max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
app/util/auth2.py
FSU-ACM/Contest-Server
8
6400
""" util.auth2: Authentication tools This module is based off of util.auth, except with the action paradigm removed. """ from flask import session from app.models import Account from app.util import course as course_util # Session keys SESSION_EMAIL = 'email' def create_account(email: str, password: str, first_name: str, last_name: str, fsuid: str, course_list: list = []): """ Creates an account for a single user. :email: Required, the email address of the user. :password: Required, user's chosen password. :first_name: Required, user's first name. :last_name: Required, user's last name. :fsuid: Optional, user's FSUID. :course_list: Optional, courses being taken by user :return: Account object. """ account = Account( email=email, first_name=first_name, last_name=last_name, fsuid=fsuid, is_admin=False ) # Set user's extra credit courses course_util.set_courses(account, course_list) account.set_password(password) account.save() return account def get_account(email: str=None): """ Retrieves account via email (defaults to using session), otherwise redirects to login page. :email: Optional email string, if not provided will use session['email'] :return: Account if email is present in session, None otherwise. """ try: email = email or session['email'] return Account.objects.get_or_404(email=email) except: return None
3.078125
3
FeView/pstaticwidget.py
motiurce/FeView
10
6401
from PyQt5.QtWidgets import * from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar class PstaticWidget(QWidget): def __init__(self, parent=None): QWidget.__init__(self, parent) self.fig_pstatic = Figure() self.fig_pstatic.set_facecolor('#ffffff') self.canvas_pstatic = FigureCanvas(self.fig_pstatic) vertical_layout = QVBoxLayout() vertical_layout.addWidget(self.canvas_pstatic) self.canvas_pstatic.axes_pstatic = self.canvas_pstatic.figure.add_subplot(111) self.setLayout(vertical_layout) self.canvas_pstatic.axes_pstatic.set_xticks([]) self.canvas_pstatic.axes_pstatic.set_yticks([]) self.canvas_pstatic.axes_pstatic.axis('off') self.fig_pstatic.subplots_adjust(left=0.12, bottom=0.15, right=0.985, top=0.95) self.toolbar = NavigationToolbar(self.canvas_pstatic, self) self.toolbar.setFixedHeight(25) vertical_layout.addWidget(self.toolbar)
2.515625
3
pyallocation/solvers/exhaustive.py
julesy89/pyallocation
0
6402
<gh_stars>0 import numpy as np from pymoo.core.algorithm import Algorithm from pymoo.core.population import Population from pymoo.util.termination.no_termination import NoTermination from pyallocation.allocation import FastAllocation from pyallocation.problem import AllocationProblem def exhaustively(problem): alloc = FastAllocation(problem, debug=False) k = 0 sols = [] rec_exhaustively(problem, alloc, k, sols) sols.sort(key=lambda x: (x[1], x[2])) return sols[:100] def rec_exhaustively(problem, alloc, k, sols): if not alloc.feas: return if k == problem.n_var: x, cv, f = np.copy(alloc.x), alloc.CV, (alloc.F * problem.w).sum() sols.append((x, cv, f)) if len(sols) > 1000: sols.sort(key=lambda x: (x[1], x[2])) while len(sols) > 100: sols.pop() else: for val in range(problem.xl[k], problem.xu[k] + 1): alloc.set(k, val) rec_exhaustively(problem, alloc, k + 1, sols) alloc.set(k, -1) class ExhaustiveAlgorithm(Algorithm): def __init__(self, **kwargs): super().__init__(**kwargs) self.default_termination = NoTermination() def setup(self, problem, **kwargs): super().setup(problem, **kwargs) assert isinstance(problem, AllocationProblem) return self def _initialize(self): self._next() def _next(self): solutions = exhaustively(self.problem) self.pop = Population.new(X=np.array([x for x, _, _ in solutions])) self.evaluator.eval(self.problem, self.pop) for ind in self.pop: print(ind.F[0], ind.X) self.termination.force_termination = True
2.28125
2
config.py
yasminbraga/ufopa-reports
0
6403
import os class Config: CSRF_ENABLED = True SECRET_KEY = 'your-very-very-secret-key' SQLALCHEMY_DATABASE_URI = 'postgresql:///flask_template_dev' SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_ECHO = True class Development(Config): ENV = 'development' DEBUG = True TESTING = False class Production(Config): ENV = 'production' DEBUG = False SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL', 'postgres://firhokdcdnfygz:93231d3f2ae1156cabfc40f7e4ba08587a77f68a5e2072fbcbbdb30150ba4bcb@ec2-107-22-253-158.compute-1.amazonaws.com:5432/df9c5vvl0s21da')
1.765625
2
heat/api/openstack/v1/views/stacks_view.py
noironetworks/heat
265
6404
<reponame>noironetworks/heat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from heat.api.openstack.v1 import util from heat.api.openstack.v1.views import views_common from heat.rpc import api as rpc_api _collection_name = 'stacks' basic_keys = ( rpc_api.STACK_ID, rpc_api.STACK_NAME, rpc_api.STACK_DESCRIPTION, rpc_api.STACK_STATUS, rpc_api.STACK_STATUS_DATA, rpc_api.STACK_CREATION_TIME, rpc_api.STACK_DELETION_TIME, rpc_api.STACK_UPDATED_TIME, rpc_api.STACK_OWNER, rpc_api.STACK_PARENT, rpc_api.STACK_USER_PROJECT_ID, rpc_api.STACK_TAGS, ) def format_stack(req, stack, keys=None, include_project=False): def transform(key, value): if keys and key not in keys: return if key == rpc_api.STACK_ID: yield ('id', value['stack_id']) yield ('links', [util.make_link(req, value)]) if include_project: yield ('project', value['tenant']) elif key == rpc_api.STACK_ACTION: return elif (key == rpc_api.STACK_STATUS and rpc_api.STACK_ACTION in stack): # To avoid breaking API compatibility, we join RES_ACTION # and RES_STATUS, so the API format doesn't expose the # internal split of state into action/status yield (key, '_'.join((stack[rpc_api.STACK_ACTION], value))) else: # TODO(zaneb): ensure parameters can be formatted for XML # elif key == rpc_api.STACK_PARAMETERS: # return key, json.dumps(value) yield (key, value) return dict(itertools.chain.from_iterable( transform(k, v) for k, v in stack.items())) def collection(req, stacks, count=None, include_project=False): keys = basic_keys formatted_stacks = [format_stack(req, s, keys, include_project) for s in stacks] result = {'stacks': formatted_stacks} links = views_common.get_collection_links(req, formatted_stacks) if links: result['links'] = links if count is not None: result['count'] = count return result
1.835938
2
pykrev/formula/find_intersections.py
Kzra/pykrev
4
6405
import itertools import numpy as np import pandas as pd def find_intersections(formula_lists,group_labels,exclusive = True): """ Docstring for function pyKrev.find_intersections ==================== This function compares n lists of molecular formula and outputs a dictionary containing the intersections between each list. Use ---- find_intersections([list_1,..,list_n],['group_1',...,'group_n']) Returns a dictionary in which each key corresponds to a combination of group labels and the corresponding value is a set containing the intersections between the groups in that combination. Parameters ---------- formula_lists: a list containing n lists of molecular formula. Each item in the sub list should be a formula string. group_labels: a list containing n strings of corresponding group labels. exclusive: True or False, depending on whether you want the intersections to contain only unique values. """ if len(formula_lists) != len(group_labels): raise InputError('formula_lists and group_labels must be of equal length') combinations = [seq for i in range(0,len(group_labels)+1) for seq in itertools.combinations(group_labels,i) if len(seq) > 0] combinations = sorted(combinations,key = lambda c : len(c),reverse = True) # sort combinations by length if exclusive == True: assigned_formula = set() #create a set that will hold all the formula already assigned to a group amb = pd.DataFrame(data = formula_lists).T amb.columns = group_labels intersections = dict() for combo in combinations: queries = [] for c in combo: formula = list(filter(None,amb[c])) #Remove None entries introduced by dataframe queries.append(set(formula)) if len(queries) == 1: #if there is only one query find the unique elements in it q_set = frozenset(queries[0]) #qset is a frozen set, so it will not be mutated by changes to queries[0] for f_list in formula_lists: #cycle all formula in formula_lists set_f = frozenset(f_list) #convert f_list to sets, must be frozen so type matches q_set if set_f == q_set: # ignore the set that corresponds to the query pass else: queries[0] = queries[0] - set_f #delete any repeated elements in fset intersections[combo] = queries[0] elif len(queries) > 1: if exclusive == True: q_intersect = intersect(queries) intersections[combo] = q_intersect - assigned_formula #remove any elements from q_intersect that have already been assigned assigned_formula.update(q_intersect) #update the assigned_set with q_intersect else: intersections[combo] = intersect(queries) return intersections def intersect(samples,counter=0): """ This command uses recursion to find the intersections between a variable number of sets given in samples. Where samples = [set_1,set_2,...,set_n] """ if len(samples) == 1: return samples[0] a = samples[counter] b = samples[counter+1::] if len(b) == 1: #check to see whether the recursion has reached the final element return a & b[0] else: counter += 1 return a & intersect(samples,counter)
3.53125
4
Create Playlist.py
j4ck64/PlaylistDirectories
0
6406
import os import glob import shutil from tinytag import TinyTag """ root = 'C:/' copy_to = '/copy to/folder' tag = TinyTag.get('C:/Users/jchap/OneDrive/Pictures/(VERYRAREBOYZ) (feat. $ki Mask The Slump God and Drugz).mp3') print(tag.artist) print('song duration: '+str(tag.duration)) """ f = [] f=glob.glob('C:/Users/jchap/OneDrive/*.mp3') print(f) musicDirectory=[] musicFiles =[] # tag = TinyTag.get(f[0]) # print(tag.artist) # for root, dirs, files in os.walk("C:/Users/jchap/OneDrive/"): for root, dirs, files in os.walk("C:/"): for file in files: if file.endswith(".mp3"): musicFiles.append(file) musicDirectory.append(os.path.join(root, file)) #print(os.path.join(root, file)) print('files'+str(musicFiles)) tag = TinyTag.get(musicDirectory[0]) print('Artist',tag.artist) print('Album Artist',tag.albumartist) print('Title',tag.title) print('Biterate',tag.bitrate) print('music directory'+str(musicDirectory)) print(len(musicDirectory)) currentDirectory =os.path.dirname(__file__) with open(currentDirectory+'/The_Krabby_Patty Formula_.m3u', "r") as f: content_list = [word.strip() for word in f] """ my_file = open(currentDirectory+'/The_Krabby_Patty Formula_.m3u', "r") content_list = my_file. readlines() """ # print('playlist contents') # print(content_list) musicDirectory musicWithoutDuplicates = [] duplicatesList = [] count =0 # check for tags equal to none #musicDirectory =[x for x in musicDirectory j = TinyTag.get(x) if x != 'wdg'] #remove tracks without albumn artist or title for track in reversed(range(len(musicDirectory))): try: trackTag = TinyTag.get(musicDirectory[track]) if str(trackTag.albumartist)== 'None' or str(trackTag.title)=='None': print('albumArtist = none',musicDirectory[track]) print('removing track and adding to log file') musicDirectory.remove(musicDirectory[track]) except IndexError: break #check for duplicates for j in range(len(musicDirectory)): musicDtag = TinyTag.get(musicDirectory[j]) duplicateL=[] duplicateLBiterate=[] for duplicate in range(len(musicDirectory)): duplicateTag = TinyTag.get(musicDirectory[duplicate]) musicWithoutDuplicates.append(musicDirectory[j]) if duplicateTag.albumartist == musicDtag.albumartist or duplicateTag.albumartist in musicDtag.albumartist: if duplicateTag.title == musicDtag.title or duplicateTag.title in musicDtag.title : #check if last iteration if duplicate>=len(musicDirectory)-1: print("found a duplicate!",musicDirectory[duplicate],duplicateTag.albumartist,duplicateTag.title) if len(duplicateLBiterate)==1:## did something here may need to change the conditional statement or add another print('biterate') #[x for x in duplicateL if TinyTag.get(musicDirectory[x]).bitrate > musicDirectory[x]] print("Current duplicate Bite rate", duplicateLBiterate) for x in range(len(duplicateL)): if TinyTag.get(duplicateL[x]).bitrate == max(duplicateLBiterate): #REMOVE ONE WITH THE BEST BITERATE duplicateL.remove(duplicateL[x]) print('duplicate list',duplicateL) #Add duplicatesList = duplicatesList + duplicateL else: print("found a duplicate!",musicDirectory[duplicate],duplicateTag.albumartist,duplicateTag.title) duplicateL.append(musicDirectory[duplicate]) duplicateLBiterate.append(duplicateTag.bitrate) print('dup ',duplicatesList) #remove duplicates from list for u in range(len(duplicatesList)): for i in range(len(musicDirectory)): if duplicatesList[u]==musicDirectory[i]: musicDirectory.remove(musicDirectory[i]) print('music ',musicDirectory) #create playlist newPlaylist = open("Test.m3u", "w") #add file path to the respective track in the new playlist for content in enumerate(content_list): # split strings into artist and title trackNumber=content[0] trackArray =str(content[1]).split('-') albumArtist= trackArray[0].strip() title=trackArray[1].strip() print('title:',title) print('albumArtist:',albumArtist) for trackDirectory in range(len(musicDirectory)): trackTag = TinyTag.get(musicDirectory[trackDirectory]) if trackTag.albumartist == albumArtist or trackTag.albumartist in albumArtist: if trackTag.title == title or trackTag.title in title: newPlaylist.write(trackDirectory + " " + content) newPlaylist.close() try: while True: content.next() except StopIteration: pass break else: print() else: print()
2.765625
3
PyBank/main.py
Alexis-Kepano/python_challenge
0
6407
#import modules import os import csv #input csvpath = os.path.join('Resources', 'budget_data.csv') #output outfile = os.path.join('Analysis', 'pybankstatements.txt') #declare variables months = []; total_m = 1; net_total = 0; total_change = 0; monthly_changes = []; greatest_inc = ['', 0]; greatest_dec = ['', 0] #open & read csv with open(csvpath) as csvfile: csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) first_row = next(csvreader) previous_row = int(first_row[1]) net_total = int(first_row[1]) #loop for row in csvreader: net_total += int(row[1]) total_m = total_m+1 current_value = int(row[1]) change_value = int(current_value-previous_row) monthly_changes.append(change_value) months.append(row[0]) previous_row = int(row[1]) total_change = total_change + change_value if change_value > greatest_inc[1]: greatest_inc[0] = str(row[0]) greatest_inc[1] = change_value if change_value < greatest_dec[1]: greatest_dec[0] = str(row[0]) greatest_dec[1] = change_value avg_change = total_change/len(months) output = ( f"\n Financial Analysis \n" f"------------------------------\n" f"Total Months: {total_m}\n" f"Total: ${net_total}\n" f"Average Change: ${avg_change:.2f}\n" f"Greatest Increase in Profits: {greatest_inc[0]} (${greatest_inc[1]})\n" f"Greatest Decrease in Profits: {greatest_dec[0]} (${greatest_dec[1]})\n") with open(outfile, "w") as txt_file: txt_file.write(output) outfile
3.265625
3
bot/constants/messages.py
aasw0ng/thornode-telegram-bot
15
6408
<gh_stars>10-100 from enum import Enum from constants.globals import HEALTH_EMOJIS NETWORK_ERROR = '😱 There was an error while getting data 😱\nAn API endpoint is down!' HEALTH_LEGEND = f'\n*Node health*:\n{HEALTH_EMOJIS[True]} - *healthy*\n{HEALTH_EMOJIS[False]} - *unhealthy*\n' \ f'{HEALTH_EMOJIS[None]} - *unknown*\n' class NetworkHealthStatus(Enum): INEFFICIENT = "Inefficient" OVERBONDED = "Overbonded" OPTIMAL = "Optimal" UNDBERBONDED = "Underbonded" INSECURE = "Insecure" NETWORK_HEALTHY_AGAIN = "The network is safe and efficient again! ✅" def get_network_health_warning(network_health_status: NetworkHealthStatus) -> str: severity = "🤒" if network_health_status is NetworkHealthStatus.INSECURE: severity = "💀" elif network_health_status is NetworkHealthStatus.INEFFICIENT: severity = "🦥" return f"Network health is not optimal: {network_health_status.value} {severity}" def get_node_healthy_again_message(node_data) -> str: return f"⚕️Node is healthy again⚕️\nAddress: {node_data['node_address']}\nIP: {node_data['ip_address']}\n" \ def get_node_health_warning_message(node_data) -> str: return "⚠️ ️⚠ ️ ️⚠️ ️ ⚠ ️⚠ ⚠️ ️⚠ ️⚠ ⚠️ ️⚠ ️ ️⚠️ ️ ⚠ ️⚠ ⚠️ \n" \ f"Node is *not responding*!\nAddress: {node_data['node_address']}\nIP: {node_data['ip_address']}\n" \ "\nCheck it's health immediately\n" \ "⚠️ ️⚠ ️ ️⚠️ ️ ⚠ ️⚠ ⚠️ ️⚠ ️⚠ ⚠️ ️⚠ ️ ️⚠️ ️ ⚠ ️⚠ ⚠️"
2.75
3
src/interactive_conditional_samples.py
RanHerOver/cometaai
0
6409
<reponame>RanHerOver/cometaai import random import fire import json import os import numpy as np import tensorflow as tf import pytumblr import mysql.connector import datetime from random import seed import model, sample, encoder def interact_model( model_name='1558M', seed=None, nsamples=1, batch_size=1, length=None, temperature=.7, top_k=10, top_p=1, models_dir='models', ): # Autenticazione client = pytumblr.TumblrRestClient( '', '', '', '' ) # Al fine di mantenere la sicurezza del mio account le due coppie di chiavi per la connessione a Tumblr sono state eliminate da questo file. # Connessione al DB mydb = mysql.connector.connect( host="localhost", user="root", password="", database="cometa" ) print(mydb) cursor = mydb.cursor() # Generazione query print("prima di eseguire la query") cursor.execute("SELECT testo FROM prompts ORDER BY RAND() LIMIT 1") print("dopo query") for (testo) in cursor: print("{}".format(testo)) # Formattazione del prompt testoBuono = "{}".format(testo) testoBuono=testoBuono.replace("(","") testoBuono=testoBuono.replace(")","") testoBuono=testoBuono.replace("'","") testoBuono=testoBuono.replace(",","") print(testoBuono) client.info() # Riceve e trattiene le informazioni del profilo blogName='unlikelycrownkitty' models_dir = os.path.expanduser(os.path.expandvars(models_dir)) if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 # Carico il modello dalla directory enc = encoder.get_encoder(model_name, models_dir) hparams = model.default_hparams() with open(os.path.join(models_dir, model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) # Eseguo un controllo per verificare che il prompt non sia eccessivamente lungo if length is None: length = hparams.n_ctx // 2 elif length > hparams.n_ctx: raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) # Avvio il modello con i parametri with tf.Session(graph=tf.Graph()) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) continua=True # Inizio la generazione del testo saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name)) saver.restore(sess, ckpt) while continua: raw_text = testoBuono # raw_text = f.read() while not raw_text: print('The file is empty! Write something yourself.') raw_text = input("Model prompt >>> ") context_tokens = enc.encode(raw_text) generated = 0 for _ in range(nsamples // batch_size): out = sess.run(output, feed_dict={ context: [context_tokens for _ in range(batch_size)] })[:, len(context_tokens):] for i in range(batch_size): generated += 1 text = enc.decode(out[i]) print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40) print(text) print("=" * 80) # Pubblico il testo generato client.create_text(blogName, state="published", slug="testing-text-posts",title=raw_text, body=text) print('Continue? y/n') risposta=input() if risposta.lower() in ['y', 'yes']: continua=True else: continua=False exit() if __name__ == '__main__': fire.Fire(interact_model())
2.203125
2
desktop/core/ext-py/pyasn1-0.1.8/pyasn1/compat/iterfunc.py
kokosing/hue
422
6410
<filename>desktop/core/ext-py/pyasn1-0.1.8/pyasn1/compat/iterfunc.py from sys import version_info if version_info[0] <= 2 and version_info[1] <= 4: def all(iterable): for element in iterable: if not element: return False return True else: all = all
2.453125
2
src/cms/carousels/serializers.py
UniversitaDellaCalabria/uniCMS
6
6411
from rest_framework import serializers from cms.api.serializers import UniCMSContentTypeClass, UniCMSCreateUpdateSerializer from cms.medias.serializers import MediaSerializer from . models import Carousel, CarouselItem, CarouselItemLink, CarouselItemLinkLocalization, CarouselItemLocalization class CarouselForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] return Carousel.objects.filter(pk=carousel_id) return None # pragma: no cover class CarouselItemForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] item_id = self.context['request'].parser_context['kwargs']['carousel_item_id'] return CarouselItem.objects.filter(pk=item_id, carousel__pk=carousel_id) return None # pragma: no cover class CarouselItemLinkForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] item_id = self.context['request'].parser_context['kwargs']['carousel_item_id'] link_id = self.context['request'].parser_context['kwargs']['carousel_item_link_id'] return CarouselItemLink.objects.filter(pk=link_id, carousel_item__pk=item_id, carousel_item__carousel__pk=carousel_id) return None # pragma: no cover class CarouselSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): class Meta: model = Carousel fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel = CarouselForeignKey() def to_representation(self, instance): data = super().to_representation(instance) image = MediaSerializer(instance.image) data['image'] = image.data return data class Meta: model = CarouselItem fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemLocalizationSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item = CarouselItemForeignKey() class Meta: model = CarouselItemLocalization fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemLinkSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item = CarouselItemForeignKey() class Meta: model = CarouselItemLink fields = '__all__' class CarouselItemLinkLocalizationSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item_link = CarouselItemLinkForeignKey() class Meta: model = CarouselItemLinkLocalization fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselSelectOptionsSerializer(serializers.ModelSerializer): def to_representation(self, instance): data = super().to_representation(instance) data['value'] = instance.pk data['text'] = instance.name return data class Meta: model = Carousel fields = ()
2.046875
2
demos/colorization_demo/python/colorization_demo.py
mzegla/open_model_zoo
0
6412
#!/usr/bin/env python3 """ Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from openvino.runtime import Core, get_version import cv2 as cv import numpy as np import logging as log from time import perf_counter import sys from argparse import ArgumentParser, SUPPRESS from pathlib import Path sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python')) sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python/openvino/model_zoo')) import monitors from images_capture import open_images_capture from model_api.performance_metrics import PerformanceMetrics log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.DEBUG, stream=sys.stdout) def build_arg(): parser = ArgumentParser(add_help=False) in_args = parser.add_argument_group('Options') in_args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Help with the script.') in_args.add_argument("-m", "--model", help="Required. Path to .xml file with pre-trained model.", required=True, type=Path) in_args.add_argument("-d", "--device", help="Optional. Specify target device for infer: CPU, GPU, HDDL or MYRIAD. " "Default: CPU", default="CPU", type=str) in_args.add_argument('-i', "--input", required=True, help='Required. An input to process. The input must be a single image, ' 'a folder of images, video file or camera id.') in_args.add_argument('--loop', default=False, action='store_true', help='Optional. Enable reading the input in a loop.') in_args.add_argument('-o', '--output', required=False, help='Optional. Name of the output file(s) to save.') in_args.add_argument('-limit', '--output_limit', required=False, default=1000, type=int, help='Optional. Number of frames to store in output. ' 'If 0 is set, all frames are stored.') in_args.add_argument("--no_show", help="Optional. Don't show output.", action='store_true', default=False) in_args.add_argument("-u", "--utilization_monitors", default="", type=str, help="Optional. List of monitors to show initially.") return parser def main(args): cap = open_images_capture(args.input, args.loop) log.info('OpenVINO Inference Engine') log.info('\tbuild: {}'.format(get_version())) core = Core() log.info('Reading model {}'.format(args.model)) model = core.read_model(args.model, args.model.with_suffix(".bin")) input_tensor_name = 'data_l' input_shape = model.input(input_tensor_name).shape assert input_shape[1] == 1, "Expected model input shape with 1 channel" inputs = {} for input in model.inputs: inputs[input.get_any_name()] = np.zeros(input.shape) assert len(model.outputs) == 1, "Expected number of outputs is equal 1" compiled_model = core.compile_model(model, device_name=args.device) infer_request = compiled_model.create_infer_request() log.info('The model {} is loaded to {}'.format(args.model, args.device)) _, _, h_in, w_in = input_shape frames_processed = 0 imshow_size = (640, 480) graph_size = (imshow_size[0] // 2, imshow_size[1] // 4) presenter = monitors.Presenter(args.utilization_monitors, imshow_size[1] * 2 - graph_size[1], graph_size) metrics = PerformanceMetrics() video_writer = cv.VideoWriter() if args.output and not video_writer.open(args.output, cv.VideoWriter_fourcc(*'MJPG'), cap.fps(), (imshow_size[0] * 2, imshow_size[1] * 2)): raise RuntimeError("Can't open video writer") start_time = perf_counter() original_frame = cap.read() if original_frame is None: raise RuntimeError("Can't read an image from the input") while original_frame is not None: (h_orig, w_orig) = original_frame.shape[:2] if original_frame.shape[2] > 1: frame = cv.cvtColor(cv.cvtColor(original_frame, cv.COLOR_BGR2GRAY), cv.COLOR_GRAY2RGB) else: frame = cv.cvtColor(original_frame, cv.COLOR_GRAY2RGB) img_rgb = frame.astype(np.float32) / 255 img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab) img_l_rs = cv.resize(img_lab.copy(), (w_in, h_in))[:, :, 0] inputs[input_tensor_name] = np.expand_dims(img_l_rs, axis=[0, 1]) res = next(iter(infer_request.infer(inputs).values())) update_res = np.squeeze(res) out = update_res.transpose((1, 2, 0)) out = cv.resize(out, (w_orig, h_orig)) img_lab_out = np.concatenate((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2) img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1) original_image = cv.resize(original_frame, imshow_size) grayscale_image = cv.resize(frame, imshow_size) colorize_image = (cv.resize(img_bgr_out, imshow_size) * 255).astype(np.uint8) lab_image = cv.resize(img_lab_out, imshow_size).astype(np.uint8) original_image = cv.putText(original_image, 'Original', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) grayscale_image = cv.putText(grayscale_image, 'Grayscale', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) colorize_image = cv.putText(colorize_image, 'Colorize', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) lab_image = cv.putText(lab_image, 'LAB interpretation', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) ir_image = [cv.hconcat([original_image, grayscale_image]), cv.hconcat([lab_image, colorize_image])] final_image = cv.vconcat(ir_image) metrics.update(start_time, final_image) frames_processed += 1 if video_writer.isOpened() and (args.output_limit <= 0 or frames_processed <= args.output_limit): video_writer.write(final_image) presenter.drawGraphs(final_image) if not args.no_show: cv.imshow('Colorization Demo', final_image) key = cv.waitKey(1) if key in {ord("q"), ord("Q"), 27}: break presenter.handleKey(key) start_time = perf_counter() original_frame = cap.read() metrics.log_total() for rep in presenter.reportMeans(): log.info(rep) if __name__ == "__main__": args = build_arg().parse_args() sys.exit(main(args) or 0)
1.804688
2
swagger_client/models/transfer.py
chbndrhnns/ahoi-client
0
6413
# coding: utf-8 """ [AHOI cookbook](/ahoi/docs/cookbook/index.html) [Data Privacy](/sandboxmanager/#/privacy) [Terms of Service](/sandboxmanager/#/terms) [Imprint](https://sparkassen-hub.com/impressum/) &copy; 2016&dash;2017 Starfinanz - Ein Unternehmen der Finanz Informatik # noqa: E501 OpenAPI spec version: 2.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.amount import Amount # noqa: F401,E501 class Transfer(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'iban': 'str', 'bic': 'str', 'name': 'str', 'amount': 'Amount', 'purpose': 'str', 'tan_media_id': 'str', 'tan_scheme': 'str' } attribute_map = { 'iban': 'iban', 'bic': 'bic', 'name': 'name', 'amount': 'amount', 'purpose': 'purpose', 'tan_media_id': 'tanMediaId', 'tan_scheme': 'tanScheme' } def __init__(self, iban=None, bic=None, name=None, amount=None, purpose=None, tan_media_id=None, tan_scheme=None): # noqa: E501 """Transfer - a model defined in Swagger""" # noqa: E501 self._iban = None self._bic = None self._name = None self._amount = None self._purpose = None self._tan_media_id = None self._tan_scheme = None self.discriminator = None self.iban = iban if bic is not None: self.bic = bic self.name = name self.amount = amount if purpose is not None: self.purpose = purpose self.tan_media_id = tan_media_id self.tan_scheme = tan_scheme @property def iban(self): """Gets the iban of this Transfer. # noqa: E501 IBAN - International Bank Account Number (defined in ISO 13616-1) # noqa: E501 :return: The iban of this Transfer. # noqa: E501 :rtype: str """ return self._iban @iban.setter def iban(self, iban): """Sets the iban of this Transfer. IBAN - International Bank Account Number (defined in ISO 13616-1) # noqa: E501 :param iban: The iban of this Transfer. # noqa: E501 :type: str """ if iban is None: raise ValueError("Invalid value for `iban`, must not be `None`") # noqa: E501 self._iban = iban @property def bic(self): """Gets the bic of this Transfer. # noqa: E501 BIC - Business Identifier Code (defined in ISO-9362) # noqa: E501 :return: The bic of this Transfer. # noqa: E501 :rtype: str """ return self._bic @bic.setter def bic(self, bic): """Sets the bic of this Transfer. BIC - Business Identifier Code (defined in ISO-9362) # noqa: E501 :param bic: The bic of this Transfer. # noqa: E501 :type: str """ self._bic = bic @property def name(self): """Gets the name of this Transfer. # noqa: E501 Name - Name of the creditor # noqa: E501 :return: The name of this Transfer. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Transfer. Name - Name of the creditor # noqa: E501 :param name: The name of this Transfer. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def amount(self): """Gets the amount of this Transfer. # noqa: E501 Amount to be transfered # noqa: E501 :return: The amount of this Transfer. # noqa: E501 :rtype: Amount """ return self._amount @amount.setter def amount(self, amount): """Sets the amount of this Transfer. Amount to be transfered # noqa: E501 :param amount: The amount of this Transfer. # noqa: E501 :type: Amount """ if amount is None: raise ValueError("Invalid value for `amount`, must not be `None`") # noqa: E501 self._amount = amount @property def purpose(self): """Gets the purpose of this Transfer. # noqa: E501 Purpose # noqa: E501 :return: The purpose of this Transfer. # noqa: E501 :rtype: str """ return self._purpose @purpose.setter def purpose(self, purpose): """Sets the purpose of this Transfer. Purpose # noqa: E501 :param purpose: The purpose of this Transfer. # noqa: E501 :type: str """ self._purpose = purpose @property def tan_media_id(self): """Gets the tan_media_id of this Transfer. # noqa: E501 TANMediaId - The identifying ID of the TANMedia. # noqa: E501 :return: The tan_media_id of this Transfer. # noqa: E501 :rtype: str """ return self._tan_media_id @tan_media_id.setter def tan_media_id(self, tan_media_id): """Sets the tan_media_id of this Transfer. TANMediaId - The identifying ID of the TANMedia. # noqa: E501 :param tan_media_id: The tan_media_id of this Transfer. # noqa: E501 :type: str """ if tan_media_id is None: raise ValueError("Invalid value for `tan_media_id`, must not be `None`") # noqa: E501 self._tan_media_id = tan_media_id @property def tan_scheme(self): """Gets the tan_scheme of this Transfer. # noqa: E501 TANScheme - The scheme **id** that is used to verify this payment (e.g. \"901\") # noqa: E501 :return: The tan_scheme of this Transfer. # noqa: E501 :rtype: str """ return self._tan_scheme @tan_scheme.setter def tan_scheme(self, tan_scheme): """Sets the tan_scheme of this Transfer. TANScheme - The scheme **id** that is used to verify this payment (e.g. \"901\") # noqa: E501 :param tan_scheme: The tan_scheme of this Transfer. # noqa: E501 :type: str """ if tan_scheme is None: raise ValueError("Invalid value for `tan_scheme`, must not be `None`") # noqa: E501 self._tan_scheme = tan_scheme def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Transfer): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1.984375
2
external/trappy/tests/test_caching.py
vdonnefort/lisa
1
6414
# Copyright 2015-2017 ARM Limited, Google and contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import unicode_literals from __future__ import division from __future__ import print_function from builtins import chr import os import json import shutil import sys import unittest import utils_tests import trappy from trappy.ftrace import GenericFTrace from trappy.systrace import SysTrace class TestCaching(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestCaching, self).__init__( [("trace_sched.txt", "trace.txt"), ("trace_sched.txt", "trace.raw.txt"), ("trace_systrace.html", "trace.html")], *args, **kwargs) def test_cache_created(self): """Test cache creation when enabled""" GenericFTrace.disable_cache = False traces = (trappy.FTrace(), trappy.SysTrace(path='./trace.html')) for trace in traces: trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' self.assertTrue(cache_dir in os.listdir(trace_dir)) def test_cache_not_created(self): """Test that cache should not be created when disabled """ GenericFTrace.disable_cache = True traces = (trappy.FTrace(), trappy.SysTrace(path='./trace.html')) for trace in traces: trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' self.assertFalse(cache_dir in os.listdir(trace_dir)) def test_compare_cached_vs_uncached(self): """ Test that the cached and uncached traces are same """ # Build the cache, but the actual trace will be parsed # fresh since this is a first time parse GenericFTrace.disable_cache = False uncached_trace = trappy.FTrace() uncached_dfr = uncached_trace.sched_wakeup.data_frame # Now read from previously parsed cache by reusing the path cached_trace = trappy.FTrace(uncached_trace.trace_path) cached_dfr = cached_trace.sched_wakeup.data_frame # By default, the str to float conversion done when reading from csv is # different from the one used when reading from the trace.txt file. # # Here's an example: # - trace.txt string timestamps: # [76.402065, 80.402065, 80.001337] # - parsed dataframe timestamps: # [76.402065000000007, 80.402065000000007, 82.001337000000007] # # - csv string timestamps: # [76.402065, 80.402065, 80.001337] # - cached dataframe timestamps: # [76.402064999999993, 80.402064999999993, 82.001337000000007] # # To fix this, the timestamps read from the cache are converted using # the same conversion method as the trace.txt parser, which results in # cache-read timestamps being identical to trace-read timestamps. # # This test ensures that this stays true. cached_times = [r[0] for r in cached_dfr.iterrows()] uncached_times = [r[0] for r in uncached_dfr.iterrows()] self.assertTrue(cached_times == uncached_times) # compare other columns as well self.assertTrue([r[1].pid for r in cached_dfr.iterrows()] == [r[1].pid for r in uncached_dfr.iterrows()]) self.assertTrue([r[1].comm for r in cached_dfr.iterrows()] == [r[1].comm for r in uncached_dfr.iterrows()]) self.assertTrue([r[1].prio for r in cached_dfr.iterrows()] == [r[1].prio for r in uncached_dfr.iterrows()]) def test_invalid_cache_overwritten(self): """Test a cache with a bad checksum is overwritten""" # This is a directory so we can't use the files_to_copy arg of # SetUpDirectory, just do it ourselves. cache_path = ".trace.txt.cache" src = os.path.join(utils_tests.TESTS_DIRECTORY, "trace_sched.txt.cache") shutil.copytree(src, cache_path) metadata_path = os.path.join(cache_path, "metadata.json") def read_metadata(): with open(metadata_path, "r") as f: return json.load(f) def write_md5(md5): metadata = read_metadata() metadata["md5sum"] = md5 with open(metadata_path, "w") as f: json.dump(metadata, f) # Change 1 character of the stored checksum md5sum = read_metadata()["md5sum"] md5sum_inc = md5sum[:-1] + chr(ord(md5sum[-1]) + 1) write_md5(md5sum_inc) # Parse a trace, this should delete and overwrite the invalidated cache GenericFTrace.disable_cache = False trace = trappy.FTrace() # Check that the modified md5sum was overwritten self.assertNotEqual(read_metadata()["md5sum"], md5sum_inc, "The invalid ftrace cache wasn't overwritten") def test_cache_dynamic_events(self): """Test that caching works if new event parsers have been registered""" # Parse the trace to create a cache GenericFTrace.disable_cache = False trace1 = trappy.FTrace() # Check we're actually testing what we think we are if hasattr(trace1, 'dynamic_event'): raise RuntimeError('Test bug: found unexpected event in trace') # Now register a new event type, call the constructor again, and check # that the newly added event (which is not present in the cache) is # parsed. parse_class = trappy.register_dynamic_ftrace("DynamicEvent", "dynamic_test_key") trace2 = trappy.FTrace() self.assertTrue(len(trace2.dynamic_event.data_frame) == 1) trappy.unregister_dynamic_ftrace(parse_class) def test_cache_normalize_time(self): """Test that caching doesn't break normalize_time""" GenericFTrace.disable_cache = False # Times in trace_sched.txt start_time = 6550.018511 first_freq_event_time = 6550.056870 # Parse without normalizing time trace1 = trappy.FTrace(events=['cpu_frequency', 'sched_wakeup'], normalize_time=False) self.assertEqual(trace1.cpu_frequency.data_frame.index[0], first_freq_event_time) # Parse with normalized time trace2 = trappy.FTrace(events=['cpu_frequency', 'sched_wakeup'], normalize_time=True) self.assertEqual(trace2.cpu_frequency.data_frame.index[0], first_freq_event_time - start_time) def test_cache_window_broad(self): """Test that caching doesn't break the 'window' parameter""" GenericFTrace.disable_cache = False trace1 = trappy.FTrace( events=['sched_wakeup'], window=(0, 1)) # Check that we're testing what we think we're testing The trace # contains 2 sched_wakeup events; this window should get rid of one of # them. if len(trace1.sched_wakeup.data_frame) != 1: raise RuntimeError('Test bug: bad sched_wakeup event count') # Parse again without the window trace1 = trappy.FTrace( events=['sched_wakeup'], window=(0, None)) self.assertEqual(len(trace1.sched_wakeup.data_frame), 2) def test_cache_window_narrow(self): """ Test that applying a window to a cached trace returns EXACTLY what is expected """ # As described in test_compare_cache_vs_uncached, reading from cache # results in slightly different timestamps # # This test verifies that applying windows results in identical # dataframes whether cache is used or not. GenericFTrace.disable_cache = False uncached_trace = trappy.FTrace() trace = trappy.FTrace(uncached_trace.trace_path, normalize_time=False, abs_window=(6550.100000, 6552.000002)) self.assertAlmostEquals(trace.get_duration(), 1.900002) self.assertEqual(len(trace.sched_wakeup.data_frame), 2) self.assertEqual(len(trace.sched_wakeup_new.data_frame), 1) def test_ftrace_metadata(self): """Test that caching keeps trace metadata""" GenericFTrace.disable_cache = False self.test_cache_created() trace = trappy.FTrace() version = int(trace._version) cpus = int(trace._cpus) self.assertEqual(version, 6) self.assertEqual(cpus, 6) def test_cache_delete_single(self): GenericFTrace.disable_cache = False trace = trappy.FTrace() trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' number_of_trace_categories = 31 self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories) os.remove(os.path.join(cache_dir, 'SchedWakeup.csv')) self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories - 1) # Generate trace again, should regenerate only the missing item trace = trappy.FTrace() self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories) for c in trace.trace_classes: if isinstance(c, trace.class_definitions['sched_wakeup']): self.assertEqual(c.cached, False) continue self.assertEqual(c.cached, True)
1.875
2
src/mf_horizon_client/client/pipelines/blueprints.py
MF-HORIZON/mf-horizon-python-client
0
6415
from enum import Enum class BlueprintType(Enum): """ A blueprint is a pipeline template in horizon, and must be specified when creating a new pipeline Nonlinear =============================================================================================================== A nonlinear pipeline combines nonlinear feature generation and selection with a nonlinear regressor to generate forecasts that are at a specific target in the future. A number of different regressor types are available here: 1. Mondrian Forest. An adaptation of the probabilistic Mondrian Forest algorithm - https://arxiv.org/abs/1406.2673 Provides Bayesian-esque error bounds, and is our recommended nonlinear regressor of choice. 2. XG Boost 3. Random Forest. The stages of a nonlinear pipeline are as follows: A. Forecast Specification B. Stationarization C. Feature Generation D. Feature Filtering E. Feature Refinement F. Nonlinear Backtesting G. Nonlinear Prediction Linear =============================================================================================================== A nonlinear pipeline combines nonlinear feature generation with a nonlinear regressor to generate forecasts that are at a specific target in the future. The regressor used is a Variational Bayesian Linear Regressor The stages of a linear pipeline are as follows: A. Forecast Specification B. Stationarization C. Nonlinear Feature Generation D. Feature Filtering E. Feature Refinement F. Linear Backtesting G. Linear Prediction Fast Forecasting =============================================================================================================== The fast forecasting pipeline is intended to be used as a quick assessment of a dataset's predictive performance It is identical to the linear pipeline, but does not include Feature Refinement. The stages of a linear pipeline are as follows: A. Forecast Specification B. Stationarization C. Nonlinear Feature Generation D. Feature Filtering E. Linear Backtesting F. Linear Prediction Feature Selection =============================================================================================================== The feature selection pipeline assumes that the input data set already encodes information about a signal's past, such that a horizontal observation vector may be used in a traditional regression sense to map to a target value at a point in the future. Feat1 | Feat2 | Feat3 | .... | FeatP Obs1 ------------------------------------- t Obs2 ------------------------------------- t-1 Obs3 ------------------------------------- t-2 ... ..................................... ... ..................................... ObsN ------------------------------------- t-N Two stages of feature selection are then used in order to maximize predictive performance of the feature set on specified future points for a given target The stages of a linear pipeline are as follows: A. Forecast Specification B. Feature Filtering E. Feature Refinement Feature Discovery =============================================================================================================== The feature discovery pipeline discovers features to maximize performance for a particular forecast target, at a specified point in the future. Unlike the feature selection pipeline, it does not assume that the signal set has already encoded historical information about the original data's past. The stages of a feature discovery pipeline are as follows: A. Forecast Specification B. Feature Generation C. Feature Filtering D. Feature Refinement Signal Encoding =============================================================================================================== One of Horizon's feature generation methods is to encode signals in the frequency domain, extracting historic lags that will efficiently represent the information contained within them. The signal encoding pipeline allows for this functionality to be isolated, where the output is a feature set that has encoded past information about a signal that can be exported from the platform The stages of a signal encoding pipeline are as follows: A. Forecast Specification B. Feature Generation C. Feature Filtering Stationarization =============================================================================================================== Stationarize a signal set and specified target using Augmented Dicky Fuller analysis, and a detrending method for the specified target. The stages of a stationarization pipeline are as follows: A. Forecast Specification B. Stationarization Time-Series Regression =============================================================================================================== Run Horizon's regression algorithms on a pre-encoded signal set. Small Data Forecasting =============================================================================================================== Time-series pipeline for small data. Does not contain any backtesting, and uses all the data for model training. A. Forecast Specification B. Stationarization C. Linear Feature Generation D. Feature Filtering E. Feature Refinement G. Linear Prediction Variational Forecasting =============================================================================================================== Creates a stacked lag-embedding matrix by combining a two-stage feature generation and selection process, with lag-only feature generation. A. Forecast Specification B. Stationarization C. Linear Feature Generation D. Feature Filtering E. Linear Feature Generation F. Feature Filtering G. Linear Backtesting H. Linear Prediction Custom =============================================================================================================== Advanced: Contains only a forecast specification stage for adding stages manually. N.B. There is no validation on stage addition. """ nonlinear = "nonlinear" linear = "linear" fast_forecasting = "fast_forecast" feature_selection = "feature_selection" feature_discovery = "feature_discovery" signal_encoding = "signal_encoding" stationarisation = "stationarisation" time_series_regression = "regression" variational_forecasting = "variational_forecasting" custom = "custom" small_data = "small_data"
2.640625
3
pyChess/olaf/views.py
An-Alone-Cow/pyChess
0
6416
from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.shortcuts import render from django.urls import reverse from django.http import HttpResponseRedirect, HttpResponse from django.utils import timezone from olaf.models import * from olaf.forms import * from olaf.utility import usertools from olaf.chess.controller import proccess_move def index ( request ): args = {} message = request.session.pop ( 'message', default = None ) if ( message is not None ): args [ 'message' ] = message if ( request.user.is_authenticated ): if ( request.method == 'POST' ): if ( request.POST.get ( 'game_id' ) is not None ): game_id = request.POST.get ( 'game_id' ) if ( game_id == '-1' ): game_id = usertools.new_game ( request ) request.session [ 'game_id' ] = game_id else: request.session.pop ( 'game_id', default = None ) f = lambda a : str ( a.date () ) + " - " + str ( a.hour ) + ":" + str ( a.minute ) + ":" + str ( a.second ) args [ 'game_list' ] = list ([str ( game.id ), f ( game.creation_time )] for game in request.user.userdata.game_history.filter ( result = 0 ).order_by ( '-creation_time' ) ) if ( request.session.get ( 'game_id' ) is not None ): args [ 'game_board' ] = usertools.get_translated_game_board ( request ) else: args [ 'game_board' ] = None return render ( request, 'olaf/index_logged_in.html', args ) else: args [ 'login_form' ] = LoginForm () args [ 'register_form' ] = RegisterForm () args [ 'score' ] = list ( [user.master.username, user.wins, user.loses, user.ties] for user in UserData.objects.filter ( is_active = True ) ) return render ( request, 'olaf/index_not_logged_in.html', args ) form_operation_dict = { 'login' : ( usertools.login_user, LoginForm, 'olaf/login.html', {}, 'index', { 'message' : "You're logged in. :)"} ), 'register' : ( usertools.register_user, RegisterForm, 'olaf/register.html', {}, 'index', { 'message' : "An activation email has been sent to you" } ), 'password_reset_request' : ( usertools.init_pass_reset_token, ForgotPasswordUsernameOrEmailForm, 'olaf/password_reset_request.html', {}, 'index', { 'message' : "An email containing the password reset link will be sent to your email"} ), 'reset_password' : ( usertools.reset_password_action, PasswordChangeForm, 'olaf/reset_password.html', {}, 'olaf:login', { 'message' : "Password successfully changed, you can login now" } ), 'resend_activation_email' : ( usertools.resend_activation_email, ResendActivationUsernameOrEmailForm, 'olaf/resend_activation_email.html', {}, 'index', { 'message' : "Activation email successfully sent to your email" } ), } def form_operation ( request, oper, *args ): func, FORM, fail_template, fail_args, success_url, success_args = form_operation_dict [ oper ] if ( request.method == 'POST' ): form = FORM ( request.POST ) if ( form.is_valid () ): func ( request, form, *args ) for key in success_args: request.session [ key ] = success_args [ key ] return HttpResponseRedirect ( reverse ( success_url ) ) else: form = FORM () message = request.session.pop ( 'message', default = None ) if ( message is not None ): fail_args [ 'message' ] = message fail_args [ 'form' ] = form return render ( request, fail_template, fail_args ) #view functions def login_user ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'login' ) def register_user ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'register' ) def password_reset_request ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'password_reset_request' ) def reset_password_action ( request, token ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) tk = ExpirableTokenField.objects.filter ( token = token ).first () if ( tk is None ): request.session [ 'message' ] = "Broken link" return HttpResponseRedirect ( reverse ( 'index' ) ) else: if ( timezone.now () <= tk.expiration_time ): return form_operation ( request, 'reset_password', token ) else: request.session [ 'message' ] = "Link expired, try getting a new one" return HttpResponseRedirect ( reverse ( 'olaf:reset_password' ) ) def activate_account ( request, token ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) tk = ExpirableTokenField.objects.filter ( token = token ).first () if ( tk is None ): request.session [ 'message' ] = "Broken link" return HttpResponseRedirect ( reverse ( 'index' ) ) else: if ( timezone.now () <= tk.expiration_time ): if ( tk.user.is_active ): request.session [ 'message' ] = "Account already active" return HttpResponseRedirect ( reverse ( 'index' ) ) else: userdata = tk.user userdata.is_active = True userdata.save () request.session [ 'message' ] = "Your account has been activated successfully" return HttpResponseRedirect ( reverse ( 'olaf:login' ) ) else: request.session [ 'message' ] = "Link expired, try getting a new one" return HttpResponseRedirect ( reverse ( 'olaf:resend_activation_email' ) ) def resend_activation_email ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'resend_activation_email' ) def logout_user ( request ): usertools.logout_user ( request ) request.session [ 'message' ] = "Goodbye :)" return HttpResponseRedirect ( reverse ( 'index' ) ) def scoreboard ( request ): if ( request.method == 'POST' ): username = request.POST.get ( 'username' ) user = User.objects.filter ( username = username ).first () if ( user is None ): request.session [ 'message' ] = "User not found" return HttpResponseRedirect ( reverse ( 'olaf:scoreboard' ) ) else: return HttpResponseRedirect ( reverse ( 'olaf:user_profile', args = (username, ) ) ) else: args = {} message = request.session.pop ( 'message', default = None ) if ( message is not None ): args [ 'message' ] = message lst = [ (user.master.username, user.wins, user.loses, user.ties) for user in UserData.objects.filter ( is_active = True ) ] args [ 'lst' ] = lst if ( request.user.is_authenticated ): args [ 'logged_in' ] = True return render ( request, 'olaf/scoreboard.html', args ) def move ( request ): proccess_move ( request ) return HttpResponseRedirect ( reverse ( 'index' ) )
2.015625
2
ce_vae_test/main_cetrainer.py
fgitmichael/SelfSupevisedSkillDiscovery
0
6417
<reponame>fgitmichael/SelfSupevisedSkillDiscovery<gh_stars>0 from __future__ import print_function import argparse import torch import torch.utils.data import matplotlib.pyplot as plt from torch import nn, optim from torch.nn import functional as F from torchvision import datasets, transforms from torchvision.utils import save_image from torch.utils.tensorboard import SummaryWriter from ce_vae_test.networks.min_vae import MinVae from ce_vae_test.trainer.ce_trainer import CeVaeTrainer from ce_vae_test.sampler.dataset_sampler import SamplerDatasetWithReplacement parser = argparse.ArgumentParser(description='VAE MNIST Example') parser.add_argument('--batch-size', type=int, default=128, metavar='N', help='input batch size for training (default: 128)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--no-cuda', action='store_true', default=False, help='enables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if args.cuda else "cpu") writer = SummaryWriter() kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} train_sampler = SamplerDatasetWithReplacement( dataset=datasets.MNIST('../data', train=True, download=True, transform=transforms.ToTensor()), batch_size=args.batch_size ) test_sampler = SamplerDatasetWithReplacement( dataset=datasets.MNIST('../data', train=False, transform=transforms.ToTensor()), batch_size=args.batch_size * 10 ) cevae = MinVae( input_size=28 * 28, output_size=10, latent_dim=2, hidden_sizes_dec=[5], device=device ).to(device) trainer = CeVaeTrainer( vae=cevae, num_epochs=300, train_loader=train_sampler, test_loader=test_sampler, writer=writer, device=device, alpha=0.90, lamda=0.22 ) trainer.run()
1.992188
2
appr/commands/logout.py
sergeyberezansky/appr
31
6418
<filename>appr/commands/logout.py from __future__ import absolute_import, division, print_function from appr.auth import ApprAuth from appr.commands.command_base import CommandBase, PackageSplit class LogoutCmd(CommandBase): name = 'logout' help_message = "logout" def __init__(self, options): super(LogoutCmd, self).__init__(options) self.status = None self.registry_host = options.registry_host self.package_parts = options.package_parts pname = self.package_parts.get('package', None) namespace = self.package_parts.get('namespace', None) self.package = None if pname: self.package = "%s/%s" % (namespace, pname) elif namespace: self.package = namespace @classmethod def _add_arguments(cls, parser): cls._add_registryhost_option(parser) parser.add_argument('registry', nargs='?', default=None, action=PackageSplit, help="registry url: quay.io[/namespace][/repo]\n" + "If namespace and/or repo are passed, creds only logout for them") def _call(self): client = self.RegistryClient(self.registry_host) ApprAuth().delete_token(client.host, scope=self.package) self.status = "Logout complete" if self.registry_host != '*': self.status += " from %s" % self.registry_host def _render_dict(self): return {"status": self.status, 'host': self.registry_host, "scope": self.package} def _render_console(self): return " >>> %s" % self.status
2.515625
3
musica/apps.py
webnowone/albumMusical
1
6419
<reponame>webnowone/albumMusical<gh_stars>1-10 from django.apps import AppConfig class MusicaConfig(AppConfig): name = 'musica'
1.296875
1
tzwhere/tzwhere.py
tuxiqae/pytzwhere
115
6420
