repository_name
stringlengths 7
55
| func_path_in_repository
stringlengths 4
223
| func_name
stringlengths 1
134
| whole_func_string
stringlengths 75
104k
| language
stringclasses 1
value | func_code_string
stringlengths 75
104k
| func_code_tokens
sequencelengths 19
28.4k
| func_documentation_string
stringlengths 1
46.9k
| func_documentation_tokens
sequencelengths 1
1.97k
| split_name
stringclasses 1
value | func_code_url
stringlengths 87
315
|
---|---|---|---|---|---|---|---|---|---|---|
BlueBrain/hpcbench | hpcbench/toolbox/edsl.py | kwargsql.xor | def xor(cls, obj, **kwargs):
"""Query an object.
:param obj:
object to test
:param kwargs: query specified in kwargssql
:return:
`True` if exactly one `kwargs` expression is `True`,
`False` otherwise.
:rtype: bool
"""
return cls.__eval_seqexp(obj, operator.xor, **kwargs) | python | def xor(cls, obj, **kwargs):
"""Query an object.
:param obj:
object to test
:param kwargs: query specified in kwargssql
:return:
`True` if exactly one `kwargs` expression is `True`,
`False` otherwise.
:rtype: bool
"""
return cls.__eval_seqexp(obj, operator.xor, **kwargs) | [
"def",
"xor",
"(",
"cls",
",",
"obj",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"cls",
".",
"__eval_seqexp",
"(",
"obj",
",",
"operator",
".",
"xor",
",",
"*",
"*",
"kwargs",
")"
] | Query an object.
:param obj:
object to test
:param kwargs: query specified in kwargssql
:return:
`True` if exactly one `kwargs` expression is `True`,
`False` otherwise.
:rtype: bool | [
"Query",
"an",
"object",
"."
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/toolbox/edsl.py#L158-L171 |
BlueBrain/hpcbench | hpcbench/toolbox/edsl.py | kwargsql.__resolve_path | def __resolve_path(cls, obj, path):
"""Follow a kwargsql expression starting from a given object
and return the deduced object.
:param obj: the object to start from
:param list path: list of operations to perform. It does not contain
the optional operation of a traditional kwargsql
expression.
:return: the found object if any, `None` otherwise.
For instance:
>>> __resolve_path(dict(foo=dict(bar=42)), ['foo', 'bar'])
>>> 42
"""
path = [p for p in path if p]
if any(path):
pathes = len(path)
i = 0
while i < pathes:
# _get_obj_attr can supersede `i` because it might
# evaluate the entire expression by itself.
obj, i = cls._get_obj_attr(obj, path, i)
i += 1
else:
raise Exception("Nothing to do")
return obj | python | def __resolve_path(cls, obj, path):
"""Follow a kwargsql expression starting from a given object
and return the deduced object.
:param obj: the object to start from
:param list path: list of operations to perform. It does not contain
the optional operation of a traditional kwargsql
expression.
:return: the found object if any, `None` otherwise.
For instance:
>>> __resolve_path(dict(foo=dict(bar=42)), ['foo', 'bar'])
>>> 42
"""
path = [p for p in path if p]
if any(path):
pathes = len(path)
i = 0
while i < pathes:
# _get_obj_attr can supersede `i` because it might
# evaluate the entire expression by itself.
obj, i = cls._get_obj_attr(obj, path, i)
i += 1
else:
raise Exception("Nothing to do")
return obj | [
"def",
"__resolve_path",
"(",
"cls",
",",
"obj",
",",
"path",
")",
":",
"path",
"=",
"[",
"p",
"for",
"p",
"in",
"path",
"if",
"p",
"]",
"if",
"any",
"(",
"path",
")",
":",
"pathes",
"=",
"len",
"(",
"path",
")",
"i",
"=",
"0",
"while",
"i",
"<",
"pathes",
":",
"# _get_obj_attr can supersede `i` because it might",
"# evaluate the entire expression by itself.",
"obj",
",",
"i",
"=",
"cls",
".",
"_get_obj_attr",
"(",
"obj",
",",
"path",
",",
"i",
")",
"i",
"+=",
"1",
"else",
":",
"raise",
"Exception",
"(",
"\"Nothing to do\"",
")",
"return",
"obj"
] | Follow a kwargsql expression starting from a given object
and return the deduced object.
:param obj: the object to start from
:param list path: list of operations to perform. It does not contain
the optional operation of a traditional kwargsql
expression.
:return: the found object if any, `None` otherwise.
For instance:
>>> __resolve_path(dict(foo=dict(bar=42)), ['foo', 'bar'])
>>> 42 | [
"Follow",
"a",
"kwargsql",
"expression",
"starting",
"from",
"a",
"given",
"object",
"and",
"return",
"the",
"deduced",
"object",
"."
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/toolbox/edsl.py#L208-L234 |
BlueBrain/hpcbench | hpcbench/toolbox/edsl.py | kwargsql._sequence_map | def _sequence_map(cls, seq, path):
"""Apply a kwargsql expression to every item of a sequence,
and returns it.
:param seq: the list to transform
:param path: kwargsql expression to apply to every elements of
the given sequence.
"""
if not any(path):
# There is no further kwargsql expression
return seq
result = []
for item in seq:
try:
result.append(cls.__resolve_path(item, path))
except (KeyError, IndexError):
pass
return result | python | def _sequence_map(cls, seq, path):
"""Apply a kwargsql expression to every item of a sequence,
and returns it.
:param seq: the list to transform
:param path: kwargsql expression to apply to every elements of
the given sequence.
"""
if not any(path):
# There is no further kwargsql expression
return seq
result = []
for item in seq:
try:
result.append(cls.__resolve_path(item, path))
except (KeyError, IndexError):
pass
return result | [
"def",
"_sequence_map",
"(",
"cls",
",",
"seq",
",",
"path",
")",
":",
"if",
"not",
"any",
"(",
"path",
")",
":",
"# There is no further kwargsql expression",
"return",
"seq",
"result",
"=",
"[",
"]",
"for",
"item",
"in",
"seq",
":",
"try",
":",
"result",
".",
"append",
"(",
"cls",
".",
"__resolve_path",
"(",
"item",
",",
"path",
")",
")",
"except",
"(",
"KeyError",
",",
"IndexError",
")",
":",
"pass",
"return",
"result"
] | Apply a kwargsql expression to every item of a sequence,
and returns it.
:param seq: the list to transform
:param path: kwargsql expression to apply to every elements of
the given sequence. | [
"Apply",
"a",
"kwargsql",
"expression",
"to",
"every",
"item",
"of",
"a",
"sequence",
"and",
"returns",
"it",
"."
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/toolbox/edsl.py#L270-L287 |
BlueBrain/hpcbench | hpcbench/toolbox/edsl.py | kwargsql._not | def _not(cls, operation):
"""not operation"""
def _wrap(*args, **kwargs):
return not operation(*args, **kwargs)
return _wrap | python | def _not(cls, operation):
"""not operation"""
def _wrap(*args, **kwargs):
return not operation(*args, **kwargs)
return _wrap | [
"def",
"_not",
"(",
"cls",
",",
"operation",
")",
":",
"def",
"_wrap",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"not",
"operation",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"_wrap"
] | not operation | [
"not",
"operation"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/toolbox/edsl.py#L290-L296 |
PolyJIT/benchbuild | benchbuild/project.py | populate | def populate(projects_to_filter=None, group=None):
"""
Populate the list of projects that belong to this experiment.
Args:
projects_to_filter (list(Project)):
List of projects we want to assign to this experiment.
We intersect the list of projects with the list of supported
projects to get the list of projects that belong to this
experiment.
group (list(str)):
In addition to the project filter, we provide a way to filter
whole groups.
"""
if projects_to_filter is None:
projects_to_filter = []
import benchbuild.projects as all_projects
all_projects.discover()
prjs = ProjectRegistry.projects
if projects_to_filter:
prjs = {}
for filter_project in set(projects_to_filter):
try:
prjs.update({
x: y
for x, y in ProjectRegistry.projects.items(
prefix=filter_project)
})
except KeyError:
pass
if group:
groupkeys = set(group)
prjs = {
name: cls
for name, cls in prjs.items() if cls.GROUP in groupkeys
}
return {
x: prjs[x]
for x in prjs if prjs[x].DOMAIN != "debug" or x in projects_to_filter
} | python | def populate(projects_to_filter=None, group=None):
"""
Populate the list of projects that belong to this experiment.
Args:
projects_to_filter (list(Project)):
List of projects we want to assign to this experiment.
We intersect the list of projects with the list of supported
projects to get the list of projects that belong to this
experiment.
group (list(str)):
In addition to the project filter, we provide a way to filter
whole groups.
"""
if projects_to_filter is None:
projects_to_filter = []
import benchbuild.projects as all_projects
all_projects.discover()
prjs = ProjectRegistry.projects
if projects_to_filter:
prjs = {}
for filter_project in set(projects_to_filter):
try:
prjs.update({
x: y
for x, y in ProjectRegistry.projects.items(
prefix=filter_project)
})
except KeyError:
pass
if group:
groupkeys = set(group)
prjs = {
name: cls
for name, cls in prjs.items() if cls.GROUP in groupkeys
}
return {
x: prjs[x]
for x in prjs if prjs[x].DOMAIN != "debug" or x in projects_to_filter
} | [
"def",
"populate",
"(",
"projects_to_filter",
"=",
"None",
",",
"group",
"=",
"None",
")",
":",
"if",
"projects_to_filter",
"is",
"None",
":",
"projects_to_filter",
"=",
"[",
"]",
"import",
"benchbuild",
".",
"projects",
"as",
"all_projects",
"all_projects",
".",
"discover",
"(",
")",
"prjs",
"=",
"ProjectRegistry",
".",
"projects",
"if",
"projects_to_filter",
":",
"prjs",
"=",
"{",
"}",
"for",
"filter_project",
"in",
"set",
"(",
"projects_to_filter",
")",
":",
"try",
":",
"prjs",
".",
"update",
"(",
"{",
"x",
":",
"y",
"for",
"x",
",",
"y",
"in",
"ProjectRegistry",
".",
"projects",
".",
"items",
"(",
"prefix",
"=",
"filter_project",
")",
"}",
")",
"except",
"KeyError",
":",
"pass",
"if",
"group",
":",
"groupkeys",
"=",
"set",
"(",
"group",
")",
"prjs",
"=",
"{",
"name",
":",
"cls",
"for",
"name",
",",
"cls",
"in",
"prjs",
".",
"items",
"(",
")",
"if",
"cls",
".",
"GROUP",
"in",
"groupkeys",
"}",
"return",
"{",
"x",
":",
"prjs",
"[",
"x",
"]",
"for",
"x",
"in",
"prjs",
"if",
"prjs",
"[",
"x",
"]",
".",
"DOMAIN",
"!=",
"\"debug\"",
"or",
"x",
"in",
"projects_to_filter",
"}"
] | Populate the list of projects that belong to this experiment.
Args:
projects_to_filter (list(Project)):
List of projects we want to assign to this experiment.
We intersect the list of projects with the list of supported
projects to get the list of projects that belong to this
experiment.
group (list(str)):
In addition to the project filter, we provide a way to filter
whole groups. | [
"Populate",
"the",
"list",
"of",
"projects",
"that",
"belong",
"to",
"this",
"experiment",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/project.py#L342-L385 |
PolyJIT/benchbuild | benchbuild/utils/compiler.py | cc | def cc(project, detect_project=False):
"""
Return a clang that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command.
"""
from benchbuild.utils import cmd
cc_name = str(CFG["compiler"]["c"])
wrap_cc(cc_name, compiler(cc_name), project, detect_project=detect_project)
return cmd["./{}".format(cc_name)] | python | def cc(project, detect_project=False):
"""
Return a clang that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command.
"""
from benchbuild.utils import cmd
cc_name = str(CFG["compiler"]["c"])
wrap_cc(cc_name, compiler(cc_name), project, detect_project=detect_project)
return cmd["./{}".format(cc_name)] | [
"def",
"cc",
"(",
"project",
",",
"detect_project",
"=",
"False",
")",
":",
"from",
"benchbuild",
".",
"utils",
"import",
"cmd",
"cc_name",
"=",
"str",
"(",
"CFG",
"[",
"\"compiler\"",
"]",
"[",
"\"c\"",
"]",
")",
"wrap_cc",
"(",
"cc_name",
",",
"compiler",
"(",
"cc_name",
")",
",",
"project",
",",
"detect_project",
"=",
"detect_project",
")",
"return",
"cmd",
"[",
"\"./{}\"",
".",
"format",
"(",
"cc_name",
")",
"]"
] | Return a clang that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command. | [
"Return",
"a",
"clang",
"that",
"hides",
"CFLAGS",
"and",
"LDFLAGS",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/compiler.py#L27-L49 |
PolyJIT/benchbuild | benchbuild/utils/compiler.py | cxx | def cxx(project, detect_project=False):
"""
Return a clang++ that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command.
"""
from benchbuild.utils import cmd
cxx_name = str(CFG["compiler"]["cxx"])
wrap_cc(
cxx_name, compiler(cxx_name), project, detect_project=detect_project)
return cmd["./{name}".format(name=cxx_name)] | python | def cxx(project, detect_project=False):
"""
Return a clang++ that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command.
"""
from benchbuild.utils import cmd
cxx_name = str(CFG["compiler"]["cxx"])
wrap_cc(
cxx_name, compiler(cxx_name), project, detect_project=detect_project)
return cmd["./{name}".format(name=cxx_name)] | [
"def",
"cxx",
"(",
"project",
",",
"detect_project",
"=",
"False",
")",
":",
"from",
"benchbuild",
".",
"utils",
"import",
"cmd",
"cxx_name",
"=",
"str",
"(",
"CFG",
"[",
"\"compiler\"",
"]",
"[",
"\"cxx\"",
"]",
")",
"wrap_cc",
"(",
"cxx_name",
",",
"compiler",
"(",
"cxx_name",
")",
",",
"project",
",",
"detect_project",
"=",
"detect_project",
")",
"return",
"cmd",
"[",
"\"./{name}\"",
".",
"format",
"(",
"name",
"=",
"cxx_name",
")",
"]"
] | Return a clang++ that hides CFLAGS and LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
cflags: The CFLAGS we want to hide.
ldflags: The LDFLAGS we want to hide.
func (optional): A function that will be pickled alongside the compiler.
It will be called before the actual compilation took place. This
way you can intercept the compilation process with arbitrary python
code.
Returns (benchbuild.utils.cmd):
Path to the new clang command. | [
"Return",
"a",
"clang",
"++",
"that",
"hides",
"CFLAGS",
"and",
"LDFLAGS",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/compiler.py#L52-L75 |
PolyJIT/benchbuild | benchbuild/utils/compiler.py | compiler | def compiler(name):
"""
Get a usable clang++ plumbum command.
This searches for a usable clang++ in the llvm binary path
Returns:
plumbum Command that executes clang++
"""
pinfo = __get_paths()
_compiler = local[name]
_compiler = _compiler.setenv(
PATH=pinfo["path"], LD_LIBRARY_PATH=pinfo["ld_library_path"])
return _compiler | python | def compiler(name):
"""
Get a usable clang++ plumbum command.
This searches for a usable clang++ in the llvm binary path
Returns:
plumbum Command that executes clang++
"""
pinfo = __get_paths()
_compiler = local[name]
_compiler = _compiler.setenv(
PATH=pinfo["path"], LD_LIBRARY_PATH=pinfo["ld_library_path"])
return _compiler | [
"def",
"compiler",
"(",
"name",
")",
":",
"pinfo",
"=",
"__get_paths",
"(",
")",
"_compiler",
"=",
"local",
"[",
"name",
"]",
"_compiler",
"=",
"_compiler",
".",
"setenv",
"(",
"PATH",
"=",
"pinfo",
"[",
"\"path\"",
"]",
",",
"LD_LIBRARY_PATH",
"=",
"pinfo",
"[",
"\"ld_library_path\"",
"]",
")",
"return",
"_compiler"
] | Get a usable clang++ plumbum command.
This searches for a usable clang++ in the llvm binary path
Returns:
plumbum Command that executes clang++ | [
"Get",
"a",
"usable",
"clang",
"++",
"plumbum",
"command",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/compiler.py#L98-L111 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | strip_path_prefix | def strip_path_prefix(ipath, prefix):
"""
Strip prefix from path.
Args:
ipath: input path
prefix: the prefix to remove, if it is found in :ipath:
Examples:
>>> strip_path_prefix("/foo/bar", "/bar")
'/foo/bar'
>>> strip_path_prefix("/foo/bar", "/")
'foo/bar'
>>> strip_path_prefix("/foo/bar", "/foo")
'/bar'
>>> strip_path_prefix("/foo/bar", "None")
'/foo/bar'
"""
if prefix is None:
return ipath
return ipath[len(prefix):] if ipath.startswith(prefix) else ipath | python | def strip_path_prefix(ipath, prefix):
"""
Strip prefix from path.
Args:
ipath: input path
prefix: the prefix to remove, if it is found in :ipath:
Examples:
>>> strip_path_prefix("/foo/bar", "/bar")
'/foo/bar'
>>> strip_path_prefix("/foo/bar", "/")
'foo/bar'
>>> strip_path_prefix("/foo/bar", "/foo")
'/bar'
>>> strip_path_prefix("/foo/bar", "None")
'/foo/bar'
"""
if prefix is None:
return ipath
return ipath[len(prefix):] if ipath.startswith(prefix) else ipath | [
"def",
"strip_path_prefix",
"(",
"ipath",
",",
"prefix",
")",
":",
"if",
"prefix",
"is",
"None",
":",
"return",
"ipath",
"return",
"ipath",
"[",
"len",
"(",
"prefix",
")",
":",
"]",
"if",
"ipath",
".",
"startswith",
"(",
"prefix",
")",
"else",
"ipath"
] | Strip prefix from path.
Args:
ipath: input path
prefix: the prefix to remove, if it is found in :ipath:
Examples:
>>> strip_path_prefix("/foo/bar", "/bar")
'/foo/bar'
>>> strip_path_prefix("/foo/bar", "/")
'foo/bar'
>>> strip_path_prefix("/foo/bar", "/foo")
'/bar'
>>> strip_path_prefix("/foo/bar", "None")
'/foo/bar' | [
"Strip",
"prefix",
"from",
"path",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L43-L65 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | unpickle | def unpickle(pickle_file):
"""Unpickle a python object from the given path."""
pickle = None
with open(pickle_file, "rb") as pickle_f:
pickle = dill.load(pickle_f)
if not pickle:
LOG.error("Could not load python object from file")
return pickle | python | def unpickle(pickle_file):
"""Unpickle a python object from the given path."""
pickle = None
with open(pickle_file, "rb") as pickle_f:
pickle = dill.load(pickle_f)
if not pickle:
LOG.error("Could not load python object from file")
return pickle | [
"def",
"unpickle",
"(",
"pickle_file",
")",
":",
"pickle",
"=",
"None",
"with",
"open",
"(",
"pickle_file",
",",
"\"rb\"",
")",
"as",
"pickle_f",
":",
"pickle",
"=",
"dill",
".",
"load",
"(",
"pickle_f",
")",
"if",
"not",
"pickle",
":",
"LOG",
".",
"error",
"(",
"\"Could not load python object from file\"",
")",
"return",
"pickle"
] | Unpickle a python object from the given path. | [
"Unpickle",
"a",
"python",
"object",
"from",
"the",
"given",
"path",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L68-L75 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | wrap | def wrap(name, project, sprefix=None, python=sys.executable):
""" Wrap the binary :name: with the runtime extension of the project.
This module generates a python tool that replaces :name:
The function in runner only accepts the replaced binaries
name as argument. We use the cloudpickle package to
perform the serialization, make sure :runner: can be serialized
with it and you're fine.
Args:
name: Binary we want to wrap
project: The project that contains the runtime_extension we want
to run instead of the binary.
Returns:
A plumbum command, ready to launch.
"""
env = __create_jinja_env()
template = env.get_template('run_static.py.inc')
name_absolute = os.path.abspath(name)
real_f = name_absolute + PROJECT_BIN_F_EXT
if sprefix:
run(uchroot()["/bin/mv",
strip_path_prefix(name_absolute, sprefix),
strip_path_prefix(real_f, sprefix)])
else:
run(mv[name_absolute, real_f])
project_file = persist(project, suffix=".project")
env = CFG['env'].value
bin_path = list_to_path(env.get('PATH', []))
bin_path = list_to_path([bin_path, os.environ["PATH"]])
bin_lib_path = list_to_path(env.get('LD_LIBRARY_PATH', []))
bin_lib_path = list_to_path([bin_lib_path, os.environ["LD_LIBRARY_PATH"]])
with open(name_absolute, 'w') as wrapper:
wrapper.write(
template.render(
runf=strip_path_prefix(real_f, sprefix),
project_file=strip_path_prefix(project_file, sprefix),
path=str(bin_path),
ld_library_path=str(bin_lib_path),
python=python,
))
run(chmod["+x", name_absolute])
return local[name_absolute] | python | def wrap(name, project, sprefix=None, python=sys.executable):
""" Wrap the binary :name: with the runtime extension of the project.
This module generates a python tool that replaces :name:
The function in runner only accepts the replaced binaries
name as argument. We use the cloudpickle package to
perform the serialization, make sure :runner: can be serialized
with it and you're fine.
Args:
name: Binary we want to wrap
project: The project that contains the runtime_extension we want
to run instead of the binary.
Returns:
A plumbum command, ready to launch.
"""
env = __create_jinja_env()
template = env.get_template('run_static.py.inc')
name_absolute = os.path.abspath(name)
real_f = name_absolute + PROJECT_BIN_F_EXT
if sprefix:
run(uchroot()["/bin/mv",
strip_path_prefix(name_absolute, sprefix),
strip_path_prefix(real_f, sprefix)])
else:
run(mv[name_absolute, real_f])
project_file = persist(project, suffix=".project")
env = CFG['env'].value
bin_path = list_to_path(env.get('PATH', []))
bin_path = list_to_path([bin_path, os.environ["PATH"]])
bin_lib_path = list_to_path(env.get('LD_LIBRARY_PATH', []))
bin_lib_path = list_to_path([bin_lib_path, os.environ["LD_LIBRARY_PATH"]])
with open(name_absolute, 'w') as wrapper:
wrapper.write(
template.render(
runf=strip_path_prefix(real_f, sprefix),
project_file=strip_path_prefix(project_file, sprefix),
path=str(bin_path),
ld_library_path=str(bin_lib_path),
python=python,
))
run(chmod["+x", name_absolute])
return local[name_absolute] | [
"def",
"wrap",
"(",
"name",
",",
"project",
",",
"sprefix",
"=",
"None",
",",
"python",
"=",
"sys",
".",
"executable",
")",
":",
"env",
"=",
"__create_jinja_env",
"(",
")",
"template",
"=",
"env",
".",
"get_template",
"(",
"'run_static.py.inc'",
")",
"name_absolute",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"name",
")",
"real_f",
"=",
"name_absolute",
"+",
"PROJECT_BIN_F_EXT",
"if",
"sprefix",
":",
"run",
"(",
"uchroot",
"(",
")",
"[",
"\"/bin/mv\"",
",",
"strip_path_prefix",
"(",
"name_absolute",
",",
"sprefix",
")",
",",
"strip_path_prefix",
"(",
"real_f",
",",
"sprefix",
")",
"]",
")",
"else",
":",
"run",
"(",
"mv",
"[",
"name_absolute",
",",
"real_f",
"]",
")",
"project_file",
"=",
"persist",
"(",
"project",
",",
"suffix",
"=",
"\".project\"",
")",
"env",
"=",
"CFG",
"[",
"'env'",
"]",
".",
"value",
"bin_path",
"=",
"list_to_path",
"(",
"env",
".",
"get",
"(",
"'PATH'",
",",
"[",
"]",
")",
")",
"bin_path",
"=",
"list_to_path",
"(",
"[",
"bin_path",
",",
"os",
".",
"environ",
"[",
"\"PATH\"",
"]",
"]",
")",
"bin_lib_path",
"=",
"list_to_path",
"(",
"env",
".",
"get",
"(",
"'LD_LIBRARY_PATH'",
",",
"[",
"]",
")",
")",
"bin_lib_path",
"=",
"list_to_path",
"(",
"[",
"bin_lib_path",
",",
"os",
".",
"environ",
"[",
"\"LD_LIBRARY_PATH\"",
"]",
"]",
")",
"with",
"open",
"(",
"name_absolute",
",",
"'w'",
")",
"as",
"wrapper",
":",
"wrapper",
".",
"write",
"(",
"template",
".",
"render",
"(",
"runf",
"=",
"strip_path_prefix",
"(",
"real_f",
",",
"sprefix",
")",
",",
"project_file",
"=",
"strip_path_prefix",
"(",
"project_file",
",",
"sprefix",
")",
",",
"path",
"=",
"str",
"(",
"bin_path",
")",
",",
"ld_library_path",
"=",
"str",
"(",
"bin_lib_path",
")",
",",
"python",
"=",
"python",
",",
")",
")",
"run",
"(",
"chmod",
"[",
"\"+x\"",
",",
"name_absolute",
"]",
")",
"return",
"local",
"[",
"name_absolute",
"]"
] | Wrap the binary :name: with the runtime extension of the project.
This module generates a python tool that replaces :name:
The function in runner only accepts the replaced binaries
name as argument. We use the cloudpickle package to
perform the serialization, make sure :runner: can be serialized
with it and you're fine.
Args:
name: Binary we want to wrap
project: The project that contains the runtime_extension we want
to run instead of the binary.
Returns:
A plumbum command, ready to launch. | [
"Wrap",
"the",
"binary",
":",
"name",
":",
"with",
"the",
"runtime",
"extension",
"of",
"the",
"project",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L86-L136 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | wrap_cc | def wrap_cc(filepath,
compiler,
project,
python=sys.executable,
detect_project=False):
"""
Substitute a compiler with a script that hides CFLAGS & LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
filepath (str): Path to the wrapper script.
compiler (benchbuild.utils.cmd):
Real compiler command we should call in the script.
project (benchbuild.project.Project):
The project this compiler will be for.
python (str): Path to the python interpreter we should use.
detect_project: Should we enable project detection or not.
Returns (benchbuild.utils.cmd):
Command of the new compiler we can call.
"""
env = __create_jinja_env()
template = env.get_template('run_compiler.py.inc')
cc_fname = local.path(filepath).with_suffix(".benchbuild.cc", depth=0)
cc_f = persist(compiler, filename=cc_fname)
project_file = persist(project, suffix=".project")
with open(filepath, 'w') as wrapper:
wrapper.write(
template.render(
cc_f=cc_f,
project_file=project_file,
python=python,
detect_project=detect_project))
chmod("+x", filepath)
LOG.debug("Placed wrapper in: %s for compiler %s", local.path(filepath),
str(compiler))
LOG.debug("Placed project in: %s", local.path(project_file))
LOG.debug("Placed compiler command in: %s", local.path(cc_f))
return local[filepath] | python | def wrap_cc(filepath,
compiler,
project,
python=sys.executable,
detect_project=False):
"""
Substitute a compiler with a script that hides CFLAGS & LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
filepath (str): Path to the wrapper script.
compiler (benchbuild.utils.cmd):
Real compiler command we should call in the script.
project (benchbuild.project.Project):
The project this compiler will be for.
python (str): Path to the python interpreter we should use.
detect_project: Should we enable project detection or not.
Returns (benchbuild.utils.cmd):
Command of the new compiler we can call.
"""
env = __create_jinja_env()
template = env.get_template('run_compiler.py.inc')
cc_fname = local.path(filepath).with_suffix(".benchbuild.cc", depth=0)
cc_f = persist(compiler, filename=cc_fname)
project_file = persist(project, suffix=".project")
with open(filepath, 'w') as wrapper:
wrapper.write(
template.render(
cc_f=cc_f,
project_file=project_file,
python=python,
detect_project=detect_project))
chmod("+x", filepath)
LOG.debug("Placed wrapper in: %s for compiler %s", local.path(filepath),
str(compiler))
LOG.debug("Placed project in: %s", local.path(project_file))
LOG.debug("Placed compiler command in: %s", local.path(cc_f))
return local[filepath] | [
"def",
"wrap_cc",
"(",
"filepath",
",",
"compiler",
",",
"project",
",",
"python",
"=",
"sys",
".",
"executable",
",",
"detect_project",
"=",
"False",
")",
":",
"env",
"=",
"__create_jinja_env",
"(",
")",
"template",
"=",
"env",
".",
"get_template",
"(",
"'run_compiler.py.inc'",
")",
"cc_fname",
"=",
"local",
".",
"path",
"(",
"filepath",
")",
".",
"with_suffix",
"(",
"\".benchbuild.cc\"",
",",
"depth",
"=",
"0",
")",
"cc_f",
"=",
"persist",
"(",
"compiler",
",",
"filename",
"=",
"cc_fname",
")",
"project_file",
"=",
"persist",
"(",
"project",
",",
"suffix",
"=",
"\".project\"",
")",
"with",
"open",
"(",
"filepath",
",",
"'w'",
")",
"as",
"wrapper",
":",
"wrapper",
".",
"write",
"(",
"template",
".",
"render",
"(",
"cc_f",
"=",
"cc_f",
",",
"project_file",
"=",
"project_file",
",",
"python",
"=",
"python",
",",
"detect_project",
"=",
"detect_project",
")",
")",
"chmod",
"(",
"\"+x\"",
",",
"filepath",
")",
"LOG",
".",
"debug",
"(",
"\"Placed wrapper in: %s for compiler %s\"",
",",
"local",
".",
"path",
"(",
"filepath",
")",
",",
"str",
"(",
"compiler",
")",
")",
"LOG",
".",
"debug",
"(",
"\"Placed project in: %s\"",
",",
"local",
".",
"path",
"(",
"project_file",
")",
")",
"LOG",
".",
"debug",
"(",
"\"Placed compiler command in: %s\"",
",",
"local",
".",
"path",
"(",
"cc_f",
")",
")",
"return",
"local",
"[",
"filepath",
"]"
] | Substitute a compiler with a script that hides CFLAGS & LDFLAGS.
This will generate a wrapper script in the current directory
and return a complete plumbum command to it.
Args:
filepath (str): Path to the wrapper script.
compiler (benchbuild.utils.cmd):
Real compiler command we should call in the script.
project (benchbuild.project.Project):
The project this compiler will be for.
python (str): Path to the python interpreter we should use.
detect_project: Should we enable project detection or not.
Returns (benchbuild.utils.cmd):
Command of the new compiler we can call. | [
"Substitute",
"a",
"compiler",
"with",
"a",
"script",
"that",
"hides",
"CFLAGS",
"&",
"LDFLAGS",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L200-L244 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | persist | def persist(id_obj, filename=None, suffix=None):
"""Persist an object in the filesystem.
This will generate a pickled version of the given obj in the filename path.
Objects shall provide an id() method to be able to use this persistence API.
If not, we will use the id() builtin of python to generate an identifier
for you.
The file will be created, if it does not exist.
If the file already exists, we will overwrite it.
Args:
id_obj (Any): An identifiable object you want to persist in the
filesystem.
"""
if suffix is None:
suffix = ".pickle"
if hasattr(id_obj, 'id'):
ident = id_obj.id
else:
ident = str(id(id_obj))
if filename is None:
filename = "{obj_id}{suffix}".format(obj_id=ident, suffix=suffix)
with open(filename, 'wb') as obj_file:
dill.dump(id_obj, obj_file)
return os.path.abspath(filename) | python | def persist(id_obj, filename=None, suffix=None):
"""Persist an object in the filesystem.
This will generate a pickled version of the given obj in the filename path.
Objects shall provide an id() method to be able to use this persistence API.
If not, we will use the id() builtin of python to generate an identifier
for you.
The file will be created, if it does not exist.
If the file already exists, we will overwrite it.
Args:
id_obj (Any): An identifiable object you want to persist in the
filesystem.
"""
if suffix is None:
suffix = ".pickle"
if hasattr(id_obj, 'id'):
ident = id_obj.id
else:
ident = str(id(id_obj))
if filename is None:
filename = "{obj_id}{suffix}".format(obj_id=ident, suffix=suffix)
with open(filename, 'wb') as obj_file:
dill.dump(id_obj, obj_file)
return os.path.abspath(filename) | [
"def",
"persist",
"(",
"id_obj",
",",
"filename",
"=",
"None",
",",
"suffix",
"=",
"None",
")",
":",
"if",
"suffix",
"is",
"None",
":",
"suffix",
"=",
"\".pickle\"",
"if",
"hasattr",
"(",
"id_obj",
",",
"'id'",
")",
":",
"ident",
"=",
"id_obj",
".",
"id",
"else",
":",
"ident",
"=",
"str",
"(",
"id",
"(",
"id_obj",
")",
")",
"if",
"filename",
"is",
"None",
":",
"filename",
"=",
"\"{obj_id}{suffix}\"",
".",
"format",
"(",
"obj_id",
"=",
"ident",
",",
"suffix",
"=",
"suffix",
")",
"with",
"open",
"(",
"filename",
",",
"'wb'",
")",
"as",
"obj_file",
":",
"dill",
".",
"dump",
"(",
"id_obj",
",",
"obj_file",
")",
"return",
"os",
".",
"path",
".",
"abspath",
"(",
"filename",
")"
] | Persist an object in the filesystem.
This will generate a pickled version of the given obj in the filename path.
Objects shall provide an id() method to be able to use this persistence API.
If not, we will use the id() builtin of python to generate an identifier
for you.
The file will be created, if it does not exist.
If the file already exists, we will overwrite it.
Args:
id_obj (Any): An identifiable object you want to persist in the
filesystem. | [
"Persist",
"an",
"object",
"in",
"the",
"filesystem",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L247-L274 |
PolyJIT/benchbuild | benchbuild/utils/wrapping.py | load | def load(filename):
"""Load a pickled obj from the filesystem.
You better know what you expect from the given pickle, because we don't check it.
Args:
filename (str): The filename we load the object from.
Returns:
The object we were able to unpickle, else None.
"""
if not os.path.exists(filename):
LOG.error("load object - File '%s' does not exist.", filename)
return None
obj = None
with open(filename, 'rb') as obj_file:
obj = dill.load(obj_file)
return obj | python | def load(filename):
"""Load a pickled obj from the filesystem.
You better know what you expect from the given pickle, because we don't check it.
Args:
filename (str): The filename we load the object from.
Returns:
The object we were able to unpickle, else None.
"""
if not os.path.exists(filename):
LOG.error("load object - File '%s' does not exist.", filename)
return None
obj = None
with open(filename, 'rb') as obj_file:
obj = dill.load(obj_file)
return obj | [
"def",
"load",
"(",
"filename",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"filename",
")",
":",
"LOG",
".",
"error",
"(",
"\"load object - File '%s' does not exist.\"",
",",
"filename",
")",
"return",
"None",
"obj",
"=",
"None",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"obj_file",
":",
"obj",
"=",
"dill",
".",
"load",
"(",
"obj_file",
")",
"return",
"obj"
] | Load a pickled obj from the filesystem.
You better know what you expect from the given pickle, because we don't check it.
Args:
filename (str): The filename we load the object from.
Returns:
The object we were able to unpickle, else None. | [
"Load",
"a",
"pickled",
"obj",
"from",
"the",
"filesystem",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/wrapping.py#L277-L295 |
sci-bots/svg-model | svg_model/connections.py | extend_shapes | def extend_shapes(df_shapes, axis, distance):
'''
Extend shape/polygon outline away from polygon center point by absolute
distance.
'''
df_shapes_i = df_shapes.copy()
offsets = df_shapes_i[axis + '_center_offset'].copy()
offsets[offsets < 0] -= distance
offsets[offsets >= 0] += distance
df_shapes_i[axis] = df_shapes_i[axis + '_center'] + offsets
return df_shapes_i | python | def extend_shapes(df_shapes, axis, distance):
'''
Extend shape/polygon outline away from polygon center point by absolute
distance.
'''
df_shapes_i = df_shapes.copy()
offsets = df_shapes_i[axis + '_center_offset'].copy()
offsets[offsets < 0] -= distance
offsets[offsets >= 0] += distance
df_shapes_i[axis] = df_shapes_i[axis + '_center'] + offsets
return df_shapes_i | [
"def",
"extend_shapes",
"(",
"df_shapes",
",",
"axis",
",",
"distance",
")",
":",
"df_shapes_i",
"=",
"df_shapes",
".",
"copy",
"(",
")",
"offsets",
"=",
"df_shapes_i",
"[",
"axis",
"+",
"'_center_offset'",
"]",
".",
"copy",
"(",
")",
"offsets",
"[",
"offsets",
"<",
"0",
"]",
"-=",
"distance",
"offsets",
"[",
"offsets",
">=",
"0",
"]",
"+=",
"distance",
"df_shapes_i",
"[",
"axis",
"]",
"=",
"df_shapes_i",
"[",
"axis",
"+",
"'_center'",
"]",
"+",
"offsets",
"return",
"df_shapes_i"
] | Extend shape/polygon outline away from polygon center point by absolute
distance. | [
"Extend",
"shape",
"/",
"polygon",
"outline",
"away",
"from",
"polygon",
"center",
"point",
"by",
"absolute",
"distance",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/connections.py#L17-L27 |
sci-bots/svg-model | svg_model/connections.py | extract_adjacent_shapes | def extract_adjacent_shapes(df_shapes, shape_i_column, extend=.5):
'''
Generate list of connections between "adjacent" polygon shapes based on
geometrical "closeness".
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Table rows with the same value in the :data:`shape_i_column` column
are grouped together as a polygon.
shape_i_column : str or list[str]
Column name(s) that identify the polygon each row belongs to.
extend : float, optional
Extend ``x``/``y`` coords by the specified number of absolute units
from the center point of each polygon.
Each polygon is stretched independently in the ``x`` and ``y`` direction.
In each direction, a polygon considered adjacent to all polygons that
are overlapped by the extended shape.
Returns
-------
pandas.DataFrame
Adjacency list as a frame containing the columns ``source`` and
``target``.
The ``source`` and ``target`` of each adjacency connection is ordered
such that the ``source`` is less than the ``target``.
