max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
yolox/data/datasets/mot.py
ldelzott/ByteTrack
0
5800
import cv2 import numpy as np from pycocotools.coco import COCO import os from ..dataloading import get_yolox_datadir from .datasets_wrapper import Dataset class MOTDataset(Dataset): """ COCO dataset class. """ def __init__( # This function is called in the exps yolox_x_mot17_half.py in this way: dataset = MOTDataset( # data_dir=os.path.join(get_yolox_datadir(), "mot"), # json_file=self.train_ann, # name='train', # img_size=self.input_size, # preproc=TrainTransform(rgb_means=(0.485, 0.456, 0.406), # std=(0.229, 0.224, 0.225), # max_labels=500,),) self, data_dir=None, json_file="train_half.json", name="train", img_size=(608, 1088), preproc=None, ): """ COCO dataset initialization. Annotation data are read into memory by COCO API. Args: data_dir (str): dataset root directory json_file (str): COCO json file name name (str): COCO data name (e.g. 'train2017' or 'val2017') img_size (int): target image size after pre-processing preproc: data augmentation strategy """ super().__init__(img_size) if data_dir is None: data_dir = os.path.join(get_yolox_datadir(), "mot") self.data_dir = data_dir self.json_file = json_file self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file)) self.ids = self.coco.getImgIds() self.class_ids = sorted(self.coco.getCatIds()) cats = self.coco.loadCats(self.coco.getCatIds()) self._classes = tuple([c["name"] for c in cats]) self.annotations = self._load_coco_annotations() self.name = name self.img_size = img_size self.preproc = preproc def __len__(self): return len(self.ids) def _load_coco_annotations(self): return [self.load_anno_from_ids(_ids) for _ids in self.ids] def load_anno_from_ids(self, id_): im_ann = self.coco.loadImgs(id_)[0] width = im_ann["width"] height = im_ann["height"] #frame_id = im_ann["frame_id"] : the default value '1' avoid to break augmentation & evaluation processes frame_id = 1 #video_id = im_ann["video_id"] : the default value '1' avoid to break augmentation & evaluation processes video_id = 1 anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False) annotations = self.coco.loadAnns(anno_ids) objs = [] for obj in annotations: x1 = obj["bbox"][0] y1 = obj["bbox"][1] x2 = x1 + obj["bbox"][2] y2 = y1 + obj["bbox"][3] if obj["area"] > 0 and x2 >= x1 and y2 >= y1: obj["clean_bbox"] = [x1, y1, x2, y2] objs.append(obj) num_objs = len(objs) res = np.zeros((num_objs, 6)) for ix, obj in enumerate(objs): cls = self.class_ids.index(obj["category_id"]) res[ix, 0:4] = obj["clean_bbox"] res[ix, 4] = cls #res[ix, 5] = obj["track_id"] # See comment line 66; same comment for the default value 1 res[ix, 5] = 1 file_name = im_ann["file_name"] if "file_name" in im_ann else "{:012}".format(id_) + ".jpg" img_info = (height, width, frame_id, video_id, file_name) del im_ann, annotations return (res, img_info, file_name) def load_anno(self, index): return self.annotations[index][0] def pull_item(self, index): id_ = self.ids[index] res, img_info, file_name = self.annotations[index] # load image and preprocess img_file = os.path.join( self.data_dir, self.name, file_name ) img = cv2.imread(img_file) assert img is not None return img, res.copy(), img_info, np.array([id_]) @Dataset.resize_getitem def __getitem__(self, index): """ One image / label pair for the given index is picked up and pre-processed. Args: index (int): data index Returns: img (numpy.ndarray): pre-processed image padded_labels (torch.Tensor): pre-processed label data. The shape is :math:`[max_labels, 5]`. each label consists of [class, xc, yc, w, h]: class (float): class index. xc, yc (float) : center of bbox whose values range from 0 to 1. w, h (float) : size of bbox whose values range from 0 to 1. info_img : tuple of h, w, nh, nw, dx, dy. h, w (int): original shape of the image nh, nw (int): shape of the resized image without padding dx, dy (int): pad size img_id (int): same as the input index. Used for evaluation. """ img, target, img_info, img_id = self.pull_item(index) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) return img, target, img_info, img_id
2.703125
3
src/poetry/console/commands/remove.py
pkoch/poetry
0
5801
<reponame>pkoch/poetry from __future__ import annotations from typing import Any from cleo.helpers import argument from cleo.helpers import option from tomlkit.toml_document import TOMLDocument try: from poetry.core.packages.dependency_group import MAIN_GROUP except ImportError: MAIN_GROUP = "default" from poetry.console.commands.installer_command import InstallerCommand class RemoveCommand(InstallerCommand): name = "remove" description = "Removes a package from the project dependencies." arguments = [argument("packages", "The packages to remove.", multiple=True)] options = [ option("group", "G", "The group to remove the dependency from.", flag=False), option("dev", "D", "Remove a package from the development dependencies."), option( "dry-run", None, "Output the operations but do not execute anything " "(implicitly enables --verbose).", ), ] help = """The <info>remove</info> command removes a package from the current list of installed packages <info>poetry remove</info>""" loggers = ["poetry.repositories.pypi_repository", "poetry.inspection.info"] def handle(self) -> int: packages = self.argument("packages") if self.option("dev"): self.line_error( "<warning>The --dev option is deprecated, " "use the `--group dev` notation instead.</warning>" ) group = "dev" else: group = self.option("group", self.default_group) content: dict[str, Any] = self.poetry.file.read() poetry_content = content["tool"]["poetry"] if group is None: removed = [] group_sections = [ (group_name, group_section.get("dependencies", {})) for group_name, group_section in poetry_content.get("group", {}).items() ] for group_name, section in [ (MAIN_GROUP, poetry_content["dependencies"]) ] + group_sections: removed += self._remove_packages(packages, section, group_name) if group_name != MAIN_GROUP: if not section: del poetry_content["group"][group_name] else: poetry_content["group"][group_name]["dependencies"] = section elif group == "dev" and "dev-dependencies" in poetry_content: # We need to account for the old `dev-dependencies` section removed = self._remove_packages( packages, poetry_content["dev-dependencies"], "dev" ) if not poetry_content["dev-dependencies"]: del poetry_content["dev-dependencies"] else: removed = self._remove_packages( packages, poetry_content["group"][group].get("dependencies", {}), group ) if not poetry_content["group"][group]: del poetry_content["group"][group] if "group" in poetry_content and not poetry_content["group"]: del poetry_content["group"] removed_set = set(removed) not_found = set(packages).difference(removed_set) if not_found: raise ValueError( "The following packages were not found: " + ", ".join(sorted(not_found)) ) # Refresh the locker self.poetry.set_locker( self.poetry.locker.__class__(self.poetry.locker.lock.path, poetry_content) ) self._installer.set_locker(self.poetry.locker) # Update packages self._installer.use_executor( self.poetry.config.get("experimental.new-installer", False) ) self._installer.dry_run(self.option("dry-run", False)) self._installer.verbose(self._io.is_verbose()) self._installer.update(True) self._installer.whitelist(removed_set) status = self._installer.run() if not self.option("dry-run") and status == 0: assert isinstance(content, TOMLDocument) self.poetry.file.write(content) return status def _remove_packages( self, packages: list[str], section: dict[str, Any], group_name: str ) -> list[str]: removed = [] group = self.poetry.package.dependency_group(group_name) section_keys = list(section.keys()) for package in packages: for existing_package in section_keys: if existing_package.lower() == package.lower(): del section[existing_package] removed.append(package) group.remove_dependency(package) return removed
2.109375
2
orrinjelo/aoc2021/day_11.py
orrinjelo/AdventOfCode2021
0
5802
<filename>orrinjelo/aoc2021/day_11.py from orrinjelo.utils.decorators import timeit import numpy as np def parse(lines): return np.array([[int(c) for c in line.strip()] for line in lines]) visited = [] def flash(a, x, y): global visited if (x,y) in visited: return for dx in range(-1,2): for dy in range(-1,2): if dx == 0 and dy == 0: continue if x+dx < 0 or x+dx >= a.shape[0]: continue if y+dy < 0 or y+dy >= a.shape[1]: continue a[x+dx, y+dy] += 1 visited.append((x,y)) if a[x+dx, y+dy] > 9: flash(a, x+dx, y+dy) def progress(a): global visited a += 1 x,y = np.where(a > 9) visited = [] for i in range(len(x)): flash(a,x[i],y[i]) count = np.sum(a > 9) # print('a:\n', a) a[a > 9] = 0 return a, count @timeit("Day 11 Part 1") def part1(input_str, use_rust=False): octomap = parse(input_str) total_count = 0 for i in range(100): octomap, count = progress(octomap) total_count += count return total_count @timeit("Day 11 Part 2") def part2(input_str, use_rust=False): octomap = parse(input_str) step = 0 while True: step += 1 octomap, count = progress(octomap) if count == octomap.shape[0]*octomap.shape[1]: break return step # = Test ================================================ inputlist = [ '5483143223', '2745854711', '5264556173', '6141336146', '6357385478', '4167524645', '2176841721', '6882881134', '4846848554', '5283751526', ] def test_part1(): # import matplotlib.pyplot as plt # plt.imshow(parse(inputlist)) # plt.show() assert part1(inputlist) == 1656 def test_part2(): assert part2(inputlist) == 195 import pygame import sys def plot(input_str): # octomap = parse(input_str) octomap = np.random.randint(0,9,(100,100)) pygame.init() clock = pygame.time.Clock() scale = 5 screen = pygame.display.set_mode((octomap.shape[0]*scale,octomap.shape[1]*scale)) surface = pygame.Surface((octomap.shape[0]*scale,octomap.shape[1]*scale)) frame = 0 history = [] for i in range(500): print('Generating frame #', i) octomap, _ = progress(octomap) history.append(np.copy(octomap)) input() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit(); sys.exit(); # erase the screen screen.fill((255,0,0)) try: octomap = history[frame] except: frame = 0 for i in range(octomap.shape[0]): for j in range(octomap.shape[1]): if octomap[i,j] == 0: brightness = 255 else: brightness = int(255.0 * octomap[i,j]/10.0) print(i*scale, j*scale, brightness) pygame.draw.rect( screen, (brightness,brightness,brightness), pygame.Rect(i*scale, j*scale, scale, scale) ) pygame.display.update() # surface.blit(screen, (0,0)) clock.tick(30) frame += 1
2.890625
3
exercise_2/exercise_2.1.py
lukaszbinden/ethz-iacv-2020
0
5803
camera_width = 640 camera_height = 480 film_back_width = 1.417 film_back_height = 0.945 x_center = 320 y_center = 240 P_1 = (-0.023, -0.261, 2.376) p_11 = P_1[0] p_12 = P_1[1] p_13 = P_1[2] P_2 = (0.659, -0.071, 2.082) p_21 = P_2[0] p_22 = P_2[1] p_23 = P_2[2] p_1_prime = (52, 163) x_1 = p_1_prime[0] y_1 = p_1_prime[1] p_2_prime = (218, 216) x_2 = p_2_prime[0] y_2 = p_2_prime[1] f = 1.378 k_x = camera_width / film_back_width k_y = camera_height / film_back_height # f_k_x = f * k_x f_k_x = f # f_k_y = f * k_y f_k_y = f u_1_prime = (x_1 - x_center) / k_x v_1_prime = (y_1 - y_center) / k_y u_2_prime = (x_2 - x_center) / k_x v_2_prime = (y_2 - y_center) / k_y c_1_prime = (f_k_x * p_21 + (p_13 - p_23) * u_2_prime - u_2_prime/u_1_prime * f_k_x * p_11) / (f_k_x * (1 - u_2_prime/u_1_prime)) c_2_prime = (f_k_y * p_22 - (p_23 - (p_13*u_1_prime - f_k_x*(p_11 - c_1_prime))/u_1_prime) * v_2_prime) / f_k_y c_2_prime_alt = (f_k_y * p_12 - (p_13 - (p_13*u_1_prime - f_k_x*(p_11 - c_1_prime))/u_1_prime) * v_1_prime) / f_k_y c_3_prime = p_13 - (f_k_x / u_1_prime) * (p_11 - c_1_prime) rho_1_prime = p_13 - c_3_prime rho_2_prime = p_23 - c_3_prime print(f"C' = ({c_1_prime}, {c_2_prime}, {c_3_prime})") print(f"c_2_prime_alt = {c_2_prime_alt}") print(f"rho_1_prime = {rho_1_prime}") print(f"rho_2_prime = {rho_2_prime}") print("------------------") r_11 = f_k_x * (p_11 - c_1_prime) r_12 = f_k_y * (p_12 - c_2_prime) r_13 = 1 * (p_13 - c_3_prime) l_11 = rho_1_prime * u_1_prime l_12 = rho_1_prime * v_1_prime l_13 = rho_1_prime * 1 print(f"L: ({l_11}, {l_12}, {l_13})") print(f"R: ({r_11}, {r_12}, {r_13})") print("------------------") r_21 = f_k_x * (p_21 - c_1_prime) r_22 = f_k_y * (p_22 - c_2_prime) r_23 = 1 * (p_23 - c_3_prime) l_21 = rho_2_prime * u_2_prime l_22 = rho_2_prime * v_2_prime l_23 = rho_2_prime * 1 print(f"L: ({l_11}, {l_12}, {l_13})") print(f"R: ({r_11}, {r_12}, {r_13})")
1.757813
2
services/train/single.py
paper2code/torch2vec-restful-service
2
5804
<reponame>paper2code/torch2vec-restful-service #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 26 19:15:34 2020 @author: deviantpadam """ import pandas as pd import numpy as np import concurrent.futures import os import tqdm from collections import Counter from torch2vec.data import DataPreparation from torch2vec.torch2vec import DM # train = pd.read_csv('/home/deviantpadam/Downloads/example.csv',delimiter='\t') # train = pd.read_csv('/home/deviantpadam/Downloads/example (1).csv') train = pd.read_csv('../data/suggest_dump.txt',delimiter='\t') def cleaner(train): sub=(train['subjects'].str.lower()).str.split(',',expand=True) sub.drop([2,3],axis=1,inplace=True) sub.columns = ['subject1','subject2'] sub.fillna('none',inplace=True) tasks = (train['tasks'].str.lower()).str.split(',',expand=True)[0] tasks.fillna('none',inplace=True) tasks.name = 'task' train = pd.concat([train,sub,tasks],axis=1).drop(['subjects','tasks'],axis=1) train.fillna('none',inplace=True) return train train = cleaner(train) corpus = train['authors']+' '+train['title']+' '+train['summary']+' '+train['subject1']+' '+train['subject2']+' '+train['task'] corpus.name = 'text' corpus = pd.concat([train['subject1'],train['subject2'],train['task'],corpus],axis=1) def phraser(corpus,workers=-1): if workers==-1: workers = os.cpu_count() chunks = np.array_split(corpus,workers) with concurrent.futures.ProcessPoolExecutor(workers) as executor: result = np.concatenate(list(tqdm.tqdm(executor.map(_add_bigrams,chunks),total=workers,desc='Phrasing using {} cores'.format(workers))),axis=0) executor.shutdown(wait=True) # result = _add_bigrams(data) global bigrams del bigrams return pd.DataFrame({'text':np.array(result)})['text'] def _add_bigrams(text): for idx in range(len(text)): length=len(text[idx])-1 word_count=0 while word_count<length: if text[idx][word_count]+' '+text[idx][word_count+1] in bigrams: text[idx][word_count] = text[idx][word_count]+' '+text[idx][word_count+1] text[idx].remove(text[idx][word_count+1]) length = len(text[idx])-1 # print(cor[i][j]+' '+cor[i][j+1]) word_count+=1 return text def _get_bigrams(corpus,min_count): text = np.copy(corpus) vocab = [word for sen in text for word in sen] ngram = [(i,j) for i,j in zip(vocab[:-1],vocab[1:])] freq = Counter(ngram) filterbi = [bigram for bigram in freq.most_common() if bigram[1]>min_count] bigrams = [" ".join(bigram[0]) for bigram in filterbi] return bigrams data = DataPreparation(corpus.reset_index(),f_size=3) data.tokenize() bigrams = _get_bigrams(data.corpus.values,min_count=700) data.corpus = phraser(data.corpus.values) bigrams = _get_bigrams(data.corpus.values,min_count=500) data.corpus = phraser(data.corpus.values) data.vocab_builder() doc, context, target_noise_ids = data.get_data(window_size=5,num_noise_words=10) model = DM(vec_dim=100,num_docs=len(data),num_words=data.vocab_size).cuda() num_workers = os.cpu_count() model.fit(doc_ids=doc,context=context,target_noise_ids=target_noise_ids,epochs=20,batch_size=8000,num_workers=num_workers) model.save_model(data.document_ids,data.args,file_name='weights')
2.6875
3
tests/sources/test_document_oereblex.py
geo-bl-ch/pyramid_oereb
0
5805
<reponame>geo-bl-ch/pyramid_oereb # -*- coding: utf-8 -*- import datetime import pytest import requests_mock from geolink_formatter.entity import Document, File from requests.auth import HTTPBasicAuth from pyramid_oereb.contrib.sources.document import OEREBlexSource from pyramid_oereb.lib.records.documents import DocumentRecord, LegalProvisionRecord from pyramid_oereb.lib.records.office import OfficeRecord from tests.mockrequest import MockParameter @pytest.mark.parametrize('valid,cfg', [ (True, { 'host': 'http://oereblex.example.com', 'language': 'de', 'canton': 'BL' }), (False, { 'language': 'de', 'canton': 'BL' }), (False, { 'host': 'http://oereblex.example.com', 'language': 'german', 'canton': 'BL' }), (False, { 'host': 'http://oereblex.example.com', 'language': 'de' }) ]) def test_init(valid, cfg): if valid: assert isinstance(OEREBlexSource(**cfg), OEREBlexSource) else: with pytest.raises(AssertionError): OEREBlexSource(**cfg) @pytest.mark.parametrize('key,language,result', [ ('official_title', None, None), ('municipality', None, 'Liestal'), ('municipality', 'de', {'de': 'Liestal'}) ]) def test_get_mapped_value(key, language, result): file_ = File('Test', '/api/attachments/1', 'main') document = Document(id='test', title='Test', category='main', doctype='decree', files=[file_], enactment_date=datetime.date.today(), subtype='Liestal', authority='Office') source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', mapping={'municipality': 'subtype'}) assert source._get_mapped_value(document, key, language=language) == result @pytest.mark.parametrize('i,document', [ (1, Document( id='doc1', title='Document 1', category='main', doctype='edict', authority='Office', files=[File('File 1', '/api/attachments/1', 'main')], enactment_date=datetime.date.today() )), (2, Document( id='doc2', title='Document 2', category='main', doctype='decree', authority='Office', files=[ File('File 2', '/api/attachments/2', 'main'), File('File 3', '/api/attachments/3', 'additional') ], enactment_date=datetime.date.today() )), (3, Document( id='doc1', title='Document 1', category='main', doctype='invalid', authority='Office', files=[File('File 1', '/api/attachments/1', 'main')], enactment_date=datetime.date.today() )), (4, Document( id='doc1', title='Document 1', category='main', doctype='decree', authority='Office', files=[], enactment_date=datetime.date.today() )) ]) def test_get_document_records(i, document): language = 'de' source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL') references = [ Document( id='ref', title='Reference', category='related', doctype='edict', authority='Office', files=[File('Reference file', '/api/attachments/4', 'main')], enactment_date=datetime.date.today() ) ] if i == 3: with pytest.raises(TypeError): source._get_document_records(document, language, references) elif i == 4: assert source._get_document_records(document, language, references) == [] else: records = source._get_document_records(document, language, references) assert len(records) == i for idx, record in enumerate(records): if i == 1: assert isinstance(record, DocumentRecord) elif i == 2: assert isinstance(record, LegalProvisionRecord) assert record.title == {'de': 'Document {0}'.format(i)} assert record.published_from == datetime.date.today() assert record.canton == 'BL' assert record.text_at_web == {'de': '/api/attachments/{fid}'.format(fid=i + idx)} assert len(record.references) == 1 reference = record.references[0] assert isinstance(reference, DocumentRecord) assert reference.title == {'de': 'Reference'} assert reference.canton == 'BL' assert reference.text_at_web == {'de': '/api/attachments/4'} def test_read(): with requests_mock.mock() as m: with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f: m.get('http://oereblex.example.com/api/geolinks/100.xml', content=f.read()) source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL') source.read(MockParameter(), 100) assert len(source.records) == 2 document = source.records[0] assert isinstance(document, DocumentRecord) assert isinstance(document.responsible_office, OfficeRecord) assert document.responsible_office.name == {'de': 'Landeskanzlei'} assert document.canton == 'BL' assert document.text_at_web == { 'de': 'http://oereblex.example.com/api/attachments/313' } assert len(document.references) == 5 def test_read_related_decree_as_main(): with requests_mock.mock() as m: with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f: m.get('http://oereblex.example.com/api/geolinks/100.xml', content=f.read()) source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', related_decree_as_main=True) source.read(MockParameter(), 100) assert len(source.records) == 3 document = source.records[0] assert isinstance(document, DocumentRecord) assert isinstance(document.responsible_office, OfficeRecord) assert document.responsible_office.name == {'de': 'Landeskanzlei'} assert document.canton == 'BL' assert document.text_at_web == { 'de': 'http://oereblex.example.com/api/attachments/313' } assert len(document.references) == 4 def test_read_with_version_in_url(): with requests_mock.mock() as m: with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f: m.get('http://oereblex.example.com/api/1.1.1/geolinks/100.xml', content=f.read()) source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', pass_version=True) source.read(MockParameter(), 100) assert len(source.records) == 2 def test_read_with_specified_version(): with requests_mock.mock() as m: with open('./tests/resources/geolink_v1.0.0.xml', 'rb') as f: m.get('http://oereblex.example.com/api/1.0.0/geolinks/100.xml', content=f.read()) source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', pass_version=True, version='1.0.0') source.read(MockParameter(), 100) assert len(source.records) == 2 def test_read_with_specified_language(): with requests_mock.mock() as m: with open('./tests/resources/geolink_v1.1.1.xml', 'rb') as f: m.get('http://oereblex.example.com/api/geolinks/100.xml?locale=fr', content=f.read()) source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL') params = MockParameter() params.set_language('fr') source.read(params, 100) assert len(source.records) == 2 document = source.records[0] assert document.responsible_office.name == {'fr': 'Landeskanzlei'} assert document.text_at_web == { 'fr': 'http://oereblex.example.com/api/attachments/313' } def test_authentication(): auth = { 'username': 'test', 'password': '<PASSWORD>' } source = OEREBlexSource(host='http://oereblex.example.com', language='de', canton='BL', auth=auth) assert isinstance(source._auth, HTTPBasicAuth) def test_get_document_title(): document = Document([], id='1', title='Test') result = {'de': 'Test'} assert OEREBlexSource._get_document_title(document, File(), 'de') == result
2.125
2
apps/zsh/singletons.py
codecat555/codecat555-fidgetingbits_knausj_talon
4
5806
<reponame>codecat555/codecat555-fidgetingbits_knausj_talon<filename>apps/zsh/singletons.py # A rarely-updated module to assist in writing reload-safe talon modules using # things like threads, which are not normally safe for reloading with talon. # If this file is ever updated, you'll need to restart talon. import logging _singletons = {} def singleton(fn): name = f"{fn.__module__}.{fn.__name__}" # Do any cleanup actions from before. if name in _singletons: old = _singletons.pop(name) try: next(old) except StopIteration: pass else: logging.error( f"the old @singleton function {name} had more than one yield!" ) # Do the startup actions on the new object. it = iter(fn()) obj = next(it) # Remember the iterator so we can call the cleanup actions later. _singletons[name] = it # We want the object yielded by the iterator to be available at the name # of the function, so instead of returning a function we return an object. return obj
2.375
2
trainNN/run_bichrom.py
yztxwd/Bichrom
3
5807
import argparse import yaml from subprocess import call from train import train_bichrom if __name__ == '__main__': # parsing parser = argparse.ArgumentParser(description='Train and Evaluate Bichrom') parser.add_argument('-training_schema_yaml', required=True, help='YAML file with paths to train, test and val data') parser.add_argument('-len', help='Size of genomic windows', required=True, type=int) parser.add_argument('-outdir', required=True, help='Output directory') parser.add_argument('-nbins', type=int, required=True, help='Number of bins') args = parser.parse_args() # load the yaml file with input data paths: with open(args.training_schema_yaml, 'r') as f: try: data_paths = yaml.safe_load(f) except yaml.YAMLError as exc: print(exc) # create the output directory: outdir = args.outdir call(['mkdir', outdir]) train_bichrom(data_paths=data_paths, outdir=outdir, seq_len=args.len, bin_size=int(args.len/args.nbins))
2.609375
3
setup.py
Fronius-SED/rapidyaml
0
5808
<reponame>Fronius-SED/rapidyaml #!/usr/bin/env python3 # -*- coding: utf-8 -*- # SPDX-License-Identifier: MIT import os import shutil import sys from pathlib import Path from distutils import log from setuptools import setup from setuptools.command.sdist import sdist as SdistCommand from cmake_build_extension import BuildExtension, CMakeExtension TOP_DIR = (Path(__file__).parent).resolve() # Where the Python library is actually found. PYTHON_DIR = "api/python" setup_kw = {} # Read in the package version when not in a git repository. VERSION_FILE = os.path.join(PYTHON_DIR, 'ryml', 'version.py') if not (TOP_DIR / '.git').exists() and os.path.exists(VERSION_FILE): exec(open(VERSION_FILE).read()) setup_kw['version'] = version else: setup_kw['use_scm_version']= { "version_scheme": "post-release", "local_scheme": "no-local-version", "write_to": VERSION_FILE, } # Read in the module description from the README.md file. README_FILE = TOP_DIR / "README.md" if README_FILE.exists(): with open(TOP_DIR / "README.md", "r") as fh: setup_kw['long_description'] = fh.read() setup_kw['long_description_content_type'] = "text/markdown" # define a CMake package cmake_args = dict( name='ryml.ryml', install_prefix='', source_dir='', cmake_component='python', cmake_configure_options=[ "-DRYML_BUILD_API:BOOL=ON", # Force cmake to use the Python interpreter we are currently using to # run setup.py "-DPython3_EXECUTABLE:FILEPATH="+sys.executable, ], ) try: ext = CMakeExtension(**cmake_args) except TypeError: del cmake_args['cmake_component'] ext = CMakeExtension(**cmake_args) # If the CMakeExtension doesn't support `cmake_component` then we have to # do some manual cleanup. _BuildExtension=BuildExtension class BuildExtension(_BuildExtension): def build_extension(self, ext): _BuildExtension.build_extension(self, ext) ext_dir = Path(self.get_ext_fullpath(ext.name)).parent.absolute() cmake_install_prefix = ext_dir / ext.install_prefix assert cmake_install_prefix.exists(), cmake_install_prefix try: lib_path = cmake_install_prefix / "lib" assert lib_path.exists(), lib_path log.info("Removing everything under: %s", lib_path) shutil.rmtree(lib_path) inc_path = cmake_install_prefix / "include" assert inc_path.exists(), inc_path log.info("Removing everything under: %s", inc_path) shutil.rmtree(inc_path) # Windows only cm_path = cmake_install_prefix / "cmake" if cm_path.exists(): log.info("Removing everything under: %s", cm_path) shutil.rmtree(cm_path) except: log.info('Found following installed files:') for f in cmake_install_prefix.rglob("*"): log.info(' - %s', f) raise setup( # Package human readable information name='rapidyaml', #author='<NAME>', description='Rapid YAML - a library to parse and emit YAML, and do it fast.', url='https://github.com/biojppm/rapidyaml', license='MIT', license_files=['LICENSE.txt'], # Package contents control cmdclass={ "build_ext": BuildExtension, }, package_dir={"": PYTHON_DIR}, packages=['ryml'], ext_modules=[ext], include_package_data=True, # Requirements python_requires=">=3.7", setup_requires=['setuptools_scm'], # Extra arguments **setup_kw, )
1.632813
2
litex_boards/targets/digilent_arty_z7.py
machdyne/litex-boards
0
5809
<filename>litex_boards/targets/digilent_arty_z7.py #!/usr/bin/env python3 # # This file is part of LiteX-Boards. # # Copyright (c) 2021 <NAME> <<EMAIL>> # SPDX-License-Identifier: BSD-2-Clause import argparse import subprocess from migen import * from litex_boards.platforms import digilent_arty_z7 from litex.build import tools from litex.build.xilinx import common as xil_common from litex.build.xilinx.vivado import vivado_build_args, vivado_build_argdict from litex.soc.interconnect import axi from litex.soc.interconnect import wishbone from litex.soc.cores.clock import * from litex.soc.integration.soc_core import * from litex.soc.integration.soc import SoCRegion from litex.soc.integration.builder import * from litex.soc.cores.led import LedChaser # CRG ---------------------------------------------------------------------------------------------- class _CRG(Module): def __init__(self, platform, sys_clk_freq, use_ps7_clk=False): self.rst = Signal() self.clock_domains.cd_sys = ClockDomain() # # # if use_ps7_clk: self.comb += ClockSignal("sys").eq(ClockSignal("ps7")) self.comb += ResetSignal("sys").eq(ResetSignal("ps7") | self.rst) else: # Clk. clk125 = platform.request("clk125") # PLL. self.submodules.pll = pll = S7PLL(speedgrade=-1) self.comb += pll.reset.eq(self.rst) pll.register_clkin(clk125, 125e6) pll.create_clkout(self.cd_sys, sys_clk_freq) # Ignore sys_clk to pll.clkin path created by SoC's rst. platform.add_false_path_constraints(self.cd_sys.clk, pll.clkin) # BaseSoC ------------------------------------------------------------------------------------------ class BaseSoC(SoCCore): def __init__(self, variant="z7-20", toolchain="vivado", sys_clk_freq=int(125e6), with_led_chaser=True, **kwargs): platform = digilent_arty_z7.Platform(variant=variant, toolchain=toolchain) if kwargs.get("cpu_type", None) == "zynq7000": kwargs['integrated_sram_size'] = 0 kwargs['with_uart'] = False self.mem_map = { 'csr': 0x4000_0000, # Zynq GP0 default } # SoCCore ---------------------------------------------------------------------------------- SoCCore.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on Arty Z7", **kwargs) # Zynq7000 Integration --------------------------------------------------------------------- if kwargs.get("cpu_type", None) == "zynq7000": assert toolchain == "vivado", ' not tested / specific vivado cmds' preset_name = "arty_z7_20.tcl" if variant == "z7-20" else "arty_z7_10.tcl" os.system("wget http://kmf2.trabucayre.com/" + preset_name) self.cpu.set_ps7(preset=preset_name) # Connect AXI GP0 to the SoC wb_gp0 = wishbone.Interface() self.submodules += axi.AXI2Wishbone( axi = self.cpu.add_axi_gp_master(), wishbone = wb_gp0, base_address = self.mem_map['csr']) self.add_wb_master(wb_gp0) use_ps7_clk = True else: use_ps7_clk = False # CRG -------------------------------------------------------------------------------------- self.submodules.crg = _CRG(platform, sys_clk_freq, use_ps7_clk) # Leds ------------------------------------------------------------------------------------- if with_led_chaser: self.submodules.leds = LedChaser( pads = platform.request_all("user_led"), sys_clk_freq = sys_clk_freq) # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on Arty Z7") parser.add_argument("--toolchain", default="vivado", help="FPGA toolchain (vivado, symbiflow or yosys+nextpnr).") parser.add_argument("--build", action="store_true", help="Build bitstream.") parser.add_argument("--load", action="store_true", help="Load bitstream.") parser.add_argument("--variant", default="z7-20", help="Board variant (z7-20 or z7-10).") parser.add_argument("--sys-clk-freq", default=125e6, help="System clock frequency.") builder_args(parser) soc_core_args(parser) vivado_build_args(parser) parser.set_defaults(cpu_type="zynq7000") args = parser.parse_args() soc = BaseSoC( variant = args.variant, toolchain = args.toolchain, sys_clk_freq=int(float(args.sys_clk_freq)), **soc_core_argdict(args) ) builder = Builder(soc, **builder_argdict(args)) builder_kwargs = vivado_build_argdict(args) if args.toolchain == "vivado" else {} builder.build(**builder_kwargs, run=args.build) if args.load: prog = soc.platform.create_programmer() prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit")) if __name__ == "__main__": main()
1.710938
2
goose/parsers.py
allmalaysianews/article-extractor
0
5810
# -*- coding: utf-8 -*- """\ This is a python port of "Goose" orignialy licensed to Gravity.com under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Python port was written by <NAME> Gravity.com licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import lxml.html as lxmlhtml from lxml.html import soupparser from lxml import etree from copy import deepcopy from goose.text import innerTrim from goose.text import encodeValue class Parser(object): @classmethod def xpath_re(self, node, expression): regexp_namespace = "http://exslt.org/regular-expressions" items = node.xpath(expression, namespaces={'re': regexp_namespace}) return items @classmethod def drop_tag(self, nodes): if isinstance(nodes, list): for node in nodes: node.drop_tag() else: nodes.drop_tag() @classmethod def css_select(self, node, selector): return node.cssselect(selector) @classmethod def fromstring(self, html): html = encodeValue(html) self.doc = lxmlhtml.fromstring(html) return self.doc @classmethod def nodeToString(self, node): return etree.tostring(node) @classmethod def replaceTag(self, node, tag): node.tag = tag @classmethod def stripTags(self, node, *tags): etree.strip_tags(node, *tags) @classmethod def getElementById(self, node, idd): selector = '//*[@id="%s"]' % idd elems = node.xpath(selector) if elems: return elems[0] return None @classmethod def getElementsByTag(self, node, tag=None, attr=None, value=None, childs=False): NS = "http://exslt.org/regular-expressions" # selector = tag or '*' selector = 'descendant-or-self::%s' % (tag or '*') if attr and value: selector = '%s[re:test(@%s, "%s", "i")]' % (selector, attr, value) elems = node.xpath(selector, namespaces={"re": NS}) # remove the root node # if we have a selection tag if node in elems and (tag or childs): elems.remove(node) return elems @classmethod def appendChild(self, node, child): node.append(child) @classmethod def childNodes(self, node): return list(node) @classmethod def childNodesWithText(self, node): root = node # create the first text node # if we have some text in the node if root.text: t = lxmlhtml.HtmlElement() t.text = root.text t.tag = 'text' root.text = None root.insert(0, t) # loop childs for c, n in enumerate(list(root)): idx = root.index(n) # don't process texts nodes if n.tag == 'text': continue # create a text node for tail if n.tail: t = self.createElement(tag='text', text=n.tail, tail=None) root.insert(idx + 1, t) return list(root) @classmethod def textToPara(self, text): return self.fromstring(text) @classmethod def getChildren(self, node): return node.getchildren() @classmethod def getElementsByTags(self, node, tags): selector = ','.join(tags) elems = self.css_select(node, selector) # remove the root node # if we have a selection tag if node in elems: elems.remove(node) return elems @classmethod def createElement(self, tag='p', text=None, tail=None): t = lxmlhtml.HtmlElement() t.tag = tag t.text = text t.tail = tail return t @classmethod def getComments(self, node): return node.xpath('//comment()') @classmethod def getParent(self, node): return node.getparent() @classmethod def remove(self, node): parent = node.getparent() if parent is not None: if node.tail: prev = node.getprevious() if prev is None: if not parent.text: parent.text = '' parent.text += u' ' + node.tail else: if not prev.tail: prev.tail = '' prev.tail += u' ' + node.tail node.clear() parent.remove(node) @classmethod def getTag(self, node): return node.tag @classmethod def getText(self, node): txts = [i for i in node.itertext()] return innerTrim(u' '.join(txts).strip()) @classmethod def previousSiblings(self, node): nodes = [] for c, n in enumerate(node.itersiblings(preceding=True)): nodes.append(n) return nodes @classmethod def previousSibling(self, node): nodes = [] for c, n in enumerate(node.itersiblings(preceding=True)): nodes.append(n) if c == 0: break return nodes[0] if nodes else None @classmethod def nextSibling(self, node): nodes = [] for c, n in enumerate(node.itersiblings(preceding=False)): nodes.append(n) if c == 0: break return nodes[0] if nodes else None @classmethod def isTextNode(self, node): return True if node.tag == 'text' else False @classmethod def getAttribute(self, node, attr=None): if attr: return node.attrib.get(attr, None) return attr @classmethod def delAttribute(self, node, attr=None): if attr: _attr = node.attrib.get(attr, None) if _attr: del node.attrib[attr] @classmethod def setAttribute(self, node, attr=None, value=None): if attr and value: node.set(attr, value) @classmethod def outerHtml(self, node): e0 = node if e0.tail: e0 = deepcopy(e0) e0.tail = None return self.nodeToString(e0) class ParserSoup(Parser): @classmethod def fromstring(self, html): html = encodeValue(html) self.doc = soupparser.fromstring(html) return self.doc
2.15625
2
src/infrastructure/database/postgres/sqlhandler.py
SoyBeansLab/daizu-online-judge-backend
7
5811
<reponame>SoyBeansLab/daizu-online-judge-backend<gh_stars>1-10 from logging import getLogger import os from typing import List, Union import psycopg2 from interface.database.sqlhandler import Cursor as AbsCursor from interface.database.sqlhandler import Result as AbsResult from interface.database.sqlhandler import SqlHandler as AbsSqlHandler from exceptions.waf import SqlTransactionException logger = getLogger("daizu").getChild("infrastracture.SqlHandler") class Result(AbsResult): def __init__(self, rowid: int): self.last_insertid = rowid def lastrowid(self) -> int: return self.last_insertid class Cursor(AbsCursor): def __init__(self, cursor): self.cursor = cursor def fetch_all(self): return self.cursor def fetch_one(self): if len(self.cursor) == 0: return [] return self.cursor[0] class SqlHandler(AbsSqlHandler): def __init__(self): # 環境から取るようにする self.host = os.getenv("DAIZU_DATABASE_HOST", "localhost") self.dbname = os.getenv("DAIZU_DATABASE_NAME", "doj") self.user = os.getenv("DAIZU_DATABASE_USERNAME", "daizu") self.password = os.getenv("DAIZU_DATABASE_PASSWORD", "<PASSWORD>") try: self.connection = psycopg2.connect( host=self.host, dbname=self.dbname, user=self.user, password=self.password, ) except psycopg2.OperationalError as err: raise err # self.cursor = self.connection.cursor() def execute(self, query: str, *args) -> Result: try: with self.connection.cursor() as cursor: cursor.execute(query, args) lastrowid = cursor.lastrowid self.connection.commit() except psycopg2.errors.InFailedSqlTransaction as e: logger.error(e) self.connection.rollback() raise SqlTransactionException() return lastrowid def query(self, query: str, *args) -> Cursor: try: with self.connection.cursor() as cursor: cursor.execute(query, *args) data = cursor.fetchall() except psycopg2.errors.InFailedSqlTransaction as e: logger.error(e) self.connection.rollback() raise SqlTransactionException() return Cursor(data)
2.390625
2
virtualisation/wrapper/parser/xmlparser.py
CityPulse/CP_Resourcemanagement
2
5812
<reponame>CityPulse/CP_Resourcemanagement from virtualisation.clock.abstractclock import AbstractClock __author__ = '<NAME> (<EMAIL>)' from virtualisation.wrapper.parser.abstractparser import AbstractParser from virtualisation.misc.jsonobject import JSONObject as JOb import datetime as dt class XMLParser(AbstractParser): """ Maps a list of values read by a CSVReader with a given naming list """ def __init__(self, wrapper): super(XMLParser, self).__init__(wrapper) self.timestampcell = -1 if self.wrapper.getSensorDescription().isTimestampedStream(): try: self.timestampcell = -1 self.timestampformat = self.wrapper.getSensorDescription().timestamp.format except ValueError: self.timestampcell = -1 def parse(self, data, clock): raise Exception("not implemented yet!") if not data: # nothing received or nothing in the history -> nothing to parse return None
2.46875
2
plaso/formatters/interface.py
jonathan-greig/plaso
1,253
5813
<gh_stars>1000+ # -*- coding: utf-8 -*- """This file contains the event formatters interface classes. The l2t_csv and other formats are dependent on a message field, referred to as description_long and description_short in l2t_csv. Plaso no longer stores these field explicitly. A formatter, with a format string definition, is used to convert the event object values into a formatted string that is similar to the description_long and description_short field. """ import abc import re from plaso.formatters import logger class EventFormatterHelper(object): """Base class of helper for formatting event data.""" @abc.abstractmethod def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ class BooleanEventFormatterHelper(EventFormatterHelper): """Helper for formatting boolean event data. Attributes: input_attribute (str): name of the attribute that contains the boolean input value. output_attribute (str): name of the attribute where the boolean output value should be stored. value_if_false (str): output value if the boolean input value is False. value_if_true (str): output value if the boolean input value is True. """ def __init__( self, input_attribute=None, output_attribute=None, value_if_false=None, value_if_true=None): """Initialized a helper for formatting boolean event data. Args: input_attribute (Optional[str]): name of the attribute that contains the boolean input value. output_attribute (Optional[str]): name of the attribute where the boolean output value should be stored. value_if_false (str): output value if the boolean input value is False. value_if_true (str): output value if the boolean input value is True. """ super(BooleanEventFormatterHelper, self).__init__() self.input_attribute = input_attribute self.output_attribute = output_attribute self.value_if_false = value_if_false self.value_if_true = value_if_true def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value: output_value = self.value_if_true else: output_value = self.value_if_false event_values[self.output_attribute] = output_value class CustomEventFormatterHelper(EventFormatterHelper): """Base class for a helper for custom formatting of event data.""" DATA_TYPE = '' IDENTIFIER = '' @abc.abstractmethod def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ class EnumerationEventFormatterHelper(EventFormatterHelper): """Helper for formatting enumeration event data. Attributes: default (str): default value. input_attribute (str): name of the attribute that contains the enumeration input value. output_attribute (str): name of the attribute where the enumeration output value should be stored. values (dict[str, str]): mapping of enumeration input and output values. """ def __init__( self, default=None, input_attribute=None, output_attribute=None, values=None): """Initialized a helper for formatting enumeration event data. Args: default (Optional[str]): default value. input_attribute (Optional[str]): name of the attribute that contains the enumeration input value. output_attribute (Optional[str]): name of the attribute where the enumeration output value should be stored. values (Optional[dict[str, str]]): mapping of enumeration input and output values. """ super(EnumerationEventFormatterHelper, self).__init__() self.default = default self.input_attribute = input_attribute self.output_attribute = output_attribute self.values = values or {} def FormatEventValues(self, event_values): """Formats event values using the helper. If default value is None and there is no corresponding enumeration value then the original value is used. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value is not None: default_value = self.default if default_value is None: default_value = input_value event_values[self.output_attribute] = self.values.get( input_value, default_value) class FlagsEventFormatterHelper(EventFormatterHelper): """Helper for formatting flags event data. Attributes: input_attribute (str): name of the attribute that contains the flags input value. output_attribute (str): name of the attribute where the flags output value should be stored. values (dict[str, str]): mapping of flags input and output values. """ def __init__( self, input_attribute=None, output_attribute=None, values=None): """Initialized a helper for formatting flags event data. Args: input_attribute (Optional[str]): name of the attribute that contains the flags input value. output_attribute (Optional[str]): name of the attribute where the flags output value should be stored. values (Optional[dict[str, str]]): mapping of flags input and output values. """ super(FlagsEventFormatterHelper, self).__init__() self.input_attribute = input_attribute self.output_attribute = output_attribute self.values = values or {} def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value is None: return output_values = [] for flag, mapped_value in self.values.items(): if flag & input_value: output_values.append(mapped_value) event_values[self.output_attribute] = ', '.join(output_values) class EventFormatter(object): """Base class to format event values. Attributes: custom_helpers (list[str]): identifiers of custom event formatter helpers. helpers (list[EventFormatterHelper]): event formatter helpers. """ # The format string can be defined as: # {name}, {name:format}, {name!conversion}, {name!conversion:format} _FORMAT_STRING_ATTRIBUTE_NAME_RE = re.compile( '{([a-z][a-zA-Z0-9_]*)[!]?[^:}]*[:]?[^}]*}') def __init__(self, data_type='internal'): """Initializes an event formatter. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. """ super(EventFormatter, self).__init__() self._data_type = data_type self._format_string_attribute_names = None self.custom_helpers = [] self.helpers = [] @property def data_type(self): """str: unique identifier for the event data supported by the formatter.""" return self._data_type.lower() def _FormatMessage(self, format_string, event_values): """Determines the formatted message. Args: format_string (str): message format string. event_values (dict[str, object]): event values. Returns: str: formatted message. """ try: message_string = format_string.format(**event_values) except KeyError as exception: data_type = event_values.get('data_type', 'N/A') display_name = event_values.get('display_name', 'N/A') event_identifier = event_values.get('uuid', 'N/A') parser_chain = event_values.get('parser', 'N/A') error_message = ( 'unable to format string: "{0:s}" missing required event ' 'value: {1!s}').format(format_string, exception) error_message = ( 'Event: {0:s} data type: {1:s} display name: {2:s} ' 'parser chain: {3:s} with error: {4:s}').format( event_identifier, data_type, display_name, parser_chain, error_message) logger.error(error_message) attribute_values = [] for attribute, value in event_values.items(): attribute_values.append('{0:s}: {1!s}'.format(attribute, value)) message_string = ' '.join(attribute_values) except UnicodeDecodeError as exception: data_type = event_values.get('data_type', 'N/A') display_name = event_values.get('display_name', 'N/A') event_identifier = event_values.get('uuid', 'N/A') parser_chain = event_values.get('parser', 'N/A') error_message = 'Unicode decode error: {0!s}'.format(exception) error_message = ( 'Event: {0:s} data type: {1:s} display name: {2:s} ' 'parser chain: {3:s} with error: {4:s}').format( event_identifier, data_type, display_name, parser_chain, error_message) logger.error(error_message) message_string = '' # Strip carriage return and linefeed form the message strings. # Using replace function here because it is faster than re.sub() or # string.strip(). return message_string.replace('\r', '').replace('\n', '') def FormatEventValues(self, event_values): """Formats event values using the helpers. Args: event_values (dict[str, object]): event values. """ for helper in self.helpers: helper.FormatEventValues(event_values) @abc.abstractmethod def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ # pylint: disable=unused-argument def AddCustomHelper( self, identifier, input_attribute=None, output_attribute=None): """Adds a custom event formatter helper. Args: identifier (str): identifier. input_attribute (Optional[str]): name of the attribute that contains the input value. output_attribute (Optional[str]): name of the attribute where the output value should be stored. """ self.custom_helpers.append(identifier) def AddHelper(self, helper): """Adds an event formatter helper. Args: helper (EventFormatterHelper): event formatter helper to add. """ self.helpers.append(helper) @abc.abstractmethod def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ @abc.abstractmethod def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ class BasicEventFormatter(EventFormatter): """Format event values using a message format string. Attributes: custom_helpers (list[str]): identifiers of custom event formatter helpers. helpers (list[EventFormatterHelper]): event formatter helpers. """ def __init__( self, data_type='basic', format_string=None, format_string_short=None): """Initializes a basic event formatter. The syntax of the format strings is similar to that of format() where the place holder for a certain event object attribute is defined as {attribute_name}. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. format_string (Optional[str]): (long) message format string. format_string_short (Optional[str]): short message format string. """ super(BasicEventFormatter, self).__init__(data_type=data_type) self._format_string_attribute_names = None self._format_string = format_string self._format_string_short = format_string_short def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ if self._format_string_attribute_names is None: self._format_string_attribute_names = ( self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( self._format_string)) return set(self._format_string_attribute_names) def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ return self._FormatMessage(self._format_string, event_values) def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ if self._format_string_short: format_string = self._format_string_short else: format_string = self._format_string short_message_string = self._FormatMessage(format_string, event_values) # Truncate the short message string if necessary. if len(short_message_string) > 80: short_message_string = '{0:s}...'.format(short_message_string[:77]) return short_message_string class ConditionalEventFormatter(EventFormatter): """Conditionally format event values using format string pieces.""" _DEFAULT_FORMAT_STRING_SEPARATOR = ' ' def __init__( self, data_type='conditional', format_string_pieces=None, format_string_separator=None, format_string_short_pieces=None): """Initializes a conditional event formatter. The syntax of the format strings pieces is similar to of the basic event formatter (BasicEventFormatter). Every format string piece should contain at maximum one unique attribute name. Format string pieces without an attribute name are supported. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. format_string_pieces (Optional[list[str]]): (long) message format string pieces. format_string_separator (Optional[str]): string by which separate format string pieces should be joined. format_string_short_pieces (Optional[list[str]]): short message format string pieces. """ if format_string_separator is None: format_string_separator = self._DEFAULT_FORMAT_STRING_SEPARATOR super(ConditionalEventFormatter, self).__init__(data_type=data_type) self._format_string_pieces = format_string_pieces or [] self._format_string_pieces_map = [] self._format_string_separator = format_string_separator self._format_string_short_pieces = format_string_short_pieces or [] self._format_string_short_pieces_map = [] def _CreateFormatStringMap( self, format_string_pieces, format_string_pieces_map): """Creates a format string map. The format string pieces map is a list containing the attribute name per format string piece. E.g. ["Description: {description}"] would be mapped to: [0] = "description". If the string piece does not contain an attribute name it is treated as text that does not needs formatting. Args: format_string_pieces (list[str]): format string pieces. format_string_pieces_map (list[str]): format string pieces map. Raises: RuntimeError: when an invalid format string piece is encountered. """ for format_string_piece in format_string_pieces: attribute_names = self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( format_string_piece) if len(set(attribute_names)) > 1: raise RuntimeError(( 'Invalid format string piece: [{0:s}] contains more than 1 ' 'attribute name.').format(format_string_piece)) if not attribute_names: # The text format string piece is stored as an empty map entry to keep # the index in the map equal to the format string pieces. attribute_name = '' else: attribute_name = attribute_names[0] format_string_pieces_map.append(attribute_name) def _CreateFormatStringMaps(self): """Creates the format string maps. Maps are built of the string pieces and their corresponding attribute name to optimize conditional string formatting. Raises: RuntimeError: when an invalid format string piece is encountered. """ self._format_string_pieces_map = [] self._CreateFormatStringMap( self._format_string_pieces, self._format_string_pieces_map) self._format_string_short_pieces_map = [] self._CreateFormatStringMap( self._format_string_short_pieces, self._format_string_short_pieces_map) def _ConditionalFormatMessage( self, format_string_pieces, format_string_pieces_map, event_values): """Determines the conditional formatted message. Args: format_string_pieces (dict[str, str]): format string pieces. format_string_pieces_map (list[int, str]): format string pieces map. event_values (dict[str, object]): event values. Returns: str: conditional formatted message. Raises: RuntimeError: when an invalid format string piece is encountered. """ string_pieces = [] for map_index, attribute_name in enumerate(format_string_pieces_map): if not attribute_name or event_values.get( attribute_name, None) is not None: string_pieces.append(format_string_pieces[map_index]) format_string = self._format_string_separator.join(string_pieces) return self._FormatMessage(format_string, event_values) def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ if self._format_string_attribute_names is None: self._format_string_attribute_names = [] for format_string_piece in self._format_string_pieces: attribute_names = self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( format_string_piece) if attribute_names: self._format_string_attribute_names.extend(attribute_names) return set(self._format_string_attribute_names) def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ if not self._format_string_pieces_map: self._CreateFormatStringMaps() return self._ConditionalFormatMessage( self._format_string_pieces, self._format_string_pieces_map, event_values) def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ if not self._format_string_pieces_map: self._CreateFormatStringMaps() if (self._format_string_short_pieces and self._format_string_short_pieces != ['']): format_string_pieces = self._format_string_short_pieces format_string_pieces_map = self._format_string_short_pieces_map else: format_string_pieces = self._format_string_pieces format_string_pieces_map = self._format_string_pieces_map short_message_string = self._ConditionalFormatMessage( format_string_pieces, format_string_pieces_map, event_values) # Truncate the short message string if necessary. if len(short_message_string) > 80: short_message_string = '{0:s}...'.format(short_message_string[:77]) return short_message_string
