTY_SLOT;
}
q->tail = NULL;
while ((skb = __skb_dequeue(&list)) != NULL) {
unsigned int hash = sfq_hash(q, skb);
sfq_index x = q->ht[hash];
slot = &q->slots[x];
if (x == SFQ_EMPTY_SLOT) {
x = q->dep[0].next; /* get a free slot */
if (x >= SFQ_MAX_FLOWS) {
drop:
qdisc_qstats_backlog_dec(sch, skb);
drop_len += qdisc_pkt_len(skb);
kfree_skb(skb);
dropped++;
continue;
}
q->ht[hash] = x;
slot = &q->slots[x];
slot->hash = hash;
}
if (slot->qlen >= q->maxdepth)
goto drop;
slot_queue_add(slot, skb);
if (q->red_parms)
slot->vars.qavg = red_calc_qavg(q->red_parms,
&slot->vars,
slot->backlog);
slot->backlog += qdisc_pkt_len(skb);
sfq_inc(q, x);
if (slot->qlen == 1) { /* The flow is new */
if (q->tail == NULL) { /* It is the first flow */
slot->next = x;
} else {
slot->next = q->tail->next;
q->tail->next = x;
}
q->tail = slot;
slot->allot = q->scaled_quantum;
}
}
sch->q.qlen -= dropped;
qdisc_tree_reduce_backlog(sch, dropped, drop_len);
}
static void sfq_perturbation(struct timer_list *t)
{
struct sfq_sched_data *q = from_timer(q, t, perturb_timer);
struct Qdisc *sch = q->sch;
spinlock_t *root_lock;
siphash_key_t nkey;
get_random_bytes(&nkey, sizeof(nkey));
rcu_read_lock();
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
q->perturbation = nkey;
if (!q->filter_list && q->tail)
sfq_rehash(sch);
spin_unlock(root_lock);
if (q->perturb_period)
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
rcu_read_unlock();
}
static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
{
struct sfq_sched_data *q = qdisc_priv(sch);
struct tc_sfq_qopt *ctl = nla_data(opt);
struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
unsigned int qlen, dropped = 0;
struct red_parms *p = NULL;
struct sk_buff *to_free = NULL;
struct sk_buff *tail = NULL;
if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
return -EINVAL;
if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
ctl_v1 = nla_data(opt);
if (ctl->divisor &&
(!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
return -EINVAL;
/* slot->allot is a short, make sure quantum is not too big. */
if (ctl->quantum) {
unsigned int scaled = SFQ_ALLOT_SIZE(ctl->quantum);
if (scaled <= 0 || scaled > SHRT_MAX)
return -EINVAL;
}
if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max,
ctl_v1->Wlog, ctl_v1->Scell_log, NULL))
return -EINVAL;
if (ctl_v1 && ctl_v1->qth_min) {
p = kmalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
}
sch_tree_lock(sch);
if (ctl->quantum) {
q->quantum = ctl->quantum;
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
}
q->perturb_period = ctl->perturb_period * HZ;
if (ctl->flows)
q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
if (ctl->divisor) {
q->divisor = ctl->divisor;
q->maxflows = min_t(u32, q->maxflows, q->divisor);
}
if (ctl_v1) {
if (ctl_v1->depth)
q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
if (p) {
swap(q->red_parms, p);
red_set_parms(q->red_parms,
ctl_v1->qth_min, ctl_v1->qth_max,
ctl_v1->Wlog,
ctl_v1->Plog, ctl_v1->Scell_log,
NULL,
ctl_v1->max_P);
}
q->flags = ctl_v1->flags;
q->headdrop = ctl_v1->headdrop;
}
if (ctl->limit) {
q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows);
q->maxflows = min_t(u32, q->maxflows, q->limit);
}
qlen = sch->q.qlen;
while (sch->q.qlen > q->limit) {
dropped += sfq_drop(sch, &to_free);
if (!tail)
tail = to_free;
}
rtnl_kfree_skbs(to_free, tail);
qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
del_timer(&q->perturb_timer);
if (q->perturb_period) {
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
get_random_bytes(&q->perturbation, sizeof(q->perturbation));
}
sch_tree_unlock(sch);
kfree(p);
return 0;
}
static void *sfq_alloc(size_t sz)
{
return kvmalloc(sz, GFP_KERNEL);
}
static void sfq_free(void *addr)
{
kvfree(addr);
}
static void sfq_destroy(struct Qdisc *sch)
{
struct sfq_sched_data *q = qdisc_priv(sch);
tcf_block_put(q->block);
q->perturb_period = 0;
del_timer_sync(&q->perturb_timer);
sfq_free(q->ht);
sfq_free(q->slots);
kfree(q->red_parms);
}
static int sfq_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct sfq_sched_data *q = qdisc_priv(sch);
int i;
int err;
q->sch = sch;
timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE);
err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
if (err)
return err;
for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
q->dep[i].next = i + SFQ_MAX_FLOWS;
q->dep[i].prev = i + SFQ_MAX_FLOWS;
}
q->limit = SFQ_MAX_DEPTH;
q->maxdepth = SFQ_MAX_DEPTH;
q->cur_depth = 0;
q->tail = NULL;
q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
q->maxflows = SFQ_DEFAULT_FLOWS;
q->quantum = psched_mtu(qdisc_dev(sch));
q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
q->perturb_period = 0;
get_random_bytes(&q->perturbation, sizeof(q->perturbation));
if (opt) {
int err = sfq_change(sch, opt);
if (err)
return err;
}
q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
if (!q->ht || !q->slots) {
/* Note: sfq_destroy() will be called by our caller */
return -ENOMEM;
}
for (i = 0; i < q->divisor; i++)
q->ht[i] = SFQ_EMPTY_SLOT;
for (i = 0; i < q->maxflows; i++) {
slot_queue_init(&q->slots[i]);
sfq_link(q, i);
}
if (q->limit >= 1)
sch->flags |= TCQ_F_CAN_BYPASS;
else
sch->flags &= ~TCQ_F_CAN_BYPASS;
return 0;
}
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned char *b = skb_tail_pointer(skb);
struct tc_sfq_qopt_v1 opt;
struct red_parms *p = q->red_parms;
memset(&opt, 0, sizeof(opt));
opt.v0.quantum = q->quantum;
opt.v0.perturb_period = q->perturb_period / HZ;
opt.v0.limit = q->limit;
opt.v0.divisor = q->divisor;
opt.v0.flows = q->maxflows;
opt.depth = q->maxdepth;
opt.headdrop = q->headdrop;
if (p) {
opt.qth_min = p->qth_min >> p->Wlog;
opt.qth_max = p->qth_max >> p->Wlog;
opt.Wlog = p->Wlog;
opt.Plog = p->Plog;
opt.Scell_log = p->Scell_log;
opt.max_P = p->max_P;
}
memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
opt.flags = q->flags;
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
goto nla_put_failure;
return skb->len;
nla_put_failure:
nlmsg_trim(skb, b);
return -1;
}
static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long sfq_find(struct Qdisc *sch, u32 classid)
{
return 0;
}
static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
u32 classid)
{
return 0;
}
static void sfq_unbind(struct Qdisc *q, unsigned long cl)
{
}
static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct sfq_sched_data *q = qdisc_priv(sch);
if (cl)
return NULL;
return q->block;
}
static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct sfq_sched_data *q = qdisc_priv(sch);
sfq_index idx = q->ht[cl - 1];
struct gnet_stats_queue qs = { 0 };
struct tc_sfq_xstats xstats = { 0 };
if (idx != SFQ_EMPTY_SLOT) {
const struct sfq_slot *slot = &q->slots[idx];
xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
qs.qlen = slot->qlen;
qs.backlog = slot->backlog;
}
if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
return -1;
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
}
static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
struct sfq_sched_data *q = qdisc_priv(sch);
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < q->divisor; i++) {
if (q->ht[i] == SFQ_EMPTY_SLOT) {
arg->count++;
continue;
}
if (!tc_qdisc_stats_dump(sch, i + 1, arg))
break;
}
}
static const struct Qdisc_class_ops sfq_class_ops = {
.leaf = sfq_leaf,
.find = sfq_find,
.tcf_block = sfq_tcf_block,
.bind_tcf = sfq_bind,
.unbind_tcf = sfq_unbind,
.dump = sfq_dump_class,
.dump_stats = sfq_dump_class_stats,
.walk = sfq_walk,
};
static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
.cl_ops = &sfq_class_ops,
.id = "sfq",
.priv_size = sizeof(struct sfq_sched_data),
.enqueue = sfq_enqueue,
.dequeue = sfq_dequeue,
.peek = qdisc_peek_dequeued,
.init = sfq_init,
.reset = sfq_reset,
.destroy = sfq_destroy,
.change = NULL,
.dump = sfq_dump,
.owner = THIS_MODULE,
};
static int __init sfq_module_init(void)
{
return register_qdisc(&sfq_qdisc_ops);
}
static void __exit sfq_module_exit(void)
{
unregister_qdisc(&sfq_qdisc_ops);
}
module_init(sfq_module_init)
module_exit(sfq_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_sfq.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/em_text.c Textsearch ematch
*
* Authors: Thomas Graf <[email protected]>
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/textsearch.h>
#include <linux/tc_ematch/tc_em_text.h>
#include <net/pkt_cls.h>
struct text_match {
u16 from_offset;
u16 to_offset;
u8 from_layer;
u8 to_layer;
struct ts_config *config;
};
#define EM_TEXT_PRIV(m) ((struct text_match *) (m)->data)
static int em_text_match(struct sk_buff *skb, struct tcf_ematch *m,
struct tcf_pkt_info *info)
{
struct text_match *tm = EM_TEXT_PRIV(m);
int from, to;
from = tcf_get_base_ptr(skb, tm->from_layer) - skb->data;
from += tm->from_offset;
to = tcf_get_base_ptr(skb, tm->to_layer) - skb->data;
to += tm->to_offset;
return skb_find_text(skb, from, to, tm->config) != UINT_MAX;
}
static int em_text_change(struct net *net, void *data, int len,
struct tcf_ematch *m)
{
struct text_match *tm;
struct tcf_em_text *conf = data;
struct ts_config *ts_conf;
int flags = 0;
if (len < sizeof(*conf) || len < (sizeof(*conf) + conf->pattern_len))
return -EINVAL;
if (conf->from_layer > conf->to_layer)
return -EINVAL;
if (conf->from_layer == conf->to_layer &&
conf->from_offset > conf->to_offset)
return -EINVAL;
retry:
ts_conf = textsearch_prepare(conf->algo, (u8 *) conf + sizeof(*conf),
conf->pattern_len, GFP_KERNEL, flags);
if (flags & TS_AUTOLOAD)
rtnl_lock();
if (IS_ERR(ts_conf)) {
if (PTR_ERR(ts_conf) == -ENOENT && !(flags & TS_AUTOLOAD)) {
rtnl_unlock();
flags |= TS_AUTOLOAD;
goto retry;
} else
return PTR_ERR(ts_conf);
} else if (flags & TS_AUTOLOAD) {
textsearch_destroy(ts_conf);
return -EAGAIN;
}
tm = kmalloc(sizeof(*tm), GFP_KERNEL);
if (tm == NULL) {
textsearch_destroy(ts_conf);
return -ENOBUFS;
}
tm->from_offset = conf->from_offset;
tm->to_offset = conf->to_offset;
tm->from_layer = conf->from_layer;
tm->to_layer = conf->to_layer;
tm->config = ts_conf;
m->datalen = sizeof(*tm);
m->data = (unsigned long) tm;
return 0;
}
static void em_text_destroy(struct tcf_ematch *m)
{
if (EM_TEXT_PRIV(m) && EM_TEXT_PRIV(m)->config)
textsearch_destroy(EM_TEXT_PRIV(m)->config);
}
static int em_text_dump(struct sk_buff *skb, struct tcf_ematch *m)
{
struct text_match *tm = EM_TEXT_PRIV(m);
struct tcf_em_text conf;
strncpy(conf.algo, tm->config->ops->name, sizeof(conf.algo) - 1);
conf.from_offset = tm->from_offset;
conf.to_offset = tm->to_offset;
conf.from_layer = tm->from_layer;
conf.to_layer = tm->to_layer;
conf.pattern_len = textsearch_get_pattern_len(tm->config);
conf.pad = 0;
if (nla_put_nohdr(skb, sizeof(conf), &conf) < 0)
goto nla_put_failure;
if (nla_append(skb, conf.pattern_len,
textsearch_get_pattern(tm->config)) < 0)
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static struct tcf_ematch_ops em_text_ops = {
.kind = TCF_EM_TEXT,
.change = em_text_change,
.match = em_text_match,
.destroy = em_text_destroy,
.dump = em_text_dump,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_text_ops.link)
};
static int __init init_em_text(void)
{
return tcf_em_register(&em_text_ops);
}
static void __exit exit_em_text(void)
{
tcf_em_unregister(&em_text_ops);
}
MODULE_LICENSE("GPL");
module_init(init_em_text);
module_exit(exit_em_text);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_TEXT);
| linux-master | net/sched/em_text.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_cgroup.c Control Group Classifier
*
* Authors: Thomas Graf <[email protected]>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/rcupdate.h>
#include <net/rtnetlink.h>
#include <net/pkt_cls.h>
#include <net/sock.h>
#include <net/cls_cgroup.h>
#include <net/tc_wrapper.h>
struct cls_cgroup_head {
u32 handle;
struct tcf_exts exts;
struct tcf_ematch_tree ematches;
struct tcf_proto *tp;
struct rcu_work rwork;
};
TC_INDIRECT_SCOPE int cls_cgroup_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
struct tcf_result *res)
{
struct cls_cgroup_head *head = rcu_dereference_bh(tp->root);
u32 classid = task_get_classid(skb);
if (unlikely(!head))
return -1;
if (!classid)
return -1;
if (!tcf_em_tree_match(skb, &head->ematches, NULL))
return -1;
res->classid = classid;
res->class = 0;
return tcf_exts_exec(skb, &head->exts, res);
}
static void *cls_cgroup_get(struct tcf_proto *tp, u32 handle)
{
return NULL;
}
static int cls_cgroup_init(struct tcf_proto *tp)
{
return 0;
}
static const struct nla_policy cgroup_policy[TCA_CGROUP_MAX + 1] = {
[TCA_CGROUP_EMATCHES] = { .type = NLA_NESTED },
};
static void __cls_cgroup_destroy(struct cls_cgroup_head *head)
{
tcf_exts_destroy(&head->exts);
tcf_em_tree_destroy(&head->ematches);
tcf_exts_put_net(&head->exts);
kfree(head);
}
static void cls_cgroup_destroy_work(struct work_struct *work)
{
struct cls_cgroup_head *head = container_of(to_rcu_work(work),
struct cls_cgroup_head,
rwork);
rtnl_lock();
__cls_cgroup_destroy(head);
rtnl_unlock();
}
static int cls_cgroup_change(struct net *net, struct sk_buff *in_skb,
struct tcf_proto *tp, unsigned long base,
u32 handle, struct nlattr **tca,
void **arg, u32 flags,
struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_CGROUP_MAX + 1];
struct cls_cgroup_head *head = rtnl_dereference(tp->root);
struct cls_cgroup_head *new;
int err;
if (!tca[TCA_OPTIONS])
return -EINVAL;
if (!head && !handle)
return -EINVAL;
if (head && handle != head->handle)
return -ENOENT;
new = kzalloc(sizeof(*head), GFP_KERNEL);
if (!new)
return -ENOBUFS;
err = tcf_exts_init(&new->exts, net, TCA_CGROUP_ACT, TCA_CGROUP_POLICE);
if (err < 0)
goto errout;
new->handle = handle;
new->tp = tp;
err = nla_parse_nested_deprecated(tb, TCA_CGROUP_MAX,
tca[TCA_OPTIONS], cgroup_policy,
NULL);
if (err < 0)
goto errout;
err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &new->exts, flags,
extack);
if (err < 0)
goto errout;
err = tcf_em_tree_validate(tp, tb[TCA_CGROUP_EMATCHES], &new->ematches);
if (err < 0)
goto errout;
rcu_assign_pointer(tp->root, new);
if (head) {
tcf_exts_get_net(&head->exts);
tcf_queue_work(&head->rwork, cls_cgroup_destroy_work);
}
return 0;
errout:
tcf_exts_destroy(&new->exts);
kfree(new);
return err;
}
static void cls_cgroup_destroy(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct cls_cgroup_head *head = rtnl_dereference(tp->root);
/* Head can still be NULL due to cls_cgroup_init(). */
if (head) {
if (tcf_exts_get_net(&head->exts))
tcf_queue_work(&head->rwork, cls_cgroup_destroy_work);
else
__cls_cgroup_destroy(head);
}
}
static int cls_cgroup_delete(struct tcf_proto *tp, void *arg, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
return -EOPNOTSUPP;
}
static void cls_cgroup_walk(struct tcf_proto *tp, struct tcf_walker *arg,
bool rtnl_held)
{
struct cls_cgroup_head *head = rtnl_dereference(tp->root);
if (arg->count < arg->skip)
goto skip;
if (!head)
return;
if (arg->fn(tp, head, arg) < 0) {
arg->stop = 1;
return;
}
skip:
arg->count++;
}
static int cls_cgroup_dump(struct net *net, struct tcf_proto *tp, void *fh,
struct sk_buff *skb, struct tcmsg *t, bool rtnl_held)
{
struct cls_cgroup_head *head = rtnl_dereference(tp->root);
struct nlattr *nest;
t->tcm_handle = head->handle;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (tcf_exts_dump(skb, &head->exts) < 0 ||
tcf_em_tree_dump(skb, &head->ematches, TCA_CGROUP_EMATCHES) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
if (tcf_exts_dump_stats(skb, &head->exts) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static struct tcf_proto_ops cls_cgroup_ops __read_mostly = {
.kind = "cgroup",
.init = cls_cgroup_init,
.change = cls_cgroup_change,
.classify = cls_cgroup_classify,
.destroy = cls_cgroup_destroy,
.get = cls_cgroup_get,
.delete = cls_cgroup_delete,
.walk = cls_cgroup_walk,
.dump = cls_cgroup_dump,
.owner = THIS_MODULE,
};
static int __init init_cgroup_cls(void)
{
return register_tcf_proto_ops(&cls_cgroup_ops);
}
static void __exit exit_cgroup_cls(void)
{
unregister_tcf_proto_ops(&cls_cgroup_ops);
}
module_init(init_cgroup_cls);
module_exit(exit_cgroup_cls);
MODULE_LICENSE("GPL");
| linux-master | net/sched/cls_cgroup.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/ematch.c Extended Match API
*
* Authors: Thomas Graf <[email protected]>
*
* ==========================================================================
*
* An extended match (ematch) is a small classification tool not worth
* writing a full classifier for. Ematches can be interconnected to form
* a logic expression and get attached to classifiers to extend their
* functionatlity.