'''
# Find corners of each solid shape outline.
# Extend x coords by abs units
df_scaled_x = extend_shapes(df_shapes, 'x', extend)
# Extend y coords by abs units
df_scaled_y = extend_shapes(df_shapes, 'y', extend)
df_corners = df_shapes.groupby(shape_i_column).agg({'x': ['min', 'max'],
'y': ['min', 'max']})
# Find adjacent electrodes
row_list = []
for shapeNumber in df_shapes[shape_i_column].drop_duplicates():
df_stretched = df_scaled_x[df_scaled_x[shape_i_column]
.isin([shapeNumber])]
xmin_x, xmax_x, ymin_x, ymax_x = (df_stretched.x.min(),
df_stretched.x.max(),
df_stretched.y.min(),
df_stretched.y.max())
df_stretched = df_scaled_y[df_scaled_y[shape_i_column]
.isin([shapeNumber])]
xmin_y, xmax_y, ymin_y, ymax_y = (df_stretched.x.min(),
df_stretched.x.max(),
df_stretched.y.min(),
df_stretched.y.max())
#Some conditions unnecessary if it is assumed that electrodes don't overlap
adjacent = df_corners[
((df_corners.x['min'] < xmax_x) & (df_corners.x['max'] >= xmax_x)
# Check in x stretched direction
|(df_corners.x['min'] < xmin_x) & (df_corners.x['max'] >= xmin_x))
# Check if y is within bounds
& (df_corners.y['min'] < ymax_x) & (df_corners.y['max'] > ymin_x) |
#maybe do ymax_x - df_corners.y['min'] > threshold &
# df_corners.y['max'] - ymin_x > threshold
((df_corners.y['min'] < ymax_y) & (df_corners.y['max'] >= ymax_y)
# Checks in y stretched direction
|(df_corners.y['min'] < ymin_y) & (df_corners.y['max'] >= ymin_y))
# Check if x in within bounds
& ((df_corners.x['min'] < xmax_y) & (df_corners.x['max'] > xmin_y))
].index.values
for shape in adjacent:
temp_dict = {}
reverse_dict = {}
temp_dict ['source'] = shapeNumber
reverse_dict['source'] = shape
temp_dict ['target'] = shape
reverse_dict['target'] = shapeNumber
if(reverse_dict not in row_list):
row_list.append(temp_dict)
df_connected = (pd.DataFrame(row_list)[['source', 'target']]
.sort_index(axis=1, ascending=True)
.sort_values(['source', 'target']))
return df_connected | python | def extract_adjacent_shapes(df_shapes, shape_i_column, extend=.5):
'''
Generate list of connections between "adjacent" polygon shapes based on
geometrical "closeness".
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Table rows with the same value in the :data:`shape_i_column` column
are grouped together as a polygon.
shape_i_column : str or list[str]
Column name(s) that identify the polygon each row belongs to.
extend : float, optional
Extend ``x``/``y`` coords by the specified number of absolute units
from the center point of each polygon.
Each polygon is stretched independently in the ``x`` and ``y`` direction.
In each direction, a polygon considered adjacent to all polygons that
are overlapped by the extended shape.
Returns
-------
pandas.DataFrame
Adjacency list as a frame containing the columns ``source`` and
``target``.
The ``source`` and ``target`` of each adjacency connection is ordered
such that the ``source`` is less than the ``target``.
'''
# Find corners of each solid shape outline.
# Extend x coords by abs units
df_scaled_x = extend_shapes(df_shapes, 'x', extend)
# Extend y coords by abs units
df_scaled_y = extend_shapes(df_shapes, 'y', extend)
df_corners = df_shapes.groupby(shape_i_column).agg({'x': ['min', 'max'],
'y': ['min', 'max']})
# Find adjacent electrodes
row_list = []
for shapeNumber in df_shapes[shape_i_column].drop_duplicates():
df_stretched = df_scaled_x[df_scaled_x[shape_i_column]
.isin([shapeNumber])]
xmin_x, xmax_x, ymin_x, ymax_x = (df_stretched.x.min(),
df_stretched.x.max(),
df_stretched.y.min(),
df_stretched.y.max())
df_stretched = df_scaled_y[df_scaled_y[shape_i_column]
.isin([shapeNumber])]
xmin_y, xmax_y, ymin_y, ymax_y = (df_stretched.x.min(),
df_stretched.x.max(),
df_stretched.y.min(),
df_stretched.y.max())
#Some conditions unnecessary if it is assumed that electrodes don't overlap
adjacent = df_corners[
((df_corners.x['min'] < xmax_x) & (df_corners.x['max'] >= xmax_x)
# Check in x stretched direction
|(df_corners.x['min'] < xmin_x) & (df_corners.x['max'] >= xmin_x))
# Check if y is within bounds
& (df_corners.y['min'] < ymax_x) & (df_corners.y['max'] > ymin_x) |
#maybe do ymax_x - df_corners.y['min'] > threshold &
# df_corners.y['max'] - ymin_x > threshold
((df_corners.y['min'] < ymax_y) & (df_corners.y['max'] >= ymax_y)
# Checks in y stretched direction
|(df_corners.y['min'] < ymin_y) & (df_corners.y['max'] >= ymin_y))
# Check if x in within bounds
& ((df_corners.x['min'] < xmax_y) & (df_corners.x['max'] > xmin_y))
].index.values
for shape in adjacent:
temp_dict = {}
reverse_dict = {}
temp_dict ['source'] = shapeNumber
reverse_dict['source'] = shape
temp_dict ['target'] = shape
reverse_dict['target'] = shapeNumber
if(reverse_dict not in row_list):
row_list.append(temp_dict)
df_connected = (pd.DataFrame(row_list)[['source', 'target']]
.sort_index(axis=1, ascending=True)
.sort_values(['source', 'target']))
return df_connected | [
"def",
"extract_adjacent_shapes",
"(",
"df_shapes",
",",
"shape_i_column",
",",
"extend",
"=",
".5",
")",
":",
"# Find corners of each solid shape outline.",
"# Extend x coords by abs units",
"df_scaled_x",
"=",
"extend_shapes",
"(",
"df_shapes",
",",
"'x'",
",",
"extend",
")",
"# Extend y coords by abs units",
"df_scaled_y",
"=",
"extend_shapes",
"(",
"df_shapes",
",",
"'y'",
",",
"extend",
")",
"df_corners",
"=",
"df_shapes",
".",
"groupby",
"(",
"shape_i_column",
")",
".",
"agg",
"(",
"{",
"'x'",
":",
"[",
"'min'",
",",
"'max'",
"]",
",",
"'y'",
":",
"[",
"'min'",
",",
"'max'",
"]",
"}",
")",
"# Find adjacent electrodes",
"row_list",
"=",
"[",
"]",
"for",
"shapeNumber",
"in",
"df_shapes",
"[",
"shape_i_column",
"]",
".",
"drop_duplicates",
"(",
")",
":",
"df_stretched",
"=",
"df_scaled_x",
"[",
"df_scaled_x",
"[",
"shape_i_column",
"]",
".",
"isin",
"(",
"[",
"shapeNumber",
"]",
")",
"]",
"xmin_x",
",",
"xmax_x",
",",
"ymin_x",
",",
"ymax_x",
"=",
"(",
"df_stretched",
".",
"x",
".",
"min",
"(",
")",
",",
"df_stretched",
".",
"x",
".",
"max",
"(",
")",
",",
"df_stretched",
".",
"y",
".",
"min",
"(",
")",
",",
"df_stretched",
".",
"y",
".",
"max",
"(",
")",
")",
"df_stretched",
"=",
"df_scaled_y",
"[",
"df_scaled_y",
"[",
"shape_i_column",
"]",
".",
"isin",
"(",
"[",
"shapeNumber",
"]",
")",
"]",
"xmin_y",
",",
"xmax_y",
",",
"ymin_y",
",",
"ymax_y",
"=",
"(",
"df_stretched",
".",
"x",
".",
"min",
"(",
")",
",",
"df_stretched",
".",
"x",
".",
"max",
"(",
")",
",",
"df_stretched",
".",
"y",
".",
"min",
"(",
")",
",",
"df_stretched",
".",
"y",
".",
"max",
"(",
")",
")",
"#Some conditions unnecessary if it is assumed that electrodes don't overlap",
"adjacent",
"=",
"df_corners",
"[",
"(",
"(",
"df_corners",
".",
"x",
"[",
"'min'",
"]",
"<",
"xmax_x",
")",
"&",
"(",
"df_corners",
".",
"x",
"[",
"'max'",
"]",
">=",
"xmax_x",
")",
"# Check in x stretched direction",
"|",
"(",
"df_corners",
".",
"x",
"[",
"'min'",
"]",
"<",
"xmin_x",
")",
"&",
"(",
"df_corners",
".",
"x",
"[",
"'max'",
"]",
">=",
"xmin_x",
")",
")",
"# Check if y is within bounds",
"&",
"(",
"df_corners",
".",
"y",
"[",
"'min'",
"]",
"<",
"ymax_x",
")",
"&",
"(",
"df_corners",
".",
"y",
"[",
"'max'",
"]",
">",
"ymin_x",
")",
"|",
"#maybe do ymax_x - df_corners.y['min'] > threshold &",
"# df_corners.y['max'] - ymin_x > threshold",
"(",
"(",
"df_corners",
".",
"y",
"[",
"'min'",
"]",
"<",
"ymax_y",
")",
"&",
"(",
"df_corners",
".",
"y",
"[",
"'max'",
"]",
">=",
"ymax_y",
")",
"# Checks in y stretched direction",
"|",
"(",
"df_corners",
".",
"y",
"[",
"'min'",
"]",
"<",
"ymin_y",
")",
"&",
"(",
"df_corners",
".",
"y",
"[",
"'max'",
"]",
">=",
"ymin_y",
")",
")",
"# Check if x in within bounds",
"&",
"(",
"(",
"df_corners",
".",
"x",
"[",
"'min'",
"]",
"<",
"xmax_y",
")",
"&",
"(",
"df_corners",
".",
"x",
"[",
"'max'",
"]",
">",
"xmin_y",
")",
")",
"]",
".",
"index",
".",
"values",
"for",
"shape",
"in",
"adjacent",
":",
"temp_dict",
"=",
"{",
"}",
"reverse_dict",
"=",
"{",
"}",
"temp_dict",
"[",
"'source'",
"]",
"=",
"shapeNumber",
"reverse_dict",
"[",
"'source'",
"]",
"=",
"shape",
"temp_dict",
"[",
"'target'",
"]",
"=",
"shape",
"reverse_dict",
"[",
"'target'",
"]",
"=",
"shapeNumber",
"if",
"(",
"reverse_dict",
"not",
"in",
"row_list",
")",
":",
"row_list",
".",
"append",
"(",
"temp_dict",
")",
"df_connected",
"=",
"(",
"pd",
".",
"DataFrame",
"(",
"row_list",
")",
"[",
"[",
"'source'",
",",
"'target'",
"]",
"]",
".",
"sort_index",
"(",
"axis",
"=",
"1",
",",
"ascending",
"=",
"True",
")",
".",
"sort_values",
"(",
"[",
"'source'",
",",
"'target'",
"]",
")",
")",
"return",
"df_connected"
] | Generate list of connections between "adjacent" polygon shapes based on
geometrical "closeness".
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Table rows with the same value in the :data:`shape_i_column` column
are grouped together as a polygon.
shape_i_column : str or list[str]
Column name(s) that identify the polygon each row belongs to.
extend : float, optional
Extend ``x``/``y`` coords by the specified number of absolute units
from the center point of each polygon.
Each polygon is stretched independently in the ``x`` and ``y`` direction.
In each direction, a polygon considered adjacent to all polygons that
are overlapped by the extended shape.
Returns
-------
pandas.DataFrame
Adjacency list as a frame containing the columns ``source`` and
``target``.
The ``source`` and ``target`` of each adjacency connection is ordered
such that the ``source`` is less than the ``target``. | [
"Generate",
"list",
"of",
"connections",
"between",
"adjacent",
"polygon",
"shapes",
"based",
"on",
"geometrical",
"closeness",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/connections.py#L30-L119 |
sci-bots/svg-model | svg_model/connections.py | get_adjacency_matrix | def get_adjacency_matrix(df_connected):
'''
Return matrix where $a_{i,j} = 1$ indicates polygon $i$ is connected to
polygon $j$.
Also, return mapping (and reverse mapping) from original keys in
`df_connected` to zero-based integer index used for matrix rows and
columns.
'''
sorted_path_keys = np.sort(np.unique(df_connected[['source', 'target']]
.values.ravel()))
indexed_paths = pd.Series(sorted_path_keys)
path_indexes = pd.Series(indexed_paths.index, index=sorted_path_keys)
adjacency_matrix = np.zeros((path_indexes.shape[0], ) * 2, dtype=int)
for i_key, j_key in df_connected[['source', 'target']].values:
i, j = path_indexes.loc[[i_key, j_key]]
adjacency_matrix[i, j] = 1
adjacency_matrix[j, i] = 1
return adjacency_matrix, indexed_paths, path_indexes | python | def get_adjacency_matrix(df_connected):
'''
Return matrix where $a_{i,j} = 1$ indicates polygon $i$ is connected to
polygon $j$.
Also, return mapping (and reverse mapping) from original keys in
`df_connected` to zero-based integer index used for matrix rows and
columns.
'''
sorted_path_keys = np.sort(np.unique(df_connected[['source', 'target']]
.values.ravel()))
indexed_paths = pd.Series(sorted_path_keys)
path_indexes = pd.Series(indexed_paths.index, index=sorted_path_keys)
adjacency_matrix = np.zeros((path_indexes.shape[0], ) * 2, dtype=int)
for i_key, j_key in df_connected[['source', 'target']].values:
i, j = path_indexes.loc[[i_key, j_key]]
adjacency_matrix[i, j] = 1
adjacency_matrix[j, i] = 1
return adjacency_matrix, indexed_paths, path_indexes | [
"def",
"get_adjacency_matrix",
"(",
"df_connected",
")",
":",
"sorted_path_keys",
"=",
"np",
".",
"sort",
"(",
"np",
".",
"unique",
"(",
"df_connected",
"[",
"[",
"'source'",
",",
"'target'",
"]",
"]",
".",
"values",
".",
"ravel",
"(",
")",
")",
")",
"indexed_paths",
"=",
"pd",
".",
"Series",
"(",
"sorted_path_keys",
")",
"path_indexes",
"=",
"pd",
".",
"Series",
"(",
"indexed_paths",
".",
"index",
",",
"index",
"=",
"sorted_path_keys",
")",
"adjacency_matrix",
"=",
"np",
".",
"zeros",
"(",
"(",
"path_indexes",
".",
"shape",
"[",
"0",
"]",
",",
")",
"*",
"2",
",",
"dtype",
"=",
"int",
")",
"for",
"i_key",
",",
"j_key",
"in",
"df_connected",
"[",
"[",
"'source'",
",",
"'target'",
"]",
"]",
".",
"values",
":",
"i",
",",
"j",
"=",
"path_indexes",
".",
"loc",
"[",
"[",
"i_key",
",",
"j_key",
"]",
"]",
"adjacency_matrix",
"[",
"i",
",",
"j",
"]",
"=",
"1",
"adjacency_matrix",
"[",
"j",
",",
"i",
"]",
"=",
"1",
"return",
"adjacency_matrix",
",",
"indexed_paths",
",",
"path_indexes"
] | Return matrix where $a_{i,j} = 1$ indicates polygon $i$ is connected to
polygon $j$.
Also, return mapping (and reverse mapping) from original keys in
`df_connected` to zero-based integer index used for matrix rows and
columns. | [
"Return",
"matrix",
"where",
"$a_",
"{",
"i",
"j",
"}",
"=",
"1$",
"indicates",
"polygon",
"$i$",
"is",
"connected",
"to",
"polygon",
"$j$",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/connections.py#L122-L141 |
sci-bots/svg-model | svg_model/connections.py | extract_connections | def extract_connections(svg_source, shapes_canvas, line_layer='Connections',
line_xpath=None, path_xpath=None, namespaces=None):
'''
Load all ``<svg:line>`` elements and ``<svg:path>`` elements from a layer
of an SVG source. For each element, if endpoints overlap distinct shapes
in :data:`shapes_canvas`, add connection between overlapped shapes.
.. versionchanged:: 0.6.post1
Allow both ``<svg:line>`` *and* ``<svg:path>`` instances to denote
connected/adjacent shapes.
.. versionadded:: 0.6.post1
:data:`path_xpath`
Parameters
----------
svg_source : filepath
Input SVG file containing connection lines.
shapes_canvas : shapes_canvas.ShapesCanvas
Shapes canvas containing shapes to compare against connection
endpoints.
line_layer : str
Name of layer in SVG containing connection lines.
line_xpath : str
XPath string to iterate through connection lines.
path_xpath : str
XPath string to iterate through connection paths.
namespaces : dict
SVG namespaces (compatible with :func:`etree.parse`).
Returns
-------
pandas.DataFrame
Each row corresponds to connection between two shapes in
:data:`shapes_canvas`, denoted ``source`` and ``target``.
'''
from lxml import etree
if namespaces is None:
# Inkscape namespace is required to match SVG elements as well as
# Inkscape-specific SVG tags and attributes (e.g., `inkscape:label`).
namespaces = INKSCAPE_NSMAP
# Parse SVG source.
e_root = etree.parse(svg_source)
# List to hold records of form: `[<id>, <x1>, <y1>, <x2>, <y2>]`.
frames = []
if line_xpath is None:
# Define query to look for `svg:line` elements in top level of layer of
# SVG specified to contain connections.
line_xpath = ("//svg:g[@inkscape:label='%s']/svg:line" % line_layer)
coords_columns = ['x1', 'y1', 'x2', 'y2']
for line_i in e_root.xpath(line_xpath, namespaces=namespaces):
# Extract start and end coordinate from `svg:line` element.
line_i_dict = dict(list(line_i.items()))
values = ([line_i_dict.get('id', None)] +
[float(line_i_dict[k]) for k in coords_columns])
# Append record for end points of current line.
frames.append(values)
# Regular expression pattern to match start and end coordinates of
# connection `svg:path` element.
cre_path_ends = re.compile(r'^\s*M\s*(?P<start_x>\d+(\.\d+)?),\s*'
r'(?P<start_y>\d+(\.\d+)?).*'
# Diagonal line...
r'((L\s*(?P<end_x>\d+(\.\d+)?),\s*'
r'(?P<end_y>\d+(\.\d+)?))|'
# or Vertical line...
r'(V\s*(?P<end_vy>\d+(\.\d+)?))|'
# or Horizontal line
r'(H\s*(?P<end_hx>\d+(\.\d+)?))'
r')\D*'
r'$')
if path_xpath is None:
# Define query to look for `svg:path` elements in top level of layer of
# SVG specified to contain connections.
path_xpath = ("//svg:g[@inkscape:label='%s']/svg:path" % line_layer)
for path_i in e_root.xpath(path_xpath, namespaces=namespaces):
path_i_dict = dict(list(path_i.items()))
match_i = cre_path_ends.match(path_i_dict['d'])
if match_i:
# Connection `svg:path` matched required format. Extract start and
# end coordinates.
match_dict_i = match_i.groupdict()
if match_dict_i['end_vy']:
# Path ended with vertical line
match_dict_i['end_x'] = match_dict_i['start_x']
match_dict_i['end_y'] = match_dict_i['end_vy']
if match_dict_i['end_hx']:
# Path ended with horizontal line
match_dict_i['end_x'] = match_dict_i['end_hx']
match_dict_i['end_y'] = match_dict_i['start_y']
# Append record for end points of current path.
frames.append([path_i_dict['id']] + list(map(float,
(match_dict_i['start_x'],
match_dict_i['start_y'],
match_dict_i['end_x'],
match_dict_i['end_y']))))
if not frames:
return pd.DataFrame(None, columns=['source', 'target'])
df_connection_lines = pd.DataFrame(frames, columns=['id'] + coords_columns)
# Use `shapes_canvas.find_shape` to determine shapes overlapped by end
# points of each `svg:path` or `svg:line`.
df_shape_connections_i = pd.DataFrame([[shapes_canvas.find_shape(x1, y1),
shapes_canvas.find_shape(x2, y2)]
for i, (x1, y1, x2, y2) in
df_connection_lines[coords_columns]
.iterrows()],
columns=['source', 'target'])
# Order the source and target of each row so the source shape identifier is
# always the lowest.
df_shape_connections_i.sort_index(axis=1, inplace=True)
# Tag each shape connection with the corresponding `svg:line`/`svg:path`
# identifier. May be useful, e.g., in debugging.
df_shape_connections_i['line_id'] = df_connection_lines['id']
# Remove connections where source or target shape was not matched (e.g., if
# one or more end points does not overlap with a shape).
return df_shape_connections_i.dropna() | python | def extract_connections(svg_source, shapes_canvas, line_layer='Connections',
line_xpath=None, path_xpath=None, namespaces=None):
'''
Load all ``<svg:line>`` elements and ``<svg:path>`` elements from a layer
of an SVG source. For each element, if endpoints overlap distinct shapes
in :data:`shapes_canvas`, add connection between overlapped shapes.
.. versionchanged:: 0.6.post1
Allow both ``<svg:line>`` *and* ``<svg:path>`` instances to denote
connected/adjacent shapes.
.. versionadded:: 0.6.post1
:data:`path_xpath`
Parameters
----------
svg_source : filepath
Input SVG file containing connection lines.
shapes_canvas : shapes_canvas.ShapesCanvas
Shapes canvas containing shapes to compare against connection
endpoints.
line_layer : str
Name of layer in SVG containing connection lines.
line_xpath : str
XPath string to iterate through connection lines.
path_xpath : str
XPath string to iterate through connection paths.
namespaces : dict
SVG namespaces (compatible with :func:`etree.parse`).
Returns
-------
pandas.DataFrame
Each row corresponds to connection between two shapes in
:data:`shapes_canvas`, denoted ``source`` and ``target``.
'''
from lxml import etree
if namespaces is None:
# Inkscape namespace is required to match SVG elements as well as
# Inkscape-specific SVG tags and attributes (e.g., `inkscape:label`).
namespaces = INKSCAPE_NSMAP
# Parse SVG source.
e_root = etree.parse(svg_source)
# List to hold records of form: `[<id>, <x1>, <y1>, <x2>, <y2>]`.
frames = []
if line_xpath is None:
# Define query to look for `svg:line` elements in top level of layer of
# SVG specified to contain connections.
line_xpath = ("//svg:g[@inkscape:label='%s']/svg:line" % line_layer)
coords_columns = ['x1', 'y1', 'x2', 'y2']
for line_i in e_root.xpath(line_xpath, namespaces=namespaces):
# Extract start and end coordinate from `svg:line` element.
line_i_dict = dict(list(line_i.items()))
values = ([line_i_dict.get('id', None)] +
[float(line_i_dict[k]) for k in coords_columns])
# Append record for end points of current line.
frames.append(values)
# Regular expression pattern to match start and end coordinates of
# connection `svg:path` element.
cre_path_ends = re.compile(r'^\s*M\s*(?P<start_x>\d+(\.\d+)?),\s*'
r'(?P<start_y>\d+(\.\d+)?).*'
# Diagonal line...
r'((L\s*(?P<end_x>\d+(\.\d+)?),\s*'
r'(?P<end_y>\d+(\.\d+)?))|'
# or Vertical line...
r'(V\s*(?P<end_vy>\d+(\.\d+)?))|'
# or Horizontal line
r'(H\s*(?P<end_hx>\d+(\.\d+)?))'
r')\D*'
r'$')
if path_xpath is None:
# Define query to look for `svg:path` elements in top level of layer of
# SVG specified to contain connections.
path_xpath = ("//svg:g[@inkscape:label='%s']/svg:path" % line_layer)
for path_i in e_root.xpath(path_xpath, namespaces=namespaces):
path_i_dict = dict(list(path_i.items()))
match_i = cre_path_ends.match(path_i_dict['d'])
if match_i:
# Connection `svg:path` matched required format. Extract start and
# end coordinates.
match_dict_i = match_i.groupdict()
if match_dict_i['end_vy']:
# Path ended with vertical line
match_dict_i['end_x'] = match_dict_i['start_x']
match_dict_i['end_y'] = match_dict_i['end_vy']
if match_dict_i['end_hx']:
# Path ended with horizontal line
match_dict_i['end_x'] = match_dict_i['end_hx']
match_dict_i['end_y'] = match_dict_i['start_y']
# Append record for end points of current path.
frames.append([path_i_dict['id']] + list(map(float,
(match_dict_i['start_x'],
match_dict_i['start_y'],
match_dict_i['end_x'],
match_dict_i['end_y']))))
if not frames:
return pd.DataFrame(None, columns=['source', 'target'])
df_connection_lines = pd.DataFrame(frames, columns=['id'] + coords_columns)
# Use `shapes_canvas.find_shape` to determine shapes overlapped by end
# points of each `svg:path` or `svg:line`.
df_shape_connections_i = pd.DataFrame([[shapes_canvas.find_shape(x1, y1),
shapes_canvas.find_shape(x2, y2)]
for i, (x1, y1, x2, y2) in
df_connection_lines[coords_columns]
.iterrows()],
columns=['source', 'target'])
# Order the source and target of each row so the source shape identifier is
# always the lowest.
df_shape_connections_i.sort_index(axis=1, inplace=True)
# Tag each shape connection with the corresponding `svg:line`/`svg:path`
# identifier. May be useful, e.g., in debugging.
df_shape_connections_i['line_id'] = df_connection_lines['id']
# Remove connections where source or target shape was not matched (e.g., if
# one or more end points does not overlap with a shape).
return df_shape_connections_i.dropna() | [
"def",
"extract_connections",
"(",
"svg_source",
",",
"shapes_canvas",
",",
"line_layer",
"=",
"'Connections'",
",",
"line_xpath",
"=",
"None",
",",
"path_xpath",
"=",
"None",
",",
"namespaces",
"=",
"None",
")",
":",
"from",
"lxml",
"import",
"etree",
"if",
"namespaces",
"is",
"None",
":",
"# Inkscape namespace is required to match SVG elements as well as",
"# Inkscape-specific SVG tags and attributes (e.g., `inkscape:label`).",
"namespaces",
"=",
"INKSCAPE_NSMAP",
"# Parse SVG source.",
"e_root",
"=",
"etree",
".",
"parse",
"(",
"svg_source",
")",
"# List to hold records of form: `[<id>, <x1>, <y1>, <x2>, <y2>]`.",
"frames",
"=",
"[",
"]",
"if",
"line_xpath",
"is",
"None",
":",
"# Define query to look for `svg:line` elements in top level of layer of",
"# SVG specified to contain connections.",
"line_xpath",
"=",
"(",
"\"//svg:g[@inkscape:label='%s']/svg:line\"",
"%",
"line_layer",
")",
"coords_columns",
"=",
"[",
"'x1'",
",",
"'y1'",
",",
"'x2'",
",",
"'y2'",
"]",
"for",
"line_i",
"in",
"e_root",
".",
"xpath",
"(",
"line_xpath",
",",
"namespaces",
"=",
"namespaces",
")",
":",
"# Extract start and end coordinate from `svg:line` element.",
"line_i_dict",
"=",
"dict",
"(",
"list",
"(",
"line_i",
".",
"items",
"(",
")",
")",
")",
"values",
"=",
"(",
"[",
"line_i_dict",
".",
"get",
"(",
"'id'",
",",
"None",
")",
"]",
"+",
"[",
"float",
"(",
"line_i_dict",
"[",
"k",
"]",
")",
"for",
"k",
"in",
"coords_columns",
"]",
")",
"# Append record for end points of current line.",
"frames",
".",
"append",
"(",
"values",
")",
"# Regular expression pattern to match start and end coordinates of",
"# connection `svg:path` element.",
"cre_path_ends",
"=",
"re",
".",
"compile",
"(",
"r'^\\s*M\\s*(?P<start_x>\\d+(\\.\\d+)?),\\s*'",
"r'(?P<start_y>\\d+(\\.\\d+)?).*'",
"# Diagonal line...",
"r'((L\\s*(?P<end_x>\\d+(\\.\\d+)?),\\s*'",
"r'(?P<end_y>\\d+(\\.\\d+)?))|'",
"# or Vertical line...",
"r'(V\\s*(?P<end_vy>\\d+(\\.\\d+)?))|'",
"# or Horizontal line",
"r'(H\\s*(?P<end_hx>\\d+(\\.\\d+)?))'",
"r')\\D*'",
"r'$'",
")",
"if",
"path_xpath",
"is",
"None",
":",
"# Define query to look for `svg:path` elements in top level of layer of",
"# SVG specified to contain connections.",
"path_xpath",
"=",
"(",
"\"//svg:g[@inkscape:label='%s']/svg:path\"",
"%",
"line_layer",
")",
"for",
"path_i",
"in",
"e_root",
".",
"xpath",
"(",
"path_xpath",
",",
"namespaces",
"=",
"namespaces",
")",
":",
"path_i_dict",
"=",
"dict",
"(",
"list",
"(",
"path_i",
".",
"items",
"(",
")",
")",
")",
"match_i",
"=",
"cre_path_ends",
".",
"match",
"(",
"path_i_dict",
"[",
"'d'",
"]",
")",
"if",
"match_i",
":",
"# Connection `svg:path` matched required format. Extract start and",
"# end coordinates.",
"match_dict_i",
"=",
"match_i",
".",
"groupdict",
"(",
")",
"if",
"match_dict_i",
"[",
"'end_vy'",
"]",
":",
"# Path ended with vertical line",
"match_dict_i",
"[",
"'end_x'",
"]",
"=",
"match_dict_i",
"[",
"'start_x'",
"]",
"match_dict_i",
"[",
"'end_y'",
"]",
"=",
"match_dict_i",
"[",
"'end_vy'",
"]",
"if",
"match_dict_i",
"[",
"'end_hx'",
"]",
":",
"# Path ended with horizontal line",
"match_dict_i",
"[",
"'end_x'",
"]",
"=",
"match_dict_i",
"[",
"'end_hx'",
"]",
"match_dict_i",
"[",
"'end_y'",
"]",
"=",
"match_dict_i",
"[",
"'start_y'",
"]",
"# Append record for end points of current path.",
"frames",
".",
"append",
"(",
"[",
"path_i_dict",
"[",
"'id'",
"]",
"]",
"+",
"list",
"(",
"map",
"(",
"float",
",",
"(",
"match_dict_i",
"[",
"'start_x'",
"]",
",",
"match_dict_i",
"[",
"'start_y'",
"]",
",",
"match_dict_i",
"[",
"'end_x'",
"]",
",",
"match_dict_i",
"[",
"'end_y'",
"]",
")",
")",
")",
")",
"if",
"not",
"frames",
":",
"return",
"pd",
".",
"DataFrame",
"(",
"None",
",",
"columns",
"=",
"[",
"'source'",
",",
"'target'",
"]",
")",
"df_connection_lines",
"=",
"pd",
".",
"DataFrame",
"(",
"frames",
",",
"columns",
"=",
"[",
"'id'",
"]",
"+",
"coords_columns",
")",
"# Use `shapes_canvas.find_shape` to determine shapes overlapped by end",
"# points of each `svg:path` or `svg:line`.",
"df_shape_connections_i",
"=",
"pd",
".",
"DataFrame",
"(",
"[",
"[",
"shapes_canvas",
".",
"find_shape",
"(",
"x1",
",",
"y1",
")",
",",
"shapes_canvas",
".",
"find_shape",
"(",
"x2",
",",
"y2",
")",
"]",
"for",
"i",
",",
"(",
"x1",
",",
"y1",
",",
"x2",
",",
"y2",
")",
"in",
"df_connection_lines",
"[",
"coords_columns",
"]",
".",
"iterrows",
"(",
")",
"]",
",",
"columns",
"=",
"[",
"'source'",
",",
"'target'",
"]",
")",
"# Order the source and target of each row so the source shape identifier is",
"# always the lowest.",
"df_shape_connections_i",
".",
"sort_index",
"(",
"axis",
"=",
"1",
",",
"inplace",
"=",
"True",
")",
"# Tag each shape connection with the corresponding `svg:line`/`svg:path`",
"# identifier. May be useful, e.g., in debugging.",
"df_shape_connections_i",
"[",
"'line_id'",
"]",
"=",
"df_connection_lines",
"[",
"'id'",
"]",
"# Remove connections where source or target shape was not matched (e.g., if",
"# one or more end points does not overlap with a shape).",
"return",
"df_shape_connections_i",
".",
"dropna",
"(",
")"
] | Load all ``<svg:line>`` elements and ``<svg:path>`` elements from a layer
of an SVG source. For each element, if endpoints overlap distinct shapes
in :data:`shapes_canvas`, add connection between overlapped shapes.
.. versionchanged:: 0.6.post1
Allow both ``<svg:line>`` *and* ``<svg:path>`` instances to denote
connected/adjacent shapes.
.. versionadded:: 0.6.post1
:data:`path_xpath`
Parameters
----------
svg_source : filepath
Input SVG file containing connection lines.
shapes_canvas : shapes_canvas.ShapesCanvas
Shapes canvas containing shapes to compare against connection
endpoints.
line_layer : str
Name of layer in SVG containing connection lines.
line_xpath : str
XPath string to iterate through connection lines.
path_xpath : str
XPath string to iterate through connection paths.
namespaces : dict
SVG namespaces (compatible with :func:`etree.parse`).
Returns
-------
pandas.DataFrame
Each row corresponds to connection between two shapes in
:data:`shapes_canvas`, denoted ``source`` and ``target``. | [
"Load",
"all",
"<svg",
":",
"line",
">",
"elements",
"and",
"<svg",
":",
"path",
">",
"elements",
"from",
"a",
"layer",
"of",
"an",
"SVG",
"source",
".",
"For",
"each",
"element",
"if",
"endpoints",
"overlap",
"distinct",
"shapes",
"in",
":",
"data",
":",
"shapes_canvas",
"add",
"connection",
"between",
"overlapped",
"shapes",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/connections.py#L144-L268 |
PolyJIT/benchbuild | benchbuild/reports/__init__.py | discover | def discover():
"""
Import all experiments listed in *_PLUGINS_REPORTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.reports import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> l.setLevel(lg.DEBUG)
>>> l.handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["reports"] = ["benchbuild.non.existing", "benchbuild.reports.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
Found report: benchbuild.reports.raw
"""
if CFG["plugins"]["autoload"]:
report_plugins = CFG["plugins"]["reports"].value
for plugin in report_plugins:
try:
importlib.import_module(plugin)
LOG.debug("Found report: %s", plugin)
except ImportError:
LOG.error("Could not find '%s'", plugin) | python | def discover():
"""
Import all experiments listed in *_PLUGINS_REPORTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.reports import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> l.setLevel(lg.DEBUG)
>>> l.handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["reports"] = ["benchbuild.non.existing", "benchbuild.reports.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
Found report: benchbuild.reports.raw
"""
if CFG["plugins"]["autoload"]:
report_plugins = CFG["plugins"]["reports"].value
for plugin in report_plugins:
try:
importlib.import_module(plugin)
LOG.debug("Found report: %s", plugin)
except ImportError:
LOG.error("Could not find '%s'", plugin) | [
"def",
"discover",
"(",
")",
":",
"if",
"CFG",
"[",
"\"plugins\"",
"]",
"[",
"\"autoload\"",
"]",
":",
"report_plugins",
"=",
"CFG",
"[",
"\"plugins\"",
"]",
"[",
"\"reports\"",
"]",
".",
"value",
"for",
"plugin",
"in",
"report_plugins",
":",
"try",
":",
"importlib",
".",
"import_module",
"(",
"plugin",
")",
"LOG",
".",
"debug",
"(",
"\"Found report: %s\"",
",",
"plugin",
")",
"except",
"ImportError",
":",
"LOG",
".",
"error",
"(",
"\"Could not find '%s'\"",
",",
"plugin",
")"
] | Import all experiments listed in *_PLUGINS_REPORTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.reports import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> l.setLevel(lg.DEBUG)
>>> l.handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["reports"] = ["benchbuild.non.existing", "benchbuild.reports.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
Found report: benchbuild.reports.raw | [
"Import",
"all",
"experiments",
"listed",
"in",
"*",
"_PLUGINS_REPORTS",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/reports/__init__.py#L17-L41 |
BlueBrain/hpcbench | hpcbench/export/es.py | ESExporter.es_client | def es_client(self):
"""Get Elasticsearch client
"""
es_conf = self.campaign.export.elasticsearch
return Elasticsearch(self.hosts, **es_conf.connection_params) | python | def es_client(self):
"""Get Elasticsearch client
"""
es_conf = self.campaign.export.elasticsearch
return Elasticsearch(self.hosts, **es_conf.connection_params) | [
"def",
"es_client",
"(",
"self",
")",
":",
"es_conf",
"=",
"self",
".",
"campaign",
".",
"export",
".",
"elasticsearch",
"return",
"Elasticsearch",
"(",
"self",
".",
"hosts",
",",
"*",
"*",
"es_conf",
".",
"connection_params",
")"
] | Get Elasticsearch client | [
"Get",
"Elasticsearch",
"client"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/export/es.py#L42-L46 |
BlueBrain/hpcbench | hpcbench/export/es.py | ESExporter.index_name | def index_name(self):
"""Get Elasticsearch index name associated to the campaign
"""
fmt = self.campaign.export.elasticsearch.index_name
fields = dict(date=self.report['date'])
return fmt.format(**fields).lower() | python | def index_name(self):
"""Get Elasticsearch index name associated to the campaign
"""
fmt = self.campaign.export.elasticsearch.index_name
fields = dict(date=self.report['date'])
return fmt.format(**fields).lower() | [
"def",
"index_name",
"(",
"self",
")",
":",
"fmt",
"=",
"self",
".",
"campaign",
".",
"export",
".",
"elasticsearch",
".",
"index_name",
"fields",
"=",
"dict",
"(",
"date",
"=",
"self",
".",
"report",
"[",
"'date'",
"]",
")",
"return",
"fmt",
".",
"format",
"(",
"*",
"*",
"fields",
")",
".",
"lower",
"(",
")"
] | Get Elasticsearch index name associated to the campaign | [
"Get",
"Elasticsearch",
"index",
"name",
"associated",
"to",
"the",
"campaign"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/export/es.py#L55-L60 |
BlueBrain/hpcbench | hpcbench/export/es.py | ESExporter.remove_index | def remove_index(self):
"""Remove Elasticsearch index associated to the campaign"""
self.index_client.close(self.index_name)
self.index_client.delete(self.index_name) | python | def remove_index(self):
"""Remove Elasticsearch index associated to the campaign"""
self.index_client.close(self.index_name)
self.index_client.delete(self.index_name) | [
"def",
"remove_index",
"(",
"self",
")",
":",
"self",
".",
"index_client",
".",
"close",
"(",
"self",
".",
"index_name",
")",
"self",
".",
"index_client",
".",
"delete",
"(",
"self",
".",
"index_name",
")"
] | Remove Elasticsearch index associated to the campaign | [
"Remove",
"Elasticsearch",
"index",
"associated",
"to",
"the",
"campaign"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/export/es.py#L69-L72 |
sci-bots/svg-model | docs/rename.py | parse_args | def parse_args(args=None):
"""Parses arguments, returns (options, args)."""
from argparse import ArgumentParser
if args is None:
args = sys.argv
parser = ArgumentParser(description='Rename template project with'
'hyphen-separated <new name> (path names and in '
'files).')
parser.add_argument('new_name', help='New project name (e.g., '
' `my-new-project`)')
args = parser.parse_args()
return args | python | def parse_args(args=None):
"""Parses arguments, returns (options, args)."""
from argparse import ArgumentParser
if args is None:
args = sys.argv
parser = ArgumentParser(description='Rename template project with'
'hyphen-separated <new name> (path names and in '
'files).')
parser.add_argument('new_name', help='New project name (e.g., '
' `my-new-project`)')
args = parser.parse_args()
return args | [
"def",
"parse_args",
"(",
"args",
"=",
"None",
")",
":",
"from",
"argparse",
"import",
"ArgumentParser",
"if",
"args",
"is",
"None",
":",
"args",
"=",
"sys",
".",
"argv",
"parser",
"=",
"ArgumentParser",
"(",
"description",
"=",
"'Rename template project with'",
"'hyphen-separated <new name> (path names and in '",
"'files).'",
")",
"parser",
".",
"add_argument",
"(",
"'new_name'",
",",
"help",
"=",
"'New project name (e.g., '",
"' `my-new-project`)'",
")",
"args",
"=",
"parser",
".",
"parse_args",
"(",
")",
"return",
"args"
] | Parses arguments, returns (options, args). | [
"Parses",
"arguments",
"returns",
"(",
"options",
"args",
")",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/docs/rename.py#L51-L65 |
BlueBrain/hpcbench | hpcbench/toolbox/buildinfo.py | extract_build_info | def extract_build_info(exe_path, elf_section=ELF_SECTION):
"""Extracts the build information from a given executable.
