Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 7 new columns ({'datetime', 'stationname', 'stationcode', 'value', 'municipality_id', 'sensordescription', 'measureunit'}) and 7 missing columns ({'date_event', 'place_id', 'taxonomy_id', 'registered_by', 'elevation_m', 'code_record', 'common_name'}).

This happened while the csv dataset builder was generating data using

hf://datasets/juanpac96/urban_tree_census_data/climate.csv (at revision f87ba58bace16cbd9f4a48273f8a0728df6053a1)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              municipality_id: int64
              stationcode: int64
              stationname: string
              datetime: string
              latitude: double
              longitude: double
              sensordescription: string
              measureunit: string
              value: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1350
              to
              {'code_record': Value(dtype='int64', id=None), 'common_name': Value(dtype='string', id=None), 'latitude': Value(dtype='float64', id=None), 'longitude': Value(dtype='float64', id=None), 'elevation_m': Value(dtype='float64', id=None), 'registered_by': Value(dtype='string', id=None), 'date_event': Value(dtype='string', id=None), 'place_id': Value(dtype='int64', id=None), 'taxonomy_id': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 7 new columns ({'datetime', 'stationname', 'stationcode', 'value', 'municipality_id', 'sensordescription', 'measureunit'}) and 7 missing columns ({'date_event', 'place_id', 'taxonomy_id', 'registered_by', 'elevation_m', 'code_record', 'common_name'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/juanpac96/urban_tree_census_data/climate.csv (at revision f87ba58bace16cbd9f4a48273f8a0728df6053a1)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