<reponame>tuxiqae/pytzwhere #!/usr/bin/env python '''tzwhere.py - time zone computation from latitude/longitude. Ordinarily this is loaded as a module and instances of the tzwhere class are instantiated and queried directly ''' import collections try: import ujson as json # loads 2 seconds faster than normal json except: try: import json except ImportError: import simplejson as json import math import gzip import os import shapely.geometry as geometry import shapely.prepared as prepared # We can save about 222MB of RAM by turning our polygon lists into # numpy arrays rather than tuples, if numpy is installed. try: import numpy WRAP = numpy.asarray COLLECTION_TYPE = numpy.ndarray except ImportError: WRAP = tuple COLLECTION_TYPE = tuple # for navigation and pulling values/files this_dir, this_filename = os.path.split(__file__) BASE_DIR = os.path.dirname(this_dir) class tzwhere(object): SHORTCUT_DEGREES_LATITUDE = 1.0 SHORTCUT_DEGREES_LONGITUDE = 1.0 # By default, use the data file in our package directory DEFAULT_SHORTCUTS = os.path.join(os.path.dirname(__file__), 'tz_world_shortcuts.json') DEFAULT_POLYGONS = os.path.join(os.path.dirname(__file__), 'tz_world.json.gz') def __init__(self, forceTZ=False): ''' Initializes the tzwhere class. @forceTZ: If you want to force the lookup method to a return a timezone even if the point you are looking up is slightly outside it's bounds, you need to specify this during initialization arleady ''' featureCollection = read_tzworld(tzwhere.DEFAULT_POLYGONS) pgen = feature_collection_polygons(featureCollection) self.timezoneNamesToPolygons = collections.defaultdict(list) self.unprepTimezoneNamesToPolygons = collections.defaultdict(list) for tzname, poly in pgen: self.timezoneNamesToPolygons[tzname].append(poly) for tzname, polys in self.timezoneNamesToPolygons.items(): self.timezoneNamesToPolygons[tzname] = WRAP(polys) if forceTZ: self.unprepTimezoneNamesToPolygons[tzname] = WRAP(polys) with open(tzwhere.DEFAULT_SHORTCUTS, 'r') as f: self.timezoneLongitudeShortcuts, self.timezoneLatitudeShortcuts = json.load(f) self.forceTZ = forceTZ for tzname in self.timezoneNamesToPolygons: # Convert things to tuples to save memory for degree in self.timezoneLatitudeShortcuts: for tzname in self.timezoneLatitudeShortcuts[degree].keys(): self.timezoneLatitudeShortcuts[degree][tzname] = \ tuple(self.timezoneLatitudeShortcuts[degree][tzname]) for degree in self.timezoneLongitudeShortcuts.keys(): for tzname in self.timezoneLongitudeShortcuts[degree].keys(): self.timezoneLongitudeShortcuts[degree][tzname] = \ tuple(self.timezoneLongitudeShortcuts[degree][tzname]) def tzNameAt(self, latitude, longitude, forceTZ=False): ''' Let's you lookup for a given latitude and longitude the appropriate timezone. @latitude: latitude @longitude: longitude @forceTZ: If forceTZ is true and you can't find a valid timezone return the closest timezone you can find instead. Only works if the point has the same integer value for its degree than the timezeone ''' if forceTZ: assert self.forceTZ, 'You need to initialize tzwhere with forceTZ' latTzOptions = self.timezoneLatitudeShortcuts[str( (math.floor(latitude / self.SHORTCUT_DEGREES_LATITUDE) * self.SHORTCUT_DEGREES_LATITUDE) )] latSet = set(latTzOptions.keys()) lngTzOptions = self.timezoneLongitudeShortcuts[str( (math.floor(longitude / self.SHORTCUT_DEGREES_LONGITUDE) * self.SHORTCUT_DEGREES_LONGITUDE) )] lngSet = set(lngTzOptions.keys()) possibleTimezones = lngSet.intersection(latSet) queryPoint = geometry.Point(longitude, latitude) if possibleTimezones: for tzname in possibleTimezones: if isinstance(self.timezoneNamesToPolygons[tzname], COLLECTION_TYPE): self.timezoneNamesToPolygons[tzname] = list( map(lambda p: prepared.prep( geometry.Polygon(p[0], p[1]) ), self.timezoneNamesToPolygons[tzname])) polyIndices = set(latTzOptions[tzname]).intersection(set( lngTzOptions[tzname] )) for polyIndex in polyIndices: poly = self.timezoneNamesToPolygons[tzname][polyIndex] if poly.contains_properly(queryPoint): return tzname if forceTZ: return self.__forceTZ__(possibleTimezones, latTzOptions, lngTzOptions, queryPoint) def __forceTZ__(self, possibleTimezones, latTzOptions, lngTzOptions, queryPoint): distances = [] if possibleTimezones: if len(possibleTimezones) == 1: return possibleTimezones.pop() else: for tzname in possibleTimezones: if isinstance(self.unprepTimezoneNamesToPolygons[tzname], COLLECTION_TYPE): self.unprepTimezoneNamesToPolygons[tzname] = list( map(lambda p: p.context if isinstance(p, prepared.PreparedGeometry) else geometry.Polygon(p[0], p[1]), self.timezoneNamesToPolygons[tzname])) polyIndices = set(latTzOptions[tzname]).intersection( set(lngTzOptions[tzname])) for polyIndex in polyIndices: poly = self.unprepTimezoneNamesToPolygons[ tzname][polyIndex] d = poly.distance(queryPoint) distances.append((d, tzname)) if len(distances) > 0: return sorted(distances, key=lambda x: x[0])[0][1] class prepareMap(object): def __init__(self): DEFAULT_SHORTCUTS = os.path.join(os.path.dirname(__file__), 'tz_world_shortcuts.json') DEFAULT_POLYGONS = os.path.join(os.path.dirname(__file__), 'tz_world.json.gz') featureCollection = read_tzworld(DEFAULT_POLYGONS) pgen = feature_collection_polygons(featureCollection) tzNamesToPolygons = collections.defaultdict(list) for tzname, poly in pgen: tzNamesToPolygons[tzname].append(poly) for tzname, polys in tzNamesToPolygons.items(): tzNamesToPolygons[tzname] = \ WRAP(tzNamesToPolygons[tzname]) timezoneLongitudeShortcuts,\ timezoneLatitudeShortcuts = self.construct_shortcuts( tzNamesToPolygons, tzwhere.SHORTCUT_DEGREES_LONGITUDE, tzwhere.SHORTCUT_DEGREES_LATITUDE) with open(DEFAULT_SHORTCUTS, 'w') as f: json.dump( (timezoneLongitudeShortcuts, timezoneLatitudeShortcuts), f) @staticmethod def construct_shortcuts(timezoneNamesToPolygons, shortcut_long, shortcut_lat): ''' Construct our shortcuts for looking up polygons. Much faster than using an r-tree ''' def find_min_max(ls, gridSize): minLs = (math.floor(min(ls) / gridSize) * gridSize) maxLs = (math.floor(max(ls) / gridSize) * gridSize) return minLs, maxLs timezoneLongitudeShortcuts = {} timezoneLatitudeShortcuts = {} for tzname in timezoneNamesToPolygons: tzLngs = [] tzLats = [] for polyIndex, poly in enumerate(timezoneNamesToPolygons[tzname]): lngs = [x[0] for x in poly[0]] lats = [x[1] for x in poly[0]] tzLngs.extend(lngs) tzLats.extend(lats) minLng, maxLng = find_min_max( lngs, shortcut_long) minLat, maxLat = find_min_max( lats, shortcut_lat) degree = minLng while degree <= maxLng: if degree not in timezoneLongitudeShortcuts: timezoneLongitudeShortcuts[degree] =\ collections.defaultdict(list) timezoneLongitudeShortcuts[degree][tzname].append(polyIndex) degree = degree + shortcut_long degree = minLat while degree <= maxLat: if degree not in timezoneLatitudeShortcuts: timezoneLatitudeShortcuts[degree] =\ collections.defaultdict(list) timezoneLatitudeShortcuts[degree][tzname].append(polyIndex) degree = degree + shortcut_lat return timezoneLongitudeShortcuts, timezoneLatitudeShortcuts def read_tzworld(path): reader = read_json return reader(path) def read_json(path): with gzip.open(path, "rb") as f: featureCollection = json.loads(f.read().decode("utf-8")) return featureCollection def feature_collection_polygons(featureCollection): """Turn a feature collection into an iterator over polygons. Given a featureCollection of the kind loaded from the json input, unpack it to an iterator which produces a series of (tzname, polygon) pairs, one for every polygon in the featureCollection. Here tzname is a string and polygon is a list of floats. """ for feature in featureCollection['features']: tzname = feature['properties']['TZID'] if feature['geometry']['type'] == 'Polygon': exterior = feature['geometry']['coordinates'][0] interior = feature['geometry']['coordinates'][1:] yield (tzname, (exterior, interior)) if __name__ == "__main__": prepareMap()
2.796875
3
tests/home_assistant/custom_features.py
jre21/mindmeld
1
6421
<filename>tests/home_assistant/custom_features.py<gh_stars>1-10 from mindmeld.models.helpers import register_query_feature @register_query_feature(feature_name='average-token-length') def extract_average_token_length(**args): """ Example query feature that gets the average length of normalized tokens in the query„ Returns: (function) A feature extraction function that takes a query and returns the average normalized token length """ # pylint: disable=locally-disabled,unused-argument def _extractor(query, resources): tokens = query.normalized_tokens average_token_length = sum([len(t) for t in tokens]) / len(tokens) return {'average_token_length': average_token_length} return _extractor
2.84375
3
source/statuscodes.py
woody2371/fishbowl-api
6
6422
#!/usr/bin/python # -*- coding: utf-8 -*- def getstatus(code): if code == "1000": value = "Success!" elif code == "1001": value = "Unknown Message Received" elif code == "1002": value = "Connection to Fishbowl Server was lost" elif code == "1003": value = "Some Requests had errors -- now isn't that helpful..." elif code == "1004": value = "There was an error with the database." elif code == "1009": value = "Fishbowl Server has been shut down." elif code == "1010": value = "You have been logged off the server by an administrator." elif code == "1012": value = "Unknown request function." elif code == "1100": value = "Unknown login error occurred." elif code == "1110": value = "A new Integrated Application has been added to Fishbowl Inventory. Please contact your Fishbowl Inventory Administrator to approve this Integrated Application." elif code == "1111": value = "This Integrated Application registration key does not match." elif code == "1112": value = "This Integrated Application has not been approved by the Fishbowl Inventory Administrator." elif code == "1120": value = "Invalid Username or Password." elif code == "1130": value = "Invalid Ticket passed to Fishbowl Inventory Server." elif code == "1131": value = "Invalid Key value." elif code == "1140": value = "Initialization token is not correct type." elif code == "1150": value = "Request was invalid" elif code == "1160": value = "Response was invalid." elif code == "1162": value = "The login limit has been reached for the server's key." elif code == "1200": value = "Custom Field is invalid." elif code == "1500": value = "The import was not properly formed." elif code == "1501": value = "That import type is not supported" elif code == "1502": value = "File not found." elif code == "1503": value = "That export type is not supported." elif code == "1504": value = "File could not be written to." elif code == "1505": value = "The import data was of the wrong type." elif code == "2000": value = "Was not able to find the Part {0}." elif code == "2001": value = "The part was invalid." elif code == "2100": value = "Was not able to find the Product {0}." elif code == "2101": value = "The product was invalid." elif code == "2200": value = "The yield failed." elif code == "2201": value = "Commit failed." elif code == "2202": value = "Add initial inventory failed." elif code == "2203": value = "Can not adjust committed inventory." elif code == "2300": value = "Was not able to find the Tag number {0}." elif code == "2301": value = "The tag is invalid." elif code == "2302": value = "The tag move failed." elif code == "2303": value = "Was not able to save Tag number {0}." elif code == "2304": value = "Not enough available inventory in Tagnumber {0}." elif code == "2305": value = "Tag number {0} is a location." elif code == "2400": value = "Invalid UOM." elif code == "2401": value = "UOM {0} not found." elif code == "2402": value = "Integer UOM {0} cannot have non-integer quantity." elif code == "2500": value = "The Tracking is not valid." elif code == "2510": value = "Serial number is missing." elif code == "2511": value = "Serial number is null." elif code == "2512": value = "Serial number is duplicate." elif code == "2513": value = "Serial number is not valid." elif code == "2600": value = "Location not found." elif code == "2601": value = "Invalid location." elif code == "2602": value = "Location Group {0} not found." elif code == "3000": value = "Customer {0} not found." elif code == "3001": value = "Customer is invalid." elif code == "3100": value = "Vendor {0} not found." elif code == "3101": value = "Vendor is invalid." elif code == "4000": value = "There was an error load PO {0}." elif code == "4001": value = "Unknow status {0}." elif code == "4002": value = "Unknown carrier {0}." elif code == "4003": value = "Unknown QuickBooks class {0}." elif code == "4004": value = "PO does not have a PO number. Please turn on the auto-assign PO number option in the purchase order module options." else: value = 'Unknown status' return value
2.21875
2
app/src/server/hoge/hoge_api.py
jacob327/docker-flask-nginx-uwsgi-mysql
0
6423
#!/usr/bin/python # -*- coding: utf-8 -*- # [Import start] from flask import Blueprint, jsonify # [Import end] app = Blueprint( 'hoge', __name__, url_prefix='/hoge' ) @app.route('/test') def hoge(): return "\nhogehoge"
2.21875
2
preinstall_setup/makedeb-11.0.1-1-stable/src/makedeb/utils/missing_apt_dependencies.py
chipbuster/Energy-Languages-Setup
0
6424
#!/usr/bin/env python3 import apt_pkg import sys from apt_pkg import CURSTATE_INSTALLED, version_compare from operator import lt, le, eq, ge, gt # Function mappings for relationship operators. relation_operators = {"<<": lt, "<=": le, "=": eq, ">=": ge, ">>": gt} # Set up APT cache. apt_pkg.init() cache = apt_pkg.Cache(None) missing_packages = [] for i in sys.argv[1:]: # Build the package relationship string for use by 'apt-get satisfy'. relationship_operator = None for j in ["<=", ">=", "<", ">", "="]: if j in i: relationship_operator = j break if relationship_operator is not None: if relationship_operator in ["<", ">"]: relationship_operator_formatted = j + j else: relationship_operator_formatted = j package = i.split(relationship_operator) pkgname = package[0] pkgver = package[1] package_string = f"{pkgname} ({relationship_operator_formatted} {pkgver})" else: pkgname = i pkgver = None package_string = pkgname # Check if the package is in the cache. try: pkg = cache[pkgname] except KeyError: missing_packages += [package_string] continue # Get the list of installed and provided packages that are currently installed. installed_pkg_versions = [] if pkg.current_state == CURSTATE_INSTALLED: installed_pkg_versions += [pkg] for i in pkg.provides_list: parent_pkg = i[2].parent_pkg if parent_pkg.current_state == CURSTATE_INSTALLED: installed_pkg_versions += [parent_pkg] # If an installed package was found and no relationship operators were used, the dependency has been satisfied. if (len(installed_pkg_versions) != 0) and (relationship_operator is None): continue # Otherwise, check all matching installed packages and see if any of them fit the specified relationship operator. matched_pkg = False for i in installed_pkg_versions: installed_version = i.current_ver.ver_str version_result = version_compare(installed_version, pkgver) if relation_operators[relationship_operator_formatted](version_result, 0): matched_pkg = True if not matched_pkg: missing_packages += [package_string] for i in missing_packages: print(i) exit(0)
2.515625
3
cohorts_proj/datasets/migrations/0009_auto_20200824_0617.py
zferic/harmonization-website
1
6425
# Generated by Django 3.0.7 on 2020-08-24 06:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datasets', '0008_auto_20200821_1427'), ] operations = [ migrations.AddField( model_name='rawdar', name='AsB', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='AsB_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='AsB_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Ba_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Cs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='DMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='MMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Sr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='iAs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='urine_specific_gravity', field=models.FloatField(blank=True, null=True), ), ]
1.726563
2
test_hello.py
skvel/pynet_testx
0
6426
<gh_stars>0 print "Hello World!" print "Trying my hand at Git!" print "Something else" for i in range(10): print i
2.828125
3
tasks/views.py
TheDim0n/ProjectManager
0
6427
<reponame>TheDim0n/ProjectManager<filename>tasks/views.py<gh_stars>0 from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.views.generic import DetailView, ListView from projects.models import Project from status.models import Status from .models import Task from .forms import TaskForm, FilterForm def _get_projects(user): projects = [("All", "All"), ('---', '---')] for item in Project.objects.filter(created_by=user): projects.append((item.name, item.name)) return projects def _get_statuses(): statuses = [("All", "All")] for item in Status.objects.all(): statuses.append((item.text, item.text)) return statuses class TaskListView(LoginRequiredMixin, ListView): login_url = '/users/register' model = Task context_object_name = 'tasks' template_name = 'tasks/index.html' ordering = ['finish_date'] def get_queryset(self): queryset = super().get_queryset() for obj in queryset: obj.check_expired() return queryset def get_context_data(self, *args, **kwargs): try: project_name = self.request.GET['project'] except KeyError: project_name = '' try: status_name = self.request.GET['status'] except KeyError: status_name = '' if self.request.user.is_authenticated: tasks = Task.objects.filter(created_by=self.request.user) if project_name and project_name != "All": if project_name == '---': tasks = tasks.filter(level=None) else: tasks = tasks.filter(level__project__name=project_name) if status_name and status_name != "All": tasks = tasks.filter(status__text=status_name) status_list = Status.objects.all() last_initial = { 'status': status_name, 'project': project_name, } form = FilterForm(initial=last_initial) form.fields['project'].choices = _get_projects(user=self.request.user) form.fields['status'].choices = _get_statuses() context = super(TaskListView, self).get_context_data(*args, **kwargs) context['status_list'] = status_list context['tasks'] = tasks context['filter_form'] = form context['task_form'] = TaskForm return context class TaskDetailView(DetailView): model = Task template_name = 'tasks/details.html' def get_object(self): obj = super().get_object() obj.check_expired() return obj def get_context_data(self, *args, **kwargs): initial_content = { 'name': self.object.name, 'start_date': self.object.start_date, 'finish_date': self.object.finish_date, 'status': self.object.status, 'description': self.object.description, } context = super(TaskDetailView, self).get_context_data(*args, **kwargs) context['task_form'] = TaskForm(initial=initial_content) return context class TaskCreateView(LoginRequiredMixin, CreateView): login_url = '/users/register' model = Task form_class = TaskForm template_name = 'tasks/index.html' def form_valid(self, form): form.instance.created_by = self.request.user return super().form_valid(form) class TaskUpdateView(LoginRequiredMixin, UpdateView): login_url = '/users/register' model = Task form_class = TaskForm template_name = "tasks/update_task.html" def form_valid(self, form): self.object.check_expired() return super().form_valid(form) class TaskDeleteView(DeleteView): model = Task template_name = "tasks/delete_task.html"
2.203125
2
smoke/noaa/get_smokeplume_counts.py
minnieteng/smoke_project
0
6428
import os import math import time import geohash import geojson from geojson import MultiLineString from shapely import geometry import shapefile import numpy import datetime as dt import pandas as pd import logging logger = logging.getLogger(__name__) source_shape_file_path = "C:/temp/2018/" threshold = 60*60 cols = ['start', 'end','start_epoch_round','end_epoch_round','start_epoch_round_dt','end_epoch_round_dt'] times = [] for root,dirs,files in os.walk(source_shape_file_path): for file in files: with open(os.path.join(root,file),"r") as auto: if file.endswith(".shp"): try: filename = file.replace(".shp","") shape=shapefile.Reader(source_shape_file_path+filename+"/"+file) for r in shape.iterRecords(): start_time = dt.datetime.strptime(r[1], '%Y%j %H%M') end_time = dt.datetime.strptime(r[2], '%Y%j %H%M') epoch_s = dt.datetime.timestamp(dt.datetime.strptime(r[1], '%Y%j %H%M')) epoch_e = dt.datetime.timestamp(dt.datetime.strptime(r[2], '%Y%j %H%M')) # sometimes start is later than end time, we'll assume the earlier time is start epoch_end_round = round(max(epoch_s,epoch_e) / threshold) * threshold epoch_start_round = round(min(epoch_s,epoch_e) / threshold) * threshold epoch_end_round_dt = dt.datetime.utcfromtimestamp(3600 * ((max(epoch_s,epoch_e) + 1800) // 3600)) epoch_start_round_dt = dt.datetime.utcfromtimestamp(3600 * ((min(epoch_s,epoch_e) + 1800) // 3600)) times.append([start_time,end_time,epoch_start_round,epoch_end_round,epoch_start_round_dt,epoch_end_round_dt]) break except: logger.error('failed to parse file:'+source_shape_file_path+filename+"/") continue df = pd.DataFrame(times, columns=cols) df.to_csv('noaa_times.csv')
2.3125
2
notes/OOBall/OOBall/main-demo.py
KRHS-GameProgramming-2015/Manpac
0
6429
import pygame_sdl2 pygame_sdl2.import_as_pygame() import pygame import os import random import math from Ball import Ball def save_state(balls): """ Saves the game state. """ stateString = "" with open("state.txt", "w") as f: for ball in balls: stateString += "{} {} {} {} {}".format(ball.imageFile, ball.speedx, ball.speedy, ball.rect.centerx, ball.rect.centery) stateString += '\n' f.write(stateString) def load_state(): try: objects = [] with open("state.txt", "r") as f: for line in f.read(): f, sx, sy, x, y = line.split() objects += Ball(f, [int(sx), int(sy)], [int(x), int(y)]) return objects except: return None def delete_state(): if os.path.exists("state.txt"): os.unlink("state.txt") def main(): pygame.init() clock = pygame.time.Clock() infoObject = pygame.display.Info() #print infoObject.current_w width = infoObject.current_w height = infoObject.current_h size = width, height bgColor = r,g,b = 0, 0, 0 screen = pygame.display.set_mode(size) pygame.display.set_mode() balls = load_state() delete_state() if balls == None: balls = [] ballTimer = 0 ballTimerMax = .75 * 60 done = False sleeping = False font = pygame.font.Font("DejaVuSans.ttf", 124) text = font.render("Start", True, (255, 255, 255, 255)) textRect = text.get_rect(center = (width/2, height/2)) while not done: for event in pygame.event.get(): text = font.render(str(event.type), True, (255, 255, 255, 255)) if event.type == pygame.QUIT: done = True elif event.type == pygame.KEYDOWN and event.key == pygame.K_AC_BACK: done = True elif event.type == pygame.APP_WILLENTERBACKGROUND: # The app is about to go to sleep. It should save state, cancel # any timers, and stop drawing the screen until an APP_DIDENTERFOREGROUND # event shows up. save_state(balls) sleeping = True elif event.type == pygame.APP_DIDENTERFOREGROUND: # The app woke back up. Delete the saved state (we don't need it), # restore any times, and start drawing the screen again. delete_state() sleeping = False # For now, we have to re-open the window when entering the # foreground. screen = pygame.display.set_mode((1280, 720)) if not sleeping: ballTimer += 1 if ballTimer >= ballTimerMax: ballTimer = 0 ballSpeed = [random.randint(-5, 5), random.randint(-5, 5)] ballPos = [random.randint(100, width-100), random.randint(100, height-100)] balls += [Ball("ball.png",ballSpeed,ballPos)] save_state(balls) for ball in balls: ball.move() ball.collideScreen(size) for first in balls: for second in balls: if first != second: first.collideBall(second) bgColor = r,g,b screen.fill(bgColor) for ball in balls: screen.blit(ball.image, ball.rect) screen.blit(text, textRect) pygame.display.flip() clock.tick(60) if done: break if __name__ == "__main__": main()
3.140625
3
sprt.py
vdbergh/pentanomial
3
6430
from __future__ import division import math, copy import argparse from brownian import Brownian import scipy import LLRcalc class sprt: def __init__(self, alpha=0.05, beta=0.05, elo0=0, elo1=5, elo_model="logistic"): assert elo_model in ("logistic", "normalized") self.elo_model = elo_model self.a = math.log(beta / (1 - alpha)) self.b = math.log((1 - beta) / alpha) self.elo0 = elo0 self.elo1 = elo1 self.clamped = False self.LLR_drift_variance = LLRcalc.LLR_drift_variance_alt2 def elo_to_score(self, elo): """ "elo" is expressed in our current elo_model. """ if self.elo_model == "normalized": nt = elo / LLRcalc.nelo_divided_by_nt return nt * self.sigma_pg + 0.5 else: return LLRcalc.L_(elo) def lelo_to_elo(self, lelo): """ For external use. "elo" is expressed in our current elo_model. "lelo" is logistic. """ if self.elo_model == "logistic": return lelo score = LLRcalc.L_(lelo) nt = (score - 0.5) / self.sigma_pg return nt * LLRcalc.nelo_divided_by_nt def set_state(self, results): N, self.pdf = LLRcalc.results_to_pdf(results) if self.elo_model == "normalized": mu, var = LLRcalc.stats(self.pdf) # code duplication with LLRcalc if len(results) == 5: self.sigma_pg = (2 * var) ** 0.5 elif len(results) == 3: self.sigma_pg = var ** 0.5 else: assert False self.s0, self.s1 = [self.elo_to_score(elo) for elo in (self.elo0, self.elo1)] mu_LLR, var_LLR = self.LLR_drift_variance(self.pdf, self.s0, self.s1, None) # llr estimate self.llr = N * mu_LLR self.T = N # now normalize llr (if llr is not legal then the implications # of this are unclear) slope = self.llr / N if self.llr > 1.03 * self.b or self.llr < 1.03 * self.a: self.clamped = True if self.llr < self.a: self.T = self.a / slope self.llr = self.a elif self.llr > self.b: self.T = self.b / slope self.llr = self.b def outcome_prob(self, elo): """ The probability of a test with the given elo with worse outcome (faster fail, slower pass or a pass changed into a fail). """ s = LLRcalc.L_(elo) mu_LLR, var_LLR = self.LLR_drift_variance(self.pdf, self.s0, self.s1, s) sigma_LLR = math.sqrt(var_LLR) return Brownian(a=self.a, b=self.b, mu=mu_LLR, sigma=sigma_LLR).outcome_cdf( T=self.T, y=self.llr ) def lower_cb(self, p): """ Maximal elo value such that the observed outcome of the test has probability less than p. """ avg_elo = (self.elo0 + self.elo1) / 2 delta = self.elo1 - self.elo0 N = 30 # Various error conditions must be handled better here! while True: elo0 = max(avg_elo - N * delta, -1000) elo1 = min(avg_elo + N * delta, 1000) try: sol, res = scipy.optimize.brentq( lambda elo: self.outcome_prob(elo) - (1 - p), elo0, elo1, full_output=True, disp=False, ) except ValueError: if elo0 > -1000 or elo1 < 1000: N *= 2 continue else: if self.outcome_prob(elo0) - (1 - p) > 0: return elo1 else: return elo0 assert res.converged break return sol def analytics(self, p=0.05): ret = {} ret["clamped"] = self.clamped ret["a"] = self.a ret["b"] = self.b ret["elo"] = self.lower_cb(0.5) ret["ci"] = [self.lower_cb(p / 2), self.lower_cb(1 - p / 2)] ret["LOS"] = self.outcome_prob(0) ret["LLR"] = self.llr return ret if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--alpha", help="probability of a false positve", type=float, default=0.05 ) parser.add_argument( "--beta", help="probability of a false negative", type=float, default=0.05 ) parser.add_argument( "--elo0", help="H0 (expressed in LogisticElo)", type=float, default=0.0 ) parser.add_argument( "--elo1", help="H1 (expressed in LogisticElo)", type=float, default=5.0 ) parser.add_argument("--level", help="confidence level", type=float, default=0.95) parser.add_argument( "--elo-model", help="logistic or normalized", choices=['logistic', 'normalized'], default='logistic', ) parser.add_argument( "--results", help="trinomial of pentanomial frequencies, low to high", nargs="*", type=int, required=True, ) args = parser.parse_args() results = args.results if len(results) != 3 and len(results) != 5: parser.error("argument --results: expected 3 or 5 arguments") alpha = args.alpha beta = args.beta elo0 = args.elo0 elo1 = args.elo1 elo_model = args.elo_model p = 1 - args.level s = sprt(alpha=alpha, beta=beta, elo0=elo0, elo1=elo1, elo_model=elo_model) s.set_state(results) a = s.analytics(p) print("Design parameters") print("=================") print("False positives : %4.2f%%" % (100 * alpha,)) print("False negatives : %4.2f%%" % (100 * beta,)) print("[Elo0,Elo1] : [%.2f,%.2f]" % (elo0, elo1)) print("Confidence level : %4.2f%%" % (100 * (1 - p),)) print("Elo model : %s" % elo_model) print("Estimates") print("=========") print("Elo : %.2f" % a["elo"]) print( "Confidence interval : [%.2f,%.2f] (%4.2f%%)" % (a["ci"][0], a["ci"][1], 100 * (1 - p)) ) print("LOS : %4.2f%%" % (100 * a["LOS"],)) print("Context") print("=======") print( "LLR [u,l] : %.2f %s [%.2f,%.2f]" % (a["LLR"], "(clamped)" if a["clamped"] else "", a["a"], a["b"]) )
2.734375
3
tools/hci_throughput/hci.py
t3zeng/mynewt-nimble
0
6431
<reponame>t3zeng/mynewt-nimble<filename>tools/hci_throughput/hci.py # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from dataclasses import dataclass import struct from binascii import unhexlify import random ############ # DEFINES ############ AF_BLUETOOTH = 31 HCI_CHANNEL_USER = 1 HCI_COMMAND_PACKET = 0x01 HCI_ACL_DATA_PACKET = 0x02 HCI_EVENT_PACKET = 0x04 HCI_EV_CODE_DISCONN_CMP = 0x05 HCI_EV_CODE_CMD_CMP = 0x0e HCI_EV_CODE_CMD_STATUS = 0x0f HCI_EV_CODE_LE_META_EVENT = 0x3e HCI_SUBEV_CODE_LE_ENHANCED_CONN_CMP = 0x0a HCI_SUBEV_CODE_LE_DATA_LEN_CHANGE = 0x07 HCI_SUBEV_CODE_LE_PHY_UPDATE_CMP = 0x0c HCI_SUBEV_CODE_LE_CHAN_SEL_ALG = 0x14 HCI_EV_NUM_COMP_PKTS = 0x13 CONN_FAILED_TO_BE_ESTABLISHED = 0x3e CONN_TIMEOUT = 0x08 OGF_HOST_CTL = 0x03 OCF_SET_EVENT_MASK = 0x0001 OCF_RESET = 0X0003 OGF_INFO_PARAM = 0x04 OCF_READ_LOCAL_COMMANDS = 0x0002 OCF_READ_BD_ADDR = 0x0009 OGF_LE_CTL = 0x08 OCF_LE_SET_EVENT_MASK = 0x0001 OCF_LE_READ_BUFFER_SIZE_V1 = 0x0002 OCF_LE_READ_BUFFER_SIZE_V2 = 0x0060 OCF_LE_SET_RANDOM_ADDRESS = 0x0005 OCF_LE_SET_ADVERTISING_PARAMETERS = 0x0006 OCF_LE_SET_ADVERTISE_ENABLE = 0x000a OCF_LE_SET_SCAN_PARAMETERS = 0x000b OCF_LE_SET_SCAN_ENABLE = 0x000c OCF_LE_CREATE_CONN = 0x000d OCF_LE_SET_DATA_LEN = 0x0022 OCF_LE_READ_SUGGESTED_DFLT_DATA_LEN = 0x0023 OCF_LE_READ_MAX_DATA_LEN = 0x002f OCF_LE_READ_PHY = 0x0030 OCF_LE_SET_DFLT_PHY = 0x0031 OCF_LE_SET_PHY = 0x0032 OGF_VENDOR_SPECIFIC = 0x003f BLE_HCI_OCF_VS_RD_STATIC_ADDR = 0x0001 PUBLIC_ADDRESS_TYPE = 0 STATIC_RANDOM_ADDRESS_TYPE = 1 WAIT_FOR_EVENT_TIMEOUT = 5 WAIT_FOR_EVENT_CONN_TIMEOUT = 25 ############ # GLOBAL VAR ############ num_of_bytes_to_send = None # based on supported_max_tx_octets num_of_packets_to_send = None events_list = [] bdaddr = '00:00:00:00:00:00' static_addr = '00:00:00:00:00:00' le_read_buffer_size = None conn_handle = 0 requested_tx_octets = 1 requested_tx_time = 1 suggested_dflt_data_len = None max_data_len = None phy = None ev_num_comp_pkts = None num_of_completed_packets_cnt = 0 num_of_completed_packets_time = 0 ############ # FUNCTIONS ############ def get_opcode(ogf: int, ocf: int): return ((ocf & 0x03ff)|(ogf << 10)) def get_ogf_ocf(opcode: int): ogf = opcode >> 10 ocf = opcode & 0x03ff return ogf, ocf def cmd_addr_to_ba(addr_str: str): return unhexlify("".join(addr_str.split(':')))[::-1] def ba_addr_to_str(addr_ba: bytearray): addr_str = addr_ba.hex().upper() return ':'.join(addr_str[i:i+2] for i in range(len(addr_str), -2, -2))[1:] def gen_static_rand_addr(): while True: x = [random.randint(0,1) for _ in range(0,48)] if 0 in x[:-2] and 1 in x[:-2]: x[0] = 1 x[1] = 1 break addr_int = int("".join([str(x[i]) for i in range(0,len(x))]), 2) addr_hex = "{0:0{1}x}".format(addr_int, 12) addr = ":".join(addr_hex[i:i+2] for i in range(0, len(addr_hex), 2)) return addr.upper() ############ # GLOBAL VAR CLASSES ############ @dataclass class Suggested_Dflt_Data_Length(): status: int suggested_max_tx_octets: int suggested_max_tx_time: int def __init__(self): self.set() def set(self, status=0, suggested_max_tx_octets=0, suggested_max_tx_time=0): self.status = status self.suggested_max_tx_octets = suggested_max_tx_octets self.suggested_max_tx_time = suggested_max_tx_time @dataclass class Max_Data_Length(): status: int supported_max_tx_octets: int supported_max_tx_time: int supported_max_rx_octets: int supported_max_rx_time: int def __init__(self): self.set() def set(self, status=0, supported_max_tx_octets=0, supported_max_tx_time=0, supported_max_rx_octets=0, supported_max_rx_time=0): self.status = status self.supported_max_tx_octets = supported_max_tx_octets self.supported_max_tx_time = supported_max_tx_time self.supported_max_rx_octets = supported_max_rx_octets self.supported_max_rx_time = supported_max_rx_time @dataclass class LE_Read_Buffer_Size: status: int le_acl_data_packet_length: int total_num_le_acl_data_packets: int iso_data_packet_len: int total_num_iso_data_packets: int def __init__(self): self.set() def set(self, status=0, le_acl_data_packet_length=0, total_num_le_acl_data_packets=0, iso_data_packet_len=0, total_num_iso_data_packets=0): self.status = status self.le_acl_data_packet_length = le_acl_data_packet_length self.total_num_le_acl_data_packets = total_num_le_acl_data_packets self.iso_data_packet_len = iso_data_packet_len self.total_num_iso_data_packets = total_num_iso_data_packets @dataclass class LE_Read_PHY: status: int connection_handle: int tx_phy: int rx_phy: int def __init__(self): self.set() def set(self, status=0, connection_handle=0, tx_phy=0, rx_phy=0): self.status = status self.connection_handle = connection_handle self.tx_phy = tx_phy self.rx_phy = rx_phy ############ # EVENTS ############ @dataclass class HCI_Ev_Disconn_Complete: status: int connection_handle: int reason: int def __init__(self): self.set() def set(self, status=0, connection_handle=0, reason=0): self.status = status self.connection_handle = connection_handle self.reason = reason @dataclass class HCI_Ev_Cmd_Complete: num_hci_command_packets: int opcode: int return_parameters: int def __init__(self): self.set() def set(self, num_hci_cmd_packets=0, opcode=0, return_parameters=b''): self.num_hci_command_packets = num_hci_cmd_packets self.opcode = opcode self.return_parameters = return_parameters @dataclass class HCI_Ev_Cmd_Status: status: int num_hci_command_packets: int opcode: int def __init__(self): self.set() def set(self, status = 0, num_hci_cmd_packets=0, opcode=0): self.status = status self.num_hci_command_packets = num_hci_cmd_packets self.opcode = opcode @dataclass class HCI_Ev_LE_Meta: subevent_code: int def __init__(self): self.set() def set(self, subevent_code=0): self.subevent_code = subevent_code @dataclass class HCI_Ev_LE_Enhanced_Connection_Complete(HCI_Ev_LE_Meta): status: int connection_handle: int role: int peer_address_type: int peer_address: str local_resolvable_private_address: int peer_resolvable_private_address: int connection_interval: int peripheral_latency: int supervision_timeout: int central_clock_accuracy: int def __init__(self): self.set() def set(self, subevent_code=0, status=0, connection_handle=0, role=0, peer_address_type=0, peer_address='00:00:00:00:00:00', local_resolvable_private_address='00:00:00:00:00:00', peer_resolvable_private_address='00:00:00:00:00:00', connection_interval=0, peripheral_latency=0, supervision_timeout=0, central_clock_accuracy=0): super().set(subevent_code) self.status = status self.connection_handle = connection_handle self.role = role self.peer_address_type = peer_address_type self.peer_address = peer_address self.local_resolvable_private_address = local_resolvable_private_address self.peer_resolvable_private_address = peer_resolvable_private_address self.connection_interval = connection_interval self.peripheral_latency = peripheral_latency self.supervision_timeout = supervision_timeout self.central_clock_accuracy = central_clock_accuracy @dataclass class HCI_Ev_LE_Data_Length_Change(HCI_Ev_LE_Meta): conn_handle: int max_tx_octets: int max_tx_time: int max_rx_octets: int max_rx_time: int triggered: int def __init__(self): self.set() def set(self, subevent_code=0, conn_handle=0, max_tx_octets=0, max_tx_time=0, max_rx_octets=0, max_rx_time=0, triggered=0): super().set(subevent_code) self.conn_handle = conn_handle self.max_tx_octets = max_tx_octets self.max_tx_time = max_tx_time self.max_rx_octets = max_rx_octets self.max_rx_time = max_rx_time self.triggered = triggered @dataclass class HCI_Ev_LE_PHY_Update_Complete(HCI_Ev_LE_Meta): status: int connection_handle: int tx_phy: int rx_phy: int def __init__(self): self.set() def set(self, subevent_code=0, status=0, connection_handle=0, tx_phy=0, rx_phy=0): super().set(subevent_code) self.status = status self.connection_handle = connection_handle self.tx_phy = tx_phy self.rx_phy = rx_phy @dataclass class HCI_Number_Of_Completed_Packets: num_handles: int connection_handle: int num_completed_packets: int def __init__(self): self.set() def set(self, num_handles=0, connection_handle=0, num_completed_packets=0): self.num_handles = num_handles self.connection_handle = connection_handle self.num_completed_packets = num_completed_packets class HCI_Ev_LE_Chan_Sel_Alg(HCI_Ev_LE_Meta): connection_handle: int algorithm: int def __init__(self): self.set() def set(self, subevent_code=0, connection_handle=0, algorithm=0): super().set(subevent_code) self.connection_handle = connection_handle self.algorithm = algorithm ############ # PARAMETERS ############ @dataclass class HCI_Advertising: advertising_interval_min: int advertising_interval_max: int advertising_type: int own_address_type: int peer_address_type: int peer_address: str advertising_channel_map: int advertising_filter_policy: int ba_full_message: bytearray def __init__(self): self.set() def set(self, advertising_interval_min=0, advertising_interval_max=0, \ advertising_type=0, own_address_type=0, peer_address_type=0, \ peer_address='00:00:00:00:00:00', advertising_channel_map=0, \ advertising_filter_policy=0): self.advertising_interval_min = advertising_interval_min self.advertising_interval_max = advertising_interval_max self.advertising_type = advertising_type self.own_address_type = own_address_type self.peer_address_type = peer_address_type self.peer_address = peer_address self.advertising_channel_map = advertising_channel_map self.advertising_filter_policy = advertising_filter_policy self.ba_full_message = bytearray(struct.pack('<HHBBBBB', advertising_interval_min, advertising_interval_max, advertising_type, own_address_type, peer_address_type, advertising_channel_map, advertising_filter_policy)) peer_addr_ba = cmd_addr_to_ba(peer_address) self.ba_full_message[7:7] = peer_addr_ba @dataclass class HCI_Scan: le_scan_type: int le_scan_interval: int le_scan_window: int own_address_type: int scanning_filter_policy: int ba_full_message: bytearray def __init__(self): self.set() def set(self, le_scan_type=0, le_scan_interval=0, le_scan_window=0, own_address_type=0, scanning_filter_policy=0): self.le_scan_type = le_scan_type self.le_scan_interval = le_scan_interval self.le_scan_window = le_scan_window self.own_address_type = own_address_type self.scanning_filter_policy = scanning_filter_policy self.ba_full_message = bytearray(struct.pack('<BHHBB',le_scan_type, le_scan_interval, le_scan_window, own_address_type, scanning_filter_policy)) @dataclass class HCI_Connect: le_scan_interval: int le_scan_window: int initiator_filter_policy: int peer_address_type: int peer_address: str own_address_type: int connection_interval_min: int connection_interval_max: int max_latency: int supervision_timeout: int min_ce_length: int max_ce_length: int ba_full_message: bytearray def __init__(self): self.set() def set(self, le_scan_interval=0, le_scan_window=0, \ initiator_filter_policy=0, peer_address_type=0, \ peer_address='00:00:00:00:00:00', own_address_type=0, \ connection_interval_min=0, connection_interval_max=0, \ max_latency=0, supervision_timeout=0, min_ce_length=0, \ max_ce_length=0): self.le_scan_interval = le_scan_interval self.le_scan_window = le_scan_window self.initiator_filter_policy = initiator_filter_policy self.peer_address_type = peer_address_type self.peer_address = peer_address self.own_address_type = own_address_type self.connection_interval_min = connection_interval_min self.connection_interval_max = connection_interval_max self.max_latency = max_latency self.supervision_timeout = supervision_timeout self.min_ce_length = min_ce_length self.max_ce_length = max_ce_length self.ba_full_message = bytearray(struct.pack('<HHBBBHHHHHH', le_scan_interval, le_scan_window, initiator_filter_policy, peer_address_type, own_address_type, connection_interval_min, connection_interval_max, max_latency,supervision_timeout, min_ce_length, max_ce_length)) peer_addr_ba = cmd_addr_to_ba(peer_address) self.ba_full_message[6:6] = peer_addr_ba ############ # RX / TX ############ @dataclass class HCI_Receive: packet_type: int def __init__(self): self.set() def set(self,packet_type=0): self.packet_type = packet_type @dataclass class HCI_Recv_Event_Packet(HCI_Receive): ev_code: int packet_len: int recv_data: bytearray current_event: None def __init__(self): self.set() def set(self,packet_type=0, ev_code=0, packet_len=0, recv_data=bytearray(256)): super().set(packet_type) self.ev_code = ev_code self.packet_len = packet_len self.recv_data = recv_data self.recv_data = recv_data[:packet_len] @dataclass class HCI_Recv_ACL_Data_Packet(HCI_Receive): connection_handle: int pb_flag: int bc_flag: int data_total_len: int data: bytearray def __init__(self): self.set() def set(self, packet_type=0, connection_handle=0, pb_flag=0, bc_flag=0, total_data_len=0, data=b''): super().set(packet_type) self.connection_handle = connection_handle self.pb_flag = pb_flag self.bc_flag = bc_flag self.data_total_len = total_data_len self.data = data @dataclass class HCI_Recv_L2CAP_Data: pdu_length: int channel_id: int data: bytearray def __init__(self): self.set() def set(self, pdu_length=0, channel_id=0, data=b''): self.pdu_length = pdu_length self.channel_id = channel_id self.data = data @dataclass class HCI_Cmd_Send: packet_type: int ogf: int ocf: int packet_len: int data: bytearray ba_full_message: bytearray def __init__(self): self.set() def set(self, ogf=0, ocf=0, data=b''): self.packet_type = HCI_COMMAND_PACKET self.ogf = ogf self.ocf = ocf self.opcode = get_opcode(ogf, ocf) self.packet_len = len(data) self.data = data self.ba_full_message = bytearray(struct.pack('<BHB', self.packet_type, self.opcode, self.packet_len)) self.ba_full_message.extend(self.data) @dataclass class HCI_ACL_Data_Send: packet_type: int connection_handle: int pb_flag: int bc_flag: int data_total_length: int data: bytearray ba_full_message: bytearray def __init__(self): self.set() def set(self, connection_handle=0, pb_flag=0b00, bc_flag=0b00, data=b''): self.packet_type = HCI_ACL_DATA_PACKET self.connection_handle = connection_handle self.pb_flag = pb_flag self.bc_flag = bc_flag self.data_total_length = len(data) self.data = data self.ba_full_message = bytearray(struct.pack('<BHH', self.packet_type, ((self.connection_handle & 0x0eff) | (self.pb_flag << 12) | (self.bc_flag << 14)), self.data_total_length)) self.ba_full_message.extend(self.data) @dataclass class L2CAP_Data_Send: pdu_length: int channel_id: int data: bytearray ba_full_message: bytearray def __init__(self): self.set() def set(self, pdu_length=0, channel_id=0, data=b''): if not pdu_length: self.pdu_length = len(data) else: self.pdu_length = pdu_length self.channel_id = channel_id self.data = data fmt_conf = "<HH" self.ba_full_message = bytearray(struct.pack(fmt_conf, self.pdu_length, self.channel_id)) self.ba_full_message.extend(data)
1.53125
2
examples/dataproc/query.py
populationgenomics/analysis-runner
0
6432
"""Simple Hail query example.""" import click import hail as hl from bokeh.io.export import get_screenshot_as_png from analysis_runner import output_path GNOMAD_HGDP_1KG_MT = ( 'gs://gcp-public-data--gnomad/release/3.1/mt/genomes/' 'gnomad.genomes.v3.1.hgdp_1kg_subset_dense.mt' ) @click.command() @click.option('--rerun', help='Whether to overwrite cached files', default=False) def query(rerun): """Query script entry point.""" hl.init(default_reference='GRCh38') sample_qc_path = output_path('sample_qc.mt') if rerun or not hl.hadoop_exists(sample_qc_path): mt = hl.read_matrix_table(GNOMAD_HGDP_1KG_MT) mt = mt.head(100, n_cols=100) mt_qc = hl.sample_qc(mt) mt_qc.write(sample_qc_path) mt_qc = hl.read_matrix_table(sample_qc_path) plot_filename = output_path('call_rate_plot.png', 'web') if rerun or not hl.hadoop_exists(plot_filename): call_rate_plot = hl.plot.histogram( mt_qc.sample_qc.call_rate, range=(0, 1), legend='Call rate' ) with hl.hadoop_open(plot_filename, 'wb') as f: get_screenshot_as_png(call_rate_plot).save(f, format='PNG') if __name__ == '__main__': query() # pylint: disable=no-value-for-parameter
2.515625
3
ptpip/ptpip.py
darkarnium/ptpip
0
6433
<filename>ptpip/ptpip.py import uuid import time import socket import struct class PtpIpConnection(object): """docstring for PtpIP""" def __init__(self): super(PtpIpConnection, self).__init__() self.session = None self.session_events = None self.session_id = None self.cmd_queue = [] self.event_queue = [] self.object_queue = [] def open(self, host='192.168.1.1', port=15740): # Open both session, first one for for commands, second for events self.session = self.connect(host=host, port=port) self.send_recieve_ptpip_packet(PtpIpInitCmdReq(), self.session) self.session_events = self.connect(host=host, port=port) self.send_recieve_ptpip_packet(PtpIpEventReq(), self.session_events) # 0x1002 OpenSession ptip_cmd = PtpIpCmdRequest(cmd=0x1002, param1=struct.unpack('L', self.session_id)[0]) self.send_recieve_ptpip_packet(ptip_cmd, self.session) def communication_thread(self): while True: if len(self.cmd_queue) == 0: # do a ping receive a pong (same as ping) as reply to keep the connection alive # couldnt get any reply onto a propper PtpIpPing packet so i am querying the status # of the device ptpip_packet_reply = self.send_recieve_ptpip_packet(PtpIpCmdRequest(cmd=0x90C8), self.session) if isinstance(ptpip_packet_reply, PtpIpCmdResponse): time.sleep(1) continue else: # get the next command from command the queue ptip_cmd = self.cmd_queue.pop() ptpip_packet_reply = self.send_recieve_ptpip_packet(ptip_cmd, self.session) if (ptpip_packet_reply.ptp_response_code == 0x2001 and \ ptpip_packet_reply.ptp_response_code == 0x2019): print("Cmd send successfully") else: print(f"cmd reply is: {ptpip_packet_reply.ptp_response_code}") # wait 1 second before new packets are processed/send to the camera time.sleep(1) pass def send_ptpip_cmd(self, ptpip_packet): self.cmd_queue.append(ptpip_packet) def connect(self, host='192.168.1.1', port=15740): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) s.connect((host, port)) except socket.error as message: if s: s.close() print(f"Could not open socket: {message}") return s def send_recieve_ptpip_packet(self, ptpip_packet, session): if isinstance(ptpip_packet, PtpIpInitCmdReq): self.send_data(ptpip_packet.data(), session) # set the session id of the object if the reply is of type PtpIpInitCmdAck ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) if isinstance(ptpip_packet_reply, PtpIpInitCmdAck): self.session_id = ptpip_packet_reply.session_id elif isinstance(ptpip_packet, PtpIpEventReq): self.send_ptpip_event_req(ptpip_packet, session) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) elif isinstance(ptpip_packet, PtpIpCmdRequest) and ptpip_packet.ptp_cmd == 0x90C7: self.send_data(ptpip_packet.data(), session) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) if isinstance(ptpip_packet_reply, PtpIpStartDataPacket): data_length = struct.unpack('I', ptpip_packet_reply.length)[0] ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) data = ptpip_packet_reply.data while isinstance(ptpip_packet_reply, PtpIpDataPacket): data = data + ptpip_packet_reply.data ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) if data_length == len(data): events = PtpIpEventFactory(data).get_events() for event in events: self.event_queue.append(event) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) elif isinstance(ptpip_packet, PtpIpCmdRequest) and ptpip_packet.ptp_cmd == 0x1009: self.send_data(ptpip_packet.data(), session) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) if isinstance(ptpip_packet_reply, PtpIpStartDataPacket): data_length = struct.unpack('I', ptpip_packet_reply.length)[0] ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) data = ptpip_packet_reply.data while isinstance(ptpip_packet_reply, PtpIpDataPacket): data = data + ptpip_packet_reply.data ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) if data_length == len(data): self.object_queue.append(PtpIpDataObject(ptpip_packet.param1, data)) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) else: self.send_data(ptpip_packet.data(), session) ptpip_packet_reply = PtpIpPacket().factory(data=self.recieve_data(session)) return ptpip_packet_reply def send_ptpip_event_req(self, ptpip_packet, session): # add the session id of the object itself if it is not specified in the package if ptpip_packet.session_id is None: ptpip_packet.session_id = self.session_id self.send_data(ptpip_packet.data(), session) def send_data(self, data, session): session.send(struct.pack('I', len(data) + 4) + data) def recieve_data(self, session): data = session.recv(4) (data_length,) = struct.unpack('I', data) print(f"Packet length: {data_length}") while (data_length) > len(data): data += session.recv(data_length - len(data)) return data[4:] class PtpIpPacket(object): """docstring for PtpIpCmd""" def __init__(self): super(PtpIpPacket, self).__init__() def factory(self, data=None): if data is None: self.cmdtype = None else: print(f"Cmd Type: {struct.unpack('I', data[0:4])[0]}") self.cmdtype = struct.unpack('I', data[0:4])[0] if self.cmdtype == 1: return PtpIpInitCmdReq(data[4:]) elif self.cmdtype == 2: return PtpIpInitCmdAck(data[4:]) elif self.cmdtype == 3: return PtpIpEventReq(data[4:]) elif self.cmdtype == 4: return PtpIpEventAck(data[4:]) elif self.cmdtype == 5: return PtpIpInitFail(data[4:]) elif self.cmdtype == 6: return PtpIpCmdRequest(data[4:]) elif self.cmdtype == 7: return PtpIpCmdResponse(data[4:]) elif self.cmdtype == 9: return PtpIpStartDataPacket(data[4:]) elif self.cmdtype == 10: return PtpIpDataPacket(data[4:]) elif self.cmdtype == 12: return PtpIpEndDataPacket(data[4:]) elif self.cmdtype == 13: return PtpIpPing(data[4:]) def data(self): pass class PtpIpInitCmdReq(PtpIpPacket): """docstring for PtpIpInitCmd""" def __init__(self, data=None): super(PtpIpInitCmdReq, self).__init__() self.cmdtype = struct.pack('I', 0x01) self.version = struct.pack('>I', 0x0100) if data is None: guid = uuid.uuid4() self.guid = guid.bytes self.hostname = socket.gethostname() + '\x00' self.hostname = self.hostname.encode('utf-16-le') else: self.guid = data[0:16] self.hostname = data[16:0] def data(self): return self.cmdtype + self.guid + self.hostname + self.version class PtpIpInitCmdAck(PtpIpPacket): """docstring for PtpIpInitCmd""" def __init__(self, data=None): super(PtpIpInitCmdAck, self).__init__() self.cmdtype = struct.pack('I', 0x02) if data is not None: self.session_id = data[0:4] self.guid = data[4:20] self.hostname = data[20:] class PtpIpEventReq(PtpIpPacket): """docstring for PtpIpInitCmd""" def __init__(self, data=None, session_id=None): super(PtpIpEventReq, self).__init__() self.cmdtype = struct.pack('I', 0x03) self.session_id = None if data is not None: self.session_id = data[0:4] elif session_id is not None: self.session_id = session_id def data(self): if self.session_id: return self.cmdtype + self.session_id return self.cmdtype class PtpIpEventAck(PtpIpPacket): """docstring for PtpIpInitCmd""" def __init__(self, data=None): super(PtpIpEventAck, self).__init__() self.cmdtype = struct.pack('I', 0x04) class PtpIpInitFail(PtpIpPacket): """docstring for PtpIpInitCmd""" def __init__(self, data=None): super(PtpIpInitFail, self).__init__() self.cmdtype = struct.pack('I', 0x05) class PtpIpCmdRequest(PtpIpPacket): """ Operation Code Description 0x1001 GetDeviceInfo 0x1002 OpenSession 0x1003 CloseSession 0x1004 GetStorageIDs 0x1005 GetStorageInfo 0x1006 GetNumObjects 0x1007 GetObjectHandles 0x1008 GetObjectInfo 0x1009 GetObject 0x100A GetThumb 0x100B DeleteObject 0x100C SendObjectInfo 0x100D SendObject 0x100E InitiateCapture 0x100F FormatStore 0x1014 GetDevicePropDesc 0x1015 GetDevicePropValue 0x1016 SetDevicePropValue 0x101B GetPartialObject 0x90C0 InitiateCaptureRecInSdram 0x90C1 AfDrive 0x90C2 ChangeCameraMode 0x90C3 DeleteImagesInSdram 0x90C4 GetLargeThumb 0x90C7 GetEvent 0x90C8 DeviceReady 0x90C9 SetPreWbData 0x90CA GetVendorPropCodes 0x90CB AfAndCaptureRecInSdram 0x90CC GetPicCtrlData 0x90CD SetPicCtrlData 0x90CE DeleteCustomPicCtrl 0x90CF GetPicCtrlCapability 0x9201 StartLiveView 0x9202 EndLiveView 0x9203 GetLiveViewImage 0x9204 MfDrive 0x9205 ChangeAfArea 0x9206 AfDriveCancel 0x9207 InitiateCaptureRecInMedia 0x9209 GetVendorStorageIDs 0x920A StartMovieRecInCard 0x920B EndMovieRec 0x920C TerminateCapture 0x9400 GetPartialObjectHighSpeed 0x9407 SetTransferListLock 0x9408 GetTransferList 0x9409 NotifyFileAcquisitionStart 0x940A NotifyFileAcquisitionEnd 0x940B GetSpecificSizeObject 0x9801 GetObjectPropsSupported 0x9802 GetObjectPropDesc 0x9803 GetObjectPropValue 0x9805 GetObjectPropList """ def __init__(self, data=None, cmd=None, param1=None, param2=None, param3=None, param4=None, param5=None): super(PtpIpCmdRequest, self).__init__() self.cmdtype = struct.pack('I', 0x06) self.unkown = struct.pack('I', 0x01) self.ptp_cmd = cmd self.param1 = param1 self.param2 = param2 self.param3 = param3 self.param4 = param4 self.param5 = param5 # Todo: Transaction ID generieren self.transaction_id = struct.pack('I', 0x06) self.args = '' if self.param1 is not None: self.args = self.args + struct.pack('L', self.param1) if self.param2 is not None: self.args = self.args + struct.pack('L', self.param2) if self.param3 is not None: self.args = self.args + struct.pack('L', self.param3) if self.param4 is not None: self.args = self.args + struct.pack('L', self.param4) if self.param5 is not None: self.args = self.args + struct.pack('L', self.param5) def data(self): return self.cmdtype + self.unkown + struct.pack('H', self.ptp_cmd) + \ self.transaction_id + self.args class PtpIpCmdResponse(PtpIpPacket): """ ResponseCode Description 0x2000 Undefined 0x2001 OK 0x2002 General Error 0x2003 Session Not Open 0x2004 Invalid TransactionID 0x2005 Operation Not Supported 0x2006 Parameter Not Supported 0x2007 Incomplete Transfer 0x2008 Invalid StorageID 0x2009 Invalid ObjectHandle 0x200A DeviceProp Not Supported 0x200B Invalid ObjectFormatCode 0x200C Store Full 0x200D Object WriteProtected 0x200E Store Read-Only 0x200F Access Denied 0x2010 No Thumbnail Present 0x2011 SelfTest Failed 0x2012 Partial Deletion 0x2013 Store Not Available 0x2014 Specification By Format Unsupported 0x2015 No Valid ObjectInfo 0x2016 Invalid Code Format 0x2017 Unknown Vendor Code 0x2018 Capture Already Terminated 0x2019 Device Busy 0x201A Invalid ParentObject 0x201B Invalid DeviceProp Format 0x201C Invalid DeviceProp Value 0x201D Invalid Parameter 0x201E Session Already Open 0x201F Transaction Cancelled 0x2020 Specification of Destination Unsupported """ def __init__(self, data=None): super(PtpIpCmdResponse, self).__init__() self.cmdtype = struct.pack('I', 0x07) if data is not None: self.ptp_response_code = struct.unpack('H', data[0:2])[0] self.transaction_id = data[2:6] self.args = data[6:] class PtpIpStartDataPacket(PtpIpPacket): """docstring for Start_Data_Packet""" def __init__(self, data=None): self.cmdtype = struct.pack('I', 0x09) super(PtpIpStartDataPacket, self).__init__() if data is not None: self.transaction_id = data[0:4] self.length = data[4:8] class PtpIpDataPacket(PtpIpPacket): """docstring for Start_Data_Packet""" def __init__(self, data=None): self.cmdtype = struct.pack('I', 0x10) super(PtpIpDataPacket, self).__init__() if data is not None: self.transaction_id = data[0:4] self.data = data[4:] class PtpIpCancelTransaction(PtpIpPacket): """docstring for Start_Data_Packet""" def __init__(self, data=None): self.cmdtype = struct.pack('I', 0x11) super(PtpIpCancelTransaction, self).__init__() if data is not None: self.transaction_id = data[0:4] class PtpIpEndDataPacket(PtpIpPacket): """docstring for Start_Data_Packet""" def __init__(self, data=None): self.cmdtype = struct.pack('I', 0x12) super(PtpIpEndDataPacket, self).__init__() if data is not None: self.transaction_id = data[0:4] print(f"transaction_id: {struct.unpack('I', self.transaction_id)[0]}") self.data = data[4:] class PtpIpPing(PtpIpPacket): """docstring for Start_Data_Packet""" def __init__(self, data=None): self.cmdtype = struct.pack('I', 0x13) super(PtpIpPing, self).__init__() if data is not None: self.data = '' def data(self): return self.cmdtype class PtpIpEvent(object): """ EventCode Description 0x4001 CancelTransaction 0x4002 ObjectAdded 0x4003 ObjectRemoved 0x4004 StoreAdded 0x4005 StoreRemoved 0x4006 DevicePropChanged 0x4007 ObjectInfoChanged 0x4008 DeviceInfoChanged 0x4009 RequestObjectTransfer 0x400A StoreFull 0x400C StorageInfoChanged 0x400D CaptureComplete 0xC101 ObjectAddedInSdram 0xC102 CaptureCompleteRecInSdram 0xC105 RecordingInterrupted """ def __init__(self, event_code, event_parameter): super(PtpIpEvent, self).__init__() self.event_code = int(event_code) self.event_parameter = int(event_parameter) class PtpIpEventFactory(object): """ This is a factory to produce an array of PtpIpEvent objects if it got passd a data reply from a GetEvent request 0x90C7 """ def __init__(self, data): super(PtpIpEventFactory, self).__init__() # create an empty array for the PtpIpEvent object which will be replied self.events = [] # get the amount of events passed from the data passed to the factory amount_of_events = struct.unpack('H', data[0:2])[0] # set an counter and an offset of 2 as the first two bytes are already processed counter = 1 offset = 2 while counter <= amount_of_events: # get the event_code which consists of two bytes event_code = str(struct.unpack('H', data[offset:offset+2])[0]) # get the event_parameter which consists of 4 bytes event_parameter = str(struct.unpack('I', data[offset+2:offset+6])[0]) self.events.append(PtpIpEvent(event_code, event_parameter)) # increase the offset by 6 to get to the next event_code and event_parameter pair offset = offset + 6 counter = counter + 1 def get_events(self): return self.events class PtpIpDataObject(object): """docstring for PtpIpDataObject""" def __init__(self, object_handle, data): super(PtpIpDataObject, self).__init__() self.object_handle = object_handle self.data = data