The build information is expected to be in json format, which is parsed
and returned as a dictionary.
If no build information is found an empty dictionary is returned.
This assumes binutils 2.25 to work.
Args:
exe_path (str): The full path to the executable to be examined
Returns:
dict: A dictionary of the extracted information.
"""
build_info = {}
with mkdtemp() as tempd, pushd(tempd):
proc = subprocess.Popen(
[
OBJCOPY,
DUMP_SECTION,
"{secn}={ofile}".format(secn=elf_section, ofile=BUILDINFO_FILE),
exe_path,
],
stderr=subprocess.PIPE,
)
proc.wait()
errno = proc.returncode
stderr = proc.stderr.read()
if errno or len(stderr): # just return the empty dict
LOGGER.warning('objcopy failed with errno %s.', errno)
if len(stderr):
LOGGER.warning('objcopy failed with following msg:\n%s', stderr)
return build_info
with open(BUILDINFO_FILE) as build_info_f:
try:
build_info = json.load(build_info_f, object_hook=byteify)
except JSONDcdError as jsde:
LOGGER.warning('benchmark executable build is not valid json:')
LOGGER.warning(jsde.msg)
LOGGER.warning('build info section content:')
LOGGER.warning(jsde.doc)
return build_info | python | def extract_build_info(exe_path, elf_section=ELF_SECTION):
"""Extracts the build information from a given executable.
The build information is expected to be in json format, which is parsed
and returned as a dictionary.
If no build information is found an empty dictionary is returned.
This assumes binutils 2.25 to work.
Args:
exe_path (str): The full path to the executable to be examined
Returns:
dict: A dictionary of the extracted information.
"""
build_info = {}
with mkdtemp() as tempd, pushd(tempd):
proc = subprocess.Popen(
[
OBJCOPY,
DUMP_SECTION,
"{secn}={ofile}".format(secn=elf_section, ofile=BUILDINFO_FILE),
exe_path,
],
stderr=subprocess.PIPE,
)
proc.wait()
errno = proc.returncode
stderr = proc.stderr.read()
if errno or len(stderr): # just return the empty dict
LOGGER.warning('objcopy failed with errno %s.', errno)
if len(stderr):
LOGGER.warning('objcopy failed with following msg:\n%s', stderr)
return build_info
with open(BUILDINFO_FILE) as build_info_f:
try:
build_info = json.load(build_info_f, object_hook=byteify)
except JSONDcdError as jsde:
LOGGER.warning('benchmark executable build is not valid json:')
LOGGER.warning(jsde.msg)
LOGGER.warning('build info section content:')
LOGGER.warning(jsde.doc)
return build_info | [
"def",
"extract_build_info",
"(",
"exe_path",
",",
"elf_section",
"=",
"ELF_SECTION",
")",
":",
"build_info",
"=",
"{",
"}",
"with",
"mkdtemp",
"(",
")",
"as",
"tempd",
",",
"pushd",
"(",
"tempd",
")",
":",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"[",
"OBJCOPY",
",",
"DUMP_SECTION",
",",
"\"{secn}={ofile}\"",
".",
"format",
"(",
"secn",
"=",
"elf_section",
",",
"ofile",
"=",
"BUILDINFO_FILE",
")",
",",
"exe_path",
",",
"]",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
",",
")",
"proc",
".",
"wait",
"(",
")",
"errno",
"=",
"proc",
".",
"returncode",
"stderr",
"=",
"proc",
".",
"stderr",
".",
"read",
"(",
")",
"if",
"errno",
"or",
"len",
"(",
"stderr",
")",
":",
"# just return the empty dict",
"LOGGER",
".",
"warning",
"(",
"'objcopy failed with errno %s.'",
",",
"errno",
")",
"if",
"len",
"(",
"stderr",
")",
":",
"LOGGER",
".",
"warning",
"(",
"'objcopy failed with following msg:\\n%s'",
",",
"stderr",
")",
"return",
"build_info",
"with",
"open",
"(",
"BUILDINFO_FILE",
")",
"as",
"build_info_f",
":",
"try",
":",
"build_info",
"=",
"json",
".",
"load",
"(",
"build_info_f",
",",
"object_hook",
"=",
"byteify",
")",
"except",
"JSONDcdError",
"as",
"jsde",
":",
"LOGGER",
".",
"warning",
"(",
"'benchmark executable build is not valid json:'",
")",
"LOGGER",
".",
"warning",
"(",
"jsde",
".",
"msg",
")",
"LOGGER",
".",
"warning",
"(",
"'build info section content:'",
")",
"LOGGER",
".",
"warning",
"(",
"jsde",
".",
"doc",
")",
"return",
"build_info"
] | Extracts the build information from a given executable.
The build information is expected to be in json format, which is parsed
and returned as a dictionary.
If no build information is found an empty dictionary is returned.
This assumes binutils 2.25 to work.
Args:
exe_path (str): The full path to the executable to be examined
Returns:
dict: A dictionary of the extracted information. | [
"Extracts",
"the",
"build",
"information",
"from",
"a",
"given",
"executable",
"."
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/toolbox/buildinfo.py#L25-L68 |
lazygunner/xunleipy | xunleipy/rk.py | RClient.rk_create | def rk_create(self, im, im_type, timeout=60):
"""
im: 图片字节
im_type: 题目类型
"""
params = {
'typeid': im_type,
'timeout': timeout,
}
params.update(self.base_params)
files = {'image': ('check_code.png', im)}
r = requests.post('http://api.ruokuai.com/create.json', data=params, files=files, headers=self.headers)
return r.json() | python | def rk_create(self, im, im_type, timeout=60):
"""
im: 图片字节
im_type: 题目类型
"""
params = {
'typeid': im_type,
'timeout': timeout,
}
params.update(self.base_params)
files = {'image': ('check_code.png', im)}
r = requests.post('http://api.ruokuai.com/create.json', data=params, files=files, headers=self.headers)
return r.json() | [
"def",
"rk_create",
"(",
"self",
",",
"im",
",",
"im_type",
",",
"timeout",
"=",
"60",
")",
":",
"params",
"=",
"{",
"'typeid'",
":",
"im_type",
",",
"'timeout'",
":",
"timeout",
",",
"}",
"params",
".",
"update",
"(",
"self",
".",
"base_params",
")",
"files",
"=",
"{",
"'image'",
":",
"(",
"'check_code.png'",
",",
"im",
")",
"}",
"r",
"=",
"requests",
".",
"post",
"(",
"'http://api.ruokuai.com/create.json'",
",",
"data",
"=",
"params",
",",
"files",
"=",
"files",
",",
"headers",
"=",
"self",
".",
"headers",
")",
"return",
"r",
".",
"json",
"(",
")"
] | im: 图片字节
im_type: 题目类型 | [
"im",
":",
"图片字节",
"im_type",
":",
"题目类型"
] | train | https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/rk.py#L32-L44 |
lazygunner/xunleipy | xunleipy/rk.py | RClient.rk_report_error | def rk_report_error(self, im_id):
"""
im_id:报错题目的ID
"""
params = {
'id': im_id,
}
params.update(self.base_params)
r = requests.post('http://api.ruokuai.com/reporterror.json', data=params, headers=self.headers)
return r.json() | python | def rk_report_error(self, im_id):
"""
im_id:报错题目的ID
"""
params = {
'id': im_id,
}
params.update(self.base_params)
r = requests.post('http://api.ruokuai.com/reporterror.json', data=params, headers=self.headers)
return r.json() | [
"def",
"rk_report_error",
"(",
"self",
",",
"im_id",
")",
":",
"params",
"=",
"{",
"'id'",
":",
"im_id",
",",
"}",
"params",
".",
"update",
"(",
"self",
".",
"base_params",
")",
"r",
"=",
"requests",
".",
"post",
"(",
"'http://api.ruokuai.com/reporterror.json'",
",",
"data",
"=",
"params",
",",
"headers",
"=",
"self",
".",
"headers",
")",
"return",
"r",
".",
"json",
"(",
")"
] | im_id:报错题目的ID | [
"im_id",
":",
"报错题目的ID"
] | train | https://github.com/lazygunner/xunleipy/blob/cded7598a7bf04495156bae2d747883d1eacb3f4/xunleipy/rk.py#L46-L55 |
eng-tools/sfsimodels | sfsimodels/scores.py | lc_score | def lc_score(value):
"""
Evaluates the accuracy of a predictive measure (e.g. r-squared)
:param value: float, between 0.0 and 1.0.
:return:
"""
rebased = 2 * (value - 0.5)
if rebased == 0:
return 0
elif rebased > 0:
compliment = 1.0 - rebased
score = - np.log2(compliment)
else:
compliment = 1.0 + rebased
score = np.log2(compliment)
return score | python | def lc_score(value):
"""
Evaluates the accuracy of a predictive measure (e.g. r-squared)
:param value: float, between 0.0 and 1.0.
:return:
"""
rebased = 2 * (value - 0.5)
if rebased == 0:
return 0
elif rebased > 0:
compliment = 1.0 - rebased
score = - np.log2(compliment)
else:
compliment = 1.0 + rebased
score = np.log2(compliment)
return score | [
"def",
"lc_score",
"(",
"value",
")",
":",
"rebased",
"=",
"2",
"*",
"(",
"value",
"-",
"0.5",
")",
"if",
"rebased",
"==",
"0",
":",
"return",
"0",
"elif",
"rebased",
">",
"0",
":",
"compliment",
"=",
"1.0",
"-",
"rebased",
"score",
"=",
"-",
"np",
".",
"log2",
"(",
"compliment",
")",
"else",
":",
"compliment",
"=",
"1.0",
"+",
"rebased",
"score",
"=",
"np",
".",
"log2",
"(",
"compliment",
")",
"return",
"score"
] | Evaluates the accuracy of a predictive measure (e.g. r-squared)
:param value: float, between 0.0 and 1.0.
:return: | [
"Evaluates",
"the",
"accuracy",
"of",
"a",
"predictive",
"measure",
"(",
"e",
".",
"g",
".",
"r",
"-",
"squared",
")"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/scores.py#L4-L21 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | uchroot | def uchroot(*args, **kwargs):
"""
Return a customizable uchroot command.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd
"""
uchroot_cmd = with_mounts(*args, uchroot_cmd_fn=no_llvm, **kwargs)
return uchroot_cmd["--"] | python | def uchroot(*args, **kwargs):
"""
Return a customizable uchroot command.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd
"""
uchroot_cmd = with_mounts(*args, uchroot_cmd_fn=no_llvm, **kwargs)
return uchroot_cmd["--"] | [
"def",
"uchroot",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"uchroot_cmd",
"=",
"with_mounts",
"(",
"*",
"args",
",",
"uchroot_cmd_fn",
"=",
"no_llvm",
",",
"*",
"*",
"kwargs",
")",
"return",
"uchroot_cmd",
"[",
"\"--\"",
"]"
] | Return a customizable uchroot command.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd | [
"Return",
"a",
"customizable",
"uchroot",
"command",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L13-L23 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | no_llvm | def no_llvm(*args, uid=0, gid=0, **kwargs):
"""
Return a customizable uchroot command.
The command will be executed inside a uchroot environment.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd
"""
uchroot_cmd = no_args()
uchroot_cmd = uchroot_cmd[__default_opts__(uid, gid)]
return uchroot_cmd[args] | python | def no_llvm(*args, uid=0, gid=0, **kwargs):
"""
Return a customizable uchroot command.
The command will be executed inside a uchroot environment.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd
"""
uchroot_cmd = no_args()
uchroot_cmd = uchroot_cmd[__default_opts__(uid, gid)]
return uchroot_cmd[args] | [
"def",
"no_llvm",
"(",
"*",
"args",
",",
"uid",
"=",
"0",
",",
"gid",
"=",
"0",
",",
"*",
"*",
"kwargs",
")",
":",
"uchroot_cmd",
"=",
"no_args",
"(",
")",
"uchroot_cmd",
"=",
"uchroot_cmd",
"[",
"__default_opts__",
"(",
"uid",
",",
"gid",
")",
"]",
"return",
"uchroot_cmd",
"[",
"args",
"]"
] | Return a customizable uchroot command.
The command will be executed inside a uchroot environment.
Args:
args: List of additional arguments for uchroot (typical: mounts)
Return:
chroot_cmd | [
"Return",
"a",
"customizable",
"uchroot",
"command",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L34-L47 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | no_args | def no_args(**kwargs):
"""Return the uchroot command without any customizations."""
from benchbuild.utils.cmd import uchroot as uchrt
prefixes = CFG["container"]["prefixes"].value
p_paths, p_libs = env(prefixes)
uchrt = run.with_env_recursive(
uchrt,
LD_LIBRARY_PATH=path.list_to_path(p_libs),
PATH=path.list_to_path(p_paths))
return uchrt | python | def no_args(**kwargs):
"""Return the uchroot command without any customizations."""
from benchbuild.utils.cmd import uchroot as uchrt
prefixes = CFG["container"]["prefixes"].value
p_paths, p_libs = env(prefixes)
uchrt = run.with_env_recursive(
uchrt,
LD_LIBRARY_PATH=path.list_to_path(p_libs),
PATH=path.list_to_path(p_paths))
return uchrt | [
"def",
"no_args",
"(",
"*",
"*",
"kwargs",
")",
":",
"from",
"benchbuild",
".",
"utils",
".",
"cmd",
"import",
"uchroot",
"as",
"uchrt",
"prefixes",
"=",
"CFG",
"[",
"\"container\"",
"]",
"[",
"\"prefixes\"",
"]",
".",
"value",
"p_paths",
",",
"p_libs",
"=",
"env",
"(",
"prefixes",
")",
"uchrt",
"=",
"run",
".",
"with_env_recursive",
"(",
"uchrt",
",",
"LD_LIBRARY_PATH",
"=",
"path",
".",
"list_to_path",
"(",
"p_libs",
")",
",",
"PATH",
"=",
"path",
".",
"list_to_path",
"(",
"p_paths",
")",
")",
"return",
"uchrt"
] | Return the uchroot command without any customizations. | [
"Return",
"the",
"uchroot",
"command",
"without",
"any",
"customizations",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L50-L61 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | with_mounts | def with_mounts(*args, uchroot_cmd_fn=no_args, **kwargs):
"""Return a uchroot command with all mounts enabled."""
mounts = CFG["container"]["mounts"].value
prefixes = CFG["container"]["prefixes"].value
uchroot_opts, mounts = __mounts__("mnt", mounts)
uchroot_cmd = uchroot_cmd_fn(**kwargs)
uchroot_cmd = uchroot_cmd[uchroot_opts]
uchroot_cmd = uchroot_cmd[args]
paths, libs = env(mounts)
prefix_paths, prefix_libs = env(prefixes)
uchroot_cmd = run.with_env_recursive(
uchroot_cmd,
LD_LIBRARY_PATH=path.list_to_path(libs + prefix_libs),
PATH=path.list_to_path(paths + prefix_paths))
return uchroot_cmd | python | def with_mounts(*args, uchroot_cmd_fn=no_args, **kwargs):
"""Return a uchroot command with all mounts enabled."""
mounts = CFG["container"]["mounts"].value
prefixes = CFG["container"]["prefixes"].value
uchroot_opts, mounts = __mounts__("mnt", mounts)
uchroot_cmd = uchroot_cmd_fn(**kwargs)
uchroot_cmd = uchroot_cmd[uchroot_opts]
uchroot_cmd = uchroot_cmd[args]
paths, libs = env(mounts)
prefix_paths, prefix_libs = env(prefixes)
uchroot_cmd = run.with_env_recursive(
uchroot_cmd,
LD_LIBRARY_PATH=path.list_to_path(libs + prefix_libs),
PATH=path.list_to_path(paths + prefix_paths))
return uchroot_cmd | [
"def",
"with_mounts",
"(",
"*",
"args",
",",
"uchroot_cmd_fn",
"=",
"no_args",
",",
"*",
"*",
"kwargs",
")",
":",
"mounts",
"=",
"CFG",
"[",
"\"container\"",
"]",
"[",
"\"mounts\"",
"]",
".",
"value",
"prefixes",
"=",
"CFG",
"[",
"\"container\"",
"]",
"[",
"\"prefixes\"",
"]",
".",
"value",
"uchroot_opts",
",",
"mounts",
"=",
"__mounts__",
"(",
"\"mnt\"",
",",
"mounts",
")",
"uchroot_cmd",
"=",
"uchroot_cmd_fn",
"(",
"*",
"*",
"kwargs",
")",
"uchroot_cmd",
"=",
"uchroot_cmd",
"[",
"uchroot_opts",
"]",
"uchroot_cmd",
"=",
"uchroot_cmd",
"[",
"args",
"]",
"paths",
",",
"libs",
"=",
"env",
"(",
"mounts",
")",
"prefix_paths",
",",
"prefix_libs",
"=",
"env",
"(",
"prefixes",
")",
"uchroot_cmd",
"=",
"run",
".",
"with_env_recursive",
"(",
"uchroot_cmd",
",",
"LD_LIBRARY_PATH",
"=",
"path",
".",
"list_to_path",
"(",
"libs",
"+",
"prefix_libs",
")",
",",
"PATH",
"=",
"path",
".",
"list_to_path",
"(",
"paths",
"+",
"prefix_paths",
")",
")",
"return",
"uchroot_cmd"
] | Return a uchroot command with all mounts enabled. | [
"Return",
"a",
"uchroot",
"command",
"with",
"all",
"mounts",
"enabled",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L64-L80 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | clean_env | def clean_env(uchroot_cmd, varnames):
"""Returns a uchroot cmd that runs inside a filtered environment."""
env = uchroot_cmd["/usr/bin/env"]
__clean_env = env["-u", ",".join(varnames)]
return __clean_env | python | def clean_env(uchroot_cmd, varnames):
"""Returns a uchroot cmd that runs inside a filtered environment."""
env = uchroot_cmd["/usr/bin/env"]
__clean_env = env["-u", ",".join(varnames)]
return __clean_env | [
"def",
"clean_env",
"(",
"uchroot_cmd",
",",
"varnames",
")",
":",
"env",
"=",
"uchroot_cmd",
"[",
"\"/usr/bin/env\"",
"]",
"__clean_env",
"=",
"env",
"[",
"\"-u\"",
",",
"\",\"",
".",
"join",
"(",
"varnames",
")",
"]",
"return",
"__clean_env"
] | Returns a uchroot cmd that runs inside a filtered environment. | [
"Returns",
"a",
"uchroot",
"cmd",
"that",
"runs",
"inside",
"a",
"filtered",
"environment",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L121-L125 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | mounts | def mounts(prefix, __mounts):
"""
Compute the mountpoints of the current user.
Args:
prefix: Define where the job was running if it ran on a cluster.
mounts: All mounts the user currently uses in his file system.
Return:
mntpoints
"""
i = 0
mntpoints = []
for mount in __mounts:
if not isinstance(mount, dict):
mntpoint = "{0}/{1}".format(prefix, str(i))
mntpoints.append(mntpoint)
i = i + 1
return mntpoints | python | def mounts(prefix, __mounts):
"""
Compute the mountpoints of the current user.
Args:
prefix: Define where the job was running if it ran on a cluster.
mounts: All mounts the user currently uses in his file system.
Return:
mntpoints
"""
i = 0
mntpoints = []
for mount in __mounts:
if not isinstance(mount, dict):
mntpoint = "{0}/{1}".format(prefix, str(i))
mntpoints.append(mntpoint)
i = i + 1
return mntpoints | [
"def",
"mounts",
"(",
"prefix",
",",
"__mounts",
")",
":",
"i",
"=",
"0",
"mntpoints",
"=",
"[",
"]",
"for",
"mount",
"in",
"__mounts",
":",
"if",
"not",
"isinstance",
"(",
"mount",
",",
"dict",
")",
":",
"mntpoint",
"=",
"\"{0}/{1}\"",
".",
"format",
"(",
"prefix",
",",
"str",
"(",
"i",
")",
")",
"mntpoints",
".",
"append",
"(",
"mntpoint",
")",
"i",
"=",
"i",
"+",
"1",
"return",
"mntpoints"
] | Compute the mountpoints of the current user.
Args:
prefix: Define where the job was running if it ran on a cluster.
mounts: All mounts the user currently uses in his file system.
Return:
mntpoints | [
"Compute",
"the",
"mountpoints",
"of",
"the",
"current",
"user",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L128-L145 |
PolyJIT/benchbuild | benchbuild/utils/uchroot.py | env | def env(mounts):
"""
Compute the environment of the change root for the user.
Args:
mounts: The mountpoints of the current user.
Return:
paths
ld_libs
"""
f_mounts = [m.strip("/") for m in mounts]
root = local.path("/")
ld_libs = [root / m / "lib" for m in f_mounts]
ld_libs.extend([root / m / "lib64" for m in f_mounts])
paths = [root / m / "bin" for m in f_mounts]
paths.extend([root / m / "sbin" for m in f_mounts])
paths.extend([root / m for m in f_mounts])
return paths, ld_libs | python | def env(mounts):
"""
Compute the environment of the change root for the user.
Args:
mounts: The mountpoints of the current user.
Return:
paths
ld_libs
"""
f_mounts = [m.strip("/") for m in mounts]
root = local.path("/")
ld_libs = [root / m / "lib" for m in f_mounts]
ld_libs.extend([root / m / "lib64" for m in f_mounts])
paths = [root / m / "bin" for m in f_mounts]
paths.extend([root / m / "sbin" for m in f_mounts])
paths.extend([root / m for m in f_mounts])
return paths, ld_libs | [
"def",
"env",
"(",
"mounts",
")",
":",
"f_mounts",
"=",
"[",
"m",
".",
"strip",
"(",
"\"/\"",
")",
"for",
"m",
"in",
"mounts",
"]",
"root",
"=",
"local",
".",
"path",
"(",
"\"/\"",
")",
"ld_libs",
"=",
"[",
"root",
"/",
"m",
"/",
"\"lib\"",
"for",
"m",
"in",
"f_mounts",
"]",
"ld_libs",
".",
"extend",
"(",
"[",
"root",
"/",
"m",
"/",
"\"lib64\"",
"for",
"m",
"in",
"f_mounts",
"]",
")",
"paths",
"=",
"[",
"root",
"/",
"m",
"/",
"\"bin\"",
"for",
"m",
"in",
"f_mounts",
"]",
"paths",
".",
"extend",
"(",
"[",
"root",
"/",
"m",
"/",
"\"sbin\"",
"for",
"m",
"in",
"f_mounts",
"]",
")",
"paths",
".",
"extend",
"(",
"[",
"root",
"/",
"m",
"for",
"m",
"in",
"f_mounts",
"]",
")",
"return",
"paths",
",",
"ld_libs"
] | Compute the environment of the change root for the user.
Args:
mounts: The mountpoints of the current user.
Return:
paths
ld_libs | [
"Compute",
"the",
"environment",
"of",
"the",
"change",
"root",
"for",
"the",
"user",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/uchroot.py#L166-L186 |
mromanello/hucitlib | knowledge_base/__init__.py | get_abbreviations | def get_abbreviations(kb):
"""
For the sake of profiling.
"""
return {"%s$$n%i" % (author.get_urn(), i): abbrev
for author in kb.get_authors()
for i, abbrev in enumerate(author.get_abbreviations())
if author.get_urn() is not None} | python | def get_abbreviations(kb):
"""
For the sake of profiling.
"""
return {"%s$$n%i" % (author.get_urn(), i): abbrev
for author in kb.get_authors()
for i, abbrev in enumerate(author.get_abbreviations())
if author.get_urn() is not None} | [
"def",
"get_abbreviations",
"(",
"kb",
")",
":",
"return",
"{",
"\"%s$$n%i\"",
"%",
"(",
"author",
".",
"get_urn",
"(",
")",
",",
"i",
")",
":",
"abbrev",
"for",
"author",
"in",
"kb",
".",
"get_authors",
"(",
")",
"for",
"i",
",",
"abbrev",
"in",
"enumerate",
"(",
"author",
".",
"get_abbreviations",
"(",
")",
")",
"if",
"author",
".",
"get_urn",
"(",
")",
"is",
"not",
"None",
"}"
] | For the sake of profiling. | [
"For",
"the",
"sake",
"of",
"profiling",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L21-L28 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.author_names | def author_names(self):
"""
Returns a dictionary like this:
{
"urn:cts:greekLit:tlg0012$$n1" : "Homer"
, "urn:cts:greekLit:tlg0012$$n2" : "Omero"
, ...
}
"""
return {"%s$$n%i" % (author.get_urn(), i): name[1]
for author in self.get_authors()
for i, name in enumerate(author.get_names())
if author.get_urn() is not None} | python | def author_names(self):
"""
Returns a dictionary like this:
{
"urn:cts:greekLit:tlg0012$$n1" : "Homer"
, "urn:cts:greekLit:tlg0012$$n2" : "Omero"
, ...
}
"""
return {"%s$$n%i" % (author.get_urn(), i): name[1]
for author in self.get_authors()
for i, name in enumerate(author.get_names())
if author.get_urn() is not None} | [
"def",
"author_names",
"(",
"self",
")",
":",
"return",
"{",
"\"%s$$n%i\"",
"%",
"(",
"author",
".",
"get_urn",
"(",
")",
",",
"i",
")",
":",
"name",
"[",
"1",
"]",
"for",
"author",
"in",
"self",
".",
"get_authors",
"(",
")",
"for",
"i",
",",
"name",
"in",
"enumerate",
"(",
"author",
".",
"get_names",
"(",
")",
")",
"if",
"author",
".",
"get_urn",
"(",
")",
"is",
"not",
"None",
"}"
] | Returns a dictionary like this:
{
"urn:cts:greekLit:tlg0012$$n1" : "Homer"
, "urn:cts:greekLit:tlg0012$$n2" : "Omero"
, ...
} | [
"Returns",
"a",
"dictionary",
"like",
"this",
":"
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L114-L127 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_resource_by_urn | def get_resource_by_urn(self, urn):
"""Fetch the resource corresponding to the input CTS URN.
Currently supports
only HucitAuthor and HucitWork.
:param urn: the CTS URN of the resource to fetch
:return: either an instance of `HucitAuthor` or of `HucitWork`
"""
search_query = """
PREFIX frbroo: <http://erlangen-crm.org/efrbroo/>
PREFIX crm: <http://erlangen-crm.org/current/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?resource_URI
WHERE {
?resource_URI crm:P1_is_identified_by ?urn .
?urn a crm:E42_Identifier .
?urn rdfs:label "%s"
}
""" % urn
# check type of the input URN
try:
assert isinstance(urn, CTS_URN)
except Exception as e:
# convert to pyCTS.CTS_URN if it's a string
urn = CTS_URN(urn)
logger.debug('Converted the input urn from string to %s' % type(
CTS_URN
))
if (urn.work is not None):
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
result = self._store.execute_sparql(search_query)
if len(result['results']['bindings']) == 0:
raise ResourceNotFound
else:
tmp = result['results']['bindings'][0]
resource_uri = tmp['resource_URI']['value']
return self._session.get_resource(resource_uri, Work)
elif (urn.work is None and urn.textgroup is not None):
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
result = self._store.execute_sparql(search_query)
if len(result['results']['bindings']) == 0:
raise ResourceNotFound
else:
tmp = result['results']['bindings'][0]
resource_uri = tmp['resource_URI']['value']
return self._session.get_resource(resource_uri, Person) | python | def get_resource_by_urn(self, urn):
"""Fetch the resource corresponding to the input CTS URN.
Currently supports
only HucitAuthor and HucitWork.
:param urn: the CTS URN of the resource to fetch
:return: either an instance of `HucitAuthor` or of `HucitWork`
"""
search_query = """
PREFIX frbroo: <http://erlangen-crm.org/efrbroo/>
PREFIX crm: <http://erlangen-crm.org/current/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?resource_URI
WHERE {
?resource_URI crm:P1_is_identified_by ?urn .
?urn a crm:E42_Identifier .
?urn rdfs:label "%s"
}
""" % urn
# check type of the input URN
try:
assert isinstance(urn, CTS_URN)
except Exception as e:
# convert to pyCTS.CTS_URN if it's a string
urn = CTS_URN(urn)
logger.debug('Converted the input urn from string to %s' % type(
CTS_URN
))
if (urn.work is not None):
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
result = self._store.execute_sparql(search_query)
if len(result['results']['bindings']) == 0:
raise ResourceNotFound
else:
tmp = result['results']['bindings'][0]
resource_uri = tmp['resource_URI']['value']
return self._session.get_resource(resource_uri, Work)
elif (urn.work is None and urn.textgroup is not None):
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
result = self._store.execute_sparql(search_query)
if len(result['results']['bindings']) == 0:
raise ResourceNotFound
else:
tmp = result['results']['bindings'][0]
resource_uri = tmp['resource_URI']['value']
return self._session.get_resource(resource_uri, Person) | [
"def",
"get_resource_by_urn",
"(",
"self",
",",
"urn",
")",
":",
"search_query",
"=",
"\"\"\"\n PREFIX frbroo: <http://erlangen-crm.org/efrbroo/>\n PREFIX crm: <http://erlangen-crm.org/current/>\n PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>\n\n SELECT ?resource_URI\n\n WHERE {\n ?resource_URI crm:P1_is_identified_by ?urn .\n ?urn a crm:E42_Identifier .\n ?urn rdfs:label \"%s\"\n }\n \"\"\"",
"%",
"urn",
"# check type of the input URN",
"try",
":",
"assert",
"isinstance",
"(",
"urn",
",",
"CTS_URN",
")",
"except",
"Exception",
"as",
"e",
":",
"# convert to pyCTS.CTS_URN if it's a string",
"urn",
"=",
"CTS_URN",
"(",
"urn",
")",
"logger",
".",
"debug",
"(",
"'Converted the input urn from string to %s'",
"%",
"type",
"(",
"CTS_URN",
")",
")",
"if",
"(",
"urn",
".",
"work",
"is",
"not",
"None",
")",
":",
"Work",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F1_Work'",
"]",
")",
"result",
"=",
"self",
".",
"_store",
".",
"execute_sparql",
"(",
"search_query",
")",
"if",
"len",
"(",
"result",
"[",
"'results'",
"]",
"[",
"'bindings'",
"]",
")",
"==",
"0",
":",
"raise",
"ResourceNotFound",
"else",
":",
"tmp",
"=",
"result",
"[",
"'results'",
"]",
"[",
"'bindings'",
"]",
"[",
"0",
"]",
"resource_uri",
"=",
"tmp",
"[",
"'resource_URI'",
"]",
"[",
"'value'",
"]",
"return",
"self",
".",
"_session",
".",
"get_resource",
"(",
"resource_uri",
",",
"Work",
")",
"elif",
"(",
"urn",
".",
"work",
"is",
"None",
"and",
"urn",
".",
"textgroup",
"is",
"not",
"None",
")",
":",
"Person",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F10_Person'",
"]",
")",
"result",
"=",
"self",
".",
"_store",
".",
"execute_sparql",
"(",
"search_query",
")",
"if",
"len",
"(",
"result",
"[",
"'results'",
"]",
"[",
"'bindings'",
"]",
")",
"==",
"0",
":",
"raise",
"ResourceNotFound",
"else",
":",
"tmp",
"=",
"result",
"[",
"'results'",
"]",
"[",
"'bindings'",
"]",
"[",
"0",
"]",
"resource_uri",
"=",
"tmp",
"[",
"'resource_URI'",
"]",
"[",
"'value'",
"]",
"return",
"self",
".",
"_session",
".",
"get_resource",
"(",
"resource_uri",
",",
"Person",
")"
] | Fetch the resource corresponding to the input CTS URN.
Currently supports
only HucitAuthor and HucitWork.
:param urn: the CTS URN of the resource to fetch
:return: either an instance of `HucitAuthor` or of `HucitWork` | [
"Fetch",
"the",
"resource",
"corresponding",
"to",
"the",
"input",
"CTS",
"URN",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L151-L202 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.search | def search(self, search_string):
"""
Searches for a given string through the resources' labels.
:param search_string:
:return: an instance of `HucitAuthor` or `HucitWork`.
"""
query = """
SELECT ?s ?label ?type
WHERE {
?s a ?type .
?s rdfs:label ?label .
?label bif:contains "'%s'" .
}
""" % search_string
response = self._session.default_store.execute_sparql(query)
results = [(result['s']['value'], result['label']['value'], result['type']['value'])
for result in response["results"]["bindings"]]
resources = [(label, self._session.get_resource(subject, self._session.get_class(type)))
for subject, label, type in results]
Name = self._session.get_class(surf.ns.EFRBROO['F12_Name'])
Title = self._session.get_class(surf.ns.EFRBROO['E35_Title'])
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
result = []
for label, resource in resources:
if resource.uri == surf.ns.EFRBROO['E35_Title']:
work = Work.get_by(efrbroo_P102_has_title = resource).first()
result.append((label, work))
elif resource.uri == surf.ns.EFRBROO['F12_Name']:
author = Person.get_by(ecrm_P1_is_identified_by = resource).first()
result.append((label, author))
elif resource.uri == surf.ns.ECRM['E41_Appellation']:
try:
name = Name.get_by(ecrm_P139_has_alternative_form = resource).first()
assert name is not None
author = Person.get_by(ecrm_P1_is_identified_by = name).first()
result.append((label, author))
except Exception as e:
title = Title.get_by(ecrm_P139_has_alternative_form=resource).first()
assert title is not None
work = Work.get_by(efrbroo_P102_has_title = title).first()
result.append((label, work))
return result | python | def search(self, search_string):
"""
Searches for a given string through the resources' labels.
:param search_string:
:return: an instance of `HucitAuthor` or `HucitWork`.
"""
query = """
SELECT ?s ?label ?type
WHERE {
?s a ?type .
?s rdfs:label ?label .
?label bif:contains "'%s'" .
}
""" % search_string
response = self._session.default_store.execute_sparql(query)
results = [(result['s']['value'], result['label']['value'], result['type']['value'])
for result in response["results"]["bindings"]]
resources = [(label, self._session.get_resource(subject, self._session.get_class(type)))
for subject, label, type in results]
Name = self._session.get_class(surf.ns.EFRBROO['F12_Name'])
Title = self._session.get_class(surf.ns.EFRBROO['E35_Title'])
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
result = []
for label, resource in resources:
if resource.uri == surf.ns.EFRBROO['E35_Title']:
work = Work.get_by(efrbroo_P102_has_title = resource).first()
result.append((label, work))
elif resource.uri == surf.ns.EFRBROO['F12_Name']:
author = Person.get_by(ecrm_P1_is_identified_by = resource).first()
result.append((label, author))
elif resource.uri == surf.ns.ECRM['E41_Appellation']:
try:
name = Name.get_by(ecrm_P139_has_alternative_form = resource).first()
assert name is not None
author = Person.get_by(ecrm_P1_is_identified_by = name).first()
result.append((label, author))
except Exception as e:
title = Title.get_by(ecrm_P139_has_alternative_form=resource).first()
assert title is not None
work = Work.get_by(efrbroo_P102_has_title = title).first()
result.append((label, work))
return result | [
"def",
"search",
"(",
"self",
",",
"search_string",
")",
":",
"query",
"=",
"\"\"\"\n SELECT ?s ?label ?type\n WHERE {\n ?s a ?type .\n ?s rdfs:label ?label .\n ?label bif:contains \"'%s'\" .\n }\n \"\"\"",
"%",
"search_string",
"response",
"=",
"self",
".",
"_session",
".",
"default_store",
".",
"execute_sparql",
"(",
"query",
")",
"results",
"=",
"[",
"(",
"result",
"[",
"'s'",
"]",
"[",
"'value'",
"]",
",",
"result",
"[",
"'label'",
"]",
"[",
"'value'",
"]",
",",
"result",
"[",
"'type'",
"]",
"[",
"'value'",
"]",
")",
"for",
"result",
"in",
"response",
"[",
"\"results\"",
"]",
"[",
"\"bindings\"",
"]",
"]",
"resources",
"=",
"[",
"(",
"label",
",",
"self",
".",
"_session",
".",
"get_resource",
"(",
"subject",
",",
"self",
".",
"_session",
".",
"get_class",
"(",
"type",
")",
")",
")",
"for",
"subject",
",",
"label",
",",
"type",
"in",
"results",
"]",
"Name",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F12_Name'",
"]",
")",
"Title",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'E35_Title'",
"]",
")",
"Work",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F1_Work'",
"]",
")",
"Person",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F10_Person'",
"]",
")",
"result",
"=",
"[",
"]",
"for",
"label",
",",
"resource",
"in",
"resources",
":",
"if",
"resource",
".",
"uri",
"==",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'E35_Title'",
"]",
":",
"work",
"=",
"Work",
".",
"get_by",
"(",
"efrbroo_P102_has_title",
"=",
"resource",
")",
".",
"first",
"(",
")",
"result",
".",
"append",
"(",
"(",
"label",
",",
"work",
")",
")",
"elif",
"resource",
".",
"uri",
"==",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F12_Name'",
"]",
":",
"author",
"=",
"Person",
".",
"get_by",
"(",
"ecrm_P1_is_identified_by",
"=",
"resource",
")",
".",
"first",
"(",
")",
"result",
".",
"append",
"(",
"(",
"label",
",",
"author",
")",
")",
"elif",
"resource",
".",
"uri",
"==",
"surf",
".",
"ns",
".",
"ECRM",
"[",
"'E41_Appellation'",
"]",
":",
"try",
":",
"name",
"=",
"Name",
".",
"get_by",
"(",
"ecrm_P139_has_alternative_form",
"=",
"resource",
")",
".",
"first",
"(",
")",
"assert",
"name",
"is",
"not",
"None",
"author",
"=",
"Person",
".",
"get_by",
"(",
"ecrm_P1_is_identified_by",
"=",
"name",
")",
".",
"first",
"(",
")",
"result",
".",
"append",
"(",
"(",
"label",
",",
"author",
")",
")",
"except",
"Exception",
"as",
"e",
":",
"title",
"=",
"Title",
".",
"get_by",
"(",
"ecrm_P139_has_alternative_form",
"=",
"resource",
")",
".",
"first",
"(",
")",
"assert",
"title",
"is",
"not",
"None",
"work",
"=",
"Work",
".",
"get_by",
"(",
"efrbroo_P102_has_title",
"=",
"title",
")",
".",
"first",
"(",
")",
"result",
".",
"append",
"(",
"(",
"label",
",",
"work",
")",
")",
"return",
"result"
] | Searches for a given string through the resources' labels.