2.703125
3
python_program/condition.py
LiuKaiqiang94/PyStudyExample
5
5814
<reponame>LiuKaiqiang94/PyStudyExample def main(): val=int(input("input a num")) if val<10: print("A") elif val<20: print("B") elif val<30: print("C") else: print("D") main()
3.890625
4
Annotated_video/test/Annotatedvideo_worm.py
Rukaume/LRCN
1
5815
<filename>Annotated_video/test/Annotatedvideo_worm.py # -*- coding: utf-8 -*- """ Created on Fri Sep 4 22:27:11 2020 @author: Miyazaki """ imdir = "C:/Users/Miyazaki/Desktop/hayashi_lab/20200527_lethargus_analysis/renamed_pillar_chamber-N2/chamber3" resultdir= "C:/Users/Miyazaki/Desktop/hayashi_lab/20200527_lethargus_analysis/renamed_pillar_chamber-N2/result0918.csv" import os, cv2, shutil from tqdm import tqdm import pandas as pd os.chdir(imdir) os.makedirs("../annotatedimages", exist_ok = True) imlist = os.listdir("./") imlist = [i for i in imlist if os.path.splitext(i)[1] == '.jpg' \ or os.path.splitext(i)[1] == '.png'] imlist.sort() result = pd.read_csv(resultdir) font = cv2.FONT_HERSHEY_SIMPLEX for i in tqdm(range(len(imlist))): if int(result.loc[i]) == 0: tempim = cv2.imread(imlist[i]) tempim = cv2.putText(tempim,'quiescent',(10,500), font, 1,(255,0,0),2,cv2.LINE_AA) cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim) elif int(result.loc[i]) == 1: tempim = cv2.imread(imlist[i]) tempim = cv2.putText(tempim,'dwell',(10,500), font, 1,(0,255,0),2,cv2.LINE_AA) cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim) elif int(result.loc[i]) == 2: tempim = cv2.imread(imlist[i]) tempim = cv2.putText(tempim,'forward',(10,500), font, 1,(0,0,255),2,cv2.LINE_AA) cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim) elif int(result.loc[i]) == 3: tempim = cv2.imread(imlist[i]) tempim = cv2.putText(tempim,'backward',(10,500), font, 1,(100,100,0),2,cv2.LINE_AA) cv2.imwrite('../annotatedimages/{}'.format(imlist[i]), tempim) else: pass
2.3125
2
emilia/modules/math.py
masterisira/ELIZA_OF-master
0
5816
<gh_stars>0 from typing import List import requests from telegram import Message, Update, Bot, MessageEntity from telegram.ext import CommandHandler, run_async from emilia import dispatcher from emilia.modules.disable import DisableAbleCommandHandler from emilia.modules.helper_funcs.alternate import send_message import pynewtonmath as newton import math @run_async def simplify(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.simplify('{}'.format(args[0]))) @run_async def factor(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.factor('{}'.format(args[0]))) @run_async def derive(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.derive('{}'.format(args[0]))) @run_async def integrate(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.integrate('{}'.format(args[0]))) @run_async def zeroes(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.zeroes('{}'.format(args[0]))) @run_async def tangent(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.tangent('{}'.format(args[0]))) @run_async def area(update, context): args=context.args args=str(args) message = update.effective_message message.reply_text(newton.area('{}'.format(args[0]))) @run_async def cos(update, context): args = context.args message = update.effective_message message.reply_text(math.cos(int(args[0]))) @run_async def sin(update, context): args = context.args message = update.effective_message message.reply_text(math.sin(int(args[0]))) @run_async def tan(update, context): args = context.args message = update.effective_message message.reply_text(math.tan(int(args[0]))) @run_async def arccos(update, context): args = context.args message = update.effective_message message.reply_text(math.acos(int(args[0]))) @run_async def arcsin(update, context): args = context.args message = update.effective_message message.reply_text(math.asin(int(args[0]))) @run_async def arctan(update, context): args = context.args message = update.effective_message message.reply_text(math.atan(int(args[0]))) @run_async def abs(update, context): args = context.args message = update.effective_message message.reply_text(math.fabs(int(args[0]))) @run_async def log(update, context): args = context.args message = update.effective_message message.reply_text(math.log(int(args[0]))) __help__ = """ Under Developmeent.. More features soon - /cos: Cosine `/cos pi` - /sin: Sine `/sin 0` - /tan: Tangent `/tan 0` - /arccos: Inverse Cosine `/arccos 1` - /arcsin: Inverse Sine `/arcsin 0` - /arctan: Inverse Tangent `/arctan 0` - /abs: Absolute Value `/abs -1` - /log: Logarithm `/log 2l8` __Keep in mind__: To find the tangent line of a function at a certain x value, send the request as c|f(x) where c is the given x value and f(x) is the function expression, the separator is a vertical bar '|'. See the table above for an example request. To find the area under a function, send the request as c:d|f(x) where c is the starting x value, d is the ending x value, and f(x) is the function under which you want the curve between the two x values. To compute fractions, enter expressions as numerator(over)denominator. For example, to process 2/4 you must send in your expression as 2(over)4. The result expression will be in standard math notation (1/2, 3/4). """ SIMPLIFY_HANDLER = DisableAbleCommandHandler("math", simplify, pass_args=True) FACTOR_HANDLER = DisableAbleCommandHandler("factor", factor, pass_args=True) DERIVE_HANDLER = DisableAbleCommandHandler("derive", derive, pass_args=True) INTEGRATE_HANDLER = DisableAbleCommandHandler("integrate", integrate, pass_args=True) ZEROES_HANDLER = DisableAbleCommandHandler("zeroes", zeroes, pass_args=True) TANGENT_HANDLER = DisableAbleCommandHandler("tangent", tangent, pass_args=True) AREA_HANDLER = DisableAbleCommandHandler("area", area, pass_args=True) COS_HANDLER = DisableAbleCommandHandler("cos", cos, pass_args=True) SIN_HANDLER = DisableAbleCommandHandler("sin", sin, pass_args=True) TAN_HANDLER = DisableAbleCommandHandler("tan", tan, pass_args=True) ARCCOS_HANDLER = DisableAbleCommandHandler("arccos", arccos, pass_args=True) ARCSIN_HANDLER = DisableAbleCommandHandler("arcsin", arcsin, pass_args=True) ARCTAN_HANDLER = DisableAbleCommandHandler("arctan", arctan, pass_args=True) ABS_HANDLER = DisableAbleCommandHandler("abs", abs, pass_args=True) LOG_HANDLER = DisableAbleCommandHandler("log", log, pass_args=True) dispatcher.add_handler(SIMPLIFY_HANDLER) dispatcher.add_handler(FACTOR_HANDLER) dispatcher.add_handler(DERIVE_HANDLER) dispatcher.add_handler(INTEGRATE_HANDLER) dispatcher.add_handler(ZEROES_HANDLER) dispatcher.add_handler(TANGENT_HANDLER) dispatcher.add_handler(AREA_HANDLER) dispatcher.add_handler(COS_HANDLER) dispatcher.add_handler(SIN_HANDLER) dispatcher.add_handler(TAN_HANDLER) dispatcher.add_handler(ARCCOS_HANDLER) dispatcher.add_handler(ARCSIN_HANDLER) dispatcher.add_handler(ARCTAN_HANDLER) dispatcher.add_handler(ABS_HANDLER) dispatcher.add_handler(LOG_HANDLER) __mod_name__ = "Math" __command_list__ = ["math","factor","derive","integrate","zeroes","tangent","area","cos","sin","tan","arccos","arcsin","arctan","abs","log"] __handlers__ = [ SIMPLIFY_HANDLER,FACTOR_HANDLER,DERIVE_HANDLER,INTEGRATE_HANDLER,TANGENT_HANDLER,ZEROES_HANDLER,AREA_HANDLER,COS_HANDLER,SIN_HANDLER,TAN_HANDLER,ARCCOS_HANDLER,ARCSIN_HANDLER,ARCTAN_HANDLER,ABS_HANDLER,LOG_HANDLER ]
2.21875
2
services/IAm.py
matteobjornsson/serverless-rock-paper-scissors
0
5817
# # Created on Thu Apr 22 2021 # <NAME> # import boto3 from botocore.exceptions import ClientError import logging logging.basicConfig(filename="rps.log", level=logging.INFO) iam_resource = boto3.resource("iam") sts_client = boto3.client("sts") def create_role( iam_role_name: str, assume_role_policy_json: str, policy_arns: list ) -> iam_resource.Role: """ Create an IAM role with a given policy. :param assume_role_policy_json: A json string that represents the assume role policy defining what resources are allowed to assume the role. :param policy_arns: a list of strings representing existing policy arns to also attach to the role :return: IAM role object This method was adapted from the create_iam_role_for_lambda() method found here: https://docs.aws.amazon.com/code-samples/latest/catalog/python-lambda-boto_client_examples-lambda_basics.py.html """ try: role = iam_resource.create_role( RoleName=iam_role_name, AssumeRolePolicyDocument=assume_role_policy_json, ) # wait for the creation to complete iam_resource.meta.client.get_waiter("role_exists").wait(RoleName=iam_role_name) # attach the additional supplied policies for arn in policy_arns: role.attach_policy(PolicyArn=arn) except ClientError as error: if error.response["Error"]["Code"] == "EntityAlreadyExists": role = iam_resource.Role(iam_role_name) logging.warning("The role %s already exists. Using it.", iam_role_name) return role else: logging.error(error.response["Error"]["Message"]) logging.exception( "Couldn't create role %s or attach policy %s.", iam_role_name, str(policy_arns), ) raise else: logging.info("Created IAM role %s.", role.name) logging.info("Attached policies %s to role %s.", policy_arns, role.name) return role def create_policy(policy_name: str, policy_json: str) -> iam_resource.Policy: """ Create an IAM policy of given name and json description. Policies define permissions in AWS and can be associated with IAM roles. :param policy_json: just be a valid policy json string :return: IAM Policy object """ try: policy = iam_resource.create_policy( PolicyName=policy_name, PolicyDocument=policy_json ) except ClientError as error: if error.response["Error"]["Code"] == "EntityAlreadyExists": policy = get_policy_by_name(policy_name) logging.warning("The policy %s already exists. Using it.", policy.arn) return policy else: logging.error(error.response["Error"]["Message"]) logging.exception("Couldn't create policy %s", policy_name) raise else: logging.info("Created Policy '%s'", policy_name) return policy def get_policy_by_name(policy_name: str) -> iam_resource.Policy: """ Get an existing policy by name. :return: IAM Policy object """ # sts provides the account number of the current credentials account_id = sts_client.get_caller_identity()["Account"] # policy arns consist of an account id and policy name policy_arn = f"arn:aws:iam::{account_id}:policy/{policy_name}" # policies are created in the Python SDK via their arn policy = iam_resource.Policy(policy_arn) return policy def delete_role(iam_role) -> dict: """ Delete a role. :param iam_role: this parameter is an IAM role object, such as returned by create_role() """ try: # remove all policies before deleting role for policy in iam_role.attached_policies.all(): policy.detach_role(RoleName=iam_role.name) response = iam_role.delete() except ClientError as error: logging.error(error.response["Error"]["Message"]) logging.error("Couldn't delete role %s", iam_role.name) else: logging.info("Deleted role '%s'", iam_role.name) return response def delete_policy(iam_policy) -> dict: """ Delete a role. :param iam_policy: this parameter is an IAM policy object, such as returned by create_policy() """ try: response = iam_policy.delete() except ClientError as error: logging.error(error.response["Error"]["Message"]) logging.error("Couldn't delete policy %s", iam_policy.arn) else: logging.info("Deleted policy '%s'", iam_policy.arn) return response if __name__ == "__main__": # brief functionality test with delete() cleanup at end policy_json_file = "./policy/lambda_policy.json" with open(policy_json_file) as file: policy_json = file.read() policy_name = "test_policy" policy = create_policy(policy_name, policy_json) print("new policy arn: ", policy.arn) policy.delete()
2.65625
3
stograde/common/run_status.py
babatana/stograde
0
5818
<reponame>babatana/stograde from enum import auto, Enum class RunStatus(Enum): SUCCESS = auto() CALLED_PROCESS_ERROR = auto() FILE_NOT_FOUND = auto() PROCESS_LOOKUP_ERROR = auto() TIMEOUT_EXPIRED = auto()
2.25
2
recsys/__init__.py
shenghuiliuu/recsys
50
5819
<reponame>shenghuiliuu/recsys __all__ = ['cross_validation', 'metrics', 'datasets', 'recommender']
1.015625
1
audiomate/annotations/label_list.py
CostanzoPablo/audiomate
133
5820
import collections import copy import intervaltree from .label import Label class LabelList: """ Represents a list of labels which describe an utterance. An utterance can have multiple label-lists. Args: idx (str): An unique identifier for the label-list within a corpus for one utterance. labels (list): The list containing the :py:class:`audiomate.annotations.Label`. Attributes: utterance (Utterance): The utterance this label-list is belonging to. label_tree (IntervalTree): The interval-tree storing the labels. Example: >>> label_list = LabelList(idx='transcription', labels=[ >>> Label('this', 0, 2), >>> Label('is', 2, 4), >>> Label('timmy', 4, 8) >>> ]) """ __slots__ = ['idx', 'label_tree', 'utterance'] def __init__(self, idx='default', labels=None): self.idx = idx self.utterance = None self.label_tree = intervaltree.IntervalTree() if labels is not None: self.update(labels) def __eq__(self, other): data_this = (self.idx, self.label_tree) data_other = (other.idx, other.label_tree) return data_this == data_other def __iter__(self): for interval in self.label_tree: yield interval.data def __len__(self): return self.label_tree.__len__() def __copy__(self): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=[iv.data for iv in self.label_tree] ) def __deepcopy__(self, memo): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=copy.deepcopy([iv.data for iv in self.label_tree], memo) ) @property def labels(self): """ Return list of labels. """ return list(self) @property def start(self): """ Return start of the earliest starting label (lower bound). """ return self.label_tree.begin() @property def end(self): """ Return end of the lastly ending label (upper bound). """ return self.label_tree.end() @property def total_length(self): """ Return the cumulative length of all labels (Number of characters). """ return sum(label.length for label in self.labels) # # Alteration # def add(self, label): """ Add a label to the end of the list. Args: label (Label): The label to add. """ label.label_list = self self.label_tree.addi(label.start, label.end, label) def addl(self, value, start=0.0, end=float('inf')): """ Shortcut for ``add(Label(value, start, end))``. """ self.add(Label(value, start=start, end=end)) def update(self, labels): """ Add a list of labels to the end of the list. Args: labels (list): Labels to add. """ ivs = [] for label in labels: label.label_list = self ivs.append(intervaltree.Interval(label.start, label.end, label)) self.label_tree.update(ivs) def apply(self, fn): """ Apply the given function `fn` to every label in this label list. `fn` is a function of one argument that receives the current label which can then be edited in place. Args: fn (func): Function to apply to every label Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('another_label', 2.0, 3.0) ... ]) >>> def shift_labels(label): ... label.start += 1.0 ... label.end += 1.0 ... >>> ll.apply(shift_labels) >>> ll.labels [Label(a_label, 2.0, 3.0), Label(another_label, 3.0, 4.0)] """ for label in self.labels: fn(label) def merge_overlaps(self, threshold=0.0): """ Merge overlapping labels with the same value. Two labels are considered overlapping, if ``l2.start - l1.end < threshold``. Args: threshold (float): Maximal distance between two labels to be considered as overlapping. (default: 0.0) Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('a_label', 1.5, 2.7), ... Label('b_label', 1.0, 2.0), ... ]) >>> ll.merge_overlapping_labels() >>> ll.labels [ Label('a_label', 1.0, 2.7), Label('b_label', 1.0, 2.0), ] """ updated_labels = [] all_intervals = self.label_tree.copy() # recursivly find a group of overlapping labels with the same value def recursive_overlaps(interval): range_start = interval.begin - threshold range_end = interval.end + threshold direct_overlaps = all_intervals.overlap(range_start, range_end) all_overlaps = [interval] all_intervals.discard(interval) for overlap in direct_overlaps: if overlap.data.value == interval.data.value: all_overlaps.extend(recursive_overlaps(overlap)) return all_overlaps # For every remaining interval # - Find overlapping intervals recursively # - Remove them # - Create a concatenated new label while not all_intervals.is_empty(): next_interval = list(all_intervals)[0] overlapping = recursive_overlaps(next_interval) ov_start = float('inf') ov_end = 0.0 ov_value = next_interval.data.value for overlap in overlapping: ov_start = min(ov_start, overlap.begin) ov_end = max(ov_end, overlap.end) all_intervals.discard(overlap) updated_labels.append(Label( ov_value, ov_start, ov_end )) # Replace the old labels with the updated ones self.label_tree.clear() self.update(updated_labels) # # Statistics # def label_total_duration(self): """ Return for each distinct label value the total duration of all occurrences. Returns: dict: A dictionary containing for every label-value (key) the total duration in seconds (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3, 5), >>> Label('b', 5, 8), >>> Label('a', 8, 10), >>> Label('b', 10, 14), >>> Label('a', 15, 18.5) >>> ]) >>> ll.label_total_duration() {'a': 7.5 'b': 7.0} """ durations = collections.defaultdict(float) for label in self: durations[label.value] += label.duration return durations def label_values(self): """ Return a list of all occuring label values. Returns: list: Lexicographically sorted list (str) of label values. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14), >>> Label('d', 15, 18) >>> ]) >>> ll.label_values() ['a', 'b', 'c', 'd'] """ all_labels = {l.value for l in self} return sorted(all_labels) def label_count(self): """ Return for each label the number of occurrences within the list. Returns: dict: A dictionary containing for every label-value (key) the number of occurrences (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('a', 7.2, 10.5), >>> Label('b', 10.5, 14), >>> Label('a', 15, 18) >>> ]) >>> ll.label_count() {'a': 3 'b': 2} """ occurrences = collections.defaultdict(int) for label in self: occurrences[label.value] += 1 return occurrences def all_tokens(self, delimiter=' '): """ Return a list of all tokens occurring in the label-list. Args: delimiter (str): The delimiter used to split labels into tokens. See :meth:`audiomate.annotations.Label.tokenized` Returns: :class:`set`: A set of distinct tokens. """ tokens = set() for label in self: tokens = tokens.union(set(label.tokenized(delimiter=delimiter))) return tokens # # Query Label Values # def join(self, delimiter=' ', overlap_threshold=0.1): """ Return a string with all labels concatenated together. The order of the labels is defined by the start of the label. If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): A string to join two consecutive labels. overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A string with all labels concatenated together. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c', start=7.0, end=10.2), >>> Label('d', start=10.3, end=14.0) >>> ]) >>> ll.join(' - ') 'a - b - c - d' """ sorted_by_start = sorted(self.labels) concat_values = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): concat_values.append(label.value) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return delimiter.join(concat_values) def tokenized(self, delimiter=' ', overlap_threshold=0.1): """ Return a ordered list of tokens based on all labels. Joins all token from all labels (``label.tokenized()```). If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): The delimiter used to split labels into tokens. (default: space) overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A list containing tokens of all labels ordered according to the label order. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a d q', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c a', start=7.0, end=10.2), >>> Label('f g', start=10.3, end=14.0) >>> ]) >>> ll.tokenized(delimiter=' ', overlap_threshold=0.1) ['a', 'd', 'q', 'b', 'c', 'a', 'f', 'g'] """ sorted_by_start = sorted(self.labels) tokens = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): tokens.extend(label.tokenized(delimiter=delimiter)) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return tokens # # Restructuring # def separated(self): """ Create a separate Label-List for every distinct label-value. Returns: dict: A dictionary with distinct label-values as keys. Every value is a LabelList containing only labels with the same value. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('a', start=7.0, end=10.2), >>> Label('b', start=10.3, end=14.0) >>> ]) >>> s = ll.separate() >>> s['a'].labels [Label('a', start=0, end=4), Label('a', start=7.0, end=10.2)] >>> s['b'].labels [Label('b', start=3.95, end=6.0), Label('b', start=10.3, end=14.0)] """ separated_lls = collections.defaultdict(LabelList) for label in self.labels: separated_lls[label.value].add(label) for ll in separated_lls.values(): ll.idx = self.idx return separated_lls def labels_in_range(self, start, end, fully_included=False): """ Return a list of labels, that are within the given range. Also labels that only overlap are included. Args: start(float): Start-time in seconds. end(float): End-time in seconds. fully_included(bool): If ``True``, only labels fully included in the range are returned. Otherwise also overlapping ones are returned. (default ``False``) Returns: list: List of labels in the range. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ll.labels_in_range(6.2, 10.1) [Label('b', 5.1, 8.9), Label('c', 7.2, 10.5)] """ if fully_included: intervals = self.label_tree.envelop(start, end) else: intervals = self.label_tree.overlap(start, end) return [iv.data for iv in intervals] def ranges(self, yield_ranges_without_labels=False, include_labels=None): """ Generate all ranges of the label-list. A range is defined as a part of the label-list for which the same labels are defined. Args: yield_ranges_without_labels(bool): If True also yields ranges for which no labels are defined. include_labels(list): If not empty, only the label values in the list will be considered. Returns: generator: A generator which yields one range (tuple start/end/list-of-labels) at a time. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ranges = ll.ranges() >>> next(ranges) (3.2, 4.5, [ < audiomate.annotations.Label at 0x1090527c8 > ]) >>> next(ranges) (4.5, 5.1, []) >>> next(ranges) (5.1, 7.2, [ < audiomate.annotations.label.Label at 0x1090484c8 > ]) """ tree_copy = self.label_tree.copy() # Remove labels not included if include_labels is not None: for iv in list(tree_copy): if iv.data.value not in include_labels: tree_copy.remove(iv) def reduce(x, y): x.append(y) return x # Split labels when overlapping and merge equal ranges to a list of labels tree_copy.split_overlaps() tree_copy.merge_equals(data_reducer=reduce, data_initializer=[]) intervals = sorted(tree_copy) last_end = intervals[0].begin # yield range by range for iv in intervals: # yield an empty range if necessary if yield_ranges_without_labels and iv.begin > last_end: yield (last_end, iv.begin, []) yield (iv.begin, iv.end, iv.data) last_end = iv.end def split(self, cutting_points, shift_times=False, overlap=0.0): """ Split the label-list into x parts and return them as new label-lists. x is defined by the number of cutting-points (``x == len(cutting_points) + 1``). The result is a list of label-lists corresponding to each part. Label-list 0 contains labels between ``0`` and ``cutting_points[0]``. Label-list 1 contains labels between ``cutting_points[0]`` and ``cutting_points[1]``. And so on. Args: cutting_points(list): List of floats defining the points in seconds, where the label-list is splitted. shift_times(bool): If True, start and end-time are shifted in splitted label-lists. So the start is relative to the cutting point and not to the beginning of the original label-list. overlap(float): Amount of overlap in seconds. This amount is subtracted from a start-cutting-point, and added to a end-cutting-point. Returns: list: A list of of: class: `audiomate.annotations.LabelList`. Example: >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>> Label('c', 11, 15), >>>]) >>> >>> res = ll.split([4.1, 8.9, 12.0]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.1)] >>> res[1].labels [ Label('a', 4.1, 5.0), Label('b', 5.0, 8.9) ] >>> res[2].labels [ Label('b', 8.9, 10.0), Label('c', 11.0, 12.0) ] >>> res[3].labels [Label('c', 12.0, 15.0)] If ``shift_times = True``, the times are adjusted to be relative to the cutting-points for every label-list but the first. >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>>]) >>> >>> res = ll.split([4.6]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.6)] >>> res[1].labels [ Label('a', 0.0, 0.4), Label('b', 0.4, 5.4) ] """ if len(cutting_points) == 0: raise ValueError('At least one cutting-point is needed!') # we have to loop in sorted order cutting_points = sorted(cutting_points) splits = [] iv_start = 0.0 for i in range(len(cutting_points) + 1): if i < len(cutting_points): iv_end = cutting_points[i] else: iv_end = float('inf') # get all intervals intersecting range intervals = self.label_tree.overlap( iv_start - overlap, iv_end + overlap ) cp_splits = LabelList(idx=self.idx) # Extract labels from intervals with updated times for iv in intervals: label = copy.deepcopy(iv.data) label.start = max(0, iv_start - overlap, label.start) label.end = min(iv_end + overlap, label.end) if shift_times: orig_start = max(0, iv_start - overlap) label.start -= orig_start label.end -= orig_start cp_splits.add(label) splits.append(cp_splits) iv_start = iv_end return splits # # Convenience Constructors # @classmethod def create_single(cls, value, idx='default'): """ Create a label-list with a single label containing the given value. """ return LabelList(idx=idx, labels=[ Label(value=value) ]) @classmethod def with_label_values(cls, values, idx='default'): """ Create a new label-list containing labels with the given values. All labels will have default start/end values of 0 and ``inf``. Args: values(list): List of values(str) that should be created and appended to the label-list. idx(str): The idx of the label-list. Returns: (LabelList): New label-list. Example: >>> ll = LabelList.with_label_values(['a', 'x', 'z'], idx='letters') >>> ll.idx 'letters' >>> ll.labels [ Label('a', 0, inf), Label('x', 0, inf), Label('z', 0, inf), ] """ ll = LabelList(idx=idx) for label_value in values: ll.add(Label(label_value)) return ll
3.15625
3
src/views/age_results_widget.py
RubyMarsden/Crayfish
0
5821
<filename>src/views/age_results_widget.py import matplotlib from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QHBoxLayout, QDialog, QPushButton, QWidget, QVBoxLayout, QLabel matplotlib.use('QT5Agg') import matplotlib.pyplot as plt from models.data_key import DataKey from utils import ui_utils class AgeResultsWidget(QWidget): def __init__(self, results_dialog): QWidget.__init__(self) self.results_dialog = results_dialog layout = QHBoxLayout() layout.addLayout(self._create_widget()) self.setLayout(layout) results_dialog.sample_tree.tree.currentItemChanged.connect(lambda i, j: self.replot_graph()) results_dialog.configuration_changed.connect(self.replot_graph) def _create_widget(self): layout = QVBoxLayout() layout.addWidget(QLabel("Sample and spot name")) layout.addWidget(self._create_age_graph_and_point_selection()) return layout def _create_age_graph_and_point_selection(self): graph_and_points = QWidget() layout = QVBoxLayout() fig = plt.figure() self.axes = plt.axes() graph_widget, self.canvas = ui_utils.create_figure_widget(fig, self) layout.addWidget(graph_widget) graph_and_points.setLayout(layout) return graph_and_points ############### ### Actions ### ############### def replot_graph(self): current_spot = self.results_dialog.sample_tree.current_spot() config = self.results_dialog.configuration_widget.current_config if config and current_spot: self.plot_cps_graph(current_spot, config) def plot_cps_graph(self, spot, config): axis = self.axes axis.clear() if spot is None: return axis.spines['top'].set_visible(False) axis.spines['right'].set_visible(False) xs = [] ys = [] errors = [] if DataKey.AGES not in spot.data[config]: # TODO plot words on graph return ages = spot.data[config][DataKey.AGES] if len(ages) != 0: for i, age in enumerate(ages): if isinstance(age, str): continue x = i + 1 y, dy = age xs.append(x) if y is None: ys.append(0) errors.append(0) else: ys.append(y) errors.append(dy) else: # TODO plot some text return weighted_age, age_st_dev = spot.data[config][DataKey.WEIGHTED_AGE] if isinstance(weighted_age, str): string = "No weighted age" else: string = f"Weighted age: {weighted_age:.0f}, 1σ: {age_st_dev:.0f}" axis.errorbar(xs, ys, yerr=errors, linestyle="none", marker='o') axis.text(0.5, 1, string, transform=axis.transAxes, horizontalalignment="center") axis.set_xlabel("Scan number") axis.set_ylabel("Age (ka)") self.canvas.draw()
2.484375
2
examples/single_run/ocaes_single_run.py
EnergyModels/OCAES
0
5822
import pandas as pd from OCAES import ocaes # ---------------------- # create and run model # ---------------------- data = pd.read_csv('timeseries_inputs_2019.csv') inputs = ocaes.get_default_inputs() # inputs['C_well'] = 5000.0 # inputs['X_well'] = 50.0 # inputs['L_well'] = 50.0 # inputs['X_cmp'] = 0 # inputs['X_exp'] = 0 model = ocaes(data, inputs) df, s = model.get_full_results() revenue, LCOE, COVE, avoided_emissions = model.post_process(s) s['revenue'] = revenue s['LCOE'] = LCOE s['COVE'] = COVE s['avoided_emissions'] = avoided_emissions df.to_csv('results_timeseries.csv') s.to_csv('results_values.csv') print(model.calculate_LCOE(s)) # ---------------------- # create plots using built-in functions # ---------------------- model.plot_overview() model.plot_power_energy()
2.765625
3
tests/transformations/local_storage_test.py
am-ivanov/dace
1
5823
import unittest import dace import numpy as np from dace.transformation.dataflow import MapTiling, OutLocalStorage N = dace.symbol('N') @dace.program def arange(): out = np.ndarray([N], np.int32) for i in dace.map[0:N]: with dace.tasklet: o >> out[i] o = i return out class LocalStorageTests(unittest.TestCase): def test_even(self): sdfg = arange.to_sdfg() sdfg.apply_transformations([MapTiling, OutLocalStorage], options=[{ 'tile_sizes': [8] }, {}]) self.assertTrue( np.array_equal(sdfg(N=16), np.arange(16, dtype=np.int32))) def test_uneven(self): # For testing uneven decomposition, use longer buffer and ensure # it's not filled over output = np.ones(20, np.int32) sdfg = arange.to_sdfg() sdfg.apply_transformations([MapTiling, OutLocalStorage], options=[{ 'tile_sizes': [5] }, {}]) dace.propagate_memlets_sdfg(sdfg) sdfg(N=16, __return=output) self.assertTrue( np.array_equal(output[:16], np.arange(16, dtype=np.int32))) self.assertTrue(np.array_equal(output[16:], np.ones(4, np.int32))) if __name__ == '__main__': unittest.main()
2.453125
2
astropy/io/fits/hdu/streaming.py
jayvdb/astropy
445
5824
<gh_stars>100-1000 # Licensed under a 3-clause BSD style license - see PYFITS.rst import gzip import os from .base import _BaseHDU, BITPIX2DTYPE from .hdulist import HDUList from .image import PrimaryHDU from astropy.io.fits.file import _File from astropy.io.fits.header import _pad_length from astropy.io.fits.util import fileobj_name class StreamingHDU: """ A class that provides the capability to stream data to a FITS file instead of requiring data to all be written at once. The following pseudocode illustrates its use:: header = astropy.io.fits.Header() for all the cards you need in the header: header[key] = (value, comment) shdu = astropy.io.fits.StreamingHDU('filename.fits', header) for each piece of data: shdu.write(data) shdu.close() """ def __init__(self, name, header): """ Construct a `StreamingHDU` object given a file name and a header. Parameters ---------- name : file path, file object, or file like object The file to which the header and data will be streamed. If opened, the file object must be opened in a writeable binary mode such as 'wb' or 'ab+'. header : `Header` instance The header object associated with the data to be written to the file. Notes ----- The file will be opened and the header appended to the end of the file. If the file does not already exist, it will be created, and if the header represents a Primary header, it will be written to the beginning of the file. If the file does not exist and the provided header is not a Primary header, a default Primary HDU will be inserted at the beginning of the file and the provided header will be added as the first extension. If the file does already exist, but the provided header represents a Primary header, the header will be modified to an image extension header and appended to the end of the file. """ if isinstance(name, gzip.GzipFile): raise TypeError('StreamingHDU not supported for GzipFile objects.') self._header = header.copy() # handle a file object instead of a file name filename = fileobj_name(name) or '' # Check if the file already exists. If it does not, check to see # if we were provided with a Primary Header. If not we will need # to prepend a default PrimaryHDU to the file before writing the # given header. newfile = False if filename: if not os.path.exists(filename) or os.path.getsize(filename) == 0: newfile = True elif (hasattr(name, 'len') and name.len == 0): newfile = True if newfile: if 'SIMPLE' not in self._header: hdulist = HDUList([PrimaryHDU()]) hdulist.writeto(name, 'exception') else: # This will not be the first extension in the file so we # must change the Primary header provided into an image # extension header. if 'SIMPLE' in self._header: self._header.set('XTENSION', 'IMAGE', 'Image extension', after='SIMPLE') del self._header['SIMPLE'] if 'PCOUNT' not in self._header: dim = self._header['NAXIS'] if dim == 0: dim = '' else: dim = str(dim) self._header.set('PCOUNT', 0, 'number of parameters', after='NAXIS' + dim) if 'GCOUNT' not in self._header: self._header.set('GCOUNT', 1, 'number of groups', after='PCOUNT') self._ffo = _File(name, 'append') # TODO : Fix this once the HDU writing API is cleaned up tmp_hdu = _BaseHDU() # Passing self._header as an argument to _BaseHDU() will cause its # values to be modified in undesired ways...need to have a better way # of doing this tmp_hdu._header = self._header self._header_offset = tmp_hdu._writeheader(self._ffo)[0] self._data_offset = self._ffo.tell() self._size = self.size if self._size != 0: self.writecomplete = False else: self.writecomplete = True # Support the 'with' statement def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def write(self, data): """ Write the given data to the stream. Parameters ---------- data : ndarray Data to stream to the file. Returns ------- writecomplete : int Flag that when `True` indicates that all of the required data has been written to the stream. Notes ----- Only the amount of data specified in the header provided to the class constructor may be written to the stream. If the provided data would cause the stream to overflow, an `OSError` exception is raised and the data is not written. Once sufficient data has been written to the stream to satisfy the amount specified in the header, the stream is padded to fill a complete FITS block and no more data will be accepted. An attempt to write more data after the stream has been filled will raise an `OSError` exception. If the dtype of the input data does not match what is expected by the header, a `TypeError` exception is raised. """ size = self._ffo.tell() - self._data_offset if self.writecomplete or size + data.nbytes > self._size: raise OSError('Attempt to write more data to the stream than the ' 'header specified.') if BITPIX2DTYPE[self._header['BITPIX']] != data.dtype.name: raise TypeError('Supplied data does not match the type specified ' 'in the header.') if data.dtype.str[0] != '>': # byteswap little endian arrays before writing output = data.byteswap() else: output = data self._ffo.writearray(output) if self._ffo.tell() - self._data_offset == self._size: # the stream is full so pad the data to the next FITS block self._ffo.write(_pad_length(self._size) * '\0') self.writecomplete = True self._ffo.flush() return self.writecomplete @property def size(self): """ Return the size (in bytes) of the data portion of the HDU. """ size = 0 naxis = self._header.get('NAXIS', 0) if naxis > 0: simple = self._header.get('SIMPLE', 'F') random_groups = self._header.get('GROUPS', 'F') if simple == 'T' and random_groups == 'T': groups = 1 else: groups = 0 size = 1 for idx in range(groups, naxis): size = size * self._header['NAXIS' + str(idx + 1)] bitpix = self._header['BITPIX'] gcount = self._header.get('GCOUNT', 1) pcount = self._header.get('PCOUNT', 0) size = abs(bitpix) * gcount * (pcount + size) // 8 return size def close(self): """ Close the physical FITS file. """ self._ffo.close()
2.703125
3
geoprisma/tests/test_templatetags.py
groupe-conseil-nutshimit-nippour/django-geoprisma
0
5825
import django from django.test import TestCase from django.template import Template, Context class genericObj(object): """ A generic object for testing templatetags """ def __init__(self): self.name = "test" self.status = "ready" def getOption(self, optionName): if optionName == "name": return self.name elif optionName == "status": return self.status def getName(self): return self.name def render(template_string, context_dict=None): """ A shortcut for testing template output. """ if context_dict is None: context_dict = {} c = Context(context_dict) t = Template(template_string) return t.render(c).strip() class object_extrasTests(TestCase): def test_callMethod(self): genObj = genericObj() template = """ {% load object_extras %} {{ obj|args:"name"|call:"getOption" }} """ context = { 'obj': genObj } self.assertEqual(render(template, context), "test") template = """ {% load object_extras %} {{ obj|call:"getName" }} """ context = { 'obj': genObj } self.assertEqual(render(template, context), "test") def test_check_type(self): genObj = genericObj() template = """ {% load object_extras %} {{ obj|obj_type:"genericObj" }} """ context = { 'obj': genObj } self.assertEqual(render(template, context), "True") template = """ {% load object_extras %} {{ obj|obj_type:"notexist" }} """ context = { 'obj': genObj } self.assertEqual(render(template, context), "False") class static_extrasTests(TestCase): def setUp(self): self.widgetTypeSetJs = set() self.widgetTypeSetJs.add('queryonclick') self.widgetTypeSetCss = set() self.widgetTypeSetCss.add('geoexttoolbar') def test_getJsStatics(self): template = """ {% load staticfiles %} {% load static_extras %} {% getJsStatics widgetTypeSet as widget_js %} {% for static_path in widget_js %} <script src="{% static static_path %}" type="text/javascript"></script> {% endfor %} """ context = { 'widgetTypeSet': self.widgetTypeSetJs } out = '<script src="/static/geoprisma/widgets/queryonclick/js/QueryOnClick.js" type="text/javascript"></script>' self.assertEqual(render(template, context), out) def test_getCssStatics(self): template = """ {% load staticfiles %} {% load static_extras %} {% getCssStatics widgetTypeSet as widget_css %} {% for static_path in widget_css %} <link rel="stylesheet" type="text/css" href="{% static static_path %}" /> {% endfor %} """ context = { 'widgetTypeSet': self.widgetTypeSetCss } out = '<link rel="stylesheet" type="text/css" href="/static/geoprisma/widgets/geoexttoolbar/css/GeoExtToolbar.css" />' self.assertEqual(render(template, context), out) def test_template_exist(self): template = """ {% load static_extras %} {{ "geoprisma/widgets/queryonclick/queryonclick.html"|template_exists }} """ self.assertEqual(render(template), "True") template = """ {% load static_extras %} {{ "geoprisma/widgets/queryonclick/queryonclicknotexist.html"|template_exists }} """ self.assertEqual(render(template), "False")
2.40625
2
src/ggrc_workflows/models/task_group.py
acidburn0zzz/ggrc-core
1
5826
<reponame>acidburn0zzz/ggrc-core # Copyright (C) 2016 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """A module containing the workflow TaskGroup model.""" from sqlalchemy import or_ from ggrc import db from ggrc.login import get_current_user from ggrc.models.associationproxy import association_proxy from ggrc.models.mixins import ( Titled, Slugged, Described, Timeboxed, WithContact ) from ggrc.models.reflection import AttributeInfo from ggrc.models.reflection import PublishOnly from ggrc.models import all_models from ggrc_workflows.models.task_group_object import TaskGroupObject class TaskGroup( WithContact, Timeboxed, Described, Titled, Slugged, db.Model): """Workflow TaskGroup model.""" __tablename__ = 'task_groups' _title_uniqueness = False workflow_id = db.Column( db.Integer, db.ForeignKey('workflows.id', ondelete="CASCADE"), nullable=False, ) lock_task_order = db.Column(db.Boolean(), nullable=True) task_group_objects = db.relationship( 'TaskGroupObject', backref='task_group', cascade='all, delete-orphan') objects = association_proxy( 'task_group_objects', 'object', 'TaskGroupObject') task_group_tasks = db.relationship( 'TaskGroupTask', backref='task_group', cascade='all, delete-orphan') cycle_task_groups = db.relationship( 'CycleTaskGroup', backref='task_group') sort_index = db.Column( db.String(length=250), default="", nullable=False) _publish_attrs = [ 'workflow', 'task_group_objects', PublishOnly('objects'), 'task_group_tasks', 'lock_task_order', 'sort_index', # Intentionally do not include `cycle_task_groups` # 'cycle_task_groups', ] _aliases = { "title": "Summary", "description": "Details", "contact": { "display_name": "Assignee", "mandatory": True, "filter_by": "_filter_by_contact", }, "secondary_contact": None, "start_date": None, "end_date": None, "workflow": { "display_name": "Workflow", "mandatory": True, "filter_by": "_filter_by_workflow", }, "task_group_objects": { "display_name": "Objects", "type": AttributeInfo.Type.SPECIAL_MAPPING, "filter_by": "_filter_by_objects", }, } def copy(self, _other=None, **kwargs): columns = [ 'title', 'description', 'workflow', 'sort_index', 'modified_by', 'context' ] if kwargs.get('clone_people', False) and getattr(self, "contact"): columns.append("contact") else: kwargs["contact"] = get_current_user() target = self.copy_into(_other, columns, **kwargs) if kwargs.get('clone_objects', False): self.copy_objects(target, **kwargs) if kwargs.get('clone_tasks', False): self.copy_tasks(target, **kwargs) return target def copy_objects(self, target, **kwargs): # pylint: disable=unused-argument for task_group_object in self.task_group_objects: target.task_group_objects.append(task_group_object.copy( task_group=target, context=target.context, )) return target def copy_tasks(self, target, **kwargs): for task_group_task in self.task_group_tasks: target.task_group_tasks.append(task_group_task.copy( None, task_group=target, context=target.context, clone_people=kwargs.get("clone_people", False), )) return target @classmethod def _filter_by_workflow(cls, predicate): from ggrc_workflows.models import Workflow return Workflow.query.filter( (Workflow.id == cls.workflow_id) & (predicate(Workflow.slug) | predicate(Workflow.title)) ).exists() @classmethod def _filter_by_objects(cls, predicate): parts = [] for model_name in all_models.__all__: model = getattr(all_models, model_name) query = getattr(model, "query", None) field = getattr(model, "slug", getattr(model, "email", None)) if query is None or field is None or not hasattr(model, "id"): continue parts.append(query.filter( (TaskGroupObject.object_type == model_name) & (model.id == TaskGroupObject.object_id) & predicate(field) ).exists()) return TaskGroupObject.query.filter( (TaskGroupObject.task_group_id == cls.id) & or_(*parts) ).exists()
1.867188
2
src/tests/app_functions/menu/test_change_auto_login.py
DanielNoord/DuolingoPomodoro
0
5827
import pytest import rumps from src.app_functions.menu.change_auto_login import change_auto_login @pytest.fixture(name="basic_app") def create_app(): """Creates a basic app object with some variables to pass to functions Returns: rumps.App: Basic app """ app = rumps.App("TestApp") app.settings = {} return app def test_setting_is_true(mocker, basic_app): """Check if setting is changed correctly if True""" basic_app.settings["auto_login"] = True mock_function = mocker.patch("src.app_functions.menu.change_auto_login.update_menu") mocker.patch("src.app_functions.menu.change_auto_login.save_settings") change_auto_login(basic_app) assert basic_app.settings["auto_login"] is False mock_function.assert_called_once_with(basic_app) def test_setting_is_false(mocker, basic_app): """Check if setting is changed correctly if false""" basic_app.settings["auto_login"] = False mock_function = mocker.patch("src.app_functions.menu.change_auto_login.update_menu") mocker.patch("src.app_functions.menu.change_auto_login.save_settings") change_auto_login(basic_app) assert basic_app.settings["auto_login"] is True mock_function.assert_called_once_with(basic_app)
2.515625
3
deepobs/tensorflow/testproblems/cifar100_vgg19.py
H0merJayS1mpson/deepobscustom
0
5828
# -*- coding: utf-8 -*- """VGG 19 architecture for CIFAR-100.""" import tensorflow as tf from ._vgg import _vgg from ..datasets.cifar100 import cifar100 from .testproblem import TestProblem class cifar100_vgg19(TestProblem): """DeepOBS test problem class for the VGG 19 network on Cifar-100. The CIFAR-100 images are resized to ``224`` by ``224`` to fit the input dimension of the original VGG network, which was designed for ImageNet. Details about the architecture can be found in the `original paper`_. VGG 19 consists of 19 weight layers, of mostly convolutions. The model uses cross-entroy loss. A weight decay is used on the weights (but not the biases) which defaults to ``5e-4``. .. _original paper: https://arxiv.org/abs/1409.1556 Args: batch_size (int): Batch size to use. weight_decay (float): Weight decay factor. Weight decay (L2-regularization) is used on the weights but not the biases. Defaults to ``5e-4``. Attributes: dataset: The DeepOBS data set class for Cifar-100. train_init_op: A tensorflow operation initializing the test problem for the training phase. train_eval_init_op: A tensorflow operation initializing the test problem for evaluating on training data. test_init_op: A tensorflow operation initializing the test problem for evaluating on test data. losses: A tf.Tensor of shape (batch_size, ) containing the per-example loss values. regularizer: A scalar tf.Tensor containing a regularization term. accuracy: A scalar tf.Tensor containing the mini-batch mean accuracy. """ def __init__(self, batch_size, weight_decay=5e-4): """Create a new VGG 19 test problem instance on Cifar-100. Args: batch_size (int): Batch size to use. weight_decay (float): Weight decay factor. Weight decay (L2-regularization) is used on the weights but not the biases. Defaults to ``5e-4``. """ super(cifar100_vgg19, self).__init__(batch_size, weight_decay) def set_up(self): """Set up the VGG 19 test problem on Cifar-100.""" self.dataset = cifar100(self._batch_size) self.train_init_op = self.dataset.train_init_op self.train_eval_init_op = self.dataset.train_eval_init_op self.valid_init_op = self.dataset.valid_init_op self.test_init_op = self.dataset.test_init_op training = tf.equal(self.dataset.phase, "train") x, y = self.dataset.batch linear_outputs = _vgg( x, training, variant=19, num_outputs=100, weight_decay=self._weight_decay, ) self.losses = tf.nn.softmax_cross_entropy_with_logits_v2( labels=y, logits=linear_outputs ) y_pred = tf.argmax(linear_outputs, 1) y_correct = tf.argmax(y, 1) correct_prediction = tf.equal(y_pred, y_correct) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) self.regularizer = tf.losses.get_regularization_loss()
2.796875