2.890625
3
examples/morpho.py
jaideep-seth/PyOpenWorm
0
6434
<gh_stars>0 """ How to load morphologies of certain cells from the database. """ #this is an expected failure right now, as morphology is not implemented from __future__ import absolute_import from __future__ import print_function import PyOpenWorm as P from PyOpenWorm.context import Context from PyOpenWorm.worm import Worm from six import StringIO #Connect to database. with P.connect('default.conf') as conn: ctx = Context(ident="http://openworm.org/data", conf=conn.conf).stored #Create a new Cell object to work with. aval = ctx(Worm)().get_neuron_network().aneuron('AVAL') #Get the morphology associated with the Cell. Returns a neuroml.Morphology object. morph = aval._morphology() out = StringIO() morph.export(out, 0) # we're printing it here, but we would normally do something else with the morphology object. print(str(out.read()))
2.515625
3
corehq/apps/app_manager/tests/test_form_workflow.py
kkrampa/commcare-hq
1
6435
<reponame>kkrampa/commcare-hq from __future__ import absolute_import from __future__ import unicode_literals from django.test import SimpleTestCase from corehq.apps.app_manager.const import ( AUTO_SELECT_RAW, AUTO_SELECT_CASE, WORKFLOW_FORM, WORKFLOW_MODULE, WORKFLOW_PREVIOUS, WORKFLOW_ROOT, WORKFLOW_PARENT_MODULE, ) from corehq.apps.app_manager.models import FormDatum, FormLink from corehq.apps.app_manager.suite_xml.post_process.workflow import _replace_session_references_in_stack, CommandId from corehq.apps.app_manager.suite_xml.xml_models import StackDatum from corehq.apps.app_manager.tests.app_factory import AppFactory from corehq.apps.app_manager.tests.util import TestXmlMixin from corehq.apps.app_manager.xpath import session_var class TestFormWorkflow(SimpleTestCase, TestXmlMixin): file_path = ('data', 'form_workflow') def test_basic(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('m0', 'frog') m1, m1f0 = factory.new_basic_module('m1', 'frog') m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="(today() - dob) &lt; 7", form_id=m1f0.unique_id) ] self.assertXmlPartialEqual(self.get_xml('form_link_basic'), factory.app.create_suite(), "./entry[1]") def test_with_case_management_both_update(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('m0', 'frog') factory.form_requires_case(m0f0) m1, m1f0 = factory.new_basic_module('m1', 'frog') factory.form_requires_case(m1f0) m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="(today() - dob) > 7", form_id=m1f0.unique_id) ] self.assertXmlPartialEqual(self.get_xml('form_link_update_case'), factory.app.create_suite(), "./entry[1]") def test_with_case_management_create_update(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('m0', 'frog') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('m1', 'frog') factory.form_requires_case(m1f0) m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath='true()', form_id=m1f0.unique_id) ] self.assertXmlPartialEqual(self.get_xml('form_link_create_update_case'), factory.app.create_suite(), "./entry[1]") def test_with_case_management_multiple_links(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('m0', 'frog') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('m1', 'frog') factory.form_requires_case(m1f0) m1f1 = factory.new_form(m1) factory.form_opens_case(m1f1) m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="a = 1", form_id=m1f0.unique_id), FormLink(xpath="a = 2", form_id=m1f1.unique_id) ] self.assertXmlPartialEqual(self.get_xml('form_link_multiple'), factory.app.create_suite(), "./entry[1]") def test_link_to_child_module(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) factory.form_opens_case(m1f0, case_type='visit', is_subcase=True) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') factory.form_requires_case(m2f0, 'visit', parent_case_type='child') m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="true()", form_id=m1f0.unique_id), ] m1f0.post_form_workflow = WORKFLOW_FORM m1f0.form_links = [ FormLink(xpath="true()", form_id=m2f0.unique_id), ] self.assertXmlPartialEqual(self.get_xml('form_link_tdh'), factory.app.create_suite(), "./entry") def test_manual_form_link(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) factory.form_opens_case(m1f0, case_type='visit', is_subcase=True) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') factory.form_requires_case(m2f0, 'visit', parent_case_type='child') m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="true()", form_id=m1f0.unique_id, datums=[ FormDatum(name='case_id', xpath="instance('commcaresession')/session/data/case_id_new_child_0") ]), ] m1f0.post_form_workflow = WORKFLOW_FORM m1f0.form_links = [ FormLink(xpath="true()", form_id=m2f0.unique_id, datums=[ FormDatum(name='case_id', xpath="instance('commcaresession')/session/data/case_id"), FormDatum(name='case_id_load_visit_0', xpath="instance('commcaresession')/session/data/case_id_new_visit_0"), ]), ] self.assertXmlPartialEqual(self.get_xml('form_link_tdh'), factory.app.create_suite(), "./entry") def test_manual_form_link_with_fallback(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) factory.form_opens_case(m1f0, case_type='visit', is_subcase=True) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') factory.form_requires_case(m2f0, 'visit', parent_case_type='child') m0f0.post_form_workflow = WORKFLOW_FORM m0f0.form_links = [ FormLink(xpath="true()", form_id=m1f0.unique_id, datums=[ FormDatum(name='case_id', xpath="instance('commcaresession')/session/data/case_id_new_child_0") ]), ] m1f0.post_form_workflow = WORKFLOW_FORM condition_for_xpath = "instance('casedb')/casedb/case[@case_id = " \ "instance('commcaresession')/session/data/case_id]/prop = 'value'" m1f0.form_links = [ FormLink(xpath="true()", form_id=m2f0.unique_id, datums=[ FormDatum(name='case_id', xpath="instance('commcaresession')/session/data/case_id"), FormDatum(name='case_id_load_visit_0', xpath="instance('commcaresession')/session/data/case_id_new_visit_0"), ]), FormLink(xpath=condition_for_xpath, form_id=m2f0.unique_id, datums=[ FormDatum(name='case_id', xpath="instance('commcaresession')/session/data/case_id"), FormDatum(name='case_id_load_visit_0', xpath="instance('commcaresession')/session/data/case_id_new_visit_0"), ]), ] m1f0.post_form_workflow_fallback = WORKFLOW_PREVIOUS self.assertXmlPartialEqual(self.get_xml('form_link_tdh_with_fallback_previous'), factory.app.create_suite(), "./entry") m1f0.post_form_workflow_fallback = WORKFLOW_MODULE self.assertXmlPartialEqual(self.get_xml('form_link_tdh_with_fallback_module'), factory.app.create_suite(), "./entry") m1f0.post_form_workflow_fallback = WORKFLOW_ROOT self.assertXmlPartialEqual(self.get_xml('form_link_tdh_with_fallback_root'), factory.app.create_suite(), "./entry") def test_reference_to_missing_session_variable_in_stack(self): # http://manage.dimagi.com/default.asp?236750 # # Stack create blocks do not update the session after each datum # so items put into the session in one step aren't available later steps # # <datum id="case_id_A" value="instance('commcaresession')/session/data/case_id_new_A"/> # - <datum id="case_id_B" value="instance('casedb')/casedb/case[@case_id=instance('commcaresession')/session/data/case_id_A]/index/host"/> # + <datum id="case_id_B" value="instance('casedb')/casedb/case[@case_id=instance('commcaresession')/session/data/case_id_new_A]/index/host"/> # # in the above example ``case_id_A`` is being added to the session and then # later referenced. However since the session doesn't get updated # the value isn't available in the session. # # To fix this we need to replace any references to previous variables with the full xpath which # that session variable references. # # See corehq.apps.app_manager.suite_xml.post_process.workflow._replace_session_references_in_stack factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('person registration', 'person') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_advanced_module('episode registration', 'episode') factory.form_requires_case(m1f0, case_type='person') factory.form_opens_case(m1f0, case_type='episode', is_subcase=True, is_extension=True) m2, m2f0 = factory.new_advanced_module('tests', 'episode') factory.form_requires_case(m2f0, 'episode') factory.advanced_form_autoloads(m2f0, AUTO_SELECT_CASE, 'host', 'load_episode_0') m1f0.post_form_workflow = WORKFLOW_FORM m1f0.form_links = [ FormLink(xpath="true()", form_id=m2f0.unique_id, datums=[ FormDatum(name='case_id_load_episode_0', xpath="instance('commcaresession')/session/data/case_id_new_episode_0") ]), ] self.assertXmlPartialEqual(self.get_xml('form_link_enikshay'), factory.app.create_suite(), "./entry") def test_return_to_parent_module(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) factory.form_opens_case(m1f0, case_type='visit', is_subcase=True) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') factory.form_requires_case(m2f0, 'visit', parent_case_type='child') m2f0.post_form_workflow = WORKFLOW_PARENT_MODULE expected = """ <partial> <stack> <create> <command value="'m1'"/> <datum id="case_id" value="instance('commcaresession')/session/data/case_id"/> <datum id="case_id_new_visit_0" value="uuid()"/> </create> </stack> </partial> """ self.assertXmlPartialEqual(expected, factory.app.create_suite(), "./entry[3]/stack") def test_return_to_child_module(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) factory.form_opens_case(m1f0, case_type='visit', is_subcase=True) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') factory.form_requires_case(m2f0, 'visit', parent_case_type='child') m2f0.post_form_workflow = WORKFLOW_MODULE expected = """ <partial> <stack> <create> <command value="'m1'"/> <datum id="case_id" value="instance('commcaresession')/session/data/case_id"/> <datum id="case_id_new_visit_0" value="uuid()"/> <command value="'m2'"/> </create> </stack> </partial> """ self.assertXmlPartialEqual(expected, factory.app.create_suite(), "./entry[3]/stack") def test_link_to_form_in_parent_module(self): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('enroll child', 'child') factory.form_opens_case(m0f0) m1, m1f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m1f0) m2, m2f0 = factory.new_advanced_module('visit history', 'visit', parent_module=m1) factory.form_requires_case(m2f0, 'child') # link to child -> edit child m2f0.post_form_workflow = WORKFLOW_FORM m2f0.form_links = [ FormLink(xpath="true()", form_id=m1f0.unique_id), ] self.assertXmlPartialEqual(self.get_xml('form_link_child_modules'), factory.app.create_suite(), "./entry[3]") def test_form_links_submodule(self): # Test that when linking between two forms in a submodule we match up the # session variables between the source and target form correctly factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('child visit', 'child') factory.form_requires_case(m0f0) factory.form_opens_case(m0f0, 'visit', is_subcase=True) m1, m1f0 = factory.new_advanced_module('visit histroy', 'visit', parent_module=m0) factory.form_requires_case(m1f0, 'child') factory.form_requires_case(m1f0, 'visit', parent_case_type='child') m1f1 = factory.new_form(m1) factory.form_requires_case(m1f1, 'child') factory.form_requires_case(m1f1, 'visit', parent_case_type='child') m1f0.post_form_workflow = WORKFLOW_FORM m1f0.form_links = [ FormLink(xpath="true()", form_id=m1f1.unique_id), ] self.assertXmlPartialEqual(self.get_xml('form_link_submodule'), factory.app.create_suite(), "./entry") def _build_workflow_app(self, mode): factory = AppFactory(build_version='2.9.0') m0, m0f0 = factory.new_basic_module('m0', '') factory.new_form(m0) m1, m1f0 = factory.new_basic_module('m1', 'patient') m1f1 = factory.new_form(m1) factory.form_opens_case(m1f0) factory.form_requires_case(m1f1) m2, m2f0 = factory.new_basic_module('m2', 'patient') m2f1 = factory.new_form(m2) factory.form_requires_case(m2f0) factory.form_requires_case(m2f1) m3, m3f0 = factory.new_basic_module('m3', 'child') m3f1 = factory.new_form(m3) factory.form_requires_case(m3f0, parent_case_type='patient') factory.form_requires_case(m3f1) m4, m4f0 = factory.new_advanced_module('m4', 'patient') factory.form_requires_case(m4f0, case_type='patient') factory.form_requires_case(m4f0, case_type='patient') m4f1 = factory.new_form(m4) factory.form_requires_case(m4f1, case_type='patient') factory.form_requires_case(m4f1, case_type='patient') factory.form_requires_case(m4f1, case_type='patient') m4f2 = factory.new_form(m4) factory.form_requires_case(m4f2, case_type='patient') factory.form_requires_case(m4f2, case_type='patient') factory.advanced_form_autoloads(m4f2, AUTO_SELECT_RAW, 'case_id') m5, m5f0 = factory.new_basic_module('m5', 'patient', parent_module=m1) factory.form_requires_case(m5f0) for module in factory.app.get_modules(): for form in module.get_forms(): form.post_form_workflow = mode return factory.app def test_form_workflow_previous(self): app = self._build_workflow_app(WORKFLOW_PREVIOUS) self.assertXmlPartialEqual(self.get_xml('suite-workflow-previous'), app.create_suite(), "./entry") def test_form_workflow_module(self): app = self._build_workflow_app(WORKFLOW_MODULE) self.assertXmlPartialEqual(self.get_xml('suite-workflow-module'), app.create_suite(), "./entry") def test_form_workflow_module_in_root(self): app = self._build_workflow_app(WORKFLOW_PREVIOUS) for m in [1, 2]: module = app.get_module(m) module.put_in_root = True self.assertXmlPartialEqual(self.get_xml('suite-workflow-module-in-root'), app.create_suite(), "./entry") def test_form_workflow_root(self): app = self._build_workflow_app(WORKFLOW_ROOT) self.assertXmlPartialEqual(self.get_xml('suite-workflow-root'), app.create_suite(), "./entry") class TestReplaceSessionRefs(SimpleTestCase): def test_replace_session_references_in_stack(self): children = [ CommandId('m0'), StackDatum(id='a', value=session_var('new_a')), StackDatum(id='b', value=session_var('new_b')), StackDatum(id='c', value="instance('casedb')/case/[@case_id = {a}]/index/parent".format(a=session_var('a'))), StackDatum(id='d', value="if({c}, {c}, {a}]".format(a=session_var('a'), c=session_var('c'))) ] clean = _replace_session_references_in_stack(children) clean_raw = [] for child in clean: if isinstance(child, CommandId): clean_raw.append(child.id) else: clean_raw.append((child.id, child.value)) new_c = "instance('casedb')/case/[@case_id = {a}]/index/parent".format(a=session_var('new_a')) self.assertEqual(clean_raw, [ 'm0', ('a', session_var('new_a')), ('b', session_var('new_b')), ('c', new_c), ('d', "if({c}, {c}, {a}]".format(a=session_var('new_a'), c=new_c)) ])
1.890625
2
tensorflow/python/compiler/tensorrt/model_tests/model_handler.py
sboshin/tensorflow
0
6436
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Loads, converts, and runs sample models.""" import abc import collections import functools import tempfile import time from typing import Callable, Iterable, List, Mapping, Optional, Sequence, Union from absl import logging import numpy as np from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.python.client import session from tensorflow.python.compiler.tensorrt import trt_convert as trt from tensorflow.python.framework import convert_to_constants from tensorflow.python.framework import dtypes as tf_dtypes from tensorflow.python.framework import importer from tensorflow.python.framework import ops as framework_ops from tensorflow.python.ops import random_ops from tensorflow.python.saved_model import load as saved_model_load from tensorflow.python.saved_model import loader as saved_model_loader from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants # pylint: disable=bad-whitespace ### Helper Functions def _get_concrete_tensor_shape( tensor_shape: tensor_shape_pb2.TensorShapeProto, batch_size: Optional[int] = None) -> Sequence[int]: """Gets a concrete tensor shape without dynamic dimensions.""" if tensor_shape.unknown_rank: raise ValueError("Cannot generates random tensors for unknown rank!") shape = [dim.size for dim in tensor_shape.dim] if not shape: raise ValueError("The tensor cannot have a rank of 0!") if shape[0] < 0: if batch_size is None or batch_size <= 0: raise ValueError("Must provide a valid batch size " "as the tensor has a dynamic batch size!") shape[0] = batch_size if any(filter(lambda x: x < 0, shape)): raise ValueError("Cannot have dynamic dimensions except for batch size!") return shape def _generate_random_tensor_v1(tensor_info: meta_graph_pb2.TensorInfo, batch_size: Optional[int] = None) -> np.ndarray: """Generates a random tensor based on the data type and tensor shape.""" dtype = tf_dtypes.as_dtype(tensor_info.dtype) shape = _get_concrete_tensor_shape(tensor_info.tensor_shape, batch_size) with session.Session(): return random_ops.random_uniform( shape=shape, dtype=dtype, name=tensor_info.name.split(":")[0]).eval() def _generate_random_tensor_v2( tensor: framework_ops.Tensor, batch_size: Optional[int] = None) -> framework_ops.Tensor: """Generates a random tensor based on the data type and tensor shape.""" shape = _get_concrete_tensor_shape(tensor.shape.as_proto(), batch_size) return random_ops.random_uniform( shape=shape, dtype=tensor.dtype, name=tensor.name) # Models are repeatedly loaded for different TensorRT conversion settings. # Using cache can reduce I/O. @functools.lru_cache() def load_meta_graph( saved_model_dir: str, saved_model_tags: str, saved_model_signature_key: str) -> meta_graph_pb2.MetaGraphDef: """Loads a `tf.MetaGraphDef` in TF1.""" with session.Session() as sess: meta_graph = saved_model_loader.load( sess=sess, export_dir=saved_model_dir, tags=saved_model_tags, ) output_node_names = [ tensor.name.split(":")[0] for tensor in meta_graph.signature_def[saved_model_signature_key].outputs.values() ] graph_def = ( convert_to_constants.convert_variables_to_constants_from_session_graph( sess, meta_graph.graph_def, output_node_names)) meta_graph.graph_def.CopyFrom(graph_def) return meta_graph @functools.lru_cache() def load_graph_func(saved_model_dir: str, saved_model_tags: str, saved_model_signature_key: str): """Loads a graph function in TF2.""" imported = saved_model_load.load( export_dir=saved_model_dir, tags=saved_model_tags) graph_func = imported.signatures[saved_model_signature_key] return convert_to_constants.convert_variables_to_constants_v2(graph_func) ### Test Classes class TestResult( collections.namedtuple("TestResult", ["outputs", "latency", "trt_convert_params"])): def __new__(cls, outputs: Mapping[str, np.ndarray], latency: List[float], trt_convert_params: trt.TrtConversionParams = None): return super(TestResult, cls).__new__(cls, outputs, latency, trt_convert_params) class ModelConfig( collections.namedtuple("ModelConfig", [ "saved_model_dir", "saved_model_tags", "saved_model_signature_key", "default_batch_size" ])): """Configurations for test models.""" def __new__(cls, saved_model_dir: str, saved_model_tags: Sequence[str] = (tag_constants.SERVING,), saved_model_signature_key: str = ( signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY), default_batch_size: int = 1): return super(ModelConfig, cls).__new__(cls, saved_model_dir, saved_model_tags, saved_model_signature_key, default_batch_size) class TestResultCollection( collections.namedtuple("TestResultCollection", ["results", "config"])): def __new__(cls, config: ModelConfig, results: Sequence[TestResult] = tuple()): return super(TestResultCollection, cls).__new__(cls, config, results) class _ModelHandlerBase(metaclass=abc.ABCMeta): """Base class for running a model.""" def __init__(self, model_config: ModelConfig): self._model_config = model_config def __str__(self) -> str: return str(self._model_config) def __repr__(self) -> str: return "{}({})".format(self.__class__.__name__, str(self)) @property def model_config(self) -> ModelConfig: return self._model_config @property def input_tensort_names(self) -> Sequence[str]: """Names of input tensors.""" @property def output_tensor_names(self) -> Sequence[str]: """Names of output tensors.""" @abc.abstractmethod def generate_random_inputs( self, batch_size: Optional[int] = None ) -> Mapping[str, Union[np.ndarray, framework_ops.Tensor]]: """Generates mapping from names to input tensors.""" @abc.abstractmethod def run(self, inputs=None, warmup_iterations: int = 10, benchmark_iterations: int = 100, allow_to_use_gpu: bool = False) -> TestResult: """Runs the model with provided or randomly generated input tensors. Args: inputs: Mapping from names to input ndarrays in TF1, or a sequence of tensors in TF2. If `None`, ramdomly generated inputs will be used instead. warmup_iterations: Number of inferences to warm up the runtime. benchmark_iterations: Number of inferences to measure the latency. allow_to_use_gpu: Whether it is allowed to use GPU or not. Returns: `TestResult` summarizing timing and numerics information. """ class ModelHandlerV1(_ModelHandlerBase): """Runs a model in TF1.""" @property def meta_graph(self) -> meta_graph_pb2.MetaGraphDef: return load_meta_graph( saved_model_dir=self.model_config.saved_model_dir, saved_model_tags=self.model_config.saved_model_tags, saved_model_signature_key=self.model_config.saved_model_signature_key) @property def input_tensor_info(self) -> Mapping[str, meta_graph_pb2.TensorInfo]: return self.meta_graph.signature_def[ self.model_config.saved_model_signature_key].inputs @property def output_tensor_info(self) -> Mapping[str, meta_graph_pb2.TensorInfo]: return self.meta_graph.signature_def[ self.model_config.saved_model_signature_key].outputs @property def input_tensort_names(self) -> Sequence[str]: return [info.name for info in self.input_tensor_info.values()] @property def output_tensor_names(self) -> Sequence[str]: return [info.name for info in self.output_tensor_info.values()] def generate_random_inputs(self, batch_size: Optional[int] = None ) -> Mapping[str, np.ndarray]: batch_size = batch_size or self.model_config.default_batch_size return { tensor_info.name: _generate_random_tensor_v1(tensor_info, batch_size) for tensor_info in self.input_tensor_info.values() } def run(self, inputs: Optional[Mapping[str, np.ndarray]] = None, warmup_iterations=10, benchmark_iterations=100, allow_to_use_gpu=False) -> TestResult: inputs = inputs or self.generate_random_inputs() config_proto = None if not allow_to_use_gpu: config_proto = config_pb2.ConfigProto(device_count={"CPU": 1, "GPU": 0}) with session.Session(config=config_proto) as sess: importer.import_graph_def(self.meta_graph.graph_def) try: for _ in range(warmup_iterations): sess.run(fetches=self.output_tensor_names, feed_dict=inputs) latency = [] for _ in range(benchmark_iterations): before = time.time() outputs = sess.run(fetches=self.output_tensor_names, feed_dict=inputs) latency.append(time.time() - before) except Exception as exc: raise RuntimeError("Failed to run model inference! " "Model information: {}".format(str(self))) from exc outputs = dict(zip(self.output_tensor_names, outputs)) return TestResult(latency=latency, outputs=outputs if inputs else None) class ModelHandlerV2(_ModelHandlerBase): """Runs a model in TF2.""" @property def graph_func(self): graph_func = load_graph_func( saved_model_dir=self.model_config.saved_model_dir, saved_model_tags=self.model_config.saved_model_tags, saved_model_signature_key=self.model_config.saved_model_signature_key) return convert_to_constants.convert_variables_to_constants_v2(graph_func) @property def input_tensor_names(self): return [tensor.name for tensor in self.graph_func.inputs] @property def output_tensor_names(self): return [tensor.name for tensor in self.graph_func.outputs] def generate_random_inputs(self, batch_size: Optional[int] = None ) -> Sequence[framework_ops.Tensor]: batch_size = batch_size or self.model_config.default_batch_size return [ _generate_random_tensor_v2(tensor, batch_size) for tensor in self.graph_func.inputs ] def run(self, inputs: Optional[Sequence[framework_ops.Tensor]] = None, warmup_iterations=10, benchmark_iterations=100, allow_to_use_gpu=False) -> TestResult: inputs = inputs or self.generate_random_inputs() try: device = "/device:gpu:0" if allow_to_use_gpu else "/device:cpu:0" with framework_ops.device(device): for _ in range(warmup_iterations): self.graph_func(*inputs) latency = [] for _ in range(benchmark_iterations): before = time.time() outputs = self.graph_func(*inputs) latency.append(time.time() - before) except Exception as exc: raise RuntimeError("Failed to run model inference! " "Model information: {}".format(str(self))) from exc outputs = dict(zip(self.output_tensor_names, outputs)) return TestResult(latency=latency, outputs=outputs if inputs else None) class _TrtModelHandlerBase(_ModelHandlerBase): """Base class for converting and running a model.""" def __init__( self, model_config: ModelConfig, trt_convert_params: trt.TrtConversionParams, ): super(_TrtModelHandlerBase, self).__init__(model_config) self._trt_convert_params = trt_convert_params self._converter = self._create_converter(trt_convert_params) logging.info("Converting to TensorRT!") self._check_conversion(self._converter.convert()) self._conversion_is_saved = False @abc.abstractmethod def _create_converter(self, trt_convert_params: trt.TrtConversionParams): """Creates a converter for the corresponding TF version.""" @abc.abstractmethod def _check_conversion(self, conversion_output): """Checks if conversion output has any TensorRT engines.""" def _check_contains_trt_engine(self, graph_def: graph_pb2.GraphDef): if "TRTEngineOp" not in [node.op for node in graph_def.node]: raise RuntimeError("Failed to convert to TensorRT! " "Model Information: {}".format(str(self))) def __str__(self) -> str: base = super(_TrtModelHandlerBase, self).__str__() return "{}, TrtConversionParams: {}".format(base, str(self._trt_convert_params)) @property def trt_convert_params(self) -> trt.TrtConversionParams: return self._trt_convert_params def save(self, output_saved_model_dir: Optional[str] = None, overwrite=True) -> None: """Saves a TensorRT converted model.""" if self._conversion_is_saved and not overwrite: return output_saved_model_dir = output_saved_model_dir or tempfile.mkdtemp() logging.info("Saving TensorRT model to %s!", output_saved_model_dir) self._converter.save(output_saved_model_dir) self._model_config = self.model_config._replace( saved_model_dir=output_saved_model_dir) self._conversion_is_saved = True class TrtModelHandlerV1(_TrtModelHandlerBase, ModelHandlerV1): """Converts a TF1 model with TensorRT and runs the converted model.""" def _create_converter(self, trt_convert_params: trt.TrtConversionParams): conversion_nodes_denylist = self.output_tensor_names return trt.TrtGraphConverter( input_saved_model_dir=self.model_config.saved_model_dir, input_saved_model_tags=self.model_config.saved_model_tags, input_saved_model_signature_key=( self.model_config.saved_model_signature_key), nodes_denylist=conversion_nodes_denylist, max_batch_size=trt_convert_params.max_batch_size, max_workspace_size_bytes=trt_convert_params.max_workspace_size_bytes, precision_mode=trt_convert_params.precision_mode, minimum_segment_size=trt_convert_params.minimum_segment_size, is_dynamic_op=trt_convert_params.is_dynamic_op, maximum_cached_engines=trt_convert_params.maximum_cached_engines, use_calibration=trt_convert_params.use_calibration, ) _check_conversion = _TrtModelHandlerBase._check_contains_trt_engine def run(self, inputs: Optional[Mapping[str, np.ndarray]] = None, warmup_iterations=10, benchmark_iterations=100) -> TestResult: self.save(overwrite=False) logging.info("Running with TensorRT!") test_result = ModelHandlerV1.run( self, inputs, warmup_iterations, benchmark_iterations, allow_to_use_gpu=True) return test_result._replace(trt_convert_params=self._trt_convert_params) class TrtModelHandlerV2(_TrtModelHandlerBase, ModelHandlerV2): """Converts a TF2 model with TensorRT and runs the converted model.""" def _create_converter(self, trt_convert_params: trt.TrtConversionParams): return trt.TrtGraphConverterV2( input_saved_model_dir=self.model_config.saved_model_dir, input_saved_model_tags=self.model_config.saved_model_tags, input_saved_model_signature_key=( self.model_config.saved_model_signature_key), conversion_params=trt_convert_params) def _check_conversion(self, graph_func): graph_def = graph_func.graph.as_graph_def() self._check_contains_trt_engine(graph_def) def run(self, inputs: Optional[Sequence[framework_ops.Tensor]] = None, warmup_iterations=10, benchmark_iterations=100) -> TestResult: self.save(overwrite=False) logging.info("Running with TensorRT!") test_result = ModelHandlerV2.run( self, inputs, warmup_iterations, benchmark_iterations, allow_to_use_gpu=True) return test_result._replace(trt_convert_params=self._trt_convert_params) class _ModelHandlerManagerBase(metaclass=abc.ABCMeta): """Manages a series of ModelHandlers for aggregrated testing/benchmarking.""" def __init__( self, model_config: ModelConfig, default_trt_convert_params: trt.TrtConversionParams, trt_convert_params_updater: Callable[[trt.TrtConversionParams], Iterable[trt.TrtConversionParams]]): self._ori_model = self.model_handler_cls(model_config) self._trt_models = [] for trt_convert_params in trt_convert_params_updater( default_trt_convert_params): trt_model = self.trt_model_handler_cls( model_config, trt_convert_params=trt_convert_params) self._trt_models.append(trt_model) self._result_collection = TestResultCollection( results=[], config=model_config) def __str__(self) -> str: return "Input Model: {}".format(str(self._ori_model)) def __repr__(self) -> str: return "{}({})".format(self.__class__.__name__, str(self)) @property @classmethod @abc.abstractmethod def model_handler_cls(cls): """The modle handler class. ModelHandleV1/ModelHandlerV2.""" @property @classmethod @abc.abstractmethod def trt_model_handler_cls(cls): """The TensorRTmodle handler class. TrtModelHandleV1/TrtModelHandlerV2.""" @property def model_config(self): return self._ori_model.model_config def generate_random_inputs(self, batch_size: Optional[int] = None): return self._ori_model.generate_random_inputs(batch_size) def run(self, inputs=None, warmup_iterations: int = 10, benchmark_iterations: int = 100) -> TestResultCollection: """Runs model inference with provided or randomly generated input tensors. Args: inputs: Mapping from names to input ndarrays in TF1. Or a sequence of tensors in TF2. If `None`, ramdomly generated input tensors will be used instead. warmup_iterations: Number of inferences to warm up the runtime. benchmark_iterations: Number of inferences to measure the latency. Returns: `TestResultCollection` summarizing timing and numerics information for different TensorRT conversion settings. """ inputs = inputs or self.generate_random_inputs() results = [ model.run(inputs, warmup_iterations, benchmark_iterations) for model in [self._ori_model] + self._trt_models ] return self._result_collection._replace(results=results) class ModelHandlerManagerV1(_ModelHandlerManagerBase): """Manages a series of ModelHandlers for aggregrated testing/benchmarking in TF1.""" model_handler_cls = ModelHandlerV1 trt_model_handler_cls = TrtModelHandlerV1 class ModelHandlerManagerV2(_ModelHandlerManagerBase): """Manages a series of ModelHandlers for aggregrated testing/benchmarking in TF2.""" model_handler_cls = ModelHandlerV2 trt_model_handler_cls = TrtModelHandlerV2
1.53125
2
Python/Python Evaluation/solution.py
arpitran/HackerRank_solutions
0
6437
<filename>Python/Python Evaluation/solution.py eval(input("Enter a expression "))
2.390625
2
kpca_iris.py
syamkakarla98/Kernel-PCA-Using-Different-Kernels-With-Classification
10
6438
<gh_stars>1-10 import numpy as np import matplotlib.pyplot as plt import pandas as pd # load dataset into Pandas DataFrame df = pd.read_csv("D:\Python_programs\ML\Iris Data\KPCA\iris.csv") #df.to_csv('iris.csv') from sklearn.preprocessing import StandardScaler features = ['sepal length', 'sepal width', 'petal length', 'petal width'] # Separating out the features x = df.loc[:, features].values # Separating out the target y = df.loc[:,['target']].values # Standardizing the features x = StandardScaler().fit_transform(x) from sklearn.decomposition import KernelPCA ## Finding the principle components # KERNELS : linear,rbf,poly # def Kernel_Pca(ker): kpca = KernelPCA(n_components=4, kernel=ker, gamma=15) x_kpca = kpca.fit_transform(x) kpca_transform = kpca.fit_transform(x) explained_variance = np.var(kpca_transform, axis=0) ev = explained_variance / np.sum(explained_variance) #--------- Bar Graph for Explained Variance Ratio ------------ plt.bar([1,2,3,4],list(ev*100),label='Principal Components',color='b') plt.legend() plt.xlabel('Principal Components ') #---------------------- n=list(ev*100) pc=[] for i in range(len(n)): n[i]=round(n[i],4) pc.append('PC-'+str(i+1)+'('+str(n[i])+')') #---------------------- plt.xticks([1,2,3,4],pc, fontsize=7, rotation=30) plt.ylabel('Variance Ratio') plt.title('Variance Ratio of IRIS Dataset using kernel:'+str(ker)) plt.show() #--------------------------------------------------- # *Since the initial 2 principal components have high variance. # so, we select pc-1 and pc-2. #--------------------------------------------------- kpca = KernelPCA(n_components=2, kernel=ker, gamma=15) x_kpca = kpca.fit_transform(x) principalComponents = kpca.fit_transform(x) principalDf = pd.DataFrame(data = principalComponents , columns = ['PC-1', 'PC-2']) # Adding lables finalDf = pd.concat([principalDf, df[['target']]], axis = 1) # Plotting pc1 & pc2 fig = plt.figure(figsize = (8,8)) ax = fig.add_subplot(1,1,1) ax.set_xlabel('PC-1', fontsize = 15) ax.set_ylabel('PC-2', fontsize = 15) ax.set_title('KPCA on IRIS Dataset using kernel:'+str(ker), fontsize = 20) targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'] colors = ['r', 'g', 'b'] for target, color in zip(targets,colors): indicesToKeep = finalDf['target'] == target ax.scatter(finalDf.loc[indicesToKeep, 'PC-1'] , finalDf.loc[indicesToKeep, 'PC-2'] , c = color , s = 30) ax.legend(targets) ax.grid() plt.show() # FOR SHOWING THE PLOT #------------------- SAVING DATA INTO CSV FILE ------------ finalDf.to_csv('iris_after_KPCA_using_'+str(ker)+'.csv') #------------------------------------------------------ k=['linear','rbf','poly'] for i in k: Kernel_Pca(i)
3.171875
3
Python/libraries/recognizers-date-time/recognizers_date_time/date_time/italian/dateperiod_extractor_config.py
felaray/Recognizers-Text
0
6439
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from typing import List, Pattern from recognizers_text.utilities import RegExpUtility from recognizers_number.number import BaseNumberParser from recognizers_number.number.italian.extractors import ItalianIntegerExtractor, ItalianCardinalExtractor from recognizers_number.number.italian.parsers import ItalianNumberParserConfiguration from ...resources.base_date_time import BaseDateTime from ...resources.italian_date_time import ItalianDateTime from ..extractors import DateTimeExtractor from ..base_duration import BaseDurationExtractor from ..base_date import BaseDateExtractor from ..base_dateperiod import DatePeriodExtractorConfiguration, MatchedIndex from .duration_extractor_config import ItalianDurationExtractorConfiguration from .date_extractor_config import ItalianDateExtractorConfiguration from recognizers_text.extractor import Extractor from recognizers_number import ItalianOrdinalExtractor, BaseNumberExtractor, ItalianCardinalExtractor class ItalianDatePeriodExtractorConfiguration(DatePeriodExtractorConfiguration): @property def previous_prefix_regex(self) -> Pattern: return self._previous_prefix_regex @property def check_both_before_after(self) -> bool: return self._check_both_before_after @property def simple_cases_regexes(self) -> List[Pattern]: return self._simple_cases_regexes @property def illegal_year_regex(self) -> Pattern: return self._illegal_year_regex @property def year_regex(self) -> Pattern: return self._year_regex @property def till_regex(self) -> Pattern: return self._till_regex @property def followed_unit(self) -> Pattern: return self._followed_unit @property def number_combined_with_unit(self) -> Pattern: return self._number_combined_with_unit @property def past_regex(self) -> Pattern: return self._past_regex @property def decade_with_century_regex(self) -> Pattern: return self._decade_with_century_regex @property def future_regex(self) -> Pattern: return self._future_regex @property def week_of_regex(self) -> Pattern: return self._week_of_regex @property def month_of_regex(self) -> Pattern: return self._month_of_regex @property def date_unit_regex(self) -> Pattern: return self._date_unit_regex @property def in_connector_regex(self) -> Pattern: return self._in_connector_regex @property def range_unit_regex(self) -> Pattern: return self._range_unit_regex @property def date_point_extractor(self) -> DateTimeExtractor: return self._date_point_extractor @property def integer_extractor(self) -> BaseNumberExtractor: return self._integer_extractor @property def number_parser(self) -> BaseNumberParser: return self._number_parser @property def duration_extractor(self) -> DateTimeExtractor: return self._duration_extractor @property def now_regex(self) -> Pattern: return self._now_regex @property def future_suffix_regex(self) -> Pattern: return self._future_suffix_regex @property def ago_regex(self) -> Pattern: return self._ago_regex @property def later_regex(self) -> Pattern: return self._later_regex @property def less_than_regex(self) -> Pattern: return self._less_than_regex @property def more_than_regex(self) -> Pattern: return self._more_than_regex @property def duration_date_restrictions(self) -> [str]: return self._duration_date_restrictions @property def year_period_regex(self) -> Pattern: return self._year_period_regex @property def month_num_regex(self) -> Pattern: return self._month_num_regex @property def century_suffix_regex(self) -> Pattern: return self._century_suffix_regex @property def ordinal_extractor(self) -> BaseNumberExtractor: return self._ordinal_extractor @property def cardinal_extractor(self) -> Extractor: return self._cardinal_extractor @property def time_unit_regex(self) -> Pattern: return self._time_unit_regex @property def within_next_prefix_regex(self) -> Pattern: return self._within_next_prefix_regex @property def range_connector_regex(self) -> Pattern: return self._range_connector_regex @property def day_regex(self) -> Pattern: return self._day_regex @property def week_day_regex(self) -> Pattern: return self._week_day_regex @property def relative_month_regex(self) -> Pattern: return self._relative_month_regex @property def month_suffix_regex(self) -> Pattern: return self._month_suffix_regex @property def past_prefix_regex(self) -> Pattern: return self._past_prefix_regex @property def next_prefix_regex(self) -> Pattern: return self._next_prefix_regex @property def this_prefix_regex(self) -> Pattern: return self._this_prefix_regex @property def which_week_regex(self) -> Pattern: return self._which_week_regex @property def rest_of_date_regex(self) -> Pattern: return self._rest_of_date_regex @property def complex_date_period_regex(self) -> Pattern: return self._complex_date_period_regex @property def week_day_of_month_regex(self) -> Pattern: return self._week_day_of_month_regex @property def all_half_year_regex(self) -> Pattern: return self._all_half_year_regex def __init__(self): self._all_half_year_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.AllHalfYearRegex) self._week_day_of_month_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayOfMonthRegex) self._complex_date_period_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.ComplexDatePeriodRegex) self._rest_of_date_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RestOfDateRegex) self._which_week_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WhichWeekRegex) self._this_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.ThisPrefixRegex) self._next_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.NextSuffixRegex) self._past_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.PastSuffixRegex) self._month_suffix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthSuffixRegex) self._relative_month_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RelativeMonthRegex) self._week_day_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayRegex) self._day_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.DayRegex) self._range_connector_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RangeConnectorRegex) self._time_unit_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.TimeUnitRegex) self._previous_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PastSuffixRegex) self._check_both_before_after = ItalianDateTime.CheckBothBeforeAfter self._simple_cases_regexes = [ RegExpUtility.get_safe_reg_exp(ItalianDateTime.SimpleCasesRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.BetweenRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.OneWordPeriodRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthWithYear), RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthNumWithYear), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearPeriodRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekOfYearRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayOfMonthRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthFrontBetweenRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthFrontSimpleCasesRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.QuarterRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.QuarterRegexYearFront), RegExpUtility.get_safe_reg_exp(ItalianDateTime.SeasonRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.LaterEarlyPeriodRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.WeekWithWeekDayRangeRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearPlusNumberRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.DecadeWithCenturyRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.RelativeDecadeRegex) ] self._check_both_before_after = ItalianDateTime.CheckBothBeforeAfter self._illegal_year_regex = RegExpUtility.get_safe_reg_exp( BaseDateTime.IllegalYearRegex) self._year_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.YearRegex) self._till_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.TillRegex) self._followed_unit = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FollowedDateUnit) self._number_combined_with_unit = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NumberCombinedWithDateUnit) self._past_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PastSuffixRegex) self._future_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NextSuffixRegex) self._week_of_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.WeekOfRegex) self._month_of_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthOfRegex) self._date_unit_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.DateUnitRegex) self._within_next_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.WithinNextPrefixRegex) self._in_connector_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.InConnectorRegex) self._range_unit_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.RangeUnitRegex) self.from_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FromRegex) self.connector_and_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.ConnectorAndRegex) self.before_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.BeforeRegex2) self._date_point_extractor = BaseDateExtractor( ItalianDateExtractorConfiguration()) self._integer_extractor = ItalianIntegerExtractor() self._number_parser = BaseNumberParser( ItalianNumberParserConfiguration()) self._duration_extractor = BaseDurationExtractor( ItalianDurationExtractorConfiguration()) self._now_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NowRegex) self._future_suffix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FutureSuffixRegex ) self._ago_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.AgoRegex ) self._later_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.LaterRegex ) self._less_than_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.LessThanRegex ) self._more_than_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MoreThanRegex ) self._duration_date_restrictions = ItalianDateTime.DurationDateRestrictions self._year_period_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.YearPeriodRegex ) self._month_num_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthNumRegex ) self._century_suffix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.CenturySuffixRegex ) self._ordinal_extractor = ItalianOrdinalExtractor() self._cardinal_extractor = ItalianCardinalExtractor() self._previous_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PreviousPrefixRegex ) self._cardinal_extractor = ItalianCardinalExtractor() # TODO When the implementation for these properties is added, change the None values to their respective Regexps self._time_unit_regex = None def get_from_token_index(self, source: str) -> MatchedIndex: match = self.from_regex.search(source) if match: return MatchedIndex(True, match.start()) return MatchedIndex(False, -1) def get_between_token_index(self, source: str) -> MatchedIndex: match = self.before_regex.search(source) if match: return MatchedIndex(True, match.start()) return MatchedIndex(False, -1) def has_connector_token(self, source: str) -> bool: return not self.connector_and_regex.search(source) is None
2.296875
2
pydbrepo/drivers/sqlite.py
danteay/pydbrepo
2
6440
<filename>pydbrepo/drivers/sqlite.py """SQLite Driver implementation.""" # pylint: disable=R0201 import os import sqlite3 from typing import Any, AnyStr, List, NoReturn, Optional, Tuple from pydbrepo.drivers.driver import Driver class SQLite(Driver): """SQLite Driver connection class. Environment variables: DATABASE_URL: Database file ulr on the system. If it's an in memory database the url should be None or `:memory:` string DATABASE_COMMIT: default('false') Auto commit transaction flag :type url: :param url: Database connection url :param autocommit: Auto commit transactions """ def __init__( self, url: Optional[AnyStr] = None, autocommit: Optional[bool] = None, ): super().__init__() self.__build_connection(url, autocommit) def __build_connection( self, url: Optional[AnyStr] = None, autocommit: Optional[bool] = None, ) -> NoReturn: """Start real driver connection from parameters. :param url: Database connection url :param autocommit: Auto commit transactions """ if url is None: url = ':memory:' if autocommit is None: autocommit = False if os.getenv('DATABASE_URL', None) is not None: url = os.getenv('DATABASE_URL') if os.getenv('DATABASE_COMMIT', None) is not None: autocommit = os.getenv('DATABASE_COMMIT').lower() == "true" self.__url = url self.__conn = sqlite3.connect(url) self.__commit = autocommit @staticmethod def __execute(cursor, sql: AnyStr, *args) -> Any: """Execute query and attempt to replace with arguments. :param cursor: Connection cursor statement :param sql: Raw query to be executed :param args: List of arguments passed to be replaced in query """ if not args: return cursor.execute(sql) return cursor.execute(sql, tuple(args)) def query(self, **kwargs) -> List[Tuple]: """Execute a query and return all values. :param kwargs: Parameters to execute query statement. sql: AnyStr -> SQL query statement args: Optional[Iterable[Any]] -> Object with query replacement values :return List[Tuple]: List of tuple records found by query """ self._validate_params({'sql'}, set(kwargs.keys())) cursor = self.__conn.cursor() _ = self.__execute(cursor, kwargs['sql'], *kwargs.get('args', [])) self.__commit_transaction() res = cursor.fetchall() cursor.close() return res def query_one(self, **kwargs) -> Tuple[Any, ...]: """Execute a query and do not return any result value. :param kwargs: Parameters to execute query statement. sql: AnyStr -> SQL query statement args: Optional[Iterable[Any]] -> Object with query replacement values :return Tuple: Found record """ self._validate_params({'sql'}, set(kwargs.keys())) cursor = self.__conn.cursor() _ = self.__execute(cursor, kwargs['sql'], *kwargs.get('args', [])) self.__commit_transaction() res = cursor.fetchone() cursor.close() return res def query_none(self, **kwargs) -> NoReturn: """Execute a query and do not return any result value. :param kwargs: Parameters to execute query statement. sql: AnyStr -> SQL query statement args: Optional[Iterable[Any]] -> Object with query replacement values """ self._validate_params({'sql'}, set(kwargs.keys())) cursor = self.__conn.cursor() _ = self.__execute(cursor, kwargs['sql'], *kwargs.get('args', [])) self.__commit_transaction() cursor.close() def commit(self) -> NoReturn: """Commit transaction.""" self.__conn.commit() def rollback(self) -> NoReturn: self.__conn.rollback() def close(self) -> NoReturn: """Close current connection.""" self.__conn.close() def get_real_driver(self) -> Any: """Return real mysql driver connection.""" return self.__conn def placeholder(self, **kwargs) -> AnyStr: """Return query place holder.""" return '?' def reset_placeholder(self) -> NoReturn: """Reset place holder status (do nothing)""" def __repr__(self): """Mysql driver representation.""" return f"SQLite({self.__url})" def __commit_transaction(self): """Execute commit operation if the __commit flag is True.""" if self.__commit: self.commit()
3.109375
3
Modules/BatchNormND.py
EmilPi/PuzzleLib
52
6441
<reponame>EmilPi/PuzzleLib import numpy as np from PuzzleLib import Config from PuzzleLib.Backend import gpuarray, Blas from PuzzleLib.Backend.Dnn import batchNormNd, batchNormNdBackward from PuzzleLib.Variable import Variable from PuzzleLib.Modules.Module import ModuleError, Module class BatchNormND(Module): def __init__(self, nd, maps, epsilon=1e-5, initFactor=1.0, minFactor=0.1, sscale=0.01, affine=True, name=None, empty=False, inplace=False): super().__init__(name) self.inplace = inplace if inplace and Config.showWarnings: Config.getLogger().info("Warning: %s is using inplace flag", self) self.maps = maps self.epsilon = epsilon self.initFactor = initFactor self.minFactor = minFactor self.numOfProps = 0 self.affine = affine self.scale, self.bias, self.mean, self.var = None, None, None, None self.savemean, self.saveinvvar, self.scalegrad, self.biasgrad = None, None, None, None if empty: return shape = (1, maps) + self.repeat(1, nd) scale = np.random.normal(1.0, sscale if affine else 0.0, shape).astype(self.calctype) var = np.ones(shape, dtype=self.calctype) self.setVar("scale", Variable(gpuarray.to_gpu(scale))) self.setVar("bias", Variable(gpuarray.zeros(shape, dtype=self.calctype))) self.setAttr("mean", gpuarray.zeros(shape, dtype=self.calctype)) self.setAttr("var", gpuarray.to_gpu(var)) def updateData(self, data): if self.train: if self.inplace: raise ModuleError("%s: using inplace flag in train mode is prohibited" % self) self.numOfProps += 1 factor = max(self.initFactor / self.numOfProps, self.minFactor) self.data, self.savemean, self.saveinvvar = batchNormNd( data, self.scale, self.bias, self.mean, self.var, self.epsilon, factor, False ) else: self.data = batchNormNd( data, self.scale, self.bias, self.mean, self.var, self.epsilon, 0, True, out=data if self.inplace else None ) def updateGrad(self, grad): tup = batchNormNdBackward(self.inData, grad, self.scale, self.savemean, self.saveinvvar, self.epsilon) if self.affine: self.grad, self.scalegrad, self.biasgrad = tup else: self.grad, _, _ = tup def accGradParams(self, grad, scale=1.0, momentum=0.0): if self.affine: Blas.addVectorToVector( self.scalegrad.ravel(), self.vars["scale"].grad.ravel(), out=self.vars["scale"].grad.ravel(), alpha=scale, beta=momentum ) Blas.addVectorToVector( self.biasgrad.ravel(), self.vars["bias"].grad.ravel(), out=self.vars["bias"].grad.ravel(), alpha=scale, beta=momentum ) def dataShapeFrom(self, shape): return shape def gradShapeFrom(self, shape): return shape def reset(self): super().reset() self.savemean, self.saveinvvar = None, None if self.affine: self.scalegrad, self.biasgrad = None, None def calcMode(self, T): if Config.backend == Config.Backend.cuda: if T not in {np.float16, np.float32}: raise ModuleError("Unsupported dtype %s" % T) elif T != np.float32: raise ModuleError("Unsupported dtype %s" % T) self.calctype = T
2.203125
2
python/testData/editing/enterInIncompleteTupleLiteral.after.py
jnthn/intellij-community
2
6442
<filename>python/testData/editing/enterInIncompleteTupleLiteral.after.py xs = ('foo', 'bar', 'baz'<caret>
1.34375
1
model/server/server.py
waltzofpearls/reckon
8
6443
<reponame>waltzofpearls/reckon<filename>model/server/server.py from concurrent import futures from forecaster.prophet import Forecaster as ProphetForecaster from multiprocessing import Event, Process, cpu_count from pythonjsonlogger import jsonlogger import contextlib import grpc import logging import model.api.forecast_pb2_grpc as grpc_lib import os import signal import socket import sys import time class ForecastServicer(ProphetForecaster): def __init__(self, logger): self.logger = logger def pretty_timedelta(self, seconds): seconds = int(seconds) days, seconds = divmod(seconds, 86400) hours, seconds = divmod(seconds, 3600) minutes, seconds = divmod(seconds, 60) if days > 0: return '{:d}d{:d}h{:d}m{:d}s'.format(days, hours, minutes, seconds) elif hours > 0: return '{:d}h{:d}m{:d}s'.format(hours, minutes, seconds) elif minutes > 0: return '{:d}m{:d}s'.format(minutes, seconds) else: return '{:d}s'.format(seconds) class GracefulShutdown: def __init__(self, logger): self.logger = logger self.event = Event() signal.signal(signal.SIGINT, self.handler('SIGINT')) signal.signal(signal.SIGTERM, self.handler('SIGTERM')) signal.signal(signal.SIGHUP, self.handler('SIGHUP')) def handler(self, signal_name): def fn(signal_received, frame): self.logger.info('signal received', extra={'signal': signal_name}) self.event.set() return fn class Config(object): def __init__(self): self.grpc_server_address = os.getenv('GRPC_SERVER_ADDRESS', '') self.grpc_server_key = str.encode(os.getenv('GRPC_SERVER_KEY', '')) self.grpc_server_cert = str.encode(os.getenv('GRPC_SERVER_CERT', '')) self.grpc_root_ca = str.encode(os.getenv('GRPC_ROOT_CA', '')) self.gprc_server_process_num = int(os.getenv('GPRC_SERVER_PROCESS_NUM', cpu_count())) self.grpc_server_thread_num = int(os.getenv('GRPC_SERVER_THREAD_NUM', 1)) self.grpc_server_grace_period_in_secs = int(os.getenv('GRPC_SERVER_GRACE_PERIOD_IN_SECS', 2)) self.grpc_server_kill_period_in_secs = int(os.getenv('GRPC_SERVER_KILL_PERIOD_IN_SECS', 5)) class Server(object): def __init__(self, config, logger): self.config = config self.logger = logger @contextlib.contextmanager def _reserve_port(self): """Find and reserve a port for all subprocesses to use""" sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) == 0: raise RuntimeError('failed to set SO_REUSEPORT.') _, port = self.config.grpc_server_address.split(':') sock.bind(('', int(port))) try: yield sock.getsockname()[1] finally: sock.close() def _run_server(self, shutdown_event): server_credentials = grpc.ssl_server_credentials( [(self.config.grpc_server_key, self.config.grpc_server_cert)], root_certificates=self.config.grpc_root_ca, require_client_auth=True ) server = grpc.server( futures.ThreadPoolExecutor(max_workers=self.config.grpc_server_thread_num), options=[ ("grpc.so_reuseport", 1), ("grpc.use_local_subchannel_pool", 1), ], ) grpc_lib.add_ForecastServicer_to_server(ForecastServicer(self.logger), server) server.add_secure_port(self.config.grpc_server_address, server_credentials) self.logger.info('starting python gRPC server...') server.start() while not shutdown_event.is_set(): time.sleep(1) server.stop(5).wait() self.logger.info('python gRPC server stopped') def serve(self): with self._reserve_port(): procs = [] shutdown = GracefulShutdown(self.logger) for _ in range(self.config.gprc_server_process_num): proc = Process(target=self._run_server, args=(shutdown.event,)) procs.append(proc) proc.start() while not shutdown.event.is_set(): time.sleep(1) t = time.time() grace_period = self.config.grpc_server_grace_period_in_secs kill_period = self.config.grpc_server_kill_period_in_secs while True: # Send SIGINT if process doesn't exit quickly enough, and kill it as last resort # .is_alive() also implicitly joins the process (good practice in linux) alive_procs = [proc for proc in procs if proc.is_alive()] if len(alive_procs) == 0: break elapsed = time.time() - t if elapsed >= grace_period and elapsed < kill_period: for proc in alive_procs: proc.terminate() self.logger.info("sending SIGTERM to subprocess", extra={'proc': proc}) elif elapsed >= kill_period: for proc in alive_procs: self.logger.warning("sending SIGKILL to subprocess", extra={'proc': proc}) # Queues and other inter-process communication primitives can break when # process is killed, but we don't care here proc.kill() time.sleep(1) time.sleep(1) for proc in procs: self.logger.info("subprocess terminated", extra={'proc': proc}) def json_logger(): logger = logging.getLogger() log_handler = logging.StreamHandler(sys.stdout) formatter = jsonlogger.JsonFormatter(fmt='%(asctime)s %(name)s %(levelname)s %(message)s') log_handler.setFormatter(formatter) log_handler.flush = sys.stdout.flush logger.setLevel(logging.INFO) logger.addHandler(log_handler) return logger