:param search_string:
:return: an instance of `HucitAuthor` or `HucitWork`. | [
"Searches",
"for",
"a",
"given",
"string",
"through",
"the",
"resources",
"labels",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L206-L251 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_authors | def get_authors(self):
"""
Returns the authors in the Knowledge Base.
:return: a list of `HucitAuthor` instances.
"""
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
return list(Person.all()) | python | def get_authors(self):
"""
Returns the authors in the Knowledge Base.
:return: a list of `HucitAuthor` instances.
"""
Person = self._session.get_class(surf.ns.EFRBROO['F10_Person'])
return list(Person.all()) | [
"def",
"get_authors",
"(",
"self",
")",
":",
"Person",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F10_Person'",
"]",
")",
"return",
"list",
"(",
"Person",
".",
"all",
"(",
")",
")"
] | Returns the authors in the Knowledge Base.
:return: a list of `HucitAuthor` instances. | [
"Returns",
"the",
"authors",
"in",
"the",
"Knowledge",
"Base",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L253-L261 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_works | def get_works(self):
"""Return the author's works.
:return: a list of `HucitWork` instances.
"""
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
return list(Work.all()) | python | def get_works(self):
"""Return the author's works.
:return: a list of `HucitWork` instances.
"""
Work = self._session.get_class(surf.ns.EFRBROO['F1_Work'])
return list(Work.all()) | [
"def",
"get_works",
"(",
"self",
")",
":",
"Work",
"=",
"self",
".",
"_session",
".",
"get_class",
"(",
"surf",
".",
"ns",
".",
"EFRBROO",
"[",
"'F1_Work'",
"]",
")",
"return",
"list",
"(",
"Work",
".",
"all",
"(",
")",
")"
] | Return the author's works.
:return: a list of `HucitWork` instances. | [
"Return",
"the",
"author",
"s",
"works",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L263-L270 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_author_label | def get_author_label(self, urn):
"""Get the label corresponding to the author identified by the CTS URN.
try to get an lang=en label (if multiple labels in this lang pick the shortest)
try to get a lang=la label (if multiple labels in this lang exist pick the shortest)
try to get a lang=None label (if multiple labels in this lang exist pick the shortest)
returns None if no name is found
"""
author = self.get_resource_by_urn(urn)
names = author.get_names()
en_names = sorted([name[1] for name in names if name[0] == "en"], key=len)
try:
assert len(en_names) > 0
return en_names[0]
except Exception as e:
none_names = sorted([name[1] for name in names if name[0] == None], key=len)
try:
return none_names[0]
except Exception as e:
la_names = sorted([name[1] for name in names if name[0] == "la"], key=len)
try:
assert len(la_names) > 0
return la_names[0]
except Exception as e:
return None | python | def get_author_label(self, urn):
"""Get the label corresponding to the author identified by the CTS URN.
try to get an lang=en label (if multiple labels in this lang pick the shortest)
try to get a lang=la label (if multiple labels in this lang exist pick the shortest)
try to get a lang=None label (if multiple labels in this lang exist pick the shortest)
returns None if no name is found
"""
author = self.get_resource_by_urn(urn)
names = author.get_names()
en_names = sorted([name[1] for name in names if name[0] == "en"], key=len)
try:
assert len(en_names) > 0
return en_names[0]
except Exception as e:
none_names = sorted([name[1] for name in names if name[0] == None], key=len)
try:
return none_names[0]
except Exception as e:
la_names = sorted([name[1] for name in names if name[0] == "la"], key=len)
try:
assert len(la_names) > 0
return la_names[0]
except Exception as e:
return None | [
"def",
"get_author_label",
"(",
"self",
",",
"urn",
")",
":",
"author",
"=",
"self",
".",
"get_resource_by_urn",
"(",
"urn",
")",
"names",
"=",
"author",
".",
"get_names",
"(",
")",
"en_names",
"=",
"sorted",
"(",
"[",
"name",
"[",
"1",
"]",
"for",
"name",
"in",
"names",
"if",
"name",
"[",
"0",
"]",
"==",
"\"en\"",
"]",
",",
"key",
"=",
"len",
")",
"try",
":",
"assert",
"len",
"(",
"en_names",
")",
">",
"0",
"return",
"en_names",
"[",
"0",
"]",
"except",
"Exception",
"as",
"e",
":",
"none_names",
"=",
"sorted",
"(",
"[",
"name",
"[",
"1",
"]",
"for",
"name",
"in",
"names",
"if",
"name",
"[",
"0",
"]",
"==",
"None",
"]",
",",
"key",
"=",
"len",
")",
"try",
":",
"return",
"none_names",
"[",
"0",
"]",
"except",
"Exception",
"as",
"e",
":",
"la_names",
"=",
"sorted",
"(",
"[",
"name",
"[",
"1",
"]",
"for",
"name",
"in",
"names",
"if",
"name",
"[",
"0",
"]",
"==",
"\"la\"",
"]",
",",
"key",
"=",
"len",
")",
"try",
":",
"assert",
"len",
"(",
"la_names",
")",
">",
"0",
"return",
"la_names",
"[",
"0",
"]",
"except",
"Exception",
"as",
"e",
":",
"return",
"None"
] | Get the label corresponding to the author identified by the CTS URN.
try to get an lang=en label (if multiple labels in this lang pick the shortest)
try to get a lang=la label (if multiple labels in this lang exist pick the shortest)
try to get a lang=None label (if multiple labels in this lang exist pick the shortest)
returns None if no name is found | [
"Get",
"the",
"label",
"corresponding",
"to",
"the",
"author",
"identified",
"by",
"the",
"CTS",
"URN",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L272-L298 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_statistics | def get_statistics(self):
"""
Gather basic stats about the Knowledge Base and its contents.
:return: a dictionary
"""
statistics = {
"number_authors": 0,
"number_author_names": 0,
"number_author_abbreviations": 0,
"number_works": 0,
"number_work_titles": 0,
"number_title_abbreviations": 0,
"number_opus_maximum":0,
}
for author in self.get_authors():
if author.get_urn() is not None:
opmax = True if self.get_opus_maximum_of(author.get_urn())\
is not None else False
if opmax:
statistics["number_opus_maximum"] += 1
statistics["number_authors"] += 1
statistics["number_author_names"] += len(author.get_names())
statistics["number_author_abbreviations"] += len(
author.get_abbreviations()
)
for work in author.get_works():
statistics["number_works"] += 1
statistics["number_work_titles"] += len(work.get_titles())
statistics["number_title_abbreviations"] += len(
work.get_abbreviations()
)
return statistics | python | def get_statistics(self):
"""
Gather basic stats about the Knowledge Base and its contents.
:return: a dictionary
"""
statistics = {
"number_authors": 0,
"number_author_names": 0,
"number_author_abbreviations": 0,
"number_works": 0,
"number_work_titles": 0,
"number_title_abbreviations": 0,
"number_opus_maximum":0,
}
for author in self.get_authors():
if author.get_urn() is not None:
opmax = True if self.get_opus_maximum_of(author.get_urn())\
is not None else False
if opmax:
statistics["number_opus_maximum"] += 1
statistics["number_authors"] += 1
statistics["number_author_names"] += len(author.get_names())
statistics["number_author_abbreviations"] += len(
author.get_abbreviations()
)
for work in author.get_works():
statistics["number_works"] += 1
statistics["number_work_titles"] += len(work.get_titles())
statistics["number_title_abbreviations"] += len(
work.get_abbreviations()
)
return statistics | [
"def",
"get_statistics",
"(",
"self",
")",
":",
"statistics",
"=",
"{",
"\"number_authors\"",
":",
"0",
",",
"\"number_author_names\"",
":",
"0",
",",
"\"number_author_abbreviations\"",
":",
"0",
",",
"\"number_works\"",
":",
"0",
",",
"\"number_work_titles\"",
":",
"0",
",",
"\"number_title_abbreviations\"",
":",
"0",
",",
"\"number_opus_maximum\"",
":",
"0",
",",
"}",
"for",
"author",
"in",
"self",
".",
"get_authors",
"(",
")",
":",
"if",
"author",
".",
"get_urn",
"(",
")",
"is",
"not",
"None",
":",
"opmax",
"=",
"True",
"if",
"self",
".",
"get_opus_maximum_of",
"(",
"author",
".",
"get_urn",
"(",
")",
")",
"is",
"not",
"None",
"else",
"False",
"if",
"opmax",
":",
"statistics",
"[",
"\"number_opus_maximum\"",
"]",
"+=",
"1",
"statistics",
"[",
"\"number_authors\"",
"]",
"+=",
"1",
"statistics",
"[",
"\"number_author_names\"",
"]",
"+=",
"len",
"(",
"author",
".",
"get_names",
"(",
")",
")",
"statistics",
"[",
"\"number_author_abbreviations\"",
"]",
"+=",
"len",
"(",
"author",
".",
"get_abbreviations",
"(",
")",
")",
"for",
"work",
"in",
"author",
".",
"get_works",
"(",
")",
":",
"statistics",
"[",
"\"number_works\"",
"]",
"+=",
"1",
"statistics",
"[",
"\"number_work_titles\"",
"]",
"+=",
"len",
"(",
"work",
".",
"get_titles",
"(",
")",
")",
"statistics",
"[",
"\"number_title_abbreviations\"",
"]",
"+=",
"len",
"(",
"work",
".",
"get_abbreviations",
"(",
")",
")",
"return",
"statistics"
] | Gather basic stats about the Knowledge Base and its contents.
:return: a dictionary | [
"Gather",
"basic",
"stats",
"about",
"the",
"Knowledge",
"Base",
"and",
"its",
"contents",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L334-L367 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.get_opus_maximum_of | def get_opus_maximum_of(self, author_cts_urn):
"""Return the author's opux maximum (None otherwise).
Given the CTS URN of an author, this method returns its opus maximum.
If not available returns None.
:param author_cts_urn: the author's CTS URN.
:return: an instance of `surfext.HucitWork` or None
"""
author = self.get_resource_by_urn(author_cts_urn)
assert author is not None
works = author.get_works()
if len(works) > 1:
for work in works:
if work.is_opus_maximum():
return work
elif len(works) == 1:
return works[0]
else:
return None | python | def get_opus_maximum_of(self, author_cts_urn):
"""Return the author's opux maximum (None otherwise).
Given the CTS URN of an author, this method returns its opus maximum.
If not available returns None.
:param author_cts_urn: the author's CTS URN.
:return: an instance of `surfext.HucitWork` or None
"""
author = self.get_resource_by_urn(author_cts_urn)
assert author is not None
works = author.get_works()
if len(works) > 1:
for work in works:
if work.is_opus_maximum():
return work
elif len(works) == 1:
return works[0]
else:
return None | [
"def",
"get_opus_maximum_of",
"(",
"self",
",",
"author_cts_urn",
")",
":",
"author",
"=",
"self",
".",
"get_resource_by_urn",
"(",
"author_cts_urn",
")",
"assert",
"author",
"is",
"not",
"None",
"works",
"=",
"author",
".",
"get_works",
"(",
")",
"if",
"len",
"(",
"works",
")",
">",
"1",
":",
"for",
"work",
"in",
"works",
":",
"if",
"work",
".",
"is_opus_maximum",
"(",
")",
":",
"return",
"work",
"elif",
"len",
"(",
"works",
")",
"==",
"1",
":",
"return",
"works",
"[",
"0",
"]",
"else",
":",
"return",
"None"
] | Return the author's opux maximum (None otherwise).
Given the CTS URN of an author, this method returns its opus maximum.
If not available returns None.
:param author_cts_urn: the author's CTS URN.
:return: an instance of `surfext.HucitWork` or None | [
"Return",
"the",
"author",
"s",
"opux",
"maximum",
"(",
"None",
"otherwise",
")",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L369-L390 |
mromanello/hucitlib | knowledge_base/__init__.py | KnowledgeBase.to_json | def to_json(self):
"""
Serialises the content of the KnowledgeBase as JSON.
:return: TODO
"""
return json.dumps({
"statistics": self.get_statistics()
, "authors": [json.loads(author.to_json()) for author in self.get_authors()]
}, indent=2) | python | def to_json(self):
"""
Serialises the content of the KnowledgeBase as JSON.
:return: TODO
"""
return json.dumps({
"statistics": self.get_statistics()
, "authors": [json.loads(author.to_json()) for author in self.get_authors()]
}, indent=2) | [
"def",
"to_json",
"(",
"self",
")",
":",
"return",
"json",
".",
"dumps",
"(",
"{",
"\"statistics\"",
":",
"self",
".",
"get_statistics",
"(",
")",
",",
"\"authors\"",
":",
"[",
"json",
".",
"loads",
"(",
"author",
".",
"to_json",
"(",
")",
")",
"for",
"author",
"in",
"self",
".",
"get_authors",
"(",
")",
"]",
"}",
",",
"indent",
"=",
"2",
")"
] | Serialises the content of the KnowledgeBase as JSON.
:return: TODO | [
"Serialises",
"the",
"content",
"of",
"the",
"KnowledgeBase",
"as",
"JSON",
"."
] | train | https://github.com/mromanello/hucitlib/blob/6587d1b04eb7e5b48ad7359be845e5d3b444d6fa/knowledge_base/__init__.py#L398-L407 |
BlueBrain/hpcbench | hpcbench/driver/base.py | write_yaml_report | def write_yaml_report(func):
"""Decorator used in campaign node post-processing
"""
@wraps(func)
def _wrapper(*args, **kwargs):
now = datetime.datetime.now()
with Timer() as timer:
data = func(*args, **kwargs)
if isinstance(data, (SEQUENCES, types.GeneratorType)):
report = dict(children=list(map(str, data)))
elif isinstance(data, MAPPINGS):
report = data
else:
raise Exception('Unexpected data type: %s', type(data))
report['elapsed'] = timer.elapsed
report['date'] = now.isoformat()
if "no_exec" not in kwargs and report is not None:
with open(YAML_REPORT_FILE, 'w') as ostr:
yaml.dump(report, ostr, default_flow_style=False)
return report
return _wrapper | python | def write_yaml_report(func):
"""Decorator used in campaign node post-processing
"""
@wraps(func)
def _wrapper(*args, **kwargs):
now = datetime.datetime.now()
with Timer() as timer:
data = func(*args, **kwargs)
if isinstance(data, (SEQUENCES, types.GeneratorType)):
report = dict(children=list(map(str, data)))
elif isinstance(data, MAPPINGS):
report = data
else:
raise Exception('Unexpected data type: %s', type(data))
report['elapsed'] = timer.elapsed
report['date'] = now.isoformat()
if "no_exec" not in kwargs and report is not None:
with open(YAML_REPORT_FILE, 'w') as ostr:
yaml.dump(report, ostr, default_flow_style=False)
return report
return _wrapper | [
"def",
"write_yaml_report",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"_wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"now",
"=",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"with",
"Timer",
"(",
")",
"as",
"timer",
":",
"data",
"=",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"if",
"isinstance",
"(",
"data",
",",
"(",
"SEQUENCES",
",",
"types",
".",
"GeneratorType",
")",
")",
":",
"report",
"=",
"dict",
"(",
"children",
"=",
"list",
"(",
"map",
"(",
"str",
",",
"data",
")",
")",
")",
"elif",
"isinstance",
"(",
"data",
",",
"MAPPINGS",
")",
":",
"report",
"=",
"data",
"else",
":",
"raise",
"Exception",
"(",
"'Unexpected data type: %s'",
",",
"type",
"(",
"data",
")",
")",
"report",
"[",
"'elapsed'",
"]",
"=",
"timer",
".",
"elapsed",
"report",
"[",
"'date'",
"]",
"=",
"now",
".",
"isoformat",
"(",
")",
"if",
"\"no_exec\"",
"not",
"in",
"kwargs",
"and",
"report",
"is",
"not",
"None",
":",
"with",
"open",
"(",
"YAML_REPORT_FILE",
",",
"'w'",
")",
"as",
"ostr",
":",
"yaml",
".",
"dump",
"(",
"report",
",",
"ostr",
",",
"default_flow_style",
"=",
"False",
")",
"return",
"report",
"return",
"_wrapper"
] | Decorator used in campaign node post-processing | [
"Decorator",
"used",
"in",
"campaign",
"node",
"post",
"-",
"processing"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/driver/base.py#L32-L54 |
BlueBrain/hpcbench | hpcbench/driver/base.py | Enumerator.call_decorator | def call_decorator(cls, func):
"""class function that MUST be specified as decorator
to the `__call__` method overriden by sub-classes.
"""
@wraps(func)
def _wrap(self, *args, **kwargs):
try:
return func(self, *args, **kwargs)
except Exception:
self.logger.exception('While executing benchmark')
if not (self.catch_child_exception or False):
raise
return _wrap | python | def call_decorator(cls, func):
"""class function that MUST be specified as decorator
to the `__call__` method overriden by sub-classes.
"""
@wraps(func)
def _wrap(self, *args, **kwargs):
try:
return func(self, *args, **kwargs)
except Exception:
self.logger.exception('While executing benchmark')
if not (self.catch_child_exception or False):
raise
return _wrap | [
"def",
"call_decorator",
"(",
"cls",
",",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"_wrap",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"return",
"func",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"except",
"Exception",
":",
"self",
".",
"logger",
".",
"exception",
"(",
"'While executing benchmark'",
")",
"if",
"not",
"(",
"self",
".",
"catch_child_exception",
"or",
"False",
")",
":",
"raise",
"return",
"_wrap"
] | class function that MUST be specified as decorator
to the `__call__` method overriden by sub-classes. | [
"class",
"function",
"that",
"MUST",
"be",
"specified",
"as",
"decorator",
"to",
"the",
"__call__",
"method",
"overriden",
"by",
"sub",
"-",
"classes",
"."
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/driver/base.py#L136-L150 |
BlueBrain/hpcbench | hpcbench/driver/base.py | Enumerator.traverse | def traverse(self):
"""Enumerate children and build associated objects
"""
builder = self.child_builder
for child in self._children:
with pushd(str(child)):
yield child, builder(child) | python | def traverse(self):
"""Enumerate children and build associated objects
"""
builder = self.child_builder
for child in self._children:
with pushd(str(child)):
yield child, builder(child) | [
"def",
"traverse",
"(",
"self",
")",
":",
"builder",
"=",
"self",
".",
"child_builder",
"for",
"child",
"in",
"self",
".",
"_children",
":",
"with",
"pushd",
"(",
"str",
"(",
"child",
")",
")",
":",
"yield",
"child",
",",
"builder",
"(",
"child",
")"
] | Enumerate children and build associated objects | [
"Enumerate",
"children",
"and",
"build",
"associated",
"objects"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/driver/base.py#L162-L168 |
eng-tools/sfsimodels | sfsimodels/models/foundations.py | PadFoundation.i_ww | def i_ww(self):
"""
Second moment of inertia around the width axis.
:return:
"""
d_values = []
for i in range(self.n_pads_l):
d_values.append(self.pad_position_l(i))
d_values = np.array(d_values) - self.length / 2
area_d_sqrd = sum(self.pad_area * d_values ** 2) * self.n_pads_w
i_second = self.pad_i_ww * self.n_pads
return area_d_sqrd + i_second | python | def i_ww(self):
"""
Second moment of inertia around the width axis.
:return:
"""
d_values = []
for i in range(self.n_pads_l):
d_values.append(self.pad_position_l(i))
d_values = np.array(d_values) - self.length / 2
area_d_sqrd = sum(self.pad_area * d_values ** 2) * self.n_pads_w
i_second = self.pad_i_ww * self.n_pads
return area_d_sqrd + i_second | [
"def",
"i_ww",
"(",
"self",
")",
":",
"d_values",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"n_pads_l",
")",
":",
"d_values",
".",
"append",
"(",
"self",
".",
"pad_position_l",
"(",
"i",
")",
")",
"d_values",
"=",
"np",
".",
"array",
"(",
"d_values",
")",
"-",
"self",
".",
"length",
"/",
"2",
"area_d_sqrd",
"=",
"sum",
"(",
"self",
".",
"pad_area",
"*",
"d_values",
"**",
"2",
")",
"*",
"self",
".",
"n_pads_w",
"i_second",
"=",
"self",
".",
"pad_i_ww",
"*",
"self",
".",
"n_pads",
"return",
"area_d_sqrd",
"+",
"i_second"
] | Second moment of inertia around the width axis.
:return: | [
"Second",
"moment",
"of",
"inertia",
"around",
"the",
"width",
"axis",
".",
":",
"return",
":"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/models/foundations.py#L268-L279 |
eng-tools/sfsimodels | sfsimodels/models/foundations.py | PadFoundation.i_ll | def i_ll(self):
"""
Second moment of inertia around the length axis.
:return:
"""
d_values = []
for i in range(self.n_pads_w):
d_values.append(self.pad_position_w(i))
d_values = np.array(d_values) - self.width / 2
area_d_sqrd = sum(self.pad_area * d_values ** 2) * self.n_pads_l
i_second = self.pad_i_ll * self.n_pads
return area_d_sqrd + i_second | python | def i_ll(self):
"""
Second moment of inertia around the length axis.
:return:
"""
d_values = []
for i in range(self.n_pads_w):
d_values.append(self.pad_position_w(i))
d_values = np.array(d_values) - self.width / 2
area_d_sqrd = sum(self.pad_area * d_values ** 2) * self.n_pads_l
i_second = self.pad_i_ll * self.n_pads
return area_d_sqrd + i_second | [
"def",
"i_ll",
"(",
"self",
")",
":",
"d_values",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"n_pads_w",
")",
":",
"d_values",
".",
"append",
"(",
"self",
".",
"pad_position_w",
"(",
"i",
")",
")",
"d_values",
"=",
"np",
".",
"array",
"(",
"d_values",
")",
"-",
"self",
".",
"width",
"/",
"2",
"area_d_sqrd",
"=",
"sum",
"(",
"self",
".",
"pad_area",
"*",
"d_values",
"**",
"2",
")",
"*",
"self",
".",
"n_pads_l",
"i_second",
"=",
"self",
".",
"pad_i_ll",
"*",
"self",
".",
"n_pads",
"return",
"area_d_sqrd",
"+",
"i_second"
] | Second moment of inertia around the length axis.
:return: | [
"Second",
"moment",
"of",
"inertia",
"around",
"the",
"length",
"axis",
".",
":",
"return",
":"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/models/foundations.py#L282-L293 |
eng-tools/sfsimodels | sfsimodels/models/foundations.py | PadFoundation.pad_position_l | def pad_position_l(self, i):
"""
Determines the position of the ith pad in the length direction.
Assumes equally spaced pads.
:param i: ith number of pad in length direction (0-indexed)
:return:
"""
if i >= self.n_pads_l:
raise ModelError("pad index out-of-bounds")
return (self.length - self.pad_length) / (self.n_pads_l - 1) * i + self.pad_length / 2 | python | def pad_position_l(self, i):
"""
Determines the position of the ith pad in the length direction.
Assumes equally spaced pads.
:param i: ith number of pad in length direction (0-indexed)
:return:
"""
if i >= self.n_pads_l:
raise ModelError("pad index out-of-bounds")
return (self.length - self.pad_length) / (self.n_pads_l - 1) * i + self.pad_length / 2 | [
"def",
"pad_position_l",
"(",
"self",
",",
"i",
")",
":",
"if",
"i",
">=",
"self",
".",
"n_pads_l",
":",
"raise",
"ModelError",
"(",
"\"pad index out-of-bounds\"",
")",
"return",
"(",
"self",
".",
"length",
"-",
"self",
".",
"pad_length",
")",
"/",
"(",
"self",
".",
"n_pads_l",
"-",
"1",
")",
"*",
"i",
"+",
"self",
".",
"pad_length",
"/",
"2"
] | Determines the position of the ith pad in the length direction.
Assumes equally spaced pads.
:param i: ith number of pad in length direction (0-indexed)
:return: | [
"Determines",
"the",
"position",
"of",
"the",
"ith",
"pad",
"in",
"the",
"length",
"direction",
".",
"Assumes",
"equally",
"spaced",
"pads",
"."
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/models/foundations.py#L335-L345 |
eng-tools/sfsimodels | sfsimodels/models/foundations.py | PadFoundation.pad_position_w | def pad_position_w(self, i):
"""
Determines the position of the ith pad in the width direction.
Assumes equally spaced pads.
:param i: ith number of pad in width direction (0-indexed)
:return:
"""
if i >= self.n_pads_w:
raise ModelError("pad index out-of-bounds")
return (self.width - self.pad_width) / (self.n_pads_w - 1) * i + self.pad_width / 2 | python | def pad_position_w(self, i):
"""
Determines the position of the ith pad in the width direction.
Assumes equally spaced pads.
:param i: ith number of pad in width direction (0-indexed)
:return:
"""
if i >= self.n_pads_w:
raise ModelError("pad index out-of-bounds")
return (self.width - self.pad_width) / (self.n_pads_w - 1) * i + self.pad_width / 2 | [
"def",
"pad_position_w",
"(",
"self",
",",
"i",
")",
":",
"if",
"i",
">=",
"self",
".",
"n_pads_w",
":",
"raise",
"ModelError",
"(",
"\"pad index out-of-bounds\"",
")",
"return",
"(",
"self",
".",
"width",
"-",
"self",
".",
"pad_width",
")",
"/",
"(",
"self",
".",
"n_pads_w",
"-",
"1",
")",
"*",
"i",
"+",
"self",
".",
"pad_width",
"/",
"2"
] | Determines the position of the ith pad in the width direction.
Assumes equally spaced pads.
:param i: ith number of pad in width direction (0-indexed)
:return: | [
"Determines",
"the",
"position",
"of",
"the",
"ith",
"pad",
"in",
"the",
"width",
"direction",
".",
"Assumes",
"equally",
"spaced",
"pads",
"."
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/models/foundations.py#L347-L357 |
sci-bots/svg-model | svg_model/svgload/svg_parser.py | Svg.add_to_batch | def add_to_batch(self, batch):
'''
Adds paths to the given batch object. They are all added as
GL_TRIANGLES, so the batch will aggregate them all into a single OpenGL
primitive.
'''
for name in self.paths:
svg_path = self.paths[name]
svg_path.add_to_batch(batch) | python | def add_to_batch(self, batch):
'''
Adds paths to the given batch object. They are all added as
GL_TRIANGLES, so the batch will aggregate them all into a single OpenGL
primitive.
'''
for name in self.paths:
svg_path = self.paths[name]
svg_path.add_to_batch(batch) | [
"def",
"add_to_batch",
"(",
"self",
",",
"batch",
")",
":",
"for",
"name",
"in",
"self",
".",
"paths",
":",
"svg_path",
"=",
"self",
".",
"paths",
"[",
"name",
"]",
"svg_path",
".",
"add_to_batch",
"(",
"batch",
")"
] | Adds paths to the given batch object. They are all added as
GL_TRIANGLES, so the batch will aggregate them all into a single OpenGL
primitive. | [
"Adds",
"paths",
"to",
"the",
"given",
"batch",
"object",
".",
"They",
"are",
"all",
"added",
"as",
"GL_TRIANGLES",
"so",
"the",
"batch",
"will",
"aggregate",
"them",
"all",
"into",
"a",
"single",
"OpenGL",
"primitive",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/svgload/svg_parser.py#L55-L63 |
sci-bots/svg-model | svg_model/svgload/svg_parser.py | SvgParser.parse | def parse(self, xml_root, on_error=None):
'''
Parse all <path> elements from xml_root.
Optional on_error arg specifies a callback function to be run when
an error occurs during parsing.
The specified on_error function must accept 3 arguments:
<svg filename>, <path_tag>, <error message>
An example on_error handler is provided as svg_load.svg_parser.parse_warning(),
where all SvgParseErrors are converted to warning messages. See usage below:
>>> import re
>>> svg_parser = SvgParser()
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg"
... xmlns:dc="http://purl.org/dc/elements/1.1/"
... xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... id="path13231"
... d="M8 4 l-4,4"
... linecap="square"
... stroke="#000000"
... stroke-width="0.25"
... />""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, unsupported svg path command: l', str(w[-1].message))
>>> print match is None
False
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... style="fill:#0000ff;stroke:#ff0000;stroke-width:0.10000000000000001;stroke-miterlimit:4;stroke-dasharray:none"
... id="path18327"
... d="M 636.0331,256.9345 L 636.0331,256.9345"
... inkscape:connector-curvature="0"/>""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, loop needs 3 or more verts', str(w[-1].message))
>>> print match is None
False
'''
svg = Svg()
svg_namespace = {'svg': 'http://www.w3.org/2000/svg'}
path_tags = xml_root.xpath('(/svg:svg|/svg:svg/svg:g)/svg:path',
namespaces=svg_namespace)
parser = PathParser()
for path_tag in path_tags:
try:
id, svg_path = parser.parse(path_tag)
if svg_path.loops:
svg.add_path(id, svg_path)
except (ParseError, ) as why:
filename = getattr(self, 'filename', None)
args = (filename, path_tag, why.message)
if on_error:
on_error(*args)
else:
raise SvgParseError(*args)
if svg.paths:
x, y = svg.get_boundary().get_center()
for svg_path in svg.paths.values():
svg_path.offset(-x, -y)
return svg | python | def parse(self, xml_root, on_error=None):
'''
Parse all <path> elements from xml_root.
Optional on_error arg specifies a callback function to be run when
an error occurs during parsing.
The specified on_error function must accept 3 arguments:
<svg filename>, <path_tag>, <error message>
An example on_error handler is provided as svg_load.svg_parser.parse_warning(),
where all SvgParseErrors are converted to warning messages. See usage below:
>>> import re
>>> svg_parser = SvgParser()
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg"
... xmlns:dc="http://purl.org/dc/elements/1.1/"
... xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... id="path13231"
... d="M8 4 l-4,4"
... linecap="square"
... stroke="#000000"
... stroke-width="0.25"
... />""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, unsupported svg path command: l', str(w[-1].message))
>>> print match is None
False
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... style="fill:#0000ff;stroke:#ff0000;stroke-width:0.10000000000000001;stroke-miterlimit:4;stroke-dasharray:none"
... id="path18327"
... d="M 636.0331,256.9345 L 636.0331,256.9345"
... inkscape:connector-curvature="0"/>""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, loop needs 3 or more verts', str(w[-1].message))
>>> print match is None
False
'''
svg = Svg()
svg_namespace = {'svg': 'http://www.w3.org/2000/svg'}
path_tags = xml_root.xpath('(/svg:svg|/svg:svg/svg:g)/svg:path',
namespaces=svg_namespace)
parser = PathParser()
for path_tag in path_tags:
try:
id, svg_path = parser.parse(path_tag)
if svg_path.loops:
svg.add_path(id, svg_path)
except (ParseError, ) as why:
filename = getattr(self, 'filename', None)
args = (filename, path_tag, why.message)
if on_error:
on_error(*args)
else:
raise SvgParseError(*args)
if svg.paths:
x, y = svg.get_boundary().get_center()
for svg_path in svg.paths.values():
svg_path.offset(-x, -y)
return svg | [
"def",
"parse",
"(",
"self",
",",
"xml_root",
",",
"on_error",
"=",
"None",
")",
":",
"svg",
"=",
"Svg",
"(",
")",
"svg_namespace",
"=",
"{",
"'svg'",
":",
"'http://www.w3.org/2000/svg'",
"}",
"path_tags",
"=",
"xml_root",
".",
"xpath",
"(",
"'(/svg:svg|/svg:svg/svg:g)/svg:path'",
",",
"namespaces",
"=",
"svg_namespace",
")",
"parser",
"=",
"PathParser",
"(",
")",
"for",
"path_tag",
"in",
"path_tags",
":",
"try",
":",
"id",
",",
"svg_path",
"=",
"parser",
".",
"parse",
"(",
"path_tag",
")",
"if",
"svg_path",
".",
"loops",
":",
"svg",
".",
"add_path",
"(",
"id",
",",
"svg_path",
")",
"except",
"(",
"ParseError",
",",
")",
"as",
"why",
":",
"filename",
"=",
"getattr",
"(",
"self",
",",
"'filename'",
",",
"None",
")",
"args",
"=",
"(",
"filename",
",",
"path_tag",
",",
"why",
".",
"message",
")",
"if",
"on_error",
":",
"on_error",
"(",
"*",
"args",
")",
"else",
":",
"raise",
"SvgParseError",
"(",
"*",
"args",
")",
"if",
"svg",
".",
"paths",
":",
"x",
",",
"y",
"=",
"svg",
".",
"get_boundary",
"(",
")",
".",
"get_center",
"(",
")",
"for",
"svg_path",
"in",
"svg",
".",
"paths",
".",
"values",
"(",
")",
":",
"svg_path",
".",
"offset",
"(",
"-",
"x",
",",
"-",
"y",
")",
"return",
"svg"
] | Parse all <path> elements from xml_root.
Optional on_error arg specifies a callback function to be run when
an error occurs during parsing.
The specified on_error function must accept 3 arguments:
<svg filename>, <path_tag>, <error message>
An example on_error handler is provided as svg_load.svg_parser.parse_warning(),
where all SvgParseErrors are converted to warning messages. See usage below:
>>> import re
>>> svg_parser = SvgParser()
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg"
... xmlns:dc="http://purl.org/dc/elements/1.1/"
... xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... id="path13231"
... d="M8 4 l-4,4"
... linecap="square"
... stroke="#000000"
... stroke-width="0.25"
... />""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, unsupported svg path command: l', str(w[-1].message))
>>> print match is None
False
>>> path_tag = etree.XML("""
... <path
... xmlns="http://www.w3.org/2000/svg" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
... xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#"
... xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
... xmlns:svg="http://www.w3.org/2000/svg"
... xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
... style="fill:#0000ff;stroke:#ff0000;stroke-width:0.10000000000000001;stroke-miterlimit:4;stroke-dasharray:none"
... id="path18327"
... d="M 636.0331,256.9345 L 636.0331,256.9345"
... inkscape:connector-curvature="0"/>""")
>>> with warnings.catch_warnings(record=True) as w:
... svg = svg_parser.parse(path_tag, on_error=parse_warning)
>>> print w[-1].category
<type 'exceptions.RuntimeWarning'>
>>> match = re.search(r'^Error parsing None:\d+, loop needs 3 or more verts', str(w[-1].message))
>>> print match is None
False | [
"Parse",
"all",
"<path",
">",
"elements",
"from",
"xml_root",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/svgload/svg_parser.py#L99-L174 |
portfoliome/foil | foil/util.py | alphanum_key | def alphanum_key(s):
"""Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"]
"""
return [int(c) if c.isdigit() else c for c in _RE_INT.split(s)] | python | def alphanum_key(s):
"""Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"]
"""
return [int(c) if c.isdigit() else c for c in _RE_INT.split(s)] | [
"def",
"alphanum_key",
"(",
"s",
")",
":",
"return",
"[",
"int",
"(",
"c",
")",
"if",
"c",
".",
"isdigit",
"(",
")",
"else",
"c",
"for",
"c",
"in",
"_RE_INT",
".",
"split",
"(",
"s",
")",
"]"
] | Turn a string into a list of string and number chunks.
"z23a" -> ["z", 23, "a"] | [
"Turn",
"a",
"string",
"into",
"a",
"list",
"of",
"string",
"and",
"number",
"chunks",
"."
] | train | https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/util.py#L6-L12 |
PolyJIT/benchbuild | benchbuild/experiments/__init__.py | discover | def discover():
"""
Import all experiments listed in PLUGINS_EXPERIMENTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.experiments import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> lg.getLogger('benchbuild').setLevel(lg.DEBUG)
>>> lg.getLogger('benchbuild').handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["experiments"] = ["benchbuild.non.existing", "benchbuild.experiments.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
ImportError: No module named 'benchbuild.non'
"""
if CFG["plugins"]["autoload"]:
experiment_plugins = CFG["plugins"]["experiments"].value
for exp_plugin in experiment_plugins:
try:
importlib.import_module(exp_plugin)
except ImportError as import_error:
LOG.error("Could not find '%s'", exp_plugin)
LOG.error("ImportError: %s", import_error.msg) | python | def discover():
"""
Import all experiments listed in PLUGINS_EXPERIMENTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.experiments import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> lg.getLogger('benchbuild').setLevel(lg.DEBUG)
>>> lg.getLogger('benchbuild').handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["experiments"] = ["benchbuild.non.existing", "benchbuild.experiments.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
ImportError: No module named 'benchbuild.non'
"""
if CFG["plugins"]["autoload"]:
experiment_plugins = CFG["plugins"]["experiments"].value
for exp_plugin in experiment_plugins:
try:
importlib.import_module(exp_plugin)
except ImportError as import_error:
LOG.error("Could not find '%s'", exp_plugin)
LOG.error("ImportError: %s", import_error.msg) | [
"def",
"discover",
"(",
")",
":",
"if",
"CFG",
"[",
"\"plugins\"",
"]",
"[",
"\"autoload\"",
"]",
":",
"experiment_plugins",
"=",
"CFG",
"[",
"\"plugins\"",
"]",
"[",
"\"experiments\"",
"]",
".",
"value",
"for",
"exp_plugin",
"in",
"experiment_plugins",
":",
"try",
":",
"importlib",
".",
"import_module",
"(",
"exp_plugin",
")",
"except",
"ImportError",
"as",
"import_error",
":",
"LOG",
".",
"error",
"(",
"\"Could not find '%s'\"",
",",
"exp_plugin",
")",
"LOG",
".",
"error",
"(",
"\"ImportError: %s\"",
",",
"import_error",
".",
"msg",
")"
] | Import all experiments listed in PLUGINS_EXPERIMENTS.