3
write-a-function.py
TheHumanGoogle/Hackerrank-python-solution
1
5829
def is_leap(year): leap=False if year%400==0: leap=True elif year%4==0 and year%100!=0: leap=True else: leap=False return leap year = int(input())
4.09375
4
shortio/utils.py
byshyk/shortio
0
5830
<reponame>byshyk/shortio """Contains utility functions.""" BIN_MODE_ARGS = {'mode', 'buffering', } TEXT_MODE_ARGS = {'mode', 'buffering', 'encoding', 'errors', 'newline'} def split_args(args): """Splits args into two groups: open args and other args. Open args are used by ``open`` function. Other args are used by ``load``/``dump`` functions. Args: args: Keyword args to split. Returns: open_args: Arguments for ``open``. other_args: Arguments for ``load``/``dump``. """ mode_args = BIN_MODE_ARGS if 'b' in args['mode'] else TEXT_MODE_ARGS open_args = {} other_args = {} for arg, value in args.items(): if arg in mode_args: open_args[arg] = value else: other_args[arg] = value return open_args, other_args def read_wrapper(load, **base_kwargs): """Wraps ``load`` function to avoid context manager boilerplate. Args: load: Function that takes the return of ``open``. **base_kwargs: Base arguments that ``open``/``load`` take. Returns: Wrapper for ``load``. """ def wrapped(file, **kwargs): open_args, load_args = split_args({**base_kwargs, **kwargs}) with open(file, **open_args) as f: return load(f, **load_args) return wrapped def write_wrapper(dump, **base_kwargs): """Wraps ``dump`` function to avoid context manager boilerplate. Args: dump: Function that takes the return of ``open`` and data to dump. **base_kwargs: Base arguments that ``open``/``dump`` take. Returns: Wrapper for ``dump``. """ def wrapped(file, obj, **kwargs): open_args, dump_args = split_args({**base_kwargs, **kwargs}) with open(file, **open_args) as f: dump(obj, f, **dump_args) return wrapped
3.34375
3
paasta_tools/async_utils.py
sobolevn/paasta
1,711
5831
import asyncio import functools import time import weakref from collections import defaultdict from typing import AsyncIterable from typing import Awaitable from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import TypeVar T = TypeVar("T") # NOTE: this method is not thread-safe due to lack of locking while checking # and updating the cache def async_ttl_cache( ttl: Optional[float] = 300, cleanup_self: bool = False, *, cache: Optional[Dict] = None, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: async def call_or_get_from_cache(cache, async_func, args_for_key, args, kwargs): # Please note that anything which is put into `key` will be in the # cache forever, potentially causing memory leaks. The most common # case is the `self` arg pointing to a huge object. To mitigate that # we're using `args_for_key`, which is supposed not contain any huge # objects. key = functools._make_key(args_for_key, kwargs, typed=False) try: future, last_update = cache[key] if ttl is not None and time.time() - last_update > ttl: raise KeyError except KeyError: future = asyncio.ensure_future(async_func(*args, **kwargs)) # set the timestamp to +infinity so that we always wait on the in-flight request. cache[key] = (future, float("Inf")) try: value = await future except Exception: # Only update the cache if it's the same future we awaited and # it hasn't already been updated by another coroutine # Note also that we use get() in case the key was deleted from the # cache by another coroutine if cache.get(key) == (future, float("Inf")): del cache[key] raise else: if cache.get(key) == (future, float("Inf")): cache[key] = (future, time.time()) return value if cleanup_self: instance_caches: Dict = cache if cache is not None else defaultdict(dict) def on_delete(w): del instance_caches[w] def outer(wrapped): @functools.wraps(wrapped) async def inner(self, *args, **kwargs): w = weakref.ref(self, on_delete) self_cache = instance_caches[w] return await call_or_get_from_cache( self_cache, wrapped, args, (self,) + args, kwargs ) return inner else: cache2: Dict = cache if cache is not None else {} # Should be Dict[Any, T] but that doesn't work. def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await call_or_get_from_cache(cache2, wrapped, args, args, kwargs) return inner return outer async def aiter_to_list(aiter: AsyncIterable[T],) -> List[T]: return [x async for x in aiter] def async_timeout( seconds: int = 10, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await asyncio.wait_for(wrapped(*args, **kwargs), timeout=seconds) return inner return outer
2.4375
2
util/dataset.py
MTI830PyTraders/pytrade
3
5832
#!/usr/bin/python ''' generate dataset ''' import csv import argparse import numpy as np import sklearn.metrics import theanets from sklearn.metrics import accuracy_score import logging from trendStrategy import OptTrendStrategy, TrendStrategy from util import visu def compare(stock, field='orders', strategy="TrendStrategy_predicted", best=OptTrendStrategy.__name__): best_fname="{0}_{1}_{2}.csv".format(stock, best, field) predicted_fname="{0}_{1}_{2}.csv".format(stock, strategy, field) print "comparing",best_fname,predicted_fname best_data = np.loadtxt(best_fname, usecols=[1], delimiter=',') predicted_data = np.loadtxt(predicted_fname, usecols=[1], delimiter=',') min_size = min(len(best_data), len(predicted_data)) title = "%s vs %s" %(best, strategy) visu.compare(best_data[-min_size:], predicted_data[-min_size:], title) def load_dataset(stock, ratio=0.8, name=OptTrendStrategy.__name__): ''' return train, valid (x,y) ''' orders = np.loadtxt("{0}_{1}_orders.csv".format(stock, name), usecols=[1], delimiter=',') orders[orders==-1]=0 features = np.loadtxt("{0}_input.csv".format(stock), delimiter=',') if len(orders)!=len(features): logging.error("len(orders)!=len(features) -> %s!=%s" %(len(orders),len(features))) features = features.astype('f') orders = orders.astype('i') pos = round(len(features)*ratio) train = (features[:pos], orders[:pos]) valid = (features[pos:], orders[pos:]) return train, valid def evaluate(exp, dataset): y_true = dataset[1] y_pred = exp.network.predict(dataset[0]) print(sklearn.metrics.confusion_matrix(y_true, y_pred)) print('accuracy:',accuracy_score(y_true, y_pred)) def train_strategy(stock, ratio=0.8, min_improvement=0.001): train, valid = load_dataset(stock) n, n_input = train[0].shape exp = theanets.Experiment( theanets.Classifier, layers=(n_input, n_input*2, 2), ) exp.train(train, valid, min_improvement=min_improvement, algo='sgd', learning_rate=0.01, momentum=0.5, hidden_l1=0.001, weight_l2=0.001, num_updates=100 ) print('training:') evaluate(exp, train) print('validation:') evaluate(exp, valid) exp.save('%s.nn' %stock) return exp def load_strategy(name, verbose=False): print("loading %s trained strategy" %name) train, valid = load_dataset(name) n, n_input = train[0].shape exp = theanets.Experiment( theanets.Classifier, layers=(n_input, n_input*2, 2), ) exp.load('%s.nn' %name) if verbose: print('training:') evaluate(exp, train) print('validation:') evaluate(exp, valid) return exp if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--stock', '-s', default="TSLA", help='stock') parser.add_argument('--ratio', '-r', default=0.8, type=int, help='train/valid ratio') parser.add_argument('--min', '-m', default=0.001, type=int, help='min improvement (stop learning)') parser.add_argument('--field', default='orders', help='compare field') args = parser.parse_args() if args.field: compare(args.stock, args.field) train, valid = load_dataset(args.stock) exp = train_strategy(args.stock, args.ratio, args.min) exp = load_strategy(args.stock, True)
2.8125
3
examples/scripts/sc/bpdn.py
manvhah/sporco
0
5833
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. """ Basis Pursuit DeNoising ======================= This example demonstrates the use of class :class:`.admm.bpdn.BPDN` to solve the Basis Pursuit DeNoising (BPDN) problem :cite:`chen-1998-atomic` $$\mathrm{argmin}_\mathbf{x} \; (1/2) \| D \mathbf{x} - \mathbf{s} \|_2^2 + \lambda \| \mathbf{x} \|_1 \;,$$ where $D$ is the dictionary, $\mathbf{x}$ is the sparse representation, and $\mathbf{s}$ is the signal to be represented. In this example the BPDN problem is used to estimate the reference sparse representation that generated a signal from a noisy version of the signal. """ from __future__ import print_function from builtins import input import numpy as np from sporco.admm import bpdn from sporco import util from sporco import plot """ Configure problem size, sparsity, and noise level. """ N = 512 # Signal size M = 4*N # Dictionary size L = 32 # Number of non-zero coefficients in generator sigma = 0.5 # Noise level """ Construct random dictionary, reference random sparse representation, and test signal consisting of the synthesis of the reference sparse representation with additive Gaussian noise. """ # Construct random dictionary and random sparse coefficients np.random.seed(12345) D = np.random.randn(N, M) x0 = np.zeros((M, 1)) si = np.random.permutation(list(range(0, M-1))) x0[si[0:L]] = np.random.randn(L, 1) # Construct reference and noisy signal s0 = D.dot(x0) s = s0 + sigma*np.random.randn(N,1) """ Set BPDN solver class options. """ opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': 1e-3, 'AutoRho': {'RsdlTarget': 1.0}}) """ Select regularization parameter $\lambda$ by evaluating the error in recovering the sparse representation over a logarithmicaly spaced grid. (The reference representation is assumed to be known, which is not realistic in a real application.) A function is defined that evalues the BPDN recovery error for a specified $\lambda$, and this function is evaluated in parallel by :func:`sporco.util.grid_search`. """ # Function computing reconstruction error at lmbda def evalerr(prm): lmbda = prm[0] b = bpdn.BPDN(D, s, lmbda, opt) x = b.solve() return np.sum(np.abs(x-x0)) # Parallel evalution of error function on lmbda grid lrng = np.logspace(1, 2, 20) sprm, sfvl, fvmx, sidx = util.grid_search(evalerr, (lrng,)) lmbda = sprm[0] print('Minimum ℓ1 error: %5.2f at 𝜆 = %.2e' % (sfvl, lmbda)) """ Once the best $\lambda$ has been determined, run BPDN with verbose display of ADMM iteration statistics. """ # Initialise and run BPDN object for best lmbda opt['Verbose'] = True b = bpdn.BPDN(D, s, lmbda, opt) x = b.solve() print("BPDN solve time: %.2fs" % b.timer.elapsed('solve')) """ Plot comparison of reference and recovered representations. """ plot.plot(np.hstack((x0, x)), title='Sparse representation', lgnd=['Reference', 'Reconstructed']) """ Plot lmbda error curve, functional value, residuals, and rho """ its = b.getitstat() fig = plot.figure(figsize=(15, 10)) plot.subplot(2, 2, 1) plot.plot(fvmx, x=lrng, ptyp='semilogx', xlbl='$\lambda$', ylbl='Error', fig=fig) plot.subplot(2, 2, 2) plot.plot(its.ObjFun, xlbl='Iterations', ylbl='Functional', fig=fig) plot.subplot(2, 2, 3) plot.plot(np.vstack((its.PrimalRsdl, its.DualRsdl)).T, ptyp='semilogy', xlbl='Iterations', ylbl='Residual', lgnd=['Primal', 'Dual'], fig=fig) plot.subplot(2, 2, 4) plot.plot(its.Rho, xlbl='Iterations', ylbl='Penalty Parameter', fig=fig) fig.show() # Wait for enter on keyboard input()
2.9375
3
saleor-env/lib/python3.7/site-packages/snowballstemmer/nepali_stemmer.py
tadartefactorist/mask
0
5834
<filename>saleor-env/lib/python3.7/site-packages/snowballstemmer/nepali_stemmer.py # This file was generated automatically by the Snowball to Python compiler # http://snowballstem.org/ from .basestemmer import BaseStemmer from .among import Among class NepaliStemmer(BaseStemmer): ''' This class was automatically generated by a Snowball to Python compiler It implements the stemming algorithm defined by a snowball script. ''' a_0 = [ Among(u"\u0932\u093E\u0907", -1, 1), Among(u"\u0932\u093E\u0908", -1, 1), Among(u"\u0938\u0901\u0917", -1, 1), Among(u"\u0938\u0902\u0917", -1, 1), Among(u"\u092E\u093E\u0930\u094D\u092B\u0924", -1, 1), Among(u"\u0930\u0924", -1, 1), Among(u"\u0915\u093E", -1, 2), Among(u"\u092E\u093E", -1, 1), Among(u"\u0926\u094D\u0935\u093E\u0930\u093E", -1, 1), Among(u"\u0915\u093F", -1, 2), Among(u"\u092A\u091B\u093F", -1, 1), Among(u"\u0915\u0940", -1, 2), Among(u"\u0932\u0947", -1, 1), Among(u"\u0915\u0948", -1, 2), Among(u"\u0938\u0901\u0917\u0948", -1, 1), Among(u"\u092E\u0948", -1, 1), Among(u"\u0915\u094B", -1, 2) ] a_1 = [ Among(u"\u0901", -1, -1), Among(u"\u0902", -1, -1), Among(u"\u0948", -1, -1) ] a_2 = [ Among(u"\u0901", -1, 1), Among(u"\u0902", -1, 1), Among(u"\u0948", -1, 2) ] a_3 = [ Among(u"\u0925\u093F\u090F", -1, 1), Among(u"\u091B", -1, 1), Among(u"\u0907\u091B", 1, 1), Among(u"\u090F\u091B", 1, 1), Among(u"\u093F\u091B", 1, 1), Among(u"\u0947\u091B", 1, 1), Among(u"\u0928\u0947\u091B", 5, 1), Among(u"\u0939\u0941\u0928\u0947\u091B", 6, 1), Among(u"\u0907\u0928\u094D\u091B", 1, 1), Among(u"\u093F\u0928\u094D\u091B", 1, 1), Among(u"\u0939\u0941\u0928\u094D\u091B", 1, 1), Among(u"\u090F\u0915\u093E", -1, 1), Among(u"\u0907\u090F\u0915\u093E", 11, 1), Among(u"\u093F\u090F\u0915\u093E", 11, 1), Among(u"\u0947\u0915\u093E", -1, 1), Among(u"\u0928\u0947\u0915\u093E", 14, 1), Among(u"\u0926\u093E", -1, 1), Among(u"\u0907\u0926\u093E", 16, 1), Among(u"\u093F\u0926\u093E", 16, 1), Among(u"\u0926\u0947\u0916\u093F", -1, 1), Among(u"\u092E\u093E\u0925\u093F", -1, 1), Among(u"\u090F\u0915\u0940", -1, 1), Among(u"\u0907\u090F\u0915\u0940", 21, 1), Among(u"\u093F\u090F\u0915\u0940", 21, 1), Among(u"\u0947\u0915\u0940", -1, 1), Among(u"\u0926\u0947\u0916\u0940", -1, 1), Among(u"\u0925\u0940", -1, 1), Among(u"\u0926\u0940", -1, 1), Among(u"\u091B\u0941", -1, 1), Among(u"\u090F\u091B\u0941", 28, 1), Among(u"\u0947\u091B\u0941", 28, 1), Among(u"\u0928\u0947\u091B\u0941", 30, 1), Among(u"\u0928\u0941", -1, 1), Among(u"\u0939\u0930\u0941", -1, 1), Among(u"\u0939\u0930\u0942", -1, 1), Among(u"\u091B\u0947", -1, 1), Among(u"\u0925\u0947", -1, 1), Among(u"\u0928\u0947", -1, 1), Among(u"\u090F\u0915\u0948", -1, 1), Among(u"\u0947\u0915\u0948", -1, 1), Among(u"\u0928\u0947\u0915\u0948", 39, 1), Among(u"\u0926\u0948", -1, 1), Among(u"\u0907\u0926\u0948", 41, 1), Among(u"\u093F\u0926\u0948", 41, 1), Among(u"\u090F\u0915\u094B", -1, 1), Among(u"\u0907\u090F\u0915\u094B", 44, 1), Among(u"\u093F\u090F\u0915\u094B", 44, 1), Among(u"\u0947\u0915\u094B", -1, 1), Among(u"\u0928\u0947\u0915\u094B", 47, 1), Among(u"\u0926\u094B", -1, 1), Among(u"\u0907\u0926\u094B", 49, 1), Among(u"\u093F\u0926\u094B", 49, 1), Among(u"\u092F\u094B", -1, 1), Among(u"\u0907\u092F\u094B", 52, 1), Among(u"\u092D\u092F\u094B", 52, 1), Among(u"\u093F\u092F\u094B", 52, 1), Among(u"\u0925\u093F\u092F\u094B", 55, 1), Among(u"\u0926\u093F\u092F\u094B", 55, 1), Among(u"\u0925\u094D\u092F\u094B", 52, 1), Among(u"\u091B\u094C", -1, 1), Among(u"\u0907\u091B\u094C", 59, 1), Among(u"\u090F\u091B\u094C", 59, 1), Among(u"\u093F\u091B\u094C", 59, 1), Among(u"\u0947\u091B\u094C", 59, 1), Among(u"\u0928\u0947\u091B\u094C", 63, 1), Among(u"\u092F\u094C", -1, 1), Among(u"\u0925\u093F\u092F\u094C", 65, 1), Among(u"\u091B\u094D\u092F\u094C", 65, 1), Among(u"\u0925\u094D\u092F\u094C", 65, 1), Among(u"\u091B\u0928\u094D", -1, 1), Among(u"\u0907\u091B\u0928\u094D", 69, 1), Among(u"\u090F\u091B\u0928\u094D", 69, 1), Among(u"\u093F\u091B\u0928\u094D", 69, 1), Among(u"\u0947\u091B\u0928\u094D", 69, 1), Among(u"\u0928\u0947\u091B\u0928\u094D", 73, 1), Among(u"\u0932\u093E\u0928\u094D", -1, 1), Among(u"\u091B\u093F\u0928\u094D", -1, 1), Among(u"\u0925\u093F\u0928\u094D", -1, 1), Among(u"\u092A\u0930\u094D", -1, 1), Among(u"\u0907\u0938\u094D", -1, 1), Among(u"\u0925\u093F\u0907\u0938\u094D", 79, 1), Among(u"\u091B\u0938\u094D", -1, 1), Among(u"\u0907\u091B\u0938\u094D", 81, 1), Among(u"\u090F\u091B\u0938\u094D", 81, 1), Among(u"\u093F\u091B\u0938\u094D", 81, 1), Among(u"\u0947\u091B\u0938\u094D", 81, 1), Among(u"\u0928\u0947\u091B\u0938\u094D", 85, 1), Among(u"\u093F\u0938\u094D", -1, 1), Among(u"\u0925\u093F\u0938\u094D", 87, 1), Among(u"\u091B\u0947\u0938\u094D", -1, 1), Among(u"\u0939\u094B\u0938\u094D", -1, 1) ] def __r_remove_category_1(self): # (, line 53 # [, line 54 self.ket = self.cursor # substring, line 54 among_var = self.find_among_b(NepaliStemmer.a_0) if among_var == 0: return False # ], line 54 self.bra = self.cursor if among_var == 1: # (, line 58 # delete, line 58 if not self.slice_del(): return False elif among_var == 2: # (, line 59 # or, line 59 try: v_1 = self.limit - self.cursor try: # (, line 59 # or, line 59 try: v_2 = self.limit - self.cursor try: # literal, line 59 if not self.eq_s_b(u"\u090F"): raise lab3() raise lab2() except lab3: pass self.cursor = self.limit - v_2 # literal, line 59 if not self.eq_s_b(u"\u0947"): raise lab1() except lab2: pass # (, line 59 raise lab0() except lab1: pass self.cursor = self.limit - v_1 # delete, line 59 if not self.slice_del(): return False except lab0: pass return True def __r_check_category_2(self): # (, line 63 # [, line 64 self.ket = self.cursor # substring, line 64 if self.find_among_b(NepaliStemmer.a_1) == 0: return False # ], line 64 self.bra = self.cursor return True def __r_remove_category_2(self): # (, line 69 # [, line 70 self.ket = self.cursor # substring, line 70 among_var = self.find_among_b(NepaliStemmer.a_2) if among_var == 0: return False # ], line 70 self.bra = self.cursor if among_var == 1: # (, line 71 # or, line 71 try: v_1 = self.limit - self.cursor try: # literal, line 71 if not self.eq_s_b(u"\u092F\u094C"): raise lab1() raise lab0() except lab1: pass self.cursor = self.limit - v_1 try: # literal, line 71 if not self.eq_s_b(u"\u091B\u094C"): raise lab2() raise lab0() except lab2: pass self.cursor = self.limit - v_1 try: # literal, line 71 if not self.eq_s_b(u"\u0928\u094C"): raise lab3() raise lab0() except lab3: pass self.cursor = self.limit - v_1 # literal, line 71 if not self.eq_s_b(u"\u0925\u0947"): return False except lab0: pass # delete, line 71 if not self.slice_del(): return False elif among_var == 2: # (, line 72 # literal, line 72 if not self.eq_s_b(u"\u0924\u094D\u0930"): return False # delete, line 72 if not self.slice_del(): return False return True def __r_remove_category_3(self): # (, line 76 # [, line 77 self.ket = self.cursor # substring, line 77 if self.find_among_b(NepaliStemmer.a_3) == 0: return False # ], line 77 self.bra = self.cursor # (, line 79 # delete, line 79 if not self.slice_del(): return False return True def _stem(self): # (, line 85 # backwards, line 86 self.limit_backward = self.cursor self.cursor = self.limit # (, line 86 # do, line 87 v_1 = self.limit - self.cursor try: # call remove_category_1, line 87 if not self.__r_remove_category_1(): raise lab0() except lab0: pass self.cursor = self.limit - v_1 # do, line 88 v_2 = self.limit - self.cursor try: # (, line 88 # repeat, line 89 try: while True: try: v_3 = self.limit - self.cursor try: # (, line 89 # do, line 89 v_4 = self.limit - self.cursor try: # (, line 89 # and, line 89 v_5 = self.limit - self.cursor # call check_category_2, line 89 if not self.__r_check_category_2(): raise lab5() self.cursor = self.limit - v_5 # call remove_category_2, line 89 if not self.__r_remove_category_2(): raise lab5() except lab5: pass self.cursor = self.limit - v_4 # call remove_category_3, line 89 if not self.__r_remove_category_3(): raise lab4() raise lab3() except lab4: pass self.cursor = self.limit - v_3 raise lab2() except lab3: pass except lab2: pass except lab1: pass self.cursor = self.limit - v_2 self.cursor = self.limit_backward return True class lab0(BaseException): pass class lab1(BaseException): pass class lab2(BaseException): pass class lab3(BaseException): pass class lab4(BaseException): pass class lab5(BaseException): pass
2.421875
2
tests/auto_test_class_creation_spec.py
MountainField/uspec
2
5835
<reponame>MountainField/uspec # -*- coding: utf-8 -*- # ================================================================= # uspec # # Copyright (c) 2020 <NAME> # # This software is released under the MIT License. # http://opensource.org/licenses/mit-license.php # ================================================================= from __future__ import unicode_literals, print_function, division import unittest import uspec from uspec import describe, context, it ################################### class TestGame(unittest.TestCase): pass with describe("Game", test_class=TestGame): assert test_class is TestGame @it("hoge") def _(self): self.assertTrue(True) assert TestGame is not None ################################## TEST_CLASS_NAME_GAME2 = None with describe("Game2"): TEST_CLASS_NAME_GAME2 = test_class.__name__ @it("hoge") def _(self): self.assertTrue(True) assert TEST_CLASS_NAME_GAME2 in globals() ################################## def wrap(): global TEST_CLASS_NAME_GAME3 with describe("Game3"): TEST_CLASS_NAME_GAME3 = locals()["test_class"].__name__ @it("hoge") def _(self): self.assertTrue(True) wrap() assert TEST_CLASS_NAME_GAME3 in globals() if __name__ == '__main__': import unittest unittest.main(verbosity=2)
2.84375
3
main.py
Matthewk01/Snake-AI
0
5836
import pygame from game.game_logic.game import Game import matplotlib.pyplot as plt def main(): scores_history = [] GAME_COUNT = 2 for i in range(GAME_COUNT): game = Game(400, "Snake AI") score = game.start() scores_history.append(score) print("Game:", i) plt.ylim(0, 36) plt.plot(range(len(scores_history)), scores_history) plt.ylabel('Snake length') plt.xlabel('Game count') plt.show() if __name__ == "__main__": main()
3.890625
4
closed/Intel/code/resnet50/openvino-cpu/src/tools/create_image_list.py
ctuning/inference_results_v1.1
19
5837
import os import sys from glob import glob def create_list(images_dir, output_file, img_ext=".jpg"): ImgList = os.listdir(images_dir) val_list = [] for img in ImgList: img,ext = img.split(".") val_list.append(img) with open(os.path.join(images_dir, output_file),'w') as fid: for line in val_list[:-1]: fid.write(line + "\n") fid.write(val_list[-1]) def main(): if len(sys.argv) < 2: print("Requires images directory") sys.exit(1) elif len(sys.argv) < 3: images_dir = sys.argv[1] output_file = "image_list.txt" else: images_dir = sys.argv[1] output_file = sys.argv[2] create_list(images_dir, output_file) if __name__=="__main__": main()
3.3125
3
AI/others/churn/churn_2.py
honchardev/Fun
0
5838
#!/usr/bin/env python # coding: utf-8 # In[1]: # src: http://datareview.info/article/prognozirovanie-ottoka-klientov-so-scikit-learn/ # In[ ]: # Показатель оттока клиентов – бизнес-термин, описывающий # насколько интенсивно клиенты покидают компанию или # прекращают оплачивать товары или услуги. # Это ключевой показатель для многих компаний, потому что # зачастую приобретение новых клиентов обходится намного дороже, # чем удержание старых (в некоторых случаях от 5 до 20 раз дороже). # Примеры использования: # 1. мобильные операторы, операторы кабельного телевидения и # компании, обслуживающие прием платежей с помощью кредитных карт # 2. казино используют прогнозные модели, чтобы предсказать # идеальные условия в зале, позволяющие удержать игроков # в Блэкджек за столом. # 3. Aвиакомпании могут предложить клиентам, у которых есть # жалобы, заменить их билет на билет первого класса. # Эффективное удержание клиентов сводится к задаче, в рамках # которой, используя имеющиеся данные, необходимо отличить # клиентов, собирающихся уйти, от тех, кто этого делать # не собирается. # In[ ]: # datset src: https://raw.githubusercontent.com/michaelulin/churn/master/work/churn_model/data/churn.csv # In[88]: # Load libraries import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, confusion_matrix, precision_recall_fscore_support from sklearn.model_selection import KFold, train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier # In[3]: # Load dataset raw_churn_df = pd.read_csv('churn.csv') # In[17]: display(raw_churn_df.shape) display(raw_churn_df.head(), raw_churn_df.tail()) display(raw_churn_df.columns.values) display(raw_churn_df.dtypes) display(raw_churn_df.isnull().sum()) # In[78]: # Isolate target data y = raw_churn_df['Churn?'] X = raw_churn_df.drop('Churn?', axis=1) # In[79]: # Drop irrelevant features features_to_drop = ['State', 'Area Code', 'Phone'] X = X.drop(features_to_drop, axis=1) # In[80]: # Encode yes/no with 1/0 values X["Int'l Plan"] = X["Int'l Plan"].map({'no': 0, 'yes': 1}) X["VMail Plan"] = X["VMail Plan"].map({'no': 0, 'yes': 1}) # In[81]: # Scale everything std_scaler = StandardScaler(with_mean=True) X = std_scaler.fit_transform(X) display(X.shape) # In[90]: # Perform CV for SVM, random forest and kNN def try_clf(X, y, clf_nofit): X_tr, X_val, y_tr, y_val = train_test_split(X, y, random_state=42) clf = clf_nofit.fit(X_tr, y_tr) y_pred = clf.predict(X_val) display(clf_nofit.__class__.__name__) display(accuracy_score(y_val, y_pred)) display(confusion_matrix(y_val, y_pred)) display("prec, rec, f1, support", precision_recall_fscore_support(y_val, y_pred)) try_clf(X, y, SVC(gamma='scale')) try_clf(X, y, RandomForestClassifier(n_estimators=100, n_jobs=-1)) try_clf(X, y, KNeighborsClassifier()) # std scaler with_mean=False accuracies: # 0.9256594724220624 # 0.9484412470023981 # 0.8896882494004796 # std scaler with_mean=True accuracies: # 0.9256594724220624 # 0.9496402877697842 # 0.8896882494004796 # In[86]: # Recall # Каково отношение количества правильно спрогнозированных уходов # к общему количеству фактических уходов? # Precision # Каково отношение количества правильно спрогнозированных уходов # к общему количеству спрогнозированных уходов? # In[101]: # # Predict probabilities # def try_probab(X, y, clf_nofit): # X_tr, X_val, y_tr, y_val = train_test_split(X, y, random_state=42) # clf = clf_nofit.fit(X_tr, y_tr) # y_prob = clf.predict_proba(X_val) # # for i in range(len(X)): # # display("y_true={0}, Predicted={1}".format(y[i], y_prob[i])) # display(pd.value_counts(y_prob[:, 1])) # try_probab(X, y, SVC(gamma='scale', probability=True)) # # try_probab(X, y, RandomForestClassifier(n_estimators=100, n_jobs=-1)) # # try_probab(X, y, KNeighborsClassifier()) # # for i in range(len(Xnew)): # # print("X=%s, Predicted=%s" % (Xnew[i], ynew[i])) # In[ ]: # todo: calibration and discrimination # https://github.com/ghuiber/churn/blob/master/churn_measurements.py # from churn_measurements import calibration, discrimination
2.78125
3
airbyte-integrations/connectors/source-google-sheets/google_sheets_source/models/spreadsheet.py
rajatariya21/airbyte
0
5839
<reponame>rajatariya21/airbyte # MIT License # # Copyright (c) 2020 Airbyte # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import annotations from typing import List, Optional from pydantic import BaseModel, Extra, Field class SpreadsheetProperties(BaseModel): class Config: extra = Extra.allow title: Optional[str] = None class SheetProperties(BaseModel): class Config: extra = Extra.allow title: Optional[str] = None class CellData(BaseModel): class Config: extra = Extra.allow formattedValue: Optional[str] = None class RowData(BaseModel): class Config: extra = Extra.allow values: Optional[List[CellData]] = None class GridData(BaseModel): class Config: extra = Extra.allow rowData: Optional[List[RowData]] = None class Sheet(BaseModel): class Config: extra = Extra.allow data: Optional[List[GridData]] = None properties: Optional[SheetProperties] = None class Spreadsheet(BaseModel): class Config: extra = Extra.allow spreadsheetId: str sheets: List[Sheet] properties: Optional[SpreadsheetProperties] = None
1.90625
2
pytrivia/trivia.py
Dnewman9/Python-Trivia-API
6
5840
<filename>pytrivia/trivia.py """ A simple python api wrapper for https://opentdb.com/ """ from aiohttp import ClientSession from requests import get from pytrivia.__helpers import decode_dict, get_token, make_request from pytrivia.enums import * class Trivia: def __init__(self, with_token: bool): """ Initialize an instance of the Trivia class :param with_token: If True then the instance will uses a session token """ self.token = get_token() if with_token else None def request(self, num_questions: int, category: Category = None, diffculty: Diffculty = None, type_: Type = None) -> dict: """ Send an api request to https://opentdb.com/ Limitations: Only 1 Category can be requested per API Call. To get questions from any category, don't specify a category. A Maximum of 50 Questions can be retrieved per call. :param num_questions: the number of questions, must be between 1 and 50 (inclusive) :param category: the category of the question. None for any category :param diffculty: the diffculty of the question. None for any diffculty :param type_: the type of the question. None for any type :return: the api call response :rtype: dict :raises: ValueError when the num_questions parameter is less than 1 or greater than 50 """ result = get( self.__url(num_questions, category, diffculty, type_)).json() if result['response_code'] in (3, 4): self.token = get_token() return self.request(num_questions, category, diffculty, type_) else: return decode_dict(result) async def request_async(self, session: ClientSession, close_session: bool, num_questions: int, category: Category = None, diffculty: Diffculty = None, type_: Type = None) -> dict: """ Send an api request to https://opentdb.com/ Limitations: Only 1 Category can be requested per API Call. To get questions from any category, don't specify a category. A Maximum of 50 Questions can be retrieved per call. :param session: an Aiohttp client session. :param close_session: True to close the session after the request. :param num_questions: the number of questions, must be between 1 and 50 (inclusive) :param category: the category of the question. None for any category :param diffculty: the diffculty of the question. None for any diffculty :param type_: the type of the question. None for any type :return: the api call response :rtype: dict :raises: ValueError when the num_questions parameter is less than 1 or greater than 50 :raises ClientResponseError if the HTTP response code isn't 200 """ try: return await self.__request( session, num_questions, category, diffculty, type_) finally: if close_session: session.close() async def __request(self, session: ClientSession, num_questions: int, category: Category = None, diffculty: Diffculty = None, type_: Type = None) -> dict: """ Helper method for the async request. """ resp = await make_request( session, self.__url(num_questions, category, diffculty, type_)) result = await resp.json() if result['response_code'] in (3, 4): self.token = get_token() return await self.__request( session, num_questions, category, diffculty, type_) else: return decode_dict(result) def __url(self, num_questions, category, diffculty, type_): """ Helper method to generate request url. """ if num_questions < 1 or num_questions > 50: raise ValueError url = 'https://opentdb.com/api.php?amount={}&encode=base64'.format( num_questions) if category is not None: url += '&category={}'.format(category.value) if diffculty is not None: url += '&difficulty={}'.format(diffculty.value) if type_ is not None: url += '&type={}'.format(type_.value) if self.token is not None: url += '&token={}'.format(self.token) return url
3.71875
4
utils.py
py-ranoid/practical-nlp
0
5841
import requests import tarfile import os def download_file(url, directory): local_filename = os.path.join(directory, url.split('/')[-1]) print ("Downloading %s --> %s"%(url, local_filename)) with requests.get(url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return local_filename def extract_tar(fpath): fname_dir, fname = os.path.split(fpath) dest_path = os.path.join(fname_dir,fname.split('.')[0]) print ("Extracting %s --> %s"%(fpath, dest_path)) if fname.endswith("tar.gz"): tar = tarfile.open(fpath, "r:gz") tar.extractall(path=fname_dir) tar.close() elif fname.endswith("tar"): tar = tarfile.open(fname, "r:") tar.extractall(path=fname_dir) tar.close() return dest_path def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * (level) print('{}{}/'.format(indent, os.path.basename(root))) subindent = ' ' * 4 * (level + 1) for f in files: print('{}{}'.format(subindent, f))
3.15625
3
spritecss/config.py
yostudios/Spritemapper
49
5842
import shlex from os import path from itertools import imap, ifilter from urlparse import urljoin from .css import CSSParser, iter_events def parse_config_stmt(line, prefix="spritemapper."): line = line.strip() if line.startswith(prefix) and "=" in line: (key, value) = line.split("=", 1) return (key[len(prefix):].strip(), value.strip()) def iter_config_stmts(data): return ifilter(None, imap(parse_config_stmt, data.splitlines())) def iter_css_config(parser): for ev in iter_events(parser, lexemes=("comment",)): for v in iter_config_stmts(ev.comment): yield v class CSSConfig(object): def __init__(self, parser=None, base=None, root=None, fname=None): if fname and root is None: root = path.dirname(fname) self.root = root self._data = dict(base) if base else {} if parser is not None: self._data.update(iter_css_config(parser)) def __iter__(self): # this is mostly so you can go CSSConfig(base=CSSConfig(..)) return self._data.iteritems() @classmethod def from_file(cls, fname): with open(fname, "rb") as fp: return cls(CSSParser.from_file(fp), fname=fname) def normpath(self, p): """Normalize a possibly relative path *p* to the root.""" return path.normpath(path.join(self.root, p)) def absurl(self, p): """Make an absolute reference to *p* from any configured base URL.""" base = self.base_url if base: p = urljoin(base, p) return p @property def base_url(self): return self._data.get("base_url") @property def sprite_dirs(self): if "sprite_dirs" not in self._data: return elif self._data.get("output_image"): raise RuntimeError("cannot have sprite_dirs " "when output_image is set") sdirs = shlex.split(self._data["sprite_dirs"]) return map(self.normpath, sdirs) @property def output_image(self): if "output_image" in self._data: return self.normpath(self._data["output_image"]) @property def is_mapping_recursive(self): rv = self._data.get("recursive") if rv and self._data.get("output_image"): raise RuntimeError("cannot have recursive spritemapping " "when output_image is set") elif rv is None: return not self._data.get("output_image") else: return bool(rv) @property def padding(self): return self._data.get("padding", (1, 1)) @property def anneal_steps(self): return int(self._data.get("anneal_steps", 9200)) def get_spritemap_out(self, dn): "Get output image filename for spritemap directory *dn*." if "output_image" in self._data: return self.output_image return dn + ".png" def get_spritemap_url(self, fname): "Get output image URL for spritemap *fname*." return self.absurl(path.relpath(fname, self.root)) def get_css_out(self, fname): "Get output image filename for spritemap directory *fname*." (dirn, base) = path.split(fname) if "output_css" in self._data: (base, ext) = path.splitext(base) names = dict(filename=fname, dirname=dirn, basename=base, extension=ext) return self.normpath(self._data["output_css"].format(**names)) else: return path.join(dirn, "sm_" + base) def print_config(fname): from pprint import pprint from .css import CSSParser with open(fname, "rb") as fp: print "%s\n%s\n" % (fname, "=" * len(fname)) pprint(dict(iter_css_config(CSSParser.read_file(fp)))) print def main(): import sys for fn in sys.argv[1:]: print_config(fn) if __name__ == "__main__": main()
2.65625
3
plotting/make_bar_graph.py
DanielTakeshi/debridement-code
3
5843
""" A bar graph. (c) September 2017 by <NAME> """ import argparse from collections import defaultdict from keras.models import Sequential from keras.layers import Dense, Activation import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import sys np.set_printoptions(suppress=True, linewidth=200) # Some matplotlib settings. plt.style.use('seaborn-darkgrid') titlesize = 21 labelsize = 17 legendsize = 15 ticksize = 15 bar_width = 0.80 opacity = 1.0 error_config = {'ecolor': '0.0', 'linewidth':3.0} def deprecated(): """ This is a deprecated method, only to show how to possibly combine these into one plot. However, I find this unwieldly. """ fig, ax = plt.subplots() bar_width = 0.80 opacity = 0.5 error_config = {'ecolor': '0.3'} rects1 = plt.bar(np.array([0,1]), means_lin, bar_width, alpha=opacity, color='b', yerr=std_lin, error_kw=error_config, label='Lin') rects2 = plt.bar(np.array([3,4,5,6,7]), means_rfs, bar_width, alpha=opacity, color='r', yerr=std_rfs, error_kw=error_config, label='RF') rects3 = plt.bar(np.array([9,10]), means_dnn, bar_width, alpha=opacity, color='y', yerr=std_dnn, error_kw=error_config, label='DNN') plt.xticks(np.arange(11) + bar_width / 2, ('A','B','','D','E','F','G','','','J','K')) plt.xlabel('Group') plt.ylabel('Scores') plt.title('Scores by group and gender') plt.tight_layout() plt.legend() plt.savefig('figures/validation_set_results.png') def plot(results, vv): lin_mean = [] lin_std = [] lin_keys = [] rfs_mean = [] rfs_std = [] rfs_keys = [] dnn_mean = [] dnn_std = [] dnn_keys = [] sorted_keys = sorted(results.keys()) for key in sorted_keys: info = [ss['loss'] for ss in results[key]] if 'Lin' in key: lin_mean.append(np.mean(info)) lin_std.append(np.std(info)) lin_keys.append(key) elif 'RFs' in key: rfs_mean.append(np.mean(info)) rfs_std.append(np.std(info)) rfs_keys.append(key) elif 'DNN' in key: dnn_mean.append(np.mean(info)) dnn_std.append(np.std(info)) dnn_keys.append(key) print("\nlin_mean: {}".format(lin_mean)) print("lin_std: {}".format(lin_std)) print("lin_keys: {}".format(lin_keys)) print("\nrfs_mean: {}".format(rfs_mean)) print("rfs_std: {}".format(rfs_std)) print("rfs_keys: {}".format(rfs_keys)) print("\nDNN results:") for (mean,std,key) in zip(dnn_mean,dnn_std,dnn_keys): print("{:.2f}\t{:.2f}\t{}".format(mean,std,key)) # sys.exit() # Use this to determine which DNN models should be here. dnn_threshold = 3.0 real_index = 0 for ii,(mean,std,key) in enumerate(zip(dnn_mean,dnn_std,dnn_keys)): if mean > dnn_threshold: continue real_index += 1 # Gah! Now I can finally make the bar chart. I think it's easiest to have it # split across three different subplots, one per algorithm category. width_ratio = [len(lin_keys),len(rfs_keys),real_index] fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16,5), gridspec_kw={'width_ratios':width_ratio}) for ii,(mean,std,key) in enumerate(zip(lin_mean,lin_std,lin_keys)): ax[0].bar(np.array([ii]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) for ii,(mean,std,key) in enumerate(zip(rfs_mean,rfs_std,rfs_keys)): ax[1].bar(np.array([ii]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) real_index = 0 for ii,(mean,std,key) in enumerate(zip(dnn_mean,dnn_std,dnn_keys)): if mean > dnn_threshold: continue ax[2].bar(np.array([real_index]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) real_index += 1 # Some rather tedious but necessary stuff to make it publication-quality. ax[0].set_title('Linear', fontsize=titlesize) ax[1].set_title('Random Forests', fontsize=titlesize) ax[2].set_title('Deep Neural Networks', fontsize=titlesize) ax[0].set_ylabel('Average Squared $L_2$, 10-Fold CV', fontsize=labelsize) for i in range(3): ax[i].set_xlabel('Algorithm', fontsize=labelsize) ax[i].set_ylim([0.0,9.0]) ax[i].tick_params(axis='y', labelsize=ticksize) ax[i].set_xticklabels([]) ax[0].legend(loc="best", ncol=1, prop={'size':legendsize}) ax[1].legend(loc="best", ncol=2, prop={'size':legendsize}) ax[2].legend(loc="best", ncol=3, prop={'size':legendsize}) plt.tight_layout() plt.savefig('figures/validation_set_results_v'+vv+'.png') if __name__ == "__main__": pp = argparse.ArgumentParser() pp.add_argument('--version', type=int) pp.add_argument('--kfolds', type=int, default=10) args = pp.parse_args() assert args.version is not None VERSION = str(args.version).zfill(2) file_name = 'results/results_kfolds10_v'+VERSION+'.npy' results = np.load(file_name)[()] print("results has keys: {}".format(results.keys())) plot(results, VERSION)
2.796875
3
setup.py
tzengerink/groceries-api
0
5844
<filename>setup.py #!/usr/bin/env python from setuptools import find_packages, setup import os import re ROOT = os.path.dirname(__file__) VERSION_RE = re.compile(r'''__version__ = \'([0-9.]+)\'''') def get_version(): init = open(os.path.join(ROOT, 'application', '__init__.py')).read() return VERSION_RE.search(init).group(1) setup( name='groceries-api', version=get_version(), license='MIT', packages=find_packages(), include_package_data=True, install_requires=[ 'alembic==0.7.5.post2', 'APScheduler==3.1.0', 'Flask==0.10.1', 'Flask-Cors==2.0.0', 'Flask-SQLAlchemy==2.0', 'gunicorn==19.3.0', 'psycopg2==2.6.1', 'PyJWT==1.1.0', 'requests==2.8.1', 'six==1.9.0', ], extras_require={ 'dev': { 'coverage==3.7.1', 'coveralls==0.5', 'flake8==2.4.0', 'mock==1.0.1', 'pytest==2.7.0', 'tox==2.1.1', }, }, )
1.734375
2
toontown/suit/DistributedLawbotBoss.py
SuperM0use24/TT-CL-Edition
0
5845
from direct.showbase.ShowBase import * from direct.interval.IntervalGlobal import * from toontown.battle.BattleProps import * from direct.distributed.ClockDelta import * from direct.showbase.PythonUtil import Functor from direct.showbase.PythonUtil import StackTrace from direct.gui.DirectGui import * from panda3d.core import * from libotp import * from direct.fsm import FSM from direct.fsm import ClassicFSM from direct.fsm import State from direct.directnotify import DirectNotifyGlobal from toontown.toonbase import ToontownGlobals from toontown.toonbase import ToontownBattleGlobals import DistributedBossCog from toontown.toonbase import TTLocalizer import SuitDNA from toontown.toon import Toon from toontown.battle import BattleBase from direct.directutil import Mopath from direct.showutil import Rope from toontown.distributed import DelayDelete from toontown.battle import MovieToonVictory from toontown.building import ElevatorUtils from toontown.battle import RewardPanel from toontown.toon import NPCToons from direct.task import Task import random import math from toontown.coghq import CogDisguiseGlobals from toontown.building import ElevatorConstants from toontown.toonbase import ToontownTimer OneBossCog = None class DistributedLawbotBoss(DistributedBossCog.DistributedBossCog, FSM.FSM): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedLawbotBoss') debugPositions = False def __init__(self, cr): self.notify.debug('----- __init___') DistributedBossCog.DistributedBossCog.__init__(self, cr) FSM.FSM.__init__(self, 'DistributedLawbotBoss') self.lawyers = [] self.lawyerRequest = None self.bossDamage = 0 self.attackCode = None self.attackAvId = 0 self.recoverRate = 0 self.recoverStartTime = 0 self.bossDamageMovie = None self.everThrownPie = 0 self.battleThreeMusicTime = 0 self.insidesANodePath = None self.insidesBNodePath = None self.strafeInterval = None self.onscreenMessage = None self.bossMaxDamage = ToontownGlobals.LawbotBossMaxDamage self.elevatorType = ElevatorConstants.ELEVATOR_CJ self.gavels = {} self.chairs = {} self.cannons = {} self.useCannons = 1 self.juryBoxIval = None self.juryTimer = None self.witnessToon = None self.witnessToonOnstage = False self.numToonJurorsSeated = 0 self.mainDoor = None self.reflectedMainDoor = None self.panFlashInterval = None self.panDamage = ToontownGlobals.LawbotBossDefensePanDamage if base.config.GetBool('lawbot-boss-cheat', 0): self.panDamage = 25 self.evidenceHitSfx = None self.toonUpSfx = None self.bonusTimer = None self.warningSfx = None self.juryMovesSfx = None self.baseColStashed = False self.battleDifficulty = 0 self.bonusWeight = 0 self.numJurorsLocalToonSeated = 0 self.cannonIndex = -1 return def announceGenerate(self): global OneBossCog self.notify.debug('----- announceGenerate') DistributedBossCog.DistributedBossCog.announceGenerate(self) self.setName(TTLocalizer.LawbotBossName) nameInfo = TTLocalizer.BossCogNameWithDept % {'name': self._name, 'dept': SuitDNA.getDeptFullname(self.style.dept)} self.setDisplayName(nameInfo) self.piesRestockSfx = loader.loadSfx('phase_5/audio/sfx/LB_receive_evidence.ogg') self.rampSlideSfx = loader.loadSfx('phase_9/audio/sfx/CHQ_VP_ramp_slide.ogg') self.evidenceHitSfx = loader.loadSfx('phase_11/audio/sfx/LB_evidence_hit.ogg') self.warningSfx = loader.loadSfx('phase_9/audio/sfx/CHQ_GOON_tractor_beam_alarmed.ogg') self.juryMovesSfx = loader.loadSfx('phase_11/audio/sfx/LB_jury_moves.ogg') self.toonUpSfx = loader.loadSfx('phase_11/audio/sfx/LB_toonup.ogg') self.strafeSfx = [] for i in xrange(10): self.strafeSfx.append(loader.loadSfx('phase_3.5/audio/sfx/SA_shred.ogg')) render.setTag('pieCode', str(ToontownGlobals.PieCodeNotBossCog)) insidesA = CollisionPolygon(Point3(4.0, -2.0, 5.0), Point3(-4.0, -2.0, 5.0), Point3(-4.0, -2.0, 0.5), Point3(4.0, -2.0, 0.5)) insidesANode = CollisionNode('BossZap') insidesANode.addSolid(insidesA) insidesANode.setCollideMask(ToontownGlobals.PieBitmask | ToontownGlobals.WallBitmask) self.insidesANodePath = self.axle.attachNewNode(insidesANode) self.insidesANodePath.setTag('pieCode', str(ToontownGlobals.PieCodeBossInsides)) self.insidesANodePath.stash() insidesB = CollisionPolygon(Point3(-4.0, 2.0, 5.0), Point3(4.0, 2.0, 5.0), Point3(4.0, 2.0, 0.5), Point3(-4.0, 2.0, 0.5)) insidesBNode = CollisionNode('BossZap') insidesBNode.addSolid(insidesB) insidesBNode.setCollideMask(ToontownGlobals.PieBitmask | ToontownGlobals.WallBitmask) self.insidesBNodePath = self.axle.attachNewNode(insidesBNode) self.insidesBNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeBossInsides)) self.insidesBNodePath.stash() target = CollisionTube(0, -1, 4, 0, -1, 9, 3.5) targetNode = CollisionNode('BossZap') targetNode.addSolid(target) targetNode.setCollideMask(ToontownGlobals.PieBitmask) self.targetNodePath = self.pelvis.attachNewNode(targetNode) self.targetNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeBossCog)) shield = CollisionTube(0, 1, 4, 0, 1, 7, 3.5) shieldNode = CollisionNode('BossZap') shieldNode.addSolid(shield) shieldNode.setCollideMask(ToontownGlobals.PieBitmask | ToontownGlobals.CameraBitmask) shieldNodePath = self.pelvis.attachNewNode(shieldNode) disk = loader.loadModel('phase_9/models/char/bossCog-gearCollide') disk.find('**/+CollisionNode').setName('BossZap') disk.reparentTo(self.pelvis) disk.setZ(0.8) self.loadEnvironment() self.__makeWitnessToon() self.__loadMopaths() localAvatar.chatMgr.chatInputSpeedChat.addCJMenu() if OneBossCog != None: self.notify.warning('Multiple BossCogs visible.') OneBossCog = self return def disable(self): global OneBossCog self.notify.debug('----- disable') DistributedBossCog.DistributedBossCog.disable(self) self.request('Off') self.unloadEnvironment() self.__cleanupWitnessToon() self.__unloadMopaths() self.__clearOnscreenMessage() taskMgr.remove(self.uniqueName('PieAdvice')) self.__cleanupStrafe() self.__cleanupJuryBox() render.clearTag('pieCode') self.targetNodePath.detachNode() self.cr.relatedObjectMgr.abortRequest(self.lawyerRequest) self.lawyerRequest = None self.betweenBattleMusic.stop() self.promotionMusic.stop() self.stingMusic.stop() self.battleTwoMusic.stop() self.battleThreeMusic.stop() self.epilogueMusic.stop() if self.juryTimer: self.juryTimer.destroy() del self.juryTimer if self.bonusTimer: self.bonusTimer.destroy() del self.bonusTimer localAvatar.chatMgr.chatInputSpeedChat.removeCJMenu() if OneBossCog == self: OneBossCog = None return def delete(self): self.notify.debug('----- delete') DistributedBossCog.DistributedBossCog.delete(self) def d_hitBoss(self, bossDamage): self.notify.debug('----- d_hitBoss') self.sendUpdate('hitBoss', [bossDamage]) def d_healBoss(self, bossHeal): self.notify.debug('----- d_bossHeal') self.sendUpdate('healBoss', [bossHeal]) def d_hitBossInsides(self): self.notify.debug('----- d_hitBossInsides') self.sendUpdate('hitBossInsides', []) def d_hitDefensePan(self): self.notify.debug('----- d_hitDefensePan') self.sendUpdate('hitDefensePan', []) def d_hitProsecutionPan(self): self.notify.debug('----- d_hitProsecutionPan') self.sendUpdate('hitProsecutionPan', []) def d_hitToon(self, toonId): self.notify.debug('----- d_hitToon') self.sendUpdate('hitToon', [toonId]) def gotToon(self, toon): stateName = self.state if stateName == 'Elevator': self.placeToonInElevator(toon) def setLawyerIds(self, lawyerIds): self.lawyers = [] self.cr.relatedObjectMgr.abortRequest(self.lawyerRequest) self.lawyerRequest = self.cr.relatedObjectMgr.requestObjects(lawyerIds, allCallback=self.__gotLawyers) def __gotLawyers(self, lawyers): self.lawyerRequest = None self.lawyers = lawyers for i in xrange(len(self.lawyers)): suit = self.lawyers[i] suit.fsm.request('neutral') suit.loop('neutral') suit.setBossCogId(self.doId) return def setBossDamage(self, bossDamage, recoverRate, timestamp): recoverStartTime = globalClockDelta.networkToLocalTime(timestamp) self.bossDamage = bossDamage self.recoverRate = recoverRate self.recoverStartTime = recoverStartTime taskName = 'RecoverBossDamage' taskMgr.remove(taskName) if self.bossDamageMovie: if self.bossDamage >= self.bossMaxDamage: self.notify.debug('finish the movie then transition to NearVictory') self.bossDamageMovie.resumeUntil(self.bossDamageMovie.getDuration()) else: self.bossDamageMovie.resumeUntil(self.bossDamage * self.bossDamageToMovie) if self.recoverRate: taskMgr.add(self.__recoverBossDamage, taskName) self.makeScaleReflectDamage() self.bossHealthBar.update(self.bossMaxDamage - bossDamage, self.bossMaxDamage) def getBossDamage(self): self.notify.debug('----- getBossDamage') now = globalClock.getFrameTime() elapsed = now - self.recoverStartTime return max(self.bossDamage - self.recoverRate * elapsed / 60.0, 0) def __recoverBossDamage(self, task): self.notify.debug('----- __recoverBossDamage') if self.bossDamageMovie: self.bossDamageMovie.setT(self.getBossDamage() * self.bossDamageToMovie) return Task.cont def __walkToonToPromotion(self, toonId, delay, mopath, track, delayDeletes): self.notify.debug('----- __walkToonToPromotion') toon = base.cr.doId2do.get(toonId) if toon: destPos = toon.getPos() self.placeToonInElevator(toon) toon.wrtReparentTo(render) ival = Sequence(Wait(delay), Func(toon.suit.setPlayRate, 1, 'walk'), Func(toon.suit.loop, 'walk'), toon.posInterval(1, Point3(0, 90, 20)), ParallelEndTogether(MopathInterval(mopath, toon), toon.posInterval(2, destPos, blendType='noBlend')), Func(toon.suit.loop, 'neutral')) track.append(ival) delayDeletes.append(DelayDelete.DelayDelete(toon, 'LawbotBoss.