2.1875
2
test/test_setupcall.py
jhgoebbert/jupyter-libertem-proxy
0
6444
def test_setupcall(): """ Test the call of the setup function """ import jupyter_libertem_proxy as jx print("\nRunning test_setupcall...") print(jx.setup_libertem())
2.03125
2
launchpad/launch/worker_manager.py
LaudateCorpus1/launchpad
0
6445
<gh_stars>0 # Copyright 2020 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WorkerManager handles thread and process-based runtimes.""" import atexit import collections from concurrent import futures import ctypes import os import signal import subprocess import threading import time from typing import Optional, Sequence, Text from absl import flags from absl import logging from absl.testing import absltest from launchpad import flags as lp_flags import psutil import termcolor FLAGS = flags.FLAGS ThreadWorker = collections.namedtuple('ThreadWorker', ['thread', 'future']) _WORKER_MANAGERS = threading.local() _HAS_MAIN_MANAGER = False def get_worker_manager(): manager = getattr(_WORKER_MANAGERS, 'manager', None) assert manager, 'Worker manager is not available in the current thread' return manager def register_signal_handler(sig, handler): """Registers a signal handler.""" return signal.signal(sig, handler) def remove_signal_handler(sig, handler): return signal.signal(sig, handler) def wait_for_stop(): """Blocks until termination of the node's program is requested. Can be used to perform cleanup at the end of the run, for example: start_server() lp.wait_for_stop() stop_server() checkpoint() """ get_worker_manager().wait_for_stop() class WorkerManager: """Encapsulates running threads and processes of a Launchpad Program.""" def __init__( self, stop_main_thread=False, kill_main_thread=True, register_in_thread=False, register_signals=True): """Initializes a WorkerManager. Args: stop_main_thread: Should main thread be notified about termination. kill_main_thread: When set to false try not to kill the launcher while killing workers. This is not possible when thread workers run in the same process. register_in_thread: TODO register_signals: Whether or not to register signal handlers. """ self._mutex = threading.Lock() self._termination_notice_secs = -1 handle_user_stop = False global _HAS_MAIN_MANAGER # Make the first created worker manager the main manager, which handles # signals. if not _HAS_MAIN_MANAGER: self._termination_notice_secs = FLAGS.lp_termination_notice_secs handle_user_stop = True _HAS_MAIN_MANAGER = True self._active_workers = collections.defaultdict(list) self._workers_count = collections.defaultdict(lambda: 0) self._first_failure = None self._stop_counter = 0 self._alarm_enabled = False self._kill_main_thread = kill_main_thread self._stop_event = threading.Event() self._main_thread = threading.current_thread().ident self._sigterm_handler = None self._sigquit_handler = None self._sigalrm_handler = None if register_signals: self._sigterm_handler = register_signal_handler(signal.SIGTERM, self._sigterm) self._sigquit_handler = register_signal_handler(signal.SIGQUIT, self._sigquit) if handle_user_stop: register_signal_handler( signal.SIGINT, lambda sig=None, frame=None: self._stop_by_user()) self._stop_main_thread = stop_main_thread if register_in_thread: _WORKER_MANAGERS.manager = self def _disable_signals(self): self._disable_alarm() if self._sigterm_handler is not None: remove_signal_handler(signal.SIGTERM, self._sigterm_handler) self._sigterm_handler = None if self._sigquit_handler is not None: remove_signal_handler(signal.SIGQUIT, self._sigquit_handler) self._sigquit_handler = None def _sigterm(self, sig=None, frame=None): """Handles SIGTERM by stopping the workers.""" if callable(self._sigterm_handler): self._sigterm_handler(sig, frame) self._stop() def _sigquit(self, sig=None, frame=None): if callable(self._sigquit_handler): self._sigquit_handler(sig, frame) self._kill() def wait_for_stop(self): """Blocks until managed runtime is being terminated.""" self._stop_event.wait() def thread_worker(self, name, function): """Registers and start a new thread worker. Args: name: Name of the worker group. function: Entrypoint function to execute in a worker. """ with self._mutex: future = futures.Future() def run_inner(f=function, future=future, manager=self): _WORKER_MANAGERS.manager = manager try: future.set_result(f()) except BaseException as e: future.set_exception(e) builder = lambda t, n: threading.Thread(target=t, name=n) thread = builder(run_inner, name) thread.setDaemon(True) thread.start() self._workers_count[name] += 1 worker = ThreadWorker(thread=thread, future=future) self._active_workers[name].append(worker) if self._stop_event.is_set(): # Runtime is terminating, so notify the worker. self._send_exception(worker) def process_worker(self, name, command, env=None, **kwargs): """Adds process worker to the runtime. Args: name: Name of the worker's group. command: Command to execute in the worker. env: Environment variables to set for the worker. **kwargs: Other parameters to be passed to `subprocess.Popen`. """ with self._mutex: process = subprocess.Popen(command, env=env or {}, **kwargs) self._workers_count[name] += 1 self._active_workers[name].append(process) def register_existing_process(self, name: str, pid: int): """Registers already started worker process. Args: name: Name of the workers' group. pid: Pid of the process to monitor. """ with self._mutex: self._workers_count[name] += 1 self._active_workers[name].append(psutil.Process(pid)) def _stop_by_user(self): """Handles stopping of the runtime by a user.""" if self._termination_notice_secs != 0: print( termcolor.colored( 'User-requested termination. Asking workers to stop.', 'blue')) print(termcolor.colored('Press CTRL+C to terminate immediately.', 'blue')) signal.signal(signal.SIGINT, lambda sig, frame: self._kill()) self._stop() def _kill_process_tree(self, pid): """Kills all child processes of the current process.""" parent = psutil.Process(pid) for process in parent.children(recursive=True): try: process.send_signal(signal.SIGKILL) except psutil.NoSuchProcess: pass parent.send_signal(signal.SIGKILL) def _kill(self): """Kills all workers (and main thread/process if needed).""" print(termcolor.colored('\nKilling entire runtime.', 'blue')) kill_self = self._kill_main_thread for workers in self._active_workers.values(): for worker in workers: if isinstance(worker, ThreadWorker): # Not possible to kill a thread without killing the process. kill_self = True else: self._kill_process_tree(worker.pid) if kill_self: self._kill_process_tree(os.getpid()) def _send_exception(self, worker): res = ctypes.pythonapi.PyThreadState_SetAsyncExc( ctypes.c_long(worker.thread.ident), ctypes.py_object(SystemExit)) assert res < 2, 'Exception raise failure' def _stop_or_kill(self): """Stops all workers; kills them if they don't stop on time.""" pending_secs = self._termination_notice_secs - self._stop_counter if pending_secs == 0: if self._termination_notice_secs > 0: still_running = [ label for label in self._active_workers if self._active_workers[label] ] print( termcolor.colored( f'Worker groups that did not terminate in time: {still_running}', 'red')) self._kill() return if pending_secs >= 0: print( termcolor.colored(f'Waiting for workers to stop for {pending_secs}s.', 'blue'), end='\r') self._stop_counter += 1 for workers in self._active_workers.values(): for worker in workers: if isinstance(worker, ThreadWorker): if self._stop_counter == 1: self._send_exception(worker) elif isinstance(worker, subprocess.Popen): worker.send_signal(signal.SIGTERM) else: # Notify all workers running under a proxy process. children = worker.children(recursive=True) worker_found = False for process in children: if process.name() != 'bash' and 'envelope_' not in process.name(): try: worker_found = True process.send_signal(signal.SIGTERM) except psutil.NoSuchProcess: pass if not worker_found: # No more workers running, so we can kill the proxy itself. try: worker.send_signal(signal.SIGKILL) except psutil.NoSuchProcess: pass if self._stop_main_thread: res = ctypes.pythonapi.PyThreadState_SetAsyncExc( ctypes.c_long(threading.main_thread().ident), ctypes.py_object(SystemExit)) assert res < 2, 'Exception raise failure' if pending_secs >= 0: signal.alarm(1) def _stop(self): """Requests all workers to stop and schedule delayed termination.""" if not self._stop_event.is_set(): self._stop_event.set() try: if self._termination_notice_secs > 0: self._alarm_enabled = True self._sigalrm_handler = register_signal_handler( signal.SIGALRM, lambda sig=None, frame=None: self._stop_or_kill()) except ValueError: # This happens when we attempt to register a signal handler but not in the # main thread. Send a SIGTERM to redirect to the main thread. psutil.Process(os.getpid()).send_signal(signal.SIGTERM) return self._stop_or_kill() def _disable_alarm(self): if self._alarm_enabled: self._alarm_enabled = False signal.alarm(0) remove_signal_handler(signal.SIGALRM, self._sigalrm_handler) def stop_and_wait(self): """Requests stopping all workers and wait for termination.""" with self._mutex: self._stop() self.wait(raise_error=False) def join(self): self.wait() def wait(self, labels_to_wait_for: Optional[Sequence[Text]] = None, raise_error=True, return_on_first_completed=False): """Waits for workers to finish. Args: labels_to_wait_for: If supplied, only wait for these groups' workers to finish. Wait for all workers otherwise. raise_error: Raise an exception upon any worker failure. return_on_first_completed: Whether to return upon the first completed (or failed) worker. Raises: RuntimeError: if any worker raises an exception. """ while True: try: active_workers = True while active_workers: with self._mutex: self._check_workers() active_workers = False if self._first_failure and raise_error: failure = self._first_failure self._first_failure = None raise failure for label in labels_to_wait_for or self._active_workers.keys(): if self._active_workers[label]: active_workers = True if (return_on_first_completed and len(self._active_workers[label]) < self._workers_count[label]): return time.sleep(0.1) return except SystemExit: self._stop() def cleanup_after_test(self, test_case: absltest.TestCase): """Cleanups runtime after a test.""" with self._mutex: self._check_workers() self._stop() self._disable_signals() self.wait(raise_error=False) with self._mutex: if self._first_failure: raise self._first_failure def _check_workers(self): """Checks status of running workers, terminate runtime in case of errors.""" has_workers = False for label in self._active_workers: still_active = [] for worker in self._active_workers[label]: active = True if isinstance(worker, ThreadWorker): if not worker.thread.is_alive(): worker.thread.join() if not self._stop_counter: try: worker.future.result() except BaseException as e: if not self._first_failure and not self._stop_counter: self._first_failure = e active = False elif isinstance(worker, subprocess.Popen): try: res = worker.wait(0) active = False if res and not self._first_failure and not self._stop_counter: self._first_failure = RuntimeError('One of the workers failed.') except subprocess.TimeoutExpired: pass else: try: # We can't obtain return code of external process, so clean # termination is assumed. res = worker.wait(0) active = False except psutil.TimeoutExpired: pass if active: has_workers = True still_active.append(worker) self._active_workers[label] = still_active if has_workers and self._first_failure and not self._stop_counter: self._stop() elif not has_workers: self._disable_alarm() def __del__(self): self._disable_signals()
2.21875
2
mmdeploy/backend/tensorrt/init_plugins.py
hanrui1sensetime/mmdeploy
1
6446
<gh_stars>1-10 # Copyright (c) OpenMMLab. All rights reserved. import ctypes import glob import logging import os def get_ops_path() -> str: """Get path of the TensorRT plugin library. Returns: str: A path of the TensorRT plugin library. """ wildcard = os.path.abspath( os.path.join( os.path.dirname(__file__), '../../../build/lib/libmmdeploy_tensorrt_ops.so')) paths = glob.glob(wildcard) lib_path = paths[0] if len(paths) > 0 else '' return lib_path def load_tensorrt_plugin() -> bool: """Load TensorRT plugins library. Returns: bool: True if TensorRT plugin library is successfully loaded. """ lib_path = get_ops_path() success = False if os.path.exists(lib_path): ctypes.CDLL(lib_path) logging.info(f'Successfully loaded tensorrt plugins from {lib_path}') success = True else: logging.warning(f'Could not load the library of tensorrt plugins. \ Because the file does not exist: {lib_path}') return success
2.296875
2
reagent/test/world_model/test_seq2reward.py
dmitryvinn/ReAgent
0
6447
<reponame>dmitryvinn/ReAgent #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import os import random import unittest from typing import Optional import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn from parameterized import parameterized from reagent.core import types as rlt from reagent.core.parameters import ( NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters, ) from reagent.gym.envs import Gym from reagent.gym.utils import create_df_from_replay_buffer from reagent.models.seq2reward_model import Seq2RewardNetwork from reagent.net_builder.value.fully_connected import FullyConnected from reagent.prediction.predictor_wrapper import ( Seq2RewardWithPreprocessor, Seq2RewardPlanShortSeqWithPreprocessor, FAKE_STATE_ID_LIST_FEATURES, FAKE_STATE_ID_SCORE_LIST_FEATURES, ) from reagent.preprocessing.identify_types import DO_NOT_PREPROCESS from reagent.preprocessing.preprocessor import Preprocessor from reagent.training.utils import gen_permutations from reagent.training.world_model.compress_model_trainer import CompressModelTrainer from reagent.training.world_model.seq2reward_trainer import get_Q, Seq2RewardTrainer from torch.utils.data import DataLoader logger = logging.getLogger(__name__) SEED = 0 STRING_GAME_TESTS = [(False,), (True,)] class FakeStepPredictionNetwork(nn.Module): def __init__(self, look_ahead_steps): super().__init__() self.look_ahead_steps = look_ahead_steps def forward(self, state: torch.Tensor): """ Given the current state, predict the probability of experiencing next n steps (1 <=n <= look_ahead_steps) For the test purpose, it outputs fixed fake numbers """ batch_size, _ = state.shape return torch.ones(batch_size, self.look_ahead_steps).float() class FakeSeq2RewardNetwork(nn.Module): def forward( self, state: rlt.FeatureData, action: rlt.FeatureData, valid_reward_len: Optional[torch.Tensor] = None, ): """ Mimic I/O of Seq2RewardNetwork but return fake reward Reward is the concatenation of action indices, independent of state. For example, when seq_len = 3, batch_size = 1, action_num = 2, acc_reward = tensor( [[ 0.], [ 1.], [ 10.], [ 11.], [100.], [101.], [110.], [111.]] ) Input action shape: seq_len, batch_size, num_action Output acc_reward shape: batch_size, 1 """ # pyre-fixme[9]: action has type `FeatureData`; used as `Tensor`. action = action.float_features.transpose(0, 1) action_indices = torch.argmax(action, dim=2).tolist() acc_reward = torch.tensor( list(map(lambda x: float("".join(map(str, x))), action_indices)) ).reshape(-1, 1) logger.info(f"acc_reward: {acc_reward}") return rlt.Seq2RewardOutput(acc_reward=acc_reward) def create_string_game_data( dataset_size=10000, training_data_ratio=0.9, filter_short_sequence=False ): SEQ_LEN = 6 NUM_ACTION = 2 NUM_MDP_PER_BATCH = 5 env = Gym(env_name="StringGame-v0", set_max_steps=SEQ_LEN) df = create_df_from_replay_buffer( env=env, problem_domain=ProblemDomain.DISCRETE_ACTION, desired_size=dataset_size, multi_steps=None, ds="2020-10-10", ) if filter_short_sequence: batch_size = NUM_MDP_PER_BATCH time_diff = torch.ones(SEQ_LEN, batch_size) valid_step = SEQ_LEN * torch.ones(batch_size, dtype=torch.int64)[:, None] not_terminal = torch.Tensor( [0 if i == SEQ_LEN - 1 else 1 for i in range(SEQ_LEN)] ) not_terminal = torch.transpose(not_terminal.tile(NUM_MDP_PER_BATCH, 1), 0, 1) else: batch_size = NUM_MDP_PER_BATCH * SEQ_LEN time_diff = torch.ones(SEQ_LEN, batch_size) valid_step = torch.arange(SEQ_LEN, 0, -1).tile(NUM_MDP_PER_BATCH)[:, None] not_terminal = torch.transpose( torch.tril(torch.ones(SEQ_LEN, SEQ_LEN), diagonal=-1).tile( NUM_MDP_PER_BATCH, 1 ), 0, 1, ) num_batches = int(dataset_size / SEQ_LEN / NUM_MDP_PER_BATCH) batches = [None for _ in range(num_batches)] batch_count, batch_seq_count = 0, 0 batch_reward = torch.zeros(SEQ_LEN, batch_size) batch_action = torch.zeros(SEQ_LEN, batch_size, NUM_ACTION) batch_state = torch.zeros(SEQ_LEN, batch_size, NUM_ACTION) for mdp_id in sorted(set(df.mdp_id)): mdp = df[df["mdp_id"] == mdp_id].sort_values("sequence_number", ascending=True) if len(mdp) != SEQ_LEN: continue all_step_reward = torch.Tensor(list(mdp["reward"])) all_step_state = torch.Tensor([list(s.values()) for s in mdp["state_features"]]) all_step_action = torch.zeros_like(all_step_state) all_step_action[torch.arange(SEQ_LEN), [int(a) for a in mdp["action"]]] = 1.0 for j in range(SEQ_LEN): if filter_short_sequence and j > 0: break reward = torch.zeros_like(all_step_reward) reward[: SEQ_LEN - j] = all_step_reward[-(SEQ_LEN - j) :] batch_reward[:, batch_seq_count] = reward state = torch.zeros_like(all_step_state) state[: SEQ_LEN - j] = all_step_state[-(SEQ_LEN - j) :] batch_state[:, batch_seq_count] = state action = torch.zeros_like(all_step_action) action[: SEQ_LEN - j] = all_step_action[-(SEQ_LEN - j) :] batch_action[:, batch_seq_count] = action batch_seq_count += 1 if batch_seq_count == batch_size: batches[batch_count] = rlt.MemoryNetworkInput( reward=batch_reward, action=rlt.FeatureData(float_features=batch_action), state=rlt.FeatureData(float_features=batch_state), next_state=rlt.FeatureData( float_features=torch.zeros_like(batch_state) ), # fake, not used anyway not_terminal=not_terminal, time_diff=time_diff, valid_step=valid_step, step=None, ) batch_count += 1 batch_seq_count = 0 batch_reward = torch.zeros_like(batch_reward) batch_action = torch.zeros_like(batch_action) batch_state = torch.zeros_like(batch_state) assert batch_count == num_batches num_training_batches = int(training_data_ratio * num_batches) training_data = DataLoader( batches[:num_training_batches], collate_fn=lambda x: x[0] ) eval_data = DataLoader(batches[num_training_batches:], collate_fn=lambda x: x[0]) return training_data, eval_data def train_seq2reward_model(training_data, learning_rate=0.01, num_epochs=5): SEQ_LEN, batch_size, NUM_ACTION = next( iter(training_data) ).action.float_features.shape assert SEQ_LEN == 6 and NUM_ACTION == 2 seq2reward_network = Seq2RewardNetwork( state_dim=NUM_ACTION, action_dim=NUM_ACTION, num_hiddens=64, num_hidden_layers=2, ) trainer_param = Seq2RewardTrainerParameters( learning_rate=learning_rate, multi_steps=SEQ_LEN, action_names=["0", "1"], gamma=1.0, view_q_value=True, ) trainer = Seq2RewardTrainer( seq2reward_network=seq2reward_network, params=trainer_param ) pl.seed_everything(SEED) pl_trainer = pl.Trainer(max_epochs=num_epochs, deterministic=True) pl_trainer.fit(trainer, training_data) return trainer def eval_seq2reward_model(eval_data, seq2reward_trainer): SEQ_LEN, batch_size, NUM_ACTION = next(iter(eval_data)).action.float_features.shape initial_state = torch.Tensor([[0, 0]]) initial_state_q_values = torch.squeeze( get_Q( seq2reward_trainer.seq2reward_network, initial_state, seq2reward_trainer.all_permut, ) ) total_mse_loss = 0 total_q_values = torch.zeros(NUM_ACTION) total_action_distribution = torch.zeros(NUM_ACTION) for idx, batch in enumerate(eval_data): ( mse_loss, _, q_values, action_distribution, ) = seq2reward_trainer.validation_step(batch, idx) total_mse_loss += mse_loss total_q_values += torch.tensor(q_values) total_action_distribution += torch.tensor(action_distribution) N_eval = len(eval_data) eval_mse_loss = total_mse_loss / N_eval eval_q_values = total_q_values / N_eval eval_action_distribution = total_action_distribution / N_eval return ( initial_state_q_values, eval_mse_loss, eval_q_values, eval_action_distribution, ) def train_seq2reward_compress_model( training_data, seq2reward_network, learning_rate=0.1, num_epochs=5 ): SEQ_LEN, batch_size, NUM_ACTION = next( iter(training_data) ).action.float_features.shape assert SEQ_LEN == 6 and NUM_ACTION == 2 compress_net_builder = FullyConnected(sizes=[8, 8]) state_normalization_data = NormalizationData( dense_normalization_parameters={ 0: NormalizationParameters(feature_type=DO_NOT_PREPROCESS), 1: NormalizationParameters(feature_type=DO_NOT_PREPROCESS), } ) compress_model_network = compress_net_builder.build_value_network( state_normalization_data, output_dim=NUM_ACTION, ) trainer_param = Seq2RewardTrainerParameters( learning_rate=0.0, multi_steps=SEQ_LEN, action_names=["0", "1"], compress_model_learning_rate=learning_rate, gamma=1.0, view_q_value=True, ) trainer = CompressModelTrainer( compress_model_network=compress_model_network, seq2reward_network=seq2reward_network, params=trainer_param, ) pl.seed_everything(SEED) pl_trainer = pl.Trainer(max_epochs=num_epochs, deterministic=True) pl_trainer.fit(trainer, training_data) return trainer def eval_seq2reward_compress_model(eval_data, compress_model_trainer): SEQ_LEN, batch_size, NUM_ACTION = next(iter(eval_data)).action.float_features.shape total_mse_loss = 0 total_q_values = torch.zeros(NUM_ACTION) total_action_distribution = torch.zeros(NUM_ACTION) for idx, batch in enumerate(eval_data): ( mse_loss, q_values, action_distribution, _, ) = compress_model_trainer.validation_step(batch, idx) total_mse_loss += mse_loss total_q_values += torch.tensor(q_values) total_action_distribution += torch.tensor(action_distribution) N_eval = len(eval_data) eval_mse_loss = total_mse_loss / N_eval eval_q_values = total_q_values / N_eval eval_action_distribution = total_action_distribution / N_eval return eval_mse_loss, eval_q_values, eval_action_distribution class TestSeq2Reward(unittest.TestCase): def test_seq2reward_with_preprocessor_plan_short_sequence(self): self._test_seq2reward_with_preprocessor(plan_short_sequence=True) def test_seq2reward_with_preprocessor_plan_full_sequence(self): self._test_seq2reward_with_preprocessor(plan_short_sequence=False) def _test_seq2reward_with_preprocessor(self, plan_short_sequence): state_dim = 4 action_dim = 2 seq_len = 3 model = FakeSeq2RewardNetwork() state_normalization_parameters = { i: NormalizationParameters( feature_type=DO_NOT_PREPROCESS, mean=0.0, stddev=1.0 ) for i in range(1, state_dim) } state_preprocessor = Preprocessor(state_normalization_parameters, False) if plan_short_sequence: step_prediction_model = FakeStepPredictionNetwork(seq_len) model_with_preprocessor = Seq2RewardPlanShortSeqWithPreprocessor( model, step_prediction_model, state_preprocessor, seq_len, action_dim, ) else: model_with_preprocessor = Seq2RewardWithPreprocessor( model, state_preprocessor, seq_len, action_dim, ) input_prototype = rlt.ServingFeatureData( float_features_with_presence=state_preprocessor.input_prototype(), id_list_features=FAKE_STATE_ID_LIST_FEATURES, id_score_list_features=FAKE_STATE_ID_SCORE_LIST_FEATURES, ) q_values = model_with_preprocessor(input_prototype) if plan_short_sequence: # When planning for 1, 2, and 3 steps ahead, # the expected q values are respectively: # [0, 1], [1, 11], [11, 111] # Weighting the expected q values by predicted step # probabilities [0.33, 0.33, 0.33], we have [4, 41] expected_q_values = torch.tensor([[4.0, 41.0]]) else: expected_q_values = torch.tensor([[11.0, 111.0]]) assert torch.all(expected_q_values == q_values) def test_get_Q(self): NUM_ACTION = 2 MULTI_STEPS = 3 BATCH_SIZE = 2 STATE_DIM = 4 all_permut = gen_permutations(MULTI_STEPS, NUM_ACTION) seq2reward_network = FakeSeq2RewardNetwork() state = torch.zeros(BATCH_SIZE, STATE_DIM) q_values = get_Q(seq2reward_network, state, all_permut) expected_q_values = torch.tensor([[11.0, 111.0], [11.0, 111.0]]) logger.info(f"q_values: {q_values}") assert torch.all(expected_q_values == q_values) def test_gen_permutations_seq_len_1_action_6(self): SEQ_LEN = 1 NUM_ACTION = 6 expected_outcome = torch.tensor([[0], [1], [2], [3], [4], [5]]) self._test_gen_permutations(SEQ_LEN, NUM_ACTION, expected_outcome) def test_gen_permutations_seq_len_3_num_action_2(self): SEQ_LEN = 3 NUM_ACTION = 2 expected_outcome = torch.tensor( [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] ) self._test_gen_permutations(SEQ_LEN, NUM_ACTION, expected_outcome) def _test_gen_permutations(self, SEQ_LEN, NUM_ACTION, expected_outcome): # expected shape: SEQ_LEN, PERM_NUM, ACTION_DIM result = gen_permutations(SEQ_LEN, NUM_ACTION) assert result.shape == (SEQ_LEN, NUM_ACTION ** SEQ_LEN, NUM_ACTION) outcome = torch.argmax(result.transpose(0, 1), dim=-1) assert torch.all(outcome == expected_outcome) @parameterized.expand(STRING_GAME_TESTS) @unittest.skipIf("SANDCASTLE" in os.environ, "Skipping long test on sandcastle.") def test_seq2reward_on_string_game_v0(self, filter_short_sequence): np.random.seed(SEED) random.seed(SEED) torch.manual_seed(SEED) training_data, eval_data = create_string_game_data( filter_short_sequence=filter_short_sequence ) seq2reward_trainer = train_seq2reward_model(training_data) ( initial_state_q_values, eval_mse_loss, eval_q_values, eval_action_distribution, ) = eval_seq2reward_model(eval_data, seq2reward_trainer) assert abs(initial_state_q_values[0].item() - 10) < 1.0 assert abs(initial_state_q_values[1].item() - 5) < 1.0 if filter_short_sequence: assert eval_mse_loss < 0.1 else: # Same short sequences may have different total rewards due to the missing # states and actions in previous steps, so the trained network is not able # to reduce the mse loss to values close to zero. assert eval_mse_loss < 10 compress_model_trainer = train_seq2reward_compress_model( training_data, seq2reward_trainer.seq2reward_network ) ( compress_eval_mse_loss, compress_eval_q_values, compress_eval_action_distribution, ) = eval_seq2reward_compress_model(eval_data, compress_model_trainer) assert compress_eval_mse_loss < 1e-5 assert torch.all(eval_q_values - compress_eval_q_values < 1e-5) assert torch.all( eval_action_distribution - compress_eval_action_distribution < 1e-5 )
1.867188
2
models_SHOT_convex/syn30m03hfsg.py
grossmann-group/pyomo-MINLP-benchmarking
0
6448
<gh_stars>0 # MINLP written by GAMS Convert at 01/15/21 11:37:33 # # Equation counts # Total E G L N X C B # 1486 571 111 804 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 865 685 180 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 3373 3193 180 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x2 = Var(within=Reals,bounds=(0,40),initialize=0) m.x3 = Var(within=Reals,bounds=(0,40),initialize=0) m.x4 = Var(within=Reals,bounds=(0,40),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,30),initialize=0) m.x36 = Var(within=Reals,bounds=(0,30),initialize=0) m.x37 = Var(within=Reals,bounds=(0,30),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,20),initialize=0) m.x87 = Var(within=Reals,bounds=(0,20),initialize=0) m.x88 = Var(within=Reals,bounds=(0,20),initialize=0) m.x89 = Var(within=Reals,bounds=(0,20),initialize=0) m.x90 = Var(within=Reals,bounds=(0,20),initialize=0) m.x91 = Var(within=Reals,bounds=(0,20),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,30),initialize=0) m.x171 = Var(within=Reals,bounds=(0,30),initialize=0) m.x172 = Var(within=Reals,bounds=(0,30),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.x547 = Var(within=Reals,bounds=(0,None),initialize=0) m.x548 = Var(within=Reals,bounds=(0,None),initialize=0) m.x549 = Var(within=Reals,bounds=(0,None),initialize=0) m.x550 = Var(within=Reals,bounds=(0,None),initialize=0) m.x551 = Var(within=Reals,bounds=(0,None),initialize=0) m.x552 = Var(within=Reals,bounds=(0,None),initialize=0) m.x553 = Var(within=Reals,bounds=(0,None),initialize=0) m.x554 = Var(within=Reals,bounds=(0,None),initialize=0) m.x555 = Var(within=Reals,bounds=(0,None),initialize=0) m.x556 = Var(within=Reals,bounds=(0,None),initialize=0) m.x557 = Var(within=Reals,bounds=(0,None),initialize=0) m.x558 = Var(within=Reals,bounds=(0,None),initialize=0) m.x559 = Var(within=Reals,bounds=(0,None),initialize=0) m.x560 = Var(within=Reals,bounds=(0,None),initialize=0) m.x561 = Var(within=Reals,bounds=(0,None),initialize=0) m.x562 = Var(within=Reals,bounds=(0,None),initialize=0) m.x563 = Var(within=Reals,bounds=(0,None),initialize=0) m.x564 = Var(within=Reals,bounds=(0,None),initialize=0) m.x565 = Var(within=Reals,bounds=(0,None),initialize=0) m.x566 = Var(within=Reals,bounds=(0,None),initialize=0) m.x567 = Var(within=Reals,bounds=(0,None),initialize=0) m.x568 = Var(within=Reals,bounds=(0,None),initialize=0) m.x569 = Var(within=Reals,bounds=(0,None),initialize=0) m.x570 = Var(within=Reals,bounds=(0,None),initialize=0) m.x571 = Var(within=Reals,bounds=(0,None),initialize=0) m.x572 = Var(within=Reals,bounds=(0,None),initialize=0) m.x573 = Var(within=Reals,bounds=(0,None),initialize=0) m.x574 = Var(within=Reals,bounds=(0,None),initialize=0) m.x575 = Var(within=Reals,bounds=(0,None),initialize=0) m.x576 = Var(within=Reals,bounds=(0,None),initialize=0) m.x577 = Var(within=Reals,bounds=(0,None),initialize=0) m.x578 = Var(within=Reals,bounds=(0,None),initialize=0) m.x579 = Var(within=Reals,bounds=(0,None),initialize=0) m.x580 = Var(within=Reals,bounds=(0,None),initialize=0) m.x581 = Var(within=Reals,bounds=(0,None),initialize=0) m.x582 = Var(within=Reals,bounds=(0,None),initialize=0) m.x583 = Var(within=Reals,bounds=(0,None),initialize=0) m.x584 = Var(within=Reals,bounds=(0,None),initialize=0) m.x585 = Var(within=Reals,bounds=(0,None),initialize=0) m.x586 = Var(within=Reals,bounds=(0,None),initialize=0) m.x587 = Var(within=Reals,bounds=(0,None),initialize=0) m.x588 = Var(within=Reals,bounds=(0,None),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.b596 = Var(within=Binary,bounds=(0,1),initialize=0) m.b597 = Var(within=Binary,bounds=(0,1),initialize=0) m.b598 = Var(within=Binary,bounds=(0,1),initialize=0) m.b599 = Var(within=Binary,bounds=(0,1),initialize=0) m.b600 = Var(within=Binary,bounds=(0,1),initialize=0) m.b601 = Var(within=Binary,bounds=(0,1),initialize=0) m.b602 = Var(within=Binary,bounds=(0,1),initialize=0) m.b603 = Var(within=Binary,bounds=(0,1),initialize=0) m.b604 = Var(within=Binary,bounds=(0,1),initialize=0) m.b605 = Var(within=Binary,bounds=(0,1),initialize=0) m.b606 = Var(within=Binary,bounds=(0,1),initialize=0) m.b607 = Var(within=Binary,bounds=(0,1),initialize=0) m.b608 = Var(within=Binary,bounds=(0,1),initialize=0) m.b609 = Var(within=Binary,bounds=(0,1),initialize=0) m.b610 = Var(within=Binary,bounds=(0,1),initialize=0) m.b611 = Var(within=Binary,bounds=(0,1),initialize=0) m.b612 = Var(within=Binary,bounds=(0,1),initialize=0) m.b613 = Var(within=Binary,bounds=(0,1),initialize=0) m.b614 = Var(within=Binary,bounds=(0,1),initialize=0) m.b615 = Var(within=Binary,bounds=(0,1),initialize=0) m.b616 = Var(within=Binary,bounds=(0,1),initialize=0) m.b617 = Var(within=Binary,bounds=(0,1),initialize=0) m.b618 = Var(within=Binary,bounds=(0,1),initialize=0) m.b619 = Var(within=Binary,bounds=(0,1),initialize=0) m.b620 = Var(within=Binary,bounds=(0,1),initialize=0) m.b621 = Var(within=Binary,bounds=(0,1),initialize=0) m.b622 = Var(within=Binary,bounds=(0,1),initialize=0) m.b623 = Var(within=Binary,bounds=(0,1),initialize=0) m.b624 = Var(within=Binary,bounds=(0,1),initialize=0) m.b625 = Var(within=Binary,bounds=(0,1),initialize=0) m.b626 = Var(within=Binary,bounds=(0,1),initialize=0) m.b627 = Var(within=Binary,bounds=(0,1),initialize=0) m.b628 = Var(within=Binary,bounds=(0,1),initialize=0) m.b629 = Var(within=Binary,bounds=(0,1),initialize=0) m.b630 = Var(within=Binary,bounds=(0,1),initialize=0) m.b631 = Var(within=Binary,bounds=(0,1),initialize=0) m.b632 = Var(within=Binary,bounds=(0,1),initialize=0) m.b633 = Var(within=Binary,bounds=(0,1),initialize=0) m.b634 = Var(within=Binary,bounds=(0,1),initialize=0) m.b635 = Var(within=Binary,bounds=(0,1),initialize=0) m.b636 = Var(within=Binary,bounds=(0,1),initialize=0) m.b637 = Var(within=Binary,bounds=(0,1),initialize=0) m.b638 = Var(within=Binary,bounds=(0,1),initialize=0) m.b639 = Var(within=Binary,bounds=(0,1),initialize=0) m.b640 = Var(within=Binary,bounds=(0,1),initialize=0) m.b641 = Var(within=Binary,bounds=(0,1),initialize=0) m.b642 = Var(within=Binary,bounds=(0,1),initialize=0) m.b643 = Var(within=Binary,bounds=(0,1),initialize=0) m.b644 = Var(within=Binary,bounds=(0,1),initialize=0) m.b645 = Var(within=Binary,bounds=(0,1),initialize=0) m.b646 = Var(within=Binary,bounds=(0,1),initialize=0) m.b647 = Var(within=Binary,bounds=(0,1),initialize=0) m.b648 = Var(within=Binary,bounds=(0,1),initialize=0) m.b649 = Var(within=Binary,bounds=(0,1),initialize=0) m.b650 = Var(within=Binary,bounds=(0,1),initialize=0) m.b651 = Var(within=Binary,bounds=(0,1),initialize=0) m.b652 = Var(within=Binary,bounds=(0,1),initialize=0) m.b653 = Var(within=Binary,bounds=(0,1),initialize=0) m.b654 = Var(within=Binary,bounds=(0,1),initialize=0) m.b655 = Var(within=Binary,bounds=(0,1),initialize=0) m.b656 = Var(within=Binary,bounds=(0,1),initialize=0) m.b657 = Var(within=Binary,bounds=(0,1),initialize=0) m.b658 = Var(within=Binary,bounds=(0,1),initialize=0) m.b659 = Var(within=Binary,bounds=(0,1),initialize=0) m.b660 = Var(within=Binary,bounds=(0,1),initialize=0) m.b661 = Var(within=Binary,bounds=(0,1),initialize=0) m.b662 = Var(within=Binary,bounds=(0,1),initialize=0) m.b663 = Var(within=Binary,bounds=(0,1),initialize=0) m.b664 = Var(within=Binary,bounds=(0,1),initialize=0) m.b665 = Var(within=Binary,bounds=(0,1),initialize=0) m.b666 = Var(within=Binary,bounds=(0,1),initialize=0) m.b667 = Var(within=Binary,bounds=(0,1),initialize=0) m.b668 = Var(within=Binary,bounds=(0,1),initialize=0) m.b669 = Var(within=Binary,bounds=(0,1),initialize=0) m.b670 = Var(within=Binary,bounds=(0,1),initialize=0) m.b671 = Var(within=Binary,bounds=(0,1),initialize=0) m.b672 = Var(within=Binary,bounds=(0,1),initialize=0) m.b673 = Var(within=Binary,bounds=(0,1),initialize=0) m.b674 = Var(within=Binary,bounds=(0,1),initialize=0) m.b675 = Var(within=Binary,bounds=(0,1),initialize=0) m.b676 = Var(within=Binary,bounds=(0,1),initialize=0) m.b677 = Var(within=Binary,bounds=(0,1),initialize=0) m.b678 = Var(within=Binary,bounds=(0,1),initialize=0) m.b679 = Var(within=Binary,bounds=(0,1),initialize=0) m.b680 = Var(within=Binary,bounds=(0,1),initialize=0) m.b681 = Var(within=Binary,bounds=(0,1),initialize=0) m.b682 = Var(within=Binary,bounds=(0,1),initialize=0) m.b683 = Var(within=Binary,bounds=(0,1),initialize=0) m.b684 = Var(within=Binary,bounds=(0,1),initialize=0) m.b685 = Var(within=Binary,bounds=(0,1),initialize=0) m.b686 = Var(within=Binary,bounds=(0,1),initialize=0) m.b687 = Var(within=Binary,bounds=(0,1),initialize=0) m.b688 = Var(within=Binary,bounds=(0,1),initialize=0) m.b689 = Var(within=Binary,bounds=(0,1),initialize=0) m.b690 = Var(within=Binary,bounds=(0,1),initialize=0) m.b691 = Var(within=Binary,bounds=(0,1),initialize=0) m.b692 = Var(within=Binary,bounds=(0,1),initialize=0) m.b693 = Var(within=Binary,bounds=(0,1),initialize=0) m.b694 = Var(within=Binary,bounds=(0,1),initialize=0) m.b695 = Var(within=Binary,bounds=(0,1),initialize=0) m.b696 = Var(within=Binary,bounds=(0,1),initialize=0) m.b697 = Var(within=Binary,bounds=(0,1),initialize=0) m.b698 = Var(within=Binary,bounds=(0,1),initialize=0) m.b699 = Var(within=Binary,bounds=(0,1),initialize=0) m.b700 = Var(within=Binary,bounds=(0,1),initialize=0) m.b701 = Var(within=Binary,bounds=(0,1),initialize=0) m.b702 = Var(within=Binary,bounds=(0,1),initialize=0) m.b703 = Var(within=Binary,bounds=(0,1),initialize=0) m.b704 = Var(within=Binary,bounds=(0,1),initialize=0) m.b705 = Var(within=Binary,bounds=(0,1),initialize=0) m.b706 = Var(within=Binary,bounds=(0,1),initialize=0) m.b707 = Var(within=Binary,bounds=(0,1),initialize=0) m.b708 = Var(within=Binary,bounds=(0,1),initialize=0) m.b709 = Var(within=Binary,bounds=(0,1),initialize=0) m.b710 = Var(within=Binary,bounds=(0,1),initialize=0) m.b711 = Var(within=Binary,bounds=(0,1),initialize=0) m.b712 = Var(within=Binary,bounds=(0,1),initialize=0) m.b713 = Var(within=Binary,bounds=(0,1),initialize=0) m.b714 = Var(within=Binary,bounds=(0,1),initialize=0) m.b715 = Var(within=Binary,bounds=(0,1),initialize=0) m.b716 = Var(within=Binary,bounds=(0,1),initialize=0) m.b717 = Var(within=Binary,bounds=(0,1),initialize=0) m.b718 = Var(within=Binary,bounds=(0,1),initialize=0) m.b719 = Var(within=Binary,bounds=(0,1),initialize=0) m.b720 = Var(within=Binary,bounds=(0,1),initialize=0) m.b721 = Var(within=Binary,bounds=(0,1),initialize=0) m.b722 = Var(within=Binary,bounds=(0,1),initialize=0) m.b723 = Var(within=Binary,bounds=(0,1),initialize=0) m.b724 = Var(within=Binary,bounds=(0,1),initialize=0) m.b725 = Var(within=Binary,bounds=(0,1),initialize=0) m.b726 = Var(within=Binary,bounds=(0,1),initialize=0) m.b727 = Var(within=Binary,bounds=(0,1),initialize=0) m.b728 = Var(within=Binary,bounds=(0,1),initialize=0) m.b729 = Var(within=Binary,bounds=(0,1),initialize=0) m.b730 = Var(within=Binary,bounds=(0,1),initialize=0) m.b731 = Var(within=Binary,bounds=(0,1),initialize=0) m.b732 = Var(within=Binary,bounds=(0,1),initialize=0) m.b733 = Var(within=Binary,bounds=(0,1),initialize=0) m.b734 = Var(within=Binary,bounds=(0,1),initialize=0) m.b735 = Var(within=Binary,bounds=(0,1),initialize=0) m.b736 = Var(within=Binary,bounds=(0,1),initialize=0) m.b737 = Var(within=Binary,bounds=(0,1),initialize=0) m.b738 = Var(within=Binary,bounds=(0,1),initialize=0) m.b739 = Var(within=Binary,bounds=(0,1),initialize=0) m.b740 = Var(within=Binary,bounds=(0,1),initialize=0) m.b741 = Var(within=Binary,bounds=(0,1),initialize=0) m.b742 = Var(within=Binary,bounds=(0,1),initialize=0) m.b743 = Var(within=Binary,bounds=(0,1),initialize=0) m.b744 = Var(within=Binary,bounds=(0,1),initialize=0) m.b745 = Var(within=Binary,bounds=(0,1),initialize=0) m.b746 = Var(within=Binary,bounds=(0,1),initialize=0) m.b747 = Var(within=Binary,bounds=(0,1),initialize=0) m.b748 = Var(within=Binary,bounds=(0,1),initialize=0) m.b749 = Var(within=Binary,bounds=(0,1),initialize=0) m.b750 = Var(within=Binary,bounds=(0,1),initialize=0) m.b751 = Var(within=Binary,bounds=(0,1),initialize=0) m.b752 = Var(within=Binary,bounds=(0,1),initialize=0) m.b753 = Var(within=Binary,bounds=(0,1),initialize=0) m.b754 = Var(within=Binary,bounds=(0,1),initialize=0) m.b755 = Var(within=Binary,bounds=(0,1),initialize=0) m.b756 = Var(within=Binary,bounds=(0,1),initialize=0) m.b757 = Var(within=Binary,bounds=(0,1),initialize=0) m.b758 = Var(within=Binary,bounds=(0,1),initialize=0) m.b759 = Var(within=Binary,bounds=(0,1),initialize=0) m.b760 = Var(within=Binary,bounds=(0,1),initialize=0) m.b761 = Var(within=Binary,bounds=(0,1),initialize=0) m.b762 = Var(within=Binary,bounds=(0,1),initialize=0) m.b763 = Var(within=Binary,bounds=(0,1),initialize=0) m.b764 = Var(within=Binary,bounds=(0,1),initialize=0) m.b765 = Var(within=Binary,bounds=(0,1),initialize=0) m.b766 = Var(within=Binary,bounds=(0,1),initialize=0) m.b767 = Var(within=Binary,bounds=(0,1),initialize=0) m.b768 = Var(within=Binary,bounds=(0,1),initialize=0) m.b769 = Var(within=Binary,bounds=(0,1),initialize=0) m.b770 = Var(within=Binary,bounds=(0,1),initialize=0) m.b771 = Var(within=Binary,bounds=(0,1),initialize=0) m.b772 = Var(within=Binary,bounds=(0,1),initialize=0) m.b773 = Var(within=Binary,bounds=(0,1),initialize=0) m.b774 = Var(within=Binary,bounds=(0,1),initialize=0) m.b775 = Var(within=Binary,bounds=(0,1),initialize=0) m.x776 = Var(within=Reals,bounds=(None,None),initialize=0) m.x777 = Var(within=Reals,bounds=(None,None),initialize=0) m.x778 = Var(within=Reals,bounds=(None,None),initialize=0) m.x779 = Var(within=Reals,bounds=(None,None),initialize=0) m.x780 = Var(within=Reals,bounds=(None,None),initialize=0) m.x781 = Var(within=Reals,bounds=(None,None),initialize=0) m.x782 = Var(within=Reals,bounds=(None,None),initialize=0) m.x783 = Var(within=Reals,bounds=(None,None),initialize=0) m.x784 = Var(within=Reals,bounds=(None,None),initialize=0) m.x785 = Var(within=Reals,bounds=(None,None),initialize=0) m.x786 = Var(within=Reals,bounds=(None,None),initialize=0) m.x787 = Var(within=Reals,bounds=(None,None),initialize=0) m.x788 = Var(within=Reals,bounds=(None,None),initialize=0) m.x789 = Var(within=Reals,bounds=(None,None),initialize=0) m.x790 = Var(within=Reals,bounds=(None,None),initialize=0) m.x791 = Var(within=Reals,bounds=(None,None),initialize=0) m.x792 = Var(within=Reals,bounds=(None,None),initialize=0) m.x793 = Var(within=Reals,bounds=(None,None),initialize=0) m.x794 = Var(within=Reals,bounds=(None,None),initialize=0) m.x795 = Var(within=Reals,bounds=(None,None),initialize=0) m.x796 = Var(within=Reals,bounds=(None,None),initialize=0) m.x797 = Var(within=Reals,bounds=(None,None),initialize=0) m.x798 = Var(within=Reals,bounds=(None,None),initialize=0) m.x799 = Var(within=Reals,bounds=(None,None),initialize=0) m.x800 = Var(within=Reals,bounds=(None,None),initialize=0) m.x801 = Var(within=Reals,bounds=(None,None),initialize=0) m.x802 = Var(within=Reals,bounds=(None,None),initialize=0) m.x803 = Var(within=Reals,bounds=(None,None),initialize=0) m.x804 = Var(within=Reals,bounds=(None,None),initialize=0) m.x805 = Var(within=Reals,bounds=(None,None),initialize=0) m.x806 = Var(within=Reals,bounds=(None,None),initialize=0) m.x807 = Var(within=Reals,bounds=(None,None),initialize=0) m.x808 = Var(within=Reals,bounds=(None,None),initialize=0) m.x809 = Var(within=Reals,bounds=(None,None),initialize=0) m.x810 = Var(within=Reals,bounds=(None,None),initialize=0) m.x811 = Var(within=Reals,bounds=(None,None),initialize=0) m.x812 = Var(within=Reals,bounds=(None,None),initialize=0) m.x813 = Var(within=Reals,bounds=(None,None),initialize=0) m.x814 = Var(within=Reals,bounds=(None,None),initialize=0) m.x815 = Var(within=Reals,bounds=(None,None),initialize=0) m.x816 = Var(within=Reals,bounds=(None,None),initialize=0) m.x817 = Var(within=Reals,bounds=(None,None),initialize=0) m.x818 = Var(within=Reals,bounds=(None,None),initialize=0) m.x819 = Var(within=Reals,bounds=(None,None),initialize=0) m.x820 = Var(within=Reals,bounds=(None,None),initialize=0) m.x821 = Var(within=Reals,bounds=(None,None),initialize=0) m.x822 = Var(within=Reals,bounds=(None,None),initialize=0) m.x823 = Var(within=Reals,bounds=(None,None),initialize=0) m.x824 = Var(within=Reals,bounds=(None,None),initialize=0) m.x825 = Var(within=Reals,bounds=(None,None),initialize=0) m.x826 = Var(within=Reals,bounds=(None,None),initialize=0) m.x827 = Var(within=Reals,bounds=(None,None),initialize=0) m.x828 = Var(within=Reals,bounds=(None,None),initialize=0) m.x829 = Var(within=Reals,bounds=(None,None),initialize=0) m.x830 = Var(within=Reals,bounds=(None,None),initialize=0) m.x831 = Var(within=Reals,bounds=(None,None),initialize=0) m.x832 = Var(within=Reals,bounds=(None,None),initialize=0) m.x833 = Var(within=Reals,bounds=(None,None),initialize=0) m.x834 = Var(within=Reals,bounds=(None,None),initialize=0) m.x835 = Var(within=Reals,bounds=(None,None),initialize=0) m.x836 = Var(within=Reals,bounds=(None,None),initialize=0) m.x837 = Var(within=Reals,bounds=(None,None),initialize=0) m.x838 = Var(within=Reals,bounds=(None,None),initialize=0) m.x839 = Var(within=Reals,bounds=(None,None),initialize=0) m.x840 = Var(within=Reals,bounds=(None,None),initialize=0) m.x841 = Var(within=Reals,bounds=(None,None),initialize=0) m.x842 = Var(within=Reals,bounds=(None,None),initialize=0) m.x843 = Var(within=Reals,bounds=(None,None),initialize=0) m.x844 = Var(within=Reals,bounds=(None,None),initialize=0) m.x845 = Var(within=Reals,bounds=(None,None),initialize=0) m.x846 = Var(within=Reals,bounds=(None,None),initialize=0) m.x847 = Var(within=Reals,bounds=(None,None),initialize=0) m.x848 = Var(within=Reals,bounds=(None,None),initialize=0) m.x849 = Var(within=Reals,bounds=(None,None),initialize=0) m.x850 = Var(within=Reals,bounds=(None,None),initialize=0) m.x851 = Var(within=Reals,bounds=(None,None),initialize=0) m.x852 = Var(within=Reals,bounds=(None,None),initialize=0) m.x853 = Var(within=Reals,bounds=(None,None),initialize=0) m.x854 = Var(within=Reals,bounds=(None,None),initialize=0) m.x855 = Var(within=Reals,bounds=(None,None),initialize=0) m.x856 = Var(within=Reals,bounds=(None,None),initialize=0) m.x857 = Var(within=Reals,bounds=(None,None),initialize=0) m.x858 = Var(within=Reals,bounds=(None,None),initialize=0) m.x859 = Var(within=Reals,bounds=(None,None),initialize=0) m.x860 = Var(within=Reals,bounds=(None,None),initialize=0) m.x861 = Var(within=Reals,bounds=(None,None),initialize=0) m.x862 = Var(within=Reals,bounds=(None,None),initialize=0) m.x863 = Var(within=Reals,bounds=(None,None),initialize=0) m.x864 = Var(within=Reals,bounds=(None,None),initialize=0) m.x865 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr= - m.x2 - m.x3 - m.x4 + 5*m.x20 + 10*m.x21 + 5*m.x22 - 2*m.x35 - m.x36 - 2*m.x37 - 10*m.x86 - 5*m.x87 - 5*m.x88 - 5*m.x89 - 5*m.x90 - 5*m.x91 + 40*m.x110 + 30*m.x111 + 15*m.x112 + 15*m.x113 + 20*m.x114 + 25*m.x115 + 10*m.x116 + 30*m.x117 + 40*m.x118 + 30*m.x119 + 20*m.x120 + 20*m.x121 + 35*m.x122 + 50*m.x123 + 20*m.x124 + 20*m.x125 + 30*m.x126 + 35*m.x127 + 25*m.x128 + 50*m.x129 + 10*m.x130 + 15*m.x131 + 20*m.x132 + 20*m.x133 + 30*m.x155 + 40*m.x156 + 40*m.x157 - m.x170 - m.x171 - m.x172 + 80*m.x194 + 90*m.x195 + 120*m.x196 + 285*m.x197 + 390*m.x198 + 350*m.x199 + 290*m.x200 + 405*m.x201 + 190*m.x202 + 280*m.x203 + 400*m.x204 + 430*m.x205 + 290*m.x206 + 300*m.x207 + 240*m.x208 + 350*m.x209 + 250*m.x210 + 300*m.x211 - 5*m.b686 - 4*m.b687 - 6*m.b688 - 8*m.b689 - 7*m.b690 - 6*m.b691 - 6*m.b692 - 9*m.b693 - 4*m.b694 - 10*m.b695 - 9*m.b696 - 5*m.b697 - 6*m.b698 - 10*m.b699 - 6*m.b700 - 7*m.b701 - 7*m.b702 - 4*m.b703 - 4*m.b704 - 3*m.b705 - 2*m.b706 - 5*m.b707 - 6*m.b708 - 7*m.b709 - 2*m.b710 - 5*m.b711 - 2*m.b712 - 4*m.b713 - 7*m.b714 - 4*m.b715 - 3*m.b716 - 9*m.b717 - 3*m.b718 - 7*m.b719 - 2*m.b720 - 9*m.b721 - 3*m.b722 - m.b723 - 9*m.b724 - 2*m.b725 - 6*m.b726 - 3*m.b727 - 4*m.b728 - 8*m.b729 - m.b730 - 2*m.b731 - 5*m.b732 - 2*m.b733 - 3*m.b734 - 4*m.b735 - 3*m.b736 - 5*m.b737 - 7*m.b738 - 6*m.b739 - 2*m.b740 - 8*m.b741 - 4*m.b742 - m.b743 - 4*m.b744 - m.b745 - 2*m.b746 - 5*m.b747 - 2*m.b748 - 9*m.b749 - 2*m.b750 - 9*m.b751 - 5*m.b752 - 8*m.b753 - 4*m.b754 - 2*m.b755 - 3*m.b756 - 8*m.b757 - 10*m.b758 - 6*m.b759 - 3*m.b760 - 4*m.b761 - 8*m.b762 - 7*m.b763 - 7*m.b764 - 3*m.b765 - 9*m.b766 - 4*m.b767 - 8*m.b768 - 6*m.b769 - 2*m.b770 - m.b771 - 3*m.b772 - 8*m.b773 - 3*m.b774 - 4*m.b775, sense=maximize) m.c2 = Constraint(expr= m.x2 - m.x5 - m.x8 == 0) m.c3 = Constraint(expr= m.x3 - m.x6 - m.x9 == 0) m.c4 = Constraint(expr= m.x4 - m.x7 - m.x10 == 0) m.c5 = Constraint(expr= - m.x11 - m.x14 + m.x17 == 0) m.c6 = Constraint(expr= - m.x12 - m.x15 + m.x18 == 0) m.c7 = Constraint(expr= - m.x13 - m.x16 + m.x19 == 0) m.c8 = Constraint(expr= m.x17 - m.x20 - m.x23 == 0) m.c9 = Constraint(expr= m.x18 - m.x21 - m.x24 == 0) m.c10 = Constraint(expr= m.x19 - m.x22 - m.x25 == 0) m.c11 = Constraint(expr= m.x23 - m.x26 - m.x29 - m.x32 == 0) m.c12 = Constraint(expr= m.x24 - m.x27 - m.x30 - m.x33 == 0) m.c13 = Constraint(expr= m.x25 - m.x28 - m.x31 - m.x34 == 0) m.c14 = Constraint(expr= m.x38 - m.x47 - m.x50 == 0) m.c15 = Constraint(expr= m.x39 - m.x48 - m.x51 == 0) m.c16 = Constraint(expr= m.x40 - m.x49 - m.x52 == 0) m.c17 = Constraint(expr= m.x44 - m.x53 - m.x56 - m.x59 == 0) m.c18 = Constraint(expr= m.x45 - m.x54 - m.x57 - m.x60 == 0) m.c19 = Constraint(expr= m.x46 - m.x55 - m.x58 - m.x61 == 0) m.c20 = Constraint(expr= m.x68 - m.x80 - m.x83 == 0) m.c21 = Constraint(expr= m.x69 - m.x81 - m.x84 == 0) m.c22 = Constraint(expr= m.x70 - m.x82 - m.x85 == 0) m.c23 = Constraint(expr= - m.x71 - m.x89 + m.x92 == 0) m.c24 = Constraint(expr= - m.x72 - m.x90 + m.x93 == 0) m.c25 = Constraint(expr= - m.x73 - m.x91 + m.x94 == 0) m.c26 = Constraint(expr= m.x74 - m.x95 - m.x98 == 0) m.c27 = Constraint(expr= m.x75 - m.x96 - m.x99 == 0) m.c28 = Constraint(expr= m.x76 - m.x97 - m.x100 == 0) m.c29 = Constraint(expr= m.x77 - m.x101 - m.x104 - m.x107 == 0) m.c30 = Constraint(expr= m.x78 - m.x102 - m.x105 - m.x108 == 0) m.c31 = Constraint(expr= m.x79 - m.x103 - m.x106 - m.x109 == 0) m.c32 = Constraint(expr= m.x134 - m.x137 == 0) m.c33 = Constraint(expr= m.x135 - m.x138 == 0) m.c34 = Constraint(expr= m.x136 - m.x139 == 0) m.c35 = Constraint(expr= m.x137 - m.x140 - m.x143 == 0) m.c36 = Constraint(expr= m.x138 - m.x141 - m.x144 == 0) m.c37 = Constraint(expr= m.x139 - m.x142 - m.x145 == 0) m.c38 = Constraint(expr= - m.x146 - m.x149 + m.x152 == 0) m.c39 = Constraint(expr= - m.x147 - m.x150 + m.x153 == 0) m.c40 = Constraint(expr= - m.x148 - m.x151 + m.x154 == 0) m.c41 = Constraint(expr= m.x152 - m.x155 - m.x158 == 0) m.c42 = Constraint(expr= m.x153 - m.x156 - m.x159 == 0) m.c43 = Constraint(expr= m.x154 - m.x157 - m.x160 == 0) m.c44 = Constraint(expr= m.x158 - m.x161 - m.x164 - m.x167 == 0) m.c45 = Constraint(expr= m.x159 - m.x162 - m.x165 - m.x168 == 0) m.c46 = Constraint(expr= m.x160 - m.x163 - m.x166 - m.x169 == 0) m.c47 = Constraint(expr= m.x173 - m.x182 - m.x185 == 0) m.c48 = Constraint(expr= m.x174 - m.x183 - m.x186 == 0) m.c49 = Constraint(expr= m.x175 - m.x184 - m.x187 == 0) m.c50 = Constraint(expr= m.x179 - m.x188 - m.x191 - m.x194 == 0) m.c51 = Constraint(expr= m.x180 - m.x189 - m.x192 - m.x195 == 0) m.c52 = Constraint(expr= m.x181 - m.x190 - m.x193 - m.x196 == 0) m.c53 = Constraint(expr=(m.x224/(0.001 + 0.999*m.b596) - log(1 + m.x212/(0.001 + 0.999*m.b596)))*(0.001 + 0.999*m.b596) <= 0) m.c54 = Constraint(expr=(m.x225/(0.001 + 0.999*m.b597) - log(1 + m.x213/(0.001 + 0.999*m.b597)))*(0.001 + 0.999*m.b597) <= 0) m.c55 = Constraint(expr=(m.x226/(0.001 + 0.999*m.b598) - log(1 + m.x214/(0.001 + 0.999*m.b598)))*(0.001 + 0.999*m.b598) <= 0) m.c56 = Constraint(expr= m.x215 == 0) m.c57 = Constraint(expr= m.x216 == 0) m.c58 = Constraint(expr= m.x217 == 0) m.c59 = Constraint(expr= m.x227 == 0) m.c60 = Constraint(expr= m.x228 == 0) m.c61 = Constraint(expr= m.x229 == 0) m.c62 = Constraint(expr= m.x5 - m.x212 - m.x215 == 0) m.c63 = Constraint(expr= m.x6 - m.x213 - m.x216 == 0) m.c64 = Constraint(expr= m.x7 - m.x214 - m.x217 == 0) m.c65 = Constraint(expr= m.x11 - m.x224 - m.x227 == 0) m.c66 = Constraint(expr= m.x12 - m.x225 - m.x228 == 0) m.c67 = Constraint(expr= m.x13 - m.x226 - m.x229 == 0) m.c68 = Constraint(expr= m.x212 - 40*m.b596 <= 0) m.c69 = Constraint(expr= m.x213 - 40*m.b597 <= 0) m.c70 = Constraint(expr= m.x214 - 40*m.b598 <= 0) m.c71 = Constraint(expr= m.x215 + 40*m.b596 <= 40) m.c72 = Constraint(expr= m.x216 + 40*m.b597 <= 40) m.c73 = Constraint(expr= m.x217 + 40*m.b598 <= 40) m.c74 = Constraint(expr= m.x224 - 3.71357206670431*m.b596 <= 0) m.c75 = Constraint(expr= m.x225 - 3.71357206670431*m.b597 <= 0) m.c76 = Constraint(expr= m.x226 - 3.71357206670431*m.b598 <= 0) m.c77 = Constraint(expr= m.x227 + 3.71357206670431*m.b596 <= 3.71357206670431) m.c78 = Constraint(expr= m.x228 + 3.71357206670431*m.b597 <= 3.71357206670431) m.c79 = Constraint(expr= m.x229 + 3.71357206670431*m.b598 <= 3.71357206670431) m.c80 = Constraint(expr=(m.x230/(0.001 + 0.999*m.b599) - 1.2*log(1 + m.x218/(0.001 + 0.999*m.b599)))*(0.001 + 0.999* m.b599) <= 0) m.c81 = Constraint(expr=(m.x231/(0.001 + 0.999*m.b600) - 1.2*log(1 + m.x219/(0.001 + 0.999*m.b600)))*(0.001 + 0.999* m.b600) <= 0) m.c82 = Constraint(expr=(m.x232/(0.001 + 0.999*m.b601) - 1.2*log(1 + m.x220/(0.001 + 0.999*m.b601)))*(0.001 + 0.999* m.b601) <= 0) m.c83 = Constraint(expr= m.x221 == 0) m.c84 = Constraint(expr= m.x222 == 0) m.c85 = Constraint(expr= m.x223 == 0) m.c86 = Constraint(expr= m.x233 == 0) m.c87 = Constraint(expr= m.x234 == 0) m.c88 = Constraint(expr= m.x235 == 0) m.c89 = Constraint(expr= m.x8 - m.x218 - m.x221 == 0) m.c90 = Constraint(expr= m.x9 - m.x219 - m.x222 == 0) m.c91 = Constraint(expr= m.x10 - m.x220 - m.x223 == 0) m.c92 = Constraint(expr= m.x14 - m.x230 - m.x233 == 0) m.c93 = Constraint(expr= m.x15 - m.x231 - m.x234 == 0) m.c94 = Constraint(expr= m.x16 - m.x232 - m.x235 == 0) m.c95 = Constraint(expr= m.x218 - 40*m.b599 <= 0) m.c96 = Constraint(expr= m.x219 - 40*m.b600 <= 0) m.c97 = Constraint(expr= m.x220 - 40*m.b601 <= 0) m.c98 = Constraint(expr= m.x221 + 40*m.b599 <= 40) m.c99 = Constraint(expr= m.x222 + 40*m.b600 <= 40) m.c100 = Constraint(expr= m.x223 + 40*m.b601 <= 40) m.c101 = Constraint(expr= m.x230 - 4.45628648004517*m.b599 <= 0) m.c102 = Constraint(expr= m.x231 - 4.45628648004517*m.b600 <= 0) m.c103 = Constraint(expr= m.x232 - 4.45628648004517*m.b601 <= 0) m.c104 = Constraint(expr= m.x233 + 4.45628648004517*m.b599 <= 4.45628648004517) m.c105 = Constraint(expr= m.x234 + 4.45628648004517*m.b600 <= 4.45628648004517) m.c106 = Constraint(expr= m.x235 + 4.45628648004517*m.b601 <= 4.45628648004517) m.c107 = Constraint(expr= - 0.75*m.x236 + m.x260 == 0) m.c108 = Constraint(expr= - 0.75*m.x237 + m.x261 == 0) m.c109 = Constraint(expr= - 0.75*m.x238 + m.x262 == 0) m.c110 = Constraint(expr= m.x239 == 0) m.c111 = Constraint(expr= m.x240 == 0) m.c112 = Constraint(expr= m.x241 == 0) m.c113 = Constraint(expr= m.x263 == 0) m.c114 = Constraint(expr= m.x264 == 0) m.c115 = Constraint(expr= m.x265 == 0) m.c116 = Constraint(expr= m.x26 - m.x236 - m.x239 == 0) m.c117 = Constraint(expr= m.x27 - m.x237 - m.x240 == 0) m.c118 = Constraint(expr= m.x28 - m.x238 - m.x241 == 0) m.c119 = Constraint(expr= m.x38 - m.x260 - m.x263 == 0) m.c120 = Constraint(expr= m.x39 - m.x261 - m.x264 == 0) m.c121 = Constraint(expr= m.x40 - m.x262 - m.x265 == 0) m.c122 = Constraint(expr= m.x236 - 4.45628648004517*m.b602 <= 0) m.c123 = Constraint(expr= m.x237 - 4.45628648004517*m.b603 <= 0) m.c124 = Constraint(expr= m.x238 - 4.45628648004517*m.b604 <= 0) m.c125 = Constraint(expr= m.x239 + 4.45628648004517*m.b602 <= 4.45628648004517) m.c126 = Constraint(expr= m.x240 + 4.45628648004517*m.b603 <= 4.45628648004517) m.c127 = Constraint(expr= m.x241 + 4.45628648004517*m.b604 <= 4.45628648004517) m.c128 = Constraint(expr= m.x260 - 3.34221486003388*m.b602 <= 0) m.c129 = Constraint(expr= m.x261 - 3.34221486003388*m.b603 <= 0) m.c130 = Constraint(expr= m.x262 - 3.34221486003388*m.b604 <= 0) m.c131 = Constraint(expr= m.x263 + 3.34221486003388*m.b602 <= 3.34221486003388) m.c132 = Constraint(expr= m.x264 + 3.34221486003388*m.b603 <= 3.34221486003388) m.c133 = Constraint(expr= m.x265 + 3.34221486003388*m.b604 <= 3.34221486003388) m.c134 = Constraint(expr=(m.x266/(0.001 + 0.999*m.b605) - 1.5*log(1 + m.x242/(0.001 + 0.999*m.b605)))*(0.001 + 0.999* m.b605) <= 0) m.c135 = Constraint(expr=(m.x267/(0.001 + 0.999*m.b606) - 1.5*log(1 + m.x243/(0.001 + 0.999*m.b606)))*(0.001 + 0.999* m.b606) <= 0) m.c136 = Constraint(expr=(m.x268/(0.001 + 0.999*m.b607) - 1.5*log(1 + m.x244/(0.001 + 0.999*m.b607)))*(0.001 + 0.999* m.b607) <= 0) m.c137 = Constraint(expr= m.x245 == 0) m.c138 = Constraint(expr= m.x246 == 0) m.c139 = Constraint(expr= m.x247 == 0) m.c140 = Constraint(expr= m.x272 == 0) m.c141 = Constraint(expr= m.x273 == 0) m.c142 = Constraint(expr= m.x274 == 0) m.c143 = Constraint(expr= m.x29 - m.x242 - m.x245 == 0) m.c144 = Constraint(expr= m.x30 - m.x243 - m.x246 == 0) m.c145 = Constraint(expr= m.x31 - m.x244 - m.x247 == 0) m.c146 = Constraint(expr= m.x41 - m.x266 - m.x272 == 0) m.c147 = Constraint(expr= m.x42 - m.x267 - m.x273 == 0) m.c148 = Constraint(expr= m.x43 - m.x268 - m.x274 == 0) m.c149 = Constraint(expr= m.x242 - 4.45628648004517*m.b605 <= 0) m.c150 = Constraint(expr= m.x243 - 4.45628648004517*m.b606 <= 0) m.c151 = Constraint(expr= m.x244 - 4.45628648004517*m.b607 <= 0) m.c152 = Constraint(expr= m.x245 + 4.45628648004517*m.b605 <= 4.45628648004517) m.c153 = Constraint(expr= m.x246 + 4.45628648004517*m.b606 <= 4.45628648004517) m.c154 = Constraint(expr= m.x247 + 4.45628648004517*m.b607 <= 4.45628648004517) m.c155 = Constraint(expr= m.x266 - 2.54515263975353*m.b605 <= 0) m.c156 = Constraint(expr= m.x267 - 2.54515263975353*m.b606 <= 0) m.c157 = Constraint(expr= m.x268 - 2.54515263975353*m.b607 <= 0) m.c158 = Constraint(expr= m.x272 + 2.54515263975353*m.b605 <= 2.54515263975353) m.c159 = Constraint(expr= m.x273 + 2.54515263975353*m.b606 <= 2.54515263975353) m.c160 = Constraint(expr= m.x274 + 2.54515263975353*m.b607 <= 2.54515263975353) m.c161 = Constraint(expr= - m.x248 + m.x278 == 0) m.c162 = Constraint(expr= - m.x249 + m.x279 == 0) m.c163 = Constraint(expr= - m.x250 + m.x280 == 0) m.c164 = Constraint(expr= - 