*
* The userspace part transforms the logic expressions into an array
* consisting of multiple sequences of interconnected ematches separated
* by markers. Precedence is implemented by a special ematch kind
* referencing a sequence beyond the marker of the current sequence
* causing the current position in the sequence to be pushed onto a stack
* to allow the current position to be overwritten by the position referenced
* in the special ematch. Matching continues in the new sequence until a
* marker is reached causing the position to be restored from the stack.
*
* Example:
* A AND (B1 OR B2) AND C AND D
*
* ------->-PUSH-------
* -->-- / -->-- \ -->--
* / \ / / \ \ / \
* +-------+-------+-------+-------+-------+--------+
* | A AND | B AND | C AND | D END | B1 OR | B2 END |
* +-------+-------+-------+-------+-------+--------+
* \ /
* --------<-POP---------
*
* where B is a virtual ematch referencing to sequence starting with B1.
*
* ==========================================================================
*
* How to write an ematch in 60 seconds
* ------------------------------------
*
* 1) Provide a matcher function:
* static int my_match(struct sk_buff *skb, struct tcf_ematch *m,
* struct tcf_pkt_info *info)
* {
* struct mydata *d = (struct mydata *) m->data;
*
* if (...matching goes here...)
* return 1;
* else
* return 0;
* }
*
* 2) Fill out a struct tcf_ematch_ops:
* static struct tcf_ematch_ops my_ops = {
* .kind = unique id,
* .datalen = sizeof(struct mydata),
* .match = my_match,
* .owner = THIS_MODULE,
* };
*
* 3) Register/Unregister your ematch:
* static int __init init_my_ematch(void)
* {
* return tcf_em_register(&my_ops);
* }
*
* static void __exit exit_my_ematch(void)
* {
* tcf_em_unregister(&my_ops);
* }
*
* module_init(init_my_ematch);
* module_exit(exit_my_ematch);
*
* 4) By now you should have two more seconds left, barely enough to
* open up a beer to watch the compilation going.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <net/pkt_cls.h>
static LIST_HEAD(ematch_ops);
static DEFINE_RWLOCK(ematch_mod_lock);
static struct tcf_ematch_ops *tcf_em_lookup(u16 kind)
{
struct tcf_ematch_ops *e = NULL;
read_lock(&ematch_mod_lock);
list_for_each_entry(e, &ematch_ops, link) {
if (kind == e->kind) {
if (!try_module_get(e->owner))
e = NULL;
read_unlock(&ematch_mod_lock);
return e;
}
}
read_unlock(&ematch_mod_lock);
return NULL;
}
/**
* tcf_em_register - register an extended match
*
* @ops: ematch operations lookup table
*
* This function must be called by ematches to announce their presence.
* The given @ops must have kind set to a unique identifier and the
* callback match() must be implemented. All other callbacks are optional
* and a fallback implementation is used instead.
*
* Returns -EEXISTS if an ematch of the same kind has already registered.
*/
int tcf_em_register(struct tcf_ematch_ops *ops)
{
int err = -EEXIST;
struct tcf_ematch_ops *e;
if (ops->match == NULL)
return -EINVAL;
write_lock(&ematch_mod_lock);
list_for_each_entry(e, &ematch_ops, link)
if (ops->kind == e->kind)
goto errout;
list_add_tail(&ops->link, &ematch_ops);
err = 0;
errout:
write_unlock(&ematch_mod_lock);
return err;
}
EXPORT_SYMBOL(tcf_em_register);
/**
* tcf_em_unregister - unregister and extended match
*
* @ops: ematch operations lookup table
*
* This function must be called by ematches to announce their disappearance
* for examples when the module gets unloaded. The @ops parameter must be
* the same as the one used for registration.
*
* Returns -ENOENT if no matching ematch was found.
*/
void tcf_em_unregister(struct tcf_ematch_ops *ops)
{
write_lock(&ematch_mod_lock);
list_del(&ops->link);
write_unlock(&ematch_mod_lock);
}
EXPORT_SYMBOL(tcf_em_unregister);
static inline struct tcf_ematch *tcf_em_get_match(struct tcf_ematch_tree *tree,
int index)
{
return &tree->matches[index];
}
static int tcf_em_validate(struct tcf_proto *tp,
struct tcf_ematch_tree_hdr *tree_hdr,
struct tcf_ematch *em, struct nlattr *nla, int idx)
{
int err = -EINVAL;
struct tcf_ematch_hdr *em_hdr = nla_data(nla);
int data_len = nla_len(nla) - sizeof(*em_hdr);
void *data = (void *) em_hdr + sizeof(*em_hdr);
struct net *net = tp->chain->block->net;
if (!TCF_EM_REL_VALID(em_hdr->flags))
goto errout;
if (em_hdr->kind == TCF_EM_CONTAINER) {
/* Special ematch called "container", carries an index
* referencing an external ematch sequence.
*/
u32 ref;
if (data_len < sizeof(ref))
goto errout;
ref = *(u32 *) data;
if (ref >= tree_hdr->nmatches)
goto errout;
/* We do not allow backward jumps to avoid loops and jumps
* to our own position are of course illegal.
*/
if (ref <= idx)
goto errout;
em->data = ref;
} else {
/* Note: This lookup will increase the module refcnt
* of the ematch module referenced. In case of a failure,
* a destroy function is called by the underlying layer
* which automatically releases the reference again, therefore
* the module MUST not be given back under any circumstances
* here. Be aware, the destroy function assumes that the
* module is held if the ops field is non zero.
*/
em->ops = tcf_em_lookup(em_hdr->kind);
if (em->ops == NULL) {
err = -ENOENT;
#ifdef CONFIG_MODULES
__rtnl_unlock();
request_module("ematch-kind-%u", em_hdr->kind);
rtnl_lock();
em->ops = tcf_em_lookup(em_hdr->kind);
if (em->ops) {
/* We dropped the RTNL mutex in order to
* perform the module load. Tell the caller
* to replay the request.
*/
module_put(em->ops->owner);
em->ops = NULL;
err = -EAGAIN;
}
#endif
goto errout;
}
/* ematch module provides expected length of data, so we
* can do a basic sanity check.
*/
if (em->ops->datalen && data_len < em->ops->datalen)
goto errout;
if (em->ops->change) {
err = -EINVAL;
if (em_hdr->flags & TCF_EM_SIMPLE)
goto errout;
err = em->ops->change(net, data, data_len, em);
if (err < 0)
goto errout;
} else if (data_len > 0) {
/* ematch module doesn't provide an own change
* procedure and expects us to allocate and copy
* the ematch data.
*
* TCF_EM_SIMPLE may be specified stating that the
* data only consists of a u32 integer and the module
* does not expected a memory reference but rather
* the value carried.
*/
if (em_hdr->flags & TCF_EM_SIMPLE) {
if (em->ops->datalen > 0)
goto errout;
if (data_len < sizeof(u32))
goto errout;
em->data = *(u32 *) data;
} else {
void *v = kmemdup(data, data_len, GFP_KERNEL);
if (v == NULL) {
err = -ENOBUFS;
goto errout;
}
em->data = (unsigned long) v;
}
em->datalen = data_len;
}
}
em->matchid = em_hdr->matchid;
em->flags = em_hdr->flags;
em->net = net;
err = 0;
errout:
return err;
}
static const struct nla_policy em_policy[TCA_EMATCH_TREE_MAX + 1] = {
[TCA_EMATCH_TREE_HDR] = { .len = sizeof(struct tcf_ematch_tree_hdr) },
[TCA_EMATCH_TREE_LIST] = { .type = NLA_NESTED },
};
/**
* tcf_em_tree_validate - validate ematch config TLV and build ematch tree
*
* @tp: classifier kind handle
* @nla: ematch tree configuration TLV
* @tree: destination ematch tree variable to store the resulting
* ematch tree.
*
* This function validates the given configuration TLV @nla and builds an
* ematch tree in @tree. The resulting tree must later be copied into
* the private classifier data using tcf_em_tree_change(). You MUST NOT
* provide the ematch tree variable of the private classifier data directly,
* the changes would not be locked properly.
*
* Returns a negative error code if the configuration TLV contains errors.
*/
int tcf_em_tree_validate(struct tcf_proto *tp, struct nlattr *nla,
struct tcf_ematch_tree *tree)
{
int idx, list_len, matches_len, err;
struct nlattr *tb[TCA_EMATCH_TREE_MAX + 1];
struct nlattr *rt_match, *rt_hdr, *rt_list;
struct tcf_ematch_tree_hdr *tree_hdr;
struct tcf_ematch *em;
memset(tree, 0, sizeof(*tree));
if (!nla)
return 0;
err = nla_parse_nested_deprecated(tb, TCA_EMATCH_TREE_MAX, nla,
em_policy, NULL);
if (err < 0)
goto errout;
err = -EINVAL;
rt_hdr = tb[TCA_EMATCH_TREE_HDR];
rt_list = tb[TCA_EMATCH_TREE_LIST];
if (rt_hdr == NULL || rt_list == NULL)
goto errout;
tree_hdr = nla_data(rt_hdr);
memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr));
rt_match = nla_data(rt_list);
list_len = nla_len(rt_list);
matches_len = tree_hdr->nmatches * sizeof(*em);
tree->matches = kzalloc(matches_len, GFP_KERNEL);
if (tree->matches == NULL)
goto errout;
/* We do not use nla_parse_nested here because the maximum
* number of attributes is unknown. This saves us the allocation
* for a tb buffer which would serve no purpose at all.
*
* The array of rt attributes is parsed in the order as they are
* provided, their type must be incremental from 1 to n. Even
* if it does not serve any real purpose, a failure of sticking
* to this policy will result in parsing failure.
*/
for (idx = 0; nla_ok(rt_match, list_len); idx++) {
err = -EINVAL;
if (rt_match->nla_type != (idx + 1))
goto errout_abort;
if (idx >= tree_hdr->nmatches)
goto errout_abort;
if (nla_len(rt_match) < sizeof(struct tcf_ematch_hdr))
goto errout_abort;
em = tcf_em_get_match(tree, idx);
err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx);
if (err < 0)
goto errout_abort;
rt_match = nla_next(rt_match, &list_len);
}
/* Check if the number of matches provided by userspace actually
* complies with the array of matches. The number was used for
* the validation of references and a mismatch could lead to
* undefined references during the matching process.
*/
if (idx != tree_hdr->nmatches) {
err = -EINVAL;
goto errout_abort;
}
err = 0;
errout:
return err;
errout_abort:
tcf_em_tree_destroy(tree);
return err;
}
EXPORT_SYMBOL(tcf_em_tree_validate);
/**
* tcf_em_tree_destroy - destroy an ematch tree
*
* @tree: ematch tree to be deleted
*
* This functions destroys an ematch tree previously created by
* tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that
* the ematch tree is not in use before calling this function.
*/
void tcf_em_tree_destroy(struct tcf_ematch_tree *tree)
{
int i;
if (tree->matches == NULL)
return;
for (i = 0; i < tree->hdr.nmatches; i++) {
struct tcf_ematch *em = tcf_em_get_match(tree, i);
if (em->ops) {
if (em->ops->destroy)
em->ops->destroy(em);
else if (!tcf_em_is_simple(em))
kfree((void *) em->data);
module_put(em->ops->owner);
}
}
tree->hdr.nmatches = 0;
kfree(tree->matches);
tree->matches = NULL;
}
EXPORT_SYMBOL(tcf_em_tree_destroy);
/**
* tcf_em_tree_dump - dump ematch tree into a rtnl message
*
* @skb: skb holding the rtnl message
* @tree: ematch tree to be dumped
* @tlv: TLV type to be used to encapsulate the tree
*
* This function dumps a ematch tree into a rtnl message. It is valid to
* call this function while the ematch tree is in use.
*
* Returns -1 if the skb tailroom is insufficient.