__walkToonToPromotion')) def __walkSuitToPoint(self, node, fromPos, toPos): self.notify.debug('----- __walkSuitToPoint') vector = Vec3(toPos - fromPos) distance = vector.length() time = distance / (ToontownGlobals.SuitWalkSpeed * 1.8) return Sequence(Func(node.setPos, fromPos), Func(node.headsUp, toPos), node.posInterval(time, toPos)) def __makeRollToBattleTwoMovie(self): startPos = Point3(ToontownGlobals.LawbotBossBattleOnePosHpr[0], ToontownGlobals.LawbotBossBattleOnePosHpr[1], ToontownGlobals.LawbotBossBattleOnePosHpr[2]) if self.arenaSide: topRampPos = Point3(*ToontownGlobals.LawbotBossTopRampPosB) topRampTurnPos = Point3(*ToontownGlobals.LawbotBossTopRampTurnPosB) p3Pos = Point3(*ToontownGlobals.LawbotBossP3PosB) else: topRampPos = Point3(*ToontownGlobals.LawbotBossTopRampPosA) topRampTurnPos = Point3(*ToontownGlobals.LawbotBossTopRampTurnPosA) p3Pos = Point3(*ToontownGlobals.LawbotBossP3PosA) battlePos = Point3(ToontownGlobals.LawbotBossBattleTwoPosHpr[0], ToontownGlobals.LawbotBossBattleTwoPosHpr[1], ToontownGlobals.LawbotBossBattleTwoPosHpr[2]) battleHpr = VBase3(ToontownGlobals.LawbotBossBattleTwoPosHpr[3], ToontownGlobals.LawbotBossBattleTwoPosHpr[4], ToontownGlobals.LawbotBossBattleTwoPosHpr[5]) bossTrack = Sequence() self.notify.debug('calling setPosHpr') myInterval = camera.posHprInterval(8, Point3(-22, -100, 35), Point3(-10, -13, 0), startPos=Point3(-22, -90, 35), startHpr=Point3(-10, -13, 0), blendType='easeInOut') chatTrack = Sequence(Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempJury1, CFSpeech), Func(camera.reparentTo, localAvatar), Func(camera.setPos, localAvatar.getOldCameraPos()), Func(camera.setHpr, 0, 0, 0), Func(self.releaseToons, 1)) bossTrack.append(Func(self.getGeomNode().setH, 180)) track, hpr = self.rollBossToPoint(startPos, None, battlePos, None, 0) bossTrack.append(track) track, hpr = self.rollBossToPoint(battlePos, hpr, battlePos, battleHpr, 0) self.makeToonsWait() finalPodiumPos = Point3(self.podium.getX(), self.podium.getY(), self.podium.getZ() + ToontownGlobals.LawbotBossBattleTwoPosHpr[2]) finalReflectedPodiumPos = Point3(self.reflectedPodium.getX(), self.reflectedPodium.getY(), self.reflectedPodium.getZ() + ToontownGlobals.LawbotBossBattleTwoPosHpr[2]) return Sequence(chatTrack, bossTrack, Func(self.getGeomNode().setH, 0), Parallel(self.podium.posInterval(5.0, finalPodiumPos), self.reflectedPodium.posInterval(5.0, finalReflectedPodiumPos), Func(self.stashBoss), self.posInterval(5.0, battlePos), Func(taskMgr.doMethodLater, 0.01, self.unstashBoss, 'unstashBoss')), name=self.uniqueName('BattleTwoMovie')) def __makeRollToBattleThreeMovie(self): startPos = Point3(ToontownGlobals.LawbotBossBattleTwoPosHpr[0], ToontownGlobals.LawbotBossBattleTwoPosHpr[1], ToontownGlobals.LawbotBossBattleTwoPosHpr[2]) battlePos = Point3(ToontownGlobals.LawbotBossBattleThreePosHpr[0], ToontownGlobals.LawbotBossBattleThreePosHpr[1], ToontownGlobals.LawbotBossBattleThreePosHpr[2]) battleHpr = VBase3(ToontownGlobals.LawbotBossBattleThreePosHpr[3], ToontownGlobals.LawbotBossBattleThreePosHpr[4], ToontownGlobals.LawbotBossBattleThreePosHpr[5]) bossTrack = Sequence() myInterval = camera.posHprInterval(8, Point3(-22, -100, 35), Point3(-10, -13, 0), startPos=Point3(-22, -90, 35), startHpr=Point3(-10, -13, 0), blendType='easeInOut') chatTrack = Sequence(Func(self.setChatAbsolute, TTLocalizer.LawbotBossTrialChat1, CFSpeech), Func(camera.reparentTo, localAvatar), Func(camera.setPos, localAvatar.getOldCameraPos()), Func(camera.setHpr, 0, 0, 0), Func(self.releaseToons, 1)) bossTrack.append(Func(self.getGeomNode().setH, 180)) bossTrack.append(Func(self.loop, 'Ff_neutral')) track, hpr = self.rollBossToPoint(startPos, None, battlePos, None, 0) bossTrack.append(track) track, hpr = self.rollBossToPoint(battlePos, hpr, battlePos, battleHpr, 0) self.makeToonsWait() return Sequence(chatTrack, bossTrack, Func(self.getGeomNode().setH, 0), name=self.uniqueName('BattleTwoMovie')) def toNeutralMode(self): if self.cr: place = self.cr.playGame.getPlace() if place and hasattr(place, 'fsm'): place.setState('waitForBattle') def makeToonsWait(self): self.notify.debug('makeToonsWait') for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: toon.stopLookAround() toon.stopSmooth() if self.hasLocalToon(): self.toMovieMode() for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: toon.loop('neutral') def makeEndOfBattleMovie(self, hasLocalToon): name = self.uniqueName('Drop') seq = Sequence(name=name) seq += [Wait(0.0)] if hasLocalToon: seq += [Func(self.show), Func(camera.reparentTo, localAvatar), Func(camera.setPos, localAvatar.getOldCameraPos()), Func(camera.setHpr, 0, 0, 0)] seq.append(Func(self.setChatAbsolute, TTLocalizer.LawbotBossPassExam, CFSpeech)) seq.append(Wait(5.0)) seq.append(Func(self.clearChat)) return seq def __makeBossDamageMovie(self): self.notify.debug('---- __makeBossDamageMovie') startPos = Point3(ToontownGlobals.LawbotBossBattleThreePosHpr[0], ToontownGlobals.LawbotBossBattleThreePosHpr[1], ToontownGlobals.LawbotBossBattleThreePosHpr[2]) startHpr = Point3(*ToontownGlobals.LawbotBossBattleThreeHpr) bottomPos = Point3(*ToontownGlobals.LawbotBossBottomPos) deathPos = Point3(*ToontownGlobals.LawbotBossDeathPos) self.setPosHpr(startPos, startHpr) bossTrack = Sequence() bossTrack.append(Func(self.loop, 'Ff_neutral')) track, hpr = self.rollBossToPoint(startPos, startHpr, bottomPos, None, 1) bossTrack.append(track) track, hpr = self.rollBossToPoint(bottomPos, startHpr, deathPos, None, 1) bossTrack.append(track) duration = bossTrack.getDuration() return bossTrack def __showOnscreenMessage(self, text): self.notify.debug('----- __showOnscreenmessage') if self.onscreenMessage: self.onscreenMessage.destroy() self.onscreenMessage = None self.onscreenMessage = DirectLabel(text=text, text_fg=VBase4(1, 1, 1, 1), text_align=TextNode.ACenter, relief=None, pos=(0, 0, 0.35), scale=0.1) return def __clearOnscreenMessage(self): if self.onscreenMessage: self.onscreenMessage.destroy() self.onscreenMessage = None return def __showWaitingMessage(self, task): self.notify.debug('----- __showWaitingMessage') self.__showOnscreenMessage(TTLocalizer.BuildingWaitingForVictors) def loadEnvironment(self): self.notify.debug('----- loadEnvironment') DistributedBossCog.DistributedBossCog.loadEnvironment(self) self.geom = loader.loadModel('phase_11/models/lawbotHQ/LawbotCourtroom3') self.geom.setPos(0, 0, -71.601) self.geom.setScale(1) self.elevatorEntrance = self.geom.find('**/elevator_origin') self.elevatorEntrance.getChildren().detach() self.elevatorEntrance.setScale(1) elevatorModel = loader.loadModel('phase_11/models/lawbotHQ/LB_Elevator') elevatorModel.reparentTo(self.elevatorEntrance) self.setupElevator(elevatorModel) self.promotionMusic = base.loader.loadMusic('phase_7/audio/bgm/encntr_suit_winning_indoor.ogg') self.betweenBattleMusic = base.loader.loadMusic('phase_9/audio/bgm/encntr_toon_winning.ogg') self.battleTwoMusic = base.loader.loadMusic('phase_11/audio/bgm/LB_juryBG.ogg') floor = self.geom.find('**/MidVaultFloor1') if floor.isEmpty(): floor = self.geom.find('**/CR3_Floor') self.evFloor = self.replaceCollisionPolysWithPlanes(floor) self.evFloor.reparentTo(self.geom) self.evFloor.setName('floor') plane = CollisionPlane(Plane(Vec3(0, 0, 1), Point3(0, 0, -50))) planeNode = CollisionNode('dropPlane') planeNode.addSolid(plane) planeNode.setCollideMask(ToontownGlobals.PieBitmask) self.geom.attachNewNode(planeNode) self.door3 = self.geom.find('**/SlidingDoor1/') if self.door3.isEmpty(): self.door3 = self.geom.find('**/interior/CR3_Door') self.mainDoor = self.geom.find('**/Door_1') if not self.mainDoor.isEmpty(): itemsToHide = ['interior/Door_1'] for str in itemsToHide: stuffToHide = self.geom.find('**/%s' % str) if not stuffToHide.isEmpty(): self.notify.debug('found %s' % stuffToHide) stuffToHide.wrtReparentTo(self.mainDoor) else: self.notify.debug('not found %s' % stuffToHide) self.reflectedMainDoor = self.geom.find('**/interiorrefl/CR3_Door') if not self.reflectedMainDoor.isEmpty(): itemsToHide = ['Reflections/Door_1'] for str in itemsToHide: stuffToHide = self.geom.find('**/%s' % str) if not stuffToHide.isEmpty(): self.notify.debug('found %s' % stuffToHide) stuffToHide.wrtReparentTo(self.reflectedMainDoor) else: self.notify.debug('not found %s' % stuffToHide) self.geom.reparentTo(render) self.loadWitnessStand() self.loadScale() self.scaleNodePath.stash() self.loadJuryBox() self.loadPodium() ug = self.geom.find('**/Reflections') ug.setBin('ground', -10) def loadJuryBox(self): self.juryBox = self.geom.find('**/JuryBox') juryBoxPos = self.juryBox.getPos() newPos = juryBoxPos - Point3(*ToontownGlobals.LawbotBossJuryBoxRelativeEndPos) if not self.debugPositions: self.juryBox.setPos(newPos) self.reflectedJuryBox = self.geom.find('**/JuryBox_Geo_Reflect') reflectedJuryBoxPos = self.reflectedJuryBox.getPos() newReflectedPos = reflectedJuryBoxPos - Point3(*ToontownGlobals.LawbotBossJuryBoxRelativeEndPos) if not self.debugPositions: self.reflectedJuryBox.setPos(newReflectedPos) if not self.reflectedJuryBox.isEmpty(): if self.debugPositions: self.reflectedJuryBox.show() self.reflectedJuryBox.setZ(self.reflectedJuryBox.getZ() + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[2]) def loadPodium(self): self.podium = self.geom.find('**/Podium') newZ = self.podium.getZ() - ToontownGlobals.LawbotBossBattleTwoPosHpr[2] if not self.debugPositions: self.podium.setZ(newZ) self.reflectedPodium = self.geom.find('**/Podium_Geo1_Refl') reflectedZ = self.reflectedPodium.getZ() if not self.debugPositions: self.reflectedPodium.setZ(reflectedZ) if not self.reflectedPodium.isEmpty(): if self.debugPositions: self.reflectedPodium.show() def loadCannons(self): pass def loadWitnessStand(self): self.realWitnessStand = self.geom.find('**/WitnessStand') if not self.realWitnessStand.isEmpty(): pass self.reflectedWitnessStand = self.geom.find('**/Witnessstand_Geo_Reflect') if not self.reflectedWitnessStand.isEmpty(): pass colNode = self.realWitnessStand.find('**/witnessStandCollisions/Witnessstand_Collision') colNode.setName('WitnessStand') def loadScale(self): self.useProgrammerScale = base.config.GetBool('want-injustice-scale-debug', 0) if self.useProgrammerScale: self.loadScaleOld() else: self.loadScaleNew() def __debugScale(self): prosecutionPanPos = self.prosecutionPanNodePath.getPos() origin = Point3(0, 0, 0) prosecutionPanRelPos = self.scaleNodePath.getRelativePoint(self.prosecutionPanNodePath, origin) panRenderPos = render.getRelativePoint(self.prosecutionPanNodePath, origin) self.notify.debug('prosecutionPanPos = %s' % prosecutionPanPos) self.notify.debug('prosecutionPanRelPos = %s' % prosecutionPanRelPos) self.notify.debug('panRenderPos = %s' % panRenderPos) prosecutionLocatorPos = self.prosecutionLocator.getPos() prosecutionLocatorRelPos = self.scaleNodePath.getRelativePoint(self.prosecutionLocator, origin) locatorRenderPos = render.getRelativePoint(self.prosecutionLocator, origin) self.notify.debug('prosecutionLocatorPos = %s ' % prosecutionLocatorPos) self.notify.debug('prosecutionLocatorRelPos = %s ' % prosecutionLocatorRelPos) self.notify.debug('locatorRenderPos = %s' % locatorRenderPos) beamPos = self.beamNodePath.getPos() beamRelPos = self.scaleNodePath.getRelativePoint(self.beamNodePath, origin) beamRenderPos = render.getRelativePoint(self.beamNodePath, origin) self.notify.debug('beamPos = %s' % beamPos) self.notify.debug('beamRelPos = %s' % beamRelPos) self.notify.debug('beamRenderPos = %s' % beamRenderPos) beamBoundsCenter = self.beamNodePath.getBounds().getCenter() self.notify.debug('beamBoundsCenter = %s' % beamBoundsCenter) beamLocatorBounds = self.beamLocator.getBounds() beamLocatorPos = beamLocatorBounds.getCenter() self.notify.debug('beamLocatorPos = %s' % beamLocatorPos) def loadScaleNew(self): self.scaleNodePath = loader.loadModel('phase_11/models/lawbotHQ/scale') self.beamNodePath = self.scaleNodePath.find('**/scaleBeam') self.defensePanNodePath = self.scaleNodePath.find('**/defensePan') self.prosecutionPanNodePath = self.scaleNodePath.find('**/prosecutionPan') self.defenseColNodePath = self.scaleNodePath.find('**/DefenseCol') self.defenseColNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeDefensePan)) self.prosecutionColNodePath = self.scaleNodePath.find('**/ProsecutionCol') self.prosecutionColNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeProsecutionPan)) self.standNodePath = self.scaleNodePath.find('**/scaleStand') self.scaleNodePath.setPosHpr(*ToontownGlobals.LawbotBossInjusticePosHpr) self.defenseLocator = self.scaleNodePath.find('**/DefenseLocator') defenseLocBounds = self.defenseLocator.getBounds() defenseLocPos = defenseLocBounds.getCenter() self.notify.debug('defenseLocatorPos = %s' % defenseLocPos) self.defensePanNodePath.setPos(defenseLocPos) self.defensePanNodePath.reparentTo(self.beamNodePath) self.notify.debug('defensePanNodePath.getPos()=%s' % self.defensePanNodePath.getPos()) self.prosecutionLocator = self.scaleNodePath.find('**/ProsecutionLocator') prosecutionLocBounds = self.prosecutionLocator.getBounds() prosecutionLocPos = prosecutionLocBounds.getCenter() self.notify.debug('prosecutionLocatorPos = %s' % prosecutionLocPos) self.prosecutionPanNodePath.setPos(prosecutionLocPos) self.prosecutionPanNodePath.reparentTo(self.beamNodePath) self.beamLocator = self.scaleNodePath.find('**/StandLocator1') beamLocatorBounds = self.beamLocator.getBounds() beamLocatorPos = beamLocatorBounds.getCenter() negBeamLocatorPos = -beamLocatorPos self.notify.debug('beamLocatorPos = %s' % beamLocatorPos) self.notify.debug('negBeamLocatorPos = %s' % negBeamLocatorPos) self.beamNodePath.setPos(beamLocatorPos) self.scaleNodePath.setScale(*ToontownGlobals.LawbotBossInjusticeScale) self.scaleNodePath.wrtReparentTo(self.geom) self.baseHighCol = self.scaleNodePath.find('**/BaseHighCol') oldBitMask = self.baseHighCol.getCollideMask() newBitMask = oldBitMask & ~ToontownGlobals.PieBitmask newBitMask = newBitMask & ~ToontownGlobals.CameraBitmask self.baseHighCol.setCollideMask(newBitMask) self.defenseHighCol = self.scaleNodePath.find('**/DefenseHighCol') self.defenseHighCol.stash() self.defenseHighCol.setCollideMask(newBitMask) self.baseTopCol = self.scaleNodePath.find('**/Scale_base_top_collision') self.baseSideCol = self.scaleNodePath.find('**/Scale_base_side_col') self.defenseLocator.hide() self.prosecutionLocator.hide() self.beamLocator.hide() def loadScaleOld(self): startingTilt = 0 self.scaleNodePath = NodePath('injusticeScale') beamGeom = self.createBlock(0.25, 2, 0.125, -0.25, -2, -0.125, 0, 1.0, 0, 1.0) self.beamNodePath = NodePath('scaleBeam') self.beamNodePath.attachNewNode(beamGeom) self.beamNodePath.setPos(0, 0, 3) self.beamNodePath.reparentTo(self.scaleNodePath) defensePanGeom = self.createBlock(0.5, 0.5, 0, -0.5, -0.5, -2, 0, 0, 1.0, 0.25) self.defensePanNodePath = NodePath('defensePan') self.defensePanNodePath.attachNewNode(defensePanGeom) self.defensePanNodePath.setPos(0, -2, 0) self.defensePanNodePath.reparentTo(self.beamNodePath) defenseTube = CollisionTube(0, 0, -0.5, 0, 0, -1.5, 0.6) defenseTube.setTangible(1) defenseCollNode = CollisionNode('DefenseCol') defenseCollNode.addSolid(defenseTube) self.defenseColNodePath = self.defensePanNodePath.attachNewNode(defenseCollNode) self.defenseColNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeDefensePan)) prosecutionPanGeom = self.createBlock(0.5, 0.5, 0, -0.5, -0.5, -2, 1.0, 0, 0, 1.0) self.prosecutionPanNodePath = NodePath('prosecutionPan') self.prosecutionPanNodePath.attachNewNode(prosecutionPanGeom) self.prosecutionPanNodePath.setPos(0, 2, 0) self.prosecutionPanNodePath.reparentTo(self.beamNodePath) prosecutionTube = CollisionTube(0, 0, -0.5, 0, 0, -1.5, 0.6) prosecutionTube.setTangible(1) prosecutionCollNode = CollisionNode(self.uniqueName('ProsecutionCol')) prosecutionCollNode.addSolid(prosecutionTube) self.prosecutionColNodePath = self.prosecutionPanNodePath.attachNewNode(prosecutionCollNode) self.prosecutionColNodePath.setTag('pieCode', str(ToontownGlobals.PieCodeProsecutionPan)) standGeom = self.createBlock(0.25, 0.25, 0, -0.25, -0.25, 3) self.standNodePath = NodePath('scaleStand') self.standNodePath.attachNewNode(standGeom) self.standNodePath.reparentTo(self.scaleNodePath) self.scaleNodePath.setPosHpr(*ToontownGlobals.LawbotBossInjusticePosHpr) self.scaleNodePath.setScale(5.0) self.scaleNodePath.wrtReparentTo(self.geom) self.setScaleTilt(startingTilt) def setScaleTilt(self, tilt): self.beamNodePath.setP(tilt) if self.useProgrammerScale: self.defensePanNodePath.setP(-tilt) self.prosecutionPanNodePath.setP(-tilt) else: self.defensePanNodePath.setP(-tilt) self.prosecutionPanNodePath.setP(-tilt) def stashBaseCol(self): if not self.baseColStashed: self.notify.debug('stashBaseCol') self.baseTopCol.stash() self.baseSideCol.stash() self.baseColStashed = True def unstashBaseCol(self): if self.baseColStashed: self.notify.debug('unstashBaseCol') self.baseTopCol.unstash() self.baseSideCol.unstash() self.baseColStashed = False def makeScaleReflectDamage(self): diffDamage = self.bossDamage - ToontownGlobals.LawbotBossInitialDamage diffDamage *= 1.0 if diffDamage >= 0: percentDamaged = diffDamage / (ToontownGlobals.LawbotBossMaxDamage - ToontownGlobals.LawbotBossInitialDamage) tilt = percentDamaged * ToontownGlobals.LawbotBossWinningTilt else: percentDamaged = diffDamage / (ToontownGlobals.LawbotBossInitialDamage - 0) tilt = percentDamaged * ToontownGlobals.LawbotBossWinningTilt self.setScaleTilt(tilt) if self.bossDamage < ToontownGlobals.LawbotBossMaxDamage * 0.85: self.unstashBaseCol() else: self.stashBaseCol() def unloadEnvironment(self): self.notify.debug('----- unloadEnvironment') DistributedBossCog.DistributedBossCog.unloadEnvironment(self) self.geom.removeNode() del self.geom def __loadMopaths(self): self.notify.debug('----- __loadMopaths') self.toonsEnterA = Mopath.Mopath() self.toonsEnterA.loadFile('phase_9/paths/bossBattle-toonsEnterA') self.toonsEnterA.fFaceForward = 1 self.toonsEnterA.timeScale = 35 self.toonsEnterB = Mopath.Mopath() self.toonsEnterB.loadFile('phase_9/paths/bossBattle-toonsEnterB') self.toonsEnterB.fFaceForward = 1 self.toonsEnterB.timeScale = 35 def __unloadMopaths(self): self.notify.debug('----- __unloadMopaths') self.toonsEnterA.reset() self.toonsEnterB.reset() def enterOff(self): self.notify.debug('----- enterOff') DistributedBossCog.DistributedBossCog.enterOff(self) if self.witnessToon: self.witnessToon.clearChat() def enterWaitForToons(self): self.notify.debug('----- enterWaitForToons') DistributedBossCog.DistributedBossCog.enterWaitForToons(self) self.geom.hide() self.witnessToon.removeActive() def exitWaitForToons(self): self.notify.debug('----- exitWaitForToons') DistributedBossCog.DistributedBossCog.exitWaitForToons(self) self.geom.show() self.witnessToon.addActive() def enterElevator(self): self.notify.debug('----- enterElevator') DistributedBossCog.DistributedBossCog.enterElevator(self) self.witnessToon.removeActive() self.reparentTo(render) self.setPosHpr(*ToontownGlobals.LawbotBossBattleOnePosHpr) self.happy = 1 self.raised = 1 self.forward = 1 self.doAnimate() self.__hideWitnessToon() if not self.mainDoor.isEmpty(): self.mainDoor.stash() if not self.reflectedMainDoor.isEmpty(): self.reflectedMainDoor.stash() camera.reparentTo(self.elevatorModel) camera.setPosHpr(0, 30, 8, 180, 0, 0) def exitElevator(self): self.notify.debug('----- exitElevator') DistributedBossCog.DistributedBossCog.exitElevator(self) self.witnessToon.removeActive() def enterIntroduction(self): self.notify.debug('----- enterIntroduction') self.reparentTo(render) self.setPosHpr(*ToontownGlobals.LawbotBossBattleOnePosHpr) self.stopAnimate() self.__hideWitnessToon() DistributedBossCog.DistributedBossCog.enterIntroduction(self) base.playMusic(self.promotionMusic, looping=1, volume=0.9) if not self.mainDoor.isEmpty(): self.mainDoor.stash() if not self.reflectedMainDoor.isEmpty(): self.reflectedMainDoor.stash() def exitIntroduction(self): self.notify.debug('----- exitIntroduction') DistributedBossCog.DistributedBossCog.exitIntroduction(self) self.promotionMusic.stop() if not self.mainDoor.isEmpty(): pass if not self.reflectedMainDoor.isEmpty(): self.reflectedMainDoor.unstash() if not self.elevatorEntrance.isEmpty(): pass def enterBattleOne(self): self.notify.debug('----- LawbotBoss.enterBattleOne ') DistributedBossCog.DistributedBossCog.enterBattleOne(self) self.reparentTo(render) self.setPosHpr(*ToontownGlobals.LawbotBossBattleOnePosHpr) self.clearChat() self.loop('Ff_neutral') self.notify.debug('self.battleANode = %s' % self.battleANode) self.__hideWitnessToon() if self.battleA == None or self.battleB == None: pass return def exitBattleOne(self): self.notify.debug('----- exitBattleOne') DistributedBossCog.DistributedBossCog.exitBattleOne(self) def stashBoss(self): self.stash() def unstashBoss(self, task): self.unstash() self.reparentTo(render) def enterRollToBattleTwo(self): self.notify.debug('----- enterRollToBattleTwo') self.releaseToons(finalBattle=1) self.stashBoss() self.toonsToBattlePosition(self.involvedToons, self.battleANode) self.stickBossToFloor() intervalName = 'RollToBattleTwo' seq = Sequence(self.__makeRollToBattleTwoMovie(), Func(self.__onToPrepareBattleTwo), name=intervalName) seq.start() self.storeInterval(seq, intervalName) base.playMusic(self.betweenBattleMusic, looping=1, volume=0.9) taskMgr.doMethodLater(0.01, self.unstashBoss, 'unstashBoss') def __onToPrepareBattleTwo(self): self.notify.debug('----- __onToPrepareBattleTwo') self.unstickBoss() self.setPosHpr(*ToontownGlobals.LawbotBossBattleTwoPosHpr) self.doneBarrier('RollToBattleTwo') def exitRollToBattleTwo(self): self.notify.debug('----- exitRollToBattleTwo') self.unstickBoss() intervalName = 'RollToBattleTwo' self.clearInterval(intervalName) self.betweenBattleMusic.stop() def enterPrepareBattleTwo(self): self.notify.debug('----- enterPrepareBattleTwo') self.cleanupIntervals() self.controlToons() self.setToonsToNeutral(self.involvedToons) self.clearChat() self.reparentTo(render) self.__showWitnessToon() prepareBattleTwoMovie = self.__makePrepareBattleTwoMovie() intervalName = 'prepareBattleTwo' seq = Sequence(prepareBattleTwoMovie, name=intervalName) seq.start() self.storeInterval(seq, intervalName) self.acceptOnce('doneChatPage', self.__showCannonsAppearing) base.playMusic(self.stingMusic, looping=0, volume=1.0) def __showCannonsAppearing(self, elapsedTime = 0): allCannonsAppear = Sequence(Func(self.__positionToonsInFrontOfCannons), Func(camera.reparentTo, localAvatar), Func(camera.setPos, localAvatar.getOldCameraPosTwo()), Func(camera.lookAt, localAvatar)) multiCannons = Parallel() index = 0 self.involvedToons.sort() for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: if index in self.cannons: cannon = self.cannons[index] cannonSeq = cannon.generateCannonAppearTrack(toon) multiCannons.append(cannonSeq) index += 1 else: self.notify.warning('No cannon %d but we have a toon =%d' % (index, toonId)) allCannonsAppear.append(multiCannons) intervalName = 'prepareBattleTwoCannonsAppear' seq = Sequence(allCannonsAppear, Func(self.__onToBattleTwo), name=intervalName) seq.start() self.storeInterval(seq, intervalName) def __onToBattleTwo(self, elapsedTime = 0): self.notify.debug('----- __onToBattleTwo') self.doneBarrier('PrepareBattleTwo') taskMgr.doMethodLater(1, self.__showWaitingMessage, self.uniqueName('WaitingMessage')) def exitPrepareBattleTwo(self): self.notify.debug('----- exitPrepareBattleTwo') self.show() taskMgr.remove(self.uniqueName('WaitingMessage')) self.ignore('doneChatPage') self.__clearOnscreenMessage() self.stingMusic.stop() def enterBattleTwo(self): self.notify.debug('----- enterBattleTwo') self.cleanupIntervals() mult = ToontownBattleGlobals.getBossBattleCreditMultiplier(2) localAvatar.inventory.setBattleCreditMultiplier(mult) self.reparentTo(render) self.setPosHpr(*ToontownGlobals.LawbotBossBattleTwoPosHpr) self.clearChat() self.witnessToon.clearChat() self.releaseToons(finalBattle=1) self.__showWitnessToon() if not self.useCannons: self.toonsToBattlePosition(self.toonsA, self.battleANode) self.toonsToBattlePosition(self.toonsB, self.battleBNode) base.playMusic(self.battleTwoMusic, looping=1, volume=0.9) self.startJuryBoxMoving() for index in xrange(len(self.cannons)): cannon = self.cannons[index] cannon.cannon.show() def getChairParent(self): return self.juryBox def startJuryBoxMoving(self): if self.juryBoxIval: self.juryBoxIval.finish() self.juryBoxIval = None self.juryBox.setPos(-30, 0, -12.645) self.reflectedJuryBox.setPos(-30, 0, 0) curPos = self.juryBox.getPos() endingAbsPos = Point3(curPos[0] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[0], curPos[1] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[1], curPos[2] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[2]) curReflectedPos = self.reflectedJuryBox.getPos() reflectedEndingAbsPos = Point3(curReflectedPos[0] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[0], curReflectedPos[1] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[1], curReflectedPos[2] + ToontownGlobals.LawbotBossJuryBoxRelativeEndPos[2]) self.juryBoxIval = Parallel(self.juryBox.posInterval(ToontownGlobals.LawbotBossJuryBoxMoveTime, endingAbsPos), self.reflectedJuryBox.posInterval(ToontownGlobals.LawbotBossJuryBoxMoveTime, reflectedEndingAbsPos), SoundInterval(self.juryMovesSfx, node=self.chairs[2].nodePath, duration=ToontownGlobals.LawbotBossJuryBoxMoveTime, loop=1, volume=1.0)) self.juryBoxIval.start() self.juryTimer = ToontownTimer.ToontownTimer() self.juryTimer.posInTopRightCorner() self.juryTimer.countdown(ToontownGlobals.LawbotBossJuryBoxMoveTime) def exitBattleTwo(self): self.notify.debug('----- exitBattleTwo') intervalName = self.uniqueName('Drop') self.clearInterval(intervalName) self.cleanupBattles() self.battleTwoMusic.stop() localAvatar.inventory.setBattleCreditMultiplier(1) if self.juryTimer: self.juryTimer.destroy() del self.juryTimer self.juryTimer = None for chair in self.chairs.values(): chair.stopCogsFlying() return def enterRollToBattleThree(self): self.notify.debug('----- enterRollToBattleThree') self.reparentTo(render) self.stickBossToFloor() intervalName = 'RollToBattleThree' seq = Sequence(self.__makeRollToBattleThreeMovie(), Func(self.__onToPrepareBattleThree), name=intervalName) seq.start() self.storeInterval(seq, intervalName) base.playMusic(self.betweenBattleMusic, looping=1, volume=0.9) def __onToPrepareBattleThree(self): self.notify.debug('----- __onToPrepareBattleThree') self.unstickBoss() self.setPosHpr(*ToontownGlobals.LawbotBossBattleThreePosHpr) self.doneBarrier('RollToBattleThree') def exitRollToBattleThree(self): self.notify.debug('----- exitRollToBattleThree') self.unstickBoss() intervalName = 'RollToBattleThree' self.clearInterval(intervalName) self.betweenBattleMusic.stop() def enterPrepareBattleThree(self): self.notify.debug('----- enterPrepareBattleThree') self.cleanupIntervals() self.controlToons() self.setToonsToNeutral(self.involvedToons) self.clearChat() self.reparentTo(render) base.playMusic(self.betweenBattleMusic, looping=1, volume=0.9) self.__showWitnessToon() prepareBattleThreeMovie = self.__makePrepareBattleThreeMovie() self.acceptOnce('doneChatPage', self.__onToBattleThree) intervalName = 'prepareBattleThree' seq = Sequence(prepareBattleThreeMovie, name=intervalName) seq.start() self.storeInterval(seq, intervalName) def __onToBattleThree(self, elapsed): self.notify.debug('----- __onToBattleThree') self.doneBarrier('PrepareBattleThree') taskMgr.doMethodLater(1, self.__showWaitingMessage, self.uniqueName('WaitingMessage')) def exitPrepareBattleThree(self): self.notify.debug('----- exitPrepareBattleThree') self.show() taskMgr.remove(self.uniqueName('WaitingMessage')) self.ignore('doneChatPage') intervalName = 'PrepareBattleThree' self.clearInterval(intervalName) self.__clearOnscreenMessage() self.betweenBattleMusic.stop() def enterBattleThree(self): DistributedBossCog.DistributedBossCog.enterBattleThree(self) self.scaleNodePath.unstash() localAvatar.setPos(-3, 0, 0) base.localAvatar.orbitalCamera.start() self.clearChat() self.witnessToon.clearChat() self.reparentTo(render) self.happy = 1 self.raised = 1 self.forward = 1 self.doAnimate() self.accept('enterWitnessStand', self.__touchedWitnessStand) self.accept('pieSplat', self.__pieSplat) self.accept('localPieSplat', self.__localPieSplat) self.accept('outOfPies', self.__outOfPies) self.accept('begin-pie', self.__foundPieButton) self.accept('enterDefenseCol', self.__enterDefenseCol) self.accept('enterProsecutionCol', self.__enterProsecutionCol) localAvatar.setCameraFov(ToontownGlobals.BossBattleCameraFov) taskMgr.doMethodLater(30, self.__howToGetPies, self.uniqueName('PieAdvice')) self.stickBossToFloor() self.setPosHpr(*ToontownGlobals.LawbotBossBattleThreePosHpr) self.bossMaxDamage = ToontownGlobals.LawbotBossMaxDamage base.playMusic(self.battleThreeMusic, looping=1, volume=0.9) self.__showWitnessToon() diffSettings = ToontownGlobals.LawbotBossDifficultySettings[self.battleDifficulty] self.bossHealthBar.initialize(self.bossMaxDamage - self.bossDamage, self.bossMaxDamage) if diffSettings[4]: localAvatar.chatMgr.chatInputSpeedChat.removeCJMenu() localAvatar.chatMgr.chatInputSpeedChat.addCJMenu(self.bonusWeight) def __doneBattleThree(self): self.notify.debug('----- __doneBattleThree') self.setState('NearVictory') self.unstickBoss() def exitBattleThree(self): self.notify.debug('----- exitBattleThree') DistributedBossCog.DistributedBossCog.exitBattleThree(self) NametagGlobals.setMasterArrowsOn(1) bossDoneEventName = self.uniqueName('DestroyedBoss') self.ignore(bossDoneEventName) taskMgr.remove(self.uniqueName('StandUp')) self.ignore('enterWitnessStand') self.ignore('pieSplat') self.ignore('localPieSplat') self.ignore('outOfPies') self.ignore('begin-pie') self.ignore('enterDefenseCol') self.ignore('enterProsecutionCol') self.__clearOnscreenMessage() taskMgr.remove(self.uniqueName('PieAdvice')) localAvatar.setCameraFov(ToontownGlobals.CogHQCameraFov) if self.bossDamageMovie: self.bossDamageMovie.finish() self.bossDamageMovie = None self.unstickBoss() taskName = 'RecoverBossDamage' taskMgr.remove(taskName) self.battleThreeMusicTime = self.battleThreeMusic.getTime() self.battleThreeMusic.stop() return def enterNearVictory(self): self.cleanupIntervals() self.reparentTo(render) self.setPos(*ToontownGlobals.LawbotBossDeathPos) self.setHpr(*ToontownGlobals.LawbotBossBattleThreeHpr) self.clearChat() self.releaseToons(finalBattle=1) self.accept('pieSplat', self.__finalPieSplat) self.accept('localPieSplat', self.__localPieSplat) self.accept('outOfPies', self.__outOfPies) localAvatar.setCameraFov(ToontownGlobals.BossBattleCameraFov) self.happy = 0 self.raised = 0 self.forward = 1 self.doAnimate() self.setDizzy(1) base.playMusic(self.battleThreeMusic, looping=1, volume=0.9, time=self.battleThreeMusicTime) def exitNearVictory(self): self.notify.debug('----- exitNearVictory') self.ignore('pieSplat') self.ignore('localPieSplat') self.ignore('outOfPies') self.__clearOnscreenMessage() taskMgr.remove(self.uniqueName('PieAdvice')) localAvatar.setCameraFov(ToontownGlobals.CogHQCameraFov) self.setDizzy(0) self.battleThreeMusicTime = self.battleThreeMusic.getTime() self.battleThreeMusic.stop() def enterVictory(self): self.notify.debug('----- enterVictory') self.cleanupIntervals() self.reparentTo(render) self.setPosHpr(*ToontownGlobals.LawbotBossBattleThreePosHpr) self.loop('neutral') localAvatar.setCameraFov(ToontownGlobals.BossBattleCameraFov) self.clearChat() self.witnessToon.clearChat() self.controlToons() self.setToonsToNeutral(self.involvedToons) self.happy = 1 self.raised = 1 self.forward = 1 intervalName = 'VictoryMovie' seq = Sequence(self.makeVictoryMovie(), Func(self.__continueVictory), name=intervalName) seq.start() self.storeInterval(seq, intervalName) self.bossHealthBar.deinitialize() base.playMusic(self.battleThreeMusic, looping=1, volume=0.9, time=self.battleThreeMusicTime) def __continueVictory(self): self.notify.debug('----- __continueVictory') self.stopAnimate() self.doneBarrier('Victory') def exitVictory(self): self.notify.debug('----- exitVictory') self.stopAnimate() self.unstash() localAvatar.setCameraFov(ToontownGlobals.CogHQCameraFov) self.battleThreeMusicTime = self.battleThreeMusic.getTime() self.battleThreeMusic.stop() def enterDefeat(self): self.notify.debug('----- enterDefeat') self.cleanupIntervals() localAvatar.setCameraFov(ToontownGlobals.BossBattleCameraFov) self.reparentTo(render) self.clearChat() self.releaseToons(finalBattle=1) self.happy = 0 self.raised = 0 self.forward = 1 intervalName = 'DefeatMovie' seq = Sequence(self.makeDefeatMovie(), Func(self.__continueDefeat), name=intervalName) seq.start() self.storeInterval(seq, intervalName) base.playMusic(self.battleThreeMusic, looping=1, volume=0.9, time=self.battleThreeMusicTime) def __continueDefeat(self): self.notify.debug('----- __continueDefeat') self.stopAnimate() self.doneBarrier('Defeat') def exitDefeat(self): self.notify.debug('----- exitDefeat') self.stopAnimate() self.unstash() localAvatar.setCameraFov(ToontownGlobals.CogHQCameraFov) self.battleThreeMusicTime = self.battleThreeMusic.getTime() self.battleThreeMusic.stop() def enterReward(self): self.cleanupIntervals() self.clearChat() self.witnessToon.clearChat() self.stash() self.stopAnimate() self.controlToons() panelName = self.uniqueName('reward') self.rewardPanel = RewardPanel.RewardPanel(panelName) victory, camVictory, skipper = MovieToonVictory.doToonVictory(1, self.involvedToons, self.toonRewardIds, self.toonRewardDicts, self.deathList, self.rewardPanel, allowGroupShot=0, uberList=self.uberList, noSkip=True) ival = Sequence(Parallel(victory, camVictory), Func(self.__doneReward)) intervalName = 'RewardMovie' delayDeletes = [] for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: delayDeletes.append(DelayDelete.DelayDelete(toon, 'LawbotBoss.enterReward')) ival.delayDeletes = delayDeletes ival.start() self.storeInterval(ival, intervalName) base.playMusic(self.battleThreeMusic, looping=1, volume=0.9, time=self.battleThreeMusicTime) def __doneReward(self): self.notify.debug('----- __doneReward') self.doneBarrier('Reward') self.toWalkMode() def exitReward(self): self.notify.debug('----- exitReward') intervalName = 'RewardMovie' self.clearInterval(intervalName) self.unstash() self.rewardPanel.destroy() del self.rewardPanel self.battleThreeMusicTime = 0 self.battleThreeMusic.stop() def enterEpilogue(self): self.cleanupIntervals() self.clearChat() self.witnessToon.clearChat() self.stash() self.stopAnimate() self.controlToons() self.__showWitnessToon() self.witnessToon.reparentTo(render) self.witnessToon.setPosHpr(*ToontownGlobals.LawbotBossWitnessEpiloguePosHpr) self.witnessToon.loop('Sit') self.__arrangeToonsAroundWitnessToon() camera.reparentTo(render) camera.setPos(self.witnessToon, -9, 12, 6) camera.lookAt(self.witnessToon, 0, 0, 3) intervalName = 'EpilogueMovie' seq = Sequence(self.makeEpilogueMovie(), name=intervalName) seq.start() self.storeInterval(seq, intervalName) self.accept('doneChatPage', self.__doneEpilogue) base.playMusic(self.epilogueMusic, looping=1, volume=0.9) def __doneEpilogue(self, elapsedTime = 0): self.notify.debug('----- __doneEpilogue') intervalName = 'EpilogueMovieToonAnim' self.clearInterval(intervalName) track = Parallel(Sequence(Wait(0.5), Func(self.localToonToSafeZone))) self.storeInterval(track, intervalName) track.start() def exitEpilogue(self): self.notify.debug('----- exitEpilogue') self.clearInterval('EpilogueMovieToonAnim') self.unstash() self.epilogueMusic.stop() def enterFrolic(self): self.notify.debug('----- enterFrolic') self.setPosHpr(*ToontownGlobals.LawbotBossBattleOnePosHpr) DistributedBossCog.DistributedBossCog.enterFrolic(self) self.show() def doorACallback(self, isOpen): if self.insidesANodePath: if isOpen: self.insidesANodePath.unstash() else: self.insidesANodePath.stash() def doorBCallback(self, isOpen): if self.insidesBNodePath: if isOpen: self.insidesBNodePath.unstash() else: self.insidesBNodePath.stash() def __toonsToPromotionPosition(self, toonIds, battleNode): self.notify.debug('----- __toonsToPromotionPosition') points = BattleBase.BattleBase.toonPoints[len(toonIds) - 1] for i in xrange(len(toonIds)): toon = base.cr.doId2do.get(toonIds[i]) if toon: toon.reparentTo(render) pos, h = points[i] toon.setPosHpr(battleNode, pos[0], pos[1] + 10, pos[2], h, 0, 0) def __outOfPies(self): self.notify.debug('----- outOfPies') self.__showOnscreenMessage(TTLocalizer.LawbotBossNeedMoreEvidence) taskMgr.doMethodLater(20, self.__howToGetPies, self.uniqueName('PieAdvice')) def __howToGetPies(self, task): self.notify.debug('----- __howToGetPies') self.__showOnscreenMessage(TTLocalizer.LawbotBossHowToGetEvidence) def __howToThrowPies(self, task): self.notify.debug('----- __howToThrowPies') self.__showOnscreenMessage(TTLocalizer.LawbotBossHowToThrowPies) def __foundPieButton(self): self.everThrownPie = 1 self.__clearOnscreenMessage() taskMgr.remove(self.uniqueName('PieAdvice')) def __touchedWitnessStand(self, entry): self.sendUpdate('touchWitnessStand', []) self.__clearOnscreenMessage() taskMgr.remove(self.uniqueName('PieAdvice')) base.playSfx(self.piesRestockSfx) if not self.everThrownPie: taskMgr.doMethodLater(30, self.__howToThrowPies, self.uniqueName('PieAdvice')) def __pieSplat(self, toon, pieCode): if pieCode == ToontownGlobals.PieCodeBossInsides: if toon == localAvatar: self.d_hitBossInsides() self.flashRed() elif pieCode == ToontownGlobals.PieCodeBossCog: if toon == localAvatar: self.d_hitBoss(1) if self.dizzy: self.flashRed() self.doAnimate('hit', now=1) elif pieCode == ToontownGlobals.PieCodeDefensePan: self.flashRed() self.flashPanBlue() base.playSfx(self.evidenceHitSfx, node=self.defensePanNodePath, volume=0.25) if toon == localAvatar: self.d_hitBoss(self.panDamage) elif pieCode == ToontownGlobals.PieCodeProsecutionPan: self.flashGreen() if toon == localAvatar: pass elif pieCode == ToontownGlobals.PieCodeLawyer: pass def __localPieSplat(self, pieCode, entry): if pieCode == ToontownGlobals.PieCodeLawyer: self.__lawyerGotHit(entry) if pieCode != ToontownGlobals.PieCodeToon: return avatarDoId = entry.getIntoNodePath().getNetTag('avatarDoId') if avatarDoId == '': self.notify.warning('Toon %s has no avatarDoId tag.' % repr(entry.getIntoNodePath())) return doId = int(avatarDoId) if doId != localAvatar.doId: self.d_hitToon(doId) def __lawyerGotHit(self, entry): lawyerCol = entry.getIntoNodePath() names = lawyerCol.getName().split('-') lawyerDoId = int(names[1]) for lawyer in self.lawyers: if lawyerDoId == lawyer.doId: lawyer.sendUpdate('hitByToon', []) def __finalPieSplat(self, toon, pieCode): if pieCode != ToontownGlobals.PieCodeDefensePan: return self.sendUpdate('finalPieSplat', []) self.ignore('pieSplat') def cleanupAttacks(self): self.notify.debug('----- cleanupAttacks') self.__cleanupStrafe() def __cleanupStrafe(self): self.notify.debug('----- __cleanupStrage') if self.strafeInterval: self.strafeInterval.finish() self.strafeInterval = None return def __cleanupJuryBox(self): self.notify.debug('----- __cleanupJuryBox') if self.juryBoxIval: self.juryBoxIval.finish() self.juryBoxIval = None if self.juryBox: self.juryBox.removeNode() return def doStrafe(self, side, direction): gearRoot = self.rotateNode.attachNewNode('gearRoot') if side == 0: gearRoot.setPos(0, -7, 3) gearRoot.setHpr(180, 0, 0) door = self.doorA else: gearRoot.setPos(0, 7, 3) door = self.doorB gearRoot.setTag('attackCode', str(ToontownGlobals.BossCogStrafeAttack)) gearModel = self.getGearFrisbee() gearModel.setScale(0.1) t = self.getBossDamage() / 100.0 gearTrack = Parallel() numGears = int(4 + 6 * t + 0.5) time = 5.0 - 4.0 * t spread = 60 * math.pi / 180.0 if direction == 1: spread = -spread dist = 50 rate = time / numGears for i in xrange(numGears): node = gearRoot.attachNewNode(str(i)) node.hide() node.setPos(0, 0, 0) gear = gearModel.instanceTo(node) angle = (float(i) / (numGears - 1) - 0.5) * spread x = dist * math.sin(angle) y = dist * math.cos(angle) h = random.uniform(-720, 720) gearTrack.append(Sequence(Wait(i * rate), Func(node.show), Parallel(node.posInterval(1, Point3(x, y, 0), fluid=1), node.hprInterval(1, VBase3(h, 0, 0), fluid=1), Sequence(SoundInterval(self.strafeSfx[i], volume=0.2, node=self), duration=0)), Func(node.detachNode))) seq = Sequence(Func(door.request, 'open'), Wait(0.7), gearTrack, Func(door.request, 'close')) self.__cleanupStrafe() self.strafeInterval = seq seq.start() def replaceCollisionPolysWithPlanes(self, model): newCollisionNode = CollisionNode('collisions') newCollideMask = BitMask32(0) planes = [] collList = model.findAllMatches('**/+CollisionNode') if not collList: collList = [model] for cnp in collList: cn = cnp.node() if not isinstance(cn, CollisionNode): self.notify.warning('Not a collision node: %s' % repr(cnp)) break newCollideMask = newCollideMask | cn.getIntoCollideMask() for i in xrange(cn.getNumSolids()): solid = cn.getSolid(i) if isinstance(solid, CollisionPolygon): plane = Plane(solid.getPlane()) planes.append(plane) else: self.notify.warning('Unexpected collision solid: %s' % repr(solid)) newCollisionNode.addSolid(plane) newCollisionNode.setIntoCollideMask(newCollideMask) threshold = 0.1 planes.sort(lambda p1, p2: p1.compareTo(p2, threshold)) lastPlane = None for plane in planes: if lastPlane == None or plane.compareTo(lastPlane, threshold) != 0: cp = CollisionPlane(plane) newCollisionNode.addSolid(cp) lastPlane = plane return NodePath(newCollisionNode) def makeIntroductionMovie(self, delayDeletes): self.notify.debug('----- makeIntroductionMovie') for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: delayDeletes.append(DelayDelete.DelayDelete(toon, 'LawbotBoss.makeIntroductionMovie')) track = Parallel() bossAnimTrack = Sequence( ActorInterval(self, 'Ff_speech', startTime=2, duration=10, loop=1), ActorInterval(self, 'Ff_lookRt', duration=3), ActorInterval(self, 'Ff_lookRt', duration=3, startTime=3, endTime=0), ActorInterval(self, 'Ff_neutral', duration=2), ActorInterval(self, 'Ff_speech', duration=7, loop=1)) track.append(bossAnimTrack) attackToons = TTLocalizer.BossCogAttackToons dialogTrack = Track( (0, Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempIntro0, CFSpeech)), (5.6, Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempIntro1, CFSpeech)), (12, Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempIntro2, CFSpeech)), (18, Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempIntro3, CFSpeech)), (22, Func(self.setChatAbsolute, TTLocalizer.LawbotBossTempIntro4, CFSpeech)), (24, Sequence( Func(self.clearChat), self.loseCogSuits(self.toonsA + self.toonsB, render, (-2.798, -70, 10, 180, 0, 0)))), (27, Sequence( self.toonNormalEyes(self.involvedToons), Func(self.loop, 'Ff_neutral'), Func(self.setChatAbsolute, attackToons, CFSpeech)))) track.append(dialogTrack) return Sequence( Func(self.stickToonsToFloor), track, Func(self.unstickToons), name=self.uniqueName('Introduction')) def walkToonsToBattlePosition(self, toonIds, battleNode): self.notify.debug('walkToonsToBattlePosition-----------------------------------------------') self.notify.debug('toonIds=%s battleNode=%s' % (toonIds, battleNode)) ival = Parallel() points = BattleBase.BattleBase.toonPoints[len(toonIds) - 1] self.notify.debug('walkToonsToBattlePosition: points = %s' % points[0][0]) for i in xrange(len(toonIds)): toon = base.cr.doId2do.get(toonIds[i]) if toon: pos, h = points[i] origPos = pos self.notify.debug('origPos = %s' % origPos) self.notify.debug('batlleNode.getTransform = %s render.getTransform=%s' % (battleNode.getTransform(), render.getTransform())) self.notify.debug('render.getScale()=%s battleNode.getScale()=%s' % (render.getScale(), battleNode.getScale())) myCurPos = self.getPos() self.notify.debug('myCurPos = %s' % self.getPos()) self.notify.debug('battleNode.parent() = %s' % battleNode.getParent()) self.notify.debug('battleNode.parent().getPos() = %s' % battleNode.getParent().getPos()) bnParent = battleNode.getParent() battleNode.wrtReparentTo(render) bnWorldPos = battleNode.getPos() battleNode.wrtReparentTo(bnParent) self.notify.debug('battle node world pos = %s' % bnWorldPos) pos = render.getRelativePoint(battleNode, pos) self.notify.debug('walktToonsToBattlePosition: render.getRelativePoint result = %s' % pos) self.notify.debug('walkToonsToBattlePosition: final pos = %s' % pos) ival.append(Sequence(Func(toon.setPlayRate, 0.8, 'walk'), Func(toon.loop, 'walk'), toon.posInterval(3, pos), Func(toon.setPlayRate, 1, 'walk'), Func(toon.loop, 'neutral'))) return ival def toonsToBattlePosition(self, toonIds, battleNode): self.notify.debug('DistrutedLawbotBoss.toonsToBattlePosition----------------------------------------') self.notify.debug('toonIds=%s battleNode=%s' % (toonIds, battleNode)) if len(toonIds) < 5: points = BattleBase.BattleBase.toonPoints[len(toonIds) - 1] else: points = list(BattleBase.BattleBase.toonPoints[3]) points.extend(BattleBase.BattleBase.toonPoints[len(toonIds) - 5]) self.notify.debug('toonsToBattlePosition: points = %s' % points[0][0]) for i in xrange(len(toonIds)): toon = base.cr.doId2do.get(toonIds[i]) if toon: toon.wrtReparentTo(render) pos, h = points[i] if i > 3: pos.setY(pos.getY() + 2.0) bnParent = battleNode.getParent() battleNode.wrtReparentTo(render) bnWorldPos = battleNode.getPos() battleNode.wrtReparentTo(bnParent) toon.setPosHpr(battleNode, pos[0], pos[1], pos[2], h, 0, 0) self.notify.debug('new toon pos %s ' % toon.getPos()) def touchedGavel(self, gavel, entry): self.notify.debug('touchedGavel') attackCodeStr = entry.getIntoNodePath().getNetTag('attackCode') if attackCodeStr == '': self.notify.warning('Node %s has no attackCode tag.' % repr(entry.getIntoNodePath())) return attackCode = int(attackCodeStr) into = entry.getIntoNodePath() self.zapLocalToon(attackCode, into) def touchedGavelHandle(self, gavel, entry): attackCodeStr = entry.getIntoNodePath().getNetTag('attackCode') if attackCodeStr == '': self.notify.warning('Node %s has no attackCode tag.' % repr(entry.getIntoNodePath())) return attackCode = int(attackCodeStr) into = entry.getIntoNodePath() self.zapLocalToon(attackCode, into) def createBlock(self, x1, y1, z1, x2, y2, z2, r = 1.0, g = 1.0, b = 1.0, a = 1.0): gFormat = GeomVertexFormat.getV3n3cpt2() myVertexData = GeomVertexData('holds my vertices', gFormat, Geom.UHDynamic) vertexWriter = GeomVertexWriter(myVertexData, 'vertex') normalWriter = GeomVertexWriter(myVertexData, 'normal') colorWriter = GeomVertexWriter(myVertexData, 'color') texWriter = GeomVertexWriter(myVertexData, 'texcoord') vertexWriter.addData3f(x1, y1, z1) vertexWriter.addData3f(x2, y1, z1) vertexWriter.addData3f(x1, y2, z1) vertexWriter.addData3f(x2, y2, z1) vertexWriter.addData3f(x1, y1, z2) vertexWriter.addData3f(x2, y1, z2) vertexWriter.addData3f(x1, y2, z2) vertexWriter.addData3f(x2, y2, z2) for index in xrange(8): normalWriter.addData3f(1.0, 1.0, 1.0) colorWriter.addData4f(r, g, b, a) texWriter.addData2f(1.0, 1.0) tris = GeomTriangles(Geom.UHDynamic) tris.addVertex(0) tris.addVertex(1) tris.addVertex(2) tris.closePrimitive() tris.addVertex(1) tris.addVertex(3) tris.addVertex(2) tris.closePrimitive() tris.addVertex(2) tris.addVertex(3) tris.addVertex(6) tris.closePrimitive() tris.addVertex(3) tris.addVertex(7) tris.addVertex(6) tris.closePrimitive() tris.addVertex(0) tris.addVertex(2) tris.addVertex(4) tris.closePrimitive() tris.addVertex(2) tris.addVertex(6) tris.addVertex(4) tris.closePrimitive() tris.addVertex(1) tris.addVertex(5) tris.addVertex(3) tris.closePrimitive() tris.addVertex(3) tris.addVertex(5) tris.addVertex(7) tris.closePrimitive() tris.addVertex(0) tris.addVertex(4) tris.addVertex(5) tris.closePrimitive() tris.addVertex(1) tris.addVertex(0) tris.addVertex(5) tris.closePrimitive() tris.addVertex(4) tris.addVertex(6) tris.addVertex(7) tris.closePrimitive() tris.addVertex(7) tris.addVertex(5) tris.addVertex(4) tris.closePrimitive() cubeGeom = Geom(myVertexData) cubeGeom.addPrimitive(tris) cubeGN = GeomNode('cube') cubeGN.addGeom(cubeGeom) return cubeGN def __enterDefenseCol(self, entry): self.notify.debug('__enterDefenseCol') def __enterProsecutionCol(self, entry): self.notify.debug('__enterProsecutionCol') def makeVictoryMovie(self): myFromPos = Point3(ToontownGlobals.LawbotBossBattleThreePosHpr[0], ToontownGlobals.LawbotBossBattleThreePosHpr[1], ToontownGlobals.LawbotBossBattleThreePosHpr[2]) myToPos = Point3(myFromPos[0], myFromPos[1] + 30, myFromPos[2]) rollThroughDoor = self.rollBossToPoint(fromPos=myFromPos, fromHpr=None, toPos=myToPos, toHpr=None, reverse=0) rollTrack = Sequence( Func(self.getGeomNode().setH, 180), rollThroughDoor[0], Func(self.getGeomNode().setH, 0)) rollTrackDuration = rollTrack.getDuration() self.notify.debug('rollTrackDuration = %f' % rollTrackDuration) doorStartPos = self.door3.getPos() doorEndPos = Point3(doorStartPos[0], doorStartPos[1], doorStartPos[2] + 25) bossTrack = Track( (0.5, Sequence( Func(self.clearChat), Func(camera.reparentTo, render), Func(camera.setPos, -3, 45, 25), Func(camera.setHpr, 0, 10, 0))), (1.0, Func(self.setChatAbsolute, TTLocalizer.LawbotBossDefenseWins1, CFSpeech)), (5.5, Func(self.setChatAbsolute, TTLocalizer.LawbotBossDefenseWins2, CFSpeech)), (9.5, Sequence(Func(camera.wrtReparentTo, render))), (9.6, Parallel( rollTrack, Func(self.setChatAbsolute, TTLocalizer.LawbotBossDefenseWins3, CFSpeech), self.door3.posInterval(2, doorEndPos, startPos=doorStartPos))), (13.1, Sequence(self.door3.posInterval(1, doorStartPos)))) retTrack = Parallel(bossTrack, ActorInterval(self, 'Ff_speech', loop=1)) return bossTrack def makeEpilogueMovie(self): epSpeech = TTLocalizer.WitnessToonCongratulations epSpeech = self.__talkAboutPromotion(epSpeech) bossTrack = Sequence(Func(self.witnessToon.animFSM.request, 'neutral'), Func(self.witnessToon.setLocalPageChat, epSpeech, 0)) return bossTrack def makeDefeatMovie(self): bossTrack = Track((0.0, Sequence(Func(self.clearChat), Func(self.reverseHead), ActorInterval(self, 'Ff_speech'))), (1.0, Func(self.setChatAbsolute, TTLocalizer.LawbotBossProsecutionWins, CFSpeech))) return bossTrack def __makeWitnessToon(self): dnaNetString = 't\x1b\x00\x01\x01\x00\x03\x00\x03\x01\x10\x13\x00\x13\x13' npc = Toon.Toon() npc.setDNAString(dnaNetString) npc.setName(TTLocalizer.WitnessToonName) npc.setPickable(0) npc.setPlayerType(NametagGroup.CCNonPlayer) npc.animFSM.request('Sit') self.witnessToon = npc self.witnessToon.setPosHpr(*ToontownGlobals.LawbotBossWitnessStandPosHpr) def __cleanupWitnessToon(self): self.__hideWitnessToon() if self.witnessToon: self.witnessToon.removeActive() self.witnessToon.delete() self.witnessToon = None return def __showWitnessToon(self): if not self.witnessToonOnstage: self.witnessToon.addActive() self.witnessToon.reparentTo(self.geom) seatCenter = self.realWitnessStand.find('**/witnessStandSeatEdge') center = seatCenter.getPos() self.notify.debug('center = %s' % center) self.witnessToon.setPos(center) self.witnessToon.setH(180) self.witnessToon.setZ(self.witnessToon.getZ() - 1.5) self.witnessToon.setY(self.witnessToon.getY() - 1.15) self.witnessToonOnstage = 1 def __hideWitnessToon(self): if self.witnessToonOnstage: self.witnessToon.removeActive() self.witnessToon.detachNode() self.witnessToonOnstage = 0 def __hideToons(self): for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: toon.hide() def __showToons(self): for toonId in self.involvedToons: toon = self.cr.doId2do.get(toonId) if toon: toon.show() def __arrangeToonsAroundWitnessToon(self): radius = 7 numToons = len(self.involvedToons) center = (numToons - 1) / 2.0 for i in xrange(numToons): toon = self.cr.doId2do.get(self.involvedToons[i]) if toon: angle = 90 - 15 * (i - center) radians = angle * math.pi / 180.0 x = math.cos(radians) * radius y = math.sin(radians) * radius toon.setPos(self.witnessToon, x, y, 0) toon.headsUp(self.witnessToon) toon.loop('neutral') toon.show() def __talkAboutPromotion(self, speech): if self.prevCogSuitLevel < ToontownGlobals.MaxCogSuitLevel: newCogSuitLevel = localAvatar.getCogLevels()[CogDisguiseGlobals.dept2deptIndex(self.style.dept)] if newCogSuitLevel == ToontownGlobals.MaxCogSuitLevel: speech += TTLocalizer.WitnessToonLastPromotion % (ToontownGlobals.MaxCogSuitLevel + 1) if newCogSuitLevel in ToontownGlobals.CogSuitHPLevels: speech += TTLocalizer.WitnessToonHPBoost else: speech += TTLocalizer.WitnessToonMaxed % (ToontownGlobals.MaxCogSuitLevel + 1) return speech def __positionToonsInFrontOfCannons(self): self.notify.debug('__positionToonsInFrontOfCannons') index = 0 self.involvedToons.sort() for toonId in self.involvedToons: if index in self.cannons: cannon = self.cannons[index] toon = self.cr.doId2do.get(toonId) self.notify.debug('cannonId = %d' % cannon.doId) cannonPos = cannon.nodePath.getPos(render) self.notify.debug('cannonPos = %s' % cannonPos) if toon: self.notify.debug('toon = %s' % toon.getName()) toon.reparentTo(cannon.nodePath) toon.setPos(0, 8, 0) toon.setH(180) renderPos = toon.getPos(render) self.notify.debug('renderPos =%s' % renderPos) index += 1 self.notify.debug('done with positionToons') def __makePrepareBattleTwoMovie(self): chatString = TTLocalizer.WitnessToonPrepareBattleTwo % ToontownGlobals.LawbotBossJurorsForBalancedScale movie = Sequence(Func(camera.reparentTo, self.witnessToon), Func(camera.setPos, 0, 8, 2), Func(camera.setHpr, 180, 10, 0), Func(self.witnessToon.setLocalPageChat, chatString, 0)) return movie def __doWitnessPrepareBattleThreeChat(self): self.notify.debug('__doWitnessPrepareBattleThreeChat: original self.numToonJurorsSeated = %d' % self.numToonJurorsSeated) self.countToonJurors() self.notify.debug('after calling self.countToonJurors, numToonJurorsSeated=%d' % self.numToonJurorsSeated) if self.numToonJurorsSeated == 0: juryResult = TTLocalizer.WitnessToonNoJuror elif self.numToonJurorsSeated == 1: juryResult = TTLocalizer.WitnessToonOneJuror elif self.numToonJurorsSeated == 12: juryResult = TTLocalizer.WitnessToonAllJurors else: juryResult = TTLocalizer.WitnessToonSomeJurors % self.numToonJurorsSeated juryResult += '\x07' trialSpeech = juryResult trialSpeech += TTLocalizer.WitnessToonPrepareBattleThree diffSettings = ToontownGlobals.LawbotBossDifficultySettings[self.battleDifficulty] if diffSettings[4]: newWeight, self.bonusWeight, self.numJurorsLocalToonSeated = self.calculateWeightOfToon(base.localAvatar.doId) if self.bonusWeight > 0: if self.bonusWeight == 1: juryWeightBonus = TTLocalizer.WitnessToonJuryWeightBonusSingular.get(self.battleDifficulty) else: juryWeightBonus = TTLocalizer.WitnessToonJuryWeightBonusPlural.get(self.battleDifficulty) if juryWeightBonus: weightBonusText = juryWeightBonus % (self.numJurorsLocalToonSeated, self.bonusWeight) trialSpeech += '\x07' trialSpeech += weightBonusText self.witnessToon.setLocalPageChat(trialSpeech, 0) def __makePrepareBattleThreeMovie(self): movie = Sequence(Func(camera.reparentTo, render), Func(camera.setPos, -15, 15, 20), Func(camera.setHpr, -90, 0, 0), Wait(3), Func(camera.reparentTo, self.witnessToon), Func(camera.setPos, 0, 8, 2), Func(camera.setHpr, 180, 10, 0), Func(self.__doWitnessPrepareBattleThreeChat)) return movie def countToonJurors(self): self.numToonJurorsSeated = 0 for key in self.chairs.keys(): chair = self.chairs[key] if chair.state == 'ToonJuror' or chair.state == None and chair.newState == 'ToonJuror': self.numToonJurorsSeated += 1 self.notify.debug('self.numToonJurorsSeated = %d' % self.numToonJurorsSeated) return def cleanupPanFlash(self): if self.panFlashInterval: self.panFlashInterval.finish() self.panFlashInterval = None return def flashPanBlue(self): self.cleanupPanFlash() intervalName = 'FlashPanBlue' self.defensePanNodePath.setColorScale(1, 1, 1, 1) seq = Sequence(self.defensePanNodePath.colorScaleInterval(0.1, colorScale=VBase4(0, 0, 1, 1)), self.defensePanNodePath.colorScaleInterval(0.3, colorScale=VBase4(1, 1, 1, 1)), name=intervalName) self.panFlashInterval = seq seq.start() self.storeInterval(seq, intervalName) def saySomething(self, chatString): intervalName = 'ChiefJusticeTaunt' seq = Sequence(name=intervalName) seq.append(Func(self.setChatAbsolute, chatString, CFSpeech)) seq.append(Wait(4.0)) seq.append(Func(self.clearChat)) oldSeq = self.activeIntervals.get(intervalName) if oldSeq: oldSeq.finish() seq.start() self.storeInterval(seq, intervalName) def setTaunt(self, tauntIndex, extraInfo): gotError = False if not hasattr(self, 'state'): self.notify.warning('returning from setTaunt, no attr state') gotError = True elif not self.state == 'BattleThree': self.notify.warning('returning from setTaunt, not in battle three state, state=%s', self.state) gotError = True if not hasattr(self, 'nametag'): self.notify.warning('returning from setTaunt, no attr nametag') gotError = True if gotError: st = StackTrace() print st return chatString = TTLocalizer.LawbotBossTaunts[1] if tauntIndex == 0: if extraInfo < len(self.involvedToons): toonId = self.involvedToons[extraInfo] toon = base.cr.doId2do.get(toonId) if toon: chatString = TTLocalizer.LawbotBossTaunts[tauntIndex] % toon.getName() else: chatString = TTLocalizer.LawbotBossTaunts[tauntIndex] self.saySomething(chatString) def toonGotHealed(self, toonId): toon = base.cr.doId2do.get(toonId) if toon: base.playSfx(self.toonUpSfx, node=toon) def hideBonusTimer(self): if self.bonusTimer: self.bonusTimer.hide() def enteredBonusState(self): self.witnessToon.clearChat() text = TTLocalizer.WitnessToonBonus % (ToontownGlobals.LawbotBossBonusWeightMultiplier, ToontownGlobals.LawbotBossBonusDuration) self.witnessToon.setChatAbsolute(text, CFSpeech | CFTimeout) base.playSfx(self.toonUpSfx) if not self.bonusTimer: self.bonusTimer = ToontownTimer.ToontownTimer() self.bonusTimer.posInTopRightCorner() self.bonusTimer.show() self.bonusTimer.countdown(ToontownGlobals.LawbotBossBonusDuration, self.hideBonusTimer) def setAttackCode(self, attackCode, avId = 0): DistributedBossCog.DistributedBossCog.setAttackCode(self, attackCode, avId) if attackCode == ToontownGlobals.BossCogAreaAttack: self.saySomething(TTLocalizer.LawbotBossAreaAttackTaunt) base.playSfx(self.warningSfx) def setBattleDifficulty(self, diff): self.notify.debug('battleDifficulty = %d' % diff) self.battleDifficulty = diff def toonEnteredCannon(self, toonId, cannonIndex): if base.localAvatar.doId == toonId: self.cannonIndex = cannonIndex def numJurorsSeatedByCannon(self, cannonIndex): retVal = 0 for chair in self.chairs.values(): if chair.state == 'ToonJuror': if chair.toonJurorIndex == cannonIndex: retVal += 1 return retVal def calculateWeightOfToon(self, toonId): defaultWeight = 1 bonusWeight = 0 newWeight = 1 cannonIndex = self.cannonIndex numJurors = 0 if not cannonIndex == None and cannonIndex >= 0: diffSettings = ToontownGlobals.LawbotBossDifficultySettings[self.battleDifficulty] if diffSettings[4]: numJurors = self.numJurorsSeatedByCannon(cannonIndex) bonusWeight = numJurors - diffSettings[5] if bonusWeight < 0: bonusWeight = 0 newWeight = defaultWeight + bonusWeight self.notify.debug('toon %d has weight of %d' % (toonId, newWeight)) return (newWeight, bonusWeight, numJurors)