0.5*m.x254 + m.x278 == 0) m.c165 = Constraint(expr= - 0.5*m.x255 + m.x279 == 0) m.c166 = Constraint(expr= - 0.5*m.x256 + m.x280 == 0) m.c167 = Constraint(expr= m.x251 == 0) m.c168 = Constraint(expr= m.x252 == 0) m.c169 = Constraint(expr= m.x253 == 0) m.c170 = Constraint(expr= m.x257 == 0) m.c171 = Constraint(expr= m.x258 == 0) m.c172 = Constraint(expr= m.x259 == 0) m.c173 = Constraint(expr= m.x281 == 0) m.c174 = Constraint(expr= m.x282 == 0) m.c175 = Constraint(expr= m.x283 == 0) m.c176 = Constraint(expr= m.x32 - m.x248 - m.x251 == 0) m.c177 = Constraint(expr= m.x33 - m.x249 - m.x252 == 0) m.c178 = Constraint(expr= m.x34 - m.x250 - m.x253 == 0) m.c179 = Constraint(expr= m.x35 - m.x254 - m.x257 == 0) m.c180 = Constraint(expr= m.x36 - m.x255 - m.x258 == 0) m.c181 = Constraint(expr= m.x37 - m.x256 - m.x259 == 0) m.c182 = Constraint(expr= m.x44 - m.x278 - m.x281 == 0) m.c183 = Constraint(expr= m.x45 - m.x279 - m.x282 == 0) m.c184 = Constraint(expr= m.x46 - m.x280 - m.x283 == 0) m.c185 = Constraint(expr= m.x248 - 4.45628648004517*m.b608 <= 0) m.c186 = Constraint(expr= m.x249 - 4.45628648004517*m.b609 <= 0) m.c187 = Constraint(expr= m.x250 - 4.45628648004517*m.b610 <= 0) m.c188 = Constraint(expr= m.x251 + 4.45628648004517*m.b608 <= 4.45628648004517) m.c189 = Constraint(expr= m.x252 + 4.45628648004517*m.b609 <= 4.45628648004517) m.c190 = Constraint(expr= m.x253 + 4.45628648004517*m.b610 <= 4.45628648004517) m.c191 = Constraint(expr= m.x254 - 30*m.b608 <= 0) m.c192 = Constraint(expr= m.x255 - 30*m.b609 <= 0) m.c193 = Constraint(expr= m.x256 - 30*m.b610 <= 0) m.c194 = Constraint(expr= m.x257 + 30*m.b608 <= 30) m.c195 = Constraint(expr= m.x258 + 30*m.b609 <= 30) m.c196 = Constraint(expr= m.x259 + 30*m.b610 <= 30) m.c197 = Constraint(expr= m.x278 - 15*m.b608 <= 0) m.c198 = Constraint(expr= m.x279 - 15*m.b609 <= 0) m.c199 = Constraint(expr= m.x280 - 15*m.b610 <= 0) m.c200 = Constraint(expr= m.x281 + 15*m.b608 <= 15) m.c201 = Constraint(expr= m.x282 + 15*m.b609 <= 15) m.c202 = Constraint(expr= m.x283 + 15*m.b610 <= 15) m.c203 = Constraint(expr=(m.x314/(0.001 + 0.999*m.b611) - 1.25*log(1 + m.x284/(0.001 + 0.999*m.b611)))*(0.001 + 0.999* m.b611) <= 0) m.c204 = Constraint(expr=(m.x315/(0.001 + 0.999*m.b612) - 1.25*log(1 + m.x285/(0.001 + 0.999*m.b612)))*(0.001 + 0.999* m.b612) <= 0) m.c205 = Constraint(expr=(m.x316/(0.001 + 0.999*m.b613) - 1.25*log(1 + m.x286/(0.001 + 0.999*m.b613)))*(0.001 + 0.999* m.b613) <= 0) m.c206 = Constraint(expr= m.x287 == 0) m.c207 = Constraint(expr= m.x288 == 0) m.c208 = Constraint(expr= m.x289 == 0) m.c209 = Constraint(expr= m.x320 == 0) m.c210 = Constraint(expr= m.x321 == 0) m.c211 = Constraint(expr= m.x322 == 0) m.c212 = Constraint(expr= m.x47 - m.x284 - m.x287 == 0) m.c213 = Constraint(expr= m.x48 - m.x285 - m.x288 == 0) m.c214 = Constraint(expr= m.x49 - m.x286 - m.x289 == 0) m.c215 = Constraint(expr= m.x62 - m.x314 - m.x320 == 0) m.c216 = Constraint(expr= m.x63 - m.x315 - m.x321 == 0) m.c217 = Constraint(expr= m.x64 - m.x316 - m.x322 == 0) m.c218 = Constraint(expr= m.x284 - 3.34221486003388*m.b611 <= 0) m.c219 = Constraint(expr= m.x285 - 3.34221486003388*m.b612 <= 0) m.c220 = Constraint(expr= m.x286 - 3.34221486003388*m.b613 <= 0) m.c221 = Constraint(expr= m.x287 + 3.34221486003388*m.b611 <= 3.34221486003388) m.c222 = Constraint(expr= m.x288 + 3.34221486003388*m.b612 <= 3.34221486003388) m.c223 = Constraint(expr= m.x289 + 3.34221486003388*m.b613 <= 3.34221486003388) m.c224 = Constraint(expr= m.x314 - 1.83548069293539*m.b611 <= 0) m.c225 = Constraint(expr= m.x315 - 1.83548069293539*m.b612 <= 0) m.c226 = Constraint(expr= m.x316 - 1.83548069293539*m.b613 <= 0) m.c227 = Constraint(expr= m.x320 + 1.83548069293539*m.b611 <= 1.83548069293539) m.c228 = Constraint(expr= m.x321 + 1.83548069293539*m.b612 <= 1.83548069293539) m.c229 = Constraint(expr= m.x322 + 1.83548069293539*m.b613 <= 1.83548069293539) m.c230 = Constraint(expr=(m.x326/(0.001 + 0.999*m.b614) - 0.9*log(1 + m.x290/(0.001 + 0.999*m.b614)))*(0.001 + 0.999* m.b614) <= 0) m.c231 = Constraint(expr=(m.x327/(0.001 + 0.999*m.b615) - 0.9*log(1 + m.x291/(0.001 + 0.999*m.b615)))*(0.001 + 0.999* m.b615) <= 0) m.c232 = Constraint(expr=(m.x328/(0.001 + 0.999*m.b616) - 0.9*log(1 + m.x292/(0.001 + 0.999*m.b616)))*(0.001 + 0.999* m.b616) <= 0) m.c233 = Constraint(expr= m.x293 == 0) m.c234 = Constraint(expr= m.x294 == 0) m.c235 = Constraint(expr= m.x295 == 0) m.c236 = Constraint(expr= m.x332 == 0) m.c237 = Constraint(expr= m.x333 == 0) m.c238 = Constraint(expr= m.x334 == 0) m.c239 = Constraint(expr= m.x50 - m.x290 - m.x293 == 0) m.c240 = Constraint(expr= m.x51 - m.x291 - m.x294 == 0) m.c241 = Constraint(expr= m.x52 - m.x292 - m.x295 == 0) m.c242 = Constraint(expr= m.x65 - m.x326 - m.x332 == 0) m.c243 = Constraint(expr= m.x66 - m.x327 - m.x333 == 0) m.c244 = Constraint(expr= m.x67 - m.x328 - m.x334 == 0) m.c245 = Constraint(expr= m.x290 - 3.34221486003388*m.b614 <= 0) m.c246 = Constraint(expr= m.x291 - 3.34221486003388*m.b615 <= 0) m.c247 = Constraint(expr= m.x292 - 3.34221486003388*m.b616 <= 0) m.c248 = Constraint(expr= m.x293 + 3.34221486003388*m.b614 <= 3.34221486003388) m.c249 = Constraint(expr= m.x294 + 3.34221486003388*m.b615 <= 3.34221486003388) m.c250 = Constraint(expr= m.x295 + 3.34221486003388*m.b616 <= 3.34221486003388) m.c251 = Constraint(expr= m.x326 - 1.32154609891348*m.b614 <= 0) m.c252 = Constraint(expr= m.x327 - 1.32154609891348*m.b615 <= 0) m.c253 = Constraint(expr= m.x328 - 1.32154609891348*m.b616 <= 0) m.c254 = Constraint(expr= m.x332 + 1.32154609891348*m.b614 <= 1.32154609891348) m.c255 = Constraint(expr= m.x333 + 1.32154609891348*m.b615 <= 1.32154609891348) m.c256 = Constraint(expr= m.x334 + 1.32154609891348*m.b616 <= 1.32154609891348) m.c257 = Constraint(expr=(m.x338/(0.001 + 0.999*m.b617) - log(1 + m.x269/(0.001 + 0.999*m.b617)))*(0.001 + 0.999*m.b617) <= 0) m.c258 = Constraint(expr=(m.x339/(0.001 + 0.999*m.b618) - log(1 + m.x270/(0.001 + 0.999*m.b618)))*(0.001 + 0.999*m.b618) <= 0) m.c259 = Constraint(expr=(m.x340/(0.001 + 0.999*m.b619) - log(1 + m.x271/(0.001 + 0.999*m.b619)))*(0.001 + 0.999*m.b619) <= 0) m.c260 = Constraint(expr= m.x275 == 0) m.c261 = Constraint(expr= m.x276 == 0) m.c262 = Constraint(expr= m.x277 == 0) m.c263 = Constraint(expr= m.x341 == 0) m.c264 = Constraint(expr= m.x342 == 0) m.c265 = Constraint(expr= m.x343 == 0) m.c266 = Constraint(expr= m.x41 - m.x269 - m.x275 == 0) m.c267 = Constraint(expr= m.x42 - m.x270 - m.x276 == 0) m.c268 = Constraint(expr= m.x43 - m.x271 - m.x277 == 0) m.c269 = Constraint(expr= m.x68 - m.x338 - m.x341 == 0) m.c270 = Constraint(expr= m.x69 - m.x339 - m.x342 == 0) m.c271 = Constraint(expr= m.x70 - m.x340 - m.x343 == 0) m.c272 = Constraint(expr= m.x269 - 2.54515263975353*m.b617 <= 0) m.c273 = Constraint(expr= m.x270 - 2.54515263975353*m.b618 <= 0) m.c274 = Constraint(expr= m.x271 - 2.54515263975353*m.b619 <= 0) m.c275 = Constraint(expr= m.x275 + 2.54515263975353*m.b617 <= 2.54515263975353) m.c276 = Constraint(expr= m.x276 + 2.54515263975353*m.b618 <= 2.54515263975353) m.c277 = Constraint(expr= m.x277 + 2.54515263975353*m.b619 <= 2.54515263975353) m.c278 = Constraint(expr= m.x338 - 1.26558121681553*m.b617 <= 0) m.c279 = Constraint(expr= m.x339 - 1.26558121681553*m.b618 <= 0) m.c280 = Constraint(expr= m.x340 - 1.26558121681553*m.b619 <= 0) m.c281 = Constraint(expr= m.x341 + 1.26558121681553*m.b617 <= 1.26558121681553) m.c282 = Constraint(expr= m.x342 + 1.26558121681553*m.b618 <= 1.26558121681553) m.c283 = Constraint(expr= m.x343 + 1.26558121681553*m.b619 <= 1.26558121681553) m.c284 = Constraint(expr= - 0.9*m.x296 + m.x344 == 0) m.c285 = Constraint(expr= - 0.9*m.x297 + m.x345 == 0) m.c286 = Constraint(expr= - 0.9*m.x298 + m.x346 == 0) m.c287 = Constraint(expr= m.x299 == 0) m.c288 = Constraint(expr= m.x300 == 0) m.c289 = Constraint(expr= m.x301 == 0) m.c290 = Constraint(expr= m.x347 == 0) m.c291 = Constraint(expr= m.x348 == 0) m.c292 = Constraint(expr= m.x349 == 0) m.c293 = Constraint(expr= m.x53 - m.x296 - m.x299 == 0) m.c294 = Constraint(expr= m.x54 - m.x297 - m.x300 == 0) m.c295 = Constraint(expr= m.x55 - m.x298 - m.x301 == 0) m.c296 = Constraint(expr= m.x71 - m.x344 - m.x347 == 0) m.c297 = Constraint(expr= m.x72 - m.x345 - m.x348 == 0) m.c298 = Constraint(expr= m.x73 - m.x346 - m.x349 == 0) m.c299 = Constraint(expr= m.x296 - 15*m.b620 <= 0) m.c300 = Constraint(expr= m.x297 - 15*m.b621 <= 0) m.c301 = Constraint(expr= m.x298 - 15*m.b622 <= 0) m.c302 = Constraint(expr= m.x299 + 15*m.b620 <= 15) m.c303 = Constraint(expr= m.x300 + 15*m.b621 <= 15) m.c304 = Constraint(expr= m.x301 + 15*m.b622 <= 15) m.c305 = Constraint(expr= m.x344 - 13.5*m.b620 <= 0) m.c306 = Constraint(expr= m.x345 - 13.5*m.b621 <= 0) m.c307 = Constraint(expr= m.x346 - 13.5*m.b622 <= 0) m.c308 = Constraint(expr= m.x347 + 13.5*m.b620 <= 13.5) m.c309 = Constraint(expr= m.x348 + 13.5*m.b621 <= 13.5) m.c310 = Constraint(expr= m.x349 + 13.5*m.b622 <= 13.5) m.c311 = Constraint(expr= - 0.6*m.x302 + m.x350 == 0) m.c312 = Constraint(expr= - 0.6*m.x303 + m.x351 == 0) m.c313 = Constraint(expr= - 0.6*m.x304 + m.x352 == 0) m.c314 = Constraint(expr= m.x305 == 0) m.c315 = Constraint(expr= m.x306 == 0) m.c316 = Constraint(expr= m.x307 == 0) m.c317 = Constraint(expr= m.x353 == 0) m.c318 = Constraint(expr= m.x354 == 0) m.c319 = Constraint(expr= m.x355 == 0) m.c320 = Constraint(expr= m.x56 - m.x302 - m.x305 == 0) m.c321 = Constraint(expr= m.x57 - m.x303 - m.x306 == 0) m.c322 = Constraint(expr= m.x58 - m.x304 - m.x307 == 0) m.c323 = Constraint(expr= m.x74 - m.x350 - m.x353 == 0) m.c324 = Constraint(expr= m.x75 - m.x351 - m.x354 == 0) m.c325 = Constraint(expr= m.x76 - m.x352 - m.x355 == 0) m.c326 = Constraint(expr= m.x302 - 15*m.b623 <= 0) m.c327 = Constraint(expr= m.x303 - 15*m.b624 <= 0) m.c328 = Constraint(expr= m.x304 - 15*m.b625 <= 0) m.c329 = Constraint(expr= m.x305 + 15*m.b623 <= 15) m.c330 = Constraint(expr= m.x306 + 15*m.b624 <= 15) m.c331 = Constraint(expr= m.x307 + 15*m.b625 <= 15) m.c332 = Constraint(expr= m.x350 - 9*m.b623 <= 0) m.c333 = Constraint(expr= m.x351 - 9*m.b624 <= 0) m.c334 = Constraint(expr= m.x352 - 9*m.b625 <= 0) m.c335 = Constraint(expr= m.x353 + 9*m.b623 <= 9) m.c336 = Constraint(expr= m.x354 + 9*m.b624 <= 9) m.c337 = Constraint(expr= m.x355 + 9*m.b625 <= 9) m.c338 = Constraint(expr=(m.x356/(0.001 + 0.999*m.b626) - 1.1*log(1 + m.x308/(0.001 + 0.999*m.b626)))*(0.001 + 0.999* m.b626) <= 0) m.c339 = Constraint(expr=(m.x357/(0.001 + 0.999*m.b627) - 1.1*log(1 + m.x309/(0.001 + 0.999*m.b627)))*(0.001 + 0.999* m.b627) <= 0) m.c340 = Constraint(expr=(m.x358/(0.001 + 0.999*m.b628) - 1.1*log(1 + m.x310/(0.001 + 0.999*m.b628)))*(0.001 + 0.999* m.b628) <= 0) m.c341 = Constraint(expr= m.x311 == 0) m.c342 = Constraint(expr= m.x312 == 0) m.c343 = Constraint(expr= m.x313 == 0) m.c344 = Constraint(expr= m.x359 == 0) m.c345 = Constraint(expr= m.x360 == 0) m.c346 = Constraint(expr= m.x361 == 0) m.c347 = Constraint(expr= m.x59 - m.x308 - m.x311 == 0) m.c348 = Constraint(expr= m.x60 - m.x309 - m.x312 == 0) m.c349 = Constraint(expr= m.x61 - m.x310 - m.x313 == 0) m.c350 = Constraint(expr= m.x77 - m.x356 - m.x359 == 0) m.c351 = Constraint(expr= m.x78 - m.x357 - m.x360 == 0) m.c352 = Constraint(expr= m.x79 - m.x358 - m.x361 == 0) m.c353 = Constraint(expr= m.x308 - 15*m.b626 <= 0) m.c354 = Constraint(expr= m.x309 - 15*m.b627 <= 0) m.c355 = Constraint(expr= m.x310 - 15*m.b628 <= 0) m.c356 = Constraint(expr= m.x311 + 15*m.b626 <= 15) m.c357 = Constraint(expr= m.x312 + 15*m.b627 <= 15) m.c358 = Constraint(expr= m.x313 + 15*m.b628 <= 15) m.c359 = Constraint(expr= m.x356 - 3.04984759446376*m.b626 <= 0) m.c360 = Constraint(expr= m.x357 - 3.04984759446376*m.b627 <= 0) m.c361 = Constraint(expr= m.x358 - 3.04984759446376*m.b628 <= 0) m.c362 = Constraint(expr= m.x359 + 3.04984759446376*m.b626 <= 3.04984759446376) m.c363 = Constraint(expr= m.x360 + 3.04984759446376*m.b627 <= 3.04984759446376) m.c364 = Constraint(expr= m.x361 + 3.04984759446376*m.b628 <= 3.04984759446376) m.c365 = Constraint(expr= - 0.9*m.x317 + m.x416 == 0) m.c366 = Constraint(expr= - 0.9*m.x318 + m.x417 == 0) m.c367 = Constraint(expr= - 0.9*m.x319 + m.x418 == 0) m.c368 = Constraint(expr= - m.x374 + m.x416 == 0) m.c369 = Constraint(expr= - m.x375 + m.x417 == 0) m.c370 = Constraint(expr= - m.x376 + m.x418 == 0) m.c371 = Constraint(expr= m.x323 == 0) m.c372 = Constraint(expr= m.x324 == 0) m.c373 = Constraint(expr= m.x325 == 0) m.c374 = Constraint(expr= m.x377 == 0) m.c375 = Constraint(expr= m.x378 == 0) m.c376 = Constraint(expr= m.x379 == 0) m.c377 = Constraint(expr= m.x419 == 0) m.c378 = Constraint(expr= m.x420 == 0) m.c379 = Constraint(expr= m.x421 == 0) m.c380 = Constraint(expr= m.x62 - m.x317 - m.x323 == 0) m.c381 = Constraint(expr= m.x63 - m.x318 - m.x324 == 0) m.c382 = Constraint(expr= m.x64 - m.x319 - m.x325 == 0) m.c383 = Constraint(expr= m.x86 - m.x374 - m.x377 == 0) m.c384 = Constraint(expr= m.x87 - m.x375 - m.x378 == 0) m.c385 = Constraint(expr= m.x88 - m.x376 - m.x379 == 0) m.c386 = Constraint(expr= m.x110 - m.x416 - m.x419 == 0) m.c387 = Constraint(expr= m.x111 - m.x417 - m.x420 == 0) m.c388 = Constraint(expr= m.x112 - m.x418 - m.x421 == 0) m.c389 = Constraint(expr= m.x317 - 1.83548069293539*m.b629 <= 0) m.c390 = Constraint(expr= m.x318 - 1.83548069293539*m.b630 <= 0) m.c391 = Constraint(expr= m.x319 - 1.83548069293539*m.b631 <= 0) m.c392 = Constraint(expr= m.x323 + 1.83548069293539*m.b629 <= 1.83548069293539) m.c393 = Constraint(expr= m.x324 + 1.83548069293539*m.b630 <= 1.83548069293539) m.c394 = Constraint(expr= m.x325 + 1.83548069293539*m.b631 <= 1.83548069293539) m.c395 = Constraint(expr= m.x374 - 20*m.b629 <= 0) m.c396 = Constraint(expr= m.x375 - 20*m.b630 <= 0) m.c397 = Constraint(expr= m.x376 - 20*m.b631 <= 0) m.c398 = Constraint(expr= m.x377 + 20*m.b629 <= 20) m.c399 = Constraint(expr= m.x378 + 20*m.b630 <= 20) m.c400 = Constraint(expr= m.x379 + 20*m.b631 <= 20) m.c401 = Constraint(expr= m.x416 - 20*m.b629 <= 0) m.c402 = Constraint(expr= m.x417 - 20*m.b630 <= 0) m.c403 = Constraint(expr= m.x418 - 20*m.b631 <= 0) m.c404 = Constraint(expr= m.x419 + 20*m.b629 <= 20) m.c405 = Constraint(expr= m.x420 + 20*m.b630 <= 20) m.c406 = Constraint(expr= m.x421 + 20*m.b631 <= 20) m.c407 = Constraint(expr=(m.x422/(0.001 + 0.999*m.b632) - log(1 + m.x329/(0.001 + 0.999*m.b632)))*(0.001 + 0.999*m.b632) <= 0) m.c408 = Constraint(expr=(m.x423/(0.001 + 0.999*m.b633) - log(1 + m.x330/(0.001 + 0.999*m.b633)))*(0.001 + 0.999*m.b633) <= 0) m.c409 = Constraint(expr=(m.x424/(0.001 + 0.999*m.b634) - log(1 + m.x331/(0.001 + 0.999*m.b634)))*(0.001 + 0.999*m.b634) <= 0) m.c410 = Constraint(expr= m.x335 == 0) m.c411 = Constraint(expr= m.x336 == 0) m.c412 = Constraint(expr= m.x337 == 0) m.c413 = Constraint(expr= m.x425 == 0) m.c414 = Constraint(expr= m.x426 == 0) m.c415 = Constraint(expr= m.x427 == 0) m.c416 = Constraint(expr= m.x65 - m.x329 - m.x335 == 0) m.c417 = Constraint(expr= m.x66 - m.x330 - m.x336 == 0) m.c418 = Constraint(expr= m.x67 - m.x331 - m.x337 == 0) m.c419 = Constraint(expr= m.x113 - m.x422 - m.x425 == 0) m.c420 = Constraint(expr= m.x114 - m.x423 - m.x426 == 0) m.c421 = Constraint(expr= m.x115 - m.x424 - m.x427 == 0) m.c422 = Constraint(expr= m.x329 - 1.32154609891348*m.b632 <= 0) m.c423 = Constraint(expr= m.x330 - 1.32154609891348*m.b633 <= 0) m.c424 = Constraint(expr= m.x331 - 1.32154609891348*m.b634 <= 0) m.c425 = Constraint(expr= m.x335 + 1.32154609891348*m.b632 <= 1.32154609891348) m.c426 = Constraint(expr= m.x336 + 1.32154609891348*m.b633 <= 1.32154609891348) m.c427 = Constraint(expr= m.x337 + 1.32154609891348*m.b634 <= 1.32154609891348) m.c428 = Constraint(expr= m.x422 - 0.842233385663186*m.b632 <= 0) m.c429 = Constraint(expr= m.x423 - 0.842233385663186*m.b633 <= 0) m.c430 = Constraint(expr= m.x424 - 0.842233385663186*m.b634 <= 0) m.c431 = Constraint(expr= m.x425 + 0.842233385663186*m.b632 <= 0.842233385663186) m.c432 = Constraint(expr= m.x426 + 0.842233385663186*m.b633 <= 0.842233385663186) m.c433 = Constraint(expr= m.x427 + 0.842233385663186*m.b634 <= 0.842233385663186) m.c434 = Constraint(expr=(m.x428/(0.001 + 0.999*m.b635) - 0.7*log(1 + m.x362/(0.001 + 0.999*m.b635)))*(0.001 + 0.999* m.b635) <= 0) m.c435 = Constraint(expr=(m.x429/(0.001 + 0.999*m.b636) - 0.7*log(1 + m.x363/(0.001 + 0.999*m.b636)))*(0.001 + 0.999* m.b636) <= 0) m.c436 = Constraint(expr=(m.x430/(0.001 + 0.999*m.b637) - 0.7*log(1 + m.x364/(0.001 + 0.999*m.b637)))*(0.001 + 0.999* m.b637) <= 0) m.c437 = Constraint(expr= m.x365 == 0) m.c438 = Constraint(expr= m.x366 == 0) m.c439 = Constraint(expr= m.x367 == 0) m.c440 = Constraint(expr= m.x431 == 0) m.c441 = Constraint(expr= m.x432 == 0) m.c442 = Constraint(expr= m.x433 == 0) m.c443 = Constraint(expr= m.x80 - m.x362 - m.x365 == 0) m.c444 = Constraint(expr= m.x81 - m.x363 - m.x366 == 0) m.c445 = Constraint(expr= m.x82 - m.x364 - m.x367 == 0) m.c446 = Constraint(expr= m.x116 - m.x428 - m.x431 == 0) m.c447 = Constraint(expr= m.x117 - m.x429 - m.x432 == 0) m.c448 = Constraint(expr= m.x118 - m.x430 - m.x433 == 0) m.c449 = Constraint(expr= m.x362 - 1.26558121681553*m.b635 <= 0) m.c450 = Constraint(expr= m.x363 - 1.26558121681553*m.b636 <= 0) m.c451 = Constraint(expr= m.x364 - 1.26558121681553*m.b637 <= 0) m.c452 = Constraint(expr= m.x365 + 1.26558121681553*m.b635 <= 1.26558121681553) m.c453 = Constraint(expr= m.x366 + 1.26558121681553*m.b636 <= 1.26558121681553) m.c454 = Constraint(expr= m.x367 + 1.26558121681553*m.b637 <= 1.26558121681553) m.c455 = Constraint(expr= m.x428 - 0.572481933717686*m.b635 <= 0) m.c456 = Constraint(expr= m.x429 - 0.572481933717686*m.b636 <= 0) m.c457 = Constraint(expr= m.x430 - 0.572481933717686*m.b637 <= 0) m.c458 = Constraint(expr= m.x431 + 0.572481933717686*m.b635 <= 0.572481933717686) m.c459 = Constraint(expr= m.x432 + 0.572481933717686*m.b636 <= 0.572481933717686) m.c460 = Constraint(expr= m.x433 + 0.572481933717686*m.b637 <= 0.572481933717686) m.c461 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x368/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c462 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x369/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c463 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x370/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c464 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x380/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c465 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x381/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c466 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x382/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c467 = Constraint(expr= m.x371 == 0) m.c468 = Constraint(expr= m.x372 == 0) m.c469 = Constraint(expr= m.x373 == 0) m.c470 = Constraint(expr= m.x383 == 0) m.c471 = Constraint(expr= m.x384 == 0) m.c472 = Constraint(expr= m.x385 == 0) m.c473 = Constraint(expr= m.x437 == 0) m.c474 = Constraint(expr= m.x438 == 0) m.c475 = Constraint(expr= m.x439 == 0) m.c476 = Constraint(expr= m.x83 - m.x368 - m.x371 == 0) m.c477 = Constraint(expr= m.x84 - m.x369 - m.x372 == 0) m.c478 = Constraint(expr= m.x85 - m.x370 - m.x373 == 0) m.c479 = Constraint(expr= m.x92 - m.x380 - m.x383 == 0) m.c480 = Constraint(expr= m.x93 - m.x381 - m.x384 == 0) m.c481 = Constraint(expr= m.x94 - m.x382 - m.x385 == 0) m.c482 = Constraint(expr= m.x119 - m.x434 - m.x437 == 0) m.c483 = Constraint(expr= m.x120 - m.x435 - m.x438 == 0) m.c484 = Constraint(expr= m.x121 - m.x436 - m.x439 == 0) m.c485 = Constraint(expr= m.x368 - 1.26558121681553*m.b638 <= 0) m.c486 = Constraint(expr= m.x369 - 1.26558121681553*m.b639 <= 0) m.c487 = Constraint(expr= m.x370 - 1.26558121681553*m.b640 <= 0) m.c488 = Constraint(expr= m.x371 + 1.26558121681553*m.b638 <= 1.26558121681553) m.c489 = Constraint(expr= m.x372 + 1.26558121681553*m.b639 <= 1.26558121681553) m.c490 = Constraint(expr= m.x373 + 1.26558121681553*m.b640 <= 1.26558121681553) m.c491 = Constraint(expr= m.x380 - 33.5*m.b638 <= 0) m.c492 = Constraint(expr= m.x381 - 33.5*m.b639 <= 0) m.c493 = Constraint(expr= m.x382 - 33.5*m.b640 <= 0) m.c494 = Constraint(expr= m.x383 + 33.5*m.b638 <= 33.5) m.c495 = Constraint(expr= m.x384 + 33.5*m.b639 <= 33.5) m.c496 = Constraint(expr= m.x385 + 33.5*m.b640 <= 33.5) m.c497 = Constraint(expr= m.x434 - 2.30162356062425*m.b638 <= 0) m.c498 = Constraint(expr= m.x435 - 2.30162356062425*m.b639 <= 0) m.c499 = Constraint(expr= m.x436 - 2.30162356062425*m.b640 <= 0) m.c500 = Constraint(expr= m.x437 + 2.30162356062425*m.b638 <= 2.30162356062425) m.c501 = Constraint(expr= m.x438 + 2.30162356062425*m.b639 <= 2.30162356062425) m.c502 = Constraint(expr= m.x439 + 2.30162356062425*m.b640 <= 2.30162356062425) m.c503 = Constraint(expr= - m.x386 + m.x440 == 0) m.c504 = Constraint(expr= - m.x387 + m.x441 == 0) m.c505 = Constraint(expr= - m.x388 + m.x442 == 0) m.c506 = Constraint(expr= m.x389 == 0) m.c507 = Constraint(expr= m.x390 == 0) m.c508 = Constraint(expr= m.x391 == 0) m.c509 = Constraint(expr= m.x443 == 0) m.c510 = Constraint(expr= m.x444 == 0) m.c511 = Constraint(expr= m.x445 == 0) m.c512 = Constraint(expr= m.x95 - m.x386 - m.x389 == 0) m.c513 = Constraint(expr= m.x96 - m.x387 - m.x390 == 0) m.c514 = Constraint(expr= m.x97 - m.x388 - m.x391 == 0) m.c515 = Constraint(expr= m.x122 - m.x440 - m.x443 == 0) m.c516 = Constraint(expr= m.x123 - m.x441 - m.x444 == 0) m.c517 = Constraint(expr= m.x124 - m.x442 - m.x445 == 0) m.c518 = Constraint(expr= m.x386 - 9*m.b641 <= 0) m.c519 = Constraint(expr= m.x387 - 9*m.b642 <= 0) m.c520 = Constraint(expr= m.x388 - 9*m.b643 <= 0) m.c521 = Constraint(expr= m.x389 + 9*m.b641 <= 9) m.c522 = Constraint(expr= m.x390 + 9*m.b642 <= 9) m.c523 = Constraint(expr= m.x391 + 9*m.b643 <= 9) m.c524 = Constraint(expr= m.x440 - 9*m.b641 <= 0) m.c525 = Constraint(expr= m.x441 - 9*m.b642 <= 0) m.c526 = Constraint(expr= m.x442 - 9*m.b643 <= 0) m.c527 = Constraint(expr= m.x443 + 9*m.b641 <= 9) m.c528 = Constraint(expr= m.x444 + 9*m.b642 <= 9) m.c529 = Constraint(expr= m.x445 + 9*m.b643 <= 9) m.c530 = Constraint(expr= - m.x392 + m.x446 == 0) m.c531 = Constraint(expr= - m.x393 + m.x447 == 0) m.c532 = Constraint(expr= - m.x394 + m.x448 == 0) m.c533 = Constraint(expr= m.x395 == 0) m.c534 = Constraint(expr= m.x396 == 0) m.c535 = Constraint(expr= m.x397 == 0) m.c536 = Constraint(expr= m.x449 == 0) m.c537 = Constraint(expr= m.x450 == 0) m.c538 = Constraint(expr= m.x451 == 0) m.c539 = Constraint(expr= m.x98 - m.x392 - m.x395 == 0) m.c540 = Constraint(expr= m.x99 - m.x393 - m.x396 == 0) m.c541 = Constraint(expr= m.x100 - m.x394 - m.x397 == 0) m.c542 = Constraint(expr= m.x125 - m.x446 - m.x449 == 0) m.c543 = Constraint(expr= m.x126 - m.x447 - m.x450 == 0) m.c544 = Constraint(expr= m.x127 - m.x448 - m.x451 == 0) m.c545 = Constraint(expr= m.x392 - 9*m.b644 <= 0) m.c546 = Constraint(expr= m.x393 - 9*m.b645 <= 0) m.c547 = Constraint(expr= m.x394 - 9*m.b646 <= 0) m.c548 = Constraint(expr= m.x395 + 9*m.b644 <= 9) m.c549 = Constraint(expr= m.x396 + 9*m.b645 <= 9) m.c550 = Constraint(expr= m.x397 + 9*m.b646 <= 9) m.c551 = Constraint(expr= m.x446 - 9*m.b644 <= 0) m.c552 = Constraint(expr= m.x447 - 9*m.b645 <= 0) m.c553 = Constraint(expr= m.x448 - 9*m.b646 <= 0) m.c554 = Constraint(expr= m.x449 + 9*m.b644 <= 9) m.c555 = Constraint(expr= m.x450 + 9*m.b645 <= 9) m.c556 = Constraint(expr= m.x451 + 9*m.b646 <= 9) m.c557 = Constraint(expr=(m.x452/(0.001 + 0.999*m.b647) - 0.75*log(1 + m.x398/(0.001 + 0.999*m.b647)))*(0.001 + 0.999* m.b647) <= 0) m.c558 = Constraint(expr=(m.x453/(0.001 + 0.999*m.b648) - 0.75*log(1 + m.x399/(0.001 + 0.999*m.b648)))*(0.001 + 0.999* m.b648) <= 0) m.c559 = Constraint(expr=(m.x454/(0.001 + 0.999*m.b649) - 0.75*log(1 + m.x400/(0.001 + 0.999*m.b649)))*(0.001 + 0.999* m.b649) <= 0) m.c560 = Constraint(expr= m.x401 == 0) m.c561 = Constraint(expr= m.x402 == 0) m.c562 = Constraint(expr= m.x403 == 0) m.c563 = Constraint(expr= m.x455 == 0) m.c564 = Constraint(expr= m.x456 == 0) m.c565 = Constraint(expr= m.x457 == 0) m.c566 = Constraint(expr= m.x101 - m.x398 - m.x401 == 0) m.c567 = Constraint(expr= m.x102 - m.x399 - m.x402 == 0) m.c568 = Constraint(expr= m.x103 - m.x400 - m.x403 == 0) m.c569 = Constraint(expr= m.x128 - m.x452 - m.x455 == 0) m.c570 = Constraint(expr= m.x129 - m.x453 - m.x456 == 0) m.c571 = Constraint(expr= m.x130 - m.x454 - m.x457 == 0) m.c572 = Constraint(expr= m.x398 - 3.04984759446376*m.b647 <= 0) m.c573 = Constraint(expr= m.x399 - 3.04984759446376*m.b648 <= 0) m.c574 = Constraint(expr= m.x400 - 3.04984759446376*m.b649 <= 0) m.c575 = Constraint(expr= m.x401 + 3.04984759446376*m.b647 <= 3.04984759446376) m.c576 = Constraint(expr= m.x402 + 3.04984759446376*m.b648 <= 3.04984759446376) m.c577 = Constraint(expr= m.x403 + 3.04984759446376*m.b649 <= 3.04984759446376) m.c578 = Constraint(expr= m.x452 - 1.04900943706034*m.b647 <= 0) m.c579 = Constraint(expr= m.x453 - 1.04900943706034*m.b648 <= 0) m.c580 = Constraint(expr= m.x454 - 1.04900943706034*m.b649 <= 0) m.c581 = Constraint(expr= m.x455 + 1.04900943706034*m.b647 <= 1.04900943706034) m.c582 = Constraint(expr= m.x456 + 1.04900943706034*m.b648 <= 1.04900943706034) m.c583 = Constraint(expr= m.x457 + 1.04900943706034*m.b649 <= 1.04900943706034) m.c584 = Constraint(expr=(m.x458/(0.001 + 0.999*m.b650) - 0.8*log(1 + m.x404/(0.001 + 0.999*m.b650)))*(0.001 + 0.999* m.b650) <= 0) m.c585 = Constraint(expr=(m.x459/(0.001 + 0.999*m.b651) - 0.8*log(1 + m.x405/(0.001 + 0.999*m.b651)))*(0.001 + 0.999* m.b651) <= 0) m.c586 = Constraint(expr=(m.x460/(0.001 + 0.999*m.b652) - 0.8*log(1 + m.x406/(0.001 + 0.999*m.b652)))*(0.001 + 0.999* m.b652) <= 0) m.c587 = Constraint(expr= m.x407 == 0) m.c588 = Constraint(expr= m.x408 == 0) m.c589 = Constraint(expr= m.x409 == 0) m.c590 = Constraint(expr= m.x461 == 0) m.c591 = Constraint(expr= m.x462 == 0) m.c592 = Constraint(expr= m.x463 == 0) m.c593 = Constraint(expr= m.x104 - m.x404 - m.x407 == 0) m.c594 = Constraint(expr= m.x105 - m.x405 - m.x408 == 0) m.c595 = Constraint(expr= m.x106 - m.x406 - m.x409 == 0) m.c596 = Constraint(expr= m.x131 - m.x458 - m.x461 == 0) m.c597 = Constraint(expr= m.x132 - m.x459 - m.x462 == 0) m.c598 = Constraint(expr= m.x133 - m.x460 - m.x463 == 0) m.c599 = Constraint(expr= m.x404 - 3.04984759446376*m.b650 <= 0) m.c600 = Constraint(expr= m.x405 - 3.04984759446376*m.b651 <= 0) m.c601 = Constraint(expr= m.x406 - 3.04984759446376*m.b652 <= 0) m.c602 = Constraint(expr= m.x407 + 3.04984759446376*m.b650 <= 3.04984759446376) m.c603 = Constraint(expr= m.x408 + 3.04984759446376*m.b651 <= 3.04984759446376) m.c604 = Constraint(expr= m.x409 + 3.04984759446376*m.b652 <= 3.04984759446376) m.c605 = Constraint(expr= m.x458 - 1.11894339953103*m.b650 <= 0) m.c606 = Constraint(expr= m.x459 - 1.11894339953103*m.b651 <= 0) m.c607 = Constraint(expr= m.x460 - 1.11894339953103*m.b652 <= 0) m.c608 = Constraint(expr= m.x461 + 1.11894339953103*m.b650 <= 1.11894339953103) m.c609 = Constraint(expr= m.x462 + 1.11894339953103*m.b651 <= 1.11894339953103) m.c610 = Constraint(expr= m.x463 + 1.11894339953103*m.b652 <= 1.11894339953103) m.c611 = Constraint(expr=(m.x464/(0.001 + 0.999*m.b653) - 0.85*log(1 + m.x410/(0.001 + 0.999*m.b653)))*(0.001 + 0.999* m.b653) <= 0) m.c612 = Constraint(expr=(m.x465/(0.001 + 0.999*m.b654) - 0.85*log(1 + m.x411/(0.001 + 0.999*m.b654)))*(0.001 + 0.999* m.b654) <= 0) m.c613 = Constraint(expr=(m.x466/(0.001 + 0.999*m.b655) - 0.85*log(1 + m.x412/(0.001 + 0.999*m.b655)))*(0.001 + 0.999* m.b655) <= 0) m.c614 = Constraint(expr= m.x413 == 0) m.c615 = Constraint(expr= m.x414 == 0) m.c616 = Constraint(expr= m.x415 == 0) m.c617 = Constraint(expr= m.x467 == 0) m.c618 = Constraint(expr= m.x468 == 0) m.c619 = Constraint(expr= m.x469 == 0) m.c620 = Constraint(expr= m.x107 - m.x410 - m.x413 == 0) m.c621 = Constraint(expr= m.x108 - m.x411 - m.x414 == 0) m.c622 = Constraint(expr= m.x109 - m.x412 - m.x415 == 0) m.c623 = Constraint(expr= m.x134 - m.x464 - m.x467 == 0) m.c624 = Constraint(expr= m.x135 - m.x465 - m.x468 == 0) m.c625 = Constraint(expr= m.x136 - m.x466 - m.x469 == 0) m.c626 = Constraint(expr= m.x410 - 3.04984759446376*m.b653 <= 0) m.c627 = Constraint(expr= m.x411 - 3.04984759446376*m.b654 <= 0) m.c628 = Constraint(expr= m.x412 - 3.04984759446376*m.b655 <= 0) m.c629 = Constraint(expr= m.x413 + 3.04984759446376*m.b653 <= 3.04984759446376) m.c630 = Constraint(expr= m.x414 + 3.04984759446376*m.b654 <= 3.04984759446376) m.c631 = Constraint(expr= m.x415 + 3.04984759446376*m.b655 <= 3.04984759446376) m.c632 = Constraint(expr= m.x464 - 1.18887736200171*m.b653 <= 0) m.c633 = Constraint(expr= m.x465 - 1.18887736200171*m.b654 <= 0) m.c634 = Constraint(expr= m.x466 - 1.18887736200171*m.b655 <= 0) m.c635 = Constraint(expr= m.x467 + 1.18887736200171*m.b653 <= 1.18887736200171) m.c636 = Constraint(expr= m.x468 + 1.18887736200171*m.b654 <= 1.18887736200171) m.c637 = Constraint(expr= m.x469 + 1.18887736200171*m.b655 <= 1.18887736200171) m.c638 = Constraint(expr=(m.x482/(0.001 + 0.999*m.b656) - log(1 + m.x470/(0.001 + 0.999*m.b656)))*(0.001 + 0.999*m.b656) <= 0) m.c639 = Constraint(expr=(m.x483/(0.001 + 0.999*m.b657) - log(1 + m.x471/(0.001 + 0.999*m.b657)))*(0.001 + 0.999*m.b657) <= 0) m.c640 = Constraint(expr=(m.x484/(0.001 + 0.999*m.b658) - log(1 + m.x472/(0.001 + 0.999*m.b658)))*(0.001 + 0.999*m.b658) <= 0) m.c641 = Constraint(expr= m.x473 == 0) m.c642 = Constraint(expr= m.x474 == 0) m.c643 = Constraint(expr= m.x475 == 0) m.c644 = Constraint(expr= m.x485 == 0) m.c645 = Constraint(expr= m.x486 == 0) m.c646 = Constraint(expr= m.x487 == 0) m.c647 = Constraint(expr= m.x140 - m.x470 - m.x473 == 0) m.c648 = Constraint(expr= m.x141 - m.x471 - m.x474 == 0) m.c649 = Constraint(expr= m.x142 - m.x472 - m.x475 == 0) m.c650 = Constraint(expr= m.x146 - m.x482 - m.x485 == 0) m.c651 = Constraint(expr= m.x147 - m.x483 - m.x486 == 0) m.c652 = Constraint(expr= m.x148 - m.x484 - m.x487 == 0) m.c653 = Constraint(expr= m.x470 - 1.18887736200171*m.b656 <= 0) m.c654 = Constraint(expr= m.x471 - 1.18887736200171*m.b657 <= 0) m.c655 = Constraint(expr= m.x472 - 1.18887736200171*m.b658 <= 0) m.c656 = Constraint(expr= m.x473 + 1.18887736200171*m.b656 <= 1.18887736200171) m.c657 = Constraint(expr= m.x474 + 1.18887736200171*m.b657 <= 1.18887736200171) m.c658 = Constraint(expr= m.x475 + 1.18887736200171*m.b658 <= 1.18887736200171) m.c659 = Constraint(expr= m.x482 - 0.78338879230327*m.b656 <= 0) m.c660 = Constraint(expr= m.x483 - 0.78338879230327*m.b657 <= 0) m.c661 = Constraint(expr= m.x484 - 0.78338879230327*m.b658 <= 0) m.c662 = Constraint(expr= m.x485 + 0.78338879230327*m.b656 <= 0.78338879230327) m.c663 = Constraint(expr= m.x486 + 0.78338879230327*m.b657 <= 0.78338879230327) m.c664 = Constraint(expr= m.x487 + 0.78338879230327*m.b658 <= 0.78338879230327) m.c665 = Constraint(expr=(m.x488/(0.001 + 0.999*m.b659) - 1.2*log(1 + m.x476/(0.001 + 0.999*m.b659)))*(0.001 + 0.999* m.b659) <= 0) m.c666 = Constraint(expr=(m.x489/(0.001 + 0.999*m.b660) - 1.2*log(1 + m.x477/(0.001 + 0.999*m.b660)))*(0.001 + 0.999* m.b660) <= 0) m.c667 = Constraint(expr=(m.x490/(0.001 + 0.999*m.b661) - 1.2*log(1 + m.x478/(0.001 + 0.999*m.b661)))*(0.001 + 0.999* m.b661) <= 0) m.c668 = Constraint(expr= m.x479 == 0) m.c669 = Constraint(expr= m.x480 == 0) m.c670 = Constraint(expr= m.x481 == 0) m.c671 = Constraint(expr= m.x491 == 0) m.c672 = Constraint(expr= m.x492 == 0) m.c673 = Constraint(expr= m.x493 == 0) m.c674 = Constraint(expr= m.x143 - m.x476 - m.x479 == 0) m.c675 = Constraint(expr= m.x144 - m.x477 - m.x480 == 0) m.c676 = Constraint(expr= m.x145 - m.x478 - m.x481 == 0) m.c677 = Constraint(expr= m.x149 - m.x488 - m.x491 == 0) m.c678 = Constraint(expr= m.x150 - m.x489 - m.x492 == 0) m.c679 = Constraint(expr= m.x151 - m.x490 - m.x493 == 0) m.c680 = Constraint(expr= m.x476 - 1.18887736200171*m.b659 <= 0) m.c681 = Constraint(expr= m.x477 - 1.18887736200171*m.b660 <= 0) m.c682 = Constraint(expr= m.x478 - 1.18887736200171*m.b661 <= 0) m.c683 = Constraint(expr= m.x479 + 1.18887736200171*m.b659 <= 1.18887736200171) m.c684 = Constraint(expr= m.x480 + 1.18887736200171*m.b660 <= 1.18887736200171) m.c685 = Constraint(expr= m.x481 + 1.18887736200171*m.b661 <= 1.18887736200171) m.c686 = Constraint(expr= m.x488 - 0.940066550763924*m.b659 <= 0) m.c687 = Constraint(expr= m.x489 - 0.940066550763924*m.b660 <= 0) m.c688 = Constraint(expr= m.x490 - 0.940066550763924*m.b661 <= 0) m.c689 = Constraint(expr= m.x491 + 0.940066550763924*m.b659 <= 0.940066550763924) m.c690 = Constraint(expr= m.x492 + 0.940066550763924*m.b660 <= 0.940066550763924) m.c691 = Constraint(expr= m.x493 + 0.940066550763924*m.b661 <= 0.940066550763924) m.c692 = Constraint(expr= - 0.75*m.x494 + m.x518 == 0) m.c693 = Constraint(expr= - 0.75*m.x495 + m.x519 == 0) m.c694 = Constraint(expr= - 0.75*m.x496 + m.x520 == 0) m.c695 = Constraint(expr= m.x497 == 0) m.c696 = Constraint(expr= m.x498 == 0) m.c697 = Constraint(expr= m.x499 == 0) m.c698 = Constraint(expr= m.x521 == 0) m.c699 = Constraint(expr= m.x522 == 0) m.c700 = Constraint(expr= m.x523 == 0) m.c701 = Constraint(expr= m.x161 - m.x494 - m.x497 == 0) m.c702 = Constraint(expr= m.x162 - m.x495 - m.x498 == 0) m.c703 = Constraint(expr= m.x163 - m.x496 - m.x499 == 0) m.c704 = Constraint(expr= m.x173 - m.x518 - m.x521 == 0) m.c705 = Constraint(expr= m.x174 - m.x519 - m.x522 == 0) m.c706 = Constraint(expr= m.x175 - m.x520 - m.x523 == 0) m.c707 = Constraint(expr= m.x494 - 0.940066550763924*m.b662 <= 0) m.c708 = Constraint(expr= m.x495 - 0.940066550763924*m.b663 <= 0) m.c709 = Constraint(expr= m.x496 - 0.940066550763924*m.b664 <= 0) m.c710 = Constraint(expr= m.x497 + 0.940066550763924*m.b662 <= 0.940066550763924) m.c711 = Constraint(expr= m.x498 + 0.940066550763924*m.b663 <= 0.940066550763924) m.c712 = Constraint(expr= m.x499 + 0.940066550763924*m.b664 <= 0.940066550763924) m.c713 = Constraint(expr= m.x518 - 0.705049913072943*m.b662 <= 0) m.c714 = Constraint(expr= m.x519 - 0.705049913072943*m.b663 <= 0) m.c715 = Constraint(expr= m.x520 - 0.705049913072943*m.b664 <= 0) m.c716 = Constraint(expr= m.x521 + 0.705049913072943*m.b662 <= 0.705049913072943) m.c717 = Constraint(expr= m.x522 + 0.705049913072943*m.b663 <= 0.705049913072943) m.c718 = Constraint(expr= m.x523 + 0.705049913072943*m.b664 <= 0.705049913072943) m.c719 = Constraint(expr=(m.x524/(0.001 + 0.999*m.b665) - 1.5*log(1 + m.x500/(0.001 + 0.999*m.b665)))*(0.001 + 0.999* m.b665) <= 0) m.c720 = Constraint(expr=(m.x525/(0.001 + 0.999*m.b666) - 1.5*log(1 + m.x501/(0.001 + 0.999*m.b666)))*(0.001 + 0.999* m.b666) <= 0) m.c721 = Constraint(expr=(m.x526/(0.001 + 0.999*m.b667) - 1.5*log(1 + m.x502/(0.001 + 0.999*m.b667)))*(0.001 + 0.999* m.b667) <= 0) m.c722 = Constraint(expr= m.x503 == 0) m.c723 = Constraint(expr= m.x504 == 0) m.c724 = Constraint(expr= m.x505 == 0) m.c725 = Constraint(expr= m.x530 == 0) m.c726 = Constraint(expr= m.x531 == 0) m.c727 = Constraint(expr= m.x532 == 0) m.c728 = Constraint(expr= m.x164 - m.x500 - m.x503 == 0) m.c729 = Constraint(expr= m.x165 - m.x501 - m.x504 == 0) m.c730 = Constraint(expr= m.x166 - m.x502 - m.x505 == 0) m.c731 = Constraint(expr= m.x176 - m.x524 - m.x530 == 0) m.c732 = Constraint(expr= m.x177 - m.x525 - m.x531 == 0) m.c733 = Constraint(expr= m.x178 - m.x526 - m.x532 == 0) m.c734 = Constraint(expr= m.x500 - 0.940066550763924*m.b665 <= 0) m.c735 = Constraint(expr= m.x501 - 0.940066550763924*m.b666 <= 0) m.c736 = Constraint(expr= m.x502 - 0.940066550763924*m.b667 <= 0) m.c737 = Constraint(expr= m.x503 + 0.940066550763924*m.b665 <= 0.940066550763924) m.c738 = Constraint(expr= m.x504 + 0.940066550763924*m.b666 <= 0.940066550763924) m.c739 = Constraint(expr= m.x505 + 0.940066550763924*m.b667 <= 0.940066550763924) m.c740 = Constraint(expr= m.x524 - 0.994083415506506*m.b665 <= 0) m.c741 = Constraint(expr= m.x525 - 0.994083415506506*m.b666 <= 0) m.c742 = Constraint(expr= m.x526 - 0.994083415506506*m.b667 <= 0) m.c743 = Constraint(expr= m.x530 + 0.994083415506506*m.b665 <= 0.994083415506506) m.c744 = Constraint(expr= m.x531 + 0.994083415506506*m.b666 <= 0.994083415506506) m.c745 = Constraint(expr= m.x532 + 0.994083415506506*m.b667 <= 0.994083415506506) m.c746 = Constraint(expr= - m.x506 + m.x536 == 0) m.c747 = Constraint(expr= - m.x507 + m.x537 == 0) m.c748 = Constraint(expr= - m.x508 + m.x538 == 0) m.c749 = Constraint(expr= - 0.5*m.x512 + m.x536 == 0) m.c750 = Constraint(expr= - 0.5*m.x513 + m.x537 == 0) m.c751 = Constraint(expr= - 0.5*m.x514 + m.x538 == 0) m.c752 = Constraint(expr= m.x509 == 0) m.c753 = Constraint(expr= m.x510 == 0) m.c754 = Constraint(expr= m.x511 == 0) m.c755 = Constraint(expr= m.x515 == 0) m.c756 = Constraint(expr= m.x516 == 0) m.c757 = Constraint(expr= m.x517 == 0) m.c758 = Constraint(expr= m.x539 == 0) m.c759 = Constraint(expr= m.x540 == 0) m.c760 = Constraint(expr= m.x541 == 0) m.c761 = Constraint(expr= m.x167 - m.x506 - m.x509 == 0) m.c762 = Constraint(expr= m.x168 - m.x507 - m.x510 == 0) m.c763 = Constraint(expr= m.x169 - m.x508 - m.x511 == 0) m.c764 = Constraint(expr= m.x170 - m.x512 - m.x515 == 0) m.c765 = Constraint(expr= m.x171 - m.x513 - m.x516 == 0) m.c766 = Constraint(expr= m.x172 - m.x514 - m.x517 == 0) m.c767 = Constraint(expr= m.x179 - m.x536 - m.x539 == 0) m.c768 = Constraint(expr= m.x180 - m.x537 - m.x540 == 0) m.c769 = Constraint(expr= m.x181 - m.x538 - m.x541 == 0) m.c770 = Constraint(expr= m.x506 - 0.940066550763924*m.b668 <= 0) m.c771 = Constraint(expr= m.x507 - 0.940066550763924*m.b669 <= 0) m.c772 = Constraint(expr= m.x508 - 0.940066550763924*m.b670 <= 0) m.c773 = Constraint(expr= m.x509 + 0.940066550763924*m.b668 <= 0.940066550763924) m.c774 = Constraint(expr= m.x510 + 0.940066550763924*m.b669 <= 0.940066550763924) m.c775 = Constraint(expr= m.x511 + 0.940066550763924*m.b670 <= 0.940066550763924) m.c776 = Constraint(expr= m.x512 - 30*m.b668 <= 0) m.c777 = Constraint(expr= m.x513 - 30*m.b669 <= 0) m.c778 = Constraint(expr= m.x514 - 30*m.b670 <= 0) m.c779 = Constraint(expr= m.x515 + 30*m.b668 <= 30) m.c780 = Constraint(expr= m.x516 + 30*m.b669 <= 30) m.c781 = Constraint(expr= m.x517 + 30*m.b670 <= 30) m.c782 = Constraint(expr= m.x536 - 15*m.b668 <= 0) m.c783 = Constraint(expr= m.x537 - 15*m.b669 <= 0) m.c784 = Constraint(expr= m.x538 - 15*m.b670 <= 0) m.c785 = Constraint(expr= m.x539 + 15*m.b668 <= 15) m.c786 = Constraint(expr= m.x540 + 15*m.b669 <= 15) m.c787 = Constraint(expr= m.x541 + 15*m.b670 <= 15) m.c788 = Constraint(expr=(m.x566/(0.001 + 0.999*m.b671) - 1.25*log(1 + m.x542/(0.001 + 0.999*m.b671)))*(0.001 + 0.999* m.b671) <= 0) m.c789 = Constraint(expr=(m.x567/(0.001 + 0.999*m.b672) - 1.25*log(1 + m.x543/(0.001 + 0.999*m.b672)))*(0.001 + 0.999* m.b672) <= 0) m.c790 = Constraint(expr=(m.x568/(0.001 + 0.999*m.b673) - 1.25*log(1 + m.x544/(0.001 + 0.999*m.b673)))*(0.001 + 0.999* m.b673) <= 0) m.c791 = Constraint(expr= m.x545 == 0) m.c792 = Constraint(expr= m.x546 == 0) m.c793 = Constraint(expr= m.x547 == 0) m.c794 = Constraint(expr= m.x569 == 0) m.c795 = Constraint(expr= m.x570 == 0) m.c796 = Constraint(expr= m.x571 == 0) m.c797 = Constraint(expr= m.x182 - m.x542 - m.x545 == 0) m.c798 = Constraint(expr= m.x183 - m.x543 - m.x546 == 0) m.c799 = Constraint(expr= m.x184 - m.x544 - m.x547 == 0) m.c800 = Constraint(expr= m.x197 - m.x566 - m.x569 == 0) m.c801 = Constraint(expr= m.x198 - m.x567 - m.x570 == 0) m.c802 = Constraint(expr= m.x199 - m.x568 - m.x571 == 0) m.c803 = Constraint(expr= m.x542 - 0.705049913072943*m.b671 <= 0) m.c804 = Constraint(expr= m.x543 - 0.705049913072943*m.b672 <= 0) m.c805 = Constraint(expr= m.x544 - 0.705049913072943*m.b673 <= 0) m.c806 = Constraint(expr= m.x545 + 0.705049913072943*m.b671 <= 0.705049913072943) m.c807 = Constraint(expr= m.x546 + 0.705049913072943*m.b672 <= 0.705049913072943) m.c808 = Constraint(expr= m.x547 + 0.705049913072943*m.b673 <= 0.705049913072943) m.c809 = Constraint(expr= m.x566 - 0.666992981045719*m.b671 <= 0) m.c810 = Constraint(expr= m.x567 - 0.666992981045719*m.b672 <= 0) m.c811 = Constraint(expr= m.x568 - 0.666992981045719*m.b673 <= 0) m.c812 = Constraint(expr= m.x569 + 0.666992981045719*m.b671 <= 0.666992981045719) m.c813 = Constraint(expr= m.x570 + 0.666992981045719*m.b672 <= 0.666992981045719) m.c814 = Constraint(expr= m.x571 + 0.666992981045719*m.b673 <= 0.666992981045719) m.c815 = Constraint(expr=(m.x572/(0.001 + 0.999*m.b674) - 0.9*log(1 + m.x548/(0.001 + 0.999*m.b674)))*(0.001 + 0.999* m.b674) <= 0) m.c816 = Constraint(expr=(m.x573/(0.001 + 0.999*m.b675) - 0.9*log(1 + m.x549/(0.001 + 0.999*m.b675)))*(0.001 + 0.999* m.b675) <= 0) m.c817 = Constraint(expr=(m.x574/(0.001 + 0.999*m.b676) - 0.9*log(1 + m.x550/(0.001 + 0.999*m.b676)))*(0.001 + 0.999* m.b676) <= 0) m.c818 = Constraint(expr= m.x551 == 0) m.c819 = Constraint(expr= m.x552 == 0) m.c820 = Constraint(expr= m.x553 == 0) m.c821 = Constraint(expr= m.x575 == 0) m.c822 = Constraint(expr= m.x576 == 0) m.c823 = Constraint(expr= m.x577 == 0) m.c824 = Constraint(expr= m.x185 - m.x548 - m.x551 == 0) m.c825 = Constraint(expr= m.x186 - m.x549 - m.x552 == 0) m.c826 = Constraint(expr= m.x187 - m.x550 - m.x553 == 0) m.c827 = Constraint(expr= m.x200 - m.x572 - m.x575 == 0) m.c828 = Constraint(expr= m.x201 - m.x573 - m.x576 == 0) m.c829 = Constraint(expr= m.x202 - m.x574 - m.x577 == 0) m.c830 = Constraint(expr= m.x548 - 0.705049913072943*m.b674 <= 0) m.c831 = Constraint(expr= m.x549 - 0.705049913072943*m.b675 <= 0) m.c832 = Constraint(expr= m.x550 - 0.705049913072943*m.b676 <= 0) m.c833 = Constraint(expr= m.x551 + 0.705049913072943*m.b674 <= 0.705049913072943) m.c834 = Constraint(expr= m.x552 + 0.705049913072943*m.b675 <= 0.705049913072943) m.c835 = Constraint(expr= m.x553 + 0.705049913072943*m.b676 <= 0.705049913072943) m.c836 = Constraint(expr= m.x572 - 0.480234946352917*m.b674 <= 0) m.c837 = Constraint(expr= m.x573 - 0.480234946352917*m.b675 <= 0) m.c838 = Constraint(expr= m.x574 - 0.480234946352917*m.b676 <= 0) m.c839 = Constraint(expr= m.x575 + 0.480234946352917*m.b674 <= 0.480234946352917) m.c840 = Constraint(expr= m.x576 + 0.480234946352917*m.b675 <= 0.480234946352917) m.c841 = Constraint(expr= m.x577 + 0.480234946352917*m.b676 <= 0.480234946352917) m.c842 = Constraint(expr=(m.x578/(0.001 + 0.999*m.b677) - log(1 + m.x527/(0.001 + 0.999*m.b677)))*(0.001 + 0.999*m.b677) <= 0) m.c843 = Constraint(expr=(m.x579/(0.001 + 0.999*m.b678) - log(1 + m.x528/(0.001 + 0.999*m.b678)))*(0.001 + 0.999*m.b678) <= 0) m.c844 = Constraint(expr=(m.x580/(0.001 + 0.999*m.b679) - log(1 + m.x529/(0.001 + 0.999*m.b679)))*(0.001 + 0.999*m.b679) <= 0) m.c845 = Constraint(expr= m.x533 == 0) m.c846 = Constraint(expr= m.x534 == 0) m.c847 = Constraint(expr= m.x535 == 0) m.c848 = Constraint(expr= m.x581 == 0) m.c849 = Constraint(expr= m.x582 == 0) m.c850 = Constraint(expr= m.x583 == 0) m.c851 = Constraint(expr= m.x176 - m.x527 - m.x533 == 0) m.c852 = Constraint(expr= m.x177 - m.x528 - m.x534 == 0) m.c853 = Constraint(expr= m.x178 - m.x529 - m.x535 == 0) m.c854 = Constraint(expr= m.x203 - m.x578 - m.x581 == 0) m.c855 = Constraint(expr= m.x204 - m.x579 - m.x582 == 0) m.c856 = Constraint(expr= m.x205 - m.x580 - m.x583 == 0) m.c857 = Constraint(expr= m.x527 - 0.994083415506506*m.b677 <= 0) m.c858 = Constraint(expr= m.x528 - 0.994083415506506*m.b678 <= 0) m.c859 = Constraint(expr= m.x529 - 0.994083415506506*m.b679 <= 0) m.c860 = Constraint(expr= m.x533 + 0.994083415506506*m.b677 <= 0.994083415506506) m.c861 = Constraint(expr= m.x534 + 0.994083415506506*m.b678 <= 0.994083415506506) m.c862 = Constraint(expr= m.x535 + 0.994083415506506*m.b679 <= 0.994083415506506) m.c863 = Constraint(expr= m.x578 - 0.690184503917672*m.b677 <= 0) m.c864 = Constraint(expr= m.x579 - 0.690184503917672*m.b678 <= 0) m.c865 = Constraint(expr= m.x580 - 0.690184503917672*m.b679 <= 0) m.c866 = Constraint(expr= m.x581 + 0.690184503917672*m.b677 <= 0.690184503917672) m.c867 = Constraint(expr= m.x582 + 0.690184503917672*m.b678 <= 0.690184503917672) m.c868 = Constraint(expr= m.x583 + 0.690184503917672*m.b679 <= 0.690184503917672) m.c869 = Constraint(expr= - 0.9*m.x554 + m.x584 == 0) m.c870 = Constraint(expr= - 0.9*m.x555 + m.x585 == 0) m.c871 = Constraint(expr= - 0.9*m.x556 + m.x586 == 0) m.c872 = Constraint(expr= m.x557 == 0) m.c873 = Constraint(expr= m.x558 == 0) m.c874 = Constraint(expr= m.x559 == 0) m.c875 = Constraint(expr= m.x587 == 0) m.c876 = Constraint(expr= m.x588 == 0) m.c877 = Constraint(expr= m.x589 == 0) m.c878 = Constraint(expr= m.x188 - m.x554 - m.x557 == 0) m.c879 = Constraint(expr= m.x189 - m.x555 - m.x558 == 0) m.c880 = Constraint(expr= m.x190 - m.x556 - m.x559 == 0) m.c881 = Constraint(expr= m.x206 - m.x584 - m.x587 == 0) m.c882 = Constraint(expr= m.x207 - m.x585 - m.x588 == 0) m.c883 = Constraint(expr= m.x208 - m.x586 - m.x589 == 0) m.c884 = Constraint(expr= m.x554 - 15*m.b680 <= 0) m.c885 = Constraint(expr= m.x555 - 15*m.b681 <= 0) m.c886 = Constraint(expr= m.x556 - 15*m.b682 <= 0) m.c887 = Constraint(expr= m.x557 + 15*m.b680 <= 15) m.c888 = Constraint(expr= m.x558 + 15*m.b681 <= 15) m.c889 = Constraint(expr= m.x559 + 15*m.b682 <= 15) m.c890 = Constraint(expr= m.x584 - 13.5*m.b680 <= 0) m.c891 = Constraint(expr= m.x585 - 13.5*m.b681 <= 0) m.c892 = Constraint(expr= m.x586 - 13.5*m.b682 <= 0) m.c893 = Constraint(expr= m.x587 + 13.5*m.b680 <= 13.5) m.c894 = Constraint(expr= m.x588 + 13.5*m.b681 <= 13.5) m.c895 = Constraint(expr= m.x589 + 13.5*m.b682 <= 13.5) m.c896 = Constraint(expr= - 0.6*m.x560 + m.x590 == 0) m.c897 = Constraint(expr= - 0.6*m.x561 + m.x591 == 0) m.c898 = Constraint(expr= - 0.6*m.x562 + m.x592 == 0) m.c899 = Constraint(expr= m.x563 == 0) m.c900 = Constraint(expr= m.x564 == 0) m.c901 = Constraint(expr= m.x565 == 0) m.c902 = Constraint(expr= m.x593 == 0) m.c903 = Constraint(expr= m.x594 == 0) m.c904 = Constraint(expr= m.x595 == 0) m.c905 = Constraint(expr= m.x191 - m.x560 - m.x563 == 0) m.c906 = Constraint(expr= m.x192 - m.x561 - m.x564 == 0) m.c907 = Constraint(expr= m.x193 - m.x562 - m.x565 == 0) m.c908 = Constraint(expr= m.x209 - m.x590 - m.x593 == 0) m.c909 = Constraint(expr= m.x210 - m.x591 - m.x594 == 0) m.c910 = Constraint(expr= m.x211 - m.x592 - m.x595 == 0) m.c911 = Constraint(expr= m.x560 - 15*m.b683 <= 0) m.c912 = Constraint(expr= m.x561 - 15*m.b684 <= 0) m.c913 = Constraint(expr= m.x562 - 15*m.b685 <= 0) m.c914 = Constraint(expr= m.x563 + 15*m.b683 <= 15) m.c915 = Constraint(expr= m.x564 + 15*m.b684 <= 15) m.c916 = Constraint(expr= m.x565 + 15*m.b685 <= 15) m.c917 = Constraint(expr= m.x590 - 9*m.b683 <= 0) m.c918 = Constraint(expr= m.x591 - 9*m.b684 <= 0) m.c919 = Constraint(expr= m.x592 - 9*m.b685 <= 0) m.c920 = Constraint(expr= m.x593 + 9*m.b683 <= 9) m.c921 = Constraint(expr= m.x594 + 9*m.b684 <= 9) m.c922 = Constraint(expr= m.x595 + 9*m.b685 <= 9) m.c923 = Constraint(expr= 5*m.b686 + m.x776 == 0) m.c924 = Constraint(expr= 4*m.b687 + m.x777 == 0) m.c925 = Constraint(expr= 6*m.b688 + m.x778 == 0) m.c926 = Constraint(expr= 8*m.b689 + m.x779 == 0) m.c927 = Constraint(expr= 7*m.b690 + m.x780 == 0) m.c928 = Constraint(expr= 6*m.b691 + m.x781 == 0) m.c929 = Constraint(expr= 6*m.b692 + m.x782 == 0) m.c930 = Constraint(expr= 9*m.b693 + m.x783 == 0) m.c931 = Constraint(expr= 4*m.b694 + m.x784 == 0) m.c932 = Constraint(expr= 10*m.b695 + m.x785 == 0) m.c933 = Constraint(expr= 9*m.b696 + m.x786 == 0) m.c934 = Constraint(expr= 5*m.b697 + m.x787 == 0) m.c935 = Constraint(expr= 6*m.b698 + m.x788 == 0) m.c936 = Constraint(expr= 10*m.b699 + m.x789 == 0) m.c937 = Constraint(expr= 6*m.b700 + m.x790 == 0) m.c938 = Constraint(expr= 7*m.b701 + m.x791 == 0) m.c939 = Constraint(expr= 7*m.b702 + m.x792 == 0) m.c940 = Constraint(expr= 4*m.b703 + m.x793 == 0) m.c941 = Constraint(expr= 4*m.b704 + m.x794 == 0) m.c942 = Constraint(expr= 3*m.b705 + m.x795 == 0) m.c943 = Constraint(expr= 2*m.b706 + m.x796 == 0) m.c944 = Constraint(expr= 5*m.b707 + m.x797 == 0) m.c945 = Constraint(expr= 6*m.b708 + m.x798 == 0) m.c946 = Constraint(expr= 7*m.b709 + m.x799 == 0) m.c947 = Constraint(expr= 2*m.b710 + m.x800 == 0) m.c948 = Constraint(expr= 5*m.b711 + m.x801 == 0) m.c949 = Constraint(expr= 2*m.b712 + m.x802 == 0) m.c950 = Constraint(expr= 4*m.b713 + m.x803 == 0) m.c951 = Constraint(expr= 7*m.b714 + m.x804 == 0) m.c952 = Constraint(expr= 4*m.b715 + m.x805 == 0) m.c953 = Constraint(expr= 3*m.b716 + m.x806 == 0) m.c954 = Constraint(expr= 9*m.b717 + m.x807 == 0) m.c955 = Constraint(expr= 3*m.b718 + m.x808 == 0) m.c956 = Constraint(expr= 7*m.b719 + m.x809 == 0) m.c957 = Constraint(expr= 2*m.b720 + m.x810 == 0) m.c958 = Constraint(expr= 9*m.b721 + m.x811 == 0) m.c959 = Constraint(expr= 3*m.b722 + m.x812 == 0) m.c960 = Constraint(expr= m.b723 + m.x813 == 0) m.c961 = Constraint(expr= 9*m.b724 + m.x814 == 0) m.c962 = Constraint(expr= 2*m.b725 + m.x815 == 0) m.c963 = Constraint(expr= 6*m.b726 + m.x816 == 0) m.c964 = Constraint(expr= 3*m.b727 + m.x817 == 0) m.c965 = Constraint(expr= 4*m.b728 + m.x818 == 0) m.c966 = Constraint(expr= 8*m.b729 + m.x819 == 0) m.c967 = Constraint(expr= m.b730 + m.x820 == 0) m.c968 = Constraint(expr= 2*m.b731 + m.x821 == 0) m.c969 = Constraint(expr= 5*m.b732 + m.x822 == 0) m.c970 = Constraint(expr= 2*m.b733 + m.x823 == 0) m.c971 = Constraint(expr= 3*m.b734 + m.x824 == 0) m.c972 = Constraint(expr= 4*m.b735 + m.x825 == 0) m.c973 = Constraint(expr= 3*m.b736 + m.x826 == 0) m.c974 = Constraint(expr= 5*m.b737 + m.x827 == 0) m.c975 = Constraint(expr= 7*m.b738 + m.x828 == 0) m.c976 = Constraint(expr= 6*m.b739 + m.x829 == 0) m.c977 = Constraint(expr= 2*m.b740 + m.x830 == 0) m.c978 = Constraint(expr= 8*m.b741 + m.x831 == 0) m.c979 = Constraint(expr= 4*m.b742 + m.x832 == 0) m.c980 = Constraint(expr= m.b743 + m.x833 == 0) m.c981 = Constraint(expr= 4*m.b744 + m.x834 == 0) m.c982 = Constraint(expr= m.b745 + m.x835 == 0) m.c983 = Constraint(expr= 2*m.b746 + m.x836 == 0) m.c984 = Constraint(expr= 5*m.b747 + m.x837 == 0) m.c985 = Constraint(expr= 2*m.b748 + m.x838 == 0) m.c986 = Constraint(expr= 9*m.b749 + m.x839 == 0) m.c987 = Constraint(expr= 2*m.b750 + m.x840 == 0) m.c988 = Constraint(expr= 9*m.b751 + m.x841 == 0) m.c989 = Constraint(expr= 5*m.b752 + m.x842 == 0) m.c990 = Constraint(expr= 8*m.b753 + m.x843 == 0) m.c991 = Constraint(expr= 4*m.b754 + m.x844 == 0) m.c992 = Constraint(expr= 2*m.b755 + m.x845 == 0) m.c993 = Constraint(expr= 3*m.b756 + m.x846 == 0) m.c994 = Constraint(expr= 8*m.b757 + m.x847 == 0) m.c995 = Constraint(expr= 10*m.b758 + m.x848 == 0) m.c996 = Constraint(expr= 6*m.b759 + m.x849 == 0) m.c997 = Constraint(expr= 3*m.b760 + m.x850 == 0) m.c998 = Constraint(expr= 4*m.b761 + m.x851 == 0) m.c999 = Constraint(expr= 8*m.b762 + m.x852 == 0) m.c1000 = Constraint(expr= 7*m.b763 + m.x853 == 0) m.c1001 = Constraint(expr= 7*m.b764 + m.x854 == 0) m.c1002 = Constraint(expr= 3*m.b765 + m.x855 == 0) m.c1003 = Constraint(expr= 9*m.b766 + m.x856 == 0) m.c1004 = Constraint(expr= 4*m.b767 + m.x857 == 0) m.c1005 = Constraint(expr= 8*m.b768 + m.x858 == 0) m.c1006 = Constraint(expr= 6*m.b769 + m.x859 == 0) m.c1007 = Constraint(expr= 2*m.b770 + m.x860 == 0) m.c1008 = Constraint(expr= m.b771 + m.x861 == 0) m.c1009 = Constraint(expr= 3*m.b772 + m.x862 == 0) m.c1010 = Constraint(expr= 8*m.b773 + m.x863 == 0) m.c1011 = Constraint(expr= 3*m.b774 + m.x864 == 0) m.c1012 = Constraint(expr= 4*m.b775 + m.x865 == 0) m.c1013 = Constraint(expr= m.b596 - m.b597 <= 0) m.c1014 = Constraint(expr= m.b596 - m.b598 <= 0) m.c1015 = Constraint(expr= m.b597 - m.b598 <= 0) m.c1016 = Constraint(expr= m.b599 - m.b600 <= 0) m.c1017 = Constraint(expr= m.b599 - m.b601 <= 0) m.c1018 = Constraint(expr= m.b600 - m.b601 <= 0) m.c1019 = Constraint(expr= m.b602 - m.b603 <= 0) m.c1020 = Constraint(expr= m.b602 - m.b604 <= 0) m.c1021 = Constraint(expr= m.b603 - m.b604 <= 0) m.c1022 = Constraint(expr= m.b605 - m.b606 <= 0) m.c1023 = Constraint(expr= m.b605 - m.b607 <= 0) m.c1024 = Constraint(expr= m.b606 - m.b607 <= 0) m.c1025 = Constraint(expr= m.b608 - m.b609 <= 0) m.c1026 = Constraint(expr= m.b608 - m.b610 <= 0) m.c1027 = Constraint(expr= m.b609 - m.b610 <= 0) m.c1028 = Constraint(expr= m.b611 - m.b612 <= 0) m.c1029 = Constraint(expr= m.b611 - m.b613 <= 0) m.c1030 = Constraint(expr= m.b612 - m.b613 <= 0) m.c1031 = Constraint(expr= m.b614 - m.b615 <= 0) m.c1032 = Constraint(expr= m.b614 - m.b616 <= 0) m.c1033 = Constraint(expr= m.b615 - m.b616 <= 0) m.c1034 = Constraint(expr= m.b617 - m.b618 <= 0) m.c1035 = Constraint(expr= m.b617 - m.b619 <= 0) m.c1036 = Constraint(expr= m.b618 - m.b619 <= 0) m.c1037 = Constraint(expr= m.b620 - m.b621 <= 0) m.c1038 = Constraint(expr= m.b620 - m.b622 <= 0) m.c1039 = Constraint(expr= m.b621 - m.b622 <= 0) m.c1040 = Constraint(expr= m.b623 - m.b624 <= 0) m.c1041 = Constraint(expr= m.b623 - m.b625 <= 0) m.c1042 = Constraint(expr= m.b624 - m.b625 <= 0) m.c1043 = Constraint(expr= m.b626 - m.b627 <= 0) m.c1044 = Constraint(expr= m.b626 - m.b628 <= 0) m.c1045 = Constraint(expr= m.b627 - m.b628 <= 0) m.c1046 = Constraint(expr= m.b629 - m.b630 <= 0) m.c1047 = Constraint(expr= m.b629 - m.b631 <= 0) m.c1048 = Constraint(expr= m.b630 - m.b631 <= 0) m.c1049 = Constraint(expr= m.b632 - m.b633 <= 0) m.c1050 = Constraint(expr= m.b632 - m.b634 <= 0) m.c1051 = Constraint(expr= m.b633 - m.b634 <= 0) m.c1052 = Constraint(expr= m.b635 - m.b636 <= 0) m.c1053 = Constraint(expr= m.b635 - m.b637 <= 0) m.c1054 = Constraint(expr= m.b636 - m.b637 <= 0) m.c1055 = Constraint(expr= m.b638 - m.b639 <= 0) m.c1056 = Constraint(expr= m.b638 - m.b640 <= 0) m.c1057 = Constraint(expr= m.b639 - m.b640 <= 0) m.c1058 = Constraint(expr= m.b641 - m.b642 <= 0) m.c1059 = Constraint(expr= m.b641 - m.b643 <= 0) m.c1060 = Constraint(expr= m.b642 - m.b643 <= 0) m.c1061 = Constraint(expr= m.b644 - m.b645 <= 0) m.c1062 = Constraint(expr= m.b644 - m.b646 <= 0) m.c1063 = Constraint(expr= m.b645 - m.b646 <= 0) m.c1064 = Constraint(expr= m.b647 - m.b648 <= 0) m.c1065 = Constraint(expr= m.b647 - m.b649 <= 0) m.c1066 = Constraint(expr= m.b648 - m.b649 <= 0) m.c1067 = Constraint(expr= m.b650 - m.b651 <= 0) m.c1068 = Constraint(expr= m.b650 - m.b652 <= 0) m.c1069 = Constraint(expr= m.b651 - m.b652 <= 0) m.c1070 = Constraint(expr= m.b653 - m.b654 <= 0) m.c1071 = Constraint(expr= m.b653 - m.b655 <= 0) m.c1072 = Constraint(expr= m.b654 - m.b655 <= 0) m.c1073 = Constraint(expr= m.b656 - m.b657 <= 0) m.c1074 = Constraint(expr= m.b656 - m.b658 <= 0) m.c1075 = Constraint(expr= m.b657 - m.b658 <= 0) m.c1076 = Constraint(expr= m.b659 - m.b660 <= 0) m.c1077 = Constraint(expr= m.b659 - m.b661 <= 0) m.c1078 = Constraint(expr= m.b660 - m.b661 <= 0) m.c1079 = Constraint(expr= m.b662 - m.b663 <= 0) m.c1080 = Constraint(expr= m.b662 - m.b664 <= 0) m.c1081 = Constraint(expr= m.b663 - m.b664 <= 0) m.c1082 = Constraint(expr= m.b665 - m.b666 <= 0) m.c1083 = Constraint(expr= m.b665 - m.b667 <= 0) m.c1084 = Constraint(expr= m.b666 - m.b667 <= 0) m.c1085 = Constraint(expr= m.b668 - m.b669 <= 0) m.c1086 = Constraint(expr= m.b668 - m.b670 <= 0) m.c1087 = Constraint(expr= m.b669 - m.b670 <= 0) m.c1088 = Constraint(expr= m.b671 - m.b672 <= 0) m.c1089 = Constraint(expr= m.b671 - m.b673 <= 0) m.c1090 = Constraint(expr= m.b672 - m.b673 <= 0) m.c1091 = Constraint(expr= m.b674 - m.b675 <= 0) m.c1092 = Constraint(expr= m.b674 - m.b676 <= 0) m.c1093 = Constraint(expr= m.b675 - m.b676 <= 0) m.c1094 = Constraint(expr= m.b677 - m.b678 <= 0) m.c1095 = Constraint(expr= m.b677 - m.b679 <= 0) m.c1096 = Constraint(expr= m.b678 - m.b679 <= 0) m.c1097 = Constraint(expr= m.b680 - m.b681 <= 0) m.c1098 = Constraint(expr= m.b680 - m.b682 <= 0) m.c1099 = Constraint(expr= m.b681 - m.b682 <= 0) m.c1100 = Constraint(expr= m.b683 - m.b684 <= 0) m.c1101 = Constraint(expr= m.b683 - m.b685 <= 0) m.c1102 = Constraint(expr= m.b684 - m.b685 <= 0) m.c1103 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1104 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1105 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1106 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1107 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1108 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1109 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1110 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1111 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1112 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1113 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1114 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1115 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1116 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1117 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1118 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1119 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1120 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1121 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1122 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1123 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1124 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1125 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1126 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1127 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1128 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1129 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1130 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1131 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1132 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1133 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1134 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1135 