Tests:
>>> from benchbuild.settings import CFG
>>> from benchbuild.experiments import discover
>>> import logging as lg
>>> import sys
>>> l = lg.getLogger('benchbuild')
>>> lg.getLogger('benchbuild').setLevel(lg.DEBUG)
>>> lg.getLogger('benchbuild').handlers = [lg.StreamHandler(stream=sys.stdout)]
>>> CFG["plugins"]["experiments"] = ["benchbuild.non.existing", "benchbuild.experiments.raw"]
>>> discover()
Could not find 'benchbuild.non.existing'
ImportError: No module named 'benchbuild.non' | [
"Import",
"all",
"experiments",
"listed",
"in",
"PLUGINS_EXPERIMENTS",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/experiments/__init__.py#L20-L44 |
PolyJIT/benchbuild | benchbuild/cli/project.py | print_projects | def print_projects(projects=None):
"""
Print a list of projects registered for that experiment.
Args:
exp: The experiment to print all projects for.
"""
grouped_by = {}
if not projects:
print(
"Your selection didn't include any projects for this experiment.")
return
for name in projects:
prj = projects[name]
if prj.GROUP not in grouped_by:
grouped_by[prj.GROUP] = []
grouped_by[prj.GROUP].append("{name}/{group}".format(
name=prj.NAME, group=prj.GROUP))
for name in grouped_by:
print("group: {0}".format(name))
group_projects = sorted(grouped_by[name])
for prj in group_projects:
prj_cls = projects[prj]
version_str = None
if hasattr(prj_cls, 'versions'):
version_str = ", ".join(prj_cls.versions())
project_id = "{0}/{1}".format(prj_cls.NAME, prj_cls.GROUP)
project_str = \
" name: {id:<32} version: {version:<24} source: {src}".format(
id=str(project_id),
version=str(prj_cls.VERSION),
src=str(prj_cls.SRC_FILE))
print(project_str)
if prj_cls.__doc__:
docstr = prj_cls.__doc__.strip("\n ")
print(" description: {desc}".format(desc=docstr))
if version_str:
print(" versions: {versions}".format(versions=version_str))
print() | python | def print_projects(projects=None):
"""
Print a list of projects registered for that experiment.
Args:
exp: The experiment to print all projects for.
"""
grouped_by = {}
if not projects:
print(
"Your selection didn't include any projects for this experiment.")
return
for name in projects:
prj = projects[name]
if prj.GROUP not in grouped_by:
grouped_by[prj.GROUP] = []
grouped_by[prj.GROUP].append("{name}/{group}".format(
name=prj.NAME, group=prj.GROUP))
for name in grouped_by:
print("group: {0}".format(name))
group_projects = sorted(grouped_by[name])
for prj in group_projects:
prj_cls = projects[prj]
version_str = None
if hasattr(prj_cls, 'versions'):
version_str = ", ".join(prj_cls.versions())
project_id = "{0}/{1}".format(prj_cls.NAME, prj_cls.GROUP)
project_str = \
" name: {id:<32} version: {version:<24} source: {src}".format(
id=str(project_id),
version=str(prj_cls.VERSION),
src=str(prj_cls.SRC_FILE))
print(project_str)
if prj_cls.__doc__:
docstr = prj_cls.__doc__.strip("\n ")
print(" description: {desc}".format(desc=docstr))
if version_str:
print(" versions: {versions}".format(versions=version_str))
print() | [
"def",
"print_projects",
"(",
"projects",
"=",
"None",
")",
":",
"grouped_by",
"=",
"{",
"}",
"if",
"not",
"projects",
":",
"print",
"(",
"\"Your selection didn't include any projects for this experiment.\"",
")",
"return",
"for",
"name",
"in",
"projects",
":",
"prj",
"=",
"projects",
"[",
"name",
"]",
"if",
"prj",
".",
"GROUP",
"not",
"in",
"grouped_by",
":",
"grouped_by",
"[",
"prj",
".",
"GROUP",
"]",
"=",
"[",
"]",
"grouped_by",
"[",
"prj",
".",
"GROUP",
"]",
".",
"append",
"(",
"\"{name}/{group}\"",
".",
"format",
"(",
"name",
"=",
"prj",
".",
"NAME",
",",
"group",
"=",
"prj",
".",
"GROUP",
")",
")",
"for",
"name",
"in",
"grouped_by",
":",
"print",
"(",
"\"group: {0}\"",
".",
"format",
"(",
"name",
")",
")",
"group_projects",
"=",
"sorted",
"(",
"grouped_by",
"[",
"name",
"]",
")",
"for",
"prj",
"in",
"group_projects",
":",
"prj_cls",
"=",
"projects",
"[",
"prj",
"]",
"version_str",
"=",
"None",
"if",
"hasattr",
"(",
"prj_cls",
",",
"'versions'",
")",
":",
"version_str",
"=",
"\", \"",
".",
"join",
"(",
"prj_cls",
".",
"versions",
"(",
")",
")",
"project_id",
"=",
"\"{0}/{1}\"",
".",
"format",
"(",
"prj_cls",
".",
"NAME",
",",
"prj_cls",
".",
"GROUP",
")",
"project_str",
"=",
"\" name: {id:<32} version: {version:<24} source: {src}\"",
".",
"format",
"(",
"id",
"=",
"str",
"(",
"project_id",
")",
",",
"version",
"=",
"str",
"(",
"prj_cls",
".",
"VERSION",
")",
",",
"src",
"=",
"str",
"(",
"prj_cls",
".",
"SRC_FILE",
")",
")",
"print",
"(",
"project_str",
")",
"if",
"prj_cls",
".",
"__doc__",
":",
"docstr",
"=",
"prj_cls",
".",
"__doc__",
".",
"strip",
"(",
"\"\\n \"",
")",
"print",
"(",
"\" description: {desc}\"",
".",
"format",
"(",
"desc",
"=",
"docstr",
")",
")",
"if",
"version_str",
":",
"print",
"(",
"\" versions: {versions}\"",
".",
"format",
"(",
"versions",
"=",
"version_str",
")",
")",
"print",
"(",
")"
] | Print a list of projects registered for that experiment.
Args:
exp: The experiment to print all projects for. | [
"Print",
"a",
"list",
"of",
"projects",
"registered",
"for",
"that",
"experiment",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/cli/project.py#L35-L81 |
Capitains/Nautilus | capitains_nautilus/cmd.py | _commandline | def _commandline(repositories,
port=8000, host="127.0.0.1", debug=False,
cache=None, cache_path="./cache", redis=None):
""" Run a CTS API from command line.
.. warning:: This function should not be used in the production context
:param repositories:
:param port:
:param ip:
:param debug:
:param cache:
:param cache_path:
:return:
"""
if cache == "redis":
nautilus_cache = RedisCache(redis)
cache_type = "redis"
elif cache == "filesystem":
nautilus_cache = FileSystemCache(cache_path)
cache_type = "simple"
else:
nautilus_cache = NullCache()
cache_type = "simple"
app = Flask("Nautilus")
if debug:
app.logger.setLevel(logging.INFO)
resolver = NautilusCtsResolver(resource=repositories)
nautilus = FlaskNautilus(
app=app,
resolver=resolver
#parser_cache=WerkzeugCacheWrapper(nautilus_cache),
#logger=None
)
nautilus.resolver.parse()
app.run(debug=debug, port=port, host=host) | python | def _commandline(repositories,
port=8000, host="127.0.0.1", debug=False,
cache=None, cache_path="./cache", redis=None):
""" Run a CTS API from command line.
.. warning:: This function should not be used in the production context
:param repositories:
:param port:
:param ip:
:param debug:
:param cache:
:param cache_path:
:return:
"""
if cache == "redis":
nautilus_cache = RedisCache(redis)
cache_type = "redis"
elif cache == "filesystem":
nautilus_cache = FileSystemCache(cache_path)
cache_type = "simple"
else:
nautilus_cache = NullCache()
cache_type = "simple"
app = Flask("Nautilus")
if debug:
app.logger.setLevel(logging.INFO)
resolver = NautilusCtsResolver(resource=repositories)
nautilus = FlaskNautilus(
app=app,
resolver=resolver
#parser_cache=WerkzeugCacheWrapper(nautilus_cache),
#logger=None
)
nautilus.resolver.parse()
app.run(debug=debug, port=port, host=host) | [
"def",
"_commandline",
"(",
"repositories",
",",
"port",
"=",
"8000",
",",
"host",
"=",
"\"127.0.0.1\"",
",",
"debug",
"=",
"False",
",",
"cache",
"=",
"None",
",",
"cache_path",
"=",
"\"./cache\"",
",",
"redis",
"=",
"None",
")",
":",
"if",
"cache",
"==",
"\"redis\"",
":",
"nautilus_cache",
"=",
"RedisCache",
"(",
"redis",
")",
"cache_type",
"=",
"\"redis\"",
"elif",
"cache",
"==",
"\"filesystem\"",
":",
"nautilus_cache",
"=",
"FileSystemCache",
"(",
"cache_path",
")",
"cache_type",
"=",
"\"simple\"",
"else",
":",
"nautilus_cache",
"=",
"NullCache",
"(",
")",
"cache_type",
"=",
"\"simple\"",
"app",
"=",
"Flask",
"(",
"\"Nautilus\"",
")",
"if",
"debug",
":",
"app",
".",
"logger",
".",
"setLevel",
"(",
"logging",
".",
"INFO",
")",
"resolver",
"=",
"NautilusCtsResolver",
"(",
"resource",
"=",
"repositories",
")",
"nautilus",
"=",
"FlaskNautilus",
"(",
"app",
"=",
"app",
",",
"resolver",
"=",
"resolver",
"#parser_cache=WerkzeugCacheWrapper(nautilus_cache),",
"#logger=None",
")",
"nautilus",
".",
"resolver",
".",
"parse",
"(",
")",
"app",
".",
"run",
"(",
"debug",
"=",
"debug",
",",
"port",
"=",
"port",
",",
"host",
"=",
"host",
")"
] | Run a CTS API from command line.
.. warning:: This function should not be used in the production context
:param repositories:
:param port:
:param ip:
:param debug:
:param cache:
:param cache_path:
:return: | [
"Run",
"a",
"CTS",
"API",
"from",
"command",
"line",
"."
] | train | https://github.com/Capitains/Nautilus/blob/6be453fe0cc0e2c1b89ff06e5af1409165fc1411/capitains_nautilus/cmd.py#L11-L49 |
BlueBrain/hpcbench | hpcbench/report.py | tex_escape | def tex_escape(text):
"""Escape string for LaTeX usage
:param text: a plain text message
:return: the message escaped to appear correctly in LaTeX
"""
conv = {
'&': r'\&',
'%': r'\%',
'$': r'\$',
'#': r'\#',
'_': r'\_',
'{': r'\{',
'}': r'\}',
'~': r'\textasciitilde{}',
'^': r'\^{}',
'\\': r'\textbackslash{}',
'<': r'\textless ',
'>': r'\textgreater ',
}
regex = re.compile(
'|'.join(
re.escape(six.text_type(key))
for key in sorted(conv.keys(), key=lambda item: -len(item))
)
)
return regex.sub(lambda match: conv[match.group()], text) | python | def tex_escape(text):
"""Escape string for LaTeX usage
:param text: a plain text message
:return: the message escaped to appear correctly in LaTeX
"""
conv = {
'&': r'\&',
'%': r'\%',
'$': r'\$',
'#': r'\#',
'_': r'\_',
'{': r'\{',
'}': r'\}',
'~': r'\textasciitilde{}',
'^': r'\^{}',
'\\': r'\textbackslash{}',
'<': r'\textless ',
'>': r'\textgreater ',
}
regex = re.compile(
'|'.join(
re.escape(six.text_type(key))
for key in sorted(conv.keys(), key=lambda item: -len(item))
)
)
return regex.sub(lambda match: conv[match.group()], text) | [
"def",
"tex_escape",
"(",
"text",
")",
":",
"conv",
"=",
"{",
"'&'",
":",
"r'\\&'",
",",
"'%'",
":",
"r'\\%'",
",",
"'$'",
":",
"r'\\$'",
",",
"'#'",
":",
"r'\\#'",
",",
"'_'",
":",
"r'\\_'",
",",
"'{'",
":",
"r'\\{'",
",",
"'}'",
":",
"r'\\}'",
",",
"'~'",
":",
"r'\\textasciitilde{}'",
",",
"'^'",
":",
"r'\\^{}'",
",",
"'\\\\'",
":",
"r'\\textbackslash{}'",
",",
"'<'",
":",
"r'\\textless '",
",",
"'>'",
":",
"r'\\textgreater '",
",",
"}",
"regex",
"=",
"re",
".",
"compile",
"(",
"'|'",
".",
"join",
"(",
"re",
".",
"escape",
"(",
"six",
".",
"text_type",
"(",
"key",
")",
")",
"for",
"key",
"in",
"sorted",
"(",
"conv",
".",
"keys",
"(",
")",
",",
"key",
"=",
"lambda",
"item",
":",
"-",
"len",
"(",
"item",
")",
")",
")",
")",
"return",
"regex",
".",
"sub",
"(",
"lambda",
"match",
":",
"conv",
"[",
"match",
".",
"group",
"(",
")",
"]",
",",
"text",
")"
] | Escape string for LaTeX usage
:param text: a plain text message
:return: the message escaped to appear correctly in LaTeX | [
"Escape",
"string",
"for",
"LaTeX",
"usage",
":",
"param",
"text",
":",
"a",
"plain",
"text",
"message",
":",
"return",
":",
"the",
"message",
"escaped",
"to",
"appear",
"correctly",
"in",
"LaTeX"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/report.py#L13-L38 |
BlueBrain/hpcbench | hpcbench/report.py | render | def render(template=None, ostr=None, **kwargs):
"""Generate report from a campaign
:param template: Jinja template to use, ``DEFAULT_TEMPLATE`` is used
if not specified
:param ostr: output file or filename. Default is standard output
"""
jinja_environment.filters['texscape'] = tex_escape
template = template or DEFAULT_TEMPLATE
ostr = ostr or sys.stdout
jinja_template = jinja_environment.get_template(template)
jinja_template.stream(**kwargs).dump(ostr) | python | def render(template=None, ostr=None, **kwargs):
"""Generate report from a campaign
:param template: Jinja template to use, ``DEFAULT_TEMPLATE`` is used
if not specified
:param ostr: output file or filename. Default is standard output
"""
jinja_environment.filters['texscape'] = tex_escape
template = template or DEFAULT_TEMPLATE
ostr = ostr or sys.stdout
jinja_template = jinja_environment.get_template(template)
jinja_template.stream(**kwargs).dump(ostr) | [
"def",
"render",
"(",
"template",
"=",
"None",
",",
"ostr",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"jinja_environment",
".",
"filters",
"[",
"'texscape'",
"]",
"=",
"tex_escape",
"template",
"=",
"template",
"or",
"DEFAULT_TEMPLATE",
"ostr",
"=",
"ostr",
"or",
"sys",
".",
"stdout",
"jinja_template",
"=",
"jinja_environment",
".",
"get_template",
"(",
"template",
")",
"jinja_template",
".",
"stream",
"(",
"*",
"*",
"kwargs",
")",
".",
"dump",
"(",
"ostr",
")"
] | Generate report from a campaign
:param template: Jinja template to use, ``DEFAULT_TEMPLATE`` is used
if not specified
:param ostr: output file or filename. Default is standard output | [
"Generate",
"report",
"from",
"a",
"campaign"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/report.py#L41-L52 |
sci-bots/svg-model | svg_model/point_query.py | get_shapes_pymunk_space | def get_shapes_pymunk_space(df_convex_shapes, shape_i_columns):
'''
Return two-ple containing:
- A `pymunk.Space` instance.
- A `pandas.Series` mapping each `pymunk.Body` object in the `Space` to a
shape index.
The `Body` to shape index mapping makes it possible to, for example, look
up the index of the convex shape associated with a `Body` returned by a
`pymunk` point query in the `Space`.
'''
if isinstance(shape_i_columns, bytes):
shape_i_columns = [shape_i_columns]
space = pm.Space()
bodies = []
convex_groups = df_convex_shapes.groupby(shape_i_columns)
for shape_i, df_i in convex_groups:
if not isinstance(shape_i, (list, tuple)):
shape_i = [shape_i]
if hasattr(pm.Body, 'STATIC'):
# Assume `pymunk>=5.0`, where static bodies must be declared
# explicitly.
body = pm.Body(body_type=pm.Body.STATIC)
else:
# Assume `pymunk<5.0`, where bodies are static unless otherwise
# specified.
body = pm.Body()
# Using the code below is about 66% faster than:
# `df_i[['x', 'y']].values`.
points = [[x, y] for x, y in zip(df_i.x, df_i.y)]
poly = pm.Poly(body, points)
space.add(poly)
bodies.append([body, shape_i[0]])
bodies = None if not bodies else bodies
return space, (pd.DataFrame(bodies, columns=['body',
shape_i_columns[0]])
.set_index('body')[shape_i_columns[0]]) | python | def get_shapes_pymunk_space(df_convex_shapes, shape_i_columns):
'''
Return two-ple containing:
- A `pymunk.Space` instance.
- A `pandas.Series` mapping each `pymunk.Body` object in the `Space` to a
shape index.
The `Body` to shape index mapping makes it possible to, for example, look
up the index of the convex shape associated with a `Body` returned by a
`pymunk` point query in the `Space`.
'''
if isinstance(shape_i_columns, bytes):
shape_i_columns = [shape_i_columns]
space = pm.Space()
bodies = []
convex_groups = df_convex_shapes.groupby(shape_i_columns)
for shape_i, df_i in convex_groups:
if not isinstance(shape_i, (list, tuple)):
shape_i = [shape_i]
if hasattr(pm.Body, 'STATIC'):
# Assume `pymunk>=5.0`, where static bodies must be declared
# explicitly.
body = pm.Body(body_type=pm.Body.STATIC)
else:
# Assume `pymunk<5.0`, where bodies are static unless otherwise
# specified.
body = pm.Body()
# Using the code below is about 66% faster than:
# `df_i[['x', 'y']].values`.
points = [[x, y] for x, y in zip(df_i.x, df_i.y)]
poly = pm.Poly(body, points)
space.add(poly)
bodies.append([body, shape_i[0]])
bodies = None if not bodies else bodies
return space, (pd.DataFrame(bodies, columns=['body',
shape_i_columns[0]])
.set_index('body')[shape_i_columns[0]]) | [
"def",
"get_shapes_pymunk_space",
"(",
"df_convex_shapes",
",",
"shape_i_columns",
")",
":",
"if",
"isinstance",
"(",
"shape_i_columns",
",",
"bytes",
")",
":",
"shape_i_columns",
"=",
"[",
"shape_i_columns",
"]",
"space",
"=",
"pm",
".",
"Space",
"(",
")",
"bodies",
"=",
"[",
"]",
"convex_groups",
"=",
"df_convex_shapes",
".",
"groupby",
"(",
"shape_i_columns",
")",
"for",
"shape_i",
",",
"df_i",
"in",
"convex_groups",
":",
"if",
"not",
"isinstance",
"(",
"shape_i",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"shape_i",
"=",
"[",
"shape_i",
"]",
"if",
"hasattr",
"(",
"pm",
".",
"Body",
",",
"'STATIC'",
")",
":",
"# Assume `pymunk>=5.0`, where static bodies must be declared",
"# explicitly.",
"body",
"=",
"pm",
".",
"Body",
"(",
"body_type",
"=",
"pm",
".",
"Body",
".",
"STATIC",
")",
"else",
":",
"# Assume `pymunk<5.0`, where bodies are static unless otherwise",
"# specified.",
"body",
"=",
"pm",
".",
"Body",
"(",
")",
"# Using the code below is about 66% faster than:",
"# `df_i[['x', 'y']].values`.",
"points",
"=",
"[",
"[",
"x",
",",
"y",
"]",
"for",
"x",
",",
"y",
"in",
"zip",
"(",
"df_i",
".",
"x",
",",
"df_i",
".",
"y",
")",
"]",
"poly",
"=",
"pm",
".",
"Poly",
"(",
"body",
",",
"points",
")",
"space",
".",
"add",
"(",
"poly",
")",
"bodies",
".",
"append",
"(",
"[",
"body",
",",
"shape_i",
"[",
"0",
"]",
"]",
")",
"bodies",
"=",
"None",
"if",
"not",
"bodies",
"else",
"bodies",
"return",
"space",
",",
"(",
"pd",
".",
"DataFrame",
"(",
"bodies",
",",
"columns",
"=",
"[",
"'body'",
",",
"shape_i_columns",
"[",
"0",
"]",
"]",
")",
".",
"set_index",
"(",
"'body'",
")",
"[",
"shape_i_columns",
"[",
"0",
"]",
"]",
")"
] | Return two-ple containing:
- A `pymunk.Space` instance.
- A `pandas.Series` mapping each `pymunk.Body` object in the `Space` to a
shape index.
The `Body` to shape index mapping makes it possible to, for example, look
up the index of the convex shape associated with a `Body` returned by a
`pymunk` point query in the `Space`. | [
"Return",
"two",
"-",
"ple",
"containing",
":"
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/point_query.py#L12-L54 |
eng-tools/sfsimodels | sfsimodels/files.py | load_json | def load_json(ffp, custom=None, verbose=0):
"""
Given a json file it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict
"""
data = json.load(open(ffp))
return ecp_dict_to_objects(data, custom, verbose=verbose) | python | def load_json(ffp, custom=None, verbose=0):
"""
Given a json file it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict
"""
data = json.load(open(ffp))
return ecp_dict_to_objects(data, custom, verbose=verbose) | [
"def",
"load_json",
"(",
"ffp",
",",
"custom",
"=",
"None",
",",
"verbose",
"=",
"0",
")",
":",
"data",
"=",
"json",
".",
"load",
"(",
"open",
"(",
"ffp",
")",
")",
"return",
"ecp_dict_to_objects",
"(",
"data",
",",
"custom",
",",
"verbose",
"=",
"verbose",
")"
] | Given a json file it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict | [
"Given",
"a",
"json",
"file",
"it",
"creates",
"a",
"dictionary",
"of",
"sfsi",
"objects"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L11-L21 |
eng-tools/sfsimodels | sfsimodels/files.py | loads_json | def loads_json(p_str, custom=None, meta=False, verbose=0):
"""
Given a json string it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param meta: bool, if true then also return all ecp meta data in separate dict
:param verbose: int, console output
:return: dict
"""
data = json.loads(p_str)
if meta:
md = {}
for item in data:
if item != "models":
md[item] = data[item]
return ecp_dict_to_objects(data, custom, verbose=verbose), md
else:
return ecp_dict_to_objects(data, custom, verbose=verbose) | python | def loads_json(p_str, custom=None, meta=False, verbose=0):
"""
Given a json string it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param meta: bool, if true then also return all ecp meta data in separate dict
:param verbose: int, console output
:return: dict
"""
data = json.loads(p_str)
if meta:
md = {}
for item in data:
if item != "models":
md[item] = data[item]
return ecp_dict_to_objects(data, custom, verbose=verbose), md
else:
return ecp_dict_to_objects(data, custom, verbose=verbose) | [
"def",
"loads_json",
"(",
"p_str",
",",
"custom",
"=",
"None",
",",
"meta",
"=",
"False",
",",
"verbose",
"=",
"0",
")",
":",
"data",
"=",
"json",
".",
"loads",
"(",
"p_str",
")",
"if",
"meta",
":",
"md",
"=",
"{",
"}",
"for",
"item",
"in",
"data",
":",
"if",
"item",
"!=",
"\"models\"",
":",
"md",
"[",
"item",
"]",
"=",
"data",
"[",
"item",
"]",
"return",
"ecp_dict_to_objects",
"(",
"data",
",",
"custom",
",",
"verbose",
"=",
"verbose",
")",
",",
"md",
"else",
":",
"return",
"ecp_dict_to_objects",
"(",
"data",
",",
"custom",
",",
"verbose",
"=",
"verbose",
")"
] | Given a json string it creates a dictionary of sfsi objects
:param ffp: str, Full file path to json file
:param custom: dict, used to load custom objects, {model type: custom object}
:param meta: bool, if true then also return all ecp meta data in separate dict
:param verbose: int, console output
:return: dict | [
"Given",
"a",
"json",
"string",
"it",
"creates",
"a",
"dictionary",
"of",
"sfsi",
"objects"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L33-L51 |
eng-tools/sfsimodels | sfsimodels/files.py | ecp_dict_to_objects | def ecp_dict_to_objects(ecp_dict, custom_map=None, verbose=0):
"""
Given an ecp dictionary, build a dictionary of sfsi objects
:param ecp_dict: dict, engineering consistency project dictionary
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict
"""
if custom_map is None:
custom_map = {}
obj_map = {
"soil-soil": soils.Soil,
"soil-critical_soil": soils.CriticalSoil,
"soil-soil_critical": soils.CriticalSoil, # deprecated type
"soil-stress_dependent_soil": soils.StressDependentSoil,
"soil-soil_stress_dependent": soils.StressDependentSoil,
"soil_profile-soil_profile": soils.SoilProfile,
"building-building": buildings.Building,
"building-frame_building": buildings.FrameBuilding,
"building-frame_building2D": buildings.FrameBuilding2D,
"building-building_frame2D": buildings.FrameBuilding2D, # deprecated type
"building-wall_building": buildings.WallBuilding,
"building-building_wall": buildings.WallBuilding, # deprecated type
"building-structure": buildings.SDOFBuilding, # Deprecated type, remove in v1
"building-sdof": buildings.SDOFBuilding,
"foundation-foundation": foundations.Foundation,
"foundation-foundation_raft": foundations.RaftFoundation, # deprecated type
"foundation-raft_foundation": foundations.RaftFoundation,
"foundation-raft": foundations.RaftFoundation, # Deprecated approach for type, remove in v1
"foundation-pad_foundation": foundations.PadFoundation,
"foundation-foundation_pad": foundations.PadFoundation, # deprecated type
"section-section": buildings.Section,
"custom_object-custom_object": abstract_models.CustomObject,
"system-system": systems.SoilStructureSystem, # deprecated type
"system-sfs": systems.SoilStructureSystem
}
# merge and overwrite the object map with custom maps
# for item in custom_map:
# obj_map[item] = custom_map[item]
obj_map = {**obj_map, **custom_map}
data_models = ecp_dict["models"]
exception_list = []
objs = OrderedDict()
collected = set([])
# Set base type properly
mtypes = list(data_models)
for mtype in mtypes:
base_type = mtype
if base_type[:-1] in standard_types: # support the loading of old plural based ecp files
base_type = base_type[:-1]
data_models[base_type] = data_models[mtype]
del data_models[mtype]
for m_id in data_models[base_type]:
data_models[base_type][m_id]["base_type"] = base_type
for mtype in data_models:
base_type = mtype
if base_type in exception_list:
continue
collected.add(base_type)
objs[base_type] = OrderedDict()
for m_id in data_models[mtype]:
obj = data_models[mtype][m_id]
if "type" not in obj:
obj["type"] = base_type
try:
obj_class = obj_map["%s-%s" % (base_type, obj["type"])]
except KeyError:
if obj["type"] in deprecated_types:
try:
obj_class = obj_map["%s-%s" % (base_type, deprecated_types[obj["type"]])]
except KeyError:
raise KeyError("Map for Model: '%s' index: '%s' and type: '%s' not available, "
"add '%s-%s' to custom dict" % (base_type, m_id, base_type, base_type, obj["type"]))
else:
raise KeyError("Map for Model: '%s' index: '%s' and type: '%s' not available, "
"add '%s-%s' to custom dict" % (base_type, m_id, base_type, base_type, obj["type"]))
try:
new_instance = obj_class()
except TypeError as e:
if "required positional argument:" in str(e):
parameters = [str(e).split("argument: ")[-1]]
elif "required positional arguments:" in str(e):
p_str = str(e).split("arguments: ")[-1]
if ", and " in p_str: # if more than 2
partial = p_str.split(", and ")
parameters = partial[0].split(", ") + partial[-1:]
else: # if one
parameters = p_str.split(" and ")
else:
raise TypeError(e)
params = []
for parameter in parameters:
parameter = parameter[1:-1]
try:
params.append(data_models[mtype][m_id][parameter])
except KeyError as e2: # To be removed and just raise exception
deprecation("Your file is out of date, "
"run sfsimodels.migrate_ecp(<file-path>, <out-file-path>).")
if mtype == "building":
params = [len(data_models[mtype][m_id]["storey_masses"])] # n_storeys
if "frame" in data_models[mtype][m_id]["type"]:
params.append(len(data_models[mtype][m_id]["bay_lengths"]))
else:
raise KeyError("Can't find required positional argument: {0} for {1} id: {2}".format(
parameter, mtype, m_id
))
new_instance = obj_class(*params)
add_to_obj(new_instance, data_models[mtype][m_id], objs=objs, verbose=verbose)
# print(mtype, m_id)
objs[base_type][int(data_models[mtype][m_id]["id"])] = new_instance
# Deal with all the exceptions
# for mtype in data_models:
# base_type = mtype
#
# if base_type in collected:
# continue
# if base_type not in objs:
# objs[base_type] = OrderedDict()
all_bts = list(objs)
for base_type in all_bts: # Support for old style ecp file
if base_type in standard_types:
objs[base_type + "s"] = objs[base_type]
return objs | python | def ecp_dict_to_objects(ecp_dict, custom_map=None, verbose=0):
"""
Given an ecp dictionary, build a dictionary of sfsi objects
:param ecp_dict: dict, engineering consistency project dictionary
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict
"""
if custom_map is None:
custom_map = {}
obj_map = {
"soil-soil": soils.Soil,
"soil-critical_soil": soils.CriticalSoil,
"soil-soil_critical": soils.CriticalSoil, # deprecated type
"soil-stress_dependent_soil": soils.StressDependentSoil,
"soil-soil_stress_dependent": soils.StressDependentSoil,
"soil_profile-soil_profile": soils.SoilProfile,
"building-building": buildings.Building,
"building-frame_building": buildings.FrameBuilding,
"building-frame_building2D": buildings.FrameBuilding2D,
"building-building_frame2D": buildings.FrameBuilding2D, # deprecated type
"building-wall_building": buildings.WallBuilding,
"building-building_wall": buildings.WallBuilding, # deprecated type
"building-structure": buildings.SDOFBuilding, # Deprecated type, remove in v1
"building-sdof": buildings.SDOFBuilding,
"foundation-foundation": foundations.Foundation,
"foundation-foundation_raft": foundations.RaftFoundation, # deprecated type
"foundation-raft_foundation": foundations.RaftFoundation,
"foundation-raft": foundations.RaftFoundation, # Deprecated approach for type, remove in v1
"foundation-pad_foundation": foundations.PadFoundation,
"foundation-foundation_pad": foundations.PadFoundation, # deprecated type
"section-section": buildings.Section,
"custom_object-custom_object": abstract_models.CustomObject,
"system-system": systems.SoilStructureSystem, # deprecated type
"system-sfs": systems.SoilStructureSystem
}
# merge and overwrite the object map with custom maps
# for item in custom_map:
# obj_map[item] = custom_map[item]
obj_map = {**obj_map, **custom_map}
data_models = ecp_dict["models"]
exception_list = []
objs = OrderedDict()
collected = set([])
# Set base type properly
mtypes = list(data_models)
for mtype in mtypes:
base_type = mtype
if base_type[:-1] in standard_types: # support the loading of old plural based ecp files
base_type = base_type[:-1]
data_models[base_type] = data_models[mtype]
del data_models[mtype]
for m_id in data_models[base_type]:
data_models[base_type][m_id]["base_type"] = base_type
for mtype in data_models:
base_type = mtype
if base_type in exception_list:
continue
collected.add(base_type)
objs[base_type] = OrderedDict()
for m_id in data_models[mtype]:
obj = data_models[mtype][m_id]
if "type" not in obj:
obj["type"] = base_type
try:
obj_class = obj_map["%s-%s" % (base_type, obj["type"])]
except KeyError:
if obj["type"] in deprecated_types:
try:
obj_class = obj_map["%s-%s" % (base_type, deprecated_types[obj["type"]])]
except KeyError:
raise KeyError("Map for Model: '%s' index: '%s' and type: '%s' not available, "
"add '%s-%s' to custom dict" % (base_type, m_id, base_type, base_type, obj["type"]))
else:
raise KeyError("Map for Model: '%s' index: '%s' and type: '%s' not available, "
"add '%s-%s' to custom dict" % (base_type, m_id, base_type, base_type, obj["type"]))
try:
new_instance = obj_class()
except TypeError as e:
if "required positional argument:" in str(e):
parameters = [str(e).split("argument: ")[-1]]
elif "required positional arguments:" in str(e):
p_str = str(e).split("arguments: ")[-1]
if ", and " in p_str: # if more than 2
partial = p_str.split(", and ")
parameters = partial[0].split(", ") + partial[-1:]
else: # if one
parameters = p_str.split(" and ")
else:
raise TypeError(e)
params = []
for parameter in parameters:
parameter = parameter[1:-1]
try:
params.append(data_models[mtype][m_id][parameter])
except KeyError as e2: # To be removed and just raise exception
deprecation("Your file is out of date, "
"run sfsimodels.migrate_ecp(<file-path>, <out-file-path>).")