1.625
2
tests/test_custom_rnncell.py
lightmatter-ai/tensorflow-onnx
0
5846
# SPDX-License-Identifier: Apache-2.0 """Unit Tests for custom rnns.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.ops import init_ops from backend_test_base import Tf2OnnxBackendTestBase from common import * # pylint: disable=wildcard-import, unused-wildcard-import from tf2onnx.tf_loader import is_tf2 # pylint: disable=missing-docstring,invalid-name,unused-argument,using-constant-test # pylint: disable=abstract-method,arguments-differ if is_tf2(): BasicLSTMCell = tf.compat.v1.nn.rnn_cell.BasicLSTMCell LSTMCell = tf.compat.v1.nn.rnn_cell.LSTMCell GRUCell = tf.compat.v1.nn.rnn_cell.GRUCell RNNCell = tf.compat.v1.nn.rnn_cell.RNNCell MultiRNNCell = tf.compat.v1.nn.rnn_cell.MultiRNNCell dynamic_rnn = tf.compat.v1.nn.dynamic_rnn bidirectional_dynamic_rnn = tf.compat.v1.nn.bidirectional_dynamic_rnn else: LSTMBlockCell = tf.contrib.rnn.LSTMBlockCell LSTMCell = tf.nn.rnn_cell.LSTMCell GRUCell = tf.nn.rnn_cell.LSTMCell RNNCell = tf.nn.rnn_cell.RNNCell MultiRNNCell = tf.contrib.rnn.MultiRNNCell dynamic_rnn = tf.nn.dynamic_rnn bidirectional_dynamic_rnn = tf.nn.bidirectional_dynamic_rnn class CustomRnnCellTests(Tf2OnnxBackendTestBase): @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn(self): size = 5 # size of each model layer. batch_size = 1 cell = GatedGRUCell(size) x_val = np.array([[1., 1.], [2., 2.], [3., 3.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): xs, s = dynamic_rnn(cell=cell, dtype=tf.float32, inputs=x, time_major=False) return tf.identity(xs, name="output"), tf.identity(s, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_time_major(self): size = 5 # size of each model layer. batch_size = 1 x_val = np.array([[1., 1.], [2., 2.], [3., 3.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): cell = GatedGRUCell(size) xs, s = dynamic_rnn(cell=cell, dtype=tf.float32, inputs=x, time_major=True) return tf.identity(xs, name="output"), tf.identity(s, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_with_seq_length(self): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): # no scope cell = GatedGRUCell(units) outputs, cell_state = dynamic_rnn( cell, x, dtype=tf.float32, sequence_length=[4, 3, 4, 5, 2, 1]) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_with_non_const_seq_length(self): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) y_val = np.array([4, 3, 4, 5, 2, 1], dtype=np.int32) def func(x, seq_length): # no scope cell = GatedGRUCell(units) outputs, cell_state = dynamic_rnn( cell, x, dtype=tf.float32, sequence_length=tf.identity(seq_length)) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") feed_dict = {"input_1:0": x_val, "input_2:0": y_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_const_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]`. decoder_time_step = 6 x_val = np.random.randn(decoder_time_step, input_size).astype('f') x_val = np.stack([x_val] * batch_size) attention_states = np.random.randn(batch_size, time_step, attn_size).astype('f') def func(x): attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_lstm_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = LSTMCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) output_0 = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return output_0, tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_gru_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = GRUCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) _ = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = GRUCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_lstm_encoder_input_has_none_dim(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = LSTMCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) _ = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_multi_rnn_lstm(self, state_is_tuple=True): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): initializer = init_ops.constant_initializer(0.5) cell_0 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cell_1 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cell_2 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cells = MultiRNNCell([cell_0, cell_1, cell_2], state_is_tuple=state_is_tuple) outputs, cell_state = dynamic_rnn(cells, x, dtype=tf.float32) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") input_names_with_port = ["input_1:0"] feed_dict = {"input_1:0": x_val} output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_opset(9, "ReverseSequence") @skip_tf2() @allow_missing_shapes("Missing RNN shape") def test_bidrectional_attention_wrapper_lstm_encoder(self): size = 30 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, batch_size, input_size).astype('f') def func(encoder_x, decoder_x, seq_length): encoder_cell = LSTMCell(size) attention_states, _ = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) # [9, 3, 30], [9, 30] attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) match_cell_bk = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) (match_output_fw, match_output_bk), (match_state_fw, match_state_bk) = \ bidirectional_dynamic_rnn(cell_fw=match_cell_fw, cell_bw=match_cell_bk, inputs=decoder_x, sequence_length=tf.identity(seq_length), dtype=tf.float32, time_major=True) matched_output = tf.concat([match_output_fw, match_output_bk], axis=-1) matched_state = tf.concat([match_state_fw.cell_state, match_state_bk.cell_state], -1) return tf.identity(matched_output, name="output_0"), tf.identity(matched_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val, "input_3:0": np.array([6, 5, 4, 3, 2, 1, 2, 3, 6], dtype=np.int32)} input_names_with_port = ["input_1:0", "input_2:0", "input_3:0"] output_names_with_port = ["output_0:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) class GatedGRUCell(RNNCell): def __init__(self, hidden_dim, reuse=None): super().__init__(self, _reuse=reuse) self._num_units = hidden_dim self._activation = tf.tanh @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def call(self, inputs, state): # inputs shape: [batch size, time step, input size] = [1, 3, 2] # num_units: 5 # W shape: [2, 3 * 5] = [2, 15] # U shape: [5, 3 * 5] = [5, 15] # b shape: [1, 3 * 5] = [1, 15] # state shape: [batch size, state size] = [1, 5] input_dim = inputs.get_shape()[-1] assert input_dim is not None, "input dimension must be defined" # W = tf.get_variable(name="W", shape=[input_dim, 3 * self._num_units], dtype=tf.float32) W = np.arange(30.0, dtype=np.float32).reshape((2, 15)) # U = tf.get_variable(name='U', shape=[self._num_units, 3 * self._num_units], dtype=tf.float32) U = np.arange(75.0, dtype=np.float32).reshape((5, 15)) # b = tf.get_variable(name='b', shape=[1, 3 * self._num_units], dtype=tf.float32) b = np.arange(15.0, dtype=np.float32).reshape((1, 15)) xw = tf.split(tf.matmul(inputs, W) + b, 3, 1) hu = tf.split(tf.matmul(state, U), 3, 1) r = tf.sigmoid(xw[0] + hu[0]) z = tf.sigmoid(xw[1] + hu[1]) h1 = self._activation(xw[2] + r * hu[2]) next_h = h1 * (1 - z) + state * z return next_h, next_h if __name__ == '__main__': unittest_main()
1.953125
2
cookie-cutter/src/templates/template.py
noname34/CHARM_Project_Hazard_Perception_I
0
5847
#!/user/bin/env python3 # -*- coding: utf-8 -*- #!/user/bin/env python3 # -*- coding: utf-8 -*- # @Author: <NAME> # @Email: <EMAIL> # @Date: 04.2020 # Context: CHARM PROJECT - Harzard perception """ Module documentation. """ # Imports import sys #import os # Global variables # Class declarations # Function declarations def main(): args = sys.argv[1:] if not args: print('usage: [--flags options] [inputs] ') sys.exit(1) # Main body if __name__ == '__main__': main()
1.8125
2
utils/gridpeak.py
siwill22/magSA
0
5848
<filename>utils/gridpeak.py import numpy def gridpeak(t, X=None): # GP = GRIDPEAK(...) # gp = gridpeak(t) return gridpeaks based on Blakely # and Simpson method # gp = gridpeak(t,X) optionally remove peak values scoring less than X, # where X can be between 1 and 4. print 'shape ', t.shape m, n = t.shape p = 1 gp = numpy.zeros((m, n)) for i in numpy.arange(p, m - p): for j in numpy.arange(p, n - p): data = numpy.zeros(4) data[0] = t[i - p, j] < t[i, j] and t[i, j] > t[i + p, j] data[1] = t[i, j - p] < t[i, j] and t[i, j] > t[i, j + p] data[2] = t[i + p, j - p] < t[i, j] and t[i, j] > t[i - p, j + p] data[3] = t[i - p, j - p] < t[i, j] and t[i, j] > t[i + p, j + p] gp[i, j] = numpy.sum(data) if X: gp[gp < X] = numpy.nan gp = gp / gp return gp
2.640625
3
Chapter 10/trackbackLog.py
Miillky/automate_the_boring_stuff_with_python
0
5849
<reponame>Miillky/automate_the_boring_stuff_with_python<gh_stars>0 import traceback try: raise Exception('This is the error message.') except: errorFile = open('./Chapter 10/errorInfo.txt', 'w') errorFile.write(traceback.format_exc()) errorFile.close() print('The traceback info was written to errorInfo.txt')
3
3
Module_III/PySparkNetworkSimilarityClass.py
wuchiehhan/KDD2019-HandsOn-Tutorial
0
5850
# Databricks notebook source from pyspark.sql.types import * from pyspark.sql import functions as F import base64 import array # COMMAND ---------- # s is a base64 encoded float[] with first element being the magnitude def Base64ToFloatArray(s): arr = array.array('f', base64.b64decode(s)) return (arr[0], arr[1:]) def cosineSimilarity(s1, s2): (m1, v1) = Base64ToFloatArray(s1) (m2, v2) = Base64ToFloatArray(s2) if (m1 == 0) or (m2 == 0): return 0 else : return sum(x*y for x,y in zip(v1, v2))/(m1 * m2) # Register udf functions so that it could be used in dataframe # # Perform same computation as cosineSimilarity() # @F.udf("float") def udfCosineSimilarity(s1, s2): return cosineSimilarity(s1, s2) # COMMAND ---------- # MAGIC %md **NetworkSimilarity** class to compute Network Similarity # COMMAND ---------- # Parameters: # resource: resource stream path # container: container name in Azure Storage (AS) account # account: Azure Storage (AS) account # sas: complete 'Blob service SAS URL' of the shared access signature (sas) for the container # key: access key for the container, if sas is specified, key is ignored # # Note: # resource does not have header # you need to provide value for either sas or key # class NetworkSimilarity(AzureStorageAccess): # constructor def __init__(self, resource, container, account, sas='', key=''): AzureStorageAccess.__init__(self, container, account, sas, key) schema = StructType() schema.add(StructField('EntityId', LongType(), False)) schema.add(StructField('EntityType', StringType(), False)) schema.add(StructField('Data', StringType(), False)) self.df = spark.read.format('csv').options(header='false', delimiter='\t').schema(schema).load(self.getFullpath(resource)) def getDataframe(self): return self.df def raiseErrorIfNotFound(self, row, e): if row is None: raise KeyError('entity ' + str(e) + ' not found') def getSimilarity(self, e1, e2): df = self.df row1 = df.where(df.EntityId == e1).first() self.raiseErrorIfNotFound(row1, e1) row2 = df.where(df.EntityId == e2).first() self.raiseErrorIfNotFound(row2, e2) return cosineSimilarity(row1.Data, row2.Data) def getTopEntities(self, e, targetType = '', maxCount = 20, minScore = 0.0): df1 = self.df row1 = df1.where(df1.EntityId == e).first() self.raiseErrorIfNotFound(row1, e) if targetType == '': df2 = df1.where(df1.EntityId != e) else : df2 = df1.where((df1.EntityId != e) & (df1.EntityType == targetType)) df3 = df2.select(df2.EntityId, df2.EntityType, udfCosineSimilarity(F.lit(row1.Data), df2.Data).alias('Score')) return df3.where(df3.Score >= minScore).orderBy(df3.Score.desc()).limit(maxCount)
2.8125
3
fizzbuzz.py
vagnes/fizzbuzzgame
0
5851
print("Press q to quit") quit = False while quit is False: in_val = input("Please enter a positive integer.\n > ") if in_val is 'q': quit = True elif int(in_val) % 3 == 0 and int(in_val) % 5 == 0: print("FizzBuzz") elif int(in_val) % 5 == 0: print("Buzz") elif int(in_val) % 3 == 0: print("Fizz") else: pass
4.09375
4
lesson10019_projects/pen/data/transition.py
muzudho/py-state-machine-practice
0
5852
from lesson14_projects.pen.data.const import ( A, E_A, E_AN, E_IS, E_OVER, E_PEN, E_PIN, E_THAT, E_THIS, E_WAS, INIT, IS, PEN, THIS, ) pen_transition_doc_v19 = { "title": "This is a pen", "entry_state": INIT, "data": { INIT: { E_OVER: [INIT], E_THAT: [INIT], E_THIS: [INIT, THIS], THIS: { E_OVER: [INIT], E_WAS: [INIT], E_IS: [INIT, THIS, IS], IS: { E_OVER: [INIT], E_AN: [INIT], E_A: [INIT, THIS, IS, A], A: { E_OVER: [INIT], E_PIN: [INIT], E_PEN: [PEN], }, }, }, }, PEN: { E_OVER: None, }, }, }
1.648438
2
Animation/Main.py
olesmith/SmtC
0
5853
<filename>Animation/Main.py import gd,os,time from Html import Animation_Html from Iteration import Animation_Iteration from Write import Animation_Write from Base import * from Canvas2 import * from Canvas2 import Canvas2 from Image import Image from HTML import HTML __Canvas__=None class Animation( Animation_Html, Animation_Iteration, Animation_Write, Base,HTML ): Convert_Bin="/usr/bin/convert" HTML_Root="http://127.0.0.1/Graphics" CGI_Root="http://127.0.0.1/cgi-bin/Graphics/Display.py" __Switches__={ "v": { "Attr": "Verbose", "Text": "Verbosity level. Augment to see more numbers...", "Type": None, }, "-clean": { "Attr": "Clean", "Text": "Remove PNGs generated", "Type": "int", }, "-rewrite": { "Attr": "Images_Rewrite", "Text": "Rewrite image file between iterations", "Type": None, }, "l": { "Attr": "Loop", "Text": "Animated GIF no of loops (passed to convert)", "Type": None, }, "d": { "Attr": "Delay", "Text": "Animated GIF delay (passed to convert)", "Type": None, }, "W": { "Attr": "W", "Text": "White background", "Type": "bool", }, } __Args__=[] Indent=" " W=False Verbose=1 Delay="5" Loop="0" Path="curves" Curve_Parms_Path="" FileName="Curve" Name="Curve" Parameters=["a","b","c"] Parameter_Names=["a","b","c"] Clean=0 #Clean up afterwords Iteration_Files=[] Images_Rewrite=1 def __init__(self,pmin,pmax,vals={}): self.Hash2Obj(vals) self.__Canvas__=Canvas2(vals,[ pmin,pmax ]) self.Canvas([ pmin,pmax ]).CLI2Obj() ##! ##! Overrride __str__ to print some useful info. ##! def __str__(self): text="Animation, Path: "+self.Path text+="\n\tFileName: "+self.FileName text+="\n\tParms: "+self.Curve_Parms_Path text+="\n\tLoop: "+self.Loop text+="\n\tDelay: "+self.Delay text+="\n\tClean: "+str(self.Clean) text+="\n"+str(self.Canvas()) return text ##! ##! Returns Canvas object, stored in self.__Canvas__ ##! def Canvas(self,pexts=[]): global __Canvas__ # Needed to modify global copy of __Canvas__ if (not __Canvas__): parms={ } __Canvas__=Canvas2(parms,pexts) return __Canvas__ def BackGround_Color(self): if (self.W): return "White" else: return "Black" def Initialize(self): self.Canvas().Resolution=self.Resolution self.Canvas().Image_Rewrite()
2.984375
3
pytorch_metric_learning/miners/distance_weighted_miner.py
junjungoal/pytorch_metric_learning
1
5854
#! /usr/bin/env python3 from .base_miner import BasePostGradientMiner import torch from ..utils import loss_and_miner_utils as lmu # adapted from # https://github.com/chaoyuaw/incubator-mxnet/blob/master/example/gluon/ # /embedding_learning/model.py class DistanceWeightedMiner(BasePostGradientMiner): def __init__(self, cutoff, nonzero_loss_cutoff, **kwargs): super().__init__(**kwargs) self.cutoff = cutoff self.nonzero_loss_cutoff = nonzero_loss_cutoff def mine(self, embeddings, labels): label_set = torch.unique(labels) n, d = embeddings.size() dist_mat = lmu.dist_mat(embeddings) dist_mat = dist_mat + torch.eye(dist_mat.size(0)).to(embeddings.device) # so that we don't get log(0). We mask the diagonal out later anyway # Cut off to avoid high variance. dist_mat = torch.max(dist_mat, torch.tensor(self.cutoff).to(dist_mat.device)) # Subtract max(log(distance)) for stability. # See the first equation from Section 4 of the paper log_weights = (2.0 - float(d)) * torch.log(dist_mat) - ( float(d - 3) / 2 ) * torch.log(1.0 - 0.25 * (dist_mat ** 2.0)) weights = torch.exp(log_weights - torch.max(log_weights)) # Sample only negative examples by setting weights of # the same-class examples to 0. mask = torch.ones(weights.size()).to(embeddings.device) for i in label_set: idx = (labels == i).nonzero() mask[torch.meshgrid(idx.squeeze(1), idx.squeeze(1))] = 0 weights = weights * mask * ((dist_mat < self.nonzero_loss_cutoff).float()) weights = weights / torch.sum(weights, dim=1, keepdim=True) np_weights = weights.cpu().numpy() return lmu.get_random_triplet_indices(labels, weights=np_weights)
2.4375
2
Keywords/__init__.py
cassie01/PumpLibrary
0
5855
<reponame>cassie01/PumpLibrary # -*- coding: utf-8 -*- from .Alarm.alarm import Alarm from .DeliveryView.bolus import Bolus from .DeliveryView.info import Info from .DeliveryView.infusion import Infusion from .DeliveryView.infusion_parameter import InfusionParameter from .DeliveryView.priming import Priming from .HardwareControl.motor import Motor from .MenuSettings.device_report import DeviceReport from .MenuSettings.history_log import HistoryLog from .MenuSettings.infusion_setting import InfusionSetting from .MenuSettings.maintenance import Maintenance from .MenuSettings.safety_setting import SafetySetting from .MenuSettings.system_setting import SystemSetting from .SensorControl.sensor import Sensor __all__ = ["Alarm", "Bolus", "Info", "Infusion", "InfusionParameter", "Priming", "Motor", "DeviceReport", "HistoryLog", "InfusionSetting", "Maintenance", "SafetySetting", "SystemSetting", "Sensor", ]
1.171875
1
src/responsibleai/rai_analyse/constants.py
Azure/automl-devplat2-preview
7
5856
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- class DashboardInfo: MODEL_ID_KEY = "id" # To match Model schema MODEL_INFO_FILENAME = "model_info.json" RAI_INSIGHTS_MODEL_ID_KEY = "model_id" RAI_INSIGHTS_RUN_ID_KEY = "rai_insights_parent_run_id" RAI_INSIGHTS_PARENT_FILENAME = "rai_insights.json" class PropertyKeyValues: # The property to indicate the type of Run RAI_INSIGHTS_TYPE_KEY = "_azureml.responsibleai.rai_insights.type" RAI_INSIGHTS_TYPE_CONSTRUCT = "construction" RAI_INSIGHTS_TYPE_CAUSAL = "causal" RAI_INSIGHTS_TYPE_COUNTERFACTUAL = "counterfactual" RAI_INSIGHTS_TYPE_EXPLANATION = "explanation" RAI_INSIGHTS_TYPE_ERROR_ANALYSIS = "error_analysis" RAI_INSIGHTS_TYPE_GATHER = "gather" # Property to point at the model under examination RAI_INSIGHTS_MODEL_ID_KEY = "_azureml.responsibleai.rai_insights.model_id" # Property for tool runs to point at their constructor run RAI_INSIGHTS_CONSTRUCTOR_RUN_ID_KEY = ( "_azureml.responsibleai.rai_insights.constructor_run" ) # Property to record responsibleai version RAI_INSIGHTS_RESPONSIBLEAI_VERSION_KEY = ( "_azureml.responsibleai.rai_insights.responsibleai_version" ) # Property format to indicate presence of a tool RAI_INSIGHTS_TOOL_KEY_FORMAT = "_azureml.responsibleai.rai_insights.has_{0}" class RAIToolType: CAUSAL = "causal" COUNTERFACTUAL = "counterfactual" ERROR_ANALYSIS = "error_analysis" EXPLANATION = "explanation"
1.710938
2
pulsar/apps/data/redis/store.py
goodboy/pulsar
1
5857
from functools import partial from pulsar import Connection, Pool, get_actor from pulsar.utils.pep import to_string from pulsar.apps.data import RemoteStore from pulsar.apps.ds import redis_parser from .client import RedisClient, Pipeline, Consumer, ResponseError from .pubsub import RedisPubSub, RedisChannels class RedisStoreConnection(Connection): def __init__(self, *args, **kw): super().__init__(*args, **kw) self.parser = self._producer._parser_class() async def execute(self, *args, **options): consumer = self.current_consumer() await consumer.start((args, options)) result = await consumer.on_finished if isinstance(result, ResponseError): raise result.exception return result async def execute_pipeline(self, commands, raise_on_error=True): consumer = self.current_consumer() consumer.start((commands, raise_on_error, [])) result = await consumer.on_finished if isinstance(result, ResponseError): raise result.exception return result class RedisStore(RemoteStore): '''Redis :class:`.Store` implementation. ''' protocol_factory = partial(RedisStoreConnection, Consumer) supported_queries = frozenset(('filter', 'exclude')) def _init(self, namespace=None, parser_class=None, pool_size=50, decode_responses=False, **kwargs): self._decode_responses = decode_responses if not parser_class: actor = get_actor() pyparser = actor.cfg.redis_py_parser if actor else False parser_class = redis_parser(pyparser) self._parser_class = parser_class if namespace: self._urlparams['namespace'] = namespace self._pool = Pool(self.connect, pool_size=pool_size, loop=self._loop) if self._database is None: self._database = 0 self._database = int(self._database) self.loaded_scripts = set() @property def pool(self): return self._pool @property def namespace(self): '''The prefix namespace to append to all transaction on keys ''' n = self._urlparams.get('namespace') return '%s:' % n if n else '' def key(self): return (self._dns, self._encoding) def client(self): '''Get a :class:`.RedisClient` for the Store''' return RedisClient(self) def pipeline(self): '''Get a :class:`.Pipeline` for the Store''' return Pipeline(self) def pubsub(self, protocol=None): return RedisPubSub(self, protocol=protocol) def channels(self, protocol=None, **kw): return RedisChannels(self.pubsub(protocol=protocol), **kw) def ping(self): return self.client().ping() async def execute(self, *args, **options): connection = await self._pool.connect() with connection: result = await connection.execute(*args, **options) return result async def execute_pipeline(self, commands, raise_on_error=True): conn = await self._pool.connect() with conn: result = await conn.execute_pipeline(commands, raise_on_error) return result async def connect(self, protocol_factory=None): protocol_factory = protocol_factory or self.create_protocol if isinstance(self._host, tuple): host, port = self._host transport, connection = await self._loop.create_connection( protocol_factory, host, port) else: raise NotImplementedError('Could not connect to %s' % str(self._host)) if self._password: await connection.execute('AUTH', self._password) if self._database: await connection.execute('SELECT', self._database) return connection def flush(self): return self.execute('flushdb') def close(self): '''Close all open connections.''' return self._pool.close() def has_query(self, query_type): return query_type in self.supported_queries def basekey(self, meta, *args): key = '%s%s' % (self.namespace, meta.table_name) postfix = ':'.join((to_string(p) for p in args if p is not None)) return '%s:%s' % (key, postfix) if postfix else key def meta(self, meta): '''Extract model metadata for lua script stdnet/lib/lua/odm.lua''' # indices = dict(((idx.attname, idx.unique) for idx in meta.indices)) data = meta.as_dict() data['namespace'] = self.basekey(meta) return data class CompiledQuery: def __init__(self, pipe, query): self.pipe = pipe
2.3125
2
tasks/migrations/0005_auto_20200616_0123.py
tschelbs18/fruitful
0
5858
# Generated by Django 3.0.7 on 2020-06-16 05:23 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('tasks', '0004_auto_20200616_0116'), ] operations = [ migrations.AddField( model_name='userreward', name='created_dt', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='userreward', name='last_updated_dt', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='usertask', name='created_dt', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='usertask', name='last_updated_dt', field=models.DateTimeField(auto_now=True), ), ]
1.835938
2
pcg_libraries/src/pcg_gazebo/parsers/types/vector.py
boschresearch/pcg_gazebo_pkgs
42
5859
<filename>pcg_libraries/src/pcg_gazebo/parsers/types/vector.py # Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import XMLBase import collections class XMLVector(XMLBase): _NAME = '' def __init__(self, size=None): XMLBase.__init__(self) assert size is not None, 'Vector size cannot be None' assert isinstance(size, int), \ '[{}] Vector size input must be an integer, received={}'.format( self.xml_element_name, size) assert size > 0, '[{}] Size must be greater than zero'.format( self.xml_element_name) self._size = size self._value = [0 for _ in range(self._size)] def _set_value(self, value): assert isinstance(value, collections.Iterable), \ 'Input must be iterable, element={}, received={}, type={}'.format( self._NAME, value, type(value)) assert len(list(value)) == self._size, \ 'Input vector has the wrong size, element={}, received={}, ' \ 'size of received={}, expected length={}'.format( self._NAME, value, len(list(value)), self._size) for item in value: assert isinstance(item, float) or isinstance(item, int) self._value = list(value) def reset(self): self._value = [0 for _ in range(self._size)] XMLBase.reset(self) def is_valid(self): if not isinstance(self._value, list): print('Vector object must have a list as value') return False if len(self._value) != self._size: print('Normal value must be a list with 3 elements') return False for item in self._value: if not isinstance(item, float) and not isinstance(item, int): print('Each vector element must be a float or integer') return False return True def get_formatted_value_as_str(self): assert self.is_valid(), 'Invalid vector' output_str = ' '.join(['{}'] * self._size) return output_str.format(*[format(x, 'n') for x in self._value])
2.609375
3
tests/main/helpers/test_buyers_helpers.py
uk-gov-mirror/alphagov.digitalmarketplace-briefs-frontend
1
5860
<filename>tests/main/helpers/test_buyers_helpers.py import mock import pytest from werkzeug.exceptions import NotFound import app.main.helpers as helpers from dmcontent.content_loader import ContentLoader from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub content_loader = ContentLoader('tests/fixtures/content') content_loader.load_manifest('dos', 'data', 'edit_brief') questions_builder = content_loader.get_manifest('dos', 'edit_brief') class TestBuyersHelpers(object): def test_get_framework_and_lot(self): provided_lot = LotStub(slug='digital-specialists', allows_brief=True).response() data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='live', lots=[provided_lot], ).single_result_response() framework, lot = helpers.buyers_helpers.get_framework_and_lot('digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client) assert framework['status'] == "live" assert framework['name'] == 'Digital Outcomes and Specialists 4' assert framework['slug'] == 'digital-outcomes-and-specialists-4' assert framework['clarificationQuestionsOpen'] is True assert lot == provided_lot def test_get_framework_and_lot_404s_for_wrong_framework_status(self): data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='open', lots=[ LotStub(slug='digital-specialists', allows_brief=True).response() ] ).single_result_response() with pytest.raises(NotFound): helpers.buyers_helpers.get_framework_and_lot( 'digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client, allowed_statuses=['live'], ) def test_get_framework_and_lot_404s_if_allows_brief_required(self): data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='live', lots=[ LotStub(slug='digital-specialists', allows_brief=False).response() ] ).single_result_response() with pytest.raises(NotFound): helpers.buyers_helpers.get_framework_and_lot( 'digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client, must_allow_brief=True, ) @pytest.mark.parametrize( ['framework', 'lot', 'user', 'result'], [ ('digital-outcomes-and-specialists-4', 'digital-specialists', 123, True), ('not-digital-outcomes-and-specialists', 'digital-specialists', 123, False), ('digital-outcomes-and-specialists-4', 'not-digital-specialists', 123, False), ('digital-outcomes-and-specialists-4', 'digital-specialists', 124, False), ] ) def test_is_brief_correct(self, framework, lot, user, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status='live').response() assert helpers.buyers_helpers.is_brief_correct(brief, framework, lot, user) is result @pytest.mark.parametrize( ['status', 'allow_withdrawn', 'result'], [ ('withdrawn', True, True), ('withdrawn', False, False), ('live', True, True), ('live', False, True), ] ) def test_if_brief_correct_allow_withdrawn(self, status, allow_withdrawn, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status=status).response() assert helpers.buyers_helpers.is_brief_correct( brief, 'digital-outcomes-and-specialists-4', 'digital-specialists', 123, allow_withdrawn=allow_withdrawn ) is result @pytest.mark.parametrize( 'allowed_statuses, result', [ (['live', 'closed'], True), (['closed'], False) ] ) def test_is_brief_correct_allowed_statuses(self, allowed_statuses, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status='live').response() assert helpers.buyers_helpers.is_brief_correct( brief, 'digital-outcomes-and-specialists-4', 'digital-specialists', 123, allowed_statuses=allowed_statuses ) is result def test_is_brief_associated_with_user(self): brief = BriefStub(user_id=123).response() assert helpers.buyers_helpers.is_brief_associated_with_user(brief, 123) is True assert helpers.buyers_helpers.is_brief_associated_with_user(brief, 234) is False def test_brief_can_be_edited(self): assert helpers.buyers_helpers.brief_can_be_edited(BriefStub(status='draft').response()) is True assert helpers.buyers_helpers.brief_can_be_edited(BriefStub(status='live').response()) is False def test_brief_is_withdrawn(self): assert helpers.buyers_helpers.brief_is_withdrawn(BriefStub(status='withdrawn').response()) is True assert helpers.buyers_helpers.brief_is_withdrawn(BriefStub(status='live').response()) is False def test_section_has_at_least_one_required_question(self): content = content_loader.get_manifest('dos', 'edit_brief').filter( {'lot': 'digital-specialists'} ) sections_with_required_questions = { 'section-1': True, 'section-2': True, 'section-4': False, 'section-5': True } for section in content.sections: assert helpers.buyers_helpers.section_has_at_least_one_required_question(section) \ == sections_with_required_questions[section.slug] def test_count_unanswered_questions(self): brief = { 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True } content = content_loader.get_manifest('dos', 'edit_brief').filter( {'lot': 'digital-specialists'} ) sections = content.summary(brief) unanswered_required, unanswered_optional = helpers.buyers_helpers.count_unanswered_questions(sections) assert unanswered_required == 2 assert unanswered_optional == 2 def test_add_unanswered_counts_to_briefs(self): briefs = [{ 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True }] assert helpers.buyers_helpers.add_unanswered_counts_to_briefs(briefs, content_loader) == [{ 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True, 'unanswered_required': 2, 'unanswered_optional': 2 }] def test_get_sorted_responses_for_brief(self): data_api_client = mock.Mock() data_api_client.find_brief_responses.return_value = { "briefResponses": [ {"id": "five", "niceToHaveRequirements": [True, True, True, True, True]}, {"id": "zero", "niceToHaveRequirements": [False, False, False, False, False]}, {"id": "three", "niceToHaveRequirements": [True, True, False, False, True]}, {"id": "five", "niceToHaveRequirements": [True, True, True, True, True]}, {"id": "four", "niceToHaveRequirements": [True, True, True, True, False]}, {"id": "one", "niceToHaveRequirements": [False, False, False, True, False]}, {"id": "four", "niceToHaveRequirements": [True, True, True, True, False]}, ] } brief = {"id": 1, "niceToHaveRequirements": ["Nice", "to", "have", "yes", "please"]} assert helpers.buyers_helpers.get_sorted_responses_for_brief(brief, data_api_client) == [ {'id': 'five', 'niceToHaveRequirements': [True, True, True, True, True]}, {'id': 'five', 'niceToHaveRequirements': [True, True, True, True, True]}, {'id': 'four', 'niceToHaveRequirements': [True, True, True, True, False]}, {'id': 'four', 'niceToHaveRequirements': [True, True, True, True, False]}, {'id': 'three', 'niceToHaveRequirements': [True, True, False, False, True]}, {"id": "one", "niceToHaveRequirements": [False, False, False, True, False]}, {'id': 'zero', 'niceToHaveRequirements': [False, False, False, False, False]} ] def test_get_sorted_responses_does_not_sort_if_no_nice_to_haves(self): data_api_client = mock.Mock() data_api_client.find_brief_responses.return_value = { "briefResponses": [ {"id": "five"}, {"id": "zero"}, {"id": "three"}, {"id": "five"} ] } brief = {"id": 1, "niceToHaveRequirements": []} assert helpers.buyers_helpers.get_sorted_responses_for_brief(brief, data_api_client) == [ {"id": "five"}, {"id": "zero"}, {"id": "three"}, {"id": "five"} ]
2.171875
2
Plot/src/test/java/io/deephaven/db/plot/example_plots/PlottingPQ.py
devinrsmith/deephaven-core
0
5861
import deephaven.TableTools as tt import deephaven.Plot as plt t = tt.emptyTable(50)\ .update("X = i + 5", "XLow = X -1", "XHigh = X + 1", "Y = Math.random() * 5", "YLow = Y - 1", "YHigh = Y + 1", "USym = i % 2 == 0 ? `AAPL` : `MSFT`") p = plt.plot("S1", t, "X", "Y").lineColor("black").show() p2 = plt.plot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() p3 = plt.plot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() p4 = plt.plot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() p4 = plt.plot3d("S1", t, "X", "X", "Y").show() pBy = plt.plotBy("S1", t, "X", "Y", "USym").show() pBy = plt.plot3dBy("S1", t, "X", "X", "Y", "USym").show() cp = plt.catPlot("S1", t, "X", "Y").lineColor("black").show() cp2 = plt.catPlot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() cp3 = plt.catPlot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() cp4 = plt.catPlot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() cp = plt.catPlot3d("S1", t, "X", "X", "Y").show() cpBy = plt.catPlotBy("S1", t, "X", "Y", "USym").show() cpBy = plt.catPlot3dBy("S1", t, "X", "X", "Y", "USym").show() pp = plt.piePlot("S1", t, "X", "Y") chp = plt.catHistPlot("S1", t, "X").show() hp = plt.histPlot("S1", t, "X", 5).show() hp = plt.histPlot("S1", t, "X", 0, 10, 5).show() ep = plt.errorBarXY("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh").show() epBy = plt.errorBarXYBy("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh", "USym").show() ep2 = plt.errorBarX("S1", t, "X", "XLow", "XHigh", "Y").show() epBy2 = plt.errorBarXBy("S1", t, "X", "XLow", "XHigh", "Y", "USym").show() ep3 = plt.errorBarY("S1", t, "X", "Y", "YLow", "YHigh").show() epBy3 = plt.errorBarYBy("S1", t, "X", "Y", "YLow", "YHigh", "USym").show() doubles = [3, 4, 3, 5, 4, 5] time = 1491946585000000000 t = tt.newTable(tt.col("USym", ["A", "B", "A", "B", "A", "B"]), tt.doubleCol("Open", doubles), tt.doubleCol("High", doubles), tt.doubleCol("Low", doubles), tt.doubleCol("Close", doubles)) t = t.updateView("Time = new DBDateTime(time + (MINUTE * i))") ohlc = plt.ohlcPlot("Test1", t, "Time", "Open", "High", "Low", "Close") ohlcPlotBy = plt.figure().newChart(0)\ .chartTitle("Chart Title")\ .newAxes()\ .xLabel("X")\ .yLabel("Y")\ .ohlcPlotBy("Test1", t, "Time", "Open", "High", "Low", "Close", "USym") categories = ["Samsung", "Others", "Nokia", "Apple", "MSFT"] valuesD = [27.8, 55.3, 16.8, 17.1, 23.1] valuesI = [27, 55, 16, 17, 15] ap = plt.plot("S1", valuesD, valuesI).show() ap = plt.plot3d("S1", valuesI, valuesI, valuesI).show() acp = plt.catPlot("S1", categories, valuesI).show() acp2 = plt.catPlot3d("S1", categories, categories, valuesD).show() achp = plt.catHistPlot("S1", categories).show() app = plt.figure().xLabel("X").yLabel("Y").piePlot("S1", categories, valuesI).pointLabelFormat("{0}").show() aep = plt.errorBarXY("S1", valuesD, valuesD, valuesD, valuesD, valuesD, valuesD).show() aep2 = plt.errorBarX("S1", valuesD, valuesD, valuesD, valuesD).show() aep3 = plt.errorBarY("S1", valuesD, valuesD, valuesD, valuesD).show() hp = plt.histPlot("S1", valuesD, 5).show() hp = plt.histPlot("S1", valuesD, 0, 10, 5).show() hp = plt.histPlot("S1", valuesI, 5).show()
2.25
2
rhoci/test/routes.py
ahmedmagdyawaad/redhat-ci-dashboard
8
5862
# Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from flask import current_app as app from flask import render_template from flask import url_for import logging LOG = logging.getLogger(__name__) from rhoci.test import bp # noqa @bp.route('/index') @bp.route('/') def index(): """All tests.""" jenkins_url = app.config['custom']['jenkins']['url'] uf = url_for('api.all_tests') return render_template('tests/index.html', jenkins_url=jenkins_url, uf=uf) @bp.route('/class/<class_name>/name/<name>') def test(class_name, name): """Specific test summary.""" uf = url_for('api.test_to_jobs', class_name=class_name, test_name=name) return render_template('tests/test_to_jobs.html', uf=uf)
2.015625
2
mitmproxy/net/http/http1/__init__.py
aarnaut/mitmproxy
0
5863
from .read import ( read_request_head, read_response_head, connection_close, expected_http_body_size, validate_headers, ) from .assemble import ( assemble_request, assemble_request_head, assemble_response, assemble_response_head, assemble_body, ) __all__ = [ "read_request_head", "read_response_head", "connection_close", "expected_http_body_size", "validate_headers", "assemble_request", "assemble_request_head", "assemble_response", "assemble_response_head", "assemble_body", ]
1.28125
1
request_token/migrations/0009_requesttokenerror.py
alex-hutton/django-request-token
0
5864
<filename>request_token/migrations/0009_requesttokenerror.py # -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-05-21 19:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('request_token', '0008_convert_token_data_to_jsonfield'), ] operations = [ migrations.CreateModel( name='RequestTokenErrorLog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('error_type', models.CharField(help_text='The underlying type of error raised.', max_length=50)), ('error_message', models.CharField(help_text='The error message supplied.', max_length=200)), ('log', models.OneToOneField(help_text='The token use against which the error occurred.', on_delete=django.db.models.deletion.CASCADE, related_name='error', to='request_token.RequestTokenLog')), ('token', models.ForeignKey(help_text='The RequestToken that was used.', on_delete=django.db.models.deletion.CASCADE, related_name='errors', to='request_token.RequestToken')), ], ), ]
1.84375
2
01-basic-programs/04-lines.py
ncodeitgithub1/python-get-hands-dirty-programs
0
5865
<filename>01-basic-programs/04-lines.py #4 lines: Fibonacci, tuple assignment parents, babies = (1, 1) while babies < 100: print ('This generation has {0} babies'.format(babies)) parents, babies = (babies, parents + babies)
3.734375
4
winter/controller.py
EvgenySmekalin/winter
1
5866
import typing from .core import Component _Controller = typing.TypeVar('_Controller') _ControllerType = typing.Type[_Controller] ControllerFactory = typing.NewType('ControllerFactory', typing.Callable[[typing.Type], object]) _controller_factory: typing.Optional[ControllerFactory] = None def controller(controller_class: _ControllerType) -> _ControllerType: Component.register(controller_class) return controller_class def set_controller_factory(controller_factory: ControllerFactory) -> None: global _controller_factory _controller_factory = controller_factory def build_controller(controller_class: _ControllerType) -> _Controller: if _controller_factory is None: return controller_class() return _controller_factory(controller_class) def get_component(controller_class: _ControllerType) -> Component: return Component.get_by_cls(controller_class)
2.390625
2
go/def.bzl
bobg/rules_go
0
5867
# Copyright 2014 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Public definitions for Go rules. All public Go rules, providers, and other definitions are imported and re-exported in this file. This allows the real location of definitions to change for easier maintenance. Definitions outside this file are private unless otherwise noted, and may change without notice. """ load( "//go/private:context.bzl", _go_context = "go_context", ) load( "//go/private:providers.bzl", _GoArchive = "GoArchive", _GoArchiveData = "GoArchiveData", _GoLibrary = "GoLibrary", _GoPath = "GoPath", _GoSDK = "GoSDK", _GoSource = "GoSource", ) load( "//go/private/rules:sdk.bzl", _go_sdk = "go_sdk", ) load( "//go/private:go_toolchain.bzl", _declare_toolchains = "declare_toolchains", _go_toolchain = "go_toolchain", ) load( "//go/private/rules:wrappers.bzl", _go_binary_macro = "go_binary_macro", _go_library_macro = "go_library_macro", _go_test_macro = "go_test_macro", ) load( "//go/private/rules:source.bzl", _go_source = "go_source", ) load( "//extras:embed_data.bzl", _go_embed_data = "go_embed_data", ) load( "//go/private/tools:path.bzl", _go_path = "go_path", ) load( "//go/private/rules:library.bzl", _go_tool_library = "go_tool_library", ) load( "//go/private/rules:nogo.bzl", _nogo = "nogo_wrapper", ) # TOOLS_NOGO is a list of all analysis passes in # golang.org/x/tools/go/analysis/passes. # This is not backward compatible, so use caution when depending on this -- # new analyses may discover issues in existing builds. TOOLS_NOGO = [ "@org_golang_x_tools//go/analysis/passes/asmdecl:go_default_library", "@org_golang_x_tools//go/analysis/passes/assign:go_default_library", "@org_golang_x_tools//go/analysis/passes/atomic:go_default_library", "@org_golang_x_tools//go/analysis/passes/atomicalign:go_default_library", "@org_golang_x_tools//go/analysis/passes/bools:go_default_library", "@org_golang_x_tools//go/analysis/passes/buildssa:go_default_library", "@org_golang_x_tools//go/analysis/passes/buildtag:go_default_library", # TODO(#2396): pass raw cgo sources to cgocall and re-enable. # "@org_golang_x_tools//go/analysis/passes/cgocall:go_default_library", "@org_golang_x_tools//go/analysis/passes/composite:go_default_library", "@org_golang_x_tools//go/analysis/passes/copylock:go_default_library", "@org_golang_x_tools//go/analysis/passes/ctrlflow:go_default_library", "@org_golang_x_tools//go/analysis/passes/deepequalerrors:go_default_library", "@org_golang_x_tools//go/analysis/passes/errorsas:go_default_library", "@org_golang_x_tools//go/analysis/passes/findcall:go_default_library", "@org_golang_x_tools//go/analysis/passes/httpresponse:go_default_library", "@org_golang_x_tools//go/analysis/passes/ifaceassert:go_default_library", "@org_golang_x_tools//go/analysis/passes/inspect:go_default_library", "@org_golang_x_tools//go/analysis/passes/loopclosure:go_default_library", "@org_golang_x_tools//go/analysis/passes/lostcancel:go_default_library", "@org_golang_x_tools//go/analysis/passes/nilfunc:go_default_library", "@org_golang_x_tools//go/analysis/passes/nilness:go_default_library", "@org_golang_x_tools//go/analysis/passes/pkgfact:go_default_library", "@org_golang_x_tools//go/analysis/passes/printf:go_default_library", "@org_golang_x_tools//go/analysis/passes/shadow:go_default_library", "@org_golang_x_tools//go/analysis/passes/shift:go_default_library", "@org_golang_x_tools//go/analysis/passes/sortslice:go_default_library", "@org_golang_x_tools//go/analysis/passes/stdmethods:go_default_library", "@org_golang_x_tools//go/analysis/passes/stringintconv:go_default_library", "@org_golang_x_tools//go/analysis/passes/structtag:go_default_library", "@org_golang_x_tools//go/analysis/passes/testinggoroutine:go_default_library", "@org_golang_x_tools//go/analysis/passes/tests:go_default_library", "@org_golang_x_tools//go/analysis/passes/unmarshal:go_default_library", "@org_golang_x_tools//go/analysis/passes/unreachable:go_default_library", "@org_golang_x_tools//go/analysis/passes/unsafeptr:go_default_library", "@org_golang_x_tools//go/analysis/passes/unusedresult:go_default_library", ] # Current version or next version to be tagged. Gazelle and other tools may # check this to determine compatibility. RULES_GO_VERSION = "0.30.0" declare_toolchains = _declare_toolchains go_context = _go_context go_embed_data = _go_embed_data go_sdk = _go_sdk go_tool_library = _go_tool_library go_toolchain = _go_toolchain nogo = _nogo # See go/providers.rst#GoLibrary for full documentation. GoLibrary = _GoLibrary # See go/providers.rst#GoSource for full documentation. GoSource = _GoSource # See go/providers.rst#GoPath for full documentation. GoPath = _GoPath # See go/providers.rst#GoArchive for full documentation. GoArchive = _GoArchive # See go/providers.rst#GoArchiveData for full documentation. GoArchiveData = _GoArchiveData # See go/providers.rst#GoSDK for full documentation. GoSDK = _GoSDK # See docs/go/core/rules.md#go_library for full documentation. go_library = _go_library_macro # See docs/go/core/rules.md#go_binary for full documentation. go_binary = _go_binary_macro # See docs/go/core/rules.md#go_test for full documentation. go_test = _go_test_macro # See docs/go/core/rules.md#go_test for full documentation. go_source = _go_source # See docs/go/core/rules.md#go_path for full documentation. go_path = _go_path def go_vet_test(*args, **kwargs): fail("The go_vet_test rule has been removed. Please migrate to nogo instead, which supports vet tests.") def go_rule(**kwargs): fail("The go_rule function has been removed. Use rule directly instead. See https://github.com/bazelbuild/rules_go/blob/master/go/toolchains.rst#writing-new-go-rules") def go_rules_dependencies(): _moved("go_rules_dependencies") def go_register_toolchains(**kwargs): _moved("go_register_toolchains") def go_download_sdk(**kwargs): _moved("go_download_sdk") def go_host_sdk(**kwargs): _moved("go_host_sdk") def go_local_sdk(**kwargs): _moved("go_local_sdk") def go_wrap_sdk(**kwargs): _moved("go_wrap_sdK") def _moved(name): fail(name + " has moved. Please load from " + " @io_bazel_rules_go//go:deps.bzl instead of def.bzl.")