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1136 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1137 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1138 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1139 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1140 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1141 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1142 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1143 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1144 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1145 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1146 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1147 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1148 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1149 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1150 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1151 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1152 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1153 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1154 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1155 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1156 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1157 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1158 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1159 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1160 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1161 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1162 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1163 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1164 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1165 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1166 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1167 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1168 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1169 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1170 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1171 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1172 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1173 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1174 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1175 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1176 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1177 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1178 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1179 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1180 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1181 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1182 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1183 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1184 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1185 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1186 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1187 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1188 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1189 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1190 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1191 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1192 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1193 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1194 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1195 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1196 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1197 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1198 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1199 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1200 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1201 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1202 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1203 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1204 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1205 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1206 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1207 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1208 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1209 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1210 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1211 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1212 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1213 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1214 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1215 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1216 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1217 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1218 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1219 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1220 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1221 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1222 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1223 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1224 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1225 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1226 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1227 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1228 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1229 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1230 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1231 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1232 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1233 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1234 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1235 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1236 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1237 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1238 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1239 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1240 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1241 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1242 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1243 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1244 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1245 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1246 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1247 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1248 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1249 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1250 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1251 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1252 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1253 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1254 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1255 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1256 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1257 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1258 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1259 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1260 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1261 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1262 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1263 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1264 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1265 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1266 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1267 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1268 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1269 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1270 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1271 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1272 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1273 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1274 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1275 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1276 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1277 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1278 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1279 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1280 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1281 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1282 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1283 = Constraint(expr= m.b596 - m.b686 <= 0) m.c1284 = Constraint(expr= - m.b596 + m.b597 - m.b687 <= 0) m.c1285 = Constraint(expr= - m.b596 - m.b597 + m.b598 - m.b688 <= 0) m.c1286 = Constraint(expr= m.b599 - m.b689 <= 0) m.c1287 = Constraint(expr= - m.b599 + m.b600 - m.b690 <= 0) m.c1288 = Constraint(expr= - m.b599 - m.b600 + m.b601 - m.b691 <= 0) m.c1289 = Constraint(expr= m.b602 - m.b692 <= 0) m.c1290 = Constraint(expr= - m.b602 + m.b603 - m.b693 <= 0) m.c1291 = Constraint(expr= - m.b602 - m.b603 + m.b604 - m.b694 <= 0) m.c1292 = Constraint(expr= m.b605 - m.b695 <= 0) m.c1293 = Constraint(expr= - m.b605 + m.b606 - m.b696 <= 0) m.c1294 = Constraint(expr= - m.b605 - m.b606 + m.b607 - m.b697 <= 0) m.c1295 = Constraint(expr= m.b608 - m.b698 <= 0) m.c1296 = Constraint(expr= - m.b608 + m.b609 - m.b699 <= 0) m.c1297 = Constraint(expr= - m.b608 - m.b609 + m.b610 - m.b700 <= 0) m.c1298 = Constraint(expr= m.b611 - m.b701 <= 0) m.c1299 = Constraint(expr= - m.b611 + m.b612 - m.b702 <= 0) m.c1300 = Constraint(expr= - m.b611 - m.b612 + m.b613 - m.b703 <= 0) m.c1301 = Constraint(expr= m.b614 - m.b704 <= 0) m.c1302 = Constraint(expr= - m.b614 + m.b615 - m.b705 <= 0) m.c1303 = Constraint(expr= - m.b614 - m.b615 + m.b616 - m.b706 <= 0) m.c1304 = Constraint(expr= m.b617 - m.b707 <= 0) m.c1305 = Constraint(expr= - m.b617 + m.b618 - m.b708 <= 0) m.c1306 = Constraint(expr= - m.b617 - m.b618 + m.b619 - m.b709 <= 0) m.c1307 = Constraint(expr= m.b620 - m.b710 <= 0) m.c1308 = Constraint(expr= - m.b620 + m.b621 - m.b711 <= 0) m.c1309 = Constraint(expr= - m.b620 - m.b621 + m.b622 - m.b712 <= 0) m.c1310 = Constraint(expr= m.b623 - m.b713 <= 0) m.c1311 = Constraint(expr= - m.b623 + m.b624 - m.b714 <= 0) m.c1312 = Constraint(expr= - m.b623 - m.b624 + m.b625 - m.b715 <= 0) m.c1313 = Constraint(expr= m.b626 - m.b716 <= 0) m.c1314 = Constraint(expr= - m.b626 + m.b627 - m.b717 <= 0) m.c1315 = Constraint(expr= - m.b626 - m.b627 + m.b628 - m.b718 <= 0) m.c1316 = Constraint(expr= m.b629 - m.b719 <= 0) m.c1317 = Constraint(expr= - m.b629 + m.b630 - m.b720 <= 0) m.c1318 = Constraint(expr= - m.b629 - m.b630 + m.b631 - m.b721 <= 0) m.c1319 = Constraint(expr= m.b632 - m.b722 <= 0) m.c1320 = Constraint(expr= - m.b632 + m.b633 - m.b723 <= 0) m.c1321 = Constraint(expr= - m.b632 - m.b633 + m.b634 - m.b724 <= 0) m.c1322 = Constraint(expr= m.b635 - m.b725 <= 0) m.c1323 = Constraint(expr= - m.b635 + m.b636 - m.b726 <= 0) m.c1324 = Constraint(expr= - m.b635 - m.b636 + m.b637 - m.b727 <= 0) m.c1325 = Constraint(expr= m.b638 - m.b728 <= 0) m.c1326 = Constraint(expr= - m.b638 + m.b639 - m.b729 <= 0) m.c1327 = Constraint(expr= - m.b638 - m.b639 + m.b640 - m.b730 <= 0) m.c1328 = Constraint(expr= m.b641 - m.b731 <= 0) m.c1329 = Constraint(expr= - m.b641 + m.b642 - m.b732 <= 0) m.c1330 = Constraint(expr= - m.b641 - m.b642 + m.b643 - m.b733 <= 0) m.c1331 = Constraint(expr= m.b644 - m.b734 <= 0) m.c1332 = Constraint(expr= - m.b644 + m.b645 - m.b735 <= 0) m.c1333 = Constraint(expr= - m.b644 - m.b645 + m.b646 - m.b736 <= 0) m.c1334 = Constraint(expr= m.b647 - m.b737 <= 0) m.c1335 = Constraint(expr= - m.b647 + m.b648 - m.b738 <= 0) m.c1336 = Constraint(expr= - m.b647 - m.b648 + m.b649 - m.b739 <= 0) m.c1337 = Constraint(expr= m.b650 - m.b740 <= 0) m.c1338 = Constraint(expr= - m.b650 + m.b651 - m.b741 <= 0) m.c1339 = Constraint(expr= - m.b650 - m.b651 + m.b652 - m.b742 <= 0) m.c1340 = Constraint(expr= m.b653 - m.b743 <= 0) m.c1341 = Constraint(expr= - m.b653 + m.b654 - m.b744 <= 0) m.c1342 = Constraint(expr= - m.b653 - m.b654 + m.b655 - m.b745 <= 0) m.c1343 = Constraint(expr= m.b656 - m.b746 <= 0) m.c1344 = Constraint(expr= - m.b656 + m.b657 - m.b747 <= 0) m.c1345 = Constraint(expr= - m.b656 - m.b657 + m.b658 - m.b748 <= 0) m.c1346 = Constraint(expr= m.b659 - m.b749 <= 0) m.c1347 = Constraint(expr= - m.b659 + m.b660 - m.b750 <= 0) m.c1348 = Constraint(expr= - m.b659 - m.b660 + m.b661 - m.b751 <= 0) m.c1349 = Constraint(expr= m.b662 - m.b752 <= 0) m.c1350 = Constraint(expr= - m.b662 + m.b663 - m.b753 <= 0) m.c1351 = Constraint(expr= - m.b662 - m.b663 + m.b664 - m.b754 <= 0) m.c1352 = Constraint(expr= m.b665 - m.b755 <= 0) m.c1353 = Constraint(expr= - m.b665 + m.b666 - m.b756 <= 0) m.c1354 = Constraint(expr= - m.b665 - m.b666 + m.b667 - m.b757 <= 0) m.c1355 = Constraint(expr= m.b668 - m.b758 <= 0) m.c1356 = Constraint(expr= - m.b668 + m.b669 - m.b759 <= 0) m.c1357 = Constraint(expr= - m.b668 - m.b669 + m.b670 - m.b760 <= 0) m.c1358 = Constraint(expr= m.b671 - m.b761 <= 0) m.c1359 = Constraint(expr= - m.b671 + m.b672 - m.b762 <= 0) m.c1360 = Constraint(expr= - m.b671 - m.b672 + m.b673 - m.b763 <= 0) m.c1361 = Constraint(expr= m.b674 - m.b764 <= 0) m.c1362 = Constraint(expr= - m.b674 + m.b675 - m.b765 <= 0) m.c1363 = Constraint(expr= - m.b674 - m.b675 + m.b676 - m.b766 <= 0) m.c1364 = Constraint(expr= m.b677 - m.b767 <= 0) m.c1365 = Constraint(expr= - m.b677 + m.b678 - m.b768 <= 0) m.c1366 = Constraint(expr= - m.b677 - m.b678 + m.b679 - m.b769 <= 0) m.c1367 = Constraint(expr= m.b680 - m.b770 <= 0) m.c1368 = Constraint(expr= - m.b680 + m.b681 - m.b771 <= 0) m.c1369 = Constraint(expr= - m.b680 - m.b681 + m.b682 - m.b772 <= 0) m.c1370 = Constraint(expr= m.b683 - m.b773 <= 0) m.c1371 = Constraint(expr= - m.b683 + m.b684 - m.b774 <= 0) m.c1372 = Constraint(expr= - m.b683 - m.b684 + m.b685 - m.b775 <= 0) m.c1373 = Constraint(expr= m.b596 + m.b599 == 1) m.c1374 = Constraint(expr= m.b597 + m.b600 == 1) m.c1375 = Constraint(expr= m.b598 + m.b601 == 1) m.c1376 = Constraint(expr= - m.b602 + m.b611 + m.b614 >= 0) m.c1377 = Constraint(expr= - m.b603 + m.b612 + m.b615 >= 0) m.c1378 = Constraint(expr= - m.b604 + m.b613 + m.b616 >= 0) m.c1379 = Constraint(expr= - m.b611 + m.b629 >= 0) m.c1380 = Constraint(expr= - m.b612 + m.b630 >= 0) m.c1381 = Constraint(expr= - m.b613 + m.b631 >= 0) m.c1382 = Constraint(expr= - m.b614 + m.b632 >= 0) m.c1383 = Constraint(expr= - m.b615 + m.b633 >= 0) m.c1384 = Constraint(expr= - m.b616 + m.b634 >= 0) m.c1385 = Constraint(expr= - m.b605 + m.b617 >= 0) m.c1386 = Constraint(expr= - m.b606 + m.b618 >= 0) m.c1387 = Constraint(expr= - m.b607 + m.b619 >= 0) m.c1388 = Constraint(expr= - m.b617 + m.b635 + m.b638 >= 0) m.c1389 = Constraint(expr= - m.b618 + m.b636 + m.b639 >= 0) m.c1390 = Constraint(expr= - m.b619 + m.b637 + m.b640 >= 0) m.c1391 = Constraint(expr= - m.b608 + m.b620 + m.b623 + m.b626 >= 0) m.c1392 = Constraint(expr= - m.b609 + m.b621 + m.b624 + m.b627 >= 0) m.c1393 = Constraint(expr= - m.b610 + m.b622 + m.b625 + m.b628 >= 0) m.c1394 = Constraint(expr= - m.b620 + m.b638 >= 0) m.c1395 = Constraint(expr= - m.b621 + m.b639 >= 0) m.c1396 = Constraint(expr= - m.b622 + m.b640 >= 0) m.c1397 = Constraint(expr= - m.b623 + m.b641 + m.b644 >= 0) m.c1398 = Constraint(expr= - m.b624 + m.b642 + m.b645 >= 0) m.c1399 = Constraint(expr= - m.b625 + m.b643 + m.b646 >= 0) m.c1400 = Constraint(expr= - m.b626 + m.b647 + m.b650 + m.b653 >= 0) m.c1401 = Constraint(expr= - m.b627 + m.b648 + m.b651 + m.b654 >= 0) m.c1402 = Constraint(expr= - m.b628 + m.b649 + m.b652 + m.b655 >= 0) m.c1403 = Constraint(expr= m.b596 + m.b599 - m.b602 >= 0) m.c1404 = Constraint(expr= m.b597 + m.b600 - m.b603 >= 0) m.c1405 = Constraint(expr= m.b598 + m.b601 - m.b604 >= 0) m.c1406 = Constraint(expr= m.b596 + m.b599 - m.b605 >= 0) m.c1407 = Constraint(expr= m.b597 + m.b600 - m.b606 >= 0) m.c1408 = Constraint(expr= m.b598 + m.b601 - m.b607 >= 0) m.c1409 = Constraint(expr= m.b596 + m.b599 - m.b608 >= 0) m.c1410 = Constraint(expr= m.b597 + m.b600 - m.b609 >= 0) m.c1411 = Constraint(expr= m.b598 + m.b601 - m.b610 >= 0) m.c1412 = Constraint(expr= m.b602 - m.b611 >= 0) m.c1413 = Constraint(expr= m.b603 - m.b612 >= 0) m.c1414 = Constraint(expr= m.b604 - m.b613 >= 0) m.c1415 = Constraint(expr= m.b602 - m.b614 >= 0) m.c1416 = Constraint(expr= m.b603 - m.b615 >= 0) m.c1417 = Constraint(expr= m.b604 - m.b616 >= 0) m.c1418 = Constraint(expr= m.b605 - m.b617 >= 0) m.c1419 = Constraint(expr= m.b606 - m.b618 >= 0) m.c1420 = Constraint(expr= m.b607 - m.b619 >= 0) m.c1421 = Constraint(expr= m.b608 - m.b620 >= 0) m.c1422 = Constraint(expr= m.b609 - m.b621 >= 0) m.c1423 = Constraint(expr= m.b610 - m.b622 >= 0) m.c1424 = Constraint(expr= m.b608 - m.b623 >= 0) m.c1425 = Constraint(expr= m.b609 - m.b624 >= 0) m.c1426 = Constraint(expr= m.b610 - m.b625 >= 0) m.c1427 = Constraint(expr= m.b608 - m.b626 >= 0) m.c1428 = Constraint(expr= m.b609 - m.b627 >= 0) m.c1429 = Constraint(expr= m.b610 - m.b628 >= 0) m.c1430 = Constraint(expr= m.b611 - m.b629 >= 0) m.c1431 = Constraint(expr= m.b612 - m.b630 >= 0) m.c1432 = Constraint(expr= m.b613 - m.b631 >= 0) m.c1433 = Constraint(expr= m.b614 - m.b632 >= 0) m.c1434 = Constraint(expr= m.b615 - m.b633 >= 0) m.c1435 = Constraint(expr= m.b616 - m.b634 >= 0) m.c1436 = Constraint(expr= m.b617 - m.b635 >= 0) m.c1437 = Constraint(expr= m.b618 - m.b636 >= 0) m.c1438 = Constraint(expr= m.b619 - m.b637 >= 0) m.c1439 = Constraint(expr= m.b617 - m.b638 >= 0) m.c1440 = Constraint(expr= m.b618 - m.b639 >= 0) m.c1441 = Constraint(expr= m.b619 - m.b640 >= 0) m.c1442 = Constraint(expr= m.b623 - m.b641 >= 0) m.c1443 = Constraint(expr= m.b624 - m.b642 >= 0) m.c1444 = Constraint(expr= m.b625 - m.b643 >= 0) m.c1445 = Constraint(expr= m.b623 - m.b644 >= 0) m.c1446 = Constraint(expr= m.b624 - m.b645 >= 0) m.c1447 = Constraint(expr= m.b625 - m.b646 >= 0) m.c1448 = Constraint(expr= m.b626 - m.b647 >= 0) m.c1449 = Constraint(expr= m.b627 - m.b648 >= 0) m.c1450 = Constraint(expr= m.b628 - m.b649 >= 0) m.c1451 = Constraint(expr= m.b626 - m.b650 >= 0) m.c1452 = Constraint(expr= m.b627 - m.b651 >= 0) m.c1453 = Constraint(expr= m.b628 - m.b652 >= 0) m.c1454 = Constraint(expr= m.b626 - m.b653 >= 0) m.c1455 = Constraint(expr= m.b627 - m.b654 >= 0) m.c1456 = Constraint(expr= m.b628 - m.b655 >= 0) m.c1457 = Constraint(expr= - m.b653 + m.b656 + m.b659 >= 0) m.c1458 = Constraint(expr= - m.b654 + m.b657 + m.b660 >= 0) m.c1459 = Constraint(expr= - m.b655 + m.b658 + m.b661 >= 0) m.c1460 = Constraint(expr= - m.b662 + m.b671 + m.b674 >= 0) m.c1461 = Constraint(expr= - m.b663 + m.b672 + m.b675 >= 0) m.c1462 = Constraint(expr= - m.b664 + m.b673 + m.b676 >= 0) m.c1463 = Constraint(expr= - m.b665 + m.b677 >= 0) m.c1464 = Constraint(expr= - m.b666 + m.b678 >= 0) m.c1465 = Constraint(expr= - m.b667 + m.b679 >= 0) m.c1466 = Constraint(expr= m.b653 - m.b656 >= 0) m.c1467 = Constraint(expr= m.b654 - m.b657 >= 0) m.c1468 = Constraint(expr= m.b655 - m.b658 >= 0) m.c1469 = Constraint(expr= m.b653 - m.b659 >= 0) m.c1470 = Constraint(expr= m.b654 - m.b660 >= 0) m.c1471 = Constraint(expr= m.b655 - m.b661 >= 0) m.c1472 = Constraint(expr= m.b662 - m.b671 >= 0) m.c1473 = Constraint(expr= m.b663 - m.b672 >= 0) m.c1474 = Constraint(expr= m.b664 - m.b673 >= 0) m.c1475 = Constraint(expr= m.b662 - m.b674 >= 0) m.c1476 = Constraint(expr= m.b663 - m.b675 >= 0) m.c1477 = Constraint(expr= m.b664 - m.b676 >= 0) m.c1478 = Constraint(expr= m.b665 - m.b677 >= 0) m.c1479 = Constraint(expr= m.b666 - m.b678 >= 0) m.c1480 = Constraint(expr= m.b667 - m.b679 >= 0) m.c1481 = Constraint(expr= m.b668 - m.b680 >= 0) m.c1482 = Constraint(expr= m.b669 - m.b681 >= 0) m.c1483 = Constraint(expr= m.b670 - m.b682 >= 0) m.c1484 = Constraint(expr= m.b668 - m.b683 >= 0) m.c1485 = Constraint(expr= m.b669 - m.b684 >= 0) m.c1486 = Constraint(expr= m.b670 - m.b685 >= 0)
1.507813
2
backend/tests/test_resources.py
sartography/star-drive
0
6449
<reponame>sartography/star-drive import unittest from flask import json from tests.base_test import BaseTest from app import db, elastic_index from app.model.resource import Resource from app.model.resource_category import ResourceCategory from app.model.resource_change_log import ResourceChangeLog from app.model.user import Role class TestResources(BaseTest, unittest.TestCase): def test_resource_basics(self): self.construct_resource() r = db.session.query(Resource).first() self.assertIsNotNone(r) r_id = r.id rv = self.app.get('/api/resource/%i' % r_id, follow_redirects=True, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response["id"], r_id) self.assertEqual(response["title"], 'A+ Resource') self.assertEqual(response["description"], 'A delightful Resource destined to create rejoicing') def test_modify_resource_basics(self): self.construct_resource() r = db.session.query(Resource).first() self.assertIsNotNone(r) r_id = r.id rv = self.app.get('/api/resource/%i' % r_id, content_type="application/json") response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Edwarardos Lemonade and Oil Change' response['description'] = 'Better fluids for you and your car.' response['website'] = 'http://sartography.com' orig_date = response['last_updated'] rv = self.app.put('/api/resource/%i' % r_id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('/api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Edwarardos Lemonade and Oil Change') self.assertEqual(response['description'], 'Better fluids for you and your car.') self.assertEqual(response['website'], 'http://sartography.com') self.assertNotEqual(orig_date, response['last_updated']) def test_delete_resource(self): r = self.construct_resource() r_id = r.id rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) rv = self.app.delete('api/resource/%i' % r_id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assertEqual(404, rv.status_code) def test_delete_resource_with_admin_note_and_no_elastic_record(self): r = self.construct_resource() r_id = r.id rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) self.construct_admin_note(user=self.construct_user(), resource=r) elastic_index.remove_document(r, 'Resource') rv = self.app.delete('api/resource/%i' % r_id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assertEqual(404, rv.status_code) def test_create_resource(self): resource = {'title': "Resource of Resources", 'description': "You need this resource in your life.", 'organization_name': "Resource Org"} rv = self.app.post('api/resource', data=self.jsonify(resource), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Resource of Resources') self.assertEqual(response['description'], 'You need this resource in your life.') self.assertIsNotNone(response['id']) def test_get_resource_by_category(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/category/%i/resource' % c.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) self.assertEqual(r.id, response[0]["resource_id"]) self.assertEqual(r.description, response[0]["resource"]["description"]) def test_get_resource_by_category_includes_category_details(self): c = self.construct_category(name="c1") c2 = self.construct_category(name="c2") r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') cr2 = ResourceCategory(resource=r, category=c2, type='resource') db.session.add_all([cr, cr2]) db.session.commit() rv = self.app.get( '/api/category/%i/resource' % c.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(r.id, response[0]["resource_id"]) self.assertEqual(2, len(response[0]["resource"]["resource_categories"])) self.assertEqual( "c1", response[0]["resource"]["resource_categories"][0]["category"] ["name"]) def test_category_resource_count(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/category/%i' % c.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, response["resource_count"]) def test_get_category_by_resource(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/resource/%i/category' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) self.assertEqual(c.id, response[0]["id"]) self.assertEqual(c.name, response[0]["category"]["name"]) def test_add_category_to_resource(self): c = self.construct_category() r = self.construct_resource() rc_data = {"resource_id": r.id, "category_id": c.id} rv = self.app.post( '/api/resource_category', data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(c.id, response["category_id"]) self.assertEqual(r.id, response["resource_id"]) def test_set_all_categories_on_resource(self): c1 = self.construct_category(name="c1") c2 = self.construct_category(name="c2") c3 = self.construct_category(name="c3") r = self.construct_resource() rc_data = [ { "category_id": c1.id }, { "category_id": c2.id }, { "category_id": c3.id }, ] rv = self.app.post( '/api/resource/%i/category' % r.id, data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(3, len(response)) rc_data = [{"category_id": c1.id}] rv = self.app.post( '/api/resource/%i/category' % r.id, data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) def test_remove_category_from_resource(self): self.test_add_category_to_resource() rv = self.app.delete('/api/resource_category/%i' % 1) self.assert_success(rv) rv = self.app.get( '/api/resource/%i/category' % 1, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(0, len(response)) def test_resource_change_log_types(self): u = self.construct_user(email="<EMAIL>", role=Role.admin) r = {'id': 258, 'title': "A Resource that is Super and Great", 'description': "You need this resource in your life."} rv = self.app.post('api/resource', data=self.jsonify(r), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'create') rv = self.app.get('api/resource/%i' % r['id'], content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r['id'], data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/resource/%i' % r['id'], content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Super Great Resource') logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'edit') rv = self.app.delete('api/resource/%i' % r['id'], content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'delete') def test_get_resource_change_log_by_resource(self): r = self.construct_resource() u = self.construct_user(email="<EMAIL>", role=Role.admin) rv = self.app.get('api/resource/%i' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r.id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/resource/%i/change_log' % r.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response[-1]['user_id'], u.id) def test_get_resource_change_log_by_user(self): r = self.construct_resource() u = self.construct_user(email="<EMAIL>", role=Role.admin) rv = self.app.get('api/resource/%i' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r.id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/user/%i/resource_change_log' % u.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response[-1]['resource_id'], r.id) def test_covid19_resource_lists(self): self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Free_educational_resources']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Free_educational_resources']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Supports_with_Living']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Visual_Aids']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Health_and_Telehealth']) rv = self.app.get('api/resource/covid19/COVID-19_for_Autism', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 5) rv = self.app.get('api/resource/covid19/Edu-tainment', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 4) rv = self.app.get('api/resource/covid19/Free_educational_resources', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 2) rv = self.app.get('api/resource/covid19/Supports_with_Living', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) rv = self.app.get('api/resource/covid19/Visual_Aids', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) rv = self.app.get('api/resource/covid19/Health_and_Telehealth', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) def test_is_uva_education_content(self): self.construct_resource(is_draft=True, title='Autism at UVA', is_uva_education_content=True) self.construct_resource(is_draft=False, title='Healthy Eating', is_uva_education_content=True) self.construct_resource(is_draft=True, title='Autism and the Arts', is_uva_education_content=False) self.construct_resource(is_draft=False, title='Autism One', is_uva_education_content=True) self.construct_resource(is_draft=False, title='Two', is_uva_education_content=False) rv = self.app.get('api/resource/education', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 2) rv = self.app.get('api/resource', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 5)
2.328125
2
kolibri/core/auth/management/commands/sync.py
reubenjacob/kolibri
0
6450
<filename>kolibri/core/auth/management/commands/sync.py import json import logging import math import re from contextlib import contextmanager from django.core.management import call_command from django.core.management.base import CommandError from morango.models import Filter from morango.models import InstanceIDModel from morango.models import ScopeDefinition from morango.sync.controller import MorangoProfileController from ..utils import create_superuser_and_provision_device from ..utils import get_baseurl from ..utils import get_client_and_server_certs from ..utils import get_dataset_id from ..utils import get_single_user_sync_filter from ..utils import provision_single_user_device from kolibri.core.auth.constants.morango_sync import PROFILE_FACILITY_DATA from kolibri.core.auth.constants.morango_sync import ScopeDefinitions from kolibri.core.auth.constants.morango_sync import State from kolibri.core.auth.management.utils import get_facility from kolibri.core.auth.management.utils import run_once from kolibri.core.auth.models import dataset_cache from kolibri.core.logger.utils.data import bytes_for_humans from kolibri.core.tasks.exceptions import UserCancelledError from kolibri.core.tasks.management.commands.base import AsyncCommand from kolibri.core.utils.lock import db_lock from kolibri.utils import conf DATA_PORTAL_SYNCING_BASE_URL = conf.OPTIONS["Urls"]["DATA_PORTAL_SYNCING_BASE_URL"] TRANSFER_MESSAGE = "{records_transferred}/{records_total}, {transfer_total}" logger = logging.getLogger(__name__) class Command(AsyncCommand): help = "Allow the syncing of facility data with Kolibri Data Portal or another Kolibri device." def add_arguments(self, parser): parser.add_argument( "--facility", action="store", type=str, help="ID of facility to sync" ) parser.add_argument( "--baseurl", type=str, default=DATA_PORTAL_SYNCING_BASE_URL, dest="baseurl" ) parser.add_argument("--noninteractive", action="store_true") parser.add_argument( "--chunk-size", type=int, default=500, help="Chunk size of records to send/retrieve per request", ) parser.add_argument( "--no-push", action="store_true", help="Do not push data to the server" ) parser.add_argument( "--no-pull", action="store_true", help="Do not pull data from the server" ) parser.add_argument( "--username", type=str, help="username of superuser or facility admin on server we are syncing with", ) parser.add_argument( "--password", type=str, help="password of superuser or facility admin on server we are syncing with", ) parser.add_argument( "--user", type=str, help="for single-user syncing, the user ID of the account to be synced", ) parser.add_argument( "--no-provision", action="store_true", help="do not create a facility and temporary superuser", ) # parser.add_argument("--scope-id", type=str, default=FULL_FACILITY) def handle_async(self, *args, **options): # noqa C901 ( baseurl, facility_id, chunk_size, username, password, user_id, no_push, no_pull, noninteractive, no_provision, ) = ( options["baseurl"], options["facility"], options["chunk_size"], options["username"], options["password"], options["user"], options["no_push"], options["no_pull"], options["noninteractive"], options["no_provision"], ) PORTAL_SYNC = baseurl == DATA_PORTAL_SYNCING_BASE_URL # validate url that is passed in if not PORTAL_SYNC: baseurl = get_baseurl(baseurl) # call this in case user directly syncs without migrating database if not ScopeDefinition.objects.filter(): call_command("loaddata", "scopedefinitions") dataset_cache.clear() dataset_cache.activate() # try to connect to server controller = MorangoProfileController(PROFILE_FACILITY_DATA) network_connection = controller.create_network_connection(baseurl) # if instance_ids are equal, this means device is trying to sync with itself, which we don't allow if ( InstanceIDModel.get_or_create_current_instance()[0].id == network_connection.server_info["instance_id"] ): raise CommandError( "Device can not sync with itself. Please recheck base URL and try again." ) if user_id: # it's a single-user sync if not facility_id: raise CommandError( "Facility ID must be specified in order to do single-user syncing" ) if not re.match("[a-f0-9]{32}", user_id): raise CommandError("User ID must be a 32-character UUID (no dashes)") dataset_id = get_dataset_id( baseurl, identifier=facility_id, noninteractive=True ) client_cert, server_cert, username = get_client_and_server_certs( username, password, dataset_id, network_connection, user_id=user_id, noninteractive=noninteractive, ) scopes = [client_cert.scope_definition_id, server_cert.scope_definition_id] if len(set(scopes)) != 2: raise CommandError( "To do a single-user sync, one device must have a single-user certificate, and the other a full-facility certificate." ) elif PORTAL_SYNC: # do portal sync setup facility = get_facility( facility_id=facility_id, noninteractive=noninteractive ) # check for the certs we own for the specific facility client_cert = ( facility.dataset.get_owned_certificates() .filter(scope_definition_id=ScopeDefinitions.FULL_FACILITY) .first() ) if not client_cert: raise CommandError( "This device does not own a certificate for Facility: {}".format( facility.name ) ) # get primary partition scope_params = json.loads(client_cert.scope_params) dataset_id = scope_params["dataset_id"] # check if the server already has a cert for this facility server_certs = network_connection.get_remote_certificates( dataset_id, scope_def_id=ScopeDefinitions.FULL_FACILITY ) # if necessary, push a cert up to the server server_cert = ( server_certs[0] if server_certs else network_connection.push_signed_client_certificate_chain( local_parent_cert=client_cert, scope_definition_id=ScopeDefinitions.FULL_FACILITY, scope_params=scope_params, ) ) else: # do P2P setup dataset_id = get_dataset_id( baseurl, identifier=facility_id, noninteractive=noninteractive ) client_cert, server_cert, username = get_client_and_server_certs( username, password, dataset_id, network_connection, noninteractive=noninteractive, ) logger.info("Syncing has been initiated (this may take a while)...") sync_session_client = network_connection.create_sync_session( client_cert, server_cert, chunk_size=chunk_size ) try: # pull from server if not no_pull: self._handle_pull( sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id=user_id, ) # and push our own data to server if not no_push: self._handle_push( sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id=user_id, ) if not no_provision: with self._lock(): if user_id: provision_single_user_device(user_id) else: create_superuser_and_provision_device( username, dataset_id, noninteractive=noninteractive ) except UserCancelledError: if self.job: self.job.extra_metadata.update(sync_state=State.CANCELLED) self.job.save_meta() logger.info("Syncing has been cancelled.") return network_connection.close() if self.job: self.job.extra_metadata.update(sync_state=State.COMPLETED) self.job.save_meta() dataset_cache.deactivate() logger.info("Syncing has been completed.") @contextmanager def _lock(self): cancellable = False # job can't be cancelled while locked if self.job: cancellable = self.job.cancellable self.job.save_as_cancellable(cancellable=False) with db_lock(): yield if self.job: self.job.save_as_cancellable(cancellable=cancellable) def _raise_cancel(self, *args, **kwargs): if self.is_cancelled() and (not self.job or self.job.cancellable): raise UserCancelledError() def _handle_pull( self, sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id, ): """ :type sync_session_client: morango.sync.syncsession.SyncSessionClient :type noninteractive: bool :type dataset_id: str """ sync_client = sync_session_client.get_pull_client() sync_client.signals.queuing.connect(self._raise_cancel) sync_client.signals.transferring.connect(self._raise_cancel) self._queueing_tracker_adapter( sync_client.signals.queuing, "Remotely preparing data", State.REMOTE_QUEUING, noninteractive, ) self._transfer_tracker_adapter( sync_client.signals.transferring, "Receiving data ({})".format(TRANSFER_MESSAGE), State.PULLING, noninteractive, ) self._queueing_tracker_adapter( sync_client.signals.dequeuing, "Locally integrating received data", State.LOCAL_DEQUEUING, noninteractive, ) self._session_tracker_adapter( sync_client.signals.session, "Creating pull transfer session", "Completed pull transfer session", ) if not user_id: # full-facility sync sync_client.initialize(Filter(dataset_id)) else: # single-user sync client_is_single_user = ( client_cert.scope_definition_id == ScopeDefinitions.SINGLE_USER ) filt = get_single_user_sync_filter( dataset_id, user_id, is_read=client_is_single_user ) sync_client.initialize(Filter(filt)) sync_client.run() with self._lock(): sync_client.finalize() def _handle_push( self, sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id, ): """ :type sync_session_client: morango.sync.syncsession.SyncSessionClient :type noninteractive: bool :type dataset_id: str """ sync_client = sync_session_client.get_push_client() sync_client.signals.transferring.connect(self._raise_cancel) self._queueing_tracker_adapter( sync_client.signals.queuing, "Locally preparing data to send", State.LOCAL_QUEUING, noninteractive, ) self._transfer_tracker_adapter( sync_client.signals.transferring, "Sending data ({})".format(TRANSFER_MESSAGE), State.PUSHING, noninteractive, ) self._queueing_tracker_adapter( sync_client.signals.dequeuing, "Remotely integrating data", State.REMOTE_DEQUEUING, noninteractive, ) self._session_tracker_adapter( sync_client.signals.session, "Creating push transfer session", "Completed push transfer session", ) with self._lock(): if not user_id: # full-facility sync sync_client.initialize(Filter(dataset_id)) else: # single-user sync client_is_single_user = ( client_cert.scope_definition_id == ScopeDefinitions.SINGLE_USER ) filt = get_single_user_sync_filter( dataset_id, user_id, is_read=not client_is_single_user ) sync_client.initialize(Filter(filt)) sync_client.run() # we can't cancel remotely integrating data if self.job: self.job.save_as_cancellable(cancellable=False) # allow server timeout since remotely integrating data can take a while and the request # could timeout. In that case, we'll assume everything is good. sync_client.finalize(allow_server_timeout=True) def _update_all_progress(self, progress_fraction, progress): """ Override parent progress update callback to report from the progress tracker we're sent """ if self.job: self.job.update_progress(progress_fraction, 1.0) self.job.extra_metadata.update(progress.extra_data) self.job.save_meta() def _session_tracker_adapter(self, signal_group, started_msg, completed_msg): """ Attaches a signal handler to session creation signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type started_msg: str :type completed_msg: str """ @run_once def session_creation(transfer_session): """ A session is created individually for pushing and pulling """ logger.info(started_msg) if self.job: self.job.extra_metadata.update(sync_state=State.SESSION_CREATION) @run_once def session_destruction(transfer_session): if transfer_session.records_total == 0: logger.info("There are no records to transfer") logger.info(completed_msg) signal_group.started.connect(session_creation) signal_group.completed.connect(session_destruction) def _transfer_tracker_adapter( self, signal_group, message, sync_state, noninteractive ): """ Attaches a signal handler to pushing/pulling signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type message: str :type sync_state: str :type noninteractive: bool """ tracker = self.start_progress(total=100) def stats_msg(transfer_session): transfer_total = ( transfer_session.bytes_sent + transfer_session.bytes_received ) return message.format( records_transferred=transfer_session.records_transferred, records_total=transfer_session.records_total, transfer_total=bytes_for_humans(transfer_total), ) def stats(transfer_session): logger.info(stats_msg(transfer_session)) def handler(transfer_session): """ :type transfer_session: morango.models.core.TransferSession """ progress = ( 100 * transfer_session.records_transferred / float(transfer_session.records_total) ) tracker.update_progress( increment=math.ceil(progress - tracker.progress), message=stats_msg(transfer_session), extra_data=dict( bytes_sent=transfer_session.bytes_sent, bytes_received=transfer_session.bytes_received, sync_state=sync_state, ), ) if noninteractive or tracker.progressbar is None: signal_group.started.connect(stats) signal_group.in_progress.connect(stats) signal_group.connect(handler) # log one more time at end to capture in logging output signal_group.completed.connect(stats) def _queueing_tracker_adapter( self, signal_group, message, sync_state, noninteractive ): """ Attaches a signal handler to queuing/dequeuing signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type message: str :type sync_state: str :type noninteractive: bool """ tracker = self.start_progress(total=2) def started(transfer_session): dataset_cache.clear() if noninteractive or tracker.progressbar is None: logger.info(message) def handler(transfer_session): tracker.update_progress( message=message, extra_data=dict(sync_state=sync_state) ) if noninteractive or tracker.progressbar is None: signal_group.started.connect(started) signal_group.started.connect(started) signal_group.started.connect(handler) signal_group.completed.connect(handler)
1.726563
2
warp.py
RezaFirouzii/fum-delta-vision
0
6451
import math import imageio import cv2 as cv import numpy as np import transformer def fix_rotation(img): img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) rows, cols = img.shape img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) roi = max(contours, key=cv.contourArea) x, y, w, h = cv.boundingRect(roi) corners = [[x, y], [x + w, y], [x, y + h], [x + w, y + h]] src = np.float32(corners) # src = np.reshape(src, (len(src), 1, 2)) # perimeter = cv.arcLength(src, True) # corners = cv.approxPolyDP(src, perimeter // 10, True) # corners = np.vstack(corners) dst = np.float32([[0, 0], [cols, 0], [0, rows], [cols, rows]]) matrix = cv.getPerspectiveTransform(src, dst) rotated_img = cv.warpPerspective(img_copy, matrix, (cols, rows)) cv.imshow('', rotated_img) D1 = 105 D2 = 175 D3 = 275 if __name__ == "__main__": cap = cv.VideoCapture('samples/delta.mp4') if not cap.isOpened(): raise IOError("Video was not opened!") mse = 0 count = 0 reader = imageio.get_reader('samples/delta.mp4') fps = reader.get_meta_data()['fps'] writer = imageio.get_writer('samples/result.mp4', fps=fps) while True: res, frame = cap.read() if not res: break mean_error = 0 holes_count = 0 img = frame.copy() cv.imshow('dfa', img) frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) frame_copy = frame.copy() # frame = cv.adaptiveThreshold(frame, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) # kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) # frame = cv.morphologyEx(frame, cv.MORPH_OPEN, kernel) # frame = cv.medianBlur(frame, 3) # contours, hierarchy = cv.findContours(frame, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) # roi = max(contours, key=cv.contourArea) # x, y, w, h = cv.boundingRect(roi) x, y, w, h = 115, 0, 445, 360 img = img[y: y+h, x: x+w] img = transformer.rotate_along_axis(img, theta=40) frame_copy = frame_copy[y: y+h, x: x+w] frame_copy = transformer.rotate_along_axis(frame_copy, theta=40) # cv.imshow('', frame_copy) # cv.rectangle(frame_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) # cv.drawContours(frame_copy, roi, -1, (0, 0, 255), 2) # res, mask = cv.threshold(frame_copy, 0, 255, cv.THRESH_BINARY) # frame_copy = cv.bitwise_and(frame_copy, frame_copy, mask=mask) # corners = cv.goodFeaturesToTrack(frame_copy, 1000, 0.0001, 1) # corners = list(sorted(corners, key=lambda x: x[0][1])) # print(corners[-1], corners[-2]) # print() # corners = np.array([[38, 293], [407, 293]]) # for item in corners: # # x, y = map(int, item.ravel()) # x, y = item # cv.circle(img, (x, y), 5, (0, 0, 255), -1) src = np.float32([[0, 0], [w, 0], [38, 293], [407, 293]]) dst = np.float32([[0, 0], [w, 0], [30, h], [w - 30, h]]) matrix = cv.getPerspectiveTransform(src, dst) img = cv.warpPerspective(img, matrix, (w, h)) cv.imshow('', img) img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) origin = (w // 2 + 4, h // 2 + 2) o1, o2 = origin r = w // 2 + 1 ORIGIN = (0, 0) R = 300 # mm contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) contours = list(filter(lambda x: 50 < cv.contourArea(x) < 175, contours)) factor = 0.1 smooth_contours = [] for i in range(len(contours)): epsilon = factor * cv.arcLength(contours[i], True) approx = cv.approxPolyDP(contours[i], epsilon, True) x, y, width, height = cv.boundingRect(approx) area = width*height if len(approx) == 4 and 75 < area < 200: smooth_contours.append(contours[i]) center, radius = cv.minEnclosingCircle(approx) radius = int(radius) center = tuple(map(int, center)) x, y = center X = ((x - o1) * R) / r Y = ((y - o2) * R) / r X, Y = round(X, 2), round(Y, 2) cv.circle(img_copy, center, radius, (0, 255, 0), 2) cv.putText(img_copy, str((X, Y)), center, cv.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 255, 255), 1, cv.LINE_AA) e1, e2, e3 = map(lambda d: abs(math.hypot(X, Y) - d), [D1, D2, D3]) error = min(e1, e2, e3) if error < 10: mean_error += error ** 2 holes_count += 1 cv.circle(img_copy, origin, 4, (0, 0, 255), -1) # cv.line(img_copy, origin, (origin[0], origin[1]), (255, 0, 255), 2) mean_error /= holes_count mse += mean_error count += 1 cv.imshow("Final", img_copy) writer.append_data(img_copy) # cv.imshow("Chg", img) if cv.waitKey(30) == 27: break print("E:", mse / count, "N:", count) writer.close() cap.release() cv.destroyAllWindows()
2.40625
2
sdssobstools/boss_data.py
sdss/ObserverTools
0
6452
<reponame>sdss/ObserverTools<filename>sdssobstools/boss_data.py #!/usr/bin/env python3 """ A tool to grab a single BOSS image and pull a few items from its header. It is used in bin/sloan_log.py, but it could be used directly as well. """ import argparse from pathlib import Path from astropy.time import Time import fitsio class BOSSRaw: """A class to parse raw data from APOGEE. The purpose of collecting this raw data is to future-proof things that need these ouptuts in case things like autoschedulers change, which many libraries depend on. This will hopefully help SDSS-V logging""" def __init__(self, fil): self.fil = fil header = fitsio.read_header(fil) self.dither = header['MGDPOS'] if not self.dither: # This key started working instead during SDSS-V self.dither = header['POINTING'][0] self.exp_time = int(header['EXPTIME']) self.isot = Time(header['DATE-OBS']) # UTC self.plate_id = header['PLATEID'] self.cart_id = header['CARTID'] self.exp_id = int(str(fil).split('-')[-1].split('.')[0]) self.lead = header['PLATETYP'] if 'Closed' in header['HARTMANN']: self.hartmann = 'Closed' self.flavor = header['FLAVOR'].capitalize() elif 'Out' in header['HARTMANN']: self.hartmann = 'Open' self.flavor = header['FLAVOR'].capitalize() self.hart_resids = [] else: self.hartmann = header['HARTMANN'] self.flavor = 'Hart' # self.seeing = header['SEEING'] # self.img_type = header['IMAGETYP'] def main(): parser = argparse.ArgumentParser() parser.add_argument('-t', '--today', action='store_true') args = parser.parse_args() parser.add_argument('-m', '--mjd', help='If not today (-t), the mjd to search') parser.add_argument('-v', '--verbose', action='count', default=1, help='Show details, can be stacked') if args.today: mjd_today = int(Time.now().sjd) data_dir = '/data/spectro/{}/'.format(mjd_today) elif args.mjd: data_dir = '/data/spectro/{}/'.format(args.mjd) else: raise Exception('No date specified') for path in Path(data_dir).rglob('sdR*.fit.gz'): print(path) if __name__ == '__main__': main()
2.203125
2
capitulo-08/ex13b.py
bryan-lima/exercicios-livro-introd-prog-python-3ed
3
6453
# Altere o Programa 8.20 de forma que o usuário tenha três chances de acertar o número # O programa termina se o usuário acertar ou errar três vezes # Programa 8.20 do livro, página 184 # Programa 8.20 - Adivinhando o número # # import random # # n = random.randint(1, 10) # x = int(input('Escolha um número entre 1 e 10: ')) # if x == n: # print('Você acertou!') # else: # print('Você errou.') import random numberRandom = random.randint(1, 10) counter = 0 while True: chosenNumber = int(input('\nEscolha um número entre 1 e 10: ')) counter += 1 if chosenNumber == numberRandom: print(f'Parabéns! Você acertou na {counter}ª de 3 tentativas!') break else: print(f'Você errou!') if counter < 3: print(f'Resta(m) {3 - counter} tentativa(s).') else: print('Suas tentativas acabaram! Mais sorte na próxima vez.') print(f'O número sorteado foi {numberRandom}.') break
4.09375
4
slogviz/config.py
mariusfrinken/slogviz
1
6454
<reponame>mariusfrinken/slogviz # -*- coding: utf-8 -*- """This sub module provides a global variable to check for checking if the non-interactive argument was set Exported variable: interactive -- False, if the main the non-interactive argument was set, True, if it was not set """ global interactive interactive = True;
1.5
2
setup.py
shb84/ATM76
0
6455
import setuptools # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setuptools.setup( name="atm76", version="0.1.0", author="<NAME>", author_email="<EMAIL>", description="Differentiable 1976 Atmosphere", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/shb84/ATM76.git", packages=setuptools.find_packages(), package_data={}, install_requires=["numpy>=1.16", "genn"], include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.7', )
1.640625
2
agent/check_plugins/download_speed.py
indigos33k3r/god-eye
1
6456
import logging import asyncio from agent.check_plugins import AbstractCheckPlugin # Do khong biet dung thu vien asyncio ntn ca nen em dung thu vien request # python import requests import sys import time from datetime import datetime logger = logging.getLogger(__name__) class Download(AbstractCheckPlugin): @asyncio.coroutine def __call__(self, client, dnode): logger.info('Test download speed : running...') start = time.clock() r = requests.get('http://{}'.format(dnode), stream=True) total_length = int(r.headers.get('content-length')) if total_length is None: logger.error("Empty file!") else: array_speed = [] start_chunk = time.clock() for chunk in r.iter_content(1024): # 1kB1024 1MB 1048576 end_chunk = time.clock() delta = end_chunk - start_chunk start_chunk = end_chunk if delta <= 0: break else: array_speed.append(1//delta) # kB / s end = time.clock() yield from self._queue.put(self.get_result(dnode, start, end, total_length, array_speed)) @asyncio.coroutine def get_result(self, url, start, end, total_length, array_speed): """Download and processing data. Args: url (str): url file download. start (float): It's time which started download. end (float): It's time which finished download. total_length (int): size of file download (Byte) array_speed (list): list download speeds for each 1024 Byte (kB/s) Returns: list with item 0 : json format for influxdb """ download_speed = total_length // (time.clock() - start) accelerationS = self.acceleration(array_speed) mean_deviationS = self.mean_deviation(array_speed, download_speed) logger.info("Test download speed done!") #TODO Bỏ time, để kiểm tra xem db có ghi đc dữ liệu hay chưa return [self.output([self._snode, url, datetime.now(), download_speed, mean_deviationS, accelerationS])] def acceleration(self, array_speed): """Caculate acceleration. By get the highest speed in the first cycle. Args: array_speed (list): list download times for each 1024 Byte Returns: acceleration (kB/s) : the deviation between highest speed and first byte speed """ if len(array_speed) == 0: return 0 speed_before = array_speed[0] for speed in array_speed: if speed < speed_before: break else: speed_before = speed return speed_before - array_speed[0] def mean_deviation(self, array_speed, download_speed): """The mean deviation each downloads with download_speed. Args: array_speed (list): list download speeds for each kB. download_speed (kB/s): mean download speed. Returns: mean_deviation (kB/s) """ if len(array_speed) == 0: return 0 sum = 0 for speed in array_speed: sum += abs(speed - download_speed) return sum//len(array_speed) def output(self, my_array): """Reformat my_array for inserting into influxdb. Args: my_array (list): [self._snode, url, str(datetime.now()), download_speed, mean_deviationS, accelerationS] Returns: json format for influxdb """ return { "measurement": "download_speed", "tags": { "snode": "{}".format(my_array[0]), "dnode": "{}".format(my_array[1]) }, # "time": "{}".format(my_array[2]), "fields": { "speed": my_array[3], "mean_deviation": my_array[4], "acceleration": my_array[5] } }
2.375
2
Setup Rich Text Editor/mysite/main/urls.py
AyemunHossain/Django
2
6457
<reponame>AyemunHossain/Django from django.urls import path from . import views app_name = "main" urlpatterns = [ path("",views.homepage,name="homepage") ]
1.8125
2
GA/train.py
jcordell/keras-optimization
1
6458
<gh_stars>1-10 """ Utility used by the Network class to actually train. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py """ from keras.datasets import mnist, cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping import data_parser import numpy as np from keras.optimizers import Adadelta, Adam, rmsprop from sklearn.metrics import mean_squared_error # Helper: Early stopping. early_stopper = EarlyStopping(patience=5) def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_dbtt(): data = data_parser.parse("DBTT_Data22.csv") data_lwr = data_parser.parse("CD_LWR_clean8.csv") X = ["N_log(eff fl p =.05)", "N_log(eff fl p =.4)", "N_log(eff fl p =.5)", "N(Cu)", "N(Ni)", "N(Mn)", "N(P)", "N(Si)", "N( C )", "N_log(eff fl p =.1)", "N_log(eff fl p =.2)", "N_log(eff fl p =.3)", "N(Temp)"] Y = "CD delta sigma" data.set_x_features(X) data.set_y_feature(Y) data_lwr.set_y_feature(Y) data_lwr.set_x_features(X) data.add_exclusive_filter("Alloy", '=', 29) data.add_exclusive_filter("Alloy", '=', 8) data.add_exclusive_filter("Alloy", '=', 1) data.add_exclusive_filter("Alloy", '=', 2) data.add_exclusive_filter("Alloy", '=', 14) data_lwr.add_exclusive_filter("Alloy", '=', 29) data_lwr.add_exclusive_filter("Alloy", '=', 14) x_test = np.array(data_lwr.get_x_data()) y_test = np.array(data_lwr.get_y_data()) x_train = np.array(data.get_x_data()) y_train = np.array(data.get_y_data()) #print("Training with", np.shape(y_train)[0], "data points") nb_classes = -1 batch_size = np.shape(y_train)[0] input_shape = (13,) # normalize y columns y_train = y_train/758.92 return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def compile_model(network, nb_classes, input_shape): """Compile a sequential model. Args: network (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = network['nb_layers'] nb_neurons = network['nb_neurons'] activation = network['activation'] optimizer = network['optimizer'] learning_rate = network['learning_rate'] model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: print(nb_neurons) model.add(Dense(units=nb_neurons, activation=activation, input_shape=input_shape)) else: print(nb_neurons) model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.2)) # hard-coded dropout # Output layer. if(nb_classes == -1): model.add(Dense(1, activation='linear')) ADAM = Adam(lr=learning_rate) model.compile(loss='mean_squared_error', metrics=['accuracy'], optimizer=ADAM) else: model.add(Dense(nb_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def train_and_score(network, dataset): """Train the model, return test loss. Args: network (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ if dataset == 'cifar10': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_cifar10() elif dataset == 'mnist': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_mnist() elif dataset == 'dbtt': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_dbtt() model = compile_model(network, nb_classes, input_shape) if dataset == 'dbtt': model.fit(x_train, y_train, epochs=10, batch_size=1406, verbose=0) y_predict = model.predict(x_test) * 758.92 # todo way to not hardcode this? rms = np.sqrt(mean_squared_error(y_test, y_predict)) print(rms) return rms else: model.fit(x_train, y_train, batch_size=batch_size, epochs=10000, # using early stopping, so no real limit verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) return score[1] # 1 is accuracy. 0 is loss.