*/
int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv)
{
int i;
u8 *tail;
struct nlattr *top_start;
struct nlattr *list_start;
top_start = nla_nest_start_noflag(skb, tlv);
if (top_start == NULL)
goto nla_put_failure;
if (nla_put(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr))
goto nla_put_failure;
list_start = nla_nest_start_noflag(skb, TCA_EMATCH_TREE_LIST);
if (list_start == NULL)
goto nla_put_failure;
tail = skb_tail_pointer(skb);
for (i = 0; i < tree->hdr.nmatches; i++) {
struct nlattr *match_start = (struct nlattr *)tail;
struct tcf_ematch *em = tcf_em_get_match(tree, i);
struct tcf_ematch_hdr em_hdr = {
.kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER,
.matchid = em->matchid,
.flags = em->flags
};
if (nla_put(skb, i + 1, sizeof(em_hdr), &em_hdr))
goto nla_put_failure;
if (em->ops && em->ops->dump) {
if (em->ops->dump(skb, em) < 0)
goto nla_put_failure;
} else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) {
u32 u = em->data;
nla_put_nohdr(skb, sizeof(u), &u);
} else if (em->datalen > 0)
nla_put_nohdr(skb, em->datalen, (void *) em->data);
tail = skb_tail_pointer(skb);
match_start->nla_len = tail - (u8 *)match_start;
}
nla_nest_end(skb, list_start);
nla_nest_end(skb, top_start);
return 0;
nla_put_failure:
return -1;
}
EXPORT_SYMBOL(tcf_em_tree_dump);
static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em,
struct tcf_pkt_info *info)
{
int r = em->ops->match(skb, em, info);
return tcf_em_is_inverted(em) ? !r : r;
}
/* Do not use this function directly, use tcf_em_tree_match instead */
int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree,
struct tcf_pkt_info *info)
{
int stackp = 0, match_idx = 0, res = 0;
struct tcf_ematch *cur_match;
int stack[CONFIG_NET_EMATCH_STACK];
proceed:
while (match_idx < tree->hdr.nmatches) {
cur_match = tcf_em_get_match(tree, match_idx);
if (tcf_em_is_container(cur_match)) {
if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK))
goto stack_overflow;
stack[stackp++] = match_idx;
match_idx = cur_match->data;
goto proceed;
}
res = tcf_em_match(skb, cur_match, info);
if (tcf_em_early_end(cur_match, res))
break;
match_idx++;
}
pop_stack:
if (stackp > 0) {
match_idx = stack[--stackp];
cur_match = tcf_em_get_match(tree, match_idx);
if (tcf_em_is_inverted(cur_match))
res = !res;
if (tcf_em_early_end(cur_match, res)) {
goto pop_stack;
} else {
match_idx++;
goto proceed;
}
}
return res;
stack_overflow:
net_warn_ratelimited("tc ematch: local stack overflow, increase NET_EMATCH_STACK\n");
return -1;
}
EXPORT_SYMBOL(__tcf_em_tree_match);
| linux-master | net/sched/ematch.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/em_ipt.c IPtables matches Ematch
*
* (c) 2018 Eyal Birger <[email protected]>
*/
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/skbuff.h>
#include <linux/tc_ematch/tc_em_ipt.h>
#include <linux/netfilter.h>
#include <linux/netfilter/x_tables.h>
#include <linux/netfilter_ipv4/ip_tables.h>
#include <linux/netfilter_ipv6/ip6_tables.h>
#include <net/pkt_cls.h>
struct em_ipt_match {
const struct xt_match *match;
u32 hook;
u8 nfproto;
u8 match_data[] __aligned(8);
};
struct em_ipt_xt_match {
char *match_name;
int (*validate_match_data)(struct nlattr **tb, u8 mrev);
};
static const struct nla_policy em_ipt_policy[TCA_EM_IPT_MAX + 1] = {
[TCA_EM_IPT_MATCH_NAME] = { .type = NLA_STRING,
.len = XT_EXTENSION_MAXNAMELEN },
[TCA_EM_IPT_MATCH_REVISION] = { .type = NLA_U8 },
[TCA_EM_IPT_HOOK] = { .type = NLA_U32 },
[TCA_EM_IPT_NFPROTO] = { .type = NLA_U8 },
[TCA_EM_IPT_MATCH_DATA] = { .type = NLA_UNSPEC },
};
static int check_match(struct net *net, struct em_ipt_match *im, int mdata_len)
{
struct xt_mtchk_param mtpar = {};
union {
struct ipt_entry e4;
struct ip6t_entry e6;
} e = {};
mtpar.net = net;
mtpar.table = "filter";
mtpar.hook_mask = 1 << im->hook;
mtpar.family = im->match->family;
mtpar.match = im->match;
mtpar.entryinfo = &e;
mtpar.matchinfo = (void *)im->match_data;
return xt_check_match(&mtpar, mdata_len, 0, 0);
}
static int policy_validate_match_data(struct nlattr **tb, u8 mrev)
{
if (mrev != 0) {
pr_err("only policy match revision 0 supported");
return -EINVAL;
}
if (nla_get_u32(tb[TCA_EM_IPT_HOOK]) != NF_INET_PRE_ROUTING) {
pr_err("policy can only be matched on NF_INET_PRE_ROUTING");
return -EINVAL;
}
return 0;
}
static int addrtype_validate_match_data(struct nlattr **tb, u8 mrev)
{
if (mrev != 1) {
pr_err("only addrtype match revision 1 supported");
return -EINVAL;
}
return 0;
}
static const struct em_ipt_xt_match em_ipt_xt_matches[] = {
{
.match_name = "policy",
.validate_match_data = policy_validate_match_data
},
{
.match_name = "addrtype",
.validate_match_data = addrtype_validate_match_data
},
{}
};
static struct xt_match *get_xt_match(struct nlattr **tb)
{
const struct em_ipt_xt_match *m;
struct nlattr *mname_attr;
u8 nfproto, mrev = 0;
int ret;
mname_attr = tb[TCA_EM_IPT_MATCH_NAME];
for (m = em_ipt_xt_matches; m->match_name; m++) {
if (!nla_strcmp(mname_attr, m->match_name))
break;
}
if (!m->match_name) {
pr_err("Unsupported xt match");
return ERR_PTR(-EINVAL);
}
if (tb[TCA_EM_IPT_MATCH_REVISION])
mrev = nla_get_u8(tb[TCA_EM_IPT_MATCH_REVISION]);
ret = m->validate_match_data(tb, mrev);
if (ret < 0)
return ERR_PTR(ret);
nfproto = nla_get_u8(tb[TCA_EM_IPT_NFPROTO]);
return xt_request_find_match(nfproto, m->match_name, mrev);
}
static int em_ipt_change(struct net *net, void *data, int data_len,
struct tcf_ematch *em)
{
struct nlattr *tb[TCA_EM_IPT_MAX + 1];
struct em_ipt_match *im = NULL;
struct xt_match *match;
int mdata_len, ret;
u8 nfproto;
ret = nla_parse_deprecated(tb, TCA_EM_IPT_MAX, data, data_len,
em_ipt_policy, NULL);
if (ret < 0)
return ret;
if (!tb[TCA_EM_IPT_HOOK] || !tb[TCA_EM_IPT_MATCH_NAME] ||
!tb[TCA_EM_IPT_MATCH_DATA] || !tb[TCA_EM_IPT_NFPROTO])
return -EINVAL;
nfproto = nla_get_u8(tb[TCA_EM_IPT_NFPROTO]);
switch (nfproto) {
case NFPROTO_IPV4:
case NFPROTO_IPV6:
break;
default:
return -EINVAL;
}
match = get_xt_match(tb);
if (IS_ERR(match)) {
pr_err("unable to load match\n");
return PTR_ERR(match);
}
mdata_len = XT_ALIGN(nla_len(tb[TCA_EM_IPT_MATCH_DATA]));
im = kzalloc(sizeof(*im) + mdata_len, GFP_KERNEL);
if (!im) {
ret = -ENOMEM;
goto err;
}
im->match = match;
im->hook = nla_get_u32(tb[TCA_EM_IPT_HOOK]);
im->nfproto = nfproto;
nla_memcpy(im->match_data, tb[TCA_EM_IPT_MATCH_DATA], mdata_len);
ret = check_match(net, im, mdata_len);
if (ret)
goto err;
em->datalen = sizeof(*im) + mdata_len;
em->data = (unsigned long)im;
return 0;
err:
kfree(im);
module_put(match->me);
return ret;
}
static void em_ipt_destroy(struct tcf_ematch *em)
{
struct em_ipt_match *im = (void *)em->data;
if (!im)
return;
if (im->match->destroy) {
struct xt_mtdtor_param par = {
.net = em->net,
.match = im->match,
.matchinfo = im->match_data,
.family = im->match->family
};
im->match->destroy(&par);
}
module_put(im->match->me);
kfree(im);
}
static int em_ipt_match(struct sk_buff *skb, struct tcf_ematch *em,
struct tcf_pkt_info *info)
{
const struct em_ipt_match *im = (const void *)em->data;
struct xt_action_param acpar = {};
struct net_device *indev = NULL;
u8 nfproto = im->match->family;
struct nf_hook_state state;
int ret;
switch (skb_protocol(skb, true)) {
case htons(ETH_P_IP):
if (!pskb_network_may_pull(skb, sizeof(struct iphdr)))
return 0;
if (nfproto == NFPROTO_UNSPEC)
nfproto = NFPROTO_IPV4;
break;
case htons(ETH_P_IPV6):
if (!pskb_network_may_pull(skb, sizeof(struct ipv6hdr)))
return 0;
if (nfproto == NFPROTO_UNSPEC)
nfproto = NFPROTO_IPV6;
break;
default:
return 0;
}
rcu_read_lock();
if (skb->skb_iif)
indev = dev_get_by_index_rcu(em->net, skb->skb_iif);
nf_hook_state_init(&state, im->hook, nfproto,
indev ?: skb->dev, skb->dev, NULL, em->net, NULL);
acpar.match = im->match;
acpar.matchinfo = im->match_data;
acpar.state = &state;
ret = im->match->match(skb, &acpar);
rcu_read_unlock();
return ret;
}
static int em_ipt_dump(struct sk_buff *skb, struct tcf_ematch *em)
{
struct em_ipt_match *im = (void *)em->data;
if (nla_put_string(skb, TCA_EM_IPT_MATCH_NAME, im->match->name) < 0)
return -EMSGSIZE;
if (nla_put_u32(skb, TCA_EM_IPT_HOOK, im->hook) < 0)
return -EMSGSIZE;
if (nla_put_u8(skb, TCA_EM_IPT_MATCH_REVISION, im->match->revision) < 0)
return -EMSGSIZE;
if (nla_put_u8(skb, TCA_EM_IPT_NFPROTO, im->nfproto) < 0)
return -EMSGSIZE;
if (nla_put(skb, TCA_EM_IPT_MATCH_DATA,
im->match->usersize ?: im->match->matchsize,
im->match_data) < 0)
return -EMSGSIZE;
return 0;
}
static struct tcf_ematch_ops em_ipt_ops = {
.kind = TCF_EM_IPT,
.change = em_ipt_change,
.destroy = em_ipt_destroy,
.match = em_ipt_match,
.dump = em_ipt_dump,
.owner = THIS_MODULE,
.link = LIST_HEAD_INIT(em_ipt_ops.link)
};
static int __init init_em_ipt(void)
{
return tcf_em_register(&em_ipt_ops);
}
static void __exit exit_em_ipt(void)
{
tcf_em_unregister(&em_ipt_ops);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Eyal Birger <[email protected]>");
MODULE_DESCRIPTION("TC extended match for IPtables matches");
module_init(init_em_ipt);
module_exit(exit_em_ipt);
MODULE_ALIAS_TCF_EMATCH(TCF_EM_IPT);
| linux-master | net/sched/em_ipt.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/act_gact.c Generic actions
*
* copyright Jamal Hadi Salim (2002-4)
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/tc_act/tc_gact.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_wrapper.h>
static struct tc_action_ops act_gact_ops;
#ifdef CONFIG_GACT_PROB
static int gact_net_rand(struct tcf_gact *gact)
{
smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */
if (get_random_u32_below(gact->tcfg_pval))
return gact->tcf_action;
return gact->tcfg_paction;
}
static int gact_determ(struct tcf_gact *gact)
{
u32 pack = atomic_inc_return(&gact->packets);
smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */
if (pack % gact->tcfg_pval)
return gact->tcf_action;
return gact->tcfg_paction;
}
typedef int (*g_rand)(struct tcf_gact *gact);
static g_rand gact_rand[MAX_RAND] = { NULL, gact_net_rand, gact_determ };
#endif /* CONFIG_GACT_PROB */
static const struct nla_policy gact_policy[TCA_GACT_MAX + 1] = {
[TCA_GACT_PARMS] = { .len = sizeof(struct tc_gact) },
[TCA_GACT_PROB] = { .len = sizeof(struct tc_gact_p) },
};
static int tcf_gact_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_gact_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_GACT_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_gact *parm;
struct tcf_gact *gact;
int ret = 0;
u32 index;
int err;
#ifdef CONFIG_GACT_PROB
struct tc_gact_p *p_parm = NULL;
#endif
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_GACT_MAX, nla, gact_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_GACT_PARMS] == NULL)
return -EINVAL;
parm = nla_data(tb[TCA_GACT_PARMS]);
index = parm->index;
#ifndef CONFIG_GACT_PROB
if (tb[TCA_GACT_PROB] != NULL)
return -EOPNOTSUPP;
#else
if (tb[TCA_GACT_PROB]) {
p_parm = nla_data(tb[TCA_GACT_PROB]);
if (p_parm->ptype >= MAX_RAND)
return -EINVAL;
if (TC_ACT_EXT_CMP(p_parm->paction, TC_ACT_GOTO_CHAIN)) {
NL_SET_ERR_MSG(extack,
"goto chain not allowed on fallback");
return -EINVAL;
}
}
#endif
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_gact_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (err > 0) {
if (bind)/* dont override defaults */
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
} else {
return err;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
gact = to_gact(*a);
spin_lock_bh(&gact->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
#ifdef CONFIG_GACT_PROB
if (p_parm) {
gact->tcfg_paction = p_parm->paction;
gact->tcfg_pval = max_t(u16, 1, p_parm->pval);
/* Make sure tcfg_pval is written before tcfg_ptype
* coupled with smp_rmb() in gact_net_rand() & gact_determ()
*/
smp_wmb();
gact->tcfg_ptype = p_parm->ptype;
}
#endif
spin_unlock_bh(&gact->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
release_idr:
tcf_idr_release(*a, bind);
return err;
}
TC_INDIRECT_SCOPE int tcf_gact_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_gact *gact = to_gact(a);
int action = READ_ONCE(gact->tcf_action);
#ifdef CONFIG_GACT_PROB
{
u32 ptype = READ_ONCE(gact->tcfg_ptype);
if (ptype)
action = gact_rand[ptype](gact);
}
#endif
tcf_action_update_bstats(&gact->common, skb);
if (action == TC_ACT_SHOT)
tcf_action_inc_drop_qstats(&gact->common);
tcf_lastuse_update(&gact->tcf_tm);
return action;
}
static void tcf_gact_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_gact *gact = to_gact(a);
int action = READ_ONCE(gact->tcf_action);
struct tcf_t *tm = &gact->tcf_tm;
tcf_action_update_stats(a, bytes, packets,
action == TC_ACT_SHOT ? packets : drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static int tcf_gact_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_gact *gact = to_gact(a);
struct tc_gact opt = {
.index = gact->tcf_index,
.refcnt = refcount_read(&gact->tcf_refcnt) - ref,
.bindcnt = atomic_read(&gact->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&gact->tcf_lock);
opt.action = gact->tcf_action;
if (nla_put(skb, TCA_GACT_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
#ifdef CONFIG_GACT_PROB
if (gact->tcfg_ptype) {
struct tc_gact_p p_opt = {
.paction = gact->tcfg_paction,
.pval = gact->tcfg_pval,
.ptype = gact->tcfg_ptype,
};
if (nla_put(skb, TCA_GACT_PROB, sizeof(p_opt), &p_opt))
goto nla_put_failure;
}
#endif
tcf_tm_dump(&t, &gact->tcf_tm);
if (nla_put_64bit(skb, TCA_GACT_TM, sizeof(t), &t, TCA_GACT_PAD))
goto nla_put_failure;
spin_unlock_bh(&gact->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&gact->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static size_t tcf_gact_get_fill_size(const struct tc_action *act)
{
size_t sz = nla_total_size(sizeof(struct tc_gact)); /* TCA_GACT_PARMS */
#ifdef CONFIG_GACT_PROB
if (to_gact(act)->tcfg_ptype)
/* TCA_GACT_PROB */
sz += nla_total_size(sizeof(struct tc_gact_p));
#endif
return sz;
}
static int tcf_gact_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
if (is_tcf_gact_ok(act)) {
entry->id = FLOW_ACTION_ACCEPT;
} else if (is_tcf_gact_shot(act)) {
entry->id = FLOW_ACTION_DROP;
} else if (is_tcf_gact_trap(act)) {
entry->id = FLOW_ACTION_TRAP;
} else if (is_tcf_gact_goto_chain(act)) {
entry->id = FLOW_ACTION_GOTO;
entry->chain_index = tcf_gact_goto_chain_index(act);
} else if (is_tcf_gact_continue(act)) {
NL_SET_ERR_MSG_MOD(extack, "Offload of \"continue\" action is not supported");
return -EOPNOTSUPP;
} else if (is_tcf_gact_reclassify(act)) {
NL_SET_ERR_MSG_MOD(extack, "Offload of \"reclassify\" action is not supported");
return -EOPNOTSUPP;
} else if (is_tcf_gact_pipe(act)) {
NL_SET_ERR_MSG_MOD(extack, "Offload of \"pipe\" action is not supported");
return -EOPNOTSUPP;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unsupported generic action offload");
return -EOPNOTSUPP;
}
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
if (is_tcf_gact_ok(act))
fl_action->id = FLOW_ACTION_ACCEPT;
else if (is_tcf_gact_shot(act))
fl_action->id = FLOW_ACTION_DROP;
else if (is_tcf_gact_trap(act))
fl_action->id = FLOW_ACTION_TRAP;
else if (is_tcf_gact_goto_chain(act))
fl_action->id = FLOW_ACTION_GOTO;
else
return -EOPNOTSUPP;
}
return 0;
}
static struct tc_action_ops act_gact_ops = {
.kind = "gact",
.id = TCA_ID_GACT,
.owner = THIS_MODULE,
.act = tcf_gact_act,
.stats_update = tcf_gact_stats_update,
.dump = tcf_gact_dump,
.init = tcf_gact_init,
.get_fill_size = tcf_gact_get_fill_size,
.offload_act_setup = tcf_gact_offload_act_setup,
.size = sizeof(struct tcf_gact),
};
static __net_init int gact_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_gact_ops.net_id);
return tc_action_net_init(net, tn, &act_gact_ops);
}
static void __net_exit gact_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_gact_ops.net_id);
}
static struct pernet_operations gact_net_ops = {
.init = gact_init_net,
.exit_batch = gact_exit_net,
.id = &act_gact_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_AUTHOR("Jamal Hadi Salim(2002-4)");
MODULE_DESCRIPTION("Generic Classifier actions");
MODULE_LICENSE("GPL");
static int __init gact_init_module(void)
{
#ifdef CONFIG_GACT_PROB
pr_info("GACT probability on\n");
#else
pr_info("GACT probability NOT on\n");
#endif
return tcf_register_action(&act_gact_ops, &gact_net_ops);
}
static void __exit gact_cleanup_module(void)
{
tcf_unregister_action(&act_gact_ops, &gact_net_ops);
}
module_init(gact_init_module);
module_exit(gact_cleanup_module);
| linux-master | net/sched/act_gact.c |
// SPDX-License-Identifier: GPL-2.0-only
/*
* net/sched/act_sample.c - Packet sampling tc action
* Copyright (c) 2017 Yotam Gigi <[email protected]>
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <net/net_namespace.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/tc_act/tc_sample.h>