1.265625
1
anyway/parsers/united.py
ayalapol/anyway
0
5868
#!/usr/bin/env python # -*- coding: utf-8 -*- import calendar import csv from datetime import datetime import os from flask_sqlalchemy import SQLAlchemy from sqlalchemy import and_ from ..constants import CONST from ..models import AccidentMarker from ..utilities import init_flask, decode_hebrew, open_utf8 from ..import importmail from xml.dom import minidom import math import requests import logging ############################################################################################ # United.py is responsible for the parsing and deployment of "united hatzala" data to the DB ############################################################################################ PROVIDER_CODE = CONST.UNITED_HATZALA_CODE TIME_ZONE = 2 # convert IMS hours code to hours RAIN_DURATION_CODE_TO_HOURS = {"1": 6, "2": 12, "3": 18, "4": 24, "/": 24, "5": 1, "6": 2, "7": 3, "8": 9, "9": 15} WEATHER = {"0": 1, "1": 2, "3": 3, "4": 4, "5": 5, "7": 6, "8": 6, "9": 7, "10": 8, "11": 9, "12": 10, "17": 11, "18": 12, "19": 13, "20": 14, "21": 15, "22": 16, "23": 17, "24": 18, "25": 19, "26": 20, "27": 21, "28": 22, "29": 23, "30": 24, "31": 24, "32": 24, "33": 7, "34": 7, "35": 7, "36": 25, "37": 25, "38": 25, "39": 25, "40": 26, "41": 27, "42": 28, "43": 29, "44": 9, "45": 30, "46": 30, "47": 30, "48": 31, "49": 32, "50": 33, "51": 34, "52": 33, "53": 35, "54": 36, "55": 37, "56": 38, "57": 39, "58": 37, "59": 37, "61": 37, "60": 36, "62": 40, "63": 15, "64": 41, "65": 19, "66": 42, "67": 43, "68": 44, "69": 45, "70": 46, "71": 47, "72": 48, "73": 16, "74": 50, "75": 51, "76": 52, "77": 53, "78": 54, "79": 55, "80": 56, "81": 57, "82": 58, "83": 59, "84": 60, "85": 61, "86": 62, "87": 63, "88": 64, "89": 65, "90": 66, "91": 67, "92": 68, "93": 69, "94": 70, "95": 71, "96": 72, "97": 73, "98": 74, "99": 75} def retrieve_ims_xml(): # getting an xml document from the ims(israel meteorological service) website logging.basicConfig(level=logging.DEBUG) s = requests.session() r = s.get('http://www.ims.gov.il/ims/PublicXML/observ.xml') xml_doc = minidom.parseString(r.text) collection = xml_doc.documentElement return collection def parse_date(created): """ :param created: Date & Time string from csv :return: Python datetime object """ global time global hour DATE_FORMATS = ['%m/%d/%Y %I:%M:%S', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d %I:%M:%S', '%d/%m/%Y %I:%M', '%Y/%m/%d %I:%M', '%m/%d/%Y %I:%M'] for date_format in DATE_FORMATS: try: if date_format == '%Y-%m-%d %H:%M:%S': time = datetime.strptime(str(created)[:-4], date_format) hour = time.strftime('%H') hour = int(hour) else: time = datetime.strptime(str(created)[:-3], date_format) hour = time.strftime('%H') hour = int(hour) if str(created).endswith('AM') else int(hour) + 12 break except ValueError: pass return datetime(time.year, time.month, time.day, hour, time.minute, 0) def is_nth_weekday(nth, daynum, year, month): # find if date is the nth occurrence of the daynum day of the week (ex: the forth sunday of april 2016) # start counting the daynum from monday = 0 return calendar.Calendar(nth).monthdatescalendar( year, month )[nth][daynum] def get_parent_object_node(node): while node.parentNode: node = node.parentNode if node.nodeName == "Object": return node def accident_time_zone_adjustment(created): # return accident time in UTC time # pylint: disable=unexpected-keyword-arg accident_date = parse_date(created) daylight_saving_time = is_nth_weekday(4, 4, accident_date.year, 3) winter_clock = is_nth_weekday(4, 6, accident_date.year, 10) # weather is given in UTC time # therefore in daylight_saving_time we deduct 3 hours from the local time and in winter clock 2 hours # [ accident_date = accident_date.replace(hour=accident_date.hour - TIME_ZONE) # if accident happend between april and september if accident_date.month < 10 & accident_date.month > 3: accident_date.replace(hour=accident_date.hour - 1) # if accident happend before the last sunday of october at 2:00 o'clock elif accident_date.month == 10 & ( winter_clock.day > accident_date.day | ( winter_clock.day == accident_date.day & accident_date.hour < 2)): accident_date.replace(hour=accident_date.hour - 1) # if accident happend after the last friday of march at 2:00 o'clock elif (accident_date.month == 3 & daylight_saving_time.day < accident_date.day | ( daylight_saving_time.day == accident_date.day & accident_date.hour >= 2)): accident_date.replace(hour=accident_date.hour - 1) # ] adate = ''.join( (str(accident_date.year), str(accident_date.month), str(accident_date.day), str(accident_date.hour))) return adate def all_station_in_date_frame(collection, created): # return the stations data in the time of the accident doc = minidom.Document() base = doc.createElement('accident_date') doc.appendChild(base) station_data_in_date = collection.getElementsByTagName('date_selected') station_data_in_date.sort() accident_date = accident_time_zone_adjustment(created) for station in enumerate(station_data_in_date): if accident_date in str(station.childNodes[0].nodeValue): base.appendChild(get_parent_object_node(station)) return base def find_station_by_coordinate(collection, latitude, longitude): station_place_in_xml = -1 min_distance = float("inf") # initialize big starting value so the distance will always be smaller than the initial station_data = collection.getElementsByTagName('surface_station') for i, station in enumerate(station_data): station_lon = station.getElementsByTagName('station_lon') assert len(station_lon) == 1 lon = float(station_lon[0].childNodes[0].nodeValue) lon_difference = (lon - float(longitude)) ** 2 station_lat = station.getElementsByTagName('station_lat') assert len(station_lat) == 1 lat = float(station_lat[0].childNodes[0].nodeValue) lat_difference = (lat - float(latitude)) ** 2 temp_dis = math.sqrt(lat_difference + lon_difference) if temp_dis < min_distance: min_distance = temp_dis station_place_in_xml = i return station_place_in_xml def convert_xml_values_to_numbers(rain): num_conv = rain[:2] # variable to help convert from string to number for char in num_conv: # in the xml number are in a three digits format (4-004), we delete the 0es before the number if char == '0': rain.replace(char, '') else: break rain_in_millimeters = float(rain) if rain_in_millimeters >= 990: # numbers that are higher then 990 in the xml code equals 0.(the last digit) for example 991 = 0.1 rain_in_millimeters *= 0.01 return rain_in_millimeters def get_weather_element(station, weather_data, tag): element = weather_data[station].getElementsByTagName(tag) if element: weather_element = element[0].childNodes[0].nodeValue else: weather_element = None return weather_element def process_weather_data(collection, latitude, longitude): weather = 1 # default weather is clear sky station = find_station_by_coordinate(collection, latitude, longitude) weather_data = collection.getElementsByTagName('surface_observation') wind_force = get_weather_element(station, weather_data, 'FF') rain = get_weather_element(station, weather_data, 'RRR') rain_duration = get_weather_element(station, weather_data, 'TR') # the duration of time in which the rain amount was measured weather_code = get_weather_element(station, weather_data, 'WW') if weather_code is not None: return WEATHER[weather_code.strip()] if wind_force is not None: if int(wind_force) > 8: weather = 76 # סופת רוחות elif int(wind_force) > 5: weather = 77 # רוחות חזקות if rain is not None and rain_duration is not None: rain_in_millimeters = convert_xml_values_to_numbers(rain) rain_hours = RAIN_DURATION_CODE_TO_HOURS[str(rain_duration).strip()] # rain amount is between 0.1 and 0.5 millimeter if 0.0 < rain_in_millimeters <= 0.5 or ( 0.0 < rain_in_millimeters / rain_hours <= 0.5): if weather == 76: weather = 80 # סופת רוחות, גשם קל elif weather == 77: weather = 84 # רוחות חזקות, גשם קל else: weather = 37 # גשם קל # average rain amount per hour is between 0.5 and 4.0 millimeters if 0.5 < rain_in_millimeters / rain_hours <= 4: if weather == 76: weather = 81 # גשם וסופת רוחות elif weather == 77: weather = 85 # גשם ורוחות חזקות else: weather = 15 # גשם # average rain amount per hour is between 4.0 and 8.0 millimeters elif 4 < rain_in_millimeters / rain_hours <= 8: if 76 == weather: weather = 82 # סופת רוחות, גשם שוטף if weather == 77: weather = 86 # רוחות חזקות, גשם שוטף else: weather = 78 # גשם שוטף # average rain amount per hour is more than 8.0 millimeters elif rain_in_millimeters / rain_hours > 8: if weather == 76: weather = 83 # סופת רוחות, גשם זלעפות if weather == 77: weather = 87 # רוחות חזקות, גשם זלעפות else: weather = 79 # גשם זלעפות return weather CSVMAP = [ {"id": 0, "time": 1, "lat": 2, "long": 3, "street": 4, "city": 6, "comment": 7, "type": 8, "casualties": 9}, {"id": 0, "time": 1, "type": 2, "long": 3, "lat": 4, "city": 5, "street": 6, "comment": 7, "casualties": 8}, ] def create_accidents(collection, file_location): """ :param file_location: local location of .csv :return: Yields a marker object with every iteration """ logging.info("\tReading accidents data from '%s'..." % file_location) with open_utf8(file_location, 'rU') as f: reader = csv.reader(f, delimiter=',', dialect=csv.excel_tab) for line, accident in enumerate(reader): if line == 0: # header format_version = 0 if "MissionID" in accident[0] else 1 continue if not accident: # empty line continue if line == 1 and accident[0] == "": logging.warn("\t\tEmpty File!") continue csvmap = CSVMAP[format_version] if accident[csvmap["lat"]] == "" or accident[csvmap["long"]] == "" or \ accident[csvmap["lat"]] is None or accident[csvmap["long"]] is None or \ accident[csvmap["lat"]] == "NULL" or accident[csvmap["long"]] == "NULL": logging.warn("\t\tMissing coordinates in line {0}. Moving on...".format(line + 1)) continue created = parse_date(accident[csvmap["time"]]) marker = {'id': accident[csvmap["id"]], 'latitude': accident[csvmap["lat"]], 'longitude': accident[csvmap["long"]], 'created': created, 'provider_code': PROVIDER_CODE, 'title': decode_hebrew(accident[csvmap["type"]], encoding="utf-8")[:100], 'address': decode_hebrew((accident[csvmap["street"]] + ' ' + accident[csvmap["city"]]), encoding="utf-8"), 'accident_severity': 2 if u"קשה" in decode_hebrew(accident[csvmap["type"]], encoding="utf-8") else 3, 'location_accuracy': 1, 'accident_type': 21, 'type': CONST.MARKER_TYPE_ACCIDENT, 'description': decode_hebrew(accident[csvmap["comment"]], encoding="utf-8"), 'weather': process_weather_data(collection, accident[csvmap["lat"]], accident[csvmap["long"]])} if format_version == 0: casualties = accident[csvmap["casualties"]] marker['road_intactness'] = casualties if casualties.isdigit() else 0 yield marker def import_to_db(collection, path): """ :param path: Local files directory ('united_path' on main() below) :return: length of DB entries after execution """ app = init_flask() db = SQLAlchemy(app) accidents = list(create_accidents(collection, path)) if not accidents: return 0 new_ids = [m["id"] for m in accidents if 0 == db.session.query(AccidentMarker).filter(and_(AccidentMarker.id == m["id"], AccidentMarker.provider_code == m["provider_code"])).count()] if not new_ids: logging.info("\t\tNothing loaded, all accidents already in DB") return 0 db.session.execute(AccidentMarker.__table__.insert(), [m for m in accidents if m["id"] in new_ids]) db.session.commit() return len(new_ids) def update_db(collection): """ :return: length of DB entries after execution """ app = init_flask() db = SQLAlchemy(app) united = db.session.query(AccidentMarker).filter(AccidentMarker.provider_code == 2) for accident in united: if not accident.weather: accident.weather = process_weather_data(collection, accident.latitude, accident.longitude) db.session.commit() logging.info("\tFinished commiting the changes") def main(light=True, username='', password='', lastmail=False): """ Calls importmail.py prior to importing to DB """ collection = retrieve_ims_xml() if not light: logging.info("Importing data from mail...") importmail.main(username, password, lastmail) united_path = "static/data/united/" total = 0 logging.info("Loading United accidents...") for united_file in os.listdir(united_path): if united_file.endswith(".csv"): total += import_to_db(collection, united_path + united_file) logging.info("\tImported {0} items".format(total)) update_db(collection)
2.09375
2
libact/query_strategies/tests/test_variance_reduction.py
joequant/libact
1
5869
import unittest from numpy.testing import assert_array_equal import numpy as np from libact.base.dataset import Dataset from libact.models import LogisticRegression from libact.query_strategies import VarianceReduction from .utils import run_qs class VarianceReductionTestCase(unittest.TestCase): """Variance reduction test case using artifitial dataset""" def setUp(self): self.X = [[-2, -1], [1, 1], [-1, -2], [-1, -1], [1, 2], [2, 1]] self.y = [0, 1, 0, 1, 0, 1] self.quota = 4 def test_variance_reduction(self): trn_ds = Dataset(self.X, np.concatenate([self.y[:2], [None] * (len(self.y) - 2)])) qs = VarianceReduction(trn_ds, model=LogisticRegression(), sigma=0.1) qseq = run_qs(trn_ds, qs, self.y, self.quota) assert_array_equal(qseq, np.array([4, 5, 2, 3])) if __name__ == '__main__': unittest.main()
2.53125
3
hysds/log_utils.py
fgreg/hysds
0
5870
<reponame>fgreg/hysds<gh_stars>0 from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import open from builtins import str from future import standard_library standard_library.install_aliases() import os import re import json import copy import socket import msgpack import traceback import types import backoff from datetime import datetime from uuid import uuid4 from redis import BlockingConnectionPool, StrictRedis, RedisError from celery.utils.log import get_task_logger import hysds from hysds.celery import app from prov_es.model import get_uuid, ProvEsDocument # logger logger = get_task_logger(__name__) # redis connection pools JOB_STATUS_POOL = None JOB_INFO_POOL = None WORKER_STATUS_POOL = None EVENT_STATUS_POOL = None # job status key template JOB_STATUS_KEY_TMPL = "hysds-job-status-%s" # worker status key template WORKER_STATUS_KEY_TMPL = "hysds-worker-status-%s" # task worker key template TASK_WORKER_KEY_TMPL = "hysds-task-worker-%s" def backoff_max_value(): """Return max value for backoff.""" return app.conf.BACKOFF_MAX_VALUE def backoff_max_tries(): """Return max tries for backoff.""" return app.conf.BACKOFF_MAX_TRIES def hard_time_limit_gap(): """Return minimum gap time after soft time limit.""" return app.conf.HARD_TIME_LIMIT_GAP def ensure_hard_time_limit_gap(soft_time_limit, time_limit): """Ensure hard time limit gap.""" gap = hard_time_limit_gap() if soft_time_limit is not None and (time_limit is None or time_limit <= soft_time_limit+gap): time_limit = soft_time_limit + gap return soft_time_limit, time_limit def set_redis_job_status_pool(): """Set redis connection pool for job status.""" global JOB_STATUS_POOL if JOB_STATUS_POOL is None: JOB_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) def set_redis_job_info_pool(): """Set redis connection pool for job info metrics.""" global JOB_INFO_POOL if JOB_INFO_POOL is None: JOB_INFO_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_INFO_URL) def set_redis_worker_status_pool(): """Set redis connection pool for worker status.""" global WORKER_STATUS_POOL if WORKER_STATUS_POOL is None: WORKER_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) def set_redis_event_status_pool(): """Set redis connection pool for event status.""" global EVENT_STATUS_POOL if EVENT_STATUS_POOL is None: EVENT_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_task_worker(task_id, worker): """Log task worker for task ID in redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # set task worker for task ID r = StrictRedis(connection_pool=WORKER_STATUS_POOL) r.setex(TASK_WORKER_KEY_TMPL % task_id, app.conf.HYSDS_JOB_STATUS_EXPIRES, worker) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_task_worker(task_id): """Retrieve task worker by task ID from redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # retrieve task worker r = StrictRedis(connection_pool=WORKER_STATUS_POOL) return r.get(TASK_WORKER_KEY_TMPL % task_id) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_worker_status(worker): """Retrieve worker status by worker ID from redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # retrieve worker status r = StrictRedis(connection_pool=WORKER_STATUS_POOL) return r.get(WORKER_STATUS_KEY_TMPL % worker) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_job_status(task_id): """Retrieve job status by task ID from redis.""" set_redis_job_status_pool() global JOB_STATUS_POOL # retrieve job status r = StrictRedis(connection_pool=JOB_STATUS_POOL) return r.get(JOB_STATUS_KEY_TMPL % task_id) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_job_status(job): """Print job status.""" set_redis_job_status_pool() global JOB_STATUS_POOL job['resource'] = 'job' job['type'] = job.get('job', {}).get('type', 'unknown') job['@version'] = '1' job['@timestamp'] = "%sZ" % datetime.utcnow().isoformat() if 'tag' in job.get('job', {}): tags = job.setdefault('tags', []) if isinstance(tags, str): tags = [tags] tags.append(job['job']['tag']) job['tags'] = tags # send update to redis r = StrictRedis(connection_pool=JOB_STATUS_POOL) r.setex(JOB_STATUS_KEY_TMPL % job['uuid'], app.conf.HYSDS_JOB_STATUS_EXPIRES, job['status']) # for dedup r.rpush(app.conf.REDIS_JOB_STATUS_KEY, msgpack.dumps(job)) # for ES logger.info("job_status_json:%s" % json.dumps(job)) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_job_info(job): """Print job info.""" set_redis_job_info_pool() global JOB_INFO_POOL filtered_info = {} for info in ('job_info', 'job_id', 'task_id', 'delivery_info', 'tag', 'priority', 'container_image_name', 'container_image_url', 'name'): if info in job: filtered_info[info] = job[info] job_info = {'type': 'job_info', '@version': '1', '@timestamp': "%sZ" % datetime.utcnow().isoformat(), 'job': filtered_info, 'job_type': job['type']} # send update to redis r = StrictRedis(connection_pool=JOB_INFO_POOL) r.rpush(app.conf.REDIS_JOB_INFO_KEY, msgpack.dumps(job_info)) logger.info("job_info_json:%s" % json.dumps(job_info)) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_custom_event(event_type, event_status, event, tags=[], hostname=None): """Log custom event.""" set_redis_event_status_pool() global EVENT_STATUS_POOL uuid = str(uuid4()) if hostname is None: try: hostname = socket.getfqdn() except: try: hostname = socket.gethostbyname(socket.gethostname()) except: hostname = '' info = {'resource': 'event', 'type': event_type, 'status': event_status, '@timestamp': "%sZ" % datetime.utcnow().isoformat(), 'hostname': hostname, 'uuid': uuid, 'tags': tags, '@version': '1', 'event': event} # send update to redis r = StrictRedis(connection_pool=EVENT_STATUS_POOL) r.rpush(app.conf.REDIS_JOB_STATUS_KEY, msgpack.dumps(info)) logger.info("hysds.custom_event:%s" % json.dumps(info)) return uuid def log_prov_es(job, prov_es_info, prov_es_file): """Log PROV-ES document. Create temp PROV-ES document to populate attributes that only the worker has access to (e.g. PID).""" # create PROV-ES doc to generate attributes that only verdi know ps_id = "hysds:%s" % get_uuid(job['job_id']) bundle_id = "hysds:%s" % get_uuid('bundle-%s' % job['job_id']) doc = ProvEsDocument() # get bundle #bndl = doc.bundle(bundle_id) bndl = None # create sofware agent sa_label = "hysds:pge_wrapper/%s/%d/%s" % (job['job_info']['execute_node'], job['job_info']['pid'], datetime.utcnow().isoformat()) sa_id = "hysds:%s" % get_uuid(sa_label) doc.softwareAgent(sa_id, str(job['job_info']['pid']), job['job_info']['execute_node'], role=job.get('username', None), label=sa_label, bundle=bndl) # create processStep doc.processStep(ps_id, job['job_info']['cmd_start'], job['job_info']['cmd_end'], [], sa_id, None, [], [], bundle=bndl, prov_type="hysds:%s" % job['type']) # get json pd = json.loads(doc.serialize()) # update software agent and process step if 'bundle' in prov_es_info: if len(prov_es_info['bundle']) == 1: bundle_id_orig = list(prov_es_info['bundle'].keys())[0] # update software agent prov_es_info['bundle'][bundle_id_orig].setdefault( 'agent', {}).update(pd['bundle'][bundle_id]['agent']) # update wasAssociatedWith prov_es_info['bundle'][bundle_id_orig].setdefault( 'wasAssociatedWith', {}).update(pd['bundle'][bundle_id]['wasAssociatedWith']) # update activity if 'activity' in prov_es_info['bundle'][bundle_id_orig]: if len(prov_es_info['bundle'][bundle_id_orig]['activity']) == 1: ps_id_orig = list( prov_es_info['bundle'][bundle_id_orig]['activity'].keys())[0] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:startTime'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:startTime'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:endTime'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:endTime'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_id'] = job['job_id'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_type'] = job['type'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_url'] = job['job_info']['job_url'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:mozart_url'] = app.conf.MOZART_URL if 'prov:type' not in prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]: prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:type'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:type'] # update wasAssociatedWith activity ids for waw_id in prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith']: if prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith'][waw_id]['prov:activity'] == ps_id: prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith'][waw_id]['prov:activity'] = ps_id_orig else: prov_es_info['bundle'][bundle_id_orig]['activity'].update( pd['bundle'][bundle_id]['activity']) else: prov_es_info['bundle'][bundle_id_orig]['activity'] = pd['bundle'][bundle_id]['activity'] else: # update software agent prov_es_info.setdefault('agent', {}).update(pd['agent']) # update wasAssociatedWith prov_es_info.setdefault('wasAssociatedWith', {}).update( pd['wasAssociatedWith']) # update process step if 'activity' in prov_es_info: if len(prov_es_info['activity']) == 1: ps_id_orig = list(prov_es_info['activity'].keys())[0] prov_es_info['activity'][ps_id_orig]['prov:startTime'] = pd['activity'][ps_id]['prov:startTime'] prov_es_info['activity'][ps_id_orig]['prov:endTime'] = pd['activity'][ps_id]['prov:endTime'] prov_es_info['activity'][ps_id_orig]['hysds:job_id'] = job['job_id'] prov_es_info['activity'][ps_id_orig]['hysds:job_type'] = job['type'] prov_es_info['activity'][ps_id_orig]['hysds:job_url'] = job['job_info']['job_url'] prov_es_info['activity'][ps_id_orig]['hysds:mozart_url'] = app.conf.MOZART_URL if 'prov:type' not in prov_es_info['activity'][ps_id_orig]: prov_es_info['activity'][ps_id_orig]['prov:type'] = pd['activity'][ps_id]['prov:type'] # update wasAssociatedWith activity ids for waw_id in prov_es_info['wasAssociatedWith']: if prov_es_info['wasAssociatedWith'][waw_id]['prov:activity'] == ps_id: prov_es_info['wasAssociatedWith'][waw_id]['prov:activity'] = ps_id_orig else: prov_es_info['activity'].update(pd['activity']) else: prov_es_info['activity'] = pd['activity'] # write prov with open(prov_es_file, 'w') as f: json.dump(prov_es_info, f, indent=2) def log_publish_prov_es(prov_es_info, prov_es_file, prod_path, pub_urls, prod_metrics, objectid): """Log publish step in PROV-ES document.""" # create PROV-ES doc doc = ProvEsDocument(namespaces=prov_es_info['prefix']) # get bundle #bndl = doc.bundle(bundle_id) bndl = None # add input entity execute_node = socket.getfqdn() prod_url = "file://%s%s" % (execute_node, prod_path) input_id = "hysds:%s" % get_uuid(prod_url) input_ent = doc.granule(input_id, None, [prod_url], [], None, None, None, label=os.path.basename(prod_url), bundle=bndl) # add output entity output_id = "hysds:%s" % get_uuid(pub_urls[0]) output_ent = doc.product(output_id, None, [pub_urls[0]], [], None, None, None, label=objectid, bundle=bndl) # software and algorithm algorithm = "eos:product_publishing" software_version = hysds.__version__ software_title = "%s v%s" % (hysds.__description__, software_version) software = "eos:HySDS-%s" % software_version software_location = hysds.__url__ doc.software(software, [algorithm], software_version, label=software_title, location=software_location, bundle=bndl) # create sofware agent pid = os.getpid() sa_label = "hysds:publish_dataset/%s/%d/%s" % (execute_node, pid, prod_metrics['time_start']) sa_id = "hysds:%s" % get_uuid(sa_label) doc.softwareAgent(sa_id, str(pid), execute_node, role="invoked", label=sa_label, bundle=bndl) # create processStep job_id = "publish_dataset-%s" % os.path.basename(prod_path) doc.processStep("hysds:%s" % get_uuid(job_id), prod_metrics['time_start'], prod_metrics['time_end'], [software], sa_id, None, [input_id], [output_id], label=job_id, bundle=bndl, prov_type="hysds:publish_dataset") # get json pd = json.loads(doc.serialize()) # update input entity orig_ent = prov_es_info.get('entity', {}).get(input_id, {}) pd['entity'][input_id].update(orig_ent) # update output entity for attr in orig_ent: if attr in ('prov:location', 'prov:label', 'prov:type'): continue pd['entity'][output_id][attr] = orig_ent[attr] # write prov with open(prov_es_file, 'w') as f: json.dump(pd, f, indent=2)
2.109375
2
openstack_dashboard/api/rest/swift.py
CplusShen/aurora-horizon
0
5871
# Copyright 2015, Rackspace, US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for the swift service. """ import os from django import forms from django.http import StreamingHttpResponse from django.utils.http import urlunquote from django.views.decorators.csrf import csrf_exempt from django.views import generic import six from horizon import exceptions from openstack_dashboard import api from openstack_dashboard.api.rest import urls from openstack_dashboard.api.rest import utils as rest_utils from openstack_dashboard.api import swift @urls.register class Info(generic.View): """API for information about the Swift installation. """ url_regex = r'swift/info/$' @rest_utils.ajax() def get(self, request): """Get information about the Swift installation. """ capabilities = api.swift.swift_get_capabilities(request) return {'info': capabilities} @urls.register class Containers(generic.View): """API for swift container listing for an account """ url_regex = r'swift/containers/$' @rest_utils.ajax() def get(self, request): """Get the list of containers for this account TODO(neillc): Add pagination """ containers, has_more = api.swift.swift_get_containers(request) containers = [container.to_dict() for container in containers] return {'items': containers, 'has_more': has_more} @urls.register class Container(generic.View): """API for swift container level information """ url_regex = r'swift/containers/(?P<container>[^/]+)/metadata/$' @rest_utils.ajax() def get(self, request, container): """Get the container details """ return api.swift.swift_get_container(request, container).to_dict() @rest_utils.ajax() def post(self, request, container): metadata = {} if 'is_public' in request.DATA: metadata['is_public'] = request.DATA['is_public'] # This will raise an exception if the container already exists try: api.swift.swift_create_container(request, container, metadata=metadata) except exceptions.AlreadyExists as e: # 409 Conflict return rest_utils.JSONResponse(str(e), 409) return rest_utils.CreatedResponse( u'/api/swift/containers/%s' % container, ) @rest_utils.ajax() def delete(self, request, container): try: api.swift.swift_delete_container(request, container) except exceptions.Conflict as e: # It cannot be deleted if it's not empty. return rest_utils.JSONResponse(str(e), 409) @rest_utils.ajax(data_required=True) def put(self, request, container): metadata = {'is_public': request.DATA['is_public']} api.swift.swift_update_container(request, container, metadata=metadata) @urls.register class Objects(generic.View): """API for a list of swift objects """ url_regex = r'swift/containers/(?P<container>[^/]+)/objects/$' @rest_utils.ajax() def get(self, request, container): """Get object information. :param request: :param container: :return: """ path = request.GET.get('path') if path is not None: path = urlunquote(path) objects = api.swift.swift_get_objects( request, container, prefix=path ) # filter out the folder from the listing if we're filtering for # contents of a (pseudo) folder contents = [{ 'path': o.subdir if isinstance(o, swift.PseudoFolder) else o.name, 'name': o.name.split('/')[-1], 'bytes': o.bytes, 'is_subdir': isinstance(o, swift.PseudoFolder), 'is_object': not isinstance(o, swift.PseudoFolder), 'content_type': getattr(o, 'content_type', None) } for o in objects[0] if o.name != path] return {'items': contents} class UploadObjectForm(forms.Form): file = forms.FileField(required=False) @urls.register class Object(generic.View): """API for a single swift object or pseudo-folder """ url_regex = r'swift/containers/(?P<container>[^/]+)/object/' \ '(?P<object_name>.+)$' # note: not an AJAX request - the body will be raw file content @csrf_exempt def post(self, request, container, object_name): """Create or replace an object or pseudo-folder :param request: :param container: :param object_name: If the object_name (ie. POST path) ends in a '/' then a folder is created, rather than an object. Any file content passed along with the request will be ignored in that case. POST parameter: :param file: the file data for the upload. :return: """ form = UploadObjectForm(request.POST, request.FILES) if not form.is_valid(): raise rest_utils.AjaxError(500, 'Invalid request') data = form.clean() if object_name[-1] == '/': result = api.swift.swift_create_pseudo_folder( request, container, object_name ) else: result = api.swift.swift_upload_object( request, container, object_name, data['file'] ) return rest_utils.CreatedResponse( u'/api/swift/containers/%s/object/%s' % (container, result.name) ) @rest_utils.ajax() def delete(self, request, container, object_name): if object_name[-1] == '/': try: api.swift.swift_delete_folder(request, container, object_name) except exceptions.Conflict as e: # In case the given object is pseudo folder # It cannot be deleted if it's not empty. return rest_utils.JSONResponse(str(e), 409) else: api.swift.swift_delete_object(request, container, object_name) def get(self, request, container, object_name): """Get the object contents. """ obj = api.swift.swift_get_object( request, container, object_name ) # Add the original file extension back on if it wasn't preserved in the # name given to the object. filename = object_name.rsplit(api.swift.FOLDER_DELIMITER)[-1] if not os.path.splitext(obj.name)[1] and obj.orig_name: name, ext = os.path.splitext(obj.orig_name) filename = "%s%s" % (filename, ext) response = StreamingHttpResponse(obj.data) safe = filename.replace(",", "") if six.PY2: safe = safe.encode('utf-8') response['Content-Disposition'] = 'attachment; filename="%s"' % safe response['Content-Type'] = 'application/octet-stream' response['Content-Length'] = obj.bytes return response @urls.register class ObjectMetadata(generic.View): """API for a single swift object """ url_regex = r'swift/containers/(?P<container>[^/]+)/metadata/' \ '(?P<object_name>.+)$' @rest_utils.ajax() def get(self, request, container, object_name): return api.swift.swift_get_object( request, container_name=container, object_name=object_name, with_data=False ).to_dict() @urls.register class ObjectCopy(generic.View): """API to copy a swift object """ url_regex = r'swift/containers/(?P<container>[^/]+)/copy/' \ '(?P<object_name>.+)$' @rest_utils.ajax() def post(self, request, container, object_name): dest_container = request.DATA['dest_container'] dest_name = request.DATA['dest_name'] try: result = api.swift.swift_copy_object( request, container, object_name, dest_container, dest_name ) except exceptions.AlreadyExists as e: return rest_utils.JSONResponse(str(e), 409) return rest_utils.CreatedResponse( u'/api/swift/containers/%s/object/%s' % (dest_container, result.name) )
1.882813
2
datagen.py
kuangliu/pytorch-ssd
124
5872
'''Load image/class/box from a annotation file. The annotation file is organized as: image_name #obj xmin ymin xmax ymax class_index .. ''' from __future__ import print_function import os import sys import os.path import random import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from encoder import DataEncoder from PIL import Image, ImageOps class ListDataset(data.Dataset): img_size = 300 def __init__(self, root, list_file, train, transform): ''' Args: root: (str) ditectory to images. list_file: (str) path to index file. train: (boolean) train or test. transform: ([transforms]) image transforms. ''' self.root = root self.train = train self.transform = transform self.fnames = [] self.boxes = [] self.labels = [] self.data_encoder = DataEncoder() with open(list_file) as f: lines = f.readlines() self.num_samples = len(lines) for line in lines: splited = line.strip().split() self.fnames.append(splited[0]) num_objs = int(splited[1]) box = [] label = [] for i in range(num_objs): xmin = splited[2+5*i] ymin = splited[3+5*i] xmax = splited[4+5*i] ymax = splited[5+5*i] c = splited[6+5*i] box.append([float(xmin),float(ymin),float(xmax),float(ymax)]) label.append(int(c)) self.boxes.append(torch.Tensor(box)) self.labels.append(torch.LongTensor(label)) def __getitem__(self, idx): '''Load a image, and encode its bbox locations and class labels. Args: idx: (int) image index. Returns: img: (tensor) image tensor. loc_target: (tensor) location targets, sized [8732,4]. conf_target: (tensor) label targets, sized [8732,]. ''' # Load image and bbox locations. fname = self.fnames[idx] img = Image.open(os.path.join(self.root, fname)) boxes = self.boxes[idx].clone() labels = self.labels[idx] # Data augmentation while training. if self.train: img, boxes = self.random_flip(img, boxes) img, boxes, labels = self.random_crop(img, boxes, labels) # Scale bbox locaitons to [0,1]. w,h = img.size boxes /= torch.Tensor([w,h,w,h]).expand_as(boxes) img = img.resize((self.img_size,self.img_size)) img = self.transform(img) # Encode loc & conf targets. loc_target, conf_target = self.data_encoder.encode(boxes, labels) return img, loc_target, conf_target def random_flip(self, img, boxes): '''Randomly flip the image and adjust the bbox locations. For bbox (xmin, ymin, xmax, ymax), the flipped bbox is: (w-xmax, ymin, w-xmin, ymax). Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. Returns: img: (PIL.Image) randomly flipped image. boxes: (tensor) randomly flipped bbox locations, sized [#obj, 4]. ''' if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) w = img.width xmin = w - boxes[:,2] xmax = w - boxes[:,0] boxes[:,0] = xmin boxes[:,2] = xmax return img, boxes def random_crop(self, img, boxes, labels): '''Randomly crop the image and adjust the bbox locations. For more details, see 'Chapter2.2: Data augmentation' of the paper. Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. labels: (tensor) bbox labels, sized [#obj,]. Returns: img: (PIL.Image) cropped image. selected_boxes: (tensor) selected bbox locations. labels: (tensor) selected bbox labels. ''' imw, imh = img.size while True: min_iou = random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9]) if min_iou is None: return img, boxes, labels for _ in range(100): w = random.randrange(int(0.1*imw), imw) h = random.randrange(int(0.1*imh), imh) if h > 2*w or w > 2*h: continue x = random.randrange(imw - w) y = random.randrange(imh - h) roi = torch.Tensor([[x, y, x+w, y+h]]) center = (boxes[:,:2] + boxes[:,2:]) / 2 # [N,2] roi2 = roi.expand(len(center), 4) # [N,4] mask = (center > roi2[:,:2]) & (center < roi2[:,2:]) # [N,2] mask = mask[:,0] & mask[:,1] #[N,] if not mask.any(): continue selected_boxes = boxes.index_select(0, mask.nonzero().squeeze(1)) iou = self.data_encoder.iou(selected_boxes, roi) if iou.min() < min_iou: continue img = img.crop((x, y, x+w, y+h)) selected_boxes[:,0].add_(-x).clamp_(min=0, max=w) selected_boxes[:,1].add_(-y).clamp_(min=0, max=h) selected_boxes[:,2].add_(-x).clamp_(min=0, max=w) selected_boxes[:,3].add_(-y).clamp_(min=0, max=h) return img, selected_boxes, labels[mask] def __len__(self): return self.num_samples
2.9375
3
lingvo/core/builder.py
allenwang28/lingvo
2,611
5873
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A library to build composite layers. WARNING: The builder pattern is still experimental and we need to gain experience on when to use and when not to use. Please discuss w/ teammates before using it to build complicated layers. """ import functools from lingvo.core import activations from lingvo.core import builder_layers from lingvo.core import hyperparams from lingvo.core import layers from lingvo.core import py_utils from lingvo.core import tshape class Base: """Model builder with commonly used layers. A method in a builder class constructs a layer param. FProp of a layer constructed by a builder takes a tuple of tf.Tensor (one or more) and returns a tuple of tf.Tensor (one or more). Even though certain layers support FProp argument being None (e.g., Conv2DLayer), builder should not depend on such a support. The constructed layer is often a composition of multiple sub-layers connected in certain patterns. We expect to have a few methods to facilitate building these patterns. For example, _Seq() helps to build a sequential layer that calls its sub-layer one after another. TODO(zhifengc): Adds a more concrete example. """ @classmethod def Params(cls): """The params of this layer.""" p = hyperparams.InstantiableParams(cls) p.Define('deterministic_dropout', False, 'Used deterministic dropout or not.') p.Define( 'fprop_dtype', None, 'Activations datatype to use. To enable bfloat16 activations for ' 'layers built using model builder, set fprop_dtype to ' 'tf.bfloat16, which will be propagated to layers that support ' 'bfloat16 activations. Default is None, which will use float32 ' 'activations.') # SPMD partition related params. p.Define( 'device_mesh', None, 'A numpy.ndarray specifying the topology of a device mesh to place the ' 'computations onto. If device_mesh is None, it is assumed to be a ' 'single device. Here are some examples: ' 'np.array([0, 1, 2, 3, 4, 5, 6, 7]) which is a 1d mesh with 8 devices, ' 'np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) which is 2d matrix of 8 ' 'devices.') p.Define( 'weight_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how weight of this layer or those of the sublayers should ' 'be sharded over device mesh. ') p.Define( 'activation_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how activation of this layer or those of the sublayers ' 'should be sharded over device mesh. ') return p @property def params(self): """Returns the params upon which this layer is built.""" return self._params def __init__(self, params): # Sub-classes should put some options common to many layers in __init__. self._params = params.Copy() ###################################################################### # Layers to compose multiple layers. # # Sub-classes are discouraged to override these composition method. ###################################################################### def _Rep(self, name, repeat, *subs): r"""Connects sub-layers sequentially and repeat multiple times. E.g., _Rep('foo', 2, sa, sb, sc) constructs a layer with 6 layers sequentially connected: [sa1, sb1, sc1, sa2, sb2, sc2]. sa1 and sa2 have the same structure as the given sa, but sa1 and sa2 do not share the same weight. Args: name: The layer name. repeat: Repeat \*subs this many times in the compose layer. *subs: A list of sub-layers. Returns: The param for the composed layer. """ iterations = [] for i in range(repeat): iterations.append(self._Seq('iter_%03d' % i, *[p.Copy() for p in subs])) return self._Seq(name, *iterations) def _Seq(self, name, *subs): """Connects sub-layers sequentially.""" return builder_layers.SequentialLayer.Params().Set( name=name, sub=list(subs)) def _Graph(self, name, input_endpoints, output_endpoints, *signature_sub_param_list): """Connects sub-layers into a data flow graph.""" return builder_layers.GraphLayer.Params().Set( name=name, input_endpoints=input_endpoints, output_endpoints=output_endpoints, sub=list(signature_sub_param_list)) def _Id(self, name): """Identity. (t_1, ..., t_n) -> (t1, ..., t_n).""" return self._Seq(name) def _Arg(self, name, index): """Picks index-th element. (t_1, ..., t_n) -> (t_{index},).""" return builder_layers.ArgIndexLayer.Params().Set(name=name, idx=[index]) def _Par(self, name, *subs): """y = (f1, f2, ..., fn)(x). We feed the input tuple to all sub-layers and concatenates their output tuples into one tuple. Args: name: The layer name. *subs: A list of sub-layers. Returns: The param for the composed layer. """ def ConcatTuples(tuples): # tuples is a list of tuples. return tuple(functools.reduce(lambda x, y: x + list(y), tuples, [])) def ConcatMeta(tuples): return py_utils.NestedMap( flops=0, out_shapes=tuple( functools.reduce(lambda x, y: x + list(y), tuples, []))) return builder_layers.ParallelLayer.Params().Set( name=name, sub=list(subs), merge=ConcatTuples, merge_meta=ConcatMeta) def _Fn(self, name, fn, fn_out=None, fn_flops=None): """y = fn(x). Applies a fn: tuple(Tensor) -> a single Tensor or tuple(Tensor) to the input tuple. Typically, fn is a very simple python function. This layer can be used for prototyping but we advice to implement the logic as a sub-class of BaseLayer for all established layers as FnLayer can't be serialized. Args: name: The layer name. fn: A lambda tuple(Tensor) -> tuple(Tensor). fn_out: A lambda tuple(tshape.Shape) -> output tuple(tshape.Shape) fn_flops: A lambda tuple(tshape.Shape) -> estimated flops of fn. If None, we assume flops == sum of elements in the inputs. Returns: The param for the composed layer. """ def FnMeta(*shapes): """A lambda tuple(tshape.Shape) -> NestedMap{flops, out_shapes}.""" if fn_out: out_shapes = fn_out(*shapes) if isinstance(out_shapes, tshape.Shape): out_shapes = (out_shapes,) else: out_shapes = shapes if fn_flops: flops = fn_flops(*shapes) else: flops = sum([s.size for s in shapes]) return py_utils.NestedMap(flops=flops, out_shapes=out_shapes) return builder_layers.FnLayer.Params().Set(name=name, fn=fn, fn_meta=FnMeta) def _Save(self, name): """Returns a layer from which the activation and gradient can be accessed.""" return layers.FetchLayer.Params().Set(name=name) def _AddFetches(self, name, body, fetches): """Fetches saved activations in the body sub-layer. E.g.: _AddFetches('foo', _Seq( 'stack', _Layer('layer1', ...), _Save('layer1_out', ...), _Layer('layer2', ...), _Save('layer2_out', ...), _Output('output', ...)), ['layer1_out', 'layer2_out']) The layer returns the stack's final output together with intermediate activations from layer1_out and layer2_out. Args: name: This layer's name. body: The sub-layer. fetches: A list of fetch names inside the sub-layer body. Returns: A layer whose outputs correspond to the activations of fetch points in the sub-layer body. [input1, input2, ..., inputN, fetch1, ..., fetchM]. """ return builder_layers.BranchLayer.Params().Set( name=name, body=body, fetches=fetches) def _Rematerialize(self, name, body): """Forces rematerialization on FProp of the body layer.""" return builder_layers.RematerializationLayer.Params().Set( name=name, body=body) def _BatchParallel(self, name, sub): """Splits the batch and compute the forward pass on multiple devices. Args: name: This layer's name. sub: The sub-layer. Returns: A BatchParallel layer which splits the batch and computes the forward pass on multiple devices. """ return builder_layers.BatchParallelLayer.Params().Set(name=name, sub=sub) def _PrintShape(self, name): """Print FProp input shape information.""" return builder_layers.PrintShapeLayer.Params().Set(name=name) def _CreateNestedMap(self, name, keys): """Returns a NestedMap with keys from fprop args.""" return builder_layers.CreateNestedMapLayer.Params().Set( name=name, keys=keys) ########################################################################### # Basic nn layers. # # The following method returns a layer param, whose FProp takes a single # Tensor and returns a single Tensor. # # These methods are designed to have minimal knobs. Sub-classes which needs to # be flexible can override these methods with different options. E.g., a # sub-class builder can override _BN() to tune the decay option. ########################################################################### def _BN(self, name, dims): """Batch norm.""" return layers.BatchNormLayer.Params().Set(name=name, dim=dims, decay=0.99) def _LN(self, name, dims, use_fused_layernorm=False): """Layer norm.""" return layers.LayerNorm.Params().Set( name=name, input_dim=dims, use_fused_layernorm=use_fused_layernorm, fprop_dtype=self.params.fprop_dtype) def _Dropout(self, name, keep_prob, noise_shape_broadcast_dims=None): """Returns a DropoutLayer Params.""" if self.params.deterministic_dropout: return layers.DeterministicDropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims) return layers.DropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims, fprop_dtype=self.params.fprop_dtype) def _Linear(self, name, idims, odims, device_mesh=None, weight_split_dims_mapping=None, qdomain=None): """Linear layer. y = matmul([..., idims], [idims, odims]).""" p = builder_layers.LinearLayer.Params() p.name = name p.input_dims = idims p.output_dims = odims p.fprop_dtype = self.params.fprop_dtype p.device_mesh = device_mesh p.weight_split_dims_mapping = weight_split_dims_mapping p.qdomain.default = qdomain return p def _Bias(self, name, dims, device_mesh=None, weight_split_dims_mapping=None): """Bias layer. The bias is added to the last dimension of the input.""" return builder_layers.BiasLayer.Params().Set( name=name, dims=dims, fprop_dtype=self.params.fprop_dtype, device_mesh=device_mesh, weight_split_dims_mapping=weight_split_dims_mapping) def _Activation(self, name, fn='RELU'): """Activation layer.""" return activations.ActivationLayer.Params().Set(activation=fn, name=name) def _FC(self, name, idims, odims, act='RELU'): """Feed-forward fully connected. y = act(matmul(x, w) + b).""" # pyformat: disable return self._Seq( name, self._Linear('linear', idims, odims), self._Bias('bias', odims), self._Activation('act', fn=act)) def _MLP(self, name, dims, act='RELU'): """Multiple layers of feed-forward fully connected. Args: name: The layer name. dims: A list of int. i-th layer has dims[i] as its input dimension, and dims[i+1] as its output dimensions. act: The activation function. Returns: The param for the composed layer. """ l = [] for n, (i, o) in enumerate(zip(dims[:-1], dims[1:])): l += [self._FC('l%03d' % n, i, o, act)] return self._Seq(name, *l) def _Conv2D(self, name, filter_shape, filter_stride): """Conv2D layer.""" return layers.Conv2DLayerNoPadding.Params().Set( name=name, filter_shape=filter_shape, filter_stride=filter_stride, fprop_dtype=self.params.fprop_dtype) def _Reshape(self, name, shape): """Reshape inputs to the shape provided.""" return builder_layers.ReshapeLayer.Params().Set(name=name, shape=shape)
1.960938
2
instmakelib/instmake_toolnames.py
gilramir/instmake
0
5874
<filename>instmakelib/instmake_toolnames.py # Copyright (c) 2010 by Cisco Systems, Inc. """ Manage the tool plugins and use them appropriately. """ import os TOOLNAME_PLUGIN_PREFIX = "toolname" class ToolNameManager: """ToolName plugins have to register with this manager the circumstances under which they wish to be called.""" def __init__(self, plugins): toolname_plugins = plugins.LoadAllPlugins(TOOLNAME_PLUGIN_PREFIX) self.first_arg_matches = [] self.first_arg_basename_matches = [] self.first_arg_regexes= [] self.first_arg_basename_regexes = [] self.command_line_regexes = [] for plugin in toolname_plugins: plugin.register(self) def RegisterFirstArgumentMatch(self, text, cb): """Call back parameters: first_arg, argv, cwd""" self.first_arg_matches.append((text, cb)) def RegisterFirstArgumentRegex(self, regex, cb): """Call back parameters: first_arg, argv, cwd, regex_match""" self.first_arg_regexes.append((regex, cb)) def RegisterFirstArgumentBasenameMatch(self, text, cb): """Call back parameters: basename, first_arg, argv, cwd""" self.first_arg_basename_matches.append((text, cb)) def RegisterFirstArgumentBasenameRegex(self, regex, cb): """Call back parameters: basename, first_arg, argv, cw, regex_match""" self.first_arg_basename_regexes.append((regex, cb)) def RegisterCommandLineRegex(self, regex, cb): """Call back parameters: argv, cwd, regex_match""" self.command_line_regexes.append((regex, cb)) def GetTool(self, cmdline_args, cwd): """Returns a single string representing the tool in this command-line. cmdline_args is an array of strings that will be concatenated with spaces to form a single command-line.""" # It's done this way because of the way the command-line is # stored in the instmake log. The top-most process (which is # the first 'make' run, i.e., the last record in the instmake log) # has a cmdline_args with one true argv-item per item. However, # the instmakes that were called from 'make' have their entire # command-line existing as a single string (the first and only # item in cmdline_args). argv_joined = ' '.join(cmdline_args) argv = argv_joined.split() # Call _GetTool as many times as necessary to find # a non-changing answer. seen = {} max_iterations = 100 i = 0 while 1: seen[argv_joined] = None new_argv = self._GetTool(argv, cwd) new_argv_joined = ' '.join(new_argv) if new_argv_joined == argv_joined: return new_argv[0] elif seen.has_key(new_argv_joined): return new_argv[0] else: i += 1 if i == max_iterations: return new_argv[0] argv = new_argv argv_joined = new_argv_joined def _GetTool(self, argv, cwd): cmdline = ' '.join(argv) # Check the command-line for (regex, cb) in self.command_line_regexes: m = regex.search(cmdline) if m: retval = cb(argv, cwd, m) if retval != None: return retval # Get the first argument if len(argv) >= 1: first_arg = argv[0] else: return argv # Check the first argument for (text, cb) in self.first_arg_matches: if first_arg == text: retval = cb(first_arg, argv, cwd) if retval != None: return retval for (regex, cb) in self.first_arg_regexes: m = regex.search(first_arg) if m: retval = cb(first_arg, argv, cwd, m) if retval != None: return retval # Check the basename of the first arg basename = os.path.basename(first_arg) for (text, cb) in self.first_arg_basename_matches: if basename == text: retval = cb(basename, first_arg, argv, cwd) if retval != None: return retval for (regex, cb) in self.first_arg_basename_regexes: m = regex.search(basename) if m: retval = cb(basename, first_arg, argv, cwd, m) if retval != None: return retval # Nothing matched. Return the default value. return argv
2.40625
2
raiden/tests/integration/long_running/test_stress.py
tirkarthi/raiden
2,101
5875