3.234375
3
tests/integration/agenda/test_models.py
rolandgeider/OpenSlides
0
6459
<reponame>rolandgeider/OpenSlides from openslides.agenda.models import Item from openslides.core.models import CustomSlide from openslides.utils.test import TestCase class TestItemManager(TestCase): def test_get_root_and_children_db_queries(self): """ Test that get_root_and_children needs only one db query. """ for i in range(10): CustomSlide.objects.create(title='item{}'.format(i)) with self.assertNumQueries(1): Item.objects.get_root_and_children()
2.21875
2
ssl_context_builder/http_impl/requests_wrapper/secure_session.py
mbjahnoon/ssl_context_builder
1
6460
import weakref import os import requests import ssl from ssl import SSLContext import logging from ssl_context_builder.builder.builder import SslContextBuilder from ssl_context_builder.http_impl.requests_wrapper.ssl_adapter import SslAdapter class RequestsSecureSession: def __init__(self, ssl_context: SSLContext): """ This class create a wrapper for the requests.Session object It does the following: 1. Disable session env_vars consuming 2. Load certificates provided with the ssl_context 3. Except ssl_context to control the TLS communication @param ssl_context: SSLContext """ self.cert_file_path = self._create_cert_file(ssl_context) # see note inside the function why not using tempfile self._ssl_context = ssl_context self.session = requests.Session() self.session.trust_env = False self.session.verify = self.cert_file_path self.session.mount('https://', SslAdapter(ssl_context)) self._finalizer = weakref.finalize( self, self._cleanup, self.cert_file_path, self.session, warn_message="Implicitly cleaning up {!r}".format(self)) def __enter__(self): return self def __exit__(self, exc, value, tb): self.cleanup() def cleanup(self): # Non throw function """ Delete the cert file and close the session @return: """ if self._finalizer.detach(): try: os.remove(self.cert_file_path) except: logging.warning(f"Couldn't delete certs file {self.cert_file_path}") try: self.session.close() except: logging.warning("Couldn't close session") @staticmethod def _cleanup(name, session, warn_message): try: os.remove(name) except: logging.warning(f"Couldn't delete certs file {name}") try: session.close() except: logging.warning("Couldn't close session") logging.warning(warn_message) @classmethod def _create_cert_file(cls, ssl_context: SSLContext): """ This create a CA bundle file extracted from the ssl_context The reason we are creating a real file and deleting it is that this file is being opened later on in the requests flow. This means we have to close the file before it is being used tempfile is being destroyed when closed. @param ssl_context: ssl_context @return: path to the created ca_bundle file """ path = "certs.pem" if os.path.exists(path): path = cls._generate_cert_file_path("certs") with open(path, mode="a+") as certs_file: certs = "" for der in ssl_context.get_ca_certs(True): certs += f"{ssl.DER_cert_to_PEM_cert(der)}\n" certs_file.write(certs) return path @classmethod def _generate_cert_file_path(cls, file_name: str, num=1): file_name_candidate = f"{file_name}({num}).pem" if os.path.exists(file_name_candidate): return cls._generate_cert_file_path(file_name, num + 1) return file_name_candidate
2.484375
2
tiny_scripts/select_cifar_10.py
jiaqiangwjq/python_workhouse
0
6461
<reponame>jiaqiangwjq/python_workhouse ''' Selected cifar-10. The .csv file format: class_index,data_index 3,0 8,1 8,2 ... ''' import pickle import pandas as pd file = 'E:\pycharm\LEARN\data\cifar-10\cifar-10-batches-py\\test_batch' with open(file, 'rb') as f: dict = pickle.load(f, encoding='bytes') dict.keys() batch_label = dict[b'batch_label'] labels = dict[b'labels'] data = dict[b'data'] filenames = dict[b'filenames'] length = len(labels) data_index = [i for i in range(length)] class_index = labels csv_dict = {'class_index': class_index, 'data_index': data_index} df = pd.DataFrame(csv_dict) df.to_csv('selected_cifar10.csv', index=False)
3.125
3
codebox/scripts/fixture.py
disqus/codebox
5
6462
# Ghetto Fixtures from codebox import app from codebox.apps.auth.models import User from codebox.apps.snippets.models import Snippet from codebox.apps.organizations.models import Organization, OrganizationMember from flask import g client = app.test_client() _ctx = app.test_request_context() _ctx.push() app.preprocess_request() g.redis.flushdb() User.objects.create(pk=1, name='zeeg') Organization.objects.create(pk='disqus', name='DISQUS') OrganizationMember.objects.create(org='disqus', user=1) # Create sample snippets # plaintext Snippet.objects.create(org='disqus', user=1, lang='text', text = "Hello World!") # python Snippet.objects.create(org='disqus', user=1, lang='python', text = "print 'Disqus was here'") # html Snippet.objects.create(org='disqus', user=1, lang='html', text = '<h1>Look its HTML!</h1>') # javascript Snippet.objects.create(org='disqus', user=1, lang='javascript', text = "document.write('Di-squs')")
2.234375
2
corehq/apps/linked_domain/tests/test_views.py
akashkj/commcare-hq
0
6463
<filename>corehq/apps/linked_domain/tests/test_views.py from unittest.mock import Mock, patch from django.test import SimpleTestCase from corehq.apps.domain.exceptions import DomainDoesNotExist from corehq.apps.linked_domain.exceptions import ( DomainLinkAlreadyExists, DomainLinkError, DomainLinkNotAllowed, ) from corehq.apps.linked_domain.views import link_domains class LinkDomainsTests(SimpleTestCase): @classmethod def setUpClass(cls): super(LinkDomainsTests, cls).setUpClass() cls.upstream_domain = 'upstream' cls.downstream_domain = 'downstream' def test_exception_raised_if_domain_does_not_exist(self): def mock_handler(domain): return domain != self.downstream_domain with patch('corehq.apps.linked_domain.views.domain_exists') as mock_domainexists,\ self.assertRaises(DomainDoesNotExist): mock_domainexists.side_effect = mock_handler link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_domain_link_already_exists(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=Mock()),\ self.assertRaises(DomainLinkAlreadyExists): link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_domain_link_error_raised(self): def mock_handler(downstream, upstream): raise DomainLinkError with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.DomainLink.link_domains') as mock_linkdomains,\ self.assertRaises(DomainLinkError): mock_linkdomains.side_effect = mock_handler link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_user_is_not_admin_in_both_domains(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.user_has_admin_access_in_all_domains', return_value=False),\ self.assertRaises(DomainLinkNotAllowed): link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_successful(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.DomainLink.link_domains', return_value=True),\ patch('corehq.apps.linked_domain.views.user_has_admin_access_in_all_domains', return_value=True): domain_link = link_domains(Mock(), self.upstream_domain, self.downstream_domain) self.assertIsNotNone(domain_link)
2.328125
2
LanguageBasics/functions/import_eg.py
Vamsi-TM/jubilant-train
0
6464
import function_exercise_01 as st st.sandwich_toppings('meatballs', 'salad')
1.0625
1
pyingest/parsers/zenodo.py
golnazads/adsabs-pyingest
1
6465
<reponame>golnazads/adsabs-pyingest #!/usr/bin/python # # from __future__ import absolute_import import json import re import logging from .datacite import DataCiteParser class WrongPublisherException(Exception): pass class ZenodoParser(DataCiteParser): def get_references(self, r): # as of version 3.1 of datacite schema, "References" is not an # allowed description type so Lars is shoving the references # in a section labeled as "Other" as a json structure references = [] for s in self._array(r.get('descriptions', {}).get('description', [])): t = s.get('@descriptionType') c = self._text(s) if t == 'References': # XXX not supported yet, but one can only hope... references = c.split('\n') elif t == 'Other': try: j = json.loads(c) references = j.get('references', []) except ValueError: logging.warning(u'Ignoring unparsable "Other" description element: %s\n' % c) return references def get_abstract(self, r): abs = super(ZenodoParser, self).get_abstract(r) abs = re.sub(r'\s*<p>', '', abs) abs = re.sub(r'</p>\s*$', '', abs) return abs def parse(self, fp, **kwargs): """Parses Zenodo's flavor of DataCite 3.1 schema, returns ADS tagged format""" doc = super(self.__class__, self).parse(fp, **kwargs) # r = self._resource return doc # publisher pub = doc.get('source') if pub != 'Zenodo' and pub != 'ZENODO': raise WrongPublisherException("Found publisher field of \"%s\" rather than Zenodo" % pub) else: doc['source'] = 'ZENODO' return doc # # if __name__ == "__main__": # # # allows program to print utf-8 encoded output sensibly # import codecs # sys.stdout = codecs.getwriter('utf-8')(sys.stdout) # sys.stderr = codecs.getwriter('utf-8')(sys.stderr) # # parser = ZenodoParser() # for file in sys.argv[1:]: # d = None # with open(file, 'r') as fp: # d = parser.parse(fp) # print json.dumps(d, indent=2)
1.953125
2
src/fullnode.py
AmeyaDaddikar/vjtichain
1
6466
import json import time from functools import lru_cache from multiprocessing import Pool, Process from threading import Thread, Timer from typing import Any, Dict, List from datetime import datetime import hashlib import inspect import requests import waitress from bottle import BaseTemplate, Bottle, request, response, static_file, template, error import utils.constants as consts from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block from authority import Authority from utils.logger import logger, iplogger from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db from utils.utils import compress, decompress, dhash from wallet import Wallet app = Bottle() BaseTemplate.defaults["get_url"] = app.get_url LINE_PROFILING = False BLOCKCHAIN = BlockChain() PEER_LIST: List[Dict[str, Any]] = [] MY_WALLET = Wallet() miner = Authority() def mining_thread_task(): while True: if not miner.is_mining() and not consts.NO_MINING: miner.start_mining(BLOCKCHAIN.mempool, BLOCKCHAIN.active_chain, MY_WALLET) time.sleep(consts.MINING_INTERVAL_THRESHOLD // 2) def send_to_all_peers(url, data): def request_task(peers, url, data): for peer in peers: try: requests.post(get_peer_url(peer) + url, data=data, timeout=(5, 1)) except Exception as e: logger.debug("Server: Requests: Error while sending data in process" + str(peer)) Process(target=request_task, args=(PEER_LIST, url, data), daemon=True).start() def start_mining_thread(): time.sleep(5) Thread(target=mining_thread_task, name="Miner", daemon=True).start() def fetch_peer_list() -> List[Dict[str, Any]]: try: r = requests.post(consts.SEED_SERVER_URL, data={"port": consts.MINER_SERVER_PORT}) peer_list = json.loads(r.text) return peer_list except Exception as e: logger.error("Could not connect to DNS Seed") return [] def get_peer_url(peer: Dict[str, Any]) -> str: return "http://" + str(peer["ip"]) + ":" + str(peer["port"]) def greet_peer(peer: Dict[str, Any]) -> bool: try: url = get_peer_url(peer) data = {"port": consts.MINER_SERVER_PORT, "version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} # Send a POST request to the peer r = requests.post(url + "/greetpeer", data=data) data = json.loads(r.text) # Update the peer data in the peer list with the new data received from the peer. if data.get("blockheight", None): peer.update(data) else: logger.debug("Main: Peer data does not have Block Height") return False return True except Exception as e: logger.debug("Main: Could not greet peer" + str(e)) return False def receive_block_from_peer(peer: Dict[str, Any], header_hash) -> Block: r = requests.post(get_peer_url(peer) + "/getblock", data={"headerhash": header_hash}) return Block.from_json(decompress(r.text)).object() def check_block_with_peer(peer, hhash): r = requests.post(get_peer_url(peer) + "/checkblock", data={"headerhash": hhash}) result = json.loads(r.text) if result: return True return False def get_block_header_hash(height): return dhash(BLOCKCHAIN.active_chain.header_list[height]) def sync(max_peer): fork_height = BLOCKCHAIN.active_chain.length r = requests.post(get_peer_url(max_peer) + "/getblockhashes", data={"myheight": fork_height}) hash_list = json.loads(decompress(r.text.encode())) for hhash in hash_list: block = receive_block_from_peer(max_peer, hhash) if not BLOCKCHAIN.add_block(block): logger.error("Sync: Block received is invalid, Cannot Sync") break return # Periodically sync with all the peers def sync_with_peers(): try: PEER_LIST = fetch_peer_list() new_peer_list = [] for peer in PEER_LIST: if greet_peer(peer): new_peer_list.append(peer) PEER_LIST = new_peer_list if PEER_LIST: max_peer = max(PEER_LIST, key=lambda k: k["blockheight"]) logger.debug(f"Sync: Syncing with {get_peer_url(max_peer)}, he seems to have height {max_peer['blockheight']}") sync(max_peer) except Exception as e: logger.error("Sync: Error: " + str(e)) Timer(consts.MINING_INTERVAL_THRESHOLD * 2, sync_with_peers).start() def check_balance(pub_key: str) -> int: current_balance = 0 for x, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if tx_out.address == pub_key: current_balance += int(tx_out.amount) return int(current_balance) def send_bounty(receiver_public_keys: List[str], amounts: List[int]): current_balance = check_balance(MY_WALLET.public_key) for key in receiver_public_keys: if len(key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Public Key Length") return False total_amount = sum(amounts) if current_balance < total_amount: logger.debug("Insuficient balance") elif MY_WALLET.public_key in receiver_public_keys: logger.debug("Cannot send to myself") else: transaction = create_transaction(receiver_public_keys, amounts, MY_WALLET.public_key, message="Authority: Faucet Money") transaction.sign(MY_WALLET) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: logger.info("Wallet: Could not Send Transaction. Invalid Transaction") else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return True except Exception as e: logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return False def create_transaction(receiver_public_keys: List[str], amounts: List[int], sender_public_key, message="") -> Transaction: vout = {} vin = {} current_amount = 0 total_amount = sum(amounts) i = 0 for so, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if current_amount >= total_amount: break if tx_out.address == sender_public_key: current_amount += tx_out.amount vin[i] = TxIn(payout=SingleOutput.from_json(so), pub_key=sender_public_key, sig="") i += 1 for i, address in enumerate(receiver_public_keys): vout[i] = TxOut(amount=amounts[i], address=address) change = (current_amount - total_amount) if change > 0: vout[i + 1] = TxOut(amount=change, address=sender_public_key) tx = Transaction(version=consts.MINER_VERSION, locktime=0, timestamp=int(time.time()), vin=vin, vout=vout, message=message) return tx def get_ip(request): return request.environ.get("HTTP_X_FORWARDED_FOR") or request.environ.get("REMOTE_ADDR") def log_ip(request, fname): client_ip = get_ip(request) iplogger.info(f"{client_ip} : Called function {fname}") @app.post("/checkBalance") def checkingbalance(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] logger.debug(public_key) current_balance = check_balance(public_key) return str(current_balance) @app.post("/makeTransaction") def make_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json bounty = int(data["bounty"]) receiver_public_key = data["receiver_public_key"] sender_public_key = data["sender_public_key"] message = "No Message" if "message" in data: message = data["message"] if len(receiver_public_key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Receiver Public Key") response.status = 400 return "Invalid Receiver Public Key" current_balance = check_balance(sender_public_key) if current_balance < bounty: logger.debug("Insufficient Balance to make Transaction") response.status = 400 return "Insufficient Balance to make Transaction, need more " + str(bounty - current_balance) elif sender_public_key == receiver_public_key: logger.debug("Someone trying to send money to himself") response.status = 400 return "Cannot send money to youself" else: transaction = create_transaction([receiver_public_key], [bounty], sender_public_key, message=message) data = {} data["send_this"] = transaction.to_json() transaction.vin = {} data["sign_this"] = transaction.to_json() return json.dumps(data) @app.post("/sendTransaction") def send_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json transaction = Transaction.from_json(data["transaction"]).object() sig = data["signature"] transaction.add_sign(sig) logger.debug(transaction) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: response.status = 400 logger.error("Wallet: Could not Send Transaction. Invalid transaction") return "Try Again" except Exception as e: response.status = 400 logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return "Try Again" else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return "Done" @app.post("/transactionHistory") def transaction_history(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(public_key) return json.dumps(tx_hist) @app.post("/greetpeer") def greet_peer_f(): log_ip(request, inspect.stack()[0][3]) try: peer = {} peer["port"] = request.forms.get("port") peer["ip"] = request.remote_addr peer["time"] = time.time() peer["version"] = request.forms.get("version") peer["blockheight"] = request.forms.get("blockheight") ADD_ENTRY = True for entry in PEER_LIST: ip = entry["ip"] port = entry["port"] if ip == peer["ip"] and port == peer["port"]: ADD_ENTRY = False if ADD_ENTRY: PEER_LIST.append(peer) logger.debug("Server: Greet, A new peer joined, Adding to List") except Exception as e: logger.debug("Server: Greet Error: " + str(e)) pass data = {"version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} response.content_type = "application/json" return json.dumps(data) @lru_cache(maxsize=128) def cached_get_block(headerhash: str) -> str: if headerhash: db_block = get_block_from_db(headerhash) if db_block: return compress(db_block) else: logger.error("ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK") return "Invalid Hash" @app.post("/getblock") def getblock(): log_ip(request, inspect.stack()[0][3]) hhash = request.forms.get("headerhash") return cached_get_block(hhash) @app.post("/checkblock") def checkblock(): log_ip(request, inspect.stack()[0][3]) headerhash = request.forms.get("headerhash") if get_block_from_db(headerhash): return json.dumps(True) return json.dumps(False) @app.post("/getblockhashes") def send_block_hashes(): log_ip(request, inspect.stack()[0][3]) peer_height = int(request.forms.get("myheight")) hash_list = [] for i in range(peer_height, BLOCKCHAIN.active_chain.length): hash_list.append(dhash(BLOCKCHAIN.active_chain.header_list[i])) return compress(json.dumps(hash_list)).decode() @lru_cache(maxsize=16) def process_new_block(request_data: bytes) -> str: global BLOCKCHAIN block_json = decompress(request_data) if block_json: try: block = Block.from_json(block_json).object() # Check if block already exists if get_block_from_db(dhash(block.header)): logger.info("Server: Received block exists, doing nothing") return "Block already Received Before" if BLOCKCHAIN.add_block(block): logger.info("Server: Received a New Valid Block, Adding to Chain") logger.debug("Server: Sending new block to peers") # Broadcast block to other peers send_to_all_peers("/newblock", request_data) # TODO Make new chain/ orphan set for Block that is not added except Exception as e: logger.error("Server: New Block: invalid block received " + str(e)) return "Invalid Block Received" # Kill Miner t = Timer(1, miner.stop_mining) t.start() return "Block Received" logger.error("Server: Invalid Block Received") return "Invalid Block" @app.post("/newblock") def received_new_block(): log_ip(request, inspect.stack()[0][3]) return process_new_block(request.body.read()) @lru_cache(maxsize=16) def process_new_transaction(request_data: bytes) -> str: global BLOCKCHAIN transaction_json = decompress(request_data) if transaction_json: try: tx = Transaction.from_json(transaction_json).object() # Add transaction to Mempool if tx not in BLOCKCHAIN.mempool: if BLOCKCHAIN.active_chain.is_transaction_valid(tx): logger.debug("Valid Transaction received, Adding to Mempool") BLOCKCHAIN.mempool.add(tx) # Broadcast block to other peers send_to_all_peers("/newtransaction", request_data) else: logger.debug("The transation is not valid, not added to Mempool") return False, "Not Valid Transaction" else: return True, "Transaction Already received" except Exception as e: logger.error("Server: New Transaction: Invalid tx received: " + str(e)) return False, "Not Valid Transaction" return True, "Done" # Transactions for all active chains @app.post("/newtransaction") def received_new_transaction(): log_ip(request, inspect.stack()[0][3]) result, message = process_new_transaction(request.body.read()) if result: response.status = 200 else: response.status = 400 return message question = '''What is greater than God, more evil than the devil, the poor have it, the rich need it, and if you eat it, you'll die?''' actual_answer = "nothing" @app.get("/") def home(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" return template("index.html", message=message, message_type=message_type, question=question) with open('uuids.json', 'r') as file: uuid_json = file.read() valid_ids = set(json.loads(uuid_json)) @app.post("/") def puzzle(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" uuid = request.forms.get("uuid") pubkey = request.forms.get("pubkey") amounts = [300] if uuid in valid_ids: logger.debug("Valid Answer, Rewarding " + pubkey) message = "Well Done!" if check_balance(MY_WALLET.public_key) >= sum(amounts): result = send_bounty([pubkey], amounts) if result: message = "Your reward is being sent, please wait for it to be mined!" valid_ids.remove(uuid) else: message = "Some Error Occured, Contact Admin." message_type = "warning" else: message = "Invalid Unique ID!" message_type = "danger" return template("index.html", message=message, message_type=message_type, question=question) @app.get('/about') def about(): return template("about.html") # @app.get("/wallet") # def wallet(): # log_ip(request, inspect.stack()[0][3]) # return template("wallet.html", message="", message_type="", pubkey=MY_WALLET.public_key) # @app.post("/wallet") # def wallet_post(): # log_ip(request, inspect.stack()[0][3]) # number = int(request.forms.get("number")) # message = "" # message_type = "info" # try: # receivers = [] # amounts = [] # total_amount = 0 # for i in range(0, number): # receiver = str(request.forms.get("port" + str(i))) # bounty = int(request.forms.get("amount" + str(i))) # publickey = "" # if len(receiver) < 10: # wallet = get_wallet_from_db(receiver) # if wallet is not None: # publickey = wallet[1] # else: # message = "Error with the Receiver Port ID, try again." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # else: # publickey = receiver # total_amount += bounty # receivers.append(publickey) # amounts.append(bounty) # if check_balance(MY_WALLET.public_key) >= total_amount: # result = send_bounty(receivers, amounts) # if result: # message = "Your transaction is sent, please wait for it to be mined!" # else: # message = "Some Error Occured, Contact Admin." # message_type = "warning" # else: # message = "You have Insufficient Balance!" # message_type = "warning" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # except Exception as e: # logger.error(e) # message = "Some Error Occured. Please try again later." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) @app.get("/checkmybalance") def checkblance(): log_ip(request, inspect.stack()[0][3]) return str(check_balance(MY_WALLET.public_key)) @app.route("/static/<filename:path>", name="static") def serve_static(filename): log_ip(request, inspect.stack()[0][3]) return static_file(filename, root="static") @app.get("/favicon.ico") def get_favicon(): log_ip(request, inspect.stack()[0][3]) return static_file("favicon.ico", root="static") @app.get("/info") def sendinfo(): log_ip(request, inspect.stack()[0][3]) s = ( "No. of Blocks: " + str(BLOCKCHAIN.active_chain.length) + "<br>" + dhash(BLOCKCHAIN.active_chain.header_list[-1]) + "<br>" + "Balance " + str(check_balance(MY_WALLET.public_key)) + "<br>Public Key: <br>" + str(get_wallet_from_db(consts.MINER_SERVER_PORT)[1]) ) return s def render_block_header(hdr): html = "<table>" html += "<tr><th>" + "Height" + "</th>" html += "<td>" + str(hdr.height) + "</td></tr>" html += "<tr><th>" + "Block Hash" + "</th>" html += "<td>" + dhash(hdr) + "</td></tr>" html += "<tr><th>" + "Prev Block Hash" + "</th>" html += "<td>" + str(hdr.prev_block_hash) + "</td></tr>" html += "<tr><th>" + "Merkle Root" + "</th>" html += "<td>" + str(hdr.merkle_root) + "</td></tr>" html += "<tr><th>" + "Timestamp" + "</th>" html += ( "<td>" + str(datetime.fromtimestamp(hdr.timestamp).strftime("%d-%m-%Y %H:%M:%S")) + " (" + str(hdr.timestamp) + ")</td></tr>" ) # get block block = Block.from_json(get_block_from_db(dhash(hdr))).object() html += "<tr><th>" + "Transactions" + "</th>" html += "<td>" + str(len(block.transactions)) + "</td></tr>" # for i, transaction in enumerate(block.transactions): # s = "coinbase: " + str(transaction.is_coinbase) + ", fees: " + str(transaction.fees) # html += "<tr><th>Transaction " + str(i) + "</th><td>" + str(s) + "</td></tr>" html += "</table>" return str(html) @app.get("/chains") def visualize_chain(): log_ip(request, inspect.stack()[0][3]) data = [] start = BLOCKCHAIN.active_chain.length - 10 if BLOCKCHAIN.active_chain.length > 10 else 0 headers = [] hdr_list = BLOCKCHAIN.active_chain.header_list if len(hdr_list) > 200: hdr_list = BLOCKCHAIN.active_chain.header_list[:100] + BLOCKCHAIN.active_chain.header_list[-100:] for hdr in hdr_list: d = {} d["hash"] = dhash(hdr)[-5:] d["time"] = hdr.timestamp d["data"] = render_block_header(hdr) headers.append(d) data.append(headers) return template("chains.html", data=data, start=start) @app.get("/explorer") def explorer(): log_ip(request, inspect.stack()[0][3]) prev = int(request.query.prev or 0) if prev < 0: prev = 0 hdr_list = list(reversed(BLOCKCHAIN.active_chain.header_list)) indexes = [i for i in range(prev * 8, (prev + 1) * 8) if i < len(hdr_list)] blocks = [Block.from_json(get_block_from_db(dhash(hdr_list[i]))).object() for i in indexes] transactions = list(BLOCKCHAIN.mempool) return template("explorer.html", blocks=blocks, transactions=transactions, prev=prev) @app.route("/block/<blockhash>", name="transaction") def block(blockhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() except Exception as e: logger.debug("BLOCK/blockhash: " + str(e)) return template("error.html") return template("block.html", block=block) @app.route("/transaction/<blockhash>/<txhash>", name="transaction") def transaction(blockhash, txhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() tx = None for t in block.transactions: if t.hash() == txhash: tx = t except Exception as e: logger.debug("Transaction/bhash/tx: " + str(e)) return template("error.html") return template("transaction.html", tx=tx, block=block) @app.route("/address/<pubkey:re:.+>", name="account") def account(pubkey): log_ip(request, inspect.stack()[0][3]) balance = check_balance(pubkey) tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(pubkey) return template("account.html", tx_hist=tx_hist, balance=balance, pubkey=pubkey) @app.post("/mining") def mining(): log_ip(request, inspect.stack()[0][3]) password = request.body.read().decode("utf-8") hashed = b"\x11`\x1e\xdd\xd1\xb6\x80\x0f\xd4\xb0t\x90\x9b\xd3]\xa0\xcc\x1d\x04$\x8b\xb1\x19J\xaa!T5-\x9eJ\xfcI5\xc0\xbb\xf5\xb1\x9d\xba\xbef@\xa1)\xcf\x9b]c(R\x91\x0e\x9dMM\xb6\x94\xa9\xe2\x94il\x15" dk = hashlib.pbkdf2_hmac("sha512", password.encode("utf-8"), b"<PASSWORD>", 200000) if hashed == dk: consts.NO_MINING = not consts.NO_MINING logger.info("Mining: " + str(not consts.NO_MINING)) return "Mining Toggled, " + "NOT MINING" if consts.NO_MINING else "MINING" else: return "Password Mismatch," + "NOT MINING" if consts.NO_MINING else "MINING" @app.route("/<url:re:.+>") @error(403) @error(404) @error(505) def error_handle(url="url", error="404"): log_ip(request, inspect.stack()[0][3]) return template("error.html") if __name__ == "__main__": try: if consts.NEW_BLOCKCHAIN: logger.info("FullNode: Starting New Chain from Genesis") BLOCKCHAIN.add_block(genesis_block) else: # Restore Blockchain logger.info("FullNode: Restoring Existing Chain") header_list = read_header_list_from_db() BLOCKCHAIN.build_from_header_list(header_list) # Sync with all my peers sync_with_peers() # Start mining Thread Thread(target=start_mining_thread, daemon=True).start() if consts.NO_MINING: logger.info("FullNode: Not Mining") # Start server if LINE_PROFILING: from wsgi_lineprof.middleware import LineProfilerMiddleware with open("lineprof" + str(consts.MINER_SERVER_PORT) + ".log", "w") as f: app = LineProfilerMiddleware(app, stream=f, async_stream=True) waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) else: waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) except KeyboardInterrupt: miner.stop_mining()
2.078125
2
deepexplain/tf/v1_x/main.py
alexus37/MasterThesisCode
1
6467
<filename>deepexplain/tf/v1_x/main.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import ops from collections import OrderedDict import warnings, logging from deepexplain.tf.v1_x import constants from deepexplain.tf.v1_x.baseClasses import GradientBasedMethod from deepexplain.tf.v1_x.methods import DeepLIFTRescale, EpsilonLRP from deepexplain.tf.v1_x.utils import original_grad from deepexplain.tf.v1_x.methods import DummyZero, Saliency, GradientXInput, IntegratedGradients, EpsilonLRP, DeepLIFTRescale, Occlusion, ShapleySampling attribution_methods = OrderedDict({ 'zero': (DummyZero, 0), 'saliency': (Saliency, 1), 'grad*input': (GradientXInput, 2), 'intgrad': (IntegratedGradients, 3), 'elrp': (EpsilonLRP, 4), 'deeplift': (DeepLIFTRescale, 5), 'occlusion': (Occlusion, 6), 'shapley_sampling': (ShapleySampling, 7) }) print(f'Using tf version = {tf.__version__}') @ops.RegisterGradient("DeepExplainGrad") def deepexplain_grad(op, grad): # constants._ENABLED_METHOD_CLASS, _GRAD_OVERRIDE_CHECKFLAG constants._GRAD_OVERRIDE_CHECKFLAG = 1 if constants._ENABLED_METHOD_CLASS is not None \ and issubclass(constants._ENABLED_METHOD_CLASS, GradientBasedMethod): return constants._ENABLED_METHOD_CLASS.nonlinearity_grad_override(op, grad) else: return original_grad(op, grad) class DeepExplain(object): def __init__(self, graph=None, session=tf.compat.v1.get_default_session()): self.method = None self.batch_size = None self.session = session self.graph = session.graph if graph is None else graph self.graph_context = self.graph.as_default() self.override_context = self.graph.gradient_override_map(self.get_override_map()) self.keras_phase_placeholder = None self.context_on = False if self.session is None: raise RuntimeError('DeepExplain: could not retrieve a session. Use DeepExplain(session=your_session).') def __enter__(self): # Override gradient of all ops created in context self.graph_context.__enter__() self.override_context.__enter__() self.context_on = True return self def __exit__(self, type, value, traceback): self.graph_context.__exit__(type, value, traceback) self.override_context.__exit__(type, value, traceback) self.context_on = False def get_explainer(self, method, T, X, **kwargs): if not self.context_on: raise RuntimeError('Explain can be called only within a DeepExplain context.') # global constants._ENABLED_METHOD_CLASS, _GRAD_OVERRIDE_CHECKFLAG self.method = method if self.method in attribution_methods: method_class, method_flag = attribution_methods[self.method] else: raise RuntimeError('Method must be in %s' % list(attribution_methods.keys())) if isinstance(X, list): for x in X: if 'tensor' not in str(type(x)).lower(): raise RuntimeError('If a list, X must contain only Tensorflow Tensor objects') else: if 'tensor' not in str(type(X)).lower(): raise RuntimeError('X must be a Tensorflow Tensor object or a list of them') if 'tensor' not in str(type(T)).lower(): raise RuntimeError('T must be a Tensorflow Tensor object') # logging.info('DeepExplain: running "%s" explanation method (%d)' % (self.method, method_flag)) self._check_ops() constants._GRAD_OVERRIDE_CHECKFLAG = 0 constants._ENABLED_METHOD_CLASS = method_class method = constants._ENABLED_METHOD_CLASS(T, X, self.session, keras_learning_phase=self.keras_phase_placeholder, **kwargs) if (issubclass(constants._ENABLED_METHOD_CLASS, DeepLIFTRescale) or issubclass(constants._ENABLED_METHOD_CLASS, EpsilonLRP)) \ and constants._GRAD_OVERRIDE_CHECKFLAG == 0: warnings.warn('DeepExplain detected you are trying to use an attribution method that requires ' 'gradient override but the original gradient was used instead. You might have forgot to ' '(re)create your graph within the DeepExlain context. Results are not reliable!') constants._ENABLED_METHOD_CLASS = None constants._GRAD_OVERRIDE_CHECKFLAG = 0 self.keras_phase_placeholder = None return method def explain(self, method, T, X, xs, ys=None, batch_size=None, **kwargs): explainer = self.get_explainer(method, T, X, **kwargs) return explainer.run(xs, ys, batch_size) @staticmethod def get_override_map(): return dict((a, 'DeepExplainGrad') for a in constants.SUPPORTED_ACTIVATIONS) def _check_ops(self): """ Heuristically check if any op is in the list of unsupported activation functions. This does not cover all cases where explanation methods would fail, and must be improved in the future. Also, check if the placeholder named 'keras_learning_phase' exists in the graph. This is used by Keras and needs to be passed in feed_dict. :return: """ g = tf.compat.v1.get_default_graph() for op in g.get_operations(): if len(op.inputs) > 0 and not op.name.startswith('gradients'): if op.type in constants.UNSUPPORTED_ACTIVATIONS: warnings.warn('Detected unsupported activation (%s). ' 'This might lead to unexpected or wrong results.' % op.type) elif 'keras_learning_phase' in op.name: self.keras_phase_placeholder = op.outputs[0]
2.0625
2
util/mem_usage.py
robinupham/cnn_lensing
0
6468
<gh_stars>0 """ Get the memory usage of a Keras model. From https://stackoverflow.com/a/46216013. """ def get_model_memory_usage(batch_size, model): """ Get the memory usage of a Keras model in GB. From https://stackoverflow.com/a/46216013. """ import numpy as np try: from keras import backend as K except ImportError: from tensorflow.keras import backend as K shapes_mem_count = 0 internal_model_mem_count = 0 for l in model.layers: layer_type = l.__class__.__name__ if layer_type == 'Model': internal_model_mem_count += get_model_memory_usage(batch_size, l) single_layer_mem = 1 out_shape = l.output_shape if isinstance(out_shape, list): out_shape = out_shape[0] for s in out_shape: if s is None: continue single_layer_mem *= s shapes_mem_count += single_layer_mem trainable_count = np.sum([K.count_params(p) for p in model.trainable_weights]) non_trainable_count = np.sum([K.count_params(p) for p in model.non_trainable_weights]) number_size = 4.0 if K.floatx() == 'float16': number_size = 2.0 if K.floatx() == 'float64': number_size = 8.0 total_memory = number_size * (batch_size * shapes_mem_count + trainable_count + non_trainable_count) gbytes = np.round(total_memory / (1024.0 ** 3), 3) + internal_model_mem_count return gbytes
2.84375
3
hexrd/distortion/distortionabc.py
glemaitre/hexrd
27
6469
import abc class DistortionABC(metaclass=abc.ABCMeta): maptype = None @abc.abstractmethod def apply(self, xy_in): """Apply distortion mapping""" pass @abc.abstractmethod def apply_inverse(self, xy_in): """Apply inverse distortion mapping""" pass
3.09375
3
setup.py
statisticianinstilettos/recommender_metrics
0
6470
import io import os from setuptools import setup def read(file_name): """Read a text file and return the content as a string.""" with io.open(os.path.join(os.path.dirname(__file__), file_name), encoding='utf-8') as f: return f.read() setup( name='recmetrics', url='https://github.com/statisticianinstilettos/recommender_metrics', author='<NAME>', author_email='<EMAIL>', packages=['recmetrics'], install_requires=['funcsigs', 'numpy', 'pandas', 'plotly', 'scikit-learn', 'seaborn'], license='MIT', version='0.1.4', description='Evaluation metrics for recommender systems', long_description=read("README.md"), long_description_content_type="text/markdown", )
2.640625
3
run_classifier.py
wj-Mcat/model-getting-started
0
6471
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import annotations, absolute_import import os from typing import Dict, List from transformers import ( AutoTokenizer, BertTokenizer, BertForSequenceClassification, BertConfig, Trainer, TrainingArguments, PreTrainedTokenizer ) from transformers.configuration_utils import PretrainedConfig from src.schema import ( InputExample, InputFeatures, Config ) from src.data_process import ( AgNewsDataProcessor ) from config import create_logger logger = create_logger() def convert_single_example( example_index: int, example: InputExample, label2id: Dict[str, int], max_seq_length: int, tokenizer: BertTokenizer ) -> InputFeatures: """Converts a single `InputExample` into a single `InputFeatures`. example_index: 用于展示example中的前几例数据 """ parameters = { "text":example.text_a, "add_special_tokens":True, "padding":True, "max_length":max_seq_length, "return_attention_mask":True, "return_token_type_ids":True, "return_length":True, "verbose":True } if example.text_b: parameters['text_pair'] = example.text_b feature = tokenizer(**parameters) input_feature = InputFeatures( input_ids=feature['token_ids'], attention_mask=feature['attention_mask'], segment_ids=feature['token_type_ids'], label_id=label2id[example.label], is_real_example=True ) if example_index < 5: logger.info(f'*************************** Example {example_index} ***************************') logger.info(example) logger.info(input_feature) logger.info('*************************** Example End ***************************') return input_feature def create_bert_for_sequence_classification_model(config: Config): bert_config: BertConfig = BertConfig.from_pretrained(config.pretrained_model_name) bert_config.num_labels = config.num_labels model = BertForSequenceClassification(bert_config) return model def create_model(config: Config): """Creates a classification model.""" models = { "bert-for-sequence-classification": create_bert_for_sequence_classification_model, } return models[config.model_name](config) def convert_examples_to_features( examples, label_list: List[str], max_seq_length: int, tokenizer: PreTrainedTokenizer ): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" label2id = {label: index for index, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 200 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label2id, max_seq_length, tokenizer) features.append(feature) return features class SequenceClassificationTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") outputs = model(**inputs) return outputs.loss def main(): # processors need to be updated processors = { 'agnews-processor': AgNewsDataProcessor, } config: Config = Config.instance() if not config.do_train and not config.do_eval and not config.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = PretrainedConfig.from_pretrained(config.pretrained_model_name) # 根据不同的任务,处理不同的数据集 task_name = config.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model_name) train_examples = None num_train_steps = None num_warmup_steps = None if config.do_train: train_examples: List[InputExample] = processor.get_train_examples(config.data_dir) train_dataset_loader = num_train_steps = int( len(train_examples) / config.train_batch_size * config.epochs ) num_warmup_steps = int(num_train_steps * config.warmup_proportion) model = create_model(config=config) training_arguments = TrainingArguments( output_dir=config.output_dir, overwrite_output_dir=True, ) trainer = SequenceClassificationTrainer( model=model, ) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPUs if config.do_train: train_file = os.path.join(config.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, config.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", config.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=config.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if config.do_eval: eval_examples = processor.get_dev_examples(config.data_dir) num_actual_eval_examples = len(eval_examples) if config.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % config.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(config.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, config.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", config.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if config.use_tpu: assert len(eval_examples) % config.eval_batch_size == 0 eval_steps = int(len(eval_examples) // config.eval_batch_size) eval_drop_remainder = True if config.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=config.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(config.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if config.do_predict: predict_examples = processor.get_test_examples(config.data_dir) num_actual_predict_examples = len(predict_examples) if config.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % config.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(config.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, config.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", config.predict_batch_size) predict_drop_remainder = True if config.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=config.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(config.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples if __name__ == "__main__": main()
2
2
module2-sql-for-analysis/rpg_db.py
TobyChen320/DS-Unit-3-Sprint-2-SQL-and-Databases
0
6472
<reponame>TobyChen320/DS-Unit-3-Sprint-2-SQL-and-Databases import sqlite3 import os import psycopg2 from dotenv import load_dotenv load_dotenv() DB_NAME2 = os.getenv("DB_NAME3") DB_USER2 = os.getenv("DB_USER3") DB_PASS2 = os.getenv("DB_PASS3") DB_HOST2 = os.getenv("DB_HOST3") conn = psycopg2.connect(dbname=DB_NAME2, user=DB_USER2, password=<PASSWORD>, host=DB_HOST2) cursor = conn.cursor() sl_conn = sqlite3.connect("rpg_db.sqlite3") sl_cursor = sl_conn.cursor() characters = sl_cursor.execute('SELECT * FROM charactercreator_character LIMIT 10').fetchall() print(characters) create_character_table_query = ''' CREATE TABLE IF NOT EXISTS rpg_characters ( character_id SERIAL PRIMARY KEY, name VARCHAR(30), level INT, exp INT, hp INT, strength INT, intelligence INT, dexterity INT, wisdom INT ) ''' cursor.execute(create_character_table_query) conn.commit() for character in characters: insert_query = f''' INSERT INTO rpg_characters (character_id, name, level, exp, hp, strength, intelligence, dexterity, wisdom) VALUES {character} ''' cursor.execute(insert_query) conn.commit() cursor.close() conn.close()
3.171875
3
sws_comp_wiki_gen.py
moff-wildfire/sws-battlefy
1
6473
<reponame>moff-wildfire/sws-battlefy import battlefy_data import battlefy_wiki_linkings from datetime import datetime from operator import itemgetter from pathlib import Path import calcup_roster_tracking def create_sidebar(data, wiki_name): sidebar = '{{Infobox league' + '\n' sidebar += '|liquipediatier=' + '\n' sidebar += '|name=' + data['name'] + '\n' sidebar += '|shortname=' + data['name'] + '\n' sidebar += '|tickername=' + data['name'] + '\n' sidebar += '|image=' + '\n' sidebar += '|icon=' + '\n' sidebar += '|series=' + '\n' sidebar += '|organizer=' + data['organization']['name'] + '\n' sidebar += '|organizer-link=' + '\n' sidebar += '|sponsor=' + '\n' sidebar += '|localcurrency=' + '\n' sidebar += '|prizepool=' + data['prizes'] + '\n' sidebar += '|type=Online' + '\n' sidebar += '|platform=' + data['platform'] + '\n' sidebar += '|country=' + '\n' sidebar += '|format=' + '\n' sidebar += '|patch=' + '\n' sidebar += '|sdate=' + datetime.strptime(data['checkInStartTime'], '%Y-%m-%dT%H:%M:%S.%fZ').strftime( '%Y-%m-%d') + '\n' try: sidebar += '|edate=' + datetime.strptime(data['lastCompletedMatchAt'], '%Y-%m-%dT%H:%M:%S.%fZ').strftime( '%Y-%m-%d') + '\n' except KeyError: sidebar += '|edate=\n' sidebar += '|web=' + '\n' sidebar += '|bracket=https://battlefy.com/' + data['organization']['slug'] + '/' + data['slug'] + '/' \ + data['_id'] + '/bracket-list' + '\n' sidebar += '|rulebook=' + '\n' sidebar += '|twitter=' + '\n' sidebar += '|twitch=' + '\n' sidebar += '|instagram=' + '\n' sidebar += '|discord=' + '\n' sidebar += '|map1=' + '\n' sidebar += '|map2=' + '\n' sidebar += '|map3=' + '\n' sidebar += '|map4=' + '\n' sidebar += '|map5=' + '\n' sidebar += '|team_number=' + str(len(data['teams'])) + '\n' sidebar += '|previous=' + '\n' sidebar += '|next=' + '\n' sidebar += '}}\n' sidebar += '{{Upcoming matches tournament|' + wiki_name + '}}\n' return sidebar def create_event_format(data): event_format = '' for stage in data['stages']: event_format += '* ' + stage['name'] + '\n' if stage['bracket']['type'] == "swiss": event_format += '** ' + str(stage['bracket']['roundsCount']) + '-round ' + stage['bracket']['type'] + '\n' elif stage['bracket']['type'] == "elimination": numGames = 0 rounds = 0 for match in stage['bracket']['series']: if match['numGames'] != numGames: if rounds: event_format += '** ' + str(rounds) + '-round ' \ + stage['bracket']['seriesStyle'] + str(numGames) + '\n' rounds = 1 numGames = match['numGames'] else: rounds += 1 if rounds: event_format += '** ' + str(rounds) + '-round ' \ + stage['bracket']['seriesStyle'] + str(numGames) + '\n' return event_format def rank_teams(data, bw_teams, sort_place=True, break_ties=False): for stage in data['stages']: for place, standing in enumerate(stage['standings']): if 'place' in standing: if 'place' not in data['teams'][standing['team']['_id']]: data['teams'][standing['team']['_id']]['place'] = len(stage['standings']) + place else: if break_ties: data['teams'][standing['team']['_id']]['place'] = \ standing['place'] + (1 - 1 / data['teams'][standing['team']['_id']]['place']) else: data['teams'][standing['team']['_id']]['place'] = standing['place'] else: data['teams'][standing['team']['_id']]['place'] = len(stage['standings']) + place teams = list() for team_id in data['teams']: if 'place' in data['teams'][team_id]: place = data['teams'][team_id]['place'] else: place = 0 team_info = bw_teams.get_team_info(data['teams'][team_id]['persistentTeamID'], data['teams'][team_id]['name']) teams.append((team_id, data['teams'][team_id]['name'], place, data['teams'][team_id]['persistentTeamID'], team_info['name'] )) if sort_place: teams = sorted(teams, key=itemgetter(2, 4, 0)) else: teams = sorted(teams, key=itemgetter(4, 0)) return teams def create_participants(data, bw_players, bw_teams, dynamic=[], sort_place=True): header = '{{TeamCardToggleButton}}\n' teams_ordered = '' # Use prior rounds as a tiebreaker for when multiple teams have the same place at the end teams = rank_teams(data, bw_teams, sort_place) dynamic_idx = 0 if dynamic: header += '{{tabs dynamic\n' header += '|name' + str(dynamic_idx+1) + '=' + dynamic[dynamic_idx]['tab_name'] + '\n' header += '|This=1\n' header += '|content' + str(dynamic_idx+1) + '=' + '\n' header += '{{TeamCard columns start|cols=5|height=250}}\n' for team_num, team in enumerate(teams): if dynamic: if team_num == dynamic[dynamic_idx]['count']: teams_ordered += '{{TeamCard columns end}}\n' dynamic_idx += 1 teams_ordered += '|name' + str(dynamic_idx + 1) + '=' + dynamic[dynamic_idx]['tab_name'] + '\n' teams_ordered += '|content' + str(dynamic_idx+1) + '=' + '\n' teams_ordered += '{{TeamCard columns start|cols=5|height=250}}\n' else: if team_num == 0: teams_ordered += '{{TeamCard columns start|cols=5|height=250}}\n' teams_table = '{{TeamCard\n' team_info = bw_teams.get_team_info(team[3], team[1]) teams_table += '|team=' + team_info['name'] + '\n' teams_table += '|image=' + team_info['image'] + '\n' for idx, player in enumerate(data['teams'][team[0]]['players']): player_tag = 'p' + str(idx + 1) if player['_id'] in calcup_roster_tracking.eventid_to_missing_userid: player['userID'] = calcup_roster_tracking.eventid_to_missing_userid[player['_id']] player_info = bw_players.get_player_info(player['userID'], player['inGameName']) teams_table += '|' + player_tag + '=' + player_info['name'] \ + ' |' + player_tag + 'flag=' + player_info['flag'] if player_info['link']: teams_table += ' |' + player_tag + 'link=' + player_info['link'] teams_table += '\n' # teams_table += '|c= |cflag=\n' # teams_table += '|qualifier=\n' teams_table += '}}\n' teams_ordered += teams_table footer = '{{TeamCard columns end}}\n' if dynamic: footer += '}}\n' return header + teams_ordered + footer def create_swiss_table(stage, bw_teams): dropped_style = 'drop' swiss_table = '{{SwissTableLeague|rounds=' + str(stage['bracket']['roundsCount']) + '|diff=false\n' for i in range(stage['bracket']['teamsCount']): swiss_table += '|pbg' + str(i + 1) + '=down' if (i + 1) % 8 == 0: swiss_table += '\n' if '\n' not in swiss_table[-1]: swiss_table += '\n' for rank, record in enumerate(stage['standings']): if record['disqualified']: swiss_table += '|bg' + str(rank + 1) + '=' + dropped_style + '' else: swiss_table += '|bg' + str(rank + 1) + '=down' team_info = bw_teams.get_team_info(record['team']['persistentTeamID'], record['team']['name']) swiss_table += '|team' + str(rank + 1) + '=' + team_info['teamteamplate'] swiss_table += '|temp_tie' + str(rank+1) + '=' + "{:7.3f}".format(record['opponentsMatchWinPercentage']) + '\n' swiss_table += '}}\n' return swiss_table def create_swiss_matches(matches, teams, bw_teams): swiss_match_table = '' rounds = dict() for match in matches: match_line = create_match_maps(match, teams, bw_teams) if not match_line: continue try: rounds[str(match['roundNumber'])].append(match_line) except KeyError: rounds[str(match['roundNumber'])] = list() rounds[str(match['roundNumber'])].append(match_line) for i in range(1, len(rounds) + 1): if i == 1: swiss_match_table += '{{box|start|padding=2em}}\n' else: swiss_match_table += '{{box|break|padding=2em}}\n' swiss_match_table += '====={{HiddenSort|Round ' + str(i) + '}}=====\n' swiss_match_table += '{{MatchListStart|width=450px|title=Round ' + str(i) + ' Matches|matchsection=Round ' \ + str(i) + '|hide=false}}\n' for match in rounds[str(i)]: swiss_match_table += match swiss_match_table += '{{MatchListEnd}}\n' swiss_match_table += '{{box|end}}\n' return swiss_match_table def create_elim_bracket(stage, teams, bw_teams): if stage['bracket']['style'] == 'single': bracket = '{{' + str(stage['bracket']['teamsCount']) + 'SETeamBracket\n' elif stage['bracket']['style'] == 'double': bracket = '{{' + str(stage['bracket']['teamsCount']) + 'DETeamBracket\n' else: print('Unknown stage style: ' + stage['bracket']['style']) return # todo handle double elimination brackets # set up team number trackers team_previous_round = dict() # set up round-match count trackers round_max_win_match_count = [1] * (len(stage['bracket']['series']) + 1) round_max_win_match_count[0] = 0 round_max_loss_match_count = [1] * (len(stage['bracket']['series']) + 1) round_max_loss_match_count[0] = 0 # matches = sorted(stage['matches'], key=itemgetter('matchNumber')) matches = stage['matches'] for match in matches: # TODO: this will need to get updated for non SE16 templates # In DE brackets D means the team dropped down from the previous round # In DE brackest W means the team won the previous round # So there are rounds where D vs L happen such as R2D1 vs R2W5 and R2D2 vs R2W6 # Might want to key off match['inConsolationBracket'] # May also just need to keep track of match['next'] and build up the D and W that way instead # Default first round to D and then future bracket type is defined by match['next'] # Not exactly sure how to address round_team_number, in a 8 team DE the third winners bracket round is # called the 4th round and in a 16 team DE the 4th winners bracket round is called the 6th round # https://liquipedia.net/rainbowsix/Template:4DETeamBracket/doc # https://liquipedia.net/rainbowsix/Template:8DETeamBracket/doc # https://liquipedia.net/rainbowsix/Template:16DETeamBracket/doc # if match['matchType'] == 'winner': # round_max_win_match_count[match['roundNumber']] = max(match['matchNumber'], # round_max_win_match_count[match['roundNumber']]) # elif match['matchType'] == 'loser': # round_max_loss_match_count[match['roundNumber']] = max(match['matchNumber'], # round_max_loss_match_count[match['roundNumber']]) if not 'teamID' in match['top']: continue if match['top']['teamID'] in team_previous_round: if team_previous_round[match['top']['teamID']]: bracket_type = 'W' else: bracket_type = 'D' else: bracket_type = 'D' if match['matchType'] == 'winner': round_match_offset = -2 * round_max_win_match_count[match['roundNumber'] - 1] else: round_match_offset = -2 * round_max_loss_match_count[match['roundNumber'] - 1] \ + (round_max_win_match_count[match['roundNumber']] - round_max_win_match_count[match['roundNumber'] - 1]) * 2 # Increment for next time if match['matchType'] == 'winner': round_max_win_match_count[match['roundNumber']] = max(match['matchNumber'], round_max_win_match_count[match['roundNumber']]) elif match['matchType'] == 'loser': round_max_loss_match_count[match['roundNumber']] = max(match['matchNumber'], round_max_loss_match_count[match['roundNumber']]) bracket_indicator = '|R' + str(match['roundNumber']) + bracket_type \ + str(match['matchNumber'] * 2 - 1 + round_match_offset) if 'teamID' in match['top']: team_name = bw_teams.get_team_info(teams[match['top']['teamID']]['persistentTeamID'], teams[match['top']['teamID']]['name'])['teamteamplate'] bracket += bracket_indicator + 'team=' + team_name + ' ' else: bracket += bracket_indicator + 'literal=BYE ' if 'score' in match['top']: bracket += bracket_indicator + 'score=' + str(match['top']['score']) + ' ' if 'winner' in match['top'] and match['top']['winner']: bracket += bracket_indicator + 'win=1 ' team_previous_round[match['top']['teamID']] = True else: team_previous_round[match['top']['teamID']] = False bracket += '\n' if 'teamID' in match['bottom']: if match['bottom']['teamID'] in team_previous_round: if team_previous_round[match['bottom']['teamID']]: bracket_type = 'W' else: bracket_type = 'D' else: bracket_type = 'D' else: bracket_type = 'D' bracket_indicator = '|R' + str(match['roundNumber']) + bracket_type \ + str(match['matchNumber'] * 2 + round_match_offset) if 'teamID' in match['bottom']: team_name = bw_teams.get_team_info(teams[match['bottom']['teamID']]['persistentTeamID'], teams[match['bottom']['teamID']]['name'])['teamteamplate'] bracket += bracket_indicator + 'team=' + team_name + ' ' else: bracket += bracket_indicator + 'literal=BYE ' if 'score' in match['bottom']: bracket += bracket_indicator + 'score=' + str(match['bottom']['score']) + ' ' if 'winner' in match['bottom'] and match['bottom']['winner']: bracket += bracket_indicator + 'win=2 ' team_previous_round[match['bottom']['teamID']] = True elif 'teamID' in match['bottom']: team_previous_round[match['bottom']['teamID']] = False bracket += '\n' bracket += '}}\n' return bracket def create_match_maps(match, teams, bw_teams): match_line = '' if not match['isComplete']: return match_line match_line = '{{MatchMaps\n' match_line += '|date=\n' if 'teamID' in match['top']: team_top = bw_teams.get_team_info(teams[match['top']['teamID']]['persistentTeamID'], teams[match['top']['teamID']]['name']) elif match['isBye']: team_top = bw_teams.get_team_info('0', 'BYE') if 'teamID' in match['bottom']: team_bot = bw_teams.get_team_info(teams[match['bottom']['teamID']]['persistentTeamID'], teams[match['bottom']['teamID']]['name']) elif match['isBye']: team_bot = bw_teams.get_team_info('0', 'BYE') match_line += '|team1=' + team_top['teamteamplate'] match_line += '|team2=' + team_bot['teamteamplate'] if 'isTie' in match and match['isTie']: match_line += '|winner=0\n' elif 'winner' in match['top'] and match['top']['winner']: match_line += '|winner=1\n' elif 'winner' in match['bottom'] and match['bottom']['winner']: match_line += '|winner=2\n' else: match_line += '|winner=0\n' if match['isBye']: match_line += '|walkover=1' match_line += '|games1=' if match['top']['winner']: match_line += 'W' else: match_line += 'FF' match_line += '|games2=' if 'winner' in match['bottom'] and match['bottom']['winner']: match_line += 'W' else: match_line += 'FF' else: match_line += '|games1=' + str(match['top']['score']) match_line += '|games2=' + str(match['bottom']['score']) + '\n' match_line += '|details={{BracketMatchSummary\n' match_line += '|date=|finished=true\n' match_line += '|twitch= |youtube=\n' match_line += '|vod=\n' match_line += '}}\n' match_line += '}}\n' return match_line def create_round_robin_tables(stage, teams, bw_teams, wiki_name, include_matches=True): tables = '' for idx, group in enumerate(stage['groups']): if idx == 1: tables += '{{box|start|padding=2em}}\n' else: tables += '{{box|break|padding=2em}}\n' tables += '===={{HiddenSort|Group ' + group['name'] + '}}====\n' tables += '{{GroupTableLeague|title=Group ' + group['name'] + '|width=450px|show_p=false|date=|ties=true\n' tables += '|tournament=' + wiki_name + '\n' group_header = '' group_table = '' for pos, standing_id in enumerate(group['standingIDs']): group_header += '|pbg' + str(pos + 1) + '=down' for standing in stage['standings']: if standing_id == standing['_id']: # if standing['disqualified']: # has_drop = True team_info = bw_teams.get_team_info(teams[standing['team']['_id']]['persistentTeamID'], teams[standing['team']['_id']]['name']) group_table += '|bg' + str(pos + 1) + '=down|team' + str(pos + 1) + "=" \ + team_info['teamteamplate'] + '\n' group_header += '|tiebreaker1=series\n' tables += group_header tables += group_table tables += "}}\n" if include_matches: match_table = '{{MatchListStart|title=Group ' + group['name'] + ' Matches|width=450px|hide=true}}\n' for match in group['matches']: match_line = create_match_maps(match, teams, bw_teams) match_table += match_line tables += match_table tables += '{{MatchListEnd}}\n' tables += '{{box|end}}\n' return tables def create_prize_pool(prize): prize_pool = prize + '\n' prize_pool += '{{prize pool start}}\n' prize_pool += '{{prize pool slot |place=1 |usdprize=0 |tbd |lastvs1= |lastscore1= |lastvsscore1=}}\n' prize_pool += '{{prize pool slot |place=2 |usdprize=0 |tbd |lastvs1= |lastscore1= |lastvsscore1=}}\n' prize_pool += '{{prize pool slot |place=3-4 |usdprize=0\n' prize_pool += '|tbd |lastvs1= |lastscore1= |lastvsscore1=\n' prize_pool += '|tbd |lastvs2= |lastscore2= |lastvsscore2=\n' prize_pool += '}}\n' prize_pool += '{{prize pool slot |place=5-8 |usdprize=0\n' prize_pool += '|tbd |lastvs1= |lastscore1= |lastvsscore1=\n' prize_pool += '|tbd |lastvs2= |lastscore2= |lastvsscore2=\n' prize_pool += '|tbd |lastvs3= |lastscore3= |lastvsscore3=\n' prize_pool += '|tbd |lastvs4= |lastscore4= |lastvsscore4=\n' prize_pool += '}}\n' prize_pool += '{{Prize pool end}}\n' return prize_pool def main(): ccs_winter_minor_id = '5ff3354193edb53839d44d55' ccs_winter_minor_wiki = 'Calrissian_Cup/Winter/Minor' ccs_winter_major_id = '60019f8ebcc5ed46373408a1' ccs_winter_major_wiki = 'Calrissian_Cup/Winter/Major' ccs_spring_minor_id = '603c00fbfe4fb811b3168f5b' ccs_spring_minor_wiki = 'Calrissian_Cup/Spring/Minor' ccs_spring_major_id = '6061b764f68d8733c8455fcf' ccs_spring_major_wiki = 'Calrissian_Cup/Spring/Major' ccs_summer_minor_id = '60b41961d35b1411a7b31d64' ccs_summer_minor_wiki = 'Calrissian_Cup/Summer/Minor' ccs_summer_major_id = '60dd319012cb9c33c2f63868' ccs_summer_major_wiki = 'Calrissian_Cup/Summer/Major' ccs_fall_minor_id = '60fa26043ba15d73719669bd' ccs_fall_minor_wiki = 'Calrissian_Cup/Fall/Minor' ccs_fall_major_id = '61314505635fe17a14eafe03' ccs_fall_major_wiki = 'Calrissian_Cup/Fall/Major' ccs_championship_id = '6150dd2b0dd060282bebb0eb' ccs_championship_wiki = 'Calrissian_Cup/Championship' world_cup_id = '611dac6ecb6f6260d5f30b6e' world_cup_wiki = 'World_Cup' twin_suns_tourny_id = '60806876938bed74f6edea9e' twin_suns_wiki = 'Twin_Suns_Tournament' gsl_s1_id = '5ff4b388fd124e11b18e185d' gsl_s1_wiki = 'Global_Squadrons_League/2021/Season_1' tournament_id = world_cup_id wiki_name = world_cup_wiki participant_tabs = [ # {'tab_name': 'Top 16', # 'count': 16}, # {'tab_name': 'Top 32', # 'count': 32}, # {'tab_name': 'Other Notable Participants', # 'count': -1}, ] bw_teams = battlefy_wiki_linkings.BattlefyWikiTeamLinkings() bw_players = battlefy_wiki_linkings.BattlefyWikiPlayerLinkings() event_data = battlefy_data.BattlefyData(tournament_id) event_data.load_tournament_data() # FORCE REDUCE TEAMS event_data.reduce_teams() event_path = event_data.get_tournament_data_path() event_path.mkdir(parents=True, exist_ok=True) filename = Path.joinpath(event_path, event_data.tournament_data['name'] + '.wiki') with open(filename, 'w+', newline='\n', encoding='utf-8') as f: display = '{{DISPLAYTITLE:' + event_data.tournament_data['name'] + '}}\n' f.write(display) sidebar = create_sidebar(event_data.tournament_data, wiki_name) f.write(sidebar) f.write('==About==\n') f.write('===Format===\n') event_format = create_event_format(event_data.tournament_data) f.write(event_format) f.write('===Broadcast Talent===\n') f.write('===Prize Pool===\n') prize_pool = create_prize_pool(event_data.tournament_data['prizes']) f.write(prize_pool) f.write('==Participants==\n') teams = create_participants(event_data.tournament_data, bw_players, bw_teams, dynamic=participant_tabs, sort_place=True) f.write(teams) f.write('==Results==\n') for stage in event_data.tournament_data['stages']: if stage['bracket']['type'] == 'swiss': f.write('===Swiss Stage===\n') f.write('====Swiss Standings====\n') swiss_table = create_swiss_table(stage, bw_teams) f.write(swiss_table) f.write('====Swiss Match Results====\n') swiss_matches = create_swiss_matches(stage['matches'], event_data.tournament_data['teams'], bw_teams) f.write(swiss_matches) elif stage['bracket']['type'] == 'elimination': f.write('===Playoffs===\n') bracket = create_elim_bracket(stage, event_data.tournament_data['teams'], bw_teams) f.write(bracket) elif stage['bracket']['type'] == 'roundrobin': f.write('===' + stage['name'] + '===\n') round_robin_tables = create_round_robin_tables(stage, event_data.tournament_data['teams'], bw_teams, wiki_name, include_matches=True) f.write(round_robin_tables) else: print('Unsupported bracket type of: ' + stage['bracket']['type']) if __name__ == '__main__': main()