#include <net/tc_act/tc_sample.h>
#include <net/psample.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
#include <linux/if_arp.h>
static struct tc_action_ops act_sample_ops;
static const struct nla_policy sample_policy[TCA_SAMPLE_MAX + 1] = {
[TCA_SAMPLE_PARMS] = { .len = sizeof(struct tc_sample) },
[TCA_SAMPLE_RATE] = { .type = NLA_U32 },
[TCA_SAMPLE_TRUNC_SIZE] = { .type = NLA_U32 },
[TCA_SAMPLE_PSAMPLE_GROUP] = { .type = NLA_U32 },
};
static int tcf_sample_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_sample_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_SAMPLE_MAX + 1];
struct psample_group *psample_group;
u32 psample_group_num, rate, index;
struct tcf_chain *goto_ch = NULL;
struct tc_sample *parm;
struct tcf_sample *s;
bool exists = false;
int ret, err;
if (!nla)
return -EINVAL;
ret = nla_parse_nested_deprecated(tb, TCA_SAMPLE_MAX, nla,
sample_policy, NULL);
if (ret < 0)
return ret;
if (!tb[TCA_SAMPLE_PARMS])
return -EINVAL;
parm = nla_data(tb[TCA_SAMPLE_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
if (!exists) {
ret = tcf_idr_create(tn, index, est, a,
&act_sample_ops, bind, true, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
if (!tb[TCA_SAMPLE_RATE] || !tb[TCA_SAMPLE_PSAMPLE_GROUP]) {
NL_SET_ERR_MSG(extack, "sample rate and group are required");
err = -EINVAL;
goto release_idr;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
rate = nla_get_u32(tb[TCA_SAMPLE_RATE]);
if (!rate) {
NL_SET_ERR_MSG(extack, "invalid sample rate");
err = -EINVAL;
goto put_chain;
}
psample_group_num = nla_get_u32(tb[TCA_SAMPLE_PSAMPLE_GROUP]);
psample_group = psample_group_get(net, psample_group_num);
if (!psample_group) {
err = -ENOMEM;
goto put_chain;
}
s = to_sample(*a);
spin_lock_bh(&s->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
s->rate = rate;
s->psample_group_num = psample_group_num;
psample_group = rcu_replace_pointer(s->psample_group, psample_group,
lockdep_is_held(&s->tcf_lock));
if (tb[TCA_SAMPLE_TRUNC_SIZE]) {
s->truncate = true;
s->trunc_size = nla_get_u32(tb[TCA_SAMPLE_TRUNC_SIZE]);
}
spin_unlock_bh(&s->tcf_lock);
if (psample_group)
psample_group_put(psample_group);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static void tcf_sample_cleanup(struct tc_action *a)
{
struct tcf_sample *s = to_sample(a);
struct psample_group *psample_group;
/* last reference to action, no need to lock */
psample_group = rcu_dereference_protected(s->psample_group, 1);
RCU_INIT_POINTER(s->psample_group, NULL);
if (psample_group)
psample_group_put(psample_group);
}
static bool tcf_sample_dev_ok_push(struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_TUNNEL:
case ARPHRD_TUNNEL6:
case ARPHRD_SIT:
case ARPHRD_IPGRE:
case ARPHRD_IP6GRE:
case ARPHRD_VOID:
case ARPHRD_NONE:
return false;
default:
return true;
}
}
TC_INDIRECT_SCOPE int tcf_sample_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_sample *s = to_sample(a);
struct psample_group *psample_group;
struct psample_metadata md = {};
int retval;
tcf_lastuse_update(&s->tcf_tm);
bstats_update(this_cpu_ptr(s->common.cpu_bstats), skb);
retval = READ_ONCE(s->tcf_action);
psample_group = rcu_dereference_bh(s->psample_group);
/* randomly sample packets according to rate */
if (psample_group && (get_random_u32_below(s->rate) == 0)) {
if (!skb_at_tc_ingress(skb)) {
md.in_ifindex = skb->skb_iif;
md.out_ifindex = skb->dev->ifindex;
} else {
md.in_ifindex = skb->dev->ifindex;
}
/* on ingress, the mac header gets popped, so push it back */
if (skb_at_tc_ingress(skb) && tcf_sample_dev_ok_push(skb->dev))
skb_push(skb, skb->mac_len);
md.trunc_size = s->truncate ? s->trunc_size : skb->len;
psample_sample_packet(psample_group, skb, s->rate, &md);
if (skb_at_tc_ingress(skb) && tcf_sample_dev_ok_push(skb->dev))
skb_pull(skb, skb->mac_len);
}
return retval;
}
static void tcf_sample_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_sample *s = to_sample(a);
struct tcf_t *tm = &s->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static int tcf_sample_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_sample *s = to_sample(a);
struct tc_sample opt = {
.index = s->tcf_index,
.refcnt = refcount_read(&s->tcf_refcnt) - ref,
.bindcnt = atomic_read(&s->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&s->tcf_lock);
opt.action = s->tcf_action;
if (nla_put(skb, TCA_SAMPLE_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &s->tcf_tm);
if (nla_put_64bit(skb, TCA_SAMPLE_TM, sizeof(t), &t, TCA_SAMPLE_PAD))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_SAMPLE_RATE, s->rate))
goto nla_put_failure;
if (s->truncate)
if (nla_put_u32(skb, TCA_SAMPLE_TRUNC_SIZE, s->trunc_size))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_SAMPLE_PSAMPLE_GROUP, s->psample_group_num))
goto nla_put_failure;
spin_unlock_bh(&s->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&s->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_psample_group_put(void *priv)
{
struct psample_group *group = priv;
psample_group_put(group);
}
static struct psample_group *
tcf_sample_get_group(const struct tc_action *a,
tc_action_priv_destructor *destructor)
{
struct tcf_sample *s = to_sample(a);
struct psample_group *group;
group = rcu_dereference_protected(s->psample_group,
lockdep_is_held(&s->tcf_lock));
if (group) {
psample_group_take(group);
*destructor = tcf_psample_group_put;
}
return group;
}
static void tcf_offload_sample_get_group(struct flow_action_entry *entry,
const struct tc_action *act)
{
entry->sample.psample_group =
act->ops->get_psample_group(act, &entry->destructor);
entry->destructor_priv = entry->sample.psample_group;
}
static int tcf_sample_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
entry->id = FLOW_ACTION_SAMPLE;
entry->sample.trunc_size = tcf_sample_trunc_size(act);
entry->sample.truncate = tcf_sample_truncate(act);
entry->sample.rate = tcf_sample_rate(act);
tcf_offload_sample_get_group(entry, act);
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
fl_action->id = FLOW_ACTION_SAMPLE;
}
return 0;
}
static struct tc_action_ops act_sample_ops = {
.kind = "sample",
.id = TCA_ID_SAMPLE,
.owner = THIS_MODULE,
.act = tcf_sample_act,
.stats_update = tcf_sample_stats_update,
.dump = tcf_sample_dump,
.init = tcf_sample_init,
.cleanup = tcf_sample_cleanup,
.get_psample_group = tcf_sample_get_group,
.offload_act_setup = tcf_sample_offload_act_setup,
.size = sizeof(struct tcf_sample),
};
static __net_init int sample_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_sample_ops.net_id);
return tc_action_net_init(net, tn, &act_sample_ops);
}
static void __net_exit sample_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_sample_ops.net_id);
}
static struct pernet_operations sample_net_ops = {
.init = sample_init_net,
.exit_batch = sample_exit_net,
.id = &act_sample_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init sample_init_module(void)
{
return tcf_register_action(&act_sample_ops, &sample_net_ops);
}
static void __exit sample_cleanup_module(void)
{
tcf_unregister_action(&act_sample_ops, &sample_net_ops);
}
module_init(sample_init_module);
module_exit(sample_cleanup_module);
MODULE_AUTHOR("Yotam Gigi <[email protected]>");
MODULE_DESCRIPTION("Packet sampling action");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/act_sample.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* Copyright 2020 NXP */
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <net/act_api.h>
#include <net/netlink.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gate.h>
#include <net/tc_wrapper.h>
static struct tc_action_ops act_gate_ops;
static ktime_t gate_get_time(struct tcf_gate *gact)
{
ktime_t mono = ktime_get();
switch (gact->tk_offset) {
case TK_OFFS_MAX:
return mono;
default:
return ktime_mono_to_any(mono, gact->tk_offset);
}
return KTIME_MAX;
}
static void gate_get_start_time(struct tcf_gate *gact, ktime_t *start)
{
struct tcf_gate_params *param = &gact->param;
ktime_t now, base, cycle;
u64 n;
base = ns_to_ktime(param->tcfg_basetime);
now = gate_get_time(gact);
if (ktime_after(base, now)) {
*start = base;
return;
}
cycle = param->tcfg_cycletime;
n = div64_u64(ktime_sub_ns(now, base), cycle);
*start = ktime_add_ns(base, (n + 1) * cycle);
}
static void gate_start_timer(struct tcf_gate *gact, ktime_t start)
{
ktime_t expires;
expires = hrtimer_get_expires(&gact->hitimer);
if (expires == 0)
expires = KTIME_MAX;
start = min_t(ktime_t, start, expires);
hrtimer_start(&gact->hitimer, start, HRTIMER_MODE_ABS_SOFT);
}
static enum hrtimer_restart gate_timer_func(struct hrtimer *timer)
{
struct tcf_gate *gact = container_of(timer, struct tcf_gate,
hitimer);
struct tcf_gate_params *p = &gact->param;
struct tcfg_gate_entry *next;
ktime_t close_time, now;
spin_lock(&gact->tcf_lock);
next = gact->next_entry;
/* cycle start, clear pending bit, clear total octets */
gact->current_gate_status = next->gate_state ? GATE_ACT_GATE_OPEN : 0;
gact->current_entry_octets = 0;
gact->current_max_octets = next->maxoctets;
gact->current_close_time = ktime_add_ns(gact->current_close_time,
next->interval);
close_time = gact->current_close_time;
if (list_is_last(&next->list, &p->entries))
next = list_first_entry(&p->entries,
struct tcfg_gate_entry, list);
else
next = list_next_entry(next, list);
now = gate_get_time(gact);
if (ktime_after(now, close_time)) {
ktime_t cycle, base;
u64 n;
cycle = p->tcfg_cycletime;
base = ns_to_ktime(p->tcfg_basetime);
n = div64_u64(ktime_sub_ns(now, base), cycle);
close_time = ktime_add_ns(base, (n + 1) * cycle);
}
gact->next_entry = next;
hrtimer_set_expires(&gact->hitimer, close_time);
spin_unlock(&gact->tcf_lock);
return HRTIMER_RESTART;
}
TC_INDIRECT_SCOPE int tcf_gate_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_gate *gact = to_gate(a);
int action = READ_ONCE(gact->tcf_action);
tcf_lastuse_update(&gact->tcf_tm);
tcf_action_update_bstats(&gact->common, skb);
spin_lock(&gact->tcf_lock);
if (unlikely(gact->current_gate_status & GATE_ACT_PENDING)) {
spin_unlock(&gact->tcf_lock);
return action;
}
if (!(gact->current_gate_status & GATE_ACT_GATE_OPEN)) {
spin_unlock(&gact->tcf_lock);
goto drop;
}
if (gact->current_max_octets >= 0) {
gact->current_entry_octets += qdisc_pkt_len(skb);
if (gact->current_entry_octets > gact->current_max_octets) {
spin_unlock(&gact->tcf_lock);
goto overlimit;
}
}
spin_unlock(&gact->tcf_lock);
return action;
overlimit:
tcf_action_inc_overlimit_qstats(&gact->common);
drop:
tcf_action_inc_drop_qstats(&gact->common);
return TC_ACT_SHOT;
}
static const struct nla_policy entry_policy[TCA_GATE_ENTRY_MAX + 1] = {
[TCA_GATE_ENTRY_INDEX] = { .type = NLA_U32 },
[TCA_GATE_ENTRY_GATE] = { .type = NLA_FLAG },
[TCA_GATE_ENTRY_INTERVAL] = { .type = NLA_U32 },
[TCA_GATE_ENTRY_IPV] = { .type = NLA_S32 },
[TCA_GATE_ENTRY_MAX_OCTETS] = { .type = NLA_S32 },
};
static const struct nla_policy gate_policy[TCA_GATE_MAX + 1] = {
[TCA_GATE_PARMS] =
NLA_POLICY_EXACT_LEN(sizeof(struct tc_gate)),
[TCA_GATE_PRIORITY] = { .type = NLA_S32 },
[TCA_GATE_ENTRY_LIST] = { .type = NLA_NESTED },
[TCA_GATE_BASE_TIME] = { .type = NLA_U64 },
[TCA_GATE_CYCLE_TIME] = { .type = NLA_U64 },
[TCA_GATE_CYCLE_TIME_EXT] = { .type = NLA_U64 },
[TCA_GATE_FLAGS] = { .type = NLA_U32 },
[TCA_GATE_CLOCKID] = { .type = NLA_S32 },
};
static int fill_gate_entry(struct nlattr **tb, struct tcfg_gate_entry *entry,
struct netlink_ext_ack *extack)
{
u32 interval = 0;
entry->gate_state = nla_get_flag(tb[TCA_GATE_ENTRY_GATE]);
if (tb[TCA_GATE_ENTRY_INTERVAL])
interval = nla_get_u32(tb[TCA_GATE_ENTRY_INTERVAL]);
if (interval == 0) {
NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
return -EINVAL;
}
entry->interval = interval;
if (tb[TCA_GATE_ENTRY_IPV])
entry->ipv = nla_get_s32(tb[TCA_GATE_ENTRY_IPV]);
else
entry->ipv = -1;
if (tb[TCA_GATE_ENTRY_MAX_OCTETS])
entry->maxoctets = nla_get_s32(tb[TCA_GATE_ENTRY_MAX_OCTETS]);
else
entry->maxoctets = -1;
return 0;
}
static int parse_gate_entry(struct nlattr *n, struct tcfg_gate_entry *entry,
int index, struct netlink_ext_ack *extack)
{
struct nlattr *tb[TCA_GATE_ENTRY_MAX + 1] = { };
int err;
err = nla_parse_nested(tb, TCA_GATE_ENTRY_MAX, n, entry_policy, extack);
if (err < 0) {
NL_SET_ERR_MSG(extack, "Could not parse nested entry");
return -EINVAL;
}
entry->index = index;
return fill_gate_entry(tb, entry, extack);
}
static void release_entry_list(struct list_head *entries)
{
struct tcfg_gate_entry *entry, *e;
list_for_each_entry_safe(entry, e, entries, list) {
list_del(&entry->list);
kfree(entry);
}
}
static int parse_gate_list(struct nlattr *list_attr,
struct tcf_gate_params *sched,
struct netlink_ext_ack *extack)
{
struct tcfg_gate_entry *entry;
struct nlattr *n;
int err, rem;
int i = 0;
if (!list_attr)
return -EINVAL;
nla_for_each_nested(n, list_attr, rem) {
if (nla_type(n) != TCA_GATE_ONE_ENTRY) {
NL_SET_ERR_MSG(extack, "Attribute isn't type 'entry'");
continue;
}
entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry) {
NL_SET_ERR_MSG(extack, "Not enough memory for entry");
err = -ENOMEM;
goto release_list;
}
err = parse_gate_entry(n, entry, i, extack);
if (err < 0) {
kfree(entry);
goto release_list;
}
list_add_tail(&entry->list, &sched->entries);
i++;
}
sched->num_entries = i;
return i;
release_list:
release_entry_list(&sched->entries);
return err;
}
static void gate_setup_timer(struct tcf_gate *gact, u64 basetime,
enum tk_offsets tko, s32 clockid,
bool do_init)
{
if (!do_init) {
if (basetime == gact->param.tcfg_basetime &&
tko == gact->tk_offset &&
clockid == gact->param.tcfg_clockid)
return;
spin_unlock_bh(&gact->tcf_lock);
hrtimer_cancel(&gact->hitimer);
spin_lock_bh(&gact->tcf_lock);
}
gact->param.tcfg_basetime = basetime;
gact->param.tcfg_clockid = clockid;
gact->tk_offset = tko;
hrtimer_init(&gact->hitimer, clockid, HRTIMER_MODE_ABS_SOFT);
gact->hitimer.function = gate_timer_func;
}
static int tcf_gate_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_gate_ops.net_id);
enum tk_offsets tk_offset = TK_OFFS_TAI;
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_GATE_MAX + 1];
struct tcf_chain *goto_ch = NULL;
u64 cycletime = 0, basetime = 0;
struct tcf_gate_params *p;
s32 clockid = CLOCK_TAI;
struct tcf_gate *gact;
struct tc_gate *parm;
int ret = 0, err;
u32 gflags = 0;
s32 prio = -1;
ktime_t start;
u32 index;
if (!nla)
return -EINVAL;
err = nla_parse_nested(tb, TCA_GATE_MAX, nla, gate_policy, extack);
if (err < 0)
return err;
if (!tb[TCA_GATE_PARMS])
return -EINVAL;
if (tb[TCA_GATE_CLOCKID]) {
clockid = nla_get_s32(tb[TCA_GATE_CLOCKID]);
switch (clockid) {
case CLOCK_REALTIME:
tk_offset = TK_OFFS_REAL;
break;
case CLOCK_MONOTONIC:
tk_offset = TK_OFFS_MAX;
break;
case CLOCK_BOOTTIME:
tk_offset = TK_OFFS_BOOT;
break;
case CLOCK_TAI:
tk_offset = TK_OFFS_TAI;
break;
default:
NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
return -EINVAL;
}
}
parm = nla_data(tb[TCA_GATE_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
if (err && bind)
return 0;
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_gate_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
if (tb[TCA_GATE_PRIORITY])
prio = nla_get_s32(tb[TCA_GATE_PRIORITY]);
if (tb[TCA_GATE_BASE_TIME])
basetime = nla_get_u64(tb[TCA_GATE_BASE_TIME]);
if (tb[TCA_GATE_FLAGS])
gflags = nla_get_u32(tb[TCA_GATE_FLAGS]);
gact = to_gate(*a);
if (ret == ACT_P_CREATED)
INIT_LIST_HEAD(&gact->param.entries);
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
spin_lock_bh(&gact->tcf_lock);
p = &gact->param;
if (tb[TCA_GATE_CYCLE_TIME])
cycletime = nla_get_u64(tb[TCA_GATE_CYCLE_TIME]);
if (tb[TCA_GATE_ENTRY_LIST]) {
err = parse_gate_list(tb[TCA_GATE_ENTRY_LIST], p, extack);
if (err < 0)
goto chain_put;
}
if (!cycletime) {
struct tcfg_gate_entry *entry;
ktime_t cycle = 0;
list_for_each_entry(entry, &p->entries, list)
cycle = ktime_add_ns(cycle, entry->interval);
cycletime = cycle;
if (!cycletime) {
err = -EINVAL;
goto chain_put;
}
}
p->tcfg_cycletime = cycletime;
if (tb[TCA_GATE_CYCLE_TIME_EXT])
p->tcfg_cycletime_ext =
nla_get_u64(tb[TCA_GATE_CYCLE_TIME_EXT]);
gate_setup_timer(gact, basetime, tk_offset, clockid,
ret == ACT_P_CREATED);
p->tcfg_priority = prio;
p->tcfg_flags = gflags;
gate_get_start_time(gact, &start);
gact->current_close_time = start;
gact->current_gate_status = GATE_ACT_GATE_OPEN | GATE_ACT_PENDING;
gact->next_entry = list_first_entry(&p->entries,
struct tcfg_gate_entry, list);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
gate_start_timer(gact, start);
spin_unlock_bh(&gact->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
return ret;
chain_put:
spin_unlock_bh(&gact->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
/* action is not inserted in any list: it's safe to init hitimer
* without taking tcf_lock.