if mtype == "building":
params = [len(data_models[mtype][m_id]["storey_masses"])] # n_storeys
if "frame" in data_models[mtype][m_id]["type"]:
params.append(len(data_models[mtype][m_id]["bay_lengths"]))
else:
raise KeyError("Can't find required positional argument: {0} for {1} id: {2}".format(
parameter, mtype, m_id
))
new_instance = obj_class(*params)
add_to_obj(new_instance, data_models[mtype][m_id], objs=objs, verbose=verbose)
# print(mtype, m_id)
objs[base_type][int(data_models[mtype][m_id]["id"])] = new_instance
# Deal with all the exceptions
# for mtype in data_models:
# base_type = mtype
#
# if base_type in collected:
# continue
# if base_type not in objs:
# objs[base_type] = OrderedDict()
all_bts = list(objs)
for base_type in all_bts: # Support for old style ecp file
if base_type in standard_types:
objs[base_type + "s"] = objs[base_type]
return objs | [
"def",
"ecp_dict_to_objects",
"(",
"ecp_dict",
",",
"custom_map",
"=",
"None",
",",
"verbose",
"=",
"0",
")",
":",
"if",
"custom_map",
"is",
"None",
":",
"custom_map",
"=",
"{",
"}",
"obj_map",
"=",
"{",
"\"soil-soil\"",
":",
"soils",
".",
"Soil",
",",
"\"soil-critical_soil\"",
":",
"soils",
".",
"CriticalSoil",
",",
"\"soil-soil_critical\"",
":",
"soils",
".",
"CriticalSoil",
",",
"# deprecated type",
"\"soil-stress_dependent_soil\"",
":",
"soils",
".",
"StressDependentSoil",
",",
"\"soil-soil_stress_dependent\"",
":",
"soils",
".",
"StressDependentSoil",
",",
"\"soil_profile-soil_profile\"",
":",
"soils",
".",
"SoilProfile",
",",
"\"building-building\"",
":",
"buildings",
".",
"Building",
",",
"\"building-frame_building\"",
":",
"buildings",
".",
"FrameBuilding",
",",
"\"building-frame_building2D\"",
":",
"buildings",
".",
"FrameBuilding2D",
",",
"\"building-building_frame2D\"",
":",
"buildings",
".",
"FrameBuilding2D",
",",
"# deprecated type",
"\"building-wall_building\"",
":",
"buildings",
".",
"WallBuilding",
",",
"\"building-building_wall\"",
":",
"buildings",
".",
"WallBuilding",
",",
"# deprecated type",
"\"building-structure\"",
":",
"buildings",
".",
"SDOFBuilding",
",",
"# Deprecated type, remove in v1",
"\"building-sdof\"",
":",
"buildings",
".",
"SDOFBuilding",
",",
"\"foundation-foundation\"",
":",
"foundations",
".",
"Foundation",
",",
"\"foundation-foundation_raft\"",
":",
"foundations",
".",
"RaftFoundation",
",",
"# deprecated type",
"\"foundation-raft_foundation\"",
":",
"foundations",
".",
"RaftFoundation",
",",
"\"foundation-raft\"",
":",
"foundations",
".",
"RaftFoundation",
",",
"# Deprecated approach for type, remove in v1",
"\"foundation-pad_foundation\"",
":",
"foundations",
".",
"PadFoundation",
",",
"\"foundation-foundation_pad\"",
":",
"foundations",
".",
"PadFoundation",
",",
"# deprecated type",
"\"section-section\"",
":",
"buildings",
".",
"Section",
",",
"\"custom_object-custom_object\"",
":",
"abstract_models",
".",
"CustomObject",
",",
"\"system-system\"",
":",
"systems",
".",
"SoilStructureSystem",
",",
"# deprecated type",
"\"system-sfs\"",
":",
"systems",
".",
"SoilStructureSystem",
"}",
"# merge and overwrite the object map with custom maps",
"# for item in custom_map:",
"# obj_map[item] = custom_map[item]",
"obj_map",
"=",
"{",
"*",
"*",
"obj_map",
",",
"*",
"*",
"custom_map",
"}",
"data_models",
"=",
"ecp_dict",
"[",
"\"models\"",
"]",
"exception_list",
"=",
"[",
"]",
"objs",
"=",
"OrderedDict",
"(",
")",
"collected",
"=",
"set",
"(",
"[",
"]",
")",
"# Set base type properly",
"mtypes",
"=",
"list",
"(",
"data_models",
")",
"for",
"mtype",
"in",
"mtypes",
":",
"base_type",
"=",
"mtype",
"if",
"base_type",
"[",
":",
"-",
"1",
"]",
"in",
"standard_types",
":",
"# support the loading of old plural based ecp files",
"base_type",
"=",
"base_type",
"[",
":",
"-",
"1",
"]",
"data_models",
"[",
"base_type",
"]",
"=",
"data_models",
"[",
"mtype",
"]",
"del",
"data_models",
"[",
"mtype",
"]",
"for",
"m_id",
"in",
"data_models",
"[",
"base_type",
"]",
":",
"data_models",
"[",
"base_type",
"]",
"[",
"m_id",
"]",
"[",
"\"base_type\"",
"]",
"=",
"base_type",
"for",
"mtype",
"in",
"data_models",
":",
"base_type",
"=",
"mtype",
"if",
"base_type",
"in",
"exception_list",
":",
"continue",
"collected",
".",
"add",
"(",
"base_type",
")",
"objs",
"[",
"base_type",
"]",
"=",
"OrderedDict",
"(",
")",
"for",
"m_id",
"in",
"data_models",
"[",
"mtype",
"]",
":",
"obj",
"=",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"if",
"\"type\"",
"not",
"in",
"obj",
":",
"obj",
"[",
"\"type\"",
"]",
"=",
"base_type",
"try",
":",
"obj_class",
"=",
"obj_map",
"[",
"\"%s-%s\"",
"%",
"(",
"base_type",
",",
"obj",
"[",
"\"type\"",
"]",
")",
"]",
"except",
"KeyError",
":",
"if",
"obj",
"[",
"\"type\"",
"]",
"in",
"deprecated_types",
":",
"try",
":",
"obj_class",
"=",
"obj_map",
"[",
"\"%s-%s\"",
"%",
"(",
"base_type",
",",
"deprecated_types",
"[",
"obj",
"[",
"\"type\"",
"]",
"]",
")",
"]",
"except",
"KeyError",
":",
"raise",
"KeyError",
"(",
"\"Map for Model: '%s' index: '%s' and type: '%s' not available, \"",
"\"add '%s-%s' to custom dict\"",
"%",
"(",
"base_type",
",",
"m_id",
",",
"base_type",
",",
"base_type",
",",
"obj",
"[",
"\"type\"",
"]",
")",
")",
"else",
":",
"raise",
"KeyError",
"(",
"\"Map for Model: '%s' index: '%s' and type: '%s' not available, \"",
"\"add '%s-%s' to custom dict\"",
"%",
"(",
"base_type",
",",
"m_id",
",",
"base_type",
",",
"base_type",
",",
"obj",
"[",
"\"type\"",
"]",
")",
")",
"try",
":",
"new_instance",
"=",
"obj_class",
"(",
")",
"except",
"TypeError",
"as",
"e",
":",
"if",
"\"required positional argument:\"",
"in",
"str",
"(",
"e",
")",
":",
"parameters",
"=",
"[",
"str",
"(",
"e",
")",
".",
"split",
"(",
"\"argument: \"",
")",
"[",
"-",
"1",
"]",
"]",
"elif",
"\"required positional arguments:\"",
"in",
"str",
"(",
"e",
")",
":",
"p_str",
"=",
"str",
"(",
"e",
")",
".",
"split",
"(",
"\"arguments: \"",
")",
"[",
"-",
"1",
"]",
"if",
"\", and \"",
"in",
"p_str",
":",
"# if more than 2",
"partial",
"=",
"p_str",
".",
"split",
"(",
"\", and \"",
")",
"parameters",
"=",
"partial",
"[",
"0",
"]",
".",
"split",
"(",
"\", \"",
")",
"+",
"partial",
"[",
"-",
"1",
":",
"]",
"else",
":",
"# if one",
"parameters",
"=",
"p_str",
".",
"split",
"(",
"\" and \"",
")",
"else",
":",
"raise",
"TypeError",
"(",
"e",
")",
"params",
"=",
"[",
"]",
"for",
"parameter",
"in",
"parameters",
":",
"parameter",
"=",
"parameter",
"[",
"1",
":",
"-",
"1",
"]",
"try",
":",
"params",
".",
"append",
"(",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"[",
"parameter",
"]",
")",
"except",
"KeyError",
"as",
"e2",
":",
"# To be removed and just raise exception",
"deprecation",
"(",
"\"Your file is out of date, \"",
"\"run sfsimodels.migrate_ecp(<file-path>, <out-file-path>).\"",
")",
"if",
"mtype",
"==",
"\"building\"",
":",
"params",
"=",
"[",
"len",
"(",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"[",
"\"storey_masses\"",
"]",
")",
"]",
"# n_storeys",
"if",
"\"frame\"",
"in",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"[",
"\"type\"",
"]",
":",
"params",
".",
"append",
"(",
"len",
"(",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"[",
"\"bay_lengths\"",
"]",
")",
")",
"else",
":",
"raise",
"KeyError",
"(",
"\"Can't find required positional argument: {0} for {1} id: {2}\"",
".",
"format",
"(",
"parameter",
",",
"mtype",
",",
"m_id",
")",
")",
"new_instance",
"=",
"obj_class",
"(",
"*",
"params",
")",
"add_to_obj",
"(",
"new_instance",
",",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
",",
"objs",
"=",
"objs",
",",
"verbose",
"=",
"verbose",
")",
"# print(mtype, m_id)",
"objs",
"[",
"base_type",
"]",
"[",
"int",
"(",
"data_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"[",
"\"id\"",
"]",
")",
"]",
"=",
"new_instance",
"# Deal with all the exceptions",
"# for mtype in data_models:",
"# base_type = mtype",
"#",
"# if base_type in collected:",
"# continue",
"# if base_type not in objs:",
"# objs[base_type] = OrderedDict()",
"all_bts",
"=",
"list",
"(",
"objs",
")",
"for",
"base_type",
"in",
"all_bts",
":",
"# Support for old style ecp file",
"if",
"base_type",
"in",
"standard_types",
":",
"objs",
"[",
"base_type",
"+",
"\"s\"",
"]",
"=",
"objs",
"[",
"base_type",
"]",
"return",
"objs"
] | Given an ecp dictionary, build a dictionary of sfsi objects
:param ecp_dict: dict, engineering consistency project dictionary
:param custom: dict, used to load custom objects, {model type: custom object}
:param verbose: int, console output
:return: dict | [
"Given",
"an",
"ecp",
"dictionary",
"build",
"a",
"dictionary",
"of",
"sfsi",
"objects"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L71-L202 |
eng-tools/sfsimodels | sfsimodels/files.py | migrate_ecp | def migrate_ecp(in_ffp, out_ffp):
"""Migrates and ECP file to the current version of sfsimodels"""
objs, meta_data = load_json_and_meta(in_ffp)
ecp_output = Output()
for m_type in objs:
for instance in objs[m_type]:
ecp_output.add_to_dict(objs[m_type][instance])
ecp_output.name = meta_data["name"]
ecp_output.units = meta_data["units"]
ecp_output.comments = meta_data["comments"]
ecp_output.sfsimodels_version = meta_data["sfsimodels_version"]
p_str = json.dumps(ecp_output.to_dict(), skipkeys=["__repr__"], indent=4)
a = open(out_ffp, "w")
a.write(p_str)
a.close() | python | def migrate_ecp(in_ffp, out_ffp):
"""Migrates and ECP file to the current version of sfsimodels"""
objs, meta_data = load_json_and_meta(in_ffp)
ecp_output = Output()
for m_type in objs:
for instance in objs[m_type]:
ecp_output.add_to_dict(objs[m_type][instance])
ecp_output.name = meta_data["name"]
ecp_output.units = meta_data["units"]
ecp_output.comments = meta_data["comments"]
ecp_output.sfsimodels_version = meta_data["sfsimodels_version"]
p_str = json.dumps(ecp_output.to_dict(), skipkeys=["__repr__"], indent=4)
a = open(out_ffp, "w")
a.write(p_str)
a.close() | [
"def",
"migrate_ecp",
"(",
"in_ffp",
",",
"out_ffp",
")",
":",
"objs",
",",
"meta_data",
"=",
"load_json_and_meta",
"(",
"in_ffp",
")",
"ecp_output",
"=",
"Output",
"(",
")",
"for",
"m_type",
"in",
"objs",
":",
"for",
"instance",
"in",
"objs",
"[",
"m_type",
"]",
":",
"ecp_output",
".",
"add_to_dict",
"(",
"objs",
"[",
"m_type",
"]",
"[",
"instance",
"]",
")",
"ecp_output",
".",
"name",
"=",
"meta_data",
"[",
"\"name\"",
"]",
"ecp_output",
".",
"units",
"=",
"meta_data",
"[",
"\"units\"",
"]",
"ecp_output",
".",
"comments",
"=",
"meta_data",
"[",
"\"comments\"",
"]",
"ecp_output",
".",
"sfsimodels_version",
"=",
"meta_data",
"[",
"\"sfsimodels_version\"",
"]",
"p_str",
"=",
"json",
".",
"dumps",
"(",
"ecp_output",
".",
"to_dict",
"(",
")",
",",
"skipkeys",
"=",
"[",
"\"__repr__\"",
"]",
",",
"indent",
"=",
"4",
")",
"a",
"=",
"open",
"(",
"out_ffp",
",",
"\"w\"",
")",
"a",
".",
"write",
"(",
"p_str",
")",
"a",
".",
"close",
"(",
")"
] | Migrates and ECP file to the current version of sfsimodels | [
"Migrates",
"and",
"ECP",
"file",
"to",
"the",
"current",
"version",
"of",
"sfsimodels"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L287-L301 |
eng-tools/sfsimodels | sfsimodels/files.py | Output.add_to_dict | def add_to_dict(self, an_object, extras=None):
"""
Convert models to json serialisable output
:param an_object: An instance of a model object
:param extras: A dictionary of extra variables that should be
:return:
"""
if an_object.id is None:
raise ModelError("id must be set on object before adding to output.")
if hasattr(an_object, "base_type"):
mtype = an_object.base_type
elif hasattr(an_object, "type"):
if an_object.type in standard_types:
mtype = an_object.type
else:
mtype = "custom_type"
else:
raise ModelError("Object does not have attribute 'base_type' or 'type', cannot add to output.")
if mtype not in self.unordered_models: # Catch any custom objects
self.unordered_models[mtype] = OrderedDict()
if hasattr(an_object, "add_to_dict"):
an_object.add_to_dict(self.unordered_models)
elif hasattr(an_object, "to_dict"):
self.unordered_models[mtype][an_object.unique_hash] = an_object.to_dict(compression=self.compression)
else:
raise ModelError("Object does not have method 'to_dict', cannot add to output.") | python | def add_to_dict(self, an_object, extras=None):
"""
Convert models to json serialisable output
:param an_object: An instance of a model object
:param extras: A dictionary of extra variables that should be
:return:
"""
if an_object.id is None:
raise ModelError("id must be set on object before adding to output.")
if hasattr(an_object, "base_type"):
mtype = an_object.base_type
elif hasattr(an_object, "type"):
if an_object.type in standard_types:
mtype = an_object.type
else:
mtype = "custom_type"
else:
raise ModelError("Object does not have attribute 'base_type' or 'type', cannot add to output.")
if mtype not in self.unordered_models: # Catch any custom objects
self.unordered_models[mtype] = OrderedDict()
if hasattr(an_object, "add_to_dict"):
an_object.add_to_dict(self.unordered_models)
elif hasattr(an_object, "to_dict"):
self.unordered_models[mtype][an_object.unique_hash] = an_object.to_dict(compression=self.compression)
else:
raise ModelError("Object does not have method 'to_dict', cannot add to output.") | [
"def",
"add_to_dict",
"(",
"self",
",",
"an_object",
",",
"extras",
"=",
"None",
")",
":",
"if",
"an_object",
".",
"id",
"is",
"None",
":",
"raise",
"ModelError",
"(",
"\"id must be set on object before adding to output.\"",
")",
"if",
"hasattr",
"(",
"an_object",
",",
"\"base_type\"",
")",
":",
"mtype",
"=",
"an_object",
".",
"base_type",
"elif",
"hasattr",
"(",
"an_object",
",",
"\"type\"",
")",
":",
"if",
"an_object",
".",
"type",
"in",
"standard_types",
":",
"mtype",
"=",
"an_object",
".",
"type",
"else",
":",
"mtype",
"=",
"\"custom_type\"",
"else",
":",
"raise",
"ModelError",
"(",
"\"Object does not have attribute 'base_type' or 'type', cannot add to output.\"",
")",
"if",
"mtype",
"not",
"in",
"self",
".",
"unordered_models",
":",
"# Catch any custom objects",
"self",
".",
"unordered_models",
"[",
"mtype",
"]",
"=",
"OrderedDict",
"(",
")",
"if",
"hasattr",
"(",
"an_object",
",",
"\"add_to_dict\"",
")",
":",
"an_object",
".",
"add_to_dict",
"(",
"self",
".",
"unordered_models",
")",
"elif",
"hasattr",
"(",
"an_object",
",",
"\"to_dict\"",
")",
":",
"self",
".",
"unordered_models",
"[",
"mtype",
"]",
"[",
"an_object",
".",
"unique_hash",
"]",
"=",
"an_object",
".",
"to_dict",
"(",
"compression",
"=",
"self",
".",
"compression",
")",
"else",
":",
"raise",
"ModelError",
"(",
"\"Object does not have method 'to_dict', cannot add to output.\"",
")"
] | Convert models to json serialisable output
:param an_object: An instance of a model object
:param extras: A dictionary of extra variables that should be
:return: | [
"Convert",
"models",
"to",
"json",
"serialisable",
"output"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L216-L244 |
eng-tools/sfsimodels | sfsimodels/files.py | Output.add_to_output | def add_to_output(self, mtype, m_id, serialisable_dict):
"""
Can add additional objects or dictionaries to output file that don't conform to standard objects.
:param mtype:
:param m_id:
:param serialisable_dict:
:return:
"""
if mtype not in self.unordered_models:
self.unordered_models[mtype] = OrderedDict()
self.unordered_models[mtype][m_id] = serialisable_dict | python | def add_to_output(self, mtype, m_id, serialisable_dict):
"""
Can add additional objects or dictionaries to output file that don't conform to standard objects.
:param mtype:
:param m_id:
:param serialisable_dict:
:return:
"""
if mtype not in self.unordered_models:
self.unordered_models[mtype] = OrderedDict()
self.unordered_models[mtype][m_id] = serialisable_dict | [
"def",
"add_to_output",
"(",
"self",
",",
"mtype",
",",
"m_id",
",",
"serialisable_dict",
")",
":",
"if",
"mtype",
"not",
"in",
"self",
".",
"unordered_models",
":",
"self",
".",
"unordered_models",
"[",
"mtype",
"]",
"=",
"OrderedDict",
"(",
")",
"self",
".",
"unordered_models",
"[",
"mtype",
"]",
"[",
"m_id",
"]",
"=",
"serialisable_dict"
] | Can add additional objects or dictionaries to output file that don't conform to standard objects.
:param mtype:
:param m_id:
:param serialisable_dict:
:return: | [
"Can",
"add",
"additional",
"objects",
"or",
"dictionaries",
"to",
"output",
"file",
"that",
"don",
"t",
"conform",
"to",
"standard",
"objects",
"."
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L246-L257 |
eng-tools/sfsimodels | sfsimodels/files.py | Output.models | def models(self):
"""Unhashed"""
models_dict = OrderedDict()
collected = []
for item in standard_types:
if item in self.unordered_models:
new_dict, replacement_dict = unhash_dict(self.unordered_models[item])
models_dict[item] = new_dict
collected.append(item)
for item in self.unordered_models:
# print("item: ", item)
if item not in collected:
new_dict, replacement_dict = unhash_dict(self.unordered_models[item])
models_dict[item] = new_dict
return models_dict | python | def models(self):
"""Unhashed"""
models_dict = OrderedDict()
collected = []
for item in standard_types:
if item in self.unordered_models:
new_dict, replacement_dict = unhash_dict(self.unordered_models[item])
models_dict[item] = new_dict
collected.append(item)
for item in self.unordered_models:
# print("item: ", item)
if item not in collected:
new_dict, replacement_dict = unhash_dict(self.unordered_models[item])
models_dict[item] = new_dict
return models_dict | [
"def",
"models",
"(",
"self",
")",
":",
"models_dict",
"=",
"OrderedDict",
"(",
")",
"collected",
"=",
"[",
"]",
"for",
"item",
"in",
"standard_types",
":",
"if",
"item",
"in",
"self",
".",
"unordered_models",
":",
"new_dict",
",",
"replacement_dict",
"=",
"unhash_dict",
"(",
"self",
".",
"unordered_models",
"[",
"item",
"]",
")",
"models_dict",
"[",
"item",
"]",
"=",
"new_dict",
"collected",
".",
"append",
"(",
"item",
")",
"for",
"item",
"in",
"self",
".",
"unordered_models",
":",
"# print(\"item: \", item)",
"if",
"item",
"not",
"in",
"collected",
":",
"new_dict",
",",
"replacement_dict",
"=",
"unhash_dict",
"(",
"self",
".",
"unordered_models",
"[",
"item",
"]",
")",
"models_dict",
"[",
"item",
"]",
"=",
"new_dict",
"return",
"models_dict"
] | Unhashed | [
"Unhashed"
] | train | https://github.com/eng-tools/sfsimodels/blob/65a690ca440d61307f5a9b8478e4704f203a5925/sfsimodels/files.py#L260-L274 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | available_cpu_count | def available_cpu_count() -> int:
"""
Get the number of available CPUs.
Number of available virtual or physical CPUs on this system, i.e.
user/real as output by time(1) when called with an optimally scaling
userspace-only program.
Returns:
Number of avaialable CPUs.
"""
# cpuset
# cpuset may restrict the number of *available* processors
try:
match = re.search(r'(?m)^Cpus_allowed:\s*(.*)$',
open('/proc/self/status').read())
if match:
res = bin(int(match.group(1).replace(',', ''), 16)).count('1')
if res > 0:
return res
except IOError:
LOG.debug("Could not get the number of allowed CPUs")
# http://code.google.com/p/psutil/
try:
import psutil
return psutil.cpu_count() # psutil.NUM_CPUS on old versions
except (ImportError, AttributeError):
LOG.debug("Could not get the number of allowed CPUs")
# POSIX
try:
res = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if res > 0:
return res
except (AttributeError, ValueError):
LOG.debug("Could not get the number of allowed CPUs")
# Linux
try:
res = open('/proc/cpuinfo').read().count('processor\t:')
if res > 0:
return res
except IOError:
LOG.debug("Could not get the number of allowed CPUs")
raise Exception('Can not determine number of CPUs on this system') | python | def available_cpu_count() -> int:
"""
Get the number of available CPUs.
Number of available virtual or physical CPUs on this system, i.e.
user/real as output by time(1) when called with an optimally scaling
userspace-only program.
Returns:
Number of avaialable CPUs.
"""
# cpuset
# cpuset may restrict the number of *available* processors
try:
match = re.search(r'(?m)^Cpus_allowed:\s*(.*)$',
open('/proc/self/status').read())
if match:
res = bin(int(match.group(1).replace(',', ''), 16)).count('1')
if res > 0:
return res
except IOError:
LOG.debug("Could not get the number of allowed CPUs")
# http://code.google.com/p/psutil/
try:
import psutil
return psutil.cpu_count() # psutil.NUM_CPUS on old versions
except (ImportError, AttributeError):
LOG.debug("Could not get the number of allowed CPUs")
# POSIX
try:
res = int(os.sysconf('SC_NPROCESSORS_ONLN'))
if res > 0:
return res
except (AttributeError, ValueError):
LOG.debug("Could not get the number of allowed CPUs")
# Linux
try:
res = open('/proc/cpuinfo').read().count('processor\t:')
if res > 0:
return res
except IOError:
LOG.debug("Could not get the number of allowed CPUs")
raise Exception('Can not determine number of CPUs on this system') | [
"def",
"available_cpu_count",
"(",
")",
"->",
"int",
":",
"# cpuset",
"# cpuset may restrict the number of *available* processors",
"try",
":",
"match",
"=",
"re",
".",
"search",
"(",
"r'(?m)^Cpus_allowed:\\s*(.*)$'",
",",
"open",
"(",
"'/proc/self/status'",
")",
".",
"read",
"(",
")",
")",
"if",
"match",
":",
"res",
"=",
"bin",
"(",
"int",
"(",
"match",
".",
"group",
"(",
"1",
")",
".",
"replace",
"(",
"','",
",",
"''",
")",
",",
"16",
")",
")",
".",
"count",
"(",
"'1'",
")",
"if",
"res",
">",
"0",
":",
"return",
"res",
"except",
"IOError",
":",
"LOG",
".",
"debug",
"(",
"\"Could not get the number of allowed CPUs\"",
")",
"# http://code.google.com/p/psutil/",
"try",
":",
"import",
"psutil",
"return",
"psutil",
".",
"cpu_count",
"(",
")",
"# psutil.NUM_CPUS on old versions",
"except",
"(",
"ImportError",
",",
"AttributeError",
")",
":",
"LOG",
".",
"debug",
"(",
"\"Could not get the number of allowed CPUs\"",
")",
"# POSIX",
"try",
":",
"res",
"=",
"int",
"(",
"os",
".",
"sysconf",
"(",
"'SC_NPROCESSORS_ONLN'",
")",
")",
"if",
"res",
">",
"0",
":",
"return",
"res",
"except",
"(",
"AttributeError",
",",
"ValueError",
")",
":",
"LOG",
".",
"debug",
"(",
"\"Could not get the number of allowed CPUs\"",
")",
"# Linux",
"try",
":",
"res",
"=",
"open",
"(",
"'/proc/cpuinfo'",
")",
".",
"read",
"(",
")",
".",
"count",
"(",
"'processor\\t:'",
")",
"if",
"res",
">",
"0",
":",
"return",
"res",
"except",
"IOError",
":",
"LOG",
".",
"debug",
"(",
"\"Could not get the number of allowed CPUs\"",
")",
"raise",
"Exception",
"(",
"'Can not determine number of CPUs on this system'",
")"
] | Get the number of available CPUs.
Number of available virtual or physical CPUs on this system, i.e.
user/real as output by time(1) when called with an optimally scaling
userspace-only program.
Returns:
Number of avaialable CPUs. | [
"Get",
"the",
"number",
"of",
"available",
"CPUs",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L36-L85 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | escape_yaml | def escape_yaml(raw_str: str) -> str:
"""
Shell-Escape a yaml input string.
Args:
raw_str: The unescaped string.
"""
escape_list = [char for char in raw_str if char in ['!', '{', '[']]
if len(escape_list) == 0:
return raw_str
str_quotes = '"'
i_str_quotes = "'"
if str_quotes in raw_str and str_quotes not in raw_str[1:-1]:
return raw_str
if str_quotes in raw_str[1:-1]:
raw_str = i_str_quotes + raw_str + i_str_quotes
else:
raw_str = str_quotes + raw_str + str_quotes
return raw_str | python | def escape_yaml(raw_str: str) -> str:
"""
Shell-Escape a yaml input string.
Args:
raw_str: The unescaped string.
"""
escape_list = [char for char in raw_str if char in ['!', '{', '[']]
if len(escape_list) == 0:
return raw_str
str_quotes = '"'
i_str_quotes = "'"
if str_quotes in raw_str and str_quotes not in raw_str[1:-1]:
return raw_str
if str_quotes in raw_str[1:-1]:
raw_str = i_str_quotes + raw_str + i_str_quotes
else:
raw_str = str_quotes + raw_str + str_quotes
return raw_str | [
"def",
"escape_yaml",
"(",
"raw_str",
":",
"str",
")",
"->",
"str",
":",
"escape_list",
"=",
"[",
"char",
"for",
"char",
"in",
"raw_str",
"if",
"char",
"in",
"[",
"'!'",
",",
"'{'",
",",
"'['",
"]",
"]",
"if",
"len",
"(",
"escape_list",
")",
"==",
"0",
":",
"return",
"raw_str",
"str_quotes",
"=",
"'\"'",
"i_str_quotes",
"=",
"\"'\"",
"if",
"str_quotes",
"in",
"raw_str",
"and",
"str_quotes",
"not",
"in",
"raw_str",
"[",
"1",
":",
"-",
"1",
"]",
":",
"return",
"raw_str",
"if",
"str_quotes",
"in",
"raw_str",
"[",
"1",
":",
"-",
"1",
"]",
":",
"raw_str",
"=",
"i_str_quotes",
"+",
"raw_str",
"+",
"i_str_quotes",
"else",
":",
"raw_str",
"=",
"str_quotes",
"+",
"raw_str",
"+",
"str_quotes",
"return",
"raw_str"
] | Shell-Escape a yaml input string.
Args:
raw_str: The unescaped string. | [
"Shell",
"-",
"Escape",
"a",
"yaml",
"input",
"string",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L92-L112 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | to_yaml | def to_yaml(value) -> str:
"""Convert a given value to a YAML string."""
stream = yaml.io.StringIO()
dumper = ConfigDumper(stream, default_flow_style=True, width=sys.maxsize)
val = None
try:
dumper.open()
dumper.represent(value)
val = stream.getvalue().strip()
dumper.close()
finally:
dumper.dispose()
return val | python | def to_yaml(value) -> str:
"""Convert a given value to a YAML string."""
stream = yaml.io.StringIO()
dumper = ConfigDumper(stream, default_flow_style=True, width=sys.maxsize)
val = None
try:
dumper.open()
dumper.represent(value)
val = stream.getvalue().strip()
dumper.close()
finally:
dumper.dispose()
return val | [
"def",
"to_yaml",
"(",
"value",
")",
"->",
"str",
":",
"stream",
"=",
"yaml",
".",
"io",
".",
"StringIO",
"(",
")",
"dumper",
"=",
"ConfigDumper",
"(",
"stream",
",",
"default_flow_style",
"=",
"True",
",",
"width",
"=",
"sys",
".",
"maxsize",
")",
"val",
"=",
"None",
"try",
":",
"dumper",
".",
"open",
"(",
")",
"dumper",
".",
"represent",
"(",
"value",
")",
"val",
"=",
"stream",
".",
"getvalue",
"(",
")",
".",
"strip",
"(",
")",
"dumper",
".",
"close",
"(",
")",
"finally",
":",
"dumper",
".",
"dispose",
"(",
")",
"return",
"val"
] | Convert a given value to a YAML string. | [
"Convert",
"a",
"given",
"value",
"to",
"a",
"YAML",
"string",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L130-L143 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | to_env_var | def to_env_var(env_var: str, value) -> str:
"""
Create an environment variable from a name and a value.
This generates a shell-compatible representation of an
environment variable that is assigned a YAML representation of
a value.
Args:
env_var (str): Name of the environment variable.
value (Any): A value we convert from.
"""
val = to_yaml(value)
ret_val = "%s=%s" % (env_var, escape_yaml(val))
return ret_val | python | def to_env_var(env_var: str, value) -> str:
"""
Create an environment variable from a name and a value.
This generates a shell-compatible representation of an
environment variable that is assigned a YAML representation of
a value.
Args:
env_var (str): Name of the environment variable.
value (Any): A value we convert from.
"""
val = to_yaml(value)
ret_val = "%s=%s" % (env_var, escape_yaml(val))
return ret_val | [
"def",
"to_env_var",
"(",
"env_var",
":",
"str",
",",
"value",
")",
"->",
"str",
":",
"val",
"=",
"to_yaml",
"(",
"value",
")",
"ret_val",
"=",
"\"%s=%s\"",
"%",
"(",
"env_var",
",",
"escape_yaml",
"(",
"val",
")",
")",
"return",
"ret_val"
] | Create an environment variable from a name and a value.
This generates a shell-compatible representation of an
environment variable that is assigned a YAML representation of
a value.
Args:
env_var (str): Name of the environment variable.
value (Any): A value we convert from. | [
"Create",
"an",
"environment",
"variable",
"from",
"a",
"name",
"and",
"a",
"value",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L146-L160 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | find_config | def find_config(test_file=None, defaults=None, root=os.curdir):
"""
Find the path to the default config file.
We look at :root: for the :default: config file. If we can't find it
there we start looking at the parent directory recursively until we
find a file named :default: and return the absolute path to it.
If we can't find anything, we return None.
Args:
default: The name of the config file we look for.
root: The directory to start looking for.
Returns:
Path to the default config file, None if we can't find anything.
"""
if defaults is None:
defaults = [".benchbuild.yml", ".benchbuild.yaml"]
def walk_rec(cur_path, root):
cur_path = local.path(root) / test_file
if cur_path.exists():
return cur_path
new_root = local.path(root) / os.pardir
return walk_rec(cur_path, new_root) if new_root != root else None
if test_file is not None:
return walk_rec(test_file, root)
for test_file in defaults:
ret = walk_rec(test_file, root)
if ret is not None:
return ret | python | def find_config(test_file=None, defaults=None, root=os.curdir):
"""
Find the path to the default config file.
We look at :root: for the :default: config file. If we can't find it
there we start looking at the parent directory recursively until we
find a file named :default: and return the absolute path to it.
If we can't find anything, we return None.
Args:
default: The name of the config file we look for.
root: The directory to start looking for.
Returns:
Path to the default config file, None if we can't find anything.
"""
if defaults is None:
defaults = [".benchbuild.yml", ".benchbuild.yaml"]
def walk_rec(cur_path, root):
cur_path = local.path(root) / test_file
if cur_path.exists():
return cur_path
new_root = local.path(root) / os.pardir
return walk_rec(cur_path, new_root) if new_root != root else None
if test_file is not None:
return walk_rec(test_file, root)
for test_file in defaults:
ret = walk_rec(test_file, root)
if ret is not None:
return ret | [
"def",
"find_config",
"(",
"test_file",
"=",
"None",
",",
"defaults",
"=",
"None",
",",
"root",
"=",
"os",
".",
"curdir",
")",
":",
"if",
"defaults",
"is",
"None",
":",
"defaults",
"=",
"[",
"\".benchbuild.yml\"",
",",
"\".benchbuild.yaml\"",
"]",
"def",
"walk_rec",
"(",
"cur_path",
",",
"root",
")",
":",
"cur_path",
"=",
"local",
".",
"path",
"(",
"root",
")",
"/",
"test_file",
"if",
"cur_path",
".",
"exists",
"(",
")",
":",
"return",
"cur_path",
"new_root",
"=",
"local",
".",
"path",
"(",
"root",
")",
"/",
"os",
".",
"pardir",
"return",
"walk_rec",
"(",
"cur_path",
",",
"new_root",
")",
"if",
"new_root",
"!=",
"root",
"else",
"None",
"if",
"test_file",
"is",
"not",
"None",
":",
"return",
"walk_rec",
"(",
"test_file",
",",
"root",
")",
"for",
"test_file",
"in",
"defaults",
":",
"ret",
"=",
"walk_rec",
"(",
"test_file",
",",
"root",
")",
"if",
"ret",
"is",
"not",
"None",
":",
"return",
"ret"
] | Find the path to the default config file.
We look at :root: for the :default: config file. If we can't find it
there we start looking at the parent directory recursively until we
find a file named :default: and return the absolute path to it.
If we can't find anything, we return None.
Args:
default: The name of the config file we look for.
root: The directory to start looking for.
Returns:
Path to the default config file, None if we can't find anything. | [
"Find",
"the",
"path",
"to",
"the",
"default",
"config",
"file",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L552-L585 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | setup_config | def setup_config(cfg, config_filenames=None, env_var_name=None):
"""
This will initialize the given configuration object.
The following resources are available in the same order:
1) Default settings.
2) Config file.
3) Environment variables.
WARNING: Environment variables do _not_ take precedence over the config
file right now. (init_from_env will refuse to update the
value, if there is already one.)
Args:
config_filenames: list of possible config filenames
env_var_name: name of the environment variable holding the config path
"""
if env_var_name is None:
env_var_name = "BB_CONFIG_FILE"
config_path = os.getenv(env_var_name, None)
if not config_path:
config_path = find_config(defaults=config_filenames)
if config_path:
cfg.load(config_path)
cfg["config_file"] = os.path.abspath(config_path)
cfg.init_from_env() | python | def setup_config(cfg, config_filenames=None, env_var_name=None):
"""
This will initialize the given configuration object.
The following resources are available in the same order:
1) Default settings.
2) Config file.
3) Environment variables.
WARNING: Environment variables do _not_ take precedence over the config
file right now. (init_from_env will refuse to update the
value, if there is already one.)
Args:
config_filenames: list of possible config filenames
env_var_name: name of the environment variable holding the config path
"""
if env_var_name is None:
env_var_name = "BB_CONFIG_FILE"
config_path = os.getenv(env_var_name, None)
if not config_path:
config_path = find_config(defaults=config_filenames)
if config_path:
cfg.load(config_path)
cfg["config_file"] = os.path.abspath(config_path)
cfg.init_from_env() | [
"def",
"setup_config",
"(",
"cfg",
",",
"config_filenames",
"=",
"None",
",",
"env_var_name",
"=",
"None",
")",
":",
"if",
"env_var_name",
"is",
"None",
":",
"env_var_name",
"=",
"\"BB_CONFIG_FILE\"",
"config_path",
"=",
"os",
".",
"getenv",
"(",
"env_var_name",
",",
"None",
")",
"if",
"not",
"config_path",
":",
"config_path",
"=",
"find_config",
"(",
"defaults",
"=",
"config_filenames",
")",
"if",
"config_path",
":",
"cfg",
".",
"load",
"(",
"config_path",
")",
"cfg",
"[",
"\"config_file\"",
"]",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"config_path",
")",
"cfg",
".",
"init_from_env",
"(",
")"
] | This will initialize the given configuration object.
The following resources are available in the same order:
1) Default settings.
2) Config file.
3) Environment variables.
WARNING: Environment variables do _not_ take precedence over the config
file right now. (init_from_env will refuse to update the
value, if there is already one.)
Args:
config_filenames: list of possible config filenames
env_var_name: name of the environment variable holding the config path | [
"This",
"will",
"initialize",
"the",
"given",
"configuration",
"object",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L588-L615 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | upgrade | def upgrade(cfg):
"""Provide forward migration for configuration files."""
db_node = cfg["db"]
old_db_elems = ["host", "name", "port", "pass", "user", "dialect"]
has_old_db_elems = [x in db_node for x in old_db_elems]
if any(has_old_db_elems):
print("Old database configuration found. "
"Converting to new connect_string. "
"This will *not* be stored in the configuration automatically.")
cfg["db"]["connect_string"] = \
"{dialect}://{user}:{password}@{host}:{port}/{name}".format(
dialect=cfg["db"]["dialect"]["value"],
user=cfg["db"]["user"]["value"],
password=cfg["db"]["pass"]["value"],
host=cfg["db"]["host"]["value"],
port=cfg["db"]["port"]["value"],
name=cfg["db"]["name"]["value"]) | python | def upgrade(cfg):
"""Provide forward migration for configuration files."""
db_node = cfg["db"]
old_db_elems = ["host", "name", "port", "pass", "user", "dialect"]
has_old_db_elems = [x in db_node for x in old_db_elems]
if any(has_old_db_elems):
print("Old database configuration found. "
"Converting to new connect_string. "
"This will *not* be stored in the configuration automatically.")
cfg["db"]["connect_string"] = \
"{dialect}://{user}:{password}@{host}:{port}/{name}".format(
dialect=cfg["db"]["dialect"]["value"],
user=cfg["db"]["user"]["value"],
password=cfg["db"]["pass"]["value"],
host=cfg["db"]["host"]["value"],
port=cfg["db"]["port"]["value"],
name=cfg["db"]["name"]["value"]) | [
"def",
"upgrade",
"(",
"cfg",
")",
":",
"db_node",
"=",
"cfg",
"[",
"\"db\"",
"]",
"old_db_elems",
"=",
"[",
"\"host\"",
",",
"\"name\"",
",",
"\"port\"",
",",
"\"pass\"",
",",
"\"user\"",
",",
"\"dialect\"",
"]",
"has_old_db_elems",
"=",
"[",
"x",
"in",
"db_node",
"for",
"x",
"in",
"old_db_elems",
"]",
"if",
"any",
"(",
"has_old_db_elems",
")",
":",
"print",
"(",
"\"Old database configuration found. \"",
"\"Converting to new connect_string. \"",
"\"This will *not* be stored in the configuration automatically.\"",
")",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"connect_string\"",
"]",
"=",
"\"{dialect}://{user}:{password}@{host}:{port}/{name}\"",
".",
"format",
"(",
"dialect",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"dialect\"",
"]",
"[",
"\"value\"",
"]",
",",
"user",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"user\"",
"]",
"[",
"\"value\"",
"]",
",",
"password",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"pass\"",
"]",
"[",
"\"value\"",
"]",
",",
"host",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"host\"",
"]",
"[",
"\"value\"",
"]",
",",
"port",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"port\"",
"]",
"[",
"\"value\"",
"]",
",",
"name",
"=",
"cfg",
"[",
"\"db\"",
"]",
"[",
"\"name\"",
"]",
"[",
"\"value\"",
"]",
")"
] | Provide forward migration for configuration files. | [
"Provide",
"forward",
"migration",
"for",
"configuration",
"files",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L640-L657 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | uuid_constructor | def uuid_constructor(loader, node):
""""
Construct a uuid.UUID object form a scalar YAML node.
Tests:
>>> yaml.add_constructor("!uuid", uuid_constructor, Loader=yaml.SafeLoader)
>>> yaml.safe_load("{'test': !uuid 'cc3702ca-699a-4aa6-8226-4c938f294d9b'}")
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')}
"""
value = loader.construct_scalar(node)
return uuid.UUID(value) | python | def uuid_constructor(loader, node):
""""
Construct a uuid.UUID object form a scalar YAML node.
Tests:
>>> yaml.add_constructor("!uuid", uuid_constructor, Loader=yaml.SafeLoader)
>>> yaml.safe_load("{'test': !uuid 'cc3702ca-699a-4aa6-8226-4c938f294d9b'}")
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')}
"""
value = loader.construct_scalar(node)
return uuid.UUID(value) | [
"def",
"uuid_constructor",
"(",
"loader",
",",
"node",
")",
":",
"value",
"=",
"loader",
".",
"construct_scalar",
"(",
"node",
")",
"return",
"uuid",
".",
"UUID",
"(",
"value",
")"
] | Construct a uuid.UUID object form a scalar YAML node.