2.203125
2
utilidades/texto.py
DeadZombie14/chillMagicCarPygame
0
6474
import pygame class Texto: def __init__(self, screen, text, x, y, text_size = 20, fuente = 'Calibri', italic = False, bold= False, subrayado= False, color = (250, 240, 230), bg = [] ): self.screen = screen fg = color self.coord = x, y #load font, prepare values font = pygame.font.Font(None, 80) size = font.size(text) # Font a_sys_font = pygame.font.SysFont(fuente, text_size) # Cursiva if italic: a_sys_font.set_bold(1) # Negritas if bold: a_sys_font.set_bold(1) # Subrayado if subrayado: a_sys_font.set_underline(1) # Construccion del texto if len(bg) > 1: # Si hay fondo de texto ren = a_sys_font.render(text, 1, fg, bg) else: # Si no, transparente ren = a_sys_font.render(text, 1, fg) # self.size = x+size[0], y self.text_rect = ren.get_rect() self.text_rect.center = (x,y) self.image = ren, (x,y) screen.blit(ren, (x, y)) # Cursiva if italic: a_sys_font.set_bold(0) # Negritas if bold: a_sys_font.set_bold(0) # Subrayado if subrayado: a_sys_font.set_underline(0) # self.image.blit(ren, self.text_rect) # self.text_rect = (x, y),ren.get_size() # text = str(self.counter) # label = self.myfont.render(text, 1, (255,0,0)) # text_rect = label.get_rect() # text_rect.center = (50,50) # self.image.blit(label, text_rect) pass def getProperties(self): return self.text_rect def redraw(self): self.screen.blit(self.image[0], self.image[1]) pass ##################### EJEMPLO DE USO ############################## # texto1 = Texto(screen, 'Hola', 10, 10) class TextArea(): def __init__(self, screen, text, x, y, fuente='Calibri', text_size = 20, color=pygame.Color('black')): self.coord = x, y font = pygame.font.SysFont(fuente, text_size) words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words. space = font.size(' ')[0] # The width of a space. max_width, max_height = screen.get_size() pos = x,y for line in words: for word in line: word_surface = font.render(word, 0, color) word_width, word_height = word_surface.get_size() if x + word_width >= max_width: x = pos[0] # Reset the x. y += word_height # Start on new row. screen.blit(word_surface, (x, y)) x += word_width + space x = pos[0] # Reset the x. y += word_height # Start on new row. self.size = word_width, word_height pass def getProperties(self): return self.size, self.coord ##################### EJEMPLO DE USO ############################## # textarea1 = Textarea(screen, 'Hola mundo que tal estas hoy')
3.171875
3
training_xgboost_model.py
MighTy-Weaver/Inefficient-AC-detection
2
6475
# This is the code to train the xgboost model with cross-validation for each unique room in the dataset. # Models are dumped into ./models and results are dumped into two csv files in the current work directory. import argparse import json import math import os import pickle import warnings from typing import Tuple import numpy as np import pandas as pd import xgboost as xgb from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from imblearn.over_sampling import SMOTE from numpy.random import RandomState from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.utils import compute_sample_weight from tqdm import tqdm from xgboost import DMatrix, cv # Set up an argument parser to decide the metric function parser = argparse.ArgumentParser() parser.add_argument("--metric", choices=['R2', 'RMSE'], type=str, required=False, default='R2', help="The evaluation metric you want to use to train the XGBoost model") parser.add_argument("--log", choices=[0, 1, 100], type=int, required=False, default=0, help="Whether to print out the training progress") parser.add_argument("--SMOTE", choices=[0, 1], type=int, required=False, default=1, help="Whether use the SMOTE or not") parser.add_argument("--SMOGN", choices=[0, 1], type=int, required=False, default=0, help="Whether use the SMOGN or not") parser.add_argument("--SampleWeight", choices=[0, 1], type=int, required=False, default=0, help="Whether use the sample weight") args = parser.parse_args() # Ignore all the warnings and set pandas to display every column and row everytime we print a dataframe warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) assert args.SMOTE != args.SMOGN, "Can't use SMOTE and SMOGN at the same time!" # Load the data with a positive AC electricity consumption value, and drop the time data as we don't need them data = pd.read_csv("summer_data_compiled.csv", index_col=0) data = data[data.AC > 0].drop(['Time', 'Date', 'Hour'], axis=1).reset_index(drop=True) # Create some directory to store the models and future analysis figures. # log_folder_name = "Test_{}_{}".format(args.metric, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) log_folder_name = "Test_R2_HYPEROPT" log_folder_name = log_folder_name + "_SMOTE" if args.SMOTE else log_folder_name log_folder_name = log_folder_name + "_SMOGN" if args.SMOGN else log_folder_name log_folder_name = log_folder_name + "_SW" if args.SampleWeight else log_folder_name previous_parameter_folder = "Test_R2_HYPEROPT" assert log_folder_name != previous_parameter_folder, "Previous folder name exists" if not os.path.exists('./{}/'.format(log_folder_name)): os.mkdir('./{}'.format(log_folder_name)) os.mkdir('./{}/models/'.format(log_folder_name)) os.mkdir('./{}/trntst_models/'.format(log_folder_name)) # Define our evaluation functions def RMSE(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() root_squard_error = math.sqrt(mean_squared_error(truth_value, predt)) return "RMSE", root_squard_error def R2(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() r2_value = r2_score(truth_value, predt) return "R2", r2_value def fobjective(space): param_dict_tunning = {'max_depth': int(space['max_depth']), 'learning_rate': space['learning_rate'], 'colsample_bytree': space['colsample_bytree'], 'min_child_weight': int(space['min_child_weight']), 'reg_alpha': int(space['reg_alpha']), 'reg_lambda': space['reg_lambda'], 'subsample': space['subsample'], 'min_split_loss': space['min_split_loss'], 'objective': 'reg:squarederror'} xgb_cv_result = xgb.cv(dtrain=data_matrix, params=param_dict_tunning, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, metrics='rmse', maximize=False, shuffle=True) return {"loss": (xgb_cv_result["test-rmse-mean"]).tail(1).iloc[0], "status": STATUS_OK} eval_dict = {'RMSE': RMSE, 'R2': R2} print("Start Training The Models") # Create two dataframes to store the result during the training and after the training. error_csv = pd.DataFrame( columns=['room', 'train-{}-mean'.format(args.metric), 'train-{}-std'.format(args.metric), 'train-rmse-mean', 'train-rmse-std', 'test-{}-mean'.format(args.metric), 'test-{}-std'.format(args.metric), 'test-rmse-mean', 'test-rmse-std']) prediction_csv = pd.DataFrame(columns=['room', 'observation', 'prediction']) room_list = data['Location'].unique() # ranging through all the rooms and do the training and cross-validation for each room. for room in tqdm(room_list): seed = 2030 + room # Four rooms have low quality data and we delete them manually if room == 309 or room == 312 or room == 826 or room == 917 or room == 1001: continue # We extract the data of particular room and run the SMOTE algorithm on it. room_data = data[data.Location == room].drop(['Location'], axis=1).reset_index(drop=True) if args.SMOTE: # Label all the AC data by 0.75, all AC above 0.75 will be marked as 1, otherwise 0. Split into X and y room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) elif args.SMOGN: if len(room_data) < 500: room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) else: room_data = pd.read_csv('./SMOGN_processed/{}.csv'.format(room), index_col=0) y = room_data['AC'] X = room_data.drop(['AC'], axis=1) else: y = pd.DataFrame(room_data['AC'].fillna(method='pad')) X = room_data.drop(['AC'], axis=1).fillna(method='pad') if args.SampleWeight: class_sample = pd.cut(y, bins=15) weight = compute_sample_weight(class_weight="balanced", y=class_sample) X = X.to_numpy() # Build another full data matrix for the built-in cross validation function to work. data_matrix = DMatrix(data=X, label=y, weight=weight) if args.SampleWeight else DMatrix(data=X, label=y) # Cross_validation with hyper-parameter tuning space = {'max_depth': hp.quniform("max_depth", 3, 10, 1), 'learning_rate': hp.uniform("learning_rate", 0.1, 3), 'colsample_bytree': hp.uniform("colsample_bytree", 0.5, 1), 'min_child_weight': hp.quniform("min_child_weight", 1, 20, 1), 'reg_alpha': hp.quniform("reg_alpha", 0, 100, 1), 'reg_lambda': hp.uniform("reg_lambda", 0, 2), 'subsample': hp.uniform("subsample", 0.5, 1), 'min_split_loss': hp.uniform("min_split_loss", 0, 9)} if os.path.exists('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room)): best_param_dict = np.load('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room), allow_pickle=True).item() np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) else: trials = Trials() best_hyperparams = fmin(fn=fobjective, space=space, algo=tpe.suggest, max_evals=400, trials=trials, rstate=RandomState(seed)) # setup our training parameters and a model variable as model checkpoint best_param_dict = {'objective': 'reg:squarederror', 'max_depth': int(best_hyperparams['max_depth']), 'reg_alpha': best_hyperparams['reg_alpha'], 'reg_lambda': best_hyperparams['reg_lambda'], 'min_child_weight': best_hyperparams['min_child_weight'], 'colsample_bytree': best_hyperparams['colsample_bytree'], 'learning_rate': best_hyperparams['learning_rate'], 'subsample': best_hyperparams['subsample'], 'min_split_loss': best_hyperparams['min_split_loss']} np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) # Use the built-in cv function to do the cross validation, still with ten folds, this will return us the results. xgb_cv_result = cv(dtrain=data_matrix, params=best_param_dict, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, shuffle=True, feval=eval_dict[args.metric], maximize=True) xgb_cv_result['room'] = room error_csv.loc[len(error_csv)] = xgb_cv_result.loc[len(xgb_cv_result) - 1] # Use one training_testing for ploting, and save both ground truth and prediction value into the dataframe X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed) d_train = DMatrix(X_train, label=y_train) d_test = DMatrix(X_test, label=y_test) watchlist = [(d_test, 'eval'), (d_train, 'train')] xgb_model_train_test = xgb.train(params=best_param_dict, dtrain=d_train, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) prediction = np.array(xgb_model_train_test.predict(d_test)).tolist() real = np.array(y_test).tolist() prediction_csv.loc[len(prediction_csv)] = {'room': room, 'observation': json.dumps(real), 'prediction': json.dumps(prediction)} # Dump the error dataframes into csv files. error_csv.to_csv('./{}/error.csv'.format(log_folder_name), index=False) prediction_csv.to_csv('./{}/prediction.csv'.format(log_folder_name), index=False) # Develop a model using the whole orignial dataset, and save the model xgb_model_full = xgb.train(params=best_param_dict, dtrain=data_matrix, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) # Save all the models we trained for future use pickle.dump(xgb_model_train_test, open('./{}/trntst_models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) pickle.dump(xgb_model_full, open('./{}/models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) print("Training finished!")
2.734375
3
setup.py
editorconfig/editorconfig-core-py
70
6476
import os from setuptools import setup # Read the version g = {} with open(os.path.join("editorconfig", "version.py"), "rt") as fp: exec(fp.read(), g) v = g['VERSION'] version = ".".join(str(x) for x in v[:3]) if v[3] != "final": version += "-" + v[3] setup( name='EditorConfig', version=version, author='EditorConfig Team', packages=['editorconfig'], url='http://editorconfig.org/', license='python', description='EditorConfig File Locator and Interpreter for Python', long_description=open('README.rst').read(), entry_points = { 'console_scripts': [ 'editorconfig = editorconfig.__main__:main', ] }, classifiers=[ 'License :: OSI Approved :: Python Software Foundation License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: Implementation :: PyPy', ], )
1.78125
2
vaping/config.py
josephburnett/vaping
0
6477
<filename>vaping/config.py<gh_stars>0 import re import munge def parse_interval(val): """ converts a string to float of seconds .5 = 500ms 90 = 1m30s **Arguments** - val (`str`) """ re_intv = re.compile(r"([\d\.]+)([a-zA-Z]+)") val = val.strip() total = 0.0 for match in re_intv.findall(val): unit = match[1] count = float(match[0]) if unit == "s": total += count elif unit == "m": total += count * 60 elif unit == "ms": total += count / 1000 elif unit == "h": total += count * 3600 elif unit == "d": total += count * 86400 else: raise ValueError("unknown unit from interval string '%s'" % val) return total class Config(munge.Config): """ Vaping config manager """ defaults = { "config": { "vaping": {"home_dir": None, "pidfile": "vaping.pid", "plugin_path": [],}, }, "config_dir": "~/.vaping", "codec": "yaml", }
2.890625
3
sktime/annotation/tests/test_all_annotators.py
Rubiel1/sktime
1
6478
# -*- coding: utf-8 -*- """Tests for sktime annotators.""" import pandas as pd import pytest from sktime.registry import all_estimators from sktime.utils._testing.estimator_checks import _make_args ALL_ANNOTATORS = all_estimators(estimator_types="series-annotator", return_names=False) @pytest.mark.parametrize("Estimator", ALL_ANNOTATORS) def test_output_type(Estimator): """Test annotator output type.""" estimator = Estimator.create_test_instance() args = _make_args(estimator, "fit") estimator.fit(*args) args = _make_args(estimator, "predict") y_pred = estimator.predict(*args) assert isinstance(y_pred, pd.Series)
2.375
2
raspberry-pi-camera/cam.py
AlexMassin/mlh-react-vr-website
1
6479
<gh_stars>1-10 picamera import PiCamera from time import sleep import boto3 import os.path import subprocess s3 = boto3.client('s3') bucket = 'cambucket21' camera = PiCamera() #camera.resolution(1920,1080) x = 0 camerafile = x while True: if (x == 6): x = 1 else: x = x + 1 camera.start_preview() camera.start_recording('/home/pi/' + str(x) + '.h264') sleep(2) camera.stop_recording() camera.stop_preview() subprocess.Popen("MP4Box -add " + str(x) + ".h264 " + str(x) +".mp4", shell=True) sleep(1) s3.upload_file('/home/pi/' + str(x) + '.mp4',bucket,'/home/pi/' + str(x) + '.mp4')
2.125
2
Part_3_advanced/m04_datetime_and_timedelta/datetime_formats/example_1.py
Mikma03/InfoShareacademy_Python_Courses
0
6480
<reponame>Mikma03/InfoShareacademy_Python_Courses<filename>Part_3_advanced/m04_datetime_and_timedelta/datetime_formats/example_1.py<gh_stars>0 from datetime import datetime def run_example(): moment_in_time = datetime.fromordinal(256) print(moment_in_time) print(moment_in_time.toordinal()) print(moment_in_time.weekday()) print(moment_in_time.isoweekday()) other_moment = datetime.fromtimestamp(16_000_000) print(other_moment) print(other_moment.timestamp()) print(other_moment.isocalendar()) if __name__ == "__main__": run_example()
3.1875
3
examples/scripts/segmentation/nnet3-segmenter.py
mxmpl/pykaldi
916
6481
#!/usr/bin/env python from __future__ import print_function from kaldi.segmentation import NnetSAD, SegmentationProcessor from kaldi.nnet3 import NnetSimpleComputationOptions from kaldi.util.table import SequentialMatrixReader # Construct SAD model = NnetSAD.read_model("final.raw") post = NnetSAD.read_average_posteriors("post_output.vec") transform = NnetSAD.make_sad_transform(post) graph = NnetSAD.make_sad_graph() decodable_opts = NnetSimpleComputationOptions() decodable_opts.extra_left_context = 79 decodable_opts.extra_right_context = 21 decodable_opts.extra_left_context_initial = 0 decodable_opts.extra_right_context_final = 0 decodable_opts.frames_per_chunk = 150 decodable_opts.acoustic_scale = 0.3 sad = NnetSAD(model, transform, graph, decodable_opts=decodable_opts) seg = SegmentationProcessor(target_labels=[2]) # Define feature pipeline as a Kaldi rspecifier feats_rspec = "ark:compute-mfcc-feats --config=mfcc.conf scp:wav.scp ark:- |" # Segment with SequentialMatrixReader(feats_rspec) as f, open ("segments", "w") as s: for key, feats in f: out = sad.segment(feats) segments, stats = seg.process(out["alignment"]) seg.write(key, segments, s) print("segments:", segments, flush=True) print("stats:", stats, flush=True) print("global stats:", seg.stats, flush=True)
2.203125
2
src/dataset.py
HeegyuKim/CurseFilter
0
6482
<reponame>HeegyuKim/CurseFilter from cProfile import label from matplotlib.pyplot import text import pandas as pd import numpy as np from tokenizers import Tokenizer import torch from torch.utils.data import Dataset, DataLoader from typing import Dict, Any, Tuple from datasets import load_dataset class DataFrameDataset(Dataset): def __init__(self, tokenizer: Tokenizer, df: pd.DataFrame, text_column: str, label_column: str, max_length: int = 256, padding: str = "max_length") -> None: super().__init__() inputs = tokenizer(df[text_column].to_list(), padding=padding, max_length=max_length, truncation=True, return_tensors="pt") self.input_ids = inputs["input_ids"] self.attention_masks = inputs["attention_mask"] dtype = np.int64 if len(df[label_column].unique()) > 2 else np.float32 self.labels = torch.from_numpy(df[label_column].values.astype(dtype)) def __len__(self): return self.input_ids.shape[0] def __getitem__(self, index: Any) -> Dict: return self.input_ids[index], self.attention_masks[index], self.labels[index] def dataloader(self, **kwargs) -> DataLoader: return DataLoader(self, **kwargs) class DataFrameStudentDataset(DataFrameDataset): def __init__(self, teacher_model: torch.nn.Module, teacher_tokenizer: Tokenizer, student_tokenizer: Tokenizer, df: pd.DataFrame, text_column: str, label_column: str, max_length: int = 256, padding: str = "max_length", device: str = 'cuda') -> None: super().__init__(student_tokenizer, df, text_column, label_column, max_length, padding) teacher_ds = DataFrameDataset( teacher_tokenizer, df, text_column, label_column, max_length, padding ) teacher_model = teacher_model.to(device) with torch.no_grad(): soft_labels = [self._get_soft_label(teacher_model, teacher_ds, i, device) for i in range(len(self))] self.soft_labels = torch.stack(soft_labels) def __getitem__(self, index: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return *super().__getitem__(index), self.soft_labels[index] def _get_soft_label(self, model, teacher_ds, index, device): ids, mask, _ = teacher_ds[index] ids = ids.unsqueeze(0).to(device) mask = mask.unsqueeze(0).to(device) return model(ids, mask).cpu().squeeze(0) class ApeachDataset(Dataset): def __init__(self, split: str, tokenizer: Tokenizer, max_length: int = 256, padding: str = "max_length") -> None: super().__init__() dataset = load_dataset("jason9693/APEACH") texts = dataset[split]['text'] inputs = tokenizer(texts, padding=padding, max_length=max_length, truncation=True, return_tensors="pt") self.input_ids = inputs["input_ids"] self.attention_masks = inputs["attention_mask"] labels = dataset[split]['class'] self.labels = torch.tensor(labels, dtype=torch.float32) def __len__(self): return self.input_ids.shape[0] def __getitem__(self, index: Any) -> Dict: return self.input_ids[index], self.attention_masks[index], self.labels[index] def dataloader(self, **kwargs) -> DataLoader: return DataLoader(self, **kwargs) class ApeachStudentDataset(ApeachDataset): def __init__(self, teacher_model: torch.nn.Module, split: str, teacher_tokenizer: Tokenizer, student_tokenizer: Tokenizer, max_length: int = 256, padding: str = "max_length", device: str="cuda") -> None: super().__init__(split, student_tokenizer, max_length, padding) teacher_ds = ApeachDataset(split, teacher_tokenizer, max_length, padding) teacher_model = teacher_model.to(device) with torch.no_grad(): soft_labels = [self._get_soft_label(teacher_model, teacher_ds, i, device) for i in range(len(self))] self.soft_labels = torch.stack(soft_labels) def __getitem__(self, index: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return *super().__getitem__(index), self.soft_labels[index] def _get_soft_label(self, model, teacher_ds, index, device): ids, mask, _ = teacher_ds[index] ids = ids.unsqueeze(0).to(device) mask = mask.unsqueeze(0).to(device) return model(ids, mask).cpu().squeeze(0)
2.453125
2
helper_tools/raspi_OMX-Player_Howto_demo.py
stko/Schnipsl
0
6483
<gh_stars>0 #!/usr/bin/python # mp4museum.org by <NAME> 2019 import os import sys import glob from subprocess import Popen, PIPE import RPi.GPIO as GPIO FNULL = open(os.devnull, "w") # setup GPIO pin GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) GPIO.setup(13, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) # functions to be called by event listener def buttonPause(channel): player.stdin.write("p") def buttonNext(channel): player.stdin.write("q") # add event listener GPIO.add_event_detect(11, GPIO.FALLING, callback = buttonPause, bouncetime = 234) GPIO.add_event_detect(13, GPIO.FALLING, callback = buttonNext, bouncetime = 1234) # please do not remove my logo screen player = Popen(['omxplayer', '--adev', 'both', '/home/pi/mp4museum.mp4'],stdin=PIPE,stdout=FNULL) player.wait() # the loop while(1): for files in sorted(glob.glob(r'/media/*/*.mp4')): player = Popen(['omxplayer','--adev', 'both',files],stdin=PIPE,stdout=FNULL) player.wait()
2.609375
3
dash_app/compare_alg.py
zeyu2001/ICT1002-Python
1
6484
""" Comparison between the efficiency of the Boyer-Moore algorithm and the naive substring search algorithm. The runtimes for both algorithms are plotted on the same axes. """ import matplotlib.pyplot as plt import numpy as np import string import time import random from bm_alg import boyer_moore_match, naive_match # number of test cases for each iteration TEST_CASES = 100 # test cases generated based on this pattern (vary_n) PATTERN = 'ICT1002 is a really great module!' # test cases generated based on this text (vary_m) TEXT = PATTERN * 50 def generate_test_cases(pattern, length, k): """ Generates <k> test cases with text of length <length> containing <pattern> Args: pattern (str): A pattern within the text. length (int): The length of the pattern k (int): The number of test cases Returns: A list of test cases, i.e. strings that contain <pattern> """ result = [] for _ in range(k): text = pattern while len(text) < length: direction = random.choice((0, 1)) # 0 --> Left if direction == 0: text = random.choice(string.ascii_lowercase) + text # 1 --> Right else: text = text + random.choice(string.ascii_lowercase) result.append(text) return result def vary_n(max_n): x = [n for n in range(1, max_n + 1)] y_bm = [] y_naive = [] for n in x: print('n =', n) bm_result = [] naive_result = [] if n >= len(PATTERN): # generate test cases of length n, which contain PATTERN test_cases = generate_test_cases(PATTERN, n, TEST_CASES) else: # generate test cases of length n, which do not (and can not possibly) contain PATTERN test_cases = generate_test_cases('', n, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(test_case, PATTERN) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(test_case, PATTERN) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("n") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def vary_m(max_m): x = [m for m in range(1, max_m + 1)] y_bm = [] y_naive = [] for m in x: print('m =', m) bm_result = [] naive_result = [] # generate test cases of length n test_cases = generate_test_cases('', m, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(TEXT, test_case) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(TEXT, test_case) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("m") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def main(): done = False print("m = Length of pattern\nn = Length of text\n") print("1. Constant m, vary n") print("2. Constant n, vary m") print("3. Quit\n") while not done: choice = input("Your choice: ") if choice == '1': max_n = input("Upper limit of n: ") while not (max_n.isnumeric() and int(max_n) > 1): print("That is not a valid number.") max_n = input("Upper limit of n: ") vary_n(int(max_n)) elif choice == '2': max_m = input("Upper limit of m: ") while not (max_m.isnumeric() and int(max_m) > 1): print("That is not a valid number.") max_m = input("Upper limit of m: ") vary_m(int(max_m)) elif choice == '3': done = True else: print("That is not a valid option.") if __name__ == '__main__': main()
3.671875
4
TSIS_3/3774.py
GMKanat/PP2_spring
0
6485
ans = dict() pairs = dict() def create_tree(p): if p in ans: return ans[p] else: try: res = 0 if p in pairs: for ch in pairs[p]: res += create_tree(ch) + 1 ans[p] = res return res except: pass n = int(input()) for i in range(0, n-1): child, parent = input().split() if parent in pairs: pairs[parent].append(child) else: pairs[parent] = [child] if n > 0: for k in pairs: create_tree(k) for key in sorted(ans.keys()): print(key, ans[key])
3.53125
4
italicizer.py
Dorijan-Cirkveni/Miniprojects
0
6486
def italicize(s): b = False res = '' for e in s: if e == '"': if b: res += '{\\i}' + e else: res += e + '{i}' b=not b else: res += e return res def main(): F=open('test_in.txt','r') X=F.read() F.close() print(italicize(X)) return if __name__ == "__main__": main()
3.859375
4
maps/views.py
WPRDC/neighborhood-simulacrum
0
6487
import json from typing import Type, TYPE_CHECKING from django.core.exceptions import ObjectDoesNotExist from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework import viewsets, filters from rest_framework.exceptions import NotFound from rest_framework.negotiation import BaseContentNegotiation from rest_framework.permissions import IsAuthenticatedOrReadOnly, AllowAny from rest_framework.request import Request from rest_framework.response import Response from rest_framework.views import APIView from indicators.models import Variable, DataViz from indicators.utils import get_geog_model from indicators.views import GeoJSONRenderer from maps.models import DataLayer from maps.serializers import DataLayerSerializer, DataLayerDetailsSerializer from profiles.settings import VIEW_CACHE_TTL if TYPE_CHECKING: from geo.models import AdminRegion from indicators.models.viz import MiniMap class DataLayerViewSet(viewsets.ModelViewSet): queryset = DataLayer.objects.all() serializer_class = DataLayerSerializer permission_classes = [IsAuthenticatedOrReadOnly, ] filter_backends = [filters.SearchFilter, ] def get_serializer_class(self): if self.action == 'list': return DataLayerSerializer return DataLayerDetailsSerializer media_type = 'application/geo+json' format = 'geojson' def render(self, data, media_type=None, renderer_context=None): return json.dumps(data) class GeoJSONContentNegotiation(BaseContentNegotiation): """ Custom content negotiation scheme for GeoJSON files. `GeoJSONRenderer` is used for downloading geojson files `JSONRenderer` is used for ajax calls. """ def select_parser(self, request, parsers): return super(GeoJSONContentNegotiation, self).select_parser(request, parsers) def select_renderer(self, request: Request, renderers, format_suffix=None): renderer = renderers[0] if request.query_params.get('download', False): renderer = GeoJSONRenderer() return renderer, renderer.media_type class GeoJSONDataLayerView(APIView): permission_classes = [AllowAny, ] content_negotiation_class = GeoJSONContentNegotiation @method_decorator(cache_page(VIEW_CACHE_TTL)) def get(self, request: Request, map_slug=None): try: data_layer: DataLayer = DataLayer.objects.get(slug=map_slug) geojson = data_layer.as_geojson() except KeyError as e: # when the geog is wrong todo: make 400 malformed with info on available geo types raise NotFound except ObjectDoesNotExist as e: raise NotFound if request.query_params.get('download', False): headers = { 'Content-Disposition': f'attachment; filename="{map_slug}.geojson"' } return Response(geojson, headers=headers, content_type='application/geo+json') return Response(geojson)
1.851563
2
magma/operators.py
Kuree/magma
0
6488
from magma import _BitType, BitType, BitsType, UIntType, SIntType class MantleImportError(RuntimeError): pass class UndefinedOperatorError(RuntimeError): pass def raise_mantle_import_error_unary(self): raise MantleImportError( "Operators are not defined until mantle has been imported") def raise_mantle_import_error_binary(self, other): raise MantleImportError( "Operators are not defined until mantle has been imported") def define_raise_undefined_operator_error(type_str, operator, type_): if type_ == "unary": def wrapped(self): raise UndefinedOperatorError( f"{operator} is undefined for {type_str}") else: assert type_ == "binary" def wrapped(self, other): raise UndefinedOperatorError( f"{operator} is undefined for {type_str}") return wrapped for op in ("__eq__", "__ne__"): setattr(_BitType, op, raise_mantle_import_error_binary) for op in ( "__and__", "__or__", "__xor__", "__invert__", "__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): if op == "__invert__": setattr(_BitType, op, define_raise_undefined_operator_error("_BitType", op, "unary")) else: setattr( _BitType, op, define_raise_undefined_operator_error("_BitType", op, "binary")) for op in ("__and__", "__or__", "__xor__", "__invert__" ): if op == "__invert__": setattr(BitType, op, raise_mantle_import_error_unary) else: setattr(BitType, op, raise_mantle_import_error_binary) for op in ("__and__", "__or__", "__xor__", "__invert__", "__lshift__", "__rshift__", ): if op == "__invert__": setattr(BitsType, op, raise_mantle_import_error_unary) else: setattr(BitsType, op, raise_mantle_import_error_binary) for op in ("__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): setattr(BitsType, op, define_raise_undefined_operator_error("BitsType", op, "binary")) for op in ("__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): setattr(SIntType, op, raise_mantle_import_error_binary) setattr(UIntType, op, raise_mantle_import_error_binary)
2.53125
3
src/sultan/result.py
bquantump/sultan
0
6489
<gh_stars>0 import subprocess import sys import time import traceback from queue import Queue from sultan.core import Base from sultan.echo import Echo from threading import Thread class Result(Base): """ Class that encompasses the result of a POpen command. """ def __init__(self, process, commands, context, streaming=False, exception=None, halt_on_nonzero=False): super(Result, self).__init__() self._process = process self._commands = commands self._context = context self._exception = exception self.__echo = Echo() self._streaming = streaming self.rc = None self._halt_on_nonzero=halt_on_nonzero if process and streaming: self.is_complete = False self.__stdout = Queue() self.__stderr = Queue() self.__stdin = Queue() self._stdout_t = Thread(target=self.read_output, args=(process.stdout, self.__stdout)) self._stderr_t = Thread(target=self.read_output, args=(process.stderr, self.__stderr)) self._stdin_t = Thread(target=self.write_input) self._wait_t = Thread(target=self.wait_on_process) for t in (self._stdout_t, self._stderr_t, self._stdin_t, self._wait_t): t.daemon = True t.start() else: self.is_complete = True try: stdout, stderr = process.communicate() except: stdout, stderr = None, None try: self.rc = process.returncode except: pass self.__stdout = stdout.strip().splitlines() if stdout else [] self.__stderr = stderr.strip().splitlines() if stderr else [] if self._halt_on_nonzero and self.rc != 0: print(self.stderr) raise subprocess.CalledProcessError(self.rc, ''.join(self._commands), self.stderr) # self.dump_exception() def read_output(self, pipe, q): for line in iter(pipe.readline, b''): if line: q.put(line.strip()) elif self.is_complete: break else: time.sleep(0.1) pipe.close() def write_input(self): for line in iter(self.__stdin.get, None): if line.endswith("\n"): self._process.stdin.write(line) else: self._process.stdin.write(line + "\n") def wait_on_process(self): self.rc = self._process.wait() self.__stdin.put(None) self.is_complete = True for t in (self._stdout_t, self._stderr_t, self._stdin_t): t.join() if self._halt_on_nonzero and self.rc != 0: self.dump_exception() sys.exit() def dump_exception(self): if not self._exception: try: raise subprocess.CalledProcessError(self.rc, ''.join(self._commands), self.stderr) except subprocess.CalledProcessError as e: self._exception = e self.__echo.critical("Unable to run '%s'" % self._commands) # traceback self.print_traceback() # standard out self.print_stdout() # standard error self.print_stderr() # print debug information self.__display_exception_debug_information() if self._halt_on_nonzero: raise self._exception def __display_exception_debug_information(self): def echo_debug_info(key): if self._context and len(self._context) > 0: self.__echo.warn("\t - %s: %s" % (key, self._context[0].get(key, 'N/A'))) self.__echo.warn("The following are additional information that can be used to debug this exception.") self.__echo.warn("The following is the context used to run:") echo_debug_info('cwd') echo_debug_info('sudo') echo_debug_info('user') echo_debug_info('hostname') echo_debug_info('env') echo_debug_info('logging') echo_debug_info('executable') echo_debug_info('ssh_config') echo_debug_info('src') def __str__(self): return '\n'.join(self.stdout) def __format_line(self, msg): return '| %s' % msg def __format_lines_error(self, lines): for line in lines: self.__echo.critical(self.__format_line(line)) def __format_lines_info(self, lines): for line in lines: self.__echo.info(self.__format_line(line)) @property def stdout(self): """ Converts stdout string to a list. """ if self._streaming: stdout = [] while not self.__stdout.empty(): try: line = self.__stdout.get_nowait() stdout.append(line) except: pass else: stdout = self.__stdout return stdout @property def stderr(self): """ Converts stderr string to a list. """ if self._streaming: stderr = [] while not self.__stderr.empty(): try: line = self.__stderr.get_nowait() stderr.append(line) except: pass else: stderr = self.__stderr return stderr def stdin(self, line): """ Sends input to stdin. """ if self._streaming: self.__stdin.put(line) @property def traceback(self): """ Converts traceback string to a list. """ if self._exception: return traceback.format_exc().split("\n") else: return [] @property def is_success(self): """ Returns if the result of the command was a success. True for success, False for failure. """ return self.is_complete and self.rc == 0 @property def is_failure(self): """ Returns if the result of the command was a failure. True for failure, False for succes. """ return self.is_complete and not self.rc == 0 @property def has_exception(self): ''' Returns True if self._exception is not empty. ''' return bool(self._exception) def print_stdout(self, always_print=False): """ Prints the stdout to console - if there is any stdout, otherwise does nothing. :param always_print: print the stdout, even if there is nothing in the buffer (default: false) """ if self.__stdout or always_print: self.__echo.info("---------------" + "-" * 100) self.__format_lines_info(self.stdout) self.__echo.info("---------------" + "-" * 100) def print_stderr(self, always_print=False): """ Prints the stderr to console - if there is any stdout, otherwise does nothing. :param always_print: print the stderr, even if there is nothing in the buffer (default: false) """ if self.__stderr or always_print: self.__echo.critical("--{ STDERR }---" + "-" * 100) self.__format_lines_error(self.stderr) self.__echo.critical("---------------" + "-" * 100) def print_traceback(self, always_print=False): """ Prints the traceback to console - if there is any traceback, otherwise does nothing. :param always_print: print the traceback, even if there is nothing in the buffer (default: false) """ if self._exception or always_print: self.__echo.critical("--{ TRACEBACK }" + "-" * 100) self.__format_lines_error(self.traceback) self.__echo.critical("---------------" + "-" * 100)
2.671875
3
great_expectations/cli/datasource.py
orenovadia/great_expectations
0
6490
<filename>great_expectations/cli/datasource.py<gh_stars>0 import os import click from .util import cli_message from great_expectations.render import DefaultJinjaPageView from great_expectations.version import __version__ as __version__ def add_datasource(context): cli_message( """ ========== Datasources ========== See <blue>https://docs.greatexpectations.io/en/latest/core_concepts/datasource.html?utm_source=cli&utm_medium=init&utm_campaign={0:s}</blue> for more information about datasources. """.format(__version__.replace(".", "_")) ) data_source_selection = click.prompt( msg_prompt_choose_data_source, type=click.Choice(["1", "2", "3", "4"]), show_choices=False ) cli_message(data_source_selection) if data_source_selection == "1": # pandas path = click.prompt( msg_prompt_filesys_enter_base_path, # default='/data/', type=click.Path( exists=False, file_okay=False, dir_okay=True, readable=True ), show_default=True ) if path.startswith("./"): path = path[2:] if path.endswith("/"): basenamepath = path[:-1] else: basenamepath = path default_data_source_name = os.path.basename(basenamepath) + "__dir" data_source_name = click.prompt( msg_prompt_datasource_name, default=default_data_source_name, show_default=True ) context.add_datasource(data_source_name, "pandas", base_directory=os.path.join("..", path)) elif data_source_selection == "2": # sqlalchemy data_source_name = click.prompt( msg_prompt_datasource_name, default="mydb", show_default=True) cli_message(msg_sqlalchemy_config_connection.format( data_source_name)) drivername = click.prompt("What is the driver for the sqlalchemy connection?", default="postgres", show_default=True) host = click.prompt("What is the host for the sqlalchemy connection?", default="localhost", show_default=True) port = click.prompt("What is the port for the sqlalchemy connection?", default="5432", show_default=True) username = click.prompt("What is the username for the sqlalchemy connection?", default="postgres", show_default=True) password = click.prompt("What is the password for the sqlalchemy connection?", default="", show_default=False, hide_input=True) database = click.prompt("What is the database name for the sqlalchemy connection?", default="postgres", show_default=True) credentials = { "drivername": drivername, "host": host, "port": port, "username": username, "password": password, "database": database } context.add_profile_credentials(data_source_name, **credentials) context.add_datasource( data_source_name, "sqlalchemy", profile=data_source_name) elif data_source_selection == "3": # Spark path = click.prompt( msg_prompt_filesys_enter_base_path, default='/data/', type=click.Path( exists=True, file_okay=False, dir_okay=True, readable=True ), show_default=True ) if path.startswith("./"): path = path[2:] if path.endswith("/"): basenamepath = path[:-1] default_data_source_name = os.path.basename(basenamepath) data_source_name = click.prompt( msg_prompt_datasource_name, default=default_data_source_name, show_default=True) context.add_datasource(data_source_name, "spark", base_directory=path) # if data_source_selection == "5": # dbt # dbt_profile = click.prompt(msg_prompt_dbt_choose_profile) # log_message(msg_dbt_go_to_notebook, color="blue") # context.add_datasource("dbt", "dbt", profile=dbt_profile) if data_source_selection == "4": # None of the above cli_message(msg_unknown_data_source) print("Skipping datasource configuration. You can add a datasource later by editing the great_expectations.yml file.") return None if data_source_name != None: cli_message( """ ========== Profiling ========== Would you like to profile '{0:s}' to create candidate expectations and documentation? Please note: As of v0.7.0, profiling is still a beta feature in Great Expectations. This generation of profilers will evaluate the entire data source (without sampling) and may be very time consuming. As a rule of thumb, we recommend starting with data smaller than 100MB. To learn more about profiling, visit <blue>https://docs.greatexpectations.io/en/latest/guides/profiling.html?utm_source=cli&utm_medium=init&utm_campaign={1:s}</blue>. """.format(data_source_name, __version__.replace(".", "_")) ) if click.confirm("Proceed?", default=True ): profiling_results = context.profile_datasource( data_source_name, max_data_assets=20 ) print("\nDone.\n\nProfiling results are saved here:") for profiling_result in profiling_results: data_asset_name = profiling_result[1]['meta']['data_asset_name'] expectation_suite_name = profiling_result[1]['meta']['expectation_suite_name'] run_id = profiling_result[1]['meta']['run_id'] print(" {0:s}".format(context.get_validation_location( data_asset_name, expectation_suite_name, run_id)['filepath'])) cli_message( """ ========== Data Documentation ========== To generate documentation from the data you just profiled, the profiling results should be moved from great_expectations/uncommitted (ignored by git) to great_expectations/fixtures. Before committing, please make sure that this data does not contain sensitive information! To learn more: <blue>https://docs.greatexpectations.io/en/latest/guides/data_documentation.html?utm_source=cli&utm_medium=init&utm_campaign={0:s}</blue> """.format(__version__.replace(".", "_")) ) if click.confirm("Move the profiled data and build HTML documentation?", default=True ): cli_message("\nMoving files...") for profiling_result in profiling_results: data_asset_name = profiling_result[1]['meta']['data_asset_name'] expectation_suite_name = profiling_result[1]['meta']['expectation_suite_name'] run_id = profiling_result[1]['meta']['run_id'] context.move_validation_to_fixtures( data_asset_name, expectation_suite_name, run_id) cli_message("\nDone.") cli_message("\nBuilding documentation...") context.render_full_static_site() cli_message( """ To view the generated data documentation, open this file in a web browser: <green>great_expectations/uncommitted/documentation/index.html</green> """) else: cli_message( "Okay, skipping HTML documentation for now.`." ) else: cli_message( "Okay, skipping profiling for now. You can always do this later by running `great_expectations profile`." ) if data_source_selection == "1": # Pandas cli_message(msg_filesys_go_to_notebook) elif data_source_selection == "2": # SQL cli_message(msg_sqlalchemy_go_to_notebook) elif data_source_selection == "3": # Spark cli_message(msg_spark_go_to_notebook) msg_prompt_choose_data_source = """ Configure a datasource: 1. Pandas DataFrame 2. Relational database (SQL) 3. Spark DataFrame 4. Skip datasource configuration """ # msg_prompt_dbt_choose_profile = """ # Please specify the name of the dbt profile (from your ~/.dbt/profiles.yml file Great Expectations \ # should use to connect to the database # """ # msg_dbt_go_to_notebook = """ # To create expectations for your dbt models start Jupyter and open notebook # great_expectations/notebooks/using_great_expectations_with_dbt.ipynb - # it will walk you through next steps. # """ msg_prompt_filesys_enter_base_path = """ Enter the path of the root directory where the data files are stored. (The path may be either absolute or relative to current directory.) """ msg_prompt_datasource_name = """ Give your new data source a short name. """ msg_sqlalchemy_config_connection = """ Great Expectations relies on sqlalchemy to connect to relational databases. Please make sure that you have it installed. Next, we will configure database credentials and store them in the "{0:s}" section of this config file: great_expectations/uncommitted/credentials/profiles.yml: """ msg_unknown_data_source = """ We are looking for more types of data types to support. Please create a GitHub issue here: https://github.com/great-expectations/great_expectations/issues/new In the meantime you can see what Great Expectations can do on CSV files. To create expectations for your CSV files start Jupyter and open notebook great_expectations/notebooks/using_great_expectations_with_pandas.ipynb - it will walk you through configuring the database connection and next steps. """ msg_filesys_go_to_notebook = """ To create expectations for your data, start Jupyter and open a tutorial notebook: To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """ msg_sqlalchemy_go_to_notebook = """ To create expectations for your data start Jupyter and open the notebook that will walk you through next steps. To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """ msg_spark_go_to_notebook = """ To create expectations for your data start Jupyter and open the notebook that will walk you through next steps. To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """
2.390625
2
python/crawler/downloader.py
rgb-24bit/code-library
0
6491
# -*- coding: utf-8 -*- """ Provide download function by request """ from datetime import datetime import logging import time import urllib.parse import requests from bs4 import BeautifulSoup class Throttle(object): """Throttle downloading by sleeping between requests to same domain.""" def __init__(self, delay): # amount of delay between downloads for each domain self.delay = delay # timestamp of when a domain was last accessed self.domains = {} def wait(self, url): domain = urllib.parse.urlparse(url).netloc last_accessed = self.domains.get(domain) if self.delay > 0 and last_accessed is not None: sleep_secs = self.delay - (datetime.now() - last_accessed).seconds if sleep_secs > 0: time.sleep(sleep_secs) self.domains[domain] = datetime.now() class Downloader(object): """Convenient download of web pages or caller to call api. Args: delay: Interval between downloads (seconds) num_retries: Number of retries when downloading errors timeout: Download timeout """ def __init__(self, delay=5, user_agent='awsl', proxies=None, num_retries=1, timeout=60, cache=None, auth=None): self.session = requests.Session() self.session.headers.update({'user-agent': user_agent}) self.session.proxies = proxies self.session.auth = auth self.throttle = Throttle(delay) self.num_retries = num_retries self.timeout = timeout self.cache = cache def get_from_cache(self, request): """Try to get the result of the request from the cache.""" result = None if self.cache: result = self.cache.get(request.url) if result and self.num_retries > 0 and 500 <= result['code'] < 600: result = None return result def prepare_request(self, url, params=None): """Build requests based on the provided url and parameters.""" request = requests.Request('GET', url, params=params) return self.session.prepare_request(request) def send_request(self, request, num_retries): """Send request and return response object.""" self.throttle.wait(request.url) try: logging.info('Downloading: %s' % request.url) response = self.session.send(request, timeout=self.timeout) response.raise_for_status() except requests.exceptions.HTTPError as e: logging.warn('Download error: %s' % e) if num_retries > 0 and 500 <= response.status_code < 600: return self.send_request(request, num_retries - 1) except requests.exceptions.RequestException: logging.error('Download faild: %s' % request.url) response = None return response def text(self, url, params=None, encoding=None): """Download web content in text format or html.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: if encoding: response.encoding = encoding result = {'text': response.text, 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['text'] def json(self, url, params=None): """Access the api and return the json object.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: result = {'json': response.json(), 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['json']
3.328125
3
medium/151.py
pisskidney/leetcode
0
6492
#!/usr/bin/python class Solution(object): def reverseWords(self, s): if s == '': return s res = [] i = len(s) - 2 while i >= -1: if s[i] == ' ' or i == -1: word = '' j = i + 1 while j < len(s) and s[j] != ' ': word += s[j] j += 1 if word: res.append(word) i -= 1 return ' '.join(res) s = Solution() print s.reverseWords('a x')
3.65625
4
src/keycloak/connection.py
ecederstrand/python-keycloak
0
6493
# -*- coding: utf-8 -*- # # The MIT License (MIT) # # Copyright (C) 2017 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin import requests from requests.adapters import HTTPAdapter from .exceptions import KeycloakConnectionError class ConnectionManager(object): """ Represents a simple server connection. :param base_url: (str) The server URL. :param headers: (dict) The header parameters of the requests to the server. :param timeout: (int) Timeout to use for requests to the server. :param verify: (bool) Verify server SSL. :param proxies: (dict) The proxies servers requests is sent by. """ def __init__(self, base_url, headers={}, timeout=60, verify=True, proxies=None): self._base_url = base_url self._headers = headers self._timeout = timeout self._verify = verify self._s = requests.Session() self._s.auth = lambda x: x # don't let requests add auth headers # retry once to reset connection with Keycloak after tomcat's ConnectionTimeout # see https://github.com/marcospereirampj/python-keycloak/issues/36 for protocol in ("https://", "http://"): adapter = HTTPAdapter(max_retries=1) # adds POST to retry whitelist allowed_methods = set(adapter.max_retries.allowed_methods) allowed_methods.add("POST") adapter.max_retries.allowed_methods = frozenset(allowed_methods) self._s.mount(protocol, adapter) if proxies: self._s.proxies.update(proxies) def __del__(self): self._s.close() @property def base_url(self): """Return base url in use for requests to the server.""" return self._base_url @base_url.setter def base_url(self, value): """ """ self._base_url = value @property def timeout(self): """Return timeout in use for request to the server.""" return self._timeout @timeout.setter def timeout(self, value): """ """ self._timeout = value @property def verify(self): """Return verify in use for request to the server.""" return self._verify @verify.setter def verify(self, value): """ """ self._verify = value @property def headers(self): """Return header request to the server.""" return self._headers @headers.setter def headers(self, value): """ """ self._headers = value def param_headers(self, key): """ Return a specific header parameter. :param key: (str) Header parameters key. :returns: If the header parameters exist, return its value. """ return self.headers.get(key) def clean_headers(self): """Clear header parameters.""" self.headers = {} def exist_param_headers(self, key): """Check if the parameter exists in the header. :param key: (str) Header parameters key. :returns: If the header parameters exist, return True. """ return self.param_headers(key) is not None def add_param_headers(self, key, value): """Add a single parameter inside the header. :param key: (str) Header parameters key. :param value: (str) Value to be added. """ self.headers[key] = value def del_param_headers(self, key): """Remove a specific parameter. :param key: (str) Key of the header parameters. """ self.headers.pop(key, None) def raw_get(self, path, **kwargs): """Submit get request to the path. :param path: (str) Path for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.get( urljoin(self.base_url, path), params=kwargs, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_post(self, path, data, **kwargs): """Submit post request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.post( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_put(self, path, data, **kwargs): """Submit put request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.put( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_delete(self, path, data={}, **kwargs): """Submit delete request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.delete( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e)
2.078125
2
2020/23.py
Valokoodari/advent-of-code
2
6494
<gh_stars>1-10 #!venv/bin/python3 cs = [int(c) for c in open("inputs/23.in", "r").readline().strip()] def f(cs, ts): p,cc = {n: cs[(i+1)%len(cs)] for i,n in enumerate(cs)},cs[-1] for _ in range(ts): cc,dc = p[cc],p[cc]-1 if p[cc]-1 > 0 else max(p.keys()) hc,p[cc] = [p[cc], p[p[cc]], p[p[p[cc]]]],p[p[p[p[cc]]]] while dc in hc: dc -= 1 if dc < 1: dc = max(p.keys()) p[dc],p[hc[-1]] = hc[0],p[dc] a,n = [],1 for _ in range(8): n = p[n] a.append(str(n)) return "".join(a), p[1] * p[p[1]] print("Part 1:", f(cs.copy(), 100)[0]) print("Part 2:", f(cs.copy() + [i for i in range(10, 1000001)], 10000000)[1])
2.234375
2
run.py
jakewright/home-automation-device-registry
15
6495
<gh_stars>10-100 # Import the application from device_registry import app # Run the application in debug mode app.run(host='0.0.0.0', port=int(app.config['PORT']), debug=True)
1.617188
2
dvc/utils/stage.py
Abrosimov-a-a/dvc
0
6496
import yaml from ruamel.yaml import YAML from ruamel.yaml.error import YAMLError try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader from dvc.exceptions import StageFileCorruptedError from dvc.utils.compat import open def load_stage_file(path): with open(path, "r", encoding="utf-8") as fd: return parse_stage(fd.read(), path) def parse_stage(text, path): try: return yaml.load(text, Loader=SafeLoader) or {} except yaml.error.YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def parse_stage_for_update(text, path): """Parses text into Python structure. Unlike `parse_stage()` this returns ordered dicts, values have special attributes to store comments and line breaks. This allows us to preserve all of those upon dump. This one is, however, several times slower than simple `parse_stage()`. """ try: yaml = YAML() return yaml.load(text) or {} except YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def dump_stage_file(path, data): with open(path, "w", encoding="utf-8") as fd: yaml = YAML() yaml.default_flow_style = False yaml.dump(data, fd)
2.609375
3
CAMPODETIRO/test.py
Arguel/old-projects
0
6497
entrada = input("palabra") listaDeLetras = [] for i in entrada: listaDeLetras.append(i)
3.6875
4
demos/nn_classification_demo.py
fire-breathing-rubber-lemons/cs207-FinalProject
0
6498
import numpy as np from pyad.nn import NeuralNet from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split np.random.seed(0) data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split( data.data, data.target, train_size=0.8, random_state=0 ) nn = NeuralNet(loss_fn='cross_entropy') nn.add_layer(X_train.shape[1], 100, activation='linear') nn.add_layer(100, 100, activation='logistic') nn.add_layer(100, 1 + np.max(y_train), activation='linear') nn.train( X_train, y_train, X_test, y_test, batch_size=1, learning_rate=1e-3, epochs=20 ) print('Predictions:', nn.predict(X_test))
3.109375
3
mgatemp.py
zobclub/chapter8
1
6499
from microbit import * I2CADR = 0x0E DIE_TEMP = 0x0F while True: i2c.write(I2CADR, bytearray([DIE_TEMP])) d = i2c.read(I2CADR, 1) x = d[0] if x >=128: x -= 256 x += 10 print(x) sleep(500)
2.78125
3