code_record
int64
common_name
string
latitude
float64
longitude
float64
elevation_m
float64
registered_by
string
date_event
string
place_id
int64
taxonomy_id
int64
1
Gmelina melina
4.407358
-75.143061
939
Cortolima
2017-09-30 08:58:15
495
197
2
Gmelina melina
4.407582
-75.14304
939
Cortolima
2017-09-30 08:54:56
495
197
3
Gmelina melina
4.407822
-75.142962
939
Cortolima
2017-09-30 08:51:43
495
197
4
Gmelina melina
4.407983
-75.142962
937
Cortolima
2017-09-30 08:49:51
495
197
5
Gmelina melina
4.408368
-75.142898
937
Cortolima
2017-09-30 08:48:01
495
197
6
Gmelina melina
4.408599
-75.142869
937
Cortolima
2017-09-30 08:44:46
495
197
7
Gmelina melina
4.408738
-75.142816
937
Cortolima
2017-09-30 08:41:28
495
197
8
Gmelina melina
4.408872
-75.14284
937
Cortolima
2017-09-30 08:37:49
495
197
9
Gmelina melina
4.409477
-75.142604
934
Cortolima
2017-09-30 08:34:29
495
197
10
Gmelina melina
4.409829
-75.142551
934
Cortolima
2017-09-30 08:30:29
495
197
11
Gmelina melina
4.410075
-75.142449
934
Cortolima
2017-09-30 08:27:46
235
197
12
Ocobo
4.40978
-75.146175
942
Cortolima
2017-09-30 07:50:09
427
399
13
Ocobo
4.409618
-75.146547
942
Cortolima
2017-09-30 07:44:29
427
399
14
Tulipan africano
4.409752
-75.146766
942
Cortolima
2017-09-30 07:41:22
427
387
15
Ocobo
4.409678
-75.146869
942
Cortolima
2017-09-30 07:37:38
427
399
16
Tulipan africano
4.409698
-75.146806
942
Cortolima
2017-09-30 07:34:29
427
387
17
Ocobo
4.409741
-75.146846
942
Cortolima
2017-09-30 07:33:30
21
399
18
Ocobo
4.409816
-75.146937
942
Cortolima
2017-09-30 07:21:44
427
399
19
Ocobo
4.409771
-75.146972
944
Cortolima
2017-09-30 07:18:31
427
399
20
Ocobo
4.409723
-75.146991
944
Cortolima
2017-09-30 07:15:34
427
399
21
Caucho matapalo
4.409549
-75.147259
944
Cortolima
2017-09-30 07:06:41
427
181
22
Matarraton
4.409442
-75.147316
946
Cortolima
2017-09-30 07:01:23
427
196
23
Limon
4.407188
-75.145363
945
Cortolima
2017-09-29 13:18:53
427
108
24
Tulipan africano
4.407031
-75.145365
945
Cortolima
2017-09-29 13:16:25
427
387
25
Tulipan africano
4.406994
-75.145446
945
Cortolima
2017-09-29 13:14:21
427
387
26
Almendro
4.407007
-75.145545
945
Cortolima
2017-09-29 13:10:58
427
408
27
Tulipan africano
4.407058
-75.145604
945
Cortolima
2017-09-29 13:08:34
427
387
28
Tulipan africano
4.407313
-75.145532
945
Cortolima
2017-09-29 13:05:58
427
387
29
Millon croto
4.407419
-75.145919
945
Cortolima
2017-09-29 13:03:06
427
333
30
Payande
4.408384
-75.145836
942
Cortolima
2017-09-29 12:56:04
427
321
31
Palo cruz
4.408325
-75.145873
942
Cortolima
2017-09-29 12:52:44
427
52
32
Carbonero
4.408285
-75.1459
942
Cortolima
2017-09-29 12:50:06
427
72
33
Ocobo
4.408301
-75.145927
942
Cortolima
2017-09-29 12:47:46
427
399
34
Habano laurel de judea
4.408241
-75.146456
946
Cortolima
2017-09-29 12:41:37
427
286
35
Guanabano
4.40834
-75.146499
946
Cortolima
2017-09-29 12:39:05
427
27
36
Limon
4.407994
-75.146565
946
Cortolima
2017-09-29 11:33:54
427
108
37
Ocobo
4.408027
-75.146479
946
Cortolima
2017-09-29 11:30:12
427
399
38
Ocobo
4.408137
-75.146461
946
Cortolima
2017-09-29 11:26:23
427
399
39
Mirto
4.408015
-75.14638
946
Cortolima
2017-09-29 11:20:22
427
278
40
Pera de malaca
4.40797
-75.146362
946
Cortolima
2017-09-29 11:17:23
427
396
41
Cardo
4.407872
-75.146336
946
Cortolima
2017-09-29 11:15:07
427
96
42
Nacedero
4.407765
-75.146281
947
Cortolima
2017-09-29 11:12:07
427
418
43
Nevado
4.407752
-75.146286
947
Cortolima
2017-09-29 11:09:31
427
217
44
Pino libro
4.407647
-75.146236
947
Cortolima
2017-09-29 10:01:47
427
323
45
Pera de malaca
4.407688
-75.146496
947
Cortolima
2017-09-29 09:56:04
427
396
46
Nevado
4.407729
-75.146516
947
Cortolima
2017-09-29 09:53:02
427
217
47
Mirto
4.407751
-75.146528
947
Cortolima
2017-09-29 09:49:21
427
278
48
Monaca
4.407789
-75.146539
947
Cortolima
2017-09-29 09:45:46
427
55
49
Ebano arboreo costenno
4.407853
-75.146571
947
Cortolima
2017-09-29 09:42:11
427
62
50
Arbol de la felicidad
4.407981
-75.146618
946
Cortolima
2017-09-29 09:39:15
427
149
51
Araza
4.408025
-75.146794
946
Cortolima
2017-09-29 09:34:29
427
171
52
Limon
4.407855
-75.147262
948
Cortolima
2017-09-29 09:23:28
427
108
53
Acacio amarillo
4.407808
-75.14722
948
Cortolima
2017-09-29 09:21:11
427
376
54
Casco de vaca pate buey
4.40783
-75.147228
948
Cortolima
2017-09-29 09:18:27
427
44
55
Saman
4.40787
-75.147281
948
Cortolima
2017-09-29 09:14:29
427
359
56
Noni
4.407819
-75.1474
948
Cortolima
2017-09-29 09:11:40
427
273
57
Ocobo
4.407884
-75.147416
948
Cortolima
2017-09-29 09:08:25
427
399
58
Ocobo
4.407956
-75.147456
948
Cortolima
2017-09-29 09:05:49
427
399
59
Ocobo
4.407999
-75.147477
948
Cortolima
2017-09-29 09:02:34
427
399
60
Noni
4.408017
-75.147453
948
Cortolima
2017-09-29 08:59:39
427
273
61
Saman
4.408031
-75.147496
948
Cortolima
2017-09-29 08:53:50
427
359
62
Limon
4.408128
-75.147509
948
Cortolima
2017-09-29 08:40:49
427
108
63
Mango
4.408165
-75.147531
948
Cortolima
2017-09-29 08:37:44
427
261
64
Almendro
4.408224
-75.147574
948
Cortolima
2017-09-29 08:35:05
427
408
65
Saman
4.408299
-75.147641
948
Cortolima
2017-09-29 08:30:44
427
359
66
Saman
4.408409
-75.147732
948
Cortolima
2017-09-29 08:28:25
427
359
67
Gualanday
4.408259
-75.147906
949
Cortolima
2017-09-29 08:24:25
427
227
68
Chirlobirlo
4.408155
-75.147879
949
Cortolima
2017-09-29 08:21:41
427
405
69
Saman
4.408184
-75.147984
949
Cortolima
2017-09-29 08:17:47
427
359
70
Acacio rojo
4.408012
-75.14785
949
Cortolima
2017-09-29 08:12:12
427
146
71
Ocobo
4.408036
-75.147905
949
Cortolima
2017-09-29 08:09:40
427
399
72
Palma areca
4.407845
-75.147289
948
Cortolima
2017-09-29 08:04:44
427
153
73
Noni
4.408124
-75.147205
948
Cortolima
2017-09-29 08:01:15
427
273
74
Pera de malaca
4.408183
-75.147225
948
Cortolima
2017-09-29 07:58:27
427
396
75
Totumo
4.408358
-75.147288
948
Cortolima
2017-09-29 07:55:52
427
136
76
Ocobo
4.408551
-75.147219
948
Cortolima
2017-09-29 07:48:33
427
399
77
Ocobo
4.408567
-75.147229
948
Cortolima
2017-09-29 07:41:55
427
399
78
Arbol de la felicidad
4.408503
-75.14732
948
Cortolima
2017-09-29 07:34:40
427
149
79
Chirlobirlo
4.408503
-75.147339
948
Cortolima
2017-09-29 07:31:31
427
405
80
Ocobo
4.408476
-75.147379
948
Cortolima
2017-09-29 07:28:12
427
399
81
Papayuelo espinaco
4.408454
-75.147449
948
Cortolima
2017-09-29 07:24:25
427
120
82
Palma areca
4.408435
-75.147512
948
Cortolima
2017-09-29 07:20:20
427
153
83
Igua
4.408478
-75.14757
948
Cortolima
2017-09-29 07:16:45
427
343
84
Payande
4.408665
-75.147685
946
Cortolima
2017-09-29 07:08:22
427
321
85
Limon
4.406684
-75.146053
945
Cortolima
2017-09-27 12:05:34
256
108
86
Aguacate
4.407421
-75.147058
948
Cortolima
2017-09-27 11:55:24
256
306
87
Aguacate
4.407022
-75.146159
949
Cortolima
2017-09-27 11:51:36
256
306
88
Cobalonga
4.406942
-75.14599
945
Cortolima
2017-09-27 11:47:01
256
413
89
Almendro
4.407037
-75.1472
951
Cortolima
2017-09-27 10:37:39
256
408
90
Oiti
4.407147
-75.147299
948
Cortolima
2017-09-27 10:33:34
256
247
91
Oiti
4.407133
-75.147267
948
Cortolima
2017-09-27 10:31:11
256
247
92
Tulipan africano
4.407332
-75.147204
948
Cortolima
2017-09-27 10:27:20
256
387
93
Pera de malaca
4.407274
-75.147207
948
Cortolima
2017-09-27 10:24:31
256
396
94
Marannon
4.407496
-75.147741
948
Cortolima
2017-09-27 10:20:51
256
24
95
Oiti
4.407506
-75.147782
951
Cortolima
2017-09-27 10:16:34
256
247
96
Munneco
4.407581
-75.147965
951
Cortolima
2017-09-27 10:13:50
256
130
97
Pino libro
4.407626
-75.148101
951
Cortolima
2017-09-27 10:10:57
256
323
98
Guanabano
4.408489
-75.145839
942
Cortolima
2017-09-29 12:54:09
427
27
99
Pera de malaca
4.408879
-75.146185
944
Cortolima
2017-09-29 12:49:46
427
396
100
Pera de malaca
4.408696
-75.146106
941
Cortolima
2017-09-29 12:46:29
427
396
End of preview.