*/
if (ret == ACT_P_CREATED)
gate_setup_timer(gact, gact->param.tcfg_basetime,
gact->tk_offset, gact->param.tcfg_clockid,
true);
tcf_idr_release(*a, bind);
return err;
}
static void tcf_gate_cleanup(struct tc_action *a)
{
struct tcf_gate *gact = to_gate(a);
struct tcf_gate_params *p;
p = &gact->param;
hrtimer_cancel(&gact->hitimer);
release_entry_list(&p->entries);
}
static int dumping_entry(struct sk_buff *skb,
struct tcfg_gate_entry *entry)
{
struct nlattr *item;
item = nla_nest_start_noflag(skb, TCA_GATE_ONE_ENTRY);
if (!item)
return -ENOSPC;
if (nla_put_u32(skb, TCA_GATE_ENTRY_INDEX, entry->index))
goto nla_put_failure;
if (entry->gate_state && nla_put_flag(skb, TCA_GATE_ENTRY_GATE))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_GATE_ENTRY_INTERVAL, entry->interval))
goto nla_put_failure;
if (nla_put_s32(skb, TCA_GATE_ENTRY_MAX_OCTETS, entry->maxoctets))
goto nla_put_failure;
if (nla_put_s32(skb, TCA_GATE_ENTRY_IPV, entry->ipv))
goto nla_put_failure;
return nla_nest_end(skb, item);
nla_put_failure:
nla_nest_cancel(skb, item);
return -1;
}
static int tcf_gate_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_gate *gact = to_gate(a);
struct tc_gate opt = {
.index = gact->tcf_index,
.refcnt = refcount_read(&gact->tcf_refcnt) - ref,
.bindcnt = atomic_read(&gact->tcf_bindcnt) - bind,
};
struct tcfg_gate_entry *entry;
struct tcf_gate_params *p;
struct nlattr *entry_list;
struct tcf_t t;
spin_lock_bh(&gact->tcf_lock);
opt.action = gact->tcf_action;
p = &gact->param;
if (nla_put(skb, TCA_GATE_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_GATE_BASE_TIME,
p->tcfg_basetime, TCA_GATE_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME,
p->tcfg_cycletime, TCA_GATE_PAD))
goto nla_put_failure;
if (nla_put_u64_64bit(skb, TCA_GATE_CYCLE_TIME_EXT,
p->tcfg_cycletime_ext, TCA_GATE_PAD))
goto nla_put_failure;
if (nla_put_s32(skb, TCA_GATE_CLOCKID, p->tcfg_clockid))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_GATE_FLAGS, p->tcfg_flags))
goto nla_put_failure;
if (nla_put_s32(skb, TCA_GATE_PRIORITY, p->tcfg_priority))
goto nla_put_failure;
entry_list = nla_nest_start_noflag(skb, TCA_GATE_ENTRY_LIST);
if (!entry_list)
goto nla_put_failure;
list_for_each_entry(entry, &p->entries, list) {
if (dumping_entry(skb, entry) < 0)
goto nla_put_failure;
}
nla_nest_end(skb, entry_list);
tcf_tm_dump(&t, &gact->tcf_tm);
if (nla_put_64bit(skb, TCA_GATE_TM, sizeof(t), &t, TCA_GATE_PAD))
goto nla_put_failure;
spin_unlock_bh(&gact->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&gact->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_gate_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_gate *gact = to_gate(a);
struct tcf_t *tm = &gact->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static size_t tcf_gate_get_fill_size(const struct tc_action *act)
{
return nla_total_size(sizeof(struct tc_gate));
}
static void tcf_gate_entry_destructor(void *priv)
{
struct action_gate_entry *oe = priv;
kfree(oe);
}
static int tcf_gate_get_entries(struct flow_action_entry *entry,
const struct tc_action *act)
{
entry->gate.entries = tcf_gate_get_list(act);
if (!entry->gate.entries)
return -EINVAL;
entry->destructor = tcf_gate_entry_destructor;
entry->destructor_priv = entry->gate.entries;
return 0;
}
static int tcf_gate_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
int err;
if (bind) {
struct flow_action_entry *entry = entry_data;
entry->id = FLOW_ACTION_GATE;
entry->gate.prio = tcf_gate_prio(act);
entry->gate.basetime = tcf_gate_basetime(act);
entry->gate.cycletime = tcf_gate_cycletime(act);
entry->gate.cycletimeext = tcf_gate_cycletimeext(act);
entry->gate.num_entries = tcf_gate_num_entries(act);
err = tcf_gate_get_entries(entry, act);
if (err)
return err;
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
fl_action->id = FLOW_ACTION_GATE;
}
return 0;
}
static struct tc_action_ops act_gate_ops = {
.kind = "gate",
.id = TCA_ID_GATE,
.owner = THIS_MODULE,
.act = tcf_gate_act,
.dump = tcf_gate_dump,
.init = tcf_gate_init,
.cleanup = tcf_gate_cleanup,
.stats_update = tcf_gate_stats_update,
.get_fill_size = tcf_gate_get_fill_size,
.offload_act_setup = tcf_gate_offload_act_setup,
.size = sizeof(struct tcf_gate),
};
static __net_init int gate_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_gate_ops.net_id);
return tc_action_net_init(net, tn, &act_gate_ops);
}
static void __net_exit gate_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_gate_ops.net_id);
}
static struct pernet_operations gate_net_ops = {
.init = gate_init_net,
.exit_batch = gate_exit_net,
.id = &act_gate_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init gate_init_module(void)
{
return tcf_register_action(&act_gate_ops, &gate_net_ops);
}
static void __exit gate_cleanup_module(void)
{
tcf_unregister_action(&act_gate_ops, &gate_net_ops);
}
module_init(gate_init_module);
module_exit(gate_cleanup_module);
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/act_gate.c |
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
#include <linux/if_vlan.h>
#include <net/netlink.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/dst.h>
#include <net/ip.h>
#include <net/ip6_fib.h>
struct sch_frag_data {
unsigned long dst;
struct qdisc_skb_cb cb;
__be16 inner_protocol;
u16 vlan_tci;
__be16 vlan_proto;
unsigned int l2_len;
u8 l2_data[VLAN_ETH_HLEN];
int (*xmit)(struct sk_buff *skb);
};
static DEFINE_PER_CPU(struct sch_frag_data, sch_frag_data_storage);
static int sch_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct sch_frag_data *data = this_cpu_ptr(&sch_frag_data_storage);
if (skb_cow_head(skb, data->l2_len) < 0) {
kfree_skb(skb);
return -ENOMEM;
}
__skb_dst_copy(skb, data->dst);
*qdisc_skb_cb(skb) = data->cb;
skb->inner_protocol = data->inner_protocol;
if (data->vlan_tci & VLAN_CFI_MASK)
__vlan_hwaccel_put_tag(skb, data->vlan_proto,
data->vlan_tci & ~VLAN_CFI_MASK);
else
__vlan_hwaccel_clear_tag(skb);
/* Reconstruct the MAC header. */
skb_push(skb, data->l2_len);
memcpy(skb->data, &data->l2_data, data->l2_len);
skb_postpush_rcsum(skb, skb->data, data->l2_len);
skb_reset_mac_header(skb);
return data->xmit(skb);
}
static void sch_frag_prepare_frag(struct sk_buff *skb,
int (*xmit)(struct sk_buff *skb))
{
unsigned int hlen = skb_network_offset(skb);
struct sch_frag_data *data;
data = this_cpu_ptr(&sch_frag_data_storage);
data->dst = skb->_skb_refdst;
data->cb = *qdisc_skb_cb(skb);
data->xmit = xmit;
data->inner_protocol = skb->inner_protocol;
if (skb_vlan_tag_present(skb))
data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
else
data->vlan_tci = 0;
data->vlan_proto = skb->vlan_proto;
data->l2_len = hlen;
memcpy(&data->l2_data, skb->data, hlen);
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
skb_pull(skb, hlen);
}
static unsigned int
sch_frag_dst_get_mtu(const struct dst_entry *dst)
{
return dst->dev->mtu;
}
static struct dst_ops sch_frag_dst_ops = {
.family = AF_UNSPEC,
.mtu = sch_frag_dst_get_mtu,
};
static int sch_fragment(struct net *net, struct sk_buff *skb,
u16 mru, int (*xmit)(struct sk_buff *skb))
{
int ret = -1;
if (skb_network_offset(skb) > VLAN_ETH_HLEN) {
net_warn_ratelimited("L2 header too long to fragment\n");
goto err;
}
if (skb_protocol(skb, true) == htons(ETH_P_IP)) {
struct rtable sch_frag_rt = { 0 };
unsigned long orig_dst;
sch_frag_prepare_frag(skb, xmit);
dst_init(&sch_frag_rt.dst, &sch_frag_dst_ops, NULL, 1,
DST_OBSOLETE_NONE, DST_NOCOUNT);
sch_frag_rt.dst.dev = skb->dev;
orig_dst = skb->_skb_refdst;
skb_dst_set_noref(skb, &sch_frag_rt.dst);
IPCB(skb)->frag_max_size = mru;
ret = ip_do_fragment(net, skb->sk, skb, sch_frag_xmit);
refdst_drop(orig_dst);
} else if (skb_protocol(skb, true) == htons(ETH_P_IPV6)) {
unsigned long orig_dst;
struct rt6_info sch_frag_rt;
sch_frag_prepare_frag(skb, xmit);
memset(&sch_frag_rt, 0, sizeof(sch_frag_rt));
dst_init(&sch_frag_rt.dst, &sch_frag_dst_ops, NULL, 1,
DST_OBSOLETE_NONE, DST_NOCOUNT);
sch_frag_rt.dst.dev = skb->dev;
orig_dst = skb->_skb_refdst;
skb_dst_set_noref(skb, &sch_frag_rt.dst);
IP6CB(skb)->frag_max_size = mru;
ret = ipv6_stub->ipv6_fragment(net, skb->sk, skb,
sch_frag_xmit);
refdst_drop(orig_dst);
} else {
net_warn_ratelimited("Fail frag %s: eth=%x, MRU=%d, MTU=%d\n",
netdev_name(skb->dev),
ntohs(skb_protocol(skb, true)), mru,
skb->dev->mtu);
goto err;
}
return ret;
err:
kfree_skb(skb);
return ret;
}
int sch_frag_xmit_hook(struct sk_buff *skb, int (*xmit)(struct sk_buff *skb))
{
u16 mru = tc_skb_cb(skb)->mru;
int err;
if (mru && skb->len > mru + skb->dev->hard_header_len)
err = sch_fragment(dev_net(skb->dev), skb, mru, xmit);
else
err = xmit(skb);
return err;
}
EXPORT_SYMBOL_GPL(sch_frag_xmit_hook);
| linux-master | net/sched/sch_frag.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_blackhole.c Black hole queue
*
* Authors: Thomas Graf <[email protected]>
*
* Note: Quantum tunneling is not supported.
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
static int blackhole_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
qdisc_drop(skb, sch, to_free);
return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
}
static struct sk_buff *blackhole_dequeue(struct Qdisc *sch)
{
return NULL;
}
static struct Qdisc_ops blackhole_qdisc_ops __read_mostly = {
.id = "blackhole",
.priv_size = 0,
.enqueue = blackhole_enqueue,
.dequeue = blackhole_dequeue,
.peek = blackhole_dequeue,
.owner = THIS_MODULE,
};
static int __init blackhole_init(void)
{
return register_qdisc(&blackhole_qdisc_ops);
}
device_initcall(blackhole_init)
| linux-master | net/sched/sch_blackhole.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Checksum updating actions
*
* Copyright (c) 2010 Gregoire Baron <[email protected]>
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/netlink.h>
#include <net/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/icmp.h>
#include <linux/icmpv6.h>
#include <linux/igmp.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/ip6_checksum.h>
#include <net/sctp/checksum.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
#include <linux/tc_act/tc_csum.h>
#include <net/tc_act/tc_csum.h>
#include <net/tc_wrapper.h>
static const struct nla_policy csum_policy[TCA_CSUM_MAX + 1] = {
[TCA_CSUM_PARMS] = { .len = sizeof(struct tc_csum), },
};
static struct tc_action_ops act_csum_ops;
static int tcf_csum_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp,
u32 flags, struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_csum_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct tcf_csum_params *params_new;
struct nlattr *tb[TCA_CSUM_MAX + 1];
struct tcf_chain *goto_ch = NULL;
struct tc_csum *parm;
struct tcf_csum *p;
int ret = 0, err;
u32 index;
if (nla == NULL)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_CSUM_MAX, nla, csum_policy,
NULL);
if (err < 0)
return err;
if (tb[TCA_CSUM_PARMS] == NULL)
return -EINVAL;
parm = nla_data(tb[TCA_CSUM_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (!err) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_csum_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (err > 0) {
if (bind)/* dont override defaults */
return 0;
if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
} else {
return err;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
p = to_tcf_csum(*a);
params_new = kzalloc(sizeof(*params_new), GFP_KERNEL);
if (unlikely(!params_new)) {
err = -ENOMEM;
goto put_chain;
}
params_new->update_flags = parm->update_flags;
spin_lock_bh(&p->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
params_new = rcu_replace_pointer(p->params, params_new,
lockdep_is_held(&p->tcf_lock));
spin_unlock_bh(&p->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (params_new)
kfree_rcu(params_new, rcu);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
/**
* tcf_csum_skb_nextlayer - Get next layer pointer
* @skb: sk_buff to use
* @ihl: previous summed headers length
* @ipl: complete packet length
* @jhl: next header length
*
* Check the expected next layer availability in the specified sk_buff.