Tests:
>>> yaml.add_constructor("!uuid", uuid_constructor, Loader=yaml.SafeLoader)
>>> yaml.safe_load("{'test': !uuid 'cc3702ca-699a-4aa6-8226-4c938f294d9b'}")
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')} | [
"Construct",
"a",
"uuid",
".",
"UUID",
"object",
"form",
"a",
"scalar",
"YAML",
"node",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L672-L683 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | uuid_add_implicit_resolver | def uuid_add_implicit_resolver(Loader=ConfigLoader, Dumper=ConfigDumper):
"""
Attach an implicit pattern resolver for UUID objects.
Tests:
>>> class TestDumper(yaml.SafeDumper): pass
>>> class TestLoader(yaml.SafeLoader): pass
>>> TUUID = 'cc3702ca-699a-4aa6-8226-4c938f294d9b'
>>> IN = {'test': uuid.UUID(TUUID)}
>>> OUT = '{test: cc3702ca-699a-4aa6-8226-4c938f294d9b}'
>>> yaml.add_representer(uuid.UUID, uuid_representer, Dumper=TestDumper)
>>> yaml.add_constructor('!uuid', uuid_constructor, Loader=TestLoader)
>>> uuid_add_implicit_resolver(Loader=TestLoader, Dumper=TestDumper)
>>> yaml.dump(IN, Dumper=TestDumper)
'test: cc3702ca-699a-4aa6-8226-4c938f294d9b\\n'
>>> yaml.load(OUT, Loader=TestLoader)
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')}
"""
uuid_regex = r'^\b[a-f0-9]{8}-\b[a-f0-9]{4}-\b[a-f0-9]{4}-\b[a-f0-9]{4}-\b[a-f0-9]{12}$'
pattern = re.compile(uuid_regex)
yaml.add_implicit_resolver('!uuid', pattern, Loader=Loader, Dumper=Dumper) | python | def uuid_add_implicit_resolver(Loader=ConfigLoader, Dumper=ConfigDumper):
"""
Attach an implicit pattern resolver for UUID objects.
Tests:
>>> class TestDumper(yaml.SafeDumper): pass
>>> class TestLoader(yaml.SafeLoader): pass
>>> TUUID = 'cc3702ca-699a-4aa6-8226-4c938f294d9b'
>>> IN = {'test': uuid.UUID(TUUID)}
>>> OUT = '{test: cc3702ca-699a-4aa6-8226-4c938f294d9b}'
>>> yaml.add_representer(uuid.UUID, uuid_representer, Dumper=TestDumper)
>>> yaml.add_constructor('!uuid', uuid_constructor, Loader=TestLoader)
>>> uuid_add_implicit_resolver(Loader=TestLoader, Dumper=TestDumper)
>>> yaml.dump(IN, Dumper=TestDumper)
'test: cc3702ca-699a-4aa6-8226-4c938f294d9b\\n'
>>> yaml.load(OUT, Loader=TestLoader)
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')}
"""
uuid_regex = r'^\b[a-f0-9]{8}-\b[a-f0-9]{4}-\b[a-f0-9]{4}-\b[a-f0-9]{4}-\b[a-f0-9]{12}$'
pattern = re.compile(uuid_regex)
yaml.add_implicit_resolver('!uuid', pattern, Loader=Loader, Dumper=Dumper) | [
"def",
"uuid_add_implicit_resolver",
"(",
"Loader",
"=",
"ConfigLoader",
",",
"Dumper",
"=",
"ConfigDumper",
")",
":",
"uuid_regex",
"=",
"r'^\\b[a-f0-9]{8}-\\b[a-f0-9]{4}-\\b[a-f0-9]{4}-\\b[a-f0-9]{4}-\\b[a-f0-9]{12}$'",
"pattern",
"=",
"re",
".",
"compile",
"(",
"uuid_regex",
")",
"yaml",
".",
"add_implicit_resolver",
"(",
"'!uuid'",
",",
"pattern",
",",
"Loader",
"=",
"Loader",
",",
"Dumper",
"=",
"Dumper",
")"
] | Attach an implicit pattern resolver for UUID objects.
Tests:
>>> class TestDumper(yaml.SafeDumper): pass
>>> class TestLoader(yaml.SafeLoader): pass
>>> TUUID = 'cc3702ca-699a-4aa6-8226-4c938f294d9b'
>>> IN = {'test': uuid.UUID(TUUID)}
>>> OUT = '{test: cc3702ca-699a-4aa6-8226-4c938f294d9b}'
>>> yaml.add_representer(uuid.UUID, uuid_representer, Dumper=TestDumper)
>>> yaml.add_constructor('!uuid', uuid_constructor, Loader=TestLoader)
>>> uuid_add_implicit_resolver(Loader=TestLoader, Dumper=TestDumper)
>>> yaml.dump(IN, Dumper=TestDumper)
'test: cc3702ca-699a-4aa6-8226-4c938f294d9b\\n'
>>> yaml.load(OUT, Loader=TestLoader)
{'test': UUID('cc3702ca-699a-4aa6-8226-4c938f294d9b')} | [
"Attach",
"an",
"implicit",
"pattern",
"resolver",
"for",
"UUID",
"objects",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L686-L708 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | Configuration.store | def store(self, config_file):
""" Store the configuration dictionary to a file."""
selfcopy = copy.deepcopy(self)
selfcopy.filter_exports()
with open(config_file, 'w') as outf:
yaml.dump(
selfcopy.node,
outf,
width=80,
indent=4,
default_flow_style=False,
Dumper=ConfigDumper) | python | def store(self, config_file):
""" Store the configuration dictionary to a file."""
selfcopy = copy.deepcopy(self)
selfcopy.filter_exports()
with open(config_file, 'w') as outf:
yaml.dump(
selfcopy.node,
outf,
width=80,
indent=4,
default_flow_style=False,
Dumper=ConfigDumper) | [
"def",
"store",
"(",
"self",
",",
"config_file",
")",
":",
"selfcopy",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
")",
"selfcopy",
".",
"filter_exports",
"(",
")",
"with",
"open",
"(",
"config_file",
",",
"'w'",
")",
"as",
"outf",
":",
"yaml",
".",
"dump",
"(",
"selfcopy",
".",
"node",
",",
"outf",
",",
"width",
"=",
"80",
",",
"indent",
"=",
"4",
",",
"default_flow_style",
"=",
"False",
",",
"Dumper",
"=",
"ConfigDumper",
")"
] | Store the configuration dictionary to a file. | [
"Store",
"the",
"configuration",
"dictionary",
"to",
"a",
"file",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L216-L229 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | Configuration.load | def load(self, _from):
"""Load the configuration dictionary from file."""
def load_rec(inode, config):
"""Recursive part of loading."""
for k in config:
if isinstance(config[k], dict) and \
k not in ['value', 'default']:
if k in inode:
load_rec(inode[k], config[k])
else:
LOG.debug("+ config element: '%s'", k)
else:
inode[k] = config[k]
with open(_from, 'r') as infile:
obj = yaml.load(infile, Loader=ConfigLoader)
upgrade(obj)
load_rec(self.node, obj)
self['config_file'] = os.path.abspath(_from) | python | def load(self, _from):
"""Load the configuration dictionary from file."""
def load_rec(inode, config):
"""Recursive part of loading."""
for k in config:
if isinstance(config[k], dict) and \
k not in ['value', 'default']:
if k in inode:
load_rec(inode[k], config[k])
else:
LOG.debug("+ config element: '%s'", k)
else:
inode[k] = config[k]
with open(_from, 'r') as infile:
obj = yaml.load(infile, Loader=ConfigLoader)
upgrade(obj)
load_rec(self.node, obj)
self['config_file'] = os.path.abspath(_from) | [
"def",
"load",
"(",
"self",
",",
"_from",
")",
":",
"def",
"load_rec",
"(",
"inode",
",",
"config",
")",
":",
"\"\"\"Recursive part of loading.\"\"\"",
"for",
"k",
"in",
"config",
":",
"if",
"isinstance",
"(",
"config",
"[",
"k",
"]",
",",
"dict",
")",
"and",
"k",
"not",
"in",
"[",
"'value'",
",",
"'default'",
"]",
":",
"if",
"k",
"in",
"inode",
":",
"load_rec",
"(",
"inode",
"[",
"k",
"]",
",",
"config",
"[",
"k",
"]",
")",
"else",
":",
"LOG",
".",
"debug",
"(",
"\"+ config element: '%s'\"",
",",
"k",
")",
"else",
":",
"inode",
"[",
"k",
"]",
"=",
"config",
"[",
"k",
"]",
"with",
"open",
"(",
"_from",
",",
"'r'",
")",
"as",
"infile",
":",
"obj",
"=",
"yaml",
".",
"load",
"(",
"infile",
",",
"Loader",
"=",
"ConfigLoader",
")",
"upgrade",
"(",
"obj",
")",
"load_rec",
"(",
"self",
".",
"node",
",",
"obj",
")",
"self",
"[",
"'config_file'",
"]",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"_from",
")"
] | Load the configuration dictionary from file. | [
"Load",
"the",
"configuration",
"dictionary",
"from",
"file",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L231-L250 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | Configuration.init_from_env | def init_from_env(self):
"""
Initialize this node from environment.
If we're a leaf node, i.e., a node containing a dictionary that
consist of a 'default' key, compute our env variable and initialize
our value from the environment.
Otherwise, init our children.
"""
if 'default' in self.node:
env_var = self.__to_env_var__().upper()
if self.has_value():
env_val = self.node['value']
else:
env_val = self.node['default']
env_val = os.getenv(env_var, to_yaml(env_val))
try:
self.node['value'] = yaml.load(
str(env_val), Loader=ConfigLoader)
except ValueError:
self.node['value'] = env_val
else:
if isinstance(self.node, dict):
for k in self.node:
self[k].init_from_env() | python | def init_from_env(self):
"""
Initialize this node from environment.
If we're a leaf node, i.e., a node containing a dictionary that
consist of a 'default' key, compute our env variable and initialize
our value from the environment.
Otherwise, init our children.
"""
if 'default' in self.node:
env_var = self.__to_env_var__().upper()
if self.has_value():
env_val = self.node['value']
else:
env_val = self.node['default']
env_val = os.getenv(env_var, to_yaml(env_val))
try:
self.node['value'] = yaml.load(
str(env_val), Loader=ConfigLoader)
except ValueError:
self.node['value'] = env_val
else:
if isinstance(self.node, dict):
for k in self.node:
self[k].init_from_env() | [
"def",
"init_from_env",
"(",
"self",
")",
":",
"if",
"'default'",
"in",
"self",
".",
"node",
":",
"env_var",
"=",
"self",
".",
"__to_env_var__",
"(",
")",
".",
"upper",
"(",
")",
"if",
"self",
".",
"has_value",
"(",
")",
":",
"env_val",
"=",
"self",
".",
"node",
"[",
"'value'",
"]",
"else",
":",
"env_val",
"=",
"self",
".",
"node",
"[",
"'default'",
"]",
"env_val",
"=",
"os",
".",
"getenv",
"(",
"env_var",
",",
"to_yaml",
"(",
"env_val",
")",
")",
"try",
":",
"self",
".",
"node",
"[",
"'value'",
"]",
"=",
"yaml",
".",
"load",
"(",
"str",
"(",
"env_val",
")",
",",
"Loader",
"=",
"ConfigLoader",
")",
"except",
"ValueError",
":",
"self",
".",
"node",
"[",
"'value'",
"]",
"=",
"env_val",
"else",
":",
"if",
"isinstance",
"(",
"self",
".",
"node",
",",
"dict",
")",
":",
"for",
"k",
"in",
"self",
".",
"node",
":",
"self",
"[",
"k",
"]",
".",
"init_from_env",
"(",
")"
] | Initialize this node from environment.
If we're a leaf node, i.e., a node containing a dictionary that
consist of a 'default' key, compute our env variable and initialize
our value from the environment.
Otherwise, init our children. | [
"Initialize",
"this",
"node",
"from",
"environment",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L264-L289 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | Configuration.value | def value(self):
"""
Return the node value, if we're a leaf node.
Examples:
>>> c = Configuration("test")
>>> c['x'] = { "y" : { "value" : None }, "z" : { "value" : 2 }}
>>> c['x']['y'].value == None
True
>>> c['x']['z'].value
2
>>> c['x'].value
TEST_X_Y=null
TEST_X_Z=2
"""
def validate(node_value):
if hasattr(node_value, 'validate'):
node_value.validate()
return node_value
if 'value' in self.node:
return validate(self.node['value'])
return self | python | def value(self):
"""
Return the node value, if we're a leaf node.
Examples:
>>> c = Configuration("test")
>>> c['x'] = { "y" : { "value" : None }, "z" : { "value" : 2 }}
>>> c['x']['y'].value == None
True
>>> c['x']['z'].value
2
>>> c['x'].value
TEST_X_Y=null
TEST_X_Z=2
"""
def validate(node_value):
if hasattr(node_value, 'validate'):
node_value.validate()
return node_value
if 'value' in self.node:
return validate(self.node['value'])
return self | [
"def",
"value",
"(",
"self",
")",
":",
"def",
"validate",
"(",
"node_value",
")",
":",
"if",
"hasattr",
"(",
"node_value",
",",
"'validate'",
")",
":",
"node_value",
".",
"validate",
"(",
")",
"return",
"node_value",
"if",
"'value'",
"in",
"self",
".",
"node",
":",
"return",
"validate",
"(",
"self",
".",
"node",
"[",
"'value'",
"]",
")",
"return",
"self"
] | Return the node value, if we're a leaf node.
Examples:
>>> c = Configuration("test")
>>> c['x'] = { "y" : { "value" : None }, "z" : { "value" : 2 }}
>>> c['x']['y'].value == None
True
>>> c['x']['z'].value
2
>>> c['x'].value
TEST_X_Y=null
TEST_X_Z=2 | [
"Return",
"the",
"node",
"value",
"if",
"we",
"re",
"a",
"leaf",
"node",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L292-L316 |
PolyJIT/benchbuild | benchbuild/utils/settings.py | Configuration.to_env_dict | def to_env_dict(self):
"""Convert configuration object to a flat dictionary."""
entries = {}
if self.has_value():
return {self.__to_env_var__(): self.node['value']}
if self.has_default():
return {self.__to_env_var__(): self.node['default']}
for k in self.node:
entries.update(self[k].to_env_dict())
return entries | python | def to_env_dict(self):
"""Convert configuration object to a flat dictionary."""
entries = {}
if self.has_value():
return {self.__to_env_var__(): self.node['value']}
if self.has_default():
return {self.__to_env_var__(): self.node['default']}
for k in self.node:
entries.update(self[k].to_env_dict())
return entries | [
"def",
"to_env_dict",
"(",
"self",
")",
":",
"entries",
"=",
"{",
"}",
"if",
"self",
".",
"has_value",
"(",
")",
":",
"return",
"{",
"self",
".",
"__to_env_var__",
"(",
")",
":",
"self",
".",
"node",
"[",
"'value'",
"]",
"}",
"if",
"self",
".",
"has_default",
"(",
")",
":",
"return",
"{",
"self",
".",
"__to_env_var__",
"(",
")",
":",
"self",
".",
"node",
"[",
"'default'",
"]",
"}",
"for",
"k",
"in",
"self",
".",
"node",
":",
"entries",
".",
"update",
"(",
"self",
"[",
"k",
"]",
".",
"to_env_dict",
"(",
")",
")",
"return",
"entries"
] | Convert configuration object to a flat dictionary. | [
"Convert",
"configuration",
"object",
"to",
"a",
"flat",
"dictionary",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/utils/settings.py#L454-L465 |
portfoliome/foil | foil/records.py | rename_keys | def rename_keys(record: Mapping, key_map: Mapping) -> dict:
"""New record with same keys or renamed keys if key found in key_map."""
new_record = dict()
for k, v in record.items():
key = key_map[k] if k in key_map else k
new_record[key] = v
return new_record | python | def rename_keys(record: Mapping, key_map: Mapping) -> dict:
"""New record with same keys or renamed keys if key found in key_map."""
new_record = dict()
for k, v in record.items():
key = key_map[k] if k in key_map else k
new_record[key] = v
return new_record | [
"def",
"rename_keys",
"(",
"record",
":",
"Mapping",
",",
"key_map",
":",
"Mapping",
")",
"->",
"dict",
":",
"new_record",
"=",
"dict",
"(",
")",
"for",
"k",
",",
"v",
"in",
"record",
".",
"items",
"(",
")",
":",
"key",
"=",
"key_map",
"[",
"k",
"]",
"if",
"k",
"in",
"key_map",
"else",
"k",
"new_record",
"[",
"key",
"]",
"=",
"v",
"return",
"new_record"
] | New record with same keys or renamed keys if key found in key_map. | [
"New",
"record",
"with",
"same",
"keys",
"or",
"renamed",
"keys",
"if",
"key",
"found",
"in",
"key_map",
"."
] | train | https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/records.py#L6-L15 |
portfoliome/foil | foil/records.py | replace_keys | def replace_keys(record: Mapping, key_map: Mapping) -> dict:
"""New record with renamed keys including keys only found in key_map."""
return {key_map[k]: v for k, v in record.items() if k in key_map} | python | def replace_keys(record: Mapping, key_map: Mapping) -> dict:
"""New record with renamed keys including keys only found in key_map."""
return {key_map[k]: v for k, v in record.items() if k in key_map} | [
"def",
"replace_keys",
"(",
"record",
":",
"Mapping",
",",
"key_map",
":",
"Mapping",
")",
"->",
"dict",
":",
"return",
"{",
"key_map",
"[",
"k",
"]",
":",
"v",
"for",
"k",
",",
"v",
"in",
"record",
".",
"items",
"(",
")",
"if",
"k",
"in",
"key_map",
"}"
] | New record with renamed keys including keys only found in key_map. | [
"New",
"record",
"with",
"renamed",
"keys",
"including",
"keys",
"only",
"found",
"in",
"key_map",
"."
] | train | https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/records.py#L18-L21 |
portfoliome/foil | foil/records.py | inject_nulls | def inject_nulls(data: Mapping, field_names) -> dict:
"""Insert None as value for missing fields."""
record = dict()
for field in field_names:
record[field] = data.get(field, None)
return record | python | def inject_nulls(data: Mapping, field_names) -> dict:
"""Insert None as value for missing fields."""
record = dict()
for field in field_names:
record[field] = data.get(field, None)
return record | [
"def",
"inject_nulls",
"(",
"data",
":",
"Mapping",
",",
"field_names",
")",
"->",
"dict",
":",
"record",
"=",
"dict",
"(",
")",
"for",
"field",
"in",
"field_names",
":",
"record",
"[",
"field",
"]",
"=",
"data",
".",
"get",
"(",
"field",
",",
"None",
")",
"return",
"record"
] | Insert None as value for missing fields. | [
"Insert",
"None",
"as",
"value",
"for",
"missing",
"fields",
"."
] | train | https://github.com/portfoliome/foil/blob/b66d8cf4ab048a387d8c7a033b47e922ed6917d6/foil/records.py#L24-L32 |
PolyJIT/benchbuild | benchbuild/likwid.py | read_struct | def read_struct(fstream):
"""
Read a likwid struct from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing all likwid's struct info as key/value pairs.
"""
line = fstream.readline().strip()
fragments = line.split(",")
fragments = [x for x in fragments if x is not None]
partition = dict()
if not len(fragments) >= 3:
return None
partition["struct"] = fragments[0]
partition["info"] = fragments[1]
partition["num_lines"] = fragments[2]
struct = None
if partition is not None and partition["struct"] == "STRUCT":
num_lines = int(partition["num_lines"].strip())
struct = {}
for _ in range(num_lines):
cols = fetch_cols(fstream)
struct.update({cols[0]: cols[1:]})
return struct | python | def read_struct(fstream):
"""
Read a likwid struct from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing all likwid's struct info as key/value pairs.
"""
line = fstream.readline().strip()
fragments = line.split(",")
fragments = [x for x in fragments if x is not None]
partition = dict()
if not len(fragments) >= 3:
return None
partition["struct"] = fragments[0]
partition["info"] = fragments[1]
partition["num_lines"] = fragments[2]
struct = None
if partition is not None and partition["struct"] == "STRUCT":
num_lines = int(partition["num_lines"].strip())
struct = {}
for _ in range(num_lines):
cols = fetch_cols(fstream)
struct.update({cols[0]: cols[1:]})
return struct | [
"def",
"read_struct",
"(",
"fstream",
")",
":",
"line",
"=",
"fstream",
".",
"readline",
"(",
")",
".",
"strip",
"(",
")",
"fragments",
"=",
"line",
".",
"split",
"(",
"\",\"",
")",
"fragments",
"=",
"[",
"x",
"for",
"x",
"in",
"fragments",
"if",
"x",
"is",
"not",
"None",
"]",
"partition",
"=",
"dict",
"(",
")",
"if",
"not",
"len",
"(",
"fragments",
")",
">=",
"3",
":",
"return",
"None",
"partition",
"[",
"\"struct\"",
"]",
"=",
"fragments",
"[",
"0",
"]",
"partition",
"[",
"\"info\"",
"]",
"=",
"fragments",
"[",
"1",
"]",
"partition",
"[",
"\"num_lines\"",
"]",
"=",
"fragments",
"[",
"2",
"]",
"struct",
"=",
"None",
"if",
"partition",
"is",
"not",
"None",
"and",
"partition",
"[",
"\"struct\"",
"]",
"==",
"\"STRUCT\"",
":",
"num_lines",
"=",
"int",
"(",
"partition",
"[",
"\"num_lines\"",
"]",
".",
"strip",
"(",
")",
")",
"struct",
"=",
"{",
"}",
"for",
"_",
"in",
"range",
"(",
"num_lines",
")",
":",
"cols",
"=",
"fetch_cols",
"(",
"fstream",
")",
"struct",
".",
"update",
"(",
"{",
"cols",
"[",
"0",
"]",
":",
"cols",
"[",
"1",
":",
"]",
"}",
")",
"return",
"struct"
] | Read a likwid struct from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing all likwid's struct info as key/value pairs. | [
"Read",
"a",
"likwid",
"struct",
"from",
"the",
"text",
"stream",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L23-L51 |
PolyJIT/benchbuild | benchbuild/likwid.py | read_table | def read_table(fstream):
"""
Read a likwid table info from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing likwid's table info as key/value pairs.
"""
pos = fstream.tell()
line = fstream.readline().strip()
fragments = line.split(",")
fragments = [x for x in fragments if x is not None]
partition = dict()
if not len(fragments) >= 4:
return None
partition["table"] = fragments[0]
partition["group"] = fragments[1]
partition["set"] = fragments[2]
partition["num_lines"] = fragments[3]
struct = None
if partition is not None and partition["table"] == "TABLE":
num_lines = int(partition["num_lines"].strip())
struct = {}
header = fetch_cols(fstream)
struct.update({header[0]: header[1:]})
for _ in range(num_lines):
cols = fetch_cols(fstream)
struct.update({cols[0]: cols[1:]})
else:
fstream.seek(pos)
return struct | python | def read_table(fstream):
"""
Read a likwid table info from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing likwid's table info as key/value pairs.
"""
pos = fstream.tell()
line = fstream.readline().strip()
fragments = line.split(",")
fragments = [x for x in fragments if x is not None]
partition = dict()
if not len(fragments) >= 4:
return None
partition["table"] = fragments[0]
partition["group"] = fragments[1]
partition["set"] = fragments[2]
partition["num_lines"] = fragments[3]
struct = None
if partition is not None and partition["table"] == "TABLE":
num_lines = int(partition["num_lines"].strip())
struct = {}
header = fetch_cols(fstream)
struct.update({header[0]: header[1:]})
for _ in range(num_lines):
cols = fetch_cols(fstream)
struct.update({cols[0]: cols[1:]})
else:
fstream.seek(pos)
return struct | [
"def",
"read_table",
"(",
"fstream",
")",
":",
"pos",
"=",
"fstream",
".",
"tell",
"(",
")",
"line",
"=",
"fstream",
".",
"readline",
"(",
")",
".",
"strip",
"(",
")",
"fragments",
"=",
"line",
".",
"split",
"(",
"\",\"",
")",
"fragments",
"=",
"[",
"x",
"for",
"x",
"in",
"fragments",
"if",
"x",
"is",
"not",
"None",
"]",
"partition",
"=",
"dict",
"(",
")",
"if",
"not",
"len",
"(",
"fragments",
")",
">=",
"4",
":",
"return",
"None",
"partition",
"[",
"\"table\"",
"]",
"=",
"fragments",
"[",
"0",
"]",
"partition",
"[",
"\"group\"",
"]",
"=",
"fragments",
"[",
"1",
"]",
"partition",
"[",
"\"set\"",
"]",
"=",
"fragments",
"[",
"2",
"]",
"partition",
"[",
"\"num_lines\"",
"]",
"=",
"fragments",
"[",
"3",
"]",
"struct",
"=",
"None",
"if",
"partition",
"is",
"not",
"None",
"and",
"partition",
"[",
"\"table\"",
"]",
"==",
"\"TABLE\"",
":",
"num_lines",
"=",
"int",
"(",
"partition",
"[",
"\"num_lines\"",
"]",
".",
"strip",
"(",
")",
")",
"struct",
"=",
"{",
"}",
"header",
"=",
"fetch_cols",
"(",
"fstream",
")",
"struct",
".",
"update",
"(",
"{",
"header",
"[",
"0",
"]",
":",
"header",
"[",
"1",
":",
"]",
"}",
")",
"for",
"_",
"in",
"range",
"(",
"num_lines",
")",
":",
"cols",
"=",
"fetch_cols",
"(",
"fstream",
")",
"struct",
".",
"update",
"(",
"{",
"cols",
"[",
"0",
"]",
":",
"cols",
"[",
"1",
":",
"]",
"}",
")",
"else",
":",
"fstream",
".",
"seek",
"(",
"pos",
")",
"return",
"struct"
] | Read a likwid table info from the text stream.
Args:
fstream: Likwid's filestream.
Returns (dict(str: str)):
A dict containing likwid's table info as key/value pairs. | [
"Read",
"a",
"likwid",
"table",
"info",
"from",
"the",
"text",
"stream",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L54-L90 |
PolyJIT/benchbuild | benchbuild/likwid.py | read_structs | def read_structs(fstream):
"""
Read all structs from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all structs in the
fstream.
"""
struct = read_struct(fstream)
while struct is not None:
yield struct
struct = read_struct(fstream) | python | def read_structs(fstream):
"""
Read all structs from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all structs in the
fstream.
"""
struct = read_struct(fstream)
while struct is not None:
yield struct
struct = read_struct(fstream) | [
"def",
"read_structs",
"(",
"fstream",
")",
":",
"struct",
"=",
"read_struct",
"(",
"fstream",
")",
"while",
"struct",
"is",
"not",
"None",
":",
"yield",
"struct",
"struct",
"=",
"read_struct",
"(",
"fstream",
")"
] | Read all structs from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all structs in the
fstream. | [
"Read",
"all",
"structs",
"from",
"likwid",
"s",
"file",
"stream",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L93-L107 |
PolyJIT/benchbuild | benchbuild/likwid.py | read_tables | def read_tables(fstream):
"""
Read all tables from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all tables in the fstream.
"""
table = read_table(fstream)
while table is not None:
yield table
table = read_table(fstream) | python | def read_tables(fstream):
"""
Read all tables from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all tables in the fstream.
"""
table = read_table(fstream)
while table is not None:
yield table
table = read_table(fstream) | [
"def",
"read_tables",
"(",
"fstream",
")",
":",
"table",
"=",
"read_table",
"(",
"fstream",
")",
"while",
"table",
"is",
"not",
"None",
":",
"yield",
"table",
"table",
"=",
"read_table",
"(",
"fstream",
")"
] | Read all tables from likwid's file stream.
Args:
fstream: Likwid's output file stream.
Returns:
A generator that can be used to iterate over all tables in the fstream. | [
"Read",
"all",
"tables",
"from",
"likwid",
"s",
"file",
"stream",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L110-L123 |
PolyJIT/benchbuild | benchbuild/likwid.py | get_measurements | def get_measurements(region, core_info, data, extra_offset=0):
"""
Get the complete measurement info from likwid's region info.
Args:
region: The region we took a measurement in.
core_info: The core information.
data: The raw data.
extra_offset (int): default = 0
Returns (list((region, metric, core, value))):
A list of measurement tuples, a tuple contains the information about
the region, the metric, the core and the actual value.
"""
measurements = []
clean_core_info = [x for x in core_info if x]
cores = len(clean_core_info)
for k in data:
if k not in ["1", "Region Info", "Event", "Metric", "CPU clock"]:
slot = data[k]
for i in range(cores):
core = core_info[i]
idx = extra_offset + i
if core and slot[idx]:
measurements.append((region, k, core, slot[idx]))
return measurements | python | def get_measurements(region, core_info, data, extra_offset=0):
"""
Get the complete measurement info from likwid's region info.
Args:
region: The region we took a measurement in.
core_info: The core information.
data: The raw data.
extra_offset (int): default = 0
Returns (list((region, metric, core, value))):
A list of measurement tuples, a tuple contains the information about
the region, the metric, the core and the actual value.
"""
measurements = []
clean_core_info = [x for x in core_info if x]
cores = len(clean_core_info)
for k in data:
if k not in ["1", "Region Info", "Event", "Metric", "CPU clock"]:
slot = data[k]
for i in range(cores):
core = core_info[i]
idx = extra_offset + i
if core and slot[idx]:
measurements.append((region, k, core, slot[idx]))
return measurements | [
"def",
"get_measurements",
"(",
"region",
",",
"core_info",
",",
"data",
",",
"extra_offset",
"=",
"0",
")",
":",
"measurements",
"=",
"[",
"]",
"clean_core_info",
"=",
"[",
"x",
"for",
"x",
"in",
"core_info",
"if",
"x",
"]",
"cores",
"=",
"len",
"(",
"clean_core_info",
")",
"for",
"k",
"in",
"data",
":",
"if",
"k",
"not",
"in",
"[",
"\"1\"",
",",
"\"Region Info\"",
",",
"\"Event\"",
",",
"\"Metric\"",
",",
"\"CPU clock\"",
"]",
":",
"slot",
"=",
"data",
"[",
"k",
"]",
"for",
"i",
"in",
"range",
"(",
"cores",
")",
":",
"core",
"=",
"core_info",
"[",
"i",
"]",
"idx",
"=",
"extra_offset",
"+",
"i",
"if",
"core",
"and",
"slot",
"[",
"idx",
"]",
":",
"measurements",
".",
"append",
"(",
"(",
"region",
",",
"k",
",",
"core",
",",
"slot",
"[",
"idx",
"]",
")",
")",
"return",
"measurements"
] | Get the complete measurement info from likwid's region info.
Args:
region: The region we took a measurement in.
core_info: The core information.
data: The raw data.
extra_offset (int): default = 0
Returns (list((region, metric, core, value))):
A list of measurement tuples, a tuple contains the information about
the region, the metric, the core and the actual value. | [
"Get",
"the",
"complete",
"measurement",
"info",
"from",
"likwid",
"s",
"region",
"info",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L126-L152 |
PolyJIT/benchbuild | benchbuild/likwid.py | perfcounters | def perfcounters(infile):
"""
Get a complete list of all measurements.
Args:
infile: The filestream containing all likwid output.
Returns:
A list of all measurements extracted from likwid's file stream.
"""
measurements = []
with open(infile, 'r') as in_file:
read_struct(in_file)
for region_struct in read_structs(in_file):
region = region_struct["1"][1]
core_info = region_struct["Region Info"]
measurements += \
get_measurements(region, core_info, region_struct)
for table_struct in read_tables(in_file):
core_info = None
if "Event" in table_struct:
offset = 1
core_info = table_struct["Event"][offset:]
measurements += get_measurements(region, core_info,
table_struct, offset)
elif "Metric" in table_struct:
core_info = table_struct["Metric"]
measurements += get_measurements(region, core_info,
table_struct)
return measurements | python | def perfcounters(infile):
"""
Get a complete list of all measurements.
Args:
infile: The filestream containing all likwid output.
Returns:
A list of all measurements extracted from likwid's file stream.
"""
measurements = []
with open(infile, 'r') as in_file:
read_struct(in_file)
for region_struct in read_structs(in_file):
region = region_struct["1"][1]
core_info = region_struct["Region Info"]
measurements += \
get_measurements(region, core_info, region_struct)
for table_struct in read_tables(in_file):
core_info = None
if "Event" in table_struct:
offset = 1
core_info = table_struct["Event"][offset:]
measurements += get_measurements(region, core_info,
table_struct, offset)
elif "Metric" in table_struct:
core_info = table_struct["Metric"]
measurements += get_measurements(region, core_info,
table_struct)
return measurements | [
"def",
"perfcounters",
"(",
"infile",
")",
":",
"measurements",
"=",
"[",
"]",
"with",
"open",
"(",
"infile",
",",
"'r'",
")",
"as",
"in_file",
":",
"read_struct",
"(",
"in_file",
")",
"for",
"region_struct",
"in",
"read_structs",
"(",
"in_file",
")",
":",
"region",
"=",
"region_struct",
"[",
"\"1\"",
"]",
"[",
"1",
"]",
"core_info",
"=",
"region_struct",
"[",
"\"Region Info\"",
"]",
"measurements",
"+=",
"get_measurements",
"(",
"region",
",",
"core_info",
",",
"region_struct",
")",
"for",
"table_struct",
"in",
"read_tables",
"(",
"in_file",
")",
":",
"core_info",
"=",
"None",
"if",
"\"Event\"",
"in",
"table_struct",
":",
"offset",
"=",
"1",
"core_info",
"=",
"table_struct",
"[",
"\"Event\"",
"]",
"[",
"offset",
":",
"]",
"measurements",
"+=",
"get_measurements",
"(",
"region",
",",
"core_info",
",",
"table_struct",
",",
"offset",
")",
"elif",
"\"Metric\"",
"in",
"table_struct",
":",
"core_info",
"=",
"table_struct",
"[",
"\"Metric\"",
"]",
"measurements",
"+=",
"get_measurements",
"(",
"region",
",",
"core_info",
",",
"table_struct",
")",
"return",
"measurements"
] | Get a complete list of all measurements.
Args:
infile: The filestream containing all likwid output.
Returns:
A list of all measurements extracted from likwid's file stream. | [
"Get",
"a",
"complete",
"list",
"of",
"all",
"measurements",
"."
] | train | https://github.com/PolyJIT/benchbuild/blob/9ad2ec54d96e97b642b1f06eddcbad9ba7aeaf58/benchbuild/likwid.py#L155-L185 |
BlueBrain/hpcbench | hpcbench/cli/__init__.py | setup_logger | def setup_logger(verbose, logfile):
"""Prepare root logger
:param verbose: integer greater than 0 to indicate verbosity level
"""
level = logging.WARNING
if verbose == 1:
level = logging.INFO
elif verbose > 1:
level = logging.DEBUG
if logfile:
logging.basicConfig(filename=logfile, level=level, format=LOGGING_FORMAT)
else:
logging.basicConfig(level=level, format=LOGGING_FORMAT) | python | def setup_logger(verbose, logfile):
"""Prepare root logger
:param verbose: integer greater than 0 to indicate verbosity level
"""
level = logging.WARNING
if verbose == 1:
level = logging.INFO
elif verbose > 1:
level = logging.DEBUG
if logfile:
logging.basicConfig(filename=logfile, level=level, format=LOGGING_FORMAT)
else:
logging.basicConfig(level=level, format=LOGGING_FORMAT) | [
"def",
"setup_logger",
"(",
"verbose",
",",
"logfile",
")",
":",
"level",
"=",
"logging",
".",
"WARNING",
"if",
"verbose",
"==",
"1",
":",
"level",
"=",
"logging",
".",
"INFO",
"elif",
"verbose",
">",
"1",
":",
"level",
"=",
"logging",
".",
"DEBUG",
"if",
"logfile",
":",
"logging",
".",
"basicConfig",
"(",
"filename",
"=",
"logfile",
",",
"level",
"=",
"level",
",",
"format",
"=",
"LOGGING_FORMAT",
")",
"else",
":",
"logging",
".",
"basicConfig",
"(",
"level",
"=",
"level",
",",
"format",
"=",
"LOGGING_FORMAT",
")"
] | Prepare root logger
:param verbose: integer greater than 0 to indicate verbosity level | [
"Prepare",
"root",
"logger",
":",
"param",
"verbose",
":",
"integer",
"greater",
"than",
"0",
"to",
"indicate",
"verbosity",
"level"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/__init__.py#L13-L25 |
BlueBrain/hpcbench | hpcbench/cli/__init__.py | cli_common | def cli_common(doc, **kwargs):
"""Program initialization for all provided executables
"""
arguments = docopt(doc, version='hpcbench ' + __version__, **kwargs)
setup_logger(arguments['-v'], arguments['--log'])
load_components()
try:
import matplotlib
except ImportError:
pass
else:
matplotlib.use('PS')
return arguments | python | def cli_common(doc, **kwargs):
"""Program initialization for all provided executables
"""
arguments = docopt(doc, version='hpcbench ' + __version__, **kwargs)
setup_logger(arguments['-v'], arguments['--log'])
load_components()
try:
import matplotlib
except ImportError:
pass
else:
matplotlib.use('PS')
return arguments | [
"def",
"cli_common",
"(",
"doc",
",",
"*",
"*",
"kwargs",
")",
":",
"arguments",
"=",
"docopt",
"(",
"doc",
",",
"version",
"=",
"'hpcbench '",
"+",
"__version__",
",",
"*",
"*",
"kwargs",
")",
"setup_logger",
"(",
"arguments",
"[",
"'-v'",
"]",
",",
"arguments",
"[",
"'--log'",
"]",
")",
"load_components",
"(",
")",
"try",
":",
"import",
"matplotlib",
"except",
"ImportError",
":",
"pass",
"else",
":",
"matplotlib",
".",
"use",
"(",
"'PS'",
")",
"return",
"arguments"
] | Program initialization for all provided executables | [
"Program",
"initialization",
"for",
"all",
"provided",
"executables"
] | train | https://github.com/BlueBrain/hpcbench/blob/192d0ec142b897157ec25f131d1ef28f84752592/hpcbench/cli/__init__.py#L28-L40 |
sci-bots/svg-model | svg_model/__init__.py | shape_path_points | def shape_path_points(svg_path_d):
'''
Parameters
----------
svg_path_d : str
``"d"`` attribute of SVG ``path`` element.
Returns
-------
list
List of coordinates of points found in SVG path.
Each point is represented by a dictionary with keys ``x`` and ``y``.