Urban Tree Census Data

This dataset was collected as part of the Urban Tree Observatory Project in Ibagué, Colombia.
It includes georeferenced records of urban trees, taxonomic details, physical measurements, and climate and observational data.
The main goal is to build and populate a structured PostgreSQL database using Django and SQLAlchemy.

Contents

  • biodiversity.csv: Main biodiversity registry per observed tree.
  • climate.csv: Historical climate data associated with monitoring stations in Ibagué.
  • measurements.csv: Physical measurements per tree (total height, DBH, volume, crown diameter, etc.).
  • observations.csv: Information health condition, observations on field etc.
  • places.csv: Geographic information where trees are located (name, neighborhood, municipality).
  • taxonomy.csv: Taxonomic classification per unit (family, genus, species, common name).
  • traits.csv: Functional traits per species such as maximum height, carbon sequestration potential etc.

Objective

To build a comprehensive database that enables ecological and functional analysis of urban trees, supporting applications like urban observatories, decision-making tools, and monitoring web platforms.

Data Source

The original dataset was downloaded from the official open data portal of Colombia:
Urban Tree Census in Ibagué - Secretaría de Ambiente y Gestión del Riesgo

The data was then cleaned, curated, and transformed by the local team of Omdena — GIBDET Colombia Chapter.
This process included designing a relational SQL schema, normalizing and enriching the dataset, and building a Geodatabase in PostgreSQL + PostGIS to support geospatial analysis and web-based applications.

License

MIT License — Free to use, modify, and redistribute with attribution.

Citation

Citation

Please cite this dataset as:
Juan Pablo Cuevas Gonzalez (2025). Omdena GIBDET Colombia Chapter. Urban Tree Census Data - Ibagué [Dataset]. Hugging Face. https://huggingface.co/datasets/juanpac96/urban_tree_census_data

Downloads last month
128