* Return the next layer pointer if pass, NULL otherwise.
*/
static void *tcf_csum_skb_nextlayer(struct sk_buff *skb,
unsigned int ihl, unsigned int ipl,
unsigned int jhl)
{
int ntkoff = skb_network_offset(skb);
int hl = ihl + jhl;
if (!pskb_may_pull(skb, ipl + ntkoff) || (ipl < hl) ||
skb_try_make_writable(skb, hl + ntkoff))
return NULL;
else
return (void *)(skb_network_header(skb) + ihl);
}
static int tcf_csum_ipv4_icmp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl)
{
struct icmphdr *icmph;
icmph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*icmph));
if (icmph == NULL)
return 0;
icmph->checksum = 0;
skb->csum = csum_partial(icmph, ipl - ihl, 0);
icmph->checksum = csum_fold(skb->csum);
skb->ip_summed = CHECKSUM_NONE;
return 1;
}
static int tcf_csum_ipv4_igmp(struct sk_buff *skb,
unsigned int ihl, unsigned int ipl)
{
struct igmphdr *igmph;
igmph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*igmph));
if (igmph == NULL)
return 0;
igmph->csum = 0;
skb->csum = csum_partial(igmph, ipl - ihl, 0);
igmph->csum = csum_fold(skb->csum);
skb->ip_summed = CHECKSUM_NONE;
return 1;
}
static int tcf_csum_ipv6_icmp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl)
{
struct icmp6hdr *icmp6h;
const struct ipv6hdr *ip6h;
icmp6h = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*icmp6h));
if (icmp6h == NULL)
return 0;
ip6h = ipv6_hdr(skb);
icmp6h->icmp6_cksum = 0;
skb->csum = csum_partial(icmp6h, ipl - ihl, 0);
icmp6h->icmp6_cksum = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
ipl - ihl, IPPROTO_ICMPV6,
skb->csum);
skb->ip_summed = CHECKSUM_NONE;
return 1;
}
static int tcf_csum_ipv4_tcp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl)
{
struct tcphdr *tcph;
const struct iphdr *iph;
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4)
return 1;
tcph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*tcph));
if (tcph == NULL)
return 0;
iph = ip_hdr(skb);
tcph->check = 0;
skb->csum = csum_partial(tcph, ipl - ihl, 0);
tcph->check = tcp_v4_check(ipl - ihl,
iph->saddr, iph->daddr, skb->csum);
skb->ip_summed = CHECKSUM_NONE;
return 1;
}
static int tcf_csum_ipv6_tcp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl)
{
struct tcphdr *tcph;
const struct ipv6hdr *ip6h;
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
return 1;
tcph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*tcph));
if (tcph == NULL)
return 0;
ip6h = ipv6_hdr(skb);
tcph->check = 0;
skb->csum = csum_partial(tcph, ipl - ihl, 0);
tcph->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
ipl - ihl, IPPROTO_TCP,
skb->csum);
skb->ip_summed = CHECKSUM_NONE;
return 1;
}
static int tcf_csum_ipv4_udp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl, int udplite)
{
struct udphdr *udph;
const struct iphdr *iph;
u16 ul;
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
return 1;
/*
* Support both UDP and UDPLITE checksum algorithms, Don't use
* udph->len to get the real length without any protocol check,
* UDPLITE uses udph->len for another thing,
* Use iph->tot_len, or just ipl.
*/
udph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*udph));
if (udph == NULL)
return 0;
iph = ip_hdr(skb);
ul = ntohs(udph->len);
if (udplite || udph->check) {
udph->check = 0;
if (udplite) {
if (ul == 0)
skb->csum = csum_partial(udph, ipl - ihl, 0);
else if ((ul >= sizeof(*udph)) && (ul <= ipl - ihl))
skb->csum = csum_partial(udph, ul, 0);
else
goto ignore_obscure_skb;
} else {
if (ul != ipl - ihl)
goto ignore_obscure_skb;
skb->csum = csum_partial(udph, ul, 0);
}
udph->check = csum_tcpudp_magic(iph->saddr, iph->daddr,
ul, iph->protocol,
skb->csum);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
}
skb->ip_summed = CHECKSUM_NONE;
ignore_obscure_skb:
return 1;
}
static int tcf_csum_ipv6_udp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl, int udplite)
{
struct udphdr *udph;
const struct ipv6hdr *ip6h;
u16 ul;
if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
return 1;
/*
* Support both UDP and UDPLITE checksum algorithms, Don't use
* udph->len to get the real length without any protocol check,
* UDPLITE uses udph->len for another thing,
* Use ip6h->payload_len + sizeof(*ip6h) ... , or just ipl.
*/
udph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*udph));
if (udph == NULL)
return 0;
ip6h = ipv6_hdr(skb);
ul = ntohs(udph->len);
udph->check = 0;
if (udplite) {
if (ul == 0)
skb->csum = csum_partial(udph, ipl - ihl, 0);
else if ((ul >= sizeof(*udph)) && (ul <= ipl - ihl))
skb->csum = csum_partial(udph, ul, 0);
else
goto ignore_obscure_skb;
} else {
if (ul != ipl - ihl)
goto ignore_obscure_skb;
skb->csum = csum_partial(udph, ul, 0);
}
udph->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, ul,
udplite ? IPPROTO_UDPLITE : IPPROTO_UDP,
skb->csum);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
skb->ip_summed = CHECKSUM_NONE;
ignore_obscure_skb:
return 1;
}
static int tcf_csum_sctp(struct sk_buff *skb, unsigned int ihl,
unsigned int ipl)
{
struct sctphdr *sctph;
if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
return 1;
sctph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*sctph));
if (!sctph)
return 0;
sctph->checksum = sctp_compute_cksum(skb,
skb_network_offset(skb) + ihl);
skb_reset_csum_not_inet(skb);
return 1;
}
static int tcf_csum_ipv4(struct sk_buff *skb, u32 update_flags)
{
const struct iphdr *iph;
int ntkoff;
ntkoff = skb_network_offset(skb);
if (!pskb_may_pull(skb, sizeof(*iph) + ntkoff))
goto fail;
iph = ip_hdr(skb);
switch (iph->frag_off & htons(IP_OFFSET) ? 0 : iph->protocol) {
case IPPROTO_ICMP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_ICMP)
if (!tcf_csum_ipv4_icmp(skb, iph->ihl * 4,
ntohs(iph->tot_len)))
goto fail;
break;
case IPPROTO_IGMP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_IGMP)
if (!tcf_csum_ipv4_igmp(skb, iph->ihl * 4,
ntohs(iph->tot_len)))
goto fail;
break;
case IPPROTO_TCP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_TCP)
if (!tcf_csum_ipv4_tcp(skb, iph->ihl * 4,
ntohs(iph->tot_len)))
goto fail;
break;
case IPPROTO_UDP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_UDP)
if (!tcf_csum_ipv4_udp(skb, iph->ihl * 4,
ntohs(iph->tot_len), 0))
goto fail;
break;
case IPPROTO_UDPLITE:
if (update_flags & TCA_CSUM_UPDATE_FLAG_UDPLITE)
if (!tcf_csum_ipv4_udp(skb, iph->ihl * 4,
ntohs(iph->tot_len), 1))
goto fail;
break;
case IPPROTO_SCTP:
if ((update_flags & TCA_CSUM_UPDATE_FLAG_SCTP) &&
!tcf_csum_sctp(skb, iph->ihl * 4, ntohs(iph->tot_len)))
goto fail;
break;
}
if (update_flags & TCA_CSUM_UPDATE_FLAG_IPV4HDR) {
if (skb_try_make_writable(skb, sizeof(*iph) + ntkoff))
goto fail;
ip_send_check(ip_hdr(skb));
}
return 1;
fail:
return 0;
}
static int tcf_csum_ipv6_hopopts(struct ipv6_opt_hdr *ip6xh, unsigned int ixhl,
unsigned int *pl)
{
int off, len, optlen;
unsigned char *xh = (void *)ip6xh;
off = sizeof(*ip6xh);
len = ixhl - off;
while (len > 1) {
switch (xh[off]) {
case IPV6_TLV_PAD1:
optlen = 1;
break;
case IPV6_TLV_JUMBO:
optlen = xh[off + 1] + 2;
if (optlen != 6 || len < 6 || (off & 3) != 2)
/* wrong jumbo option length/alignment */
return 0;
*pl = ntohl(*(__be32 *)(xh + off + 2));
goto done;
default:
optlen = xh[off + 1] + 2;
if (optlen > len)
/* ignore obscure options */
goto done;
break;
}
off += optlen;
len -= optlen;
}
done:
return 1;
}
static int tcf_csum_ipv6(struct sk_buff *skb, u32 update_flags)
{
struct ipv6hdr *ip6h;
struct ipv6_opt_hdr *ip6xh;
unsigned int hl, ixhl;
unsigned int pl;
int ntkoff;
u8 nexthdr;
ntkoff = skb_network_offset(skb);
hl = sizeof(*ip6h);
if (!pskb_may_pull(skb, hl + ntkoff))
goto fail;
ip6h = ipv6_hdr(skb);
pl = ntohs(ip6h->payload_len);
nexthdr = ip6h->nexthdr;
do {
switch (nexthdr) {
case NEXTHDR_FRAGMENT:
goto ignore_skb;
case NEXTHDR_ROUTING:
case NEXTHDR_HOP:
case NEXTHDR_DEST:
if (!pskb_may_pull(skb, hl + sizeof(*ip6xh) + ntkoff))
goto fail;
ip6xh = (void *)(skb_network_header(skb) + hl);
ixhl = ipv6_optlen(ip6xh);
if (!pskb_may_pull(skb, hl + ixhl + ntkoff))
goto fail;
ip6xh = (void *)(skb_network_header(skb) + hl);
if ((nexthdr == NEXTHDR_HOP) &&
!(tcf_csum_ipv6_hopopts(ip6xh, ixhl, &pl)))
goto fail;
nexthdr = ip6xh->nexthdr;
hl += ixhl;
break;
case IPPROTO_ICMPV6:
if (update_flags & TCA_CSUM_UPDATE_FLAG_ICMP)
if (!tcf_csum_ipv6_icmp(skb,
hl, pl + sizeof(*ip6h)))
goto fail;
goto done;
case IPPROTO_TCP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_TCP)
if (!tcf_csum_ipv6_tcp(skb,
hl, pl + sizeof(*ip6h)))
goto fail;
goto done;
case IPPROTO_UDP:
if (update_flags & TCA_CSUM_UPDATE_FLAG_UDP)
if (!tcf_csum_ipv6_udp(skb, hl,
pl + sizeof(*ip6h), 0))
goto fail;
goto done;
case IPPROTO_UDPLITE:
if (update_flags & TCA_CSUM_UPDATE_FLAG_UDPLITE)
if (!tcf_csum_ipv6_udp(skb, hl,
pl + sizeof(*ip6h), 1))
goto fail;
goto done;
case IPPROTO_SCTP:
if ((update_flags & TCA_CSUM_UPDATE_FLAG_SCTP) &&
!tcf_csum_sctp(skb, hl, pl + sizeof(*ip6h)))
goto fail;
goto done;
default:
goto ignore_skb;
}
} while (pskb_may_pull(skb, hl + 1 + ntkoff));
done:
ignore_skb:
return 1;
fail:
return 0;
}
TC_INDIRECT_SCOPE int tcf_csum_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_csum *p = to_tcf_csum(a);
bool orig_vlan_tag_present = false;
unsigned int vlan_hdr_count = 0;
struct tcf_csum_params *params;
u32 update_flags;
__be16 protocol;
int action;
params = rcu_dereference_bh(p->params);
tcf_lastuse_update(&p->tcf_tm);
tcf_action_update_bstats(&p->common, skb);
action = READ_ONCE(p->tcf_action);
if (unlikely(action == TC_ACT_SHOT))
goto drop;
update_flags = params->update_flags;
protocol = skb_protocol(skb, false);
again:
switch (protocol) {
case cpu_to_be16(ETH_P_IP):
if (!tcf_csum_ipv4(skb, update_flags))
goto drop;
break;
case cpu_to_be16(ETH_P_IPV6):
if (!tcf_csum_ipv6(skb, update_flags))
goto drop;
break;
case cpu_to_be16(ETH_P_8021AD):
fallthrough;
case cpu_to_be16(ETH_P_8021Q):
if (skb_vlan_tag_present(skb) && !orig_vlan_tag_present) {
protocol = skb->protocol;
orig_vlan_tag_present = true;
} else {
struct vlan_hdr *vlan = (struct vlan_hdr *)skb->data;
protocol = vlan->h_vlan_encapsulated_proto;
skb_pull(skb, VLAN_HLEN);
skb_reset_network_header(skb);
vlan_hdr_count++;
}
goto again;
}
out:
/* Restore the skb for the pulled VLAN tags */
while (vlan_hdr_count--) {
skb_push(skb, VLAN_HLEN);
skb_reset_network_header(skb);
}
return action;
drop:
tcf_action_inc_drop_qstats(&p->common);
action = TC_ACT_SHOT;
goto out;
}
static int tcf_csum_dump(struct sk_buff *skb, struct tc_action *a, int bind,
int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_csum *p = to_tcf_csum(a);
struct tcf_csum_params *params;
struct tc_csum opt = {
.index = p->tcf_index,
.refcnt = refcount_read(&p->tcf_refcnt) - ref,
.bindcnt = atomic_read(&p->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&p->tcf_lock);
params = rcu_dereference_protected(p->params,
lockdep_is_held(&p->tcf_lock));
opt.action = p->tcf_action;
opt.update_flags = params->update_flags;
if (nla_put(skb, TCA_CSUM_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
tcf_tm_dump(&t, &p->tcf_tm);
if (nla_put_64bit(skb, TCA_CSUM_TM, sizeof(t), &t, TCA_CSUM_PAD))
goto nla_put_failure;
spin_unlock_bh(&p->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&p->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_csum_cleanup(struct tc_action *a)
{
struct tcf_csum *p = to_tcf_csum(a);
struct tcf_csum_params *params;
params = rcu_dereference_protected(p->params, 1);
if (params)
kfree_rcu(params, rcu);
}
static size_t tcf_csum_get_fill_size(const struct tc_action *act)
{
return nla_total_size(sizeof(struct tc_csum));
}
static int tcf_csum_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
entry->id = FLOW_ACTION_CSUM;
entry->csum_flags = tcf_csum_update_flags(act);
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
fl_action->id = FLOW_ACTION_CSUM;
}
return 0;
}
static struct tc_action_ops act_csum_ops = {
.kind = "csum",
.id = TCA_ID_CSUM,
.owner = THIS_MODULE,
.act = tcf_csum_act,
.dump = tcf_csum_dump,
.init = tcf_csum_init,
.cleanup = tcf_csum_cleanup,
.get_fill_size = tcf_csum_get_fill_size,
.offload_act_setup = tcf_csum_offload_act_setup,
.size = sizeof(struct tcf_csum),
};
static __net_init int csum_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_csum_ops.net_id);
return tc_action_net_init(net, tn, &act_csum_ops);
}
static void __net_exit csum_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_csum_ops.net_id);
}
static struct pernet_operations csum_net_ops = {
.init = csum_init_net,
.exit_batch = csum_exit_net,
.id = &act_csum_ops.net_id,
.size = sizeof(struct tc_action_net),
};
MODULE_DESCRIPTION("Checksum updating actions");
MODULE_LICENSE("GPL");
static int __init csum_init_module(void)
{
return tcf_register_action(&act_csum_ops, &csum_net_ops);
}
static void __exit csum_cleanup_module(void)
{
tcf_unregister_action(&act_csum_ops, &csum_net_ops);
}
module_init(csum_init_module);
module_exit(csum_cleanup_module);
| linux-master | net/sched/act_csum.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2014 Jiri Pirko <[email protected]>
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/if_vlan.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tc_wrapper.h>
#include <linux/tc_act/tc_vlan.h>
#include <net/tc_act/tc_vlan.h>
static struct tc_action_ops act_vlan_ops;
TC_INDIRECT_SCOPE int tcf_vlan_act(struct sk_buff *skb,
const struct tc_action *a,
struct tcf_result *res)
{
struct tcf_vlan *v = to_vlan(a);
struct tcf_vlan_params *p;
int action;
int err;
u16 tci;
tcf_lastuse_update(&v->tcf_tm);
tcf_action_update_bstats(&v->common, skb);
/* Ensure 'data' points at mac_header prior calling vlan manipulating
* functions.