'''
# TODO Add support for relative commands, e.g., `l, h, v`.
def _update_path_state(path_state, match):
if match.group('xy_command'):
for dim_j in 'xy':
path_state[dim_j] = float(match.group(dim_j))
if path_state.get('x0') is None:
for dim_j in 'xy':
path_state['%s0' % dim_j] = path_state[dim_j]
elif match.group('x_command'):
path_state['x'] = float(match.group('hx'))
elif match.group('y_command'):
path_state['y'] = float(match.group('vy'))
elif match.group('command') == 'Z':
for dim_j in 'xy':
path_state[dim_j] = path_state['%s0' % dim_j]
return path_state
# Some commands in a SVG path element `"d"` attribute require previous state.
#
# For example, the `"H"` command is a horizontal move, so the previous
# ``y`` position is required to resolve the new `(x, y)` position.
#
# Iterate through the commands in the `"d"` attribute in order and maintain
# the current path position in the `path_state` dictionary.
path_state = {'x': None, 'y': None}
return [{k: v for k, v in six.iteritems(_update_path_state(path_state, match_i)) if k in 'xy'} for match_i in cre_path_command
.finditer(svg_path_d)] | python | def shape_path_points(svg_path_d):
'''
Parameters
----------
svg_path_d : str
``"d"`` attribute of SVG ``path`` element.
Returns
-------
list
List of coordinates of points found in SVG path.
Each point is represented by a dictionary with keys ``x`` and ``y``.
'''
# TODO Add support for relative commands, e.g., `l, h, v`.
def _update_path_state(path_state, match):
if match.group('xy_command'):
for dim_j in 'xy':
path_state[dim_j] = float(match.group(dim_j))
if path_state.get('x0') is None:
for dim_j in 'xy':
path_state['%s0' % dim_j] = path_state[dim_j]
elif match.group('x_command'):
path_state['x'] = float(match.group('hx'))
elif match.group('y_command'):
path_state['y'] = float(match.group('vy'))
elif match.group('command') == 'Z':
for dim_j in 'xy':
path_state[dim_j] = path_state['%s0' % dim_j]
return path_state
# Some commands in a SVG path element `"d"` attribute require previous state.
#
# For example, the `"H"` command is a horizontal move, so the previous
# ``y`` position is required to resolve the new `(x, y)` position.
#
# Iterate through the commands in the `"d"` attribute in order and maintain
# the current path position in the `path_state` dictionary.
path_state = {'x': None, 'y': None}
return [{k: v for k, v in six.iteritems(_update_path_state(path_state, match_i)) if k in 'xy'} for match_i in cre_path_command
.finditer(svg_path_d)] | [
"def",
"shape_path_points",
"(",
"svg_path_d",
")",
":",
"# TODO Add support for relative commands, e.g., `l, h, v`.",
"def",
"_update_path_state",
"(",
"path_state",
",",
"match",
")",
":",
"if",
"match",
".",
"group",
"(",
"'xy_command'",
")",
":",
"for",
"dim_j",
"in",
"'xy'",
":",
"path_state",
"[",
"dim_j",
"]",
"=",
"float",
"(",
"match",
".",
"group",
"(",
"dim_j",
")",
")",
"if",
"path_state",
".",
"get",
"(",
"'x0'",
")",
"is",
"None",
":",
"for",
"dim_j",
"in",
"'xy'",
":",
"path_state",
"[",
"'%s0'",
"%",
"dim_j",
"]",
"=",
"path_state",
"[",
"dim_j",
"]",
"elif",
"match",
".",
"group",
"(",
"'x_command'",
")",
":",
"path_state",
"[",
"'x'",
"]",
"=",
"float",
"(",
"match",
".",
"group",
"(",
"'hx'",
")",
")",
"elif",
"match",
".",
"group",
"(",
"'y_command'",
")",
":",
"path_state",
"[",
"'y'",
"]",
"=",
"float",
"(",
"match",
".",
"group",
"(",
"'vy'",
")",
")",
"elif",
"match",
".",
"group",
"(",
"'command'",
")",
"==",
"'Z'",
":",
"for",
"dim_j",
"in",
"'xy'",
":",
"path_state",
"[",
"dim_j",
"]",
"=",
"path_state",
"[",
"'%s0'",
"%",
"dim_j",
"]",
"return",
"path_state",
"# Some commands in a SVG path element `\"d\"` attribute require previous state.",
"#",
"# For example, the `\"H\"` command is a horizontal move, so the previous",
"# ``y`` position is required to resolve the new `(x, y)` position.",
"#",
"# Iterate through the commands in the `\"d\"` attribute in order and maintain",
"# the current path position in the `path_state` dictionary.",
"path_state",
"=",
"{",
"'x'",
":",
"None",
",",
"'y'",
":",
"None",
"}",
"return",
"[",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"six",
".",
"iteritems",
"(",
"_update_path_state",
"(",
"path_state",
",",
"match_i",
")",
")",
"if",
"k",
"in",
"'xy'",
"}",
"for",
"match_i",
"in",
"cre_path_command",
".",
"finditer",
"(",
"svg_path_d",
")",
"]"
] | Parameters
----------
svg_path_d : str
``"d"`` attribute of SVG ``path`` element.
Returns
-------
list
List of coordinates of points found in SVG path.
Each point is represented by a dictionary with keys ``x`` and ``y``. | [
"Parameters",
"----------",
"svg_path_d",
":",
"str",
"d",
"attribute",
"of",
"SVG",
"path",
"element",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L39-L79 |
sci-bots/svg-model | svg_model/__init__.py | svg_shapes_to_df | def svg_shapes_to_df(svg_source, xpath='//svg:path | //svg:polygon',
namespaces=INKSCAPE_NSMAP):
'''
Construct a data frame with one row per vertex for all shapes in
:data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
By default, all ``svg:path`` and ``svg:polygon`` elements are selected.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
- other: attributes of the SVG shape element (e.g., ``id``, ``fill``,
etc.)
'''
from lxml import etree
e_root = etree.parse(svg_source)
frames = []
attribs_set = set()
# Get list of attributes that are set in any of the shapes (not including
# the `svg:path` `"d"` attribute or the `svg:polygon` `"points"`
# attribute).
#
# This, for example, collects attributes such as:
#
# - `fill`, `stroke` (as part of `"style"` attribute)
# - `"transform"`: matrix, scale, etc.
for shape_i in e_root.xpath(xpath, namespaces=namespaces):
attribs_set.update(list(shape_i.attrib.keys()))
for k in ('d', 'points'):
if k in attribs_set:
attribs_set.remove(k)
attribs = list(sorted(attribs_set))
# Always add 'id' attribute as first attribute.
if 'id' in attribs:
attribs.remove('id')
attribs.insert(0, 'id')
for shape_i in e_root.xpath(xpath, namespaces=namespaces):
# Gather shape attributes from SVG element.
base_fields = [shape_i.attrib.get(k, None) for k in attribs]
if shape_i.tag == '{http://www.w3.org/2000/svg}path':
# Decode `svg:path` vertices from [`"d"`][1] attribute.
#
# [1]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/d
points_i = [base_fields + [i] + [point_i.get(k) for k in 'xy']
for i, point_i in
enumerate(shape_path_points(shape_i.attrib['d']))]
elif shape_i.tag == '{http://www.w3.org/2000/svg}polygon':
# Decode `svg:polygon` vertices from [`"points"`][2] attribute.
#
# [2]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/points
points_i = [base_fields + [i] + list(map(float, v.split(',')))
for i, v in enumerate(shape_i.attrib['points']
.strip().split(' '))]
else:
warnings.warning('Unsupported shape tag type: %s' % shape_i.tag)
continue
frames.extend(points_i)
if not frames:
# There were no shapes found, so set `frames` list to `None` to allow
# an empty data frame to be created.
frames = None
return pd.DataFrame(frames, columns=attribs + ['vertex_i', 'x', 'y']) | python | def svg_shapes_to_df(svg_source, xpath='//svg:path | //svg:polygon',
namespaces=INKSCAPE_NSMAP):
'''
Construct a data frame with one row per vertex for all shapes in
:data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
By default, all ``svg:path`` and ``svg:polygon`` elements are selected.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
- other: attributes of the SVG shape element (e.g., ``id``, ``fill``,
etc.)
'''
from lxml import etree
e_root = etree.parse(svg_source)
frames = []
attribs_set = set()
# Get list of attributes that are set in any of the shapes (not including
# the `svg:path` `"d"` attribute or the `svg:polygon` `"points"`
# attribute).
#
# This, for example, collects attributes such as:
#
# - `fill`, `stroke` (as part of `"style"` attribute)
# - `"transform"`: matrix, scale, etc.
for shape_i in e_root.xpath(xpath, namespaces=namespaces):
attribs_set.update(list(shape_i.attrib.keys()))
for k in ('d', 'points'):
if k in attribs_set:
attribs_set.remove(k)
attribs = list(sorted(attribs_set))
# Always add 'id' attribute as first attribute.
if 'id' in attribs:
attribs.remove('id')
attribs.insert(0, 'id')
for shape_i in e_root.xpath(xpath, namespaces=namespaces):
# Gather shape attributes from SVG element.
base_fields = [shape_i.attrib.get(k, None) for k in attribs]
if shape_i.tag == '{http://www.w3.org/2000/svg}path':
# Decode `svg:path` vertices from [`"d"`][1] attribute.
#
# [1]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/d
points_i = [base_fields + [i] + [point_i.get(k) for k in 'xy']
for i, point_i in
enumerate(shape_path_points(shape_i.attrib['d']))]
elif shape_i.tag == '{http://www.w3.org/2000/svg}polygon':
# Decode `svg:polygon` vertices from [`"points"`][2] attribute.
#
# [2]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/points
points_i = [base_fields + [i] + list(map(float, v.split(',')))
for i, v in enumerate(shape_i.attrib['points']
.strip().split(' '))]
else:
warnings.warning('Unsupported shape tag type: %s' % shape_i.tag)
continue
frames.extend(points_i)
if not frames:
# There were no shapes found, so set `frames` list to `None` to allow
# an empty data frame to be created.
frames = None
return pd.DataFrame(frames, columns=attribs + ['vertex_i', 'x', 'y']) | [
"def",
"svg_shapes_to_df",
"(",
"svg_source",
",",
"xpath",
"=",
"'//svg:path | //svg:polygon'",
",",
"namespaces",
"=",
"INKSCAPE_NSMAP",
")",
":",
"from",
"lxml",
"import",
"etree",
"e_root",
"=",
"etree",
".",
"parse",
"(",
"svg_source",
")",
"frames",
"=",
"[",
"]",
"attribs_set",
"=",
"set",
"(",
")",
"# Get list of attributes that are set in any of the shapes (not including",
"# the `svg:path` `\"d\"` attribute or the `svg:polygon` `\"points\"`",
"# attribute).",
"#",
"# This, for example, collects attributes such as:",
"#",
"# - `fill`, `stroke` (as part of `\"style\"` attribute)",
"# - `\"transform\"`: matrix, scale, etc.",
"for",
"shape_i",
"in",
"e_root",
".",
"xpath",
"(",
"xpath",
",",
"namespaces",
"=",
"namespaces",
")",
":",
"attribs_set",
".",
"update",
"(",
"list",
"(",
"shape_i",
".",
"attrib",
".",
"keys",
"(",
")",
")",
")",
"for",
"k",
"in",
"(",
"'d'",
",",
"'points'",
")",
":",
"if",
"k",
"in",
"attribs_set",
":",
"attribs_set",
".",
"remove",
"(",
"k",
")",
"attribs",
"=",
"list",
"(",
"sorted",
"(",
"attribs_set",
")",
")",
"# Always add 'id' attribute as first attribute.",
"if",
"'id'",
"in",
"attribs",
":",
"attribs",
".",
"remove",
"(",
"'id'",
")",
"attribs",
".",
"insert",
"(",
"0",
",",
"'id'",
")",
"for",
"shape_i",
"in",
"e_root",
".",
"xpath",
"(",
"xpath",
",",
"namespaces",
"=",
"namespaces",
")",
":",
"# Gather shape attributes from SVG element.",
"base_fields",
"=",
"[",
"shape_i",
".",
"attrib",
".",
"get",
"(",
"k",
",",
"None",
")",
"for",
"k",
"in",
"attribs",
"]",
"if",
"shape_i",
".",
"tag",
"==",
"'{http://www.w3.org/2000/svg}path'",
":",
"# Decode `svg:path` vertices from [`\"d\"`][1] attribute.",
"#",
"# [1]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/d",
"points_i",
"=",
"[",
"base_fields",
"+",
"[",
"i",
"]",
"+",
"[",
"point_i",
".",
"get",
"(",
"k",
")",
"for",
"k",
"in",
"'xy'",
"]",
"for",
"i",
",",
"point_i",
"in",
"enumerate",
"(",
"shape_path_points",
"(",
"shape_i",
".",
"attrib",
"[",
"'d'",
"]",
")",
")",
"]",
"elif",
"shape_i",
".",
"tag",
"==",
"'{http://www.w3.org/2000/svg}polygon'",
":",
"# Decode `svg:polygon` vertices from [`\"points\"`][2] attribute.",
"#",
"# [2]: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/points",
"points_i",
"=",
"[",
"base_fields",
"+",
"[",
"i",
"]",
"+",
"list",
"(",
"map",
"(",
"float",
",",
"v",
".",
"split",
"(",
"','",
")",
")",
")",
"for",
"i",
",",
"v",
"in",
"enumerate",
"(",
"shape_i",
".",
"attrib",
"[",
"'points'",
"]",
".",
"strip",
"(",
")",
".",
"split",
"(",
"' '",
")",
")",
"]",
"else",
":",
"warnings",
".",
"warning",
"(",
"'Unsupported shape tag type: %s'",
"%",
"shape_i",
".",
"tag",
")",
"continue",
"frames",
".",
"extend",
"(",
"points_i",
")",
"if",
"not",
"frames",
":",
"# There were no shapes found, so set `frames` list to `None` to allow",
"# an empty data frame to be created.",
"frames",
"=",
"None",
"return",
"pd",
".",
"DataFrame",
"(",
"frames",
",",
"columns",
"=",
"attribs",
"+",
"[",
"'vertex_i'",
",",
"'x'",
",",
"'y'",
"]",
")"
] | Construct a data frame with one row per vertex for all shapes in
:data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
By default, all ``svg:path`` and ``svg:polygon`` elements are selected.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
- other: attributes of the SVG shape element (e.g., ``id``, ``fill``,
etc.) | [
"Construct",
"a",
"data",
"frame",
"with",
"one",
"row",
"per",
"vertex",
"for",
"all",
"shapes",
"in",
":",
"data",
":",
"svg_source",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L82-L165 |
sci-bots/svg-model | svg_model/__init__.py | svg_polygons_to_df | def svg_polygons_to_df(svg_source, xpath='//svg:polygon',
namespaces=INKSCAPE_NSMAP):
'''
Construct a data frame with one row per vertex for all shapes (e.g.,
``svg:path``, ``svg:polygon``) in :data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``path_id``: The ``id`` attribute of the corresponding shape.
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
.. note:: Deprecated in :mod:`svg_model` 0.5.post10
:func:`svg_polygons_to_df` will be removed in :mod:`svg_model` 1.0, it
is replaced by :func:`svg_shapes_to_df` because the latter is more
general and works with ``svg:path`` and ``svg:polygon`` elements.
'''
warnings.warn("The `svg_polygons_to_df` function is deprecated. Use "
"`svg_shapes_to_df` instead.")
result = svg_shapes_to_df(svg_source, xpath=xpath, namespaces=namespaces)
return result[['id', 'vertex_i', 'x', 'y']].rename(columns={'id':
'path_id'}) | python | def svg_polygons_to_df(svg_source, xpath='//svg:polygon',
namespaces=INKSCAPE_NSMAP):
'''
Construct a data frame with one row per vertex for all shapes (e.g.,
``svg:path``, ``svg:polygon``) in :data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``path_id``: The ``id`` attribute of the corresponding shape.
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
.. note:: Deprecated in :mod:`svg_model` 0.5.post10
:func:`svg_polygons_to_df` will be removed in :mod:`svg_model` 1.0, it
is replaced by :func:`svg_shapes_to_df` because the latter is more
general and works with ``svg:path`` and ``svg:polygon`` elements.
'''
warnings.warn("The `svg_polygons_to_df` function is deprecated. Use "
"`svg_shapes_to_df` instead.")
result = svg_shapes_to_df(svg_source, xpath=xpath, namespaces=namespaces)
return result[['id', 'vertex_i', 'x', 'y']].rename(columns={'id':
'path_id'}) | [
"def",
"svg_polygons_to_df",
"(",
"svg_source",
",",
"xpath",
"=",
"'//svg:polygon'",
",",
"namespaces",
"=",
"INKSCAPE_NSMAP",
")",
":",
"warnings",
".",
"warn",
"(",
"\"The `svg_polygons_to_df` function is deprecated. Use \"",
"\"`svg_shapes_to_df` instead.\"",
")",
"result",
"=",
"svg_shapes_to_df",
"(",
"svg_source",
",",
"xpath",
"=",
"xpath",
",",
"namespaces",
"=",
"namespaces",
")",
"return",
"result",
"[",
"[",
"'id'",
",",
"'vertex_i'",
",",
"'x'",
",",
"'y'",
"]",
"]",
".",
"rename",
"(",
"columns",
"=",
"{",
"'id'",
":",
"'path_id'",
"}",
")"
] | Construct a data frame with one row per vertex for all shapes (e.g.,
``svg:path``, ``svg:polygon``) in :data:`svg_source``.
Arguments
---------
svg_source : str or file-like
A file path, URI, or file-like object.
xpath : str, optional
XPath path expression to select shape nodes.
namespaces : dict, optional
Key/value mapping of XML namespaces.
Returns
-------
pandas.DataFrame
Frame with one row per vertex for all shapes in :data:`svg_source`,
with the following columns:
- ``path_id``: The ``id`` attribute of the corresponding shape.
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
.. note:: Deprecated in :mod:`svg_model` 0.5.post10
:func:`svg_polygons_to_df` will be removed in :mod:`svg_model` 1.0, it
is replaced by :func:`svg_shapes_to_df` because the latter is more
general and works with ``svg:path`` and ``svg:polygon`` elements. | [
"Construct",
"a",
"data",
"frame",
"with",
"one",
"row",
"per",
"vertex",
"for",
"all",
"shapes",
"(",
"e",
".",
"g",
".",
"svg",
":",
"path",
"svg",
":",
"polygon",
")",
"in",
":",
"data",
":",
"svg_source",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L168-L204 |
sci-bots/svg-model | svg_model/__init__.py | compute_shape_centers | def compute_shape_centers(df_shapes, shape_i_column, inplace=False):
'''
Compute the center point of each polygon shape, and the offset of each
vertex to the corresponding polygon center point.
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Must have at least the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
shape_i_column : str or list, optional
Table rows with the same value in the :data:`shape_i_column` column are
grouped together as a shape.
in_place : bool, optional
If ``True``, center coordinate columns are added directly to the input
frame.
Otherwise, center coordinate columns are added to copy of the input
frame.
Returns
-------
pandas.DataFrame
Input frame with the following additional columns:
- ``x_center``/``y_center``: Absolute coordinates of shape center.
- ``x_center_offset``/``y_center_offset``:
* Coordinates of each vertex coordinate relative to shape center.
'''
if not isinstance(shape_i_column, bytes):
raise KeyError('Shape index must be a single column.')
if not inplace:
df_shapes = df_shapes.copy()
# Get coordinates of center of each path.
df_bounding_boxes = get_bounding_boxes(df_shapes, shape_i_column)
path_centers = (df_bounding_boxes[['x', 'y']] + .5 *
df_bounding_boxes[['width', 'height']].values)
df_shapes['x_center'] = path_centers.x[df_shapes[shape_i_column]].values
df_shapes['y_center'] = path_centers.y[df_shapes[shape_i_column]].values
# Calculate coordinate of each path vertex relative to center point of
# path.
center_offset = (df_shapes[['x', 'y']] -
df_shapes[['x_center', 'y_center']].values)
return df_shapes.join(center_offset, rsuffix='_center_offset') | python | def compute_shape_centers(df_shapes, shape_i_column, inplace=False):
'''
Compute the center point of each polygon shape, and the offset of each
vertex to the corresponding polygon center point.
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Must have at least the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
shape_i_column : str or list, optional
Table rows with the same value in the :data:`shape_i_column` column are
grouped together as a shape.
in_place : bool, optional
If ``True``, center coordinate columns are added directly to the input
frame.
Otherwise, center coordinate columns are added to copy of the input
frame.
Returns
-------
pandas.DataFrame
Input frame with the following additional columns:
- ``x_center``/``y_center``: Absolute coordinates of shape center.
- ``x_center_offset``/``y_center_offset``:
* Coordinates of each vertex coordinate relative to shape center.
'''
if not isinstance(shape_i_column, bytes):
raise KeyError('Shape index must be a single column.')
if not inplace:
df_shapes = df_shapes.copy()
# Get coordinates of center of each path.
df_bounding_boxes = get_bounding_boxes(df_shapes, shape_i_column)
path_centers = (df_bounding_boxes[['x', 'y']] + .5 *
df_bounding_boxes[['width', 'height']].values)
df_shapes['x_center'] = path_centers.x[df_shapes[shape_i_column]].values
df_shapes['y_center'] = path_centers.y[df_shapes[shape_i_column]].values
# Calculate coordinate of each path vertex relative to center point of
# path.
center_offset = (df_shapes[['x', 'y']] -
df_shapes[['x_center', 'y_center']].values)
return df_shapes.join(center_offset, rsuffix='_center_offset') | [
"def",
"compute_shape_centers",
"(",
"df_shapes",
",",
"shape_i_column",
",",
"inplace",
"=",
"False",
")",
":",
"if",
"not",
"isinstance",
"(",
"shape_i_column",
",",
"bytes",
")",
":",
"raise",
"KeyError",
"(",
"'Shape index must be a single column.'",
")",
"if",
"not",
"inplace",
":",
"df_shapes",
"=",
"df_shapes",
".",
"copy",
"(",
")",
"# Get coordinates of center of each path.",
"df_bounding_boxes",
"=",
"get_bounding_boxes",
"(",
"df_shapes",
",",
"shape_i_column",
")",
"path_centers",
"=",
"(",
"df_bounding_boxes",
"[",
"[",
"'x'",
",",
"'y'",
"]",
"]",
"+",
".5",
"*",
"df_bounding_boxes",
"[",
"[",
"'width'",
",",
"'height'",
"]",
"]",
".",
"values",
")",
"df_shapes",
"[",
"'x_center'",
"]",
"=",
"path_centers",
".",
"x",
"[",
"df_shapes",
"[",
"shape_i_column",
"]",
"]",
".",
"values",
"df_shapes",
"[",
"'y_center'",
"]",
"=",
"path_centers",
".",
"y",
"[",
"df_shapes",
"[",
"shape_i_column",
"]",
"]",
".",
"values",
"# Calculate coordinate of each path vertex relative to center point of",
"# path.",
"center_offset",
"=",
"(",
"df_shapes",
"[",
"[",
"'x'",
",",
"'y'",
"]",
"]",
"-",
"df_shapes",
"[",
"[",
"'x_center'",
",",
"'y_center'",
"]",
"]",
".",
"values",
")",
"return",
"df_shapes",
".",
"join",
"(",
"center_offset",
",",
"rsuffix",
"=",
"'_center_offset'",
")"
] | Compute the center point of each polygon shape, and the offset of each
vertex to the corresponding polygon center point.
Parameters
----------
df_shapes : pandas.DataFrame
Table of polygon shape vertices (one row per vertex).
Must have at least the following columns:
- ``vertex_i``: The index of the vertex within the corresponding
shape.
- ``x``: The x-coordinate of the vertex.
- ``y``: The y-coordinate of the vertex.
shape_i_column : str or list, optional
Table rows with the same value in the :data:`shape_i_column` column are
grouped together as a shape.
in_place : bool, optional
If ``True``, center coordinate columns are added directly to the input
frame.
Otherwise, center coordinate columns are added to copy of the input
frame.
Returns
-------
pandas.DataFrame
Input frame with the following additional columns:
- ``x_center``/``y_center``: Absolute coordinates of shape center.
- ``x_center_offset``/``y_center_offset``:
* Coordinates of each vertex coordinate relative to shape center. | [
"Compute",
"the",
"center",
"point",
"of",
"each",
"polygon",
"shape",
"and",
"the",
"offset",
"of",
"each",
"vertex",
"to",
"the",
"corresponding",
"polygon",
"center",
"point",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L207-L257 |
sci-bots/svg-model | svg_model/__init__.py | scale_points | def scale_points(df_points, scale=INKSCAPE_PPmm.magnitude, inplace=False):
'''
Translate points such that bounding box is anchored at (0, 0) and scale
``x`` and ``y`` columns of input frame by specified :data:`scale`.
Parameters
----------
df_points : pandas.DataFrame
Table of ``x``/``y`` point positions.
Must have at least the following columns:
- ``x``: x-coordinate
- ``y``: y-coordinate
scale : float, optional
Factor to scale points by.
By default, scale to millimeters based on Inkscape default of 90
pixels-per-inch.
scale : float, optional
Factor to scale points by.
in_place : bool, optional
If ``True``, input frame will be modified.
Otherwise, the scaled points are written to a new frame, leaving the
input frame unmodified.
Returns
-------
pandas.DataFrame
Input frame with the points translated such that bounding box is
anchored at (0, 0) and ``x`` and ``y`` values scaled by specified
:data:`scale`.
'''
if not inplace:
df_points = df_points.copy()
# Offset device, such that all coordinates are >= 0.
df_points.x -= df_points.x.min()
df_points.y -= df_points.y.min()
# Scale path coordinates.
df_points.x /= scale
df_points.y /= scale
return df_points | python | def scale_points(df_points, scale=INKSCAPE_PPmm.magnitude, inplace=False):
'''
Translate points such that bounding box is anchored at (0, 0) and scale
``x`` and ``y`` columns of input frame by specified :data:`scale`.
Parameters
----------
df_points : pandas.DataFrame
Table of ``x``/``y`` point positions.
Must have at least the following columns:
- ``x``: x-coordinate
- ``y``: y-coordinate
scale : float, optional
Factor to scale points by.
By default, scale to millimeters based on Inkscape default of 90
pixels-per-inch.
scale : float, optional
Factor to scale points by.
in_place : bool, optional
If ``True``, input frame will be modified.
Otherwise, the scaled points are written to a new frame, leaving the
input frame unmodified.
Returns
-------
pandas.DataFrame
Input frame with the points translated such that bounding box is
anchored at (0, 0) and ``x`` and ``y`` values scaled by specified
:data:`scale`.
'''
if not inplace:
df_points = df_points.copy()
# Offset device, such that all coordinates are >= 0.
df_points.x -= df_points.x.min()
df_points.y -= df_points.y.min()
# Scale path coordinates.
df_points.x /= scale
df_points.y /= scale
return df_points | [
"def",
"scale_points",
"(",
"df_points",
",",
"scale",
"=",
"INKSCAPE_PPmm",
".",
"magnitude",
",",
"inplace",
"=",
"False",
")",
":",
"if",
"not",
"inplace",
":",
"df_points",
"=",
"df_points",
".",
"copy",
"(",
")",
"# Offset device, such that all coordinates are >= 0.",
"df_points",
".",
"x",
"-=",
"df_points",
".",
"x",
".",
"min",
"(",
")",
"df_points",
".",
"y",
"-=",
"df_points",
".",
"y",
".",
"min",
"(",
")",
"# Scale path coordinates.",
"df_points",
".",
"x",
"/=",
"scale",
"df_points",
".",
"y",
"/=",
"scale",
"return",
"df_points"
] | Translate points such that bounding box is anchored at (0, 0) and scale
``x`` and ``y`` columns of input frame by specified :data:`scale`.
Parameters
----------
df_points : pandas.DataFrame
Table of ``x``/``y`` point positions.
Must have at least the following columns:
- ``x``: x-coordinate
- ``y``: y-coordinate
scale : float, optional
Factor to scale points by.
By default, scale to millimeters based on Inkscape default of 90
pixels-per-inch.
scale : float, optional
Factor to scale points by.
in_place : bool, optional
If ``True``, input frame will be modified.
Otherwise, the scaled points are written to a new frame, leaving the
input frame unmodified.
Returns
-------
pandas.DataFrame
Input frame with the points translated such that bounding box is
anchored at (0, 0) and ``x`` and ``y`` values scaled by specified
:data:`scale`. | [
"Translate",
"points",
"such",
"that",
"bounding",
"box",
"is",
"anchored",
"at",
"(",
"0",
"0",
")",
"and",
"scale",
"x",
"and",
"y",
"columns",
"of",
"input",
"frame",
"by",
"specified",
":",
"data",
":",
"scale",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L260-L304 |
sci-bots/svg-model | svg_model/__init__.py | scale_to_fit_a_in_b | def scale_to_fit_a_in_b(a_shape, b_shape):
'''
Return scale factor (scalar float) to fit `a_shape` into `b_shape` while
maintaining aspect ratio.
Arguments
---------
a_shape, b_shape : pandas.Series
Input shapes containing numeric `width` and `height` values.
Returns
-------
float
Scale factor to fit :data:`a_shape` into :data:`b_shape` while
maintaining aspect ratio.
'''
# Normalize the shapes to allow comparison.
a_shape_normal = a_shape / a_shape.max()
b_shape_normal = b_shape / b_shape.max()
if a_shape_normal.width > b_shape_normal.width:
a_shape_normal *= b_shape_normal.width / a_shape_normal.width
if a_shape_normal.height > b_shape_normal.height:
a_shape_normal *= b_shape_normal.height / a_shape_normal.height
return a_shape_normal.max() * b_shape.max() / a_shape.max() | python | def scale_to_fit_a_in_b(a_shape, b_shape):
'''
Return scale factor (scalar float) to fit `a_shape` into `b_shape` while
maintaining aspect ratio.
Arguments
---------
a_shape, b_shape : pandas.Series
Input shapes containing numeric `width` and `height` values.
Returns
-------
float
Scale factor to fit :data:`a_shape` into :data:`b_shape` while
maintaining aspect ratio.
'''
# Normalize the shapes to allow comparison.
a_shape_normal = a_shape / a_shape.max()
b_shape_normal = b_shape / b_shape.max()
if a_shape_normal.width > b_shape_normal.width:
a_shape_normal *= b_shape_normal.width / a_shape_normal.width
if a_shape_normal.height > b_shape_normal.height:
a_shape_normal *= b_shape_normal.height / a_shape_normal.height
return a_shape_normal.max() * b_shape.max() / a_shape.max() | [
"def",
"scale_to_fit_a_in_b",
"(",
"a_shape",
",",
"b_shape",
")",
":",
"# Normalize the shapes to allow comparison.",
"a_shape_normal",
"=",
"a_shape",
"/",
"a_shape",
".",
"max",
"(",
")",
"b_shape_normal",
"=",
"b_shape",
"/",
"b_shape",
".",
"max",
"(",
")",
"if",
"a_shape_normal",
".",
"width",
">",
"b_shape_normal",
".",
"width",
":",
"a_shape_normal",
"*=",
"b_shape_normal",
".",
"width",
"/",
"a_shape_normal",
".",
"width",
"if",
"a_shape_normal",
".",
"height",
">",
"b_shape_normal",
".",
"height",
":",
"a_shape_normal",
"*=",
"b_shape_normal",
".",
"height",
"/",
"a_shape_normal",
".",
"height",
"return",
"a_shape_normal",
".",
"max",
"(",
")",
"*",
"b_shape",
".",
"max",
"(",
")",
"/",
"a_shape",
".",
"max",
"(",
")"
] | Return scale factor (scalar float) to fit `a_shape` into `b_shape` while
maintaining aspect ratio.
Arguments
---------
a_shape, b_shape : pandas.Series
Input shapes containing numeric `width` and `height` values.
Returns
-------
float
Scale factor to fit :data:`a_shape` into :data:`b_shape` while
maintaining aspect ratio. | [
"Return",
"scale",
"factor",
"(",
"scalar",
"float",
")",
"to",
"fit",
"a_shape",
"into",
"b_shape",
"while",
"maintaining",
"aspect",
"ratio",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L307-L333 |
sci-bots/svg-model | svg_model/__init__.py | fit_points_in_bounding_box | def fit_points_in_bounding_box(df_points, bounding_box, padding_fraction=0):
'''
Return data frame with ``x``, ``y`` columns scaled to fit points from
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
pandas.DataFrame
Input frame with the points with ``x`` and ``y`` values scaled to fill
:data:`bounding_box` while maintaining aspect ratio.
'''
df_scaled_points = df_points.copy()
offset, padded_scale = fit_points_in_bounding_box_params(df_points,
bounding_box,
padding_fraction)
df_scaled_points[['x', 'y']] *= padded_scale
df_scaled_points[['x', 'y']] += offset
return df_scaled_points | python | def fit_points_in_bounding_box(df_points, bounding_box, padding_fraction=0):
'''
Return data frame with ``x``, ``y`` columns scaled to fit points from
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
pandas.DataFrame
Input frame with the points with ``x`` and ``y`` values scaled to fill
:data:`bounding_box` while maintaining aspect ratio.
'''
df_scaled_points = df_points.copy()
offset, padded_scale = fit_points_in_bounding_box_params(df_points,
bounding_box,
padding_fraction)
df_scaled_points[['x', 'y']] *= padded_scale
df_scaled_points[['x', 'y']] += offset
return df_scaled_points | [
"def",
"fit_points_in_bounding_box",
"(",
"df_points",
",",
"bounding_box",
",",
"padding_fraction",
"=",
"0",
")",
":",
"df_scaled_points",
"=",
"df_points",
".",
"copy",
"(",
")",
"offset",
",",
"padded_scale",
"=",
"fit_points_in_bounding_box_params",
"(",
"df_points",
",",
"bounding_box",
",",
"padding_fraction",
")",
"df_scaled_points",
"[",
"[",
"'x'",
",",
"'y'",
"]",
"]",
"*=",
"padded_scale",
"df_scaled_points",
"[",
"[",
"'x'",
",",
"'y'",
"]",
"]",
"+=",
"offset",
"return",
"df_scaled_points"
] | Return data frame with ``x``, ``y`` columns scaled to fit points from
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
pandas.DataFrame
Input frame with the points with ``x`` and ``y`` values scaled to fill
:data:`bounding_box` while maintaining aspect ratio. | [
"Return",
"data",
"frame",
"with",
"x",
"y",
"columns",
"scaled",
"to",
"fit",
"points",
"from",
":",
"data",
":",
"df_points",
"to",
"fill",
":",
"data",
":",
"bounding_box",
"while",
"maintaining",
"aspect",
"ratio",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L336-L364 |
sci-bots/svg-model | svg_model/__init__.py | fit_points_in_bounding_box_params | def fit_points_in_bounding_box_params(df_points, bounding_box,
padding_fraction=0):
'''
Return offset and scale factor to scale ``x``, ``y`` columns of
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
(offset, scale) : (pandas.Series, float)
Offset translation and scale required to fit all points in
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
:data:`offset` contains ``x`` and ``y`` values for the offset.
'''
width = df_points.x.max()
height = df_points.y.max()
points_bbox = pd.Series([width, height], index=['width', 'height'])
fill_scale = 1 - 2 * padding_fraction
assert(fill_scale > 0)
scale = scale_to_fit_a_in_b(points_bbox, bounding_box)
padded_scale = scale * fill_scale
offset = .5 * (bounding_box - points_bbox * padded_scale)
offset.index = ['x', 'y']
return offset, padded_scale | python | def fit_points_in_bounding_box_params(df_points, bounding_box,
padding_fraction=0):
'''
Return offset and scale factor to scale ``x``, ``y`` columns of
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
(offset, scale) : (pandas.Series, float)
Offset translation and scale required to fit all points in
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
:data:`offset` contains ``x`` and ``y`` values for the offset.
'''
width = df_points.x.max()
height = df_points.y.max()
points_bbox = pd.Series([width, height], index=['width', 'height'])
fill_scale = 1 - 2 * padding_fraction
assert(fill_scale > 0)
scale = scale_to_fit_a_in_b(points_bbox, bounding_box)
padded_scale = scale * fill_scale
offset = .5 * (bounding_box - points_bbox * padded_scale)
offset.index = ['x', 'y']
return offset, padded_scale | [
"def",
"fit_points_in_bounding_box_params",
"(",
"df_points",
",",
"bounding_box",
",",
"padding_fraction",
"=",
"0",
")",
":",
"width",
"=",
"df_points",
".",
"x",
".",
"max",
"(",
")",
"height",
"=",
"df_points",
".",
"y",
".",
"max",
"(",
")",
"points_bbox",
"=",
"pd",
".",
"Series",
"(",
"[",
"width",
",",
"height",
"]",
",",
"index",
"=",
"[",
"'width'",
",",
"'height'",
"]",
")",
"fill_scale",
"=",
"1",
"-",
"2",
"*",
"padding_fraction",
"assert",
"(",
"fill_scale",
">",
"0",
")",
"scale",
"=",
"scale_to_fit_a_in_b",
"(",
"points_bbox",
",",
"bounding_box",
")",
"padded_scale",
"=",
"scale",
"*",
"fill_scale",
"offset",
"=",
".5",
"*",
"(",
"bounding_box",
"-",
"points_bbox",
"*",
"padded_scale",
")",
"offset",
".",
"index",
"=",
"[",
"'x'",
",",
"'y'",
"]",
"return",
"offset",
",",
"padded_scale"
] | Return offset and scale factor to scale ``x``, ``y`` columns of
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
Arguments
---------
df_points : pandas.DataFrame
A frame with at least the columns ``x`` and ``y``, containing one row
per point.
bounding_box: pandas.Series
A `pandas.Series` containing numeric `width` and `height` values.
padding_fraction : float
Fraction of padding to add around points.
Returns
-------
(offset, scale) : (pandas.Series, float)
Offset translation and scale required to fit all points in
:data:`df_points` to fill :data:`bounding_box` while maintaining aspect
ratio.
:data:`offset` contains ``x`` and ``y`` values for the offset. | [
"Return",
"offset",
"and",
"scale",
"factor",
"to",
"scale",
"x",
"y",
"columns",
"of",
":",
"data",
":",
"df_points",
"to",
"fill",
":",
"data",
":",
"bounding_box",
"while",
"maintaining",
"aspect",
"ratio",
"."
] | train | https://github.com/sci-bots/svg-model/blob/2d119650f995e62b29ce0b3151a23f3b957cb072/svg_model/__init__.py#L367-L405 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.