<gh_stars>1000+ import time from http import HTTPStatus from itertools import count from typing import Sequence import gevent import grequests import pytest import structlog from eth_utils import to_canonical_address from flask import url_for from raiden.api.python import RaidenAPI from raiden.api.rest import APIServer, RestAPI from raiden.constants import RoutingMode from raiden.message_handler import MessageHandler from raiden.network.transport import MatrixTransport from raiden.raiden_event_handler import RaidenEventHandler from raiden.raiden_service import RaidenService from raiden.settings import RestApiConfig from raiden.tests.integration.api.utils import wait_for_listening_port from raiden.tests.integration.fixtures.raiden_network import RestartNode from raiden.tests.utils.detect_failure import raise_on_failure from raiden.tests.utils.protocol import HoldRaidenEventHandler from raiden.tests.utils.transfer import ( assert_synced_channel_state, wait_assert, watch_for_unlock_failures, ) from raiden.transfer import views from raiden.ui.startup import RaidenBundle from raiden.utils.formatting import to_checksum_address from raiden.utils.typing import ( Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple, ) log = structlog.get_logger(__name__) def iwait_and_get(items: Sequence[gevent.Greenlet]) -> None: """Iteratively wait and get on passed greenlets. This ensures exceptions in the greenlets are re-raised as soon as possible. """ for item in gevent.iwait(items): item.get() def _url_for(apiserver: APIServer, endpoint: str, **kwargs) -> str: # url_for() expects binary address so we have to convert here for key, val in kwargs.items(): if isinstance(val, str) and val.startswith("0x"): kwargs[key] = to_canonical_address(val) with apiserver.flask_app.app_context(): return url_for(f"v1_resources.{endpoint}", **kwargs) def start_apiserver(raiden_app: RaidenService, rest_api_port_number: Port) -> APIServer: raiden_api = RaidenAPI(raiden_app) rest_api = RestAPI(raiden_api) api_server = APIServer( rest_api, config=RestApiConfig(host=Host("localhost"), port=rest_api_port_number) ) # required for url_for api_server.flask_app.config["SERVER_NAME"] = f"localhost:{rest_api_port_number}" api_server.start() wait_for_listening_port(rest_api_port_number) return api_server def start_apiserver_for_network( raiden_network: List[RaidenService], port_generator: Iterator[Port] ) -> List[APIServer]: return [start_apiserver(app, next(port_generator)) for app in raiden_network] def restart_app(app: RaidenService, restart_node: RestartNode) -> RaidenService: new_transport = MatrixTransport( config=app.config.transport, environment=app.config.environment_type ) raiden_event_handler = RaidenEventHandler() hold_handler = HoldRaidenEventHandler(raiden_event_handler) app = RaidenService( config=app.config, rpc_client=app.rpc_client, proxy_manager=app.proxy_manager, query_start_block=BlockNumber(0), raiden_bundle=RaidenBundle( app.default_registry, app.default_secret_registry, ), services_bundle=app.default_services_bundle, transport=new_transport, raiden_event_handler=hold_handler, message_handler=MessageHandler(), routing_mode=RoutingMode.PRIVATE, ) restart_node(app) return app def restart_network( raiden_network: List[RaidenService], restart_node: RestartNode ) -> List[RaidenService]: for app in raiden_network: app.stop() wait_network = (gevent.spawn(restart_app, app, restart_node) for app in raiden_network) gevent.joinall(set(wait_network), raise_error=True) new_network = [greenlet.get() for greenlet in wait_network] return new_network def restart_network_and_apiservers( raiden_network: List[RaidenService], restart_node: RestartNode, api_servers: List[APIServer], port_generator: Iterator[Port], ) -> Tuple[List[RaidenService], List[APIServer]]: """Stop an app and start it back""" for rest_api in api_servers: rest_api.stop() new_network = restart_network(raiden_network, restart_node) new_servers = start_apiserver_for_network(new_network, port_generator) return (new_network, new_servers) def address_from_apiserver(apiserver: APIServer) -> Address: return apiserver.rest_api.raiden_api.address def transfer_and_assert( server_from: APIServer, server_to: APIServer, token_address: TokenAddress, identifier: int, amount: TokenAmount, ) -> None: url = _url_for( server_from, "token_target_paymentresource", token_address=to_checksum_address(token_address), target_address=to_checksum_address(address_from_apiserver(server_to)), ) json = {"amount": amount, "identifier": identifier} log.debug("PAYMENT REQUEST", url=url, json=json) request = grequests.post(url, json=json) start = time.monotonic() response = request.send().response duration = time.monotonic() - start log.debug("PAYMENT RESPONSE", url=url, json=json, response=response, duration=duration) assert getattr(request, "exception", None) is None assert response is not None assert response.status_code == HTTPStatus.OK, f"Payment failed, reason: {response.content}" assert response.headers["Content-Type"] == "application/json" def sequential_transfers( server_from: APIServer, server_to: APIServer, number_of_transfers: int, token_address: TokenAddress, identifier_generator: Iterator[int], ) -> None: for _ in range(number_of_transfers): transfer_and_assert( server_from=server_from, server_to=server_to, token_address=token_address, identifier=next(identifier_generator), amount=TokenAmount(1), ) def stress_send_serial_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers of value `1` one at a time, without changing the initial capacity. """ pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) # deplete the channels in the backwards direction for server_to, server_from in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) # reset the balances balances by sending the "extra" deposit forward for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) def stress_send_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers in parallel, without changing the initial capacity.""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) # deplete the channels in the backwards direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] ) # reset the balances balances by sending the "extra" deposit forward iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) def stress_send_and_receive_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send transfers of value one in parallel""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) forward_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] backwards_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] iwait_and_get(forward_transfers + backwards_transfers) def assert_channels( raiden_network: List[RaidenService], token_network_address: TokenNetworkAddress, deposit: TokenAmount, ) -> None: pairs = list(zip(raiden_network, raiden_network[1:] + [raiden_network[0]])) for first, second in pairs: wait_assert( assert_synced_channel_state, token_network_address, first, deposit, [], second, deposit, [], ) @pytest.mark.skip(reason="flaky, see https://github.com/raiden-network/raiden/issues/4803") @raise_on_failure @pytest.mark.parametrize("number_of_nodes", [3]) @pytest.mark.parametrize("number_of_tokens", [1]) @pytest.mark.parametrize("channels_per_node", [2]) @pytest.mark.parametrize("deposit", [2]) @pytest.mark.parametrize("reveal_timeout", [15]) @pytest.mark.parametrize("settle_timeout", [120]) def test_stress( raiden_network: List[RaidenService], restart_node: RestartNode, deposit: TokenAmount, token_addresses: List[TokenAddress], port_generator: Iterator[Port], ) -> None: token_address = token_addresses[0] rest_apis = start_apiserver_for_network(raiden_network, port_generator) identifier_generator = count(start=1) token_network_address = views.get_token_network_address_by_token_address( views.state_from_raiden(raiden_network[0]), raiden_network[0].default_registry.address, token_address, ) assert token_network_address for _ in range(2): assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_serial_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_parallel_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_and_receive_parallel_transfers( rest_apis, token_address, identifier_generator, deposit ) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) restart_network(raiden_network, restart_node)
1.953125
2
pyabsa/utils/preprocess.py
jackie930/PyABSA
0
5876
# -*- coding: utf-8 -*- # file: preprocess.py # author: jackie # Copyright (C) 2021. All Rights Reserved. import os import pandas as pd import argparse import emoji import re from sklearn.model_selection import train_test_split parser = argparse.ArgumentParser() parser.add_argument("--inpath", type=str, required=True, default='./raw_data/data1.csv') parser.add_argument("--folder_name", type=str, required=False, default='./custom') parser.add_argument("--task", type=str, required=False, default='aptepc') args = parser.parse_args() def convert(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-ASP' sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-ASP' sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_tag(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-'+label[1] sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-'+label[1] sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_sentiment(sentiment_key): if sentiment_key == '正': sentiment_value = 'Positive' else: sentiment_value = 'Negative' return sentiment_value def convert_apc(text, label): label_update = [(i[0], i[3], i[4]) for i in eval(label)] label_update = list(set(label_update)) str1_list = [] str2_list = [] str3_list = [] for j in range(len(label_update)): str1 = text[:label_update[j][2][0]] + '$T$ ' + text[label_update[j][2][1]:] str1_list.append(str1) str2_list.append(label_update[j][0]) str3_list.append(convert_sentiment(label_update[j][1])) return str1_list, str2_list, str3_list def filter_emoji(desstr, restr=''): # 过滤表情 try: co = re.compile(u'[\U00010000-\U0010ffff]') except re.error: co = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]') return co.sub(restr, desstr) def convert_to_atepc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_atepc_tag(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # drop id list not able to process # print (data.iloc[8832,:]) # data = data.drop([8832]) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_apc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] str1_list, str2_list, str3_list = convert_apc(text, label) for x1, x2, x3 in zip(str1_list, str2_list, str3_list): f1.write(x1 + '\n') f1.write(x2 + '\n') f1.write(x3 + '\n') f1.close() print ("process apc finished!") def main(inpath, folder_name, task): if not os.path.exists(folder_name): os.makedirs(folder_name) if task == 'aptepc': # get folder name print ("start process for an aptepc task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'apc': # get folder name folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt') # process train convert_to_apc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_apc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'aptepc-tag': # get folder name print ("start process for an aptepc tag task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc_tag(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc_tag(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") main(args.inpath, args.folder_name, args.task)
2.71875
3
apps/06_lolcat_factory/you_try/PRD/cat_service.py
dparito/10Apps-Python_w-Andy
1
5877
import os import shutil import requests def get_cat(folder, name): url = "http://consuming-python-services-api.azurewebsites.net/cats/random" data = get_data_from_url(url) save_image(folder, name, data) def get_data_from_url(url): response = requests.get(url, stream=True) return response.raw def save_image(folder, name, data): file_name = os.path.join(folder, name + '.jpg') with open(file_name, 'wb') as fout: shutil.copyfileobj(data, fout)
3.171875
3
dask/dataframe/io/hdf.py
TryTestspace/dask
1
5878
<filename>dask/dataframe/io/hdf.py from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from glob import glob import os import uuid from warnings import warn import pandas as pd from toolz import merge from .io import _link from ...base import get_scheduler from ..core import DataFrame, new_dd_object from ... import config, multiprocessing from ...base import tokenize, compute_as_if_collection from ...bytes.utils import build_name_function from ...compatibility import PY3 from ...delayed import Delayed, delayed from ...utils import get_scheduler_lock def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None def to_hdf(df, path, key, mode='a', append=False, get=None, scheduler=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): """ Store Dask Dataframe to Hierarchical Data Format (HDF) files This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more detailed information about shared keyword arguments. This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel, either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix ``*`` within the filename or datapath, and an optional ``name_function``. The asterix will be replaced with an increasing sequence of integers starting from ``0`` or with the result of calling ``name_function`` on each of those integers. This function only supports the Pandas ``'table'`` format, not the more specialized ``'fixed'`` format. Parameters ---------- path: string Path to a target filename. May contain a ``*`` to denote many filenames key: string Datapath within the files. May contain a ``*`` to denote many locations name_function: function A function to convert the ``*`` in the above options to a string. Should take in a number from 0 to the number of partitions and return a string. (see examples below) compute: bool Whether or not to execute immediately. If False then this returns a ``dask.Delayed`` value. lock: Lock, optional Lock to use to prevent concurrency issues. By default a ``threading.Lock``, ``multiprocessing.Lock`` or ``SerializableLock`` will be used depending on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more information about lock selection. **other: See pandas.to_hdf for more information Examples -------- Save Data to a single file >>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP Save data to multiple datapaths within the same file: >>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP Save data to multiple files: >>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP Save data to multiple files, using the multiprocessing scheduler: >>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest: +SKIP Specify custom naming scheme. This writes files as '2000-01-01.hdf', '2000-01-02.hdf', '2000-01-03.hdf', etc.. >>> from datetime import date, timedelta >>> base = date(year=2000, month=1, day=1) >>> def name_function(i): ... ''' Convert integer 0 to n to a string ''' ... return base + timedelta(days=i) >>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP Returns ------- None: if compute == True delayed value: if compute == False See Also -------- read_hdf: to_parquet: """ name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path is string, format using i_name if isinstance(path, str): if path.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file " "path and dataset key") fmt_obj = lambda path, i_name: path.replace('*', i_name) if '*' in path: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in " "dataset key") fmt_obj = lambda path, _: path if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] not in ['t', 'table']: raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if (get is None and not config.get('get', None) and scheduler is None and not config.get('scheduler', None) and single_node and single_file): scheduler = 'single-threaded' # handle lock default based on whether we're writing to a single entity _actual_get = get_scheduler(get=get, collections=[df], scheduler=scheduler) if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock: lock = get_scheduler_lock(get, df, scheduler=scheduler) kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True filenames = [] for i in range(0,df.npartitions): i_name = name_function(i) filenames.append(fmt_obj(path, i_name)) for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: compute_as_if_collection(DataFrame, dsk, keys, get=get, scheduler=scheduler, **dask_kwargs) return filenames else: return delayed([Delayed(k, dsk) for k in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode='a'): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index, chunksize): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division = [storer.read_column('index', start=start, stop=start + 1)[0] for start in range(0, storer.nrows, chunksize)] division_end = storer.read_column('index', start=storer.nrows - 1, stop=storer.nrows)[0] division.append(division_end) divisions.append(division) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if empty.ndim == 1: base = {'name': empty.name, 'mode': mode} else: base = {'columns': empty.columns, 'mode': mode} if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) def update(s): new = base.copy() new.update({'start': s, 'stop': s + chunksize}) return new dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, update(s))) for i, s in enumerate(range(start, stop, chunksize))) if division: divisions = division else: divisions = [None] * (len(dsk) + 1) return new_dd_object(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index, chunksize) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from ..multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode='a'): """ Read HDF files into a Dask DataFrame Read hdf files into a dask dataframe. This function is like ``pandas.read_hdf``, except it can read from a single large file, or from multiple files, or from multiple keys from the same file. Parameters ---------- pattern : string, list File pattern (string), buffer to read from, or list of file paths. Can contain wildcards. key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : list of columns, optional A list of columns that if not None, will limit the return columns (default is None) chunksize : positive integer, optional Maximal number of rows per partition (default is 1000000). sorted_index : boolean, optional Option to specify whether or not the input hdf files have a sorted index (default is False). lock : boolean, optional Option to use a lock to prevent concurrency issues (default is True). mode : {'a', 'r', 'r+'}, default 'a'. Mode to use when opening file(s). 'r' Read-only; no data can be modified. 'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created. 'r+' It is similar to 'a', but the file must already exist. Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP >>> dd.read_hdf(['myfile.1.hdf5', 'myfile.2.hdf5'], '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = get_scheduler_lock() key = key if key.startswith('/') else '/' + key if isinstance(pattern, str): paths = sorted(glob(pattern)) else: paths = pattern if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from ..multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths]) if PY3: from ..core import _Frame _Frame.to_hdf.__doc__ = to_hdf.__doc__
2.453125
2
src/charma/media_info/manager.py
mononobi/charma-server
1
5879
# -*- coding: utf-8 -*- """ media info manager module. """ from pyrin.core.mixin import HookMixin from pyrin.core.structs import Manager import pyrin.utils.path as path_utils from charma.media_info import MediaInfoPackage from charma.media_info.interface import AbstractMediaInfoProvider from charma.media_info.exceptions import InvalidMediaInfoProviderTypeError class MediaInfoManager(Manager, HookMixin): """ media info manager class. """ package_class = MediaInfoPackage hook_type = AbstractMediaInfoProvider invalid_hook_type_error = InvalidMediaInfoProviderTypeError REQUIRED_INFO = ('runtime', 'width', 'height') def _is_complete(self, info): """ gets a value indicating that given media info is complete. :param dict info: media info to be checked. :rtype: bool """ for item in self.REQUIRED_INFO: result = info.get(item) if result is None or result <= 0: return False return True def register_provider(self, instance): """ registers the given instance into media info providers. :param AbstractMediaInfoProvider instance: media info provider instance to be registered. :raises InvalidMediaInfoProviderTypeError: invalid media info provider type error. """ self.register_hook(instance) def get_info(self, file, **options): """ gets a dict containing media info of given file. :param str file: absolute path of video file. :raises InvalidPathError: invalid path error. :raises PathIsNotAbsoluteError: path is not absolute error. :raises PathNotExistedError: path not existed error. :raises IsNotFileError: is not directory error. :returns: dict(int runtime, int width, int height) :rtype: dict """ path_utils.assert_is_file(file) result = dict() for provider in self._get_hooks(): current_result = provider.get_info(file, **options) result.update(current_result) if self._is_complete(result) is True: break result.setdefault('runtime', 0) result.setdefault('width', 0) result.setdefault('height', 0) return result
2.203125
2
tests/test_parsers.py
FlorisHoogenboom/BoxRec
5
5880
import unittest from boxrec.parsers import FightParser class MockResponse(object): def __init__(self, content, encoding, url): self.content= content self.encoding = encoding self.url = url class TestFightParser(unittest.TestCase): def setUp(self): with open('mock_data/fights/draw.html', 'rb') as file: self.drawn_fight = file.read() self.parser = FightParser() def test_parses_draw(self): """Test it correctly handles draws""" mock_response = MockResponse( self.drawn_fight, 'UTF-8', "http://boxrec.com/en/event/115689/202488" ) result = self.parser.parse(mock_response) self.assertEqual(result.winner, 'drawn', "Result should equal draw.") class TestBoxerParser(unittest.TestCase): pass
3.109375
3
hyperdock/common/workqueue.py
ErikGartner/hyperdock
8
5881
<filename>hyperdock/common/workqueue.py<gh_stars>1-10 from datetime import datetime, timedelta from bson.objectid import ObjectId WORK_TIMEOUT = 600 class WorkQueue: """ A simple MongoDB priority work queue that handles the queue of experiment. """ def __init__(self, mongodb): super().__init__() self._mongodb = mongodb self._collection = mongodb.workqueue def assign_next_job(self, worker_id): """ Assigns the next free job to worker. Returns the object from the mongodb. """ t = datetime.utcnow() job = self._collection.find_and_modify( query={"start_time": -1, "cancelled": False}, sort=[("priority", -1), ("created_on", 1)], update={"$set": {"start_time": t, "last_update": t, "worker": worker_id}}, new=True, ) return job def add_job(self, parameters, data, trial_id, trial_name, priority=0): """ Adds new work to the workqueue. """ id = self._collection.insert( { "start_time": -1, "end_time": -1, "last_update": -1, "created_on": datetime.utcnow(), "priority": priority, "parameters": parameters, "data": data, "worker": None, "result": {}, "trial": trial_id, "trial_name": trial_name, "_id": str(ObjectId()), "cancelled": False, "orphaned": False, } ) return id def update_job(self, _id, update=None): """ Marks the job as alive and post an update from the job. """ t = datetime.utcnow() self._collection.update( {"_id": _id}, {"$set": {"last_update": t, "update": update}} ) def is_job_cancelled(self, _id): """ Checks if a certain job has been cancelled or all together removed. """ return self._collection.find_one({"_id": _id, "cancelled": False}) is None def finish_job(self, _id, result): """ Marks the job as finished and attach the result. """ t = datetime.utcnow() self._collection.update_one( {"_id": _id}, {"$set": {"end_time": t, "last_update": t, "result": result}} ) def purge_dead_jobs(self): """ Returns jobs that have timed out due to worker death and cancel them. """ now = datetime.utcnow() deadline = now - timedelta(seconds=WORK_TIMEOUT) jobs = [] while True: job = self._collection.find_and_modify( query={ "start_time": {"$ne": -1}, "end_time": -1, "last_update": {"$lt": deadline}, }, sort=[("priority", -1), ("last_update", 1)], update={ "$set": { "cancelled": True, "orphaned": True, "end_time": now, "result": {"state": "fail", "msg": "Timed out!"}, } }, new=True, ) if job is not None: jobs.append(job) else: return jobs def check_for_orphans(self, id_list): """ Checks if a list of Docker container ids are marked as orphans. Returns a list of (Docker id, experiment id) tuples. """ jobs = self._collection.find( {"orphaned": True, "update.container.long_id": {"$in": id_list}} ) return [(j["update"]["container"]["long_id"], j["_id"]) for j in list(jobs)] def not_orphaned(self, _id): """ Marks a job as not orphaned. """ job = self._collection.find_and_modify( query={"_id": _id}, update={"$set": {"orphaned": False}}, new=True ) return job is not None def cancel_invalid_jobs(self, trial_list): """ Takes a list of all active (not finished, cancelled or removed) trial ids. Work that is not associated with any of these are cancelled. """ now = datetime.utcnow() jobs = [] while True: job = self._collection.find_and_modify( query={"trial": {"$nin": trial_list}, "end_time": -1}, update={ "$set": { "cancelled": True, "end_time": now, "result": {"state": "fail", "msg": "Abandoned"}, } }, new=True, ) if job is not None: jobs.append(job) else: return jobs
2.5625
3
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/apache_libcloud-0.15.1-py2.7.egg/libcloud/test/test_connection.py
poojavade/Genomics_Docker
1
5882
<gh_stars>1-10 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more§ # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import ssl from mock import Mock, call from libcloud.test import unittest from libcloud.common.base import Connection from libcloud.common.base import LoggingConnection class ConnectionClassTestCase(unittest.TestCase): def setUp(self): self.originalConnect = Connection.connect self.originalResponseCls = Connection.responseCls Connection.connect = Mock() Connection.responseCls = Mock() Connection.allow_insecure = True def tearDown(self): Connection.connect = self.originalConnect Connection.responseCls = Connection.responseCls Connection.allow_insecure = True def test_dont_allow_insecure(self): Connection.allow_insecure = True Connection(secure=False) Connection.allow_insecure = False expected_msg = (r'Non https connections are not allowed \(use ' 'secure=True\)') self.assertRaisesRegexp(ValueError, expected_msg, Connection, secure=False) def test_content_length(self): con = Connection() con.connection = Mock() # GET method # No data, no content length should be present con.request('/test', method='GET', data=None) call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # '' as data, no content length should be present con.request('/test', method='GET', data='') call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # 'a' as data, content length should be present (data in GET is not # correct, but anyways) con.request('/test', method='GET', data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') # POST, PUT method # No data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None) call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # '' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # No data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # '' as data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # 'a' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') def test_cache_busting(self): params1 = {'foo1': 'bar1', 'foo2': 'bar2'} params2 = [('foo1', 'bar1'), ('foo2', 'bar2')] con = Connection() con.connection = Mock() con.pre_connect_hook = Mock() con.pre_connect_hook.return_value = {}, {} con.cache_busting = False con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params1) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params2) con.cache_busting = True con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0]) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0][len(params2)]) def test_context_is_reset_after_request_has_finished(self): context = {'foo': 'bar'} def responseCls(connection, response): connection.called = True self.assertEqual(connection.context, context) con = Connection() con.called = False con.connection = Mock() con.responseCls = responseCls con.set_context(context) self.assertEqual(con.context, context) con.request('/') # Context should have been reset self.assertTrue(con.called) self.assertEqual(con.context, {}) # Context should also be reset if a method inside request throws con = Connection() con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.connection.request = Mock(side_effect=ssl.SSLError()) try: con.request('/') except ssl.SSLError: pass self.assertEqual(con.context, {}) con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.responseCls = Mock(side_effect=ValueError()) try: con.request('/') except ValueError: pass self.assertEqual(con.context, {}) def test_log_curl(self): url = '/test/path' body = None headers = {} con = LoggingConnection() con.protocol = 'http' con.host = 'example.com' con.port = 80 for method in ['GET', 'POST', 'PUT', 'DELETE']: cmd = con._log_curl(method=method, url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i -X %s --compress http://example.com:80/test/path' % (method)) # Should use --head for head requests cmd = con._log_curl(method='HEAD', url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i --head --compress http://example.com:80/test/path') if __name__ == '__main__': sys.exit(unittest.main())
2.125
2
igibson/utils/data_utils/ext_object/scripts/step_1_visual_mesh.py
mamadbiabon/iGibson
360
5883
<reponame>mamadbiabon/iGibson<filename>igibson/utils/data_utils/ext_object/scripts/step_1_visual_mesh.py import os import sys import bpy script_dir = os.path.dirname(os.path.abspath(__file__)) utils_dir = os.path.join(script_dir, "../../blender_utils") sys.path.append(utils_dir) from utils import bake_model, clean_unused, export_ig_object, import_obj_folder ############################################# # Parse command line arguments ############################################# def get_arg(argv, flag, default=None): if flag in argv: return argv[argv.index(flag) + 1] return default should_bake = "--bake" in sys.argv axis = ["X", "Y", "Z", "-X", "-Y", "-Z"] import_axis_up = get_arg(sys.argv, "--up", default="Z") if import_axis_up not in axis: raise ValueError("Axis up not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_up)) import_axis_forward = get_arg(sys.argv, "--forward", default="X") if import_axis_forward not in axis: raise ValueError("Axis forward not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_forward)) source_dir = get_arg(sys.argv, "--source_dir") if source_dir is None: raise ValueError("Source directory not specified.") dest_dir = get_arg(sys.argv, "--dest_dir") if dest_dir is None: raise ValueError("Destination directory not specified.") os.makedirs(dest_dir, exist_ok=True) model_id = os.path.basename(source_dir) ############################################# # Importing obj files from source dir ############################################# for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] bpy.data.objects.remove(obj) clean_unused() import_obj_folder(model_id, source_dir, up=import_axis_up, forward=import_axis_forward) ############################################# # Optional UV Unwrapping # This only needed if baking will be performed ############################################# if should_bake: uv_unwrapped = True for o in bpy.context.scene.objects: if not o.data.uv_layers: uv_unwrapped = False if not uv_unwrapped: bpy.ops.object.mode_set(mode="OBJECT") vl = bpy.context.view_layer bpy.ops.object.select_all(action="DESELECT") for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] new_uv = bpy.context.scene.objects[on].data.uv_layers.new(name="obj_uv") vl.objects.active = obj obj.select_set(True) bpy.ops.object.editmode_toggle() bpy.ops.mesh.select_all(action="SELECT") bpy.ops.uv.smart_project(angle_limit=66, island_margin=0.02) bpy.context.tool_settings.mesh_select_mode = (False, False, True) bpy.ops.object.mode_set(mode="OBJECT") ############################################# # Export models ############################################# export_ig_object(dest_dir, save_material=not should_bake) ############################################# # Optional Texture Baking ############################################# if should_bake: mat_dir = os.path.join(dest_dir, "material") os.makedirs(mat_dir, exist_ok=True) # bpy.ops.wm.open_mainfile(filepath=blend_path) # import_ig_object(model_root, import_mat=True) for obj in bpy.context.scene.objects: obj.select_set(True) bpy.context.view_layer.objects.active = obj bpy.ops.object.select_all(action="SELECT") bpy.ops.object.join() channels = { "DIFFUSE": (2048, 32), "ROUGHNESS": (1024, 16), "METALLIC": (1024, 16), "NORMAL": (1024, 16), } bake_model(mat_dir, channels, overwrite=True) bpy.ops.wm.quit_blender()
1.898438
2
ceilometerclient/common/base.py
mail2nsrajesh/python-ceilometerclient
0
5884
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base utilities to build API operation managers and objects on top of. """ import copy from ceilometerclient.apiclient import base from ceilometerclient.apiclient import exceptions from ceilometerclient import exc def getid(obj): """Extracts object ID. Abstracts the common pattern of allowing both an object or an object's ID (UUID) as a parameter when dealing with relationships. """ try: return obj.id except AttributeError: return obj class Manager(object): """Managers interact with a particular type of API. It works with samples, meters, alarms, etc. and provide CRUD operations for them. """ resource_class = None def __init__(self, api): self.api = api @property def client(self): """Compatible with latest oslo-incubator.apiclient code.""" return self.api def _create(self, url, body): body = self.api.post(url, json=body).json() if body: return self.resource_class(self, body) def _list(self, url, response_key=None, obj_class=None, body=None, expect_single=False): try: resp = self.api.get(url) except exceptions.NotFound: raise exc.HTTPNotFound if not resp.content: raise exc.HTTPNotFound body = resp.json() if obj_class is None: obj_class = self.resource_class if response_key: try: data = body[response_key] except KeyError: return [] else: data = body if expect_single: data = [data] return [obj_class(self, res, loaded=True) for res in data if res] def _update(self, url, body, response_key=None): body = self.api.put(url, json=body).json() # PUT requests may not return a body if body: return self.resource_class(self, body) def _delete(self, url): self.api.delete(url) class Resource(base.Resource): """A resource represents a particular instance of an object. Resource might be tenant, user, etc. This is pretty much just a bag for attributes. :param manager: Manager object :param info: dictionary representing resource attributes :param loaded: prevent lazy-loading if set to True """ def to_dict(self): return copy.deepcopy(self._info)
2.0625
2
lib/charms/layer/azure.py
freyes/charm-azure-integrator
0
5885
<reponame>freyes/charm-azure-integrator import json import os import re import subprocess from base64 import b64decode from enum import Enum from math import ceil, floor from pathlib import Path from urllib.error import HTTPError from urllib.request import urlopen import yaml from charmhelpers.core import hookenv from charmhelpers.core.unitdata import kv from charms.layer import status ENTITY_PREFIX = 'charm.azure' MODEL_UUID = os.environ['JUJU_MODEL_UUID'] MAX_ROLE_NAME_LEN = 64 MAX_POLICY_NAME_LEN = 128 class StandardRole(Enum): NETWORK_MANAGER = '4d97b98b-1d4f-4787-a291-c67834d212e7' SECURITY_MANAGER = 'e3d13bf0-dd5a-482e-ba6b-9b8433878d10' DNS_MANAGER = 'befefa01-2a29-4197-83a8-272ff33ce314' OBJECT_STORE_READER = '2a2b9908-6ea1-4ae2-8e65-a410df84e7d1' OBJECT_STORE_MANAGER = 'ba92f5b4-2d11-453d-a403-e96b0029c9fe' # When debugging hooks, for some reason HOME is set to /home/ubuntu, whereas # during normal hook execution, it's /root. Set it here to be consistent. os.environ['HOME'] = '/root' def log(msg, *args): hookenv.log(msg.format(*args), hookenv.INFO) def log_err(msg, *args): hookenv.log(msg.format(*args), hookenv.ERROR) def get_credentials(): """ Get the credentials from either the config or the hook tool. Prefers the config so that it can be overridden. """ no_creds_msg = 'missing credentials; set credentials config' config = hookenv.config() # try to use Juju's trust feature try: result = subprocess.run(['credential-get'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) creds = yaml.load(result.stdout.decode('utf8')) creds_data = creds['credential']['attributes'] login_cli(creds_data) return True except FileNotFoundError: pass # juju trust not available except subprocess.CalledProcessError as e: if 'permission denied' not in e.stderr.decode('utf8'): raise no_creds_msg = 'missing credentials access; grant with: juju trust' # try credentials config if config['credentials']: try: creds_data = b64decode(config['credentials']).decode('utf8') login_cli(creds_data) return True except Exception: status.blocked('invalid value for credentials config') return False # no creds provided status.blocked(no_creds_msg) return False def login_cli(creds_data): """ Use the credentials to authenticate the Azure CLI. """ app_id = creds_data['application-id'] app_pass = <PASSWORD>_<PASSWORD>['<PASSWORD>'] sub_id = creds_data['subscription-id'] tenant_id = _get_tenant_id(sub_id) try: log('Forcing logout of Azure CLI') _azure('logout') except AzureError: pass try: log('Logging in to Azure CLI') _azure('login', '--service-principal', '-u', app_id, '-p', app_pass, '-t', tenant_id) # cache the subscription ID for use in roles kv().set('charm.azure.sub-id', sub_id) except AzureError as e: # redact the credential info from the exception message stderr = re.sub(app_id, '<app-id>', e.args[0]) stderr = re.sub(app_pass, '<app-pass>', stderr) stderr = re.sub(tenant_id, '<tenant-id>', stderr) # from None suppresses the previous exception from the stack trace raise AzureError(stderr) from None def ensure_msi(request): msi = _get_msi(request.vm_id) if not msi: log('Enabling Managed Service Identity') result = _azure('vm', 'identity', 'assign', '--name', request.vm_name, '--resource-group', request.resource_group) vm_identities = kv().get('charm.azure.vm-identities', {}) msi = vm_identities[request.vm_id] = result['systemAssignedIdentity'] kv().set('charm.azure.vm-identities', vm_identities) log('Instance MSI is: {}', msi) def send_additional_metadata(request): """ Get additional info about the requesting instance via the API that isn't available from the metadata server. """ res_grp = _azure('group', 'show', '--name', request.resource_group) # hard-code most of these because with Juju, they're always the same # and the queries required to look them up are a PITA request.send_additional_metadata( resource_group_location=res_grp['location'], vnet_name='juju-internal-network', vnet_resource_group=request.resource_group, subnet_name='juju-internal-subnet', security_group_name='juju-internal-nsg', ) def tag_instance(request): """ Tag the given instance with the given tags. """ log('Tagging instance with: {}', request.instance_tags) _azure('vm', 'update', '--name', request.vm_name, '--resource-group', request.resource_group, '--set', *['tags.{}={}'.format(tag, value) for tag, value in request.instance_tags.items()]) def enable_instance_inspection(request): """ Enable instance inspection access for the given application. """ log('Enabling instance inspection') _assign_role(request, _get_role('vm-reader')) def enable_network_management(request): """ Enable network management for the given application. """ log('Enabling network management') _assign_role(request, StandardRole.NETWORK_MANAGER) def enable_security_management(request): """ Enable security management for the given application. """ log('Enabling security management') _assign_role(request, StandardRole.SECURITY_MANAGER) def enable_block_storage_management(request): """ Enable block storage (disk) management for the given application. """ log('Enabling block storage management') _assign_role(request, _get_role('disk-manager')) def enable_dns_management(request): """ Enable DNS management for the given application. """ log('Enabling DNS management') _assign_role(request, StandardRole.DNS_MANAGER) def enable_object_storage_access(request): """ Enable object storage read-only access for the given application. """ log('Enabling object storage read') _assign_role(request, StandardRole.OBJECT_STORE_READER) def enable_object_storage_management(request): """ Enable object storage management for the given application. """ log('Enabling object store management') _assign_role(request, StandardRole.OBJECT_STORE_MANAGER) def cleanup(): """ Perform cleanup. """ pass # Internal helpers class AzureError(Exception): """ Exception class representing an error returned from the azure-cli tool. """ @classmethod def get(cls, message): """ Factory method to create either an instance of this class or a meta-subclass for certain `message`s. """ if 'already exists' in message: return AlreadyExistsAzureError(message) return AzureError(message) class AlreadyExistsAzureError(AzureError): """ Meta-error subclass of AzureError representing something already existing. """ pass def _elide(s, max_len, ellipsis='...'): """ Elide s in the middle to ensure it is under max_len. That is, shorten the string, inserting an ellipsis where the removed characters were to show that they've been removed. """ if len(s) > max_len: hl = (max_len - len(ellipsis)) / 2 headl, taill = floor(hl), ceil(hl) s = s[:headl] + ellipsis + s[-taill:] return s def _get_tenant_id(subscription_id): """ Translate the subscription ID into a tenant ID by making an unauthorized request to the API and extracting the tenant ID from the WWW-Authenticate header in the error response. """ url = ('https://management.azure.com/subscriptions/' '{}?api-version=2018-03-01-01.6.1'.format(subscription_id)) try: urlopen(url) log_err('Error getting tenant ID: did not get "unauthorized" response') return None except HTTPError as e: if 'WWW-Authenticate' not in e.headers: log_err('Error getting tenant ID: missing WWW-Authenticate header') return None www_auth = e.headers['WWW-Authenticate'] match = re.search(r'authorization_uri="[^"]*/([^/"]*)"', www_auth) if not match: log_err('Error getting tenant ID: unable to find in {}', www_auth) return None return match.group(1) def _azure(cmd, *args, return_stderr=False): """ Call the azure-cli tool. """ cmd = ['az', cmd] cmd.extend(args) result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = result.stdout.decode('utf8').strip() stderr = result.stderr.decode('utf8').strip() if result.returncode != 0: raise AzureError.get(stderr) if return_stderr: return stderr if stdout: stdout = json.loads(stdout) return stdout def _get_msi(vm_id): """ Get the Managed System Identity for the VM. """ vm_identities = kv().get('charm.azure.vm-identities', {}) return vm_identities.get(vm_id) def _get_role(role_name): """ Translate short role name into a full role name and ensure that the custom role is loaded. The custom roles have to be applied to a specific subscription ID, but the subscription ID applies to the entire credential, so will almost certainly be reused, so there's not much danger in hitting the 2k custom role limit. """ known_roles = kv().get('charm.azure.roles', {}) if role_name in known_roles: return known_roles[role_name] sub_id = kv().get('charm.azure.sub-id') role_file = Path('files/roles/{}.json'.format(role_name)) role_data = json.loads(role_file.read_text()) role_fullname = role_data['Name'].format(sub_id) scope = role_data['AssignableScopes'][0].format(sub_id) role_data['Name'] = role_fullname role_data['AssignableScopes'][0] = scope try: log('Ensuring role {}', role_fullname) _azure('role', 'definition', 'create', '--role-definition', json.dumps(role_data)) except AzureError as e: if 'already exists' not in e.args[0]: raise known_roles[role_name] = role_fullname return role_fullname def _assign_role(request, role): if isinstance(role, StandardRole): role = role.value msi = _get_msi(request.vm_id) try: _azure('role', 'assignment', 'create', '--assignee-object-id', msi, '--resource-group', request.resource_group, '--role', role) except AlreadyExistsAzureError: pass
1.742188
2
Assignment-1/Code/server3.py
pankajk22/Computer-Networks-Assignments
0
5886
import socket import csv import traceback import threading s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) usrpass={} def openfile(): filename="login_credentials.csv" with open(filename,'r')as csvfile: csv_file = csv.reader(csvfile, delimiter=",") for col in csv_file: usrpass[col[0]]=col[1] usrpass.pop("Username") #print(usrpass) ihost=socket.gethostname() host=socket.gethostbyname(ihost) ihost=socket.gethostname() host=socket.gethostbyname(ihost) iport=[] hostfile="host.csv" with open(hostfile,'r')as host_file: csv_hfile = csv.reader(host_file, delimiter=",") for row in csv_hfile: iport.append(row[1]) port=int(iport[4]) def socketbind(): try: s.bind(('',port)) print("Bind with host at port number : "+str(port)) s.listen(10) print("Socket is listening!!") except socket.error as msg: print("Error in Binding: "+ str(msg)+"\n Retrying....") socketbind() def socketaccept(): conn,add=s.accept() print("connection is established with IP : "+str(add[0])+" and Port Number : "+str(add[1])) conn.send(bytes("1","utf-8")) conversation(conn) conn.close() def conversation(conn): while True: username=str(conn.recv(1024),"utf-8") password=str(conn.recv(1024),"utf-8") res=checkpass(username,password) if res==1: print("Valid Password!") conn.send(bytes("1","utf-8")) conn.send(bytes("1","utf-8")) else: conn.send(bytes("-1","utf-8")) conn.send(bytes("-1","utf-8")) # def checkusr(username): # if username in usrpass: # return 1 # else: # print("Invalid Username") # return -1 def checkpass(username,password): if usrpass[username]==password: return 1 else: print("Invalid Password") return -1 def main(): openfile() socketbind() socketaccept() # count=0 # while (count<6): # new_thread=threading.Thread(target =socketaccept) # new_thread.start() # count=count+1 main()
2.953125
3
research/utils/_check_pipelines.py
joaopfonseca/research
1
5887
from itertools import product from sklearn.base import clone from sklearn.preprocessing import FunctionTransformer from sklearn.model_selection import ParameterGrid from imblearn.pipeline import Pipeline from rlearn.utils import check_random_states def check_pipelines(objects_list, random_state, n_runs): """Extract estimators and parameters grids.""" # Create random states random_states = check_random_states(random_state, n_runs) pipelines = [] param_grid = [] for comb, rs in product(product(*objects_list), random_states): name = "|".join([i[0] for i in comb]) # name, object, sub grid comb = [ (nm, ob, ParameterGrid(sg)) if ob is not None else (nm, FunctionTransformer(), ParameterGrid(sg)) for nm, ob, sg in comb ] # Create estimator if name not in [n[0] for n in pipelines]: est = Pipeline([(nm, ob) for nm, ob, _ in comb]) pipelines.append((name, est)) # Create intermediate parameter grids sub_grids = [ [{f"{nm}__{k}": v for k, v in param_def.items()} for param_def in sg] for nm, obj, sg in comb ] # Create parameter grids for sub_grid in product(*sub_grids): param_prefix = "" if len(comb) == 1 else f"{name}__" grid = {"est_name": [name]} grid.update( {f"{param_prefix}{k}": [v] for d in sub_grid for k, v in d.items()} ) random_states = { f"{param_prefix}{param}": [rs] for param in est.get_params() if "random_state" in param } grid.update(random_states) # Avoid multiple runs over pipelines without random state if grid not in param_grid: param_grid.append(grid) return pipelines, param_grid def check_pipelines_wrapper( objects_list, wrapper, random_state, n_runs, wrapped_only=False ): wrapper_label = wrapper[0] wrapper_obj = wrapper[1] wrapper_grid = wrapper[2] estimators, param_grids = check_pipelines(objects_list, random_state, n_runs) wrapped_estimators = [ ( f"{wrapper_label}|{name}", clone(wrapper_obj).set_params(**{"classifier": pipeline}), ) for name, pipeline in estimators ] wrapped_param_grids = [ { "est_name": [f'{wrapper_label}|{d["est_name"][0]}'], **{ f'{wrapper_label}|{d["est_name"][0]}__classifier__{k}': v for k, v in d.items() if k != "est_name" }, **{ f'{wrapper_label}|{d["est_name"][0]}__{k}': v for k, v in wrapper_grid.items() }, } for d in param_grids ] if wrapped_only: return wrapped_estimators, wrapped_param_grids else: return (estimators + wrapped_estimators, param_grids + wrapped_param_grids)
2.359375
2
mushroom_rl/utils/plots/common_plots.py
PuzeLiu/mushroom-rl
344
5888
from mushroom_rl.utils.plots import PlotItemBuffer, DataBuffer from mushroom_rl.utils.plots.plot_item_buffer import PlotItemBufferLimited class RewardPerStep(PlotItemBuffer): """ Class that represents a plot for the reward at every step. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Step_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class RewardPerEpisode(PlotItemBuffer): """ Class that represents a plot for the accumulated reward per episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Episode_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class Actions(PlotItemBufferLimited): """ Class that represents a plot for the actions. """ def __init__(self, plot_buffers, maxs=None, mins=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. """ title = "Actions" super().__init__(title, plot_buffers, maxs=maxs, mins=mins) class Observations(PlotItemBufferLimited): """ Class that represents a plot for the observations. """ def __init__(self, plot_buffers, maxs=None, mins=None, dotted_limits=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. dotted_limits (list, None): list of booleans. If True, the corresponding limit is dotted; otherwise, it is printed as a solid line. """ title = "Observations" super().__init__(title, plot_buffers, maxs=maxs, mins=mins, dotted_limits=dotted_limits) class LenOfEpisodeTraining(PlotItemBuffer): """ Class that represents a plot for the length of the episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; """ title = "Len of Episode" plot_params = [dict(data_buffer=plot_buffer)] super().__init__(title, plot_params)
2.9375
3
libs/python-daemon-2.2.0/test/test_metadata.py
helion-security/helion
1
5889