*/
if (skb_at_tc_ingress(skb))
skb_push_rcsum(skb, skb->mac_len);
action = READ_ONCE(v->tcf_action);
p = rcu_dereference_bh(v->vlan_p);
switch (p->tcfv_action) {
case TCA_VLAN_ACT_POP:
err = skb_vlan_pop(skb);
if (err)
goto drop;
break;
case TCA_VLAN_ACT_PUSH:
err = skb_vlan_push(skb, p->tcfv_push_proto, p->tcfv_push_vid |
(p->tcfv_push_prio << VLAN_PRIO_SHIFT));
if (err)
goto drop;
break;
case TCA_VLAN_ACT_MODIFY:
/* No-op if no vlan tag (either hw-accel or in-payload) */
if (!skb_vlan_tagged(skb))
goto out;
/* extract existing tag (and guarantee no hw-accel tag) */
if (skb_vlan_tag_present(skb)) {
tci = skb_vlan_tag_get(skb);
__vlan_hwaccel_clear_tag(skb);
} else {
/* in-payload vlan tag, pop it */
err = __skb_vlan_pop(skb, &tci);
if (err)
goto drop;
}
/* replace the vid */
tci = (tci & ~VLAN_VID_MASK) | p->tcfv_push_vid;
/* replace prio bits, if tcfv_push_prio specified */
if (p->tcfv_push_prio_exists) {
tci &= ~VLAN_PRIO_MASK;
tci |= p->tcfv_push_prio << VLAN_PRIO_SHIFT;
}
/* put updated tci as hwaccel tag */
__vlan_hwaccel_put_tag(skb, p->tcfv_push_proto, tci);
break;
case TCA_VLAN_ACT_POP_ETH:
err = skb_eth_pop(skb);
if (err)
goto drop;
break;
case TCA_VLAN_ACT_PUSH_ETH:
err = skb_eth_push(skb, p->tcfv_push_dst, p->tcfv_push_src);
if (err)
goto drop;
break;
default:
BUG();
}
out:
if (skb_at_tc_ingress(skb))
skb_pull_rcsum(skb, skb->mac_len);
return action;
drop:
tcf_action_inc_drop_qstats(&v->common);
return TC_ACT_SHOT;
}
static const struct nla_policy vlan_policy[TCA_VLAN_MAX + 1] = {
[TCA_VLAN_UNSPEC] = { .strict_start_type = TCA_VLAN_PUSH_ETH_DST },
[TCA_VLAN_PARMS] = { .len = sizeof(struct tc_vlan) },
[TCA_VLAN_PUSH_VLAN_ID] = { .type = NLA_U16 },
[TCA_VLAN_PUSH_VLAN_PROTOCOL] = { .type = NLA_U16 },
[TCA_VLAN_PUSH_VLAN_PRIORITY] = { .type = NLA_U8 },
[TCA_VLAN_PUSH_ETH_DST] = NLA_POLICY_ETH_ADDR,
[TCA_VLAN_PUSH_ETH_SRC] = NLA_POLICY_ETH_ADDR,
};
static int tcf_vlan_init(struct net *net, struct nlattr *nla,
struct nlattr *est, struct tc_action **a,
struct tcf_proto *tp, u32 flags,
struct netlink_ext_ack *extack)
{
struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id);
bool bind = flags & TCA_ACT_FLAGS_BIND;
struct nlattr *tb[TCA_VLAN_MAX + 1];
struct tcf_chain *goto_ch = NULL;
bool push_prio_exists = false;
struct tcf_vlan_params *p;
struct tc_vlan *parm;
struct tcf_vlan *v;
int action;
u16 push_vid = 0;
__be16 push_proto = 0;
u8 push_prio = 0;
bool exists = false;
int ret = 0, err;
u32 index;
if (!nla)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_VLAN_MAX, nla, vlan_policy,
NULL);
if (err < 0)
return err;
if (!tb[TCA_VLAN_PARMS])
return -EINVAL;
parm = nla_data(tb[TCA_VLAN_PARMS]);
index = parm->index;
err = tcf_idr_check_alloc(tn, &index, a, bind);
if (err < 0)
return err;
exists = err;
if (exists && bind)
return 0;
switch (parm->v_action) {
case TCA_VLAN_ACT_POP:
break;
case TCA_VLAN_ACT_PUSH:
case TCA_VLAN_ACT_MODIFY:
if (!tb[TCA_VLAN_PUSH_VLAN_ID]) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
push_vid = nla_get_u16(tb[TCA_VLAN_PUSH_VLAN_ID]);
if (push_vid >= VLAN_VID_MASK) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -ERANGE;
}
if (tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]) {
push_proto = nla_get_be16(tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]);
switch (push_proto) {
case htons(ETH_P_8021Q):
case htons(ETH_P_8021AD):
break;
default:
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EPROTONOSUPPORT;
}
} else {
push_proto = htons(ETH_P_8021Q);
}
push_prio_exists = !!tb[TCA_VLAN_PUSH_VLAN_PRIORITY];
if (push_prio_exists)
push_prio = nla_get_u8(tb[TCA_VLAN_PUSH_VLAN_PRIORITY]);
break;
case TCA_VLAN_ACT_POP_ETH:
break;
case TCA_VLAN_ACT_PUSH_ETH:
if (!tb[TCA_VLAN_PUSH_ETH_DST] || !tb[TCA_VLAN_PUSH_ETH_SRC]) {
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
break;
default:
if (exists)
tcf_idr_release(*a, bind);
else
tcf_idr_cleanup(tn, index);
return -EINVAL;
}
action = parm->v_action;
if (!exists) {
ret = tcf_idr_create_from_flags(tn, index, est, a,
&act_vlan_ops, bind, flags);
if (ret) {
tcf_idr_cleanup(tn, index);
return ret;
}
ret = ACT_P_CREATED;
} else if (!(flags & TCA_ACT_FLAGS_REPLACE)) {
tcf_idr_release(*a, bind);
return -EEXIST;
}
err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack);
if (err < 0)
goto release_idr;
v = to_vlan(*a);
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p) {
err = -ENOMEM;
goto put_chain;
}
p->tcfv_action = action;
p->tcfv_push_vid = push_vid;
p->tcfv_push_prio = push_prio;
p->tcfv_push_prio_exists = push_prio_exists || action == TCA_VLAN_ACT_PUSH;
p->tcfv_push_proto = push_proto;
if (action == TCA_VLAN_ACT_PUSH_ETH) {
nla_memcpy(&p->tcfv_push_dst, tb[TCA_VLAN_PUSH_ETH_DST],
ETH_ALEN);
nla_memcpy(&p->tcfv_push_src, tb[TCA_VLAN_PUSH_ETH_SRC],
ETH_ALEN);
}
spin_lock_bh(&v->tcf_lock);
goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch);
p = rcu_replace_pointer(v->vlan_p, p, lockdep_is_held(&v->tcf_lock));
spin_unlock_bh(&v->tcf_lock);
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
if (p)
kfree_rcu(p, rcu);
return ret;
put_chain:
if (goto_ch)
tcf_chain_put_by_act(goto_ch);
release_idr:
tcf_idr_release(*a, bind);
return err;
}
static void tcf_vlan_cleanup(struct tc_action *a)
{
struct tcf_vlan *v = to_vlan(a);
struct tcf_vlan_params *p;
p = rcu_dereference_protected(v->vlan_p, 1);
if (p)
kfree_rcu(p, rcu);
}
static int tcf_vlan_dump(struct sk_buff *skb, struct tc_action *a,
int bind, int ref)
{
unsigned char *b = skb_tail_pointer(skb);
struct tcf_vlan *v = to_vlan(a);
struct tcf_vlan_params *p;
struct tc_vlan opt = {
.index = v->tcf_index,
.refcnt = refcount_read(&v->tcf_refcnt) - ref,
.bindcnt = atomic_read(&v->tcf_bindcnt) - bind,
};
struct tcf_t t;
spin_lock_bh(&v->tcf_lock);
opt.action = v->tcf_action;
p = rcu_dereference_protected(v->vlan_p, lockdep_is_held(&v->tcf_lock));
opt.v_action = p->tcfv_action;
if (nla_put(skb, TCA_VLAN_PARMS, sizeof(opt), &opt))
goto nla_put_failure;
if ((p->tcfv_action == TCA_VLAN_ACT_PUSH ||
p->tcfv_action == TCA_VLAN_ACT_MODIFY) &&
(nla_put_u16(skb, TCA_VLAN_PUSH_VLAN_ID, p->tcfv_push_vid) ||
nla_put_be16(skb, TCA_VLAN_PUSH_VLAN_PROTOCOL,
p->tcfv_push_proto) ||
(p->tcfv_push_prio_exists &&
nla_put_u8(skb, TCA_VLAN_PUSH_VLAN_PRIORITY, p->tcfv_push_prio))))
goto nla_put_failure;
if (p->tcfv_action == TCA_VLAN_ACT_PUSH_ETH) {
if (nla_put(skb, TCA_VLAN_PUSH_ETH_DST, ETH_ALEN,
p->tcfv_push_dst))
goto nla_put_failure;
if (nla_put(skb, TCA_VLAN_PUSH_ETH_SRC, ETH_ALEN,
p->tcfv_push_src))
goto nla_put_failure;
}
tcf_tm_dump(&t, &v->tcf_tm);
if (nla_put_64bit(skb, TCA_VLAN_TM, sizeof(t), &t, TCA_VLAN_PAD))
goto nla_put_failure;
spin_unlock_bh(&v->tcf_lock);
return skb->len;
nla_put_failure:
spin_unlock_bh(&v->tcf_lock);
nlmsg_trim(skb, b);
return -1;
}
static void tcf_vlan_stats_update(struct tc_action *a, u64 bytes, u64 packets,
u64 drops, u64 lastuse, bool hw)
{
struct tcf_vlan *v = to_vlan(a);
struct tcf_t *tm = &v->tcf_tm;
tcf_action_update_stats(a, bytes, packets, drops, hw);
tm->lastuse = max_t(u64, tm->lastuse, lastuse);
}
static size_t tcf_vlan_get_fill_size(const struct tc_action *act)
{
return nla_total_size(sizeof(struct tc_vlan))
+ nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_ID */
+ nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_PROTOCOL */
+ nla_total_size(sizeof(u8)); /* TCA_VLAN_PUSH_VLAN_PRIORITY */
}
static int tcf_vlan_offload_act_setup(struct tc_action *act, void *entry_data,
u32 *index_inc, bool bind,
struct netlink_ext_ack *extack)
{
if (bind) {
struct flow_action_entry *entry = entry_data;
switch (tcf_vlan_action(act)) {
case TCA_VLAN_ACT_PUSH:
entry->id = FLOW_ACTION_VLAN_PUSH;
entry->vlan.vid = tcf_vlan_push_vid(act);
entry->vlan.proto = tcf_vlan_push_proto(act);
entry->vlan.prio = tcf_vlan_push_prio(act);
break;
case TCA_VLAN_ACT_POP:
entry->id = FLOW_ACTION_VLAN_POP;
break;
case TCA_VLAN_ACT_MODIFY:
entry->id = FLOW_ACTION_VLAN_MANGLE;
entry->vlan.vid = tcf_vlan_push_vid(act);
entry->vlan.proto = tcf_vlan_push_proto(act);
entry->vlan.prio = tcf_vlan_push_prio(act);
break;
case TCA_VLAN_ACT_POP_ETH:
entry->id = FLOW_ACTION_VLAN_POP_ETH;
break;
case TCA_VLAN_ACT_PUSH_ETH:
entry->id = FLOW_ACTION_VLAN_PUSH_ETH;
tcf_vlan_push_eth(entry->vlan_push_eth.src, entry->vlan_push_eth.dst, act);
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Unsupported vlan action mode offload");
return -EOPNOTSUPP;
}
*index_inc = 1;
} else {
struct flow_offload_action *fl_action = entry_data;
switch (tcf_vlan_action(act)) {
case TCA_VLAN_ACT_PUSH:
fl_action->id = FLOW_ACTION_VLAN_PUSH;
break;
case TCA_VLAN_ACT_POP:
fl_action->id = FLOW_ACTION_VLAN_POP;
break;
case TCA_VLAN_ACT_MODIFY:
fl_action->id = FLOW_ACTION_VLAN_MANGLE;
break;
case TCA_VLAN_ACT_POP_ETH:
fl_action->id = FLOW_ACTION_VLAN_POP_ETH;
break;
case TCA_VLAN_ACT_PUSH_ETH:
fl_action->id = FLOW_ACTION_VLAN_PUSH_ETH;
break;
default:
return -EOPNOTSUPP;
}
}
return 0;
}
static struct tc_action_ops act_vlan_ops = {
.kind = "vlan",
.id = TCA_ID_VLAN,
.owner = THIS_MODULE,
.act = tcf_vlan_act,
.dump = tcf_vlan_dump,
.init = tcf_vlan_init,
.cleanup = tcf_vlan_cleanup,
.stats_update = tcf_vlan_stats_update,
.get_fill_size = tcf_vlan_get_fill_size,
.offload_act_setup = tcf_vlan_offload_act_setup,
.size = sizeof(struct tcf_vlan),
};
static __net_init int vlan_init_net(struct net *net)
{
struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id);
return tc_action_net_init(net, tn, &act_vlan_ops);
}
static void __net_exit vlan_exit_net(struct list_head *net_list)
{
tc_action_net_exit(net_list, act_vlan_ops.net_id);
}
static struct pernet_operations vlan_net_ops = {
.init = vlan_init_net,
.exit_batch = vlan_exit_net,
.id = &act_vlan_ops.net_id,
.size = sizeof(struct tc_action_net),
};
static int __init vlan_init_module(void)
{
return tcf_register_action(&act_vlan_ops, &vlan_net_ops);
}
static void __exit vlan_cleanup_module(void)
{
tcf_unregister_action(&act_vlan_ops, &vlan_net_ops);
}
module_init(vlan_init_module);
module_exit(vlan_cleanup_module);
MODULE_AUTHOR("Jiri Pirko <[email protected]>");
MODULE_DESCRIPTION("vlan manipulation actions");
MODULE_LICENSE("GPL v2");
| linux-master | net/sched/act_vlan.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_skbprio.c SKB Priority Queue.
*
* Authors: Nishanth Devarajan, <[email protected]>
* Cody Doucette, <[email protected]>
* original idea by Michel Machado, Cody Doucette, and Qiaobin Fu
*/
#include <linux/string.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/sch_generic.h>
#include <net/inet_ecn.h>
/* SKB Priority Queue
* =================================
*
* Skbprio (SKB Priority Queue) is a queueing discipline that prioritizes
* packets according to their skb->priority field. Under congestion,
* Skbprio drops already-enqueued lower priority packets to make space
* available for higher priority packets; it was conceived as a solution
* for denial-of-service defenses that need to route packets with different
* priorities as a mean to overcome DoS attacks.
*/
struct skbprio_sched_data {
/* Queue state. */
struct sk_buff_head qdiscs[SKBPRIO_MAX_PRIORITY];
struct gnet_stats_queue qstats[SKBPRIO_MAX_PRIORITY];
u16 highest_prio;
u16 lowest_prio;
};
static u16 calc_new_high_prio(const struct skbprio_sched_data *q)
{
int prio;
for (prio = q->highest_prio - 1; prio >= q->lowest_prio; prio--) {
if (!skb_queue_empty(&q->qdiscs[prio]))
return prio;
}
/* SKB queue is empty, return 0 (default highest priority setting). */
return 0;
}
static u16 calc_new_low_prio(const struct skbprio_sched_data *q)
{
int prio;
for (prio = q->lowest_prio + 1; prio <= q->highest_prio; prio++) {
if (!skb_queue_empty(&q->qdiscs[prio]))
return prio;
}
/* SKB queue is empty, return SKBPRIO_MAX_PRIORITY - 1
* (default lowest priority setting).