<reponame>helion-security/helion # -*- coding: utf-8 -*- # # test/test_metadata.py # Part of ‘python-daemon’, an implementation of PEP 3143. # # This is free software, and you are welcome to redistribute it under # certain conditions; see the end of this file for copyright # information, grant of license, and disclaimer of warranty. """ Unit test for ‘_metadata’ private module. """ from __future__ import (absolute_import, unicode_literals) import collections import errno import functools import json import re try: # Python 3 standard library. import urllib.parse as urlparse except ImportError: # Python 2 standard library. import urlparse import mock import pkg_resources import testtools.helpers import testtools.matchers from . import scaffold from .scaffold import unicode import daemon._metadata as metadata class HasAttribute(testtools.matchers.Matcher): """ A matcher to assert an object has a named attribute. """ def __init__(self, name): self.attribute_name = name def match(self, instance): """ Assert the object `instance` has an attribute named `name`. """ result = None if not testtools.helpers.safe_hasattr(instance, self.attribute_name): result = AttributeNotFoundMismatch(instance, self.attribute_name) return result class AttributeNotFoundMismatch(testtools.matchers.Mismatch): """ The specified instance does not have the named attribute. """ def __init__(self, instance, name): self.instance = instance self.attribute_name = name def describe(self): """ Emit a text description of this mismatch. """ text = ( "{instance!r}" " has no attribute named {name!r}").format( instance=self.instance, name=self.attribute_name) return text class metadata_value_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for metadata module values. """ expected_str_attributes = set([ 'version_installed', 'author', 'copyright', 'license', 'url', ]) scenarios = [ (name, {'attribute_name': name}) for name in expected_str_attributes] for (name, params) in scenarios: if name == 'version_installed': # No duck typing, this attribute might be None. params['ducktype_attribute_name'] = NotImplemented continue # Expect an attribute of ‘str’ to test this value. params['ducktype_attribute_name'] = 'isdigit' def test_module_has_attribute(self): """ Metadata should have expected value as a module attribute. """ self.assertThat( metadata, HasAttribute(self.attribute_name)) def test_module_attribute_has_duck_type(self): """ Metadata value should have expected duck-typing attribute. """ if self.ducktype_attribute_name == NotImplemented: self.skipTest("Can't assert this attribute's type") instance = getattr(metadata, self.attribute_name) self.assertThat( instance, HasAttribute(self.ducktype_attribute_name)) class YearRange_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘YearRange’ class. """ scenarios = [ ('simple', { 'begin_year': 1970, 'end_year': 1979, 'expected_text': "1970–1979", }), ('same year', { 'begin_year': 1970, 'end_year': 1970, 'expected_text': "1970", }), ('no end year', { 'begin_year': 1970, 'end_year': None, 'expected_text': "1970", }), ] def setUp(self): """ Set up test fixtures. """ super(YearRange_TestCase, self).setUp() self.test_instance = metadata.YearRange( self.begin_year, self.end_year) def test_text_representation_as_expected(self): """ Text representation should be as expected. """ result = unicode(self.test_instance) self.assertEqual(result, self.expected_text) FakeYearRange = collections.namedtuple('FakeYearRange', ['begin', 'end']) @mock.patch.object(metadata, 'YearRange', new=FakeYearRange) class make_year_range_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘make_year_range’ function. """ scenarios = [ ('simple', { 'begin_year': "1970", 'end_date': "1979-01-01", 'expected_range': FakeYearRange(begin=1970, end=1979), }), ('same year', { 'begin_year': "1970", 'end_date': "1970-01-01", 'expected_range': FakeYearRange(begin=1970, end=1970), }), ('no end year', { 'begin_year': "1970", 'end_date': None, 'expected_range': FakeYearRange(begin=1970, end=None), }), ('end date UNKNOWN token', { 'begin_year': "1970", 'end_date': "UNKNOWN", 'expected_range': FakeYearRange(begin=1970, end=None), }), ('end date FUTURE token', { 'begin_year': "1970", 'end_date': "FUTURE", 'expected_range': FakeYearRange(begin=1970, end=None), }), ] def test_result_matches_expected_range(self): """ Result should match expected YearRange. """ result = metadata.make_year_range(self.begin_year, self.end_date) self.assertEqual(result, self.expected_range) class metadata_content_TestCase(scaffold.TestCase): """ Test cases for content of metadata. """ def test_copyright_formatted_correctly(self): """ Copyright statement should be formatted correctly. """ regex_pattern = ( "Copyright © " "\d{4}" # Four-digit year. "(?:–\d{4})?" # Optional range dash and four-digit year. ) regex_flags = re.UNICODE self.assertThat( metadata.copyright, testtools.matchers.MatchesRegex(regex_pattern, regex_flags)) def test_author_formatted_correctly(self): """ Author information should be formatted correctly. """ regex_pattern = ( ".+ " # Name. "<[^>]+>" # Email address, in angle brackets. ) regex_flags = re.UNICODE self.assertThat( metadata.author, testtools.matchers.MatchesRegex(regex_pattern, regex_flags)) def test_copyright_contains_author(self): """ Copyright information should contain author information. """ self.assertThat( metadata.copyright, testtools.matchers.Contains(metadata.author)) def test_url_parses_correctly(self): """ Homepage URL should parse correctly. """ result = urlparse.urlparse(metadata.url) self.assertIsInstance( result, urlparse.ParseResult, "URL value {url!r} did not parse correctly".format( url=metadata.url)) try: FileNotFoundError except NameError: # Python 2 uses IOError. FileNotFoundError = functools.partial(IOError, errno.ENOENT) version_info_filename = "version_info.json" def fake_func_has_metadata(testcase, resource_name): """ Fake the behaviour of ‘pkg_resources.Distribution.has_metadata’. """ if ( resource_name != testcase.version_info_filename or not hasattr(testcase, 'test_version_info')): return False return True def fake_func_get_metadata(testcase, resource_name): """ Fake the behaviour of ‘pkg_resources.Distribution.get_metadata’. """ if not fake_func_has_metadata(testcase, resource_name): error = FileNotFoundError(resource_name) raise error content = testcase.test_version_info return content def fake_func_get_distribution(testcase, distribution_name): """ Fake the behaviour of ‘pkg_resources.get_distribution’. """ if distribution_name != metadata.distribution_name: raise pkg_resources.DistributionNotFound if hasattr(testcase, 'get_distribution_error'): raise testcase.get_distribution_error mock_distribution = testcase.mock_distribution mock_distribution.has_metadata.side_effect = functools.partial( fake_func_has_metadata, testcase) mock_distribution.get_metadata.side_effect = functools.partial( fake_func_get_metadata, testcase) return mock_distribution @mock.patch.object(metadata, 'distribution_name', new="mock-dist") class get_distribution_version_info_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘get_distribution_version_info’ function. """ default_version_info = { 'release_date': "UNKNOWN", 'version': "UNKNOWN", 'maintainer': "UNKNOWN", } scenarios = [ ('version 0.0', { 'test_version_info': json.dumps({ 'version': "0.0", }), 'expected_version_info': {'version': "0.0"}, }), ('version 1.0', { 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_version_info': {'version': "1.0"}, }), ('file lorem_ipsum.json', { 'test_filename': "lorem_ipsum.json", 'version_info_filename': "lorem_ipsum.json", 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_resource_name': "lorem_ipsum.json", 'expected_version_info': {'version': "1.0"}, }), ('not installed', { 'get_distribution_error': pkg_resources.DistributionNotFound(), 'expected_version_info': default_version_info, }), ('no version_info', { 'expected_version_info': default_version_info, }), ('wrong filename', { 'test_filename': "lorem_ipsum.json", 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_resource_name': "lorem_ipsum.json", 'expected_version_info': default_version_info, }), ] def setUp(self): """ Set up test fixtures. """ super(get_distribution_version_info_TestCase, self).setUp() self.test_args = {} if hasattr(self, 'test_filename'): self.test_args['filename'] = self.test_filename if not hasattr(self, 'version_info_filename'): self.version_info_filename = version_info_filename if not hasattr(self, 'expected_resource_name'): self.expected_resource_name = version_info_filename self.mock_distribution = mock.MagicMock() func_patcher_get_distribution = mock.patch.object( pkg_resources, 'get_distribution') func_patcher_get_distribution.start() self.addCleanup(func_patcher_get_distribution.stop) pkg_resources.get_distribution.side_effect = functools.partial( fake_func_get_distribution, self) def test_requests_installed_distribution(self): """ The package distribution should be retrieved. """ expected_distribution_name = metadata.distribution_name metadata.get_distribution_version_info(**self.test_args) pkg_resources.get_distribution.assert_called_with( expected_distribution_name) def test_requests_specified_filename(self): """ The specified metadata resource name should be requested. """ if hasattr(self, 'get_distribution_error'): self.skipTest("No access to distribution") metadata.get_distribution_version_info(**self.test_args) self.mock_distribution.has_metadata.assert_called_with( self.expected_resource_name) def test_result_matches_expected_items(self): """ The result should match the expected items. """ version_info = metadata.get_distribution_version_info(**self.test_args) self.assertEqual(self.expected_version_info, version_info) # Copyright © 2008–2018 <NAME> <<EMAIL>> # # This is free software: you may copy, modify, and/or distribute this work # under the terms of the GNU General Public License as published by the # Free Software Foundation; version 3 of that license or any later version. # No warranty expressed or implied. See the file ‘LICENSE.GPL-3’ for details. # Local variables: # coding: utf-8 # mode: python # End: # vim: fileencoding=utf-8 filetype=python :
2.421875
2
objectModel/Python/cdm/persistence/cdmfolder/types/purpose_reference.py
wheatdog/CDM
0
5890
<reponame>wheatdog/CDM # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. from typing import Union, List from .purpose import * from .trait_reference import TraitReference from cdm.utilities import JObject class PurposeReference(JObject): def __init__(self): super().__init__() self.purposeReference = None # type: Union[str, Purpose] self.appliedTraits = [] # type: List[Union[str, TraitReference]]
1.984375
2
text_preprocessing/normalizer.py
cyberpunk317/inverted_index
9
5891
<filename>text_preprocessing/normalizer.py import re from typing import Union, List import nltk from bs4 import BeautifulSoup class Normalizer: def __init__(self): self.lemmatizer = nltk.stem.WordNetLemmatizer() def normalize(self, x: Union[list, str]) -> List[str]: """ Accepts text (possibly tokenized) and makes it suitable for machine processing """ x = self._remove_stop_words(x) x = self._denoise(x) x = self._lemmatize(x) return x def _remove_stop_words(self, x: Union[list, str]) -> List[str]: """ Removes stop words from text in english """ if isinstance(x, str): x = x.split(' ') stop_words = set(nltk.corpus.stopwords.words('english')) return [w for w in x if not w in stop_words] def _lemmatize(self, x: Union[list, str]) -> List[str]: """ Removes endings, """ if isinstance(x, list): x = ' '.join(x) x = self.lemmatizer.lemmatize(x) return x def _denoise(self, x: Union[list, str]) -> str: if isinstance(x, list): x = ' '.join(x) def strip_html(x): soup = BeautifulSoup(x, "html.parser") x = soup.get_text() return x def remove_between_square_brackets(x): x = re.sub('\[[^]]*\]', '', x) x = re.sub(r'http\S+', '', x) return x def remove_rating(x): return re.sub('\W\d/\d+\S*', '', x) x = x.lower() x = re.sub(',|\.|!|\?', '', x) x = strip_html(x) x = remove_between_square_brackets(x) x = remove_rating(x) return x
3.078125
3
env/lib/python3.7/site-packages/prompt_toolkit/filters/cli.py
MarcoMancha/BreastCancerDetector
2
5892
""" For backwards-compatibility. keep this file. (Many people are going to have key bindings that rely on this file.) """ from __future__ import unicode_literals from .app import * __all__ = [ # Old names. 'HasArg', 'HasCompletions', 'HasFocus', 'HasSelection', 'HasValidationError', 'IsDone', 'IsReadOnly', 'IsMultiline', 'RendererHeightIsKnown', 'InEditingMode', 'InPasteMode', 'ViMode', 'ViNavigationMode', 'ViInsertMode', 'ViInsertMultipleMode', 'ViReplaceMode', 'ViSelectionMode', 'ViWaitingForTextObjectMode', 'ViDigraphMode', 'EmacsMode', 'EmacsInsertMode', 'EmacsSelectionMode', 'IsSearching', 'HasSearch', 'ControlIsSearchable', ] # Keep the original classnames for backwards compatibility. HasValidationError = lambda: has_validation_error HasArg = lambda: has_arg IsDone = lambda: is_done RendererHeightIsKnown = lambda: renderer_height_is_known ViNavigationMode = lambda: vi_navigation_mode InPasteMode = lambda: in_paste_mode EmacsMode = lambda: emacs_mode EmacsInsertMode = lambda: emacs_insert_mode ViMode = lambda: vi_mode IsSearching = lambda: is_searching HasSearch = lambda: is_searching ControlIsSearchable = lambda: control_is_searchable EmacsSelectionMode = lambda: emacs_selection_mode ViDigraphMode = lambda: vi_digraph_mode ViWaitingForTextObjectMode = lambda: vi_waiting_for_text_object_mode ViSelectionMode = lambda: vi_selection_mode ViReplaceMode = lambda: vi_replace_mode ViInsertMultipleMode = lambda: vi_insert_multiple_mode ViInsertMode = lambda: vi_insert_mode HasSelection = lambda: has_selection HasCompletions = lambda: has_completions IsReadOnly = lambda: is_read_only IsMultiline = lambda: is_multiline HasFocus = has_focus # No lambda here! (Has_focus is callable that returns a callable.) InEditingMode = in_editing_mode
1.320313
1
genetic/spaces.py
shilpasayura/bk
4
5893
<filename>genetic/spaces.py<gh_stars>1-10 #spaces.py ''' AlgoHack Genetic Algorithm for University Semaster Planning Version 0.03 2018 <NAME> Sh<EMAIL> ''' import xdb def crt_spaces_table(cursor,drop=False): if (drop): sql="DROP TABLE IF EXISTS spaces;" success, count=xdb.runSQL(cursor, sql) sql='''CREATE TABLE IF NOT EXISTS spaces ( spid INTEGER PRIMARY KEY AUTOINCREMENT, name varchar(30), sptype INTEGER, fitness INTEGER, gid INTEGER DEFAULT 0, semid INTEGER DEFAULT 0) ''' success, count=xdb.runSQL(cursor, sql) return success def insert_spaces(cursor,nlect,nlabs,gid,semid, delay): # nlabs is number of labs # nlecs is number of lecture halls # if gid =0 common for all groups else dedicated # if semid=0 common for all semasters else dedicated sql="SELECT * FROM spaces LIMIT 1"; success, count=xdb.runSQL(cursor, sql) if (count > 0): print("spaces table: Records exist") return False, 0 sqls="" fitness=1 for i in range (nlect): name="Lect Hall " + str(i+1) sptype=1 sqls=sqls +'INSERT INTO spaces (name,sptype,fitness,gid,semid) VALUES ('+ '"{}",{}, {},{},{}'.format(name, sptype,fitness,gid,semid) +');' for i in range (nlabs): name="Lab " + str(i+1) sptype=2 sqls=sqls +'INSERT INTO spaces (name,sptype,fitness,gid,semid) VALUES ('+ '"{}",{}, {},{},{}'.format(name, sptype,fitness,gid,semid) +');' success, count=xdb.runSQL_stmts(cursor, sqls,delay) return success, count if __name__ == "__main__": delay=0.05 conn=xdb.opendb('genetic56.db') cursor =conn.cursor() # create a cursor object success=crt_spaces_table(cursor, True) # create spaces table #dedicated lecture hall, lab for group and semaster success, count =insert_spaces(cursor,1,1,1,1,delay) # generate records xdb.commit(conn) xdb.closedb(conn)
2.640625
3
threaded_remote_pi_camera.py
hyansuper/flask-video-streaming
7
5894
<reponame>hyansuper/flask-video-streaming import urllib.request import cv2 import numpy as np import time import threading class ThreadedRemotePiCamera: def __init__(self, pi_address, resolution=(320,240), framerate=10, hflip=False, vflip=False): if hflip and vflip: self.flip = -1 elif hflip: self.flip = 0 elif vflip: self.flip = 1 else: self.flip = None self.stream = urllib.request.urlopen('http://%s:5000/video_feed?w=%d&h=%d&fps=%d' % ((pi_address,)+resolution+(framerate,))) self.total_bytes = b'' self.ev = threading.Event() self.th = threading.Thread(target=self.run, daemon=True) self.running = True self.frame = None self.th.start() def run(self): while self.running: self.frame = self.get_frame() self.ev.set() self.stream.close() def read(self): ''' while self.frame is None: time.sleep(.1) f = self.frame self.frame = None return f ''' self.ev.wait() self.ev.clear() return self.frame def get_frame(self): while True: self.total_bytes += self.stream.read(1024) end = self.total_bytes.find(b'\xff\xd9') # JPEG end if not end == -1: start = self.total_bytes.find(b'\xff\xd8') # JPEG start jpg = cv2.imdecode(np.fromstring(self.total_bytes[start: end+2], dtype=np.uint8), cv2.IMREAD_COLOR) if self.flip is not None: jpg = cv2.flip(jpg, self.flip) self.total_bytes = self.total_bytes[end+2:] return jpg def release(self): self.running = False self.th.join() def frames(self): while True: yield self.read() def __iter__(self): return self.frames() def __enter__(self): return self def __exit__(self, *args): self.release() def __del__(self): self.release()
2.796875
3
scheduler/misc/Ec2SpotCustomScheduler_jan19.py
jalawala/custom-kubernetes-scheduler
4
5895
#! /usr/bin/python3 import time import random import json import os from pprint import pprint from kubernetes.client.rest import ApiException from pint import UnitRegistry from collections import defaultdict from kubernetes import client, config, watch from timeloop import Timeloop from datetime import timedelta config.load_kube_config() #config.load_incluster_config() # doing this computation within a k8s cluster #k8s.config.load_incluster_config() core_api = client.CoreV1Api() apis_api = client.AppsV1Api() #sdclient = SdcClient(<Your Sysdig API token>) sysdig_metric = "net.http.request.time" metrics = [{ "id": sysdig_metric, "aggregations": { "time": "timeAvg", "group": "avg" } }] #scheduler_name = "Ec2SpotK8sScheduler" CustomSchedulerName ='K8SCustomScheduler' ureg = UnitRegistry() ureg.load_definitions('kubernetes_units.txt') pendingPodsList = [] failedPodsList = [] runningPodsList =[] nodesListPerNodeLabel = {} Q_ = ureg.Quantity def scheduler(name, node, namespace): target=client.V1ObjectReference(api_version='v1', kind="Node", name=node) meta=client.V1ObjectMeta() meta.name=name body=client.V1Binding(metadata=meta, target=target) return core_api.create_namespaced_binding(namespace, body, _preload_content=False) #tl = Timeloop() <EMAIL>(interval=timedelta(seconds=10)) def RunEc2SpotCustomScheduler(): #global pendingPodsList #global failedPodsList CustomKubeSchedulingClusterDeploymentData = get_custom_deployments() pprint("CustomKubeSchedulingClusterDeploymentData={}".format(CustomKubeSchedulingClusterDeploymentData)) for namespace, deploymentCustomSchedulingData in CustomKubeSchedulingClusterDeploymentData.items(): print("namespace={} deploymentCustomSchedulingData={}".format(namespace, deploymentCustomSchedulingData)) if deploymentCustomSchedulingData != {}: CustomSchedulePerNamespace(namespace, deploymentCustomSchedulingData) def CustomSchedulePerNamespace(namespace, deploymentCustomSchedulingData): global runningPodsList global pendingPodsList global failedPodsList global nodesListPerNodeLabel print("namespace={} deploymentCustomSchedulingData={}".format(namespace, deploymentCustomSchedulingData)) #exit(0) #namespace = 'default' #lifecycleList = ['OnDemand', 'Ec2Spot'] for deploymentName, CustomSchedulingData in deploymentCustomSchedulingData.items(): print("deploymentName={} CustomSchedulingData={}".format(deploymentName, CustomSchedulingData)) #exit(0) #podsList = getPodsListForDeployment(namespace, deploymentName) runningPodsList = [] pendingPodsList = [] failedPodsList =[] getPodsListForDeployment(namespace, deploymentName) NumOfPodsRunning = len (runningPodsList) NumOfPodsPending = len (pendingPodsList) NumOfPodsFailed = len (failedPodsList) #print("NumOfPodsRunning={} runningPodsList={}".format(NumOfPodsRunning, runningPodsList)) #print("NumOfPodsPending={} pendingPodsList={}".format(NumOfPodsPending, pendingPodsList)) #print("NumOfPodsFailed={} failedPodsList={}".format(NumOfPodsFailed, failedPodsList)) get_node_available_nodes_list(CustomSchedulingData) for i, p in enumerate (runningPodsList): pprint("i={} running pod_name={} node_name={}".format(i,p['node_name'], p['name'])) for i, p in enumerate (pendingPodsList): pprint("i={} pending pod_name={} node_name={}".format(i,p['node_name'], p['name'])) for i, p in enumerate (failedPodsList): pprint("i={} failed pod_name={} node_name={}".format(i,p['node_name'], p['name'])) #print("nodeLabel={} NumOfAlreadyRunningPods={}".format(nodeLabel, NumOfAlreadyRunningPods)) print("lifecycle={} NumOfNodes={}".format(lifecycle, len(NodesList))) for nodeLabel, in NodesList.keys(): pprint("node_name={}".format(n)) #exit(0) #runningPodsList = podsList['runningPodsList'] #pendingPodsList = podsList['pendingPodsList'] #failedPodsList = podsList['failedPodsList'] for nodeLabel, numOfReplicas in CustomSchedulingData.items(): print("Scheduling numOfReplicas={} on nodeLabel={}".format(numOfReplicas, nodeLabel)) #pprint(podsList) #lifecycle = 'OnDemand' #NodesList = get_node_available_nodes_list(lifecycle) #pprint(NodesList) NumOfPodsRunningAlready = 0 podsAlreadyRunningOnNodeLabelList = [] for podRunning in runningPodsList: if podRunning['node_name'] in nodesListPerNodeLabel[nodeLabel].keys(): podsAlreadyRunningOnNodeLabelList.append(podRunning) NumOfAlreadyRunningPods = len (podsAlreadyRunningOnNodeLabelList) for i, p in enumerate (podsAlreadyRunningOnNodeLabelList): pprint("running pod i={} nodeLabel={} node_name={} name={}".format(i,nodeLabel, p['node_name'], p['name'])) if NumOfAlreadyRunningPods == NumOfPodsToBeRunning: print("NumOfAlreadyRunningPods == NumOfPodsToBeRunning = {}. So no need to Schedule".format(NumOfAlreadyRunningPods)) elif NumOfAlreadyRunningPods < NumOfPodsToBeRunning: NumOfPodsToBeScheduled = NumOfPodsToBeRunning - NumOfAlreadyRunningPods try: schedulePods(NumOfPodsToBeScheduled, NodesList) except Exception as e: pprint(e) elif NumOfAlreadyRunningPods > NumOfPodsToBeRunning: NumOfPodsToDeleted = NumOfAlreadyRunningPods - NumOfPodsToBeRunning try: deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList) except Exception as e: pprint(e) pendingPodsList = [] NumOfPodsFailed = [] #pprint(podsList) #lifecycle = 'OnDemand' #lifecycle = 'Ec2Spot' #get_node_available_nodes_list(lifecycle) def deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList): namespace = 'default' for i in range(0, NumOfPodsToDeleted): pod = podsAlreadyRunningOnNodeLabelList[i] grace_period_seconds = 30 body = client.V1DeleteOptions() #body = {} pprint("deletePods i={} pod={} NumOfPodsToDeleted={}".format(i, pod['name'], NumOfPodsToDeleted )) response = core_api.delete_namespaced_pod(name=pod['name'], namespace=namespace, grace_period_seconds=grace_period_seconds, body=body) pprint(response) def schedulePods(NumOfPodsToBeScheduled, NodesList): global pendingPodsList global failedPodsList namespace = 'default' if NumOfPodsToBeScheduled > len(pendingPodsList): pprint("schedulePods NumOfPodsToBeScheduled={} is greater than number of pending pods={}. So skipping schedulePods".format(NumOfPodsToBeScheduled, len(pendingPodsList))) return for i in range(NumOfPodsToBeScheduled): pod = pendingPodsList[0] print("schedulePods Trying to schedule i={} NumOfPodsToBeScheduled={} pod={} with cpu_req={} mem_req={}".format(i, NumOfPodsToBeScheduled, pod['name'], pod['cpu_req'], pod['mem_req'])) for node, stats in NodesList.items(): print("schedulePods Checking for free resources on node={} with cpu_free={} mem_free={}".format(node, stats['cpu_free'], stats['mem_free'])) #pprint(node) if pod['cpu_req'] <= stats['cpu_free'] and pod['mem_req'] <= stats['mem_free']: print("schedulePods scheduling pod={} onto the node={}".format(pod['name'], node)) res = scheduler(pod['name'], node, namespace) pprint(res) stats['cpu_free'] = stats['cpu_free'] - pod['cpu_req'] stats['mem_free'] = stats['mem_free'] - pod['mem_req'] pendingPodsList.remove(pod) break def getPodsListForDeployment(namespace, deploymentName): #global pendingPodsList #runningPodsList =[] #failedPodsList =[] #podsList = {} #namespace='default' #name='Ec2SpotK8sScheduler' #field_selector = ("spec.scheduler_name=" + CustomSchedulerName) field_selector = ("spec.schedulerName=" + CustomSchedulerName) pods = core_api.list_namespaced_pod(namespace=namespace, field_selector=field_selector).to_dict() #pods = core_api.list_namespaced_pod(namespace=namespace).to_dict() #print("pods={}".format(pods)) for pod in pods['items']: #pprint(pod) #print("node_name={}".format(pod['spec']['node_name'])) #return "" stats = {} cpureqs,cpulmts,memreqs,memlmts = [], [], [], [] if deploymentName in pod['metadata']['name'] and pod['spec']['scheduler_name'] == CustomSchedulerName: for container in pod['spec']['containers']: res = container['resources'] reqs = defaultdict(lambda: 0, res['requests'] or {}) lmts = defaultdict(lambda: 0, res['limits'] or {}) cpureqs.append(Q_(reqs["cpu"])) memreqs.append(Q_(reqs["memory"])) cpulmts.append(Q_(lmts["cpu"])) memlmts.append(Q_(lmts["memory"])) stats["cpu_req"] = sum(cpureqs) stats["cpu_lmt"] = sum(cpulmts) stats["mem_req"] = sum(memreqs) stats["mem_lmt"] = sum(memlmts) stats["name"] = pod['metadata']['name'] stats["status"] = pod['status']['phase'] if stats["status"] == 'Pending': pendingPodsList.append(stats) elif stats["status"] == 'Running': stats["node_name"] = pod['spec']['node_name'] runningPodsList.append(stats) elif stats["status"] == 'Failed': failedPodsList.append(stats) #podsList['pendingPodsList'] = pendingPodsList #podsList['runningPodsList'] = runningPodsList #podsList['failedPodsList'] = failedPodsList #pprint(podsList) #pprint("pendingPodsList={} runningPodsList={} failedPodsList={}".format(runningPodsList, runningPodsList, failedPodsList ) #return pendingPodsList,runningPodsList,failedPodsList #return podsList def get_custom_deployments(): CustomKubeSchedulingClusterDeploymentData = {} #namespaceList =[] namespacedataList = core_api.list_namespace().to_dict()['items'] for namespaceData in namespacedataList: namespace = namespaceData['metadata']['name'] CustomKubeSchedulingClusterDeploymentData[namespace] = get_custom_deployments_per_namespace(namespace) #namespaceList.append(name) print("CustomKubeSchedulingClusterDeploymentData={}".format(CustomKubeSchedulingClusterDeploymentData)) return CustomKubeSchedulingClusterDeploymentData def get_custom_deployments_per_namespace(namespace): #CustomKubeSchedulingDeploymentData = [] CustomKubeSchedulingDeploymentData = {} #namespace='default' #name = 'nginx' name = '1' #field_selector = ("metadata.name=" + name) field_selector = ("metadata.annotations.OnDemandBase=" + name) # get deployment by namespace #resp = apis_api.list_namespaced_deployment(namespace=namespace, field_selector=field_selector) resp = apis_api.list_namespaced_deployment(namespace=namespace) for deployment in resp.items: #pprint(deployment.metadata.annotations) #pprint(deployment) deploymentData = {} CustomPodScheduleStrategy = {} annotations = deployment.metadata.annotations if 'UseCustomKubeScheduler' in annotations.keys(): if annotations['UseCustomKubeScheduler'] == 'true': deploymentName = deployment.metadata.name numOfReplicas = deployment.spec.replicas #deploymentData[deploymentName] = deployment.metadata.name Strategy = annotations['CustomPodScheduleStrategy'] #deploymentData['pod_replicas'] = deployment.spec.replicas #deploymentData['CustomPodScheduleStrategy'] = get_pods_custom_pod_schedule_strategy(Strategy, deployment.spec.replicas) CustomKubeSchedulingDeploymentData[deploymentName] = get_pods_custom_pod_schedule_strategy(Strategy, numOfReplicas) #deploymentData['NumOfOnDemandPodsToBeRunning'] = int (deploymentData['OnDemandBase'] + (deploymentData['pod_replicas'] - deploymentData['OnDemandBase']) * deploymentData['OnDemandAbovePercentage'] / 100) #deploymentData['NumOfSpotPodsToBeRunning'] = deploymentData['pod_replicas'] - deploymentData['NumOfOnDemandPodsToBeRunning'] #CustomKubeSchedulingDeploymentData.append(deploymentData) return CustomKubeSchedulingDeploymentData #print("OnDemandBase={}, OnDemandAbovePercentage={} SpotASGName={} OnDemandASGName={} pod_replicas={} NumOfOnDemandPods={} NumOfSpotPods={}".format(OnDemandBase, OnDemandAbovePercentage, SpotASGName, OnDemandASGName, pod_replicas, NumOfOnDemandPods, NumOfSpotPods)) def get_pods_custom_pod_schedule_strategy(Strategy, numOfReplicas): print("Strategy={} numOfReplicas={}".format(Strategy, numOfReplicas)) CustomPodScheduleStrategy = {} nodeLabelToReplicas = {} nodeLabelToWights = {} totalWeight = 0 StrategyList = Strategy.split(':') print("StrategyList={}".format(StrategyList)) numOfBaseValues = 0 for nodeStrategy in StrategyList: print("nodeStrategy: {}".format(nodeStrategy)) nodeStrategyPartsList = nodeStrategy.split(',') base = 0 weight = 0 nodeLabel = '' for nodeStrategyPart in nodeStrategyPartsList: nodeStrategySubPartList = nodeStrategyPart.split('=') if nodeStrategySubPartList[0] == 'base': if numOfBaseValues != 0: print("base value cannot be non-zero for more than node strategy") exit(1) else: numOfBaseValues += 1 base = int(nodeStrategySubPartList[1]) if base <= numOfReplicas: numOfReplicas -= base else: base = numOfReplicas numOfReplicas = 0 print("base={}".format(nodeStrategySubPartList[1])) elif nodeStrategySubPartList[0] == 'weight': weight = int(nodeStrategySubPartList[1]) totalWeight += weight print("weight={}".format(weight)) else: nodeLabel = nodeStrategyPart print("label key={} value={}".format(nodeStrategySubPartList[0], nodeStrategySubPartList[1])) #nodeLabelToReplicas [nodeLabel] = base nodeLabelToWights [nodeLabel] = weight CustomPodScheduleStrategy [nodeLabel] = base print("nodeLabelToReplicas={} nodeLabelToWights={}".format(nodeLabelToReplicas, nodeLabelToWights)) print("numOfBaseValues = {} totalWeight={} numOfReplicas={}".format(numOfBaseValues, totalWeight, numOfReplicas)) print("CustomPodScheduleStrategy = {}".format(CustomPodScheduleStrategy)) totalNumOfLables = len (CustomPodScheduleStrategy) labelNum = 0 for key, replicas in CustomPodScheduleStrategy.items(): weight = nodeLabelToWights[key] print("key: {} replicas={} weight={}, totalWeight={}".format(key, replicas, weight, totalWeight)) if labelNum == totalNumOfLables - 1: weightReplicas = numOfReplicas replicas = replicas + weightReplicas else: weightReplicas = int (numOfReplicas * (weight/totalWeight)) replicas = replicas + weightReplicas labelNum += 1 numOfReplicas -= weightReplicas print("weightReplicas: {} replicas={} labelNum={}, numOfReplicas={}".format(weightReplicas, replicas, labelNum, numOfReplicas)) CustomPodScheduleStrategy[key] = replicas print("CustomPodScheduleStrategy = {}".format(CustomPodScheduleStrategy)) print("numOfBaseValues = {} totalWeight={} numOfReplicas={}".format(numOfBaseValues, totalWeight, numOfReplicas)) return CustomPodScheduleStrategy __all__ = ["get_node_available_nodes_list"] def get_node_available_nodes_list(CustomSchedulingData): global nodesListPerNodeLabel #data = [] #data = {} for nodeLabel in CustomSchedulingData.keys(): nodesListPerNodeLabel[nodeLabel] = {} nodeLabelParts = nodeLabel.split('=') nodeLabelKey = nodeLabelParts[0] nodeLabelValue = nodeLabelParts[1] #selector = "metadata.labels."+nodeLabelParts[0]+"="+nodeLabelParts[1] #selector = "metadata.labels.nodesize="+nodeLabelParts[1] #print("selector={}".format(selector)) #name = 'ip-192-168-73-104.ec2.internal' #selector = "metadata.name"+"="+name #print("selector={}".format(selector)) #field_selector = (selector) #resp = core_api.list_node(field_selector=field_selector).to_dict()['items'] #pprint("resp={}".format(resp)) #exit(0) availableNodesData = {} for node in core_api.list_node().to_dict()['items']: #pprint(node) node_labels = node['metadata']['labels'] if nodeLabelKey in node_labels.keys(): if node_labels[nodeLabelKey] == nodeLabelValue: stats = {} node_name = node['metadata']['name'] allocatable = node['status']['allocatable'] max_pods = int(int(allocatable["pods"]) * 1.5) field_selector = ("status.phase!=Succeeded,status.phase!=Failed," + "spec.nodeName=" + node_name) stats["cpu_alloc"] = Q_(allocatable["cpu"]) stats["mem_alloc"] = Q_(allocatable["memory"]) #stats["lifecycle"] = lifecycle pods = core_api.list_pod_for_all_namespaces(limit=max_pods, field_selector=field_selector).to_dict()['items'] # compute the allocated resources cpureqs,cpulmts,memreqs,memlmts = [], [], [], [] for pod in pods: #pprint(pod) for container in pod['spec']['containers']: res = container['resources'] reqs = defaultdict(lambda: 0, res['requests'] or {}) lmts = defaultdict(lambda: 0, res['limits'] or {}) cpureqs.append(Q_(reqs["cpu"])) memreqs.append(Q_(reqs["memory"])) cpulmts.append(Q_(lmts["cpu"])) memlmts.append(Q_(lmts["memory"])) stats["cpu_req"] = sum(cpureqs) stats["cpu_lmt"] = sum(cpulmts) stats["cpu_req_per"] = (stats["cpu_req"] / stats["cpu_alloc"] * 100) stats["cpu_lmt_per"] = (stats["cpu_lmt"] / stats["cpu_alloc"] * 100) stats["mem_req"] = sum(memreqs) stats["mem_lmt"] = sum(memlmts) stats["mem_req_per"] = (stats["mem_req"] / stats["mem_alloc"] * 100) stats["mem_lmt_per"] = (stats["mem_lmt"] / stats["mem_alloc"] * 100) stats["cpu_free"] = stats["cpu_alloc"] - stats["cpu_req"] stats["mem_free"] = stats["mem_alloc"] - stats["mem_req"] #stats["name"] = node['metadata']['name'] #data.append(stats) availableNodesData[node_name] = stats nodesListPerNodeLabel[nodeLabel] = availableNodesData #print(nodesListPerNodeLabel) #for nodeLabel, availableNodesData in nodesListPerNodeLabel.items(): #print("nodeLabel={} availableNodesData={}".format(nodeLabel, availableNodesData)) #exit(0) #pprint(data) return data if __name__ == '__main__': #ready_nodes = nodes_available() #pprint(ready_nodes) #name='review-v1-787d8fbfbb-ltdzt' node='ip-10-0-3-253.ec2.internal' #namespace='ecommerce' #ret=scheduler(name, node, namespace) #pprint(ret) #main() #test() #testpod() #check_node_resources(node) #RunEc2SpotCustomScheduler() #getPodsListForDeployment(' ') #lifecycle = 'OnDemand' #lifecycle = 'Ec2Spot' #get_node_available_nodes_list(lifecycle) #RunEc2SpotCustomScheduler() #NumOfPodsToDeleted = 1 #podsAlreadyRunningOnNodeLabelList = [] #d ={'name':'nginx-66cb875766-vx6bp'} #podsAlreadyRunningOnNodeLabelList.append(d) #deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList) #deploymentName='nginx' #deploymentName = 'kube-ops-view' #getPodsListForDeployment(deploymentName) #testlist() #tl.start(block=True) while True: RunEc2SpotCustomScheduler() time.sleep(10)
2.046875
2
local/utils/validate_label_locale.py
DewiBrynJones/docker-deepspeech-cy
3
5896
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from clean_transcript import clean_transcript ALPHABET_FILE_PATH = "/DeepSpeech/bin/bangor_welsh/alphabet.txt" def validate_label(label): clean = clean_transcript(ALPHABET_FILE_PATH) cleaned, transcript = clean.clean(label) if cleaned: return transcript.lower() return None
3.015625
3
src/models/nn/adaptive_softmax.py
dumpmemory/state-spaces
513
5897
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import functools import torch import torch.nn as nn import torch.nn.functional as F class OptionalParameterList(nn.ParameterList): def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): if p is not None: size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p), size_str, device_str) child_lines.append(' (' + str(k) + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, tie_projs=None, out_layers_weights=None, out_projs=None, keep_order=False, bias_scale=0.0, dropout=0.0, ): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = list(cutoffs) + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters # [21-09-15 AG]: bake the first False into the definition, just as [0] is built into the cutoffs if tie_projs is None: tie_projs = [] elif isinstance(tie_projs, bool): tie_projs = [tie_projs] * len(cutoffs) else: tie_projs = list(tie_projs) tie_projs = [False] + tie_projs self.tie_projs = tie_projs if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) if not out_layers_weights: self.out_layers_weights = nn.ParameterList() else: self.out_layers_weights = out_layers_weights self.out_layers_biases = nn.ParameterList() self.shared_out_projs = out_projs self.out_projs = OptionalParameterList() self.dropout = dropout self.drop = nn.Dropout(dropout) if div_val == 1: if d_proj != d_embed: for i in range(len(self.cutoffs)): if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_embed)) ) else: # self.out_projs = [None] * len(self.cutoffs) self.out_projs.append(None) self.out_layers_biases.append( nn.Parameter(torch.zeros(n_token)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(n_token, d_embed)) ) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1] d_emb_i = d_embed // (div_val ** i) if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_emb_i)) ) self.out_layers_biases.append( nn.Parameter(torch.zeros(r_idx - l_idx)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(r_idx - l_idx, d_emb_i)) ) for bias in self.out_layers_biases: bound = bias_scale * d_proj ** -.5 nn.init.uniform_(bias, -bound, bound) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = F.linear(hidden, weight, bias=bias) else: if self.dropout > 0.0: logit = hidden @ proj logit = self.drop(logit) logit = logit @ weight.t() else: logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) if bias is not None: logit = logit + bias return logit def get_out_proj(self, i): if self.tie_projs[i]: if len(self.shared_out_projs) == 0: return None elif len(self.shared_out_projs) == 1: return self.shared_out_projs[0] else: return self.shared_out_projs[i] else: return self.out_projs[i] def forward(self, hidden, target, keep_order=False, key_padding_mask=None, *args, **kwargs): # [21-09-15 AG]: TODO may need to handle key_padding_mask ''' hidden :: [len*bsz x d_proj] target :: [len*bsz] ''' hidden = hidden.reshape(-1, hidden.size(-1)) target = target.reshape(-1) if hidden.size(0) != target.size(0): print(hidden.shape, target.shape) raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers_weights[0], self.out_layers_biases[0], self.get_out_proj(0)) nll = -F.log_softmax(logit, dim=-1) \ .gather(1, target.unsqueeze(1)).squeeze(1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers_weights[0][l_idx:r_idx] bias_i = self.out_layers_biases[0][l_idx:r_idx] else: weight_i = self.out_layers_weights[i] bias_i = self.out_layers_biases[i] if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.get_out_proj(0) head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) nll = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero(as_tuple=False).squeeze() if indices_i.numel() == 0: continue target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) if i == 0: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: weight_i, bias_i, proj_i = weights[i], biases[i], self.get_out_proj(i) hidden_i = hidden.index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob_i[:, -i] \ + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) if self.keep_order or keep_order: nll.index_copy_(0, indices_i, -logprob_i) else: nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return nll.mean() # TODO maybe cases for length or padding_mask class AdaptiveEmbedding(nn.Module): """ Copy of transformers.AdaptiveEmbedding that works with fp16 by replacing the index_put_ operation Initialization has been fixed for the case when d_proj = d_embed """ def __init__(self, n_token, d_embed, d_proj, cutoffs : List[int], div_val=1, init_scale=1.0, sample_softmax=False, dropout=0.0): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = list(cutoffs) + [n_token] self.div_val = div_val self.d_proj = d_proj self.drop = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) _init_embed(self.emb_layers[-1].weight, d_embed, init_scale) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_embed ** -.5) if d_proj != d_embed: # TODO # self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_emb_i ** -.5) _init_embed(self.emb_layers[-1].weight, d_emb_i, init_scale) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) def forward(self, inp, *args, **kwargs): if self.div_val == 1: embed = self.emb_layers[0](inp) embed = self.drop(embed) if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) # Changes # emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) embeddings = [] indices = torch.zeros_like(inp_flat) # empty should work as long as cutoffs[-1] > max token _total_tokens = 0 # emb_flat = inp.new_zeros(inp_flat.size(0), self.d_proj) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze(-1) # shape (_tokens,) _tokens = indices_i.numel() if _tokens == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = self.drop(emb_i) emb_i = F.linear(emb_i, self.emb_projs[i]) # Changes embeddings.append(emb_i) indices.index_put_( (indices_i,), torch.arange(_tokens, device=inp.device) + _total_tokens ) _total_tokens += _tokens # emb_flat.index_copy_(0, indices_i, emb_i) embeddings = torch.cat(embeddings, dim=0) emb_flat = embeddings[indices] embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) # embed.div_(self.emb_scale) return embed def _init_weight(weight, d : int, init_scale : Optional[float], default=None): assert init_scale or default if init_scale is None: std = default else: std = init_scale * (d ** -0.5) nn.init.normal_(weight, mean=0, std=std) _init_embed = functools.partial(_init_weight, default=0.02) _init_proj = functools.partial(_init_weight, default=0.01) ### Just for this codebase, we need to squeeze the last dimension because inputs are always given as (B, L, D) instead of (B, L) import src.models.nn.utils as U # AdaptiveEmbedding = U.Squeeze(AdaptiveEmbedding)
1.726563
2
the_el/cli.py
CityOfPhiladelphia/the-el
11
5898
import json import csv import sys import os import re import codecs import logging from logging.config import dictConfig import click import yaml from sqlalchemy import create_engine from jsontableschema_sql import Storage from smart_open import smart_open from . import postgres from . import carto csv.field_size_limit(sys.maxsize) def get_logger(logging_config): try: with open(logging_config) as file: config = yaml.load(file) dictConfig(config) except: FORMAT = '[%(asctime)-15s] %(levelname)s [%(name)s] %(message)s' logging.basicConfig(format=FORMAT, level=logging.INFO, stream=sys.stderr) logger = logging.getLogger('the_el') def exception_handler(type, value, tb): logger.exception("Uncaught exception: {}".format(str(value)), exc_info=(type, value, tb)) sys.excepthook = exception_handler return logger @click.group() def main(): pass def get_connection_string(connection_string): connection_string = os.getenv('CONNECTION_STRING', connection_string) if connection_string == None: raise Exception('`CONNECTION_STRING` environment variable or `--connection-string` option required') return connection_string def create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=None, to_srid=None): engine = create_engine(connection_string) storage = Storage(engine, dbschema=db_schema, geometry_support=geometry_support, from_srid=from_srid, to_srid=to_srid, views=True) return engine, storage def fopen(file, mode='r'): if file == None: if mode == 'r': return sys.stdin elif mode == 'w': return sys.stdout else: return smart_open(file, mode=mode) def get_table_schema(table_schema_path): with fopen(table_schema_path) as file: contents = file.read() if not isinstance(contents, str): contents = contents.decode('utf-8') return json.loads(contents) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') def describe_table(table_name, connection_string, output_file, db_schema, geometry_support): connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) descriptor = storage.describe(table_name) with fopen(output_file, mode='w') as file: json.dump(descriptor, file) @main.command() @click.argument('table_name') @click.argument('table_schema_path') @click.option('--connection-string') @click.option('--db-schema') @click.option('--indexes-fields') @click.option('--geometry-support') @click.option('--if-not-exists', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def create_table(table_name, table_schema_path, connection_string, db_schema, indexes_fields, geometry_support, if_not_exists, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) if indexes_fields != None: indexes_fields = indexes_fields.split(',') if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' logger.info('{} - Creating table using Carto'.format(table_name)) return carto.create_table(logger, table_name, load_postgis, table_schema, if_not_exists, indexes_fields, connection_string) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) logger.info('{} - Creating table using SQLAlchemy'.format(table_name)) storage.create(table_name, table_schema, indexes_fields=indexes_fields) @main.command() @click.argument('table_name') @click.option('--table-schema-path') @click.option('--connection-string') @click.option('-f','--input-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--skip-headers', is_flag=True) @click.option('--indexes-fields') @click.option('--upsert', is_flag=True) @click.option('--truncate/--no-truncate', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def write(table_name, table_schema_path, connection_string, input_file, db_schema, geometry_support, from_srid, skip_headers, indexes_fields, upsert, truncate, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimted json? with fopen(input_file) as file: rows = csv.reader(file) if skip_headers: next(rows) if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' if indexes_fields != None: indexes_fields = indexes_fields.split(',') logger.info('{} - Writing to table using Carto'.format(table_name)) carto.load(logger, db_schema, table_name, load_postgis, table_schema, connection_string, rows, indexes_fields, truncate) else: connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid) ## TODO: truncate? carto does. Makes this idempotent logger.info('{} - Writing to table using SQLAlchemy'.format(table_name)) if table_schema_path != None: table_schema = get_table_schema(table_schema_path) storage.describe(table_name, descriptor=table_schema) else: storage.describe(table_name) if upsert: postgres.upsert(engine, db_schema, table_name, table_schema, rows) elif geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_from(engine, table_name, table_schema, rows) else: storage.write(table_name, rows) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--to-srid') @click.option('--logging-config', default='logging_config.conf') def read(table_name, connection_string, output_file, db_schema, geometry_support, from_srid, to_srid, logging_config): logger = get_logger(logging_config) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid, to_srid=to_srid) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimited json? with fopen(output_file, mode='w') as file: writer = csv.writer(file) descriptor = storage.describe(table_name) fields = map(lambda x: x['name'], descriptor['fields']) writer.writerow(fields) if geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_to(engine, table_name, file) else: for row in storage.iter(table_name): row_out = [] for field in row: if isinstance(field, dict) or isinstance(field, list): field = json.dumps(field) row_out.append(field) writer.writerow(row_out) @main.command() @click.argument('new_table_name') @click.argument('old_table_name') @click.option('--connection-string') @click.option('--db-schema') @click.option('--select-users', help='Users to grant SELECT on updated table') @click.option('--logging-config', default='logging_config.conf') def swap_table(new_table_name, old_table_name, connection_string, db_schema, select_users, logging_config): logger = get_logger(logging_config) if re.match(carto.carto_connection_string_regex, connection_string) != None: if select_users != None: select_users = select_users.split(',') else: select_users = [] logger.info('Swapping tables using Carto: {} - {}'.format(new_table_name, old_table_name)) return carto.swap_table(logger, db_schema, new_table_name, old_table_name, select_users, connection_string) connection_string = get_connection_string(connection_string) engine = create_engine(connection_string) if engine.dialect.driver == 'psycopg2': logger.info('Swapping tables using psycopg2: {} - {}'.format(new_table_name, old_table_name)) conn = engine.raw_connection() try: with conn.cursor() as cur: sql = 'ALTER TABLE "{}" RENAME TO "{}_old";'.format(old_table_name, old_table_name) +\ 'ALTER TABLE "{}" RENAME TO "{}";'.format(new_table_name, old_table_name) +\ 'DROP TABLE "{}_old";'.format(old_table_name) cur.execute(sql) conn.commit() except: conn.rollback() raise conn.close() elif engine.dialect.driver == 'cx_oracle': logger.info('Swapping tables using cx_Oracle: {} - {}'.format(new_table_name, old_table_name)) conn = engine.connect() if select_users != None: select_users = select_users.split(',') else: select_users = [] grants_sql = [] for user in select_users: grants_sql.append('GRANT SELECT ON {} TO {}'.format(old_table_name, user.strip())) # Oracle does not allow table modification within a transaction, so make individual transactions: sql1 = 'ALTER TABLE {} RENAME TO {}_old'.format(old_table_name, old_table_name) sql2 = 'ALTER TABLE {} RENAME TO {}'.format(new_table_name, old_table_name) sql3 = 'DROP TABLE {}_old'.format(old_table_name) try: conn.execute(sql1) except: logger.error("Could not rename {} table. Does it exist?".format(old_table_name)) raise try: conn.execute(sql2) except: logger.error("Could not rename {} table. Does it exist?".format(new_table_name)) rb_sql = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql) raise try: conn.execute(sql3) except: logger.error("Could not drop {}_old table. Do you have permission?".format(old_table_name)) rb_sql1 = 'DROP TABLE {}'.format(old_table_name) conn.execute(rb_sql1) rb_sql2 = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql2) raise try: for sql in grants_sql: conn.execute(sql) except: logger.error("Could not grant all permissions to {}.".format(old_table_name)) raise else: raise Exception('`{}` not supported by swap_table'.format(engine.dialect.driver))
2.296875
2
examples/asr/experimental/speech_to_text_sclite.py
vadam5/NeMo
2
5899
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is based on speech_to_text_infer.py and allows you to score the hypotheses with sclite. A local installation from https://github.com/usnistgov/SCTK is required. Hypotheses and references are first saved in trn format and are scored after applying a glm file (if provided). """ import errno import json import os import subprocess from argparse import ArgumentParser import torch from nemo.collections.asr.metrics.wer import WER from nemo.collections.asr.models import EncDecCTCModel from nemo.utils import logging try: from torch.cuda.amp import autocast except ImportError: from contextlib import contextmanager @contextmanager def autocast(enabled=None): yield def score_with_sctk(sctk_dir, ref_fname, hyp_fname, out_dir, glm=""): sclite_path = os.path.join(sctk_dir, "bin", "sclite") if not os.path.exists(sclite_path): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), sclite_path) # apply glm if os.path.exists(glm): rfilter_path = os.path.join(sctk_dir, "bin", "rfilter1") if not os.path.exists(rfilter_path): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), rfilter_path) hypglm = os.path.join(out_dir, os.path.basename(hyp_fname)) + ".glm" rfilt_cmd = [rfilter_path] + [glm] with open(hypglm, "w") as hypf, open(hyp_fname, "r") as hyp_in: subprocess.run(rfilt_cmd, stdin=hyp_in, stdout=hypf) refglm = os.path.join(out_dir, os.path.basename(ref_fname)) + ".glm" with open(refglm, "w") as reff, open(ref_fname, "r") as ref_in: subprocess.run(rfilt_cmd, stdin=ref_in, stdout=reff) else: refglm = ref_fname hypglm = hyp_fname _ = subprocess.check_output(f"{sclite_path} -h {hypglm} -r {refglm} -i wsj -o all", shell=True) can_gpu = torch.cuda.is_available() def get_utt_info(manifest_path): info_list = [] with open(manifest_path, "r") as utt_f: for line in utt_f: utt = json.loads(line) info_list.append(utt) return info_list def main(): parser = ArgumentParser() parser.add_argument( "--asr_model", type=str, default="QuartzNet15x5Base-En", required=False, help="Pass: 'QuartzNet15x5Base-En'", ) parser.add_argument("--dataset", type=str, required=True, help="path to evaluation data") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument( "--dont_normalize_text", default=False, action='store_true', help="Turn off trasnscript normalization. Recommended for non-English.", ) parser.add_argument("--out_dir", type=str, required=True, help="Destination dir for output files") parser.add_argument("--sctk_dir", type=str, required=False, default="", help="Path to sctk root dir") parser.add_argument("--glm", type=str, required=False, default="", help="Path to glm file") args = parser.parse_args() torch.set_grad_enabled(False) if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) use_sctk = os.path.exists(args.sctk_dir) if args.asr_model.endswith('.nemo'): logging.info(f"Using local ASR model from {args.asr_model}") asr_model = EncDecCTCModel.restore_from(restore_path=args.asr_model) else: logging.info(f"Using NGC cloud ASR model {args.asr_model}") asr_model = EncDecCTCModel.from_pretrained(model_name=args.asr_model) asr_model.setup_test_data( test_data_config={ 'sample_rate': 16000, 'manifest_filepath': args.dataset, 'labels': asr_model.decoder.vocabulary, 'batch_size': args.batch_size, 'normalize_transcripts': not args.dont_normalize_text, } ) if can_gpu: asr_model = asr_model.cuda() asr_model.eval() labels_map = dict([(i, asr_model.decoder.vocabulary[i]) for i in range(len(asr_model.decoder.vocabulary))]) wer = WER(vocabulary=asr_model.decoder.vocabulary) hypotheses = [] references = [] all_log_probs = [] for test_batch in asr_model.test_dataloader(): if can_gpu: test_batch = [x.cuda() for x in test_batch] with autocast(): log_probs, encoded_len, greedy_predictions = asr_model( input_signal=test_batch[0], input_signal_length=test_batch[1] ) for r in log_probs.cpu().numpy(): all_log_probs.append(r) hypotheses += wer.ctc_decoder_predictions_tensor(greedy_predictions) for batch_ind in range(greedy_predictions.shape[0]): reference = ''.join([labels_map[c] for c in test_batch[2][batch_ind].cpu().detach().numpy()]) references.append(reference) del test_batch info_list = get_utt_info(args.dataset) hypfile = os.path.join(args.out_dir, "hyp.trn") reffile = os.path.join(args.out_dir, "ref.trn") with open(hypfile, "w") as hyp_f, open(reffile, "w") as ref_f: for i in range(len(hypotheses)): utt_id = os.path.splitext(os.path.basename(info_list[i]['audio_filepath']))[0] # rfilter in sctk likes each transcript to have a space at the beginning hyp_f.write(" " + hypotheses[i] + " (" + utt_id + ")" + "\n") ref_f.write(" " + references[i] + " (" + utt_id + ")" + "\n") if use_sctk: score_with_sctk(args.sctk_dir, reffile, hypfile, args.out_dir, glm=args.glm) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
1.84375
2