*/
return SKBPRIO_MAX_PRIORITY - 1;
}
static int skbprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
const unsigned int max_priority = SKBPRIO_MAX_PRIORITY - 1;
struct skbprio_sched_data *q = qdisc_priv(sch);
struct sk_buff_head *qdisc;
struct sk_buff_head *lp_qdisc;
struct sk_buff *to_drop;
u16 prio, lp;
/* Obtain the priority of @skb. */
prio = min(skb->priority, max_priority);
qdisc = &q->qdiscs[prio];
if (sch->q.qlen < sch->limit) {
__skb_queue_tail(qdisc, skb);
qdisc_qstats_backlog_inc(sch, skb);
q->qstats[prio].backlog += qdisc_pkt_len(skb);
/* Check to update highest and lowest priorities. */
if (prio > q->highest_prio)
q->highest_prio = prio;
if (prio < q->lowest_prio)
q->lowest_prio = prio;
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
/* If this packet has the lowest priority, drop it. */
lp = q->lowest_prio;
if (prio <= lp) {
q->qstats[prio].drops++;
q->qstats[prio].overlimits++;
return qdisc_drop(skb, sch, to_free);
}
__skb_queue_tail(qdisc, skb);
qdisc_qstats_backlog_inc(sch, skb);
q->qstats[prio].backlog += qdisc_pkt_len(skb);
/* Drop the packet at the tail of the lowest priority qdisc. */
lp_qdisc = &q->qdiscs[lp];
to_drop = __skb_dequeue_tail(lp_qdisc);
BUG_ON(!to_drop);
qdisc_qstats_backlog_dec(sch, to_drop);
qdisc_drop(to_drop, sch, to_free);
q->qstats[lp].backlog -= qdisc_pkt_len(to_drop);
q->qstats[lp].drops++;
q->qstats[lp].overlimits++;
/* Check to update highest and lowest priorities. */
if (skb_queue_empty(lp_qdisc)) {
if (q->lowest_prio == q->highest_prio) {
/* The incoming packet is the only packet in queue. */
BUG_ON(sch->q.qlen != 1);
q->lowest_prio = prio;
q->highest_prio = prio;
} else {
q->lowest_prio = calc_new_low_prio(q);
}
}
if (prio > q->highest_prio)
q->highest_prio = prio;
return NET_XMIT_CN;
}
static struct sk_buff *skbprio_dequeue(struct Qdisc *sch)
{
struct skbprio_sched_data *q = qdisc_priv(sch);
struct sk_buff_head *hpq = &q->qdiscs[q->highest_prio];
struct sk_buff *skb = __skb_dequeue(hpq);
if (unlikely(!skb))
return NULL;
sch->q.qlen--;
qdisc_qstats_backlog_dec(sch, skb);
qdisc_bstats_update(sch, skb);
q->qstats[q->highest_prio].backlog -= qdisc_pkt_len(skb);
/* Update highest priority field. */
if (skb_queue_empty(hpq)) {
if (q->lowest_prio == q->highest_prio) {
BUG_ON(sch->q.qlen);
q->highest_prio = 0;
q->lowest_prio = SKBPRIO_MAX_PRIORITY - 1;
} else {
q->highest_prio = calc_new_high_prio(q);
}
}
return skb;
}
static int skbprio_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct tc_skbprio_qopt *ctl = nla_data(opt);
if (opt->nla_len != nla_attr_size(sizeof(*ctl)))
return -EINVAL;
sch->limit = ctl->limit;
return 0;
}
static int skbprio_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct skbprio_sched_data *q = qdisc_priv(sch);
int prio;
/* Initialise all queues, one for each possible priority. */
for (prio = 0; prio < SKBPRIO_MAX_PRIORITY; prio++)
__skb_queue_head_init(&q->qdiscs[prio]);
memset(&q->qstats, 0, sizeof(q->qstats));
q->highest_prio = 0;
q->lowest_prio = SKBPRIO_MAX_PRIORITY - 1;
sch->limit = 64;
if (!opt)
return 0;
return skbprio_change(sch, opt, extack);
}
static int skbprio_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct tc_skbprio_qopt opt;
opt.limit = sch->limit;
if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
return -1;
return skb->len;
}
static void skbprio_reset(struct Qdisc *sch)
{
struct skbprio_sched_data *q = qdisc_priv(sch);
int prio;
for (prio = 0; prio < SKBPRIO_MAX_PRIORITY; prio++)
__skb_queue_purge(&q->qdiscs[prio]);
memset(&q->qstats, 0, sizeof(q->qstats));
q->highest_prio = 0;
q->lowest_prio = SKBPRIO_MAX_PRIORITY - 1;
}
static void skbprio_destroy(struct Qdisc *sch)
{
struct skbprio_sched_data *q = qdisc_priv(sch);
int prio;
for (prio = 0; prio < SKBPRIO_MAX_PRIORITY; prio++)
__skb_queue_purge(&q->qdiscs[prio]);
}
static struct Qdisc *skbprio_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long skbprio_find(struct Qdisc *sch, u32 classid)
{
return 0;
}
static int skbprio_dump_class(struct Qdisc *sch, unsigned long cl,
struct sk_buff *skb, struct tcmsg *tcm)
{
tcm->tcm_handle |= TC_H_MIN(cl);
return 0;
}
static int skbprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
struct gnet_dump *d)
{
struct skbprio_sched_data *q = qdisc_priv(sch);
if (gnet_stats_copy_queue(d, NULL, &q->qstats[cl - 1],
q->qstats[cl - 1].qlen) < 0)
return -1;
return 0;
}
static void skbprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
unsigned int i;
if (arg->stop)
return;
for (i = 0; i < SKBPRIO_MAX_PRIORITY; i++) {
if (!tc_qdisc_stats_dump(sch, i + 1, arg))
break;
}
}
static const struct Qdisc_class_ops skbprio_class_ops = {
.leaf = skbprio_leaf,
.find = skbprio_find,
.dump = skbprio_dump_class,
.dump_stats = skbprio_dump_class_stats,
.walk = skbprio_walk,
};
static struct Qdisc_ops skbprio_qdisc_ops __read_mostly = {
.cl_ops = &skbprio_class_ops,
.id = "skbprio",
.priv_size = sizeof(struct skbprio_sched_data),
.enqueue = skbprio_enqueue,
.dequeue = skbprio_dequeue,
.peek = qdisc_peek_dequeued,
.init = skbprio_init,
.reset = skbprio_reset,
.change = skbprio_change,
.dump = skbprio_dump,
.destroy = skbprio_destroy,
.owner = THIS_MODULE,
};
static int __init skbprio_module_init(void)
{
return register_qdisc(&skbprio_qdisc_ops);
}
static void __exit skbprio_module_exit(void)
{
unregister_qdisc(&skbprio_qdisc_ops);
}
module_init(skbprio_module_init)
module_exit(skbprio_module_exit)
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_skbprio.c |
// SPDX-License-Identifier: GPL-2.0-or-later
/* net/sched/sch_ingress.c - Ingress and clsact qdisc
*
* Authors: Jamal Hadi Salim 1999
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tcx.h>
struct ingress_sched_data {
struct tcf_block *block;
struct tcf_block_ext_info block_info;
struct mini_Qdisc_pair miniqp;
};
static struct Qdisc *ingress_leaf(struct Qdisc *sch, unsigned long arg)
{
return NULL;
}
static unsigned long ingress_find(struct Qdisc *sch, u32 classid)
{
return TC_H_MIN(classid) + 1;
}
static unsigned long ingress_bind_filter(struct Qdisc *sch,
unsigned long parent, u32 classid)
{
return ingress_find(sch, classid);
}
static void ingress_unbind_filter(struct Qdisc *sch, unsigned long cl)
{
}
static void ingress_walk(struct Qdisc *sch, struct qdisc_walker *walker)
{
}
static struct tcf_block *ingress_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct ingress_sched_data *q = qdisc_priv(sch);
return q->block;
}
static void clsact_chain_head_change(struct tcf_proto *tp_head, void *priv)
{
struct mini_Qdisc_pair *miniqp = priv;
mini_qdisc_pair_swap(miniqp, tp_head);
};
static void ingress_ingress_block_set(struct Qdisc *sch, u32 block_index)
{
struct ingress_sched_data *q = qdisc_priv(sch);
q->block_info.block_index = block_index;
}
static u32 ingress_ingress_block_get(struct Qdisc *sch)
{
struct ingress_sched_data *q = qdisc_priv(sch);
return q->block_info.block_index;
}
static int ingress_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct ingress_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct bpf_mprog_entry *entry;
bool created;
int err;
if (sch->parent != TC_H_INGRESS)
return -EOPNOTSUPP;
net_inc_ingress_queue();
entry = tcx_entry_fetch_or_create(dev, true, &created);
if (!entry)
return -ENOMEM;
tcx_miniq_set_active(entry, true);
mini_qdisc_pair_init(&q->miniqp, sch, &tcx_entry(entry)->miniq);
if (created)
tcx_entry_update(dev, entry, true);
q->block_info.binder_type = FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS;
q->block_info.chain_head_change = clsact_chain_head_change;
q->block_info.chain_head_change_priv = &q->miniqp;
err = tcf_block_get_ext(&q->block, sch, &q->block_info, extack);
if (err)
return err;
mini_qdisc_pair_block_init(&q->miniqp, q->block);
return 0;
}
static void ingress_destroy(struct Qdisc *sch)
{
struct ingress_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct bpf_mprog_entry *entry = rtnl_dereference(dev->tcx_ingress);
if (sch->parent != TC_H_INGRESS)
return;
tcf_block_put_ext(q->block, sch, &q->block_info);
if (entry) {
tcx_miniq_set_active(entry, false);
if (!tcx_entry_is_active(entry)) {
tcx_entry_update(dev, NULL, true);
tcx_entry_free(entry);
}
}
net_dec_ingress_queue();
}
static int ingress_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct nlattr *nest;
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
return nla_nest_end(skb, nest);
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
static const struct Qdisc_class_ops ingress_class_ops = {
.flags = QDISC_CLASS_OPS_DOIT_UNLOCKED,
.leaf = ingress_leaf,
.find = ingress_find,
.walk = ingress_walk,
.tcf_block = ingress_tcf_block,
.bind_tcf = ingress_bind_filter,
.unbind_tcf = ingress_unbind_filter,
};
static struct Qdisc_ops ingress_qdisc_ops __read_mostly = {
.cl_ops = &ingress_class_ops,
.id = "ingress",
.priv_size = sizeof(struct ingress_sched_data),
.static_flags = TCQ_F_INGRESS | TCQ_F_CPUSTATS,
.init = ingress_init,
.destroy = ingress_destroy,
.dump = ingress_dump,
.ingress_block_set = ingress_ingress_block_set,
.ingress_block_get = ingress_ingress_block_get,
.owner = THIS_MODULE,
};
struct clsact_sched_data {
struct tcf_block *ingress_block;
struct tcf_block *egress_block;
struct tcf_block_ext_info ingress_block_info;
struct tcf_block_ext_info egress_block_info;
struct mini_Qdisc_pair miniqp_ingress;
struct mini_Qdisc_pair miniqp_egress;
};
static unsigned long clsact_find(struct Qdisc *sch, u32 classid)
{
switch (TC_H_MIN(classid)) {
case TC_H_MIN(TC_H_MIN_INGRESS):
case TC_H_MIN(TC_H_MIN_EGRESS):
return TC_H_MIN(classid);
default:
return 0;
}
}
static unsigned long clsact_bind_filter(struct Qdisc *sch,
unsigned long parent, u32 classid)
{
return clsact_find(sch, classid);
}
static struct tcf_block *clsact_tcf_block(struct Qdisc *sch, unsigned long cl,
struct netlink_ext_ack *extack)
{
struct clsact_sched_data *q = qdisc_priv(sch);
switch (cl) {
case TC_H_MIN(TC_H_MIN_INGRESS):
return q->ingress_block;
case TC_H_MIN(TC_H_MIN_EGRESS):
return q->egress_block;
default:
return NULL;
}
}
static void clsact_ingress_block_set(struct Qdisc *sch, u32 block_index)
{
struct clsact_sched_data *q = qdisc_priv(sch);
q->ingress_block_info.block_index = block_index;
}
static void clsact_egress_block_set(struct Qdisc *sch, u32 block_index)
{
struct clsact_sched_data *q = qdisc_priv(sch);
q->egress_block_info.block_index = block_index;
}
static u32 clsact_ingress_block_get(struct Qdisc *sch)
{
struct clsact_sched_data *q = qdisc_priv(sch);
return q->ingress_block_info.block_index;
}
static u32 clsact_egress_block_get(struct Qdisc *sch)
{
struct clsact_sched_data *q = qdisc_priv(sch);
return q->egress_block_info.block_index;
}
static int clsact_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct clsact_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct bpf_mprog_entry *entry;
bool created;
int err;
if (sch->parent != TC_H_CLSACT)
return -EOPNOTSUPP;
net_inc_ingress_queue();
net_inc_egress_queue();
entry = tcx_entry_fetch_or_create(dev, true, &created);
if (!entry)
return -ENOMEM;
tcx_miniq_set_active(entry, true);
mini_qdisc_pair_init(&q->miniqp_ingress, sch, &tcx_entry(entry)->miniq);
if (created)
tcx_entry_update(dev, entry, true);
q->ingress_block_info.binder_type = FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS;
q->ingress_block_info.chain_head_change = clsact_chain_head_change;
q->ingress_block_info.chain_head_change_priv = &q->miniqp_ingress;
err = tcf_block_get_ext(&q->ingress_block, sch, &q->ingress_block_info,
extack);
if (err)
return err;
mini_qdisc_pair_block_init(&q->miniqp_ingress, q->ingress_block);
entry = tcx_entry_fetch_or_create(dev, false, &created);
if (!entry)
return -ENOMEM;
tcx_miniq_set_active(entry, true);
mini_qdisc_pair_init(&q->miniqp_egress, sch, &tcx_entry(entry)->miniq);
if (created)
tcx_entry_update(dev, entry, false);
q->egress_block_info.binder_type = FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS;
q->egress_block_info.chain_head_change = clsact_chain_head_change;
q->egress_block_info.chain_head_change_priv = &q->miniqp_egress;
return tcf_block_get_ext(&q->egress_block, sch, &q->egress_block_info, extack);
}
static void clsact_destroy(struct Qdisc *sch)
{
struct clsact_sched_data *q = qdisc_priv(sch);
struct net_device *dev = qdisc_dev(sch);
struct bpf_mprog_entry *ingress_entry = rtnl_dereference(dev->tcx_ingress);
struct bpf_mprog_entry *egress_entry = rtnl_dereference(dev->tcx_egress);
if (sch->parent != TC_H_CLSACT)
return;
tcf_block_put_ext(q->ingress_block, sch, &q->ingress_block_info);
tcf_block_put_ext(q->egress_block, sch, &q->egress_block_info);
if (ingress_entry) {
tcx_miniq_set_active(ingress_entry, false);
if (!tcx_entry_is_active(ingress_entry)) {
tcx_entry_update(dev, NULL, true);
tcx_entry_free(ingress_entry);
}
}
if (egress_entry) {
tcx_miniq_set_active(egress_entry, false);
if (!tcx_entry_is_active(egress_entry)) {
tcx_entry_update(dev, NULL, false);
tcx_entry_free(egress_entry);
}
}
net_dec_ingress_queue();
net_dec_egress_queue();
}
static const struct Qdisc_class_ops clsact_class_ops = {
.flags = QDISC_CLASS_OPS_DOIT_UNLOCKED,
.leaf = ingress_leaf,
.find = clsact_find,
.walk = ingress_walk,
.tcf_block = clsact_tcf_block,
.bind_tcf = clsact_bind_filter,
.unbind_tcf = ingress_unbind_filter,
};
static struct Qdisc_ops clsact_qdisc_ops __read_mostly = {
.cl_ops = &clsact_class_ops,
.id = "clsact",
.priv_size = sizeof(struct clsact_sched_data),
.static_flags = TCQ_F_INGRESS | TCQ_F_CPUSTATS,
.init = clsact_init,
.destroy = clsact_destroy,
.dump = ingress_dump,
.ingress_block_set = clsact_ingress_block_set,
.egress_block_set = clsact_egress_block_set,
.ingress_block_get = clsact_ingress_block_get,
.egress_block_get = clsact_egress_block_get,
.owner = THIS_MODULE,
};
static int __init ingress_module_init(void)
{
int ret;
ret = register_qdisc(&ingress_qdisc_ops);
if (!ret) {
ret = register_qdisc(&clsact_qdisc_ops);
if (ret)
unregister_qdisc(&ingress_qdisc_ops);
}
return ret;
}
static void __exit ingress_module_exit(void)
{
unregister_qdisc(&ingress_qdisc_ops);
unregister_qdisc(&clsact_qdisc_ops);
}
module_init(ingress_module_init);
module_exit(ingress_module_exit);
MODULE_ALIAS("sch_clsact");
MODULE_LICENSE("GPL");
| linux-master | net/sched/sch_ingress.c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.